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Péter Érdi
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Preface

Everything the Power of the World
does is done in a circle. The sky is
round and I have heard that the earth
is round like a ball and so are all the stars.
The wind, in its greatest power, whirls.
Birds make their nests in circles,
for theirs is the same religion as ours.
The sun comes forth and goes down
again in a circle. The moon does the
same and both are round. Even the
seasons form a great circle in their
changing and always come back again
to where they were. The life of a man
is a circle from childhood to childhood.
And so it is everything where power moves.

Black Elk (1863–1950)

Nonlinearity is a captivating manifestation of the observable Universe,
whose importance has increased over the decades, and has found more and
more fields of application ranging from elementary particles, nuclear physics,
biology, wave dynamics at any scale, fluids, plasmas to astrophysics. The
central character of this 172-year-old story is the soliton. Namely, a localized
pulse traveling without spreading and having particle-like properties plus an
infinite number of conservation laws associated to its dynamics. In general,
solitons arise as exact solutions of approximative models. There are differ-
ent explanation, at different levels, for the existence of solitons. From the
experimentalist point of view, solitons can be created if the propagation con-
figuration is long enough, narrow enough (like long and shallow channels, fiber
optics, electric lines, etc.), and the surrounding medium has an appropriate
nonlinear response providing a certain type of balance between nonlinearity
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and dispersion. From the numerical calculations point of view, solitons are
localized structures with very high stability, even against collisions between
themselves. From the theory of differential equations point of view, solitons
are cross-sections in the jet bundle associated to a bi-Hamiltonian evolution
equation (here Hamiltonian pairs are requested in connection to the existence
of an infinite collection of conservation laws in involution). From the geometry
point of view, soliton equations are compatibility conditions for the existence
of a Lie group. From the physicist point of view, solitons are solutions of an
exactly solvable model having isospectral properties carrying out an infinite
number of nonobvious and counterintuitive constants of motion.

The progress in the theory of solitons and integrable systems has allowed
the study of many nonlinear problems in mathematics and physics: ele-
mentary particle nonlocal interactions, collective excitations in heavy nuclei,
Bose–Einstein condensates in atomic physics, propagation of nervous influxes,
nonlinear oscillations of liquid drops, bubbles, and shells, vortexes in plasma
and in atmosphere, tides in neutron stars, etc., only to enumerate few of pos-
sible applications. A number of other applications of soliton theory also lead
to the study of the dynamics of boundaries. In that, the last three decades
have seen the completion of the foundation for what today we call nonlinear
contour dynamics. The subsequent stage of development along this topic was
connected with the consideration of a almost incompressible systems, where
the boundary (contour or surface) plays the major role.

The first problem about such compact systems is that shape solitons, which
usually exist in infinite long and shallow propagation media, cannot survive
on a circle or sphere. That is because such compact manifolds cannot offer the
requested type of environment (long and narrow), even by the introduction
of shallow layers and rigid cores. However, there is another basic idea which
supports, in a natural way, the existence of nonlinear solutions on compact
spaces. Because of its high localization, a soliton (or a compacton) is not
a unique solution for the partial differential system. Its position in space is
undetermined because, far away from its center, the excitation is practically
zero. On the other hand, all linear equations provide uniqueness properties
for their solutions. It results that strongly localized solutions, and almost
compact supported solutions can be generated only within nonlinear equa-
tions. There is an exception here: the finite difference equations with their
compact supported wavelet solutions, but in some sense a finite difference
equation is similar to a nonlinear differential one.

Despite the many applications and publications on nonlinear equations on
compact domains, there are still no books introducing this theory, except for
several sets of lecture notes. One reason for this may be that the field is still
undergoing a major development and has not yet reached the perfection of
a systematic theory. Another reason is that a fairly deep knowledge of inte-
grable systems on compact manifolds has been required for the understanding
of solitons on closed curves and compact surfaces.
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The main aim of this book is to present models of nonlinear phenomena
that occur mainly on closed, compact surfaces or curves, especially where
solitons and solitary waves are involved. The approach of the physical prob-
lems ranging from nuclear to astrophysical scales is made in the language of
differential geometry. The text is rather intended to be an introduction to
the physics of solitons on compact systems like filaments, loops, drops, etc.,
for students, mathematicians, physicists, and engineers. However, the book
does not elaborate on the general theory of solitons, or the inverse scattering
problem, for example. The author assumes that the reader has some previ-
ous knowledge about solitons, integrable systems and nonlinearity in general.
The book furnishes the reader with models related to compact boundaries
and their nonlinear dynamics, and, if available, with soliton-like solutions.
This is a book to be read with pencil, paper, and a symbolic computer pro-
gram at hand. Our intention is to furnish readers with enough knowledge to
be able to identify, understand, and model such nonlinear systems.

This text is still far from being a comprehensive study on the topic of soli-
tons on compact systems. It consists of 17 chapters, a mathematical annex,
and a bibliography. First part contains the fundamental differential geom-
etry and analysis approach. To render this book accessible to students in
science and engineering, Chap. 2 recalls some basic elements of topology. In
Chap. 3 we review some representation formulas for different dimensions, as
expressions of the comprehensive information contained in the boundaries.
Chapter 4 introduces the reader in the calculus on differentiable manifolds,
vector fields, forms, and various type of derivatives. Chapter 5 lays the basis
for the differential geometry of curves in R3. In Chap. 6 we derive the theory
of motion of curves, and we relate these motions with soliton solutions. In
Chap. 7 we recall some elements of differential geometry of the surfaces with
applications on the action of differential operators on surfaces. In Chap. 8 we
discuss the theory of motion of surfaces.

The second part of the monograph contains an exposition of the basic
branches of nonlinear hydrodynamics. The working frame of hydrodynam-
ics is the main content of the first part of the monograph, namely Chap. 9.
In Chap. 10 we discuss problems on surface tension effects and represen-
tation theorems for fluid dynamics models. Chapter 11 concentrates with
one-dimensional integrable systems on compact intervals, and their periodic
solutions. Chapters 12 and 13 deal with nonlinear shape excitations of two-
dimensional and three-dimensional liquid drops and bubbles. Chapter 14 is
devoted for various applications of three-dimensional nonlinear drops, and
also to compact supported solitons.

In the third part of the book, as a final goal for the first two parts,
we present additional physical applications of nonlinear systems and their
soliton solutions on various systems of different scales. In Chap. 15 we
study the vortex filaments and other one-dimensional flows. In Chap. 16 we
describe microscopic applications like exotic shapes in heavy nuclei, exotic
radioactivity and quantum Hall drops. Chapter 17 deals with macroscopic
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applications like magnetohydrodynamic plasma systems, elastic spheres,
neutron stars, etc.

The book is closed by a mathematical annex including a section on
nonlinear dispersion relations and their use for nonlinear systems of partial
differential equations.

The last comment of this preface would be: Why one more book on soli-
tons and why on compact spaces? A first answer is that there are already a
large number of applications on these vivid topics and hundreds of published
articles. On the other hand, there is the importance of compact manifolds
themselves in physics.

If a substantial percentage of users of this book feel that it helped them
to enlarge their outlook in the intersection between the fascinating worlds
of nonlinear waves and compact surfaces and closed curves, its purpose has
been fulfilled.
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In the first part of this book we study the geometrical prerequisites needed
in the investigation of solitons on bounded or compact manifolds. After intro-
ducing some basic elements of topology, with emphasis on compact spaces, we
present the influence of boundaries over the interior by enumerating impor-
tant representation theorems and formulas where the values of some special
functions inside certain domains are known if one only knows their values
on the boundaries. Next we introduce elements of differential geometry on
manifolds (vector fields, forms, derivatives) culminating with the Poincaré
Lemma. A certain amount of space is also devoted to theorems of existence
and uniqueness, both from the point of view of differential equations and
from the point of view of the flow box approach. These concepts are ap-
plied latter on to the geometry and motion of curves and surfaces, especially
the closed ones. The last chapter is mainly devoted to surface differential
operators which are important tools in the forthcoming applications.



Chapter 1

Introduction

In this chapter we present a short definition of the soliton from the point
of view of mathematical physics. We also make some comments on the alge-
braic and geometric approaches of a nonlinear system, defined on a bounded
manifold. In the end of the chapter we present a brief list of the most useful
calculus tools, the derivatives, needed in the geometrical approach of nonlin-
ear problems.

1.1 Introduction to Soliton Theory

Nonlinear evolution equations describe a variety of physical systems at
different scales. Examples of microscopic systems are elementary particle
nonlinear models, superheavy nuclei, exotic radioactivity, neutron-less fis-
sion, atomic clusters, quantum hall drops, nonlinear optics, plasma vortexes,
complex molecular systems, solid state localized excited states, and Bose–
Einstein condensates. At lab scale we have examples from fluid dynamics,
biophysics, and applications can be found even at macroscopic scale like neu-
tron stars or impact of stellar objects. It is of particular interest to examine
the dynamics of localized solutions on compact domain of definitions like
closed segments, closed curves, or closed surfaces, in one word on boundaries
of compact physical domains. The most useful nonlinear systems are the inte-
grable ones, i.e., those solvable by inverse scattering. These particular systems
have soliton solutions, and an infinite number of conservation laws. The tra-
ditional nonlinear systems, Korteweg–de Vries, modified Korteweg–de Vries,
sine–Gordon, Schrödinger nonlinear equation, and Kadomtsev–Petviashvili
were investigated in numerous works and books (see for example the following
books and the references listed herein [1–8]). In addition to these equations,
there are other numerous examples of integrable evolutionary systems in one
or more space dimensions. As a general property, all these systems have at
least one dimension much larger than the other ones. For example, all models

5
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based on the two-layer configuration need the approximation of long channels
or long lines. In the present book we do not elaborate on such “long-scale”
systems, and we do not review them in detail. We rather focus on compact
physical systems modeled by nonlinear evolution equations. Some solutions
derived in long systems may exist in the compact ones. The cnoidal waves
which are periodical, or compact supported solutions. Some other solutions
may be specific only to the compact systems, like we noted in the theory of
nonlinear oscillations of two-dimensional drops.

A nonlinear evolution system is a partial differential equation in time and
other several space dimensions of the form

∂u

∂t
= F (x, t, u, u(0,p̃)),

where u(t, x1, . . . , xn) is a complex vector function defined on a domain
in R × D ⊂ R × Rn, and where in the RHS the arbitrary functional F
depends on the coordinates and derivatives of the function at spatial co-
ordinates only (p̃ is a multiple index with n components). A solitary wave
solution of the nonlinear evolution equation is a solution with the asymp-
totic form at t → ±∞, u → u∞(t, x1, . . . , xn) = f(x1 − V 1t, . . . , xn − V nt),
with arbitrary constant velocities V i in all space directions. The definition
does not exclude standing traveling waves with the same above form at
all moments of time. A soliton is a solitary wave solution of a nonlinear
evolutionary system which asymptotically preserves its shape and velocity
against interactions with any other (linear or nonlinear) solutions of the same
system, or against any other type of localized disturbance δ(t, x1, . . . , xn)
[1–4,6–9].

We define a conservation law of the nonlinear evolution system, a triple
(T (t, xi, u, u(k,p̃)),X(t, xi, u, u(k,p̃)), Ξ), where the function T is the conserved
density, the vector (Xi) is the flux, and Ξ is a linear first-order partial dif-
ferential continuity equation of the form

Ξ ⇒ dT

dt
+∇ ·X = 0,

where the first term is the total time derivative, and T is such that

d

dt

∫
D

T (t, xi, us, u
(k,p̃)
s )dnx = 0,

for any solution us of the nonlinear evolution equation.

1.2 Algebraic and Geometric Approaches

There are two main mathematical approaches to a problem: algebraic or
geometric, and occasionally they overlap. Matrices represent a good example
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of overlap between geometrical and algebraical approaches. For example, let
us look at two Heisenberg matrices (square matrices with entries 0, 1)⎛⎜⎜⎜⎜⎝

0 0 1 0 1
0 1 0 1 1
1 1 0 0 1
1 0 1 1 0
0 1 1 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠
The left one has no interesting geometrical feature, but its determinant is
5, which is the maximum possible value for such a 5× 5 matrix, since there
are very few such maximal determinant matrices in this set. At the same
time, the right matrix has a symmetrical structure but its determinant is −1,
which algebraically is very common. These are dualities between the algebraic
and geometric points of view. Topological invariants, for example, like Euler
characteristics, or order of the group of homotopy or homology, are calculated
algebraically. The characteristics of curves, especially of loops, can be ana-
lyzed in terms of group theory, too. On the other side, the best efficiency of
using groups and algebras is met when these algebraic objects have additional
differentiable structure, and become geometrical objects like Lie groups, and
fields defined on surfaces. When we study a physical problem we like to reveal
both its algebraic and its geometric interpretation. Compact systems, espe-
cially nonlinear compact systems like dynamical drops, closed shells, closed
loops, etc., take profit of such dualities, because their differential structures
are altered by periodic boundary conditions, by nonzero curvatures, or by
the coupling between different terms of different orders or scales.

Another problem related to nonlinear compact systems is the need for
compact supported solutions. Solitons have long tails which are not conve-
nient for compact domains, unless one works in some approximations where
the tail can be neglected to a certain extent. However, such pseudoperiodic-
ity conditions introduce strong instabilities. Cnoidal waves type of solutions
are better for compact domains because, on one hand, they can overlap over
the same pattern by periodicity, and on the other hand, they offer enough
exoticism in their shapes to match traveling isolated excitation like bumps
or kinks. Nevertheless, a nonlinear system can generate even more localized
solutions, like the compact supported solitons (e.g., compactons or peakons
where the internal nonlinear dispersion structure can provide compactifi-
cation of solutions). A nonlinear system is the natural frame for compact
solutions, and a geometrically compact nonlinear system can take profit of
that. On the contrary, a linear system has all its solutions uniquely deter-
mined by its initial conditions, so there is no freedom for a compact object
to be placed in different initial positions, with the same effect on the general
solution, like in the nonlinear cases. With one exception: multiscale, finite
difference linear systems (e.g., scaling functions or wavelets). This brings
another interesting situation occurring in compact nonlinear problems: the
hidden connection between nonlinear differential equations and finite differ-



8 1 Introduction

ence equations, via the infinite system of ordinary differential equations that
represent both of them in some special cases. To illustrate this point of view
we mention the family of functions fα(x) = tanh(αx) with the property
f∞(x) − f∞(x − 1) → 2ΦH(x), where ΦH(x) is the Heaviside scaling func-
tion defined 1 on [0, 1] and 0 in the rest of the real axis. On one hand fα

is a solution of a nonlinear equation f
′
α − α2f2

α − α2 = 0, and on another
hand, the limit f∞(x) fulfills the two-scale finite difference linear equation
f∞(x) = f∞(2x) + f∞(2x− 1).

1.3 A List of Useful Derivatives

Throughout the chapters of this book we use calculus on manifolds, differen-
tial forms, and integral invariants. Why do we need so many diverse geometric
objects for our applications? In the spirit of justifying the necessity of these
mathematical tools we illustrate with a simple example about derivatives. In
the following calculations we use several types of derivatives, among which
we enumerate:

1. The partial derivative (in local coordinates)
2. The differential of a map
3. The directional derivative
4. The exterior derivative of a form
5. The Lie derivative of a geometrical object
6. The covariant derivative
7. Pseudodifferential operators

In the following we try to remember about their different ways of action and
differences between them, so that the reader can figure out if they are useful
or not:

1. The partial derivative. These derivatives transform a scalar function (a
0-form) into a vector field (the dual of a 1-form), namely the gradient ∇f .
We can build all sorts of symmetric or skew-symmetric linear combinations
of partial derivatives acting on vectors or scalar fields (curl, divergence,
Laplace operator, etc.), operators that form the object of vectorial analy-
sis.

2. The differential. The generalization of the partial derivative to calculus
on manifolds is provided by the differential of a map. It is a general-
ization of the gradient operator. In local coordinates the differential of
a map is the Jacobian matrix of that map. If we map a manifold into
itself F : M → M we have actually a transformation or a flow of the
points of M . These motions of points in M are integral curves of some
vector field tangent to M . Then, the differential of this map measures
the change of the position of the points along this transformation vector
field.



1.3 A List of Useful Derivatives 9

3. The directional derivative. It measures how a certain local quantity Q
changes along a given direction v, i.e., DvQ of Q along v. In the case of
real three-dimensional manifolds the directional derivative reduces to the
scalar product between the gradient and a given direction.

4. The exterior derivative. In R3 we have a hierarchy, called de Rham com-
plex

0↔ 1↔ 2 	 1↔ 3 	 0.

A differentiable covariant tensor field, i.e., a k-form ω can be mapped
into a higher-order form by repeated differentiation. However, the par-
tial derivative will never produce the cyclic type of de Rham hierarchy,
like the fact that the “curl” of a “gradient” is zero and the “diver-
gence” of the “curl” is zero, and so on. The most important result of
the exterior derivative is contained in the Stokes’ theorem and Poincaré
lemma.

5. The Lie derivative. It is the operator which in effect tells us the infin-
itesimal change of the geometric object ω when moved along integral
curves of a given field v, from one point x to a new point x′. The idea
is to take the value of ω(x′) at the new point, to pull it back toward
the initial point x by using the dual F ∗ (or codifferentiation), and then
compare the two values F ∗(ω(x′)) � ω(x). An example illustrates the
importance of the Lie derivative. Let us have a fluid described in carte-
sian coordinates, and its volume element dx dy dz. How does the volume
element change along the flow? If the flow is described by the Lagrangian
trajectories of the fluid, i.e., curves of tangent field V , then the direc-
tional derivative of the volume element along V is zero. However, the
Lie derivative of the associated volume form Ωvol = dx ∧ dy ∧ dz is divv
which is not zero, and we have v(Ωvol) = ∇ · v. Actually, it is a known
fact that the volume is preserved during the flow only if the field v is
solenoidal.

6. The covariant derivative. When differentiating along a surface, the
“inhabitants of the surface” can only see that part of the derivative
lying in the tangent plane. Given a vector field v the covariant deriv-
ative ∇v is the projection of the directional derivative on the tangent
space.

7. Other. One can define the inverse of a differential operator as a formal
series of partial derivatives with differential functions as coefficients

∞∑
n=−∞

Cn(f(x))Dx.

In addition to these types of derivatives (sometimes called “horizontal”
derivatives [9]) we have another class of functional derivatives. These ones
add to functions some infinitesimal variation test functions. In this class
we have variational derivatives and Frechèt derivatives.
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We can present these observations in the diagram below, where we denoted
a differential map between manifolds by F and a k-form or a vector field by ω.

dω

Exterior
−−−−−→ Dω

Total
⏐⏐
dF (v)

action←−−−−−
on v

dF

Differential⏐⏐� 
⏐⏐
the same

∂
∂x

Partial
−−−−−→ D−1

Pseudodifferential
⏐⏐ ⏐⏐�
Dv(F )

action←−−−−−
on F

DvF

Directional
−−−−−→ v(ω)

Lie
action−−−−−→
on w

[v, ω]⏐⏐� ⏐⏐�
∇vω

Covariant
−−−−−→ v(w) = ∇vw −∇wv



Chapter 2

Mathematical Prerequisites

Before entering in the field of nonlinear waves on closed contours and surfaces
we need to recall some useful mathematical concepts. The cnoidal waves, soli-
tary waves, and solitons are solutions of nonlinear equations that could be
partial differential (PDE), integrodifferential, finite difference-differential, or
even functional equations. They describe the evolution of the wave solutions
in space and time. These nonlinear equations are usually coupled with lin-
ear or nonlinear boundary conditions (BC), initial conditions, or asymptotic
conditions. The properties of solutions are dependent on the topological and
geometrical structure of the space on which they are defined.

2.1 Elements of Topology

In this section we introduce some elements of topology related to the idea
of boundary [10–14]. Some working theorems are very important and their
generality raises sometimes the question: “how is this possible?” The follow-
ing few sections try to reveal a little bit of the insights of such properties.
When we investigate a space from the topological point of view, the basic
questions are: how large, how dense, how tight, or how fuzzy is such a space?
In Table 2.1, we present how topology addresses these questions. A topological
space (X, τ) is a set X and a family X, ∅ ∈ τ ⊂ PX of open sets stable against
finite intersection and arbitrary reunions. The complement of any open set is
closed. To any point x ∈ X we can associate a family V of neighborhoods of x,
V (x) ∈ V defined by the property V (x) ∈ V if ∃A ∈ τ, x ∈ A ⊂ V (x). A family
of open sets in (X, τ) is called base if any open set of the topology is a reunion
of sets in that family. A point x ∈ X is called adherent if ∀V (x), V (x)∩A �= ∅.

11
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Table 2.1 Properties of topological spaces

Question Topological property (or invariant)

How large? Compactness

How fuzzy? Separation

How many pieces? Connectedness

How complicated? Separability

How much measurable? Metric space

A closed set contains all its adherent points. An adherent point is the rudi-
ment of the concept of limit. We need the following definitions:

int A = Å = {x ∈ A| exists D ∈ τ, x ∈ D ⊂ A}, interior of A,

A = A ∪ {x ∈ X|x adherent point to A}, closure of A,

∂A = A− int A, boundary of A.

The open property of a set is relative to the topology of the space. For example,
the real interval (a, b) is open in the usual metric topology on R, but it is
neither open nor closed in the plane R2, while a loop is closed both in R2 and
R3. A family Bα ∈ B ⊂ τ with the property that ∀D ∈ τ,D = ∪Bα is called
a base. A set A ⊂ X with the property A = X is called dense in X. A space
with countable base is called separable. A topological space which is also a
vector space such that the algebraic operations with vectors and scalars are
continuous in the topology is a linear topological space. The space C0[0, 1] of
continuous real functions defined on [0, 1], for example, is separable because
any such function can be the limit of a countable sequence of polynomials. Any
harmonic complex function defined on the surface of the unit sphere inR3 can
be expressed as a series of spherical harmonics Ylm, so this space is separable,
too.

A function defined on X with values in Y is continuous if the inverse
image of any open set in Y is an open in X. A bijective continuous function
is called homeomorphism. Topological spaces are classified as modulo home-
omorphisms and topological invariants (properties preserved by homeomor-
phisms). Topological properties of a space X can be investigated by choosing
a test topological space S (known one) like Rn or C0(X), and building home-
omorphisms hom : S → X. When the image of a topological invariant in S
is not anymore a topological invariant in X we know that X moved from a
certain homeomorphism class into another [15].

2.1.1 Separation Axioms

The uniqueness property of solutions of a nonlinear partial differential system
is not only important in itself, but it also provides the freedom to build



2.1 Elements of Topology 13

solutions by any available methods. Uniqueness is mainly controlled by two
mechanisms. One is related to the boundary, initial, asymptotic, regularity, or
normalization conditions. The second is related to the internal constrains of
the spaces for variables and parameters. Uniqueness is very strongly related
to the topological property of separation. In topology there are several more
refined definitions for the concept of separation [11–14]. The various forms
of separations, i.e., separation axioms introduce different types of topological
spaces:

– P1. x �= y. This is the weakest separation criterium.
– P2. V(x) �= V(y), the two points x and y do not have the same families of

neighborhoods: they are topologically distinguishable.
– P3. A ∩ B = ∅, each set is disjoint from the other’s closure; the sets are

separated.
– P4. ∃V(x) ∩ V(y) = ∅, points separated by disjoint neighborhoods. This

form of separation is the most used in analysis, since it makes the transition
from points to open sets.

– P5. ∃V(x) ∩ V(y) = ∅, points separated by disjoint closed neighborhoods.
– S. A ∩B = ∅, disjoint sets.
– PS. x /∈ A, the element does not belong to the set.
– F . ∃f ∈ C0(X), f(ξ1) �= f(ξ2). There is a continuous function on X which

takes distinct values in two disjoint quantities ξ that can be points and/or
sets. This last form of separation is very useful when working with spaces
of functions, e.g., in the Weierstrass approximation theorem.

According to the separation axioms there are four types of topological spaces:

1. Regular (R).
A topological space is Kolmogorov (or T0) if P1 → P2, i.e., the space is
such that any two distinct points have different families of neighborhoods
(are topologically distinguishable). A topological space is symmetric (or
R0) if P2 → P3, i.e., the space is such that any two topologically indistin-
guishable points have a disjoint neighborhood with respect to the other
point (separated) (see Fig. 2.1). A stronger separation axiom defines X as
a preregular space (or R1) if P2 → P4, i.e., any two topologically indistin-
guishable points have disjoint neighborhoods. This axiom can be enhanced
even more if we ask that any point x and disjoint closed set C, x /∈ C are
separated by a continuous function, namely if PS → P4, and the space is
called regular. As application, for example, any topological vector space is
regular [12].

2. Hausdorff (H).
A topological space is Hausdorff separated (H or T2) if P1 → P4, i.e., its
distinct points are separated by disjoint neighborhoods (see Fig. 2.1). The
Hausdorff separation is the most used one in analysis and operator the-
ory. For example, to build a Banach (commutative) algebra of functions
defined on a base space X, we need this space to be Hausdorff (and com-
pact). A very important application of H spaces is related to their property
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xA

V(x)
V(A)

Normal separation

xY

V(x)V(y)

Hausdorff separation

xY

V(x)V(y)

Regular separation

Fig. 2.1 Forms of separation axioms: regular, Hausdorff, and normal. Loops represent
neighborhoods

that the intersection of all closed neighborhoods of any point reduces to
that point, ∀x ∈ X,∩V(x) = x. This property is actually the basis of the
uniqueness of the limit for the convergent sequences in H spaces. Moreover,
this property plays the essential role in the proof of the Cauchy integral
representation formula. There is interference between separation and com-
pactness properties: the image of a compact through a continuous function
f : E → F is compact, only if F is Hausdorff. The separation property
is requested because we need to label the sets of a finite covering of E
(produced by reciprocal images of an open covering of F ) by elements in
E. So, if F is not separated, the images of two distinct such elements may
belong to the same open set in F , which destroy the construction. As an
example, the topology induced by a family of seminorms is in general
Hausdorff.
Since the Hausdorff property is so essential to the uniqueness of solu-
tions of equations, we give the following example of a non-Hausdorff space.
Let us consider in R2 the sets A1 = {(x, 0)|x ∈ R} and A2 = {(x, 1)|x ∈
R}, and let us introduce an equivalence relation ∼ between the points
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(x, y) ∈ A = A1 ∪ A2 defined by (x, y) ∼ (x′, y′) if x = x′ and y = y′

or x = x′ < 0 and y �= y′. We organize the quotient set X = A/ ∼ as a
topological space with the canonical interval topology on R. The points
(0, 0) and (0, 1) in X are distinct but have no disjoint neighborhoods.

3. Normal (N).
In a normal topological space, any two disjoint closed sets are separated
by neighborhoods, i.e., S → P4, or ∀A ∩ B = ∅, ∃V(A) ∩ V(B) = ∅ (see
Fig. 2.1). For a Hausdorff space, this request becomes the Tietze–Uryson
lemma. A topological space with the topology induced by a metric is nor-
mal, and a compact space is also normal [11]. Normal spaces are important
in problems related to the partition of unity. Partitions are important in
the theory of prolongation of continuous functions.

4. Completely separated (C).
Here the separation criterium is the function separation. There are already
several types of topological spaces completely separated as follows: com-
pletely Hausdorff spaces (CH or completely T2) where P1 → F , completely
regular spaces (CR) where P5 → F , and completely normal (CN) where
P3 → P4. We also have perfectly normal spaces (PN) if S → F , etc.

In addition to these types of topological spaces, there are other spaces
where separation is defined by combining different forms of separation.
In Figs. 2.2 and 2.3, we represent some of the interconnections between all
these spaces.

2.1.2 Compactness

The compactness property of a topological space (or set) tells if this space is
“bounded” in some sense, without having a metric or a distance available. The
compactness property is actually more powerful than boundedness, since the
latter is not preserved by homeomorphisms. A topological space is a compact
space if every open covering has a finite subcovering. In metric spaces (see
Sect. 2.1.6) compact is equivalent with closed and bounded. Actually, it is
easier to understand the concept of noncompact. The real axis is noncompact
because if we cover it with the intervals (n, n+1) and ((2n+ 1)/2, (2n+ 3)/2),
n integer, and we eliminate any of them the axis has at least one point
uncovered. A compact Hausdorff space is usually called a compact, and a
compact metric space is called compactum. An example of a compactum is
any finite discrete metric space. A continuum is a connected compactum.
The image of a compact set through a continuous function into a Hausdorff
space is a compact set. As an immediate consequence, a continuous function
defined on a compact space is bounded and has a maximum and a minimum.

Although compactness is a global property of a space, it can also be
obtained starting from local level. We define a weaker request for compact-
ness, i.e., a local compact space as a Hausdorff topological space with the
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property that any element has at least one compact neighborhood. A local
compact space X can always be submerged into a larger topological com-
pact space X̃ such that X � X̃ and X̃ X = ω (Alexandroff’s compactifi-
cation). The extra element ω is called the point at infinity. In the case of
R2 	 C, C ∪ ω = C̃ is called the extended complex plane. A local com-
pact linear topological space has finite dimension. There are also refinements
of the compactness property, like precompact, paracompact, relatively com-
pact, countable compact, etc., but we do not need these concepts in our book.
Basically, they occur whenever we relax one of the three properties defining
compactness [11–13] (see Fig. 2.4).

2.1.3 Weierstrass–Stone Theorem

How is it possible for the Taylor series to exist? That is, how is it possible to
know all the values of a continuous function from just knowing a countable
sequence of number, the coefficients of the Taylor series. The answer is related
to the separation axioms and it is the Weierstrass–Stone theorem. This the-
orem is also the answer for the questions in Sect. 2.2, namely how is possible
to find the values of a function in an n-dimensional domain, knowing only
the values of the function in the (n− 1)-dimensional boundary? Weierstrass
proved that a real function defined on [0, 1] is the uniform limit of a series
of polynomials. Later on Stone explained that the essential property of the
polynomials that allow such a perfect approximation is that they form an
algebra.
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Theorem 1 (Weierstrass–Stone). A subalgebra A of the Banach algebra
of C0(X) continuous real functions defined on a Hausdorff compact space X,
is dense in C0(X) if and only if:

1. 1 ∈ A.
2. ∀x �= y ∈ X, ∃f ∈ A such that f(x) �= f(y).

The first condition actually requires ∀x ∈ X, ∃f ∈ A such that f(x) �= 0.
We meet this condition if we try to generate a Hausdorff linear topological
space. The algebraic structure of the functions A is required to have included
in A the elements Sup(f, g) and Inf(f, g) for ∀f, g ∈ A. The second condition
requires that the algebraA “separates” points inX, in the sense of the F form
of separation, like in the case for example when X is a completely regular
Hausdorff (CRF) space. For details about the proof and Banach algebras
one can consult, for example, [12] and references cited therein at page 516.
Basically the idea is that any real continuous function defined on a Hausdorff
compact X can be infinitely well approximated with other functions selected
from a closed subalgebra of C0(X).

The Weierstrass–Stone theorem tells us that any vector-valued continuous
function, no matter how complicated it is, can be infinitely well approximated
with simpler functions gα, as long as these simpler functions form a Banach
algebra A, i.e., A � gα → f . Moreover, if A is a separable space (to be defined
later), then we have a countable basis of continuous functions, α 	 n, and
consequently we can express f , for all x ∈ X, by a (maximum) countable set
of coefficients associated with f approximating series. Since A is an abstract
Banach algebra which F separates X, there is freedom to choose its elements,
i.e., such a richness of examples: Taylor polynomials, orthogonal polynomi-
als, trigonometric series, etc. The Weierstrass–Stone theorem can be equally
applied to complex functions, with an additional request: ∀g ∈ A, g ∈ A,
where g is the complex conjugation.

We have two important corollaries. The space of polynomials defined on a
compact C ∈ Rn with coefficients in a seminormed vector space V is dense in
the space of continuous bounded functions defined on C with values in V. The
second corollary of the Weierstrass–Stone theorem allows us to approximate
any complex vector-valued continuous function defined on the unit complex
circle S1 ⊂ R2 with trigonometric polynomials [11, Chap. XXII]. This corol-
lary has important consequences for differential systems on closed curves and
surfaces. Namely

Lemma 1. Trigonometric polynomials with coefficients in V are a dense set
in {f : R→ V|fcontinuous, periodic}.

2.1.4 Connectedness, Connectivity, and Homotopy

A topological space X is connected if it is not the disjoint reunion of two
or more nonempty open sets. Connected spaces have a very interesting
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property: the only sets with empty boundary are the total space and the
empty set. X is path connected if any two of its points can be joined by
a path. A path from x ∈ X to y ∈ X is Γ : [0, 1] → X continuous such
that Γ (x) = 0, Γ (y) = 1. Every path-connected space is connected, but
not conversely. A traditional example is the graphics of the real function
sin(1/x) which is in one-piece in R2 but there is no path between the
points (−1/π, 0) and (1/π, 0) of its graphics. If the path is also a homeo-
morphism, we call it arc, and the space is arc connected. Any path-connected
Hausdorff space is also arc connected, so again we want to emphasize the
importance of axioms of separation. Connectedness is a topological invari-
ant. There is also another angle of vision for the connectedness proper-
ties. If any loop (closed smooth path) in the space is contractible to a
point (can be smoothly deformed to a point) the space is called simply
connected or 1-connected. Such a space is in one piece (connected) and
has no “holes.” The space is n-multiply connected if it is (n − 1) multi-
ply connected and if every map from the n-sphere into it extends contin-
uously over the (n + 1)-disk. By sphere we mean here just the boundary
of a sphere, for example in an n-dimensional normed space the (n − 1)-
sphere is the set {x/ ||x|| = R}. The (n − 1)-dimensional sphere is the
boundary of an n-dimensional disk. The n-connectedness property is a
generalization of pathwise connectedness, from paths to higher dimension
surfaces.

Let X be a space and a function f : X → X. An element xf ∈ X is a fixed
point for the application f if f(x) = x. Also, a set A ⊂ X is an invariant set
if f(A) ⊂ A. Any continuous function defined on a real interval [a, b] has at
least one fixed point. The fixed point theorems [16] are successfully applied in
field theory, biological problems and logistic equations, dynamics of popula-
tion [17], and in mathematical economics. One of the most important appli-
cations is about iterated maps [18, 19]. A theorem due to Tikhonov [12, 20],
enounces that compact and convex sets in a Hausdorff local convex space
have the fixed point property.

If all the closed smooth curves (loops) in X can be continuously deformed
one into another, we call this property homotopy. More rigorous

Definition 1. Let Φ : [0, 1] → M , and Ψ : [0, 1] → M be piecewise smooth
closed paths on a manifold M . A homotopy from Φ to Ψ is a continuous
function γ : [0, 1]2 → M such that ∀t ∈ [0, 1], γ(0, t) = Φ(t), γ(1, t) = Ψ(t),
and ∀s ∈ [0, 1], the path γ(s, t) parametrized by t is closed and piecewise
smooth.

All loops in X belong to the same equivalence class with respect to homo-
topy equivalence relation, so the group generated by the homotopy classes
of X via the composition of curves is trivial identity. We call this group,
homotopy group of X, and we denote it with π1(X). In algebraic topol-
ogy one can prove that the groups of homotopy are topological invariants
[9, 15].
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2.1.5 Separability and Basis

A metric space is separable if it has a countable dense subset Y , Y ⊂ X, Ȳ =
X, where Ȳ is the closure of Y , i.e., Y and all its adherent points (the
boundaries). Usually, the set Y is called basis, and if X is separable, members
of Y can approximate any x ∈ X as closely as we like. One of the Weierstrass
theorems shows that the set of polynomials is a dense set in C0([0, 1]), so
continuous real functions on a compact space can be approximated with
polynomials to the best extent.

2.1.6 Metric and Normed Spaces

Metric spaces deal with completeness property. A metric topological space
(M, τ, d) is a topological space (M, τ) endowed with a positive symmetric
function d : M2 → R+ called distance, fulfilling the triangle inequality
∀x, y, z ∈M,d(x, z) ≤ d(x, y) + d(y, z), and d(x, y) = 0↔ x = y. In a metric
space M we can define an open ball (or disk) of center x0 ∈ M and radius
R ∈ R+ as B(x0;R) = {x|d(x, x0) < R}. Any metric space is Hausdorff, by
inheriting from the common real topology. In a metric space we can define
bounded sets, if they can be enclosed in a certain ball. A compact metric space
is separable. A linear space where we defined a nonnegative real function (a
norm) || ·|| which is positively homogenous, subadditive and is zero only in the
origin of the linear space is a normed space. A normed space is a metric space
with the relation d(x, y) = ||x − y||, and consequently has all the properties
of metric spaces. In a normed space the topology is normed induced and we
have convergency in norm (the strong convergency). Any metric spaceM can
be completed to M by adding to M the limits of all its Cauchy sequences.
In a complete metric space all Cauchy sequences are convergent to a certain,
unique limit. In a compact metric space any sequence contains a convergent
subsequence. A complete normed linear space (where the metric is induced
by a norm defined in the linear space) is called a Banach space.

A complex bilinear continuous symmetric form defined on a linear vector
space < ·, · >: V → C is called a scalar or inner product. A space together
with a scalar product, (X,< ·, · >) is Euclidean. For example on the linear
topological space of integrable (in what ever sense integrability is needed)
functions defined on a space X we define the scalar product

< f, g >=
∫

X

f(x)g∗(x)dx,

with g∗ complex conjugated. The scalar product induces a norm, and obvi-
ously a distance ||f || =

√
< f, f >, d(f, g) =

√
< f − g, f − g >. A Hilbert

space is a complete Euclidean space. The scalar product can measure the
property of being orthogonal which generalizes the linear independence
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property in a geometric way. A maximal linear independent set of elements in
X is a basis in X, and if X is Euclidean and the basis elements are mutually
orthogonal and of unit norm, it is called orthonormal basis. Special functions,
like orthogonal polynomials, spherical harmonics, etc. (Sect. 18.3), form ort-
honormal bases in spaces where the integral of the square magnitude of the
functions are finite, L2(X).

The key theorem about representation of functions is the following:

Theorem 2. Every separable Hilbert space Hs has a countable orthonormal
basis BN ⊂ Hs, i.e., B̄N = Hs.

The following chapters, and all representation formulas theory, are entirely
based on this result. It means that on a Hilbert space, any element can be
approximated as good as we want with elements from this countable (discrete)
basis. As strange as it may look, there are nonseparable Hilbert spaces in
physics. For example in canonical quantum gravity, the space of functions
defined on connections, A, modulo gauge transformations G, L2(A/G), is
nonseparable [21].

2.2 Elements of Homology

The meaning of homology will become more transparent when we will use
it in the Poincaré Lemma, and in compact boundary representation for-
mulas (Sect. 3.1.4). For reference on the topics we suggest the bibliogra-
phy [15, 22]. An oriented p-simplex, p > 0 integer, in Rn is generated by
an ordered system of p + 1 vectors, and it is the p-dimensional manifold
σp = [v0, . . . ,vp] = {v ∈ Rn |

∑p
i=0 tivi,

∑p
i=0 ti = 1 }. Basically, the gener-

alization of a segment (1-simplex), a triangle (2-simplex), and a tetrahedron
(3-simplex) is to higher dimensions. A p-simplex is topologically homeomor-
phic with a p-ball. The subset ti = 0 is an (p − 1)-plane, or face, and the
end points of the vectors are the vertices. A simpliceal complex is set K of
simplexes constructed such that all simplexes faces belong to K, and any
two simplexes in K are either disjoint, or their intersection is a common face
of each of them. A topological space homeomorphic to a simpliceal complex
is called triangulated. In the following we work only on these triangulated
spaces. Based on the triangulation K of a given manifold we can construct
the Abelian groups Cp(K), p = 0, . . . , n freely generated by the oriented
p-simplexes of K, with integer coefficients, called the chain group. We define
the linear boundary operators as

∂p : Cp(K)→ Cp−1(K), (2.1)

with the action ∂pσ
p =

∑p
j=0(−1)j [v0, . . . ,vj−1,vj+1 . . . ,vp] creating thus

a (p− 1)-simplex. It is easy to verify that the boundary operator is a group
homomorphism, ∂0cp = 0, and
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∂p−1∂p = 0, (2.2)

which is the central property of homology, and somehow the main philosophy
of the compact surfaces, contours, boundaries in general: The boundary of a
boundary is the empty set. Like we mention in Chap. 1, again a pure algebraic
property like skew-symmetry of ∂p provides a deep geometrical result. The
kernel of the boundary operator is itself a subgroup of the chain group, namely
the p-cycle group Zp(K). Also the image of the boundary operator is called
the p-boundary group Bp(K), and we can introduce the factor group

Hp(K) = Zp(K)/Cp(K), (2.3)

namely the homology group of order p of K. This factorization introduces an
equivalence relation in the group of cycles. In other words, two p-cycles of
K are homologous if their difference is a p-boundary. Being Abelian freely
generated, all the homology groups are isomorphic with some Zn group. The
rank ofHp group counts the number of p-dimensional holes ofK. For example,
H0(Sn) ∼ Hn(Sn) ∼ Z and Hp(Sn) ∼ {0} for p �= 0, n. A T2 ⊂ R3 torus
has the homology described by H0(T1) ∼ Z, H2(T1) ∼ Z2, H3(T1) ∼ Z, and
Hp(T1) ∼ {0} for the rest of p. Finally, we have the Euler–Poincaré formula

χ(K) =
n∑

p=0

(−1)p rank HP (K), (2.4)

which is the essential topological invariant for the Gauss–Bonnet formula (see
Theorem 19).



Chapter 3

The Importance of the Boundary

How is it possible to describe any analytic or harmonic function on a com-
pact set in terms of much simpler “construction blocks” like polynomials? Or,
how is it possible to know the values of a function inside a compact domain,
by knowing only its values on the boundary? Well, these simplifications are
possible because the “bricks” are actually organized in complicated and ver-
satile structures. For example the B∗ algebras. And in addition, the compact
domains are certainly among the simples ones, being always reducible to
finite reunions. Actually, a complicated structure like a B∗ algebra, defined
by 24 axioms (out of which 13 axioms on commutative algebras, five axioms
on norm, one for completeness, and five more specific axioms) can be realized
by continuous functions defined on a compact set. It is not the only example.
The space l1 of complex sequences with norm given by the sum of the modules
of the terms is isomorphic with the algebra of functions whose Fourier series
is absolutely convergent. Also, a compact Hausdorff space, with topology in-
duced by distance, is homeomorphic with a compact subset of [0, 1]N. Any
two separable Hilbert spaces are isomorphic, and so on. These similarities
bring a unifying point of view: objects of apparently distinct nature, like
Weierstrass–Stone theorem on function approximation, Wiener theorem on
absolutely convergent Fourier series, spectral expansion of self-adjoint oper-
ators, the theorems of Tikhonov, Stone–Čech, or the fixed-point theorem of
Brouwer, the Cauchy formula on complex functions, the Green representation
theorem, the Poincaré Lemma, etc. actually provide the same fundamental
truth: simplification by approximation is possible on compacts.

3.1 The Power of Compact Boundaries:
Representation Formulas

The most fascinating analytical properties of compact boundaries embedded
in differential manifolds are the representation formulas. We present in the
following a review on the most important representation formulas for different

23
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dimensions of the boundary. The general problem is the following: we have
a domain D ∈ Rn, and its boundary ∂D, in our case a compact surface.
The representation formulas allow calculation of the values of a smooth and
harmonic function (usually is enough to be of class C2(D), and the exact
definition for harmonic will be specified for each dimension in particular)
defined on D̄ (closure of D) in all points of the interior of D,

∫
D = D ∂D,

if we only know the values of the function, and of its partial derivatives, on
the boundary ∂D. For n = 1 this representation is called Taylor series, for
n = 2 is called Cauchy integral formula, for n = 3 it is called Green identity,
etc., and in general all these are the expression of the Poincaré Lemma and
the generalized Stokes theorem.

3.1.1 Representation Formula for n = 1: Taylor Series

If n > 0 is an integer and f : [a, x] ⊂ R → R is Cn([a, b]) and Cn+1(a, b)
function, then ∣∣∣∣f(x)− n∑

k=0

(x− a)k

k!
f (k)(a)

∣∣∣∣→ 0, if x→ a. (3.1)

Let us retain the vital importance of the compact character of the [a, x]
interval. In other words, we know (with good enough precision) all the values
of the function on a continuous interval, if we know just a discrete set of
values, namely the derivatives of the function in one point. This theorem is a
magic conversion of the continuous into countable and of the global into local.
The truth beyond the power of representation of the Taylor theorem consists
in the nature of the topology of both the real axis, and the Hilbert space
of continuous functions. These Hilbert spaces are separable so they admit
countable orthonormal bases by definition. From here we can represent any
continuum through an at most countable set of numbers, which is nothing
but the set of the coefficients of the Taylor series. So, in the real case, the
representation formula is a consequence of the discrete/continuous play in
the real topology. We also mention the important fact that a continuous real
function on a compact real interval is bounded and attains its bounds.

3.1.2 Representation Formula for n = 2:
Cauchy Formula

Let D ⊂ C and let f : D → C be analytic. Let z0, r such that D1(z0, r) ≡
{z||z − z0| < r} ⊂ D. For all z ∈ D1(z0, r) we have
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f(z) =
1

2πi

∫
∂D1(z0,r)

f(z′)
z′ − z dz

′. (3.2)

In other words, if the function is smooth enough on D (i.e., analytic) the
values of the function inside any domain are known if we know the val-
ues of the function on its boundary [20, 23]. A complex function is analytic
if it is differentiable and its derivative is continuous. Actually, this further
guaranties the existence of all higher-order derivatives. A complex function
f(z) = u(z) + iv(z), with u, v : D → R is differentiable if its components
fulfill the Cauchy–Riemann conditions ux = vy, uy = −vx. The Cauchy–
Riemann conditions actually can be written in vector form as ∇u · ∇v = 0,
in other words requesting the families of curves u = const., v = const., to
be orthogonal on C. In other words, if V = (v, u, 0) is a flow, the Cauchy–
Riemann conditions are equivalent to ∇ × V = 0, i.e., an irrotational flow.
The Cauchy–Riemann conditions are also equivalent to the existence of the
complex derivative df/dz, or to the cancelation of the derivative with respect
to the complex conjugation of the argument, i.e., ∂f/∂z∗ = 0. This last
condition is equivalent to the request for harmonicity of the components,
�u = �v = 0.

The power of the Cauchy representation formula is based on the special
properties of analytic functions. If a function f(z) is analytic in a domain D,
then the contour integrals of f on any two homotopic loops are equal. We
recall that two curves are homotopic (see Definition 1) if they can be deformed
smoothly one into another. But what is beyond the Cauchy theorem? Actually
the reason for the existence of the powerful Cauchy integral formula is double:
on one hand the special topology of the plane, and on the other the continuity
of the function. The traditional proof begins with a very simple structure, a
triangle in the complex plane. One can prove that an analytic function on a
triangle has zero integral along its boundary. This is because one can split
any triangle into four smaller triangles, and so on, like in a fractal image.
The topological limit of this construction exists, because all these triangles
are closed sets in the plane topology. So, by a repeated process of division, we
can reduce the perimeter of all these triangles to zero, and then the function,
being continuous, will be forced to cancel over this boundaries.

3.1.3 Representation Formula for n = 3:
Green Formula

Let us have a domain D ⊂ R3 with a boundary ∂D with smooth normal, and
two functions Φ, Ψ ∈ C2(D). The following integral relation exists (Green’s
second identity)∫∫∫

D

(Φ�Ψ − Ψ�Φ)d3x =
∫∫

∂D

(
Φ
∂Ψ

∂N
− Ψ ∂Φ

∂N

)
dA, (3.3)
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where � is the three-dimensional Laplacian operator, and ∂/∂n is the direc-
tional derivative along the normal to ∂D, i.e., N ·∇. Then, if the function Φ is
harmonic on the interior ofD,�Φ = 0 then we have the Green representation
formula

Φ(r) =
1
4π

∫∫
∂D

(
1

|r − r′|
∂Φ

∂N ′ − Φ
∂

∂N ′
1

|r − r′|

)
dA′ (3.4)

for ∀r ∈ D. More generally, if

G(r, r′) =
1

|r − r′| + h(r, r
′), (3.5)

is the Green function associated withD and h is a harmonic function�′h = 0
when r, r′ ∈ D, then

Φ(r) =
1
4π

∫∫
∂D

(
G(r, r′)

∂Φ

∂N ′ − Φ
∂G

∂N ′

)
dA′. (3.6)

If the Green function is chosen such that GD(r, r′)|r′∈∂D = 0 we have a
Dirichlet boundary problem, and if the Green function is chosen such that
(∂GN/∂N

′)(r, r′)|r′∈∂D = −4π/S, we have a Neumann boundary problem
(where S is the area of ∂D). If ∂D is compact, then both the Dirichlet and
Neumann problems provide unique and stable solution for elliptic partial
differential equations on D, through the representation formula (3.6). These
two conditions applied independently are too much constrain for hyperbolic
or parabolic partial differential equations [24, 25]. The Green representation
formula applies everywhere we have harmonic, or almost harmonic functions.
In potential theory, and hence in potential flow, in electrostatics and magneto-
statics, theory of minimal surfaces and application in surface tension driven
systems, etc.

3.1.4 Representation Formula in General:
Stokes Theorem

A more accurate mathematical approach on the Poincaré Lemma, based on
homology (Sect. 2.2) and differential forms (Sect. 4.6), is done in Sect. 4.9.
The generalized Stokes theorem is the coronation of all the representation
formulas in the geometry of compact boundaries.

Let M be an m-dimensional manifold, and B ⊂ M , a compact, oriented
b-dimensional submanifold (see Sect. 7.4 for details on definitions), with
boundary Σ = ∂B. Let ωp−1 be a continuous differentiable (p−1)-form onM
(Sect. 4.6). That is a (p − 1)-covariant smooth tensor field ωi1,...,ip−1(x), x ∈
M . The we have
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B

dωp−1 =
∫

∂B

ωp−1, (3.7)

where d is the exterior derivative acting on forms (Definition 20). We do not
provide here the algebraic details (it can be found in Sect. 4.6) mainly because
we are interested here to underline rather the geometric interpretation of the
Stokes theorem, as a representation. In that, let us remember that we can
triangulate B and ∂B (Sect. 2.2), and obtain the sequence of chain groups
Cp(B), p = 0, . . . ,m, and we can have the boundary operator ∂p mapping
one chain into another, like in the upper sequence in (3.8).

. . .
∂p−1←−−−− Cp−1

∂p←−−−− Cp
∂p+1←−−−− Cp+1

∂p+2←−−−− . . .⏐⏐� ⏐⏐� ⏐⏐�
. . .

dp−1−−−−→ Ωp−1 dp−−−−→ Ωp dp+1−−−−→ Ωp+1 dp+2−−−−→ . . .

(3.8)

Now, for any given p-chain, and for any given differentiable (p−1)-form
ωp−1 ∈ Ωp−1 from the cotangent bundle associated to M we can calculate
the integral ∫

∂pCp

ωp−1, (3.9)

by decomposing the (p−1)-chain resulting from ∂pCp into its constituent
p-simplexes, and integrate ωp−1, Lebesgue or Riemann, along each (p − 1)-
simplex of ∂pCp. This integration is a scalar product, a bilinear functional, de-
fined on the (p−1)-chain space times the space of (p−1)-forms. Consequently,
this scalar product maps the sequence of boundary operators acting toward
the left in the upper sequence in (3.8), into a reverse sequence of operators,
acting toward the right, in the sequence of corresponding spaces of form
(cotangent bundles) Ωp. See the bottom sequence in (3.8). Consequently we
are in the possession of a splendid geometrical–algebraic tool, called the De
Rham complex [15, 22], in which spaces of simplexes dually correspond to
spaces of differential forms, and boundary operators correspond dually to
exterior derivative operators, and this duality is actually represented by the
generalized Stokes theorem. Indeed, a dual pair (∂pCp, ω

p−1) generates the
integral in (3.9). If we move one step to the right in the De Rham complex
(3.8), the differential form ωp−1 is mapped into its derivative dωp−1 ∈ Ωp,
and the boundary ∂pCp is mapped into its interior Cp. Since the boundary
operator and the exterior derivative are dual, the geometrical fact that the
boundary of the boundary is the null set has its dual into the closure property
of the exterior derivative (4.15)

∂2 = {∅} ↔ d2 = 0.

All representation formulas presented earlier, or in other sections of the book,
like Sect. 10.6, are based on this generalized Stokes equation. More details and
examples on other special types of representations, especially those used in
fluid dynamics, are provided in Sect. 10.6.
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3.2 Comments and Examples

In a geometric interpretation the property of compact means closed and
bounded. At the same time, there is an algebraic component of the con-
cept of compact. In that, compact means finite (closed, no open ends) and
controllable: it can be studied globally in one sight, as opposed to infinite.
Another example, the topological fact that the boundary of a boundary is
the null space. A geometrical expression of this theorem is the Gauss–Bonnet
theorem: no matter how one deforms a compact surface, the total curvature is
constant: if one flattened a port of the surface and consequently annihilate the
Gaussian curvature on that domain, the sharp edge that was created at the
boundary of this flattened domain takes over with a higher curvature. But,
there is also an algebraic expression of this fact. It generates important con-
sequences in integrability and differential forms, i.e., the “Poincarè Lemma.”
Finally, from the physical point of view, this boundary property relates to
the existence of vortexes or fields without sources on compact manifolds.

Another interesting property of compact surfaces is the relation between
the area of the surface and the number of dimensions of the embedding space.
The area and volume of a sphere of radius R, Sn = {x ∈ En | X2

1 + · · ·+x2
n ≤

R2}, in a n-dimensional Euclidean space, like Rn, are given by

A[Sn] =
2π

n
2

Γ

(
n
2

)Rn−1, V[Sn] =
π

n
2

Γ

(
n
2 + 1

)Rn. (3.10)

In Fig. 3.1, we plot the area and the volume of the unit sphere (R = 1) func-
tion of the number of dimensions n of the space. It is interesting to remark
that a unit sphere has a maximum area in a space with seven dimensions,
and a maximum volume in a space with five dimensions. It is also interest-
ing to mention that the ratio between the area and the volume of the unit
sphere, A[Sn]/V[Sn] = n, is just the dimensions of the space. In other words,
when we increase the dimension of the space, more and more points of the
interior of the sphere (and in general of any closed surface homeomorphic
with a sphere) are concentrated toward the sphere surface. This is (see for
example [26]) the most basic proof of existence of equilibrium temperature.
In a statistic system of many free particles, where the phase space has a di-
mension of n = 2× 3× 1026 or larger, almost all states of bounded energy
are concentrated at the surface of a sphere of radius equal to the energy. So,
almost all particles tend to have the same equilibrium temperature. On the
contrary, in a space of any dimension, the ratio between the area and the vol-
ume decreases with increasing of radius. So, the larger the container, the less
points are next to the surface. This fact may be an explanation of the fact that
biochemical systems that require long time of slow transformations toward a
final state, perform better in larger containers.

If we define the parameter area over volume ratio of a certain closed shape
in an Euclidean space
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Fig. 3.1 Area (white circles) and volume (black circles) of the unit sphere, plotted in
arbitrary units vs. the number of dimensions of the space

AOV =
Area

V olume
(n, σ, ς) (3.11)

where n is the number of dimensions of the space, σ is a similarity para-
meter that measures “how large” is the object, and ς describes the shape.
For n = 3 we have AOV (3, σ, ς) = C(ς)/σ, and for example C(sphere) = 3,
C(cube) = 6, C(cylinder) = 2(1 + R

h ), and so on. For the sphere we have

AOV (n,R, Sn) =
2Γ
(

n
2 + 1

)
RΓ

(
n
2

) =
n+ 2
R

, (3.12)

so the AOV for the unit sphere is proportional to the number of dimensions
of the space, and inversely proportional to the radius. That means that the
larger the dimension of the space, the larger is the set of points in the area
compared to those in the bulk.

A last interesting example is about unbounded smooth objects. Let us
consider the function f : [1,∞)→ R, f(x) = x−α, α ∈ (0.5, 1). This function
has an intriguing property. The surface of revolution produced by the rotation
of the graphic of this function around Ox, between x = 1 and∞, has infinite
area, but its inside has finite volume. The infinite “funnel” obtained like that
offer a paradox to the person who would like to paint it: one needs a fine
amount of paint to fill it up, but it request an infinite amount of paint to
paint its surface.



Chapter 4

Vector Fields, Differential Forms,
and Derivatives

The following results, together with their proofs, can be found in many
excellent text books of differential geometry. For example [27] is a very read-
able down-to-earth textbook with theorems and demonstration confined in
R2,3. Shifrin is also an excellent compact and shorter text with many appli-
cations. For more abstract treatment (I was always puzzled by a book about
geometry which does not contain any figure in it, yet I appreciate its power
of abstraction), especially in higher number of dimensions, working on dif-
ferentiable manifolds, we recommend as a top one [28]. At the same level of
abstraction, but more focused on specific topics we recommend: [29] for app-
lications toward fiber bundles, [30] for applications concerning vector fields,
and [31] for applications toward Lie groups and transformations. In between
these levels of approach we also recommend for their wide range of action [32]
for a very friendly general treatment of surfaces, or [33] as a very pictorial
book on geometry with many applications.

The reason of using calculus on manifolds and differential geometry tools
in physical applications is to solve physical problems as specific as possible in
a mathematical frame as general as possible. By enhancing the mathematical
generality of the approach one can increase the range for potential applica-
tions. In general the first attack on a physical problem is how to choose the
appropriate working space. The next step is to choose an appropriate frame
in that space. Choosing the space is basically a matter of topology, while
choosing the correct frame is a matter of differential calculus on manifolds
and differential geometry.

In topology, we are primarily interested to handle objects whose topo-
logical properties are independent of changes of the space. Topological
objects like sets, neighborhoods, or curves living in spaces, and being classi-
fied according to their topological properties: closeness, compactness, con-
nectivity, separability, etc., while topological spaces are classified through
homeomorphisms. The topological properties which do not change under
homeomorphisms are topological invariants. More specifically, if X ,Y are
topological spaces, and ψ : X → Y is any homeomorphism (meaning

31
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f is bijective and bicontinuous function) those topologically invariant objects
defined on X have equivalent counterparts on Y through f . Such theories
based on classes of equivalence modulo homeomorphisms are useful not only
to investigate new objects in a given space (i.e., to check whether the new
object belongs to such an invariant topological structure against homeo-
morphisms), but also to study new topological spaces. Let us exemplify.
We start from a pair of homeomorphic topological spaces (X ,Y) and some
set of objects Π that form a topological invariant, i.e., Π(X ) = Π(Y) or
h(Π(X )) = Π(Y), h ∈ hom(X ,Y). We choose a certain element α ∈ Π(X ),
and we begin to change the space Y → Y ′, while mapping α→ f(α) ∈ Y ′. If
for a certain new space Y ′ the element f(α) is not anymore in the Π class,
then Y ′ is not homeomorphic anymore with X . For example, let us choose
X = R3 − {0} (the punctured space) and let Π be the set of loops based on
some point x0 �= 0 in R3 that can be smoothly deformed to a point (con-
tractible loops). This set is a homotopy class in X . For example the loop
α = {(cos t, sin t, 0)|t ∈ [0, 2π]} belongs to this class, because we can always
deform it to a point such that we can avoid the origin. Now, let us map this
loop in the punctured plane Y ′ = R2−{0}. In this space this loop is not any-
more contractible to a point, so it does not belong to the Π class anymore.
Consequently, this map is not a homeomorphism, and hence R3 and R2 are
not homeomorphic.

In calculus on manifolds and differential geometry we are interested in
objects whose underlying geometrical properties are independent of any par-
ticular choice of a coordinate system. This request is very much related to the
fundamental request of congruence in geometry: figures that differ only by
rigid motions are congruent. The coordinate formulation of a certain object
α can change from space to space, but the essential geometrical properties
remain the same if the two spaces are connected by diffeomorphisms (i.e.,
infinitely differentiable functions with infinitely differentiable inverse). The
concepts of smooth manifolds and differentiable maps on these manifolds
create the most appropriate frame for such an approach.

4.1 Manifolds and Maps

The bottom model for a differentiable manifoldM is a convenient topological
space (for example one fulfilling certain decent separation axioms for the sake
of the uniqueness of definitions based on limits and calculus) covered with
partially overlapping local coordinate systems that can be changed from one
another in a smooth manner. The only constrain is that both the degree
of smoothness of the local coordinate transformations (e.g., continuous of a
certain class k, or differentiable, or analytical, etc.), and the dimension of
the local coordinate systems to be the same all over the manifold. Objects,
for example, that begin in one end as a bounded two-dimensional surface
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(a stripe) and end up in the other end as a one-dimensional string, are not
differentiable manifolds, though they may present a high interest for some
physical studies.

Definition 2. We define an n-dimensional real differentiable manifold to
be the pair (M,A), where M is a Hausdorff topological space and A =
{(Uα, φα)|α = 1, 2, . . . } is a countable atlas formed by local coordinate maps.
Each such map consists in an open set Uα ⊂ M and a one-to-one function
φα : Uα → Vα ⊂ Rn onto an open connected subset Vα of Rn, which satisfy
the properties:

1. The atlas forms a countable open partition of M ,
⋃

α Uα = M .
2. ∀α, β, φβ ◦ φ−1

β : φα(Uα

⋂
Uβ) → φβ(Uα

⋂
Uβ) is a smooth (infinitely

differentiable C∞) function.

A sketch of the definition is presented in Fig. 4.1. The coordinate charts
induce in M a topological space structure inherited from Rn. The degree
of differentiability of the overlap functions φβ ◦ φα determines the degree of
smoothness of the manifold: Ck-manifolds, C∞-manifolds also called smooth
manifolds, analytic manifolds, etc. Any Euclidean space is a smooth mani-
fold with an atlas consisting of only one chart, the space itself U1 = Rn,
and identity map φ1 = 1. Another useful example is provided by the unit
n-dimensional sphere defined

Sn = {(x1, x2, . . . , xi, . . . , xn+1)|xi ∈ R,

n+1∑
i=1

(xi)2 = 1},

realized as a hypersurface in Rn+1. We can describe Sn as an n-dimensional
real differentiable manifold with an atlas of two charts, namely:

X

Rn

V

Uα

Uβ

V

α

Fig. 4.1 Smooth manifold



34 4 Vector Fields, Differential Forms, and Derivatives

U1 = S2\{(0, . . . , 0, 1)}, U1 = S2\{(0, . . . , 0,−1)},

i.e., the unit sphere minus the north and south poles. The coordinate maps

φα : Uα → Rn 	 (yi), α = 1, 2; i = 1, . . . , n,

can be defined by the stereographic projections from the respective poles

φα(xi) =
(

x1

1∓ xn+1
,

x2

1∓ xn+1
, . . .

)
, i = 1, . . . , n+ 1, α = 1, 2.

It is easy to check that φ1 ◦ φ−1
2 : Rn\{0} → Rn\{0} is a smooth diffeomor-

phism, given by

φ1 ◦ φ−1
2 (y1, y2, . . . , yn) =

(
y1∑n

i=1(yi)2
,

y2∑n
i=1(yi)2

, . . .

)
.

In addition to the defining atlas, one can always introduce more coordinate
charts (U, φ) keeping the requirement that they are compatible with the given
charts. This means that ∀α, φ◦φα is smooth on the intersection φα(U ∩Uα).
We can expand the atlas to include all compatible charts, and in this case we
call the collection a maximal collection of charts. The maximal atlas is not
any more countable, though.

Because the maps defining the local coordinates are one-to-one with the
corresponding open sets inM , we can simplify the notation. While referring to
a certain local coordinates on a manifold we will ignore the explicit reference
to the map φα defining the local coordinate chart.

Definition 3. A map f : X → Y between two smooth manifolds X,Y is
smooth (or differentiable) if its local coordinate expression is a smooth map
in every coordinate chart, at any point of M .

In other words, ∀x ∈M , ∀(Uα, φα) such that x ∈ Uα, and ∀(Uβ , φβ), we have

φβ ◦ f ◦ φ−1
α : φα(Uα ∩ f−1(Uβ)) ⊂ Rm → Rm

is smooth (or differentiable). This definition can be also expressed as the
diagram:

Uα −−−−→
f

Uβ

φα

⏐⏐� ⏐⏐�φβ

φα(Uα) −−−−−−−→
φβ◦f◦φ−1

α

φβ(Uβ)

(4.1)

Definition 4. Let dim(X) = n and dim(Y ) = m, and f : X → Y a differ-
entiable map. The rank of f at x ∈ M is the rank of the Jacobian matrix
expressed in convenient local coordinates (xi), (yj = f j(x)):
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rank (f) ≡ rank (J) = rank

⎛⎜⎜⎜⎝
∂f1

∂x1
∂f1

∂x2 · · · ∂f1

∂xn

∂f2

∂x1
∂f2

∂x2 · · · ∂f2

∂xn

· · ·
∂fm

∂x1
∂fm

∂x2 · · · ∂fm

∂xn

⎞⎟⎟⎟⎠
m×n

A maximal rank map on a set A ⊂ X is a smooth function having its
rank=min(n,m) for each x ∈ S.

There is another definition of the differential of the map in more geometri-
cal terms [34]. This definition is valid for maps defined on real vector spaces,
but it can be easily extended to manifolds by the local diffeomorphism pro-
vided by the atlas. Two functions f, g : X → Y , where X,Y are vector spaces
over R of dimensions nX , nY , respectively, are tangent at x0 ∈ X if

lim
x→x0

||f(x)− g(x)||
x− x0

= 0. (4.2)

Then we can define the differential Df : X → L(X,Y ) as the map Df(x)
with the property that the function g(x) = f(x0) + L(x0)(x − x) is tangent
to f . Here L is the space of linear maps on X × Y , i.e., nx × nY matrices. In
other words, the differential of f at x is given by the first-order terms in the
Taylor expansion of f at x.

4.2 Differential and Vector Fields

In Euclidean geometry we investigate spaces by using vectors (as subspaces of
directions), we generalize vectors to tensors, and then to tensorial fields. In a
similar matter, we can enrich the structure of a smooth manifold with the help
of curves defined on it. A curve defined on a differentiable manifold defines a
direction, and a collection of such curves defines a whole linear space. Indeed,
let us suppose that α : I → X is a parameterized smooth curve defined on
the n-dimensional smooth manifold X, and I ⊂ R. In local coordinates the
curve is defined by n smooth functions α(t) = (x1(t), . . . , xn(t)) of the real
variable t ∈ I. At each point x = α(t) the curve has an n-dimensional unit
tangent vector defined by the derivative α′(t). In local coordinates we use to
denote this tangent vector as

v = α′(t) =
(
dx1

dt
, . . . ,

dxn

dt

)
=

n∑
i=1

dxi

dt

∂

∂xi
,

where we formally use the symbols ∂/∂xi to represent a local basis for the
components of this tangent vector in x.

Definition 5. The collection of all tangent vectors to all possible smooth
curves passing through a given point x ∈ X is called the tangent space to
X at x, and it is denoted TxM .
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The tangent space is isomorphic with an n-dimensional real vector space
through the canonical application θ : TxX → Rm, θx(ξi(x) ∂

∂xi ) = (ξi). The
collection of all tangent spaces corresponding to all points of X is called
tangent bundle and it is denoted as

TX = ∪x∈XTxX.

By the property of overlapping and differentiability of charts in the atlas, all
the tangent spaces on a manifold can be smoothly connected.

Definition 6. A differentiable function v : X → TxX is called a vector field
on the smooth manifold X.

In local coordinates v(x) =
∑n

i=1 ξ
i(x) ∂

∂xi where ξi(x) are n differentiable
real functions. A simple example is provided by the gradient field ∀i, ξi = 1
defined on the Euclidean space X = Rn, i.e., ∇ =

∑n
i=1

∂
∂xi . Any smooth

curve on a differentiable manifold has an associated vector field generated by
its tangents existing in the tangent bundle. Conversely, for any vector in the
tangent space at a point, we can define a unique smooth curve (the integral
curve or the flow) that passes through this point, and has its tangent equal
to this vector.

Definition 7. Let X be a differentiable manifold and v ∈ TX a differentiable
vector field on X. An integral curve of v at x ∈ X is a curve γ(α) : I → X
such that v(gamma(α))tα for each α ∈ I.

We present in Sect. 4.3 a proof of the theorem of existence and uniqueness
of integral curves for a particular case. For the general proof, especially
related to dynamical systems applications we recommend [9,13,15,34] books.
In Sect. 9.6.1 we present a local version of the theorem of existence and
uniqueness of integral curves related to hydrodynamical systems.

An integral curve can be also interpreted as a one-parameter local group
of transformations on X.

Definition 8. A set of vector fields S defined on a smooth manifold X is
rank-invariant if the dimension of the linear space spanned by S along the
flow of any of the vectors v ∈ S is constant.

In the following we will use the mute convention for summation.

Definition 9. For a given vector field v = (ξi) defined on a differentiable
manifold X, and a differentiable function f : X → Rm we define the action
of v on the function f in local coordinates by

v[f ](x) = ξi ∂f

∂xi
.
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The quantity v[f ] can be viewed as a linear operator acting on f , or as a
function defined on the manifold X with values in Rm, which generalizes the
concept of derivative along a given direction. In some books this operator is
also called the directional derivative (for example Shifrin) and is written as

Dvf(x) = ∇f(x) · v.

The above formula is obtained if we consider a smooth curve α on X and we
identify α′(x(t)) = v ∈ Rm. Then (f ◦ α)′(x(t)) = ∇f(x) · v.

Definition 10. Any differential map f : X → Y induces a linear map

df : TxX → Tf(x)Y,

called the tangent map (or the differential map) and defined by the diagram

TxX −−−−→
df

Tf(x)Y

θx

⏐⏐� ⏐⏐�θf(x)

Rn −−−−−−−−−−−→
(φ◦f◦φ−1)′(φ(x))

Rm

(4.3)

where n = dim(X), m = dim(Y ). That is df = θ−1
f(x)◦(φ◦f ◦φ−1)′(φ(x))◦θx.

Alternative notations for the tangent map are T∗ [9] or f∗. There are three
possible interpretations of the tangent map.

The first one is related to curves: any parameterized curve α(t) on X is
mapped by f into a parameterized curve α̃(t) = f(α(t)) on Y . Thus, f induces
a map from the tangent vectors to α at x to the corresponding tangent vectors
to α̃ at f(x) (see also Fig. 4.2). The second interpretation of the tangent map
is defined in terms of its action on tangent vectors v = (ξi) ∈ TxX in the
local coordinates:

Y

�

X

x

f

~ (�')
�
df=

~ f(�)=�' �

Fig. 4.2 The tangent map
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df(v) = ξi ∂f
j

∂xi

∂

∂yj
∈ Ty=f(x)Y, (4.4)

where (xi) and (yj) are local coordinates inX and Y , respectively. In this con-
text, the tangent map is the Jacobian matrix of the map f at x, acting as a lin-
ear transformation on the tangent vectors. If {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}
is a local basis in TxX, then df transforms it into a basis in Tf(x)Y of the
form { ∂f

∂x1 , . . . ,
∂f

∂xn }.
The third interpretation of the tangent map is in terms of the action

of a vector field. In this context, if we have f(x) = (f1, . . . , fm)(x), then
the action of the tangent map on a tangent vector, df(v(x)) = v[f j(x)] ∂

∂yj ,
is nothing but the action of this vector, considered as a vector field in the
tangent bundle, over the components of f in a local basis in Y . In other words,
the tangent map is the directional derivative df(v) = Dvf(x). Consequently,
we write here one of the most useful equations in the differential geometry
of surfaces, namely the relation between the tangent map of a map f , the
action of a vector field v, and its directional derivative

df(v) = Dvf(x) = v[f ]. (4.5)

Let us have a differential manifold X of dimension n. At every point
x∈X we can define the dual of the tangent space, T ∗

xX. The space of skew-
symmetric covariant tensors or rank 1 is a linear subspace Ω1T ∗

xX ⊂ T ∗
xX of

the dual, and its elements are called 1-form, ω(x). In local coordinates (xi) the
1-form is denoted ω = ωidx

i, where the dxi form an abstract skew-symmetric
local basis for the dual space. The 1-form is defined by the action of vector
fields on them: (v, ω) = (ξi∂/∂xi, ωjdx

j) =
∑n

i=1 ξ
iωi. The definition can be

generalized to differentiable k-forms, namely skew-symmetric covariant tensor
field of rank 0 � k � n defined on X, ω = ωi1i2...ik

dx1 ∧ dx2 ∧ · · · ∧ dxk. Here
the ∧ “exterior” product denotes the skew-symmetric property. The space of
k-forms is denoted ΩkT ∗

xX = T ∗
x ⊗T ∗

x ⊗ · · ·⊗T ∗
x , k times and has dimension

dimΩkT ∗
xX = n!/(k!(n− k)!). The local basis at x, dx1 ∧ dx2 ∧ · · · ∧ dxk, has

the properties:

1. dx1 ∧ dx2 ∧ · · · ∧ dxk = 0 if two indexes are equal.
2. Permutation of two indexes changes the sign.
3. The dx1 ∧ dx2 ∧ · · · ∧ dxk is linear.

In general, the local basis of differentials for a k-form is a generalized
crossproduct in more than three dimensions. A 0-form is a differentiable
function on X, a 1-form is a covariant vector field, and an n-form is a volume
element.

Let us have a differentiable map between two manifolds f : X → Y .

Definition 11. The dual map of the tangent map at x, i.e., df∗ : Tf(x)Y →
TxX, is called the pull-back (or codifferential) of f . One generalizes the pull-
back to k-forms by Φ∗ : ΩkT ∗

f(x)Y → ΩkT ∗
xX namely
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Fig. 4.3 We have two vector fields v, w and a point x ∈ X, which is mapped into f(x) ∈ Y ,

and into evx ∈ X by the flow box of v (we choose λ = 1 in this figure). The differential of
the vector field acts in agreement with the pull-back. The “bow tie” represents a k-form
at x and at f(x)

ω
′
i1,i2,...,ik

= ωj1,j2,...,jk

∂f j1

∂xi1

∂f j2

∂xi2
. . .
∂f jk

∂xik
(4.6)

The pull-back has the following useful relation with the tangent map between
X and Y :

(df(v))(ω) = v(f∗(ω)), (4.7)

meaning that the derivative df(v) of the vector field v on X acts on the
k-forms in Y in the same way as v act on the pull-back f∗(ω) of the forms
in Y (Fig. 4.3).

4.3 Existence and Uniqueness Theorems:
Differential Equation Approach

We showed that a vector field on a manifold M is a mapping M → TM
that assigns to each point x ∈ M a vector in TxM . A vector field may
be interpreted alternatively as the first-order system of partial differential
equations (PDEs), i.e., a dynamical system [34].

In the following we introduce an important result from the theory of first-
order PDEs, namely the fundamental theorem of existence and uniqueness
of solutions under Cauchy conditions. Actually, we present here the general
version for a system of coupled, nonlinear PDE of order 1 depending on two
independent variables (to have a pictorial geometrical interpretation in terms
of surface geometry). The extension of this theorem to many dimensions is
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a simple technical extension, and it does not introduce any new special in-
sights. We begin with the fundamental theorem for one PDE in one unknown
function f(u, v) depending on two independent variables.

Definition 12. For a given function defined on the open sets F : U×V ×W ⊂
R2 × R2 × R → R, we define a partial differential equation (PDE) of order
one, the equation

F (u, v, fu, fv, f) = 0. (4.8)

The function f(u, v) : U → R is called a solution of this PDE if the expression
F (u, v, ∂f(u, v)/∂u, ∂f(u, v)/∂v, f(u, v)) ≡ 0 transforms the PDE, F = 0,
into an identity on U .

Definition 13. We call the Cauchy problem (or Cauchy condition) associ-
ated to the function f(u, v) and the PDE, the following set of three quantities:

1. A vector function a(ε) : I ⊂ R→ U ⊂ R2.
2. A real function γ(ε) : I ⊂ R→W ⊂ R.
3. A constant vector b0 ∈ V and a number ε0 ∈ I, and four constrains between

the solution f and (4.8).
4. F (a(ε0), b0, γ(ε0)) = 0.
5. dγ

dε (ε0) = b0 · da
dε (ε0).

6. f(a(ε)) = γ(ε).

7.
(

∂f
∂u (a(ε0)), ∂f

∂v (a(ε0))
)

= b0.

Theorem 3. The Cauchy problem a, γ ∈ C2(I) for the PDE equation
F (u, v, fu, fv, f) = 0, with the supplementary restriction∣∣∣∣∣

(
∂F
∂u

du
dε

∂F
∂u

dv
dε

∂F
∂v

du
dε

∂F
∂v

dv
dε

)∣∣∣∣∣ = 0

has a unique solution f(u, v) ∈ C2(V(a(ε))) on a neighborhood V(a(ε)), ful-
filling the Cauchy conditions (1–4) from the Definition 13.

We do not give the proof of Theorem 3 here (the reader can find a detailed
proof of this theorem in [35]). We just introduced here Theorem 3 to comment
on the geometrical interpretation in terms of surfaces.

We consider the independent variables (u, v) ∈ U as parameters, and
the solution f : U → R of the PDE (4.8) as a parameterized surface S,
r(u, v) ∈ R3, defined by the graphics f(u, v) (see Fig. 4.4). The PDE equa-
tion (4.8) is integrable if there are solutions (i.e., surfaces) passing through
every point of the working space U ×W ⊂ R2 × R ⊂ R3. The PDE defining
equation, F (u, v, b0, f) = 0, provides a relationship between any given point
r = (u, v, f) ∈ U ×W , in the working space, and a vector b0 ∈ V defined
in some two-dimensional abstract vector space. Actually, the mathematical
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Fig. 4.4 The PDE solution f(u, v) as a parameterized surface S

expression of (4.8) says that given a point (u, v, f) ∈ U ×W and one compo-
nent of a vector in V (fu), we can get the other component fv(u, v, f, fu). In
local flat coordinates the geometric meaning is even simpler.

A solution f(u, v) of (4.8) is a surface S parameterized by the local (flat)
coordinates (u, v). We introduce a map from V to T(u,v,f)R3 defined by

V ⊃ b = (fu, fv)→
{(1, 0, fu), (0, 1, fv), (−fu,−fv,1)√

1+f2
u+f2

v

} = {ru, rv,N}

which provides the Darboux trihedron associated to the parametrization
(u, v). In this geometric picture, the integrability of the PDE means that
we have a relation which associates for any point and direction, a plane pass-
ing through that point and through that direction. This plane is actually the
tangent plane to the graphics of the solution f , at the point (u, v). That is,
we can write (4.8) in the form fv = fv(u, v, fu, f), and hence associate to any
point (u, v, f), and to any direction (1, 0, fu), the other direction (0, 1, fv).

The Cauchy conditions (1–3) from Definition 13 assure uniqueness of the
solution, and show how to actually construct it. The Cauchy conditions
consist in a parameterized curve α : I → U in the space of the parame-
ters, defined by a(ε) = (u(ε), v(ε)), and a parameterized curve defined by
γ(ε). In the following we assume that the parameter ε is the arc-length
along α. The curve Γ defined by (u(ε), v(ε), γ(ε)) ∈ U × W lies in the
surface-solution S, by Cauchy condition (6), because if f is solution, then
f ◦ a(ε) = γ(ε). The Cauchy conditions (4,5,7) provide that the two com-
ponents of the vector b0 are actually the components of the unit tangent of
the curve Γ expressed in the basis associated with the (u, v) parametrization
at the point (u(ε0), v(ε0), f(u(ε0), v(ε0))). Indeed, on one hand dγ/dε is the
third component of the unit tangent dr/dε = Dar. On the other hand
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Dar = uε(1, 0, fu) + vε(0, 1, fv) = (uε, vε, uεfu + vεfv).

Consequently, if relation (5) from Definition 13 holds, then dγ/dε = b0 ·
(uε, vε), and b0 is actually equal to (fu, fv).

Now, we go for the geometrical interpretation of the existence and unique-
ness theorem. The basic idea is simple: If we can build a plane passing through
an arbitrary point of the space, we can smoothly extend this plane to an
infinitesimal surface on a neighborhood of that point. The rest of the surface
is just analytic continuation. A plane is generated by two directions. In the
neighborhood of the given Cauchy curve Γ , we have one direction provided
by the unit tangent of the curve, and the other direction provided by the
PDE equation (starting with the coordinates of the point and the tangent
direction). This will build the whole surface, hence the solution.

Indeed, the PDE equations tell us that for any point (u, v, f) ∈ U ×W ,
and for any direction through this point, (1, 0, fu), we are given a whole
plane through this point and this direction. The solution f(u, v) is the surface
having this plane as a tangent plane at any (u, v, f(u, v)). In addition, the
Cauchy condition provides that from any given parameterized curve Γ : I →
U ×W (provided by a and γ), and the knowledge of the tangent plane in
one of its points (generated by {b0, dγ/dε}ε0 at ε0), the surface built from
the PDE as shown above, and containing the curve Γ , is unique.

In other words, we have a parameterized curve a in the parameter space
U , and we lift it to a curve in the whole space U × W . We want to find
the surface that contains this curve, and has a prescribed tangent plane in
one of the points of this curve (see Fig. 4.5). In addition, we can build the
tangent plane to this surface at any point, if we just know one direction of

U

fu

fv

ε0
ε

Γ

Fig. 4.5 The Cauchy condition for a two-dimensional first-order PDE
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this plane at that point. Now, it is obviously how the surface of the solution
is built. The curve Γ is part of this surface, and the unit tangent of Γ is in
the tangent plane of the surface. In any of the points of Γ , (u(ε), v(ε), γ(ε)),
we have one tangent direction (uε, vε, γε), and the PDE provides the other
direction, so we can built a tangent plane to the surface in any point of the
curve Γ . Then, by analytic continuation, we can extend the surface from Γ
toward the whole domain of F .

In the following we provide the general theorem for existence and unique-
ness of solutions for (nonlinear) PDE of order m.

Theorem 4. If the PDE equation of order m for f(x1, . . . , xn) : D ⊂ Rn →
R can be written in the explicit form

∂|m|f

∂x
|m|
1

= F

(
x1, . . . , xn, u,

∂f

∂x1
, . . . ,

∂|m|f
∂xm1

1 . . . ∂xmn
n

)
,

with |m| = m1 +m2 + ·+mn, such that the derivative ∂|m|f/∂x|m|
1 does not

occur anymore in the RHS of the above expression, then the Cauchy problem

f(x)|x1=x0
1

= g0(x2, . . . , xn),
∂f

∂x1

∣∣∣∣
x1=x0

1

= g1(x2, . . . , xn), . . .

. . . ,
∂|m|−1f

∂x
|m|−1
1

∣∣∣∣
x1=x0

1

= gm−1(x2, . . . , xn),

attached to this equation has one unique analytic solution f(x1, . . . , xn) :
V (x0

1, . . . , x
0
n) → V (u0), if the function F is analytic on a neighborhood of

the point (x0
2, . . . , x

0
n, u0, . . . ), and the functions g1, . . . , gm−1 are analytic on

a neighborhood of (x0
2, . . . , x

0
n).

We can generalize the integrability concept for a general manifold.

Definition 14. Let S = {v1,v1, . . . ,vn, } be a finite set of n vector fields
defined on a smooth manifold X. We call integral submanifold of S a sub-
manifold Y ⊂ X whose tangent space TpY is spanned by the system S at
every point p ∈ N . The system at every point S is integrable if through every
point p ∈ X there passes an integral submanifold.

Definition 15. A finite system of vector fields S = {v1,v2, . . . ,vn, }, defined
on a smooth manifold X, is in involution if it is algebraically closed under
commuting relation, i.e., if ∀p(x) ∈ X,∀i, j = 1, . . . , n

[vi,vj ] =
n∑

k=1

ckij(x)vk,

where ckij(x) are differentiable real functions on X, and [, ] is the Lie bracket
defined by the action (see Definition 9) of two smooth vector fields on func-
tions f : M → R

[v,w]f = v(w(f))−w(v(f)).
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Of course, if the vector fields generate an n-dimensional Lie algebra LS ⊂ TpY
at every p ∈ X, they are in involution.

The concept of involution can be generalized to an infinite system of vector
fields S∞ by asking ∀v,w ∈ S∞, we have [v,w] ∈ S∞.

Theorem 5. Frobenius theorem. A finite system of vector fields defined on a
smooth manifold S is integrable if and only if it is in involution. If the vector
fields system is infinite has to fulfill in addition the rank-invariant condition,
see Definition 8.

For a proof of the theorem the reader can see [9, Chap. 1] and references
herein. The dimension of the integral manifold is equal to the dimension of
the linear space spanned by S at any point on X, which does not prevent
this dimension to change from point to point. We can check the theorem
by choosing a parameterized surface in the so-called local flat coordinates
r = (x, y, h(x, y)). For any differentiable function f : R3 → R we have the
action

ru(rv(f(x, y, z))) =
(
∂x +

∂h

∂x
∂z

)(
∂y +

∂h

∂y
∂z

)
.

It is easy to verify that the two tangent vector fields along the local coordi-
nates fulfill [ru, rv] = 0.

Next important concept for integrability and symmetry of dynamical sys-
tems is the Lie algebra.

Definition 16. A Lie algebra is a vector space g together with a bilinear
operation [·, ·] : g× → g, called Lie bracket or commutator, satisfying the
axioms:

1. [a, b] = −[b,a], skew-symmetry
2. [a, [b, c]] + [c, [a, b]] + [b, [c,a]] = 0, Jacobi identity

∀a, b, c ∈ g.

The dimension n of the Lie algebra is the dimension of the vector space.
Usually, the Lie algebras in use for physics are finite dimensional, but there
are exceptions especially in field theory. An algebra homomorphism from g
into a Lie algebra of square matrices is a representation of the Lie algebra.
A Lie algebra is uniquely determined by the basis {vi}i=1,...,n of its vector
space, and by its structure constants ckij = −ckji defined by

[vi,vj ] = ckijvk.

Usually, the above relation is given in tabular form, i.e., the commutator
table of the Lie algebra. If a Lie algebra is generated by vector fields v ∈ TM
defined on the tangent space of a differentiable manifoldM , we can introduce
the exponential map as a one-parameter smooth transformation exp(εv) :
M → M and we call the subset {exp(εv)x|x ∈ M, ε ∈ (−εmax, εmax) ⊂ R}
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the orbit of the one-parameter local Lie group generated by v. Obviously
exp(0v) = Id. Conversely,

TM � vx∈M =
d

dε

∣∣∣∣
ε=0

exp(εv)x, ∀v ∈ g,

is the Lie equation. Namely, given the (exponential) one-parameter Lie group
of transformations based on some initial point x ∈ M , the tangent vector
to the curve exp(εv)x ⊂ M at ε = 0 is the infinitesimal generator of the
transformation.

4.4 Existence and Uniqueness Theorems:
Flow Box Approach

For a differential vector field v on the differential manifold X we define an
integral curve γ(λ) : I → X a smooth parameterized curve whose tangent
vector at any point coincides with the value of v at the same point

γ′(λ) = v(γ(λ)).

In local components these equations define a system of ordinary differential
equations, where the integral curve is the solution. The existence and unique-
ness of such an integral curve is guarantied locally by the general existence
and uniqueness theorem (Theorem 4) exemplified in Sect. 4.3 [9,13,34]. How-
ever, this theorem is local and in general does not assure the existence of a
global integral curve. To have an intuitive geometrical picture about integral
curves, we discuss here the concept of “flow box” introduced in [34, Chap. II].

Definition 17. Let us have a differentiable manifold M . The flow box of
a vector field v at x ∈ X is a unique triple (V (x), a, {Fλ}λ∈(−a,a)) where
V (x) is an open neighborhood of x, a > 0 and Fλ is a continuous family of
differentiable functions Fλ : V (x)→ X such that:

1. For any y ∈ V (x), Fλ(y) considered as a function of λ ∈ (−a, a) is an
integral curve of v, i.e., ∂Fλ(y)/∂λ = v(Fλ(y)).

2. For any λ ∈ (−a, a), the mapping Fλ(x)→ Fλ(V (x)) is a diffeomorphism.

In other words, at any point of X, and for a given “size” a of the flow box,
we can find local integral curves filling up a neighborhood and mapping it
diffeomorphic along X. The existence of a flow box at any point is guaranteed
by the general theorem of existence and uniqueness theorem (Theorem 4)
applied on the homeomorphism provided by the charts overlapping V (x),
Fig. 4.6.
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V(x)

Integral curves

X

Fig. 4.6 Flow box generated by a vector field

Theorem 6. For any given vector field v on a manifold X, and for any
x ∈ X there is a flow box of v in X. This flow box (V (x), a, Fλ) is unique
in that any other flow box of the same point (V ′(x), a′, F ′

λ′) has Fλ = F ′
λ′ on

V (x) ∩ V ′(x)× [−a, a] ∩ [−a′, a′].

In order to prove this theorem we notice that the uniqueness results from
the fact that any two integral curves γ1(λ), γ2(λ) of the same field, at x,
are equal on the intersection of their domains of definition. Indeed, let be
Λ = {λ ∈ (−a, a)|γ1(λ) = γ2(λ)} ⊂ Domain(γ1) ∩ Domain(γ2). By the
definition Λ is closed (being obtained as the kernel of a continuous func-
tion). Also, for any λ ∈ Λ there is a neighborhood (λ − ε, λ + ε) con-
tained in a chart (U, φ) of X such that the curves φ(γi(λ + t)), |t| < ε,
i = 1, 2 agree for t = 0. Again, by the general theorem of existence and
uniqueness theorem (Theorem 4), it results that the two curves, and con-
sequently their inverse images agree on the whole neighborhood (λ − ε,
λ+ ε). Consequently this neighborhood is contained in Λ, so Λ is also open.
Since (−a, a) is connected, it results that Λ = (−a, a).

We have a comment about the size a of the flow box which gives a measure-
ment of the degree of locality of the integral curves. From the very beginning
the domain of definition of all integral curves is set to the same interval
(−a, a), contrary to the habit in differential geometry (where the parame-
trization of the curve is not essential and can be changed). Such fixed do-
main is needed to keep simple the proof for the uniqueness of the flow box
vs. change of parametrization. This standard domain of definition does not
introduce any limitation when we speak about maximal integral curves be-
cause we introduce this concept in a different way. That is, we defined the
set Dv = {(x, λ)| there is an integral curve passing through this point} ⊂
X ×R. The vector field v is complete if Dv = X ×R. For a complete vector
field any integral curve can be extended so its domain becomes (−∞,∞). For
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example, the velocity field of a potential flow past a rigid obstacle is not com-
plete, because there are stream lines ending at stagnation points.

The set Dv can be partitioned by the unique mapping Fv : Dv → X (the
integral of v), constructed such that the curves λ → Fv(x, λ) are integral
curves at x, for all x ∈ X. Now we define a maximal integral curve to be
λ→ Fv(x, λ). If, in addition v is complete, the function Fv is called flow of the
vector field v. The collection of all maximal integral curves for a given vector
field is called a foliation of X, where the maximal integral curves themselves
are called leaves of the foliation. Because of the properties of the flow box, and
the transitive action of Fv on X, the family Fv(x, λ) is called one-parameter
local group of diffeomorphisms (for exact definition see for example [9]). If
X is complete this family becomes a Lie group of diffeomorphisms acting
on X. In terms of group theory the vector field is called group infinitesimal
generator.

4.5 Compact Supported Vector Fields

The flow box plays an interesting role when the vector field has compact
support [34]. Let us assume that X is compact and v is a vector field defined
on X. For x ∈ X let us consider a maximum integral curve γ through x, and
let its domain be (−b, b) with b < +∞. We can always find a sequence bn → b
such that (by compactness and Hausdorff property of X) γ(bn) is convergent
to some unique point xb ∈ X. We can construct a flow box (V (xb), a, F ), and
for n larger than a certain limit γ(bn) points lie in V (xb). Consequently γ
can be extended beyond b, and so on to infinity, and minus infinity. It gives
the following result:

Lemma 2. Any vector field defined on a compact manifold is complete. More-
over, vector fields with compact support are complete.

The flow box is the main tool in the introduction of the Lie derivative, and
it is useful for handling differential equations and global invariance.

4.6 Lie Derivative and Differential Forms

If X is a manifold and xi are the local coordinates, we can express formally
the vector field v(x) ∈ TxX in components

v = vi(x)
∂

∂xi
, (4.9)

and its action on functions f : X → R becomes



48 4 Vector Fields, Differential Forms, and Derivatives

v(f)(x) = vi(x)
∂f

∂xi
. (4.10)

We can express formally the flow box diffeomorphisms Fλ from Definition 17
as

Fλ(x) = eλvx, (4.11)

also called the exponentiation of the vector field, or exponential map [9, 27],
because of the structure of its formal differential equation (Lie equation)

dFλ(x)
dλ

∣∣∣∣
λ=0

= v(x).

In reverse, for a given diffeomorphism φ : X → X, the vector field whose
exponential provides this transformation (if it exists) is called the infini-
tesimal generator of φ. The set {Fλ(x)}λ∈(−a,a) represents a one-parameter
local Lie group of transformations acting on V (x). It is useful to mention the
action of the vector field on differentiable functions defined on X. By using
the formal Taylor series for f we have

f(eλvx) =
∑
k>0

λk

k!
vk(f)(x). (4.12)

The value of the function in the transformed point is obtained by repeated
action of the vector field on the function at x

x
f−−−−→ f(x)⏐⏐�λ vk

⏐⏐�
eλx f−−−−→ f(eλx).

The generalization of a function, or of an infinitesimal surface or volume
element, is the differential k-form, defined in Sect. 4.2, as being a linear skew-
symmetric tensor field on X with values in the k-times exterior product of
the cotangent space of the n-dimensional manifold X [9, 15]

ω =
n∑

i1 < i2 < · · · < ik
i1 . . . ik = 1

ωi1i2...ik
(x) dx1 ∧ dx2 ∧ · · · ∧ dxk ∈ ΩkT ∗

xX.

For a set of k vector fields on X we have the action of the k-form on these
fields given by

(ω;v1, . . . ,vk) = ωi1i2...ik
vi1

1 . . .v
ik

k , (4.13)

where we use the dummy index summation convention.
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Definition 18. A k-form ω and an r-form θ can be coupled into a new k+ l-
form by the exterior product ∧ operation

ω ∧ θ =
n∑

i1 < · · · < ik
i1 . . . ik = 1

∑
(j)∈P(i)

(−1)νωj1 . . . jk
<

θjk+1 . . . jk+r

<

dx1 ∧ · · · ∧ dxik+r ,

where the symbol < means that the lower indexes are taken in increasing
order, P(i) means all permutations of the i indexes, (j) = (j1, . . . , jk+r) is a
multi-index, and ν is the signature of the permutation. The exterior product
is linear, distributive, the pull-back map is linear under the exterior product,
and ω ∧ θ = (−1)krθ ∧ ω.

Definition 19. We define the interior product between a vector field and a
k-form ω the expression

(v ⊥ ω)i1...ik−1 =
n∑

l = 1
l �= i1 . . . ik−1

vlωl; i1 . . . ik−1

<

.

For example ∂x ⊥ dx∧ dy = dy. The action of the interior product is given by

(v ⊥ ω,v1, . . . ,vk−1) = (ω,v,v1, . . . ,vk−1). (4.14)

The last operator we need is the exterior derivative.

Definition 20. For any k-form we define the linear operator d : ΩkT ∗
xX →

Ωk+1T ∗
xX by

dω =
∑
i,I

∂ωI(x)
∂xi

dxi ∧ dxI ,

where I is the increasing ordered multilabel defining ω components.

The exterior derivative is linear, commutes with the pull-back map, and –
most importantly – has the closure property

d(dω) = d2ω = 0. (4.15)

We conclude this series of definitions with a set of useful relations between all
these operators. In the following ω is a k-form, and θ is an r-form, k, r ≤ n,
and v is a vector field:

v ⊥ (ω ∧ θ) = (v ⊥ ω) ∧ θ + (−1)kω ∧ (v ⊥ θ). (4.16)
d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ θ (4.17)

v ⊥ (ω ∧ θ) = (v ⊥ ω) ∧ θ + (−1)kω ∧ (v ⊥ θ), (4.18)
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and
v(ω) = d(v ⊥ ω) + v ⊥ (dω). (4.19)

For a given vector field v(x) on X and a certain geometrical object ω(x)
defined on X (like another vector field or a k-form), it is natural to ask how
does ω changes along the integral curves of v. Since at different points eλvx,
the quantity ω(x) takes values in different spaces of a fiber bundle ΩX over
X (example the tangent bundle TX, cotangent bundle T ∗X, tensor bundle
T j

kX, etc.) we have to compare the values of ω(x) ∈ ΩxX with the pulled-
back values of ω(eλvx) ∈ Ωeλvx. This technique is known under the name of
the Lie derivative.

Definition 21. We introduce the Lie derivative of ω at x ∈ X, with respect
to v, as the expression v(ω) defined by

v(ω)|x = lim
λ→0

Φ∗
λ(ω|exp(λv)x)− ω|x

λ
=
(
dΦ∗

λ(ω|exp(λv)x)
dλ

)
λ=0

,

where Φλx = eλvx and Φ∗
λ is the pull-back of Φ between the corresponding

tensor spaces (Definition 11).
For example the Lie derivative of a function v(f) is nothing but the

expression (4.10). The Lie derivative of a vector field w is

v(w) = [v,w]. (4.20)

In general the Lie derivative of a k-form ω = ωi1,i2,...,ik
dxi1∧dxi2∧· · ·∧dxik ∈

ΩkX is
v(ω) = v(ωi1,i2,...,ik

)dxi1 ∧ dxi2 ∧ · · · ∧ dxik

+ωi1,i2,...,ij ,...,ik
dxi1 ∧ · · · ∧ v(dxij ) ∧ . . . dxik , (4.21)

where we can use the formula v(dxij ) = dvij = (∂vij/∂xk)dxk (4.9)
for calculation purposes. For example if k = 2 and X = R3,v(x, y) =
ξ(x, y)(∂/∂x) + η(x, y)(∂/∂y), ω = ωijdx

i ∧ dxj we have

v(ω) =
[
v(ωij) + ωij

(
∂ξ

∂x
+
∂η

∂y

)]
dx ∧ dy.

A very useful application of Definition 21 and (4.20) and (4.21) is provided
in Sect. 9.2.6 where we introduce the concept of covariant (or convected, con-
vective, material) time derivative related to the Eulerian–Lagrangian frame
transformations in hydrodynamics.

Another direct application of the Lie derivative, introduced in [34], is based
on the concept of flow box, see Sect. 4.4. Let v be a vector field on a manifold
X, i.e., v(x) ∈ ∪y∈XTyX and a flow box (see Sect. 9.3) (U(x), α, F ) at x.
That is we have an open neighborhood U(x) of x, and a continuous set of
homeomorphic copies of U(x), labeled by Uλ, λ ∈ (−α, α) ⊂ R mapped by
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(Fλ-1*)ω(Fλ(X))

ω(Fλ(X))

ω(X)

V(X)

Fλ(X)

U(X) Uλ
X

X

V(Fλ(X))

Fig. 4.7 The mechanics of the Lie derivative. The thick line is the integral curve of the
vector field v
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Fig. 4.8 The result of application of the procedure in Fig. 4.7. The tensors over different
points along the integral curve are pulled back in the same tensor space, forming a smooth
curve of tensors which can be differentiated

the diffeomorphism Fλ : U(x)→ Uλ. Let also ω be a tensor field on X, for ex-
ample ω(x) ∈ ∪y∈XT

j
y,iX, i.e., an i-order covariant and j-order contravariant

tensor field. According to the definition of the flow box (Definition 17) we can
choose an arbitrary λ ∈ (−a, a) and an arbitrary point, y ∈ Uλ, and consider
the value of the tensor field in that point, ω(y) ∈ T j

y,iX. Then pull-back this
value into T j

F−1(y),iX by using the dual of the diffeomorphisms F−1∗
λ . We
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obtain a tensor Fλ
−1∗(ω(y)) (see Fig. 4.7). Since this pull-back can happen for

any value of λ we actually built a curve ωλ(x) of tensors defined at x, lying in
T j

x,iX. Now we can apply the elementary concept of derivation along a curve
for this curve of tensors, and the resulting object is the Lie derivative of an
i-covariant, j-contravariant tensor at x. So we have

v(ω) =
dωλ(x)
dλ

∣∣∣∣
λ=0

, (4.22)

see also Fig. 4.8. So, the Lie derivative is not a different mechanism of differ-
entiation of tensors on a manifold, but just involves a special way of choosing
the curve along which we differentiate. That is a curve induced by the vector
field v, but lying in the space of tensors over the point x (a curve in the fiber
of an (i,) tensor bundle of base X over x). In this sense, the Lie derivative
is very similar with the covariant derivative (see also the comment and the
diagram about derivatives in Sect. 1.3). The flow box plays the same role for
the Lie derivative, as the connection coefficients (Christoffel symbols) have
for the covariant derivative (see Sect. 7.1).

The Lie derivative has the properties with respect to the interior and
exterior form algebra

v(ω ∧ θ) = v(ω) ∧ θ + ω ∧ v(θ),

v(dω) = dv(ω),

v(w ⊥ θ) = [v,w] ⊥ θ + w ⊥ v(θ), (4.23)

d(v ⊥ ω) = v(ω)− v ⊥ (dω). (4.24)

4.7 Invariants

The concept of invariance can be applied to any geometrical entity. There
are two basic types: invariant of a transformation Ψ : X → X and invariant
of a vector field v. If the transformation is the flow or an integral curve
of the vector field, or the vector field is the infinitesimal generator of the
transformation, the two types coincide.

Let X be a differentiable manifold, Ψ : X → X a differentiable map, and
Y ⊂ X a submanifold.

Definition 22. The submanifold is Ψ -invariant if Ψ(Y ) ⊂ Y .

The definition can be extended to more than one mapping, which eventually
forms a group of applications Ψ ∈ G, in which case we call Y G-invariant.

Definition 23. An application f : X → Rn is Ψ -invariant if ∀c ∈ Rn the
submanifold {x ∈ X|f(x) = c} is Ψ -invariant.
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Let X be a differentiable manifold, v ∈ TX a smooth vector field on X,
and Y ⊂ X a submanifold.

Definition 24. The submanifold is an invariant manifold of v if ∀y ∈ Y,
v(y) ∈ TyY ⊂ TyX.

In other words, a submanifold is invariant of a vector field if the restriction of
this field is tangent to the submanifold. From the uniqueness of the integral
curves we have a sufficient criterium for the invariant set.

Lemma 3. If the submanifold Y ⊂ X is an invariant manifold of v, a > 0,
y ∈ Y , and γ : [−a, a] → X, γ(0) = y an integral curve of v, then there is
0 < b < a such that γ([−b, b]) ⊂ Y .

In addition, sufficient conditions are provided by Lemma 4.

Lemma 4. The differentiable function f : X → R is invariant of a vector
field v on X if and only if v(f) = 0. As a corollary, if a submanifold Y ⊂ X
is defined implicitly by a set of equations {fj(x) = 0}j=1,...,n, then Y is
invariant of v if v(fj) = 0,∀j = 1, . . . , n.

Proof. By using (4.12) we note that if v(fj) = 0 the functions are invariants,
and conversely. ��

We make the following comment: the notation v(...) in general represents
the Lie derivative of a certain geometrical object. If this object is a function,
like above, its Lie derivative coincides with the action of the vector field
on the function, so there is no danger of misunderstanding. However, with
respect to k-forms invariance we deal with the Lie derivative. Let X be a
differentiable manifold, v ∈ TX a smooth vector field on X, and ω ∈ ΩkT

∗X
a differentiable k-form defined on X (Sect. 4.6).

Definition 25. ω is an invariant k-form of v if its Lie derivative has the
property v(ω) = 0.

Sometimes an invariant form is also called constant of motion. The invariant
form ω of v has the property that it is constant along the integral curves of
v. That is

∂F ∗
λ (ω)
∂λ

= 0, (4.25)

for any flow box (V, a, Fλ) of v. An invariant form ω has a series of important
properties:

1. On any oriented, compact k-dimensional submanifold Y ⊂ X with bound-
ary ∂Y we have the identity∫

∂Y

F ∗
λω =

∫
∂Y

ω, (4.26)

for any λ of any flow box in Y . In other words, an invariant form, considered
a volume form, conserves the volume associated with a submanifold of the
same dimension.
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2. The exterior differential dω is also invariant.
3. All interior and exterior algebraic operations between invariant forms of

v, or between invariant forms and v are also invariant forms of v (for a
list of such operations see Sect. 4.6). More general, a set of invariant forms
of v form a subalgebra of ΩkT

∗X, closed under the interior and exterior
operations (i.e., d,∧,ᵀ).

4. The Lie derivative v(dω) is closed.

4.8 Fiber Bundles

The idea of a fiber bundle is to factorize a certain “total” topological space or
differentiable manifold E into simpler subspaces, eventually into a cartesian
product. For example how the complex plane C is diffeomorphic with R×R.
Sometimes it is possible to express this total space globally as a cartesian
product, but sometimes when E is very “twisted,” this is not possible. If we
still can express locally this total space as a cartesian product we call such a
space a fiber bundle.

Usually, in physics and geometry books the traditional example of fiber
bundle is the Möbius band. We present here a nontraditional example of fiber
bundle, not very rigorously defined, but with some intuitive meaning. Let us
define the total space E as the set of all words w ∈ E spoken on Earth at
a certain historical time. Concerning words we are interested in two dimen-
sions: the real meaning and the language to which it belongs. However, these
two dimensions do not factorize the set of words E in a cartesian product.
Languages have different structures, and the space of the meanings is differ-
ent for different civilizations, so meaning and language interfere in a twisted
in coupled way. However, we can always define a base space X to be the set
of communities on the surface of the Earth speaking the same language. The
set of all distinct standard languages λ spoken on Earth is homeomorphic
with the surface of the Earth factorized modulo the communities. The pro-
jection Π : E → X is defined by the relation w → λ associating for any word
a unique language. The fiber F is the space of all possible meanings of all
possible concepts m ∈ F existing at that historical moment on Earth. The
fiber at a certain point is just the meanings used in a certain region on Earth.
The structure group acting on F is then the set of changes of meanings. Let
us choose a region Uα ⊂ X and let Π−1(Uα) be the set of words spoken in
the Uα region. The mapping Φα : Π−1(Uα)→ Uα×F is defined by associat-
ing to each word spoken in that region a unique meaning, i.e., the mapping
word→ (region,meaning). The structure functions gα,β are the dictionaries
needed at the points where two different spoken languages interfere. In such
a fiber bundle a cross-section would be generated by choosing one word, from
each language, each such word having only one meaning. In the same way
one can define the fiber bundle of economic systems based on the space of
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communities, where the fiber is given by the intrinsic economical values, and
the structure functions are the currency exchanges systems. In this example
the EC could be a trivial bundle, for example.

Definition 26. According to [29] a fiber bundle E is a collection
(E,X,Π,F,G,U ) as follows:

1. E,X,F are a topological spaces called the bundle (or total) space, the base
space, and the fiber, correspondingly, and the surjection Π : E → X is
called projection.

2. G is a topological group of transformation homomorphisms acting on F ,
called the structure group.

3. There is a family of coordinate neighborhoods (Uα, Φα) ∈ U , with Uα open
sets covering X, and Φα : Uα × F → Π−1(Uα) homeomorphisms, such
that ΠΦα = Id X.

4. The set of all Φα ◦Φβ = gα,β(x) (called transition functions) for any fixed
x ∈ X, is homeomorphic with G.

In other words a fiber bundle is a space E which can be projected onto
another (simpler) space X, which is already partitioned in open coordinate
neighborhoods. Locally, E can be expressed in terms of coordinates in X and
coordinates in another space, F . That means that locally the total space looks
like a simple direct product between a coordinate neighborhood and the fiber.
However, globally is not true in general. The maps Uα×F are glued together
(where the coordinate neighborhoods overlap) in different ways across X.The
gluing maps taking Uα × F to Uβ × F are the transition functions gα,β(x).
Thus, the structure group controls the gluing operations between local parts
of the total space of the fiber bundle.

The way the coordinates are assigned to a fiber F at a point x ∈ X
is handled by the structure group of homeomorphisms of F . Nevertheless,
on the top of any coordinate neighborhood Π−1(Uα), when we move along
the fiber, we actually stay on the same base point x. The inverse image
Π−1(x) = Fx is called the fiber at x.

Some other sources use slightly different definition for a fiber bundle. Some-
times, the spaces E,X,F are required to be differentiable manifolds, and the
group G to be a Lie group.

A cross-section in a bundle is a smooth map φ : X → E so that Πφ =
Id X. A cross-section is in a way a generalization of the graphic of a function
defined on the base space with values in the fiber bundle. Different from a
regular graphic, a cross-section takes different values at different points x ∈ X
in different spaces, namely homeomorphisms of the fiber.

A traditional example of a fiber bundle is the tangent bundle TΣ of a
parameterized smooth surface Σ in R3. The base space is the surface itself,
and the tangent bundle is the set of all tangent vectors at all points of the
surface. The projection is the assignment for each vector of its initial point.
The fiber at x is the tangent plane at x and is a topological vector space.
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Fig. 4.9 From a base space X we can lift to the tangent bundle TX, and to any other

fiber bundle Y . The resulting bundle can be also lifted to its tangent bundle, and there we
can define the vertical space V Y and the connection U

Choosing a unique representative F = R2, linear correspondences Fx → F
can be constructed, but not uniquely. In this case the structure group G is
the full linear group operating on F . A cross-section here is just a smooth
vector field over the surface, see also Fig. 4.9.

The fiber bundle is intimately related to the concept of geometric connec-
tion (see also Sect. 7.2). Let E be a bundle overX,Π : Y → X the projection,
and Fx = Π−1(x), the fiber over x ∈ X. We also define the tangent spaces
of the base and the bundle, TX = ∪x∈XTxX,TY = ∪y∈Y TyY , respectively.
We can define a vertical subbundle over X, V Y ⊂ TY , a bundle with the
fiber VyY = {v ∈ TyY | dΠ(v) = 0}. We define a connection U : TY → V Y
a vector bundle map with the property

U|TyY = Id V Y.
In other words, a connection (or generic connection as mentioned by [30])
is a function that associates to any point y of the fiber bundle E a certain
vertical direction in the tangent bundle TY over the fiber bundle E which
depends smoothly on y, and having zero projection on the base space. We call
a kernel, kerr(Uy) = hory the horizontal space and we have TyY = hory⊕VyY .
In components, for v = (aμ, bi) ∈ TY we have U(v) = (0, bi + uj

μa
μ), with

μ = 1, . . . ,dimX and i = 1, . . . ,dimF .
At the end of this section, we enounce the existence theorem [29] on fiber

bundles.

Theorem 7. If G is a topological group of transformations acting on a topo-
logical space F , and (Uα, gα,β) are a system of coordinate transformations
in a base space X, then there is a bundle (E,X,Π,F,G,U ), and the pro-
jection Π is defined by the relation of equivalence induced locally in Uα × F
by the gα,β.
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References. Probably a very good (and long)lecture to understand the
structure of fiber bundles is the comprehensive multivolume differential
geometry treatise of Kobayashi and Nomizu [28]. A special reading devoted
only to the topology of fiber bundles is of course [29]. For a quick review of
the definitions and many examples from physics we recommend [15] or the
more recent short introduction in [36].

4.9 Poincaré Lemma

This section needs the elements of homology introduced in Sect. 2.2. It is also
related to Sect. 3.1.4 where we emphasize the importance of this lemma for
compact boundaries representation formulas, and especially for the general-
ized Stokes theorem (3.7).

Theorem 8. If the manifold M is contractible to a point, then all closed
forms on M are exact.

A space is contractible is there is a smooth deformation homeomorphism that
contracts m to one of its points. A closed form ω is a differential form with
the property that dω = 0. An exact p-form φ ∈ Ωp has the property that
there exists a (p − 1)-form ψ ∈ Ωp−1 such that dψ = φ. This lemma is a
generalization of the fact that on simple connected domains a total exact dif-
ferential is integrable, and its path integral does not depend on the path. For
example the Poincaré Lemma is the general proof of the following relations
from vector analysis

∇×∇Φ = 0, ∇ · (∇× V ) = 0,

∇× V = 0→,∃Φ, V = ∇Φ, ∇ · V = 0→ ∃W , V = ∇×W .

For example, in the classical real analysis on R3 we can write the De Rham
sequences as follows

Φ
0− form

d=∇−−−−→ ∇Φ
1− form

d=∇×−−−−→ ∇× (∇Φ)=0
d2 =0

v
1− form

dual vector

d=∇·−−−−→ ∇×w
2− form

d=∇×−−−−→ ∇ · (∇×w) = 0
d2 =0

V
2− form

d=∇·−−−−→ ∇ · V
3− form.

(4.27)
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4.10 Tensor Analysis, Covariant Derivative,
and Connections

Let En be an n-dimensional Euclidean space (by definition an inner product
space that has forgotten which point is its origin) and two orthonor-
mal bases {ei}i=1,...,n and {f j}j=1,...,n, fulfilling the linear transformation
f j = ajkek, ajka

t
ki = δji. To any point p ∈ En we associate the position

vector and components r = xiei = x̄jf j with the corresponding transfor-
mation x̄jajkx

k. In an Euclidean space, for linear transformations, there is
no difference between contravariant and covariant components, so there is no
specific rule for placing the indices in lower or higher position. Any n-uple
of numbers Ai that transforms under the same law Āi = aijA

j represents
an affine vector. The definition can be extended by direct linear product to
affine tensors of any rank in En.

Fluids and curved surfaces in motion require for spaces differential mani-
folds instead of just Euclidean spaces. When generalizing the above definitions
to differentiable manifolds, and to nonlinear coordinate transformations

x̄i = x̄i(x1, x2, . . . , xn), (4.28)

more refinements should be introduced to assure that the differentials and
derivatives of vectors and tensors are still vectors and tensors. However, for
intuitive description we use some times the background of an Euclidean space.

We defined in Sect. 4.1 what is a transformation of coordinates in an
n-dimensional differentiable manifold M . In the followings all the transfor-
mations will be considered differentiable functions. We define a tensor field of
type (r, s) (i.e., r-times contravariant and s-times covariant) at a point p ∈M
of coordinates x, a set of nr+s differentiable functions T (r,s) = T (x)i1,i2,...ir

j1,j2,...js

that transform under a change of coordinates (4.28) by the law

T̄ (x̄)i1,...ir

j1,...js
=
∂x̄i1

∂xk1
· · · ∂x̄

ir

∂xkr

∂xm1

∂x̄j1
· · · ∂x

mr

∂x̄js
T (x)k1,...kr

m1,...ms
. (4.29)

For tensors of order equal or lower than 2 we can use for the transformation
a(x)→ A(x̄) the matrix notation

A(1,0) = A = Ja, A(0,1) = J−1a,

A(2,0) = JaJ t, A(0,2) = (J−1)taJ−1, A(1,1) = JaJ−1, (4.30)

where

J = J i
.j =

∂x̄i

∂xj
, J−1 =

∂xi

∂x̄j

is the transformation matrix, and superscript t means transposed. Note that
J in components is nothing but the differential dx̄(x) of the coordinate trans-
formation (4.28).
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Definition 27. An n-dimensional differential manifold endowed with a (0,2)
type nonsingular tensor field is called Riemannian manifold.

The problem is that the differential of a tensor (vector) field is not anymore
a tensor field. One needs to introduce a specific type of differentiation which
preserves the tensor character, and this happens through an affine connection.
The differential manifold M endowed with such a structure is now an affinely
connected space and the new differential is called the covariant differential of
a vector field A

�Aj = dAj + Γ j
ikA

idxk, (4.31)

where Γ j
ik are the components of the affine connection (or simply connection

coefficients), and they transform at a change of coordinates such that the
quantities

Γ j
ik − Γ

j
ki

form the component of a tensor of type (1, 2) called torsion tensor. Obviously,
a symmetric connection has zero torsion. Equivalently, a covariant vector has
the covariant differential

�Aj = dAj − Γ i
kjAidx

k. (4.32)

The connection allows us to introduce the covariant derivative with the action
on vector fields

∇kA
i =

∂Ai

∂xk
+ Γ i

jkA
j (4.33)

∇kAi =
∂Ai

∂xk
− Γ j

ikAj , (4.34)

such that transforms a tensor of type (r, s) into a tensor of type (r, s+ 1).
Another way to build a connection happens if the manifold (M,Γ i

jk) is
endowed with a (0, 2) type of symmetric nonsingular tensor field aij(x) of
class at least C1(M). From this tensor field we build the Christoffel’s symbols
of the first kind

Γ
(a)
ijk =

1
2

(
∂akj

∂xi
+
∂aji

∂xk
− ∂aik

∂xj

)
, (4.35)

and the Christoffel’s symbols of the second kind

Γ
(a)i
jk = aliΓ

(a)
jlk . (4.36)

The Christoffel symbols of the second kind form the components of an affine
connection in M , with respect to the (0, 2) type of symmetric tensor field a.
As a direct consequence we have

∇kaij = ∇ka
ij = 0, (4.37)

which is nothing but Ricci’s Lemma for Riemannian manifolds. The Christoffel
symbols and their derivatives (second-order covariant derivatives) generate
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two new tensors, namely the curvature tensor Kj
lhk (sometimes Kjlhk =

ajsK
s
lhk is called curvature tensor) and the torsion tensor Sl

hk, from the
relations

∇k∇hA
j −∇h∇kA

j = Kj
lhkA

l − Sl
hk∇lA

j (4.38)

and

Kj
lhk ≡

∂Γ j
lh

∂xk
− ∂Γ

j
lk

∂xh
+ Γ j

mkΓ
m
lh − Γ j

mhΓ
m
lk ,

Sl
hk ≡ Γ l

hk − Γ l
kh.

The sum of the two terms in (4.38), considered as a linear operator acting on
A, is the so-called Riemann–Christoffel tensor. When an affine connection is
generated from Christoffel symbols the torsion is zero, yet the second-order
covariant derivatives still does not commute. These commuting relations are
called Ricci identities [37,38]. In Riemannian manifolds (Definition 27), where
the affine connection and the Christoffel symbols are the same quantities, the
(1,3) type curvature tensor Kj

lhk is denoted Rj
lhk.

The most important application of the covariant derivative is the general-
ization of the “parallel” transport of vectors along curves. If A is vector field,
and C a curve of equation xi(t), both of class C1(M), the field is parallel
transported along C if ∇Aj if

dAj

dt
+ Γ j

hkA
j dx

k

dt
= 0. (4.39)

By construction, the parallel transport of a given vector field is not unique
unless Γ j

hkA
hẋkdt is an exact differential. Consequently one can say that there

is no absolute parallelism in general. For a complete study of these differential
tools we recommend any book on differential geometry which presents the
calculations also in coordinate form. For example a good selection of mono-
graphs that complete one another could be given by [9, 13,15,32,37–39].

4.11 The Mixed Covariant Derivative

This section is in direct relation with the Sects. 7.3 and 7.5. In this section
we treat the general n-dimensional case, without going into much details. In
Sect. 7.3 we investigate specifically two-dimensional surfaces embedded in R3

and we go deeper in consequences for the surface differential operators, which
themselves are analyzed in detail in Sect. 7.5.

The covariant derivative introduced in (4.33) and (4.34) does not work in
the case of mappings between manifold of different dimensions, like in the
case of a two-dimensional surface embedded in a three-dimensional space.
For example, M ⊂ N is a submanifold of dimension m of the manifold N
of dimension n > m. The submanifold M is an embedding, defined by the
equations xi = xi(uα), where uα are the local coordinates in N , and xi are
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the local coordinates inM . If we have m = n−1, thenM is a hypersurface in
N . We introduce the Jacobian matrix associated to the mapping M → N by

Bi
α =

∂xi

∂uα
, i = 1, . . . , n, α = 1, . . . ,m. (4.40)

In both these manifolds we can introduce transformations of coordinates
independently, namely x̃i = x̃i(xj) and ūα = ūα(uβ). The B matrix is a
contravariant tensor relative to the change of coordinates in N , and it is a
covariant tensor relative to the change of coordinates in M . In addition, we
can always define a tensor field Y i

α(u) on M which is also of (1, 0) type of
tensor with respect to N , and (0, 1) type with respect toM . However, neither
the derivatives nor the covariant derivatives of Y i

α are tensors. To construct
a tensor quantity by differentiation from such a mixed object, we need to
introduce the mixed covariant derivative. That is

∇̃βY
j
α ≡

∂Y j
α

∂uβ
− Γ λ

α βY
j
λ + Γ j

h kY
h
αB

k
β , (4.41)

where Γ are the Christoffel symbols of the corresponding manifolds (4.36).
The mixed derivative (4.41) is tensor field of type (1, 0) with respect to the
transformation of coordinates inN , and tensor field of type (0, 2) with respect
to the transformation of coordinates in M .

We can apply the mixed covariant derivative to the B matrix, and the
resulting tensor is of some importance in the geometry of the embedded
surface. We define the mixed tensor of (1, 0)−xi type and (0, 2)−uα type as

H j
α β = ∇̃βB

j
α ≡ ∇βB

j
α − Γ λ

α βB
j
λ + Γ j

h kB
h
αB

k
β , (4.42)

where the two Γ are Christoffel symbols, each defined in another manifold
(being Riemannian, in the two manifolds the Christoffel symbols coincide
with the affine connection). With the help of these tensor one can enunciate
the famous Equation of Gauss

Kαβγε = KljhkB
l
αB

j
βB

h
γB

k
ε + ajh(H j

α γH
h

β ε −H j
α εH

h
β γ). (4.43)

This theorem express the curvature tensor of the subspace M in terms of
the curvature tensor of the embedding space N , and the mixed covariant
derivatives of the Jacobian matrix. For hypersurfaces m = n − 1, there is
a great simplification of (4.43), because one can define a unique normal at
each point of M . For such a situation one can also define a 2-form called the
generalized second fundamental form onM . For n = 3 case, see Chap. 7. This
form Παβdu

αduβ is defined from

∇̃βB
j
α = ±N jΠαβ , (4.44)

where N j is the normal to M in xj coordinates. Consequently, for the
Riemannian hypersurfaces case Equation of Gauss becomes
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Kαβγε = KljhkB
l
αB

j
βB

h
γB

k
ε +ΠαγΠβε −ΠαεΠβγ . (4.45)

The second fundamental form is responsible for the principal directions in
M , i.e., its eigenvectors. The coefficients of the characteristic polynomial
associated to this eigenvector–eigenvalue problem are related to the curva-
tures of M . For example, the coefficient of the free term in the characteristic
polynomial det(Πβ

α − λδα
β ) = 0, denoted H(1) is the mean curvature and the

coefficient of the highest power, denoted H(n−1) is the Gaussian curvature.
We also mention the relations

H(n−1) = (−1)n−1 detΠα
β = (−1)n−1 detΠαβ

det aαβ
. (4.46)

For the dynamics of fluid surfaces case, n = 3, we have

H(2) ≡ K =
detΠαβ

det aαβ
, (4.47)

and since the only nonzero component of Kαβδε is K1212, we have

K =
K1212

det a
. (4.48)

4.12 Curvilinear Orthogonal Coordinates

The expression of the differential operators in arbitrary curvilinear coordi-
nates is the best illustration of how the covariant derivative works. A curvi-
linear coordinate system is defined by three regular (differentiable and locally
invertible) transformation functions of the cartesian coordinates of a three-
dimensional Euclidean space xi(qα) : D ⊂ R3 → C ⊂ R3, i, α = 1, 2, 3. We
define as Lamme coefficients the functions

H(q)α =
∣∣∣∣ ∂r∂qα

∣∣∣∣ =
√√√√ 3∑

i=1

(
∂xi

∂qα

)2

, (4.49)

and the metrics coefficients

gα,β =
∂r

∂qα
· ∂r
∂qβ

, (4.50)

and we note that g = det(gα,β) =
∏3

α=1H
2
α and Hα =

√
gαα without summa-

tion. The unit tangent vectors to each of the three coordinate curves r(qα) are

eα =
∂r

∂qα

∣∣∣∣ ∂r∂qα

∣∣∣∣−1

=
1
Hα

∂r

∂qα
w.s. (4.51)
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The curvilinear coordinates are orthogonal if at each point of space gαβ = 0
for α �= β. If the curvilinear coordinates are orthogonal we have at each point
of space two orthonormal frames: the cartesian frame {ei} and the curvilinear
frame {eα}, so any contravariant vector defined in the space A(r) ∈ TR3

has two sets of components

A = Aiei = Aαeα,

with the transformation law

Ai =
∂xi

∂qα
Aα.

The same definition occurs for covariant vectors A = (Ai). With the defini-
tion of the unit vectors, the Lamme coefficients can be understood as cosines
of the angles between the cartesian and new basis vectors [38].

We want to make a comment. In many works, when one changes the coordi-
nates, especially in abstract spaces, it may happen that the new coordinates
are not normalized, i.e., the new basis is not normalized like in (4.51). In
this situation, in addition to the geometrical separation in contravariant and
covariant vectors, Aα = gαβA

β , we need to make distinction between “nor-
malized” (or physical) components (components defined in a orthonormal
frame) and “not normalized” components (defined in a frame which is just
orthogonal). We have the relations Aα

norm = HαA
α and Anorm,α = H−1

α Aα

without summation. It is interesting to note that the normalized components
lose their contravariant/covariant identity. Indeed, Aα

norm = Aα,norm. There
are reasons for using one or the other definition: normalized components are
more physical from the point of view of units, but they do not form any-
more the components of a contravariant/covariant vector. For example the
gradient in curvilinear coordinates

(∇Φ)α =
∂Φ

∂qα
,

is a covariant vector, while its “normalized” components

(∇Φ)α,norm =
1
Hα

∂Φ

∂qα
,

do not form a covariant vector anymore. There is a certain deal of confusion
from these conventions. For example, the divergence of a contravariant vector
in nonnormalized components reads

∇ ·A =
1√
g

∂

∂qα
(
√
gAα),

and it is a scalar field. The same divergence can be expressed in terms of the
normalized coordinates (like it is defined for example in [38,39])
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(∇ ·A)norm =
1√
g

∂

∂qα

(√
g

Hα
Aα

norm

)
,

and it is not any more a scalar, and the same happens with the curl, etc. The
explanation is that by normalization we apply the action of a dilation local
group of transformations, which (being local) interferes with the contravari-
ant/covariant character.

4.12.1 Gradient

The gradient of a scalar field Φ(r(q)) is defined as the covariant derivative,
and it is a covariant vector

∇αΦ =
∂Φ

∂qα
. (4.52)

Its contravariant components are

∇αΦ = gαβ ∂Φ

∂qβ
=

1
H2

α

∂Φ

∂qα
w.s., (4.53)

where the w.s. means without summation. The normalized components of
both covariant and contravariant gradient coincide (though in this form they
are not anymore the components of a vector), and these are the components
usually provided in mathematical physics books [38,39]

(∇αΦ)norm = (∇αΦ)norm =
1
Hα

∂Φ

∂qα
, (4.54)

or in explicit component notation

(∇Φ)norm =
3∑

q=1

1
Hq

∂Φ

∂qq
eq, (4.55)

where ej are the local basis unit vectors.

4.12.2 Divergence

For any contravariant vector field A(r(q)) the divergence is obtained by
applying the covariant derivative and contracting over the indices

∇ ·A = ∇αA
α =

1√
g

∂
√
gAα

∂qα
. (4.56)

In terms of the local curvilinear frame divergence reads
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∇ ·A =
1

H1H2H3

3∑
α=1

∂(V αHβHγ)
∂qα

, {α, β, γ} ∈ P3, (4.57)

where P3 is the set of permutation of 3. Equally, for a covariant vector we
have

∇ ·A = gαβ∇βA
α =

1√
g

∂
√
gH2

αA
α

∂qα
. (4.58)

Both normalized and unnormalized components provide the same expression.

4.12.3 Curl

The curl is an absolute contravariant vector and it is defined as the skew-
symmetric linear combination of the components of the covariant derivative

(∇×A)α = εαβγ∇βA
γ = εαβγgγδ∇βA

δ, (4.59)

where εαβγ are the Levi–Civita symbols. In terms of the local curvilinear
frame curl reads

∇×A =
3∑

α=1

1
HβHγ

(
∂(AγHγ)
∂qβ

− ∂(A
βHβ)
∂qγ

)
eα, {β, α, γ} ∈ P3. (4.60)

4.12.4 Laplacian

The Laplacian (also called Laplace–Beltrami operator) in curvilinear co-
ordinates is the contraction of the double covariant differentiated scalar

�Φ = gαβ∇α∇β =
1√
g

∂

∂qβ
(
√
ggαβ ∂Φ

∂qα
). (4.61)

For example, in spherical coordinates we have [39]

A = Arer +Aθeθ +Aφeφ; er = (sin θ cosφ, sin θ sinφ, cos θ);
eθ = (cos θ cosφ, cos θ sinφ,− sin θ); eφ = (− sinφ, cosφ, 0). (4.62)

The operators are

∇Φ = ∂Φ
∂r er + 1

r
∂Φ
∂θ eθ + 1

r sin θ
∂Φ
∂φ eφ

∇ ·A = 1
r2

∇ ·A = 1
r2

∂(r2Ar)
∂r + 1

r sin θ
∂(sin θAθ)

∂θ + 1
r sin θ

∂Aφ

∂φ

∇×A = 1
r sin θ

(
∂(sin θAφ)

∂θ − ∂(Aθ)
∂φ

)
er +

(
1

r sin θ
∂(Ar)

∂φ − 1
r

∂(rAφ)
∂r

)
eθ

+
(

1
r

∂(rAθ)
∂r − 1

r
∂(Ar)

∂θ

)
eφ

�Φ = 1
r2

∂
∂r

(
r2 ∂Φ

∂r

)
+ 1

r2 sin θ
∂
∂θ

(
sin θ ∂Φ

∂θ

)
+ 1

r2 sin2 θ
∂2Φ
∂φ2 .

(4.63)
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4.12.5 Special Two-Dimensional Nonlinear Orthogonal
Coordinates

For some practical applications one needs to build some special orthogonal
coordinates which provide the differential operators, or at least the solutions,
to look simpler. This chapter is a mathematical one, but we make an ex-
ception and give here a physical, even experimental motivation: in a surface
wave tank, or water soliton tank the experimentalist faces the problem to
generate a wave of a given initial profile, some times it may be required to
have even an initial soliton profile. In principle this could be done by using
conducting liquids (salted water, mercury) and try to shape the initial sur-
face by applying an electric field upon the liquid, then turn it off and release
the wave. To provide such help, we introduce the so-called plane soliton co-
ordinates (Fig. 4.10). They are defined implicitly by their coordinate curves
in the Euclidean plane (x, y). For topological soliton shapes (tanh), we have
(x, y)→ (α, β)

yα(x, α) = tanh(x) + α,

yβ(x, β) = −x
2
− sinh(2x)

4
,

and for nontopological soliton shapes (sech), we have (x, y)→ (ξ, η)

yξ(x, ξ) = ξ

(
1 + sech2 x

ξ

)
,

yη(x, η) =
η

2

(
1
2

cosh2 2x
η

+ ln
[

sinh
(∣∣∣∣xη
∣∣∣∣)].
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Fig. 4.10 Soliton coordinates in 2-dimensions. The coordinate curves match soliton
shapes. Left : topological solitons represented by the tanh function. Right : Non-topological
solitons represented by the square of the function sech
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4.13 Problems

1. Find what is the difference between the contravariant and covariant com-
ponents of a vector at an infinitesimal transformation of coordinates. Use
for example a model of an infinitesimal transformation in the form

x = q1, y = q2, z = q3 + εh(q1, q2),

with 0 < ε  1 and h is a bounded differentiable function. Prove that
A1 → A1 = A1+εhxA

3+O2(ε), etc. Find the gαβ matrix, the determinant
g, and prove that the Christoffel symbols are in O2(ε). Prove that with
respect to the covariant derivative only the z component changes, and only
the horizontal derivatives are affected. In other words only the action of
the parallel gradient on normal components is affected.

2. We have a differential vector field v defined on an n-dimensional differential
manifold. Find the action of the Lie derivative on a contravariant tensor of
rank (k, 0), k > 1 with respect to v. Generalize to T (k,p), k + p ≥ n. Hint:
Begin from (4.20) and (4.21), and use T (2,0) = T ij(∂/∂xi)(∂/∂xj).



Chapter 5

Geometry of Curves

In this chapter we introduce elements of the differential geoemtry of curves
in three dimensions. We present the Serret–Frenet formulas and their con-
sequences, and some basic theorems. We also devote a section on theorems
related to closed curves.

5.1 Elements of Differential Geometry of Curves

Definition 28. A parametrized differentiable (or Ck) curve is a differentiable
(or Ck) map α of an open real interval I = (a, b) ⊂ R into R3. The set
α(I) ⊂ R3 is the trace of the curve. The point P = α(a), a ∈ I is a regular
point if α′(a) �= 0. If all the points of a curve are regular, α is a regular curve.
A curve is simple if the map α : I → α(I) is an injection.

For example, a one turn helix is simple, but more than one turn is not simple
anymore.

We consider a continuous family of smooth real curves r(α, β) in the three-
dimensional real space. By smooth we assume that the vector function r
describing the points of the curve, in a given parametrization, is of class 3
[27,33,40]. Each curve of the family is parametrized by α ∈ [0, αmax] ⊂ R, and
different curves in the family are assigned different values of the parameter
β ∈ R. Later on, this β parameter will be associated with time, and the
mappings of curves for different values of β will be associated with their
deformation and motion in time. Consequently, the position vectors of points
on the curves are described by differentiable vector functions r(α, β) where α
is the parameter along the curve. Among different possible parameterizations
of a curve, there is always one unique representative parametrization with
geometrical significance. In Euclidean geometry, this is done by referring a
curve to its arc-length as a parameter. We define the metric on the curve

69
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g(α, β) =
3∑

i=1

∂xi

∂α

∂xi

∂α
= rα · rα, (5.1)

where · represents the scalar, or dot product, and the subscript represents
partial derivative. The arc-length s of a curve has the form

s(α, β) =
∫ α

0

√
g(α′, β)dα′, (5.2)

and now we can use either (α, β) or (s, β) as coordinates of a point on the
curve. In every point of the curve, we can define an orthogonal frame of
three normalized vectors: t,n, b called the unit tangent, the principal normal
and the binormal. This local orthonormal frame is called the Serret–Frenet
trihedron (or frame). These vectors are defined by the corresponding Serret–
Frenet formulas

t =
∂r

∂s
= g−

1
2
∂r

∂s
∂t

∂s
= κn

∂n

∂s
= −κt + τb

∂b

∂s
= −τn. (5.3)

In all these expressions, we mean by differentiation with respect to s, the
partial differentiation, i.e., ∂( )/∂s ≡ ∂( )/∂s|β . We note one impor-
tant feature of the parametrization by the arc-length, also called the natural
parametrization along the curve. The derivative of the position vector with
respect to s has automatically norm 1, ||t|| = ||n|| = ||b|| = 1. The two
functions κ(s, β) = (∂t/∂s) · ∂t/∂s and τ(s, β) = (∂t/∂s) · ∂t/∂s are the cur-
vature and the torsion, respectively. The Serret–Frenet local frame together
with the curvature and torsion of a curve form the intrinsic geometry of the
curve. The three vectors fulfill the relations

n = b× t, b = t× n, t = n× b. (5.4)

The relations fulfilled by the three vectors can also be written in matrix form⎛⎝ ts

ns

bs

⎞⎠ =

⎛⎝ 0 κ 0
−κ 0 τ
0 −τ 0

⎞⎠⎛⎝ t
n
b

⎞⎠ (5.5)

Each of the three mutually orthogonal coordinate planes determined by the
Serret–Frenet trihedron has a name: the plane generated by b and n is the
normal plane, the plane generated by b and t is the rectifying plane, and
the plane generated by t and n is the osculating plane. If we reduce the
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family β of curves to only one curve, and we know its curvature and torsion
as function of s, we understand (5.3) as a linear ODE system. This expresses
the fact that the three unit vectors form a local orthonormal basis in R3. If
we write (5.3) in components with respect to a fixed orthogonal coordinate
system {ei}i=1,...3, this ODE system of nine equations reads

tis = κni

ni
s = −κti + τbi

bis = −τni, i = 1, . . . 3 (5.6)

The Serret–Frenet system has three first integrals in the form

(ti)2 + (ni)2 + (bi)2 = const., i = 1, . . . 3. (5.7)

To prove (5.7) we multiply, for a fixed i, each of the three equations in (5.6)
with the same component of the vector in the LHS, nondifferentiated, like
titis = κtini, etc. By adding these relations we obtain titis + nini

s + bibis = 0
(without summation over i), and if we integrate once the resulting relation
is (5.7). The three constants of integration are 1 if we choose a particular
coordinate system having its axes parallel to the Serret–Frenet unit vectors
for some particular s.

A curve is two-dimensional (plane) if and only if its torsion is zero. In such
a situation, the Serret–Frenet relations reduce to

t =
∂r

∂s
,

∂t

∂s
= κn.

∂n

∂s
= −κt, τ = 0. (5.8)

A curve that is plane is also called a twisted curve. Let us give an example
of calculation. We define a general helix as a curve with the property that
its tangent makes a constant angle with a fixed line in space. It is easy to
prove that a twisted curve of class r ≤ 3 with nonvanishing curvature is a
general helix if and only if the ratio between the curvature and the torsion is
constant at all its points. In particular, if both the curvature and the torsion
are constant we call it a cylindrical helix. The cylindrical helix depends on
two parameters: the radius R of the base circle and the “pitch” b. The circular
helix is defined by the equation

r = (R cos(φ), R sinφ, bφ), (5.9)

has the metrics g = R2 + b2 and the arc-length ds =
√
R2 + b2dφ. The

Serret–Frenet frame is

t =
1√

R2 + b2
(−R sinφ,R cosφ, b),

n = (− cosφ,− sinφ, 0)

b =
1√

R2 + b2
(b sinφ,−b cosφ,R). (5.10)
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The curvature and torsion are κ = R
R2+b2 and τ = b

R2+b2 , and we note that
the circular helix is the only three-dimensional curve with constant curvature
and constant torsion. For b = 0 it reduces to a circle, and for R = 0 it reduces
to a line. Again, for an arbitrary curve with an arbitrary parametrization α,
we can express the curvature and torsion function of the first two and first
three, respectively, derivatives

κ(α) =
|rα × rαα|
|r|3

τ(α) =
(rα × rαα) · rααα

|rα × rαα|2
. (5.11)

In the case of plane curves, (3.6) have interesting integral properties. We
have

r(L, β)− r(0, β) =
∫ L

0

t(s′, β)ds′ (5.12)

and this expression is zero for a closed curve. Another important quantity for
a closed plane curve is its rotation index θ(s, β), defined as κ = ∂θ/∂s. We
have

θ(L, β)− θ(0, β) =
∫ L

0

κ(s′, β)ds′ = 2πN, (5.13)

where N is the Euler–Poincaré characteristic of the domain having the curve
as its boundary. For a convex plane domain N = 1 (Santalo theorem). It is
also easy to check that the area of a plane closed curve is

A =
1
2

∫ L

0

r × tds =
∮
g

1
2 r × tdα. (5.14)

Indeed, for a differentiable curve, the area of an infinitesimal sector of curve
subtended by r(s+ ds, β)−r(s, β) = t(s, β)ds is r× tds/2. The origin of the
coordinates does not matter since a translation of a fixed vector R does not
contribute to the closed integral.

In the two-dimensional case, the curvature given as a function of the arc-
length κ = κ(s), and the initial condition r(0) defines a curve completely. One
can integrate the parametric equations of the curve and obtain the solutions
in terms of the Fresnel integrals

x(s) =
∫ s

0

cos
(∫ s′

0

κ(s′′)ds′′
)
ds′ + x0,

y(s) =
∫ s

0

sin
(∫ s′

0

κ(s′′)ds′′
)
ds′ + y0. (5.15)

In the following we comment more on curves of class r ≥ 3 with nonzero
vanishing curvature. Actually, the set of points that describes the curve is
an equivalence class in the set of allowable parameterizations, i.e., the set of



5.1 Elements of Differential Geometry of Curves 73

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

Fig. 5.1 Spherical images (upper row) of some curves (lower row): circular helix (x, sin(x)),
plane curve (x2, sin(x2)), same sine, and function, which is the same set of points, but a
different parametrization, modulated sech function (breathing NLS soliton), and torus

C3(I) functions from the interval I into the real space R3. Every intrinsic,
or geometric property, of a curve should not depend on its parameteriza-
tions. However, there is a specific representation of a given curve that has
different structures for different parameterizations, and it is called the spher-
ical images of the curve. We can assume that the three unit vectors of the
moving Serret–Frenet trihedron can undergo a parallel displacement toward
the origin O of the Cartesian coordinate system in R3. While bonded to the
origin, when the chosen parameter along the curve describes it, the three
ending points of these unit vectors lie on the surface of the S2 sphere, and
describe themselves three curves named indicatrices, or spherical images of
the curve. That is the tangent, principal normal, and binormal indicatrix .
In Fig. 5.1, we have chosen some traditional curves (upper row) and in the
lower row we show the corresponding indicatrices. For a circular helix the
spherical images are three parallel circles. We have always closed curves for
the spherical images, when the original curve is periodic. For plane curves,
one of the indicatrix is a vertical axis, and the other two indicatrices form
two horizontal plane curves. For example in the case of the graphics of a
sine function, i.e., the curve given by the parameterizations (x, sin(x)), the
spherical images look like in the second column of Fig. 5.1 However, the same
curve, parametrized differently, e.g., (f(x), sin(f(x))) for f(x) an arbitrary
real homeomorphism, the spherical images look totaly different. The linear
arc elements of the indicatrices fulfill the Lancret formula

dsn =
√
ds2t + ds2b , (5.16)

where ds2t = ṫ · ṫds2, etc.
The most important result for the differential geometry of curves is

the possibility of characterizing the curve in a manner independent of the
coordinates, except for the position of the curve in space, i.e., to find repre-
sentations of the curve invariant to all possible congruent transformations.
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So we are looking to construct representations of the curve with quantities
and parameters independent of the choice of coordinates, but depending only
on the geometric shape of the curve. Any set of two independent functional
relations between s, κ, and τ are called the natural or intrinsic equations
of the curve. Actually, if the curvature and torsion are continuous functions
of s on a given interval, they generate an arc of curve, uniquely determined
modulo its position in space. Consequently, any invariant with respect to con-
gruent transformation of the space is expressible in terms of the curvature
and torsion.

Theorem 9. Let κ(s) and τ(s) be C0[0, a] functions of the real variable s.
Then there is one and only one arc r(s) of a curve, determined up to a direct
congruent transformation.

The proof of the theorem is based on the theorem of existence and uniqueness
of a linear system of differential equations. There is a simple and intuitive
presentation of Theorem 9, beyond its traditional analysis in terms of the
existence and uniqueness of the solution of linear ODE system of equations
with variable coefficients and given initial data. This intuition is based on the
so-called canonical representation of a curve, which is just the description of
the shape of the curve in the neighborhood of any of its points. Let us assume
we have curves of class r ≥ 3 and we expand the equation of the points of
this curve in Taylor series, up to the third order

r(s) = r(0) +
3∑

k=1

sk

k!
dkr

dsk
+O(4). (5.17)

From the Serret–Frenet equations we have

rs = t, rss = ts = κn, rsss = κsn− κ2t + κτb. (5.18)

Since we can always choose the Cartesian frame such that its origin coin-
cides with the beginning point s = 0 of the curve, and such that t(0) =
(1, 0, 0),n(0) = (0, 1, 0), b(0) = (0, 0, 1), we can write (5.18) in the form

r(s) =
(
s− κ

2
0s

3

6
,
κ2

0s
2

2
+
κ̇0s

3

6
,
κ0τ0s

3

6

)
+O(4), (5.19)

where κ0 = κ(0), etc. Equation (5.19) proves that on an infinitesimal interval
any curve of class r ≥ 3 can be sufficiently well approximated with polyno-
mials in s with coefficient uniquely determined by the curvature and torsion
around that point. It is interesting to mention that in a neighborhood of any
of its points, a r ≥ 3 class curve can pe represented with approximation as a
parabola in the osculating plane, a cubical function in the rectifying plane,
and a semicubical parabola in the normal plane.

In the following we find useful to introduce elements of the theory of
contacts between curves and curves and surfaces.
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Definition 29. A curve rΓ (s) of class m + 1 has a contact of order m
with another curve rΓ∗(s∗) of the same class, at a point P0, if r

(k)
Γ (sP0) =

r
(k)
Γ∗ (s∗P0

) for k = 1, 2 . . .m and r
(m+1)
Γ (sP0) �= r

(m+1)
Γ∗ (s∗P0

).

This definition can be further extended for the contact between a curve and
a surface:

Definition 30. A curve Γ of class m + 1 has a contact of order m with a
surface Σ at a point P0 if there exists at least one curve Γ ∗ on Σ that has
contact of order m with Γ at P0, and there does not exist a curve on Σ that
has higher-order contact than m with Γ at P0.

It is interesting to mention that a curve has at least contact of second order
with its corresponding osculating plane. The proof is immediate since the
osculating plane at s0 is spanned by the vectors ṙ(s0) and r̈(s0), so up to
the second-order derivative, the Taylor approximation of the curve lies in this
plane. These definitions provide a very interesting geometrical characteriza-
tion of the contact of a curve with a surface:

Theorem 10. Let be Γ a curve of class r ≥ m+ 1 that has contact of order
m with a surface Σ of class r at point P0. If m is even then Γ punctures Σ
at P0, if m is odd, there is always a neighborhood of P0 such that Γ lies on
one side of Σ in this neighborhood.

In order to prove this theorem we notice that the surface is of class greater
or equal than m+1, we can choose a neighborhood V(P0) in R3 such that on
V(P0) the surface can be represented by a function F (r) = 0, and such that
F is positive on one side of Σ and negative on the other side of Σ. Since the
contact is of order m, the first nonzero Taylor term of F (r(s)) = F (rΓ (s)) on
V(P0) is proportional to sm+1 and to the m+ 1 derivative of F with respect
to s. Because this m+1 derivative is continuous, and nonzero in P0, the sign
of F (s) is uniquely determined by sm+1, which proves the theorem.

Definition 31. A curve α is called a helix if the tangent lines of α make a
constant angle with a fixed direction.

Proposition 1. A curve α is a helix if and only if κ/τ =const. In par-
ticular, if both κ and τ are constant the curve is a cylindric helix α(t) =
(R cos t, R sin t, bt). Also, the curve α is a helix if and only if the normal lines
(i.e., the lines containing n(s) and passing through α(s)) are parallel to a
fixed plane. Also, α is a helix if and only if the binormal lines (i.e., the lines
containing b(s) and passing through alpha(s)) make a constant angle with a
fixed direction. Finally, the general form of a helix is

α(s) =
(√

b2 + c2

c

∫
sin θ(s)ds,

√
b2 + c2

c

∫
cos θ(s)ds,

b

c
s

)
,

and κ/τ = b/
√
b2 + c2.
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5.2 Closed Curves

A regular parametrized curve r(α), α ∈ [0, 1] is closed if all the derivatives
of the equation agree at 0 and 1. Practically, especially for numerical calcu-
lations, we can relax this constraint and use instead the following criteria

r(0) = r(1)

κ(0) = κ(1)

θ(1)− θ(0) = 2πN, N = integer. (5.20)

A closed plane curve is simple if it has no other intersections than at 0
and 1.

In the following, some global theorems for closed curves are mentioned.
The proofs of the following theorems are very well developed in [27, 33, 40].
A closed curve is a regular parametrized curve α : [a, b] ⊂ R → R3 with
the property that α has a smooth intersection at a and b, namely α(k)(a) =
α(k)(b),∀k = 0, 1, . . . . The curve is simple if it has no other intersections (see
definition 28). Obviously, a curve without any intersection is not necessarily
simple (like for example a helix with more than one turn).

The bottom line of the theory of closed curves is the Jordan curve the-
orem, which basically says that a curve divides the plane in two disjoint
regions.

Theorem 11. If α : [0, l]→ R2 is a plane, regular, closed, and simple curve,
then the region obtained by eliminating the curve α from the plane (i.e.,
R2 − α([0, l])) has exactly two connected components, and α([0, l]) is their
common boundary.

The crucial point of the proof is to show that the difference between wind-
ing numbers of α relative to two points placed on different sides of α is
not zero. We choose the two points close enough to α such that we can
approximate the curve with a polygonal line. Then, by using homotopy
(smooth deformations), and by knowing that the winding number is constant
in each connected component of a set, so we prove that we have two disjoint
components.

The region of the plane bounded by α is called interior of the curve and
it is homeomorphic with the open unit disc in R2. We have a simple closed
curve positively oriented if we choose its parameter such that when we move
along the curve and the parameter is increasing, we have the interior of the
curve to the left.

Theorem 12. For any simple closed plane curve α of length L and area of
the region bounded by α, A we have

L2 ≤ 4πA,

where equality holds if α is a circle.
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The proof of this theorem is based on the fact that such a curve is always
contained within a strip bounded by two parallel lines. We can also fit between
these parallel lines a circle. By comparing A and L with the area and the
perimeter of this circle, last ones depending on the diameter, which is also
the distance between the parallel lines, we obtain the requested inequality.

Definition 32. For a curve α : [0, l]→ R3 with curvature κ(s), we define its
total curvature ∫ l

0

|κ(s)|ds.

Theorems 13 and 14 are the most important tools in the differential theory of
closed curves. The Fenchel’s and Fary–Milnor theorems are for closed curves
what Bonnet theorem is for compact surfaces (see Theorem 19).

Theorem 13 (Fenchel’s Theorem). The total curvature of a simple closed
curve is larger or equal to 2π ∫ l

0

κds ≥ 2π,

where the equality holds if and only if the curve is a plane convex curve.

A plane curve is convex if its trace lies entirely on one side of any of the
closed half-plane determined by the tangent line at any of the points of the
curve. A circle, or a parabola are convex curves, while the graphics of the “sin”
function is not convex. The proof is constructive. We build around the curve a
tube of radius r, i.e., a parametrized surface r(s, v) = α(s)+r(n cos v+b sin v),
with n, b the normal and binormal vectors of α. We choose r small enough
such that the tube do not self-intersect. If α is a simple closed curve, then
the tube is homeomorphic to a torus. We notice that the Gaussian curvature
K and the area element dA of the tube surface have the property∫∫

[0,l]×(v1,v2)

KdA = −
∫ l

0

∫ v2

v1

κ cos v
r(1− rκ sin v)

√
EG− F 2dsdv

=
∫ l

0

κ(s)ds(sin v1 − sin v2).

We can choose the angles v1,2 such that the unit normal of the tube in
this range of v covers the entire unit sphere S2, and also K > 0 in this
range. Indeed, this is possible because we can approach the tube with a
plane coming from infinity, from any direction in R3. The first point of the
tube encountered by this plane has positive Gaussian curvature (is an elliptic
point). So, if we apply the Gauss–Bonnet Theorem 19 for K we obtain the
requested inequality for the total curvature of α.

If α is closed but knotted we have the following.
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Theorem 14 (Fary–Milnor Theorem). The total curvature of a knotted
simple closed curve is greater or equal to 4π.

By taking profit of the integral formulas for surface differential operators
we can obtain two useful relations for closed curves. Let Σ be a regular
parametrized surface and D ⊂ Σ,Γ = ∂D , and ∇Σ be the surface gradient
operator defined in Sect. 7.5. From the surface divergence integral theorem
(7.62), by using the fact that ∇Σ × r = 0, we obtain∮

Γ

r · tds = 0, (5.21)∮
Γ

t⊥ × rds = 2
∫∫

D

H(N × r)dA. (5.22)

In these equations r is the position vector, N is the unit normal to Σ, and
t⊥ = N × t belongs to the Darboux frame associated to Σ,Γ .

The theory of closed curves is not closed. There are still open questions,
and a simple theorem to provide an analytic differential criterium for close-
ness in terms of curvature and torsion does not exist in general. Some more
information on the topics can be found in [41–45].

5.3 Curves Lying on a Surface

A regular closed curve α : [0, L]− > S2 lies on the unit sphere S2 ⊂ R3 if
and only if ∫ L

0

τ(s)ds = 0, (5.23)

where τ is the torsion of α and s is the arc-length. The proof consists in
noticing that, if θ is the angle between the principal normal of αn and the
unit normal to the sphere, N , i.e., cos θ = N · n, we have

dθ

ds
= τ − τg,

where τg is the geodesic torsion (see Definition 44). Because the curve is
closed and regular we have∫ L

0

τds−
∫ L

0

τgds = 2πn,

where n is integer. However, all curves lying on a sphere are lines of curvature,
so their geodesic torsion is zero. Knowing that n is a topological invariant,
and since all closed curves lying on a sphere are homotopic to a point, we
have n = 0, which proves the affirmation.
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Also, a curve lying on a sphere fulfills the following relation(
1
κ

)2

+
(
∂

∂s

1
κ

)2(1
τ

)2

= const.

The proof is based on the constant distance between the center and the curve,
and from here the relation r · t = 0.

5.4 Problems

1. Show that there exists at least one closed regular curve in R3 with positive
curvature and constant torsion.

2. Show that simple closed curves in R3 with nonzero torsion everywhere,
lying on strictly convex surfaces (i.e., K > 0,H > 0 everywhere) do not
exist. A counter example would be a spiral on a torus.

3. Prove that for any closed knotted curve in R3 there is a plane that inter-
sects the curve in at least six points.



Chapter 6

Motion of Curves and Solitons

A large class of physical, chemical, and biological systems can be modeled
in terms of their contour dynamics, namely the kinematics and dynamics of
their boundaries [46–48]. In many situations (e.g., when the inside bulk has
the property of being “incompressible”) such contour representations are the
most natural, and are simpler ones. Basically, the contour dynamics approach
reduces the problem to the study of motion of curves and surfaces, especially
the closed ones. In this chapter, we focus on the analysis of the motion of
curves in the three-dimensional Euclidean space.

The study of two-dimensional contour dynamics models are important for
flat liquid droplets [49–52], quantum Hall electron droplets in high magnetic
field [53, 54], growth of dendritic crystals in a plane [55], planar motion of
interfaces (like for example oil spots surrounded by water) [56–58], dynam-
ics of polymers [59–63], vortex structures in geophysical fluid dynamics and
plasma [64], motile cells immobilized in vitro [65], etc. Two-dimensional con-
tours can be plane curves or curves lying on surfaces. In the three-dimensional
case, in addition to the above mentioned fields, interesting applications can
be found in the dynamics of vortex filaments in fluid dynamics [66,67], DNA
models [68], long and stiff polymer chains, flagellar swimming for motile
cells [69–73], and level set method [74].

All these applications have in common the properties of preserving global
geometric quantities like area and perimeter. Imposing global geometrical
constrains on contour dynamics leads to the occurrence of nonlinearities in
the dynamical equations. This is because, on one hand, the global constraints
involve the fundamental forms of surfaces (or at least metrics of curves), and
these forms contain quadratic or higher-order terms as combinations of the
metrics, the Serret–Frenet and Darboux vectors and their derivatives. On
the other hand, global constraints involve strong nonlocality and long-range
interactions in the system, like for example in hydrodynamics [46–48,75–77].
An example of global constraint interaction from biology is the swimming of
a flagellated cell. A local constraint applied to the free end of the flagellum,
which is a bundle of filaments attached to the cell membrane, could prevent

81
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the existence of relative shear between the filaments in the bundle, which
is the very cause of bending, twisting and hence swimming. Since the local
shear is related to the curvature, the local condition at the end generates
a global constraint: the total curvature of the bundles should be zero, i.e.,
allowable shapes have to have zero total curvature.

The occurrence of nonlinearities in the contour dynamics problems involves
the connection between this dynamics and the integrable evolution equations.
Indeed, the motion of curves is intimately related to the Korteweg–de Vries
(KdV), modified Korteweg–de Vries (MKdV), and nonlinear Schrödinger
equations (NLS) [2, 3]. This leads to the existence of soliton-like solutions
in the motion of curves, as well as the existence of infinite number of con-
servation laws that can be put into relation with global geometric quantities.
The purpose of the next sections is to describe these relations, for the two-
dimensional and three-dimensional case.

The problem of the dynamics of moving curves is not completely solved.
There are systems, especially in the world of microorganisms with very com-
plicated shapes, where the interaction between the two-dimensional contours
(like the cell membrane) and one-dimensional attachments (like flagella, cilia,
etc.) cannot be neglected, to understand the physics of their exquisite motil-
ity. A general model for such type of interaction should lie somewhere be-
tween the geometry of curves and surfaces, like for example the geometry of a
(1 + ε)-dimensional manifold. Such situations occur for example while inves-
tigating the propagation of waves created in a one-dimensional system into
a two-dimensional surface, or conversely, the motions induced in a bundle of
cilia by membrane oscillations.

6.1 Nonlinear Kinematics of Two-Dimensional Curves
and Solitons

In this section we study the dynamics of two-dimensional contours from the
perspective of differential geometry of closed curves and the hierarchy of
integrable systems like KdV and MKdV systems. The association of the
Serret–Frenet equations with nonlinear integrable systems (like the cubic
Schrödinger equation for example) is somehow natural, because the Serret–
Frenet equations are known to be equivalent to a Riccati equation (see
Sect. 18.2). Moreover, through an exponential integral transformation of cur-
vature and torsion into a complex function Hasimoto shown in [66] that the
Serret–Frenet equations can be directly mapped into the cubic Schrödinger
equation. We mention, however, that there are possible many other two-
dimensional curve motions that are not integrable. A comprehensive discus-
sion about this reduction can be found in [78,79].

We begin our studies of purely local surface dynamics with a simple model,
i.e., the motion of plane curves. Later on we will generalize the result to
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three-dimensional curves. We need to use the concepts developed in Sect. 5.
We consider a smooth (class r ≥ 3) two-dimensional curve parametrized by
α at any moment of time t. The evolution of the shape of the curve in time
is describable by the geometry of a family of curves, each curve parametrized
by α, and labeled in the family by t. Basically, we need to use the formalism
in Sect. 18.4 and substitute the β parameter with t. The points of the curve
at a certain moment of time t are described by r(α, t) or r(s(t), t) where s
is the natural arc-length parameter along the curve, which itself depends on
time through the metric. The metric on the curve is g(α, t) and we associate
the Serret–Frenet trihedron, also at any moment of time t.

If we take into account only motions produced by local interaction, then
the kinematics depend on only local intrinsic geometrical variables of the
curve, i.e., κ, τ, s which means that the kinematics of the curve depends only
on κ(k)(s, t), τ (k)(s, t), where k = 0, 1, . . . represents the differentiation order.
The kinematics is described in terms of the velocity V of the points on the
curve

dr

dt
= ṙ(α, t) = U(κ, τ, κs, τs, . . . )n(α, t) +W (κ, τ, κs, τs, . . . )t(α, t), (6.1)

where n, t are the unit principal normal and tangent to the curve, and (U,W )
are the normal and tangent components of the curve velocity at s along the
local frame axes. These are purely locally defined quantities, as stated above.
In general we will denote partial derivative with respect to t by using the sub-
script t and the total derivative with a dot. In the case of (α, t) parametriza-
tion these two coincide, which is not the case of the (s, t) parametrization.

Usually in literature it is vaguely mentioned that the W term in (6.1) is
irrelevant, because it is only related to a reparametrization of the curve. We
can provide here a theorem (Epstein–Gage) about this observation [80].

Theorem 15. Let us consider the (6.1) with the particular dependence U =
U(r, κ, θ, t),W = W (r, κ, θ, t), where θ is the tangent angle

θ(s, t) =
∫ s

κds.

If U,W are smooth, periodic of period 2π in θ, then for any solution of r(s, t)
of (6.1) there is a reparametrization s′ = s′(s, t) of the curve r(s, t), such that

ds′

ds
> 0, s′(s, 0) = s,

and r(s′(s, t), t) is a solution of the equation

dr

dt
(s′, t) = U(κ, θ, t)n(s′, t).
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Fig. 6.1 Normal and tangential components of the velocity of a rigid ellipse in rotation–

translation

The reparametrization function fulfills the equation

ds′

dt
= −|r(s′, t)|W (r(s′, t), θ(s′, t), κ(s′, t)).

That is, the motion of such a curve depends only on its normal velocity.
However, there are cases when the tangent speed matters. We give such an
example at the end of Sect. 6.1.1.

A simple exercise will show how to understand U,W . Suppose we have a
parametrized “rigid” closed curve r(a, t) in uniform translation and uniform
rotation. By rigid we mean the metrics is constant in time g(a, t) = g(a, 0).
It results U = ṙ ·n,W = ṙ · t. Both components have time variation because
the motion of the points of the curve is accelerated. In Fig. 6.1, we show the
dependence of U,W on a and t for a rotated–translated rigid ellipse. However,
if we eliminate the translation both components become constant. The reason
for this is that the local frame {t,n} moves together with the rigid curve. In
Fig. 6.2, we show a uniform rotated figure-8 shape.

We will now investigate the equation of motion of a two-dimensional
smooth curve. The Serret–Frenet relation plus the expression (6.1) for the
velocity of the points on the curve allow us to obtain the time evolution of
each quantity.

First set of relations is obtained on behalf of the commuting relations
between derivations. The position vector is at least third derivative contin-
uous function, so each of its partial derivative of order 2 or less commute,
if we take them with respect to the independent coordinates, i.e., α and t.
Consequently, we can write

rαt = (g
1
2 rs)t =

1
2
g−

1
2 gtrs + g

1
2 (rs)t

=
1
2
g−

1
2 gtt + g

1
2 tt =

1
2
g−

1
2 gtt + g

1
2 ṫ, (6.2)
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Fig. 6.2 A figure-8 shape in uniform rotation. The velocity (U, W ) in the local Serret–
Frenet frame is constant at all times

where we used ∂α = g1/2∂s, the Serret–Frenet equation in the plane (5.8).
On the other side, we have

rtα = g
1
2 (Un +W t)s = g

1
2 (Usn + Uns +Wst +W ts)

= g
1
2 [(Us + κW )n + (Ws − κU)t]. (6.3)

Since ||t|| = 1 → ṫ · t = 0, and since in the plane t ⊥ n it results that ṫ ‖ n
and ṅ ‖ t. Consequently, if we equate (6.2) and (6.3), we have to equate the
coefficients of ṫ and t. It results

tt = (Us + κW )n (6.4)
gt = 2g(Ws − κU). (6.5)

When the curve moves it changes its shape, but also its intrinsic geometry
since in general s = s(t). Indeed, if we neglect the time dependence of s, and
we use commuting of derivatives in the form ∂t∂s = ∂s∂t instead of that one
in α and t, we would obtained instead of (6.5), Ws = κU , which is something
else. This general approach does not conserve arc-length locally, but we can
always introduce this conservation law if we request that the LHS of (6.5) to
be zero.

The second set of relations is obtained from the second Serret–Frenet re-
lations, namely ts = κn. When we differentiate this equation with respect to
time, and transform the s-derivatives into α-derivatives through ∂α = g1/2∂s

we obtain
−1

2
g−

3
2 gttα + g−

1
2 tαt = κtn + κnt. (6.6)
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By using again the commutativity between derivatives, by substituting tt

from (6.4), and by using again Serret–Frenet equations we have

−1
2
g−1gtκn + (Us + κW )sn− (Us + κW )κt = κtn + κnt.

We know that nt ‖ t, so, by identifying the coefficients of the two orthogonal
directions we have

nt = −(Us + κW )t (6.7)
κt = Uss + κ2U + κsW. (6.8)

Equation (6.6) can be obtained directly form (6.4) if we differentiate with
respect to time the identity t · n and use the fact that in the plane ntntt.
The time evolution of the arc-length s(α, t) can be obtained directly if we
differentiate with respect to time its integral definition (5.2), and use (6.5).
We obtain

st(α, t) = W (α, t)−W (0, t)−
∫ α

0

κUds′. (6.9)

Because s depends implicitly on time, we can write κ̇ = dκ
dt = κsṡ + κt. By

using (6.8) we have

∂κ

∂t
=
∂2U

∂s2
+ κ2U +

∂κ

∂s
W (0, t) +

∂κ

∂s

∫ α

0

κUds′. (6.10)

This partial differential equations shows that in the two-dimensional case the
curvature of the moving curve is determined only by the normal component
of the velocity and the initial value of the tangent velocity. It results that the
tangent velocity W only determines how the points parametrized by α move
along the curve, without affecting the shape.

In the work of Nakayama et al. [76], the authors show that the Serret–
Frenet relations for plane curves, in the form (5.6), form a set of integrable
evolution equations compatible with the MKdV hierarchy [2,3]. By compati-
ble one understands that both Serret–Frenet and MKdV hierarchy systems of
nonlinear PDE can be described by the same type of scattering problem, i.e.,
the matrix of the two-component linear system associated with the nonlin-
ear equation has the same form. The explicit form of the resulting nonlinear
equation in the curvature is obtained from (6.10) by additional choices for
U . Different choices for the normal velocity of the curve will provide different
types of nonlinear equations in the curvature. Only for some special classes
of motion of curves, like for example

U(s, t) = −κ(s, t)s, (6.11)

the dynamical equation for the curvature (6.10) becomes

κt =
3
2
κ2κs + κsss, (6.12)
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which is precisely the MKdV integrable system [2] with stable solitons. These
types of curves (6.11) belong to a general class sometimes called curvature-
driven curves, since they move faster in the normal direction where the cur-
vature has larger tangent gradient, see for example a recent mathematical
study on this topics in [81]. A plastic image of a curvature driven plane curve
is the evolution in time of the grass tall domain while mowing the yard with
the yard with a constant speed, limited maximum turn taking tractor. The
corners either sharpen or flatten continuously. Since solutions of (6.12) are
known from the inverse scattering methods, we can use these solutions for
the curvature, integrate the corresponding Fresnel relations (5.15) to find the
shape of the curve, and implement the curve equation in (6.1) to find the
velocity of the curve. A consequence of the choice (6.11) is the existence of
the conservation law

(ln
√
g)t =

(
W +

κ2

2

)
s

.

If the solution generates a loop, we also have conservation of perimeter and
area in time, by the periodicity conditions. Indeed, from (6.33) and (6.40)
we have

L̇ = −
∫ L

0

κUds =
∫ L

0

κκsds = 0,

Ȧ = −
∫ L

0

Uds =
∫ L

0

κsds = 0. (6.13)

As an example, for the MKdV one-soliton solution of (6.12)

κ = κ0sech
[
κ0

2

(
s− tκ

2
0

4

)]
(6.14)

we obtain the curve velocities

U =
κ2

0

2
sinh κ0

8 (4s− κ2
0t)

cosh2 κ0
8 (4s− κ2

0t)

W = −5κ2
0

2
sech2κ0

8
(4s− κ2

0t). (6.15)

The resulting curves are always open, because asymptotically the soliton is
zero. In Fig. 6.3, we present a straight line run by an MKdV one-soliton in
curvature. Such moving shapes occur in the beats, oscillations and swim-
ming of flagella and cilia for microscopic organisms [70–73, 82]. A richer
traveling solution for the MKdV equation is obtained by the substitution
(s, t)→ ξ, ∂/∂t→ V , and by integrating two times (6.12) until we obtain the
generic form

(κs)2 = −1
4
κ4+V κ2+C1κ+C2 = −1

4
(κ−κ1)(κ−κ2)(κ−κ3)(κ−κ4), (6.16)
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Fig. 6.3 Motion of a plane curve under an MKdV one-soliton solution in curvature

where C1,2 are constants of integration, and the roots f1,...,4 can be deter-
mined by identification. This equation has the general solution

F

(
arcsin

√
κ− κ1

κ− κ2
· κ2 − κ3

κ1 − κ1

∣∣∣∣ (κ1 − κ3)(κ2 − κ4)
(κ2 − κ3)(κ1 − κ4)

)

= ±ξ
4

√
(κ1 − κ4)(κ3 − κ2) + C3, (6.17)

where F is the Jacobi elliptic function of the first kind (Sect. 18.3). The
explicit traveling solution reads

κ(ξ) =
A+Bcn( ξ

Λ |m)

D + F cn( ξ
Λ |m)

, (6.18)

with the modulus of the Jacobi functions

m = −F (2BF 2 −BD2 −ADF )
2(AD −BF )(D2 − F 2)

,

and the width of the solitary wave

Λ =

√
2DF (D2 − F 2)

[DF (A2 +B2)−AB(D2 + F 2)]
,

and the traveling speed

V =
[
AB

3DF
+ 2

A2D2 +B2F 2 − 2ABDF
3(D2 − F 2)2

]
. (6.19)
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This solution is periodic of period 4ΛK(m) (Sect. 18.3). The curve is a loop
if the tangent t is periodic modulo 2π at 0 and L∫ L

0

κ(s, t)ds = 2π.

For different choices of the parameters A,B,D, F , we can have different types
of loops, usually self-intersecting ones. For example, for very small values of
F in (6.18) the curvature represents a circle of radius D/A plus a traveling
perturbation. In Fig. 6.4, we present a numerical integrated shape of a curve
with such a curvature soliton fulfilling the condition of closure between A,B,
andD with F = 0. In Fig. 6.5, we present the result of a numerical integration
of the Fresnel integrals for the curvature given in (6.18) with F = 0, but the
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Fig. 6.4 An MKdV soliton solution in curvature generating a closed loop
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Fig. 6.5 An MKdV soliton solution in curvature where the periodicity (closure) condition
is not fulfiled. It generates an open curve
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Fig. 6.6 An MKdV soliton–antisoliton pair solution in curvature running one against the
other

curve is not closed, and repeats itself with an angular shift at every turn
toward a chaotical shape. In the case of a soliton–antisoliton solution [2],
when the two bumps far separated in s, i.e., the asymptotic zone, we can
approximate the solution with a sum of two expression of the type in (6.18)
shifted in s, and having different parameters A,B,D. In Fig. 6.6, we present
such a pair of MKdV soliton–antisoliton running one into the other and
annihilating for a while. Such a pair is represented by two traveling knots
of opposite chiralities. More examples of curves generated by the MKdV
model are presented in Fig. 6.7 for different values of the parameters in the
solution.

Another possible choice for the normal velocity can lead to the sine–
Gordon equation [2–5], in terms of the angle made by the tangent of the
curve with a fixed direction

θ(s, t) =
∫ s

κ(s′, t)ds′. (6.20)

To obtain the sine–Gordon equation we choose to work in the “gauge”
W (0, t) = 0. The expression of U is given by solving an integrodifferential
equation, hence the system models a nonlocal interaction. The condition can
be written in the operatorial form

κs =
(∫ s

ds′
[(

∂2

∂s′2
+ κ2(s′)

)
δ(s− s′) +

∂κ

∂s
(s)κ(s′)

])2

U(s′).

This equation can be integrated once toward to form

κst + κ
∫ s

κκdds
′ = κ+ C, (6.21)

and leads to the sine–Gordon equation

θst = sin θ. (6.22)
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Fig. 6.7 Shapes generated by the solution (6.18) for the MKdV model for curvature,

plotted together with the graphics of their curvature vs. s. From left to right and toward
downward the curves are called: the first row are lemniscate (or figure-8), then hypocycloid
or ratio 1:2, the next three are hypotrochoids of different ratios, then it is a “pretzel” knot,
and the last one is a combination between a hypotrochoid and a epicycloid

A typical solution for the sine–Gordon is

θ(s, t) = 4 arctan

⎧⎪⎪⎨⎪⎪⎩γ exp
[
±

(
as+ t

a

)
± β
(
as− t

a

)
√

1− β2

]⎫⎪⎪⎬⎪⎪⎭ , (6.23)
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where a > 0 and γ, β are arbitrary constants. The resulting shape are very
similar to those presented in Fig. 6.3.

Among other possible choices for the normal velocity like U = ±∂nκ/∂sn,
or U = ±∂n lnκ/∂sn, n = 0, 1, . . . discussed in [76], some important cases
are the perimeter/area conserving systems, i.e., those forms for κ,U fulfilling
(6.13). The case U = −κss is known as the surface diffusion flow [83,84].

A general class of normal velocities functions conserving area and length,
if they are closed, can be provided by the forms

U = κpκs, p integer. (6.24)

If we work in the gauge W (0, t) = 0, the differential equation for κ obtained
from (6.10) reads

κt =
(

1 +
1

p+ 2

)
κp+2κs +

1
p+ 1

(κp+1)sss (6.25)

which is a modified KdV equation with nonlinear dispersion, belonging to
the class denoted K(p + 2, p + 1) class of nonlinear PDE with compacton
solutions. For p = 0 we recover the MKdV equation. If we look for standing
traveling solutions in ξ = s − V t, (6.25) can be integrated into its potential
picture form

(κξ)2 = −2(C3 + V )
p+ 2

κ2−p − 1
(p+ 1)(p+ 2)

κ2 + C1κ
1−p + C2κ

−2p, (6.26)

with Ci being arbitrary constants of integration. The RHS term of this equa-
tion can be plotted as a functional of variable κ like in a phase space (Fig. 6.8).
This potential picture shows the existence of two valleys, which according to
the analysis performed in [85], leads to the existence of two solitary wave
solutions in curvature. In terms of the shape of the curve, this can lead to
something similar with a double spiral. Equation (6.26) is not integrable in
general, but for some particular values of p we can find some exact solutions.
For example for p = 4, C1,2 = 0 we have

ξ =

√
18κ4 + 5V ln[6κ2 +

√
2(18κ4 + 5V )]

6
√

2κ
(
− 6κ2

5 − V
3κ2

) , (6.27)

see Fig. 6.9. In Fig. 6.9, we present the evolution in time of the curve deter-
mined by (6.27) for p = 1, which is again an integrable case.

Another interesting example of curves from the MKdV hierarchy is pro-
vided by the so-called curve-shortening equations [80], i.e., when the normal
speed has the form

U = f(κ), (6.28)

where f is a real smooth function of curvature. Examples are f = constant,
when we have the eikonal equation, and f(κ) = κ we have the so-called
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Fig. 6.8 Potential picture for the PDE for κ associated with area and length conservation,

U = κpκs, for several values of p

Fig. 6.9 Time evolution of the curve generated by U = κκs. The two attractors with
asymptotically constant curvature correspond to the two valleys in the potential picture
in Fig. 6.8. The curve is not closed

curvature-eikonal flow, or curve-shortening flow (CSF). The CSF curves have
interesting properties. For example

dL

dt
= −
∫ L

0

k2ds,
dA

dt
= −2π, (6.29)

showing that the CSF curves shrink under the flow and cease to exist beyond
A(0)/2π. The CSF curves also preserve convexity. The nonlinear PDE fulfilled
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by the CSF curves is also an integrable evolution system, namely the cubic
nonlinear Schrödinger equation (NLS3) for an imaginary time

κt = κss + κ3. (6.30)

Such an equation is a diffusion nonlinear equation with superlinear growth
with blowup solutions in finite time. More rigorous results and numerous
examples of motions of planar curves can be found in [80].

6.1.1 The Time Evolution of Length and Area
in General

For a two-dimensional curve we have two geometric global quantities of in-
terest: length and area of the curve. The total length of a moving curve Γ of
metrics g(α, t) is given by

L(t) =
∫ αmax

0

g1/2(α, t)dα =
∫ L

0

ds. (6.31)

The change of the length in time is described by its time derivative

dL

dt
= W (αmax, t)−W (0, t)−

∫ L

0

kUds, (6.32)

where W and U are the tangent and normal velocities of the curve, respec-
tively, and k is the curvature. For a loop the time variation becomes simply

dL

dt
= −

∫ L

0

kUds = −
∮ θmax

0

Udθ, (6.33)

where kds = dθ is the turning angle of the tangent. Equations (6.32) and
(6.33) represent a conservation law, and the normal velocity is the “flow of
length” in the turning angle representation.

For example, an interesting application is the case of “shortening” closed
curves [80], i.e., curves where the normal velocity is proportional with some
positive power σ of the magnitude of the curvature U = U(k) = U0|k|σ+1.
Equation (6.32) becomes

dL

dt
= −

∮
Γ

|k|σ+1ds,

such that the length of the curve is strictly decreasing in time. Since∫
Γ

|k|ds ≥
∮

Γ

kds =
∮

Γ

dθ = 2π,
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by using the Hölder inequality we obtain an upper bound for the negative
derivative

dL

dt
≤ − (2π)σ+1

Lσ
,

and by integrating once, we find that there is always t0 > 0 such that

t ≤ L
σ+1(0)− Lσ+1(t0)
(σ + 1)(2π)σ+1

,

meaning we have an upper bound of the life time of the loop, which depends
only on the initial length of the curve. Examples of such shortening curves
evolution equations are provided by the elastic energy, for example, where
σ = 1. Equation (6.31) is useful for finding the expression of the change of
the infinitesimal arc-length dL = ds = g1/2dα for a moving curve. During an
infinitesimal amount of time δt we have from (6.5)

δdL =
∂(dL)
∂t

δt =
∂

∂t
g

1
2 δtdα =

(
∂W

∂s
− kU

)
δtds, (6.34)

which reads
δdL = −kUdsδt+ ∂W

∂s
dsδt. (6.35)

Equations (6.34) and (6.35) provide the variation in time of the infinitesimal
arc-length of a moving curve, function of the local velocity of the curve. The
same equation can be written just in terms of variations

δdL = −kδuds+ δdw,

where δu and δw are the normal and tangent displacements of a point on the
curve, during its infinitesimal motion. The second term on the RHS of the
above equation and (6.35) represent the contribution to the variation of
the infinitesimal arc-length due to the stretch or compression of the curve
along its local tangent. This term is a total differential, hence for loops this
term is zero

δdLloop = −kUδt. (6.36)

Although the tangent shift term δdw can be always canceled by using a conve-
nient reparametrization of the curve (see Theorem 15), there are applications
where this term plays some role. For example if we choose a finite line seg-
ment with a fixed, and having the other end moving in an arbitrary direction
with uniform motion, we have a nonuniform extension of the length of the
segment, which is described by this tangent term. The first term in the RHS
of (6.35) is usually known in hydrodynamics literature in the approximated
form

−kUds = dL′ − dL 	 δξ
R
dL,

where δξ is the usual notation (in hydrodynamics books) for the infinitesimal
displacement along the normal to the curve, and R is the radius of curvature.
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The area associated with a curve is defined as

A(t) = −1
2

∫ L

0

r · nds =
1
2

∫ L

0

|r × t|ds, (6.37)

where the equality between the two forms is guaranteed by r ·n = ±|r×n|.
This equation emerges for integration of the area dA = r · nds/2 of an
elementary triangle generated by the infinitesimal arc-length ds and the two
position vectors from the origin of the coordinate system toward the ends of
this infinitesimal arc. The signs in front of the area expressions are related
to a certain convention of running the curve. For an arc covered CCW the
area is considered positive. In the case of a loop, (6.37) provides the area
inside the loop. For an open curve, expression (6.37) provides the sum of the
areas of the surfaces bounded by the curve from 0 to L, and the two lines
drawn from the origin of the coordinate system to these two ends. These two
lines may cross the curve many times, and the corresponding areas are taken
with plus or minus accordingly to the resulting sign according to the sign
convention stated above. In the case of an open curve, if we change the origin
of the coordinate system O → O′ by a translation OO′ = R, the area in
(6.37) changes in an additive way. If we have a curve lying from O to some
point L, its area measured from O′ reads

A′(OL) = −1
2

∫ L

0

r′ · nds = A(OL) +
R

2

∫ L

0

nds,

where r′ = r − R. From the definition of the turning angle of the tangent
dθ = kds, and the theorem of derivation of implicit functions, we have

nds =
dt
ds

k
ds =

dt
ds
dθ
ds

ds =
dt

dθ
ds = −rds,

and consequently
A′(OL) = A(OL) +A
OLO′ .

Now we provide the equation for the variation of the infinitesimal area δdA
for a curve in motion. In other words, this is the infinitesimal area swaped by
an infinitesimal arc-length during an infinitesimal interval of time of curve
motion (Figs. 6.10–6.12).

If V represents the total velocity of the point r ∈ Γ , we have from (6.37)

∂dA

∂t
= −1

2
V · nds− 1

2
r · ∂n

∂t
ds− 1

2
r · n∂g

1
2

∂t
dα

= −1
2
Uds+

1
2

(
∂U

∂s
+ kW

)
r · tds+

1
2

(
kU − ∂W

∂s

)
r · nds. (6.38)
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Fig. 6.10 The infinitesimal arc-length ds on the curve Γ in r at moment t, transforms into
the new infinitesimal arc-length ds + δds on the moved curved at t + dt. The infinitesimal
displacement dr can be projected onto the normal and tangent to the curve dr = δun+δwt.

The dashed area represents δdA
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Fig. 6.11 The infinitesimal displacement of the curve Γ with δr
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Fig. 6.12 The infinitesimal variation of the elementary swept area of a moving curve Γ .
Horizontal dashed area is the initial elementary area of Γ (OP1P ), and the total area of
the figure (OP1P2P3) is the elementary area of the shifted curve Γ (t + δt). The swept
area (PP1P2P3) is dashed with curved lines, and the residual area (OPP3) is dashed with
vertical lines
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After regrouping the terms we can write (6.38) in the form

δdA = −Udsδt+ 1
2
∂

∂s

(
r · (Ut−Wn)

)
dsδt, (6.39)

which represents the infinitesimal variation in time (δt) of the infinitesimal
(d) element of area during the motion of the curve. For example, for a loop
we have

dA

dt
= −
∫ L

0

Uds. (6.40)

The same equation can be obtained in a more traditional way (without the
help from the differential geometry formulas of curve motion)

δdA = −1
2
(r + δr)(n + δn)d(s+ δs) +

1
2
r · nds+ · · · .

Let us discuss the two terms on the RHS of (6.39). The first term is the
real swept area of the moving infinitesimal arc-length of the curve, and this
is the term we need in the following calculations. The second RHS term in
(6.39) is just a “residual” area, and it is originated by the way the area is
defined. When the position vector sweeps the arc-length, the counted area also
includes the area swept by this vector itself. This is easy to understand if we
simplify a little (see (6.38) and (6.39)). From the definition of the infinitesimal
area generated by an infinitesimal arc-length, the integrand in (6.37), we
notice that its time derivative contains three terms (6.38). The first one,
−δr ·nds/2 is by definition −Uδtds/2, where the minus sign occurs because
the normal points in the opposite direction than the normal motion of the
curve. This part is the area of the triangle of edges: δr, (t + δt)(ds + δds),
and δr + tds. That is the triangle PP2P3 in Fig. 6.11, which is just half of
the needed swept area:

δdAPP2P3 = −1
2
δr(s)× (t + δt)(ds+ δds).

Because of the recursion-like relations (6.7) and (6.8), which describe the
time variation of the tangent and the normal, the last two terms in the RHS
of (6.38) mix together and produce the other half of the swept area (PP1P2

in Fig. 6.11)

δdAPP1P2 = −1
2
δr(s+ δs)× (t(s)ds

and a total differential

δdAresidual =
1
2
∂

∂t
AOPP3dsδt.
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We can illustrate this even better in Fig. 6.12. In this figure, the initial infin-
itesimal area dA(t) = dAOP1P is presented dashed with horizontal lines. The
new infinitesimal area DA(t+ δt) = dAOP1P2P3 is the total area presented in
this figure. The variation of the infinitesimal area, δdA = dA(t+ δt)− dA(t)
is of course the area dashed with vertical and curved lines, AOPP1P2P3 . The
portion dashed with curved lines is the correct one, the swept area in the
curve motion, given by the first term in the RHS of (6.38) and (6.39). The
area dashed with vertical lines is the so-called “residual” one.

Let us test (6.39), and this last comment, with two examples. If we choose a
straight segment along Ox, moving upward along the Oy axis, x ∈ [0, L], y =
Ut, we can figure out that the swept area has to be Uδtds. On the other
hand, (6.39) provides δdA = −Uδtds+(1/2)t ·Utδtds = (1/2)Uδtds just half
of the swept area. This happens because it took into account the “residual”
term. If we take into account only the first term in its RHS, we obtain the
correct result. Another example can be given by a unit segment rotating
with its origin fixed in O, with angular speed ω. Equation (6.39) provides
δdA = −ωsδtds+ 1

2
∂
∂s [s(cosωt, sinωt) · (cosωt, sinωt)ωs− 0]δtds = 0. Again

wrong, since the real swept area by this rotating segment is actually ωsδtds.
If we retain just the first term in the equation, we obtain the correct result.
The zero result of the total infinitesimal area is produced by the fact that at
any moment of time, the area of this curve is actually zero (it is a straight
segment). So its area is constant, so its total time derivative is of course zero.

For the sake of completeness we present here another approach the infini-
tesimal variation of the area swept by a moving curve, namely the variational
approach. We have

L(t) =
∫ αmax

0

g
1
2 dα =

∫ αmax

0

√
∂r

∂α
· ∂r
∂α
dα,

L(t+ δt) =
∫ αmax

0

g
1
2 dα =

∫ αmax

0

√
∂r + δr
∂α

· ∂r + δr
∂α

dα

=
(
∂(xi + δxi)

∂α

∂(xi + δxi)
∂α

) 1
2

. (6.41)

By traditional variational calculus we obtain

δL =
∂xi

∂s
δxi

∣∣∣∣L
0

−
∫ L

0

kδxi
∂

∂s

∂xi

∂s
, (6.42)

or

δL = −
∫ L

0

kδxnormalds+ δW
∣∣∣∣L
0

, (6.43)

which is in agreement with (6.39).
To understand the role in the infinitesimal arc-length variation of the tan-

gent term in (6.39), we create a smooth localized deformation increasing in
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time, on the unit circle. The circle is then deformed into a wrinkled loop of

larger length. That is a radial breather r(φ, t) = R+ε sech2

(
φ−3π/4

L

)
sin(nφ),

localized around φ = π. We estimate the values of the normal velocity U , and
the tangent W around another point, for example φ = 3π

4 . During deforma-
tion, the normal velocity has almost sinusoidal oscillations related to the
accumulation of wrinkles. However, the tangent velocity is the one responsi-
ble for the length increasing, because its oscillations have only positive values.
If we take into account only the normal term of the infinitesimal arc-length
infinitesimal variation, only the first term in the RHS of (6.42) and (6.43),
the total lengths behaves arbitrary. For example, in Fig. 6.13, the infinitesi-
mal arc-length δdL appears to decrease. This is because of the way we choose
to represent the curve at t = 0. It is the tangent velocity term which allows
the extension of the curve, and brings the positive infinitesimal arc-length
variation (the continuous line in Fig. 6.13 bottom center).
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Fig. 6.13 Up: smooth deformation of the unit circle into a loop with a longer length, in
20 units of time. Bottom left: graphics of the normal U and tangent W velocities of the

curve at φ = 3π/4 vs. time. The larger amplitude oscillating curve is the normal velocity,
the smaller nonnegative oscillations represent the tangent velocity. Bottom center: the
infinitesimal variation of the infinitesimal arc-length, in the same fixed point φ = 3π/4,

vs. time. The continuous line is the correct expression of the infinitesimal length variation

(see (6.42) and (6.43)). The dashed line is that part of the infinitesimal length variation
produced by the normal variations only. The negative area under this dashed curve proves
the existence, moreover, the importance of the tangent variation, i.e., the second term in
the RHS of (6.42) and (6.43). Bottom right: variation of the total length of the curve during
the deformation. Obviously, it is increasing
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6.2 Kinematics of Curve Motion: Three Dimension

Like in the case of motion of two-dimensional curves, there are integrable
three-dimensional motions in direct relation with integrable evolution equa-
tions (in this case it will be the cubic nonlinear Schrödinger (NLS) hierarchy),
and also nonintegrable motions.

We follow the same formalism given in [76,86], which basically repeats the
same procedure from the previous section. The velocity is given by

V (s, t) = W t + Un +Bb. (6.44)

From the same commutation relations ∂α∂t = ∂t∂α for an arbitrary “rigid”
parametrization, we obtain the following dynamics for the Serret–Frenet
frame

dt

dt
=
(
∂U

∂s
− τB + κW

)
n +
(
∂B

∂s
+ τU

)
b,

dn

dt
= −
(
∂U

∂s
− τB+κW

)
t +
[

1
κ

∂

∂s

(
∂B

∂s
+ τU

)
+
τ

κ

(
∂U

∂s
− τB+κW

)]
b,

db

dt
= −
(
∂B

∂s
+ τU

)
t−
[

1
κ

∂

∂s

(
∂B

∂s
+ τU

)
+
τ

κ

(
∂U

∂s
− τB + κW

)]
n,

dg

dt
= 2g

(
∂W

∂s
− κU

)
. (6.45)

The material time derivative can be broken into the partial derivative and
an extra term

d

dt
=
∂

∂t
+ (W −

∫ s

κUds′)
∂

∂s
.

From the above relations, after some tedious algebra, we can write the dynam-
ical connections between the velocity components and curvature and torsion

∂κ

∂t
=
∂2U

∂s2
+ (κ2 − τ2)U +

∂κ

∂s

∫ s

κUds′ − 2τ
∂B

∂s
−B∂τ

∂s
, (6.46)

∂τ

∂t
=
∂

∂s

[
1
κ

∂

∂s

(
∂B

∂s
+ τU

)
+
τ

κ

(
∂U

∂s
− τB

)
+ τ
∫ s

κUds′
]

+ κτU + κ
∂B

∂s
. (6.47)

On behalf of the fundamental theorem of curves (Theorem 9), once we inte-
grate (6.46) and (6.47) and find κ, τ the curve is uniquely determined in the
arc-length parametrization, up to rigid motions in space.

Now, following [66,86], as well as an older suggestion of Darboux, we intro-
duce the complex curvature–torsion function by the Hasimoto transformation

Φ(s, t) = κ(s, t)ei
∫ s τ(s′,t)ds′

. (6.48)
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By introducing (6.48) in (6.46) and (6.47), we obtain a complex equation in
the form

∂Φ

∂t
=
[
∂2

∂s2
+ |Φ|2 + iΦ

∫ s

τΦ∗ds′ +
∂Φ

∂s

∫ ∗
Φ∗ds′

]
Uei

∫ s τ(s′,t)ds′

+
[
i
∂2

∂s2
+ i|Φ|2 + Φ

∫ s

τΦ∗ds′ − iΦ
∫ s ∂Φ∗

∂s′
ds′
]
Bei

∫ s τ(s′,t)ds′
, (6.49)

where ∗ is complex conjugation, and the square parentheses are operators
acting to the right. A simple example is immediate: if we choose a binormal
type of motion with B = κ, and zero normal velocity U = 0, (6.49) reduces
to the (focusing) version of the nonlinear Schrödinger equation

i
∂Φ

∂t
+
∂2Φ

∂s2
+

3
2
|Φ|2 ∂Φ

∂s
= 0. (6.50)

If we consider a more complex type of motion with U = −κs, and B = −κτ
we obtain instead the equation

∂Φ

∂t
+
∂3Φ

∂s3
+

3
2
|Φ|2 ∂Φ

∂s
= 0, (6.51)

which is an MKdV equation for a complex function. Of course (6.49)–(6.51)
reduce to the previously studied two-dimensional case if τ = 0, i.e., the
imaginary part of all equations vanishes.

6.3 Problems

1. Find the PDE equation fulfilled by the curvature of a moving curve on the
surface of a unit sphere S2. Find criteria for this curve to be closed.

2. Show that (6.26) is integrable for p = 1 and for p = −4, and find the
solutions for κ. Study the integrability of (6.26) function of p.

3. Find a more compact form for (6.4), by introducing a complex vector
Ξ = t + in. Hint: use (6.6).

4. Prove that a rigid unit circle in uniform rotation around its venter has
indeed U = W = 0.

5. Show that the most general Euclidean motion of a rigid curve fulfills the
equations Ws = κU , Us = −κW + C0e

±iϕ(t), where ϕ(t) is an arbitrary
rotation angle and C0 is an arbitrary constant. Show that in the tangent
angle representation these equations read Wθ = U,Uθ = −W + C0e

±iϕ(t)

or simply Wθθ +W = C0e
±iϕ(t), Uθθ + U = 0.



Chapter 7

Geometry of Surfaces

There are two main differences between the theory of regular curves and reg-
ular surfaces in three-dimensional Euclidean spaces. On one hand, smooth
curves are mappings (i.e., α(s) : I → R3), while regular surfaces are subman-
ifolds. On the other hand, all curves have the natural arc-length parameter,
while surfaces do not have a natural parametrization. Moreover, curves are
uniquely defined (up to a rigid motion) by two real functions (curvature and
torsion), while surfaces are defined uniquely up to rigid motions by six real
functions (E,F,G, e, f , and g).

Definition 33. S ∈ R3 is a regular surface if for any of its points p ∈ S we
can define locally (in a neighborhood of p) a regular, differentiable homeomor-
phism between an open set U ∈ R2 and S. That is, ∀p ∈ S,∀V (p) ∈ V(p,R3)
we have ∃r : U → V (p) ∈ S such that:

1. r is differentiable.
2. r is a homeomorphism.
3. drq : R2 → R3, q ∈ U has maximal rank.

See also Fig. 7.1. The last requirement is equivalent that the tangent map
drq at q is one-to-one, or, equivalently, its Jacobian has rank 2.

Definition 34. A parametrized surface is a differential map r ∈ Diff(U,R3),
with U ∈ R2.

The map rq is regular if drq is one-to-one at any point q ∈ U . For a regular
parametrized surface S, the curves u = u0, v ∈ R and v = v0, u ∈ R2 in
U are mapped by r into the coordinate curves r(u0, v) and r(u, v0), respec-
tively. The tangent plane to S at p = (u0, v0) is defined as the subspace of R2

generated by ru, rv, evaluated at (u0, v0). Here subscripts mean differentia-
tion with respect to the parameters. The tangent map of r(u, v) takes values
in the tangent plane, drq ∈ Tp=r(q)S. Actually, as we underlined in Defini-
tion 33, according to the second interpretation of the tangent map, dr maps
the canonical basis (u, v) from U into a local basis in S, {ru, rv}. Let us have

103
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P

u

v

R2 R3

p
S

r(u,v)=p

V(p)

Fig. 7.1 Regular surface

T(u,v) U

us

r(u,v)

dr (t)

ru

vs

us

vs

rv

Tr(u,v)S

r(α)
α'

α

Fig. 7.2 The tangent map dr(t). Let r : U ⊂ R2 → S ⊂ R3 be a differential map
representing a regular surface. Let α(s) ⊂ U be a regular parametrized curve with tangent
t(s), where s is α’s arc-length parameter. In a local basis of the tangent space Tr(u,v)S,
the tangent map dr(t(s)) has the same components (us, vs) as the unit tangent t(s) has
in T(u,v)U , i.e., dr(t) = ruus + rvvs. In terms of R3 coordinates (xi, i = 1, 2, 3), dr(t) =

∂xi

∂ηj
dηj

ds
with ηj = (u, v)

a curve in the arc-length parametrization. Then, in the local basis ru, rv of
Tr(u,v)S, the values of the tangent map dr(t(s)) have the same components
(us, vs) as the t(s) has in T(u,v)U , i.e., dr(t) = ruus + rvvs (see Fig. 7.2).
We mention that different parametrizations around p span the same tangent
plane (for a proof see [40]). We denote the components of any vector lying in
the tangent space of S at p, w ∈ TpS, as w = (a, b) = aru+brv. For example,
the unit tangent vector to a regular parametrized curve α on S looks like

t =
dα

ds
==

dr

ds
(u(s), v(s)) = ruus + rvvs,

where s is the arc-length parameter along α.

Definition 35. S is orientable if it admits a differential vector field of unit
normal vectors defined on the whole surface. By choosing such a field one
chooses an orientation for S.

The traditional choice for the unit normal vector field is

N(u, v) =
ru × rv

|ru × rv|
.
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Fig. 7.3 Upper row: the two coordinate charts that form the atlas for the Möbius strip.

Lower row left : the intersection of the two coordinate charts is not connected, but it has
two connected components. Lower row right: the unit normal is not well defined; it has
two possible orientations in the same point

Such a field does not exist on not-orientable surfaces, like in the case of a
Möbius strip (for example, see Fig. 7.3).

7.1 Elements of Differential Geometry of Surfaces

The first fundamental form on a parametrized surface is the equivalent of the
metrics in the case of a curve.

Definition 36. At every point p = r(u, v) of a regular surface, we can define
a symmetric second-order tensor field, the first fundamental form on S, gp :
U → D〉{{(S,R) whose action on tangent vectors V = (a, b),U = (c, d) ∈
TpS is defined as

gp(V ,U) = Eac+ F (ad+ bc) +Gbd =
(
E F
F G

)(
V
U

)
,
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where

E(u, v) = ru · ru; F (u, v) = ru · rv; E(u, v) = rv · rv.

Actually the first fundamental form represents the metrics of a curve α on S,

ds2 = Eu2
t + 2Futvt +Gv2t ,

and consequently the norm of any tangent vector V = (a, b) in the local
coordinates ||V ||2 = V · V = Ea2 + 2Fab + Gb2. We also remember the
formula

EF −G2 = |ru × rv|2 = det

⎛⎝ | | |ru rv N
| | |

⎞⎠2

.

Let us discuss more on the properties of the first fundamental form. Let us
choose a regular curve α(s) ∈ S, in its arc-length parametrization s. This
curve is the image of a curve lying in the space of parameters, namely α0 =
α−1 ⊂ U . If we choose the arc-length s0 parametrization for the α0 curve,
the question is: what parametrization induces this arc-length parametrization
s0, on α, different from s? We can calculate g and t for α

gα(s0) =
∂α

∂s0
· ∂α
∂s0

=
∂r

∂s0
· ∂r
∂s0

= (ruus0 + rvvs0)
2, (7.1)

which is a quadratic form Eu2
s0

+ 2FEus0vs0 +Gv2s0
= g(us0 , vs0). This last

relation should be the definition of the second fundamental form, which acts
g : TS → R, while the expression defined in this relation acts on vectors
(us0 , vs0) ∈ TU . The salvation comes from the fact that (us0 , vs0) are also
the components the vector ∂r

∂s0
in the local basis {ru, rv}. Consequently, we

can introduce a canonical isomorphism iso : T(us0 ,vs0 )U → Tr(us0 ,vs0 )S by
using the local basis defined by the parametrization of S in TS. The unit
tangent of the curve α ∈ S is

tα =
ruus0 + rvvs0√
g(us0 , vs0)(s0)

= α′,

and we can define the action of the directional derivative upon a differential
function defined on S

Dα′f = (tα · ∇u,v)f(u, v) =
1√
g
(us0fu + vs0fv).

We also have g(ru) = g(1, 0) = E and g(rv) = g(0, 1) = G. So far g =
g[E,F,G] is a quadratic form defined on TS. It depends on three functions,
while a metric depends only on one function. In conclusion, the interpretation
of the first fundamental form in terms of curve properties is the arc-length
dsα =

√
g(u(s0), v(s0))ds0. The interpretation in terms of a quadratic form

defined on the tangent space v ∈ TS is g(v) = |v|2 in the basis {ru, rv}.
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For any quadratic form Q : V → R1, there is an associate symmetric
bilinear form B : V→ R1 defined by

B(u,v) =
1
4
(Q(u + v)−Q(u + v)).

Consequently, we can extend g to a symmetric bilinear form

g(u,v) = 1
4 (E(u1 + v1)2 + 2F (u1 + v1)(u2 + v2) +G(u2 + v2)2

−E(u1 − v1)2 − 2F (u1 − v1)(u2 − v2)−G(u2 − v2)2),

such that the first fundamental form g : TS × TS → R (or more precisely
∀p ∈ S, gp : TpS × TpS → R) is defined as

g(u,v) = Eu1v1 + 2F (u1v2 + u2v1) +Gu2v2.

The geometric significance of the form is in terms of the scalar product in
any TpS. In the {ru, rv} basis, we have u ·p v = gp(u,v) with matrix repre-
sentation

gp =
(
E F
F G

)
. (7.2)

We have g(ru, ru) = E, g(rv, rv) = G, and g(ru, rv) = F . Also,
√

det gp =√
EG− F 2 = ||ru × rv||.

Definition 37. For a regular parametrized surface r : U → S, we define the
area of a bounded region of R = r(Q) ⊂ S, with Q ∈ U by the expression

A(R) =
∫∫

Q

|ru × rv|dudv =
∫∫

Q

√
EG− F 2 du dv.

The first fundamental form is also called the metric of the surface. If the
surface is deformable, the surface equation depends smoothly on a parameter
λ that could be the time (moving surfaces) or just the label for a family of
smooth surfaces, r = r(u, v, λ). In this case, it could be interesting to cal-
culate how the first fundamental form gp does change with this parameter.
That will provide information on how the elementary area and the arc-length
change when we change λ. We consider (7.2) as defining the covariant com-
ponents of the rank 2 tensor gp = gαβ in a two-dimensional Euclidean space,
α, β = 1, 2. The associated contravariant tensor (the dual) will be

gαβ =
1

EG− F 2

(
G −F
−F E

)
. (7.3)

From here we have gαβgβγ = δα
γ , and if we differentiate this identity to λ we

have
dgαδ

dλ
= −gαβgδγ dgβγ

dλ
. (7.4)
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Moreover, if g = det gα,β , we can obtain by straightforward calculations the
interesting relation

dg

dλ
= ggαβ dgαβ

dλ
. (7.5)

Definition 38. The map

N : S → S2 ⊂ R3,

is called the Gauss map.

The tangent map of the Gauss map

dN : TpS → TN(p)S2,

is a linear self-adjoint operator. We have:

U ⊂ R2 −−−−→
r

S ⊂ R3
N(p)=N(r(u,v))−−−−−−−−−−−→

= ru×rv
|ru×rv|

S2 ⊂ R3⏐⏐� ⏐⏐� ⏐⏐�
T (U) 	 R2 −−−−→

dr
Tp(S) 	 R2 −−−−→

dN
TN(p)S2 	 R2

(7.6)

The expression of the tangent map of the unit normal in components is

dN (r)(ξ) =
∂N

∂xi
ξi =

∂N

∂u
ξu +

∂N

∂v
ξv,

and the same expression is obtained if we use the tangent map. The tangent
map of the unit normal has an interesting property. Let α be a parametrized
curve on S. The action of dN on an arbitrary vector ξ ∈ TpS is given by the
action of the ξ vector field:

dN(ξ) = ξ[N ] = DξN .

In some loose sense, a smooth parametrized surface is a continuous col-
lection of smooth curves, so it is natural to understand the properties of the
surface by looking at the curves that can lie on it. In that, let us take a
plane generated by a certain tangent vector ξ and by the unit normal N ,
and choose a curve α lying in the intersection of this plane with the surface.
Of course we have ξ = α′. By using (4.5), we can compute

α′ ·Dα′N = α′ · (N ◦α)′.

On the other hand, the tangent to the curve is in the tangent plane to the
surface, hence it is perpendicular on the unit normal, so we can write α′ ·N =
−α ·N ′ = −α · (N ◦α)′. So, from this equation and the equation above we
find

α′ · (N ◦α)′ = −α′ ·N = κn ·N = ±κ,
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where κ is the curvature of the curve α lying in the normal plane to S.
Of course, the scalar product · is taken in the sense of the first fundamental
form. This is an interesting relation between the curvature of such a “normal”
curve, its tangent and the unit normal to S (again, we speak here about a
curve lying in the intersection of the surface with the plane generated by the
tangent α′ to the curve and the unit normal N). In this situation the rate
of change of the unit normal of S in the direction of the tangent to the curve
(directional derivative), projected upon the tangent, is nothing but plus or
minus the curvature of the curve:

α′ ·Dα′N = ±κ. (7.7)

We can generalize this quadratic form to a bilinear form w ·DvN , defined
on the tangent plane.

Definition 39. The symmetric bilinear form Πp : TpS × TpS → R defined
in any point p of the surface S by

Πp(w,v) = w · dNp(v) = w · dNp(v)

is called second fundamental form of the surface.

The explicit form of the second fundamental form can be derived from its
action on tangent vectors to curves v = α′ = (us, vs):

Π(α′,α′) = eu2
s + 2fusvs + gv2s ,

where
e(u, v) = N · ruu = −Nu · ru,

g(u, v) = N · rvv = −Nv · rv,

f(u, v) = N · ruv = −Nu · rv = −Nv · ru,

with the properties
N · ru = N · rv = 0.

Definition 40. For a regular curve α ⊂ S, we define the normal curvature
at p, the number κn(p) = κ(p) cos θ, evaluated at p, where κ and n are the
curvature and the principal normal of α at p ∈ S, and cos θ = n(p) ·N(p).

In other words, the normal curvature of a curve α is the projection of the
vector κn over N at p. All regular curves that intersect S at p and have
their tangent vectors in the tangent plane of S at p have the same normal
curvature. We also have Πp(v,v) = κn(p) if v ∈ TpS and |v| = 1.

Definition 41. Being a self-adjoint linear operator, Dv(N) = dN(v) (also
called the shape operator) has two real eigenvalues, traditionally denoted
−κ1,2(p), called principal curvatures of S at p. The corresponding eigen-
vectors are called principal directions, and they are orthogonal.
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A curve is called line of curvature if its tangent vector at each point is a
principal direction. The principal curvatures at p are actually the minimum
and maximum values of the normal curvature at p and κ1(p) < Πp(S1 ⊂
TpS) < κ2(p). We have

Theorem 16. If α ⊂ S is a regular connected curve, and if it is a line of
curvature on S, then

dN

ds
= −κn(s)

dα

ds
,

where s is the arc-length parameter along α.

The tangent map of the Gauss map has three important properties:

1.

dN =
(
−κ1 0
0 −κ2

)
in the basis of the principal directions.

2.
det(dNp) = κ1κ2 = K, (7.8)

where K is called the Gaussian curvature.
3.

−Tr(dNp)
2

=
κ1 + κ2

2
= H, (7.9)

where Tr is the trace operator, and H is called the mean curvature.

We can also express the Gaussian (7.8) and mean curvatures (7.9) in terms
of the coefficients of the first and second fundamental forms:

H =
1
2
(κ1 + κ2) =

1
2
eG− 2fF + gE
EG− F 2

, (7.10)

K = κ1κ2 =
eg − f2

EG− F 2
. (7.11)

A simple interpretation of the two curvatures is the following. When Gaussian
curvature in a point is positive, the point is called elliptical, and all curves on
S passing through such a point are locally contained in one side only of the
tangent plane through this point (or the principal normals to these curves
all point toward one side of the tangent plane). A “point-like” particle would
have a stable position of equilibrium in such a point, so elliptical points are
good “confiners.” The sign of H does not matter for such elliptical points,
though H measures the degree of asymmetry in stability of such a confine-
ment, between the principal directions. For example if one of the principal
curvatures k1 is very small, and the other one is very large k2 >> k1, the
Gaussian curvature is small, showing a weak confinement (the particle can es-
cape along the principal direction associated with k1); butH = k1+k2 	 k2 is
still large, showing a high asymmetry in the two directions. If both principal
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curvatures are small, and the surface is almost planar, hence not at all con-
fining in any direction, both K and H are small, showing little confinement,
and also little asymmetry in the two directions.

Points with negative K are hyperbolic and they describe somehow unsta-
ble equilibrium points in a potential energy picture. This point is also called
a saddle point. The particle is confined along one direction, but it is highly
unstable along the perpendicular direction. In this case, the sign of H decides
if the point is more like stable or unstable (which of k1,2 is larger). Parabolic
points have one direction of indifferent equilibrium, and one of stable equi-
librium. A regular surface S where H = 0 is a minimal surface.

The Gaussian curvature K represents the factor by which the Gaussian
map N distorts a principal infinitesimal area on S, as it maps on the sphere
S2. Indeed, if we have an infinitesimal curvilinear rectangle on S at p of area
a, with sides along the principal directions, then the image of this rectangle
under the Gauss map is also a rectangle of area K = κ1κ2a (interpretation
due to Gauss).

Theorem 17. The Gaussian curvature is determined by only the first funda-
mental form. That is K can be computed from just E,F,G and their partial
derivatives up to order 2.

For a sphere of radius R in R3 parametrized by (θ, φ) = (u, v) the above
coefficients are:

r(u, v) = R(sinu cos v, sinu sin v, cosu),
ru = R(cosu cos v, cosu sin v,− sinu),

rv = R(− sinu sin v, sinu cos v, 0),

E = R2, F = 0, G = R2 sin2 u,
e = −R, f = 0, g = −R sin2 u,

and
K =

1
R2
, H = − 1

R
.

We notice that we choose the unit normal of the sphere to be directed outside,
along the radius vector. For this reason the principal curvatures are negative,
and so is H. The Gaussian curvature does not depend on the orientation of
the surface. For a torus, for example, we have r(u, v) = ((a + R cosu) cos v,
(a+R cosu) sin v,R sinu):

E = R2, F = 0, G = (a+ r cosu)2, e = −R, f = 0, g = − cosu(a+R cosu)

and
K =

cosu
R(a+R cosu)

, H = − a+ 2R cosu
2R(a+R cosu)

.

From the differential geometry of surface point of view, we can relate
the six functions E,F,G, e, f, g, and K with the components of the deriv-
atives ri,j expressed in the ru, rv basis. These are the famous Gauss and
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Codazzi equations. More general, from the general differential geometry point
of view, these relations introduce the Christoffel symbols, and further relate
the second-order derivatives of the surface equation to the covariant deriva-
tive. For fluid surface dynamics these relations are very important because
they help mapping Euclidean three-dimensional vectors of the embedding
space R3 to two-dimensional vectors in the tangent plane of the surface,
hence facilitating the construction of momentum conservation theorems for
fluid surfaces (see for example Sects. 8.2 and 8.3).

In surface theory the Christoffel symbols are introduced simply by calcu-
lating the second-order derivatives of the equation of the surface, namely

ruu = Γu
uuru + Γ v

uurv + eN ,

ruv = Γu
uvru + Γ v

uvrv + fN ,

rvv = Γu
vvru + Γ v

vvrv + gN . (7.12)

Example of Christoffel symbols for common surfaces can be seen in [27, 40].
The Christoffel symbols fulfill two sets of important equations: the Codazzi
equations

ev − fu = eΓu
uv + f(Γ v

uv − Γu
uu)− gΓ v

uu,

fv − gu = eΓu
vv + f(Γ v

vv − Γu
uv)− gΓ v

uv, (7.13)

and the Gauss equations

EK = (Γ v
uu)v − (Γ v

uv)u + Γu
uuΓ

v
uv + Γ v

uuΓ
v
vv − Γu

uvΓ
v
uu − (Γ v

uv)2,
FK = (Γu

uv)u − (Γu
uu)v + Γ v

uvΓ
u
uv − Γ v

uuΓ
u
uv,

FK = (Γ v
uv)v − (Γ v

vv)u + Γu
uvΓ

v
uv − Γu

vvΓ
v
uu,

GK = (Γu
vv)u − (Γu

uv)v + Γu
vvΓ

u
uu + Γ v

vvΓ
u
uv − (Γu

uv)2 − Γ v
uvΓ

u
vv) (7.14)

Proofs of these equations can be found in [27, 40]. Based on the Codazzi–
Gauss equations (7.13) and (7.14), we can use the fundamental theorem of
surfaces.

Theorem 18. Two parametrized surfaces r1, r2 : U → R3 are congruent
(i.e., differ by a rigid motion) if and only if g1 = g2 and Π1 = ±Π2.

This is the equivalent of the fundamental theorem of curve geometry (The-
orem 9) introduced in Sect. 5.1. There is an existence version of the funda-
mental theorem (for example [40, Chap. 2.3]). Given the six differentiable
functions E,F,G, e, f, g : U → R with E > 0 and EG − F 2 > 0, and satis-
fying (7.13) and (7.14), there exists a (locally) parametrized surface r(u, v)
with the respective g and Π.

7.2 Covariant Derivative and Connections

The following calculations on two-dimensional surfaces embedded in R3

are based on the concepts of covariant derivative, Christoffel symbols, and
connection that have been introduced for general differential manifolds in
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Sect. 4.10. An useful operator acting on a surface S is the covariant deriva-
tive of a vector field Y along another vector field X, namely

∇XY = DXY −N(N ·DXY ). (7.15)

The covariant derivative of Y with respect to X at p ∈ S represents the
directional derivative of Y with respect to X (DXY ), projected onto TpS.
The covariant derivative becomes more important if the field X is the unit
tangent to a curve α ⊂ S. For a parametrized curve along S, X = tα = α′,
the covariant derivative along α of the unit normal to the surface N is nothing
but its directional derivative along α, ∇α′N = Dα′N ∈ TS. The covariant
(or directional) derivative of the unit normal along α can be decomposed in
terms of the local basis {ru, rv}. More interestingly, we can decompose this
derivative along the unit tangent α′ = t, and along the perpendicular t⊥ to
the unit tangent, defined by t⊥ · t = 0, t⊥ ∈ TpS.

dN(α′) = Dα′N = ∇α′N = κnt + τgt⊥, (7.16)

where τg is the geodesic torsion of the curve α, defined as

τg =
dN

ds
(0) · t⊥p = (Dα′N) · t⊥p . (7.17)

So, the covariant derivative of the unit normal along a curve is the sum of the
normal curvature (κn(α′) = Π(α′)) times the unit tangent, and the geodesic
torsion times the direction orthogonal to the unit tangent, into the tangent
plane. This property of the unit normal is called parallel transport along α.

In general if the covariant derivative of a vector field is zero along a curve,
we say that this field is parallel transported along that curve. In general, the
covariant derivative of a tangent vector field also contains a component along
the unit normal of the surface. We also mention another property: if a curve
belonging to a surface has its geodesic torsion zero, then its unit tangent is
always along the local principal direction, and conversely. We call such curves
lines of curvature. For example, the intersecting curves between a system of
(triple) orthogonal curvilinear coordinates are lines of curvature.

Definition 42. A parametrized curve α in a surface S is a geodesic if its
tangent vector is parallel along the curve.

For any point p ∈ S and any direction v ∈ TpS, there is ε > 0 and a unique
geodesic α(s) : (−ε, ε) → S such that α(0) = p and α′(0) = v. The most
important property is that geodesics are locally distance minimizing. This
property is valid in general only locally. This happens because for an arbitrary
surface, even regular and connected, either the existence of a geodesic through
any point, or its property to be the minimum distance between two given
points, are not mandatory. Parametrized geodesic curves could be distance-
minimizing curves in a global sense (over the whole surface) depending on the
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surface. If a geodesic passing through an arbitrary point of a regular surface
p ∈ S can be indefinitely extended on S, in any direction of TpS, S is called
a complete surface. On a complete surface a geodesic defined locally can be
extended “for all time” (this is the famous Hopf–Rinow theorem, see [27,40]).
Imagine a punctured sphere without North pole S2 {N} and a great circle
(i.e., a geodesic curve on the sphere) that passes through this point. This
geodesic curve also passes through the South pole. Points very close to N
can be joined by smaller arcs than the geodesic curve joining them through
South. This is an example of a not complete surface.

Definition 43. A regular connected surface S is extendable if it is a proper
subset of another regular connected surface S̃, S � S̃. A regular connected
surface S is complete if ∀p ∈ S, ∀γ : (0, ε) → S parametrized geodesic with
γ(0) = p, there is an extended parametrized geodesic γ̃ : R→ S, γ̃|(0,ε) = γ.

A complete surface is nonextendable. A closed surface is complete, and a
compact surface, being closed, is also complete. A complete surface which
is not closed is for example an asymptotic convergent cylindric spiral (see
Fig. 7.4). A parametrized minimal surface, in an isothermal parametrization,
is nonextensible surface, without being complete. In general, given any ori-
ented regular surface S and arc-length parametrized curve α(s) lying on S,

Compact 
surfaces

Closed 
surfaces

Complete 
surfaces

Non extendable 
surfaces

Ex
.:M

in
im

al
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rfa
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Fig. 7.4 Relations between classes of surfaces
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Fig. 7.5 The Serret–Frenet (t, n, b) and Darboux (t, N, t⊥) frames

we can build at any point p = α(s) ∈ S a local trihedron, called the Darboux
trihedron (or frame). This right-handed orthonormal frame is more natural
when working with curves lying on surfaces, than the Serret–Frenet frame.

Definition 44. The Darboux frame (Fig. 7.5) is defined by the unit tangent
of α t(s) = α′(s), t⊥(s) = N(s) × t(s), and the unit normal to the surface,
N(s) by

dt

ds
= κgt

⊥ + κnN ,

dt⊥

ds
= −κgt + τgN ,

dN

ds
= −κnt− τgt⊥, (7.18)

where κn(s) is the normal curvature, τg(s) is the geodesic torsion, and κg(s)
is the geodesic curvature.

The normal curvature was introduced in Definition 40, and the two geodesic
coefficients were involved in (7.16). The geodesic curvature can be understood
even better if we decompose the curvature vector (i.e., the rate of change of
the tangent along the curve) κn along the two orthogonal directions in the
tangent plane to S

dt

ds
= κn = (κn · t⊥)︸ ︷︷ ︸

κg

t⊥ + (κn ·N)︸ ︷︷ ︸
κn

N . (7.19)

Again, the coefficient of the normal component is the normal curvature from
Definition 40 and Theorem 16. The tangent component which defines the geo-
desic curvature, i.e., in the t⊥ direction, is obviously related to the covariant
derivative of the unit tangent along the curve, so we have

|∇tt| = |κg|, (7.20)
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which guaranties κg = 0 in parallel transport. Obviously geodesic curves have
zero geodesic curvature. There is also an interesting integral consequence of
this fact. If we integrate the geodesic curvature on a domain of the surface
(from (7.61)) and by applying the circulation theorem (7.65), we obtain∫∫

D

κgdA =
∫∫

D

N · (∇Σ × t)dA =
∮

∂A

tdr = 0,

where ∇Σ is the surface gradient, and t and N have their usual interpreta-
tions. That is

Proposition 2. The surface integral of the geodesic curvature over any
domain is zero.

Equations (7.19) and (7.20) imply κ2 = κ2
n + κ2

g and we have

κg =
dϕ

ds
,

where ϕ is the angle made between t and a parallel direction to the curve [27,
Chap. 4.4].

7.3 Geometry of Parametrized Surfaces Embedded in R3

This section is in direct relation with Sects. 4.11 and 7.5. Section 4.11, for
example, analyzes the same hybrid tensors and their covariant derivative,
but in the general n-dimensional case. In this section we restrict our analysis
only to two-dimensional surfaces embedded in R3. The study of embedded
surfaces in Euclidean spaces, and how the differential operators map from
one space to the other, is necessary for setting correct balance equations and
boundary conditions for fluid surfaces. Let us have a parametrized surface Σ
defined by the regular change of coordinate functions r(u, v) = (xi(uα), α =
1, 2, i = 1, . . . , 3. We introduce the mixed Jacobian matrix

B = Bi
α =

∂xi

∂uα
, (7.21)

which is a hybrid tensor. This tensor is nothing but the TΣ basis {ru, rv}
introduced earlier, written in a consistent covariant form. A contravariant
surface vector Aα is a vector field defined on TΣ that changes its components
at a coordinate change uα → ũα like

Ãα =
∂ũα

∂uβ
Aβ . (7.22)

Examples of contravariant vectors are the tangent vectors to curves lying in
Σ. The first fundamental form (the metric tensor) on Σ is represented by
(0, 2)-type of tensor defined on Ω2(TΣ) (Sect. 4.2), and it has the expression



7.3 Geometry of Parametrized Surfaces Embedded in R3 117

gαβ =
(

ru · ru ru · rv

rv · ru rv · rv

)
=
(
E F
F G

)
, (7.23)

and we have

ds2 = Bi
αB

i
βdu

αduβ = gαβdu
αduβ = Edu2 + 2Fdudv +Gdv2.

and also gαβg
βγ = δγ

α where δ is the Kronecker symbol. Another useful equa-
tion is

gαβ = Bi
αB

i
β . (7.24)

The contravariant components of the metric tensor are

gαβ =
1

EG− F 2

(
G −F
−F E

)
, (7.25)

and both covariant and contravariant metric tensors are used to lift or lower
indices of various tensors.

An example of covariant vector field is the surface gradient of a function
f : Σ → R

∇Σf =
(
∂f

∂uα

)
= (fu, fv). (7.26)

The contravariant components of the surface gradient are

∇fα = gαβ∇fβ =
(
Gfu − Ffv

EG− F 2
,
Efv − Ffu

EG− F 2

)
, (7.27)

see also [87, Chap. XII] or [27, Sect. 2.5]. Sometimes in literature this operator
is also denoted ∇�, and it can be also written in the form

∇Σf = ∇�f =
Gru − Frv

EG− F 2
fu +

Erv − Fru

EG− F 2
fv. (7.28)

If the surface is isothermal (F = 0), (7.28) reduces to the well-known gradient
in some orthogonal curvilinear coordinate system

∇Σf =
(

1
Hu
fu,

1
Hv
fv

)
, (7.29)

where Hu,v = ru,v/|ru,v|2 are the Lamme coefficients defined in Sect. 4.12.
The surface gradient fulfills < ∇Σf(x),v >x= dfx(v) = Dvf(x) for any
v ∈ TΣ, where dfx is the differential of the mapping f taken at x, <,> is
the Euclidean scalar product on TΣ taken at x, and Dv is the directional
derivative. A more detailed analysis of this operator is done in Sect. 7.5.1.

If A(x) = (Ai) ∈ (TR3)x and a(u) = (aα) ∈ TΣu are an Euclidean and a
surface vector, respectively, we can map their contravariant components by

A = ruau + rvav = (Bi
αa

α), (7.30)
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Fig. 7.6 Mappings between three-dimensional vectors and surface vectors

and conversely
a = (ru ·A, rv ·A) = (au, av).

If the embedding space is just Riemannian manifold (and not Euclidean),
the above equations change and we have to use the metric on this space,
too. For example, we would have aα = Bi

αAi = Bi
αgijA

j , and so on. The
algebraic relations between three-dimensional vectors and surface vectors are
represented in Fig. 7.6. A traditional example is the normal to the surface
which is a covariant vector

Ni =
1
2g
εαβεijkB

j
αB

k
β , (7.31)

where the two ε are the Levi–Civita symbols in the two spaces, and g =
det(gαβ).

7.3.1 Christoffel Symbols and Covariant
Differentiation for Hybrid Tensors

We investigated already such hybrid tensors in Sect. 4.11 in the general case
of m-dimensional Riemannian submanifold embedded into an n-dimensional
Riemannian manifold, both being nonflat. In this section, we continue along
the same line given in Sect. 7.3, specifically studying differential hybrid oper-
ators on two-dimensional regular parametrized surfaces Σ embedded in R3.
Consequently, gij = δij and Γ k

ij = 0. Also, since Σ is Riemannian (has a met-
ric defined) we know that the affine connection on Σ comes from Christoffel
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symbols, and consequently its torsion is zero, Sγ
αβ = 0 (4.38). The Christoffel

symbols on Σ are defined as

Γ δ
αβ =

1
2
gγδ

(
∂gγα

∂uβ
+
∂gβγ

∂uα
− ∂gαβ

∂uγ

)
. (7.32)

Christoffel symbols are introduced on a manifold in a variety of ways [27,
28, 31–33, 40]. One simple way to look at them is to consider a change of
coordinates in Σ from an arbitrary system of coordinates to an isothermal
system of coordinates, i.e., uα → ũα, such that ds2 = gαβdu

αduβ = (dũ2)2 +
(dũ2)2 with Jacobian

Jβ
α =

∂ũβ

∂uα
.

Then, the Christoffel symbols are nothing but the law of derivation of the
Jacobian matrix

∂Jα
β

∂uγ
= Γ δ

βγJ
α
δ .

Also they fulfill the relation

1
2g

∂g

∂uα
= Γ β

βα = Γ β
αβ .

For example, for a surface parametrized by r(x, y) = (x, y, f(x, y)) we have
g = 1 + f2

x + f2
y and

Γ δ
αβ =

fαβfδ

1 + f2
x + f2

y

.

The covariant derivative was repeatedly introduced in this text in either
(4.33) and (7.15), or even the hybrid one in general (4.41). In the case Σ ⊂
R3, for a hybrid tensor Ai

α we define a hybrid surface covariant derivative as

∇βA
i
α =

∂Ai
α

∂uβ
− Γ γ

αβA
i
γ . (7.33)

It has the properties
∇γgαβ = ∇γg

αβ = 0. (7.34)

Let

Παβ =
∂2xi

∂uα∂uβ
Ni =

(
e f
f g

)
,

be the tensor associated with the second fundamental form on Σ (from Def-
inition 39). We can express the second-order derivatives in (7.34) in another
way. From (7.24) we have

∇γgαβ = 0 = (∇γB
i
α)Bi

β +Bi
α(∇γB

i
β),
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from where, by symmetry, we obtain

(∇γB
i
α)Bi

β = 0.

Since Bi
α are actually the basis vectors of the tangent space for Σ, from

the above relation it results that the hybrid surface covariant derivatives
of the hybrid tensor Bi

α are orthogonal to the tangent space. So, they are
proportional to the normal

∇βB
i
α ∼ (some tensor)αβN

i.

By using (7.33) in the LHS term of the above relation, we obtain

∂2xi

∂uα∂uβ
= Γ γ

αβB
i
γ + (some tensor)αβN

i, (7.35)

but this is just the definition of Christoffel symbols given previously (7.12).
So we infer

∇βB
i
α = ΠαβN

i, (7.36)

or, in an equivalent form
Παβ = ∇βB

i
αNi. (7.37)

We mention a useful relation that can be obtained from (7.37)

Παβ =
1

2
√
g
ερσεijk(∇βB

i
α)Bj

ρB
k
σ. (7.38)

We can rewrite the important results from Sect. 7.1 in this covariant formal-
ism. For example, from (7.10) we have a very compact way of calculating the
mean curvature

2H = gαβΠαβ , (7.39)

and the Gaussian curvature

ΠαβΠγδg
βγgδα = 4H2 − 2K. (7.40)

7.4 Compact Surfaces

The most important result in the differential geometry of surfaces is the
Gauss–Bonnet theorem. In the following we present only a corollary of the
global version of this theorem. For the complete differential and global ver-
sions on surfaces with boundaries, we suggest [27,31,33,40].

Theorem 19 (Gauss–Bonnet Theorem). If S is an orientable compact
surface, then ∫∫

S

KdA = 2πχ(S),

where K is the Gaussian curvature, and χ(S) is the Euler–Poincaré charac-
teristic of the surface S.
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Fig. 7.7 Example of a surface with n = g = 6

In other words, the total curvature of a compact surface (i.e., a finite closed
surface without boundaries) can only be−4π(n−1), where the positive integer
n is the number of “handles” (or holes) of the surface. The Euler – Poincaré
characteristic χ of a manifold can be calculated from the ranks of the homol-
ogy groups of the surface (Sect. 2.2) by using triangulation procedures. For
details we recommend [15, 22], and for the proof we recommend [27, 31, 33].
The χ characteristic is a topological (homotopy) invariant. It can also be
expressed in the form χ = 2 − 2g, where g is the genus of the surface, and
it is equal to n defined above. Any surface homeomorphic with a sphere has
χ = 2, the torus has χ = 0, etc. In Fig. 7.7 we present an example of a closed
surface of genus g = 6. The genus can be calculated as the largest number
of nonintersecting simple closed curves on a surface that still do not sepa-
rate it into disconnected sets. The spectacular fact about the Gauss–Bonnet
theorem is that no matter how we smoothly (homeomorphic) deform a sur-
face, its curvature distributes itself in such a way that the total curvature
does not change. For example, for the unit sphere we have

∫∫
S2

= 4π. If we
deform the sphere such that half of it becomes flat, we still have the same
total curvature, in spite of the fact that half of the surface reduced its cur-
vature to zero. This is because we have big accumulation of curvature along
the sharp diameter, i.e., a region of area zero times infinite curvature. The-
orem 19 is related with Theorems 14 and 13 for curves. All these theorems
provide necessary criteria for a curve or surface to be bounded.
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The question is what do we have for the converse affirmation: what cri-
terium should the curvature fulfill to assure compactness for the surface? The
answer is provided by another very powerful theorem. However, this theorem
is valid only for complete surfaces.

Theorem 20 (Bonnet Theorem). If the Gaussian curvature K of a com-
plete surface S satisfies the condition

K ≥ δ2 > 0,

then S is compact and the diameter ρ of S satisfies the inequality

ρ ≤ π
δ
.

This theorem holds if the surface is closed in the topological sense. That
is, if the surface contains all its accumulation points. Complete is just a
generalization for closed, and of course, for compact. A closed surface is
complete, but the reciprocal is not true (see Definition 43). For a proof of the
Bonnet theorem we recommend [27, Sect. 5-4].

There is a big difference between Theorem 19 for surfaces, its equivalent
for curves (Theorems 14 and 13) and Theorem 20. The first three are global,
while the last one is local.

Definition 45. For a regular curve Γ of equation r(s), parametrized by arc-
length s, with nonzero curvature everywhere, and for any positive number
r0 > 0, we can define a parametrized regular surface TΓ , called tube of radius
r0 around Γ (or tubular surface), as follows

rT (s, φ) = r(s) + r0(n(s) cosϕ+ b(s) sinϕ),

with ϕ ∈ [0, 2π], and n, b the normal and binormal of Γ .

There are also a series of results valid for closed surfaces (hence also valid
for compact surfaces) related to integral theorems. We present some of these
at the end of Sect. 7.5.

7.5 Surface Differential Operators

This section is in direct relation with Sects. 7.3 and 4.11. In this section we
introduce some of the properties and applications of differential operators
defined on a surface Σ ⊂ R3. The reason for such a construction is the
following. When working with fluids with free surfaces, like so many examples
in this book, a necessary condition is to match the conserving quantities at
the fluid boundaries, which are free surfaces. For this reason we have to
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handle sometimes only the tangent components of the conserving quantities.
These tangent, or parallel, components fulfill a different type of differential
geometry than those in R3, yet a surface geometry induced by the R3 geo-
metry. The action of differential operators on surfaces was first described in
terms of differential invariants (or historically called differential parameters)
by Beltrami and Darboux, and later on developed by Weatherburn [87, 88],
Oldroyd [89], and Scriven [90,91]. Useful reviews of the matter can be found
in [38, Chaps. 9, 10] and [92, Chap. 1].

In the following, we are interested in expressing differential operators that
can “see” only the dependence on the point of the surface, and factorize upon
the dependence in normal direction. It is interesting to reformulate the well-
known vector analysis formulas that require zero value for the curl(grad),
and div(curl) (∇×∇, ∇ · (∇×)). Since the normal direction plays somehow
the role of a kernel, we expect these formulas to be still valid modulo some
no-zero components along the normal direction to the surface.

We consider a regular parametrized surface r(u, v) : D → Σ ⊂ R3 with its
first fundamental form coefficients E,F , and G, unit normal N , and mean
curvatureH. We define a scalar differential function Φ̃ : Σ → R and Φ(u, v) =
Φ̃(r(u, v)).

7.5.1 Surface Gradient

The surface gradient was already introduced in coordinates in Sect. 7.3. We
introduce the surface gradient of Φ to be the vector field with values in the
tangent bundle ∇ΣΦ ∈ TΣ defined by

∇ΣΦ =
1

EG− F 2
(GΦu − FΦv)ru +

1
EG− F 2

(EΦv − FΦu)rv, (7.41)

where subscript means differentiation, and ru,v(u, v) form a basis in the tan-
gent plane T(u,v)Σ. Equation (7.41) is independent of the parametrization
of the surfaces, and in that it is a differential invariant. The function ∇ΣΦ
defines a tangent vector field perpendicular on the Φ = const. lines on Σ. Ind-
eed, if ∇ΣΦ|Σ = 0, it results (through GΦu = FΦv, EΦv = FΦu) Φ = const.,
like in the case of the full gradient operator on R3. Otherwise, curves with
∇ΣΦ = 0 are called level curves. Actually, we can define only the surface-
gradient operator by

∇Σ =
1

EG− F 2

[(
G
∂

∂u
− F ∂

∂v

)
ru +

(
E
∂

∂v
− F ∂

∂u

)
rv

]
= ∇1ru +∇2rv,

(7.42)
or simply (∇1,∇2) in the {ru, rv} basis. For orthogonal parametric curves
(F = 0) we have

∇Σ =
ru

E
∂u +

rv

G
∂v,
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where ∂u = ∂/∂u, etc. Since ∮
Γ

∇Σ · dr = 0,

for any closed curve Γ ⊂ Σ, the condition for a tangent field a : Σ → TΣ to
be a gradient field is ∮

∀Γ

a · dr = 0.

In Fig. 7.8 we present some examples of surface-gradient fields a = ∇ΣYlm

(θ, ϕ) defined on a sphere (Ylm are the spherical harmonics). It is interesting
to relate these fields with the hairy ball theorem, see problems at the end of
this chapter.

Fig. 7.8 Surface-gradient fields on sphere ∇ΣYlm(θ, ϕ). From upper left to lower right
l = 1, m = 0; l = 3, m = −1; l = 5, m = 3; l = 1, m = 1; l = 3, m = 3; l = 9, m = 4
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7.5.2 Surface Divergence

Let a(u, v) = a1(u, v)ru + a2(u, v)rv be a vector field in the tangent space.
We define the surface divergence acting on a scalar field a

∇Σa = (∇1,∇2)a = (ru∇1 + rv∇2) · a = ru · ∇1a + rv · ∇2a

=
1

EG− F 2

[(
G
∂a

∂u
− F ∂a

∂v

)
ru +

(
E
∂a

∂v
− F ∂a

∂u

)
rv

]
. (7.43)

We have a remarkable property.

Proposition 3.
∇Σ ·N = −2H.

Proof. From (7.43) we have

∇ΣN =
1

EG− F 2
(Gru ·Nu − Fru ·Nv + Erv ·Nv − Frv ·Nu)

= −eG+ Eg − 2Ff
EG− F 2

= −2H,

according to (7.11), where e, g, f are from Definition 39. ��

We can generalize the action of the surface divergence (7.43) to arbitrary
vector fields A = A1ru +A2rv +AnN in R3

∇Σ ·A = −2HAn +
1√

EG− F 2

[
(
√
EG− F 2A1)u + (

√
EG− F 2A2)v

]
,

(7.44)
where subscripts represent differentiation. For an application see Exercise 2
at the end of the chapter.

Surface divergence is intimately related to the geodesic curvature. To verify
this we choose an orthogonal parametrization {ru, rv} with F = 0 on Σ and
normalize it to

r1 ≡
ru√
E
, r2 ≡

rv√
G
.

It is easy to obtain the relations

∂r1

∂u
=
∂

∂u

(
ru√
E

)
=

e√
E

N − Ev

2
√
EG

r2.

∂r1

∂s1
=

1√
E

∂r1

∂u
,

where s1,2 is the arc-length along the curves v = const. and u = const.,
respectively. From these last equations and from (7.19) we can write

κg|v=const. = − Ev

2E
√
G
.
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From (7.44) we can now identify the RHS of the above equation with the
relation

∇Σ · r2 =
1√

EG− F 2

∂

∂v

√
EG− F 2

√
G

= −κg.

Since the parametric curve v =const. is arbitrary, we can enounce [87]

κg = −∇Σ · t⊥, (7.45)

where we used the right-handed convention t⊥ = N × t.

7.5.3 Surface Laplacian

We define the surface Laplacian of a scalar function in the usual way

�ΣΦ = ∇Σ · ∇ΣΦ =
1√

EG− F 2

[(
GΦu − FΦv√
EG− F 2

)
u

+
(
EΦv − FΦu√
EG− F 2

)
v

]
.

When studying the motion of a free surfaces r(u, v, t), it is useful to have a
simpler relation for the surface Laplacian of the position vector

�Σr =
1√

EG− F 2

[(
Gru − Frv√
EG− F 2

)
u

+
(
Erv − Fru√
EG− F 2

)
v

]
. (7.46)

By using the Christoffel symbols Γ c
ab (4.35) and (4.36), we obtain the following

expression

�Σr =
F√

EG− F 2

[
(G2Γ v

uu − FGΓ v
uv + 2F 2Γu

uv − FEΓu
vv −GEΓu

uv)ru

+(E2Γu
vv − FGΓ v

uu + 2F 2Γ v
uv − FEΓu

uv −GEΓ v
uv)rv

+
2fF (F 2 −EG) + E2gG− eF 2G+ EeG2 − gF 2E

F
N

]
, (7.47)

decomposed along the tangent {ru, rv} basis and the unit normal N to the
surface Σ. Equation (7.47) is used to provide relations between the Lapla-
cian of the position vector r = (xi) ∈ R3 and the mean (H) and Gaussian
(K) curvatures of the surface Σ. For example, from (7.11) and (7.47), the
Laplacian of the normal component of the position vector is

(�Σr)n = 2HN . (7.48)

It is interesting to compare this result with (10.56) �r = 2EHN from Theo-
rem 26. In the full three-dimensional case, for isothermal parametrization the
relation between the Laplacian and mean curvature contains an additional
factor of E.
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In the case of orthogonal parametrization (u, v) on the surface, we have
F = 0 and consequently

�Σr = 2HN . (7.49)

Also we can write [87]

(�Σr)2 = 2K +
3∑

i=1

(∇Σ ×∇Σx
i)2, (7.50)

and for the normal component

�Σ(r ·N) = (r ·N)(2K − 4H2)− 2H + 2∇Σ · (Hr). (7.51)

Another useful relation occurs if we apply (7.50) to N

N · �ΣN + (∇Σ ·N)2 = 2K.

In the case of minimal surfaces (H = 0) we have (from (7.51)) the special
relation �Σr = 0, and also the relation

�Σ(r ·N) = 2(r ·N)K. (7.52)

7.5.4 Surface Curl

For a three-dimensional differential vector field A we introduce the surface
curl by

∇×A =
1

EG− F 2

[
ru×

(
G
∂A

∂u
−F ∂A

∂v

)
+rv×

(
E
∂A

∂v
−F ∂A

∂u

)]
. (7.53)

If A = A1ru +A2rv +AnN we have a very useful relation

∇Σ ×A =
1√

EG− F 2

[
(FA1 +GA2)u − (EA1 + FA2)v

]
N

+
1√

EG− F 2

[
(fA1 + gA2)ru − (eA1 + fA2)rv

]
+∇ΣAn ×N . (7.54)

The terms in the second line of (7.54) represent the tangent components of
the surface curl. There are some interesting properties

∇Σ ×N = 0 (7.55)
∇Σ × r(u, v) = 0 (7.56)
∇Σ × (ΦN) = ∇ΣΦ×N . (7.57)

Equation (7.55) raises the question: according to the Helmholtz theorem
(Theorem 27) of representation in three dimensions, we know that a curl-
free vector field is the gradient of some scalar field. What happens in the case
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of surface curl? Does it mean that the normal is a surface-gradient field? The
answer is of course no, and it will be proved so in Lemma 5. Basically, to
be a surface gradient, the vector field has to be tangent, in addition of being
curl-free, which is not the case of the normal field.

In the following we are interested to verify if the well-known three-
dimensional relation ∇ × (∇Φ) = 0 has an equivalent in terms of surface
operators. The answer is given by:

Proposition 4. If a = ∇ΣΦ then ∇Σ × a ∈ TΣ. A necessary condition for

∇Σ ×∇ΣΦ = 0, (7.58)

is K = 0, i.e., the surface curl of a surface gradient is zero only on surfaces
with zero Gaussian curvature. On such surfaces (7.58) is satisfied if

EΦv − FΦu

GΦu − FΦv
= −f

g
. (7.59)

Very interesting, and contrary to the R3 case, the surface curl of a surface
gradient is not necessarily zero, but belongs to the tangent bundle. It can
be zero but only on special types of surfaces, and for specific scalar fields
only. For the proof we use (7.54). Obviously (∇ΣΦ)n = 0. The first part of
Proposition 4 is immediate by checking that the normal part of the curl is
zero

∇ΣΦ =
1

EG− F 2
(GΦu − FΦv)ru +

1
EG− F 2

(EΦv − FΦu)rv,

then
(F (∇ΣΦ)1 +G(∇ΣΦ)2)u − (E(∇ΣΦ)1 + F (∇ΣΦ)2)v = 0.

The second part of the proposition results also from (7.54) and the compati-
bility of the linear system

A1f +A2g = 0
A1e+A2f = 0.

Basically, (7.59) tells that the surface curl of the surface gradient of a scalar
field Φ is zero if for any displacement (du, dv) orthogonal to the level lines of
Φ in Σ we have

du

dv
= − g

f
.

In other words, the tangent vector surface gradient of Φ makes at every point
a certain prescribed angle with the local frame {ru, rv}.

The next question addresses the problem of the surface divergence of a
surface curl. For any space vector A = A1ru +A2rv +AnN we calculate

∇Σ · (∇Σ ×A) =
2H√

EG− F 2
[(EA1 + FA2)v − (FA1 +GA2)u]
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+
1√

EG− F 2
[(fA1 + gA2)u − (eA1 + fA2)v], (7.60)

and we notice it is independent of An. We have

Proposition 5. If A ⊥ TΣ, i.e., A = AnN , then

∇Σ · (∇Σ ×A) = 0.

In other words the surface divergence of the surface curl is zero if the vector
field is normal, but not in general. For an arbitrary vector field the equation
∇Σ · (∇Σ ×A) = 0 is a complicated PDE, involving Christoffel symbols and
second-order derivatives of N .

We leave the proof of this Proposition as an exercise to the reader (Hint:
use (7.55)).

Like in the case of the surface divergence, there is a relation between the
surface curl and the geodesic curvature. From (7.45), (7.70), and (7.55) we
obtain

κg = N · ∇Σ × t, (7.61)

that is the geodesic curvature of a curve lying on Σ is the normal component
of the curl of the unit tangent to the curve.

When the partial derivative is substituted with the covariant derivative,
in all the above surface differential operators, some of the relations between
operators change. This happens because of the noncommutativity property
of the second-order covariant derivative (4.38).

7.5.5 Integral Relations for Surface Differential
Operators

There are equivalent forms for the integral theorems of Stokes, Gauss, and
Green in terms of surface differential operators, relating integrals on domains
of the surface and line integrals around the boundaries of such domains. Like
previously we denote by A = A1(u, v)ru + A2(u, v)rv + An(u, v)N ∈ R3 a
three-dimensional differential vector field.

We consider a domain D ⊂ Σ with smooth boundary given by the arc-
length parametrized curve ∂D = Γ ⊂ Σ. At any point of Γ we have the
Serret–Frenet trihedron {t,n, b}u(s),v(s), and the unit surface normal N(u, v).
We define the unit vector tangent to the surface and normal to the curve
t⊥ ∈ TΣ, t · t⊥ = 0, see Example 7 in Sect. 7.6. A possible way to define it is
t⊥ = N×t. The direction of t⊥ is chosen outward from the region D enclosed
by Γ . We have another trihedron composed by {t, t⊥,N}. The equivalent of
the Gauss divergence theorem is given by∫∫

D

∇Σ ·AdA =
∮

Γ

A · t⊥ds− 2
∫∫

D

HA ·NdA, (7.62)
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where dA is the infinitesimal area element. This equation is the Gauss diver-
gence theorem analog for surfaces. The LHS is the integral over the domain of
the (surface) divergence of a vector field A. Contrary to the three-dimensional
case, where this term is balanced only by an integral over the boundary of
the domain, in the surface case we have two terms. The first term in the
RHS is indeed the “flux” of the vector field (Γ curve) through the boundary,
in this case in the direction t⊥. The second term in the RHS is additional,
depends on the surface geometry, and represents the transfer of flux of A in
the normal direction through the domain D . This term cancels if the surface
is minimal (case when the Gauss theorem for three-dimensional domains and
(7.62) are identical) fact which can be used as equilibrium criterium for the
energy balance. If, for example, we examine an incompressible flow ∇v = 0
and we consider Σ a free fluid surface (so we have no normal flow across
the surface), by substituting A = v in (7.62), we obtain a zero circulation
theorem ∮

Γ

v · t⊥ds =
∮

Γ

v⊥ds = 0, (7.63)

for any closed curve lying on the free surface. This conservation law is true
even for an arbitrary surface when we have fluid flow across it. When we
assume an orthogonal parametrization for simplicity, and from (7.44) we
notice that in this case 0 = ∇v = ∇Σv + 2Hvn, so the LHS in (7.44) cancels
the second term in the RHS, and we have again (7.63).

Another consequence of (7.44), useful in some applications, is obtained if
we choose A =const.∮

Γ

t⊥ds = 2
∫∫

D

HNdA = 2
∫∫

D

HdA. (7.64)

The Green and Stokes integral theorems for surface differential operators
have the same form as in the full three-dimensional case. For more details
the reader can find details in the book of Weatherburn [87, Articles 120–130].
We write here only the (geometrical) circulation theorem, also known under
the name of Stokes theorem∫∫

D

N · (∇Σ ×A)dA =
∮

∂D

A · tds, (7.65)

where the RHS is called the circulation of the field A around the loop Γ = ∂A.
An immediate consequence of the circulation theorem is the following [87].

Lemma 5. If a tangent vector field a ∈ TΣ has its surface curl tangent to
the surface, too, ∇Σ ×a ∈ TΣ, this vector is the surface gradient of a scalar
function defined on the surface.

Proof. The LHS in (7.65) is zero and by the circulation theorem the RHS is
zero, for any arbitrary loop. According to Sect. 7.5.1 the tangent field A is
the gradient of some scalar function Φ : Σ → R. ��
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Consequently, contrary to the three-dimensional case where the necessary
condition for a vector field to be the gradient of some scalar field was to have
the curl zero, in the surface case the field also needs to be tangent (see also
Exercises 8 and 9 of this chapter).

7.5.6 Applications

In the following we illustrate the above propositions with examples from
cylindrical, spherical, and toroidal surfaces.

7.5.6.1 Cylindrical Surfaces

We choose an infinite right cylinder of radius R with parametrization u = ϕ
(the polar angle in the xOy base plane), and v = z, and we have G = 1, E =
R2, F = g = f = 0, e = R. The normal is N = (cosϕ, sinϕ, 0), the Gaussian
curvature is obviously 0 and H = 1/(2R). The surface differential operators
are

∇CylΦ =
(
− sinϕ

R

∂Φ

∂ϕ
,
cosϕ
R

∂Φ

∂ϕ
,
∂Φ

∂z

)
,

∇Cyl ·A =
∂A1

∂ϕ
+
∂A2

∂z
+
An

R
,

∇Cyl ×A =
(

1
R

∂A2

∂ϕ
−R∂A1

∂z

)
N +

1
R

∂An

∂z
ru +

(
A1 −

1
R

∂An

∂ϕ

)
rv,

�CylΦ =
1
R2

∂2Φ

∂ϕ

2

+
∂2Φ

∂z2
.

We also check by direct calculation that ∇Cyl × (∇CylΦ) = 0 if Φ = Φ(z),
i.e., the curl of the gradient is zero on scalar fields with cylindrical symmetry
only. Also, ∇Cyl · (∇Cyl ×A) = 0 only if A2 = A2(z).

7.5.6.2 Spherical Surfaces

We have a sphere of radius R with parametrization u = θ and v = ϕ, and
we have G = R2 sin2 θ,E = R2, F = f = 0, e = −R, g = −R sin2 θ. The
normal is N = (sin θ cosϕ, sin θ sinϕ, sin θ cotϕ), the Gaussian curvature is
K = 1/R2 and H = −1/R. The surface differential operators are

∇SphΦ =
1
R

(
cos θ cosϕ

∂Φ

∂θ
− sinϕ

sin θ
∂Φ

∂ϕ
, cos θ sinϕ

∂Φ

∂θ
+

cosϕ
sin θ

∂Φ

∂ϕ
,− sin θ

∂Φ

∂θ

)
,
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∇Sph ·A =
1

sin θ
∂

∂θ
(sin θA1) +

∂A2

∂ϕ
+

2
R
An,

∇Sph ×A =
1
2

(
−2A1 sinϕ+A2 sin(2θ) cosϕ− 2 cosϕ

∂A1

∂ϕ

+ 2 cosϕ sin2 θ
∂A2

∂θ
+

2
R

sinϕ
∂An

∂θ
+

2 cot θ cosϕ
R

∂An

∂ϕ
+

2
R

sinϕ
∂An

∂θ
,

2A1 cosϕ+A2 sin(2θ) sinϕ− 2 sinϕ
∂A1

∂ϕ
+ 2 sin2 θ sinϕ

∂A2

∂θ

+
2
R

cot θ sinϕ
∂An

∂ϕ
− 2
R

cosϕ
∂An

∂θ
,A2(3 + 2 cos(2θ))

−2 cot θ
∂A1

∂ϕ
+ sin(2θ)

∂A2

∂θ
− 1
R

∂An

∂ϕ

)
,

�SphΦ =
1
R2

(
cot θ

∂Φ

∂ϕ
+
∂2Φ

∂θ2
+

1
sin2 θ

∂2Φ

∂ϕ2

)
.

As an example let us find the condition for a vector field a = a1ru + a2rv

tangent to a sphere to fulfill the property in Proposition 5. We have

∇Sph · (∇Sph × a) = 2a2 cos θ − 1
sin θ

∂a1

∂ϕ
+ sin θ

∂a2

∂θ
= 0,

and this equation results in the following condition for the components of the
field

∂

∂θ
(a2 sin2 θ) =

∂a1

∂ϕ
.

For example, if we choose

a2 = P3,1(cos θ) cos(4ϕ) sin(2ϕ),

from the above condition we obtain the expression

a1 =
d

dθ

(
P3,1(cos θ) sin2 θ

)∫ ϕ

cos(4ϕ′) sin(2ϕ′)dϕ′.

The field fulfilling this conditions is presented in Fig. 7.9.

7.5.6.3 Toroidal Surfaces

We set toroidal coordinates (u, v) in the form

r(u, v) = ((a+R cosu) cos v, (a+R sinu) sin v,R sinu),

where a,R are the small and large radii of a torus. We have E = R2, G =
(a+R cosu)2, F = f = 0, g = cosu(a+R cosu), e = R. The surface differen-
tial operators are
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Fig. 7.9 An example of a tangent vector field on the surface of a sphere fulfilling the
condition of zero divergence of the curl discussed in Proposition 5

∇torΦ =
1
R2

∂Φ

∂u
ru +

1
(a+R cosu)2

∂Φ

∂v
rv,

∇tor ·A = − R sinu
a+R cosu

A1 +
∂A1

∂u

+
∂A2

∂v
− a

2 +R2 + 3aR cosu+R2 cos2 u
R(a+R cosu)2

An,

(∇tor ×A)n = − R

a+R cosu
∂A1

∂v
+
a+R cosu

R

∂A2

∂u
− 2 sinuA2,

(∇tor ×A)1 =
cosu
R

A2 +
1

R(a+R cosu)
∂An

∂v
,

(∇tor ×A)2 = − 1
a+R cosu

A1 −
1

R(a+R cosu)
∂An

∂u
,

and the Laplacian

�torΦ = − sinu
R(a+R cosu)

∂Φ

∂u
+

1
R2

∂2Φ

∂u2
+

1
(a+R cosu)2

∂2Φ

∂v2
.
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7.5.6.4 Closed Surfaces

There are some interesting consequences of the integral equations for the
surface operators. For example, a consequence of the divergence integral for-
mula (7.62) is that on a closed surface Σ we have the LHS of (7.64) approach-
ing zero. It results

Proposition 6. The average value of the mean curvature vector is zero on
any closed surface ∫∫

HdA =
∫∫

HNdA = 0. (7.66)

Other interesting relations holding on closed surfaces are∫∫
Σ

N · (∇Σ ×A)dA = 0 and
∫∫

Σ

N ×∇ΣΦdA = 0, (7.67)

for any vector or scalar field A and Φ, respectively.

7.6 Problems

1. Find a proof for Proposition 3 by using (7.7).
2. There are some ambiguities in the notation of vector components in dif-

ferent orthogonal bases. For example let us have on a sphere S2 ⊂ R3

parametrized by (u, v) = (θ, ϕ) the orthonormal basis {eθ,eϕ}. We have
ru = (cos θ cosϕ, cos θ sinϕ,− sin θ) = eϕ because its norm is 1. How-
ever, rv = sin θ(− sinϕ, cosϕ, 0) = sin θeϕ. Now, a tangent field can be
expressed in either way a = aθeθ + aϕeϕ or a = auru + avrv, and we
have the relations aθ = au, aϕ = sin θav. Show that

∇Σa =
1

sin θ
∂

∂θ
(sin θaθ) +

1
sin θ

∂aϕ

∂ϕ
.

3. A parametrization of a surface Σ is called isometric if E = G and F = 0.
The name comes from the resulting arc-length relation ds2 = λ(du2 +
dv2). Show that we have an isometric system of coordinates (u, v) on Σ
defined by curves u = const. and their orthogonal complements, if and
only if

�Σu

|∇Σu|
is a function of u only. Hint: check [87].

4. Prove (use [87, Article 120]) that the following usual algebraic relations
fulfilled by differential operators in R3 are also valid for surface differen-
tial operators
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∇Σ · (ΦA) = ∇ΣΦ ·A + Φ∇Σ ·A, (7.68)
∇Σ × (ΦA) = ∇ΣΦ×A + Φ∇Σ ×A, (7.69)
∇Σ · (A×B) = B · ∇Σ ×A−A · ∇Σ ×B, (7.70)

�Σ(ΦA) = Φ�ΣA + 2∇ΣΦ∇Σ ·A + A�ΣΦ. (7.71)

5. Let Φ(θ, ϕ) be a scalar differentiable field defined on a sphere S2. Show
by direct calculation that ∇Sph × (∇SphΦ) = 0 only if Φ = const., and
compare this result with Proposition 4 (i.e., KSph �= 0).

6. Prove that ∇Σ · �Σr = −4H2.
7. A curve C lies on a surface r(u, v) ∈ Σ. Prove that the unit perpendicular

t⊥ to the tangent t of the curve, contained in the tangent plane, has the
expression

t⊥ =
(Fus +Gvs)ru − (Eus + Fvs)rv

E(G− F )us +G(F −E)vs
.

8. For a minimal surface H = 0 so the surface divergence of the normal is
zero. Does it result from here that in the case of minimal surfaces the unit
normal can be expressed as a surface curl (like in the three-dimensional
case)?

9. Find out: is there a surface equivalent (in terms of surface differential
operators) of the Helmholtz representation theorem?

10. For a (1, 1)-type of tensor defined on Σ ⊂ R3 A
β
α, prove that

∇α
α =

1√
g

∂

∂uα
(
√
gAα).

11. Find properties of the surface differential operators arising for the Hairy
ball theorem, i.e., there is no zero everywhere tangent vector field on the
2-sphere.



Chapter 8

Theory of Motion of Surfaces

In this chapter we focus on the kinematics and dynamics of moving surfaces,
in the same way we did in Chap. 6 for curves. The boundary conditions ob-
tained from this geometrical approach will be used in the next chapters for
the study of nonlinear oscillations and waves of liquid drops. In this chapter
we assume that all transformations of coordinates are continuous at least of
class C2, and they have nonvanishing Jacobian functions.

8.1 Coordinates and Velocities on a Fluid Surface

In the case of moving fluid surfaces, it is more delicate to introduce
Lagrangian, Eulerian, and convected coordinates. This is mainly because
there is no natural differential mapping like in the case of the full three-
dimensional space. To define such coordinates for fluid surface, we follow
the geometric approach for shells given for example in [92, Sect. 1.5]. We
define a fluid surface by a domain F in R2 and a general system of nonsin-
gular curvilinear coordinates (Xα), α = 1, 2 for the points in this domain.
Actually, these coordinates label the particles in the surface. Of course we
can always endow R2 with a system of Euclidean coordinates (Zα) for F .
We have the coordinate transformations Zα = Zα(X1, X2) and the inverse
Xα = Xα(Z1, Z2). The Euclidean coordinates have their unit Euclidean vec-
tors as a basis, {Îα}α=1,2, while in the curvilinear coordinates we introduce
the tangent vectors to the lines of coordinates, namely

Eα =
∂Zβ

∂Xα
Îβ , β = 1, 2. (8.1)

A configuration of F is a mapping r : F → R3, namely r(Z). We set the
similar curvilinear (xk) and Euclidean (zk), k = 1, . . . , 3 coordinates in R3

with their corresponding transformations of coordinates, and the basis

ek =
∂zj

∂xk
îj . (8.2)

137
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F
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(r t)
-1

I1
i3I2

i2

i1

z1
z 2

z3Euclidean 2-d
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TR3
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e1

e2

Vt
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Fig. 8.1 The geometric description of a fluid moving surface. There are both Euclidean
and curvilinear coordinate systems for both the surface F and R3, as well as basis vec-
tors. The possible coordinate transformations, the configuration mapping (motion of the
surface), and their inverses are drawn in gray arrows. The material and space velocities
are also presented in the tangent bundle

Let C (F ) =
⋃

r:F→R3
r be the set of all configurations. A curve in C (F )

represents a motion of the fluid surface F . We can parametrize this curve
with time, and we have the mapping from the curvilinear coordinates into
the Euclidean three-dimensional space, as an embedding t → x ◦ rt ◦ Z =
x ◦ r ◦ Z(X, t) = (xi(rt(X))). For the graphical intuition we present these
systems in the left part of Fig. 8.1. We define the material (or Lagrangian)
velocity of the fluid surface by the mapping V L : F → R3

V L = V (X, t) =
∂xi(X, t)
∂t

. (8.3)

This vector is the three-dimensional velocity of the material particle labeled
X and belonging to the configuration of the fluid surface. In components it
reads V L = V i

Lei.
A motion is regular motion if the mapping rt is invertible with r−1

t :
rt(F ) → F , and the mapping and its inverse are smooth functions. In this
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case we can define a spatial (or Eulerian) velocity by the composition of
mappings

rt(F ) ⊂ R3 −−−−→
r−1

t

F (Zα) −−−−→
X(Z)

R2(Xα) −−−−→
V L

TR3. (8.4)

In other words the space velocity reads

vE(r, t) = V L ◦X ◦ r−1
t . (8.5)

This velocity is what is measured at a certain moment, at a point r in space,
of course if that point belongs to the configuration. Equation (8.5) coincides
with the three-dimensional case, represented in (9.3) and (9.4).

In addition to these two velocities, we need to define a convective velocity
like in the three-dimensional case. The problem is that there is no natural
mapping between the two-dimensional manifold F and the three-dimensional
space. We need to decompose the space velocity at any point into its normal
and parallel components, with respect to the configuration.

vE(r, t) = vnN + v�, (8.6)

where N is the unit normal to the configuration, and the parallel component
v� ∈ TF is a vector in the tangent space to the configuration. The pull back
of the mapping rt (Definition 11) acting on this parallel component is the
convective velocity

vc = (X ◦ rt)∗vE � = vα
c Eα, (8.7)

and it is a tangent vector field on F for every time t. Actually, the convective
velocity is the velocity of the material points within the surface, or with
respect to the surface, while the normal component is the velocity of the
surface itself.

The coordinates (Xα) are the Lagrangian coordinates in the space of labels
of the fluid surface. It requests some caution to introduce Eulerian (space)
coordinates and convected coordinates in a moving fluid surface. In [92] the
convected coordinates for moving surfaces are introduced simply by the map-
ping

ht : rt(F )→ R2, h
α
t (r) = Xα(r−1

t ), (8.8)

so these coordinates label the points of the moving surface directly with
the curvilinear (suitably chosen for this purpose) coordinates on F , and
in that appear to be convected by the motion and move together with
the surface. The convected coordinates defined like this have an interesting
property.

Lemma 6. The components of the convective velocity with respect to the coor-
dinates (Xα) are exactly the same as the components of parallel projection of
the space (or material) velocity on the surface with respect to the convected
coordinates hα

t .
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A proof of this lemma is to be found in [92]. We give here another proof. Since
the basis vectors Eα are pushed forward by the differential of h−1 into the
basis vectors of the convected coordinates, ξα = d(h−1

t )(Eα), we can write
from (8.7)

vE � = d(h−1
t )(vc) = d(h−1

t )vα
c Eα = vα

c d(h
−1
t )Eα = vα

c ξα, (8.9)

with α = 1, 2, which proves the affirmation.
Now, if we want for a system of coordinates Xα

E = hα
t (r) to move together

with the moving surface rt(F ), this coordinates should involve zero con-
vected velocity vc = 0. According to Lemma 6, from vc = vα

c Eα we have
V L � = vE � = vαξα, and if vc = 0, by components the space and mate-
rial velocities are normal to the surface in this points. Consequently they
move together with it. In Aris’ formalism [38], the convected coordinates
are directly introduced by requesting that the points labeled by such coordi-
nates move only in the normal direction to the surface. That is they “move”
together with the surface. This definition works in many situations, but there
are situations where this definition may request a special curvilinear coordi-
nate system. In the following we give two examples.

Example 1. First example is in favor of using Eulerian coordinates. Let us
introduce F as a half-plane of coordinates (Xα), X1 being the distance from
the point to the edge of this half-plane. The configuration will be this half-
plane making a certain variable angle with a fixed system in R3, and the
motion is the uniform rotation of this half-plane around the fixed edge with
angular velocity ω. We can consider a thin layer of fluid adherent to this
rotating half-plane and flowing away from the fixed axis, but in the half-plane,
because, say, of the centrifugal force. A particle of Lagrangian label (Xα) is
mapped into rt = (ξ(t) cosωt, ξ(t) sinωt, 0) with ξ(0) = X1. The Lagrangian
velocity is in this case V L = (−ξω sinωt, ξω cosωt, 0), the space velocity
is vE = (−ξω sinωt + ξ′ cosωt, ξω cosωt + ξ′ sinωt, 0), and the convective
velocity is (ξ′, 0) ∈ TF . In this case it is easy to associate Eulerian fixed
coordinates: these are fixed points in the half-plane, describing concentric
circles around the edge, because their velocities are normal.

Example 2. In our second example the Eulerian coordinates will not work
so natural. It is the case of translation motion of closed surfaces. In such
situation it is really difficult to construct a “fixed” coordinate system in a
moving membrane (like a air bubble ascending to the surface, or the mem-
brane of a motile cell while swimming). Let us consider Ft,N(X, t) being
the configuration surface moving in time, and its normal, respectively, in the
X parametrization. From any point rt(X) of the configuration Ft, we can
construct a flow box of curves which are always tangent to the instantaneous
vector N

rε(X, t) = r(X, t) + εN(X, t),

with arbitrary ε > 0. This equation is just the normal variation of a surface,
defined in (10.36) in Sects. 10.4.1 and 10.4.2. At t + dt moment of time,
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the family of curves rε(X, t) generated normally at t intersects the moved
surface Ft+dt in some new points. These intersections represent the change
from Lagrangian coordinates rt to the Eulerian ones. If rε(X, t) represent the
Eulerian coordinates at moment t, the intersection between the normals at t
and the moved surface at t+ dt are the new Eulerian coordinates. If the flow
of the fluid surface is regular, and by using the flow box theorem (Theorem 6)
in Sect. 4.4, we can integrate such positions for finite interval of time.

Let us practice this definition by considering a sphere of radius R moving
with constant translation velocity V along the z1-axis, like it is represented
in the upper part of Fig. 8.2. The Lagrangian coordinates on the sphere move
together with the sphere and keep for example the same polar and azimuthal
angles. For example we can choose B = (ϕ, θ) ∈ [0, 2π]×[0, π] and have spher-
ical coordinates rt = R(sin θ cosϕ+ V t, sin θ sinϕ, cos θ). In the following we
focus on the big circle θ = π/2. We have V L = vE = (V, 0, 0), and

vE � =
V z2(z1 − V t)

(z1 − V t)2 + (z2)2

(
z2

z1 − V t ,−1
)
.

From (4.6) and (8.7), we have vc = −V sinϕ. The motion of the convected
polar coordinates with this vc can be noticed in the bottom frame of Fig. 8.2.

The Euler coordinates need to represent points that move only normal to
the sphere (Fig. 8.2). Consequently the θ polar angle will transform according
to the relation

tan θt =
R sin θt+dt

V t+R cos θt+dt
, (8.10)

and we present an example of this transformation in the bottom part of
Fig. 8.2. For longer intervals of time transformation, (8.10) becomes singular.
So, in this example, it is easier to work with Lagrangian coordinates.

To eliminate such nonconventional transformations of coordinates, we
could introduce Eulerian coordinates in the moving configuration as follows.
Begin with Lagrangian pair (Xα) at a certain moment of time. The trans-
formation from this Lagrangian coordinates to the Eulerian coordinates is
made by calculating V L(X, t), and then by moving the rt point along the
surface with some tangent vector w such that the new Lagrangian velocity
of this new point V L + w is normal to the surface. The relation between rt

and this new translated point provides the transformation from Lagrangian
to Eulerian coordinates. To do this in the example with translating sphere,
we have to expand (8.10) in Taylor series, take the first order of smallness
and integrate the corresponding linear PDE

θ(t) = ±2 arccos
1√

1 + e
2vt
R tan2 θ(0)

2

.

For more elaborated discussions on the Eulerian, Lagrangian, convective
coordinates or velocities, the reader can use any of the following sources [38,
89,90,92].
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Fig. 8.2 Trying to assign “fixed” coordinates in a compact surface in translational motion.
Upper part: the thick circle is the initial position of the surface, with the radii providing the
normal directions to the surface. The intersections between these normals and the moved
sphere (thin circle) provide the instantaneous Eulerian coordinates on the new sphere.
Bottom part: transformation of the Eulerian coordinates in time, trying to keep moving
only in the normal direction

In the end, we make an observation regarding the mixed character of
geometric objects in the kinematics of surfaces. For three-dimensional config-
urations, like theory of elasticity, it is more natural to define the convective
velocity as a pull back, since all involved spaces are Riemannian manifolds
of dimension 3. In the case of surfaces, we first have to project the space
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velocity on the tangent plane (8.6), then perform the pull back. However,
there is a more general treatment, namely, to introduce a sort of mixed co-
variant derivative which assures the contravariant/covariant tensor character
simultaneous in all spaces involved, no matter of the number of dimensions
(2 or 3). We briefly introduce this mixed derivative with (4.41). A comprehen-
sive treatment of the topic, for submanifolds and hypersurfaces in a general
Riemannian space or dimension n, can be found in [37].

8.2 Geometry of Moving Surfaces

Let (Xα) be the parametrization of the domain F and rt = r(X, t) be the cor-
responding moving regular configuration, i.e., a regular parametrized moving
surface (Fig. 8.1). The convective velocity (8.7) vc can be written in compo-
nents in the form

vc(X, t) =
dhα

t

dt
ξα, α = 1, 2, (8.11)

and represents the velocity vector belonging to the tangent space to the
surface, while its push forward by dh−1

t is a velocity vector field tangent to
the moving surface X ◦ rt(F ), v(X, t) = vj

E �
îj = vα

hξα (8.9). Also hα
t are

the convected coordinates in the surface (8.8). In the following the curvilinear
coordinates Xα are time-independent coordinates, so they will be understood
as Lagrangian coordinates on the surface, while the convected coordinates are
time dependent by construction.

The area element is given by the first fundamental form of the surface
g (or the metric tensor g in some books; Definitions 36 and 37): dA(t) =√
gL(t)dX1dX2 =

√
gc(t)dh1

tdh
2
t , where labels L and c refer to chosen system

of coordinates. We need to mention that in the following, the symbol g is used
in the sense of Sect. 7.1, and not in the sense of the unit basis vectors, like
we did above (i.e., not the {gα}α=1,2). We define by

Ĵ(t) =
∂hα

t

∂Xβ
, (8.12)

the Jacobian matrix of transformation of coordinates. From (8.3) and (8.9),
we can write

dĴ

dt
=
d

dt

∂hα
t

∂Xβ
=
∂vα

E

∂Xβ
=
∂vα

E

∂hγ
t

∂hγ
t

∂Xβ
= γ̂Ĵ , (8.13)

with γ̂ defined as the surface velocity-gradient matrix. Consequently we write
the time variation of the element of area in terms of the time-independent
coordinates through the Jacobian matrix

d

dt
dA =

(
1

2gc
dgc
dt
J +

dJ

dt

)√
gcdX

1dX2, (8.14)
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with J = det Ĵ . We can formally integrate the matrix differential equation
(8.13)

Ĵ(t) = Ĵ(0)e
∫ t γ̂(t′)dt′ , (8.15)

and take Ĵ(0) =gd. By using the matrix identity det eA = eTrA, we have

J = det Ĵ(t) = eTr ∫ t γ̂(t′)dt′ ,

and
dJ

dt
= Trγ̂(t)J(t), (8.16)

since the trace operator is linear and hence commutes with the time deriva-
tive. We can express the trace of the surface velocity-gradient matrix by using
the surface divergence operator (7.43) (Sect. 7.5.2), Trγ̂ = ∇Σvc = ξα ·∇αvc,
α = 1, 2, where the surface Σ becomes here the time-dependent surface con-
figuration F . We can write the equation for the rate of change in time of the
element of moving area

d

dt
dA =

(
1

2gc
dgc
dt

+∇F vc

)
dA. (8.17)

We mention that the area being a scalar, the time derivative coincides with
the convective time derivative, which should actually be used.

To find the stretching of the surface along different directions, we need to
find the equation for the rate of change in time of the arc-length in different
coordinates

ds2 = gL,α,βdX
αdXβ = gc,α,βdh

α
t dh

β
t .

We have

1
ds

ds

dt
=

(
d
dtgL,αβ

)
dXαdXβ

2gL,αβdXαdXβ
,

and we can define the Lagrangian strain tensor as

SL =
1
2
dgL
dt
, Sc =

1
2
dgc
dt
. (8.18)

If we work in the convected coordinates, the appropriate approach is the use
of the convective time derivative (see (9.16) in Sect. 9.2.6). Consequently, we
can write a convected strain tensor in the form

Sc,αβ →
1
2
dcgc,αβ

dt
=

1
2
∂gc,αβ

∂t
+

1
2
(vc

γ∇γgc,αβ + gc,α,γ∇βv
γ
c + gc,γβ∇αv

γ
c ),

where ∇ represents here the covariant derivative. The first term in the RHS
parenthesis is zero from (4.37), and for the remaining terms the action of the
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metric tensor g is just to lower the superscripts. So, the surface strain tensor
reads

Sc,αβ =
1
2
∂gc,αβ

∂t
+

1
2
(∇βvc,α +∇αvc,β). (8.19)

It is useful to compare this surface covariant result with the rate of strain
tensor for the bulk flow in Euclidean three-dimensional space [93–97]

duij

dt
=

1
2

(
∂vi

∂xk
+
∂vk

∂xi

)
. (8.20)

8.3 Dynamics of Moving Surfaces

In the following, for simplicity, we denote the moving surface configuration
(X ◦ rt)(F ) by Σ, and since we calculate everything in the convected coor-
dinates, we will drop the subscript c. Like in the three-dimensional hydrody-
namics or elasticity [92, 98, 99], we can define a surface stress, i.e., the force
acting on the unit of arc-length on the surface, as a contravariant vector field
on the fluid surface tα, α = 1, 2. Following the same similarity we define a
two-dimensional stress tensor by the relations

σαβnα = fβ , (8.21)

where nα = n · ξα are the projections of the principal normal of the arc-
length (three-dimensional Euclidean vector) on the local basis vectors of the
convective coordinate system. We can write the integral version of this stress
equation to find the total stress on the surface in some arbitrary direction.
Let D ⊂ Σ and Γ = ∂D be its boundary curve. For any arbitrary smooth
covariant vector field w : Σ → TΣ we can write∮

Γ

f ·wds =
∮

Γ

σα,βnαwβds =
∫∫

D

∇ασ
αβwβdA, (8.22)

where we used the regular Green theorem. For a stationary surface we assume
that the surface stress is perpendicular to the surface, so from (8.21) it results
that σα,β ∼ gα,β with the proportionality constant being defined as surface
tension, σ. Moreover, since the stationary surface is in equilibrium, we have
zero total stress on any domain D, so by using (8.22) we obtain ∇ασ

αβ = 0,
and consequently ∇ασ = 0, since the covariant derivative of the metric ten-
sor g is always zero. It results that the surface tension σ must be constant
over an equilibrium surface. There is a whole section devoted to the sur-
face tension (namely Sect. 10.4), investigating it from the point of minimal
surfaces.

Equations (8.21) and (8.22) can be used to obtain the three linear conser-
vation laws of the fluid surfaces. If we denote by ς the surface mass density,
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and we assume that there is no exchange of matter between the surface and
its surroundings, we have the conservation of mass

d

dt

∫∫
D

ςdA = 0.

By using (8.17) for the action of the time derivative we obtain the surface
continuity equation

dς

dt
+ ς∇αvα

c + ς
1
2g
dg

dt
= 0, (8.23)

where ∇ is the covariant derivative, and g = det(gαβ). Similarly with the
deduction of (8.22), we can obtain the momentum conservation equation.
By using again an arbitrary vector field w : Σ → TΣ, and considering
F : Σ → TΣ,F = (Fα) some arbitrary external force tangent to the surface,
we obtain

ςAα = Fα +∇βσ
αβ = 0, (8.24)

where
Aα =

dV α

dt
=
∂V α

∂t
+ V β∇βV

α, (8.25)

is the material acceleration on Σ. The time derivative in (8.25) is the material
time derivative, and V is the convective velocity (actually it is the image of
the convective velocity vc through the differential of the map Z ◦ rt ◦ x).

In a similar way one can obtain an integral version for the angular momen-
tum conservation equation for the fluid surface, by using (8.24) and (8.21)
we have∫∫

D

εαβ
√
gςAαhβ

t dA =
∫∫

D

εαβ
√
gFαhβ

t dA+
∮

∂D

εβγ
√
gfβhγ

t ds, (8.26)

where εαβ is the Levi–Civita antisymmetric tensor in two dimensions, i.e.,
ε12 = 1, ε21 = −1, etc. Using the arbitrariness of D and the Green theorem
on (8.26), we simply reduce it to σαβ = σβα, i.e., the stress tensor is a
symmetric (2, 0)-type of tensor.

To write dynamical equations for the fluid surface, one needs to make
constitutive hypotheses on the relations between stress and strain. The most
usual hypothesis is the so-called Newtonian fluid surface model. A Newtonian
fluid surface is described by a stress tensor that depends only on the strain
tensor in a linear manner (if it is an arbitrary function of the strain, the fluid
surface is called Stokesian), is an isotropic surface with respect to the stress,
and in absence of the strain the stress is just the surface tension. Like in the
case of a three-dimensional fluid, the only isotropic combination possible in
two dimensions is provided by

σαβ = (σ + kgλμSλμ)gαβ + ε(gαλgβμ + gαμgβλ − gαβgλμ)Sλμ, (8.27)

where gαβ is the matrix of the first fundamental form of the surface Σ (the
metric tensor), and the constant coefficients k and ε are called coefficient of
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interfacial dilatational viscosity and coefficient of interfacial shear viscosity ,
respectively. For the rigorous deduction of (8.27), the reader can consult one
of the following references [38, 92, 93, 96, 98, 100, 101]. It is useful to compare
this covariant result with the stress tensor for the bulk flow in Euclidean
three-dimensional space

σik = −Pδk
i + η

(
∂vi

∂xk
+
∂vk

∂xi

)
. (8.28)

Indeed, the surface tension term σ in (8.27) becomes for the bulk fluid the
pressure (modulo some convention of change of sign), and, because the met-
rics reduces to Kronecker symbol, the other terms in (8.27) group together
in a symmetric tensor with combined coefficient ε+ k which is just the bulk
kinematic viscosity ν [93–97].

In the end, we can put together the dynamical equation for a Newtonian
fluid surface, by using the constitutive equation (8.27) together with (8.21)
and (8.24). Also, we can take profit of the symmetry of the stress tensor, and
write

ςAα = Fα +∇βσg
αβ + kgαβ∇β · (gλμSλμ)+

ε∇β [(gαλgβμ + gαμgβλ − gαβgλμ)Sλμ]. (8.29)

The different terms in (8.29) have different physical interpretations. The sec-
ond term on the RHS is the surface gradient of the surface tension that
introduces a force if this coefficient is not homogenous along the surface. The
third term on the RHS can be processed by using (7.5), namely

dg

dt
= ggαβ dgαβ

dt
.

For the last term on the RHS, we use the noncommutativity property of
the covariant derivative (see (4.38) and (4.48)). Because the surface Σ is
two dimensional and it is embedded in a three-dimensional Euclidean space,
(4.38) and (4.48) reduce to

(∇β∇γ −∇γ∇β)V β = KgαγV
α, (8.30)

whereK is the Gaussian curvature of Σ. After some tedious algebra on (8.29),
and following Aris’ suggestion [38] to artificially combine k + ε in the third
term on the RHS of (8.29), we can express this equation in a two-dimensional
covariant vector form

ςA = F +∇σ + k∇(∇ · v) + ε
[
�V +KV −∇ · ĝg −∇

(
1
2g
dg

dt

)]
(8.31)

where ĝgβ
α = gαγdg

γβ/dt, and all vectors in the equation are two dimen-
sional, expressed in the covariant coordinates of TΣ, A = (Aα),∇ = (∇α),
etc. Equation (8.31) is the net force acting on the surface to be introduced in
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the equations for the balance of momentum across the surface, i.e., (10.22)
in Sect. 10.2. We note that (8.31) contains terms which are nonzero only
when the surface is time dependent. Also, there is one term proportional
to the Gaussian curvature, which is responsible for a part of the shear sur-
face viscosity. In different books there are different physical interpretations or
definitions for each of the terms in (8.31), for example [38]. Here we limit our-
selves to write the three-dimensional Navier–Stokes equation in comparison
with (8.31)

ρa = F −∇P + η�v. (8.32)

8.4 Boundary Conditions for Moving Fluid Interfaces

In the following we obtain the most general dynamic equation of motion for a
fluid surface that makes the separation between two bulk fluids. We follow the
definitions and the geometric approach from Sects. 4.11 and 7.3, and for closer
details we encourage the reader to check [38, Chap. 10]. Let xk(uα, t) be the
equation of motion of the particle labeled uα in Σ. The Lagrangian velocity
of this particle belonging to the surface (defined in (8.3)) is an Euclidean
vector

V k
L =

dxk

dt
= Bk

αv
α
c +

∂xk

∂t
,

where B is defined in (7.21). In general, next to the interface the fluid can
flow past the interface so we can have sliding on both sides of the fluid sur-
face. Consequently we need to define two more velocities V i,e as Lagrangian
velocities of the bulk fluid next to the surface, interior and exterior, respec-
tively. Each such Euclidean velocity induces a surface convective velocity
vc,α|int = Bk

αV
k
i , vc,α|ext = Bk

αV
k
e . In general there is no kinematical con-

straint between these velocities, but if we request a no slip condition we need
to equate their tangent components, i.e., the kinematical boundary condition
at the interface reads

vc,α = Bk
α

(
V k

i −
∂xk

∂t

)
= Bk

α

(
V k

e −
∂xk

∂t

)
. (8.33)

If, in addition, there is no normal flow of fluid from or into the interface,
we also have continuity of the normal components of the bulk and surface
velocities

Nk(V k
i,e − V k

L ) = 0, (8.34)

and from here, with the help of (8.23), we can write the equation of conti-
nuity for the interface Σ. Namely, from the isolated fluid surface equation of
continuity

dς

dt
+ ς∇αv

α
c +

ς

2g
dg

dt
= 0, (8.35)
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where ς is the surface mass density, we obtain

dς

dt
+ ς∇αv

α
c +

ς

2g
dg

dt
= [ρeV

k
e + (ρi − ρe)V k

L − ρiV
k
i ]Nk, (8.36)

which reduces back to (8.35) if there is no interchange of matter through
the interface. That is V k

i Nk = V k
e Nk = V k

LNk = ∂xk/∂tNk. If, in addition,
we have no slip the equation of continuity reduces even drastically to V k

L =
V k

e = V k
i . The equations obtained in this section may be related to the

general Euclidean equations from Sect. 10.2.

8.5 Dynamics of the Fluid Interfaces

Let a domain D ⊂ Σ and γ = ∂D be its boundary. Let also nα be the
principal normal (Sect. 5.1) of the γ curve which is a surface vector lying in
TΣ. The surface stress acting on an infinitesimal element of arc of γ in Σ is
σαβnβds, and its Euclidean components are

σids = Bi
ασ

αβnβds. (8.37)

In a neighborhood of Σ, we have an Euclidean body force F in the bulk fluid
which can be written in terms of its tangent components and the normal

F k = Bk
αF

α +NkNjF
j . (8.38)

Same equation applies to the material acceleration A

Ak = Bk
αA

α +NkNjA
j . (8.39)

In the following we follow the same procedure of using an additional vector
field λ(xi) in a region of space containing D. The momentum balance in the
λ direction reads

d

dt

∫∫
D

ςV k
LλkdA ≡

∫∫
ςAkλkdA =

∫∫
D

F kλkdA+
∮

∂D

σkλkds, (8.40)

from where, given the arbitrariness of λ, D, and using Green theorem, we
obtain

ςAk = σk +∇β(Bk
ασ

αβ). (8.41)

Now it is the time to take profit of the formulas for the differential geometry
of the surface from Chap. 7. Namely, from (7.36) we have

∇βB
k
α = ΠαβN

k,

where Π is the (0, 2)-type of tensor associated to the second fundamental
form of the surface. From (8.37)–(8.39), (8.41), and the above relation, we
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can write the balance equations in the tangent plane (along the basis Bi
α)

and along the normal, respectively

ςAα = Fα +∇βσ
αβ , tangent (8.42)

ςNjA
j = NjF

j +Παβσ
αβ , normal. (8.43)

We can run a simple check of these relations by considering a fixed surface,
i.e., Ai = 0. In this case we have σαβ = σgαβ , and by denoting F = F � +
F⊥N , we obtain

Fα = −gαβ∇βσ, tangent (8.44)
F⊥ = 2Hσ, normal. (8.45)

So, for the stationary case, tangent forces occur if the coefficient of surface
tension is not homogenous along the surface, but we always have a normal
surface pressure (see for completion Sect. 10.4).

Equations (8.42) and (8.43) can be expressed even in more detail as func-
tions of the velocity of the surface, the strain tensor, and the material co-
efficients k, ε defined in Sect. 8.3. We do not provide here the proof of the
following balance equation, but the reader can find details in [38, Chap. 10].
The momentum balance equation for an interface reads in terms of Euclidean
contravariant vectors

ς
dV

dt
= F + B̂∇Σσ + (k + ε)B̂∇Σ(B̂∇Σ · V )

+2εKB̂B̂V − ε
g
B̂∇Σ × (∇Σ × B̂V )− 2ε

g
B̂ × Π̂(∇Σ × V ⊥) + 2NHσ

+2NH(k + ε)(B̂∇Σ · V ) +
2ε
g

N B̂ × Π̂∇Σ × V . (8.46)

In this equation we have V = V i,e and B̂ = (Bi
α). Also we introduced

V ⊥ = V · NN and B̂ × Π̂ = (Bi
αε

αλΠλβε
βμ), etc. The first five terms

on the RHS are tangent terms, and the last four terms are normal terms.
The second term is the gradient of the surface pressure. This term occurs
if the coefficient of surface tension is not uniform over the surface, or if it
depends on the local curvature or velocity. The third term is dilatational force,
and it is important, for example, for a surface that is highly contaminated
with an insoluble surfactant. The fourth term has pure geometrical nature
(proportional with velocity and Gaussian curvature). The fifth term is just
the surface equivalent of a ∇×∇× curl–curl type of term, and the sixth term
is responsible for surface vortexes. The seventh term is the normal surface
tension term, and usually the dominant term in the dynamics of liquid drops,
bubbles, and shells. The eighth term is also dilatational force (but normal)
and the last one is the normal shear.

Equation (8.46) is the net force Fnet acting on a material interface to be
introduced in the equations for the balance of momentum across the surface,
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i.e., (10.22) in Sect. 10.2. To handle all the terms in (8.46) in different systems
of curvilinear coordinates, we need to write them in components

ς
dV i

dt
= F i +Bi

αg
αβ∇Σ,βσ + (k + ε)Bi

αg
αβ∇Σ,β(gλμBj

λ∇Σ,μVj)

+2εKBi
αg

αβBj
βVj − εBi

αε
αβ∇Σ,β [ελμ∇Σ,λ(Bj

μVj)]

−2εBi
αε

αλgλβε
βμ∇Σ,μ(N jVj) + 2σHN i + 2H(k + ε)N iBj

λg
λμ∇Σ,μVj

+2εN iBj
λε

λαgαβε
βμ∇Σ,μVj (8.47)

where εαβ is the Levi–Civita symbol, and should not be mistaken for the
dilatational viscosity coefficient ε which carries no labels.

8.6 Problems

1. Prove, by using properties of the normal to the surface, that points of con-
stant convected coordinates on a moving surface have their space velocity
normal to the surface. Hint: parametrize the surface F with (Z1, Z2) like
in (8.1). Use the fact that we can define a direction normal to the surface
ru × rv as a 2-form in R3 like

ωN =
∂zi

∂Z1

∂zj

∂Z2
dxi ∧ dxj .

Then show that this 2-form is related to the area 2-form A dZ1 ∧ dZ2

defined in the two-dimensional manifold rt(F ) by the relation√(
ωN ;

∂rt

∂Z1
,
∂rt

∂Z2

)
dZ1 ∧ dZ2 = A dZ1 ∧ dZ2,

where (ω;v1,v2) is the inner product between forms and vector fields
defined in Sect. 4.6.

2. Generalize the definition of the convective velocity from Sect. 8.1 in terms
of the action of the mixed covariant derivative (4.41) on a tensor field
defined on F .



Part II

Solitons and Nonlinear Waves
on Closed Curves and Surfaces
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Many physical, chemical, and biological systems can be described to a
satisfactory extent through the properties of their shapes. To model such
systems, a description in terms of the dynamics of the boundaries is necessary,
i.e., the evolution of shapes or contours, and their interactions with the inside
and the exterior. The interaction with the inner part of the system is usually
described through mathematical representation theorems, like the well-known
Stokes, Gauss, Green, or Cauchy relations.

Examples of such systems can be given at any physical scale [49–52, 55,
57, 58]. In heavy and superheavy exotic nuclei, the potential energy of the
nuclear shape is relevant for many phenomena including alpha decay, exotic
radioactivity, existence of cold valleys, neutron-less fission, and ultra-heavy
ions generation. Such topics are important subjects of fundamental physics,
like the extension of the Periodic Table of Elements into the antimatter and
strange-matter areas [102]. Other examples are provided by the flow of an in-
compressible fluid with free boundary, like droplets, bubbles, and liquid shells.
Here the mechanics and thermodynamics of the free surface are related to the
couplings between surface oscillation modes and waves, formation of necks,
breakup process, etc. [49, 103–109]. Other examples are polymer chains, dy-
namics of vortex filaments in fluid dynamics, growth of dendritic crystals in a
plane, or motion of interfaces. The dynamics of the free surface is also impor-
tant for biology, in swimming mechanisms, motile cell dynamics, pathogen
agents spreading, and even the evolution of large populations of individuals
like bird flocks or fish schools, etc. [110]. At a larger scale, the dynamics of the
free surface of a neutron star is important in the study of the gravitational
waves emitted by such tides or deformations [111–113].

In the description of systems with free boundaries, where the dynamics of
the contours/shapes is important, there are interesting connections between
local and global geometrical quantities. The local quantities are those intrin-
sic mathematical properties of the boundaries defined within neighborhood
of points, like the fundamental forms, contact structures, curvature, torsion,
etc. The global geometrical quantities are the integral quantities, like surface
area, curve length or perimeter, geodesics structure, etc. The global quan-
tities are related to geometrical and topological invariants, like homotopy
and homology structure, and ultimately they are connected to the physical
conservation laws of the system. In general, mathematical global constrains
applied to free boundary systems result in long range, nonlocal interactions.
Usually, such constrains are handled by considering them as Lagrange mul-
tipliers coupled to the general bulk plus surface conserved quantities, like
mass, momentum, angular momentum, etc. In the case of contours or sur-
faces described by nonlinear integrable systems, with cnoidal waves, solitary
waves, or soliton solutions for example, the Hamiltonian generates itself an
infinite countable set of conservation laws, without introducing any other
global constrains.



Chapter 9

Kinematics of Hydrodynamics

The goal of this chapter is to discuss the general frame of hydrodynamics, like
particle trajectories (path lines), stream lines, streak lines, free surfaces, and
fluid surfaces, and to compare their behavior in the Eulerian and Lagrangian
frames. The following sections and chapters proceed on the assumption that
the fluid is practically continuous and homogenous in structure. Of course,
the concept of continuum is an abstraction that does not take into account the
molecular and nuclear structure of matter. In that, we assume that the prop-
erties of the fluid do not change if we consider smaller and smaller amounts
of matter [93]. May be the wisest point of view while we remain at the level
of general laws of fluid dynamics (or fluid mechanics) is to keep the physical
scales rather vague [94]. This aspect is in direct relation with the fact that
these laws can be made dimensionless in a large variety of situations.

9.1 Lagrangian vs. Eulerian Frames

In fluid dynamics there are two possible approaches for the dynamical equa-
tions: the Lagrangian (also called material or convected) frame and the
Eulerian (also called the spatial) frame. In the Lagrangian frame we identify
and label individual particles of fluid, and we setup the frame such that par-
ticles retain their coordinate labels in time. In this approach, it is more likely
to use topology and group continuous transformation tools. The Eulerian
frame describes the fluid from a stationary lab frame. The motion of fluid is
recorded at a fixed point vs. time. In this approach the mathematical tools
are more related to geometry and field theory. In the following, we use the
Eulerian approach, unless an explicit statement is made to the contrary. The
fields that characterize the fluid are defined on some domains in the three-
dimensional Euclidean space and they have a certain degree of mathematical
smoothness. The degree of smoothness is chosen for a given fluid model such
that the coarse grain structure of the infinitesimal fluid particles introduced
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above is not seen by the differential equations (i.e., the molecular structure
of the matter). In other words, the fluid particle is small enough to allow
the existence of smooth space–time differentials, but large enough to aver-
age the molecular and quantum properties over its volume. The fields under
consideration are the velocity field v(r, t), the nonnegative defined mass den-
sity ρ(r, t), and the pressure field P (r, t). Of course, function of necessity,
we can add the distribution of energy, free energy, enthalpy, entropy, force
density, or other fields of interest [93, 96] to these fields. We assume, unless
otherwise specified, that these fields are smooth enough so that the standard
calculations may be performed on them.

9.1.1 Introduction

In practice we consider r = (x, y, z) ∈ D a point in domain D filled with
fluid, and consider the particles moving in space and time. In the Lagrangian
approach, at every moment of time t we defined the spatial velocity of a
certain particle of fluid as V = dr

dt .
The Eulerian velocity field (spatial velocity field) V (r, t), in principle not

constant in time, is the velocity of a fluid particle that passes at moment t
through the point r. The Lagrangian frame is attached to that fluid parti-
cle, and it records the changes in velocity, density, etc., happening with this
particle vs. its own local time, measured with a clock attached to it. In such
a Lagrangian system, physical quantities have a complex time dependence.
While traveling, the fluid particle has its physical quantities measured in
the local frame, so they experience a global time variation (also called total
or Lagrangian or material time derivative) denoted by d

dt , or identified by
placing a dot on the top of the quantity (sometimes it is also denoted D

Dt ).
A part of this time variation happens because the particle travels through
different domains of space, hence experiencing different constraints. Such a
partial variation is called Eulerian, or partial, and it is denoted ∂

∂t or simply
by the subscript t. For example, we choose a fluid particle moving according
to the law rL(t), and we measure the scalar quantity q(t) ≡ q(rL(t), t) asso-
ciated to this particle, in this frame. The same quantity can be described in
a fixed Eulerian frame, Q(r, t). The relation between these two formalisms is
given by

q̇ =
dq

dt
(rL(t), t) =

∂Q

∂t
(r, t) + V (r, t) · ∇Q(r, t), (9.1)

where ∇ is the gradient operator ( ∂
∂x ,

∂
∂y ,

∂
∂z ), and · represents the usual

Euclidean scalar product. Equation (9.1) is a well-known transformation law
in hydrodynamic literature, yet is valid in a very restricted sense, namely only
for scalar quantities and for the fluid velocity vector. If we try to apply the
transformation (9.1) to a general vector field or to a covariant tensor field,
the result fails, because the resulting quantity is not anymore a geometrical
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object of the same type. To keep to geometrical properties intact, we need
a generalization of (9.1) for arbitrary covariant/contravariant geometrical
objects ω. This is the covariant time derivative (also called convected or
material time derivative) and it is defined by

dcω

dt
=
∂ω

∂t
+ v(ω), (9.2)

where v(ω) is the Lie derivative with respect to the flow v. This generalization
is introduced in Sect. 9.2.6.

9.1.2 Geometrical Picture for Lagrangian vs. Eulerian

We introduce the working space (t, r) ∈ R×R3. From the Lagrangian point
of view, the fluid particle motions are nonintersecting regular curves ΓL in
this base space, parametrized by time and described by equations rL(t, r0).
They are called paths or material lines [38] or lines of motion [93]. Since
they do not intersect, each such curve is labeled by one of its points, r0, for
example the position of the particle when t = 0. The tangent to this curve is

tL =
(1,vL)√
1 + v2L

,

where vL = ∂rL(t, r0)/∂t is the Lagrangian velocity of the particle along the
path. All these paths do not intersect and completely fill the base space when
r0 ∈ R3.

If we choose a fixed point in space r, some of the paths r0 will intersect this
fixed point, rL(t, r0) = r, so that we can write the “list” of these particles
vs. time: r0 = r0(t, r). Now, we can define the Eulerian velocity at (t, r) by
substituting this r0(t, r) list in the velocity expression

vE(t, r) = vL(t, r0(t, r)). (9.3)

Example 1. We can illustrate the relation between Lagrangian and Eulerian
velocities (9.3) with a simple one-dimensional example. Water is dripping
downward from a hole in gravitational field, and different water molecules
depart from the hole at different initial moments of time t0. So the ΓL curves
are vertical parallel lines. Their laws of motion are

z(t) =
g(t− t0)2

2
.

In terms of some initial position z0 their Lagrangian equations of motion read

zL(t, z0) =
g

2

(
t−
√

2z0
g

)2

,
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with

vL(t, z0) = g

(
t−
√

2z0
g

)
.

If we choose a reference level at z and equate z = zL, we obtain

z0 =
g

2

(
t−
√

2z
g

)2

with the following signification: What is the initial position z0 (at t = 0) of a
particle to pass through the level z at the moment t? The resulting Eulerian
velocity is, according to (9.3),

vE(t, z) = vL(t, z0(z, t)) =
√

2zg = const.,

as it should be from mechanics.

Now, we introduce a physical quantity Q defined for any fluid particle. For
the particle labeled by r0 the Lagrangian value QL(t, r0) is defined along ΓL.
Suppose this ΓL intersects a fixed line r =const. at rL(t, r0) = r. By solving
this equation with respect to r0, we have r0 = r0(t, r). We can define now
the Eulerian value of Q by

QE(t, r) = QL(t, r0(t, r)). (9.4)

While following the particle in its motion, the quantity QL has a varia-
tion dQL(t, r0) = (dQL/dt)dt. At r =const., the quantity QE has another
variation dQE = (∂QE/∂t)dt. By differentiation of (9.4) we have dQL =
dQE + (drL · ∇QE)dt. Since we follow the particle in its motion we have
drL = vLdt. Since all these relations are infinitesimal, and all are taken at
(t, r), we can use either vE or vL in them. In the end we obtain the clas-
sical relation between the Lagrangian and Eulerian variations of a physical
quantity

dQL

dt
=
(
∂QE

∂t
+ (vE · ∇)QE

)
. (9.5)

In local (Eulerian) coordinates (t, r), this equation reads

(t, r)→ dQL

dt
(t, r0(t, r)) =

(
∂QE

∂t
+ (vE · ∇)QE

)
(t,r)

. (9.6)

In the Lagrangian coordinates (t, r0), same equation reads

(t, r0)→
dQL

dt
(t, r0) =

(
∂QE

∂t
+ (vE · ∇)QE

)
(t,r=rL(t,r0))

. (9.7)

The Lagrangian motion of particles is represented by a family of curves ΓL

filling the base space, and the Lagrangian velocity is a vector field defined on
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this base space, parametrized by the flow lines. The Eulerian velocity is the
same differential vector field, except is parametrized by local coordinates,
like any regular field. Consequently, a Lagrangian physical quantity QL is
represented by a family of curves ΓQ lying in a base space R×R3×Q̂, where
Q ∈ Q̂. The Eulerian value of the same quantity is a regular surface QE(t, r)
parametrized by the base space and immersed in R×R3 × Q̂. The Eulerian
derivative is the partial derivative of QE . The particle paths ΓL have tangents

tL =
1√

1 + v2L
(1,vL).

The curves for QL lying in the base space have tangents

t̂Q =
1√

1 + v2L + Q̇2
L

(1,vL, Q̇L),

where the dot means time differentiation. In this geometrical context, the
relation between Lagrangian and Eulerian variations (9.5) reads

Q̇L = DtΓL
QE , or Q̇L(t) = (QE ◦ ΓL)′(t).

The Lagrangian derivative is just the directional derivative of the function
QE along the particle path, see Fig. 9.1.

9.2 Fluid Fiber Bundle

9.2.1 Introduction

Hydrodynamics studies the motion of fluid particles. The combination bet-
ween the discrete labeling of the system of particles on one hand, and the
smooth dependence of physical quantities on time on the other hand enhances
the importance of families of curves for hydrodynamical systems. Somehow,
this fact has a geometrical background arriving from the importance of com-
pact submanifolds (closed curves, closed surfaces) for vector fields and flows
(see Sect. 4.5). Curves of special interest, parametrized by time, are the path
lines, stream lines, streak lines, and vorticity lines, studied from both Lag-
rangian and Eulerian points of view (Sect. 9.1.2). Moreover, there are the
fluid particle lines (also called material lines, particle contours, or circuit
lines) and filaments especially important in conservation laws. We can raise
the question if such particle contours are stable or they break at a certain
point, or if they are invariant, etc. For example, to use the Kelvin or Ertel’s
theorems for closed contours (Theorem 10.3) related to invariants of the fluid
dynamics, we need to have rigorous definition for the material lines of fluid
particles than just intuition.
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Eulerian: a surface QE(x,t)

Lagrangian: a curve QL(xo,t)

Q

x

t

xo x=cst.

dQE
dQL

xL (xo,t)

Fig. 9.1 The Lagrangian–Eulerian point of view for a one-dimensional flow. The path of
a fluid particle is represented in the base horizontal plane by the curve xL(x0, t); all such
fluid paths are labeled by their x0 initial points. The mapping of the fluid path into the
base space of a physical observable Q is a curve xQ(x0, t), i.e., the Lagrangian value of
the physical quantity QL(x0, t). The Lagrangian variation along the fluid path is dQL in a
certain dt. But, if we measure Q at a constant position x, we have its Eulerian value, and
consequently its Eulerian variation dQE for the same time interval dt. The Eulerian value
QE(x, t) actually represents the Lagrangian value associated to another particle (dashed
line) that actually moves through the same spot x at t + dt. When fluid particles fill up
the space x and move, the Lagrangian values of the physical quantities associated to the
particles of fluid generate curves, but the Eulerian values generate a surface

Example 2. To exemplify such a possible situation, when a particle contour
can deform up to a breaking point (because of a stagnation point of the
flow, for example) we choose an incompressible inviscid irrotational two-
dimensional flow past a cylinder. To solve the flow we use a conformal
mapping procedure. The velocity field is represented by v(z) = φx + iφy,
z = x + iy, and it is tangent to the curves φ =const. because of the
Riemann–Cauchy conditions. We build the holomorphic function H(z) =
Φ(x, y)+ iΨ(x, y) where Φ is the potential function and Ψ is the stream func-
tion, i.e., the harmonic conjugate function to Φ. We have

v =
dH∗

dz
,

and the cylinder contour Γ equation is x2 +y2 = 1. We perform the transfor-
mation u + iv = ω = f(z) = z + z−1. The cylinder contour transforms into
f(Γ ) = {z|v = 0}. A solution of the Laplace equation in the ω coordinates
and for the boundary condition ω = 0 on f(Γ ) is G(Φ) = Φ0ω. We have



9.2 Fluid Fiber Bundle 163

H(z) = G ◦ f(z) = A

(
z +

1
z

)
.

For example, in polar coordinates the stream lines (Ψ =const.) become

Ψ0

(
r − 1

r

)
sinφ = C = const.

The equation of the stream lines becomes

r(φ) =
r0 +

√
r20 + 4 sin2 φ

2 sinφ

and the Eulerian velocity is

v = Ψ0

(−y cosφ(x2 + y2 − 1) + x sinφ(x2 + y2 + 1)
(x2 + y2)3/2

,

x cosφ(x2 + y2 − 1) + y sinφ(x2 + y2 + 1)
(x2 + y2)3/2

)
.

From the Euler equation the pressure becomes

P = Ψ2
0 ρ

2(x2 − y2)− 1
2(x2 + y2)2

,

where ρ is the density. In Fig. 9.2 we present the pressure distribution around
the cylinder contour. The Lagrangian paths of fluid particles are obtained by
numerical integration of the equations

x

y

P

Fig. 9.2 Pressure distribution for a two-dimensional incompressible inviscid irrotational
flow past a cylinder
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Fig. 9.3 Stream lines and isobaric lines (thin lines) for a two-dimensional incompressible
inviscid irrotational flow past a cylinder. Thick lines: a finite particle contour at t = 0 (the
vertical segment), and its Lagrangian flow at a later moment of time

∂2x

∂t2
∂x

∂x0
+
∂2y

∂t2
∂y

∂x0
= −1

ρ

∂P

∂x0
, . . . etc.

In Fig. 9.3 we present the isobaric and stream lines, and the evolution of a
particle contour line (thick line). Initially we choose all particles of this con-
tour line to lie along a vertical segment. Then, we calculate their Lagrangian
positions at a later moment of time. We notice the tendency of the contour
line to spread and tear. In an extreme example this line may even be broken
by possible abrupt changes in the Lagrangian velocities. This example shows
that it makes sense to analyze the geometry and stability of particle contours
for a general flow.

9.2.2 Motivation for a Geometrical Approach

We can always present a fluid using the following traditional picture of the
flow, also introduced in Sect. 9.1.2. We introduce the available space for the
fluid (the reference fluid container [114,115]) as a domain D of R3, and add
an extra dimension for time to form a base space D ×R. The particle paths
rL(r0, t) are smooth time-parametrized curves in this base space. The projec-
tion on the horizontal planes (projections perpendicular on the time axis) of
the tangent vectors to these curves represents the velocity fields of the parti-
cles. The two velocities, i.e., the Lagrangian (material) and Eulerian (spatial)
velocities, have the same value at the same point of the base space. The only
difference between these two types of velocities consists in the parametriza-
tion of the vector fields. The Lagrangian velocity field is defined along the
particle paths in the base space, while the Eulerian velocity field is defined
on the horizontal plane, in points where these paths intersect it, at a moment
of time t. The integral curves of the Eulerian velocity field contained in any
“horizontal” plane are the stream lines at that moment of time. However, the
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D(ro)

vL

vL

vL

Path line

Stream
 lines

Stream lines

vE

vE

rL(D(ro),t)

t=0

Path line

t

Space rL rL

vE

Fig. 9.4 A two-dimensional fluid domain D(r0) shown at two moments of time 0, t, and
two path lines rL(t) whose tangents are the Lagrangian velocities vL. The projection of the
Lagrangian velocity field on the tangent space of the fluid domain is the Eulerian velocity
field vE . The integral curves of the Eulerian vector field in the fluid domain, at a given
moment of time t, are the stream lines at that moment (dotted lines). The projections of
the path lines on the fluid domain do not coincide with path lines in general

path lines do not identify with the lift of the stream lines in the base space.
Namely, if we choose a point r in some horizontal plane t and we compare the
path line crossing through this point, and the vertical lift of the stream line
crossing the same point, these two curves are different in general. An exam-
ple is presented in Fig. 9.4. In Fig. 9.5 we show another example of path lines
and stream lines, when the particle moves along an open path, but locally
the stream lines may appear to be closed.

For any given fixed point r0 in the initial plane, we can draw all paths
crossing this at different moments of time (Fig. 9.6). The intersections of all
these paths with a certain horizontal plane t generate a streak line initi-
ated by a “nozzle” placed at r0. In traditional approaches, see for example
[94,98,100,101], the motion of the particles is described by a one-parameter
(time) group of diffeomorphisms acting on the domain D(r0). The Lagrange
coordinate of a particle is the result of the action of this group on the corre-
sponding element r0. If the motion is incompressible, the group of diffeomor-
phisms is volume preserving. In this formalism, the infinitesimal generator of
the group is the Lagrangian field of velocities.

However, even practical, such a model is not quite perfect. That is because
we tend to associate the same geometrical space to physical spaces with
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Fig. 9.5 A two-dimensional example. A path line in the physical space R2 (horizontal
solid curve) and in the base space X (lifted solid curve), and associated stream lines at
different moments of time (dashed lines)

Streak line

t=0

t

rL

rL
rL

rL

r0

r0

Streak line

Fig. 9.6 Same space as in Fig. 9.4, except we present several paths emerging from the
“nozzle” point r0 (dashed-dotted axis) at different moments of time. The intersections of
all such paths with a horizontal plane t provide a streak line (dotted) generated by the
“nozzle” at t
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different signification, namely the material points (initial positions space),
and the spatial points per se. Even if initially (t = 0) the positions r0 of all
fluid particles, r0 ∈ D , belong to the a position space during the motion, these
vectors actually form a space of parameters, labeling the particles. On the
other hand, the positions of the particles at any arbitrary moment of time
(given by the Lagrangian equations of motion rL(r0, t)) belong to a space
of positions. The above picture does not make this difference a geometri-
cal difference, and in that is incomplete and difficult to generalize for more
complicated flows. For example, in Fig. 9.4, we can see that the stream lines
at different moments of time belong to different planes. We need to make
the distinction between the material space and the space of positions from
a geometrical perspective. This is possible by using a fiber bundle structure
instead of a common space.

9.2.3 The Fiber Bundle

We present a formalism in which a fluid is described using cross-sections
σ in a fiber bundle F over some base manifold X. For the definitions and
properties of a fiber bundle, the reader can check Sect. 4.8 and its refer-
ences [29,36,114,115]. An intuitive picture of a fiber bundle consists in taking
a certain manifold called fiber F , and assigns a homeomorphic transforma-
tion of F to any point of a base manifold X, constructing a sort of a local
cartesian product. In the case of a fixed container for the fluid (even the
case of the whole space), the traditional model is to consider the base as the
space of particles (usually labeled by their initial positions) and the fiber is
the space available for particle positions (see Fig. 9.7, left). On the contrary,
a free surface introduces one more freedom in the problem. We cannot con-
struct using the same pattern (see Fig. 9.7, center) because we allow different
particles to belong to different shapes simultaneously, which is impossible.

Time

F=Particles

F=Positions

Cross-section

Shapes

Particles

Positions

M=Shapes

F=Positions

Time

Fig. 9.7 Possible fiber bundle structures (M, F ) for fluid dynamics problems. Dotted line

means that time does not need necessarily to be included explicitly in the geometry picture
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A possible choice to build a fiber bundle is borrowed from the mechanics of
deformable bodies (see Fig. 9.7, right). The base space is the manifold of all
possible shapes, and the standard fiber is particle position space. The role of
the particle labeling space is taken over by the nontrivial structure group.

The base manifold (for the nonrelativistic case) is usually a space–time
manifold built as a product between a smooth three-dimensional oriented
Riemannian manifold (M, g), where g is the metric, and R for time, i.e.,
X = M × R. The coordinates in X are x = (xμ) = (xi, t) ∈ X, with
i = 1, . . . , 3, μ = 1, . . . , 4. For fluid dynamics we can choose the fiber F = M
with coordinates y ∈ F [114]. Consequently, the local coordinates in this F
bundle over X are (x, t, y), and the projection is Π : F → X, (x, t, y) →
(x, t). Transformations and operations that affect only the base (spatial
changes like rotations, etc.) are called fiber-preserving transformations. A
lift of any geometrical object γ (a curve, surface, function, form, etc.) defined
in the base space is a map of this object into the fiber bundle, γ → γ′ ∈ F ,
such that it projects back down to the original object in M , Π ◦ γ′ = γ.

Cross-sections in this bundle σ : X → F represent time-dependent con-
figurations, i.e., particle position fields. The cross-section has the coordi-
nates σ(x) = (xμ, σi(x)) = (xμ, yi). On the top of the configuration bundle
E , we can construct another fiber bundle J1F over F called the first jet
bundle [9, 114], with the fiber above (x, y) consisting of linear maps from
the tangent space of the base space to the tangent space of the bundle,
γ : TxX → T(x,y)F , satisfying dπ ◦ γ = IdTxX .

For any cross-section σ in F over X, the differential dσx at x (also called
tangent map, see Sect. 4.1) is an element of the jet bundle J1Fσ(x). Conse-
quently, the map x → dσx is a cross-section of the jet bundle over X. This
section, denoted j1σ, is called the first jet extension of σ. In coordinates, it is
given by j1σ(x) = (xμ, σi(x), ∂μσ

i), where ∂μ = (∂i, ∂t). It is this triple which
represents the fluid motion. The first three base coordinates space compo-
nents xi, originally coming from the initial positions of the fluid particles, now
represent the particle labeling. The σi(x) components identify the position
of the x particle in space, and the ∂tσ

i components represent the velocity of
the particle x.

9.2.4 Fixed Fluid Container

For the case when the fluid moves in a fixed region, i.e., with fixed boundaries,
the group structure of the fiber bundle F is the identity, and the bundle is
trivial, F = X ×M . The spatial part of the base manifold M represents the
reference configuration (initial positions of all fluid particles). Actually, the
coordinate x ceases to represent the initial position, but remains attached
to the particle and labels it for the rest of the evolution. So, the space part
of the base manifold x (the material points) labels the fluid particles through
the one-to-one correspondence between particles and their initial positions in
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the reference fluid container. The time base X corresponds to the time
evolution. The fiber over any base point is the same manifold, meaning that
the space available for any particle is the same at any moment of time. Its
coordinates y are called spatial points. The fiber at any point F(x,t) represents
the available space for particle x at the moment t, and it is diffeomorphic with
M , i.e., the reference fluid container [114,115]. In the case of F , the require-
ment for the existence of a projection Π : F → X from the definition of a
fiber bundle (Sect. 4.8, Definition 26) guaranties that all points of the fiber,
at any point of the base, are filled with fluid.

The fluid motion is described by a cross-section σ(x, t) of the bundle F
representing the particle placement field. Not any cross-section can represent
a real motion of the fluid, and some minimal constrains are needed. First,
σ is not allowed to create or annihilate fluid particles, and second, two dif-
ferent particles cannot hold the same spatial point at the same moment of
time. In the traditional approach presented above (the one not using geom-
etry of a fiber bundle) these two constrains are fulfilled by requesting that
the Lagrangian paths of the fluid particles represent a diffeomorphism of
the reference fluid container. In the fiber bundle formalism, these two phys-
ical constraints require a similar thing. The restriction of the cross-section
σ(x, t)|t=t0 at a constant t = t0 (for every moment of time t0) needs to be a
diffeomorphism of the manifold F = M . Of course, this is also possible bec-
ause the bundle is trivial, and there is a canonical diffeomorphism between
any two fibers at any two points.

Let us ignore for a second the deep geometrical implications of the exis-
tence of the group of diffeomorphisms, and let us just look at these conditions
locally, in terms of coordinates. For some more insight into this topic, we rec-
ommend for example [98,114,115]. This condition is equivalent to the vector
field to be divergence free. This means that the infinitesimal generator of this
diffeomorphisms is a divergence-free vector field, or in other words that the
flow is incompressible.

In addition, the specific cross-section form should result from a solution
of the dynamic equations of motion, for example Euler (10.15) or Navier–
Stokes (10.13) equations, under some additional boundary, initial or regular-
ity conditions which may be required, too. This constrain will be addressed
in the next chapters. For an explicit discussion of this topics, see for exam-
ple [114, Theorem 2.1] and reference herein.

In the local coordinates of a given fiber, y(x, t) ∈ F(x,t) represents the
spatial position of the particle x at moment t, (x, t, y)σ(x, t). The path lines
are the restrictions of the cross-section rL(x0, t) = σ|x=(x0,t) for fixed point
in the space part of the base space. The tangent vectors to these curves can
be expressed in two ways. If we write vL(x, t) = ∂σv(x, t)/∂t we have the
Lagrangian (material) velocity field. The superscript v (as in vertical) rep-
resents the components of the cross-section along the fiber. The Lagrangian
velocity field is actually represented by the last three components of the
cross-section in the first jet bundle dσ. Namely j1σ = (σ, ∂iσ,vL).
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Conversely, if we invert the equation y(x, t) with respect to y, we can
express the velocity field in coordinates vL(x(y), t) = vE(y, t), which is
nothing but the Eulerian velocity field. So, even if locally the Eulerian and
Lagrangian velocities coincide at the same point of the fiber bundle F , they
are vector fields in different spaces. The Eulerian velocity is a vector space
defined on the standard fiber manifold F . Indeed, because the fiber at any
point F(x,t) is diffeomorphic with the standard fiber F , according to the min-
imal constrains, we can map vectors tangent to any fiber into vectors tangent
to the standard fiber F = M . So, a cross-section σ in F generates a vector
field on F at any moment of time, the Eulerian flow. The integral curves
of this field are, at every moment of time, the collections of time-dependent
stream lines, they lie in the standard fiber, and they have no special assigned
parameter (the stream lines collection is also called flow net [97]). Contrary
to the stream lines, the path lines are time parametrized, hence constant,
and they lie in the fiber bundle. Again, the collection of path lines do not
coincide with the flow net in general (they coincide if the flow is stationary).
It is also true that the path lines never cross the flow net lines.

If we come back to Fig. 9.4, we understand now the trihedron presented
there as the base space, and the horizontal planes as fibers at different points,
with their associated Eulerian fields of velocities. The reunion of all path lines
forms the cross-section σ.

Since σ(M, t0) 	 M is a diffeomorphisms because of the minimal con-
straints, the image of any compact set in M is a compact set in F(x,t). Such
sets are the particle structures that remain “stable” to this extent. If such a
set is a submanifold of dimension 1, we call it particle line or material line
or circuit line, or filament. Once identified in the reference fluid container,
this line conserves its topological proprieties in time. If the submanifold is
two dimensional, it is a particle surface, or free fluid surface, etc., and so
on. We noticed above that the particle paths are restrictions of the cross-
sections describing the dynamics for constant x. Similarly, particle lines are
restrictions of the cross-section for constant time, and on subsets of the M
manifold: σ(x, t)|(x∈D,t=t0) = σ̂(x)|x∈D .

There is another interesting approach about the path lines as orbits of a
group of diffeomorphisms of the spatial part of the base space. Actually, any
such diffeomorphism (any flow) can be understood as a relabeling operation of
the fluid particles. Such a relabeling operation is connected with a continuous
symmetry of the system. If we consider the fluid a Lagrangian system and
the flow is incompressible, the Noether current associated to this symmetry
is the fluid momentum conservation, see Fig. 9.8.

In the following, we give an interpretation of the transformation between
variation of Eulerian and Lagrangian quantities (9.1), (9.6), or (9.7) in terms
of a connection.

Let us consider again the fiber bundle F representing a fluid confined in a
fixed space domain identified by the manifold M � (xi), where i, j = 1, . . . , 3
and μ = 0, . . . , 3. The base space is the direct product X = M ×R � (xμ) =
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Fig. 9.8 Structure of the fiber bundle associated with a fluid

(xi, x0 = t). We choose the fiber F = M , a trivial identity structure group
G = {e}, the projection Π, Fx = Π−1(x) and a cross-section σ : X → F .
The cross-section maps x = (xμ) → σa = (x, σj(x)), and its differential
dσ : TX → TF maps TxX � v̂(x) = (v, v0) = (vi, v0) = (vμ) → ŵ =
(w, w0, w̄) = (wi, w0, w̄j) ∈ Tσ(x)F , with a = (μ, j). In components, the
action of the differential, which is a section in the first jet fiber bundle over
F , reads

dσ(v̂) =
(
∂σa

∂xμ
vμ

)
=
(
∂σν

∂xμ
vμ,

∂σj

∂xμ
vμ

)
=
(
∂xν

∂xμ
vμ,

∂σj

∂xi
vi +

∂σj

∂t
v0
)

=

(
vν ,

(
vi ∂

∂i

)
σj + v0

∂σj

∂t

)
=
(

v, 1, (v · ∇)σ + v0
∂

∂t
σ

)
, (9.8)

according to (4.4). If we restrict ourselves on curves being path lines in the
time parametrization, the tangent vectors are v̂ = (v, 1), i.e., v0 = 1. The
interpretation of (9.8) is as follows. Spatial part σ of vectors in the tangent
space to the base is in one-to-one correspondence with vectors in the tangent
space to the fiber, by the triviality of F . So σ is actually a fiber vector, i.e.,
an “Eulerian” vector in a local space frame. This Eulerian vector is mapped
to a vector in the tangent space to the bundle, which is a “Lagrangian” vector

TM � v →
[
(v · ∇) +

∂

∂t

]
σ, with σ̂ = (x,σ) ∈ TF . (9.9)

If we put vE = σ, (9.9) reads dσ(vE) = vL, i.e., the well-known transforma-
tion between the partial time derivative and the material (total) derivative.
In this sense, (9.9) describes a connection in F in the first jet bundle J1 (for
example, see Olver’s book [9]). Coming down to the F bundle, we note that
the only possible connection is a trivial one, with zero coefficients. This is
because the bundle is trivial, so the only admissible infinitesimal transfor-
mations are translations. The situation is different if the shape of the fluid
container is allowed to change in time.
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Even if we used such a complicated fiber bundle construction for the
transformation of the time derivatives, the Eulerian–Lagrangian transforma-
tion formula (9.9) is useful so far only for the tangent vectors (i.e., tangent
to the path lines), and it cannot be applied to more general vector fields, not
mentioning higher rank mixed tensorial fields.

9.2.5 Free Surface Fiber Bundle

If the shape of the reference fluid container changes with time (boundaries
not fixed anymore), the fiber Fx depends on the point (xi, t) ∈ X through the
time dependence and the bundle is not anymore a global cartesian product.
Consequently, it has a nontrivial structure group G. If the fluid has only one
compact free surface, the fiber bundle F has a different structure than the
one described in Sect. 9.2.4.

We consider the fluid “drop” as a connected, simple-connected domain
DΣ 	 D3 ⊂ R3 with smooth boundary (shape) ∂D = Σ, and under no
external forces or torques. By 	 D3 we mean a diffeomorphisms with the
three-dimensional disc x2 + y2 + z2 <= 1. The drop has a set of possible
shapes. If we can parametrize the set of all possible shapes with coordinates,
we could set the structure of a manifold M . The shape coordinates can be
determined by the expansion in spherical harmonics, for example, and we can
associate to M the l2(C) space structure with the topology induced by the
norm. We call M the shape space of the drop. The base space will be, like in
the previous case, X = M ×R � (Σ, t).

For any shape we choose a trihedron fixed in this shape, for example the
origin in the center of mass, and the axes directed toward the positions of
some chosen zeros of the spherical harmonics. The configuration of the fluid
within the given shape Σ will be referred to this trihedron. For a given
shape Σ, all possible configurations of the fluid particles {r|r ∈ DΣ} can be
described by the set of diffeomorphic (shape invariant) transformation of DΣ

onto itself. These transformations form a Lie group of diffeomorphisms Diff Σ .
Any element gΣ of this group maps some distribution of particles inside this
shape into another distribution of particles within the same shape. So, by the
minimal constrains, the fiber over x = (Σ, t) ∈M is represented by the group
of diffeomorphisms of the shape Π−1(Σ, t) =Diff Σ . The structure group is
the group of diffeomorphisms of the three-dimensional disc, Diff D3 , which is
the group model for all the other diffeomorphisms groups. Consequently, F
is a principal bundle, and the coordinate on the fiber over (Σ, t) is a certain
group transformation Diff Σ � gΣ : DΣ → DΣ .

This construction must be carried out for all possible shapes. Thus, the
total configuration space of the fluid F is a fiber bundle over the base X, of
fiber Diff Σ . A shape evolution will be identified by a (time-like) curve γ ∈ X,
i.e., a regular curve of shapes Σ(t) parametrized by time. For any particular
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shape, we have to integrate a set of dynamical equations �(Σ, r, t) to find
the positions of the particles associated to that shape. The shape at any
moment of time determines the position of particles within the fiber. Hence,
a cross-section σ : X → F represents the evolution of the drop, namely
in components t → Σ(t) → rL(r0, t) = gΣ(t)(r0). From the geometrical
point of view, the dynamical equations of the free surface fluid are equations
for this section. These are basically the equation of continuity, equations
for momentum conservation (Euler or Navier–Stokes equations), and energy
transfer equation.

For any shape in M , we need to specify its fixed reference trihedron and
its reference (we may call it initial) distribution of particles r0. This choice
is not unique, and the freedom involved is a typical gauge freedom. A similar
gauge freedom is encountered in electromagnetism when we study magnetic
monopoles, in the dynamics of elastic bodies or in the study of the geometric
phase change of the wave function for time variable Hamiltonian (Berry’s
phase). Making a choice for the trihedron orientation and the reference par-
ticle distribution with respect to any shape is nothing but a cross-section in
F . However, the physical results should be independent of this choice, i.e.,
gauge invariant.

Translation of the drop center of mass could be eliminated from the begin-
ning, but the shapes should also conserve total angular momentum. Angular
momentum can be changed by deformations (motion in the base space) and
also by particle rotations (motions in the fiber). We need to “synchronize”
the succession of deformations with a unique succession of rotations, such
that total angular momentum to be constant. In that, we can introduce a
new type of connection, different from that one introduced above between
Eulerian and Lagrangian approach on tangent vectors (9.9).

For any given smooth curve γ in the base space M , we need to lift it to
a curve γ′ in the total space F in a unique way. Remember that a lift is a
map γ ∈M → γ′ ∈ F such that Π(γ′) = γ. However, the lift of a path is not
unique by definition. The mathematical tool needed to make it unique is the
connection [30, 36]. A connection, or better said its differential expression,
would assign to any tangent vector v(x) ∈ TxM , an element in TFx, which
is the Lie algebra of the group Diff Σ . Globally, when we move along a closed
path in M the corresponding lifted path in F may not be closed. That is for
γ(x0) = γx1 we may have γ′(x0) = γ′x1 in F . Two different points on the
same fiber mean a relabeling of the particles, or a motion inside the drop.
Such a relabeling could be associated with a finite nonzero rotation of the
drop. The drop begins to move by changing its shape and ends up to the
same initial shape after a finite amount of time. But during this motion, it
actually undergoes a net rotation.

A similar situation happens when we build the configuration space of a
deformable body. Again, we choose for any shape a trihedron fixed in this
shape. The orientation of the body, ignoring free translations of the center of
mass, could be described by a proper rotation matrix R̂ ∈ SO(3) which maps
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the body-fixed trihedron to a space frame contained in the ambient space in
which the drop is constrained to move, i.e., R3. Thus, the total configuration
space F is a fiber bundle over the base M ×R, of fiber SO(3).

Like in the case of the drop, the angular momentum of the body can be
changed by deformations (motion in the base space) and also by rotations
(motions in the fiber). In this example, the connection assigns to any tangent
vector v(x) ∈ TM , an element in TSO(3), which is nothing but the Lie alge-
bra so(3). When we move along a closed path in M the corresponding lifted
path is not closed in general. Two different points on the same fiber mean a
change in the orientation, a rotation. The body moves and changes its shape,
but during this motion, it undergoes a rotation. However, because the SO(3)
Lie group is not commutative, there are problems in integrating this lifted
path in the fiber. The problem is solved, for example in gauge field theory,
by the so-called Wilson integral. In [36] there is an eloquent example, namely
the falling cat problem. The cat is dropped from an upside down position,
but it lands on its feet, even if it is isolated. The cat manages to deform its
body during the flight, such that all in all involves a net rotation of the body,
to conserve its angular momentum, see also [116]. Similar examples of free
deformable compact shapes occur in the theory swimming of microorganisms
in zero Reynolds number [117]. In that case the systems are investigated by
using the theory of a gauge field over the space of shapes. The topics of fiber
bundles in hydrodynamics have plenty of online and printed resources out of
which we mention for example [98,114,115,118–120].

9.2.6 How Does the Time Derivative of Tensors
Transform from Euler to Lagrange Frame?

In Sects. 9.2.4 and 9.2.5, we have seen that changing the frame from the
Eulerian to Lagrangian is actually mapping vectors from the tangent space
of the base space to the tangent space of the fiber. To transform higher-order
tensors we need to introduce a new time derivative through a covariant for-
malism. Equations (9.1) and (9.5)–(9.7) are not covariant because the time is
not explicitly included in the metric, yet the Lagrangian → Eulerian trans-
formation ω(x, t) → Ω(σ, t) is a time-dependent coordinate change. Conse-
quently, the partial time derivative does not transform like a tensor because
of the time-dependent basis vectors, the same reason that ordinary deriv-
atives are not covariant (see for example in Sect. 4.10 the comment right
after (4.29)).

The traditional material derivative is covariant just for the coordinates,
the velocity vector, and (obviously) for scalars, as we know from (9.1) and
(9.5)–(9.7), and it was proved geometrically in (9.9), because the velocity
belongs to the tangent space. Let us have an (r, s) Lagrangian tensor ω(x, t)
depending on the Lagrangian coordinates (x, t). Its time derivative, i.e., the
rate of change dω/dt of the tensor while keeping the Lagrangian coordinates
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constant, does not transform into the time derivative of the corresponding
Eulerian tensor, ω(x, t)→ Ω(σ, t)).

∂ω

∂t
(x, t) �

∂Ω

∂t
(σ, t).

To provide a covariant time derivative for arbitrary vector fields and higher-
order tensors, we need to calculate the pull-back transformation of (9.9), and
make sure that the result is a tensor of the same type. That is, to introduce
a covariant time derivative operator (e.g., [121] where it is called convected
or convective) which describes the change in time for a certain geometrical
quantity ω along (or with respect to) the flow lines of the fluid, in the Eulerian
frame (σ1, t). The covariant variation of this quantity is the sum of its internal
time variation described by the partial derivative, and the Lie derivative of
ω with respect to the flow described by the vector field vE = (vi)

dcΩ(σ, t)
dt

=
∂Ω

∂t
+ vE(Ω). (9.10)

For scalars, (9.10) reduces to the well-known formula (9.1) or (9.8). We will
refer in the following to (4.20) and (4.21), describing the action of the Lie
derivative on various geometrical objects.

For example, the time covariant derivative acts on a contravariant vector
field A(σ, t) = (Ai) defined in the Eulerian frame, according to the form (4.20)

dcA

dt
=
∂A

∂t
+ [vE ,A]. (9.11)

The covariant time derivative action on a covariant vector ω = (Ai) is given
by the sum between the partial derivative with respect to time and the Lie
derivative with respect to vE acting on the 1-form (4.21)

dcΩi

dt
=
∂Ωi

∂t
+ vk ∂Ωi

∂σk
+Ωk

∂vk

∂σi
, (9.12)

The action on an Eulerian tensor of rank (0, 2) is

dcΩij

dt
=
∂Ωij

∂t
+ vk ∂Ωij

∂σk
+ ωkj

∂vk

∂σi
+Ωik

∂vk

∂σj
, (9.13)

and so on. The physical signification of the covariant derivative on the LHS of
all (9.11)–(9.13) is the following. First, we calculate the partial time derivative
of a Lagrangian tensor, then we transform this quantity into the Eulerian
frame. This transformed Eulerian object is not anymore the simple partial
derivative of the Eulerian tensor, but the covariant time derivative of the
Eulerian tensor.

To exemplify (9.10) in a direct and even more intuitive way, we obtain the
transformation of the time derivative for a tensors of rank (1, 1) for example
by a simple matrix transformation formalism based on formula (4.30).
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Similar calculations in components are done in [38, Chap. 8]. We write the
tensor transformation of components of ω when changing frame from Lag-
rangian to Eulerian

Ω = JωJ−1, that is Ωp
q =

∂σp

∂xi

∂xj

∂σq
ωi

j . (9.14)

By time differentiation of (9.14) with respect to time, we have

dΩ

dt
J +Ω

dJ

dt
=
dJ

dt
ω + J

dω

dt
.

Since Ω is Eulerian we have Ω(σ, t) and further Ω(σ(x, t), t), so

dΩp
q

dt
=
∂Ωp

q

∂t
+ vj

∂Ωp
q

∂σj
.

Moreover, we can write

dJj
i

dt
=
∂vj

∂xi
=
∂vj

∂σk

∂σk

∂xi
,

and define the matrix of gradients of velocity

γj
i =

∂vj

∂σi
.

With these notations we have

ΩγJ +
dΩ

dt
J − γJω = J

dω

dt
,

and by using dJ/dt = γJ and by multiplication with J−1 to the right, we
obtain

J
dω

dt
J−1 =

dΩ

dt
+ [Ω, γ] ≡ dcΩ

dt
, (9.15)

where the commutator on the RHS arises from Ωγ − γ(JωJ−1). Equa-
tion (9.15) represents the transformation of the time derivative dω/dt, and
since the RHS is an operator applied to the Eulerian tensor Ω, we define
the LHS as the covariant (or convected) time derivative. In components
it reads(

J
dω

dt
J−1

)j

i

≡ dcΩ
j
i

dt
=
∂Ωj

i

∂t
+ vk ∂Ω

j
i

∂σk
+Ωj

k

∂vk

∂σi
−Ωk

i

∂vj

∂σk
, (9.16)

where we used the notation dc/dt for this covariant derivative. It is easy to
check that (9.16) is in agreement with the general formulation from (9.12)
and (9.13). For the action of the covariant time derivative on other types
of tensors, see Exercises 4 and 5 at the end of the chapter. Also the action
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of dc/dt can be expressed entirely in terms of covariant derivatives [38]. For
example for a (0, 2)-tensor, we have

dcΩij

dt
=
∂Ωij

∂t
+ (vk∇k)Ωij + (∇jv

k)Ωik + (∇iv
k)Ωkj . (9.17)

Let us choose a simple example to understand how (9.16) works. We con-
sider a stationary viscous flow next to a rigid wall at σ3 = 0 (or simply
z = 0) with velocity vE = (0, v, 0). The velocity is subjected to a bound-
ary layer effect and it depends on the distance to the wall, v = v(σ3).
In the Lagrangian (convected) frame the pressure is constant in time and
so is its gradient, having nonzero component in the σ3-direction, ∇P =
(0, 0, ∂P/∂σ3) = (α1, α2, α3). The time derivative of this gradient, which
is a (0, 1) covariant vector, is zero. However, in the Eulerian frame by using
(9.16), we have a nonzero material time derivative

dC∇P
dt

=
(

0,
∂vE

∂σ3
(∇P )3, 0

)
.

There is a change in time for the gradient in the Eulerian frame even if the
same gradient is constant in the Lagrangian frame, and this contribution
comes from the last term in the RHS of (9.16), and not from the first two
traditional terms on the same RHS. Physically, it means that the gradient is
initially vertical, but because of the horizontal shearing of the layers of fluid,
this gradient is “tilted” more and more horizontally.

This treatment presented above is not the only way to introduce a covari-
ant time derivative. For example in [122] the authors introduce a corotational
derivative where the local vorticity of the flow is incorporated into the deriv-
ative. However, the covariant time derivative defined by (9.15) and (9.16) is
the most familiar one, and it was initially introduced in [89] in formulating
rheological equations of state. This derivative was used in [90] to develop a
theory of fluid motion on an interface, and later was geometrically extended
in [38, 121]. In this last citation there are enumerated some disadvantages
of the covariant time derivative. For example, it is not compatible with the
metric tensor, and it involves gradients of the velocity so it is not direc-
tional. On the other hand, the importance of the covariant time derivative
(9.15) and (9.16) is not only mathematical. Many nonlinear transport and
mixing processes are described by advection–diffusion equations [121], con-
sisting in a material time derivative for the concentration of the quantity
advected, and a divergence of the diffusivity tensor. In the Lagrangian frame
(along the direction of compression of fluid elements) the advected terms
drop out, and the governing equation reduces to a simple diffusion equa-
tion, much more tractable. Moreover, because of the formalism presented in
this section, this simplified diffusion equation is still covariant. This allows
the introduction of a Riemannian metric on the tangent space to the co-
ordinate space, and allows in principle the use of spectral approximation
procedures.
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9.3 Path Lines, Stream Lines, and Particle Contours

In this section, we present a parallel between the Eulerian and Lagrangian
approaches from the point of view of the flow box theorem (see Sect. 4.4).
We discus here only finite time flows with t ∈ [t1, t2],−∞ < t1 < t2 < ∞.
We begin our construction with the fluid initial reference container, i.e., a
domain D0 ⊂ R3. We construct the base space X = R3 × [t1, t2], and we
assign a local coordinate system in r0 ∈ D0. We assume that we are given the
fluid flow as smooth homeomorphisms rL : D0 × [t1, t2]→ R3 such that the
restriction rL|D0×{t} is injective for any fixed t ∈ [t1, t2]. In coordinates this
reads (r0, t)→ rL(r0, t). The family of curves L = {γL ⇒ rL(r0, t)|r0 ∈ D0}
is the particle paths, with tangents ṙL = vL and metric gL = v2L. These
curves can be lifted in the base space and mapped into a family L̃ = {γ′L ⇒
(rL(r0, t), t) ∈ R3 × [t1, t2]|r0 ∈ D0}. The metric of γ′L is g̃L = v2L + 1. Both
γL and γ′L are Lagrangian path lines viewed in different spaces.

For any t ∈ [t1, t2] we can construct Dt = rL(D0, t) ⊂ R3. A particle
contour is a parametrized curve Γ0 = {γ0(s) ⊂ D0, s ∈ I} ⊂ D0. The ques-
tion is what happens to such a particle contour in time. Is Γt = {γ(s, t) =
rL(γ0(s), t)} a regular curve with the same topology as Γ0? We have the
following result.

Lemma 7. The set Γt defined by γ(s, t) as above is a regular parametrized
curve if

Ĵ(rL(r0, t))|t=const. · tΓ0 �= 0,

for ∀s ∈ I, t ∈ [t1, t2]. Here t is the tangent vector to a curve.

Proof. We have
∂r

∂s
(s, t) =

∂xi
L

∂γj

dγj

ds
=
∂xi

L

∂xj
0

· tj
Γ0

(s), (9.18)

which represents the requested inequality. ��

In other words, a particle contour at the initial moment of the flow remains a
regular curve while transported by the flow in time if the unit tangent of this
initial curve is not in the kernel of the Jacobian matrix of the Lagrangian
path function of the initial coordinates (the flow). If conditions in Lemma 7
are fulfilled, the particle contour Γ0 remains a regular curve during the flow,
so one can apply circulation or other types of theorems on it. The Jacobian
matrix plays a basic role in hydrodynamics [123]. It allows the determination
of the main flow parameters and the geometrical characteristics, in particular
the metric properties.

As an application, we can use Lemma 7 criterium in Example 2. The initial
vertical particle contour (for example x0 = 0, y0 ∈ [−a, a]) will breakup at a
certain moment of time t if, according to (9.18),

∂rL

∂y0
(t) = 0,
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where we consider y to be the vertical axis in Fig. 9.3. Obviously, from the
continuity of the cylinder contour, the coordinates of all path lines depend on
y, so (even it looks hard to believe) the above derivative is nonzero everywhere
and consequently the path lines will not disrupt.

The question is whether the set ∪t∈[t1,t2]Dt is a submanifold of R3. If it
is, we can assign local coordinates for its points in the form p = (r0, t). In
other words, if the reunion of all path lines over a certain finite interval of
time is dense enough to form a topological space. The answer can be given
at least locally, by using the flow box theorem (Theorem 6). Obviously, the
Lagrangian velocity field of any particle vL fulfills the conditions for the
existence of flow boxes on X. Indeed, for any t ∈ [t1, t2]] and any point
p = (r, t) ⊂ Dt, we can find a neighborhood V (r) and t ± δt such that it
exists a > 0 and the triple

((V (r), (t− δt, t+ δt))a, γL(rL(r0, t), t+ λ)),

is a flow box.
Moreover, we assume that the fluid flows in such a way thatX is a topolog-

ical space with the product topology of R3×R. We also assume that the fluid
flows in a bounded region (bounded fixed region or free compact surface),
so the Lagrangian velocity field has compact support in X. Consequently
γL(r0, t) are maximal integral curves and form a foliation of X (see Sect. 4.4).
Since the field of velocities of particles has compact support, according to
Lemma 2, it is complete, and any of its integral curves can be extended so
that its domain of parameter becomes R. So the Lagrangian paths γL(r0)
form a foliation of the manifold Dt which is homeomorphic with D0. We
mention again that inside each Dt, we have vE(rL(r0, t), t) ≡ ṙL(r0, t), but
inside the same Dt the integral curves of ṙL are not the γL curves.

There are of course differences and similarities between the stream and
path lines.

Example 3. In Fig. 9.9 we present a cross-section into a spherical drop of
incompressible inviscid fluid in oscillation with an l = 2 mode. The thin lines
are the stream lines and the thick line is a path line.

Example 4. To illustrate better these differences, we present a simple example
of a two-dimensional flow. We assume that we know the flow of this two-
dimensional fluid in the Eulerian frame, and hence we know the Eulerian
velocities vE(r, t) at every point and every moment of time. For example let
us choose

vE(x, y, t) = (x, y + εt), (9.19)

where ε is an arbitrary parameter. The stream lines, lying in the instantaneous
plane R2, are obtained by integrating

dx

x
=

dy

y + εt
, (9.20)



180 9 Kinematics of Hydrodynamics

Fig. 9.9 Cross-section into a spherical drop of incompressible inviscid fluid in oscillation

in an l = 2 mode. The thin curves are the stream lines, while the thick curve is an example
of a path line

resulting in the implicit equation

yE =
y0 + εt
x0

xE − εt, (9.21)

or in the parametric form rE(s;x0, y0; t)

x =
s√

1 +
(

y0+εt
x0

)2

y =
y0 + εt
x0

s√
1 +
(

y0+εt
x0

)2
− εt. (9.22)

Equations (9.21) and (9.22) represent the stream line passing through a point
(x0, y0). From the Eulerian velocity we obtain the Lagrangian velocity by
integrating the equations

dxL

dt
= xL(x0, y0, t)

dyL

dt
= yL(x0, y0, t) + εt.

The lifted path lines in parametric form have the expression γL(xL(x0, y0, t),
yL(x0, y0, t), t) with

xL(x0, t) = x0e
t

yL(x0, y0, t) = (y0 + εt)et − ε(t+ 1), (9.23)
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and in implicit form read

yL(x0, y0, t) = (y0 + ε)
xL

x0
− ε
(

ln
xL

x0
+ 1
)
. (9.24)

Of course the path lines and the stream lines have different expressions,
not forgetting the fact that they belong to different spaces. For a check, we
notice that if we eliminate the time dependence by setting ε = 0, these lines
(9.21)–(9.24) have the same expression. In stationary flow the stream lines
and the path lines coincide in the horizontal space. We can also check the
definition condition vL(t) = vE(rL(t), t). Indeed, we can write

vEx = xE |rL(t) = xL(t) = x0e
t = vxL(t),

and from (9.23)

vLy(t) = (y0 + ε)et − ε = yE |r=rL(t) + εt = vEy.

Another check is to verify the relation between the Eulerian and Lagrangian

dvLy

dt
= (y0 + ε)et = y + εt+ ε

∂vEy

∂t
+(vE ·∇)vEy = ε+x

∂(y + εt)
∂x

+(y+ εt)
∂(y + εt)
∂t

= y+ εt+ ε, (9.25)

and a similar equation for vx.
For any t, the stream lines (9.22) form a family of curves γE(s; r0; t) labeled

by the points r0 ∈ γE , parametrized by the arc-length s. These curves provide
foliations of each horizontal space R2, for each moment of time. The vector
field vE(r, t) generates also a family of integral curves in the base space
R3 = R2 ×Rtime determined by the equations

dx

x
=

dy

y + εt
=
dt

1
. (9.26)

At t = 0 we have
γE(s; r0; 0) =

s√
x2

0 + y2
0

(x0, y0) (9.27)

and the solutions of (9.26) and (9.27) coincide modulo a reparametrization.
This means that the Eulerian stream lines are the projections of the lifted
Lagrangian path lines in the horizontal planes only at t = 0. The above
example is also shown in Fig. 9.10.

In Fig. 9.11, we present the same flow described by (9.21) and (9.23)
in the base space (a three-dimensional representation, where time is the
vertical axis).
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Fig. 9.10 Upper graphic: stream lines γE(t) in the horizontal plane generated by (9.21)
at t = 0 (dashed lines) and t = 1 (continuous lines). Lower graphic: a region of the same

flow, with stream lines at t = 0 (dashed) and t = 1 (smooth), and a path line (thick line)
of a particle moving from t = 0 to t = 1. The path line is tangent to vE(t = 0) (dashed
line) at its upper left end, and tangent to vE(t = 1) (smooth line) at its lower right end,

respectively
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Fig. 9.11 Upper box : Lagrangian velocity field represented in the base space with arrows.

Three Lagrangian paths as particular integral curves of this field are shown. Lower box :
same Lagrangian paths γL (continuous line). If we project the unit tangent of each such
Lagrangian path onto the horizontal plane, we obtain the Eulerian velocity field vE . The
dotted lines are integral curves of this Eulerian field. The three longer dotted lines on the
base of the box are three such stream lines, intersecting the three Lagrangian path lines
at t = 0, respectively. The other three dotted (shorter) lines in the upper plane are other
three stream lines, occurring at t = 1, and intersecting the same three Lagrangian path
lines at t = 1, respectively
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9.4 Eulerian–Lagrangian Description for Moving Curves

This section is very short, and its purpose is to recall that the idea of estab-
lishing a Lagrangian–Eulerian change of frames in lower-dimensional flows is
not quite trivial. We elaborate a little about Eulerian–Lagrangian coordinates
and velocities in Sects. 8.1 and 8.2 together with the introduction of the con-
vective velocity. Here we just mention one possibility to introduce Eulerian
coordinates on a moving curve, like for example a thin vortex filament in
motion. We can consider that the Lagrangian coordinates along a curve of
length L are given by the arc-length parametrized form of the curve r(s, t).
The curve is in motion, and the velocity can be expressed in its Serret–Frenet
local frame {t,n} in the form V (s, t) = U(s, t)n +W (s, t)t. We introduce
the mapping e : [0, L]→ C

e(s, t) =
∫ s

eiθ(s′,t)ds′,

from the Lagrangian coordinate to the Eulerian one, where θ =
∫ s
κ(s′, t)ds′

is the tangent angle of the curve, and κ is its curvature (Sect. 5.1). In the
Eulerian coordinate, we can express all the intrinsic properties of the curve,
namely θ = −i ln(es), κ = −iess/es, and the dynamics of the transformation
of coordinates is given by est = [(W − iU)es]s [124]. In terms of the new
coordinate e and time, the dynamical equation for the velocity components
is θteiθ = e2iθ(W − iU)e. Let us choose now a curve motion with zero nor-
mal velocity and constant tangential velocity. Since such a motion is only a
reparametrization of the curve, i.e., it is not a real motion, we expect the
Eulerian coordinate to remain constant. Indeed, from the above relations we
have est = 0 so e =const.

9.5 The Free Surface

Physically, free surface is the bounding surface of a certain amount of fluid
under consideration. From the mathematical point of view, we consider the
free surface Σ to be a piecewise smooth, orientable, regular surface. The free
surface is described by the relation S(r, t) = 0. This free surface has to fulfill
the so-called free surface kinematic condition. In the Lagrangian description
this equation reads

dS

dt
= 0, (9.28)

which means [93] that a particle lying in the surface can not have normal
velocity with respect to this surface, otherwise will produce a normal flow of
fluid across the surface, which contradicts the free surface definition. To use
the Eulerian picture, and to express the kinematic condition in terms of the
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velocity field v, we choose a particle P that moves together with the moving
surface Σ. The particle has a velocity vPΣ(t) = drP (t)/dt. If the particle P
moves together with Σ, there is a relation between v and S given by

vPΣ · ∇S +
∂S

∂t
= 0. (9.29)

It is easy to prove this equation if we assume that the particle is contained
in the surface at an arbitrary moment t and also at t + δt. That is: if
S(rPΣ(t), t) = 0, then S(rPΣ(t + δt), t + δt) = 0. Equation (9.28) can also
be written as (

v · ∇S +
∂S

∂t

)
Σ

= 0,

and this is a possible form for the free surface kinematics condition. The Σ
subscript means that this equation is taken only on Σ, or on other words that,
in this equation (r, t) have to fulfill S(r, t) = 0. This form is more useful if
the surface equation S is provided explicitly. For example if S = 0 → z =
η(x, y, t), we have

dη

dt
= vz =

∂η

∂t
+ vx

∂η

∂x
+ vy

∂η

∂y
. (9.30)

We would like to comment that, in some literature, this free surface kinemat-
ics condition is explained as “a fluid particle originally on the boundary sur-
face will remain on it.” This is not, in general, true. The P particle may sink
inside the fluid (like in the case of dragging of the capillary surface by adher-
ence forces) or evaporate. A more general physical statement would be that,
for any particle lying at moment t in the surface, its velocity is tangent to the
surface at that moment. From the mathematical point of view, this problem
is equivalent to the fact that dr/dt is not well defined at the surface, because
the set of points forming a geometrical surface Σ admits many mappings into
itself. To eliminate this ambiguity, one can use just the normal velocity, as
it is suggested by Meyer [94]. We can define the unit normal to the regular
surface S(r, t) = 0 by n = ∇S/|∇S|. The normal component of the velocity
of Σ is

vn =
(

n
dr

dt

)∣∣∣∣
Σ

·n = −n
∂S

∂t

1
|∇S| .

By using (9.28) for S, we have

vn = −
∂S
∂t

|∇S| = −
dS
dt − (V · ∇)S
|∇S| =

(V · ∇)S
|∇S| ,

where the last RHS is nothing but the velocity field along the normal to the
surface V · n. So we have obtained

vn = V n, (9.31)

which is the most compact (and precise) form of the free surface kinematic
condition: the normal component of the Lagrangian fluid particle velocity is
equal, in any point of the surface, with the normal component of the Eulerian
velocity.



186 9 Kinematics of Hydrodynamics

9.6 Equation of Continuity

In Sects. 9.6.1 and 9.6.2, we analyze the equation of continuity. There are
two reasons for choosing this topic. The first reason is that this equation
provides a simple working application of the basic theorems of existence and
uniqueness of the solutions of (linear or nonlinear) PDE. The second reason is
that the equation of continuity has variable coefficients and it represents also
a good toy model for such type of equations. However, it is still linear PDE,
yet interesting in some of its particular solutions so it makes a “smooth”
pedagogical transition from linear to nonlinear.

9.6.1 Introduction

In the nonrelativistic approximation mass is neither created nor destroyed,
so we have the law of conservation of mass, i.e., a positive invariant

m =
∫

D

ρdV > 0,

integrated on the closure of the domainD filled with fluid. From its invariance
we find the so-called equation of continuity integral or differential form∫

D

(
∂ρ

∂t
+ div(ρV )

)
dV = 0,

∂ρ

∂t
+ div(ρV ) = 0, (9.32)

in either integral or differential form. V (r, t) is the velocity field and V is
the volume. In fluid mechanics, the equation of continuity is coupled with
other equations for conservation of momentum (Euler or Navier–Stokes) and
for energy or entropy transfer, such that in total we have five scalar PDEs
for the five scalar fields for the problem: ρ,V , and p the pressure (by scalar
we mean here also a component of a vector field). The continuity equation
alone is not useful for physics, and some of its solutions do not have physical
signification, unless coupled with the other dynamical equations. However,
we present in the followings a theorem of existence and uniqueness, and some
applications for (9.32). Such examples are not usually analyzed in books of
fluid dynamics, but they can work as a good exercise of mathematical physics.

We study the equation of continuity when the velocity field is given, and we
integrate it to find the density distribution. The continuity equation (9.32)
is a homogenous linear PDE of order 1, with variable coefficients, defined
in a certain domain D ⊂ R4 of space–time. The main tool we need is the
Cauchy–Kovalevskaya theorem for existence and uniqueness of the solutions
of a general (not necessarily linear) PDE [125]. According to this theorem,
the continuity equation has one unique real analytic solution ρ(r, t) for a
given analytic velocity field V (r, t) and given Cauchy condition provided by
ρ(r, t)|Σ = g(ξ1, ξ2, ξ3), where g is an analytic function defined on a regular
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hypersurface Σ ⊂ R4. The Cauchy–Kovalevskaya theorem can be applied to
any nonlinear PDE, for arbitrary Cauchy conditions expressed in terms of
analytic functions, if one of the highest order derivative of the PDE can be
explicitly written as an analytic function depending on the other terms and
variables in the PDE. For example in (9.32), PDE of order 1, we can write
the time derivative of the unknown function ρ on the LHS, and express it as
an analytic function of the variable coefficients V i and partial derivatives of
ρ with respect to the other coordinates xi, on the RHS (named generically
f(r, t, ρ, ∂ρ/∂xi, . . . ))

∂ρ/∂t = f −
3∑

i=1

∂(ρVi)/∂xi.

The function f is analytical because the finite sum and multiplication pre-
serve analyticity, so we are in the frame of the Cauchy–Kovalevskaya theorem.
In general, if the PDE is of order m we need m Cauchy conditions, one for
each derivative of order 0 to m− 1 of the unknown function, with respect to
a nontangent direction on the Cauchy hypersurface.

Theorem 21 (Theorem of Existence and Uniqueness Cauchy–
Kovalevskaya). If a PDE of order m in the unknown function u(x1, . . . , xn)
can be written in the form

∂mu

∂xm
1

= f

(
x1, . . . , xn, u,

∂u

∂x1
, . . . , ,

∂mu

∂xm1
1 . . . ∂xmn

n

)
, (9.33)

where m = m1 + · · · +mn and where the term ∂mu
∂xm

1
does not appear on the

RHS, then the Cauchy problem attached to this PDE:

∂ju

∂lj

∣∣∣∣
Σ

= gj , j = 0, 1, . . . ,m− 1 (9.34)

with functions gj defined on the (n − 1)-dimensional regular hypersurface
Σ ⊂ Rn, where l is an arbitrary not tangent direction on Σ, admits a unique
analytical solution u, if the functions f, gj are analytical on their domains of
definition.

For a proof see [10,24,25,125]. This theorem states the existence and unique-
ness of an analytic solution, but this does not exclude the existence of other,
nonanalytical solutions of the same Cauchy problem. However, if the PDE is
linear (Holmgren uniqueness theorem) there are no solutions except the ana-
lytical ones. This last result shows that possible compact supported solutions
or very localized solutions (like solitons, compactons, peakons, etc.), which of
course are not analytical functions, could not arise from a linear PDE. High
localization is strictly related, or generated, by the nonlinearity in the PDE.
We remind here that there is one special case in which linear equations provide
compact supported solutions, i.e., the discrete wavelets 2-scale equation [126].
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For example, the Haar scaling function (the step function), defined as 1 on
[0, 1] and zero in the rest of real axis, is a solution of the finite difference
equation Φ(x/2) = Φ(x) + Φ(x − 1). This result reveals a possible deeper
connection between linear finite difference equations (or infinite-order linear
PDE equations) and nonlinear PDE.

Returning to the continuity equation we prove the existence and unique-
ness theorem for its Cauchy problem. In the course of this proof we use special
Cauchy condition defined on the hyperplane t = t0. However, it is easy to
generalize the following proof for general Cauchy conditions on an arbitrary
hypersurface. This is because any arbitrary Cauchy hypersurface is regular,
and hence we can find a local change of coordinates (x, t) → (x′, t′), such
that the hypersurface in the new coordinates is determined by the equation
t′ = t

′
0, without any loss of generality or analyticity. Choosing the Cauchy

condition on the hyperplane t = t0 means knowing the density at the ini-
tial moment in the whole space, or in the domain of definition of the posi-
tion vector. In the general Cauchy hypersurface case, the condition can be
both initial condition and boundary condition, for example if Σ is defined by
Σ = {(x, t)|t = t0 and x ∈ D}⋃{(x, t)|t ≤ t0 and x ∈ ∂D}, etc. Moreover,
we can always reduce any Cauchy condition to a null Cauchy condition. If
the function ρ̃ is a solution of the equation

∂ρ̃

∂t
= −div(ρ̃V )− div(gV ) (9.35)

under the null Cauchy condition ρ̃(r, t0) = 0, then ρ = ρ̃+ g(r) is a solution
of the continuity equation (9.32) for the same V , and the general Cauchy
condition ρ(r, t0) = g(r). The analyticity of the functions involved is not
changed by this functional substitution. In the following, we use a generic
function f instead of the RHS of the PDE under consideration, no matter if
it is (9.32), (9.33), or (9.35).

The sketch of the proof of existence and uniqueness of the solution of
the continuity equation can be presented briefly as follows. We construct
the Taylor series of a hypothetic analytic solution ρ of (9.32), by using the
initial condition and the equation itself. If such a solution exists, then by
construction it is unique. To prove its existence, we construct an upper bound
function fub for the RHS of (9.32). Such a construction is always possible, and
the good news is that its associate solution, i.e., the solution of ∂ρ/∂t = fub,
is an upper bound function for ρ. By using the comparison criterium, ρ ρub,
it results that ρ is uniformly convergent, hence analytical. This concludes the
proof. Now we proceed with the detailed discussion.

To construct the Taylor series we use the following.

Lemma 8. If the velocity field V (r, t) and the Cauchy condition ρ(r, t0) =
g(r) are analytic in a neighborhood V(r0, t0), then the Cauchy problem for
(9.32) admits one unique analytic solution in V.
Proof. Since this hypothetic solution is analytic, we can construct it as a
Taylor series in the form
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ρ(r, t) = ρ(r0, t0) + (t− t0)
∂ρ

∂t

∣∣∣∣
0

+
3∑

i=1

(xi − xi0)
∂ρ

∂xi

∣∣∣∣
0

+
1
2!

[
(xi − xi0)(xj − xj0)

3∑
i,j=0

∂2ρ

∂xi∂xj

∣∣∣∣
0

+
3∑
i

(xi − xi0)(t− t0)
∂2ρ

∂xi∂t

∣∣∣∣
0

+(t−t0)2
∂2ρ

∂t2

∣∣∣∣
0

]
+

1
3!

[ 3∑
i,j,k=0

(xi−xi0)(xj−xj0)(xk−xk0)
∂3ρ

∂xi∂xj∂xk

∣∣∣∣
0

+· · ·
]
+· · ·,

(9.36)
where by subscript 0 we understand that the value is taken in the point
(r0, t0). Substitute in this series the initial Cauchy and the equation itself

ρ(r0, t0) = g(r0)

∂ρ

∂t

∣∣∣∣
0

= −div(ρV )|0 = −div(gV )

∂ρ

∂xi

∣∣∣∣
0

=
(
∂

∂xi
ρ(r, t0)

)
r0

=
∂g

∂xi
(r0)

∂Iρ

∂xi1∂xi2 . . . ∂xin

∣∣∣∣
0

=
∂Ig

∂xi1∂xi2 . . . ∂xin

(r0)

∂2ρ

∂xi∂t

∣∣∣∣
0

= −div ∂
∂xi

(gV (r, t0))r0 , etc., (9.37)

and so on, for all terms. The hypothetic analytic solution is now fully det-
ermined, which proves its uniqueness. To prove its existence, we need to
introduce the concept of upper bound function in general in Rn. ��

Definition 46. Let x0 ∈ Rn and f is an analytic function defined on a neigh-
borhood V(x0), such that

f(x) =
∑

i1,i2,...in

Fi1,i2,...in
(x1 − x01)i1 · · · (xn − x0n)in ,

for x ∈ V(x0). We define an analytic function on V(x0)

fub(x) =
∑

i1,i2,...in

Gi1,i2,...in
(x1 − x01)i1 · · · (xn − x0n)in ,

called upper bound of f , if ∀i1, . . . in we have:

1. |Fi1,...in
| < Gi1,...in

.
2. 0 ≤ Gi1,...in

.

The notation is f  fub. The next step is to find an upper bound function
for the RHS term of the continuity equation.
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Theorem 22. For any function

f =
∑

i1,i2,...in

Fi1,i2,...in
(x1 − x01)i1 · · · (xn − x0n)in ,

analytic on a neighborhood V(x0), there is a neighborhood W(x0) ⊂ V(x0)
where f has an analytic upper bound function of the form

fub(x) =
M

1−
∑n

i=1(xi−x0i)

α

+ C, (9.38)

where M > 0, α ∈ R, and C is a constant.

Proof. Obviously, ∃ξ ∈ W such that the numeric series∑
i1,i2,...in

Fi1,i2,...in
(ξ1 − x01)i1 · · · (ξn − x0n)in ,

is uniformly convergent, which implies that the sequence Fi1,i2,...in
(ξ1 −

x01)i1 · · · (ξn − x0n)in → 0, so it is bounded, i.e., ∃M > 0 such that

|Fi1,i2,...in
(ξ1 − x01)i1 · · · (ξn − x0n)in | < M.

Then

M
∑

i1,...in

(x1 − x01)i1 · · · (xn − x0n)in

|(ξ1 − x01)i1 · · · (ξn − x0n)in | ,

is an upper bound for f on W, according to Definition 4. Since the above
series is also a geometric progression, we can calculate its sum. Then we can
find an upper bound function fub for this progression in the form

M(
1− x1−x01

|ξ1−x01|

)
· · ·
(

1− xn−x0n

|ξn−x0n|

) < M

1−
∑n

i=1(xi−x0i)

α

+ cst. = fub(x),

(9.39)
with α = min{|ξ1 − x01|, . . . |ξn − x0n|}. The next step is to take this type of
upper bound function in n = 4 and use it in the RHS of the continuity equa-
tion, instead of its original RHS, with an appropriate choice of the arbitrary
constant cst.

∂ρub

∂t
=

M

1− t+x+y+z+ρ+
∑3

i=1
∂ρ

∂xi

α

−M. �� (9.40)

Lemma 9. The null Cauchy problem for (5.14) has a unique analytic sol-
ution ρub in a neighborhood of 0, whose Taylor series has all coefficients
nonnegative.
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Proof. We introduce the variable χ = t+ x+ y+ z and we look for solutions
of (5.14) of the form ρ(t, x, y, z) = u(χ) under the initial condition u(0) = 0.
The PDE (5.14) reduces to an ODE

u′(α− χ− 3M)− uu′ − 3(u′)2 −Mu−Mχ = 0,

and according to the Peano theorem (remember, it is based on the fixed
point theorem [12]) this equation has a unique analytical solution in the
initial condition u(0) = 0. When χ = 0 we have a possible solution u′(0) = 0.
By differentiating the ODE one more time, and by calculating it again in
χ = 0, we have u′′(0) = M/(α − 3M). If we choose α ≥ 3M it results
u(k)(0) ≥ 0 for k = 0, 1, 2. In general, after n successive differentiations,
we have

u(n)(0) =
1

α− 3M

( n∑
k,j=0

|Ckj |u(k)(0)u(j)(0) + (αM + n)u(n)(0)
)
,

where |Ci0,i1,i2,i3 | are nonnegative coefficients. It results, by induction, that
∀k, u(k)(0) ≥ 0 if α > 3M . This result proves that the null Cauchy prob-
lem for (9.40) has always an unique analytic solution, whose Taylor series
coefficients are nonnegative:

ρub(r, t) =
∑
|Ci0,i1,i2,i3 |ti0xi1yi2zi3 . (9.41)

There is no loss of generality by choosing null Cauchy conditions in Lemma 4.
We proved in (9.35) that any null Cauchy conditions can be changed into
arbitrary Cauchy conditions, so Lemma 4 is general. Now we attack the final
step of our proof.

The uniqueness of the Cauchy problem for (9.32) was proved in Lemma 3,
so we just need to prove the existence of analytic solution ρ. Since the
actual RHS term of the continuity equation is analytic in all its variables,
we can find an upper bound function for the PDE in the form of (9.38).
We solved this auxiliary PDE (Lemma 9) and its solution ρub has the prop-
erty: ρ  ρub. This is true because we build the solutions term by term, by
using the functions f , fub, and the Cauchy data g (like we did in (9.36) and
(9.37)). The upper bound property transfers from the fs to the ρs. Conse-
quently, all the coefficients (partial derivatives in 0) of the Taylor series for ρ
are upper bounded by the corresponding coefficients (corresponding partial
derivatives in 0) of ρub. Since the series in (9.41) is analytic, by the com-
parison criterium, it results the analyticity of the series ρ (see (9.36) and
(9.37)). But this is the actual solution of (9.32), which proves the whole
theorem.

We briefly present the above proof in the diagram (9.42)



192 9 Kinematics of Hydrodynamics

∂ρ
∂t = f

ρ(r, t0) = 0
−−−−→

T10
∃fub % f −−−−→

∂ρub

∂t = fub

ρub(r, t0) = 0

L 3
⏐⏐�Taylor

⏐⏐�L4

Unique sol.
(5.10) −−−−→ ρ ρub ←−−−− ρubhas all

coeff. ≥ 0⏐⏐�Comparison crit.

∃!ρ
ρ(r, t0) = 0⏐⏐�Substitution

∃!ρ
ρ(r, t0) = g(r)

�� (9.42)

9.6.2 Solutions of the Continuity Equation
on Compact Intervals

In Sect. 9.6.1 we discussed the general conditions under which the continuity
equation has a unique analytical solution. In this section we investigate some
special one-dimensional situations having exact solutions. That is a Cauchy
one-dimensional problem for ρ(x, t) for given V (x, t). We focus especially on
the behavior of the solutions at the boundaries of a compact interval of length
2L. The one-dimensional version of the continuity equation reads

∂ρ

∂t
+ ρ

∂V

∂x
+ V

∂ρ

∂x
= 0, (9.43)

for x ∈ [−L,L], t ≥ 0. At the boundaries of the interval, we should have no
flow of matter so we impose the BC v(±L, t) = 0, in addition to the Cauchy
condition. It is easy to build the general solution from the Fourier expansions

ρ(x, t) =
∑
n≥0

ρn(t)e
iπnx

L , V (x, t) =
∑
n≥0

Vn(t)e
iπnx

L , (9.44)

and from the BC we have ∑
n≥0

(−1)nVn(t) = 0. (9.45)

If we plug the formulas from (9.44) in the continuity equation (9.43), we
obtain a recursion relation
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ρ′k(t) = − iπk
L

k∑
n=0

ρnVk−n. (9.46)

With the notation
Vk(t) ≡ e− iπk

L

∫ t
0 V0(t

′)dt′ ,

we have (9.46), the new recursion relation

ρk(t) = Vk(t)
(
ρk(0)− iπk

L

∫ t

0

V−k(t′)
k−1∑
n=0

ρn(t′)Vk−n(t′)dt′
)
, (9.47)

where ρk(0) are determined by the initial condition through the inverse
Fourier transform

ρn(0) =
1
2π

∫ L

−L

ρinitial(x)e−
inπx

L dx. (9.48)

We choose a simple physical example, where the initial density is the same
everywhere within the compact [−L,L], and zero outside. That is ρ(x, 0) =
m/(2L), where m is the total mass of the fluid inside the bounded segment.
It results ρ0(0) = m/(2L) and ρn(0) = 0 for n > 0. We also choose a simple

configuration for the velocity, namely V (x, t) = a sin(ωt)
(
e

iπx
L +e

2iπx
L

)
. That

is V1(t) = V2(t). This is a stationary (longitudinal) oscillation in velocity
along the segment, with zero velocity in the ends. We have Vn(t) = 0 for
n = 0, 3, . . . . By substituting these expressions for the velocities components
in (5.21), we obtain V±k = 1 and

ρk(t) = − iπka
L

∫ t

0

sin(ωt′)(ρk−1 + ρk−2)dt′, k = 1, 2, . . . (9.49)

This recursion provides the unique solution for k ≥ 1.
Apparently, finding general solutions for the continuity equation in

one-dimensional, ρt + ρVx + ρxV = 0, is a simple procedure (subscripts rep-
resent, again, differentiation). However, there is a hidden problem at the
boundaries, produced by the zeros of the coefficients in the PDE. At the
ends of the interval, we have to assume no flow of fluid, so V (±L, t) = 0. In
a neighborhood (L− ε, L) of the right boundary for example, we can test the
behavior of a Fourier component of the solution ρω(x, t) = r(x)eiωt, and we
obtain

d(ln rω)
dx

Vω = −
(
dVω

dx
+ iω

)
, (9.50)

which means that in this neighborhood, even if Vx = 0, we still have the
RHS nonzero. But, when V → 0, it seems that d(ln rω)/dx → ∞. So, the
zeros of velocity at boundaries may introduce singularities in density (by
reciprocity, in the inverse problem, isolated zeros of density can also introduce
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singularities in velocity). Let us suppose that the velocity approaches the zero
as a power law V (L − ε, t) 	 εa, a > 0. If a < 1 we have limx→L(ρ) < +∞.
But if a > 1 we expect limx→L(ρ) = +∞. If V is a rapidly decreasing function
in that neighborhood, we can neglect the third term in (9.43) and use the
approximation

∂ρ

∂t
	 −ρ∂V

∂x
,

to investigate the behavior of ρ. By direct integration we obtain

ρ(L− ε, t) 	 ρLe
− ∫ t

0 Vx(L− ε, t′)dt′,

where ρL is a constant. This asymptotic solution is a very rapidly increasing
function toward L, but it is not anymore a singularity.

Let us illustrate with examples. We take a simple form for velocity in a
compact interval x ∈ [−L,L]

v(x, t) = V0 sinωt cos kx,

as stationary oscillations, where k = (2n+ 1)π/(2L), n arbitrary integer and
V0, ω are constants. The solution can be easily obtained by the procedure
indicated above or by simple separation of variables. The general solution is
a real integral over the label λ of the following components

ρ(x, t, λ) = ρ0e
− λ

ω cos ωt

(
cos kx

2 + sin kx
2

)a−1

(
cos kx

2 − sin kx
2

)a+1 ,

where a = −λ/(kV0), and ρ0 are constants. Obviously this solution has sin-
gularities within [−L,L], provided by the trigonometric zeros of the denomi-
nator. The reason is the cancellation of velocity in different points (function
of how large is n) including the boundaries. Velocity approaches zero by fol-
lowing a quadratic law: V (L− ε, t) 	 k2ε2/2.

What can be done to eliminate these singularities? Of course, by coupling
the continuity equation with Euler and energy conservation equations, the
nonphysical solutions will be eliminated. However, one simple possibility to
eliminate the singularity in density is to introduce an artificial constant term
in velocity

V = V0(sinωt cos kx+ V1).

From the physical point of view, it means that we have a little (V1  1)
constant “leakage” of fluid at the boundaries. With this new expression for
velocity we have

ρ(x, t, λ) = ρ0e
− λ

ω cos ωt

(1 + V1−1√
1−V 2

1

tan (2n+1)πx
4L

1− V1−1√
1−V 2

1

tan (2n+1)πx
4L

) 2Lλ

(2n+1)πV0

√
1−V 2

1 ·
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Fig. 9.12 Plot of velocity and density from one-dimensional continuity equation on an

interval [−1, 1]. Velocity has stationary oscillations – up and down in this figure means
motion of the fluid to right and left – and the fluid is accumulating in the right end. The
density has itself push–pull oscillations

· 1

V1 + cos (2n+1)πx
2L

.

The solution is not anymore singular in ±L and it is illustrated in Fig. 9.12
Global longitudinal oscillations of the fluid induce oscillations in the amount
of fluid accumulated to the right end of the domain.

It is interesting to check the reverse phenomenon, namely if zeros in density
provide singularities in velocity. For the stationary oscillating density inside
[−L,L]

ρ(x, t) = ρ1 sin kx sinωt,

with ω, ρ1 constants and k defined as above, we compute the velocity in the
form

V (x, t) = V) cotωt
C1 + ωρ1 cos kx
k(ρ0 + ρ1 sin kx)

,

where V0, C1, and ρ0 are constants. In Fig. 9.13 we plot both the velocity
and the density for this example for L = 1. Indeed, the density-isolated zeros
provided by sin kx result in singularity in velocity given by the cot function.
Another example is presented for a semi-infinite domain x ∈ (−∞, 0]. We
choose the velocity of the form

V (x, t) = − ax

at+ ρ0 cosh tx
b

,

where a, b, and ρ0 are arbitrary constants. Around zero the velocity behaves
like V (0) 	 x which provides a “milder” type of singularity for ρ. The corre-
sponding solution for density is

ρ(x, t) = ρ0 + atsech
tx

b
.
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Fig. 9.13 At t = 0 density is uniformly distributed, and velocity has a positive maximum
centered around x = 0, and two symmetric negative minima. Initially, the matter is pushed
from left and right into two points, placed with approximation at x = 0.25 and x = −1.
Around t = 2 one can see in the density plot the resulting accumulation of fluid in these

two points. At this moment the velocity is almost zero and we have quasiequilibrium. Next,
the velocity changes the sign, and the fluid is pushed toward two other centers, namely

x = 0 and x = 1. As a result, at t = 5 we have more accumulation of fluid in these points.
About t = 4 velocity has its singularity
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for t=0,...3

Fig. 9.14 Velocity (dotted lines) and density (continuous lines) for a one-dimensional
semi-infinite axis. The velocity has a localized bump which pushes the fluid against the

right wall, creating a fluid accumulation

The results are presented in Fig. 9.14. In the last example, we present some
localized traveling wave solutions along the axis. We assume the propagation
of a KdV solitary wave on the free surface of a one-dimensional channel

η(x, t) = Asech2
x− vt
L

,

where A is the wave amplitude, L the half-width, and v the group velocity.
The tangent velocity of the fluid at the free surface is given by

V (x, t) = −2A
L

sech2x− vt
L

tanh
x− vt
L

.

We neglect that the KdV equation for shallow water was deduced in the
incompressibility approximation, at least for a very thin layer on the sur-
face [2]. Let us presume that this layer is compressible (like a surfactant layer
on the surface of the incompressible fluid) and the density in it is the solution
of the continuity equation for the velocity given above. The density reads

ρ(x, t) = ρ0
1

v − V (x, t)
,

where ρ0 is the equilibrium density in the absence of the wave. Density has
no singularities in this example. We present the results in Fig. 9.15. We can
obtain a similar result for an MKdV soliton. We choose the velocity profile
as a modulated breather [2]

V (x, t) = V0sech
x− vt
L

sinω(x− vt).

The density profile is given by a similar equation as in the KdV case
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Fig. 9.15 Surface density and tangent velocity at the free surface for an MKdV soliton

ρ(x, t) =
ρ0

V (x)− v ,

see Fig. 9.15.

9.7 Problems

1. Show that the free surface condition, i.e., the path of a fluid particle rL

does not leave a surface Σ (see (9.5), (9.28), and (9.29)), is the equivalent
of requesting the Lagrangian path of the particle to belong to the time
variable surface, both described in extended space R × R3 for time and
positions.

2. Consider a sphere of radius R at rest surrounded by inviscid, incompress-
ible, and irrotational fluid of density ρ. The fluid moves past the sphere
such that the velocity at infinite distance from the sphere is a constant
and uniform field v∞ = (0, 0,−u). Find the Eulerian velocity, the pressure
field and the stream lines. Find the Lagrangian paths and compare them
with the stream lines.

3. Let us have the following field of Eulerian velocity

vE(r, t) = (a1(t)xα1 , a2(t)yα2 , a3(t)zα3),

where ai(t) are arbitrary smooth functions and αi ∈ R. Find the equations
of the stream lines and the path lines. Show that if ai(t) are constant, the
stream and path lines coincide for an appropriate choice of integration
constants.

4. Consider the Lagrangian paths of some fluid particles rL(r0, t) as a one-
parameter t group of diffeomorphisms mapping the initial positions of
the particles into the current ones r0 → rL, acting in R3. Consider a
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time-dependent physical quantity Ω described by a differentiable 1-form
ω defined on T ∗

rL
R3. Prove that the Lie derivative of this 1-form with

respect to the tangent directions to the diffeomorphism transformations

LrL(r0,t)(ω) = lim
dt→0

dr∗
L(ω)− ω
dt

=
d

dt

(
ωj
∂xj

L

∂xi
0

− ωi

)
dxi

provides the Eulerian–Lagrangian law of transformation for Ω.
5. Equations (9.12) and (9.13) were obtained by using the Lie derivative

with respect to the fluid flow. Try to find the same equations from a
different approach, namely a new law of covariant differentiation on a
four-dimensional manifold (σ0, σi) with a linear connection. The last two
and three terms, respectively, in the RHS of (9.12) and (9.13) could be
understood as connection coefficients with the Christoffel symbols of the
second kind fulfilling

Γ i
k0 = − ∂v

i

∂σk
.

Hint: we need to introduce a metric on this manifold, gμν , μ, ν0, 1, . . . , 3.
The Christoffel symbols of first and second kind are related by Γα

βγ =
gδαΓβδγ , and the last one is defined by the metric

Γαβγ =
1
2

(
∂gγβ

∂σα
+
∂gβα

∂σγ
− ∂gαγ

∂σβ

)
,

see for example [28, 32, 37, 38, 40]. A possible hypothesis could be gi0 = 0,
g00 =const. The remaining PDE equations for gij may result in an ex-
ponential matrix solution. It is interesting to relate the skew-symmetry
property of this PDE in the metric coefficients with the fact that the
integral curves of a rotational flow are singular.

6. Prove that the covariant time derivative (9.12) and (9.13) has the following
actions

dcA

dt
=
dA

dt
+ γtA, on covariant vectors,

dcA

dt
=
dA

dt
− γA, on contravariant vectors,

dcΩ

dt
=
dΩ

dt
− γΩ −Ωγt, on (2.0) tensors,

dcΩ

dt
=
dΩ

dt
+ γtΩ +Ωγ, on (0.2) tensors.



Chapter 10

Dynamics of Hydrodynamics

The mathematical description of the states of a fluid is based on the study
of three fields defined on the domain occupied by the fluid: the velocity
field V , the density ρ, and the pressure field P . These three “unknowns”
are determined by integrating other five scalar equations, namely the mass
conservation (continuity equation), the three components of the equation of
momentum balance (Euler or Navier–Stokes), and the energy balance. This
last equation needs in addition information about the thermodynamics of the
fluid, so it may need to be supplied with some equation of state. In addition
to these five equations, we request regularity, asymptotic and, if it is the
case, boundary conditions, to provide a unique solution. When we study the
dynamics of the fluid confined in a compact domain with free boundaries,
the system is slightly more complicated, and we have to add the kinematical
equation of the free surface, as well as equations of momentum balance at
the surface. If we take into account the nonlinear terms in the dynamical
equations, and in the associated curved geometry, some interesting solutions
occur. Special nonlinear effects related to fluids on compact domains with free
surface could be Gibbs–Marangoni effect, dividing the flow in cells (Bènard
effect), couplings between different modes, collective effects, separation of
flow in layer (boundary layer, turbulence), standing traveling surface waves,
etc. In this chapter, we introduce some elements of general hydrodynamics
which we will use later on in the book, boundary conditions especially at free
surfaces, surface pressure theory, and representation theorems.

10.1 Momentum Conservation: Euler and Navier–Stokes
Equations

The continuity equation for fluid dynamics (9.32) was derived in Sect. 9.6 and
it has the form

∂ρ

∂t
+∇ · (ρV ) = 0, (10.1)

201
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where V = (Vi) is the Lagrangian or material velocity of the fluid particle,
and ρ is the fluid density. Because we study the fluid in the three-dimensional
Euclidean space of flat metric, there is no difference between covariant and
contravariant character of the Euclidean vectors, so we will place the label
as subscripts as a rule in this section. The momentum of the unit of fluid
volume is given by

pi ≡
∂

∂t
(ρVi) = fi =

Fi

V
, (10.2)

where f = (fi) is the volume force density, derived for the total force field in
the fluid F . From (10.1) and (10.2), we have

∂Vi

∂t
+ Vk

(
∂

∂xk
Vi

)
= − ∂

∂xj
(Pδij + ρViVj) ≡ −

∂

∂xj
Θij , (10.3)

where P is the pressure, and we define the fluid symmetric momentum flux
tensor as Θ̂. In the inviscid case, where we have no loss of momentum in
viscosity and internal frictions, this tensor has the property

fi =
∂pi

∂t
=
∂

∂t
(ρVi) = − ∂

∂xi
Θinviscid

ij . (10.4)

If we draw an imaginary smooth surface with unit normal N , (10.4) can be
written in the form

Π̂inviscid ·N = PN + ρV (V ·N), (10.5)

which represents the balance of reversible momentum. The LHS term repre-
sents how much momentum is transferred per unit of time and cross-section
area in the direction N , the first term on the RHS is the change of momen-
tum by molecular motion and interaction, and the last term is the change of
momentum by bulk flow only.

If we consider the viscosity, η, we have to extend the momentum flux tensor
with an extra term, namely

Θinviscid
ij → Θij = Pδij + ρViVj − σ

′
ij . (10.6)

In literature [93–97, 101, 127], authors use another tensor, namely the fluid
stress tensor σ̂, inspired from the study of elasticity, representing the total
momentum transferred by molecular motion both reversible and irreversible,
and defined by

σij = −Pδij + σ
′
ij , (10.7)

so that
Θij = −σij + ρViVj . (10.8)

So far we took for granted that these stress tensors are symmetric. The proof
is based on the judgment that the total torque, dMi = εijkxj∂Θkl/∂xldV ,
produced by fluid forces in an infinitesimal domain depends only on the
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surface of the domain, because inside forces between different elements cancel
each other in action–reaction pairs. From the Green theorem applied on this
domain, we obtain that εijkΘjk = 0, where from Θij = Θji, σij = σji.

To have an expression for the stress tensor, we need to use the Newtonian
fluid hypothesis, namely the part of the momentum flux tensor which results
from frictional interaction of the fluid in relative motion (represented by the
viscous stress tensor σ′) depends only on the instantaneous gradient of fluid
velocity. In addition, this dependence is approximated to be linear. If we keep
the general dependence on the gradient, the fluid is called Stokesian fluid, but
the hypothesis need to be supplemented by requiring smoothness, isotropy,
and homogeneity [38,128]. So, we can write

σ
′
ij = Cijkl

∂Vk

∂Vl
. (10.9)

To determine the tensor C, we note that a global rotation of the fluid should
not introduce any stress, so we have Cijkl = Cijlk. In addition we require C
to be an isotropic tensor, namely invariant to any rotation. We know that
the only rotational invariant tensors of rank 0 is a scalar, of rank 1 there is
none, of rank 2 is the Kronecker symbol δij , and of rank 3 is the Levi–Civita
tensor εijk. The number of linear independent isotropic tensors of rank k is
given by the Motzkin recursion formula

Nk =
k − 1
k + 1

(2Nk−1 + 3Nk−2),

from where it results N4 = 3 [129]. To obtain the general formula for the C
tensor, we can use a theorem from elasticity [130, 131]. This theorem states
that a rank 2 symmetric tensor (i.e., σ̂

′
) generated by all possible linear

combinations between another rank 2 tensor∇V and a rank 4 isotropic tensor
Ĉ with the above listed properties is a linear combination of the symmetric
part of ∇V and the Kronecker tensor times the trace of ∇V . That is

σ̂ = −P Î + η(∇V + (∇V )t) + λTr(∇V )Î , (10.10)

where (̂I) = δij , and where the second term on the RHS is the symmetric
part of ∇V (containing the transpose), also called the rate of deformation (or
rate of strain), and Tr(∇V ) = ∇·V is called rate of expansion [93,127]. The
last assumption on the stress tensor (Stokes’ assumption) namely σ̂′ makes
no contributions to the mean normal stress, so we have λ = −2/3 from here.
It results

σ̂ = −P Î + η
[
(∇̂V + (∇V )t)− 2

3
Tr(∇V )

]
Î

= −Pδij + η
[
∂Vi

∂xj
+
∂Vj

∂xi
− 2

3
∂Vk

∂xk
δij

]
. (10.11)
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If we neglect the Stokesian assumption, and we also consider the contribution
of a dilatational viscosity, we correct (10.11) into

σij = −Pδij + η
[
∂Vi

∂xj
+
∂Vj

∂xi
− 2

3
∂Vk

∂xk
δij

]
+ ζ

∂Vk

∂xk
δij , (10.12)

where ζ is the coefficient of dilatational viscosity. In the non-Newtonian fluid,
we have η, ζ = f(∂vi/∂xk).

We can rewrite (10.12) in a vectorial form, such that the dynamical equa-
tion for a viscous fluid reads

ρ

[
∂V

∂t
+ (V ∇)V

]
= −∇P + ρf + η�V +

(
ζ +

η

3

)
∇(∇ · V ), (10.13)

which is the famous Navier–Stokes equation of a fluid in the presence of a
volume density force f . In the case of incompressible fluid, (10.14) becomes

∂V

∂t
+ (V ∇)V = −1

ρ
∇P + f +

η

ρ
�V , (10.14)

which reduces to the Euler equation in absence of viscosity

∂V

∂t
+ (V ∇)V = −1

ρ
∇P + f . (10.15)

10.2 Boundary Conditions

Boundary conditions at the surface of a fluid Σ can be of three types: separa-
tion between two fluids (fluid interface), free surface of a fluid in a rarefacted
gaseous atmosphere (or vacuum), and contact with rigid surfaces. The expres-
sions of the conditions of continuity in each case depend if the fluid (fluids)
is viscous or inviscid. Basically, we can write a general continuity condition
for the separation of two fluids (say fluids 1 and 2), and this condition can
be modified for the other two cases.

The continuity of the velocity at the interface is a relation strongly
dependent on the model (viscous or not, slipping interface or not, etc.), so
we will use it for every situation in particular. Nevertheless, we can write a
provisional continuity condition in the form V 1|Σ = V 2|Σ or

V n,1|Σ = V n,2|Σ , V �,1|Σ = V �,2|Σ , (10.16)

where the two components are the normal and the parallel one to the sur-
face. In many models, it is more practical to rewrite the continuity condi-
tions (10.16) in another form,

V n,1|Σ = V n,2|Σ ,
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N · (∇Σ · V 1|Σ) = N · (∇Σ · V 2|Σ),

N · (∇Σ × V 1|Σ) = N · (∇Σ × V 2|Σ), (10.17)

namely the continuity of the normal components of the velocity, of the diver-
gence and the curl of the velocity. The last one is nothing but the continuity
of the normal component of the vorticity ω = ∇ × V . The operator ∇Σ is
the surface gradient. Basically, it represents the gradient expressed in surface
curvilinear coordinates, acting on vectors in the tangent plane to Σ. Its rig-
orous definition and properties are described in Sect. 7.5. Equations (10.17)
represent mixed Dirichlet and von Neumann boundary conditions, and guar-
antee the uniqueness of the solution of the (elliptic type partial differential
equations) Euler or Navier–Stokes equations (see (10.13) and (10.15)).

In the case of rigid surface in contact with the fluid, because of the cohesive
forces, we ask V |Σ = 0. Such a relation cannot be fulfilled by the Euler
equation (it would generate zero solutions all over the space), but it can be
fulfilled at least for the normal components in the case of inviscid fluids (or
actually the normal component of fluid velocity should be equal to the local
velocity of the rigid surface), while V � �= 0 for ideal fluids. Consequently, the
separation between the fluid and the rigid boundary is a special zone, so-
called “vortex-sheet” or “boundary layer” where we model the discontinuity
for the tangent velocity. In the boundary layer the vorticity is nonzero, but
because the equation for vorticity in the viscous case is a diffusion type of
equation

∂ω

∂t
= ν�ω,

where we eliminate the volume forces for simplification, we expect the vortic-
ity to decay toward the bulk of the fluid, away from the boundary layer. This
also implies that out of the boundary layer the velocity is almost potential.

The balance of the momentum across the surface is

F 1|Σ = F 2|Σ → Niσ
1
ik|Σ = Niσ

2
ik|Σ (10.18)

or in tensor form
(σ̂1 − σ̂2) ·N = 0, on Σ. (10.19)

For a free surface, (10.18) reduces to

Niσ
′1
ik|Σ = P |ΣNk. (10.20)

In tensor form the continuity condition across a free surface in vacuum reads

(σ̂′ ·N)Σ = P |Σ ·N = 2σH,

(σ̂′ · ta,b)Σ = 0, (10.21)

where ta,b form a basis in the tangent space of the surface, σ is the coeffi-
cient of surface tension, and H is the mean curvature of the surface. These
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equations will be elaborated in detail in Sect. 10.4. In this case of an isolated
droplet, the driving force (the surface tension) acts always perpendicularly to
the free surface. Therefore, the tangential stress on the surface vanishes, and
the normal stress is the driving force. In Chap. 8, we have noticed that there
are a lot of other interactions at the interface between two fluids, especially
if the surface is material and it is moving.

If the surface of separation carries some material properties, for example
it has mass distribution, internal viscoelastic forces, etc. (in this case the sep-
aration is called an interface), the continuity equations for the stress (10.19)
and (10.21) change correspondingly

(σ̂1 − σ̂2) ·N |Σ = Fnet,Σ , (10.22)

where the RHS is the net force per unit of surface area acting upon the
physical surface, sometimes denoted σΣ . This surface density force, Fnet =
FnN +F �, contains the surface tension and many other terms related to the
existence of surface elasticity, viscosity, shear, surfactants, mass transfer, etc.
Its expression is obtained on differential geometry grounds in Sect. 8.3 (see
(8.31) and (8.46)).

10.3 Circulation Theorem

This subject was initially investigated by Thomson [132] and Helmholtz [133].
Some different proofs of the theorems on vortex motion were given later by
Lord Kelvin [134]. The circulation theorem states that:

Theorem 23 (Kelvin Circulation Theorem). The line integral of the
fluid velocity v along a closed circuit Γ (the circulation of the velocity) which
moves together with the fluid is constant in time if the fluid is perfect

Cv,Γ =
∮

Γ

v · tds = const. (10.23)

Here v is calculated in the Lagrangian frame and t is unit tangent to Γ .
By perfect fluid we understand here inviscid isentropic flow, governed by

Euler equation (10.15) in the presence of only potential external forces

a =
dv

dt
=
∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇U, (10.24)

where a is the Lagrangian acceleration and U is the potential of external
forces acting on the fluid. This result is important both for vortex motion
and potential motion. However, in spite of the fact that the concept of closed
circuit moving with the fluid is intuitive, and it is based on the Lagrangian
point of view, this concept is not quite rigorously defined geometrically. In
the following, we give two proofs for the circulation theorem differing in the
degree of rigorousness and geometry involved [93,95,96].
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Proof 1. Equation of State Approach. The rate of change of the circulation is

dCv,Γ

dt
=
∮

Γ

a · tds+
∮

Γ

v · d
(
dr

dt

)
. (10.25)

The second integral on the RHS is a total differential (vdv) and it provides
zero contribution on the closed circuit. According to the hypotheses, the
acceleration is given by the Euler equation (10.15). If the flow is isentropic,
the Lagrangian variation of the entropy of the unit of mass of the fluid is zero,

d

(
S
m

)
= ds = 0. Consequently, we can write the variation of the enthalpy of

the unit of mass
dh =

V dP + TdS
m

=
1
ρ
dP, (10.26)

where P is the pressure. In this way the acceleration becomes a gradient
a = −∇(h+U), and the first integral in (10.25) is also zero. The circulation
of velocity on any closed circuit moving with the fluid is indeed constant. ��

In other approaches (for example [95]) Theorem 23 is formulated with a
different hypothesis. It is stated that in the inviscid fluid the density is either
constant or function of pressure only (barotropic flow). The equivalence of
the two formulations is obvious: if the fluid is isentropic, then the constancy
of entropy provides an equation of state in terms of density and pressure only,
s = s(p, ρ), from where the requested dependence [96].

It is interesting to observe that, for inviscid fluids which are not isentropic
(not barotropic fluids) and for which the circulation is not conserved, the
acceleration has the property

∇× a = ∇P ×∇1
ρ
. (10.27)

This means that the rate of change of circulation can be expressed through
the Stokes theorem in the form

dCv,Γ

dt
=
∫

Σ

(
∇P ×∇1

ρ

)
·NdA, (10.28)

where Σ is a surface bounded by the circuit Γ . That means that the average
(over a small surface) rate of change of the circulation is directed along the in-
tersection between isobaric surfaces and surfaces of constant density. A lot of
convection effects, including for example the surface vs. bottom salted water
current between the Black Sea and the Mediterranean Sea, are generated by
this mechanism [95].

On the other hand, the circulation Theorem 23 helps to understand the
permanent character of the potential flow: once the curl of velocity is zero
in some region and at some initial moment of time, the velocity will be
irrotational in any region of the space and at any later moment, by circulation
(zero in this case) conservation. The irrotational character of the flow is
transported by physical fluid particles in all the flow region.
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Proof 2. Free Surface Approach. The physical hypotheses are the same: ideal
inviscid isentropic fluid with potential external forces. We need to work with
the concept of moving particle circuit, i.e., the closed curve of particles mov-
ing with the fluid. In other words a closed contour always consists of the
same fluid particles. For a rigorous geometric definition of particle lines and
circuits in terms of fiber bundles, the reader can return to the Sects. 9.2, 9.2.2,
9.2.4, and 9.2.5.

We prepare the proof of the Kelvin theorem by using traditional defini-
tions of path lines and particle contours, like those introduced in Sects. 9.1.2,
9.2.3, and 9.3. Later on we reformulate the theorem in terms of differential
geometry. Let us choose at t = 0 a compact, connected, and simply connected
surface Σ made by fluid particles, and consider its boundary the closed curve
Γ = ∂Σ. We call Γ a particle circuit. The existence and stability in time of
such a curve are discussed in the above-mentioned sections. We parametrize
this curve with the equation r0(s), where s labels the fluid particles in the
circuit. At a later moment of time, within some finite time interval t ∈ [0, T ],
we construct a diffeomorphic deformation of Σ into Σ′, i.e., the fluid flow.
This mapping induces a diffeomorphic deformation of Γ into Γ ′, described
by r0(s)→ r(t, s). The r(t, s) function represents the position of the s fluid
particle at moment t. When time runs, the diffeomorphism generates a family
of curves (particle circuits moving with the fluid) each one parametrized by
the same label s. The set of these closed curves is called a tube of flow based
on the particle sheets Σ and Σ′. The question is if this tube of flow described
by the curves r(t, s) is a regular surface. The answer is given by Theorem 24.

Theorem 24. Let a(r) be a differential vector field on an open domain
D ⊂ R3 and Γ ⊂ D be an arc-length parametrized regular simple closed
curve of equation rΓ (s) with s ∈ [0, LΓ ] and rΓ (0) = rΓ (LΓ ). For every
s ∈ [0, LΓ ] we build a regular simple parametrized curve Γs of equation r(σ, s)
with σ ∈ [0, σmax] as follows:

1. The equation r(σ, s) = rΓ (s) has one and only one solution σ = 0.
2. If tΓs

(σ) is the unit tangent for each Γs curve, then ∀σ ∈ [0, σmax]

∂r

∂σ
(σ, s) ≡ tΓs

(σ) = a(r(σ, s)),

a(r(σ, s))× drΓ

ds
(s) �= 0.

r(σ, s) is a regular parametrized surface ΣΓ
[0,σmax] for σ ∈ [0, σmax], s ∈

[0, LΓ ].

Proof. See Fig. 10.1. Since the field a is differentiable, the curves Γs are its
integral curves and depend smoothly on their natural arc-length parameter
σ. Also, from the Frobenius existence and uniqueness theorem (Theorem 5),
all these curves depend smoothly on their initial data, i.e., the s parameter
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Fig. 10.1 Left: particle circuit Γ (horizontal circle) and corresponding particle paths
(Γs, arrows). Right : resulting tube of flow ΣΓ

[0,σmax]
. Top: the regularity condition in

Theorem 24 is fulfilled, i.e., a(r(σ, s)) × r′
Γ (s) �= 0

(see also [27, Theorem 1, p. 176]). Consequently r(σ, s) is a differentiable
function. From the hypotheses each integral curve intersects the contour only
one time. The Jacobian matrix

Ĵr(σ, s) =
(
∂xi

∂σ
,
∂xi

∂xj
Γ

dxj
Γ

ds

)
= (ai(r(σ, s)), δijt

j
Γ (s)) �= 0

is nonzero by hypothesis. The Jacobian has rank 2 and hence the tan-
gent map dr is one-to-one. Consequently r(σ, s) is a regular parametrized
surface. ��

From Theorem 24 we know that moving particles arranged in a closed
contour Γ generate a tube of flow r(t, s) based on Γ and Γ ′. Now we can
come back to the second proof of the Kelvin circulation theorem. We write
(10.23) in the form ∮

Γ

v · tds =
∮

Γ ′
v · tds,

where Γ, Γ ′ represent the particle contour at two different moments of time.
The vorticity ω = ∇ × v has the property ∇ · ω = 0 which means that,

for any domain D, we have
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D
∇ · ωdV =

∮
∂D

ω ·NdA = 0,

where dV , dA are the volume and area elements and N is the unit normal
to Σ. We choose D to be the inside of a tube of flow bounded by Σ,Σ′ and
a side area described by the flows r(t, s), denoted in the following Σf . We
have

0 =
∮

Σ∪Σ′∪Σf

ω ·NdA =
∫

Σf

ω ·NdA +
∫

Σ∪Σ′
ω ·NdA. (10.29)

Because Σ,Σ′ are particle surfaces, we have

v|Σ ×NΣ = 0,v|Σ′ ×NΣ′ = 0, (10.30)

and hence we have v|Γ · tΓ = v|Γ ′ · tΓ ′ = 0.1 Consequently

0 =
∮

Γ

v · tds =
∫

Σ

ω ·NdA

0 =
∮

Γ ′
v · t′ds =

∫
Σ′

ω ·N ′dA′, (10.31)

which cancel the second term on the RHS of (10.29). So, we have∫
Σf

ω ·NdA = 0, (10.32)

i.e., the flux of vorticity through the side surface is zero.2 Now we choose t = 0
and another moment of time t, and s0, s0 + δs two close points on Γ and Γ ′.
We integrate v along a closed curve lying in Σf , composed by rΓ |s∈[s0+δs,s0],
connected to r|[0,t]×{s0}, connected to rΓ ′ |s∈[s0,s0+δs], and finally connected
to r|[t,0]×{s0+δs}, like in Fig. 10.2. We integrate v along the curve in Fig. 10.2
in the limit δs→ 0, and from (10.32) we have

lim
δs=0

∮
v · tds =

∫
Σf

ω ·NdA = 0. (10.33)

But∮
v ·tds =

∫
Γ

v ·tds+
∫ r(s0,t)

r(s0,0)

v ·tds−
∫

Γ ′
v ·tds+

∫ r(s0+δs,0)

r(s0+δs,t)

v ·tds. (10.34)

In the limit limδs=0, the second and the fourth terms in the RHS of (10.34)
cancel each other, and by using (10.33) we prove the Kelvin circulation
theorem.

Traditional proofs of the same theorem can be found, for example, in [93,
Article 146], [95, Sect. 3.51], and [96, Sect. 8].

1 For the proof of these relations, see Problem 5 at the end of this chapter.
2 The fact that the flux of vorticity is zero on a tube of flow surface is an interesting result

by itself. For more discussions, also see Problem 5 at the end of this chapter.
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Fig. 10.2 Closed contour of integration on a tube of flow

Comment. There is a geometrical way to prove (10.32). Since we work only on
the fluid particle surface, it is natural to use the surface differential operators
instead of the full three-dimensional ones. We apply the surface divergence
theorem (7.62), where we substitute A = v×N . From the formula (7.70) in
the problems at the end of Chap. 7, we have ∇Σf

· (v ×N) = N · (∇Σf
×

v)−v · (∇Σf
×N) and this reduces to N · (∇Σf

×v) because of the property
of the normal from in (7.55). It results∫∫

Σf

∇Σf
· (v ×N)dA =

∮
ω ·NdA,

where the contour integral is taken along the curve in Fig. 10.2. Both RHS
terms in the surface divergence theorem formula cancel. On one hand we have∮

(v ×N) · t⊥ds =
∮

(t⊥ × v) ·Nds = 0,

because v ‖ t⊥ by the definition of Σf . The second term on the RHS of the
divergence theorem formula cancels by construction

−2
∫∫

H(v ×N) ·NdA = 0,

so it results (10.32). The reason we wanted to mention this geometric amend-
ment is related to (10.30). In Proof 2, these equations are somehow postulated
on physical grounds (i.e., particles contained in the surface move together
with the surface), however in this comment they result automatically as a
rigorous consequence.
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10.4 Surface Tension

10.4.1 Physical Problem

In this section, we study certain phenomena that occur in the neighborhood of
a closed surface of separation between two continuous media that do not mix.
In reality, the two systems in contact are separated by a thin boundary layer
having special properties. However, in the following, we neglect the internal
structure of this transition layer, and we assimilate it with an infinite thin
geometric surface. In the neighborhood of a curved surface of separation,
the pressure in the two media is different, and we call this pressure difference
surface tension. In Sect. 8.3 (see (8.22)), we introduce the same surface tension
in another manner, starting from dynamical considerations. Here, we assume
that the free energy of this state of tension (the stress between two adjacent
elements of surface) depends only on the area of the common boundary, on the
nature of the two media, and on temperature. The special case of additional
electric, acoustic, etc., fields, or presence of surfactants will be discussed later
in another chapter. For a more detailed discussion on the topic, see [93,
Article 265]. Although, the original first treatment of the problem belongs to
Lagrange who first determined a minimal surface in 1760. A review on the
topics of capillarity is presented in [135] and references herein.

In the stationary case v = 0 for a fluid with free boundary S, the Euler
equation reads

−1
ρ
∇P + f = 0, (10.35)

where ρ is the fluid density, P is the pressure, and f is the mass den-
sity of the force field acting inside the fluid. If the force field is potential,
f = −�u, the stationary Euler equation reduces to the simplest Bernoulli
type of equation, namely P = P0−ρu. However, this equation cannot predict
the pressure infinitesimally close to the surface, where stronger nonlinear ef-
fects occur. To obtain the pressure next to the fluid surface, we have to use
other approach [96].

The expression of surface tension can be obtained by using the equations
of thermodynamic equilibrium. Let us assume that locally the surface of
separation suffers a variation in the form of an infinitesimal displacement. The
only displacement that counts physically is that one normal to the surface,
because we neglect the internal structure of the surface, and we consider it to
be homogenous from the physical point of view. Let us describe the surface
of separation as a parametrized regular geometrical surface r(u, v) : U → S
(see Chap. 18) with unit normal N(u, v). We define the normal variation of
the surface S as the function

rt(u, v, t) = r(u, v) + t h(u, v)N(u, v), (10.36)

where (u, v) ∈ U , t ∈ (−ε, ε) is a parameter, and h(u, v) is a differential real
function defined on U . For each t, the map rt : U × (−ε, ε)→ R3 is a regular
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Fig. 10.3 A normal variation of r(U)

parametrized surface (see Fig. 10.3). For t = 0, the normal variation reduces
to the original surface.

We assume that the original surface suffered a normal variation determined
by the h(u, v) function, and it is not anymore in thermodynamic equilibrium.
The elementary volume of an infinitesimal element of space bounded by the
original surface and by the graphics of the function rt is t h(u, v)dA(u, v),
where dA is the elementary area of the original surface, dA =

√
EG− F 2dudv

(from Definition 37). We denote by P1 and P2 the pressures in the medium
1 and medium 2, respectively, separated by S, in the neighborhood of the
surface, and we choose the direction from 1 to 2 in the direction of the
unit normal N . The work produced by a compression upon this elementary
volume, which is also the change in its free energy F , is

Wvol = δFvol = t

∫∫
Ū

(P2 − P1)h
√
EG− F 2dudv. (10.37)

The total change in the free energy of the system is given by δWvol plus the
work associated with the variation of the area of the separation surface, i.e.,
the superficial (or surface) energy. In a simple model, this second part of the
free energy is given by the product between a constant σ and the variation of
the area δA. The constant σ is called surface tension coefficient and depends
on the nature of the two media, and on temperature. The total variation in
the free energy becomes

δF = t

∫∫
Ū

(P2 − P1)h
√
EG− F 2dudv + σδA. (10.38)

The equilibrium condition is δF = 0, and from here we obtain the expression
of the surface tension, P |S = P2 − P1. We prove in Sect. 10.4.2 that the
expression of the surface tension at a point r on the surface is

P2 − P1 = Pr∈S = σ(κ1 + κ2),

where κ1,2 are the two principal curvatures of the surface at p. In all our
examples, we choose the orientation of the surfaces such that the normal
is toward the convexity of the curve, and the direction from medium 1 to
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medium 2 is chosen along this normal. To check the correct sign of the surface
pressure expression, we choose for the surface the graphics of a differential
function z = η(x). The profile depends only on x, and we have full symmetry
along the other coordinate y. In this one-dimensional case, we have just one
principal curvature nonzero, this κ1 = κ (κ2 = 0) is called the curvature
of the function η, and it has the expression κ = η′′

(1+η′2)
3
2
. If we choose a

convex function with η′′ < 0, we have κ < 0 and consequently P1 > P2. That
pressure P1 inside the concavity is larger, as it should be. A more geometrical
definition of the surface tension can be found in Sect. 8.3 or in [38,90].

10.4.2 Minimal Surfaces

To find the explicit expression for the surface tension in the most general
situation, we need to calculate the RHS term in (10.38). The coefficients of
the first fundamental form of the modified surface rt are

Et = E + 2thru ·Nu + t2h2Nu ·Nu + t2(hu)2,

F t = F + th(ru ·Nv + rv ·Nu) + t2h2Nu ·Nv + t2huhv,

Gt = G+ 2thrv ·Nv + t2h2Nv ·Nv + t2(hv)2. (10.39)

By using the definition relations for the second fundamental form of the
surface (see Chap. 18)

e = −ru ·Nu, f = −(ru ·Nv + rv ·Nu)/2, g = −rv ·Nv

and the definition of the mean curvature of a surface (7.10)

H =
Eg − 2fF +Ge

2(EG− F 2)
, (10.40)

we obtain

EtGt − (F t)2 = EG− F 2 − 2th(Eg − 2fF +Ge) +O(t)

= (EG− F 2)(1− 4thH) +O(t), (10.41)

where O(t) is a term that approaches zero more rapidly than t when t→ 0.
From (10.41), it results that, if ε is small enough, the surface rt is a regular
parametrized surface. Just now we can use rt as the equation of a surface in
the calculation of the free energy and surface tension. The area A(t) of rt(Ū)
is given by

A(t) =
∫∫

Ū

√
EtGt − (F t)2dudv
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=
∫∫

Ū

√
1− 4thH +

O(t)
EG− F 2

√
EG− F 2dudv. (10.42)

It follows that, in the limit of small ε, A(t) is differentiable with respect to
t, and its derivative at t = 0 is

dA

dt
(0) = −2

∫∫
Ū

hH
√
EG− F 2dudv = −

∫
hHdA. (10.43)

So, the variation of the area during this deformation parametrized by the
parameter t is δA = (dA/dt)dt. At t = 0 we have

δA = −2
∫∫

Ū

h H
√
EG− F 2du dv dt = −

∫
(κ1 + κ2)hdAdt, (10.44)

where κ1,2 are the principal curvatures of the surface at the point of
coordinates (u, v) (see Chap. 18). Equation (10.44) can provide an interesting
interpretation of the mean curvature, in terms of the minimal surfaces. We
can define the mean curvature vector by H = HN , and by choosing h = H
in (10.44) we can write

δA = −2
∫∫

Ū

H ·H
√
EG− F 2du dv dt. (10.45)

Equation (10.45) means that the area of the deformed surface rt(U) always
decreases if we deform it in every point toward the direction of the mean cur-
vature vector. For a given surface, the mean curvature vector points toward
the direction where this surface tends to become a minimal surface. For ex-
ample, in the case of an infinitesimal normal variation of a spherical surface,
the mean curvature is still negative (the corrections in the first order in ε
are smaller than 1) and since the normal is directed outside the sphere and
H < 0, the vector H points toward the center. This is indeed the direc-
tion along which the area of an elementary spherical surface would become
smaller, by flattening toward a plane.

The unit normal field for S is a divergence-free vector field. This comes
from the fact that the mean curvature is related to the normal direction of
the surface by the equation

H = −1
2
∇S ·N ,

from Proposition 3 (Sect. 7.5.2), where∇S · is the surface divergence operator.
From here it results

Proposition 7. For a minimal surface the normal vector field is surface
divergence free.

Coming back to the dynamics of the surface, if we consider the variation
of the original area from t = 0 to a certain small value of t, we have dt = t,
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and introducing (10.44) in (10.38), we have the condition of equilibrium in
the form ∫∫

Ū

(P2 − P1 − σ(κ1 + κ2))t h
√
EG− F 2dudv = 0.

Since the function h is arbitrary, we have to fulfill

P2 − P1 = σ(κ1 + κ2) = 2σH (10.46)

which determines the expression of the surface pressure (Laplace formula for
capillarity). H is the mean curvature. For a more physical proof the reader
can check (8.45). If, for example, the principal curvatures are positive, it
results that P1 > P2, i.e., the pressure is larger in the medium located inside
the concavity of the surface.

We end this section with a property of minimal surfaces which results as
a consequence of the divergence integral theorem (7.62). From the relation

∇S × r = 0,

where ∇S× is the surface curl and r is the position vector, we can write two
integral conditions valid for any closed curve Γ on any minimal surface S∮

Γ

t⊥ds = 0 (10.47)∮
Γ

r × t⊥ds = 0, (10.48)

where t⊥ = N×t with t, r having their regular interpretation and s being the
arc-length along Γ . These two equations can be regarded as the dynamical
equilibrium conditions for the minimal surface. The first one represents force
balance, and the second one represents the momentum balance of a domain
of S surrounded by Γ .

10.4.3 Application

To have a better intuition of the direction of the surface tension gradient, we
present in the following a simpler example. Let us choose a parametrized sur-
face S as the graph of a differential function z = h(x, y) and U is an open set of
the xOy R2 plane. The parameterizations of the surface are r = (u, v, h(u, v))
with u = x and v = y. We have

N(x, y) =
(−hx,−hy, 1)

(1 + h2
x + h2

y)1/2
(10.49)
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and

H =
(1 + h2

x)hyy − 2hxhyhxy + (1 + h2
y)hxx

(1 + h2
x + h2

y)1/2
. (10.50)

For a more concrete example, we consider the surface of a semicylinder having
the axis along Ox and its points at z = f(x, y) > 0. If it rains from above,
this cylinder will not keep the water. Close to the top of the cylinder, we
have N 	 (0, 0, 1), and the normal is oriented upward, toward positive z. It
means medium 1 (we choose medium 1 to be liquid) is under the cylinder,
inside its concavity, and medium 2 (we choose medium 2 to be air) is above
the cylinder. We also assume that the cylinder radius R is large enough so
we can neglect nonlinear terms in the expression of the mean curvature. At
points close to the top of this cylinder (x 	 0, z 	 R), we have, according to
(10.46) and (10.50)

P2 − P1 = σ(κ1 + κ2) 	 hyy, (10.51)

and because at this points hyy < 0 it results P2 < P1, so the liquid is under
more pressure than the ambient atmosphere, which is in agreement with the
Laplace law of capillarity.

We can use the condition (10.46) to find the equilibrium free surface S
for P1 = P2 = constant. This is a system subjected to the same internal
and external pressure in all its points, i.e., a system consisting only in free
surfaces, like soap films in microgravity. The total free energy of this system
is proportional to the area of the surface, and attains its minimum when the
area is minimal. The surface equation r is a minimal surface (i.e., H = 0) if
and only if δA = 0, i.e., when A′(t = 0) = 0, for all normal variations of the
surface S. Indeed, if the surface is minimal, H = 0 and according to (10.43),
A′ = 0. Conversely, let us assume that A′ = 0 but let us make the hypothesis
that H �= 0, at least in a certain open subset of U . Then, we can always
choose h = H in that open set, and zero elsewhere, and it results that A′ < 0
which contradicts the hypothesis.

To understand the role of surface tension in the geometry of the free sur-
face, we analyze a region of fluid, in the stationary case, and in absence of
any external (bulk) forces. The Euler equation reduces to ∇P = 0, so the
pressure is the same everywhere inside the fluid (Pascal principle). Because
the pressure outside of the liquid P0 is also considered to be the same, we
find the equilibrium condition

P − P0 = (P − P0)S = −2σH = −2σ(κ1 + κ2) = const. (10.52)

Consequently, the free boundary of a stationary, isolated (no external forces)
drop of liquid should have the mean curvature constant all over it. If the
mean curvature is constant and there are no other superficial constrains,
the surface is spherical. The H = const. condition is not dependent on the
compressibility of the fluid, as far as the forces are absent. However, if the free
surface is supported by a fixed curve, the shape is much more complicated
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Fig. 10.4 Simulation of an experimental minimal surface produced by dipping a wire
frame into a soap solution

(see for example Fig. 10.4). In the case of rigid boundaries for the free surface,
the parametrized surface is not anymore regular. In the general case there will
be singularities along the rigid boundaries. This problem was first formulated
in the following form: for any given closed curve α ∈ R3, there is a surface
S of minimum area with α as boundary. There is a special case when this
problem becomes simpler, namely when the liquid form itself one or more very
thin layers, like the above-mentioned soap films, suspended by some closed
rigid curves, and exposed to the same external pressure P0 in every point.
Actually, no matter how thin the films are, there are always three-dimensional
regions of liquid bounded by these surfaces. Because the liquid region is very
thin compared to its overall dimensions, we can describe the liquid film as
being bounded by two identical surfaces, separated by a very small distance
along the common unit normal. We consider locally these two surfaces as
two identical copies of the same surface, separated by a very small normal
displacement. By local we mean here any open domain of the surfaces which
do not intersect the boundary curves. On every such open domain, the unit
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Fig. 10.5 The pressure inside a thin liquid film

normals H1,2 of these two surfaces have the same support, except they point
in opposite directions (Fig. 10.5). Any point inside the fluid is infinitesimally
close to any of these two identical surfaces, so we can write the surface tension
condition as

P − P0 = −2σH1 = −2σH2 = 2σH1. (10.53)

It results that the only possibility is to have zero mean curvature in all points.
In conclusion, in the absence of forces and in the stationary case, the surface
tension and the mean curvature of the free surface are either constant for
a free regular surface surrounding the liquid or zero for a thin liquid film.
When H = 0 we call these surface minimal, because they have indeed the
minimum area under given constrains. Some of the properties of the minimal
surfaces also apply to surfaces of constant mean curvature [136].

10.4.4 Isothermal Parametrization

According to (10.40) and (10.44), the local criterium for the existence of
minimal surfaces is played by the PDE H = Eg − 2fF + Ge = 0. The
structure of this equation simplifies considerably if the coordinate system on
the surface S is orthogonal, namely F = ru · rv = 0. It is always possible to
choose such an orthogonal parametrization (also called orthogonal curvilinear
system of coordinates) for a regular surface. Indeed, for any point p ∈ S there
is a parametrization r(u, v) in a neighborhood of p, V(p), with the property
that the curves u= const. and v= const. are perpendicular. For example,
if we choose two differentiable vector fields on S defined by w1 = ru and
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w2 = −F
E ru + rv. Moreover, if the vectors of the local basis have equal

norms, E = G, then the minimal surface local condition reduces to a Laplace
equation.

We call isothermal [27], a parametrized surface r(u, v) fulfilling the condi-
tions

ru · ru = rv · rv, ru · rv = 0, (10.54)

which basically means E = G and F = 0. Isothermal parametrized surfaces
are endowed with orthogonal, yet not normalized, curvilinear coordinates.
Orthonormality would implyE = G= const. In the isothermal case the norms
of the local basis vectors are equal, but not constant on the surface. It is not
easy to parameterize surfaces with isothermal or orthonormal coordinates.
For example, the graphics of a differentiable function as a parametrized sur-
face in the independent variable parametrization, (u, v, f(u, v)), can never be
an isothermal surfaces, because, by using (10.50), we would need fu = fv = 0
(the only isothermal surface emerging from a graphics is the plane). However,
we can provide the following result.

Theorem 25. Given a parametrized surface r(u, v), we can change the para-
metrization (u, v)→ (α, β) by the map (u, v) = Φ(α, β) : W ⊂ R2 → U ⊂ R2

such that (r̃ ◦ Φ)(α, β) is isothermal.

Proof. We have Φ(u(α, β), v(α, β)) and

r̃α = r̃uuα + r̃vvα, r̃β = r̃uuβ + r̃vvβ ,

and we request r̃α · r̃β = 0 and r̃α · r̃α = r̃β · r̃β . These conditions are
equivalent with the following system of two nonlinear PDE{

Euαuβ + F (uαvβ + uβvα) +Gvαvβ = 0
Eu2

α + 2Fuαuβ +Gu2
β = Ev2α + 2Fvαvβ +Gv2β

(10.55)

The two solutions of this PD system of equations u(α, β), v(α, β) should also
fulfill the compatibility conditions uα,β = uβ,α, vα,β = vβ,α. By using the the-
orem of existence and uniqueness from Sect. 4.3, we can always find solutions
for (10.55) defined in a neighborhood, under Cauchy arbitrary conditions.
Consequently, we can always provide the given parametrized surface with
new isothermal curvilinear coordinates. ��

For example, if S = {(x, y, z) ∈ S2 ⊂ R3|z > 0}, x = u, y = v, originally
parametrized as the graphics of the function z = f(u, v) =

√
1− u2 − v2, we

have r = (u, v, f(u, v))

ru = (1, 0, fu), rv = (0, 1, fv), N =
(−fu,−fv, 1)√

1 + f2
u + f2

v

,

and E = 1 + f2
u , G = 1 + f2

v , and F = fufv. Obviously this surface is
not isothermal, but if we map u, v into spherical coordinates θ, ϕ we have
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Fig. 10.6 From left to right: a domain of a sphere represented in cartesian coordinates,
in spherical coordinates, and in the α, β coordinates

r̃ = (sin(θ) cos(ϕ), sin(θ) sinϕ, cos(θ)). The new first fundamental form reads
Ẽ = 1, F̃ = 0, and G̃ = sin2 θ. We need to map these new coordinates
into a new set of curvilinear coordinates, α, β, which have to fulfill again the
isothermal conditions (10.54), i.e.,{

θαθβ + sin2 θϕαϕβ = 0
θ2α + sin2 θθ2β = ϕ2

α + sin2 θϕ2
β

A possible solution of the above system is provided by ϕ = β and θ(α) =
2 arctanC0e

±α, with arbitrary constant C0. In Fig. 10.6 we present a subset
of the surface S in all these three parameterizations.

The main result of this section can be expressed by the following affirma-
tion regarding minimal isothermal surfaces.

Theorem 26. If the parametrized surface r(u, v) is isothermal, we can write

H = HN =
1

2E
�r, (10.56)

where � = ∂uu + ∂vv is the Laplace operator in the surface curvilinear coor-
dinates, and we introduce the mean curvature vector H.

Proof. By differentiating ru · rv = 0 and ru · ru = rv · rv with respect to u
and v, we obtain rv ·�r = ru ·�r, so �r is parallel to N . On the other side,
we have H = (e+ g)/(2E) = N · �r/(2E) so H = N(N · �r)/(2E). ��

Theorem 26 has a different expression if instead of the full three-
dimensional Laplace operator we use the surface Laplace operator�S defined
in Sect. 7.5.3. In the surface differential operator case, we have

Proposition 8. On a surface Σ parametrized with orthogonal coordinates,
we have

�Sr = 2HN ,

and the Laplacian of the position vector is zero for minimal surfaces.
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The proof follows from (7.48). In case of orthogonal coordinates (F = 0)
this relation becomes (7.49). Even more interesting, in the case of a minimal
surface, the normal component of the position vector of the surface rn = r ·N
is given by (7.52), namely �S(rn) = 2rnK.

As a direct consequence of Theorem 26, an isothermal parametrized surface
is minimal if and only if its parametrization function is harmonic (i.e., �r =
(�x(u, v),�y(u, v),�z(u, v)) = 0). Theorem 26 provides an invaluable tool
to find minimal surfaces through a very well-studied PDE. For example, if we
identify the parameter space with the complex plane by setting z = u+ iv ∈
C, (u, v) ∈ U ⊂ R2 and if we express the regular parametrized surface r

through the equations ϕj = ∂xj

∂u − i
∂xj

∂v , j = 1, 2, 3, then, the parametrized
surface r is isothermal if and only if ϕ1 + ϕ2 + ϕ3 = 0 and this surface is
minimal if and only if the three complex functions ϕj are analytic. Indeed,
analyticity implies harmonicity of the coordinate functions by the Cauchy–
Riemann conditions. In Fig. 10.7 we present some traditional examples of
minimal surfaces. The Scherk’s surface [27] is such an example of complex
surface.

In addition to their simplification over the minimal surfaces equation, the
isothermal surfaces (E = G,F = 0) have another interesting property related
to the Laplace operator. The Gaussian curvature is K = 1

2E� logE [40].

10.4.5 Topological Properties of Minimal Surfaces

Minimal surfaces have a lot of interesting topological properties. The zeros
of the Gaussian of a minimal surface are isolated, meaning that if a minimal
surface has planar or parabolic points, they are isolated. In other words,
there is no straight escaping line along a minimal surfaces, they are really
“very twisted.” Also, there are no compact minimal surfaces. This is easy
to prove, because all the points of a regular minimal surface are hyperbolic.
If a minimal surface S is compact (bounded and closed), we can find an S2

sphere of radius R containing S. We can choose R such that S2 ∩ S = ∅.
Then, we decrease R continuously until the intersection between S and the
sphere becomes nonempty. If the intersection is an open set for the first time,
this set should be homeomorphic to an open part of S2, having all its points
elliptic points, which is forbidden byH = 0. If the intersection consists in only
isolated points q ∈ S∩S2, we can find neighborhoods of these points V(q) ⊂ S
lying both inside and outside S2, contradicting hence the hypothesis. So, all
(regular) minimal surfaces are unbounded, hence noncompact. We remember
here that compact regular surfaces have at least one elliptic (K > 0) point.

If S is a regular closed minimal surface which is not a plane, the image
of the Gauss map is dense in the sphere S2. When a point moves along the
surface, the normal N takes “almost” all possible orientations in R3. That
is, for every arbitrary direction N0, there are open sets of points on S, such
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Fig. 10.7 Examples of minimal surfaces. Upper line: catenoid and helicoid. Middle
line: Enneper’s polynomial surface. Lower line: Scherk’s periodical surface from complex
analysis
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that the corresponding normal of these points approaches the given direction
as close as we want.

We also mention another property of the minimal surfaces. If S is minimal
and has no planar points (K �= 0 on S), then the angle of intersection of any
two curves on S and the angle of intersection of their spherical images (im-
ages through the tangent map of the Gauss map) are equal up to a sign. In
terms of equation this fact reads ∀p ∈ S,∀v,w ∈ TpS, dNp(v) · dNp(w) =
−Kpv · w. In terms of thin layers of fluid, this behavior of the free min-
imal surface means that the two variations of the gradient of pressure,
when we move toward two perpendicular directions of the tangent plane, are
perpendicular.

10.4.6 General Condition for Minimal Surfaces

In the following we want to provide a general expression for the local con-
dition H = 0 for a minimal surface, expressed in different systems of curvi-
linear coordinates. In such systems we use for the surface parameters two of
the three curvilinear coordinates, and one free function (the shape function)
depending on these two coordinates. In the cartesian case (u, v) = (x, y), we
have r = u, v, h(u, v) where h(u, v) is the shape function. The mean curvature
is

H =
huu + hvv + h2

vhuu − 2huhvhuv + h2
uhvv

(1 + h2
u + h2

v)
3
2

. (10.57)

In cylindrical symmetry, the surface can be parameterized in cylindrical coor-
dinates ((u, v) = (ϕ, z)) in the form r = (ρ(u) cosu, ρ(u) sinu, v) with shape
function ρ(u). The mean curvature is

H =
ρ3 + 2ρρ2u − ρ2ρuu

(ρ2 + ρ2u)2
. (10.58)

In spherical symmetry (u, v) = (θ, ϕ), the surface becomes r = ((R +
ρ(θ, ϕ)) sin θ cosϕ, (R + ρ(θ, ϕ)) sin θ sinϕ, (R + ρ(θ, ϕ)) cos θ) and, in terms
of the shape function ρ(u, v), the mean curvature is

H =
B − ((R+ ρ)2 + ρ2θ)ρθ sin θ cos θ + C sin2 θ

2
(

(R+ ρ)2 + ρ2θ + ρ2
ϕ

sin2 θ

)2

sin2 θ

, (10.59)

where

B = 3Rρ2ϕ + 3ρρ2ϕ −R2ρϕϕ − 2Rρρϕϕ − ρ2ρϕϕ − ρ2θρϕϕ

+2ρθρϕρθϕ − ρθθρ
2
ϕ − 2ρθρ

2
ϕ cot θ,

C = (R+ ρ)(2(R+ ρ)2 + 3ρ2θ −Rρθθ − ρρθθ).
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If the shape function is small compared to the radius, ρ  R, we have the
following hierarchy of orders of smallness in ρ/R for H

O(0) = − 1
R
,

O(1) =
ρ

R2
+

1
2R2
�Ωρ,

O(2) = − ρ
2

R3
+
ρ2θ

2R3
− ρρθ

R3
+

ρ2ϕ

2R3 sin2 θ
− ρρϕϕ

R3 sin2 θ
− ρρθ cot θ

R3
, (10.60)

where
�Ω = ρθθ + cot θρθ +

ρϕϕ

sin2 θ

is the angular part of the Laplace operator in spherical coordinates.
In all these examples, the expression of H is very close to the Laplacian

of the free function describing the surface in the corresponding curvilinear
coordinates. If the curvilinear coordinates are isothermal, the mean curvature
equation is precisely the Laplace equation, and this behavior is natural in view
of (10.56). It is interesting to check how does the Laplacian of �r reduce to
the Laplacian of the shape scalar function, �h or �ρ, like in the examples
above. In general, orthogonal curvilinear coordinates are not isothermal, so
we expect H to contain in addition to the Laplacian of the free function, also
some other terms. The question is: to what extent, in some given curvilinear
coordinates, we can approximate the minimal surface equation H = 0 and
the surface pressure expression, with the Laplace equation of the curvilinear
coordinates? It would be of practical application to find the approximate
expression of the surface tension for surfaces that are small deviation from
an isothermal, or at least orthogonally parametrized surface.

10.4.7 Surface Tension for Almost Isothermal
Parametrization

We consider a thin liquid surface S, initially in “equilibrium,” parametrized
by isothermal coordinates, r0(u, v) defined in an open set (u, v) ∈ U , with
E = G,F = 0. Next to this surface, the pressure is the surface tension and
it has the expression provided by (10.52) and (10.56)

P =
2σ
2E
|�r|.

We consider that some external interaction occurs (like the presence of a force
field or a nonuniform change in temperature) and produces a deformation of
this surface. This deformation, or variation, is defined as a new parametrized
surface r(u, v) = r0(u, v) + ερ(u, v). We consider this new surface to be a
small variation of the original isothermal one if εmax(u,v)∈U{|ρ|}  |r0|.
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In the following we denote any quantity that refers to the original isothermal
surface with a zero label, like for example r0u · r0u = r0v · r0v = E0 = G0

and r0u · r0v = F0 = 0. The surface tension expression

P (u, v, ε, ρ(u, v)) = σ
Eg − 2fF +Ge

(EG− F 2)
(10.61)

reduces in the limit limε=0 P = P0 = 2σH0 = σ(g0 + e0)/E0. For small
variations we work in the first linear approximation of ε and we neglect O(ε2).

In the following we choose a normal variation ρ = ρ(u, v)N0(u, v).
There is no loss of generality in this choice, because any arbitrary defor-
mation can be reduced to a normal one by a reparametrization. Besides,
in the case of orthogonal curvilinear coordinates, the deformed surface is
always normal, since the deformation occurs along the orthogonal parameter.
For example in the spherical case, r0 = (R sinu cos v,R sinu sin v,R cosu)
with R = const., the usual variation of the coordinate surface has the form
ρ = ερ(u, v)(sinu cos v, sinu sin v, cosu), which means r) ⊥ ρ, and conse-
quently the variation is normal.

Since we are interested in surfaces close to the isothermal one, we follow
the calculations just in the first order in ε. From the definition of the normal
variation, and from E0 = G0, F0 = 0, we obtain

ru = r0u + ερuN0 + ερN0u,
rv = r0v + ερvN0 + ερN0v,

and consequently we have the coefficients of the first fundamental form of
the deformed surface in the first order in ε

E = E0 − 2ερe0, G = E0 − 2ερg0, F = −2ερf0. (10.62)

We notice that it is impossible to have, in general, a surface and its infin-
itesimal normal variation, simultaneously isothermal, F) = F = 0. This is
possible in the linear approximation only if f0 = 0. The unit normal has the
form

N = N0 −
ε

E0
(ρur0u + ρvr0v) +O(ε2).

The second fundamental form has the coefficients

e = e0 + ε
(
ρuu − 1

2E0
(ρuE0u − ρvE0v)− ρ

E0
(e20 + f2

0 )
)
,

g = g0 + ε
(
ρvv − 1

2E0
(ρvE0v − ρuE0u)− ρ

E0
(g20 + f2

0 )
)
,

f = f0 + ε
(
ρuv − 1

2E0
(ρuE0v + ρvE0u)− ρf0

E0
(e0 + g0)

)
.

By introducing all these coefficients in (10.40), we obtain

H =
e0 + g0

2E0
+ ε

ρ(e20 + g20)
2E2

0

+ ε
�ρ
2E0

+O(ε2), (10.63)
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which describes the mean curvature of the infinitesimal normal variation of an
isothermal surface in the linear approximation. This form is a linear operator
in ρ with variable coefficients, and the surface tension may be written as

PS = −2σ(A+ εBρ+ εC�ρ) +O(ε2), (10.64)

where the three variable coefficients A, B, and C can be identified from
(10.63).

Such a simple form as (10.63) for the surface pressure is not always avail-
able. In practical situations one uses orthogonal curvilinear coordinates which
are not necessarily isothermal, mainly because E0 �= G0. In the following we
obtain a similar first-order approximation of the mean curvature for a normal
deviation starting from an orthogonal parametrized surface.

Definition 47. Three families of smooth (of rank 3) surfaces are a triply
orthogonal system in an open U ⊂ R3 if one unique surface of each family
passes through any point P ∈ U , and if the three surfaces that pass through
each point p ∈ U are pairwise orthogonal.

The second constraint means that ru, rv, and rw are always orthogonal. The
curves of intersection of any pair of surfaces from different system are lines
of curvature in each of the respective surfaces, i.e., the intersection lines are
principal directions. The traditional 12 systems of curvilinear coordinates
are the examples (cartesian, cylindric, spherical, elliptic, parabolic, bowls,
etc.). In the case of orthogonal parametrization, the coefficients of the first
fundamental form are similar to (10.62). The normal is different

N = N0 − ε
(
ρur0u

ρvr0v

)
.

The coefficients of the second fundamental form are different

e = e0 + ε
(
ρuu −

1
2E0G0

(ρuE0uG0 − ρvE0vE0)− ρ
e20G0 + f2

0E0

E0G0

)
+O(ε2),

g = g0 + ε
(
ρvv −

1
2E0G0

(ρvG0vE0 − ρuG0uG0)− ρ
f2
0G0 + g20E0

E0G0

)
+O(ε2),

f = f0 + ε
(
ρuv −

1
2E0G0

(ρvG0uE0+ρuE0vG0)−ρf0
e0G0 + g0E0

E0G0

)
+O(ε2).

In the end, the form for the mean curvature of the deformed surface in the
first order of approximation is

H = e0G−0+g0E0
2E0G0

+ ε
(

G0ρuu+E0ρvv

2E0G0
− ρuE0u

4E2
0
− ρvG0v

4G2
0

+ρuG0u+ρvE0v

4E0G0
+ ρg2

0
2G2

0
+ ρe2

0
2E2

0
+ 3ρf2

0
2E0G0

)
+O(ε2).

(10.65)

It is easy to check that (10.65) reduces to the particular cases discussed
above for spherical, cartesian, etc., coordinates. Still this expression is a linear
second-order differential operator acting on ρ with variable coefficients.
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10.5 Special Fluids

There are important differences between Newtonian (traditional or small
molecule) fluids obeying Newtonian fluid dynamics and “polymeric” (macro-
molecular) fluids. The features of the macromolecular architecture influence
the flow behavior. Polymeric fluids have molecular weights several orders of
magnitude higher than normal fluids, and besides, this molecular weight is
not uniformly distributed in the mass of the fluid. In addition, the polymers
have a huge number of metastable configurations at equilibrium, and con-
sequently the flow is altered in time and space by the local stretching and
alignment of macromolecules. In high concentration polymers (melts), the
macromolecules can form entanglement networks, and the number of entan-
glement junctions can change with the flow conditions. In [137] there is a
detailed discussion of such types of flow. The most important property of
macromolecular fluids is the non-Newtonian viscosity, i.e., the fact that the
viscosity of the fluid changes with the shear rate. In viscoplastic (or dilatant)
fluids, there is present the phenomenon of shear thickening, namely the vis-
cosity of the fluid increases with the shear rate. Such fluids will not flow at
all unless acted on by at least some critical shear stress, called yield stress.
In some other polymeric fluids, we have the phenomenon of elasticity and
memory of the flow, called the viscoelastic property. After the external pres-
sure is removed, the fluid begins retreating in the direction from which it
came. The fluid, however, does not return all the way to its original position
(like an ideal rubber band for example), since its temporary entanglement
junctions have a finite lifetime, and they are continuously being created and
destroyed by the flow. Such a viscoelastic fluid behaves like having a fading
memory.

10.6 Representation Theorems in Fluid Dynamics

10.6.1 Helmholtz Decomposition Theorem in R3

Theorem 27 (Helmholtz Theorem for the Whole Space). Any single-
valued continuous vector field v(r) : R3 → R3 satisfying

∇ · v → 0, ∇× v → 0, when r →∞,
∃ε > 0, |v| < 1

r1+ε , when r →∞,

may be written as the sum of an irrotational (or conservative or lamellar)
part and a solenoidal part

v = ∇Φ+∇×A,
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such that

Φ(r) =
1
4π

∫∫∫
R3

∇′ · v(r′)
|r − r′| d

3r′

A(r) =
1
4π

∫∫∫
R3

∇′ × v(r′)
|r − r′| d

3r′ and ∇ ·A = 0.

For a proof of the theorem see [38,127,138].
Usually, the Helmholtz theorem is formulated as “source plus condition at

infinity” problem. Given the source fields ρ(r), j(r) defined on R3 with the
regularity propriety at |r| → ∞, ρ, j → 0, and the vector field equation

∇ · v = ρ, ∇× v = j,

there is a unique solution for the unknown vector field v = ∇Φ+∇×A, with
the potentials ρ,A solutions of the equations

�Φ = ρ, �A = j, ∇ ·A = 0.

Also, the potentials are not uniquely determined, and we call this undeter-
minacy gauge transformation. Namely, Φ is defined modulo addition of an
arbitrary harmonic function Φ→ Φ+f(r), �f = 0, and A is defined modulo
addition of the gradient of an arbitrary function A→ A +∇g(r).

The Helmholtz theorem (Theorem 27) can be extended by using a
Neumann–Debye decomposition [138]. Instead of using one scalar Φ and one
vector function A plus the divergence constraint (i.e., 1 + 3− 1 = 3 degrees
of freedom), we can use three scalar functions. If the field v is continuous
and single-valued, and it fulfills the same regularity conditions at∞ as in the
Helmholtz theorem, we have the following decomposition

v = ∇Φ+∇× (rΨ) +∇× (∇× rχ) = ∇Φ+ LΨ + Qχ, (10.66)

where the operators are L = −r ×∇ (angular momentum) and Q = ∇×L.
The functions Ψ, χ are the so-called Debye potentials and are related to the
operators by the equations

Φ(r) = 1
4π

∫∫∫
R3

∇′·vd3r′
|r−r′|

Ψ(r) = 1
4π

∫∫∫
R3

r′ · (∇′ × v) ln(1− r′ · r)d3r′

χ(r) = 1
16π2

∫∫∫
R3
d3r′ln(1− r · r′)(r′ · ∇′)

∫∫∫
R3

∇′′·v(r′′)
|r′−r′′| d

3r′′

− 1
4π

∫∫∫
R3

ln(1− r · r′)r′ · vd3r′.

The operators involved in this generalized Helmholtz theorem fulfill inter-
esting algebraic relations. The angular momentum operator is closed under
commutation relation and spans the su(1, 1) Lie algebra by [Li, Lj ] = EijkLk.
The operator Q is an ideal of this algebra [Li, QJ ] = EijkQk, and the Laplace
operator is the Casimir element of this algebra [L,�] = [Q,�] = 0.
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A very useful version of the Neumann–Debye (10.66) is related to the linear
Navier–Stokes fluid dynamics equation in absence of external forces

∂V

∂t
= −1

ρ
∇P − ν∇× (∇× V ), (10.67)

where the fluid velocity field V (r, t) is a smooth nonsingular time-dependent
(Euclidean) vector field defined on a domain D ⊂ R3 with values in TR3; ρ
and ν are positive constants, density and viscosity, respectively, and P (r, t)
is the pressure scalar field, also defined on D ⊂ R3. If we ask for the velocity
field to be divergence free on D, i.e., to have no net sources of fluid,

∇ · V = 0, (10.68)

it is possible to apply the representation theorem (10.66) for solutions of
(10.68) in D. We have

Theorem 28. Let us define a vector field

V = ∇× (Qβ) +∇×∇× (Qb) +∇c

and the scalar field

P = −ρ∂c
∂t
,

where Q(r, t) is an arbitrary smooth vector field on D × R, and β, b, c are
arbitrary smooth scalar fields depending on (r, t) ∈ D×R. Then V , P defined
above are solutions for the Navier–Stokes equations (10.67) in the divergence-
free condition (10.68) if the following conditions are fulfilled on D ×R

ν�β =
∂β

∂t
, ν�b =

∂b

∂t
, �c = 0, Q = C0r,

with C0 an arbitrary constant.

The proof of the theorem is by direct calculation. Details and applications
can be found in [139,140].

An interesting version of the Helmholtz theorem in a domain D with
boundary ∂D �= ∅ is presented in Chorin and Marsden’s book [100], under
the name of Helmholtz–Hodge theorem. In this formalism, a vector field v
is decomposed into a potential field ∇Φ and an incompressible vector field
u, divu = 0 which is parallel to the boundary of D, (u ·N)∂D = 0. The exis-
tence of the Helmholtz–Hodge decomposition is guaranteed by the existence
of a solution to the Neumann-associated problem for Φ. Uniqueness is guar-
antied by the fact that the two terms of the decomposition are orthogonal
in an average taken through an integration over D. Indeed,

∫
D u · gradΦ = 0

through Gauss formula and because of the properties of u. Consequently, any
two distinct Helmholtz–Hodge decompositions must have same u and same
Φ, up to an additive constant. In this form the theorem is more adapted to
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hydrodynamics problems where one has incompressible fluid in a bounded
region. Because the velocity is divergence free and vanishes on the boundary,
the Navier–Stokes equation can be projected into a divergence-free compo-
nent which does not contain the pressure, i.e., the gradient term.

Hydrodynamics is perhaps one of the best-studied fields of application of
nonlinear equations, waves, and their solutions, and we have barely touched
the subject. A very comprehensive and extended treatment of hydrodynamics
in general, toward the nonlinear problems open at the time when the book
was written, is [93]. The book is dense in solved examples and problems in
almost any field of basic hydrodynamics. The book goes hand in hand with
mathematical physics text books like [24, 25] or in the same style. The cal-
culations are detailed and comprehensive, very much relying on expansions
in series of functions and independent mode analysis. A book which comple-
ments Lamb’s book on hydrodynamics and is written in the same grand style
is [127], especially for magnetohydrodynamics and fluid and plasma stability
problems. Another comprehensive book on hydrodynamics, where very spe-
cial problems are solved in very original ways, is [96]. If the reader is more
concerned about mathematical rigorousness, toward functional analysis and
operator approach in hydrodynamics, a good lecture would be [101]. More
restrictive topics, yet presented on a fundamental basis and mathematical rig-
orous, are approached in [38, 94, 97]. In this last mentioned spectrum, more
oriented toward mathematics is the attractive and clear book of Chorin and
Marsden [100], or more toward applied mathematics [132]. For specific topics
on waves in general and nonlinear waves in fluids, the reader may consider
to consult [2, 141].

10.6.2 Decomposition Formula for Transversal
Isotropic Vector Fields

This special decomposition works for axially and/or translational symmetric
vector fields. It is particularly useful in convective hydrodynamics stabil-
ity calculations, and in general in physical systems exhibiting transport and
transformation processes. It is also useful in the dynamics of viscous drops
submerged in viscous fluids [142]. This decomposition formula was introduced
for a particular axisymmetric field in [127, Sect. 61], and later, for spherical
surfaces and even for more general situations in [143]. The big advantage of
this decomposition consists in the fact that the vector field v can be expressed
as function of the radial component vr, the divergence divv and the radial
component of the vorticity, ωr, where ω = ∇ × v. When the flow is incom-
pressible, and the velocity field has spherical symmetry, this decomposition
becomes very useful because of its simplicity. Moreover, for solenoidal fields,
like vorticity, this divergence term is also canceled and the vector field can
be constructed from the radial components only.
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In general, the formula works for any curvilinear orthogonal system of
coordinates of the form (r, q1, q2) with a local basis {er, q1, q2}, where
r= const. describes closed coordinate surface homotopic to the sphere S2.
At the same time, we can expand any vector field v(r, q1, q2) in an orthogo-
nal basis of functions defined on the compact surface r= const. This surface
S, being homotopic to S2, allows the existence of an L2(S) Hilbert space
with countable basis of harmonic polynomials defined on S2. In the case of
spherical coordinates, these are the spherical harmonics Yl,m. In the following
we introduce this vector decomposition in spherical coordinates (r, θ, ϕ). For
the calculation of components and operator action, we refer to Sect. 18.3.

Any vector field, like for example the velocity field v, can be decomposed
in its normal (radial for spherical) and parallel components

v = vrer + v‖, (10.69)

and also the gradient and Laplace operators can be decomposed in a similar
way

∇‖ = ∇−er(er ·∇) = ∇−er
∂

∂r
, � = �r(r, ∂/∂r)+�‖(θ, ∂/∂θ, ϕ, ∂/∂ϕ, ).

(10.70)
From vector analysis we have the formula

�v‖ = ∇(∇ · v‖)−∇× (∇× v‖)
= ∇‖(∇ · v‖)− [∇× (∇× v‖)]‖,

(10.71)

where we retain on the RHS only the parallel terms (the normal terms cancel
each other), because the LHS in (10.71) contains by definition only parallel
terms. We have

�v‖ = ∇‖(∇ · v)−∇‖Dvr − [∇× (∇× v‖)]‖, (10.72)

where D = 1
r2

∂
∂r (r2), i.e., the radial part of the div operator in the curvilinear

coordinates.
We can expand the vector field v(r, θ, ϕ) in spherical harmonics. We have

v = vrer + v‖ =
∑
l,m

vl,m(r, t)Yl,m(θ, ϕ), (10.73)

where vl,m = ervr,lm + v‖,lm. With these notations we obtain

�v‖ = �rv‖ +�‖v‖ =
1
r2
∂

∂r

(
r2
∂

∂r
v‖

)
+�Ωv‖, (10.74)

where Ω is the angular (parallel) part of the Laplace operator (see Sect. 18.3).
For any l,m component we can write

�v‖,lm =
1
r2
∂

∂r

(
r2
∂

∂r
v‖,lm

)
− l(l + 1)

r2
v‖,lm, (10.75)
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accordingly to the action of the angular Laplacian operator on spherical
harmonics. It results

v‖,lm =
r2

l(l + 1)
(�rv‖ −�v‖). (10.76)

In the following equations, we skip the labels l,m, but we refer to the l,m
component, unless otherwise stated. From (10.69), (10.72), and (10.76), we
have the following preliminary form for the decomposition

v = vrer +
r2

l(l + 1)

(
�rv‖ +∇‖Dvr−∇‖(∇·v)+ [∇× (∇×v‖)]‖

)
. (10.77)

In the following, we focus on the first and fourth term in the RHS parenthesis
in (10.77). We have

�rv‖ + [∇× (∇× v‖)]‖ = �rv‖ + (∇× ω)‖ − [∇× (∇× urer)]‖, (10.78)

where ω = ∇×v is the vorticity field. We also notice that ωr = er ·(∇‖×v‖).
This is possible because of the relation

∇× v = ∇‖ × v‖ + er(er · ∇)× v‖ −∇‖ × ervr − er(er · ∇)× ervr,

where all the last three terms are perpendicular on er, hence they have only
parallel components. The only normal component in the RHS of the equation
above is contained the first term. We also notice the identity [143, Equa-
tion (H1.12)]

∇× v = erωr + er ×
(

1
r

∂

∂r
(rv‖)−∇‖ur

)
. (10.79)

From (10.78) and (10.79), we have

�rv‖ + (er(er · (∇‖ × ω‖))) + er

[
1
r

∂
∂r (rω‖)−∇‖ωr

]
‖
− [∇× (∇× vrer)]‖

= �rv‖ + er ×
[

1
r

∂
∂r (rω‖)

]
− [∇× (∇× vrer)]‖ − er ×∇‖ωr

= −er ×∇‖ωr.
(10.80)

The last equality holds because the first three terms in the second line of
(10.80) cancel each other, as one can check by direct calculations in spherical
coordinates components. Consequently we have

�rv‖ + [∇× (∇× v‖)]‖ = −er ×∇‖ωr. (10.81)

From (10.77) to (10.81), we can write the final decomposition formula

v = vrer +
r2

l(l + 1)

[
∇‖Dvr −∇‖(∇ · v)− er ×∇‖ωr

]
. (10.82)
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That is, we can express the velocity field function of its radial component,
and function of the radial component of the vorticity and the divergence of
velocity.

10.6.3 Solenoidal–Toroidal Decomposition Formulas

Another version of the above decomposition formula can be obtained for an
axisymmetric solenoidal vector field. We use a cylindrical system of coor-
dinates (rc, ϕ, z), and the axis of symmetry is taken in the z-direction. In
this case the field can be expressed as a superposition of a poloidal and
toroidal field in terms of two azimuth-independent scalar functions U(rc, z)
and V (rc, z) [127]

v = −rc
∂U

∂z
erc

+ rcV eϕ +
1
rc

∂

∂rc
(r2cU)ez. (10.83)

An equivalent and unified way of writing (10.83) and the curl of velocity is

u = ez × rV +∇× (ez × rU), and
∇× u = −ez × r�5U +∇× (ez × rV ), (10.84)

where �5 is the Laplacian operator in a five-dimensional Euclidean space
in cylindrical coordinates. According to Chandrasekhar [127, Sect. 61], there
is a particular advantage of this representation in that no matter of how
many times one applies curl operator to the velocity and vorticity fields, the
representations in (10.84) have the same type of expression.

In spherical coordinates, the Chandrasekhar poloidal–toroidal decomposi-
tion of an axisymmetric solenoidal field has the form

u = − 1
sin θ

∂

∂θ
(sin2 θU)er −

sin θ
r

∂

∂r
(r2U)eθ + r sin θV eϕ. (10.85)

The interpretation of the scalars U, V is straightforward. Since fields derived
only from the scalar U have components only in the meridional planes, it
results that the U field is nothing but the Stokes’ stream function for motions
in these planes (meridional motions). The field V defines motions which are
entirely rotational. Another advantage is this types of representations reci-
procity: a poloidal field has toroidal vorticity and, conversely, a toroidal field
has poloidal vorticity.

10.7 Problems

1. In Sect. 10.3 we conjecture (10.30) and (10.32) by using the physical
intuition that particles contained in particle surface move together with
the surface, and never tangent to it. Prove this affirmation on a more
geometrical background. Hint: use the integral formulas in Sect. 7.5.
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2. Monge’s potential representation: show that an arbitrary differentiable
vector field v can be always represented as

v = ∇ϕ+ ψ∇χ,

where the first term on the RHS is irrotational field, and the second term
has the property of being perpendicular to its curl, (ψ∇χ) · (∇ × ψ∇χ).
Such fields are called complex lamellar fields [38].



Chapter 11

Nonlinear Surface Waves
in One Dimension

In this chapter, we present some examples of nonlinear evolution equations in
one space dimension. We rediscuss the traditional Korteweg–de Vries (KdV)
equation for the shallow water long channel case, and its cnoidal waves and
soliton solutions. Then we briefly present the MKdV equation and some
nonlinear dispersion extension of it. In the last sections, we discuss some
possible dynamical generalizations of the shallow water models on compact
intervals, for any depth of the fluid. The resulting equation is an infinite-
order pseudodifferential one, and it reduces to a finite difference differential
equation. We show that this generalized KdV equation approaches the KdV,
MKdV, and Camassa–Holm limiting equations, both at the equation and at
the solution level, in the appropriate physical conditions.

11.1 KdV Equation Deduction for Shallow Waters

The one-dimensional KdV equation for shallow water and infinite long chan-
nels, and its cnoidal waves and soliton solution, represent a well-established
model for water waves [7,144]. The KdV equation has the dimensionless form

ut + 6uux + uxxx = 0,

and has an infinite set of conservation laws, out of which the first two are

ut + (3u2 + uxx)x = 0, (u2)t + (4u3 + 2uuxx − u2
x)x = 0.

The basic configuration is presented in Fig. 11.1 The model consists of an
infinite long channel along Ox axis, filled with stationary liquid, in normal
gaseous atmosphere, up to a height h measured along Oy axis. The fluid
velocity is V = (u, v) and the free surface Σ is described by the equa-
tion y|Σ = h + η(x, t). We denote a = max|η|. In this section, the sub-
script Σ means that the quantity is evaluated at the free surface. The KdV

237
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Fig. 11.1 Shallow water model and traveling localized disturbance on the free surface

one-dimensional infinite long model is obtained [2, 3], under the following
hypotheses:

1. Incompressible fluid ρ(x, y, t) = cst.
2. Irrotational flow ∇× V = 0.
3. Inviscid fluid. Dynamics is governed by Euler equation.
4. At a certain point in the demonstration we need to make some approxi-

mations based on the size of the disturbance. It is the so-called “shallow
water, long waves” approximation, and basically consists in the int-
roduction of two smallness dimensionless parameters, ε and δ, and an
expansion of the equations in terms of order of magnitude of these two
parameters.

5. At a certain point we will introduce an approximation based on time
scales, also in terms of ε, δ.

6. There are two interactions taken into account. One is an external vertical
uniform field of force (e.g., gravitation g = (0,−g)), and the other is the
surface pressure at the free surface in contact with the atmosphere.

From hypotheses (1) and the equation of continuity we have div V = 0.
From this relation, hypothesis (2) and the Helmholtz representation theorem
(Theorem 27) in Sect. 10.6.1, we have a velocity field potential Φ, V = ∇Φ
which fulfills the Laplace equation

�Φ = 0. (11.1)

In principle one should be careful while using this Helmholtz representation,
since it is sensitive to the topology of the domain of definition. Because the
roots of the Helmholtz theorem are in the Poincaré Lemma (Sect. 4.9), it
inherits the restrictions of this lemma, namely about the domain on which it
applies: it should be star shaped, or contractible to a point. In other words,
if the flow space has holes or compact obstacles, one has the rethink the
representation of the potential as a multiform function.
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The kinematic condition at the free surface (see Sect. 9.5) reads

d(y|Σ)
dt

= v|Σ =
dη

dt
=
∂η

∂t
+
∂η

∂x

dx

dt
. (11.2)

The surface pressure is given by [96,141,145]

P |Σ = − σR = −σ ηxx

[1 + (ηx)2]3/2
, (11.3)

where σ is the coefficient of surface pressure of the fluid (material constant),
R is the local radius of curvature of the curve describing the surface Σ, and
the x labels represent differentiation (from now on in this section, it is easier
to use such labeling for derivatives). The Euler equation (hypothesis (3))
together with hypothesis (6) provide the equation

dV

dt
=
∂V

∂t
+ (V · ∇)V = −1

ρ
∇P + g, (11.4)

where P is the pressure. The Euler equation can be written in terms of the
potential of flow, and then integrated once with respect to the gradient. It
results

Φt +
1
2
(∇Φ)2 = −P

ρ
− gy, (11.5)

where an arbitrary additive function of time resulting from the space inte-
gration can be neglected because it represents just a gauge transformation
for the velocity field. Next step we evaluate (11.4) and (11.5) on the surface
Σ and then, we differentiate it with respect to x. Then we express the pot-
ential flow derivatives in terms of the components of the velocity field, and
use (11.3) for pressure at the free surface. All in all we obtain(

ut + uux + vvx −
σηxx

ρ[1 + (ηx)2]3/2
+ gηx

)
Σ

= 0, (11.6)

which is the Euler equation of momentum conservation at the free surface Σ.
The sign in front of the pressure surface term is minus because the surface
pressure acts toward inside the fluid if the curvature is negative. Same sign
analysis is discussed in [145] (Equation (5B.24) and Chap. 5.4 and Appen-
dices 5B and 5C), [141] (Equation (48), p. 223), and [96] (p. 298). Practically,
the dynamics of the surface is obtained by solving (11.2) and (11.6).

The domain of the Laplace equation is bounded by the rigid bed y = 0
and by the free surface y = h+ η. If the functions involved are analytical, we
can solve the Dirichlet problem for Φ and obtain a unique analytical solution,
for example in the form of a Taylor series

Φ(x, y, t) =
∑
n≥0

ynΦn(x, t). (11.7)
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By substituting (11.7) in (11.1) we obtain the recursion relations

Φk,xx + (k + 1)(k + 2)Φk+2 = 0. (11.8)

The rigid bed condition v(x, 0, t) = Φy(x, 0, t) = 0 results in annihilation of
the odd coefficients Φ2n+1(x, t) = 0, and expresses all the even coefficients
functions of Φ0,x = f which we denote by a new symbol, f(x, t). For example,
we have the velocities

u = f − y
2

2
fxx +

y4

24
fxxxx − · · · ,

v = −yfx +−y
3

6
fxxx −

y5

120
fxxxxx + · · · . (11.9)

In the following, to fulfill hypotheses (4) and (5), we introduce substitutions
which provide dimensionless quantities:

x = lx′ ∂x =
1
l
∂x′

t =
l

c0
t′ ∂t =

c0
l
∂t′

η = aη′

u = εc0u
′

v = εδc0v
′

f = εc0f
′. (11.10)

Here, l is an arbitrary length which should be of the same order of magnitude
as the half-width (wavelength) of the localized solutions. The speed of sound
in fluid is c0 =

√
gh [93, 96,141]. We can also introduce the Bond number

Bo =
σ

ρgh2
=
(
lc
h

)2

, where lc =
√
σ

ρg
, (capillary length). (11.11)

The two dimensionless parameters are ε = a
h and δ = h

l . So far the model
has two free parameters (a, l) and two physical parameters (h, g).

Hypothesis (4) requests that ε  1 and δ  1. As a consequence we will
approximate all equations to the first orders in ε, δ. With this notations, and
with velocities expressed in (11.9), we can rewrite the dynamical equations
(11.2) and (11.6) in the form

η′t′ + f ′x′ + εη′f ′x′ + εη′x′f ′ − δ
2

6
f ′x′x′x′ = O(εδ2, . . . ), (11.12)

f ′t′ + η′x′ + εf ′f ′x′ − δ
2

2
f ′x′x′t′ − δ2Boη

′
x′x′x′ = O(εδ2, . . . ). (11.13)

The next step is the logical consequence of the linearization of equations. If
we neglect all nonlinear terms, we obtain f ′ = η′, so it is natural to expand
f ′ in a series of orders in the two parameters. We have
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f ′(x′, t′) = η′ + εf (1) + δ2f (2) +O(εδ2). (11.14)

By introducing the approximation (11.14) in (11.12) and (11.13), we obtain

η′t′ + η′x′ + ε(f (1)
x′ + 2η′η′x′) + δ2(f (2)

x′ −
1
6
η′x′x′x′) = O(εδ2, . . . ) (11.15)

η′t′+η
′
x′+ε(f (1)

t′ +η′η′x′)+δ2(f (2)
t′ −

1
2
η′x′x′t′−Boη

′
x′x′x′) = O(εδ2, . . . ). (11.16)

By subtracting (11.16) from (11.15), and by identifying the coefficients of
the same orders of magnitude (we assume here that different powers of the
smallness parameters, corresponding to different scale phenomena, are inde-
pendent), we solve the f ′ function

f ′(x′, t′) = η′− 1
4
(η′)2+

1
12
η′x′x′−Bo

2
η′x′x′− 1

4
η′x′t′ +C+O(εδ2, . . . ), (11.17)

where C is an arbitrary constant of integration. The last step is to plug back
this final expression for f ′ into (11.15), and to come back to original physical
quantities. The result, approximated up to the orders ε and δ2, is one of the
forms of the well-known KdV equation

ηt + c0ηx +
3
2
c0
h
ηηx +

c0h
2

2

[
−
(

1
6

+Bo

)
ηxxx −

1
2c0
ηxxt

]
= 0. (11.18)

If we apply the fifth hypothesis, we have to make an order of smallness eval-
uation of space and time derivatives. By using the traveling wave reduction

(x, t)→ ξ = x− V t,

and by keeping V as a free parameter, and changing ∂/∂t → −V d/dξ we
have η′x′x′t′ = −η′x′x′x′ + O4(η′) so we obtain the second (and most used)
form for the KdV equation

ηt + c0ηx +
3
2
c0
h
ηηx +

c0h
2

2

(
1
3
−Bo

)
ηxxx = 0. (11.19)

In the end of this section we present a flow chart of the full deduction of
the KdV equation for shallow channels. This chart is useful for the reader
who wants to understand the logical steps, and the play of the approxi-
mations. It is also useful in the following sections, where we will use the same
chart to find a generalized KdV equation, valid for any height, and more
importantly, valid on compact intervals (finite rectangular tanks of water).
In the blocks of the chart we wrote briefly the operation done and the number
of the resulting equation from the text. Next to the arrows we indicated the
operation performed from one block to another.
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Euler
(11.4)

P = − σ
R←−−−−−− Surf. press.

(11.3)⏐⏐�∫ dr

Bernoulli
(11.5)

V = ∇Φ←−−−−−−−
div V = 0

Ideal fluid
Hyp. 1,2,3

Laplace−−−−−−→

Φ = 0

Φ series
(11.7)⏐⏐�Σ and ∂x

⏐⏐�
Dynamic eq.
on Σ (11.6) ←−−−− B.C., and

bottom (11.2)
Φ2n+1 = 0−−−−−−−→ u, v

(11.9)⏐⏐�O(ε,δ2)

⏐⏐�O(ε,δ2)

⏐⏐�
(11.13) ←−−−−

f
(11.12) ←−−−−

f

Lineriz.
(11.14)⏐⏐� ⏐⏐� f

⏐⏐�
Substract, identify orders, and solve: f (1), f (2) (11.17)⏐⏐�

KdV (11.18) or (11.19)
(11.20)

11.2 Smooth Transitions Between Periodic
and Aperiodic Solutions

To find the one-soliton solution of the KdV equation (also called the steady-
state solution) we convert the KdV PDE into an ODE by the traveling wave
substitution

(x, t)→ ξ = x− V t,
keep V as a free parameter, and use the substitutions ∂/∂t → −V d/dξ.
We transform (11.19) into

Aηξ +Bηηξ + Cηξξξ = 0, (11.21)

where A = c0 − V , B = 3c0/2h, and C = c0h
2(1− 3B0)/6. After integrated

once, multiplied with ηξ, and integrated again, (11.21) becomes

C(ηξ)2

2
= −Bη

3

6
− Aη

2

2
+ C1η + C2 = 0, (11.22)
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where C1,2 are constants of integration. We can always factorize (11.22) in
the form

(ηξ)2 = −4(η − a1)(η − a2)(η − a3), (11.23)

where all roots are real because the RHS is a positive function. Without
any loss of generality we assume a1 < a2 < a3. We substitute η − a3 =
−(a3 − a2)f(ξ) and we have

(fξ)2 = (a3 − a1)(1− f2)(1− k2f2), (11.24)

with
k =

a3 − a2

a3 − a1
.

Equation (11.24) is nothing but the ODE for the cnoidal sine function (18.7).
So, one steady traveling solution for the KdV equation is

η(x− V t) = a3 − (a3 − a2)sn2[
√
a3 − a1(x− V t)|k]. (11.25)

This solution represents the cnoidal wave KdV solution, which is a periodic
function of period T = 2K(k)(a3 − a1)−1/2, where K(k) is the complete
elliptic integral of the first kind (Sect. 18.3). When a3 = a2, k = 0 and in
principle the solution should reduce to a linear wave. However, because the
amplitude of the cnoidal wave is equal to the numerator of k, the solution
reduces to a trivial constant in this case. This is a consequence of the fact that
the KdV equation is nonperturbational. Of course, for a3 ∼ a2 the solution
behaves very close to a small amplitude linear oscillation. If a2 = a1, we have
k = 1 and the cnoidal wave reduces to one-soliton solution

ηsol(x− V t) = a2 + (a3 − a2)sech2[
√
a3 − a2(x− V t)]. (11.26)

This smooth transition effect from a periodic function to a nonperiodic one is
a very peculiar property of the nonlinear equations. This limiting process is
actually responsible from a transition from discrete to continuous, and from
compact to noncompact. For example, if such a traveling cnoidal wave is
obtained on a circle (x → ϕ), the one-soliton solution cannot exist because
of nonperiodicity condition, but the cnoidal wave, even if close enough to a
soliton, could fulfill the periodicity constrain if it exists an integer n such that

nK

(
a3 − a2

a3 − a1

)
= π
√
a3 − a1.

The form of the KdV equation in (11.22) is called the potential picture
associated to the KdV equation. We can interpret the LHS term as a kinetic
energy of an abstract point in one-dimensional motion, whose law of motion
is η = η(ξ). The RHS has the interpretation of minus the potential energy
associated to this point. An analysis of the consequences of this interpretation
on the KdV equation is given in [85].
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The general cnoidal solution in (11.25) and the soliton in (11.26) are not
written in a practical form in terms of the roots ai. By substituting these
equations back into a general form of a KdV equation like

ηt + aηx + bηηx + cηxxx = 0, (11.27)

we can write the cnoidal solution of (11.27) in the form

η(x, t) = Asn2

(
x− V t
L

∣∣∣∣k)+B, (11.28)

with

L = 2

√
−3ck
Ab
, V =

Ab

3

(
1 +

1
k

)
+ a+ bB. (11.29)

Also, a soliton solution of the same (11.27) reads

ηsol(x, t) = Asech2

(
x− V t
L

)
, (11.30)

with

L = 2

√
3c
Ab
, V =

Ab

3
+ a. (11.31)

The classical one-soliton solutions for the KdV equations (11.18) and
(11.19) have the form

η(x, t) = Asech
x− V t
L

, with V =
Ac0
2h

+ c0, (11.32)

This soliton profile is valid for both versions of the KdV equations, while
the difference is made by the half-width. For (11.19) we have

L = 2

√
h3(1− 3B − o)

3A
, (11.33)

and for (11.18) we have

L =

√
3Ah2 + 4h3 − 12Boh3

3A
. (11.34)

In Fig. 11.2, we present a KdV soliton solution (11.19) moving to the
right, together with its velocity field under the free surface. The velocity field
v(x, y, t) is calculated on the base of equations (11.9), (11.17), and (11.19).
We notice the horizontal velocity of the envelope on the top of the soliton.
Basically, the fluid is rising in front of the soliton wave (right of x = 1), then it
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Fig. 11.2 Arrow representation of the velocity field in a one-soliton solution of the KdV
equation in shallow infinite channels. The soliton is moving to the right

performs almost a closed loop in the inverse trigonometric sense (clockwise),
for 0 < x < 1, and has a symmetric behavior to the left of the maximum.
Around x = 0, in a vertical section there is a strong sheer in the flows. Al-
though, apparently there are vortexes in this flow, actually the contours are
open. One can check directly to calculate ∇ × V from (11.9), (11.17), and
(11.19), and note that the flow is indeed irrotational up to the order εδ2. A
more detailed illustration of the flow next to the top of the soliton is presented
in Fig. 11.3. In Fig. 11.4, we present a contour plot of the potential Φ(x, y, t)
lines for the flow for the same soliton solution. In Fig. 11.5, we present the hy-
drodynamic pressure inside the fluid in the case of a soliton wave, calculated
with (11.5), where we plugged (11.7), (11.8), (11.17), (11.21), and (11.22).
Multisoliton solutions of the KdV equations are obtained by using the inverse
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Fig. 11.3 Detail of the velocity field in Fig. 11.2, zoomed around the top of the soliton

scattering theory (IST) [2–5,145]. In this book we do not intend to elaborate
on the IST method, since we rather focus on identifying nonlinear integrable
models for compact systems.

11.3 Modified KdV Equation and Generalizations

The modified KdV equation (MKdV) is of the form:

ut + 6u2ux + uxxx = 0 (11.35)

and is a model that appears in the context of ion acoustic solitons, van Alfvén
waves in collisionless plasma, Schottky barrier transmission lines, models of
traffic congestion as well as phonons in anharmonic lattices among others
(see, e.g., [146] and references therein). By the help of Miura transformation
we know to map any solution v(x, t) of the MKdV equation, into a solution
u(x, t) = −v2 − vx of the KdV equation. The MKdV equation has also an
infinite number of laws of conservation. The conserved densities of the first
three of them have the form
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Fig. 11.4 The potential Φ contour lines of the flow for the KdV soliton in Fig. 11.2. The
light areas represent higher values of potential. One can see the complicated structure of
the flow right below the soliton envelope, the perpendicularity of the equipotential lines
at the boundaries – including the free surface – and a bias of potential from left to right,
which produces the actual translation

C1(x, t)=−v2−vx, C2(x, t)=−(v2+vx)x, C3(x, t)=−(v2+vx)xx+(v2+vx)2.

The solitary wave solution of (11.35) is given by u = Asech[(x − V t)/L],
with L = 1/A and V = A2. There are also different classes of solutions
of the equation, like solutions with compact support (the so-called MKdV
compactons) of the form [147]

u(x, t) =
√

32k cos[k(x− 4k2t)]2

3(1− 2
3 cos[k(x− 4k2t)]2)

. (11.36)

A general class of equations containing the KdV and MKdV as special
cases is the nonlinear convective–dispersive class of the so-called K(m,n)
equations [148]:

ut + (um)x + (un)xxx = 0. (11.37)
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Fig. 11.5 Isobaric contours of the pressure distribution in a KdV shallow water soliton,
including the surface pressure effect

In this case, there is no general known solution for arbitrary combinations of
the exponents m and n. From the nonlinear dispersion relations results

L =
(

n3An−1

V −mAm−1

)1/2

. (11.38)

In particular, this predicts the scaling of V as V ∼ Am−1 and indicates that
if m = n, then this scaling results in a constant length, an indication of
compactly supported solutions which are well known to exist in the frame of
the K(m,n) equations [148]. In fact for m = n, it is known that such solutions
exist in the form:

u = A

[
cos
(
x− V t
L

)] 2
n−1

(11.39)

for |x − vt| ≤ 2nπ/(n − 1) (and u = 0 otherwise). For these solutions L =
4n/(n − 1) = constant and A = (2V n/(n + 1))n−1, in agreement with the
predictions of the nonlinear dispersion relation. Compactons of a parabolic
profile such as, e.g., u = [37.5V − (x − V t)2]/30 for m = 3 and n = 2 may
also exist [148].



11.4 Hydrodynamic Equations Involving Higher-Order Nonlinearities 249

11.4 Hydrodynamic Equations Involving Higher-Order
Nonlinearities

In the majority of liquid models for solitons one uses two main approxi-
mations. First is the about small perturbation waves, i.e., the amplitude of
the wave is small compared to other geometrical parameters of the pertur-
bation or environment, like the wavelength or depth of the liquid layer, for
example η0  L, h. The second approximation requires that the depth of
the fluid is either very small compared to the wavelength (shallow water, or
long waves approximations), or the depth of the fluid is much larger than
the wavelength (deep water approximations), i.e., h  L [2, 3]. In the
shallow water case, beyond the traditional KdV model, there are several
other models that try to extend the two limits mentioned above. For exam-
ple the Boussinesq, Gear–Grimshaw, Benjamin–Onno, Bona–Smith–Chen,
Whitham-2, Camassa–Holm equations, and their generalizations [53,54,149–
161]. In the limit of deep waters the traditional equation is the nonlinear
Schrodinger equation (NLS) and various versions or extensions of it [149–153].
Some models try to unify the two limits for the depth, but the integrability
of such equations is questionable both from the point of view of the physi-
cal values of the coefficients of the equation, and from the point of view of
“near”-integrability in numerical procedures [162]. Basically, all these models
start from the Euler equations and perform different types of truncations or
approximations based on scaling criteria.

In this section we present a somehow different model for a generalization
of the KdV equation for liquids of arbitrary depth, and more importantly,
for flow in a one-dimensional compact domain [163]. In this model it is used
only one of the two smallness conditions for the KdV equation obtained from
a one-dimensional liquid free surface problem, i.e., only the smallness of the
amplitude of the soliton η0 with respect to the depth of the channel, h. This
condition, ε = η0/h 1 is the only one used. Here h is taken to be arbitrary
parameter, especially when compared to wavelength. Moreover, the model
does not limit to infinite long channels, and we study the evolution of the
surface in a finite dimensional “tank.” Therefore, we study the nonlinear
dynamics of a fluid of arbitrary depth in a bounded domain. These different
constraints lead to a new type of equation which generalizes in some sense
the KdV equation and the other above mentioned models.

11.4.1 A Compact Version for KdV

Let us have a one-dimensional inviscid incompressible irrotational fluid layer
of depth h and density ρ under uniform gravity g. The Laplace equation for
the potential Φ of the velocity field V = (u, v) is solved for appropriate bound-
ary conditions, i.e., within a two-dimensional domain x ∈ [x0 − L, x0 + L]



250 11 Nonlinear Surface Waves in One Dimension

(as the “horizontal” coordinate) and y ∈ [0, ξ(x, t)] (as the “vertical” coor-
dinate), where x0 is arbitrary so far, L is the arbitrary length of the tank,
and ξ(x, t) is the shape of the free surface of the fluid. We have rigid bound-
ary conditions for the lateral walls u|x=x0±L,y∈[0,ξ(x,t)] = 0 and the bottom
v|y=0,x∈[x0−L,x0+L] = 0, and the kinematic condition for the free surface

v|Σ = (ξt + ξxu)|Σ , (11.40)

where Σ the free surface of equation y = ξ(x, t), and the subscript indicates
the derivative. By taking into account the boundary conditions we can write
a general solution for the Laplace equation in the form

Φ(x, y, t) =
∑
k≥0

αk(t)
cosh kπy

L

cos kπx0
L

cos
kπ

L
(x− x0), (11.41)

where αk are time dependent coefficients, so far arbitrary. Apparently, this
solution should be an even function in x, because it is symmetric with respect
to x0. However, the physical part of the domain is just [x0, x0 + L] so the
symmetry is just an “artificial” mirroring. Consequently, the BC at vertical
wells reduces to aperiodicity condition

u

∣∣∣∣
x=x0

= 0, u
∣∣
x=x0+jL

= 0, j ∈ Z. (11.42)

Actually instead of even solutions on x ∈ [x0−L, x0 +L] we look for periodic
solutions on x ∈ [x0 + jL, x0 +(j+1)L] with j integer. In the infinite channel
limit, L → ∞ we can choose x0 = 0 without loss of generality. With this
potential the velocities read

u(x, y, t) = Φx =
∑
k≥0

αk(t)
kπ

L

cosh kπy
L sin kπ(x0−x)

L

cos kπx0
L

(11.43)

v(x, y, t) = Φy =
∑
k≥0

αk(t)
kπ

L

sinh kπy
L cos kπ(x0−x)

L

cos kπx0
L

, (11.44)

and indeed we have u(x = x0) = u(x = x0 + L) = 0 and v(y = 0) = 0 We
introduce the test function

f(x, t) =
∑
k≥0

αk(t)
kπ

L

sin kπ(x0−x)
L

cos kπx0
L

, (11.45)

such that the velocity field can be formally written

u = Φx = cos(y∂)f(x, t)
v = Φy = − sin(y∂)f(x, t). (11.46)
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where, for simplicity, the operator ∂ represents the partial derivative with
respect to the x coordinate. It easy to check that these expressions for velocity
fulfill the irrotational condition ∇× (u, v) = 0, and again the same requested
BC. Equations (11.46) do not depend on L, therefore any approach toward
the long channel limit must include the L→∞ (unbounded) limit. We also
notice the relation

f(x, t) = Φx|y=0 = u|y=0, (11.47)

which provides the physical interpretation of the test function f : it is the
horizontal velocity of fluid along the rigid bed (bottom) level. In other words,
if we introduce a complex potential flow ω(x, y, t) = u+iv, we have ωbottom =
u(x, 0, t), so at the bottom the potential becomes pure real, and we have

eiy∂xωbottom = ω, (11.48)

which means that the velocity field at any height is given by a local trans-
lation through a one-parameter ε = iy complex Lie group of transforma-
tions. Possibly, this happens because the general Lie group of diffeomorphisms
that conserves density and irrotational flow for the general Euler equation
reduces for this rectangular one-dimensional geometry to this one-parameter
subgroup.

Rigorous treatment of the functional operators in (11.46) is found in the
exponentiation theory, or in the theory of formal Taylor series of operators,
or finally in the theory of pseudodifferential operators [164–167]. In all these
formalisms, the exponential of a functional coefficient differential operator is
approached in the sense of a continuous representation of a Lie group in a
complex Banach space. Basically, one uses the associate formal Taylor series
of the trigonometric functions and act with it term by term on the functions.
The domain of definition of such trigonometric functions of operators is pro-
vided by L2 differentiable functions. Real problems occur when one needs
to handle algebraically such operator equations, because ∂x and η(x, t)∂x do
not commute and do not close any finite dimensional Lie algebra. The alg-
ebraic relations have to be substituted by the Baker–Campbell–Hausdorff
(BCH) type of formulas. Even the classical BCH formula in terms of non-
commuting linear operators need to be replaced in this case by a generalized
commuting relation where instead of the infinite series of commutators one
has the exponential of the adjoint operator. However, in the following, we
work only on the set of differentiable functions η(x, t) defined on compact
interval [x0, x0 + L] × [0, T ], T < ∞, and as a consequence we can use the
regular BCH formula. Also, we use a simplified functional formalism by treat-
ing the exponential operator as a formal Taylor series, and its action upon
functions is taken term by term. The region of convergence of the series, as
well as the domain of definition of the operators should be studied for any
specific choice of solutions.
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11.4.2 Small Amplitude Approximation

In the following we describe the resulting equations for small height compared
to the depth, but not necessarily for large wavelengths. Consequently, we
write all equations for y = ξ(x, t) = h + η(x, t), and expand all equations in
formal Taylor series in the first order in η. This approximation is valid in the
limit maxx∈[x0,L] |η|  h. In this situation (11.46) need to be approximated
accordingly to the formula

cos(y∂) = cos(h+ η)∂ = cos(h∂ + η∂)

→ cos(h∂) cos(η∂)− sin(h∂) sin(η∂) 	 cos(h∂)− sin(h∂)η∂,

but exact calculation needs more functional analysis. The algebraic part of the
problem can be solved by using the BCH formula [168–170] which expresses
the product of two noncommuting operators as an infinite sum of repeated
commutators. We actually use the Zassenhaus formula (derived by Magnus
in 1954 [171] citing unpublished work by Zassenhaus) which is the dual of the
BCH formula, and expresses the product of two noncommuting exponential
operators as an infinite product of their repeated commutators. The classical
BCH formula for two noncommuting operators A,B can be expressed in the
form given by Wilcox [172]

eAeB = e(
∑

i≥1 Di), (11.49)

where Di are polynomials in A,B of degree i. We have

D1 = A+B

D2 =
1
2
[A,B]

D3 =
1
12

(
[A, [A,B]]− [B, [A,B]]

)
D4 = − 1

24
[A, [B, [A,B]]], (11.50)

and more terms can be found in the recent analysis [173]. The Zassenhaus
formula can be given in the form

eA+B = eAeB
∏
i≥2

eCi , (11.51)

where again Ci are polynomials of degree i in A,B. The first four coefficients
are calculated [25,173]

C2 =
1
2
[B,A]

C3 =
1
3
[[B,A], B] +

1
6
[[B,A], A]

C4 =
1
8

(
[[[B,A], B], B] + [[[B,A], A], B]

)
+

1
24

[[[B,A], A], A] (11.52)
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We mention that there are numerical procedures attempting to get past
the obstacle of noncommuting operators. One possible approximation is pro-
vided by the split-step Fourier numerical method [174,175]. However, in the
following we follow an analytical approach. On one hand we have the exact
expression of the operators in (11.46) defined on the free surface

cos(h∂ + η∂) =
eih∂+iη∂ + e−ih∂−iη∂

2
, (11.53)

and the same expression for sin. To apply a smallness criterium we need to
bring this equation as close as possible to the form

cos(h∂) cos(η∂)− sin(h∂) sin(η∂) =
eih∂eiη∂ + e−ih∂e−iη∂

2
. (11.54)

We have the commuting relations [ih∂, iη∂] = −ηx∂, [ih∂, [ih∂, iη∂]] =
−ihηxx and [iη∂, [ih∂, iη∂]] = i(η2

x∂−ηηxx), which do not entitle us to use the
simplified version of the BCH formula, i.e., the finite one. By using (11.51)
and (11.52) for A = ih∂,B = iη(x)∂ we obtain

C2 = −h
2
ηx∂

C3 = − ih
3

(
η2

x − ηηxx −
h

2
ηxx

)
∂, (11.55)

and so on. Finally, we obtain

cos(h+η)∂ =
(

cos(h∂)− sin(h∂)η∂
)(

1− h
2
ηx∂+

h2

4
(ηxηxx∂+η2

x∂
2)+ . . .

)

− ih
3

(
sin(h∂)− cos(h∂)η∂

)(
(η2

x − ηηxx −
h

2
ηxx)∂ + . . .

)
. (11.56)

By plugging (11.55) and (11.56) in (11.46), we have a first-order approxi-
mation of the operator series, with η/h being the smallness parameter

u(x, ξ(x, t), t) = [cos(h∂)− η(x, t)∂ sin(h∂)] f(x, t)
v(x, ξ(x, t), t) = − [sin(h∂) + η(x, t)∂ cos(h∂)] f(x, t). (11.57)

The advantage of these approximations is that instead of having a compli-
cated differential operator function with variable coefficients, we reduced it,
in the limit of small waves, to series of differential operators with constant
coefficients.

The dynamics of the fluid is described by the Euler equation at the free
surface. The equation that results is written on the surface Σ in terms of
the potential and differentiated with respect to x. By imposing the condition
y = ξ(x, t), and by using a constant force field we obtain the form
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ut + uux + vvx + gηx +
1
ρ
Px = 0, (11.58)

where g represents the force field constant and P is the surface pressure.
Following the same approach as used in the calculation of surface capillary
waves [168], we have for our one-dimensional case

P |Σ = − σR =
σηxx

(1 + η2
x)3/2

	 −σηxx, for small η, (11.59)

where R is the local radius of curvature of the surface (in this case, the curva-
ture radius of the curve y = ξ(x, t)) and σ is the surface pressure coefficient.
Inside the fluid the pressure is given by the Euler equation. Consequently,
we have a system of two differential equations (11.40) and (11.58) for two
unknown functions: f(x, t) and η(x, t) since u and v depend only on η and f
through (11.46) or (11.57). With f and η determined we can come back and
find the expressions for the velocities u and v, which completely solves the
problem.

11.4.3 Dispersion Relations

From the linearization of the free surface kinematic condition (11.40) v =
ξt = ηt we obtain

− sin(h∂)f = ηt, (11.60)

and from the linearization of (11.58)–(11.60), we have

cos(h∂)ft + gηx −
σ

ρ
ηxxx = 0. (11.61)

By defining the speed of sound c0 =
√
gh, applying the operator sin(h∂)

to (11.62), and using (11.61) we obtain the general dispersion relation for
our system

cos(h∂)ηtt = sin(h∂)
[
c20
h
ηx −

σ

ρ
ηxxx

]
. (11.62)

In the zeroth approximation cos(h∂) 	 1, sin(h∂) 	 h∂ we have

ηtt = c20ηxx −
σh

ρ
ηxxxx. (11.63)

By using the notations lc = σ
ρg for the “capillary length,” and Bo = σ

ρgh2 =(
lc
h

)2

for the Bond number, we reobtain the linear surface water wave for

our system
1
c20
ηtt = ηxx −Boh

2ηxxxx. (11.64)

In the following, we discuss the dispersion relation for some limiting
situations. For example, if the surface pressure is negligible (Bo 	 0) we
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reobtain the simplest dispersion relation of a linear wave

ω = c0k. (11.65)

In the presence of capillary effects we obtain from the same equations

ω =
√
gh+

σ

ρ
hk2, (11.66)

which is precisely the dispersion relation for shallow water equations. In the
general case, by choosing η = η0e

i(ωt−kx), and by noting that

cos(h∂)η = cosh(hk)η, sin(h∂)η = −i sinh(hk)η,

we obtain the dispersion relation

ω =

√(
gk +

σk3

ρ

)
tanh(hk), (11.67)

which is the same dispersion relation obtained directly from the Euler equa-
tions in more particular cases [141, 145]. Of course, from (11.68) we can re-
cover both the shallow water dispersion relation, in the limit h→ 0 (11.67),
and, in the limit h→∞, the dispersion relation for the deep water waves

ω =

√
g

k
+
kσ

ρ
. (11.68)

11.4.4 The Full Equation

To obtain our final system of equations, we introduce the velocity operators
(11.57) in the first approximation for small amplitude waves in the physical
equations. Namely from (11.40) for the free surface BC we obtain

[− sin(h∂)− η∂ cos(h∂)]f − ηt − ηx[cos(h∂)− η∂ sin(h∂)] = 0 (11.69)

and from the Euler equations (11.58) and (11.60) in presence of gravity (uni-
form vertical field) and surface pressure (11.59) we obtain

[cos(h∂)− η∂ sin(h∂)]ft − ηt∂ sin(h∂)f + gηx −
σ

ρ
ηxxx

×[cos(h∂)− η∂ sin(h∂)]f · [(cos(h∂)− η∂ sin(h∂))fx − ηx∂ sin(h∂)]f

−[sin(h∂) + η∂ cos(h∂)]f · {[− sin(h∂)− η∂ cos(h∂)]fx − ηx∂ cos(h∂)}f = 0.
(11.70)

These two equations are a set of infinite-order nonlinear PDE in η, f . In the
following we use a system of dimensionless quantities defined by the rules
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∂ = ∂′/l, ∂t = (c0/l)∂
′
t′ , η = aη′, h∂ = δ∂′, f = εc0f

′ where ε = a/h, δ = h/l
and a, l are free parameters. In principle we have the restriction max|η| < a.
We also introduce two more notations of operators

A = cos(δ∂′)− εδη′∂′ sin(δ∂′)

D = − sin(δ∂′)− εδη′∂′ cos(δ∂′).

With this notations the dynamics (11.69) and (11.70) in the first order in ε
read

Af ′t′ − εδη′t′f ′x′ + ε(Af ′) · (Af ′x′)+ ε(Df ′) · (Df ′x′)+ η′x′ − δ2Boη
′
x′x′x′ = O(ε2),

(11.71)

η′t′ +
1
δ

sin(δ∂′)f ′ + εη′ cos(δ∂′)f ′x′ + εη′x′ cos(δ∂′)f ′ = O(ε2). (11.72)

Next we introduce the same type of hypothesis as in the classical theory of
the KdV equation, namely

f ′ = η′ + εf (1) + δ2f (2), (11.73)

where the functions f (1,2) are to be determined. The last steps in obtaining
the main dynamic equation consist in: introducing f given by (11.73) in
(11.71) and (11.72) and subtract them one from another. Identify coefficients
of the terms having the same orders, expand operators A,D in Taylor series,
and find the functions f (1,2). After subtracting (11.71) and (11.72) we obtain

(1−A)η′t′ +
(

1
δ

sin(δ∂′)− ∂′
)
η′ + ε

[
1
δ

sin(δ∂′)f (1) + (η′ cos(δ∂′)η′)x

−Af (1)
t′ −

1
2
(Aη′)2x′ − 1

2
(Dη′)2x′

]
+ δ2
[
1
δ

sin(δ∂′)f (2) − f (2)
t′ +Boη

′
x′x′x′

]
−εδη′t′η′x′ + εδ2

[
(η′ cos(δ∂′)f (2))x′ − [(Aη′) · (Af (2))

+(Dη′)·(Df (2))]x′

]
−εδ3η′t′f

(2)
x′ −

εδ4

2
[(Af (2))2+(Df (2))2]x′ = O(ε2). (11.74)

After the identification of coefficients of the same order and solving f we can
write the final dynamical equation up to the eighth order of smallness

η′t′ + η′x′ + ε
(

3
2
η′η′x′

)
+ δ2
(
−1

4
η′x′x′t′ −

1
12
η′x′x′x′ − 1

2
Boη

′
x′x′x′

)

+ε2
(
C1η

′
x′ − 3

4
η′2η′x′

)
+ εδ2

(
C2η

′
x′ +

1
8
η′t′η

′
x′x′ +

7
12
η′x′η′x′x′ − 5

12
η′η′x′x′x′

−1
2
Boη

′η′x′x′x′−1
2
Boη

′
x′η′x′x′−1

2
η′x′η′x′t′−

5
8
η′η′x′x′t′

)
+ε2δ2

(
C4η

′
x′+

1
8
η′t′(η

′
x′)2



11.4 Hydrodynamic Equations Involving Higher-Order Nonlinearities 257

+
2
3
(η′x′)3− 5

8
η′η′x′η′x′t′ +

1
8
η′η′t′η

′
x′x′ +

5
3
η′η′x′η′x′x′− 3

8
η′2η′x′x′t′ +

1
6
η′2η′x′x′x′

)
+εδ4

(
1
8
η′x′x′η′x′x′t′ −

1
4
η′x′η′x′x′t′t′ −

13
36
η′x′x′η′x′x′x′ +

13
48
η′x′η′x′x′x′t′ −

1
48
η′η′(5)

+
5
24
Boη

′η′(5)
1
8
Boη

′η′(4,1)+
1
8
Boη

′
x′η′x′x′x′t′+

1
6
η′η′(4,1)− 1

4
η′η′(3,2)− 1

48
η′t′η

′(4)

− 19
144

η′x′η′(4) +
5
24
Boη

′η′(4)
)

+ εδ6
(

1
8
η′x′η′(4,2) +

1
96
η′x′η′(5,1)− 1

16
Boη

′
x′η′(5,1)

+
1
8
η′η′(5,2) − 1

288
η′x′η′(6) +

1
48
Boη

′
x′η′(6) +

1
96
η′η′(6,1) − 1

16
Boη

′η′(6,1)

− 1
288

η′η′(7) +
1
48
Boη

′η′(7)
)

+ δ4
(

1
144

η′(5) +
1
24
Boη

′(5) − 1
4
η′(3,2)

− 1
48
η′(4,1) +

1
8
Boη

′(4,1)

)
+ δ6
(

1
24
η′(5,2) +

1
288

η′(6,1)

− 1
48
Boη

′(6,1) − 1
864

η′(7) +
1

144
Boη

′(7)
)

= 0, (11.75)

where Ci are arbitrary integration constants and the superscripts represent
differentiation, like for example η′(5,2) = η′x′x′x′x′x′t′t′ , etc. Equation (11.75)
is an approximation of the general system described by the pair (11.70). This
long equation is still very general. It can be reduced, for different ranges of ε
and δ, to several well-known equations in nonlinear fluid dynamics.

11.4.5 Reduction of GKdV to Other Equations
and Solutions

Equation (11.75) is unreasonable complicated, and to understand it, we plot
in Fig. 11.6 a diagram of the relative contribution of the terms in this equa-
tion, function of the ranges of smallness of the two free parameters

ε =
max |η|
h

, δ =
maxL
h

,

describing the amplitude and the wavelength of the solution with respect to
the depth of the finite liquid layer. Along the vertical direction we provide
different ranges for ε, δ, represented in the first two columns. Each row rep-
resents the coefficients of the terms in (11.75), written in decreasing order
from left to right, for that specific values of the parameters ε, δ written in
the first two left boxes. In the figure we denoted ε→ e and δ → d for graph-
ical purpose. The arrows show how different terms change their importance
for different ranges of the parameters. We emphasize in the gray boxes the
reduction of (11.75) to KdV and MKdV, respectively.
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Fig. 11.6 The relative contribution of the terms in the general (11.75), as function of
the relative smallness of ε, δ. The arrows show how the traditional KdV main terms ε (full
arrow) and δ2 (dotted arrow) change their importance in the smallness hierarchy in (11.75)
function of their values. We denoted ε → e and δ → d for graphical purpose

From Fig. 11.6, it is easier to note how (11.75) can be reduced toward
different other models, function of the choice of the parameters ε, δ in different
ranges, and by neglecting the rest of smaller terms. For example, if ε � δ,
by taking into account only the first four orders of magnitude, we reobtain
the KdV equation, and its generalization with the corresponding higher-order
dispersion terms. In the normal dimensional form it reads
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ηt + c0ηx +
3c0
2h
ηηx +

c0h
2

2

(
1
3
−Bo

)
ηxxx +

C2ahc0
l2

ηx

+
c0h

2

(
23
12
−Bo

)
ηxηxx +

c0h

2

(
5
12
−Bo

)
ηηxxx−

c0h
4

6

(
1
3

+
Bo

2

)
ηxxxxx = 0,

(11.76)
where C2 (and consequently the scaling factor l) are arbitrary integration con-
stants. We notice the exact version of the KdV equation. The extra higher-
order dispersion terms are useful in the research of the transition between
soliton and antisoliton solutions, when the term number 4 in the above equa-
tion vanishes. From the physical point of view, this range for ε, δ provides the
shallow water regime.

In the range δ � ε we obtain a combination between the KdV and the
MKdV equation. This range of the parameters can model the deep water
situation. Moreover, if we take into account the first five orders of magnitude
we obtain the Camassa–Holm equation [154,155] for fluids.

It is interesting to investigate the behavior of soliton solutions of the GKdV
equation in the Bo = 1/3 limit, when the coefficient of the main dispersion
term ηxxx vanishes. Experimental investigation have been performed for this
range with Mercury [156]. The range of the parameters is ε ∈ [0.1, 0.03], δ ∈
[0.57, 0.26]. In this range, we can approximate the GKdV equation (11.75) by
a KdV equation plus a fifth-order dispersion term (ηxxxxx), and two nonlin-
ear dispersion terms of the form ηxηxx and ηηxxx. However, in this parameter
range the term in δ2 is small, so we can neglect it, too. Also, for both soli-
ton range (positive amplitude soliton) for ε 	 0.1, δ 	 0.57 and antisoliton
range (negative amplitude) ε 	 0.03, δ 	 0.26 we notice that we can also
neglect the ηηxxx term. Consequently, for this transition regime, the equa-
tion becomes

η′t′ + (1 + C2εδ
2)η′x′ +

3ε
2
η′η′x′ − δ4 11

36
η′x′x′x′x′x′ + εδ2

19
24
η′x′η′x′x′ = 0,

and we found two types of solutions. One is a traveling linear wave in
the form

η′(x, t) = a′ cos
x′ − V ′t′

L′ , L′ =
√

19
6
δ, V ′ =

361C1 − 396
361

,

in the dimensionless notation, and with no restriction upon the amplitude a′.
Another solution is a compacton-like

η′ = a′ cos2
(
x′ − V ′t′

L′

)
, L′ =

√
19
ε
δ, V ′ =

1083εa′ + 1444C1 − 1584
1444

.

In the following, we discuss the existence of different exact solutions for
different ranges of parameters. For example, if we neglect the order ε2, we
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have linear traveling solutions in the form

η = a cos
x− V t
L

, L =
1
3

√
7− 6Boδ (11.77)

V =
136− 201Bo + 36B2

o + 196C2δ
2ε− 336BoC2δ

2ε+ 144B2
oC2δ

2ε

4(6Bo − 7)2
.

as well as compacton type of solutions

η = a cos2(
x− V t
L

), L =
2
3

√
7− 6Boδ, (11.78)

V = [544− 804Bo + 144B2
o + 483aε− 666aεBo + 216aεB2

o + 784C2εδ
2

−1344BoC2εδ
2 + 576B2

oC2εδ
2]× [16(6Bo − 7)2]−1,

where we note that these last two solutions exist also in the limit Bo = 1/3.
In the same limit we have a cnoidal wave solution in the form

η = Acn2

(
x− V t
L

,L

)
(11.79)

for

A = − 12(31m− 15Bom+ 36B2
0m)

ε(2m− 1)(55− 192Bo + 144B2
o)
,

and

L =

√
10(−10δ2 + 9Boδ2 + 36B2

oδ
2 + 20mδ2 − 18Bomδ2 − 72B2

omδ
2)

9(31− 15Bo + 36B2
o)

.

In the following, we present exact solutions for (11.62), which represent
another approximation range of the generalized (11.75). We can rewrite
(11.62) in the form

cos(h∂) =
g

h
sin(h∂)(1−Bo(h∂)2)(h∂)η. (11.80)

The solution describes a combination of incident and reflected waves in
the form

η(x, t) = η0e
iωt(e−ikx + e−2ikx0eikx), (11.81)

where ω and k fulfill the dispersion relation

ω2 = gk(1 +Boh
2k2) tanh(kh),

and the velocity potential has the form

Φ(x, y, t) = 2iωη0
cosh(ky)
sinh(kh)

cos(k(x− x0))ei(ωt−kx0).
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This solution can be generalized to

η(x, t) =
∑
k∈Z

(
ake

(3+4k)πx
2h + cot

h + bke−
(3+4k)πx

2h − cot
h

)
, (11.82)

with the coefficients aK and bk determined by initial conditions.
The generalized equation (11.75) can be also related to some classes of

evolution equations of the general form

ut + ux + (f(u))x − Lux = 0, x ∈ (−∞,∞), t ≥ 0,

ut + ux + (f(u))x + Lut = 0, x ∈ (−∞,∞), t ≥ 0,

where f is typically a polynomial and L is a Fourier multiplier operator with
symbol α, and L and α are related by L̂v(ξ) = α(ξ)v̂(ξ) for all wave num-
bers ξ. Such equations arise in the description of waves in quite a number of
physical situations [176,177]. The circumflex connotes the Fourier transform
(with respect to the spatial variable x) of the function In [23, 39, 157, 178]
Bona and Chen discuss the existence of periodic traveling wave solutions of
the above equations which is the analog of the cnoidal wave solutions of the
KdV equation. They show that the solutions in question have the form

u(x, t) = u(x− ct) =
∞∑

n=−∞
une

i nπ
l (x−ct)

where l > 0 and c > 0 are constants. The theory depends upon topological
methods coupled with degree theory of positive operators. The coefficients
un are shown to fulfill a set of nonlinear recursion relation very similar to
those we have obtained for some solutions of (11.75) (see Sect. 18.4). The
generalized action of the trigonometric operators given in (11.46) on the free
surface of the fluid, namely y → h+η(x, t), is developed in Appendix 18.4, too.
One merit of such types of generalized equations consists in providing a larger
number of higher-order dispersion terms that survive in the Bo = 1/3 limit.
This behavior can be used to investigate the soliton antisoliton transition in
variable depth waters.

11.4.6 The Finite Difference Form

Confining a nonlinear differential equation in a compact domain, like in the
model we discussed in the last three sections (or like the oscillating drops)
results in a behavior similar with the behavior of solutions of finite difference
equations. This is similar to the quantization effects (i.e., spectrum becomes
discrete) happening with linear differential systems when they are compacti-
fied by boundary conditions (Sturm–Liouville, or bilocal, or simply compact
eigenvalue problems). We discussed in Sect. 1.1 an example.



262 11 Nonlinear Surface Waves in One Dimension

We present a property of the free surface nonlinear condition (11.69) with
f given by (11.73), valid for any depth h of the liquid tank. We work this
in the first order in ε, which is one of the two KdV limits. If we con-
sider only traveling solutions of the form η(x, t) = η(x + Ac0t) = η(X)
where A ∈ R and X = x + Ac0t. Equation (11.69) can be written in
the form

AhηX(X) +
η(X + ih)− η(X − ih)

2i
+ ηX(X)

η(X + ih) + η(X − ih)
2

+η(X)
η(X + ih) + η(X − ih)

2
= 0, (11.83)

if we suppose that η is an analytic function. We study rapidly decreasing
solutions at infinity, and we make the substitution v = eBx for x ∈ (−∞, 0)
and v = e−Bx for x ∈ (0,∞), where B is a positive constant. By introducing
η(X) = −hA+ f(v) we obtain a differential-finite difference equation for the
function f(v)

f(v)
δf2

v (v)
δfv(v)

+ f(v)
δf2(v)
δf(v)

+ 2
sin(Bh)
B

δf(v) = 0, (11.84)

where we define the finite difference operator as

δf(v) =
f(eiBhv)− f(e−iBhv)
eiBhv − e−iBhv

. (11.85)

We can write the solution of (11.83) (or (11.84)) as a power series in v

f(v) =
∞∑

n=0

anv
n, (11.86)

and we choose a0 = hA to have limx→±∞ η(x) = 0. Equation (11.83) results
in a nonlinear recursion relation for the coefficients an, i.e.,[

Ahk +
1
B

sin (Bhk)
]
ak

= −
k−1∑
n=1

n (cos (Bh (k − n)) + cos (Bh (k − 1))) anak−n. (11.87)

By taking k = 1 in the above relation, we obtain a1

[
Ah+ 1

B sin (Bh)
]

= 0.
Without loss of generality and because of the arbitrariness of B we can write

A = − sin (Bh)
Bh

. (11.88)

This relation fixes the velocity of the envelope of the perturbation if its as-
ymptotic behavior is fulfilled. To have A �= 0, we need Bh �= kπ for k integer.



11.4 Hydrodynamic Equations Involving Higher-Order Nonlinearities 263

Under this condition a1 is still arbitrary and by writing ak = αka
k
1 we have

α1 = 1 and the recursion relation

αk =
2B cos Bh(k−1)

2

k sin (Bh)− sin (kBh)

k−1∑
n=1

n cos
Bh (2k − n− 1)

2
αnαk−n, (11.89)

for k ≥ 2. This recursion relation gives the coefficient for k in terms of those
for k − 1 and lesser values. For a smooth behavior of the solution η(X) at
X = 0, i.e., continuity of its derivative, we must introduce the condition

fv(1) =
∞∑

n=1

nαna
n−1
1 = 0, (11.90)

or require that the derivative of the power series f(v) with coefficients given
in (11.83) to be zero in z ∈ R, z = a1. This sets the value for a1. In the
following we study a limiting case of the relation (11.87), by replacing the
sin and cos expressions with their lowest nonvanishing terms in their power
expansions

αk =
6

B2h3k (k2 − 1)

k−1∑
n=1

nαnαk−n. (11.91)

It is straightforward exercise to prove that

αk =
(

1
2B2h3

)k−1

k, (11.92)

is a solution of the recursion equation. This can be done using mathematical
induction and by taking into account the relations

k−1∑
n=1

n2 =
k(k − 1)(2k − 1)

6
,

k−1∑
n=1

n3 =
(
k(k − 1)

2

)2

. (11.93)

We can write the power expansion

g(z) =
∞∑

k=1

k

(
1

2B2h3

)k−1

zk, (11.94)

which has the radius of convergence R = 2B2h3 (due to the Cauchy–
Hadamard criteria). The function g(z) can be written in the form

g(z) = z

(
1

1− z
2B2h3

)
z

2B2h3 = − z(
1− z

2B2h3

)2 . (11.95)
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Conditions (11.91) and (11.92) result in a1 = −2B2h3 and

αk = k

(
1

2B2h3

)k−1 (
−2B2h3

)k
= 2B2h3 (−1)k

, (11.96)

which provides

η(x) = 2B2h3
∞∑

k=1

k
(
−e−B|X|

)k

2B2h3 e−B|X|(
1 + e−B|X|)2 =

B2h3

2
1(

cosh
(

BX
2

))2 . (11.97)

As expected, this solution is exactly the single-soliton solution of the KdV
equation and it was indeed obtained by assuming h small in the recursion
relation (11.87).

11.5 Boussinesq Equations on a Circle

Another type of integrable nonlinear PDE defined on a compact interval is
the Boussinesq equation on a circle for u(t, ϕ)

utt − uϕϕ + uϕϕϕϕ + (f(u))ϕϕ = 0, (11.98)

where ϕ ∈ [0, 2π) is the angular coordinate in the unit circle, t ∈ R, and
f(u) is a polynomial function depending on u, |u|. The solution is supposed
to satisfy the initial conditions

u(0, ϕ) = u0(ϕ), ut(0, ϕ) = u1(ϕ). (11.99)

Such equations can model water waves (the original Boussinesq model), non-
linear strings, or shape-memory alloys, see [179]. The linearized version of
(11.98)

utt − uϕϕ + uϕϕϕϕ = 0,

has solutions that are periodic in space but aperiodic in time, namely the
solutions are linear combinations of functions with different noninteger peri-
ods. In contrast with the Boussinesq equations on the real axis, (11.98) has
no dispersion and no decay in the time variable. For comparison, see experi-
ments described in Sect. 17.2 about similar long-life nonlinear dispersionless
excitations on glass spheres. The Boussinesq equation on the circle can be
written as a Hamiltonian system in the form
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ut = vϕ, vt = uϕ − uϕϕϕ − (f(u))ϕ. (11.100)

The system in (11.100) has at least two conserved quantities, namely the
energy

E =
1
2

∫ 2π

0

[v2 + u2 + (uϕ)2 − 2F (u)]dϕ,

with Fϕ = f and F (0) = 0, and the momentum

P =
∫ 2π

0

uvϕ.

If the energy is positive defined, its conservation can lead to global existence
of stable solutions on the circle. If the energy is not positive defined the
solutions may blowup in finite time.

Traveling solutions along the circle for (11.98) read

u(t, ϕ) = η(ϕ− ct) = η(ξ),

and fulfill the equation

ηξξ + (c2 − 1)η − f(η) = 0.

This equation has also a quadrature in the form

(ηξ)2 + (c2 − 1)η2 + 2F (η),

which enable to determine the conditions on F such that (11.98) possess
solitary wave solutions. According to [179] the allowable functions are

f(u) = ±u2, f(u) = |u|p−1u, with |c| < 1, p > 1,

or more general
f(u) = λ|u|q−1u− |u|p−1u,

for λ > 0, 1 < q < p. Solitary wave solutions on the circle are described by
the following existence theorems. If the initial data of the problem (11.99)
satisfy u0 ∈ H1, ut ∈ H−1, and if we choose f(u) = λ|u|q−1u− |u|p−1u with
1 < q < p and λ real, the solution u(t, ϕ) of (11.98) is unique, and it exists
for all time. Here Hs are Sobolev spaces, i.e., normed spaces of functions
obtained by imposing on a function u and its weak derivatives up to some
order the condition of finite Ls norm.



Chapter 12

Nonlinear Surface Waves
in Two Dimensions

Two-dimensional flow is a very useful model for practising applications of
differential geometry in fluid dynamics. This flow still contains all the special
features of the compact three-dimensional flow but is simpler in calculations.
In addition, it is not just an idealization, because there are systems that can
be modeled with two-dimensional drop systems. Examples of such systems are
highly flattened droplets in gravity moving frictionless on rigid surfaces, cell
motility and division, electron drops in high magnetics field, long wavelength
jets emitted from orifices, evolution of oil spots surrounded by water in oil
extraction or ecologic accidents, or closed polymer chains surrounding water
bodies. In the following, we discuss some general geometrical properties of
two-dimensional flow, and then we study a model of a two-dimensional drop
in oscillation, both theoretical and experimental (see Fig. 12.1).

12.1 Geometry of Two-Dimensional Flow

In this section, we introduce few elements of two-dimensional ideal flow, and
we discuss their differential geometry interpretation. If we consider a flow in
the R2 plane v = (u, v), we can use the Helmholtz theorem of representation
(Theorem 27). That is, if the velocity field is single-valued, continuous, and
if div v, curl v → 0 when r =

√
x2 + y2 → ∞, we can always represent the

flow in the form
v = ∇Φ+ curlΨ , (12.1)

with
divv = �Φ, and curlv = grad divΨ −�Ψ . (12.2)

The two functions are called: Φ, the velocity field potential, and Ψ , the
stream function. Of course, in the two-dimensional case Ψ = (0, 0, Ψ). Also
ξ = curlv is the vorticity, and it has the property that its Lagrangian time

267
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r (f , t )

Fig. 12.1 Two-dimensional drop with free surface

derivative is zero. These functions are not unique, modulo a gauge transfor-
mation: Φ→ Φ+const.,Ψ → Ψ +∇f . The arbitrary gauge function f can be
always chosen such that divΨ = 0, and hence we have curlv = −�Ψ . Among
different types of flows in two dimensional, there are two ideal cases which
allow a special treatment. All in all, in the two-dimensional case we have

u = Φx + Ψy, v = Φy − Ψx,

with

Φ(x, y) =
∫∫

R2

div′v
4π|r − r′|d

2r′, Ψ(x, y) =
∫∫

R2

curl′v
4π|r − r′|d

2r′.

We define an irrotational flow if curlv = ∇ × v = 0, and we defined an
incompressible flow if divv = ∇ · v = 0. A flow is potential if ∃Φ,v = ∇Φ,
and a flow is rotational (or solenoidal) if ∃Ψ ,v = curlΨ . According to these
definitions, for a flow under the Helmholtz theorem hypotheses, the veloc-
ity can be always written as the sum of a potential flow and a rotational
flow. Obviously, a potential flow is also irrotational, and a rotational flow is
also incompressible. The converse affirmations are controlled by the Poincaré
Lemma (Sect. 4.9), and consequently by the topology of the domain of defi-
nition of the velocity field. If this domain is the whole space, or just simply
connected domain, the converse theorems are true: for a flow in a simply
connected domain, the properties of potential and irrotational are equiva-
lent. Since we are interested in this book in the dynamics of fluid with free
boundary, we will assume in this section that the flow exists in a simply con-
nected domain. If a flow is both irrotational and incompressible, it is called
Laplacean and we have �v = 0. Such a flow is a very special situation, but is
an important tool for understanding more complicated flows. Usually, irro-
tational and incompressible flows can coexist in the same domain, especially
in the presence of boundaries. For example, there are flows when vorticity is
concentrated in some thin layers, or even in some points of the fluid, while the
flow is irrotational outside these layers or points. This is the so-called almost
potential flow and a good example is worked out in [100, Sect. 2]. For such
types of flow, the mechanism for producing vorticity is the interaction of fluid
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with rigid boundaries. For example, in the case of a flow past a rigid obstacle,
the flow is irrotational everywhere, except two streamlines emanating from
the body, in which vorticity is not zero. To provide a geometrical interpre-
tation for the potential and the stream function, we consider the graphics of
these two functions, namely the parametrized surfaces SΦ and SΨ defined by
rΦ(x, y) = (x, y, Φ) : R2 → R3 and rΨ (x, y) = (x, y, Ψ) : R2 → R3, respec-
tively. The curvatures of these surfaces are in interesting relations with the
corresponding types of flow.

In the irrotational case the flow is vortex free (ξ = 0), and the circulation
of the velocity on any closed curve is zero. The forces acting upon the fluid
are only conservative forces. In the irrotational flow the velocity field behaves
exactly like an electric field, and v = ∇Φ or u = Φx, v = Φy (some books
prefer the v = −∇Φ notation). From curlv = 0 we have uy = vx and both
the velocity potential and the stream function are a Laplacean fields, �Ψ =
�Φ = 0. This type of motion is of particular interest for this book since the
flow pattern depends solely on the boundary conditions. If the fluid has no
free surface, the flow pattern depends only on the motion of the boundaries,
and it is independent of the external fields of force. In this case the fields
of force affect only the pressure field. The proof is based on a uniqueness
theorem via the Gauss formula for kinetic energy of the fluid. Moreover, if
all the boundaries are at rest, or if the fluid has zero velocity at infinity, then
in the irrotational flow the fluid must be in equilibrium at rest. Sometimes
the single-valued irrotational flow is also called acyclic [132] to make the
distinction with the multivalued irrotational flow which may hold in multiply
connected regions (i.e., cyclic). In irrotational flow the maximum values of the
speed occur on the boundary. If in addition the flow is stationary, from the
Bernoulli’s theorem, the pressure has its minimum values on the boundaries.
The proof is immediate because the velocity potential is a harmonic function,
and its maxima must occur on its boundaries.

The incompressible flow divv = 0 occurs when density is constant (from
continuity equation we have the divergence zero condition) and the velocity
field behaves like a magnetic field. We have v = curlΨ , Φ = const., i.e.,
u = −Ψy, v = Ψx. The stream function fulfills the equation

∂

∂t
�Ψ + (∇Ψ ×∇�Ψ )z = 0, (12.3)

where Ψ = (0, 0, Ψ), and the subscript z shows that we take only the third
component of the resulting vector. In geometric notation this equation means
that the directional derivative of the stream function along the velocity field
is zero, DvΨ = 0. That is, the stream function is constant along the stream-
lines. In the stationary case, dΨ/dt = 0, from (12.3) it results that the
fields ∇Ψ and ∇(�Ψ) are parallel on the surface SΨ . Since in the linear
approximation the mean curvature is almost the Laplacean of the stream
function, H(SΨ ) 	 �Ψ , it results that the streamlines lie in the level lines
of the stream function parametrized surface r = (x, y, Ψ(x, y)). That is,
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in stationary rotational two-dimensional flow, in the linear approximation,
the fluid flows along the lines of constant mean curvature of the surface SΨ .
An incompressible flow cannot start from a fluid at rest (only irrotational
flow can start from a stationary state), and the rotational flow is permanent
(in absence of dissipation). This is because dξ/dt = 0.

If we consider the parametrized surface associated with the velocity pot-
ential, SΦ, defined by rΦ(x, y) = (x, y, Φ) : R2 → R3, we notice that
the velocity “source” field ρ(r) = divv = ux + vy = �Φ is equal to
the mean curvature of SΦ, in the linear approximation HΦ(x, y) 	 �Φ.
Same thing happens for parametrized surfaces of vorticity SΨ , defined by
rΨ (x, y) = (x, y, Ψ) : R2 → R3, since HΨ (x, y) 	 �Ψ . This fact has the
following interpretation. We know that a minimal surface (H = 0) cannot be
compact (see Sect. 10.4.2). So, in the case of irrotational flow, because SΦ is
nearly minimal, it either must extend to infinity or must have singularities.
The same thing happens in the case of incompressible flow: because SΨ is
almost minimal, the flow either should extend to infinity or has singularities.

In a two-dimensional irrotational flow, we call stagnation point a point
where v = 0. At a stagnation point the velocity potential surface SΦ is
quadratic, and it has its first fundamental form coefficients (1, 1, 0)

E = Φ2
x + 1→ 1, G = Φ2

y + 1→ 1, F = ΦxΦy → 0.

Let us assume that we choose the origin of the plane in the stagnation point.
It results that there is a neighborhood of the origin V(O), where the surface
SΦ has E 	 G,F 	 0, so it is nearly isothermal (see Sect. 10.4.2). In other
words, ∀ε > 0,∃δ(ε) such that

|E −G| < ε, |F | < ε if x2 + y2 < δ(ε)2.

In this neighborhood we can expand the velocity potential in Taylor series

Φ|V(O) 	
1
2
(x2Φxx + 2xyΦxy + y2Φyy) +O(3),

and its expression is just the Hessian of Φ. On the other hand, the Hessian
of a function defining a surface is just the second fundamental form on
the surface (see Definition 39 in Chap. 7), so Φ 	 ΠO. If we map the
velocity field lines from V(O) on the surface SΦ, and the resulting curves
have unit tangent t, we can write ΠO(t, t) = κn(t), where κn is the
normal curvature (Chap. 7) of SΦ. That provides a nice geometrical int-
erpretation: in the vicinity of a stagnation point, the velocity potential
(of a two-dimensional irrotational flow) is equal to the normal curvature
of the potential surface SΦ, up to third-order terms in the Taylor
expansion. Similar configurations are presented in Figs. 12.3 and 12.4, except
we change the values of the curvatures. The flow in these figures is just
nearly incompressible. There is another connection between irrotational
incompressible two-dimensional flow and the curvature of the potential sur-
face. Being divergence free, the velocity potential is harmonic, �Φ = 0,



12.1 Geometry of Two-Dimensional Flow 271

and in the linear approximation the mean curvature is zero, HΦ 	 �Φ = 0.
If the mean curvature of the potential surface SΦ is zero at a nonplanar point
(K �= 0), then this point has two orthogonal asymptotic directions. An asymp-
totic direction is a direction in the tangent plane to the surface such that the
normal curvature is zero along it. From the flow point of view, such a direction
in the velocity potential surface is equivalent to a reflection at a “rigid” wall. If
the fluid is nearly incompressible (|divv| ≤ ε), the Laplacean of the potential
is not zero, but still of the same order of smallness as ε. Because the mean
curvature is not zero anymore, the principal curvatures are not equal and
opposite, and hence the Gaussian curvature is not necessarily negative. The
sign of the Gaussian curvature KSΦ

can be anything and describes some-
how the degree of compressibility. We have �Φ = Φxx + Φyy = ε  1, and
consequently

K 	 ΦxxΦyy − Φ2
xy = Φxx(ε− Φxx)− Φ2

xy = εΦxx − (Φ2
xx + Φ2

xy) < 0,

the real stagnation points are always hyperbolic. Since K < 0 we have a hyp-
erbolic point, and there is a real flow where the fluid passes by the stagnation
points. If K would be positive, we should have an elliptic point, and the flow
must have a sink point, or a source as stagnation point.In Figs. 12.2–12.8,
we present the two-dimensional potential flow of velocity and the graphic
of the SΦ surface in different such situations. In Fig. 12.2 we have poten-
tial incompressible flow with �Φ 	 H = 0 and negative Gaussian curva-
ture. The fluid passes by a stagnation point placed in the origin, where the
velocity field has a singular point of index I = −1. The index I(v, P ) of
an isolated singular point P of a vector field v defined on a surface is, in
general, the number of full 2π rotations performed by v when it runs along an
infinitesimal simple closed regular curve around P . The stagnation point is

H=0

K=−8

Fig. 12.2 The two-dimensional velocity flow and the plot of the velocity potential around

a stagnation point, in potential, incompressible flow. H = 0 is the mean curvature of the
surface calculated in the origin, and it is approximatively equal to �Φ. K = −8 is the
Gaussian curvature in the same origin
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H=1
K=−50

Fig. 12.3 Two-dimensional nearly incompressible H = 1 potential flow, and plot of the
velocity potential around a stagnation point

H=-2 

K=-4

Fig. 12.4 Two-dimensional nearly incompressible H = −2 potential flow, and plot of the
velocity potential around a stagnation point

H=8
K=0

Fig. 12.5 A source (H > 0) line produced by the cancellation of the Gaussian curvature
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H=−4
K=0

Fig. 12.6 A sink (H < 0) line produced by the cancellation of the Gaussian curvature

H=−6
K=8

Fig. 12.7 A sink point produced by an irrotational flow with negative mean curvature of
the velocity potential surface

H=8

K=4

Fig. 12.8 A source point produced by an irrotational flow with positive mean curvature
of the velocity potential surface
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Fig. 12.9 Velocity field for a general two-dimensional flow. The potential and stream
function are plotted, together with the graphics of their mean and Gaussian curvatures

hyperbolic, and it creates two asymptotic directions along which the fluid
runs away. If the Gaussian curvature of the velocity potential surface is zero
(parabolic point), we have a whole stagnation line of points. If the mean
curvature is positive, it is a source line (Fig. 12.5), and if the mean cur-
vature is negative, it is a sink line (Fig. 12.6). If the Gaussian curvature
of the velocity potential surface is positive, the stagnation point is ellip-
tic, and we have either a sink (H < 0) or a source (H > 0) point, and
two orthogonal asymptotic fluid “escape” directions (Figs. 12.7 and 12.8).
To understand what is the relative contribution of each of the potential and
rotational terms in the velocity field, we give some examples. In Fig. 12.9
we present the velocity field of a general compressible two-dimensional flow
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with one stagnation sink-like point. The positive value of the Gaussian
curvature of the potential surface produces an elliptic singular point, and
the hyperbolic behavior of the stream function surface produces a small
amount of vorticity to the flow (counterclockwise rotation of the fluid).
In Fig. 12.10 we present a two-dimensional nearly potential flow. The ve-
locity potential is much larger than the vorticity. The stagnation point
present in the origin generates two orthogonal asymptotic directions in the
flow. The top frame shows how the velocity is orthogonal on level potential
lines.

The bottom frame shows that far away from the obstacle, the veloc-
ity is orthogonal to lines of constant Gaussian curvature. In Fig. 12.11 we
present a two-dimensional real flow with the rotational part enhanced, i.e., the
potential is negligible compared with vorticity. The stagnation point present
in the origin does not produce asymptotic directions in the flow because
the mean curvature is not zero. The top frame shows how the velocity is
orthogonal on level stream function lines. In such a nearly incompressible
flow, the mean curvature characterizes the symmetry of the flow (four lobes),
while the Gaussian curvature characterizes the global rotational aspect of
the flow.

12.2 Two-Dimensional Nonlinear Equations

A large number of applications, both in mathematics and in physics (for
example hot and dense thermonuclear plasmas, BEC), are related to the
Kadomtsev–Petviashvili equation (KP) [180]

(−4ut + 6uux + uxxx)x = −3uyy. (12.4)

A soliton solution can be found from the Wronskian form by means of a
logarithmic transformation, and can be put in the form [181]

u(x, y, t) =
(k1 − k2)2

2
sech2 θ1 − θ2

2
, (12.5)

where the phase functions are given by

θj = −kjx+ k2
j y − k3

j t+ θ
0
j .

By denoting

A =
(k1 − k2)2

2
, L =

2
k2 − k1

, V = −(k2
1 + k1k2 + k2

2),
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Fig. 12.10 Real two-dimensional flow with negligible vorticity, around a stagnation point.
Level lines from top to bottom: velocity potential Φ, mean curvature, and Gaussian cur-
vature of the velocity potential graphics SΦ. All superimposed on the velocity field
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Fig. 12.11 Real two-dimensional flow with enhanced vorticity. Level lines from top to
bottom: stream function Ψ , mean curvature, and Gaussian curvature of the stream function
graphics SΨ . All superimposed on the velocity field
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we can write the solution in a soliton form

u = A sech2 x− (k1 + k2)y − V t
L

.

The nonlinear dispersion relation analysis requests to choose two possible
space–time scales for the two different directions. To remain as general as
possible, we make the following hypothesis

ut = −V1uξ − V2uη,

where ξ = x − V1t, η = y − V2t is the transformation of coordinates into a
arbitrarily diagonally moving frame. It results

L2 =
1

3A+ 4V1 + 3V 2
2

,

which describes pretty much the real behavior of the dispersion relation for
the exact soliton solution in (12.5). However, the solutions have long tails,
and they are not of interest for the following topics of this chapter.1

12.3 Two-Dimensional Fluid Systems with Boundary

We consider a bounded two-dimensional variable domain D(t) in R2 with
moving frontier described by a smooth closed curve Γ (t) = ∂D(t) of equa-
tion r = r(α, t), where α is a time-invariant parameter along the curve
α ∈ [0, αmax]. We define for this curve the metrics g(α, t), its Serret–Frenet
local frame t,n, the curvature k(α, t), and the local velocity of the curve
V (α, t) = Un + W t, namely (5.3). The frontier curve (also called contour
or free boundary) has a length and encloses an area, provided by (6.36) and
(6.40), with the flows given by

∂L

∂t
= −kUds, ∂A

∂t
= −Uds. (12.6)

In the following we want to relate the normal and tangent velocities (which
are defined in terms of the r(α, t) equation for the contour) to the free surface
kinematic condition (9.5), (9.29), and (9.30), which is expressed in terms of
the equation S(r, t) = 0. The first formalism represents the Lagrangian point
of view, where we describe the motion of a certain entity (the arc-length of the
curve), and we can establish a correspondence between a certain value of α
and a fluid particle lying on the surface. The second approach in terms of the
function S tells us [93] that the normal velocity of a particle inside the surface
is equal to the normal velocity of the surface itself, Vn,particle = vn,S = −U ,

1 I am indebted to Dr. Panayotis Kevrekidis for the existence of this section.
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because by definition we have no flux of particles across the surface Γ . Like
we proved in Sect. 9.5, from S(r, t) = 0 we infer S(r+nδu, t+δt) = 0, where
δu is the displacement of the surface toward its normal direction. From here
n = ∇S

|∇S| , and we can write

vn,surface = − 1
|∇S|

∂S

∂t
= −U, or

1
|∇S|

∂S

∂t
=
∂r

∂t
· r. (12.7)

When the contour is parametrized by r = r(α, t), we have

|∇S| =

√(
∂x
∂α

)2

+
(

∂y
∂α

)2

∂x
∂α

and
∂S

∂t
=
|∂r

∂t × t|
g1/2 ∂x

∂α

.

These two equations check ∂r
∂t = Un +W t.

In the following we use polar coordinates for the expression of the contour
function, in the form

x = (R+ ξ(φ, t)) cosφ, y = (R+ ξ(φ, t)) sinφ,

where Φ is a time-invariant parameter, α = φ ∈ [0, 2π), R is a fixed radius and
ξ describes the perturbation of a circle into the actual contour. The metric is

g(φ, t) = (R+ ξ)2 +
(
∂ξ

∂φ

)2

, ds =

√
(R+ ξ)2 +

(
∂ξ

∂φ

)2

.

We have the Lagrangian velocity of the contour

v(φ, t) =
∂r

∂t
= (ξt cosφ, ξt sinφ) = Un +W t = vrer + vφeφ, (12.8)

where subscripts denote differentiation, and er,φ are the polar unit vectors
and velocity components in the radial and angular directions. In polar coordi-
nates, v = (vr, vφ) and ∇ = (∂r, ∂φ/r). The free surface kinematic condition
reads in polar coordinates

vr

∣∣∣∣
Γ

=
(
∂ξ

∂t
+
∂ξ

∂φ

vφ

R+ ξ

)
Γ

. (12.9)

The tangent to the contour has the expression

t = g−
1
2
∂r

∂φ
=

(ξφ cosφ− (R+ ξ) sinφ, ξφ sinφ+ (R+ ξ) cosφ)√
(R+ ξ)2 + ξ2φ

, (12.10)
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and the curvature reads

k =
(R+ ξ)2 + 2ξ2φ − (R+ ξ)ξφφ

((R+ ξ)2 + ξ2φ)3/2
. (12.11)

From (12.8), (12.10), and (12.11), we obtain the relations between the local
normal and tangent components of the velocity of the curve, and its polar
components

vr = −ξt
(R+ ξ)2 − ξ2φ

g
, vφ = ξφξt

2(R+ ξ)
g

, (12.12)

and
U = −ξt

R+ ξ
g1/2

, W =
ξtξφ
g1/2

. (12.13)

Finally, we write the length and area of the contour

L(t) =
∫ 2π

0

√
(R+ ξ)2 + ξ2φdφ, A(t) =

1
2

∫ 2π

0

(R+ ξ)2dφ. (12.14)

To find the linear oscillations limit, we assume the variable contour to be
very close to a circle of radius R, i.e., r(φ, t) = R+ ξ(φ, t) with max |ξ|  R.
The calculation of the pressure surface needs the expression of the infinite
small variation of the arc-length. We use δdL = −kUδtds, where k is given
in (12.11). However, to understand how the polar coordinates work in this
case, we double-check the arc-length variation formula, by obtaining it again,
through variational calculations directly in polar coordinates. We introduce
an arbitrary infinitesimal variation of the contour shape δξ, and we have

δL = L(t, ξ+δxi)−L(t, ξ) =
∫ 2π

0

[
R+ ξ√

(R+ ξ)2 + ξ2φ
δξ+

ξφ√
(R+ ξ)2 + ξ2φ

δξφ

]
dφ.

After an integration by parts we have

δL =
∫ 2π

0

(R+ ξ)kδξdφ. (12.15)

This result is in perfect agreement with previous expressions for δL as it can
be checked by substituting δξ into k(R+ ξ)δξdφ = −kUδtds.

In the second order of approximation with respect to δξ, we have

δL =
∫ 2π

0

(
1− ξφφ

R
+

2ξξφφ + ξφ2

2R2
+O(3)

)
δξdφ. (12.16)

Using the same variational approach, we obtain the infinitesimal variation of
the area

δA =
∫ 2π

0

(R+ ξ)δξdφ. (12.17)
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12.4 Oscillations in Two-Dimensional Liquid Drops

We consider a very flatted drop of equilibrium radius R0 on a horizontal
surface, described in spherical coordinates by the radial coordinate

r(θ, ϕ, t) = R0 sin θ
√

(1 + εf(ϕ, t))2 + δ2 cot2 θ, (12.18)

where ε is the ratio between the maximum planar perturbation of the drop
from a circular shape, and δ is the ratio between the vertical hight of the drop
and R0. That is δ = 0 will describe a totally flat drop, and δ = 1 will describe
an axisymmetric three-dimensional shape. In the following, ε and δ are free
small (much less than 1) parameters in this formulation. The dynamics of the
drop is described by oscillations and waves along the contour Γ of the drop,
i.e., r(π/2, ϕ, t) = R0(1 + εf(ϕ, t)), so the problem is solved if we find the
f(ϕ, t) shape function. To account for the surface tension effects, we need to
estimate the mean curvature of this drop. From (10.60) we can write in the
first order of smallness in ε, δ

H(θ, ϕ, t) = − 1
R0

+
r

R2
0

− r2

R3
0

+
r2ϕ

2R3
0

− rrϕϕ

R3
0

− rrθ
R3

0

+
r2θ

2R3
0

+
rϕϕ + rθθ

2R2
0

+ O3(r/R0), (12.19)

with r is the general shape of the droplet, and subscripts denote differentia-
tion. If we substitute r from (12.18) we obtain in the first order in ε

H 	 δ
2 − 3
2R0

− ε (3 + δ2)f + fϕϕ

R0
, (12.20)

and consequently the surface tension at the boundary of the drop is given
by (10.53)

P = σ

(
δ2 − 3
2R0

− ε (3 + δ2)f + fϕϕ

R0

)
+ P0 + O2(ε, δ). (12.21)

In the following we assume, for simplicity, that the drop is incompressible
and inviscid, and the flow is irrotational, so the velocity is obtained from the
velocity potential Φ(r, θ, ϕ, t). We assume that the horizontal surface of the
drop is flat, so there will be no contribution to the potential energy from this
part. The only important region is Γ , the closed contour of the drop parame-
trized by ϕ, where θ ∼ π/2. The dynamics is hence controlled by the Laplace
equation for potential in the bulk, the Euler equation for the contour, and
boundary conditions: free liquid surface on one side and rigid core (if it is the
case) on the other side. The general three-dimensional treatment of the asso-
ciated linear problem for the dynamics of the free surface is given in Chap. 13,
Sect. 13.1, and here we will follow the same procedure. So, in this section we
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just mention the guiding lines for this simpler two-dimensional system. We
assume the two-dimensional approximation, so the potential is chosen

Φ(r, ϕ, t) =
∞∑

l=0

fl(r) cos(lϕ)e−iωlt. (12.22)

From �r,ϕΦ = 0, we have

fl(r) = Alr
l +

Bl

rl
. (12.23)

The dynamic equation (Euler equation on the contour) and the two bound-
ary conditions (the first one from (9.30) and second on the rigid core) are,
respectively,

∂Φ

∂t

∣∣∣∣
Γ

= −P
ρ

∣∣∣∣
Γ

,
∂Φ

∂r

∣∣∣∣
Γ

= −∂f
∂t

∣∣∣∣
Γ

,
∂Φ

∂r

∣∣∣∣
r=a

= 0, (12.24)

where the last condition requests zero normal velocity on a rigid core of radius
a. From these equations we obtain Bl = Ala

2l and

ω2
l =

σl(l2 − 3)
[
1−
(

a
R0

)2l]
ρR3

0

[
1 +
(

a
R0

)2l] . (12.25)

Equation (12.25) describes the linear modes of oscillations of this two-
dimensional ideal drop, for l = 1, . . . . We can make a few remarks. First,
the modes l = 1, 2 are not forbidden like in the three-dimensional case. For
no core, or for inner core and external free surface, this equation gives good
results. However, for inner modes, i.e., when the rigid surface is exterior and
the drop becomes a two-dimensional shell with inner free surface, (12.25) does
not work so well because the frequencies become imaginary. This means that
all such internal oscillation modes should be damped. This equation cannot
predict traveling waves along the inner free surface, which is actually the
experimental situation (see Sect. 12.6 and for example Fig. 12.13). To explain
the existence of traveling modes along the inner contour, one should introduce
both viscosity and vorticity. Indeed, if we keep the irrotational hypothesis,
change the potential structure into

Φ(r, ϕ, t) =
∞∑

l=0

fl(r)gl(ϕ, t),

and try to bring more nonlinear terms into the mean curvature (10.60), still
the Laplace equation will force the angular dependence to be linear, i.e.,
gl(ϕ, t)→ cos(lϕ+βl(t)), and to have nonzero vorticity, we need the viscosity.
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The viscous, yet irrotational, two-dimensional case was recently modeled,
for example in [182], by a numerical boundary integral method. The dynam-
ical equation used by these authors was an unsteady Bernoulli equation for
the potential flow in the form

dΦ

dt

∣∣∣∣
Γ

=
1
2

[
−
(
∂Φ

∂s

)2

= V 2
n

]
− κ(s), (12.26)

where the LHS is the material derivative of the contour, the contour is para-
metrized by the arc-length s, Vn is the normal velocity at the contour, n
is the normal unit vector to the contour, and κ is the curvature of Γ . The
equation is coupled with area and energy conservation

A =
1
2

∮
Γ

∇·rdA =
1
2

∫ L

0

n·r(s)ds, K =
1
2

∮
Γ

|∇Φ|2dA =
∫ L

0

Φ(s)Vn(s)ds.

(12.27)
However, even with this improvements, and even by taking into account
the shear viscosity and the surface dilatational viscosity (see Sect. 8.3), the
solution does not provide stable localized traveling waves like those obtained
experimentally and presented in Sect. 12.5. Only by introducing the vorticity,
one can explain such nonlinear effects. We describe such a nonlinear model
in Sect. 16.5 [53,54] when we refer to application of contour nonlinear waves
in microscopic systems, so we do not repeat the calculations here. We just
mention that the two-dimensional liquid drop nonlinear approach can predict
solitons on the surface of the droplets, and can even work in the presence of
rigid cores, inside or outside the two-dimensional drop or shell, respectively.
The additional condition is given in (16.86).

12.5 Contours Described by Quartic Closed Curves

An interesting application of the contour dynamics is the planar flow of a drop
of incompressible homogenous viscous fluid through a porous medium [182].
In this situation the Bernoulli equation is replaced by the Darcy’s law

V = −c∇P, (12.28)

where c > 0 is a constant, inversely proportional to the dynamic vis-
cosity μ. Since the potential of flow is harmonic, we can represent it as
being generated by a finite sum of sources and sinks of coordinates rj and
intensities

qj =
∫

Γj

V · nds,

Φ(r, t) =
∑

j

qj
2π

ln |r − rj |+ Φ0(r, t), (12.29)
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where Φ0 is a smooth function defined in the domain, Γj are contours sur-
rounding the sinks and sources, and nj are the principal normals of these
contours. The problem is to find the motion of the boundary of the fluid
saturating this porous surface. The problem is nonlinear, and the solutions,
that are the evolution of the boundary of the planar drops, have an interest-
ing soliton property. Namely, there is an infinite series of conservation laws
associated with this flow. The proof of this property can be obtained through
the Richardson’s integrability theorem [183]. Namely, for any time variable
domain D(t) of viscous fluid under the hypotheses enounced above, and for
any arbitrary harmonic function in the plane u(x, y), there is the relation

d

dt

∫
D(t)

udxdy =
n∑

j=1

qju(rj). (12.30)

As a simple example, for u = 1, the above relation assures the conservation of
the area. The Richardson’s problem is useful mainly since one can reconstruct
the shape of the domain by using these first integrals.

12.6 Surface Nonlinear Waves in Two-Dimensional
Liquid Nitrogen Drops

Liquid nitrogen (ρ = 808 kg m−3, σ = 31 dyn cm−1 compared to water
σ = 72 dyn cm−1, t = −195.8◦C at P = 1 atm, μ = 0.15 cP compared
to water 1 cP) is an ideal system for testing the theory of nonlinear two-
dimensional oscillations of liquid drops. Having very low viscosity but large
enough surface tension, and being always “coated” by a layer of vapors, it
can be considered pretty isolated for the container walls. On a horizontal
flat surface, a droplet will take a radius of about 3–15 cm and a height of
about 2 mm which qualify it for a two-dimensional model. If the droplets
are surrounded by rigid walls, they will perform a wide range of motions be-
cause of the fast evaporation process (18.2 g evaporated per hour per Watt
of surface thermal energy). Studies of small droplets of liquid nitrogen have
been performed and several types of waves have been detected. Moreover,
because during the experiment the mass and the volume of the droplets or
layer continuously decrease by evaporation, one can watch in real time suc-
cession of resonant modes and circular traveling waves corresponding to those
dimensions of the system. Basically, on the free contour of the drop we no-
tice initially the existence of high modes with l = 20–30. Later on, through
evaporation, the high modes decay, and lower modes become more stable. At
l = 6 we notice a special long time stability. After couple of seconds the l = 6
modes transform into lower modes, l = 4, 3, ending up into a fast oscillating
dipole which eventually freezes with water vapors. In the case of a rigid core
and very shallow layer (R = 15 mm, h = 4 mm), the modes are more stable
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Fig. 12.12 Surface waves in a two-dimensional shallow circular layer of liquid nitrogen
around a rigid core. Modes with l = 12–30 and amplitude in the range 1–5 mm can be
measured, depending on the depth of the layer. The waves travel with a circular speed of
20–40 cm s−1. In the figure the core has a diameter of 3 cm

Fig. 12.13 Internal surface waves in a liquid nitrogen shell, upper bounded by a rigid
core. In the figure one can see a clean l = 6 mode, with amplitude 2.5 mm, traveling with
a speed of 12 cm s−1. The wave was stable for about 4 s, and broke up only because of
evaporation and volume loss
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Fig. 12.14 Traveling and decaying of cnoidal waves on the external surface taken at three
different moments of time

Fig. 12.15 Soliton traveling on the external free surface of a 2mm layer of two-dimensional

horizontal liquid nitrogen shell

(Fig. 12.12). We notice a dynamical regime of transitions between modes be-
cause of the loss of mass. The change of modes is accompanied by change
of direction of rotation, in between stable modes, one can notice a sort of
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turbulent regime. The highly localized waves tend to breakup of decay after
less than a full rotation (Fig. 12.13). In addition to the free surface modes,
or the modes around a rigid core, internal modes inside of a hollow ring can
be measured. These waves have slower modes l = 4–8, and the l = 6 mode is
very stable (Fig. 12.14). Usually, the waves are powered by the bubble from
evaporation, and sometimes the surface waves travel together with a trapped
bubble in their area. The optimal interval for good measurements lies in the
very short time interval between the moment when all the bubbles vanish and
when the liquid nitrogen is trapped in frozen water from surrounding vapors.
Nonlinear waves that fit pretty well a cnoidal wave pattern can be noticed
on the external region, and occasionally one can notice the occurrence of a
soliton, like in Fig. 12.15.



Chapter 13

Nonlinear Surface Waves
in Three Dimensions

The study of shape oscillations of drops has a wide variety of applications
at different space and time scales. At microscopic scales this includes the
liquid drop models of nuclei, especially heavy nuclei, super- and hyperde-
formed nuclei, nuclear breakup and fission, where the surface energy plays an
important role. They also play a role in the modeling of atomic clusters and
clouds of electrons in high magnetic fields. Zooming out from the Angström
scale, the study of drops is important in the study of motion and swimming of
motile cells, and cellular division in biological systems. Bubble sonolumines-
cence represents a recent application of bubbles and droplets formed inside
the bubbles [184, 185]. At lab scale there is a huge spectrum of applications,
including container-less liquid processing in space, rheological and surfactant
theory, pharmaceutical industry, mixture of fluids in droplet form, behavior
of long wavelet jets emitted from noncircular orifices, coalescence of liquid
drops [186], and surface oscillations of liquid drops, bubbles, and shells in
combination with surfactants. At larger scales drops are important for calcu-
lations of the radar cross-section of rain clouds, modeling of impacts between
stellar objects and neutron star tides, important for the gravitational waves
emitted by such oscillations.

Nonlinear terms from Navier–Stokes equations and from the boundary
conditions usually introduce couplings between modes of oscillations, even
between modes of different nature, like radial and shear ones. Nonlinear
terms coming from the geometry of curved, eventually closed, surfaces pro-
vide additional coupling. One general nonlinear phenomenon introduced by
such couplings is the interrelation between kinematics and shape. For ex-
ample, in the case of one-dimensional solitary waves, the dependence of the
amplitude and the width on the group velocity is well known. Similarly, in
the case of drops, bubbles, and shells, couplings induce interesting behavior.

For example, it is known that in the linear case [93], the core of the drop
tends to have potential flow, while next to the free boundary the flow is rather
vortex like. This artificial fact generated by the linear approximation can be
explained by the surface singularities of the spherical Bessel functions when

289
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the damping constant becomes imaginary, i.e., when the modes are weakly
dissipative. When we introduce the nonlinear terms in the model, because
of the coupling between the vorticity and shape, the singularity is removed
and the vorticity field is controlled by the local shape, i.e., surface vorticity
is enhanced in regions with large curvature values.

Another example of coupling effects is the physical difference in the
behavior of a flat fluid surface and a curved one. In the plane case the rate
of local expansion of the surface Σ is given by the surface divergence of the
tangent velocity, i.e., ∇Σ ·V �, and usually this term is involved in nonlinear
terms in the Navier–Stokes equations. So, surface elements can have radial
displacement without producing local expansion. That implies radial oscilla-
tions to involve no tangent motion at the surface, and so shear deformation
can be absent. This further implies that if we investigate interfaces with very
high coefficient of surface dilatation (elastic and/or viscous), D → ∞, but
small and finite coefficient of surface shear S (also elastic and/or viscous),
the motion is not frozen, and still small oscillations can occur. This situation
happens even if both coefficients have very large values, like in the case of
cellular membrane which are practically inextensible. So, even in the limit
S,D →∞ the plane surface can radially oscillate.

However, in the case of curved interfaces, the rate of local expansion con-
tains two terms, like, for example, in the spherical case

D

(
∇Σ · V � +

2
R
Vr

)
.

Consequently, a dilatation-rigid curved surface (high values for D) will have
the rate of local expansion zero only if either does not oscillate at all, or it
performs radial oscillations, but these are coupled with tangent motion. So,
for an inextensible curved surfaces, radial oscillations should be accompanied
by sliding at the interface. This tangent sliding involves shear deformation,
which is controlled by S, the coefficient of surface shear. Consequently, it is
impossible to have large values for S, because such values will forbid tangent
motions. In conclusion, in curved fluid interfaces it is impossible to have
simultaneously high values for the coefficient of surface dilatation and the
coefficient of surface shear. So, in the case of closed surfaces it is impossible
to have motion under both shear (S) and expansion (D) resistance.

Another particularity of free surface oscillations and waves for (nonlinear)
viscous drops is given by the fundamental parabolic nature of the equations
(Navier–Stokes) [187]. That is, given the distribution of the energy balance
between the vorticity terms and the velocity terms, the dynamics of the
system is history depended, hence can be correctly described only through
integrodifferential equations. Indeed, if in the beginning the vorticity is zero,
dissipation arises only through the velocity, i.e., through a term of the form∫∫

Σ

(V · ∇)V ·NdA.
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As the motion develops, vorticity is created at the free surface and dissipates
toward the inside of the drop, introducing another channel of dissipation
through the term ∫∫∫

D

ω · ωdV .

Consequently, the energy dissipation depends on the vorticity, hence on the
past history of the flow, and so the mathematical description should be inte-
grodifferential.

There are many distinct features between the nonlinear drops and the lin-
ear ones: mode coupling, large amplitude oscillations, frequency shift, cubic
or higher resonances, quasiperiodic motions, surface solitary waves, etc. In
the following we present the Navier–Stokes normal mode approach, and the
Lagrangian approach, for both linear and nonlinear three-dimensional drops
with axial symmetry. This constraint does not introduce too much loss of
generality concerning nonlinear effects, and it does not change the final the-
oretical expressions for frequencies. A short history of the models for linear
toward nonlinear drops is presented in the introduction of Basaran [188].

13.1 Oscillations of Inviscid Drops: The Linear Model

In this section we study linear surface oscillations of an isolated (no gravita-
tion, inert atmosphere) three-dimensional liquid drop with surface tension liq-
uid surface under three simplifying hypotheses: the flow is inviscid (viscosity
coefficients are zero), incompressible (density ρ0 = constant), and irrota-
tional (∇ × V = 0). These conditions, together with the Euler equation,
form a system of seven partial differential equations (PDEs) for seven un-
known functions of three variables: velocity V , velocity potential Φ, den-
sity ρ0, pressure P , and the shape function ξ(θ, ϕ, t) of the free surface of
the drop r(θ, ϕ, t) = R0 + ξ(θ, ϕ, t). To have a unique solution we add to
this system boundary and initial conditions. The expression for the surface
tension occurs for the first time within the boundary conditions. For drop
without core and for bubbles the boundary condition is taken only on one
closed surface, the free surface of the fluid. For drops with core or liquid
shells we take into account two or more surfaces in the boundary conditions.
In the following we use the spherical coordinates (r, θ, ϕ), so for example
V = (Vr, Vθ, Vϕ).

The flow inside the drop is potential and incompressible, and so the velocity
potential V = ∇Φ fulfills the Laplace equation �Φ = 0. In the absence of
any external force field, Euler equation reduces to the Bernoulli equation. In
the linear approximation Bernoulli equation has the form

∂Φ

∂t
= −1

2
(∇Φ)2 − 1

ρ0
P 	 − 1

ρ0
P, (13.1)



292 13 Nonlinear Surface Waves in Three Dimensions

where ρ0 is the constant density. In spherical coordinates and in the same
linear approximation, the kinematic condition for the free surface (9.30) reads
in spherical coordinates

∂Φ

∂r

∣∣∣∣
S

= Vr|S =
∂ξ

∂t
+
∂Φ

∂θ
Vθ +

∂ξ

∂ϕ
Vϕ 	

∂ξ

∂t
, (13.2)

where the free surface of the drop was defined as r(θ, ϕ) = R+ξ(θ, ϕ) and R is
the equilibrium radius of the stationary drop. The general receipe of solving
such linear problems is to expand the potential in a convenient series of
orthogonal functions (e.g., (13.5) for spherical symmetry), then solve Laplace
equation for the potential in the corresponding boundary conditions, and then
plug the coefficients of the potential in the free surface equation (13.2) to find
the shape ξ.

The surface pressure is

PS = P0 + σ(κ1 + κ2) = P0 + 2σH,

according to (10.35), where P0 is the constant pressure outside the drop.
From Sect. 10.4.6 we have the expression of the mean curvature H in spher-
ical coordinates. Accordingly to the hierarchy of orders of smallness in ξ/R
performed there, we will use for our linear case orders up to O(2) in (10.60)

2H =
ρ

R2
+

1
2R2

(
ρθθ + cot θρθ +

ρϕϕ

sin2 θ

)
. (13.3)

The order zero term 1/R2 in the mean curvature was absorbed in P0 and
the sign of the mean curvature is chosen according to the convention that a
positive surface pressure is directed toward inside the drop. If we differentiate
with respect to time (13.2) and substitute ξ with Φ, we can write

∂2Φ

∂t2

∣∣∣∣
S

	 σ

ρ0R2

(
2
∂Φ

∂r
+
∂

∂r
�ΩΦ

)
S

. (13.4)

Since the potential is a harmonic function, it can be written as a series of
spherical harmonics Ylm , and from the uniqueness warranted by the Cauchy
condition through (13.2) we can determine its time-dependent coefficients.

Φ(r, θ, ϕ, t) =
∑

l≥0,|m|≥l

flm(r)Ylm(θ, ϕ) sin(ωlmt+ ϕlm). (13.5)

From the Laplace equation we have

flm = const.rl +
const.
rl+1

, (13.6)

and we introduce this form of potential in (13.4). By using �ΩYlm =
−l(l+1)ylm, after identification of the coefficients of the spherical harmonics,
and in the linear approximation (R + ξ)l → Rl, we obtain the normal fre-
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quencies all linear modes of this type of oscillation

ω2
lm = ω2

l =
σ(l + 2)(l + 1)

R3ρ0

lAlmR
2l+1 −Blm(l + 1)

AlmR2l+1 +Blm
. (13.7)

In the first case, for drops and bubbles, we have no core, and just one free
surface. The fluid domain contains the origin of the coordinate axes, and
to have differentiable solutions, we have to cancel the Blm coefficients. The
resulting normal modes for simple drops are

ω2
l =

σ

R3ρ0
l(l + 2)(l − 1). (13.8)

The modes l = 0, 1 are eliminated by the center of mass position conservation
and by the incompressibility hypothesis, respectively.

13.1.1 Drop Immersed in Another Fluid

The second case we investigate is the case of a liquid drop of density ρint sur-
rounded by infinite liquid of density ρext, both in inviscid potential flow. We
define the velocity potential in two distinct regions, inside (r < ξ) and outside
(r > ξ) the drop, and we match these two functions according to physical
continuity conditions (13.10) and (13.12). The potential in each zone is har-
monic, and according to (13.5) and (13.6), we can write the two expressions
by eliminating those terms that become singular in each zone

Φint =
∑

l,mAlmr
lYlm cos(ωlt+ ϕlm)

Φext =
∑

l,m
Blm

rl+1Ylm cos(ωlt+ ϕlm).
(13.9)

In the case of two fluids, the linearized free surface condition (13.2) becomes
a continuity condition for the radial component of the velocity vr

∂Φint

∂r

∣∣∣∣
S

=
∂Φext

∂r

∣∣∣∣
r=ξ

=
∂ξ

∂t

∣∣∣∣
r=ξ

, (13.10)

where the condition S for surface is again realized by the relation r = ξ. From
the first part of (13.10) we have

Blm = − lAlmR
2l+1

l + 1
. (13.11)

The second matching condition is given by equating the pressures P at the
free surface. We have

∂Φint

∂t = − 1
ρint

(P + σ(κ1 + κ2))
∂Φext

∂t = − 1
ρext

(P − σ(κ1 + κ2)).
(13.12)
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and we have

−ρint
∂Φint

∂t
+−ρext

∂Φext

∂t
= 2σ(κ1 + κ2) = σ

(
− 2ξ
R2
− 1
R2
�Ωξ

)
. (13.13)

From (13.10) and (13.13) we obtain, by equating the terms with the same
l,m, the expression of the normal modes frequencies of the two fluids case

ω2
l =

σl(l + 1)(l + 2)(l − 1)
[ρint(l + 1) + ρextl]R3

. (13.14)

This expression was obtained first time by Lamb [93, Article 275]. We notice
the absence of the first two modes (l = 0, 1) because of incompressibility
and momentum conservation conditions, respectively. In the limit ρ′− >→ 0,
(13.14) approaches the ideal case of (13.8) for oscillations of a liquid drop
in vacuum (linearized results). In Fig. 13.1, we present the variation of the
frequencies of normal oscillations of such a drop in the linearized approach,
for nine values of l, vs. the ratio of the density of medium over the density of
the drop. Around zero we have the frequencies of free oscillations of drops in
vacuum, while moving toward the right we increase the ambient density. For
ρ′/ρ = 103 we have almost the oscillations of an air bubble in water

ω2
l,bubble =

σ(l + 1)(l + 2)(l − 1)
ρextR3

. (13.15)

We notice that in principle there is a “zero” radial mode (l = 0) for bubbles.
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Fig. 13.1 Frequency of normal modes for a drop of density ρ submerged in a fluid of
density ρ′, in the linear approximation, vs. the ratio of the densities ρ′/ρ for R = 1 cm
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13.1.2 Drop with Rigid Core

The third case is a liquid drop containing a spherical rigid core or radius
a < R. Such experimental configurations are easy to obtain for two-
dimensional drops, but rather complicated for three-dimensional drops. How-
ever, such a model helps understanding the dynamics of heavy nuclei, where
the external nuclear shells cover a stable (or even a double) magic number
nucleus. They can also be used in motile cell investigations, where the cell
nucleus can play the role of the rigid core. Also, in some neutron star models,
the main dynamic part of the system is a deformable crust oscillating around
a rigid core. For a rigid core the second boundary condition is the cancellation
of the normal velocity at the core surface, (∂Φ/∂r)r=a = vr|r=a = 0. Again
from the continuity conditions we have

Blm =
la2l+1

l + 1
Alm, (13.16)

and consequently, the normal modes frequencies of drop plus rigid core in the
linear approximation read

ω2
l =

σl(l − 1)(l + 2)
[
1− ( a

R )2l+1

]
ρ0R3

[
1 + l

l+1 ( a
R )2l+1

] . (13.17)

In Fig. 13.2, we present the frequency of the normal linear modes for a liquid
drop with rigid core. The frequencies are practically equidistant when the
core is small, and approach the modes without core, but tend to decrease to
smaller values when the radius of the core increases. In the limit a− >→ 0,
(13.17) approaches the ideal case of (13.8) for oscillations of a liquid drop in
vacuum (linearized results).

In the following we calculate the velocity and pressure field within the
oscillating drop. We begin with the coreless drop, and so we put a = 0, B = 0
in (13.16). From (13.5) we have

Φ(r, θ, ϕ, t) =
∑

l≥0,|m|≥l

Almr
lYl,m(θ, ϕ) sin

(√
σl(l + 2)(l − 1)

R3ρ0
t+ ϕlm

)
.

(13.18)
The velocity is given by

v = ∇Φ =
(
∂Φ

∂r
,
1
r

∂Φ

∂θ
,

1
r sin θ

∂Φ

∂ϕ

)
. (13.19)

From (13.2) in the linear approximation ∂ξ/∂t 	 (∂Φ/∂r)Σ , by integrating
once with respect to time, we obtain the expression of the shape in terms of
the Alm coefficients of the potential
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Fig. 13.2 Frequency of normal modes for a water drop with rigid core, in the linear

approximation, vs. the ratio between the core radius and the drop radius, a/R. R = 1 cm

ξ(θ, ϕ, t) = −
∑

l≥0,|m|≥l

lAlmR
l−1

ωl
Yl,m(θ, ϕ) cos

(√
σl(l + 2)(l − 1)

R3ρ0
t+ ϕlm

)
.

(13.20)

We consider the shape known at the initial moment of time, and given by

ξ(θ, ϕ)|t=0 =
∑

l≥0,|m|≥l

ClmYl,m(θ, ϕ), (13.21)

where we choose ϕlm = 0, and Clm are given. By identifying (13.20) at t = 0
with (13.21) we obtain

Alm = −ωlClm

lRl−1
, (13.22)

where ωl is given by the core free frequency’s formula (13.8). By introducing
(13.22) in (13.20) and in (13.18) and (13.19), we determined the shape and
velocity field inside the drop at any moment of time. We mention a technical
calculation detail needed to adjust the form of the coefficients, since the
spherical harmonics are complex functions and the shape and velocity must
be real functions. Instead of (13.20) we use

ξ =
∑
l≥2

(
Cl0Yl,0 cos(ωlt) +

l∑
m=1

(Blm cosmϕ+Dlm sinmϕ)θlm cos(ωlt)
)
,



13.1 Oscillations of Inviscid Drops: The Linear Model 297

where θlm are the Legendre generalized functions (Ylm = θlm(θ)eimϕ) and
the new coefficients are related to the old ones by

Cl,±m =
(±1)m

2
(Blm ± iDlm), m > 2.

Then, the velocity potential may be written as

Φ =
∑
l≥2

(
−ωlCl0

lRl−1
rlYl0 sin(ωlt)

− ωlr
l

lRl−1

l∑
m=1

sin(ωlt)(Blm cos(mϕ) +Dlm sin(mϕ))θlm

)
.

In Fig. 13.3, we present some frames during the oscillation of such a liquid
drop, starting from a given octupole shape, as an application of (13.20). In
Fig. 13.4, we present the shape and the velocity field at a certain moment of
time, with velocity calculated through (13.18) and (13.19).

Fig. 13.3 Oscillations of an incompressible irrotational liquid coreless drop calculated
from a given initial octupole shape
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Fig. 13.4 Incompressible irrotational liquid drop: shape and velocity field

In the case of liquid drops with rigid core we use for the shape a similar
equation as (13.20), except we need to make sure that |ξ| > a at all times

ξ = R+ εR(
∑
l≥2

Cl0Yl0 cos(ωlt+ ϕlm)

+
∑
l≥2

l∑
m=0

(Alm cosmϕ+Blm sinmϕ)θlm cos(ωlt+ ϕlm)).

Here the frequencies ωl are calculated by using (13.17). We obtain the
following relation between the initial shape spherical harmonics expansion
coefficients Clm and the solution coefficients Alm

Alm =
εRωlClm

l

(
a2l+1

Rl+2 −Rl−1

) . (13.23)

The resulting potential has the form

Φ = εR
∑
l≥2

ωl

l

rl + la2l+1

(l+1)rl+1

a2l+1

Rl+2 −Rl−1

l∑
m=0

ClmYlm sin(ωlt+ ϕlm).

With initial condition provided by the initial shape through the coefficients
Clm and ϕlm, and by using (13.17) and (13.23) we obtain the velocity field and
the shape at any moment of time. In Figs. 13.5 and 13.6, we present several
snapshots of exact calculation of the shape of the drop linear oscillations plus
core. In Figs. 13.7 and 13.8, we present cross-sections in oscillating drops for
two different core radii. One can notice the effect of the linearization of the
free surface (13.2): oscillations happen only along the normal direction to
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Fig. 13.5 Linear oscillations of a water drop of equilibrium radius R = 10mm with a
rigid core of radius r = 7 mm taken at intervals of 0.25 s. The smallness parameter was
chosen ε = 0.12, and we have ρ = 103 kgm−3 and σ = 0.0728 Nm−1. For these parameters
we have ω2 = 0.145 s, ω3 = 0.301 s

Fig. 13.6 Same parameters as in Fig. 13.5 except r = 4 mm
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Fig. 13.7 Drop oscillations similar to those presented in Fig. 13.5, shown in a meridian
cross-section
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Fig. 13.8 Same as Fig. 13.7, but for a larger core
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Fig. 13.9 Irrotational incompressible flow for a liquid drop with core

the surface. In Figs. 13.9 and 13.10, we present cross-sections and velocity
field of oscillating drops for different core radii and different initial shapes,
in irrotational incompressible flow. Now it is easy to calculate the pressure
distribution in the drop, by using (13.1)

P (r, θ, ϕ, t) = −ρ∂Φ
∂t
.

In Figs. 13.11 and 13.12, we present the pressure field for two oscillating drops
from three different orthogonal cross-sections. We notice that the pressure
contour lines are always perpendicular on the boundaries. Close to the regions
of the free surface where the shape is convex, we remark that the higher
pressure contour lines extend more toward inside. This behavior can trigger
different types of instabilities, or formation of inner jets of higher pressure
like in the case of bubble sonoluminescence, for example.

13.1.3 Moving Core

Another interesting situation occurs if we impose a certain type of motion to
the core, a = f(t). The inner boundary condition becomes Vr(r = f(t)) = 0.
By plugging this boundary condition in a general potential of the form

Φ(r, θ, ϕ, t) =
∑
l,m

(
Alm(t)rl +

Blm(t)
rl+1

)
Ylm(θ, ϕ) (13.24)
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Fig. 13.10 Same drop as in Fig. 13.9, but for different initial shape

we obtain the coefficient relation

Blm =
l

l + 1
f2l+1(t)Alm. (13.25)

By following the same procedure as in the constant radius core, and by using
the approximation of small core compared to the equilibrium radius, f(t) 
R, and the linear approximation ξ  R, we obtain a differential equation in
time for each coefficient Alm(t)

A′′
lmR

l +
2l(2l + 1)

(l + 1)Rl+1
A′

lmf
2lf ′ +

l(2l + 1)
(l + 1)Rl+1

Alm(f2lf ′)′

=
σ(l + 2)(l − 1)

ρ
Rl−3Alm. (13.26)

This ODE is difficult to be solved exactly in the general case. For an expo-
nential core motion, like, for example, the expansion of gas bubbles in a fluid
f(t) = bect, with b, c constants, we have
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Fig. 13.11 Pressure contour lines for an incompressible irrotational flow in a liquid drop
with rigid core, taken simultaneously in three orthogonal cross-sections
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Fig. 13.12 Pressure contour lines similar with those presented in Fig. 13.11 except for
different initial data of the flow
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Aexp
lm (t) = Alm,0 exp

(
lb2l+1

(l + 1)R2l+1
ec(2l+1)t

)

×In
(√

(l + 2)(l − 1)σ

c(2l + 1)
√
ρR3

,
lb2l+1

(l + 1)R2l+1
e(2l+1)ct

)
, (13.27)

where In(α, β) is the modified Bessel function of the first kind. This expres-
sion for the coefficients is plugged in (13.25), and then back in the potential
(13.24) to obtain the flow. Such a solution can model situations like subma-
rine explosions, see for example in Thomson [132, Sect. 16.21]. In this section
Milne–Thomson supposes that a spherical cavity containing gas begins to
expand rapidly in surrounding unbounded liquid, such that the gravity can
be neglected. The potential can be approximated with the first singular term
in the series (13.24), namely Φ 	 1/r, and introduced in the Euler equation
(13.1) it gives

P

ρ
+

1
2

(
f2f ′

r2

)2

− f
2f ′′ + 2ff ′2

r
= C(t).

The arbitrary function of time C(t) can be taken zero if the pressure is
negligibly far away from the free surface.

13.1.4 Drop Volume

None of the above calculations guaranties the drop volume conservation.
A correct treatment would request writing the Lagrangian of the drop and
imposing volume conservation as a Lagrange multiplier. Obviously, the vol-
ume obtained from ξ is not conserved, but we can make estimations about
the range of error in time for the volume conservation. In general we have

V = int2π
0 dϕ

∫ π

0

sin θdθ
∫ R+εξ(θφt)

a

r2dr. (13.28)

Without too much loss of generalization we expand (13.28) in the situation
without core and we have

V = V0 + εR3

∫ 2π

0

dϕ

∫ π

0

ξ sin θdθ + ε2R3

∫ 2π

0

dϕ

∫ π

0

ξ2 sin θdθ

+
ε3R3

3

∫ 2π

0

dϕ

∫ π

0

ξ3 sin θdθ, (13.29)
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with

V0 =
4πR3

3
, ξ =

∑
l≥2,|m|≤l

ClmYlm cos(ωlt+ χl).

The first term on the RHS of (13.29) is zero because all terms inside it have
multipoles larger than 2, which are orthogonal on sin θ. The order 2 in ε term
contributes only with those products of spherical harmonics YlmYl′m′ that
fulfill the conditions l = l′ and m = −m′. The order ε3 contains even less
nonzero terms, for example, only those terms fulfilling m1 +m2 +m3 = 0.
These triple products of spherical harmonics are determined by the Wigner
3j-symbols ∫ 2π

0

dϕ

∫ π

0

Yl1m1Yl2m2Yl3m3 sin θdθ

=

√
(2l1 + 1)(2l2 + 2)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (13.30)

In general, the higher the order l, the “less” nonzero terms we have in the
summations, compared to the total “number” of terms. We mention this in
the sense of the measure theory applied to the “number” of terms in the series
expansion. Consequently, the higher corrections are smaller and smaller on
the top of the decreasing produced by higher powers of ε. In Fig. 13.13, we
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Random Clm coefficients

between [−3,3]

Fig. 13.13 Oscillations in the volume of the drop compared to the initial one in time
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show the ratio V/V0 for a l = 4 mode vs. time. To have an estimation of the
error we provide an example in the quadratic order in ε. We plot the relative
change in volume |V − V0|/V0 vs. the maximum distance to the center of
the free fluid surface, in a certain amount of time, over R. To estimate this
we consider the shape function known, and given in terms of some arbitrary
coefficients Clm of ξ, namely

|rmax −R|
R

≤ 1
R

∑
l≥2,|m|≤l

|Clm||Ylm|max

≤
√
π

R

∑
l≥2,|m|≤l

|Clm|
2m

Σ

(
l−m

2 + 1
)
Σ

(
1−l−m

2

) , (13.31)

where we use the upper bound of the maximum value taken by a spherical
function. The quadratic term in ε normalized by the initial volume has the
form ∣∣∣∣V (O(ε2))

V0

∣∣∣∣ ≤ V0 +
3ε2

4π

∑
l≥2,|m|≤l

|Clm|2
4π

2l + 1
(l +m)!
(l −m)!

, (13.32)

where we use the well-known norms of the spherical harmonics. The ratio
between the two numerical series in (13.31) and (13.32) provides a numerical
criterion about the errors in volume estimations compared to the deforma-
tions.

13.2 Oscillations of Viscous Drops: The Linear Model

In this section we study oscillations of three-dimensional liquid drops with
surface tension and viscosity, embedded into a viscous fluid. Rayleigh de-
scribed for the first time the small oscillations of a drop of liquid about the
spherical form oscillation in air in Rayleigh [189]. Lamb [93, Article 275]
slightly generalized the question by supposing that the liquid globule, of
density ρ, is surrounded by an infinite mass of other liquid of density ρ′.
Recent treatment of the same problem can be found in monographes like
[96, Sect. 61], [127, Chap. VI], [49,58], or in articles like [91,103,108,142,187,
190–199]. In all these approaches one takes the center of the stationary in-
compressible inviscid drop of initial (before oscillations) radius R as the origin
of a spherical coordinate system, and describes the shape of the drop by the
function r(θ, ϕ, t) = R(1 + f(θ, ϕ, t)). In the linear approach, the velocity,
vorticity, pressure, and the shape of the drop are expanded in modes. That is
series of orthogonal functions: spherical harmonics Ylm(θ, ϕ) for the angular
variables, spherical Bessel functions jl(ωr), nl(ωr) for the radial variable, and
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trigonometric functions of time, eiβlt. We have shown in Sect. 13.1 that the
frequencies of linear inviscid isolated oscillations are

ω2
l =

σ

ρR3
l(l − 1)(l + 2) (13.33)

where σ is the surface tension coefficient. The lowest two modes (l = 0, 1) are
eliminated by the mass and momentum conservation, since radial oscillations
are forbidden by incompressibility, and translation are not interesting. The
influence of the external fluid and of the viscosity generate variations of this
basic equation.

13.2.1 Model 1

If viscosity is taken into account, the standard frequency spectrum of the drop
changes (even in the linear approximation), and in addition, the damping of
oscillations occur. Miller and Scriven [142] calculated such oscillations for
a three-dimensional incompressible, Newtonian drop immersed into another
fluid, with viscosity. This type of dynamics of fluid drops occurs in many
physical systems like transfer of one fluid immersed in another fluid, dispersed
in small droplets and offering a large interfacial contact, in emulsions or
biological cells. The space is Euclidean (xi) and so all components of vectors
will be considered contravariant by default, and on the tangent space to the
compact surface of the deformed drop we can use the natural frame given
by the outer normal (r) and the tangent spherical coordinates. To neglect
gravity we consider

gR2�ρ
σ

 1, (13.34)

where g is the gravitational acceleration and �ρ is the difference between
drop density and exterior medium density. The smallness parameter that
controls the nonlinear effects is

�r
λ
 1. (13.35)

That is, if the radial displacement �r (one can take for example 2πr for the
order of magnitude) is small compared to the wavelength of the oscillations
along the surface we are in the linear approximation, and we can neglect
nonlinear terms in the Navier–Stokes equation

∂V

∂t
= −1

ρ
∇P + ν�V , ∇ · V = 0, (13.36)

with ν the viscosity of the drop fluid and � is the Laplacian. The density is
denoted ρ, and we also denote by ρi,e the density of the fluid inside the
drop and outside it. The general receipe to solve the problem is to first
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eliminate pressure from the Navier–Stokes equations by using vorticity, then
we decouple the radial part from the angular part in the unknown functions.
Because of the Laplace type of equations we can take profit of representation
formulas in Sect. 10.6.2 and calculate velocity, vorticity, and pressure only
from the radial components. Then, by including the boundary conditions we
can write the whole algebraic system of equations to determine the coefficients
of the spherical harmonic expansions. The determinant of this system will
provide the damped modes exponents.

To eliminate the pressure P we apply a curl operator on (13.36) and we
introduce the vorticity ω = (ωrer, ωθeθ, ωϕeϕ) in spherical coordinates,

∂ω

∂t
− ν�ω = 0, (13.37)

where obviously ∇× ω = 0.
Equations (13.36) and (13.37) can be further reduced to two scalar equa-

tions for the radial components of the velocity and vorticity. This is possible
because V is a divergence-free poloidal field. Once we obtained the radial
components it is easy to calculate the whole vectors by using the representa-
tion theorem from (10.82) and Sani [143]. We have

V = erVr +
r2

l(l + 1)

[
∇Σ

(
1
r2
∂r2Vr

∂r

)
− er ×∇Σωr

]
, (13.38)

where ∇Σ is the surface gradient operator (Sect. 7.5.1).
To decouple the radial and tangent components in the equations we can

use a trick on the relation

�(
3∑

i=1

xiωi) = �(rωr).

Consequently, we obtain from (13.37) the system(
∂

∂t
− ν�

)
rωr = 0, (13.39)

�
(
∂

∂t
− ν�

)
rVr = 0. (13.40)

We assume that there is no external excitation to maintain the oscillations,
so that the only physical regime will be exponential damping in time. We
expand all quantities in spherical harmonics

(rωr)(r,Ω, t) =
∑
l,m

e−βltWlm(r)Ylm(Ω),

(rVr)(r,Ω, t) =
∑
l,m

e−βltVlm(r)Ylm(Ω), (13.41)
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as well as the pressure itself

P =
∑
lm

Plm(r)e−βltYlm(Ω), (13.42)

where we denoted the angular spherical coordinates by Ω = (θ, ϕ). From
(13.36) and (13.42) we obtain for the pressure coefficients that depend only
on the radial components of the velocity. We have the form

Plm =
ρν

l(l + 1)
∂

∂r

[
r

(
βl

ν
+�(rVr)

)]
e−βlt. (13.43)

or the form

Plm(r) =
νρ

l(l + 1)
∂

∂r

[
r

(
βl

ν
+

1
r2
∂

∂r
r2
∂

∂r
− l(l + 1)

r2

)
rVr

]
, (13.44)

and then use (13.42)

P (r,Ω) =
∑
lm

ρν

l(l + 1)
∂

∂r

[
r

(
βl

ν
+�
)
rVr

]
e−βltYlm. (13.45)

By introducing (13.41) in (13.39) we obtain for the radial functions Wlm

a spherical Bessel functions differential equation

r2W
′′
lm + 2rW

′
lm +

(
βl

ν
r2 − l(l + 1)

)
Wlm = 0, (13.46)

with general solution

Wlm = aljl

(√
βl

ν
r

)
+ blnl

(√
βl

ν
r

)
+ hlm, (13.47)

where jl, nl are the spherical Bessel functions and h is a harmonic function,
which in this case reduces to hlm(r) = a1lr

l+a2lr
−l−1. For the radial velocity

we obtain from (13.40) the differential radial equation(
∂2

∂2
+

2
r

∂

∂r
− l(l + 1)

r2

)(
−βlVlm − νV

′′
lm −

2ν
r
V

′
lm +

νl(l + 1)
r2

Vlm

)
= 0,

(13.48)

with the solution

Vl = C1r
l + C2r

−l−1 + C3jl

(√
βl

ν

)
. (13.49)

We present more details about this solution in Exercise 1 at the end of
this chapter. Solutions of types (13.47) and (13.49) have a polynomial part
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responsible for the inviscid type of flow and the Bessel part responsible for
viscous flow.

From (13.47) and (13.49) we can write the final explicit form of the radial
components of the velocity and vorticity, and the shape function. First we
mention that we have two types of solutions: external and internal with re-
spect to the drop and its exterior environment, labeled by subscripts e, i.
In all the following equations the labels lm are suppressed, but all quan-
tities actually contain them. We will make a note when we come back to
explicit writing of the labels. We denote χe,i =

√
β/νe,i. The free coeffi-

cients a1, . . . , a4 and b0, . . . , b2 are dimensionless and B is the speed. We
have

Vri = B

(
a1
rl−1

Rl−2
+ a3R

2 jl(χir)
r

)
e−βtY,

Vre = B

(
a2
Rl+3

rl+2
+ a4R

2nl(χer)
r

)
e−βtY,

ωri = BRb1
jl(χir)
r

e−βtY,

ωre = BRb2
nl(χer)
r

e−βtY,

r = b0Re
−βtY. (13.50)

We recall that jl(ξ), nl(ξ) are the Bessel spherical functions. For properties
and relations the author can use any of the books [200–204].

The last step is to include the boundary conditions for the surface Σ of the
drop. Miller and Scriven [142] use seven special boundary conditions, namely
free surface (linearized) kinematic condition (9.5), (9.29), and (9.30)

Vri|Σ =
dr

dt

∣∣∣∣
Σ

→ βb0 + a1B + a3Bj(χiR) = 0, (13.51)

continuity of the radial velocity

Vri|Σ = Vre|Σ → a1 + a3j(χiR) = a2 + a4n(χeR), (13.52)

continuity of the radial vorticity

ωri|Σ = ωre|Σ → b1j(χiR) = b2n(χeR), (13.53)

and continuity of the surface divergence of the velocity

∇ΣV i = ∇ΣV e → a1(l − 1) + a3[(l − 1)j(χiR)− χiRjl+1(χiR)]

= −a2(l + 2) + a4[(l − 1)n(χeR)− χeRnl+1(χeR)]. (13.54)
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We note that j, n without a subscript means jl, nl, but where is the case we
wrote explicitly jl+1, etc. For the surface differential operators in (13.54),
and in the following equations, we refer to Sect. 7.5 or Weatherburn [87] and
Sani [143].

Next boundary conditions refer to balance of forces at the interface.
Instead of using the continuity of the three components of the Euclidean
forces, it is more convenient (in the spherical symmetry case) to use other
three quantities: radial component of Euclidean force (Fr), surface diver-
gence (∇Σ · F ), and radial part of the surface curl (∇Σ × F ) of the surface
force. To write these boundary conditions we need to introduce some physi-
cal parameters specific to fluid interface physics. For reference the reader can
consult [142, 191, 192]. We denote like before by σ the coefficient of surface
tension, we introduce Γl = ρel + ρi(l + 1) but we shall skip the subscript
l in Γ , k is the coefficient of interfacial dilatational viscosity, ε is the co-
efficient of interfacial shear viscosity, Λ is the coefficient of interfacial di-
latational elasticity, and M is the coefficient of interfacial shear elasticity.
If the interface is clean and simple, the coefficients of interfacial viscosity
and elasticity vanish, i.e., K = 0, Λ = 0, D = 0. On the contrary, very
large values for D describe an inextensible interface like in the case of bi-
ological membranes [205]. Also, if S  D we have an interface where the
viscous dissipation of energy is mainly due to the boundary layer flow in
the underlying bulk fluid, and much less due to shearing deformation. The
densities and kinematic viscosities of the fluid inside and outside the drop
are ρi,e, νi,e, respectively. Based on these coefficients, it is useful to use the
symbols

Sl =
ε

R
− M

βlR
, Dl =

k

R
− Λ

βlR
,

namely S is the combined coefficient of surface shear elastic and viscos-
ity and D is the combined coefficient of surface dilatational elastic and
viscosity.

The boundary condition for the radial component of the surface force can
be obtained from the Navier–Stokes equation (10.13) in radial coordinates
(r, θ, ϕ) [96]

F r = σrr = −P + 2η∗
∂vr

∂r
, (13.55)

where it is usual to introduce a correction in the viscosity by taking into
account the interfacial dilatational elasticity since the interface may have
elastic properties, too. Forces of elastic nature depend on the interfacial strain
in the same manner that viscous forces depend on the interfacial rate of
strain [142]. The correction is

η → η∗ = η −D = η − k

R
+
Λ

βR
.
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From (13.50) and (13.55), and the expression of surface tension (13.43) we
can write for the pressure as the contribution of the internal, external, and
surface terms (where again we skip writing the l subscript for β, etc.)

P = Pσ + Pin + Pext = −σb0(l − 1)(l + 2)
R

+
ρiβBa1R

2

l

+
ρiβBa3R

2

l(l + 1)

[(
l +

3
2

)
jl

(√
β

νi
R

)
−
√
β

νi
Rjl+1

(√
β

νi
R

)]
+
ρeβBa4R

2

l(l + 1)

[(
l +

3
2

)
nl

(√
β

νe
R

)
−
√
β

νe
Rnl+1

(√
β

νe
R

)]
, (13.56)

where jl, nl are the Bessel and von Neumann functions and the first term is
the surface tension obtained from the linear fluid drop model in Sect. 13.1,
or from literature, for example, [93, Article 274], [127, Chap. VI], or [96,
Chap. VII]. The derivative of the velocity in (13.55) can be calculated from
(13.50) and (13.55)

2(η∗ −D)
∂vr,i

∂r
= 2B(η∗ −D)

[
a1(l − 1)

+ a3

(
(l − 1)jl

(√
β

νi
R

)
−
√
β

νi
R

)
jl+1

(√
β

νi
R

)]
. (13.57)

From (13.56) and (13.57) we have the next boundary condition for (13.55)

σb0(l − 1)(l + 2)
R

− a1
ρiBβR

2

l
− a3

ρiβBR
2

l(l + 1)

[(
l +

3
2

)
jl

(√
β

νi
R

)

−
√
β

νi
Rjl+1

(√
β

νi
R

)]
+2a1B(ηi−D)(l−1)+2a3B(ηi−D)

(
(l−1)jl

(√
β

νi
R

)
−
√
β

νi
Rjl+1

(√
β

νi
R

))
− ρeβBa2R

2

l + 1
= 2B(ηe −D)

[
−a2(l + 2)

+a4

(
(l − 1)nl

(√
β

νe
R

)
−
√
β

νe
Rnl+1

(√
β

νe
R

))]
−Bρeβa4R

2

l(l + 1)

[(
l +

3
2

)
nl

(√
β

νe
R

)
−
√
β

νe
Rnl+1

(√
β

νe
R

)]
. (13.58)

Similar equations can be written for the surface divergence and radial compo-
nent of the surface curl of the surface force [142], where the surface differential
operators are defined in Sects. 7.5.2 and 7.5.4. Finally, we have sets of seven
equations from the seven boundary conditions in seven unknowns: b0, . . . , b2
and a1, . . . , a4, each set for one value of l. Once we obtained these series coef-
ficients (13.47) and (13.49) for the radial parts of the velocity and vorticity, it
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is easy to calculate the full V ,ω vectors by using the representation formula
(13.38).

For each l, the system of seven equations splits into two systems, S2×2

in b1, b2 and S5×5 in b0, a1, . . . , a4, where the first one is responsible for the
vorticity coefficients only. The compatibility of these systems is provided by
canceling of the corresponding determinants, and this determines the βl coef-
ficients. This decomposition in 2+5 equations induces two types of solutions
corresponding to two types of waves.

If we choose solutions with detS2×2 = 0 and detS5×5 �= 0, the sec-
ond condition implies that we have no radial motion vr = 0, and so the
wave generated by these equations are shear waves or purely rotational
waves without any oscillations involved. The first condition provides radial
component of the vorticity and hence, by (13.38) we have only tangent com-
ponents for the velocity. These waves always decay in time without oscilla-
tions because the corresponding coefficients β are pure real [142, 192, 206].
In Fig. 13.14, we present a numerical check of this fact for air, water, and
oil. We used νwater = 10−6 P, νair = 1.82 × 10−3 P, νoil = 1.5 × 10−4 P,
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Fig. 13.14 The contour plots of the determinant of the system of equations S2×2 = 0 vs.

the real and imaginary part of β, for two values of l, and different types of fluids. It is easy
to see that the only zeros (closed contours) are along the Imβ = 0 axis
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Fig. 13.15 The contour plots of the determinant of the system of equations S5×5 = 0 vs.
the real and imaginary part of β, for two values of l, and different types of fluids. It is easy
to see that the zeros (closed contours) involve both real and imaginary parts of β = 0

ρwater = 103 kg m−3, ρair = 1 kg m−3, and ρoil = 750 kg m−3 for l = 2, 5. In
all these examples the result does not change with the value of the combined
coefficient of surface shear in the range S = 0→ 500 kg s−1.

If we choose detS2×2 �= 0 and detS5×5 = 0 we obtain solutions with
radial velocity, but zero radial vorticity. The condition of zero determinant
provides complex values for β, hence we have both oscillations and damp-
ing. In Fig. 13.15, we present numerical calculation of the roots of the 5× 5
determinant to check the occurrence of both real and imaginary parts for β.

Figures 13.14 and 13.15 provide a numerical estimation of the evolution
of the roots β. To have a better understanding on the influence of physical
parameters on oscillating and damping regimes of the drop, we analyze the
exact expression of β in some special cases. We use the same convention of
subscript, i.e., (i, e) for inner and outer part of the drop.
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In the case of low viscosities, for the droplet configuration, i.e., ρe  ρi,
we can write the following expressions

Reβl =
√
ΩL,iβL,e F

(
ρe

ρi
,
νe

νi

)
+

2l + 1
2R2

βL,i

[
2(l2 − 1)

+ 2l(l + 2)
(
νe

νi

)2(
ρe

ρi

)3

+
νe

νi

ρe

ρi

(
l + 2− ρe

ρi
(l − 1)

)]
×
(
l + 1 + l

ρe

ρi

)−1(
1 +
√
νe

νi

ρe

ρi

)−2

, (13.59)

where

F =
(2l + 1)2

2
√

2
(l(l+1)(l−1)(l+2))

1
4
ρe

ρi

{[
l

(
1+

ρe

ρi

)
+1
] 5

4
[
1+

ρe

ρi

√
νe

νi

]}−1

Here we choose to write the ratio of exterior parameters over the inner
parameters to have a formula available for series expansion. The new symbols
introduced are

ΩL =
√

σ

ρR3
, Lamb frequency, (13.60)

and
βL =

ν

R2
, Lamb damping factor. (13.61)

In a similar way we calculate the imaginary part of β for the droplet config-
uration

Imβl = ΩL,i

√
l(l + 1)(l − 1)(l + 2)

l + 1 + l ρe

ρi

−
√
ΩL,iβL,eF

(
ρe

ρi
,
νe

νi

)
, (13.62)

In the case of a bubble, ρe % ρi, we have for the real part of β

Reβl =
√
ΩL,eβL,i F

(
ρi

ρe
,
νi

νe

)

+
2l + 1
2R2

βL,e

[
2(l2 − 1)

(
νi

νe

)2(
ρi

ρe

)3

+ 2l(l + 2)

+
νi

νe

ρi

ρe

(
1− l + ρi

ρe
(l + 2)

)](
l + (l + 1)

ρi

ρe

)−1(
1 +
√
νi

νe

ρi

ρe

)−2

. (13.63)

The imaginary part of β for the bubble case is

Imβl = ΩL,e

√
l(l + 1)(l − 1)(l + 2)

l + (l + 1) ρi

ρe

−
√
ΩL,eβL,iF

(
ρi

ρe
,
νi

νe

)
. (13.64)

From the general behavior of (13.59)–(13.64) we note that no matter if
the system is droplet or bubble, the damping (real part) depends on both
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Fig. 13.16 Reβ for a water droplet, R = 1 cm, σ = 73.4 × 10−3 N m−1, submerged in
different fluids

βL,i, βL,e, while the oscillations (imaginary part) depend only on ΩL of the
denser medium. Moreover, we can write

Ω2
drop

Ω2
bubble

=
(
ΩL,i

ΩL,e

)2
l

l + 1
=
ρbubble,e

ρdrop,i

l

l + 1
=

l

l + 1
, (13.65)

meaning that the higher modes, large l, namely the modes with more compli-
cated shapes, have same frequencies no matter if they are drops or bubbles,
but for lower modes, the droplet system is slower in oscillations.

To figure out how do (13.59), (13.62)–(13.64) work in a case study, we
choose a drop of water of radius R = 1 cm, σ = 73.4 × 10−3 N m−1, and we
plot Reβ vs. the mode l and the external density ρext in Fig. 13.16. From this
figure we infer that in the range νe/νi = 0.1→ 10 the aspect of the Reβ(l, ρe)
does not change qualitatively. For viscous droplet Reβ has a maximum when
ρe ≤ ρi and decreases when the two densities become more and more different.
The highest dissipation happens when the densities are equal. If the exterior
viscosity is higher than the internal one, dissipation increases with the density
of the exterior fluid. For very viscous drops the dissipation increases if the
exterior fluid is less dense. In Fig. 13.17, we present the imaginary part of β as
function of the same parameters and variables. We notice that the frequency
of oscillations decreases with the density of the exterior fluid and increases
with l. However, there is no significant variation of the frequencies with νe/νi.
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Fig. 13.17 Imβ for same water droplet, R = 1 cm, σ = 73.4× 10−3 N m−1, submerged in
different fluids

This happens because in the expression of Imβ (13.62) and (13.64), the first
term (that one independent of νe) is always much larger than the second one,
and there is no way to increase the second term for any range of R, σ, ρi, νi.
Even if we approach νe →∞ still there is no significant change in frequencies
because this term has a horizontal asymptote in this limit. If νi increases
very much we meet a new qualitative behavior. Imβ → 0 and the frequency
of oscillations decreases to zero (especially if ρe has large values) until some
oscillation modes completely vanish. This is shown by the gap in the right
lower corner of Fig. 13.17. This occurrence of an aperiodic mode on behalf of
annihilation of an oscillating mode when viscosity increases was noticed first
time in Willson [194].

Other limiting situations. For inviscid fluids, νi,e = 0 we have the well-
known Lamb frequencies denoted β in literature [93], [127, Equations (280)
and (283), Sect. 98], and [190], with

β = i

√
σl(l − 1)(l + 1)(l + 2)
R3[ρel + (l + 1)ρi]

, (13.66)

which becomes

βbubbles = i

√
σ(l − 1)(l + 1)(l + 2)

R3ρe
, (13.67)
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for bubbles, and

βdrops = i

√
σl(l − 1)(l + 2)

R3ρi
, (13.68)

for droplets.
For small viscosities, νi,e ≈ 0, it is easy to verify the occurrence of the slip

effect between the exterior and interior fluid layers. In this case the solutions
are dominated by the terms expressed in terms of rational functions, while the
Bessel function terms become negligible. The coefficients a3,4 vanish, which
cancels a whole column in the determinant of S2×2. Consequently, β becomes
pure imaginary, i.e.,

β = ±iΩL

√
l(l − 1)(l + 1)(l + 2)

l + (l + 1) ρi

ρe

.

From (13.50), by neglecting jl, nl, we obtain a3 = a4 = b1 = b2 = 0. By
plugging this result in (13.38) we obtain a simple relation between the tangent
velocities at the fluid interface

V�,i

V�,e

∣∣∣∣
Σ

= − l + 1
l
,

which put into evidence the strong slip effect for this situation.
If the viscosity of the exterior fluid is very large, the imaginary part of

β approaches zero and the real part approaches infinity (Fig. 13.18). Con-
sequently, the drop enters in a very rapidly decaying mode. For a bubble,
ρi, νi ≈ 0, in an viscous fluid we obtain

β = ΩL,e

√
(l − 1)(l + 1)(2l + 1)R2

2(2l2 + 1)νe
,

Fig. 13.18 The damping coefficient Reβ for R = 1 cm water drop in vacuum
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Fig. 13.19 Real and imaginary parts of β for a R = 1 cm drop with inextensible interface
(like a cell membrane) with density and viscosity close to water

while for a bubble in an inviscid fluid (νe = 0) we have

β =
(2l + 1)(l + 2)νe

R2
± iΩL,e

√
(l − 1)(l + 1)(l + 2).

Finally, in the limit of inextensible surface (controlled by large values of
D compared to S) we have large values for Reβ (see Fig. 13.19). This effect
happens because of the enhancement of the boundary layer flow next to the
surface, pretty much like in the case of flat interfaces.

A comprehensive analysis of small-amplitude axisymmetric shape oscilla-
tions of an isolated viscoelastic drop is performed in the paper [199]. The
authors investigate the characteristic equation for the complex frequency
and find exact solutions in several regimes: high-viscosity limit, viscoelastic
drop (for different ranges of elasticities), low-viscosity limit, and quadrupole
oscillations. The same authors contribute in Kishmatullin and Nadim [108]
on the applications of the same model to the radial oscillations of gas micro-
tubule encapsulated by a viscoelastic solid shell and surrounded by slightly
compressible viscous liquid. These calculations are useful for research in the
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medical field, for example, the description of pulsations of such encapsulated
bubbles in the blood flow for ultrasound diagnosis.

As an alternate approach the drop and bubble shape oscillations in the
small-amplitude viscous case, we mention the work of Prosperetti. Instead
of using the traditional expansion of the potential, velocity, and pressure
in spherical harmonics, in articles [103, 187, 195, 196] the author uses a
decomposition in terms of poloidal and toroidal normal modes (Sect. 10.6.3)
inspired by Chandrasekhar [127]. For example, we can represent the vorticity
as ω = ∇× (A +∇×B) with

A = T (r)Ylm(θ, ϕ)eλter,

B = S(r)Ylm(θ, ϕ)eλter,

where the functions T and S describe the toroidal and poloidal modes,
respectively. Next, we can express the velocity

V = A +∇×B +∇φ,

with
�φ = −∇ ·A.

Basically, such decomposition still uses the spherical harmonics, but combines
them in more useful way to handle the curl, and curl(curl) operators occurring
in the vorticity equations. We have

V =
∑
lm

(V (1)
lm T lm + V (2)

lm Slm)

where

Slm = ∇×∇× [Slm(r, t)Ylmer], T lm = ∇× [Tlm(r, t)Ylmer].

The algebra of these modes is described in Sect. 10.6.3. The radial dependence
is not anymore controlled by spherical Bessel functions, like in the previous
section, but by the HankelH(1,2)

k and Bessel functions Jn. The resulting equa-
tion is related to the Plesset equation, which lately raised interest in bubble
sonoluminescence problems [184]. The big advantage is that the toroidal and
poloidal normal modes are effectively decoupled. The T modes, where S = 0,
describes shape oscillations of the drop, and one can find the same results
that have been obtained by the previously presented formalism. The S modes
(T = 0) describe a motion in which different shells of fluid rotate about the
center, i.e., shear waves or purely rotational waves. Since there is no tangent
restoring force for these modes they will be aperiodically damped. In Pros-
peretti [196] an extended analysis on these modes is presented, for drops and
bubbles embedded in fluids of different viscosities.
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13.3 Nonlinear Three-Dimensional Oscillations
of Axisymmetric Drops

Like in the case of viscous linear models, nonlinear viscous droplets oscilla-
tions are investigated by solving the Navier–Stokes equations in the incom-
pressible fluid approximation, by using the same mode expansion. Several
theoretical models describing the nonlinear drop dynamics were developed
in the last three decades. For example, in [197, 207] inviscid nonlinear drops
are investigated, and in [104,188,208,209] the analysis is extended to viscous
droplet, but only numerically. The boundary integral method [208] and the
Galerkin-finite element method [188] give good results in principle, but can-
not model drops with viscosities in the physical range of interest. Also, the
finite element methods have been used but limited to low viscosities, since
higher Reynolds numbers require long computational times and a very fine
discretization mesh. Another approach [139] still uses the modes expansion
method for axisymmetric drops, but handles the resulting differential equa-
tions by the variational principle of Gauss.

In the following we describe a theoretical model for the nonlinear axisym-
metric oscillations of viscous drops, which provided a good agreement with
experimental data and also offers several predictions [139]. We consider a
drop of viscous incompressible fluid, uniform surface tension coefficient, ν =
νi, ρ = ρi, σ constant, freely oscillating in a fluid of negligible density, and
viscosity, ρe = νe = 0. We study the case of an axisymmetric drop, with
the symmetry axis along Oz. We issue polar coordinates (θ, z) so that the
interface is parametrized by the shape function

r(θ, ϕ, t) = r(θ, t) = R0[A0(A2, A3, . . . ) +
∑
l≥2

Al(t)Pl(cos θ)], (13.69)

where Pl are the Legendre polynomials and A0 < 1, θ ∈ [0, π]. The depen-
dence of the free term A0 on the other coefficients fulfills the constraint of
preserving constant volume (Sect. 13.1.4).

By momentum conservation the center of mass of the drops moves along
the Oz axis with a displacement s(t). The law of motion of the center of mass
is given by

s(A2, A3, . . . ) =
3
8
R0

∫ 1

−1

cos θ[A0 +
∑
l≥2

AlPl(cos θ)]4d(cos θ). (13.70)

In the (noninertial) frame of the center of mass the Navier–Stokes equation
(10.13)

∂V

∂t
+ (V · ∇)V − ξez = −1

ρ
∇P − ν∇×∇× V ,

∇ · V = 0, (13.71)
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where ξ = stt, the acceleration of the center of mass, and ez is the unit vector
in the direction of the Oz axis. By applying ∇× on (13.71) we obtain

∂ω

∂t
+∇× (V · ∇)V = −ν∇×∇× ω, (13.72)

where ω = ∇× V is the vorticity. The kinematic condition for the free fluid
surface (see (9.5), (9.29), and (9.30)) reads

V · (rer − rθeθ) = r
∂r

∂t
, (13.73)

where eθ is the tangent unit vector (Sect. 4.12) and subscripts like rθ, ξtt
mean differentiation. The driving force of the oscillations is the surface ten-
sion, which always acts normal to the surface (see (8.43) and (8.45)), while
the tangent stress here is zero. Consequently, we can write the boundary
conditions in the form (8.45)

σijNjtθ,i = 0, σijNjtϕ,i = 0

σijNjNi = 2σH, (13.74)

where we use for the stress tensor its three-dimensional Euclidean compo-
nents, N is the unit normal to the surface, tθ,ϕ is the spherical coordinates
basis of the tangent space to the surface, and H is the mean curvature of the
surface (7.9).

To solve the system of nonlinear equations (13.72)–(13.74) we use the
ansatz inspired by Becker et al. [139] and Brosa [140] and based on the repre-
sentation Theorem 28 applied to the linearized version of the (incompressible)
Navier–Stokes equation in an inertial frame

∂V

∂t
= −1

ρ
∇P − ν∇×∇× V , ∇ · V = 0. (13.75)

The procedure is a sort of method of variation of constants doubled by an
implicit substitution. Namely, we first build solutions for the linearized ver-
sion of the Navier–Stokes equation, and write the velocity, pressure, and
shape as series of spherical Bessel functions in r, Legendre polynomials in
θ, and exponential in t, with constant coefficients. The linear coefficients
of these series are calculated at r = R0, which is again a linear approx-
imation. To move to the nonlinear solution we couple the coefficients in
the velocity and pressure series with the coefficients in the shape (13.69).
In that, we assume that the linear constant coefficients depend actually
on ai. Also, where ever we have R0 in the solutions we substitute it with
r(θ, t). Finally, with these implicit equations at hand, we can run a numerical
code.

From Theorem 28 we know that

V = ∇× (Qβ) +∇×∇× (Qb) +∇c, P = −ρ∂c
∂t
, (13.76)
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form a solution of (13.75) if β and b fulfill the diffusion equation

ν�β =
∂β

∂t
, ν�b =

∂b

∂t
,

where c is harmonic function �c = 0 and Q = r·const. From the above
conditions we can build solutions for β and c

β, b ∼ e−λtjl

(√
λ

ν
r

)
Ylm

c ∼ e−λt

(
r

R0

)l

Ylm, (13.77)

where we eliminated the second type of spherical Bessel function from the
solution, nl, as being singular in r = 0. We obtain

∇× (rβ) =
1

sin θ
βϕeθ − βθeϕ,

∇× (∇× (rb)) =
l(l + 1)
r

ber +
(
bθr +

bθ
r

)
eθ +

(
bϕr

sin θ
+

bϕ
r sin θ

)
eϕ,

∇c =
l

r
cer +

cθ
r

eθ +
cϕ

r sin θ
eϕ,

where subscripts denote differentiation and {er,eθ,eϕ} is the orthonormal
basis in spherical coordinates (Sect. 4.12). The velocity field (13.76) becomes

V = er
l(l + 1)b+ lc

r
+ eθ

(
βϕ

sin θ
+ brθ +

bθ + cθ
r

)

+eϕ

[
−βθ +

1
sin θ

(
brϕ +

bϕ + cϕ
r

)]
. (13.78)

Because the fluid flow is divergence free, the divergence-free Newtonian tress
tensor can be written in the form

σij = η

(
∂V i

∂xk
+
∂V k

∂xi

)
. (13.79)

The boundary conditions (13.74) in spherical components are

σijNiNj = σrr,

σijNitθ,j = σrθ, σijNitϕ,j = σrϕ. (13.80)

By using (13.79) and (13.80), we obtain the components of σij in spherical
coordinates. For reference, these components can be also found in literature,
like for example in Landau and Lifchitz [96].
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σrθ = η

(
1
r

∂Vr

∂ϕ
+
∂Vθ

∂r
− Vθ

r

)
,

σrϕ = η

(
1

r sin θ
∂Vr

∂ϕ
+
∂Vϕ

∂r
− Vϕ

r

)
,

σrr = −P + 2η
∂Vr

∂r
. (13.81)

If we want to eliminate the interface slip (that is not to take into account this
phenomenon in our present solutions) we need to equate σrϕ = σrθ = 0. To
do this, the only possibility is to choose β = 0, otherwise β and b have always
Ylm terms of different orders, and it is impossible to balance the tangent
stresses. Using this ansatz and taking profit of the cylindrical symmetry of
the present model we have

V l = e−λt

[
b0l∇×∇×

(
rjl

(√
λ

ν
r

)
Pl(cos θ)

)
+ c0l∇

(
r

R0

)l

Pl(cos θ)
]
,

Pl = ρλe−λtc0l

(
r

R0

)l

Pl(cos θ), (13.82)

where b0l and c0l (in m2 s−1) are so far arbitrary initial conditions for the
coefficients. The coefficients bl describe the vortex flow and the coefficients cl
describe the potential flow.

It is natural to introduce now the hypothesis that the coefficients al(t) of
the shape function (13.69) have the same type of time dependence, to fulfill
the kinematic surface condition (13.73)

al(t) = a0
l e

−λt. (13.83)

We plug (13.81)–(13.83) in the kinematic condition for the free interface
(13.73), and in the normal and tangent stress equations (13.74), we obtain a
3 × 3 set of linear homogenous systems of equations, one for each l, in the
unknowns al, bl, cl. We need to make some dimension adjustments to have in
the end dimensionless determinants for the systems. Where ever it occurs,
we substitute jl,rr with

jl,rr

(√
λ

ν
r

)
=
l(l + 1)
r2

jl −
λ

ν
jl −

2
r
jl,r,

from the corresponding spherical Bessel equation [200, 202, 203]. From now
on we will denote jl,r = j

′
l . Also, we introduce an arbitrary constant B of

dimensions m2 s−1 and rescale the coefficients b̃l = bl/B and c̃l = cl/B.
With all these, we can write the equation for the determinant of the system
of order l, taken at r = R0 as linear approximation. This equation gives the
compatibility condition for the systems and it results in the admissible values
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for λ. With the equations of the system in the order (from above) (13.73),
(13.74) tangent, and (13.74) normal

det

⎛⎜⎜⎜⎜⎝
λR0

l(l+1)jlB
R0

lB
R0

0 B

(
2l(l+1)

R2
0
− 2

R2
0
− λ

ν

)
jl − 2Bj

′
l

R0

2(l−1)B
R2

0

−σ(l+2)(l−1)
R0

2Bηl(l+1)
R0

(
j
′
l − jl

R0

)
B

(
−λρ+ 2ηl(l−1)

R2
0

)
⎞⎟⎟⎟⎟⎠ = 0

(13.84)

With the notations

X = R0

√
λ

ν
, α =

(
−σl(l − 1)(l + 2)R0

ρν2

) 1
4

, (13.85)

the determinant (13.84) becomes

jl(X)
[
−4l2(l − 1)(l + 2)− 2l

α4

X2
+ 2(2l2 − 1)X2 −X4 + α4

]

+Xj
′
l (X)

[
−2X2 + 4l(l2 + l − 2)− 2α4

X2

]
= 0. (13.86)

This equation was obtained, for example, in Becker et al. [139] and same equa-
tion, in a different notation, is noted in Chandrasekhar [127, Equation (280),
Article 98]. Equation (13.86) is a transcendental equation in λ, which allows
only numerical solutions. As a check, we will expand it in the asymptoti-
cal limit ν → 0, i.e., x → ∞. For the spherical Bessel functions we use the
asymptotic formulas

jl(X)→ 1
X

sin
(
X − πl

2

)
,

Xj
′
l → cos

(
X − lπ

2

)
− 1

2X
sin
(
X − lπ

2

)
,

and we obtain

λ2 → ω
σl(l − 1)(l + 2)

ρR3
0

, (13.87)

which is exactly the linear limit for the inviscid droplet oscillations (13.33),
(13.68), and also [93,96,127]. In the approximation of small viscosity, (13.86)
reduces to

X4 − 2(2l + 1)(l − 1)X2 − α4 = 0

with exact solutions

λi,l =
(2l + 1)(l − 1)ν

R2
0

±

√
σl(l − 1)(l + 2)

ρR3
0

−
(

(2l + 1)(l − 1)ν
R2

0

)2

, (13.88)
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Fig. 13.20 Determinant in (13.86) plotted against X parameter showing real roots (the
vertical bars) responsible for dissipative modes. The upper frames show a weak dependence
of the real roots on α, but the lower frames show some shift in the roots induced by
different l

where i, called the radial wave label, counts the solutions of the polynomial
equations, and l is called here the polar wave label. In this form, the solution
for the damping and oscillating modes was obtained in [93, 139, 195, 196]. In
Fig. 13.20, we present some numerical results for the general equation for λ
(13.86). We plot the value of the determinant (LHS in (13.86)) function of
X = R0

√
λ/ν > 0 parameter for several values of l and α. The real roots are

numerically obtained and are represented by vertical bars in the figures. These
roots form an almost periodic countable set and they are responsible for the
damping or aperiodic modes. The real roots have a rather weak dependence
on α (upper frames in Fig. 13.20), even if α runs in the range 5–107. This
means that the aperiodic modes, especially the strongly dissipative modes for
high values of real λ, are not very much influenced by the actual surface of the
drop. These are modes of internal velocity fields that leave the drop surface
at rest [139]. However, the dependence on l for fixed α is stronger (lower
frames in Fig. 13.20), i.e., the roots are slightly shifted. This calculation also
predicts existence of dissipative modes for l = 1, when the shape is not
deformed.

The solutions of (13.86) depend on two labels i and l, where i labels
solutions for a given l. We plug these solutions for Xli into the systems of
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equations, and we calculate the series coefficients for the velocity, pressure,
and shape. We introduce a different notation for the initial values of the
coefficients a, b, c, namely A(0), B(0), C(0). We have

V (r, θ, t) =
∑

l

∑
i

e−λlit[Bli(0)bli(r, θ) + Cl(0)cl(r, θ)], (13.89)

where we defined

bli(r, θ) =
l(l + 1)
r

jL

(
Xli

r

R0

)
Pl(cos θ)er

−
[
Xli

R0
j
′
l

(
Xli

r

R0

)
+
jl

(
Xli

r
R0

)
r

]
P

′
l (cos θ) sin θeθ, (13.90)

cl(r, θ) =
lrl−1

Rl
0

Pl(cos θ)er −
rl−1

Rl
0

P
′
l (cos θ) sin θeθ. (13.91)

r(θ, t) = R

(
A0 +

∑
l

∑
i

Ali(0)e−λlitPl(cos θ)
)
. (13.92)

To introduce the contribution of nonlinearity, we generalize (13.89) to the
form

V (r, θ, t) =
∑

l

∑
i

Bli(t)bli(r, θ;Ak) +
∑

l

Cl(t)cl(r, θ). (13.93)

This nonlinear ansatz consists in two main ideas. On the one hand it is
breaking the fixed coupling between the time evolution of the vortex flow
and the potential flow. The new coefficients Bli(t) and Cl(t) are independent,
compare new equation (13.93) with the previous linear (and exponential time
dependence) equation (13.89). This linear coupling assures that the tangent
stress of any mode vanishes at the undeformed drop surface.

On the other hand, the nonlinear ansatz introduces the implicit dependence
between the geometry and the dynamics. This is the typical shape-velocity
coupling for nonlinear systems. For example, in the case of a one-dimensional
Korteweg–de Vries soliton, the shape (amplitude A, width L) is coupled with
the dynamics (velocity V ) in one equation L ∼ const./

√
A± const.V . In the

Korteweg–de Vries case this happens because we obtain the velocity field of
the fluid directly from the shape [2]. In this sense, the introduction of the
dependence on the shape coefficient is justified. In the nonlinear drop case
this coupling is introduced in two ways. One way is to let the vortex velocity
coefficients bli to depend on the shape coefficients Ali(t). The second way is
to consider the radius as variable and substitute everywhere in the velocity
equation R0 → r(θ, t). The coefficients of the vortex velocity become

bli = b0li∇×∇×
[
jl

(
Xli

r

r(θ, t)

)
rPl(cos θ)

]
.
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To eliminate the confusion between r as variable and r as shape function we
denote from now on r(θ, t) = ξ(θ, t). The above expression becomes

bli = b0li(Ak)
[(
Xli

ξ2
Pl

sin θ

(
2ξθ
ξ
j
′
l − ξθθj

′′
l −

Xliξ
2
θ

ξ2
rj

′′
l − ξθj

′
l

)

+
jl
r

(P
′′
l sin θ − P ′

l cot θ)
)

er

Xli

ξ2

(
ξθ
r
j
′
lPl +

Xliξθ
ξ
j
′′
l Pl +

ξ sin θ
r

j
′
lP

′
l

)
eθ

]
. (13.94)

With the b coefficients from (13.94), and the c coefficients from (13.91)
plugged in (13.93) we have the velocity in explicit form, depending on the
Ak coefficients. The vorticity can be calculated in a similar way

ω =
∑

l

∑
i

b0li(Ak)∇×∇×∇×
[
rjl

(
Xli

r

ξ

)
Pl

]
eθ. (13.95)

The final step in solving the nonlinear drop dynamics is to plug (13.69),
(13.93), and (13.95) in the kinematical and dynamical equations (13.71)–
(13.73), and minimize numerically the mean square errors.

A first consequence of taking into account the nonlinearities by the cou-
pling between shape and vorticity is the generation of a more realistic depen-
dence of vorticity on the distance to the center of the drop. In the linear case,
the drops experience a singular concentration of vorticity in a thin layer below
the drop surface for the weakly damped modes. For such modes λ is domi-
nantly imaginary and spherical Bessel functions of imaginary argument have
exponential growth. In the nonlinear case, because of the dependence bli(Ak),
the vorticity depends strongly on the shape. Numerical simulations show [139]
an increase of vorticity below the surface where this has larger curvature and
a diminishing of the vorticity under neighborhoods with low curvature. The
flow in the boundary later becomes dominant when the Reynolds number,
R = (σR0/ρ)1/3ν−1, exceeds 1,000 [188]. Still, the asymptotic behavior of
the spherical Bessel functions next to the surface is in effect, but is con-
trolled by the coefficients Ak. This thin exterior layer of finite vorticity ef-
fect, also noticed [93], is again a direct consequence of the introduction of
nonlinearities. Like in the one-dimensional soliton case (which we use here
like a Guinea pig for comparison) nonlinear waves tend to occur rather in
thin layers than in deep layers. Consequently, in numerical models based on
the above calculations, one can split the drop in a thin exterior boundary
layer where (13.94) and (13.95) are used for calculation of velocities and vor-
ticity, and the nonlinear effects are dominant, and an inner core of spherical
shape where the flow is dominantly potential [139, 208]. This approach is
also used when the nonlinearities becomes stronger, like we will present in
Sect. 13.3.1.
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Following numerical minimization of the mean square errors of the above
solutions, one can note the occurrence of specific features of the nonlinearity.
The most important result is probably the fact that linear predictions are not
anymore valid for modes with l > 3 and/or for Reynolds number larger than
100. For such higher modes the nonlinear shapes become less symmetrical and
the time scale changes. Lower modes oscillate more slowly than higher modes,
and higher modes decay faster than lower modes, and do not reach their linear
solutions. Another typical nonlinear effect is the coupling between different
modes. Through the dependence bli(Ak) higher modes, of lower energy, can
be generated by strong nonlinear coupling with lower modes. This effect can
be detected if the coupling between two modes is time persistent and it does
not depend on the initial conditions of the drop motion. For example, if we
set up the initial condition with a certain shape described by a multipole
of order l0 (this can be experimentally done by applying ultracoustic waves
or variable electric field on levitated droplets), after a while, new modes are
excited (the new modes appear to have always the same parity as l0) and
an amplitude-dependent shift in the frequency of the initial mode is noticed.
The higher modes dissipate faster than the lower ones because the mode
coupling is inhibited by increase in viscosity, and so higher modes have no
energy reserves to survive and die out. The coupling between modes can be
detected either by checking for the coincidence in time of the extrema and
zeros of different modes (Fig. 13.21), or by plotting the shape coefficients Ak

of different modes in a phase space, i.e., plot one coefficient vs. another one
in time.

Another effect induced by the nonlinearity is changing the relations
between the frequency, viscosity, and the amplitude of oscillation. For small
amplitude oscillations the frequency decreases monotonically with the increase
of the viscosity [195, 196]. In the nonlinear case the frequency has a maxi-
mum at a value different from ν = 0 [188, 210]. Not only the frequency is
affected by nonlinear couplings, but also the periodicity of oscillations. For
drops undergoing l = 2 modes there is slight tendency to spend more time
in the prolate shape than in the oblate one (about 60–70% more) [197]. This
asymmetric type of oscillation is a sign for the occurrence of nonlinear sur-
face waves, like, for example, cnoidal waves. Such nonlinear waves can trigger
the occurrence of solitary waves on the surface of the drop, and for stronger
oscillations, can even initiate the breakup of the drop. In Sect. 13.3.1, we will
show how the resonant approach will clarify the existence of such time asym-
metric oscillations. Extensive examples of numerical simulations of shapes of
nonlinear drops can be found in [188,197,208].

13.3.1 Nonlinear Resonances in Drop Oscillation

The approach toward analysis of nonlinear oscillations of drops presented
above is based on substitution of amplitude-dependent corrections in the lin-
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Fig. 13.21 An example of how the coupling between two different modes, k and j, can
be detected by checking the simultaneous occurrence of their zeros and extrema in time

ear solutions. In this process, nonlinear terms that may have the same spatial
dependence and frequency as some linear terms (secular terms) can alter lin-
ear oscillations in an unexpected way, or can build blowup solutions. Such
solutions grow in time enough fast (usually polynomial law) to disturb the
perturbational structure of the system. A nonlinear mechanism responsible
for such situations is the existence of resonant terms. By definition, resonance
involving two or more linear normal modes is possible when the frequencies of
these modes are commensurate, i.e., if a linear combination of the frequencies
with integer coefficients is zero. For the inviscid drop oscillations, for example
(13.8), the typical low modes resonances are ω4± 3ω2 = 0, ω8± 2ω5 = 0, and
ω16 ± 2ω10 = 0, in general

N∑
j=1

kjωlj = 0, kj , lj ∈ Z. (13.96)

Such resonances occur usually in the third order of approximation in the
amplitude (smallness parameter being in this case ε, the ratio between the
amplitude of the oscillations and the radius of the drop in equilibrium) either
by cubic self-interaction of the linear modes or by interaction between the
linear modes and second-order harmonics [197, 207, 211]. There is one more
interest in studying resonances. They produce couplings between modes that
allow transfer of energy and angular momentum between these modes in
addition to the usual amplitude dependence frequency shifts discussed in
Sect. 13.3.
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Fig. 13.22 Comparison between the resonances of linear oscillating modes ωn and ωm

(n < m) for a three-dimensional inviscid drop and a bubble

For an inviscid linear drop the frequencies are given by (13.8). In Fig. 13.22,
we present all possible resonances between modes up to l = 100, in compar-
ison with the possible resonances for a bubble in linear oscillations in an
inviscid fluid (13.14). The interacting modes are denoted with n,m and the
resonances are denoted by symbols. The above mentioned resonances for
drops are presented in this figure. We notice that the resonances for drops
differ from those for the bubbles. In Fig. 13.23, we present the evolution
of possible resonances for an inviscid linear drop with rigid core of radius
a = εR0 (13.17), function of the radius of the core. In this figure each sector
of circle represents a resonance, and the angle of this sector is related to ε.
For example, no core is represented by a black sector lying between 0 and
π/6, an ε = 0.1 core resonance is represented by a black sector lying between
π/6 and 2π/6, etc. In this way we can identify the figure resonances that
persists when the core grows or resonances that vanish. Of course l = 100
is nonrealistic, but it just gives an idea about the distribution of the reso-
nances in this discrete phase space. For example, the traditional resonances
at n = 5,m = 8, n = 10,m = 16, n = 11, and m = 96 are pretty stable no
matter of the radius of the core, while lower modes resonances vanish when
the fluid layer becomes thinner. The dependence of the resonance pairs from
the core is not a simple or smooth function because it is given actually as
a solution of a two-dimensional diophantine equation with parameter. Unex-
pected new resonances can become abundant next to a situation where there
are no resonances. For example, in Fig. 13.23, we have for ε ∈ [0.4, 0.8] in
between four and six resonant pairs, but for ε = 0.63 we have nine resonant
pairs. A numerical estimation of the density of resonances in this discrete
phase space function of the radius of the core can be performed by applying
the Rouche theorem for complex functions [212] to the function
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Fig. 13.23 Each sector of circle represents a resonance between two linear oscillating
modes ωn and ωm (n < m) for a three-dimensional inviscid drop with rigid core. ε is the
radii ratio core/drop. While the core extends (in the figure the black sector rotates CCW)
some resonances vanish, some new occur, and some are stable

f(n,m, ε) = sin
(
Pπ
ωn(ε)
ωn(ε)

)
.

For a given core (i.e., ε), when the two frequencies are commensurate, the
function f(n,m, ε) becomes zero if the integer P is chosen sufficiently large
in the domain of definition of n,m. Then we can estimate the number of
zeros of f for fixed n and ε as a function of m, i.e., the number of possible
resonances with a given n, in a given range, by the Rouche formula

Nzeros =
1

2πi

∮
Γ

F ′(m̂)
F (m̂)

dm̂,
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Fig. 13.24 Structure of possible resonant pairs for an inviscid drop with core

where Γ is a contour surrounding the real domain of definition for n,m,
F (z) = f(n, z, ε), and m̂ ∈ C is prolongation of m in the complex plane. In
Fig. 13.24, we present such an estimation for ε = 0.7 and n,m ∈ [2, 100].
The possible resonances can be found by looking for closed contours in the
figure.

An efficient tool for the resonances analysis is the Lagrangian approach
[211,213–215], if the hypotheses of the flow allow its existence. For an invis-
cid isolated incompressible drop in potential flow we define its Lagrangian
in spherical coordinates as the functional L[Φ,Φθ, Φϕ, Φr, Φt, ξ, ξθ, ξϕ, ξt, δP ],
where Φ is the velocity potential, ξ is the shape function defined here in the
form r|Σ = r̃(θ, ϕ, t) = R0(1 + εξ), and δP is the difference between the
ambient pressure and the pressure for the spherical equilibrium shape. The
action is the integral of the Lagrangian taken between two fixed moments
of time. The Lagrangian depends also on the derivatives with respect to the
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coordinates and time. The Lagrangian density contains a term responsible
for the kinetic energy density of the drop ρV 2/2, one for the surface ten-
sion potential energy σdA and a Lagrange multiplier term for the volume
conservation V = 4πR3/3. So the Lagrangian reads

L =
∫∫∫

V

ρ(∇Φ)2

2
dV +

∫∫
Σ

[
σ + δP

(
r̃3

3
− V

4π

)]
dA, (13.97)

where V is the volume of the drop, Σ is the boundary of the drop,
ρ is the density, and dA is the spherical area element. The parameter
δP works here as a Lagrangian multiplier. In spherical coordinates r =
(r(θ, ϕ, t) sin θ cosϕ, r(θ, ϕ, t) sin θ cosϕ, r(θ, ϕ, t) cos θ), we have the first fun-
damental form coefficients (Sect. 7), E = r2 + r2θ , G = r2 sin2 θ + r2ϕ, and
F = rθrϕ. The area element is

dA =
√
EG− F 2dθdϕ = r2

√
1 +

r2θ
r2

+
r2ϕ

r2 sin2 θ
sin θdθdϕ.

With these notations the Lagrangian reads

L =
ρ

2

∫ 2π

0

∫ π

0

∫ r̃

0

(
Φ2

r +
Φ2

θ

r2
+

Φ2
ϕ

r2 sin2 θ
− 2Φt

)
r2dr sin θdθdϕ

+
∫ 2π

0

∫ π

0

[
σr̂2
(

1+
ξ2θ
ξ2

+
ξ2ϕ

ξ2 sin2 θ

)1/2

+ δP
(
r̂3

3
− V

4π

)]
sin θdθdϕ. (13.98)

Next step is to expand the velocity potential and the shape function in series
of orthogonal functions

ξ(θ, ϕ, t) =
∑

l

Ξl(t)Ylm(θ, ϕ),

Φ(r, θ, ϕ, t) =
∑

l

Cl(t)rlYlm(θ, ϕ), (13.99)

where the r dependence is imposed by the constraint that any term of the
sum (13.99) should fulfill Laplace equation and should also be so regular in
origin [207, 211]. We plug (13.99) in the Lagrangian equation (13.98) and
write the corresponding Euler–Lagrange equations

d

dt

∂L

∂Ξ̇l

− ∂L

∂Ξl
= 0,

d

dt

∂L

∂Ċl

− ∂L

∂Cl
= 0, (13.100)

where the dot represents differentiation with respect to time. The general
analysis of these equations is a difficult algebraic task. For this reason the
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Euler–Lagrange equations are expanded themselves in series with respect
to the smallness parameter ε. Order zero is always identical zero, and so
the main analysis is concentrated on the second and third orders in this
formalism. The time variation of the physical quantities is divided into two
disparate time scales: the fast time scale of the primary oscillations (usually
linear oscillations excited from initial conditions) and the slow time scale on
which the amplitude and frequency are modulated because of the nonlinear
coupling. The fast time scale is the time parameter t itself, while the slow
time scale is taken as an independent coordinate t1 = εt.

In the second order in ε, the Euler–Lagrange equations are still linear so
that the time dependence of Ξl and Cl is exponential, i.e., Ξl, Cl ∼ eiωlt.
Moreover, the linear structure of the differential equations in (13.100) in
order ε2 allows us to reduce “half” of the system. Namely, we will obtain
linear relations between the coefficients of the potential and shape function
series expansions [211]

Cl = C0
l (ωl, l)Ξl, (13.101)

where C0
l are obtained directly. For example, in the case of three-dimensional

inviscid isolated incompressible irrotational drop, we obtain in this order
C0

l = −iωl/l.
The coefficients in front of this exponential are not considered constant,

like in the linear theory, but they are allowed to depend on the slow time
scales to account for the resonant modulation of the amplitudes and the
frequencies of the primary oscillations. This next step could be approached
either by numerical procedures or by focusing on certain modes and trying to
find the behavior of resonance modes. Under these approximations we chose
to limit the t-time dependence of the potential and shape only through a
finite number N of frequencies, namely those fulfilling a resonance condition
of the type (13.96). From (13.101), for an N -coupling, we have

ξ(θ, ϕ, t) =
N∑

j=1

Ξj(θ, ϕ, t1)e
iωlj

t

Φ(r, θ, ϕ, t) =
N∑

j=1

rljC0
lj (ωlj , lj)Ξj(θ, ϕ, t1)e

iωlj
t. (13.102)

This substitution reduces the infinite number of equations in (13.100) to a
finite number, reducing hence the dynamical problem to a description of the
interaction of N resonant modes. Next, we plug (13.102) in L and we average
L over the most rapid time scale. The procedure works if this fast scale is
small compared to the other slow modulation scales. We assume, without
loss of generality, that we can average with respect to the first frequency, ωl1 .
Through this procedure the averaged Lagrangian density becomes a func-
tional depending only on Lave[lj , ωlj , Ξj(θ, ϕ, t1)]. When we plug the finite
sums (13.102) in the quadratic terms in (13.98), we obtain the coupling terms,
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as quadratic products of coefficients ΞljΞlk . We expand again the N selected
Ξ coefficients in terms of spherical harmonics over the shape degeneracy of
the frequencies

Ξj(θ, ϕ, t1) =
lj∑

mj=−lj

Ξ0
lj ,mj

(t1)Ylj ,mj
(θ, ϕ), (13.103)

and write again a new set of N Euler–Lagrange equations for Ξ0
lj ,mj

(t1) that
emerges in the form

dΞ0
li,mi

dt1
=

N∑
k=1

N∑
p=1

lk∑
mk=−lk

lp∑
mp=−lp

Eli,mi

lk,mk,lp,mp
Ξ0∗

lk,mk
Ξ0∗

lp,mp
, i = 1, . . . , N,

(13.104)
where ∗ represents complex conjugation. Equation (13.104) is a nonlinear
ODE system of N + 2

∑N
j=1 lj equations. The coefficient matrix E is not

symmetric. Equation (13.104) represent a system of generalized Riccati-type
equations (Sect. 18.2), and consequently, we expect it to have first integrals.
For quadratic coupling the two first integrals are the total energy and the
angular momentum [211]. In general, for higher orders of nonlinear coupling
it is rather the exception than the rule to find N + 2

∑N
j=1 lj first integrals,

unless the system is integrable, and it has an infinite number of invariants
and hence soliton solutions. Otherwise, the system behave stochastically. The
system equation (13.104) has always trivial stationary solutions of the form
Ξ0

lj
= δ

lj0
lj

const. for some j0 = j1, . . . , jN . This is an oscillation with frequency
ωlj0 corresponding to a unique mode, with shape degeneracy of the order
2lj0 + 1.

The interesting solutions are the time periodic ones. To accomplish an
exact calculation we choose a quadratic resonance N = 2 similar to those
presented in the beginning of the section, k1ωl1 + k2ωl2 = 0, k1,2 ∈ Z. In this
case the system (13.104) reduces to two ordinary differential equations in t1,
in the two Ξ0 functions. We mention that, because we integrate the initial
Lagrangian over the period of one of the two resonant frequencies, say ωl1 ,
the averaged Lagrangian is not symmetric in the two frequencies or in the
two shape functions Ξ0. We have

dΞ0
l1,m1

dt1
=

l2∑
m=−l2

l2∑
n=−l2

Al1,m1
l2,l2,m,nΞ

0∗
l2,mΞ

0∗
l2,n

dΞ0
l2,m2

dt1
=

l1∑
m=−l1

l2∑
n=−l2

Al2,m2
l1,l2,m,nΞ

0∗
l1,mΞ

0∗
l2,n, (13.105)

where the coefficients A are obtained directly from (13.104), and in general
are represented by products of 3 − j symbols and rational functions of l1,2
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[207,211]. To work a simple example we assume that we confine all the energy
of the drop in one single component of each of the l1,2 modes. This reduces
the summations in (13.105) to one single term in the RHS of each equation,
and for compatibility reasons this is m = m1 = −2m2 = −2n

dΞ0
l1,m1

dt1
= A1(Ξ0∗

l2,m)2

dΞ0
l2,m2

dt1
= A2Ξ

0∗
l1,m1

Ξ0∗
l2,m2

, (13.106)

where A1,2 is just a simplified way of writing the coefficients from (13.105) in
the no-summation case. In the following, we use a procedure similar to those
used in the nonlinear Schrödinger equation, namely break the functions in a
magnitude and a complex phase

Ξ0
lj ,mj

= Rje
iθj , Rj(t1), θj(t1) ∈ R. (13.107)

If we plug these forms in (13.106) and separate the real and imaginary parts,
we form a system of four real differential equations for Ri, θi. By multiplying
the real and imaginary parts of the first equation in (13.106) and then we
subtract them, we have

A1R
2
2 sin(θ1 + θ2) +A1R1

dθ1
dt1

= 0. (13.108)

By substituting this derivative of θ1 back in the real part of the first equation
in (13.106) we obtain

dR1

dt1
=

cos 2θ2 − sin θ1 sin(θ1 + 2θ2)
cos θ1

A1R
2
2. (13.109)

We use another simplification hypothesis, namely we choose that the phases
do not depend on time, i.e., the derivatives of θ1,2 are zero, which implies
from (13.108) the constraint θ1 = −2θ2. In this situation (13.109) reduces to

dR1

dt1
= CR2

2, (13.110)

where C is the abbreviation for the constant resulting from (13.109). From
the real and imaginary part of the second equation in (13.106) we have

cos(θ1 + θ2)A2R1R2 = cos θ2
dR2

dt1
,

sin(θ1 + θ2)A2R1R2 = − sin θ2
dR2

dt1
, (13.111)
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and it results
dR2

dt1
= A2R1R2

cos(θ1 + θ2)
cos θ2

,

or simply denoted
dR2

dt1
= DR1R2. (13.112)

From the (13.110) and (13.112) we obtain the relation

R2
2 =
(

D
C

)2

R2
1 + E , (13.113)

with E arbitrary constant of integration. If we plug the invariant (13.113)
in the system (13.110) and (13.112) the equations for R1,2 decouple and the
resulting equation for say R1 becomes

d2R1

dt21
= 2CDER1 + 2D2R3

1. (13.114)

But this last equation is just the differential equation for the Jacobi elliptic
functions (18.3). One solution for (13.114) is the well-known cnoidal cos
function

R1(t1) = R0
1cn(λt1 + t01|m), (13.115)

with the relation between its amplitude R0
1 and scaling coefficient λ given by

D2(R0
1)

2 = λ2 and the modulus m given by λ2(m+2) = −2CDE . The number
t01 is an arbitrary constant. The modulus m is a real number between 0 and
1 and is related to the period T of the cnoidal cos function cn(λt1 + T |m) =
cn(λt1|m), namely T = 4K(m), where K(m) is the complete elliptic integral
of the first kind (Sect. 18.3). Form = 0 the cn function is precisely the regular
cos. For m ∈ (0, 1) the function is still periodic and oscillating and the period
increases with m. In the limit m = 1 cn(λt1|1)→ sech(λt1). The other mode
has the amplitude

R2(t1) =

√
E +

D
C

(R0
1)2cn2(λt1 + t01|m). (13.116)

It results that the motion of the drop in the quadratic resonance, under the
above simplifications, is a nonlinear oscillation whose period and amplitude
are strongly dependent on the initial conditions. In some specific limit the
motion becomes aperiodic and slows down toward an asymptotic approach
toward an equilibrium position, i.e., the profile of a soliton in time (in the slow
time scale). However, this is just radial oscillations, and no actual solitary
wave travels on the surface of the drop. This is because we neglected from
the beginning the vorticity of the velocity.

The aspect of the cnoidal solution for values of m close to 1 suggests an
explanation for the different amounts of time that the drop spends in dif-
ferent shapes, contrary to the case of a linear oscillation. In Fig. 13.25, we
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Fig. 13.25 The two amplitudes vs. time for a quadratic resonance in a nonlinear drop.
These are a cnoidal oscillation, R1(t1) (the larger amplitude oscillation), and the oscillation

of R2(t1) from (13.116)

present the graphics of R1,2(t1) for two values of m. We note the odd dis-
tribution of different amplitudes in time. We also note the coupling between
the two modes, since they oscillate in phase. Example of drop shapes for
the quadratic resonance for l1 = 5 and l2 = 8 are given in Fig. 13.26. Some
cnoidal oscillations with same resonance l1 = 5 and l2 = 8 are presented in
Fig. 13.27 in a cross-section in the vertical yz-plane (ϕ = π/2). In this case we
choose m1 = m2 = 0 (axial symmetry), Ξ0

1 = Ξ0
2 (equal contribution of both

modes), the modulus of the cnoidal oscillation m = 0.9, and the perturbation
ε = 0.3. The period of the oscillation is T = 4K(m) = 10 s. We note how
the energy is transferred back and forth from the l = 5 mode to the l = 8
mode. From upper left to lower right, in frame 1 we have a mixture of 5 + 8
modes, then in frame 2 we have a pure l = 5 mode, then in the next two
frames we have l = 8. In the first frame of the lower line we have l = 5 again,
etc. More cnoidal oscillations l1 = 5 and l2 = 8 are presented in Fig. 13.28 in
a cross-section in the horizontal xy-plane (θ = π/2). In this case we choose
m1 = 3,m2 = 8, Ξ0

1 = Ξ0
2 , m = 0.9, and the perturbation ε = 0.3. We note

again energy transfer and coupling between the modes: From upper left to
lower right, in frame 1 we have a l = 3 mode, then in the next four frames
we have l = 8 modes, and in the last two frames we have a mixture 8 + 3,
and back toward a l = 3 mode.

More complex oscillations can be described if we choose to keep all the
terms in the summations in (13.105). Numerical calculations show, how-
ever, that axisymmetric drop oscillations are unstable to nonaxial symmetric
perturbations. Also, in this section we have omitted the effect of cubic or
higher-order resonances which will complicate the interactions.

13.4 Other Nonlinear Effects in Drop Oscillations

If we include material interface properties in the nonlinear model presented
above, we obtain extra terms in the surface dynamical equation that may
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Fig. 13.26 Different drop shapes for oscillations associated with the quadratic resonance
l1 = 5 and l2 = 8. From upper left to lower right we have m1 = m2 = 0 (axial symmetric
case), m1 = 2, m2 = −1 (the case studied in Natarajan and Brown [211]), m1 = 3, m2 = 5,
and m1 = 5, m2 = −6. The deformation is characterized by ε = 0.3, and we choose
Ξ0

1 = Ξ0
2

create other special effects. We choose the physical terms related to the sur-
face viscoelastic and shear properties from Sects. 8.3–8.5. For example, if we
include the surface intrinsic dilatational and shear viscosities k and ε we need
to include in the Navier–Stokes equation terms from (8.47). That is, terms in
addition to the normal force due to the surface tension 2σHN , which from
the geometrical point of view is a normal force dominant term proportional
to the mean curvature. We use the same spherical coordinates for the axially
symmetric drop.



342 13 Nonlinear Surface Waves in Three Dimensions

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

-1.5-1-0.5 0.5 11.5

-1.5

-1

-0.5

0.5

1

1.5

-1.5-1-0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

-1.5-1-0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

-1.5-1-0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

-1.5-1-0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

-1.5 -1-0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

Fig. 13.27 Cnoidal oscillations l1 = 5, l2 = 8 in the yz-plane (ϕ = π/2) for axial
symmetry m1 = m2 = 0, Ξ0

1 = Ξ0
2 , m = 0.9, ε = 0.3
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Fig. 13.28 Cnoidal oscillations l1 = 5, l2 = 8 in the xy-plane (θ = π/2) for m3, m2 = 8,
Ξ0

1 = Ξ0
2 , m = 0.9, ε = 0.3

The extra normal term that can be added is from the second to the last
term in (8.46) and (8.47), and 2HN(k + ε)B̂∇ΣV becomes in spherical
coordinates

2HN(k + ε)B̂∇ΣV → 2ε
R

(
1

R sin θ
∂(Vr) sin θ

∂θ
+

2Vr

R

)
, (13.117)
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where Vr and Vθ are the normal and tangent components of the material
velocity on the surface. In the above equation and in the following we use
the spherical coordinates expression of surface differential operators for the
axial symmetry (i.e., independence of ϕ and independence of r of the V
components), namely

∇Σ · V =
1

r sin θ
∂(Vθ sin θ)

∂θ
+

1
r2
∂r2Vr

∂r
=

1
R sin θ

∂(sin θVθ)
∂θ

+
2
R
Vr,

and

∇Σ × V =
(

1
r

∂(rVθ)
∂r

− 1
r

∂Vr

∂θ

)
eϕ =

(
Vθ

r
− 1
R

∂Vr

∂θ

)
eϕ.

Regarding extra tangent terms, we can use the second term in the RHS of
(8.46) and (8.47) to be considered as a normal force term, representing the
contribution of variable surface tension coefficient. In spherical coordinates
it reads

B̂∇Σσ →
1
R

∂σ

∂θ
. (13.118)

Also, from the term (k+ ε)B̂∇Σ(B̂∇Σ ·V ) we have in spherical coordinates

(k + ε)B̂∇Σ(B̂∇Σ · V )→ k + ε
R

∂

∂θ

(
1

R sin θ
∂(sin θVθ)

∂θ

)
. (13.119)

Another tangent term can occur from the double curl operator

− ε
g
B̂∇Σ × (∇Sigma × B̂V )→ 2εVθ

R2
+

2ε
R2

∂Vr

∂θ
. (13.120)

A comprehensive study of the effects of these surface viscoelastic terms was
performed numerically in Tian et al. [198]. In the same spirit of Sects. 13.2
and 13.3 and (13.84) and (13.117), we calculate characteristic equations, i.e.,
the determinant of the linear system of equations for the series expansion
coefficients as a function of the complex oscillation frequencies λ. From the
Navier–Stokes equation (13.71) plus all the viscoelastic terms from (13.117)
to (13.120) we obtain an equation similar to the condition (13.86)

α2 +Xk − 12Xε +
1
α2

+R0

√
λ

ν

jl+1

(
R0

√
λ
ν

)
jl

(
R0

√
λ
ν

)

×
[
16XkXε

α2
− (1 + α4)

3Xk − 4Xε

α4

]
= 0, (13.121)
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where
α2 =

λ

ρωL
, Xε =

νR0 + ε
ρR3

0ωL
,

Xk =
σs(c∗)− σ0

σs(c∗)
+

2(νR0 − k)
ρR3

0

, ω2
L =

σ0l(l − 1)(l + 2)
ρR3

0

.

In these equations we take into account the variation of the surface tension
coefficient with concentration of the surfactant, c∗, namely σs(c∗), σs(0) = σ0.

The results of numerical calculation of the roots of (13.121) [198] show
that, in addition to the roots we found from previous equations, there is one
additional one generated by the term responsible for the surface elasticity,
namely the first term in Xk. This new root is equivalent to the occurrence of
a new type of longitudinal surface waves. These wave are strongly damped,
unless there is a nonzero tangent gradient of surface tension (Marangoni
effect). These new mode can be excited by applying an external tangent
stress along the droplet surface or by the nonlinear coupling between the
shape oscillating modes. In Sect. 13.5 we show that such longitudinal modes
can be modeled with nonlinear equations of modified Korteweg–de Vries type,
having for solutions cnoidal waves or their limiting solution, solitary waves.

A very good review on experimental results, and some theoretical trends
about liquid drops, breaking-up, and collision is done in Eggers [216].

13.5 Solitons on the Surface of Liquid Drops

Several experiments and numerical tests [207, 211, 217–220] performed on
droplets suggest the existence of standing traveling waves on the surface
[219, 220]. In this section we introduce a slightly different nonlinear liquid
drop model, compared to the models treated in the previous sections of this
chapter. The differences consist first in retaining higher-order nonlinear terms
in the dynamical equations, and second, by searching especially for travel-
ing surface oscillations, instead of combined radial and transverse modes.
The result is that we obtain surface waves in the form of cnoidal functions
that approach in limiting cases solitary waves [221–224]. In the following we
present two parallel approaches: the traditional Euler equation approach and
a Hamiltonian approach, both leading to the same result. The same model
adapted for microscopic systems is considered again in Sect. 16.2. Another
particular feature of this model is that instead of the traditional series expan-
sion in terms of spherical harmonics, we use other type of localized functions
defined on the sphere surface.

We restrict our model to inviscid irrotational flow; therefore, we have
a velocity potential governed by the Laplace equation �Φ = 0, and the
dynamics is described by Euler’s equation,

ρ

(
∂

∂t
v + (v · ∇)v

)
= −∇P + f , (13.122)
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where P is pressure. If the density of the external force field is also potential,
f = −∇Ψ , where Ψ is proportional to the potential (gravitational, electrosta-
tic, etc.), then (13.122) reduces to Bernoulli’s scalar equation. We apply two
types of boundary conditions: one on the external free surface of the drop,
Σ1, and one on an inner rigid core surface of radius a, Σ2. These types of
boundary conditions are also used in literature [2,207,211,217,218]. We can
express the boundary conditions in the form

dr

dt

∣∣∣∣
Σ1

=
(
∂r

∂t
+
∂r

∂θ

∂θ

∂t
+
∂r

∂ϕ

∂ϕ

∂t

)
Σ1

,
∂r

∂t

∣∣∣∣
Σ2

= 0,

respectively. The radial velocity and tangential velocities are, respectively,

∂Φ

∂r
=
∂r

∂t
,

∂Φ

∂θ
= r2

∂θ

∂t
,

∂Φ

∂ϕ
= r2 sin θ

∂ϕ

∂t
.

The second boundary condition is applied only if the drop has some rigid
core inside or in the case of liquid shells. An interesting situation which, to
our present knowledge, was not yet studied experimentally is when the liquid
layer is bounded from outside by a rigid circumference and the free surface
is toward inside. For example, a shallow layer of liquid adhering on the inner
surface of a hollow sphere. A convenient geometry places the origin at the
center of mass of the distribution and, according to our previous hypothesis
concerning the traveling waves, the shape is described by

r(θ, ϕ, t) = R0[1 + ξ(θ, ϕ, t)] = R0[1 + g(θ)η(ϕ− V t)].

ξ = gη is dimensionless function. Here R0 is the radius of the undeformed
spherical drop and V is the tangential velocity of the traveling solution ξ
moving in the ϕ direction and having a constant transversal profile g(θ) in
the θ direction. We mention that the linearized form of the first boundary
condition

∂r

∂tΣ1

=
dr

dt
|Σ1,

allows only radial vibrations and no tangential motion of the fluid on Σ1,
[2, 207, 211, 217, 218], and so nonlinearity is mandatory for the existence of
this tangent traveling modes. The second boundary condition restricts the
radial flow to a spherical layer of depth h(θ) by requiring Φr|r=R0−h = 0.
This condition stratifies the flow in two layers: the surface layer, R0 − h ≤
r ≤ R0(1+ξ), and the liquid bulk, r ≤ R0−h. This is again a typical situation
in nonlinear, irrotational, or viscous flow. Usually, inside compact domains
of flow, the external layer develops irrotational flow, while the inside bulk
is potential, and they separate in a natural way [93, 96, 109, 127]. In what
follows the flow in the bulk will be considered negligible compared to the
flow in the surface layer. This condition does not restrict the generality of
the argument because h ∈ [0, R0] is still arbitrary at this stage. Nonetheless,
keeping h < R0 opens possibilities for the investigation of more complex
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fluids, e.g., superfluid, flow over a rigid core, multilayered systems [105, 207,
211,225] or multiphasic, etc. Instead of an expansion of Φ in term of spherical
harmonics, consider the following form

Φ(θ, ϕ, t) =
∞∑

n=0

(r/R0 − 1)nfn(θ, ϕ, t). (13.123)

The convergence of the series is controlled by the value of the small quan-
tity ε = max| r−R0

R0
| [2]. The condition max|h/R0| 	 ε is also assumed to

hold in the following development. Laplace’s equation introduces a system of
recursion relations for the functions fn, namely

fn = [(−1)n−1(n− 1)�Ωf0 − 2(n− 1)fn−1

+
n−2∑
k=1

(−1)n−k (2k − (n− k − 1)�Ωfk)
n(n− 1)

, n > 2, (13.124)

where

�Ω =
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂

∂ϕ

is the angular Laplacian operator in spherical coordinates. Equation (13.124)
reduces the unknown functions to only two, �Ωf0 and f1:

f2 = −1
2
(�Ωf0 + 2f1),

f3 =
1
6
(4�Ωf0 − 4�Ωf1 + 4f1 + 2),

f4 =
1
24

(�2
Ωf0 − 14�Ωf0 + 8�Ωf1 − 8f1) . . . . (13.125)

If f0 is harmonic on the sphere surface, still the series does not reduce
to spherical harmonics, because in the second order we have again Lapla-
cian of f1. In a special case when all fn are harmonic, the series is deter-
mined by f1 only. If we choose the independent functions �Ωf0 and f1 to
be smooth on the sphere, they must be bounded together with all the fns
(these being linear combinations of higher derivatives of f0 and f1) and hence
the convergence of the series in (13.123) is controlled by these two functions
only.

The second boundary condition plus the condition of having a traveling
wave along ϕ only: ξϕ = −V ξt, yield, up to second order in ε,

f0,ϕ = V R3
0 sin2 θξ(1 + 2ξ)/h+O3(ξ), (13.126)
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i.e., a connection between the flow potential and the shape, which is typical
of nonlinear systems. Equation (13.126) together with the relations

f1 	 R2
0ξt 	

2h
R0
f2 	 −

h�Ωf0
R0 + 2h

, (13.127)

which follow from the boundary condition and recursion, characterize the
flow as a function of the surface geometry. The balance of the dynamic and
capillary pressure across the surface Σ1 follows by expanding up to third
order in ξ the square root of the surface energy of the drop

US = σR2
0

∫
Σ1

(1 + ξ)
√

(1 + ξ)2 + ξ2θ + ξ2ϕ/ sin2 θdΣ, (13.128)

and by equating its first variation with the local mean curvature of Σ1 under
the restriction of the volume conservation. The surface pressure, in third
order, reads

P |Σ1 =
σ

R0
(−2ξ − 4ξ2 −�Ωξ + 3ξξ2θctgθ), (13.129)

where σ is the surface pressure coefficient. Equation (13.129) was obtained
in a general frame in Sect. 10.4, too.

In the above equation, and subsequently, we consider that for all the sur-
face wave and perturbations studied with this model, the relative amplitude
of the deformation ε is smaller than the angular half-width L, i.e.,

ξϕϕ ∼ ξθϕ ∼ ξθθ ∼ ε2/L2  1, (13.130)

as most of the experiments [105, 106, 210, 219, 225] concerning traveling sur-
face patterns show. This is a typical request in shallow water soliton deduc-
tion, too [2, 3]. Consequently, we can neglect the terms ξϕ,θ, ξϕ,ϕ, and ξθ,θ

in this approximation. We comment here that, after solving the dynamical
equations for the surface traveling waves and obtaining cnoidal and solitary
solutions, we plugged these solutions back in the dynamical equation to com-
pare the orders of magnitude of different terms (Fig. 13.29). The comparison
of these terms appears to be in good agreement with the approximations in
(13.130).

Equation (13.126) plus the boundary conditions yield, to second order in ε,

Φt|Σ1 +
V 2R4

0 sin2 θ

2h2
ξ2

=
σ

ρR0
(2ξ + 4ξ2 +�Ωξ − 3ξ2ξθcotanθ). (13.131)

The linearized version of (13.131) together with the linearized boundary con-
dition, Φr|Σ1 = R0ξt, yield a limiting case of the model, namely, the nor-
mal modes of oscillation of a liquid drop with spherical harmonic solutions
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Fig. 13.29 Plot of different terms of different orders of magnitude in (13.131), after we
found the solutions, as a general check of the expansions. It is easy to check that the
approximations performed were appropriate

[217, 218]. Differentiation of (13.127) and (13.131) with respect to ϕ yields
the dynamical equation for the evolution of the shape function η(ϕ− V t):

Aηt +Bηϕ + Cgηηϕ +Dηϕϕϕ = 0, (13.132)

which is the Korteweg–de Vries (KdV) equation with coefficients depending
parametrically on θ

A = V
R2

0(R0 + 2h) sin2 θ

h
, B = − σ

ρR0

(2g +�Ωg)
g

,

C = 8
(
V 2R4

0 sin4 θ

8h2
− σ

ρR0

)
, D = − σ

ρR0 sin2 θ
. (13.133)

In the case of a two-dimensional liquid drop, the coefficients in (13.133) are
all constant. Equation (13.132) has traveling wave solutions in the ϕ direction
if Cg/(B−AV ) and D/(B−AV ) do not depend on θ. These two conditions
introduce two differential equations for g(θ) and h(θ), which can be solved
with the boundary conditions g = h = 0 for θ = 0, π. For example, h1 =
R0 sin2 θ and g1 = P 2

2 (θ) is a particular solution that is valid for h  R0.
It represents a soliton with a quadrupole transverse profile, being in good
agreement with [207, 210, 211]. We mention that the next higher-order term
in (13.131), −3ξ2ξθctgθ, introduces a η2ηϕ nonlinear term into the dynamics
and transforms the KdV equation into the MKdV equation. The traveling
wave solutions of (13.132) are then described by the Jacobi elliptic function
(Sect. 18.3)
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η(θ, ϕ, t) = η1 + η0 sn2

(
ϕ− V t
L

∣∣∣∣k), (13.134)

where the η0 and η1 are the constants of integration introduced through
(13.132) and are related to half-width and the velocity (Sect. 18.4) by

V (θ) =
B

A
+
Cg

3A

[
η0

(
1 +

1
k

)
+ η1

]
and

L(θ) =

√
−12kD
η0Cg

with k ∈ [0, 1], the modulus of the elliptic sn function, being a free parameter.
Different from a traditional soliton, this circular cnoidal wave has all its para-
meters, amplitude, width, period, and angular velocity dependent on θ. This
result for (13.134) is known as a cnoidal wave solution with angular period
T (θ) = 4K[k]L(θ), where K(k) is the Jacobi elliptic integral (Sect. 18.3). If
m → 1 and T → ∞ then a one-parameter (η0) family of traveling pulses
(solitons or antisolitons) is obtained,

ηsol = η0sech
2[(ϕ− V t)/L], (13.135)

with velocity

V =
b

A
+
Cg

3A

(
η0 + 3η1

)
,

and angular half-width L =
√
−12D/Cgη0. Taking for the coefficients A to

D the values given in (13.133) for θ = π/2 (the equatorial cross-section), one
can calculate numerical values of the parameters of any cnoidal excitation,
function of the constants η0, η1, k and the structure functions g(θ), h(θ). The
solitary waves, among other wave patterns, have a special shape–kinematic
dependence η0 	 V 	 1/L; a larger amplitude perturbation is narrower
and travels faster. This relation can be used to experimentally distinguish
solitons from other modes or turbulence. When a layer thins (h → 0) the
coefficient C in (13.133) approaches zero on average, producing a break in
the traveling wave solution (L becomes singular) because of the change of sign
under the square root (13.134). Such wave turbulence from capillary waves
on thin shells was first observed in Holt and Trinh [106]. For the water shells
described there, (13.133) gives h(μm) ≤ 20ν/k, i.e., h = 15–25 μm at V =
2.1–2.5 ms−1 for the onset of wave turbulence, in good agreement with the
abrupt transition experimentally noticed (ν is the kinematic viscosity). The
cnoidal solutions provide the nonlinear wave interaction and the transition
from competing linear wave modes (C ≤ 0) to turbulence (C 	 0). In the
KdV equation (18.8), the nonlinear interaction balances or even dominates
the linear damping and the cnoidal (roton) mode occurs as a bend mode (h
small and coherent traveling profile). The condition for the existence of a
positive amplitude soliton is gCD ≥ 0 which, for g ≤ 0, limits the velocity



350 13 Nonlinear Surface Waves in Three Dimensions

from below to the value V ≥ hω2/R0, where ω2 is the Lamb frequency for
the l = 2 linear mode. This inequality can be related to the “independent
running wave” described in [210], which lies close to the l = 2 mode. We
stress that here we describe the equatorial modes, i.e., standing traveling
profiles in the ϕ direction, and so the Legendre polynomials Pl(cosϕ) we talk
about are defined on ϕ. The periodic limit of the cnoidal wave is reached
for k 	 0, and the shape is characterized by harmonic oscillations (sn→ sin
in (13.134)) which realize the quadrupole mode of a linear theory P2 limit
[207,211,217,218] or the oscillations of Legendre polynomials (Fig. 13.30). In
Fig. 13.31, we present a cross-section in two solitary waves traveling along
the equator.

Cn

l=4

k=0.59,L=0.4,�=0.325

Sph

Cn

l=7

k=0.98, L=0.133

�=0.325

Sph

Sol

k=0.99,L=0.4

�=0.348

Cn

l=3 

k=0.92,L=0.4 

�=0.35

Sph

Fig. 13.30 Equatorial cross-sections (θ = 0) in a drop excited with cnoidal surface waves
(13.134). The soliton limit plus rigid core and a 3-, 4-, and 7-mode solution are shown,
together with the closest matching Legendre functions for each cnoidal wave for compari-
son. The labels l for the corresponding Legendre polynomials Pl(cos ϕ) and the parameters
k, L, and ε = η0/R0, of the corresponding cnoidal solution, are given
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Fig. 13.31 Cross-section of the droplet excited by two solitary waves traveling along the
equator

The NLD model introduced in this paper yields a smooth transition from
linear oscillations to solitary traveling solutions (“rotons”) as a function of the
parameters η0, η1, k; namely, a transition from periodic to nonperiodic shape
oscillations. In between these limits the surface is described by nonlinear
cnoidal waves. In Fig. 13.30, some configurations from this transition from
a periodic limit to a solitary wave are shown, in comparison with the cor-
responding normal modes that can initiate such cnoidal nonlinear behavior.
This situation is similar to the transformation of the flow field from periodic
modes at small amplitude to traveling waves at larger amplitude. The solu-
tion goes into a final form if the volume conservation restriction is enforced:∫

Σ
(1 + g(θ)η(ϕ, t))3dΩ = 4π and requires η(ϕ, t) to be periodic. The period-

icity condition
2nπ = K(k)L,

for any positive integer n, is only fulfilled for a finite number of n values,
and hence a finite number of corresponding cnoidal modes. In the roton limit
the periodicity condition becomes a quasiperiodic one because the amplitude
decays rapidly. This approach could be extended to describe elastic modes
of surface as well as their nonlinear coupling to capillary waves. The double-
periodic structure of the elliptic solutions [2] could describe the new family
of normal wave modes predicted in Tian et al. [198].

Because the Euler equations reduced to an integrable equation, we expect
that the system should have a Hamiltonian attached to it, at least in some or-
der of approximation. In Natarajan and Brown [207] the drop has associated a
Lagrangian with volume conservation condition being a Lagrange multiplier.
In the third order of smallness the dynamical equation inferred from hydro-
dynamics becomes a KdV infinite-dimensional Hamiltonian system described
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by a nonlinear Hamiltonian function H =
∫ 2π

0
Hdϕ. In the linear approxi-

mation, the system has a linear wave Hamiltonian. If terms depending on
θ are absorbed into definite integrals (becoming parameters) the total en-
ergy is a function of η only. Taking the kinetic energy from Natarajan and
Brown [207], Φ from (13.123), and using the boundary conditions, the depen-
dence of the kinetic energy on the tangential velocity along θ direction, Φθ,
becomes negligible and the kinetic energy can be expressed as a T [η] func-
tional. For traveling wave solutions ∂t = −V ∂ϕ, to third order in ε, after a
tedious but feasible calculus, the total energy is

E =
∫ 2π

0

(C1η + C2η2 + C3η3 + C4η2
ϕ)dϕ, (13.136)

where C1 = 2σR2
0S

1,0
1,0 , C2 = σR2

0(S
1,0
1,0 + S1,0

0,1/2) + R6
0ρV

2C3,−1
2,−1/2, C3 =

σR2
0S

1,0
1,2/2+R6

0ρV
2(2S3,−1

−1,2R0 +S5,−2
−2,3 +R0S

6,−2
−2,3)/2, C4 = σR2

0S
−1,0
2,0 /2, with

Sk,l
i,j = R−l

0

∫ π

0
hlgigj

θsin
kθdθ. Terms proportional to ηη2

ϕ can be neglected
since they introduce a factor η3

0/L
2, which is small compared to η3

0 , i.e., it is
in the third order in ε. If (13.136) is taken to be a Hamiltonian, E → H[η],
then the Hamilton equation for the dynamical variable η, taking the usual
form of the Poisson bracket, gives∫ 2π

0

ηtdϕ =
∫ 2π

0

(2C2ηϕ + 6C3ηηϕ − 2C4ηϕϕϕ)dϕ. (13.137)

For the function η(ϕ − V t) the LHS of (13.137) is zero. Consequently, KdV
solitons η(ϕ), with appropriate choice of parameters, are allowed solutions,
since they cancel the integral on the RHS, too. Hence, the energy of the
NLD model, in the third order, is interpreted as a Hamiltonian of the KdV
equation. This is in full agreement with the result finalized by (13.132) for an
appropriate choice of the parameters and the Cauchy conditions for g and h.

The nonlinear coupling of modes in the cnoidal solution could explain the
occurrence of many resonances for the l = 2 mode of rotating liquid drops
at a given (higher) angular velocity [226]. The rotating quadrupole shape is
close to the soliton limit of the cnoidal wave. On the one hand the existence
of many resonances is a consequence of the multivalley profile of the effective
potential energy for the KdV (MKdV) equation: η2

x = aη + bη2 + cη3 +
(dη4). The frequency shift predicted by Busse and others in [226,227] can be
reproduced in the present theory by choosing the solution h1 = R0 sin θ/2. It
results the same additional pressure drop in the form of V 2ρR2

0 sin2 θ/2 like
in Busse [226], and hence a similar result. For a roton emerged from a l = 2
mode, by calculating the half-width (L2) and amplitude (ηmax,2) which fit
the quadrupole shape, it results in a law for the frequency shift: Δω2/ω2 =
(1 ± 4L2/3R0)−1V/ω2, showing a good agreement with the observations of
Annamalai et al. [226, 227], i.e., many resonances and nonlinear dependence
of the shift on Ω = V . The special damping of the l = 2 mode for rotating
drops could also be a consequence of the existence of the cnoidal solution.
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An increase in the velocity V produces a modification of the balance of the
coefficients C/D, which is equivalent with an increasing in dispersion.

13.6 Problems

1. Comments on (13.40). The solution used in the text is appropriate for the
analysis of drop oscillations, but this equation has a richer spectrum of
solutions. If we substitute rVR = φ(r) and write the equation like �Dφ =
D�φ = 0, with the operator D being the parenthesis in (13.40) we have
two classes of solutions. Solutions with property Dφ = 0 belong to the
class represented in (13.49). Another possibility is to have �φ = ψ �= 0.
Then, it is convenient to solve Dψ = 0, since we know the solutions from
(13.40). With ψ such a solution we obtain φ as the integral representation
of the radial Laplace equation.

2. For the cnoidal solution defined on the sphere in (13.134) calculate the total
angular momentum of the flow in the drop. Since the initial hypothesis was
irrotational motion, we expect this angular momentum to be zero for this
solution.

3. Improve the model presented in Sect. 13.5 by introducing the relative
motion of the center of mass. Solutions should be considered at least in
pairs to have the position of the center of mass unchanged.

4. Verify if cnoidal waves or solitary waves exist on the surface of a drop by
plugging a solitary wave type of test solution for the surface directly in
the Euler equations for the drop.

5. Find a property of the nonlinear tangential surface wave from Sect. 13.5,
and implications on the surface velocity field based on the hairy ball the-
orem, i.e., there is no zero smooth, regular tangent vector field on the
two-sphere.



Chapter 14

Other Special Nonlinear Compact
Systems

In this chapter we present an interesting back up of the previous chapters
devoted to solitons on closed free surfaces, like drops. Namely, one can predict
the possibility of existence of such exotic shapes from some first geometric
principles. In the frame of geometric collective models, for example, it can
be shown that these types of shapes can be created through the formalism
of nonlinear symmetry groups. We conclude the chapter by presenting an
example of Hamiltonian structure for systems with free closed boundaries.

14.1 Nonlinear Compact Shapes and Collective Motion

In Sect. 13.5 we introduce a special nonlinear mode of oscillation of a liquid
droplet in terms of cnoidal functions and solitary waves. Similar nonlinear
compact shapes can be obtained by using a different geometrical approach,
namely by an integrable nonlinear theory of a many-body system. The theory
was applied in the geometric and Riemannian ellipsoidal models for large
amplitude collective modes of oscillations in heavy nuclei [228–230].

A geometrical model of collective motion is defined by a group of transfor-
mations, called the motion group, of the three-dimensional Euclidean space.
The motion group acts on the Euclidean space and, among other things,
transforms surfaces into other surfaces. For example, the rotation group
SO(3) is the linear group of motion for the rigid bodies in mechanics, and
it is also the adiabatic rotational model in nuclear physics. Another exam-
ple is the real general linear three-dimensional group GL(3,R), which is the
group for the Riemannian ellipsoidal models in fluid dynamics or elastic-
ity and also yields the microscopic extension of the Bohr–Mottelson nuclear
model [231,232]. However, such traditional models have limitations imposed
by the linear character of the transformation. The classes of shapes gener-
ated by these linear groups can never include exotic shapes like hour-glass,
breakup droplet shapes, fissionable shapes, toroidal shapes, etc. A nonlinear
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geometrical model, if algebraically closed under commutation, can construct
collective models compatible with such nonlinear shapes. Such a collective
model will be integrable on behalf of the closeness property. It could be
applied to many-body collective motion problems in astronomy (nonelliptical
galaxies, tides in neutron stars, cosmic object collisions), in plasma physics,
nuclear physics of heavy ions and superheavy elements, mean field theory,
and geometric quantization.

To construct a nonlinear motion group we need first a Hilbert space H
of wave functions. We recall that a Hilbert space is a Euclidean space E of
vectors over the complex numbers which is complete in the norm. The norm
is defined in the Euclidean space as a function || · || : E → R+, which assigns
a positive length or size to all vectors in the space, other than the zero vector.
For example, we can introduce the space of the square integrable functions
as the space of complex integrable functions defined on E having finite value
for the integral of the square over the whole space∫

E

|f(x)|2dx <∞,

denoted L2(E ). Consequently, the above integral is the norm of the L2(E )
space. A norm is complete if any Cauchy sequence of functions from the
space has a limit in this space. Not any Euclidean space is Hilbert, but
the good news are that any Euclidean space can be densely embedded in
some Hilbert space. The Hilbert space of wave functions we need in the
following construction of a nonlinear collective model is L2(R3). Its vectors
are functions Ψ(r, t) : R3 → C. For more details about the construction of
this space, as well as for more details about the operators acting in it, the
reader can consult one of the best books in axiomatic quantum mechanics,
namely [233].

Next object we need for the geometric model is a nonlinear Lie algebra
(Definition 16) of operators acting on the Hilbert space of wave functions.
We consider for any real number Λ the following nine differential operators
acting on L2(R3)

Njk = xjpk − iδjk
�

2
+
Λxjxk

r5
r · p, (14.1)

with j, k = 1, . . . , 3, xk are Euclidean coordinates in R3 (so it is not impor-
tant if they carry covariant or contravariant indices) and p = −i�∇ is the
momentum operator. The Planck constant � has the common meaning from
quantum mechanics. All these nine operators are Hermitian operators, i.e.,
∀Φ, Ψ ∈ H the equality holds∫

R3

Φ∗NjkΨd
3r =

∫
R3

Ψ∗NjkΦd
3r,

which guaranties that Njk represent physical observables. The most impor-
tant fact about the Njk operators is that they are closed under commutation
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relations, i.e., for any two Njk and Nil we have [Njk, Nil] = cjkilmpNmp, with
cjkilmp being complex constants. Let us denote N the set of all possible linear
combinations of the Njk operators with real coefficients, which is obviously
a Lie algebra. For any 3× 3 matrix X = (Xij) with real entries we can build
the mapping σ : M3(R) → N given by σ(X) = (i/�)XjkNjk. Such a map-
ping is a linear representation of the Lie algebra M3(R) in the Lie algebra
N . For example, we can introduce a representation defined by the following
operators

Ll = εjklNjk = xjpk − xkpj ,

Tjk = Njk +Nkj −
2
3
δjk Tr(N)

=
(
xjpk + xkpj −

2
3
δjkr · p

)
+

2Λ
r5

(
xjxk −

1
3
δjkr

2

)
r · p,

S = Tr(N) =
(

1 +
Λ

r3

)
r · p− 3

2
i�. (14.2)

The first three operators are closed under commutation and generate the
rotation group Lie algebra so(3) of the angular momentum L. These opera-
tors together with the next ones, called the quadrupole vibration operators,
Tjk, are also closed and form a Lie algebra isomorphic with sl(3,R) of trace-
less matrices from M3(R). The name comes from the fact that their average
value over a wave function provides the third order term in a spherical har-
monics expansion. Finally, all the operators in (14.1) and (14.2), including the
nonlinear operator S, are closed under commutation, and so they generate
the Lie algebra N .

To involve the geometry we map these operators into a system of differ-
ential vector fields defined on R3

Vjk =
i

�
Njk −

δjk

2
,

which reads in the Euclidean coordinates

Vjk =
(
xjδlk +

Λxjxkxl

r5

)
∂

∂xl
. (14.3)

Some of these vector fields are divergence free, i.e., ∇ · Vjk = δjk, and so
they generate transformations that conserve the volume. If Λ = 0 these vec-
tor fields become linear, and they generate the six-dimensional Lie algebra of
rotations and dilations (when we make Λ = 0, only six generators remain ind-
ependent, while the other three reduce to Casimir elements). The nine vector
fields in (14.3) generate a nine-dimensional Lie algebra, and the exponential
of these vector field (i.e., infinitesimal generators) form the associate local
Lie motion group. This structure is only a local Lie group because for some
values of Λ the vector fields are not complete (Sect. 4.4), and their exponen-
tial is integrable only locally. In the following we are looking for the classes
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of Euclidean compact surfaces that are left invariant by the nonlinear motion
local group elements. In the original article, Rosensteel uses the adjoint repre-
sentation of this Lie algebra to find invariant surfaces. An alternate possibility
to find the invariants is to use the method of the symmetry group of differen-
tial equations [9]. According to Sect. 4.7, a smooth real function F : R3 → R
is invariant to the action of the motion local Lie group if

Vjk(F ) = 0 for all j, k = 1, . . . , 3. (14.4)

To construct the invariant functions we use the associate characteristic system
of equations

dx1

xjδk1 + Λxjxkx1
r5

=
dx2

xjδk2 + Λxjxkx2
r5

=
dx3

xjδk3 + Λxjxkx3
r5

, (14.5)

for j, k = 1, . . . , 3. The general solution of system (14.5) is given by the six
symmetric functions

Qjk =
(

1 +
Λ

r3

) 2
3

xjxk, (14.6)

plus some arbitrary constants. These functions are the linear independent
invariant functions of the motion local Lie group, and any linear combination
of them is also an invariant function. In Rosensteel and Troupe [228] it is
proved that these functions also generate a six-dimensional Lie algebra, which
in semidirect product with the Lie algebra generated by the vector fields
Vjk form a 15-dimensional Lie algebra called gcm(3), i.e., the Lie algebra of
the nonlinear motion group. Its corresponding local Lie group is GCM(3).
For different values of Λ these algebras are isomorphic, but their physical
interpretation varies. The surfaces parametrized by the implicit equation

∑
jk

Cjk

(
1 +

Λ

r3

) 2
3

xjxk = C0, (14.7)

are invariant surfaces to the local Lie group GCM(3) for any combination
of constants Cjk, C0, j, k = 1, . . . , 3. Of course, only the symmetric sets of
constants count. In other words, if for a given choice of the constants Cjk

and C0 we generate a surface by (14.7), this surface will be left unchanged by
the action of any of the group transformations, i.e., the GCM(3) local group
transforms a drop surface in another allowable drop surface of the model.
The surfaces described by (14.7) are compact (Sect. 7.4) if the Cjk are a real
positive-definite symmetric matrix. Actually, if Λ = 0, these functions reduce
to ellipsoids of different semiaxes and orientation in space. Since Cjk are
symmetric they can be diagonalized, and actually, only the diagonal elements
count for different surfaces. Since the gcm(3) Lie algebra contains the infini-
tesimal rotations so(3) as a subalgebra, the nondiagonal coefficients Cjk gen-
erate same surfaces like the diagonal ones, except they are rotated. Compact
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nonlinear surfaces are generated by diagonal elements (C11, C22, C33) with
positive signature. From dimensional analysis we note that these coefficients
are m−2 units, and so a better physical notation for them is (a−2, b−2, c−2).
Actually, the numbers a, b, c represent the semiaxes of the ellipsoidal surfaces
generated by (14.7) for Λ = 0. In Fig. 14.1, we present some typical nonlinear
surfaces obtained through (14.7). To plot these surfaces we just write (14.7)
in polar coordinates

r(θ, ϕ) =
[
−Λ±

(
C0

sin2 θ cos2 ϕ
a2 + sin2 θ sin2 ϕ

b2 + cos2 θ
c2

) 3
2
] 1

3

.

For positive values of Λ the invariants Qjk are well defined in all the points,
except the origin. For axially symmetric solutions, the deformed droplets are
surfaces of revolutions with a central neck. When Λ = a3, b3, or c3 the neck
reduces to zero diameter and the drop breaks-up in two symmetric parts, like
in a fission process. If Λ < 0 the invariant functions are not defined all over the
space, and so this negative Λ motion local group could model droplets with
missing parts, i.e., smaller droplets emission, fusion, exotic bubble shapes,
and two-fluid models.

This nonlinear motion group can be used in modeling the nonlinear dynam-
ics of liquid droplets. For example, we note that in Fig. 14.1 the shapes with
coefficients a = 1, b = 2, c = 1, Λ = −5 and a = 1, b = 3, c = 1, Λ = −5 repre-
sent one or two localized bump(s) on the surface, which is in good agreement
with the results from Sect. 13.5, namely modeling one or two solitary waves
(rotons) moving on the droplet surface [222,223,234]. The problem would be
to determine which among the nonlinear shapes corresponds closely to min-
imum energy surfaces of liquid or even electrically charged liquid droplets.
Even for rapidly rotating drops (or nuclei, or stars), when the droplet devel-
ops an elongated neck, the model can be still used since it also predicts the
hourglass types of shapes presented in Fig. 14.1. This nonlinear motion group
can be also applied in modeling the nonlinear dynamics of a system of identi-
cal fermions, like a nucleus or a neutron star. In that the set of functions Qjk

is defined as a set of one-body operators.The Hamiltonian of the system can
be written as a linear combination of these operators, and since the gcm(3)
Lie algebra is closed, we can use it as a spectrum generating algebra, like in
the IBM model.

14.2 The Hamiltonian Structure for Free Boundary
Problems on Compact Surfaces

A Hamiltonian structure for two- or three-dimensional incompressible flow
with free boundary can be constructed [235]. The dynamic variables are the
velocity field V and the compact surface Σ that surrounds the fluid domain
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a=2,b=1,c=1,Λ=0

a=1.2,b=1.2

 c=1,Λ=1.2

    a=1,b=2

 c=2.5,Λ=-2
  a=1,b=3

 c=1,Λ=-5

 a=2,b=1

c=1,Λ=0.8

 a=1,b=2

c=1,Λ=-5

   a=1,b=2

c=1,Λ=4

a=2,b=1,c=1,Λ=0.8 a=2,b=1,c=1,Λ=1

Fig. 14.1 Examples of compact surfaces invariant to the nonlinear motion group GCM(3).
The values of the three diagonal parameters and the nonlinear one are given next to each
surface

DΣ . These two entities form the basic phase space N = {(|vecV ,Σ)} for the
representation of the canonical bracket. Incompressibility condition assures
∇ · V = 0. According to the representation formulas in Ebin and Mars-
den [236] we can write the velocity as V = V � + ∇Φ, where V � is both
divergence free and tangent to Σ. The potential is determined modulo an
additive constant by

�Φ = 0,
∂Φ

∂N
= V ·N , (14.8)

where N is the normal to Σ. We introduce three types of formal derivatives
for functions F : N → R

δF

δV
, defined by

(
∂F

∂V

)
Σ

(V , Σ) · δV =
∫

DΣ

δF

δV
· δV d3x, (14.9)

where (∂F/∂vecV )Σ = dcF/dV is the convective derivative with respect to
V (see (9.16) in Sect. 9.2.6).

δF

δΦ
=
δF

δV
·N , (14.10)
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δF

δΣ
, defined by

(
∂F

∂Σ

)
V

(V , Σ) · δΣ =
∫

Σ

δF

δΣ
δΣd3x. (14.11)

With these three derivatives we can introduce the Poisson bracket of F,G in
the form

{F,G} =
∫

DΣ

ω ·
(
δF

δV
× δG
δV

)
d3x+

∫
Σ

(
δF

δΣ

δG

δΦ
− δG
δΣ

δF

δΦ

)
dA, (14.12)

where ω = ∇×V is the vorticity. This bracket makes the phase space N into
a Poisson manifold, satisfies Jacobi’s identity, is real bilinear, antisymmetric,
and it is a derivation in F and G. For irrotational flow (14.12) reduces to a
canonical bracket in Φ and Σ. The authors in Lewis et al. [235] provide an
interesting example of application of this Hamiltonian system to the dynamics
of an incompressible (we choose ρ = 1) inviscid liquid drop with free boundary
and surface tension. We recall the dynamical equation in this case: Euler,
boundary, incompressibility, and surface tension balance, namely

V t + (V · ∇)V = −∇P, Σt = V ·N , ∇ · V = 0, PΣ = 2σH, (14.13)

with H the mean curvature of Σ. The Hamiltonian is

H =
1
2

∫
DΣ

V 2d3x+ σ
∫

Σ

dA. (14.14)

We have the following theorem. Equation (14.13) is equivalent to

Ft = {F,H}.

The proof is by direct calculation and it can be found in Lewis et al. [235].
This Hamiltonian approach can be applied directly to some nonlinear com-

pact systems. There are situations, for example, on spheres, when the solu-
tions of the dynamical system can be expressed as spherical harmonics plus
small corrections, and these solutions retain this property for a long time, i.e.,
they are near-monochromatic. Such a situation is provided by a free surface
potential flow of a fluid layer surrounding a gravitating sphere. The dynami-
cal equations for traveling or standing water waves are obtained in a weakly
nonlinear gravitational interaction on a sphere. Some numerical and classi-
cal perturbation theory studies [237,238] proved that these solutions possess
Hamiltonian structure.

We consider a spherical fluid layer of depth h surrounding a sphere of
radius b in spherical coordinates (r, θ, ϕ). The outer free surface has the
equation

r(θ, ϕ, t) = b+ h+ η(θ, ϕ, t),

and we assume that the flow inside the layer is potential. The Euler equation
for the free surface potential flow takes the form

∂η

∂t
=
∂Φ

∂θ
− 1
r2
∂Φ

∂θ

∂η

∂θ
− 1
r2 sin2 θ

∂Φ

∂φ

∂η

∂φ
,
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and at the free surface we have
∂Φ

∂t
= −1

2
|∇Φ|2 +

1
b+ h+ η

.

In the region occupied by the fluid we have �Φ = 0 and at the bottom r = b
we have

∂Φ

∂r
= 0.

The wave amplitude η(θ, ϕ) and the surface potential Φ(θ, ϕ) = Φ(θ, ϕ, b+h+
η(θ, ϕ)) determine uniquely the hydrodynamic potential Φ inside the layer at
any moment of time t. The above equations can be written as a Hamiltonian
system where the canonical variables are η and Φ at the surface. The kinetic
energy term in the Hamiltonian can be formally expanded in powers of the
wave amplitude η. We can write

H =
∞∑

j=0

Hj ,

with the first two terms in the series

H0 =
(h+ b)2

2

∑
γ

(
u

′
γ(h+ b)
uγ(h+ b)

ΦγΦ
∗
γ + ηγη

∗
γ

)
(14.15)

and
H1 =

∑
γ1,γ2,γ3

Iγ1,γ2,γ3Φγ1Φγ2Φγ3 , (14.16)

with

Iγ1,γ2,γ3 =
(h+ b)2

2

(
u

′′
γ2

(h+ b)
uγ2(h+ b)

−
u

′
γ1

(h+ b)
uγ1(h+ b)

u
′
γ3

(h+ b)
uγ3(h+ b)

)∫
S2

Yγ1Yγ2Yγ3

+
1
2

∫
S2

Yγ1∇Yγ2 · ∇Yγ3 .

In the above relations we use the notations

η =
∑

γ

ηγYγ , Φ =
∑

γ

ΦγYγ ,

with γ = (l,m), and

uγ(r) = (l + 1)
(
r

b

)l

+ l
(
b

r

)l+1

.

The Hamilton equations read

η̇γ =
∂H

∂Φ∗
γ

, Φ̇γ = − ∂H
∂η∗γ

. (14.17)

To solve numerically the initial value problem the authors in [237, 238] used
a Galerkin truncation of the Hamilton equations (14.17).
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This last part is devoted to applications of solitons on closed or bounded
systems at different physical scales, from elementary particles to neutron
stars. We devote a whole chapter to the dynamics of free shape one-
dimensional nonlinear systems like filaments, vortex filaments and polymer
chains. Application of soliton dynamics are given at microscopic scale (heavy
nuclei, quantum Hall effect) as well as at macroscopic scale (plasma and MHD
systems, elastic spheres and neutron stars).



Chapter 15

Filaments, Chains, and Solitons

One of the most successful applications of the theory of nonlinear integrable
systems on free one-dimensional systems is related to the existence of solitons
on filaments. In the following we describe such systems from the hydrody-
namic perspective and obtain the vortex filament equation, also called the
binormal equation. Next, we describe a gas dynamical model which has an
equivalent dynamics, and we obtain several soliton solutions and correspond-
ing shapes. One interesting special feature of vortex filaments, namely by
representing a unifying model for the Riccati and the NLS equations, is also
presented.

15.1 Vortex Filaments

Rotational or vortex motion was first investigated by Kelvin [134], Helmholtz
[133], and Thomson [132]. In absence of viscosity an isentropic fluid is
described by the Euler equation (10.15), which in an Eulerian frame, takes
the form

∂

∂t
ω = ∇× (v × ω), (15.1)

where ω(r, t) = ∇ × v(r, t) is the vorticity field. Because is a solenoidal
vector field ∇ · ω = 0, vorticity has some interesting properties, like, for
example, it has zero flux on surfaces represented by tubes of flow (see (10.32)).
This is just a geometric property and has not to do with the specific type
of fluid. In the case of a perfect fluid (inviscid and isentropic) in potential
force fields, this property of vorticity yields the invariant circulation theorem
(Theorems 23 and 24, see Sect. 10.3), which states that the circulation of
the velocity of such a fluid, along a closed particle contour, is constant in
time. If the fluid has nonzero vorticity, localized on a material surface, then
the integral of the vorticity on this surface (the strength of the vortex ) is
constant during the motion of the material surface and it is also constant
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368 15 Filaments, Chains, and Solitons

along the vorticity field lines. The tube of flow generated by the motion of
such a material surface carries in time a constant amount of vorticity. This
is the physical background for the introduction of vortex tubes or simply
vortex. Such a vortex tube contains the vorticity field perpendicular on each
of its cross-sections and oriented along the generator of the tube. An intuitive
description is given, for example, in Lamb [93, Article 145]. If such a vortex
has an almost constant cross-section area along the vorticity lines, and if its
diameter is much smaller than its length, we call it a vortex filament. If we can
set the initial conditions such that the vorticity is almost negligible outside
of a vortex filament, following the theorem of invariance of the circulation,
we find out that this vortex filament is a stable structure and has a dynamics
of its own. Moreover, a vortex filament will support shape solitary waves
traveling along it.

To analyze the existence of solitons on vortex filaments we follow an
approach presented in Lamb’s book [2], originally introduced in Hasimoto [66]
and Batchelor [239]. We consider an isolated vortex filament described by a
tube (or tubular neighborhood) of constant radius r0 (see Definition 45) around
a simple regular differentiable curve Γ of finite length (length LΓ ). We de-
note by κ and τ the curvature and torsion of Γ , and we investigate the vortex
filament under three approximations:

1. The fluid is considered to be incompressible.
2. The filament is “narrow,” i.e., the ratio ε = r0/LΓ  1 is one smallness

parameter of the problem.
3. We also consider that the filament is not excessively bent or twisted com-

pared to its length. We introduce a second smallness parameter η = κLΓ ,
i.e., the radius of curvature of the filament is much larger than its length.

Let r(s) be the equation of the curve Γ in the arc-length parametrization.
We assume that inside of this tube of constant cross-section πr20, the vorticity
is constant and uniform in magnitude |ω| = ω0 =const., oriented along the
tangent to Γ , and it is zero outside of the tube. From ∇·v = 0 and ω = ∇×v
we can always define a solenoidal vector potential B(r, t), ∇ ·B = 0, such
that v = ∇ × B and �B = 0. We calculate the velocity at a point of the
tube r1 /∈ Γ by using the fundamental solution of the Poisson equation

v(r1) = − 1
4π

∫
r∈Γ

(r1 − r)× ω(r)
|r1 − r|3 dV, (15.2)

where dV = πr20ds is the volume element, and we did not write explicitly the
time dependence. From the hypotheses we have ω(r) = ω0t(s), where t is
the unit tangent to Γ . Equation (15.2) can be written as

v(r1) = − C
4π

∫ LΓ

0

(r1 − r(s))× t(s)
|r1 − r(s)|3 ds, (15.3)
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where

C =
∮

∂A

v · dl =
∫
A

(∇× v) · dA =
∫
A

ω · dA = ω0πr
2
0, (15.4)

is the circulation of v along any circle surrounding the tube and A is the
cross-section circular area of the tube.

We choose a point r1 /∈ Γ placed on the surface of the filament at a distance
r0 from its axis. We choose a reference point s = s0 on Γ as the closest point
to r1, and we expand r(s) in Taylor series with respect to δs = s−s0 around
s = s0. By using the Serret–Frenet equations (5.3) for the derivatives with
respect to the arc-length, we obtain

r(s) = r(s0) + t(s0)δs+
κ(s0)

2
n(s0)δs2

+
1
6

(
κ′(s0)n(s0) + κ(s0)τ(s0)b(s0)− κ2(s0)t(s0)

)
+O(δs3), (15.5)

with δs ∈ [−lΓ , lΓ ]. By the definition of s0 we have t(s0) · (r1−r(s0) = 0 and
|r1−r(s0)| = r0, and so we can assume that r1−r(s0) = r0(αn(s0)+βb(s0))
with α2 + β2 = 1. We have

(r1 − r(s))× t(s) =

r0

[
(βn−αb)−κ0βδst+

δs2

2
((ακτ−βκs)t−βκ2n+ακ2b)− κδs

2

2
b

]
s0

+O(η3).

(15.6)
The orders of smallness of the terms in the RHS of (15.6) are

r0, r0κ(s0)δs < r0O(η), r0(κ(s0)δs)2 < r0O(η2), κ(s0)δs2, . . . ,

where κ(s0)δs < κlΓ = η  1 is from hypothesis (3) introduced above. We
can write κ(s0)δs2 = r0ηδs/r0 > r0η so the last term in RHS of (15.6) has
its order larger than the second term in η. We can approximate (15.6) with

(r1 − r(s))× t(s) ≈ −r0
(
α+

κ(s0)δs2

2

)
b(s0) + r0βn(s0). (15.7)

The denominator of (15.2) has the form

|r1 − r(s)|3 = δs3
(

1 +
r20
δs2

+
(κ(s0)δs)2

4
+O(η3)

) 3
2

, (15.8)

and now we need to compare the contribution of the two terms inside the
parenthesis. The term r0/δs is lower bounded by ε = r0/lΓ according to
hypothesis (2). This fact does not help too much in the comparison with the
third term in the parenthesis of (15.8), because δs runs between zero and lΓ .
In a very interesting way, the topology of the filament vortex shape will help
us here. We have to compare the terms
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κ(s0)δs ≶ r0
δs
,

and we can write this expression as

κ(s0)
r0

≶ 1
δs2
.

The LHS of the above inequality is actually the Gaussian curvature of the
tube surface at r0, K ≈ κ/r0, i.e., the product of the principal curvature
κ(s0) along the generator of the tube and the principal curvature of the base
circle 1/r0. According to the Bonnet Theorem 20 if there is a positive number
δ0 such that the Gaussian curvature of a complete surface K ≥ δ0, then the
surface is compact. In the case of the vortex filament this is false, because the
surface is a long cylinder, and so the Gaussian curvature can be arbitrarily
small. As a consequence we have

κ(s0)δs < η  
r0
δs
,

and it results that the dominant term in (15.8) is r0/δs. From (15.3), (15.7),
and (15.8) we obtain the velocity of an arbitrary point on the surface of the
vortex filament obtained in the order η2 of smallness

v(r1) ≈
r0C

4π

∫
Γ

(
α+ κ(s)s2

2

)
b(s)− βn(s)

s3
(

1 + r2
0

s2

) 3
2

ds, (15.9)

where r0 is the radius of the filament, the limits of integration for s depend
on the specific position of the chosen point r1 along Γ , α and β describe the
position of r1 on the base circumference of the tube, and C is the circulation
of the velocity around this circumference, supposed constant.

The equation of motion of the vortex filament (15.9) can be simplified
more [2, 66,239] if we consider very narrow filaments α ≈ β ≈ 0

v(r1) ≈ cst.
∫

Γ

κ(s)b(s)
s2

(s2 + r20)
3
2
ds, (15.10)

and we notice that a part of the integrand

ϕ(s, r0) ≡
s2

(s2 + r20)
3
2

is actually a sequence of functions weakly converging toward the δ-Dirac
distribution when s 	 0 [10]

lim
s←0

ϕ(s, r0) = δ(r0).
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Consequently, we can approximate (15.10) and obtain the most simplified
version of the dynamical equation for a long and narrow vortex filament of
incompressible fluid

v(r1) ≈ cst. κ(s0)b(s0). (15.11)

The constant term on the RHS can be eliminated by a special choice for the
velocity vector. Equation (15.11) represents the well-known vortex filament
equation first introduced in Hasimoto [66], and later on investigated in many
books or articles among we mention [2, 239], [98, Chap. VI], [240–253].

In the following we confine the discussion to the investigation of the fila-
ments governed by (15.11) in its simplest form

dr

dt
(s, t) = ṙ = κb, (15.12)

where for the notation in the following we use ṙ for time derivative and
r′ for dr/ds. That is, we neglect the filament width and consider it just a
(time dependent) regular arc-length parametrized curve r(s, t). Then (15.12)
is equivalent to

ṙ = r′ × r′′, (15.13)

as we can obtain from Serret–Frenet equations (5.3), (5.4), and (5.11) from
Chap. 5. From (15.13) we have

∂κ2

∂t
=
∂

∂t
(r′′ · r′′) = 2

(
∂2ṙ

∂s2

)
· r′′,

where we used t′ = r′′ = κn and r′′ ·r′′ = κ2. In the following, using (5.3) and
(15.12) their consequences r′× r′′ = t× κn = κ(t×n) = κb, and b′ = −τn,
we have

2
(
∂2ṙ

∂s2

)
· r′′ = 2

(
∂2κb

∂s2

)
· κn = −2(κ2τ)′,

where κ and τ are the curvature and the torsion of the filament. It results a
sort of continuity equation for the curvature and the torsion of the filament

∂

∂t

(
κ2

2

)
+
∂

∂s
(κ2τ) = 0. (15.14)

The same result can be obtained for arbitrary parametrization of the filament
curve.

Next, we want to obtain a similar relation for the time derivative of the
torsion. We begin from the time derivative of τ2 = b′ · b′ and, by using again
Serret–Frenet, and (15.12) and (15.13) we obtain

τ̇ = −∂
2(t× n)
∂s∂t

· n = −(ṫ× n + t× ṅ)′ · n. (15.15)

The expression in the RHS parenthesis can be expanded by taking into ac-
count the orthonormality of the Serret–Frenet trihedron and the relation
r′′′ × n = κ. We obtain
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ṫ× n + t× ṅ = (r′ × r′′)′ × n + t× ṙ′′κ− r′′κ̇
κ2

(15.16)

= −κ′t− κ̇
κ

b +
1
κ

(t× ṙ′′),

with
ṙ′′ = κ2τt− (2κ′τ + κτ ′)n + (κ′′ − κτ2)b.

By combining the last two equations we have

τ̇ = −
[(
−κ′t− κ̇+ 2κ′τ + κτ ′

κ
b +

κτ2 − κ′′
κ

n

)′]
· n, (15.17)

and in the end

τ̇ = κκ′ − κ̇τ
κ
− 2

κ′τ2

κ
− 3ττ ′ +

κκ′′′

κ2
− κ

′κ′′

κ2
. (15.18)

To process (15.18) we need (15.14) for the value of κ̇ = −2κ′τ − κτ ′. We
obtain

τ̇ + 2ττ ′ =
(
κ2

2
+
κ′′

κ

)′
. (15.19)

It is interesting to write (15.14) and (15.19) with the substitution

ρ(s, t) =
κ2

4
, u(s, t) = 2τ, (15.20)

where usually κ2/2 is called the energy density of the filament curve. We have

∂ρ

∂t
+
∂

∂s
(ρu) = 0 (15.21)

∂u

∂t
+ u

∂u

∂s
=
∂

∂s

(
4ρ+

2√
ρ

∂2√ρ
∂s2

)
.

Equation (15.21) represents the so-called gas dynamics model of the fila-
ment because they describe the filament (15.14) and (15.19), in terms of the
velocity u and density ρ fields for a one-dimensional fluid. In Arnold and
Khesin [98, Chap. VI], these equations are described as a Marsden–Weinstein
Hamiltonian structure. Different approaches of the filament problem include
the Hasimoto model of the filament equation, derived from the nonlinear
Schrödinger equation [66], which will be analyzed in the next sections.

15.1.1 Gas Dynamics Filament Model and Solitons

In this section we discuss some particular traveling solutions of the gas model
for the filament equation (15.21), or equivalently (15.14) and (15.19). Obvi-
ously plane filaments (τ = 0) do not exist. We are looking for traveling
solutions in the form
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ρ(s, t) = R(s− V t) = R(x)
u(s, t) = U(s− V t) = U(x),

with V an arbitrary constant. By integrating the first of (15.21) we obtain

U(x) = V − C1

R(x)
, (15.22)

where C1 is a constant of integration. The resulting equation for R reads

V 2

2
+ 4R− C2

1

2R2
+ 2
√
R ′′
√
R

+ C2 = 0, (15.23)

or in terms of the curvature

κ′κ = ±
√
−C2

1 −
κ6

4
−
(
V 2

4
+
C2

2

)
κ4 + C3κ2. (15.24)

By substituting in (15.24) κκ′ = 2dR/dx, we integrate (15.23), and we obtain∫ R

C4

dR′√
P3(R′)

= ±x+ C5, (15.25)

where P4(R) = −4(R − R1)(R − R2)(R − R3) is a fourth-order polynomial
in R(x) and Ci, i = 1, . . . , 5 are integration constants. The three roots of P3

depend on C1, C2, C3, V, from (15.22) to (15.24). The structure of the roots
determine the structure of the solutions R(x). Let us study some examples:

1. Three real solutions, Ri ∈ R, i = 1, 2, 3.
In this case the solution reads

1√
R3 −R1

F

(
arcsin

√
R−R3

R2 −R3

∣∣∣∣ R3 −R2

R3 −R1

)
= ±x+ C4, (15.26)

where F is an elliptic integral of the first kind

F (α|m) =
∫ α

0

dθ√
1−m2 sin2 θ

.

By inverting (15.26) we have

R(x) = R3 + (R2 −R3)sn2

(
±
√
R3 −R1x+ C4

∣∣∣∣R3 −R2

R3 −R1

)
, (15.27)

where sn(α|m) = sin am(α|m) is the cnoidal sine Jacobi function obtained
from the Jacobi amplitude am for the Jacobi elliptic functions. As a con-
sequence, the filament is described by the intrinsic equations

κ(s, t) = 2
√
R(s− V t) κ(s, t) =

1
2
U(s− V t),



374 15 Filaments, Chains, and Solitons

with R(x) given in (15.27) and U from (15.22). This solution is a cnoidal
wave which can approach a trigonometric function or a solitary wave when
m ∈ [0, 1].

κ(x, t) = 2
√
R3 + (R2 −R3)sn2(±

√
R3 −R1(x− V t) + C4|m,

τ(x, t) =
V

2
− C1

2[R3 + (R2 −R3)sn2(±
√
R3 −R1(x− V T ) + C4|m)]

,

(15.28)
with

m =
(R3 −R2)
(R3 −R1)

. (15.29)

The solution for the filament curvature in (15.28) is similar with the solu-
tion given in Lamb [2, Equation (7.2.25)]. For example, to obtain a soliton
in curvature we need m = 1 in (15.29) and also C1 = C4 = 0. To convert
the cnoidal sine Jacobi elliptical function into a hyperbolic tangent we also
need (R3 − R2) = R3. By using these constraints we obtain R1 = R2 = 0
and

κ(s, t) = 2
√
R3sech(

√
R3(s− V t)), τ(s, t) =

V

2
= τ0 (15.30)

which is a single-soliton solution of the cubic nonlinear Schrödinger equa-
tion (NLS) or of the modified Korteweg–de Vries (mKdV) equation. This
filament is a constant torsion helix with a traveling localized soliton-like
disturbance in curvature. Moreover, for such a soliton solution it is eas-
ier to integrate the corresponding Serret–Frenet equations, by mapping
them into a Riccati differential equation, and then finding the shape of
the filament.
Since the cnoidal sine is a periodic function, it is interesting to verify if
(15.28) can support closed filaments as parametrized loops. Finding the
criterium for a curve to be closed in terms of a differential equations is still
an open problem [254]. There are no simple conditions on curvature and
torsion which would force a curve to close up. For planar curves, on the
other hand, where one is concerned only with curvature, it is known that
any positive periodic function with at least four extremum points may be
realized as the curvature of some closed planar curve [255]. However, there
is no simple condition on curvature that would guarantee the existence of a
closed planar curve parametrized by arc-length. We can test this behavior
by integrating the Serret–Frenet equations with κ and τ given in (15.28).
For example, in Fig. 15.1, we notice that a periodic structure for curvature
and torsion generates a strongly oscillating filament, yet still open.

2. Two distinct real solutions, R1, R2 = R3 ∈ R.
We have P3 = −4(R−R1)(R−R2)2 and by integration we obtain

R(x) = R1 + (R2 −R1) tanh2

(
±
√
R1 −R2

x

2
+ C4

)
, (15.31)

which is a propagating kink, similar to a nontopological solitary wave.
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Fig. 15.1 Left: curvature and torsion from (15.28) for R1 = 2.9, R2 = 3, R3 = 6,

C4 = 0, V = 1, and C1 = 1 for the upper part and C1 = 4 for the lower part. Right :
corresponding filament shapes

3. One real root R1 = R2 = R3.
The solution can be directly integrated and we obtain

R(x) = R1 −
4

(±x+ C4)2
.

4. One real root R1 and other two complex conjugated roots.
The polynomial has the form

P3 = −4(R−R1)(R2 + a2).
The solution can be written again in the form of the Jacobi elliptic integral

−2F
(
i arcsinh

√
R1 + ia
R+R1

∣∣∣∣ iR1 + a
iR1 − a

)
= (±x+ C4)

√
R1 + ia,

and we have

R(x) = −R1 −
R1 + ia

sn2

(
±

√
R1+ia

2 x+ C4

∣∣∣∣ iR1+a
iR1−a

) .
15.1.2 Special Solutions

This section is devoted to some special solutions of (15.21). The reader not
interested too much in the “gas dynamic” model for filament can move from
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here directly to Sect. 15.1.4. We search solutions of the form

ρ(s, t) = ρ1(t), u(s, t) = u1(t)s+ u2(t).

Equation (15.21) becomes
ρ̇1 + ρ1u1 = 0,

u̇1s+ u̇2 + u2
1s+ u1u2 = 0.

We have an “exploding” type of solution

κ(s, t) = 2
√

C1

t− C1
,

τ(s, t) =
s+ C1

2(t− C1)
, (15.32)

and a rigid helix type of solution with κ, τ = const. We present these solutions
in Fig. 15.2.

Fig. 15.2 Filament shapes obtained by numerical integration of the intrinsic equations for
κ and τ given in (15.32). The two columns represent two different values for the integration
constants, while the time evolution is from top to bottom
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15.1.3 Integration of Serret–Frenet Equations
for Filaments

With curvature and torsion determined by a certain filament model we need
to integrate the Serret–Frenet equations (5.3) and (5.4) to have the filament
shape. A direct integration can be performed, for example, starting with the
first two equations in (5.3) and obtaining{

1
τ

[(
1
κ

t′
)′

+ κt
]}′

+
τ

κ
t′ = 0. (15.33)

In a more detailed form, and order with respect to the derivatives of the unit
tangent, (15.33) reads

tκ3(τκ′ − τ ′κ) + t′[κ2τ(κ2 + τ2) + κ′(2τκ′ + κτ ′)− κτκ′′]

− t′′κ(2τκ′ + κτ ′) + t′′′κ2τ = 0, (15.34)
where we denoted by prime the differentiation with respect to the arc-length
parameter. Equation (15.34) is a linear homogenous system of three ordinary
vector differential equations with variable coefficients, and so we expect nine
constants of integration. These constants can be fixed by the nine geometrical
conditions imposed to the Serret–Frenet system. From

|t| = |n| = |b| = 1 (15.35)
t · n = t · b = n · b = 0,

we have six constrains and three more occur from choosing three rotation
angles for the curve. We note that the Serret–Frenet first integrals (5.7) result
as a consequence of (15.34) and need not to be chosen. In addition, when in-
tegrating from t to r we have three more first integrals that determine the
position of the filament in space. It is interesting that all three components
of the tangent fulfill the same differential equation (15.34), which means that
their dynamics is “the same” in a way. The difference between the three com-
ponents of the unit tangent is given only by the choice of initial conditions.
More specific, we can map any given solution of (15.34) into another solution
of the same equation by using the symmetry group of transformations [9].
That is, we can map any component of the tangent to the curve into another
component of the tangent by using the symmetries of the Serret–Frenet sys-
tem of equations.

Let us present some particular cases. If τ = 0 and κ = κ0 = const. we
choose b = 0 and we have

t′′ = κ0n
′ = −κ2

0t,

which results in the general solution

t = (t10 sin(κ0s+ s10), t
2
0 sin(κ0s+ s20), t

3
0 sin(κ0s+ s30))
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n = (t10 cos(κ0s+ s10), t
2
0 cos(κ0s+ s20), t

3
0 cos(κ0s+ s30))

and b = 0. From (15.35) we can choose t30 = 0, s30 = 0, s10 = 0, s20 = π/2,
and t10 = t20 = ±1/

√
2, so in the end we obtain the solution of circular shape

like it should be. In the following we give some examples of filament shapes
obtained by numerical integration of the Serret–Frenet relations by using
(15.34). For example, by choosing the solution in (15.28) for the curvature
and constant torsion, we obtain a periodic structure in the filament. The
period is given by T = 4K(m) with m given by (15.29), and

K(m) = F

(
π

2
|m
)

=
∫ π/2

0

dθ√
1−m sin2 θ

,

being the complete elliptic integral of the first kind. For a soliton solution
we have m = 1 and hence T = ∞. A plot of a traveling soliton in curva-
ture along a very elongated helix, at different moments of time, is presented
in Fig. 15.3. To visualize the effect of a localized perturbation in curvature
on a filament, we use a single-soliton solution (pretty much like the one in
(15.30)). This specific curvature can be obtained from (15.28) with m 	 1,
for an appropriate choice of the parameters. We add this perturbation to a
constant curvature, constant torsion helix, and present the numerical integra-
tion of the Serret–Frenet equations in Fig. 15.4. The soliton-like perturbation
is propagating along the filament in the positive z direction. A wider soliton
(left in Fig. 15.4) produces a longer arc-length change in the filament shape
and shrinks it toward smaller radii. A soliton with the half-width comparable
with the helix pitch produces a little wiggle (Fig. 15.4, center) in the helix and
little deformations in the rest. A narrow soliton (Fig. 15.4, right) produces a
sort of global bent in the helix. Also, in Fig. 15.5, we show the propagation
of a soliton in curvature κ(s) = κ0 + κ1sech(8(s− V t)).

κ(s), τ(s)

s

x

yz

Fig. 15.3 Left: periodic solutions in curvature and torsion from (15.28) for R1 = R2 = 2,
R3 = 6, C1 = 0, C4 = 0, V = 2, and τ = 1, m = 1 at times t = 1, 2, 3, and 4. Right : the

corresponding numerically integrated filaments
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Fig. 15.5 Propagation of a soliton with L = 1/8 along a helical filament, at three moment
of time V t = 3, 5, and 7. The helix has κ = 1.5, τ = 0.5
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15.1.4 The Riccati Form of the Serret–Frenet
Equations

In this section we present a specific procedure to integrate the Serret–Frenet
equations by reducing them to the Riccati differential equation. We work the
case of vortex filaments, especially when soliton solutions are investigated.
Such an example is worked out in detail in Lamb [2] and Hasimoto [66], while
the differential geometry details are provided in Eisenhart [78] and Struik
[79], for example. We begin by using the Serret–Frenet equations written in
components (5.6). From the three first integrals of motion in (5.7) we can
define two test vector functions ϕj and χj

ϕj =
tj + inj

1− bj =
1 + bj

tj − inj
, (15.36)

and

− 1
χj

= ϕ∗j =
tj − inj

1− bj =
1 + bj

tj + inj
, (15.37)

where j = 1, 2, 3 and ∗ means complex conjugated. We have

tj =
ϕjχj − 1
χj − ϕj

, nj = −iϕ
jχj + 1
χj − ϕj

, bj =
ϕj + χj

ϕj − χj
. (15.38)

Now we can calculate the derivative of the ϕ test function

dϕj

ds
= −iκϕj + τ

ibj − ϕjnj

1− bj . (15.39)

From the two expressions of ϕ in (15.36) we have

itj = iϕj(1− bj) + nj and njϕj = −ϕj(itj) + i+ ibj , (15.40)

respectively. By substituting the left of (15.40) into the right one we obtain
2njϕj = i(1 + bj − (ϕj)2(1 − bj)) and by substituting this result in the
derivative of ϕ (15.39) we have

dϕj

ds
− iτ

2
(ϕj)2 + iκϕj +

iτ

2
= 0. (15.41)

Equation (15.41) is the resulting Riccati equation for any of the three compo-
nents of the test function ϕj(s). Similarly, we obtain another Riccati equation
in χ. Indeed, by coupling the derivative

dχj

ds
=
−κnj − iτbj + iκtj + τnjχj

1 + bj
,

with the two expressions for χ from (15.37), we have a Riccati equation in
χj of the same form
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dχj

ds
− iτ

2
(χj)2 + iκχj +

iτ

2
= 0. (15.42)

We present some basic facts about the Riccati differential equation in
Sect. 18.2. To find the shape of the vortex filament we need to choose the
curvature and the torsion expressions from the physical model. We used sim-
ilar procedure in the gas dynamics filament model (Sect. 15.1.1). Usually, the
curvature and torsion are related to local interactions between the filament
and the surrounding medium. Once we choose a model for κ and τ , we plug
them in (15.41) and (15.42) and solve for the auxiliary functions ϕ and χ.
Finally, the last step is to introduce these values of ϕ, χ in (15.38) and to
obtain the unit tangent vector field t(s), hence the shape of the filament by
one more integration. The general solution of each Riccati equation depends
on six arbitrary constants of integration (ODE of order 1, complex solution,
three components) so all in all we need the same number of 12 arbitrary con-
stants of integration like in the case of the Serret–Frenet equation (15.34).

15.1.5 Soliton Solutions on the Vortex Filament

To find the motion of such an isolated vortex filament the next step forward
from the previous section is to integrate the Riccati equations (15.41) and
(15.42) for a given model for the curvature and torsion (i.e., the functions
κ(s), τ(s)). To find an analytic solution for the filament shape in general,
by this integration, is not a straightforward task. There is no general proce-
dure to integrate the Riccati equation, unless we know some of its particular
solutions [35, 256]. However, there are some interesting particular situations
when we can obtain analytic solution, for example, when we choose a solitary
wave profile in the curvature while keeping the torsion constant. This is again
a nice match between the theory of motion of curves and nonlinear dynam-
ics. The fact that the one-soliton solution of the cubic nonlinear Schrödinger
equation (NLS3) allows the Riccati equation to be integrated exactly is rather
an exception than the rule. Details of the following calculations can be found
in Lamb [2], Eisenhart [78], and Struik [79].

We work this example for constant torsion vortex filaments τ = τ0, which
restricts the vortex filament class to helix-like curves. The Riccati equations
(15.41) and (15.42) for ϕj and χj can be written in a generic form for the
unknown function ϕ(s) in the form

ϕ′ − iτ0
2
ϕ2 + iκϕ+

iτ0
2

= 0. (15.43)

We choose the following form for the curvature

κ = κ0sech(αs+ βt). (15.44)
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The specific choice of this form (which is a NLS3 single-soliton solution) will
be explained in more detail on a physical background in Sect. 15.1.6. For the
moment we take it as a working example. We substitute ϕ(s) = Φ(αs+βt) =
Φ(z) and (15.43) becomes

2α
κ0
Φ′ − iτ0Φ2 + 2i sechz Φ+ iτ0 = 0, (15.45)

and becomes integrable if we choose κ0 = 2α. Of course, this is a restrictive
choice, but fortunately the NLS3 single-soliton solution can fulfill such a
condition. Equation (15.45) reads

Φ′ + 2i sechz Φ+ iτ0(1− Φ2) = 0. (15.46)

To integrate this equation we make one more substitution by

Φ =
i

τ0

Ψ ′

Ψ
,

and transform (15.46) into

Ψ ′′ + 2i sechz Ψ ′ + τ2
0Ψ = 0. (15.47)

We introduce a new substitution

Ψ(z) = θ(z)e−i
∫ z sechz′dz′

, (15.48)

and (15.47) becomes

θ′′ + (τ2
0 + sech2z + i sechz tanh z)θ = 0. (15.49)

Equation (15.49) can be mapped in a “harmonic oscillator plus Pöschl–Teller
potential” equation

d2θ̃

dω2
+ (4τ2

0 + 2sech2ω)θ̃ = 0, (15.50)

with 4ω = −2z+iπ and θ̃(ω) = θ̃(−z/2+iπ/4) = θ(z). The advantage of this
series of substitutions is that (15.50) can be easily integrated and we have its
general solution in the form

θ(ω) = θ1e
2iτ0ω(2iτ0 − tanhω) + θ2e−2iτ0ω(2iτ0 + tanhω), (15.51)

with θ1,2 constants of integration. Equation (15.47) becomes

Ψ(z) = θ(z)
1− iez
1 + iez

, (15.52)

and then we have
Ψ ′

Ψ
=
θ′

θ
− 2iez

1 + e2z
, (15.53)

or

ϕ(z) =
i

τ0

θ′

θ
+

1
τ0

sechz. (15.54)

We can draw the conclusion of these series of substitution by Proposition 9.
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Proposition 9. The general solution of the Riccati equation (15.46) for the
vortex filament dynamics in (15.41) and (15.42), with single-soliton pertur-
bation in curvature (15.44) has the form

ϕ(z) =
[
C

(
(1 + 2τ0) cosh

z

2
+ i(2τ0 − 1) sinh

z

2

)
+ (1− 2τ0)e(π+2iz)τ0 cosh

z

2

− i(1 + 2τ0)eπ+2iz sinh
z

2

](
cosh

z

2
+ i sinh

z

2

)−1

×
[
C

(
2τ0 − tan

π + 2iz
4

)
+ e(π+2iz)τ0

(
2τ0 + tan

π + 2iz
4

)]−1

, (15.55)

where C is an arbitrary constant of integration.

Actually there are three such equations for each component ϕj , and we can
denote them Cj . With τ0 and Cj chosen we have ϕj , and we plug them in
(15.37) to obtain χj . Then we plug both ϕj and χj in (15.38), integrate the
unit tangent field, and obtain the filament shapes function of the parameters
Cj , κ0 = 2α, β and τ0. In Fig. 15.6, we present some typical helical (τ =const.)
shapes obtained through Proposition 9 for different values of the constants
of integration. Such shapes are also described in Lamb [2, Chap. 7]. These
filaments twist locally around their asymptotic direction over an arc-length
equal to the width of the single-soliton perturbation in curvature, i.e., 2/κ0.
The localized loop travels along the vortex filament with the soliton velocity
−2β/κ0.
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Right : different vortex filaments through passing the same origin for several values for
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15.1.6 Vortex Filaments and the Nonlinear
Schrödinger Equation

In Sect. 15.1.5, to integrate the vortex filament equation, we used an example
of localized perturbation in the curvature, in the form of a NLS single-soliton
(15.44). The fact that precisely this type of soliton profile is an exact solution
for the Riccati version of the Serret–Frenet equations for the vortex filament
is more than a coincidence. The dynamics of the vortex filament is actually
related to the dynamics of the cubic NLS through all its solutions, not only
through traveling solutions. We noted already in Sect. 15.1.1 a connection
between solutions of the vortex filament equation (15.12) and solitons. In the
following, following the line introduced in Hasimoto [66], we present the con-
nection between the motion of vortex filaments and the cubic NLS equation.
Details of calculations could be found also in Lamb [2].

For a given smooth parametrized by arc-length curve we can introduce the
complex normal and the complex curvature in the form

N = (n + ib)ei
∫ s τ(s′)ds′

Ψ = κei
∫ s τ(s′)ds′

, (15.56)

where all quantities depend on arc-length and time. From (15.56) and by
using again the Serret–Frenet relations (5.3) and (5.4), we can write

N ′ = −Ψt,

ṫ =
i

2
(Ψ ′N∗ − Ψ ′∗N),

t′ =
1
2
(Ψ∗N + ΨN∗), (15.57)

where the prime means differentiation with respect to s, the dot means dif-
ferentiation with respect to time, and ∗ is complex conjugation. The time
derivative of N needs more attention, but in the end we can have it in the
form

Ṅ =
i

2
(|Ψ |2 +A(t))N − iΨ ′t, (15.58)

where A(t) is an integration term. The equation fulfilled by Ψ(s, t) reads

iΨ̇ + Ψ ′′ +
1
2
(|Ψ |2 +A(t))Ψ = 0, (15.59)

and by using the substitution

u(s, t) =
Ψ

2
e−

i
2

∫ t A(t′)dt′ ,

we reduce (15.59) to the cubic NLS equation



15.1 Vortex Filaments 385

iu̇+ u′′ + 2|u|2u = 0. (15.60)

In conclusion, the procedure to determine the motion of the vortex filament
is the following. We choose a solution u(s, t) of the cubic NLS (15.60) and an
arbitrary function A(t), plug them into

Ψ = 2ue
i
2

∫ t A(t′)dt′ ,

and then identify the relations

Re Ψ = κ cos
∫ s

τ(s′, t)ds′,

Im Ψ = κ sin
∫ s

τ(s′, t)ds′. (15.61)

After solving (15.61) with respect to κ and τ we can integrate the equation of
motion of the curve. The previous single-soliton perturbation in the curvature
can now be easily obtained following this procedure. Moreover, the soliton
described by (15.28) can approach the soliton solutions of the cubic NLS
equation described here, if we make C1 = 0 in (15.28).

A direct example of using (15.60) and (15.61) for other vortex filament
shapes is to look for many-soliton solutions. A two-soliton solution of the
cubic NLS equation (15.60) can be constructed in the center of mass frame
of the two solitons, which are moving with relative velocity 2v and amplitude
a [257]

u(s, t) = 2a exp
[
it

(
a2 − v

2

4

)]
(φ(s, t)− φ∗(s,−t))

×
[
1 + 2e−2as

(
cosh(2avt)− 4a2Re

(
eivs

(v + 2ia)2

))
+

v4

(v2 + 4a2)2
e−4as

]−1

,

(15.62)
where

φ(s, t) = e
ivs
2

(
e−as+avt +

v2

(v − 2ia)2
e−3as−avt

)
.

In (15.62) a, v are free parameters and the same for both solitons, and the
initial phases and initial positions of the solitons are set equal to zero. In
Fig. 15.7, we present the case of two NLS solitons departing from opposite
initial positions, with equal phases. Consequently, they wind in the same
direction. In Fig. 15.8, we present two solitons also departing from opposite
initial positions, but having a phase shift of π. Consequently, the loops along
the vortex filament changes its chirality in time.

As Lamb [2] points out, the relation between the vortex filament dynamics
and the NLS equation is provided by the special binormal equation of motion
(15.12). This type of motion leads to a special orientation of the rate of
change in time of the unit tangent to the filament, i.e., ṫ belongs to the
normal plane of the curve. In general, if ṫ has an arbitrary orientation, the
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Fig. 15.7 Left: two-soliton solution (15.62) of the cubic NLS equation vs. space and
time. Right : the corresponding vortex filament shape obtained with (15.61) at different
moments of time. The solitons have same phase, and so the localized helices wind in the
same direction

equation governing the function u in (15.60) becomes more general than the
cubic NLS. For example, one can relate the motion of twisted curves with
the Hirota equation [258]

u̇+ 3A|u|2u′ + iB|u|2u+ iCu′′ +Du′′′ = 0,

or, for curves of constant curvature, with the sine–Gordon equation

u̇′ + κ0 sinu == 0.



15.2 Nonlinear Dynamics of Stiff Chains 387

-4

-2

2

4

6

8

10

0
2

-2

0

2

4

-2

-2
0
2
4

-10 -5 5 10

-10 -5 5 10

-3
-2
-1

1
2
3
4
5

-1 0 1

-2
-1

0
1
2

-2

0

2

4

-10 -5 5 10

-6

-4

-2

2

4

-1 0 1

-2
-1

0
1
2

-2

0

2

4

6

Fig. 15.8 Left: two-soliton solution with opposed phases. Right : the corresponding vortex
filament shapes in time, with change in chirality

15.2 Nonlinear Dynamics of Stiff Chains

We consider a one-dimensional deformable system (neglecting the width)
characterized by finite length L, inextensibility, and elastic bending rigidity
ε, moving in a very viscous fluid (kinematic viscosity ν or friction coefficient
between the polymer and the fluid ζ). At the macromolecular space scale
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(L ∼ 100 μm, V = 10–100 μ s−1, ν = 10−6 m2 s−1) the flow is dominated by
zero Reynolds number

Re =
V L

ν
∼ 0.

Because of its geometry (elastic potential energy depending on the square of
the curvature) the stiff polymer problem is strongly nonlinear. There are sev-
eral models in literature about the dynamics of such thin rigid systems, and
we mention here just a few of them: DNA molecules [60, 61], actin filaments
and motile cells flagella [69–73, 82, 117, 259], polymeric liquid crystals and
stiff polymers in general [59–63], etc. In the following we present an interest-
ing nonlinear geometrical model based on a Lagrangian approach [59]. The
Euler–Lagrange equation for a system described by a smooth parametrized
curve r(α, t) with α ∈ [0, 1] for convenience is given by

d

dt

∂L
∂rt
− ∂L
∂r

= −∂R
∂r
, (15.63)

where R is defined as the Rayleigh dissipation function and it measures the
rate of energy dissipation by viscous forces

R =
ζ

2

∫ L

0

|rt|2ds, (15.64)

where we used here the arc-length parametrization of the curve. Because of
zero Reynolds number we can neglect the first term in (15.63), i.e., the in-
ertia of the system [117, 260–265]. Consequently the Lagrangian reduces to
the minus potential energy of the system. In addition, the unstretching con-
dition enters into the equations in two places: on the one hand as a Lagrange
multiplier, and on the other hand as the condition for the metrics g to be in-
dependent of time. For a quadratic elastic potential energy (Euler–Bernoulli
energy functional for macroscopic systems, or monomer pair interaction for
microscopical ones) the dynamical equation reads

∂

∂r

[
ε

∫ L

0

(κ(s)− κ0(s))2ds+ ζ
∫ L

0

|rt|2ds−
∫ L

0

Λ(s)ds
]

= 0, (15.65)

where we assume that the polymer chain has an equilibrium shape of cur-
vature κ0(s), and Λ(s) is the linear tension in the polymer [63], which se-
cures through the last integral (functional Lagrange multiplier) in (15.65),
the condition of constant length. We decompose the local forces acting on
the polymer along the Serret–Frenet frame

F = ζrt = T t +Nn +Bb. (15.66)

By applying to (15.65) the variational approach, we obtain the following
dynamical equations
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ζκt =
(
∂2

∂s2
+ κ2 − τ2

)
N −

(
2τ
∂

∂s
+ τs

)
B + κsT,

ζτt =
∂

∂s

[
1
κ

((
∂2

∂s2
+ κ2 − τ2

)
B +
(

2τ
∂

∂s
+ τs

)
N

)]
+ 2κτN − κsB + τsT,

∂T

∂s
+ κN = 0, (15.67)

where κ, τ are the curvature and torsion and the last equation comes from
the condition of time independent metric. The equations are complicated and,
except numerical simulations, it is difficult to sense the contribution of the
nonlinear terms. By using the Hasimoto transformation (6.48)

Ψ(s, t) = κ(s, t) exp
(
i

∫ s

τ(s′, t)ds′
)
, (15.68)

in (15.67) the problem is simplified a lot. With the complex notation

Γ = (N + iB) exp
(
i

∫ s

τ(s′, t)ds′
)
, (15.69)

the system (15.67) reduces, like in the case of moving curves (6.49), to an
integrodifferential equation

ζΨt =
(
∂2

∂s2
+ |Ψ |2

)
Γ + Ψ Im

∫ s

ΨsΓ
∗ds′ + ΨsT. (15.70)

The dynamics of the stiff polymer should be related to the dynamics of elastic
beams (Euler’s elastica theory [99]). In this theory the inflexion points (κ = 0)
of the beam are important because at these points the net torque is zero. For
(15.70), in the plane case V = 0 (to simplify the equations) we have the
following condition holding at inflexion points

ζκt = Nss + κsT.

Considering the tangential components to be irrelevant (just a reparametriza-
tion of the curve) this further reduces to a very simple condition

ζκt = Nss.

From the nonlinear Schrödinger equation type of structure of the dynamical
equations, we expect that some solutions in curvature to have nontopolog-
ical soliton behavior. That would imply zero curvature along the polymer
chain, except in some isolated points (many-soliton solutions) where the cur-
vature increases drastically. Indeed, numerical simulations of the dynamical
equations [60] show such multiple hairpin loop shapes.
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15.3 Problems

1. Prove that starting from (15.12) written in an arbitrary parametrization
(not the arc-length one) we obtain the same continuity equation (15.14).
Check if the same continuity equation is obtained if we start from the
equation ṙ = κr′ × r′′.

2. Show that any rigid helix (κ, τ=const.) is a solution of the filament equa-
tions (15.14) and (15.19).

3. By identifying the Navier–Stokes one-dimensional equation with the sec-
ond equation in (15.21), find that the pressure associated with the gas
dynamics filament model is

P =
ρ′2

ρ
− ρ2 − ρ′′.

4. Solve (15.34) and (15.35) for simple examples of κ(s) and τ(s). Consider
that at the initial point s = 0 the Serret–Frenet trihedron has the ori-
entation of the canonical frame of reference, i.e., t(0) = (1, 0, 0),n(0) =
(0, 1, 0), etc. and r(0) = 0. Find the expression of r′′(0) and r′′′(0) in terms
of κ(0) and τ(0). Show that a better result (faster convergence) of numer-
ically integrating (15.34) could be obtained if we use for initial conditions
a configuration inspired by a helix:

r(0) =
(

κ(0)
κ2(0) + τ2(0)

, 0, 0
)
,

r′(0) =
(

0,
κ(0)√

κ2(0) + τ2(0)
,

τ(0)√
κ2(0) + τ2(0)

)
,

r′′(0) = (−κ(0), 0, 0), r′′′(0) = (0,−κ(0)
√
κ2(0) + τ2(0), 0).

5. Find the third-order differential equation fulfilled by b(s) in the case of
constant torsion, from (15.34).

6. Prove that (15.9) and (15.10) contain a logarithmic divergence in ε−1,
hence these expressions for the velocity of the vortex filament are not
valid in the limits r0, r1 → 0.



Chapter 16

Solitons on the Boundaries
of Microscopic Systems

In this chapter, we focus on some applications of soliton theory in microscopic
compact systems with boundary, like nuclei or quantum Hall liquids. At this
space scale, the solitons correspond to solutions of field equations with fi-
nite energy and with a localized, nondispersive energy density. Since the field
theories describing many-body systems of elementary particles are quantum
theories, one should perform the so-called quantization of solitons procedure.
This is done in principle by using a semiclassical expansion to associate with a
classical soliton solution both a quantum soliton-particle states, and a whole
series of excited state by quantizing the fluctuations around the soliton. Since
the soliton solutions are nonperturbative, their quantum versions are them-
selves nonperturbative [266,267].

Soliton models have been successfully used to incorporate the quark struc-
ture of hadrons into nuclear physics, by using phenomenological quantum
chromodynamics field theories. Examples of such simple models are the soli-
ton bag model, chiral quark-meson models, and color dielectric model, which
permit calculations of nucleon structure and interactions [268]. Soliton solu-
tions are also involved in semimicroscopic nuclear models like the quasimole-
cular shapes model [269] and cluster model [270]. Dynamical calculations in
these models are based on the use of coherent states to provide quantum
states corresponding to these solitons. For example, some authors [271] con-
sider the Glauber coherent states as possible candidates for the wave functions
of the nucleons clustered in the α-particle before decay.

Coming back to our main topic, the description of compact many-body sys-
tems gives best results if performed in terms of collective modes, especially if
the collective modes have lower excitation energies when compared with the
single-particle excitations. By microscopic compact system, we understand a
bounded system of particles having one or more closed boundaries. Collec-
tive modes are coherent, in-phase motion of the nuclear matter, as opposed to
individual single-particle motions. We can divide the collective modes of ex-
citation in two categories: bulk and boundary. For example, in a nucleus the
bulk collective modes could be rotations of deformed nuclei, the photonuclear

391
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giant resonance, while boundary, surface, or contour excitations could be
the low-lying “rotation–vibration” surface modes, or nuclear fission [232].
More example of boundary modes are sound waves in solids [272–274], plas-
mons in charged systems [275], shape oscillations or surface waves in liquid
drops [91, 103, 104, 108, 139, 140, 142, 187, 188, 190–199, 207–211, 221], vortex
patches in ideal fluids [48, 276], atmospheric plasma clouds [47], pattern for-
mation in ferromagnetic fluids [277], two-dimensional electron systems, tides
in neutron stars [53, 54], etc. If the collective modes associated with both
single-particle and collective bulk excitations are absent or reduced (gapped
as atomic physics people would say), the system is referred as incompress-
ible and the boundary modes take over. From the energy point of view, the
boundary modes will be lower in energy and “softer,” with lower frequencies
than the bulk modes. In such situations, one has to study the dynamics of
the boundaries or contours, which has the advantage of less calculations than
the whole bulk: the system has lower dimension. Moreover, the global con-
strains like length, area, and volume conservation can be useful in the model.
These conservation laws enter into the calculation as Lagrange multipliers
and global conservation laws.

16.1 Field Theory Model on a Closed Contour
and Instantons

Let us consider a real scalar field theory on a circle of radius R, described by
the following Lagrangian density

L =
1
2
{
Φ2

t − (Φ2
x − U(Φ))2

}
, (16.1)

where x = Rθ, θ ∈ [−π, π]. The function U is left, for the moment arbitrary.
We impose the boundary condition:

Φ(t,−πR) = Φ(t, πR). (16.2)

The Euler–Lagrange equation is

Φtt − Φxx + U(Φ)U ′(Φ) = 0. (16.3)

Clearly, this Lagrangian is invariant under time translations, and the corre-
sponding conserved quantity given by Noether’s theorem (the energy) is:

E [Φ] =
∫ πR

−πR

dx
1
2
{
Φ2

t + (Φx − U(Φ))2
}
. (16.4)

The energy functional, given by (16.4) is obviously bounded from below. It
attains its minimum (E = 0) at a field configurations which satisfies
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Φt = 0
Φx = U(Φ) (16.5)

We prove that a configuration that satisfies (16.5) also satisfies the equation
of motion (16.3). The first equation in (16.5) means that a minimum-energy
Φ is time independent. For time-independent Φ, (16.3) becomes

Φxx − U(Φ)U ′(Φ) = 0. (16.6)

Now, taking the x-derivative of second equation in (16.5) and eliminating Φx

with the same (16.5), we obtain (16.6). So, any minimum-energy configuration
satisfies the equation of motion, i.e., it is a vacuum configuration. Let us take
a look now at second ordinary differential equation (ODE) in (16.5). Clearly

Φ(x) = K = constant, where U(K) = 0, (16.7)

is (are) solution(s) of (16.5). In terms of ODE’s language, these are “singular”
solutions. Equation (16.5) has also the “regular” solution given by∫

dΦ

U(Φ)
= x− x0 (16.8)

Depending on the explicit form of U , (16.5) could have, also, some singular,
nonconstant solutions. The solution in (16.8) will be referred as the bubble
solution. To be a vacuum, a solution of (16.5) should satisfy the boundary
condition (16.2). This depends on the explicit form of U . We will assume that
solution (16.8) do so. Obviously, a solution like (16.7) satisfies (16.2).

This model has also Hamiltonian structure. The action is

S[Φ] =
∫
dtL[Φ], (16.9)

where L is the Lagrangian

L[Φ] =
1
2

∫ πR

−πR

{
Φ2

t − (Φx − U(Φ))2
}

= T − U

The canonical momenta are

Π(x, t) =
δL

δΦt(x, t)
= Φt(x, t)

and the Hamiltonian becomes

H =
∫ πR

−πR

dxΠ(x, t)Φt(x, t)− L = T + U (16.10)

The canonical equations of (16.10) are{
∂Π(x,t)

∂t = Φxx(x, t)− U(Φ)U ′(Φ)
∂Φ(x,t)

∂t = Π(x, t)
(16.11)

Clearly, the Hamiltonian (16.10) is the energy.
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16.1.1 Quantization: Excited States

In Sect. 16.1, we found the classical vacua. These solutions are static, so we
may use the standard procedure [266] to find the low excited states associated
with each vacuum solution. Of course, this procedure ignores the tunneling
between the different vacua. The net effect of tunneling is to add an imaginary
part to the energies. In case of the “false” vacua, this imaginary part is small
compared with the real part (the energy obtained if the tunneling is ignored)
(see [278, 279]). We expect this to be true for the low excited states also.
According to this procedure, a “tower” of states is associated to each static
solution. We will not discuss here the towers associated with the vacuum
solutions. We will present only a “tower” that is not associated with a vacuum
solution but it is somehow related to the “bubble” solution.

Let Φ(0)(x) be the “bubble” solution. Because the static Euler–Lagrange
equation (16.6) is of order 2 in x, Φ(1)(x) = Φ(0)(−x) it is also a solution.
Obviously, Φ(1) it is not a vacuum solution and it has a nonvanishing energy.
Consequently, the “tower” of states built around Φ(1) will have the energies
higher than the “tower” built around the “bubble” solution. Note that the
shape of Φ(1) is identical with the shape of Φ(0). So, we have two classical
configurations that are identical in shapes. One (Φ(0)) is a vacuum configura-
tion; therefore, it might be attainable in the corresponding quantum theory
by spontaneous transitions from other vacuum configurations (for example
“normal” configurations), and the other is a classically excited configuration.
This feature clearly supports the interpretation that the “bubble” is at least
related with a separate object (the cluster) that may exist alone, separate
from the object that created it. The “bubble” vacuum configuration (Φ(0))
would be, in this interpretation, the configuration that consists in a preformed
cluster plus whatever remains if the cluster is emitted (the descendant), and
the “bubble” excited configuration (Φ(1)) would be a bound-state configura-
tion of descendant and cluster.

16.1.2 Quantization: Instantons and Tunneling

To study the tunneling between the classical vacua, we will use the stan-
dard instanton-based method [266, 278, 279]. Instantons are solutions of the
Euclidean Euler–Lagrange equation

Φττ + Φxx − U(Φ)U ′(Φ) = 0, (16.12)

having a finite Euclidean action. The Euclidean action for our model is

SE [Φ] =
∫
dτ

∫ πR

−πR

dx
1
2
{
Φ2

τ + (Φx + U(Φ))2
}
. (16.13)
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If x would range on the entire real axis, it could be proved that there are
no finite-action, nontrivial solutions of (16.12). This is similar with Derrick’s
theorem (see [266]). We will not present the demonstration here. We note it to
show the necessity for considering the model on a circle. Note that the missing
of instantons does not mean that there is no tunneling, but the tunneling (if
exists) cannot be revealed by the semiclassical instanton-based method. The
desired feature is the presence of the normal vacuum disintegration. Note that
in all models studied in [278,279], the false vacuum has a higher energy than
the true vacuum. We will prove that in this model, even if the two classical
vacua under study (the normal vacuum and the “bubble”) are degenerate
(i.e., we cannot call one of them “true vacuum” and the other “false vacuum”)
the normal (classical) vacuum is quantum unstable. Let Φ(x) = K be a
constant vacuum (the normal vacuum) and Φ0(x) a nonconstant one (the
“bubble”). We will suppose that limx→±∞ Φ0(x) = K and Φ0 have only
one local extremum. We are interested to find nonconstant (τ) solutions of
(16.12), which satisfy the following boundary conditions

Φ(x, τ = ±∞) = K, ∀x, (16.14)

It can be seen that a satisfactory solution is

Φ(x, τ) = Φ0(τ). (16.15)

In Coleman’s terminology, this is a bounce. The fact that a bounce exists,
subjected to boundary conditions (16.14) is the first step to prove the quan-
tum instability of the normal (classical) vacuum. The last step is to prove
that the following operator has a negative eigenvalue (see [278,279] for more
details)

O = − ∂
2

∂τ2
− ∂2

∂x2
+ 2U ′(Φ(0)(τ))

∂

∂x
+
(
UU ′′ + (U ′)2

)∣∣
Φ(0)(τ)

(16.16)

Let us restrict the study of the eigenvalue problem of the operator (16.16) to
the x-independent eigenfunctions. Of course, by doing this restriction we lose
some eigenvalues. But we are interested only in proving that there is at least
one negative eigenvalue. By this restriction, the eigenvalue problem become:[

− ∂
2

∂τ2
+
(
UU ′′ + (U ′)2

)∣∣
Φ(0)(τ)

]
χ(τ) = εχ(τ). (16.17)

Note that (16.17) is a time-independent Schrödinger equation. This equation
has the following particular solution

χ0(τ) =
d

dτ
Φ(0)(τ). (16.18)

This solution corresponds to ε = 0 and is associated to τ -translation symme-
try of the system. Clearly, χ0 has a node where Φ(0) has an extremum. By
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the balancing theorem there is at least one eigenfunction corresponding to
an eigenvalue lower than ε = 0. This proves the previous assertion. In princi-
ple, the instanton-based method may be used to compute the disintegration
probability.

16.2 Clusters as Solitary Waves on the Nuclear Surface

We devote this section to the application of soliton models on compact shapes
in the study of α or heavier cluster formation in heavy nuclei resulting in ra-
dioactive decay, α-cluster states in scattering processes, quasimolecular res-
onances in heavy ions, highly deformed exotic nuclear shapes and fission.

The liquid drop model, as a collective model of the nucleus, describes very
well the spectra of spherical nuclei as small vibrations around the equilibrium
shape. On the other hand, it is known that on the nuclear surface of heavy
nuclei close to the magic nuclei (208Pb, 100Sn) a large enhancement of clus-
ters (alpha, carbon, oxygen, neon, magnesium, silicon) exists, which leads to
the emission of such clusters as natural decays [280]. Traditional collective
models [102] are unable to give a complete explanation of such natural de-
cays, i.e., they still did not completely answer the main physical question:
why should nucleons join together and spontaneous form an isolated cluster
on the nuclear surface? In the following, we present how soliton solutions in
the nuclear (nonlinear) drop model plus shell corrections can give an answer
in a positive way to this question [161,281–285].

We describe the surface Σ of a nucleus as a function of the polar angles θ
and ϕ, by writing the nuclear radius in the form

r = R0(1 + ξ(θ, ϕ, t)), (16.19)

where R0 is the radius of the spherical nucleus. Without loss of generality
we choose a special shape as a traveling perturbation (η) in the ϕ-direction,
having a given transversal profile (g) in the θ-direction

ξ(θ, ϕ, t) = g(θ)η(ϕ− V t) (16.20)

with g an arbitrary bounded, nonvanishing continuous function, η a rapidly
decreasing function, and V defining the tangential velocity of the traveling
solution η on the surface. This choice is different from the traditional liquid
drop model case where the shape function is expanded in spherical harmonics
and we need ten multipoles to fit a soliton shape [281–283]. In the liquid
drop model, we consider the nucleus as an inviscid incompressible fluid layer
described by the irrotational field velocity v(r, θ, ϕ, t) and by the constant
mass density ρ =const. From the continuity equation and the irrotational
condition, we have the Laplace equation

v = ∇Φ, �Φ = 0. (16.21)
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The dynamics of this perfect fluid is described by the Euler equation (10.15)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P +

1
ρ
f , (16.22)

where P is the pressure and f is the volume density of the Coulombian force,
f = −ρel∇Ψ , with Ψ the electrostatic potential and ρel the charge density,
supposed to be constant, too. We have(

Φt +
1
2
|∇Φ|2

)∣∣∣∣
Σ

= −1
ρ
P − ρel

ρ
Ψ |Σ . (16.23)

To determine the functions Φ and ξ, we need in addition boundary conditions
for the scalar harmonic field Φ, on two closed surfaces: the external free
surface of the nucleus (9.30) and the inner surface (if it exists) of the fluid
layer. The latter condition requests zero radial velocity of the flow on its inner
surface.

dr

dt

∣∣∣∣
Σ

=
(
∂r

∂t
+
∂r

∂θ

dθ

dt
+
∂r

∂ϕ

dϕ

dt

)∣∣∣∣
Σ

, (16.24)

This equation allows general types of movements, including traveling and

vibrational waves. Equation (16.24) reduces to the form dr
dt

∣∣∣∣
Σ

= ∂r
∂t

∣∣∣∣
Σ

in

the linear approximation (the Bohr–Mottelson model). This linearization re-
stricts the oscillations to only collective radial vibrations, and does not allow
any motion along the tangential direction. Equation (16.24) can be written in
terms of the derivatives of the potential of the flow and the shape function ξ

Φr

∣∣∣∣
Σ

= R0

(
ξt +

ξθ
r2
Φθ +

ξϕ

r2 sin2 θ
Φϕ

)∣∣∣∣
Σ

, (16.25)

where ∂Φ
∂r = vr = ṙ is the radial velocity and 1

r
∂Φ
∂θ = vθ = rθ̇, 1

r sin θ
∂Φ
∂ϕ = vϕ =

rϕ̇ sin θ are the tangential velocities. We denote here the partial differentiation
by suffixes, ∂Φ/∂ϕ = Φϕ, etc. The existence of a rigid core of radius R0 −
h(θ) > 0, h(θ) R0, introduces the second boundary condition for the radial
velocity on the surface of this core in the form

vr|r=R0−h =
∂Φ

∂r

∣∣∣∣
r=R0−h

= 0. (16.26)

The motion of the fluid is described by the Laplace equation and by the two
boundary conditions. We use for the potential of the flow the expansion

Φ =
∞∑

n=0

(
r −R0

R0

)n

fn(θ, ϕ, t), (16.27)
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where the functions fn do not form in general a complete system on the
sphere. The convergence of (16.27) is assured by the value of the small quan-
tity r−R0

R0
≤ max|ξ| = ε. From the Laplace equation (in spherical coordinates)

and the expansions

1
rn

=
1
Rn

0

∞∑
k=0

(−1)k((n− 1)k + 1)ξk, k = 1, 2, (16.28)

we obtain a system of equations that result in the recurrence relations for
the unknown functions fn

fn = [(−1)n−1(n− 1)�Ωf0 − 2(n− 1)fn−1

+
n−2∑
k=1

(−1)n−k(2k − (n− k − 1)�Ωfk)]
1

n(n− 1)
, (16.29)

with n ≥ 2 and where �Ω = 1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂

∂ϕ is the angular part

of the Laplacian operator in spherical coordinates. Equation (16.29) reduces
the unknown functions to only two: �Ωf0 and f1:

f2 = −1
2
(�Ωf0 + 2f1),

f3 =
1
6
(4�Ωf0 − 4�Ωf1 + 4f1 + 2),

f4 =
1
24

(�2
Ωf0 − 14�Ωf0 + 8�Ωf1 − 8f1) . . . . (16.30)

If we choose the independent functions �Ωf0 and f1 to be smooth on the
sphere, they must be bounded together with all the fns (these being lin-
ear combinations of higher derivatives of f0 and f1) and hence the series in
(16.27) is indeed controlled by the difference in the radii between the de-
formed and the spherical one. However, in the following we will use only
truncated polynomials of these series. By introducing (16.29) and (16.30) in
the second boundary condition (16.26), we obtain the condition

∞∑
n=1

n

(
− h

R0

)n−1

fn = 0, (16.31)

which reads, in the first order in h/R0

f1 =
2h
R0
f2. (16.32)
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From (16.30) and (16.32), the unknown function f1 is obtained, in the smallest
order in h/R0

�Ωf0 = −
(
R0

h
+ 2
)
f1. (16.33)

Concerning the free surface boundary condition, we need to calculate the
derivatives of the potential of the flow on that surface

Φr|Σ =
∑

n

n
(r −R0)n−1

Σ

Rn
0

fn =
f1
R0

+
2ξf2
R0

+O2(ξ),

Φϕ|Σ =
∑

n

ξnfn,ϕ = f0,ϕ + ξf1,ϕ +O2(ξ), (16.34)

Φθ|Σ =
∑

n

ξnfn,θ = f0,θ + ξf1,θ +O2(ξ).

By introducing the series (16.28) and (16.34) in (16.25) for the traveling wave
solution (16.20), we have the equation

f1 + 2ξf2 = R2
0ξt +

ξϕ(1− 2ξ)
sin2 θ

(f0,ϕ + ξf1,ϕ)

+ ξθ(1− 2ξ)(f0,θ + ξf1,θ). (16.35)

We keep the nonlinearity of the boundary conditions in the first order in the
expression of f0 and the second order in the expression of f1. Consequently,
to be consistent, it is enough to take the linear approximation of the solution
for f1 in (16.35), like in the case of the normal modes of vibrations

f1 = R2
0ξt +O2(ξ). (16.36)

Hence, by introducing the linear approximation for f1 (16.36) in (16.35)
we have

2ξf2 =
1

sin2 θ

(
−ξϕf0,ϕ + ξξϕ(f1,ϕ − 2f0,ϕ)

)
+ ξξθ(f1,θ − 2f0,θ), (16.37)

and by taking the expression of f2 from the recurrence relations (16.32) and
�Ωf0 from (16.33), we obtain the form of f0, in the second order in ξ

f0,ϕ = −R
3
0 sin2 θ

h

ξξt
ξϕ

(1 + 2ξ)− ξθf0,θ

ξϕ
+O3(ξ). (16.38)

In the case of traveling wave profile of the form ξ(θ, ϕ, t) = g(θ)η(ϕ − V t),
it occurs the restriction ξϕ = −V ξt, and consequently the tangential velocity
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in the θ-direction becomes zero. Equation (16.38) reads

f0,ϕ =
V R3

0 sin2 θ

h
ξ(1 + 2ξ) +O3(ξ). (16.39)

Equations (16.36), (16.38), and (16.39) describe, in the second order in ξ,
the connection between the velocity potential, the shape function, and the
boundary conditions. This fact is a typical feature of nonlinear systems. The
dependence of Φ|Σ on the polar angles, in the second order in ξ, has the form
of a quadrupole in the θ-direction and depends only on ξ and its derivatives
in the ϕ-direction. For traveling wave profiles the tangential velocity in the
direction of motion of the perturbation, vϕ = Φϕ/r sin θ is proportional with
ξ in the first order

vϕ =
2V R0 sin θ

h
ξ +O2(ξ), (16.40)

To obtain the dynamical equation for the surface Σ, we follow the formal-
ism for the normal vibration of droplets described in Chap. 13. The surface
pressure is obtained from the surface energy of the deformed nucleus, US ,
and according to Sect. 10.4 is given by

P |Σ = 2σH =
σ

R0
(−2ξ − 4ξ2 −�Ωξ + 3ξξ2θcotan θ) + const. (16.41)

whereH is the mean curvature of the fluid surface. The terms of order three in
ξϕ,θ, ξϕ,ϕ, and ξθ,θ, can be neglected in (16.41) because of the high localization
of the solution (the relative amplitude of the deformation ε is smaller than
its angular half-width L, ξξϕϕ/R

2
0 	 ε2/L2  1, etc.).

The Coulomb potential is given by a Poisson equation, �Ψ = ρel/ε0, with
ε0 the vacuum dielectric constant. By using the same method like for Φ [281],
we obtain in the second order for ξ, the form

Ψ |Σ =
ρelR

2
0

3ε0

(
1− ξ − ξ

2

6

)
. (16.42)

To write the Euler equation we take the surface pressure from (16.41), the
velocity potential from (16.27), (16.32), (16.36), (16.39), and the Coulomb
potential from (16.42) and we write, in the second order in ξ, and in the first
order in its derivatives the dynamic equation

Φt|Σ +
V 2R4

0 sin2 θ

2h2
ξ2 =

σ

ρR0
(2ξ + 4ξ2 +�Ωξ − 3ξ2ξθctgθ)

+
ρ2elR

2
0

3ε0ρ

(
ξ +

ξ2

6

)
+ const. (16.43)

This is a nonlinear PDE in variables θ and ϕ. By differentiating it again with
respect to ϕ, and by using (16.33) and (16.36) we obtain in the second order,
after reordering the terms
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A(θ)ηt +B(θ)ηϕ + C(θ)g(θ)ηηϕ +D(θ)ηϕϕϕ = 0, (16.44)

which is a Korteweg–de Vries (KdV) equation with coefficients depending
parametrically on θ

A =
V R2

0(R0 + 2h) sin2 θ

h
; B = − σ

ρR0

(2g +�g)
g

− ρ
2
elR

2
0

3ε0ρ
;

C = 8
(
V 2R4

0 sin4 θ

8h2
− σ

ρR0

)
− ρ

2
elR

2
0

9ε0ρ
; D = − σ

ρR0 sin2 θ
, (16.45)

It is obvious now that the depth of the fluid layer inside the nuclear surface
should be considered as a function of θ, itself, h = h(θ). Same reasoning
applies to V,L → V (θ), L(θ). It means that the nonlinear flow under the
surface interacts with the core in a variable way, function of the azimuthal
angle. The KdV (16.44) has cnoidal waves solutions (Sect. 11.2)

η(ϕ, t) = g(θ)sn2

(
ϕ− V (θ)t
L(θ)

∣∣∣∣k(θ))+ Υ (θ), (16.46)

depending on three arbitrary parametric functions g(θ), Υ (θ), k(θ). The an-
gular (poloidal) velocity and the angular half-width have the forms

V (θ) =
B

A
+
Cg

3A

(
1 +

1
k

)
+
CgΥ

A
,

L(θ) = 2

√
−3Dk
Cg2

(16.47)

where all symbols on the RHS are functions of θ as shown above. The peri-
odicity condition on the closed path around a parallel circle reads

K(k(θ))L(θ) = π/2, (16.48)

where K(k) is complete elliptic integral of the first kind (Sect. 18.3). To have
constant traveling waves along the ϕ-direction, the parameters of the soliton
solution must have constant angular velocity V so as to keep the shape of the
wave stable in time and along the equatorial motion. If we couple all these
constraints with the periodicity condition (16.45), (16.47), and (16.48), we
have the following dependence

V 2(θ) =
8h2

R2
0 sin2 θ

[
β +
(

g(k+1)
3k + Υ

)
(β + 8γ) + γ 2g+
g

g

]
[
8h(R0 + 2h)−

(
g(k+1)

3k + Υ
)
R2

0 sin2 θ

]
L(θ) = 2

√√√√√− 3γk

g2
[
γ + V 2R4

0 sin4 θ
8h2

]
sin2 θ

, (16.49)
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where we denoted γ = −σ/(ρR0) and β = −ρ2elR
2
0/(3ε0ρ). We have to

further couple these equations with the expressions of the coefficients of
the KdV equation (16.45) and with the coefficients in the cnoidal solution
(16.47), and of course with the periodicity condition. The remaining condi-
tions of constancy of V (θ) and the periodicity condition (16.48), introduce
two restrictions in the set of four arbitrary functions of θ: k, g, h and Υ , which
provides the possible shapes, depths of the layers, amplitude, and velocities
with a great deal of freedom. There are boundary conditions attached to
these functions, namely at the poles, θ = 0, π, all of them should be zero.
In Figs. 16.1 and 16.2, we present some possible shapes of cnoidal excitations
of the nuclear surface. In Fig. 16.1, the cnoidal solutions are plotted together
with the closest possible match in terms of spherical harmonics. One can see
that, with the exception of the solitary wave all other excitations are close to
the linear modes. In the limit k → 1, the cnoidal waves approach a solitary
wave profile.

To verify the model we can estimate, in a very simplistic way, the spectro-
scopic factors of a certain cluster decay with the experimental results. The
spectroscopic factor S is given by the penetrability of the quantum barrier
associated with the process of preformation of the cluster from the parent
nucleus. We can parametrize this process with the amplitude η0 = max |g(θ)|
of the solitary wave, from spherical equilibrium shape η0 = 0 to a cer-
tain maximum value. The quantum penetrability can be calculated with the
formula [102]

S = exp
(
−2

�

∫ η0

0

(Acluster −E[η])1/2dη

)
, (16.50)

where η0 is the final amplitude of the soliton, Acluster is the nuclear mass
of the preformed cluster of a certain α or other decay process, and E is the
total nuclear energy calculated function of the amplitude of the excitation.
This energy is actually defined on a multidimensional space of parameters,
involving all types of energies in the model. The liquid drop mechanical energy
consists in the sum of the kinetic energy

K =
ρ

2

∫∫∫
D

(∇Φ)2dV

where Φ can be calculated from (16.27), and potential energy of the surface

UΣ = σ(A−A0),

where A is the area of the deformed surface that can be calculated from
(16.20). In addition to these two terms we have the Coulomb interaction
energy

UC [η] =
ρe

2

∫ ′

V

∫
V

1
|r − r′|dVdV

′
. (16.51)
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l=3 l=2

Soliton

l=6

l=5
l=4

Fig. 16.1 Cnoidal waves excitation of the equatorial plane of the nuclear surface for
different values of the modulus k of the cnoidal function, plotted together with the closest
spherical harmonic combination that matches the nonlinear excitations

Fig. 16.2 Cnoidal waves excitation of nuclear surface in two cases. Left : the arbitrary
functions k(θ), g(θ), h(θ) are chosen to have Gauss bell profiles of the same width with the
solitary wave half-width. Right : the arbitrary functions k, h are chosen constant, and g(θ)
is chosen to have a sech profile

and the shell correction energy, which, in this model, takes care of the quan-
tum effects. The shell energy is introduced by considering that the main
contribution is from to the final nucleus, usually close to the double magic
nucleus 208Pb in α and heavier fragments decay. The spherical core r ≤ R0−h
represents the final nucleus, which is also unexcited for the even–even case.
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We introduce the shell energy like a measure of the overlap between the core
and the final nucleus, on one side, and between the final emitted cluster and
the bump, on the other hand

Esh = χ
Vover

V + [V0 − (Vcluster + Vlayer)]− Vover
, (16.52)

where Vover denotes the volume of the overlap between the volumes of the
initial V0 and final V nuclei, Vcluster is the soliton volume, and Vlayer is
the layer volume on which the soliton is moving (i.e., r ∈ [R0 − h,R0]).
We use this form for the shell energy multiplied with a constant χ, chosen
such that the total energy of the system in the state of residual nucleus plus
cluster to be degenerated with the ground state energy. When we calculate the
energy E along the path from undeformed nucleus to a certain solitary wave
excitation, we have to take into account the volume conservation condition.
Equation (16.50) was calculated for numerical values of the parameters in
[281, 285, 286]. The result was compared with similar calculations in [286]
and with the experimental preformation factors for 208Pb. The results are
enough close given the macroscopic nature of the model, namely Sexp = 0.085,
S[281,285] = 0.095, S[282,284] = 0.0063 and Ssoliton = 0.07.

16.3 Solitons and Quasimolecular Structure

Since the soliton model for cluster preformation presented in Sect. 16.2 de-
scribes the dynamics of the nuclear surface, it is natural to search among
possible experiments those in which the main contribution in the reactions is
due – to some extent – to the surface. The soliton model could be proved or
disproved more easily in the light of such measurements. A possible channel
for such a goal is provided by the α-particle scattering with nuclei, in which
the α-particle, being composite, interacts with nuclei in a more complex way
than the nucleons namely, its high stability (high binding energy, zero spin,
and isospin) restricts the interaction to a shallow surface layer region of the
nucleus.

First interesting thing revealed by such complex interaction is the oc-
currence of a quasimolecular structure, i.e., states with structure polarized
strongly into subunit nuclear clusters, which can be defined as molecule-like
structures [287]. Specific features in all these experiments are a very high
density of resonances, a good spin and parity assignment, irregular spacing
of these spectra, and the relatively small moment of inertia of the α+nucleus-
systems. There are many theoretical attempts (microscopical and phenom-
enological models) to explain such resonances or the intermediate structure.
Some of them were developed for α-cluster states [288, 289], or by anhar-
monic quadrupole surface vibrations analogues [290]. Other models include
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Morse-potential, quadrupole vibration–rotation model, coupled-channel cal-
culations, two-center shell model, semimicroscopic algebraic models, and
band-crossing models [291–298].

In all these theoretical models, to explain the above mentioned features
of these interactions, one has to introduce in the shell model a cluster-like
component, or the many-body correlations. A more natural way to explain
and/or predict these energy spectra is to consider that the α-particle inter-
acts with the nucleus as a soliton or a breather. This is a new coexistence
model consisting of the usual shell model and a cluster-like model describing
a soliton moving on the nuclear surface. The energy spectrum is obtained
from the quantum fluctuations around the classical soliton solutions by a
nonperturbative weak-coupling procedure. The corresponding energy spectra
are similar to a sum of nonlinear harmonic oscillators determined uniquely
by the soliton geometry.

In the case of the resonances observed in the scattering of an α-particle
on 28Si, this surface soliton quantized model produces a surprising agree-
ment between the predicted angular momentum states and energies and the
measured ones [283,284]. In addition, this model does not use any supplemen-
tary fragmentations of levels because of the neglected collective levels, like
in the traditional models mentioned above. The spectrum obtained from the
semiclassical quantization of the soliton state given in (16.46) reads [266,284]

En,I,N = E0 + �ω1(n1 + 1/2) + �ω2(n2 + 1/2)−B(n+ 1/2)2 + CJ(J + 1),
(16.53)

where J is the quantum number associated to the angular momentum and
the corresponding constant C = �2/2I(R0, L, h) is the reciprocal moment of
inertia I, which is calculated from the soliton geometry by considering the
rotation of the soliton plus the layer about the center of mass of the system.
All the parameters in this term of rotation are obtained from physical con-
siderations (and not numerical fit calculations): the daughter nucleus radius
R0, the width of the soliton L, and the depth of the fluid layer under the
soliton h (Sect. 16.2; see (16.45) and (16.49)). The terms in �ωk are the excita-
tions of the soliton state, and for the soliton whose geometry fits the α+28Si
reaction (η0 = 0.41, L = 0.546, h = 0.17R0) we obtain �ω1 = 0.23 MeV,
�ω2 = 0.801 MeV, and N = 0.015 MeV. With this values obtained from the
theory, the calculations reproduce about 190 observed experimental energies
and spins of the intermediate states of α+28Si (within errors of 2.5% or less),
and predict positions and spins of other levels. Both even and odd parities
are reproduced using the same parameters. This model explains that the
odd–even parity splitting of the band members predicted by other models
like RGM and OCM, etc., is not needed nor supported by the present exper-
imental data or this nonlinear model. In support of this soliton-like model
the experiments show that the even and odd states form mixed parity bands,
which implies that the rotating mass has an asymmetric shape as it is nat-
ural for the α+28Si-system, for example. If such a theoretical description is
acceptable it implies that an alpha (or heavier) cluster modeled as a soliton
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orbiting on the nuclear surface could be viewed as another type of large am-
plitude nuclear collective deformation.

This quantum approach of cluster formation on the nuclear surface was
applied to other resonances in the elastic scattering of alpha particles on 20Ne
[284]. For this lighter nucleus the constants in (16.53) are E0 = 9.465 MeV,
h = 0.121R20Ne, L = 0.636, η0 = 0.62, C = 0.13052, �ω1 = 0.533 MeV,
�ω2 = 0.1.0655 MeV, and N = 0.07878 MeV. About 90 states and spin values
are also predicted.

16.4 Soliton Model for Heavy Emitted Nuclear Clusters

In Sects. 16.2 and 16.3, we presented the nonlinear hydrodynamic model plus
semimicroscopic corrections. To provide a more realistic description of large
cluster formation on the nuclear surface, we have to add more detailed micro-
scopic structure to the parent heavy nucleus and to the emitted cluster. The
microscopic substructure further allows one to add shell corrections to the
usual macroscopic liquid drop energy, and thus to give a complete description
of the system, from the initial undeformed nucleus, to the parent nucleus with
a shape deformation, and out to the cluster emission process. A straightfor-
ward way to accomplish this is to calculate shell effects obtained from the
single-particle levels of an asymmetric shell model. Such nuclear asymmetric
models are called “two-center” shell models, and allow a microscopic descrip-
tion of the nuclear evolution from one to two independent quantum systems.
The procedure is presented in detail in [161], and involves calculating the
total potential energy as the sum of the macroscopic (hydrodynamic) en-
ergy, and shell corrections, which is then minimized. This approach usually
yields a potential energy barrier along the evolution of the parameter that
describes the cluster formation. This barrier increases with the amplitude of
the new formed cluster. We sketch here the soliton-model calculations for
the nuclear reaction 248No → 208Pb +40Ca. Cluster emission processes are
described by using soliton-like shapes on the nuclear surface of the heavy
fragment like those developed in Sect. 16.2. For a given cluster geometry, the
model calculates the corresponding soliton parameters (A, L, V ) as functions
of the separation parameter, i.e., along the static path of the cluster emission
process.

The deformation energy, Edef , is calculated in a macroscopic–microscopic
approach

Edef = EC + EY +E + δEshell + δP, (16.54)

where EC is the Coulomb energy and EY +E is the surface or nuclear energy
calculated within the Yukawa-plus-exponential model [299]. The Coulomb
energy of interaction is calculated by the double-volume integral

EC =
1
2

∫
V

∫
V

ρe(r1)ρe(r2)d3r1d3r2
r12

. (16.55)
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The general form of the Yukawa-plus-exponential energy is:

EY +E = − a2

8π2r20a
4

∫
V

∫
V

(r12
a
− 2
) exp(−r12/a)

r12/a
d3r1d

3r2, (16.56)

where r12 = |r1 − r2|, a = 0.68 fm accounts for the finite range of nuclear
forces, and a2 = as(1 − κI2). κ is the asymmetry energy constant, and the
surface energy constant is as = 21.13 MeV. In addition to the macroscopic
energy, the model contains the energy corrections for the two-center shell
model, where the two centers are taken in the center of the daughter nucleus,
and in the center of mass of the emerging soliton. The energy corrections
contain the energy of two coupled oscillators plus the spin–orbit interaction
depending on the mass asymmetry in the final reaction products.

The level scheme of a soliton shape is used to obtain the shell corrections
of the system. As the soliton is assimilated with an emerging fragment, it will
provide the shell correction value of the independent nucleus of similar shape.
Shell corrections are obtained by means of the Strutinsky procedure [300].
The relative velocity distribution V of the two presumed solitons along the
minimum-energy path, together with the scaled values of the half-width L
and the relative amplitude a = A/R1, are plotted in Fig. 16.3. In the first
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Fig. 16.3 The evolution of the soliton geometrical parameters a = A/R1, L, and V in

relative units vs. the elongation R in fm for the 40Ca emission. The corresponding nuclear
configurations (parent nucleus, daughter cluster, and embedding soliton shape) are plotted
for the initial stage (when the emitted cluster is only slightly displaced off the common
center), an intermediate stage, and the final stage when the two nuclei are almost separated.
The oscillations in the soliton parameters are related to the shell corrections



408 16 Solitons on the Boundaries of Microscopic Systems

stages, the tendency is that the amplitude and half-width increase with the
elongation parameter, when the emitted cluster is emerging out from the
parent nucleus. During the formation of the cluster the half-width remains
practically constant, since the surface energy controls this stage. When the
two nuclei are well separated, the soliton envelope hardly fits the two spheres,
and in this limit, the half-width approaches zero value. This gives the limiting
configuration for this soliton model. The velocity is increasing with the am-
plitude of the soliton, hence with the elongation of the cluster-like emission
shape.

16.4.1 Quintic Nonlinear Schrödinger Equation
for Nuclear Cluster Decay

The soliton descriptions in the above sections are actually extensions of the
traditional geometric collective model (Bohr–Mottelson), which allows not
only the nuclear deformations leading to collective rotational and vibrational
motions coupled with single-particle states, but also the creation of the bumps
on the nuclear surface. The different approach followed by [301, 302] starts
from the nonlinear irrotational hydrodynamic equations in a compact domain
of space, with boundary, and introduces a Hamiltonian system in terms of
collective mass and current densities, which satisfy the Euler and continuity
equations. These equations reduce to nonlinear Schrödinger equation with
a nonlocal “potential.” By using the realistic effective Skyrme contact δ-
interaction the “potential” becomes local polynomial in density [303]. This
leads to a new quintic nonlinear Schrödinger equation whose highest order
nonlinear term is essential for the Skyrme interaction, and describes well the
main properties of real nuclei [301,302].

In the second-quantization formalism, a system of A spin-less and isospin-
less nucleons is described by a nonrelativistic Hamiltonian with a local two-
body potential U(x)

Ĥ =
�2

2m

∫
d3x∇Ψ+(x)∇Ψ(x) +

∫
d3xd3yΨ+(x)Ψ+(y)U(x− y)Ψ(x)Ψ(y),

(16.57)
where the canonically conjugated nucleon fields Ψ+(x), Ψ(x) satisfy the
equal-time canonical anticommutation relations{

Ψ+(x), Ψ(y)
}

+
= δ(x− y).

We can introduce collective mass density and a current density operators in
a second quantized formalism

ρ̂(x) ≡ Ψ+(x)Ψ(x), ĵk(x) =
�

2mi

(
Ψ+(x)Ψ,k(x)− Ψ+

,k(x)Ψ(x)

)
,
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where the subscripts represent differentiation to coordinates, and we use the
Einstein’s mute convention for summation. The mass-current operators fulfill
the following equations of motion

ρ̂t(x) =
1
i�

[ρ̂(x), Ĥ] = −ĵk,k(x)

ĵk,t(x) =
1
i�

[ĵk(x), Ĥ] = − �2

2m2

(
T̂nk,n(x)− 1

2
ρ̂,knn(x)

)
(16.58)

− 2
m
ρ̂(x)
(∫

d3yU(x− y)ρ̂(y)
)

,k

.

In the case of irrotational flow, the velocity operator can be defined through
a potential operator ϕ̂(x) in the equation

ĵk(x) ≡ 1
2

{
ρ̂(x), ϕ̂, k(x)

}
+

. (16.59)

Equations (16.58) and (16.59) provide a complete collective hydrodynami-
cal description of the nuclear system. In the semiclassical limit (16.58) and
(16.59) can be reduced for irrotational flow motion (16.59) to a nonlinear
Schrödinger equation [304]

i�
∂u

∂t
= − �2

2m
Δu+ Ũ [|u|2]u (16.60)

where the local density and the velocity potential are given by

u(x, t) =
√
ρ(x, t)e

m
�

ϕ(x,t). (16.61)

In a case of a general two-body interaction U(x), the potential Ũ [ρ] is a
nonlocal one. The well-known effective Skyrme contact δ-interaction [303]
leads to the following local nonlinear “potential” Ũ [ρ], after providing the
following renormalization [304]∫

d3xd3yρ(x)U(x− y)ρ(y) =⇒
∫
d3x

(
3
8
t0ρ

2(x) +
1
16
t3ρ

3(x)
)
. (16.62)

The introduction of the Skyrme force involves the following substitutions

m→ m∗ =
1

1
m + (3t1 + 5t2) ρn

8�2

,

�2

8m
→ �2

8m
+
ρn

64
(9t1 − 5t2),
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where ρn is the nuclear matter density and ti are parameters of the Skyrme
forces. After a rescaling, (16.60) becomes

i
∂ψ

∂τ
= −Δ′

ψ − 4 | ψ |2 ψ + 3 | ψ |4 ψ, (16.63)

that is a nonlinear Schrödinger equation (NLS) with a quintic term in ψ.
Such an equation is not completely integrable in the sense of the soliton
theory. Also, the corresponding Bäklund transformation does not exist, and
it is not possible to build exact N-soliton one-dimensional solutions. So we
have to deal with the so-called quasisolitons, which are also under a constant
intensive investigation [305]. However, there are methods to build N-soliton
solutions of the one-dimensional cubic nonlinear Schrödinger equation, for
example, the inverse scattering method [306], direct type method [307]. For
the alpha and cluster decay we have the case of axial symmetric interaction
of two small overlapping nonlinear waves. The both initially isolated waves
(a large target and a small projectile) are solitary type spherically symmet-
ric solutions. The general analysis of the collision of two three-dimensional
initially localized nonlinear waves (nuclei) in the framework of nonlinear hy-
drodynamics can be made only numerically, where only density distributions
and not the velocity fields are calculated. Example of numerical calculations
for 208Pb + 20Ne along the z-axes are presented in Fig. 16.4. One can see
the transition from the two well-localized waves to the practically absorbed
in the surface region. The angular dependence of the density distribution for
208Pb + 20Ne is presented in the right frame of the same figure. The quin-
tic Schrödinger equation (16.63) admits also antisoliton solutions. From the
three-dimensional perspective, such a fast rotation antisoliton (Fig. 16.5), or
rather an antisoliton pair where the two antisoliton are separated with π and
travel along the same circle with the same angular velocity can have interest-
ing consequences on the probability of preformation of a spontaneous fission,
or exotic radioactivity channel [308]. The rotating antisoliton can create a
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Fig. 16.4 Left : the density distribution for 208Pb + 20Ne at the angle θ = 0 for three
different separations. Right : the angular dependence of the density distribution for the
maximum separation presented in the left frame, θ = 0◦, 10◦, 20◦
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ϕ

Fig. 16.5 A fast rotating antisoliton can cut a virtual channel in the nuclear shape,
increasing so the probability for fission through that channel

Fig. 16.6 Change in the fission barrier produced by the introduction of an antisoliton
pair on the surface

sort of virtual channel in the surface, so it can enhance the probability of
breakup. Some preliminary numerical calculations show that the fission bar-
rier (Fig. 16.6) can be lowered by the occurrence of such an antisoliton.

16.5 Contour Solitons in the Quantum Hall Liquid

An example of a nonlinear integrable system originating from the contour
dynamics formalism at microscopic scale is provided by the excitations on
the edge of a two-dimensional electron system in a perpendicular strong
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magnetic field. This practically two-dimensional system was theoretically
investigated in [309] by using field-theoretical treatments of the edge exci-
tations. Also, studies of edge channels in quantum Hall (QH) samples have
shown the presence of nonlinear waves [310]. In this study, the origin of the
nonlinearity is the variation of the intensity of the confining electrical field.
From the contour dynamics point of view (theory of plane curve motion
surrounding an incompressible inviscid fluid), this system was investigated
by Wexler and Dorsey [53, 54]. In this study, the nonlinearity arises here
from geometrical effects. These authors obtained explicit MKdV soliton so-
lutions for the curvature of the contour, in agreement with the theory of
motion of two-dimensional curves (Sect. 6.1), and with the results obtained
in Sect. 13.5 [221].

In the following we present elements of this geometric nonlinear model.
The boundary of a two-dimensional electron system, or a QH liquid can be
investigated in a clean and controlled environment because the QH liquid is
incompressible, there are no other low-lying excitations except the boundary
ones so dissipative effects can be eliminated. We consider a bounded two-
dimensional system of electrons of density n(r, t) and velocity field V (r, t),
placed in a high magnetic field B = Bez, and a background (confining)
electric field E. We denote the two-dimensional connected, simply connected
domain (Sect. 2.1.4) occupied by electrons with D and its moving boundary
Γ = ∂D will be considered a regular, simple, plane, parametrized curve
(Sect. 5.1). Because of the inviscid and nondissipative character of the motion
in the QH two-dimensional drop, we can use the Euler equation (10.15)

∂V

∂t
+ (V · ∇)V = −ωcez × V +

e

me
E − e2

meε
∇
∫

D

n(r′)
|r − r′|dA

′ = 0,

∂n

∂t
+∇ · (nV ) = 0, (16.64)

In the second equation, ωc = eB/me is the cyclotron frequency, me and e
are the mass and charge of electron, and ε is the dielectric constant of the
medium. The first two RHS terms are the Lorentz force, and the last one
is the Coulomb interaction. The last equation is the continuity equation. If
both velocity and density of electrons are supposed to oscillate around their
equilibrium values V e = 0, ne with some frequency ω and wave number k,
by using (16.64) we note that

ω = ωc +
2πnee

2

meε
k.

A simple estimation shows that bulk excitations can be neglected since
�ωc ∼ 200 K, while the equilibrium temperature is around 1 K. So, the QH
system can be well modeled with nonlinear contour dynamics approach. This
is equivalent with an incompressible inviscid two-dimensional liquid drop
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model with sharp contour, except here we have electromagnetic interactions
in addition. The incompressibility condition introduces already a global con-
servation law, i.e., constant area of D. If we multiply in a crossproduct the
first equation in (16.64) with ez, neglect the inertial terms and the drift
terms produced by the parasite external electric field ez ×E [54], we obtain
a simpler equation the velocity field of confined electrons

V (r) = − e2

εmeωc
∇× ez

∫
D

n(r′)
|r − r′|dA. (16.65)

Moreover, because of compressibility we can pull outside of the integral the
electron density, and by using Stoke’s theorem we have

V (r) =
nee

2

εmeωc

∮
Γ

t(s′)
|r − r(s′)|ds

′, (16.66)

where t is the unit tangent to the contour Γ and s is the arc-length (Sect. 5.1).
Equation (16.66) is a nonlocal representation formula (Sect. 10.6) telling us
that the motion of the boundary is determined by the flow of the electronic
fluid at the surface. The motion of the boundary can be described in the
formalism developed in Chap. 6.1. We parametrize the contour either with
the arc-length s or with the azimuthal angle (it is a simple closed curve) ϕ,
i.e., r(ϕ, t). The contour has the following geometric parameters

t =
reϕ + ∂r

∂ϕer√
r2 + ( ∂r

∂ϕ )2
, g =

√
r2 +

(
∂r

∂ϕ

)2

,

n =
1√
g

(
−rer +

∂r

∂ϕ
eϕ

)
, κ =

√
r2 + 2

(
∂r
∂ϕ

)2

− r
(

∂2r
∂ϕ2

)2

[
r2 +

(
∂r
∂ϕ

)2] 3
2

where we define a local orthogonal curvilinear basis attached to the contour
{er,eϕ}, er = (cosϕ, sinϕ),eϕ = (− sinϕ, cosϕ). The plane velocity of the
contour can be expressed by (6.1)

V (s, t) = U(s, t)n(s, t) +W (s, t)t(s, t), (16.67)

where (U,W ) are the normal and tangential components of the velocity of
the boundary.

Steady traveling contour waves move along the circumference as a pertur-
bation. Consequently, we can write the parametric equation for the contour
in the azimuthal angle parametrization, r(s, t)→ r(ϕ, t),

r(ϕ, t)→ r(ϕ−Ωt), (16.68)
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with Ω being the constant angular frequency of the boundary rotation. From
n = t × ez, and (16.67) and (16.68) we have a condition for the normal
velocity

U = n · V |r∈Σ = Ωn · (ez × r). (16.69)

The normal velocity can be obtained from the velocity field of the electron
fluid (16.66) taken at the boundary r(ϕ, t)

U(ϕ, t) =
nee

2

εmeωc

∫ 2π

0

n(ϕ, t) · t(ϕ′, t)
|r(ϕ, t)− r(ϕ′, t)|

√
gdϕ′, (16.70)

where g is the metric of the Γ curve (5.1).

16.5.1 Perturbative Approach

We expand the boundary curve in the azimuthal parameter in a Fourier series

r(ϕ, t) = R0

(
1 +

∞∑
n=−∞

Cne
inϕ

)
. (16.71)

By using the Serret–Frenet relations for the expression of the unit tangent
and principal normal of the curve in the ϕ parametrization in (16.69)–(16.71),
we have

U(ϕ, t) = − iΩ√
g

(∑
n

nCne
inϕ +

1
2

∑
n

∑
m

Cn−mCme
inϕ

)
. (16.72)

Equations (16.70) and (16.72) form a nonlinear system of equations for the
coefficients Cn and Ω. The solution of this system provides the nonlinear
boundary standing traveling modes (dispersionless perturbations).

From the expansion (16.71), and by denoting ϕ′ = ϕ+ω, we can write the
numerator of the integrand in (16.70) in the form

n(ϕ) · t(ϕ+ ω) =
1
g

[
− sinω − 2

∑
n

Cne
inϕ

(
cos

nω

2
sinω + n cosω

nω

2

)

+
∑
n,m

Cn−mCme
inϕ

(
(nm−m2 − 1) cos

(n− 2m)ω
2

sinω,

− (n− 2m) cosω sin
(n− 2m)ω

2

)]
,

|r(ϕ+ ω)− r(ϕ)|2 = 4 sin2 ω

2

[
1 + 2

∑
n

Cne
inω
2 cos

ω

2
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−
∑
n,m

Cn−mCme
inω
2

sin (n−m+1)ω
2 sin (m−1)ω

2 + sin (n−m−1)ω
2 sin (m+1)ω

2

2 sin2 ω
2

]
.

Next step is to expand the whole integrand of (16.70) according to the above
sums, and then integrate over ϕ′, i.e., over ω. After this integration, if we
identify the coefficients of various products of Cn between (16.70) and (16.72)
we obtain an infinite dimensional nonlinear system for Cn. By considering
this system up to the fifth order in products of Cn coefficients we obtain the
condition

Ω̃

(
Cn +

1
2

∑
n2

Cn−n2Cn2

)
= Q(1)

n Cn

+
∑
n2

Q(2)
n,n2

Cn−n2Cn2 +
∑

n2,n3

Q(3)
n2,n3

Cn−n2Cn2−n3Cn3

+
∑

n2,n3,n4

Q(3)
n,n2,n3,n4

Cn−n2Cn2−n3Cn3−n4Cn4 + . . . . (16.73)

Here we denoted Ω̃ = εmeωcR0Ω/(nee
2), and the tensors Q(k) have the form

Q(1)
n = 8(γ + ln 4) +

1
2
Ψ

(
n+

1
2

)
,

Q(2)
n,n2

=
1
4
(Q(1)

n −Q
(1)
n−n2

−Q(1)
n2

)− 1,

Q(3)
n,n2,n3

= − 5
n

(
n

1− 4n2
+

n2

1− 4n2
2

+
n3

1− 4n2
3

+
n− n2

1− 4(n− n2)2

+
n− n3

1− 4(n− n3)2
+

n2 − n3

1− 4(n2 − n3)2
+

n− n2 + n3

1− 4(n− n2 + n3)2

)
+

1
48

[−(3 + 4n2)(Q(1)
n + 4)− (1 + 4n2

2)(Q
(1)
n2

+ 4) + (5 + 4n2
3)(Q

(1)
n3

+ 4)

+ (5 + 4(n− n2)2)(Q
(1)
n−n2

+ 4)− (1 + 4(n− n3)2)(Q
(1)
n−n3

+ 4)

+ (5 + 4(n2 − n3)2)(Q
(1)
n2−n3

+ 4)− (1 + 4(n− n2 + n3)2)(Q
(1)
n−n2+n3

+ 4)]

where γ ∼ 0.577216 . . . is the Euler constant, and Ψ(x) = Γ ′(x)/Γ (x) is the
digamma function, and Γ (x) is the gamma function. In these equations above
we used the relation [200,203]

N∑
n=1

1
2n− 1

= 2(γ + ln 4) +
1
2
Ψ

(
n+

1
2

)
.

To evaluate the correct orders of smallness, we can expand the digamma
function in a Bernoulli series

Q(1)
n ∼ 4

(
γ

2
+ ln 2 +

lnn
2

+
B2

8n2
+

7B4

64n4
+ . . .

)
,
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Fig. 16.7 The sums
∑n

k=1(2k− 1)−1 plotted vs. n. Truncation of the sum up to the fifth
term introduces a relative error of about 20%

where Bk are the Bernoulli numbers, i.e., B2 = 1/6, B4 = −1/30, . . . . The
first terms on the RHS of the above series are in order O(1), the term con-
taining B2 is in order O(3), the next term is in order O(5), so a pretty good
approximation would be to approximate the series up to order n, n2, · · · ≤ 5.
In Fig. 16.7, we present numerical estimation of the Q(1)

n sums vs. the order
taken into account.

From the above conditions, the solutions for Ω are introduced in the sys-
tem (16.70) and (16.72) allowing to calculate the coefficients Cn up to or-
der five. The receipe used in [54] consists in choosing the largest coefficient
Cmax = Cn∗ = max{Cn}n=1,...,5 as being of order O(1). Next, one needs to
expand the remaining coefficients Ck, and the solution Ω of (16.73), in series
of smaller and smaller orders, of the form Cn = C

(2)
n + C(3)

n + . . . . The lin-
ear approximation, i.e., the first-order term Cn∗ , provides the fundamental
harmonic of the angular frequency

1 (Ω̃) = Q
(1)
n∗ + 4.

This result was previously obtained in [309]. Next orders obey the typical
behavior of nonlinear oscillations of drops (Sect. 13.3) that is involving cou-
pling between modes. The second-order mode in the Cn∗ expansion couples
the fundamental harmonic with the second harmonic, the third-order term
couples the fundamental mode to the first and third harmonics, the fourth-
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order couples the fundamental to the second and fourth harmonics, etc. Also,
each next order brings additional corrections to the angular frequency Ω. The
drop shapes obtained from these Cn coefficients are presented in [53,54], and
they include: ellipsoids of different eccentricities, elongated ellipsoids with
neck, convex or concave triangular shapes, and convex or concave four-lob
shapes, with the contours going all the way to superdeformed ones like cruci-
form quartic curves, etc. These nonlinear shapes are in good agreement with
the nonaxisymmetric shapes of liquid drops obtained through other theoret-
ical approaches or experiments [105,188,197,221,227,311]. To illustrate such
types of shapes we generated typical examples in Fig. 16.8 by help of cnoidal
sine functions, for different amplitudes and different values for the modulus k.

16.5.2 Geometric Approach

The two-dimensional incompressible inviscid model for the QH electron drop
is susceptible for a geometric approach. We use the boundary velocity for-
mula (16.66) and the formalism of plane curve motion developed in Sect. 6.1.
The physics of the problem allows us to approximate the value of the loop
integral (16.66) in r(s, t) with an integral along the contour Γ taken only in
a neighborhood of s, i.e., integrated on I = [s− δs/2, s+ δs/2], where δs can
be chosen relatively small when compared with the perimeter of Γ . This is
possible because the dominant interaction is the Coulombian one which, in
the plane case, decays as 1/r. Consequently, the value of the integrand in s
can be expanded in Taylor series on s′ ∈ I. From the Serret–Frenet equations
(5.3)–(5.5), (5.8), we have the series expansion in powers of δs

r(s′, t) = r(s, t) + t(s, t)
(
δs− δs

3

6
κ2 − δs

4

8
κκs + . . .

)∣∣∣∣
(s,t)

+n(s, t)
(
−δs

2

2
κ− δs

3

6
κs +

δs4

24
(κ3 − κss) . . .

)∣∣∣∣
(s,t)

, (16.74)

and

t(s′, t) = t(s, t)
(

1− δs
2

2
κ2 − δs

3

2
κκs + . . .

)∣∣∣∣
(s,t)

+n(s, t)
(
−δsκ− δs

2

2
κs +

δs3

6
(κ3 − κss) + . . .

)∣∣∣∣
(s,t)

, (16.75)

where κ is the curvature of Γ , subscripts mean differentiation, and one
should not make confusion between the scalar symbol t-time and the vec-
tor t-unit tangent. We introduce (16.74) and (16.75) in (16.66), and from the
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Fig. 16.8 Left frames: curvature κ in a polar representation along the loop (that is plotting
the function (x = (1 + κ(s)) cos ϕ(s), y = (1 + κ(s)) sin ϕ(s))). Right frames: the nonlinear
drop shapes generated by the cnoidal periodic solution in (16.84). For upper figure the
coefficients are A = −0.2, B = 0.3, D = 0.98, F = 10−3, and m = 0.95, and for the
lower figure the coefficients are A = −0.2, B = 0.9, D = 0.98, F = 10−3, and m = 0.993.
Both loops represent octupole shapes. The lower one is an exaggerated case similar to a
symmetric breakup or fission. The period, width, and angular velocity are given by (16.85)

dot product between (16.67) and t,n, respectively, we obtain the two plane
velocities in the first-order approximation

U =
nee

2

εmeωc

δs2

8
κs + . . . , (16.76)

and

W =
nee

2

εmeωc

(
ln
δs2

2R0
− 11δs2

96
κ2 + . . .

)
. (16.77)

In deduction of these equations we can double check the expressions for the
normal and tangent velocities from the general theory of planar curve motion,
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i.e., (6.4) and (6.7). According with this geometric theory, the dynamics of
the moving curve is controlled by a PDE connecting curvature and the two
velocities, i.e., (6.8) and (6.10)

κt = Uss + κ2U + κs

∫ s

0

κUds′. (16.78)

By introducing the expressions (16.76) and (16.77) in (16.78), we obtain
exactly the modified Korteweg–de Vries equation (MKdV) for the curvature
κ(s, t) in the form

κt = −nee
2δs2

8εmeωc

[
3
2
κ2κs + κsss +

(
5
12
κ2(0)− 8

δs2
ln
δs2

2R0

)
κs

]
. (16.79)

The MKdV system is integrable and contains an infinite countable set of
integrals of motion related strictly to the curvature and its derivatives with
respect to s [3]. We need to make here a comment about these integrals
of motion. For this model in particular as well as for two-dimensional in-
compressible traditional liquid drops, and actually even for a simple two-
dimensional moving curve with same U,W as in (16.76) and (16.77), there
are two conserved quantities that have nothing to do with this infinite series
of conserving quantities of the MKdV hierarchy. Namely, we have constant
perimeter of Γ and area of ∂Γ , and this is somehow expected to happen
since the HQ liquid is incompressible and we did not associate any elastic-
ity properties with the boundary. Indeed, by using the expressions of time
variation of length L and area A of a plane curve, (6.34) and (6.37), (6.39),
respectively, for the model velocities obtained in (16.76) and (16.77) we have

dL

dt
= −

∫ L

0

κUds ∼ κ2|L0 = 0,

since the curve is closed. Some examples are presented in Fig. 16.9. The same
conservation occurs for the area

dA

dt
= −
∫ L

0

Uds ∼ κ|L0 = 0.

So, the perimeter and area conservation occur actually only because of the
special form of the normal velocity of the contour. The infinite number con-
servation laws for the MKdV equation are actually integrals of polynomials of
the curvature and its arc-length derivatives, so they “live in a higher space”
(in the sense of lifting the problem of invariants to the tangent bundle over
the equations of motion) than infinitesimal arc-length and area. We can check
this easily, since the we know that the first conservation laws for the KdV
equation in the function η(s) are given by [3]

I1 = η, I2 = η2, I3 = η3 − 1
2
η2

s , . . .
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Fig. 16.9 Same as Fig. 16.8, but for higher-order multipoles. In the upper frames the
coefficients are A = −0.2, B = 0.3, D = 0.9, F = 5 × 10−3, and m = 0.825, and in the
lower frames the coefficients are A = −0.3, B = 0.9, D = 0.9, F = 10−3, and m = 0.992

Any solution κ of MKdV equation κt − 6κ2κs + κsss = 0 is also a solution
of the KdV equation ηt + 6ηηs + ηsss = 0 by the Miura transformation [2,3],
η = −(κ2 + κs). Consequently, after eliminating the integrable terms in all
expressions because of the closed loop condition, the conservation laws for
the MKdV equation become

J1 ∼ κ2, J2 ∼ −3κ4 + 4κ2
s − 8κκss, . . .

These quantities are not directly related to perimeter or area, although there
are authors considering that there is a connection through the prolongation
structures [9, 312].

The solutions of the MKdV (16.79) can be expressed in terms of Jacobi
elliptic functions (Sect. 18.3) simply by following the same procedure as in
the case of KdV equation in Sect. 11.2. The cnoidal wave solution has the
form

κ(s, t) = Acn
(
s−Ωt
Λ

∣∣∣∣m)+B, (16.80)
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where Ω is the angular velocity of the MKdV cnoidal wave in curvature, m
is the modulus of the cnoidal function, and A,B are arbitrary integration
constants. The width Λ and the angular velocity Ω are given by

Λ =
2
A

√
m, Ω =

e2neδs
2

8meεωc

[(
5κ(0)

12
− 8
δs2

ln
δs2

2R0

)
+
A2

4

(
2− 1

m

)]
. (16.81)

This solution approaches the MKdV one-soliton solution in the limit m→ 1

κsol = Asech
(
s−Ωt
Λ

)
+B, (16.82)

with

Λ =
2
A
, Ω =

e2neδs
2

8meεωc

[(
5κ(0)

12
− 8
δs2

ln
δs2

2R0

)
+
A2

4

]
. (16.83)

However, this solution is not appropriate for our closed contour problem. It
is true that the curvature is a periodic function, and we can even request the
tangent of the contour to be periodic. However, the curve itself obtained by
the Fresnel integration of this curvature (5.15) is open. This is easy to observe:
the curvature of a closed curve should be a constant plus a correction, to
guarantee a perturbed closed circle. The KMdV soliton equation is always
oscillating around zero, so the resulting curve is an oscillating open curve.

To provide the closure of the contour one needs to look for a different
solution of (16.79), more related to a breather one. The authors in [53, 54]
found the form

κ(s, t) =
A+Bcn

(
s−Ωt

Λ

∣∣∣∣m)
D + F cn

(
s−Ωt

Λ

∣∣∣∣m) . (16.84)

If we plug this solution in the differential equation, we obtain the following
form for the parameters of the solution

m = −F (2BF 2 −BD2 −ADF )
2(AD −BF )(D2 − F 2)

,

Λ =

√
2DF (D2 − F 2)

[DF (A2 +B2)−AB(D2 + F 2)]
,

(16.85)
Ω =

e2neδs
2

8meεωc

[
5κ(0)

12
− 8
δs2

ln
δs2

2R0
+
AB

3DF

+ 2
A2D2 +B2F 2 − 2ABDF

3(D2 − F 2)2

]
.

Such a solution is periodic of period 4ΛK(m) (Sect. 18.3). In order for the
contour to be a smooth loop, it needs to fulfill the condition of matching
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modulo 2π of the tangent at the ends, i.e.,∫ L

0

κ(s, t)ds = 2π.

This condition can be resolved for the solution in (16.84) and (16.85) and, by
the Fresnel integration, one can obtain all the shapes presented in Fig. 16.8.
Because it depends on four parameters, this solution for curvature generates a
large variety of curves including self-intersecting curves, multifoils, etc., many
of them very much related to the vortex filaments shapes (Sect. 15.1), since
the two systems occur from the same type of nonlinear equation. Of course
not all of them are appropriate for modeling a closed contour. The same type
of MKdV dynamics was obtained for normal liquid drops in Sect. 13.3 by
using a different approach.

We close this section with a note concerning the possibility of having rigid
cores inside or outside such droplets, like for example in the experiments
described in Sect. 12.6. Let us assume that a rigid boundary is placed at a
radius a. The normal velocity for any point of coordinate ϕ0 should cancel,
so we need

U(a, ϕ0) ∼
∫ 2π

0

rϕ(ϕ)
√
g(ϕ)dϕ

(a cosϕ0 − r(ϕ) cosϕ)2 + (a sinϕ0 − r(ϕ) sinϕ)2
= 0,

(16.86)

where g is the metric of the contour. In principle, the equation of the contour
(and its curvature) need to be expanded in cnoidal modes and then exploit
the orthogonality relations between the Jacobi elliptic functions to cancel this
integral, but this problem would be beyond the purpose of this book.



Chapter 17

Nonlinear Contour Dynamics
in Macroscopic Systems

In this chapter we study several macroscopic applications of the closed con-
tour dynamics problem by using theorems for differential geometry. A first
application presented is the study of the geometry of trajectories of charged
particles in magnetic fields. We present some closeness trajectories criteria
based on Bonnet and Fenchel theorems. Another example is given by the
application of the Gauss–Bonnet theorem to problems of trapping particles
inside closed magnetic surfaces. At larger physical scales, we present the
occurrence of very localized stable waves orbiting around elastic spheres, and
we conclude the chapter with a description of nonlinear modes in neutron
stars.

17.1 Plasma Vortex

17.1.1 Effective Surface Tension
in Magnetohydrodynamics and Plasma Systems

In this section, we consider another situation where the geometry of the free
surface controls the dynamics of the fluid inside. We shall consider the prob-
lem of confining some electrically conducting fluid by an external magnetic
field configuration. This problem, part of a more general subject known under
the name of magnetohydrodynamics, is important in hot and dense plasma
systems, and in controlled thermonuclear fusion installations. To produce
extreme pulses of neutrons through the initiation of a thermonuclear fusion
reaction between helium, deuterium, and tritium for example, matter should
be compressed and heated to ultrahigh densities, pressures, and temperatures
for a long enough time. Under such conditions, matter becomes a dense and
hot plasma namely a combination of positive ions, electrons, neutral parti-
cles, and electromagnetic radiation. Left to itself, a plasma – like a gas – will
occupy all the geometrical space available because of the collisions between

423
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the particles. At these high energy densities, the plasma–wall interaction is
enough intense to damage any type of material, so practically there is no type
of material strong enough to keep such a plasma confined. Consequently, the
only possibility for plasma confinement is through magnetic fields.

17.1.2 Trajectories in Magnetic Field Configurations

Magnetic fields can confine a plasma, because the electrically charged parti-
cles follow helical paths around the magnetic field lines. Indeed, let us assume
that a charged particle moves in a region where there is a constant and
uniform field of force, F 0. This is the case of electric E and/or gravitational
field G, only. Let r(t) be the particle law of motion, as a three-dimensional
curve parametrized by time. We have the metrics g = ṙ · ṙ = v2 and the
arc-length ds =

√
gdt = vdt. The velocity is given by v = ṙ = vt, where t,n,

and b are the three Serret–Frenet unit vectors associated to the particle tra-
jectory. The acceleration has the form

r̈ =
ds

dt

d

ds
=
(
v2

2

)
s

t + v2κn,

where κ, τ are the curvature and torsion of the trajectory, and subscript
means differentiation. Newton’s second law F 0 = ma reads(

v2

2

)
s

t + v2κn =
(
g

2

)
s

+ gκn =
F 0

m
. (17.1)

It is easy to identify the geometrical meaning of the kinematics quantities:
the linear acceleration a = gs/2, and the centripetal acceleration acp = gκ.
Because the force is constant, by differentiating (17.1) with respect to the
arc-length, and by using the Serret–Frenet equations (5.3) we have[(

g

2

)
ss

− gκ2

]
t +
[(
g

2

)
s

κ+ (gκ)s

]
n− gκτb = 0.

Since v �= 0, g �= 0 we have from the above equation⎧⎨⎩κτ = 0
gss = 2gκ2

κgs = −(gκ)s

(17.2)

The first equation shows us that in the case of a constant force the trajectory
is always plane (and in particular can be a straight line). From the last two
equations we obtain κg3/2 = const. Since the trajectory is a plane curve, we
can choose locally a flat coordinate system where r = (x, y(x), 0). In these
coordinates we have g =

√
1 + y′2, κ = y′′/(1 + y′2)3/2, and it results y′′ = 0

so the trajectory in the case of a constant force field is always a parabola.
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In the case of a constant (but not uniform) magnetic field B we have from
(17.1) (

v2

2

)
s

t + v2κn =
q

m
(vt×B) (17.3)

Since t is perpendicular on the RHS of (17.3), we have v = v0 = const. and
g = g0 = v20 = const., which agrees with the well-known fact that magnetic
field does not change the kinetic energy of charged particles. In terms of
geometric quantities (17.3) reads

gκn =
qv

m
(t×B) (17.4)

Also, since the metrics along the trajectory is constant, we can write

ts =
q

mv0
(t×B) =

qB

mv0

(
t× B

B

)
,

and we denote by C(s) = qB(r(s))/mv0 and T (s) = B(r(s))/B(r(s)) the
unit tangent of the magnetic field line that intersects the path of the particle
at every point r(s). With these notations (17.4) reads

κn = ts = C(t× T ). (17.5)

From here we have κhelix = C sin θ, where θ is the angle between t and
T . We can express the components of the magnetic field in terms of the
local Serret–Frenet frame of the particle path, B = Btt + Bnn + Bbb, and
since t × B = Bnb − Bbn we have Bn = 0, or T · n = 0. Equivalently,
T = Ttt + Tbb, T 2

t + T 2
b = 1. It means that the particle moves such that

the unit normal to its trajectory is always in the normal plane of the field
lines. It also means that the tangent to the field line is always in the rec-
tifying plane of the trajectory. According to the definition of a generalized
helix (Definition 31), the motion of the particles is always a local helix with
its axis perpendicular on the normal plane to the magnetic field lines, cur-
vature κhelix = C sin θ = −CTb. In other words, the particle trajectories
wind locally around the magnetic field lines. If the magnetic field is uniform,
or if we study the motion in a small region where the field is almost uni-
form, the trajectory is a cylindrical helix. We know from Definition 31 that
a helix has a constant ratio between its curvature and torsion. It results that
locally, if the intensity of the field increases (hence curvature increases) the
torsion increases, too. It means that when a particle enters a region with inc-
reasing magnetic field its “local helix” becomes flatter and narrower, and
this is the magnetic mirror effect. Eventually, for a critical value of the
field, the torsion cancels, the trajectory becomes flat, and the particles turns
around.

If we differentiate (17.5) with respect to s we obtain

κsn− κ2τ − κτb =
Cs

C
κn + C2T (t · T )− C2t + Cκ(t× T s).
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If we identify in the equation above the coefficients of b on the LHS with
those on the RHS we obtain a relation defining the torsion of the trajectory

tanθ =
κ

τ
− KB cosΨ

τ cos θ
, (17.6)

where KB is the curvature of the field line, and Ψ is the angle between n and
the unit normal of the field line, N . Equation (17.6) can also be written in
the form

τ2 + κ2 = C2 +O(KB).

From b = t× n we obtain

b = −C
κ

T b, where T b = (T · b)b = sin θb.

It is easy to note that if the field lines are almost rectilinear, we can neglect
the term containing KB , and then the ratio between curvature and torsion
becomes a constant, i.e., the trajectory is a helix surrounding the field line.
Another simple situation occurs if the magnitude of the magnetic field is
constant along the particle trajectories. In this case we have

κs = C cos θθs

bs = C

(
κs

κ T b − 1
κT b,s

)
and

T b · T b,s = 0.

Consequently, we can express the angle θ as function of the curvature of the
isomagnetic lines, KB

(sin θ)s = −KB(N · b).

This last expression allows us to obtain a simple equation for the torsion of
the particle trajectory, in the isomagnetic field case

τ = C

(
1 +

KB

κ
cosψ

)
,

where cosψ = N · n.
An interesting question is to find the structure of the magnetic field lines

to have the particles trapped inside a certain bounded region of the space.
This problem is an interesting exercise for the theory of compact surfaces
and closed curves. In the following we assume that the magnetic field is
constant in time, and the speeds of the particles are also constant. This is of
course an approximation of the real situation inside a plasma region where the
magnetic field is actually perturbed by the field generated by particle motion
itself. Also the field are not stationary, because there is a combination of
electric and magnetic fields. Moreover, the particles collide and their speeds
spread into a thermal equilibrium configuration, and relativistic dynamics
may occur, too. For a general yet comprehensive treatment of the theoretical
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problem of hydromagnetic stability we would recommend the reader the book
of Chandrasekhar [127].

We assume that each magnetic field line is a regular parametrized curve
B(r(s)) of curvature KB(s). For any point (r0), and any initial direction
of the motion of a charged particle (t0), we can predict the trajectory of
the particle, r = α(t) by integrating the equation of motion (17.3). The
question is whether all possible particle trajectories launched in magnetic
field can be organized in regular surfaces parametrized by time or arc-length,
and some other parameter describing the initial conditions. For example, if
the magnetic field is uniform, all trajectories are helices. All particles having
initial position at points placed on a tube of constant radius along on one
magnetic field line, and initial velocities (initial tangents) making the same
angle with this magnetic field, move only on the surface of this tube. The
space can be filled with such disjoint, coaxial tubes of different radii.

Finding the equation of such particle motion surfaces in the general
case of an arbitrary magnetic field is not a typical Frobenius problem (see
Theorem 5), because we do not have two given vector fields in involution
to be integrated. One vector field can be the magnetic field, but the other
field is not uniquely defined, since the initial velocities of particles in different
points are arbitrary. We actually have a Cauchy problem defined by (17.3),
and by Cauchy conditions of type 13. Specifically, we choose the Cauchy ini-
tial conditions for one particle in the form r0(v) and t0(v), where v is one
real parameter, which labels different initial conditions. To find the particle
motion integral surfaces we use Theorems 3 and 21 in Sect. 9.6, and the above
initial condition to solve (17.5). This equation is an ODE for the unit tangent
vector t(s) and has the general solution in the form

t(s) = exp
(
C
∫ s

0
T̂ (s′)ds′

)
t0

t(s)i = exp
(
EijkC

∫ s

0
T k(r(s′))ds′

)
t0j ,

(17.7)

where the summation indices i, j, k = 1, 2, 3 label the cartesian components,
and Eijk is the Levi–Civita signature tensor. The coefficient C is written in
front of the integral operator because it is a constant. T (r(s)) is the unit
tangent to the magnetic field along the particle path, T ◦ r. This solution
of the unit tangent field is actually the flow, or the exponential map, of the
tensorial field T̂ , where hat means the dual of the vector T . This dual is a
3×3 antisymmetric matrix associated to T . The formal exponential of a 3×3
matrix A is the 3× 3 matrix obtained from the series

exp(A) =
∑
i≥0

An

n!
.

For example, if we have a uniform field in the direction of Oz-axis, B =
(0, 0, B0) and T = (0, 0, 1), the dual antisymmetric matrix has the form
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(T̂ )ij = (EijkT k) =

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ .
The exponential has the form

exp(CT̂s) = exp

⎛⎝ 0 Cs 0
−Cs 0 0

0 0 0

⎞⎠ =

⎛⎝ cos(Cs) sin(Cs) 0
− sin(Cs) cos(Cs) 0

0 0 1

⎞⎠ ,
and the solution for the tangent is the well-known helix along the Oz axis

t(s) = (t01 cos(Cs) + t02 sin(Cs),−t01 sin(Cs) + t02 cos(Cs), t03).

Consequently, the general solution of the (17.3) is obtained by one more
integration

r(s) =
∫ s

0

exp
(
C

∫ s′

0

T̂ (r(s′′))ds′′
)
ds′ · t0 + r0. (17.8)

Equation (17.8) is actually an implicit equation for the trajectory of the
particle, because the unknown function r(s) appears also in the exponent
in the RHS. This inconvenience makes the problem more difficult to solve.
Yet, one can check the validity of (17.8) by trying simple examples of field
configurations, like the helical motion presented earlier.

A possible approach toward the closing or boundness of trajectories is to
use the Bonnet Theorem 19, which provides a sufficient condition for a (com-
plete) surface to be compact. The hypothesis is to assume that the particles
describe helical trajectories around the magnetic field lines, and remain con-
fined within tubular surfaces centered on the magnetic lines. Let us consider
a set of identical particles, launched with the same initial speed (they have
the same C(s) function), and at the same distance from a given the magnetic
field line, denoted Γ . The particles differ by only one parameter denoted
v, which describes the relative position around Γ of the initial launching
points. Consequently, the particle trajectories lie on a smooth surface S of
equation

r(s, v) =
∫ s

0

exp
(∫ s′

0

CT̂ (r(s′′))ds′′
)
ds′ · t0(v) + r0(v). (17.9)

The coordinate curves along this surface are

rs = exp
(
C
∫ s′

0
T̂ (r(s′′))ds′′

)
· t0 + r0

rv =
∫ s

0
exp
(
C
∫ s′

0
T̂ (r(s′′))ds′′

)
ds′ · t0v + r0v.

(17.10)

For example, in the case of uniform parallel magnetic field we choose all
particles to start their motion at same distance r from a magnetic field line,
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i.e., from the surface of a tube around the magnetic field line. All particles
will have the same initial speed, and their initial velocities (t0) make the
same angle with the magnetic field (same θ). The surface is a cylinder of
radius r with the magnetic field as axis. This cylindrical surface will follow
and surround the magnetic field lines, even in the case of curved field lines, if
this field lines are not too much bent, i.e., if k % KB . Let us assume such a
situation when the curvature of the magnetic field is much smaller than the
curvature of the particle trajectories. Let us also assume that this surface is
complete and regular. This implies that we study the system for long enough
time such that all trajectories can be considered a dense set in this abstract
surface, and that the system does not contain any “free force” or uniform
field regions. Moreover, even if the completeness condition is not fulfilled,
still the surface having its Gaussian curvature bounded from below by a
positive number is bounded. An example is provided by an ergodic surface
winding inside asymptotically. If the field curvature KB is smaller than that
of the particles, we can approximate this surface r(s, v) with a tube of radius
r around the curve Γ (s) (s is the arc-length of the field line). If the field lines
are closed, such a tube is homeomorphic with a torus surface. The surface
equation is

r(s, v) = Γ (s) + r(n cos v + b sin v), (17.11)

and its first fundamental form is

|vecrs × rv| = EG− F 2 = r2(1− rKB cos v)2.

We assume that rKB  1 and we have the normal to this surface defined by

N = −(n cos v + b sin v), rs × rv = r(1− rKB cos v)N .

The Gaussian curvature of the tube surface is

K = − KB cos v
r(1− rKB cos v)

. (17.12)

and we are ready to apply Bonnet Theorem 19. If the Gaussian curvature
in (17.12) is always strictly larger than a positive number δ, the tube is
a compact surface. Unfortunately, in our case the Gaussian curvature has
always a change of sign. This happens because, even if the magnetic curve
is closed, the tube surface is homeomorphic to a torus and has also negative
Gaussian curvature in some regions. We cannot apply the Bonnet theorem in
this form. However, we can relax the local condition and substitute it with a
global one. Indeed, we have∫∫

S

KdA=
∫∫

S

K
√
EG− F 2dsdv=

∫ l

0

∫ 2π

0

KB cos vdsdv= 2
∫ l

0

KB(s)ds,

and we can apply the Gauss–Bonnet Theorem 19 for a certain tube radius
such that the LHS of the equation above is 4π. This result conducts us to use



430 17 Nonlinear Contour Dynamics in Macroscopic Systems

another approach, more related to the intrinsic curve geometry. In addition,
it is worth to mention that we do not need actually to prove that plasma is
confined in some region, but rather to obtain the conditions under which the
particles do not move too far away from the magnetic field lines.

An alternate general approach to find conditions for plasma confinement
is to use the curve equivalent of the Bonnet theorem, namely the Fenchel and
Fary–Milnor Theorems 13 and 14. In that, we can take profit of (17.8) and
analyze its geometrical properties. If the trajectory of a charged particle is a
closed and simple curve, the Fenchel Theorem 13 provides us with a necessary
criterium for closeness. The Fenchel criterium for having the charged particles
move along closed paths is ∫ l

0

|k|ds > 2π. (17.13)

However, it is hard to have the particle trajectories represented by simple
curves, since usually the particles wind many times around the magnetic
field lines. The situation can be slightly improved by taking into consideration
more general curves, like knotted curves. In this case, we have Fary–Milnor
Theorem 14 which increases the minimum allowed value of total curvature
from 2π to 4π. Both Fenchel and Fary–Milnor theorems are valid even if
the trajectories are not simple curves, see [27, Sects. 5–7]. We can require the
trajectory to have no just one self-intersection, and that is the point where
this trajectory will close. In this case the RHS in (17.13) has to be substituted
with 2Nπ, where N is the rotation index of the trajectory.

From (17.5) we have |k| = C| sin θ|, where θ(s) is the current angle between
the tangent to the trajectory and the local direction of the magnetic field,
cos θ = t(s) · T (s). To fulfill the closing condition we need to design the
magnetic field, and to send the particle within the following constraint. We
need to find a number 0 < δ < 1 such that | sin θ(s)| < δ for all the points
of arc-length s along the trajectory, i.e., to fulfill the Fary–Milnor criterium.
Consequently, to have closed trajectories we need to adjust the two parame-
ters: particle velocity and maximum magnitude of the field, accordingly. The
closeness condition reduces to a restriction upon θ, namely there should be
a minimum angle such that ∀s ∈ [0, l], θ(s) > θmin. For example, launching
a particle as parallel as possible to the field lines, or keeping the field lines
straight and open is not a good idea. To find out how this criterion acts on
the field configuration, we choose an arbitrary magnetic field described by
B(r) = B(r)T (s), with |T | = 1. The solution of (17.7), written in compo-
nents, reads

ti =
(

exp
q

mv0
Eijk

∫ s

0

Bk(s′)ds′
)
t0j . (17.14)

The dual antisymmetric tensor associated to the unit tangent T (s) is

T̂ =

⎛⎝ 0 CT1 CT2

−CT1 0 CT3

−CT2 CT3 0

⎞⎠ (17.15)



17.1 Plasma Vortex 431

We introduce the notations

ρi(s) =
∫ s

0

C(s′)Ti(s′)ds′, ρ0(s) =
∫ s

0

C(s′)ds′.

Since T is a unitary vector, we have

ρ0(s) =
∫ s

0

Cds′ =
q

mv0

∫ s

0

Bds′ ≤ qBmaxl(s)
mv0

<
lmax

Rmin
,

where Bmax is the maximum value of the magnitude of magnetic field along
the path of the particle (in principle can be taken the maximum value of the
magnitude of magnetic field in all plasma region). Also, v0 is the constant
speed of the particle, l(s) is the length of the particle trajectory at s, and
Rmin is the minimum possible radius of rotation of the particle, if it would
be launched in a region with maximum magnetic field, perpendicular on the
magnetic field. With these notations the matrix exponential of T̂ from (17.15)
becomes

⎛⎝ ρ2
3 + (ρ2

1 + ρ2
2) cos ρ0 ρ2ρ3(1 − cos ρ0) + ρ1 sin ρ0 ρ1ρ3(1 − cos ρ0) − ρ2 sin ρ0

ρ2ρ3(1 − cos ρ0) − ρ1 sin ρ0 ρ2
2 + (ρ2

1 + ρ2
3) cos ρ0 ρ1ρ2(1 − cos ρ0) + ρ3 sin ρ0

ρ1ρ3(1 − cos ρ0) + ρ2 sin ρ0 ρ1ρ2(1 − cos ρ0) − ρ3 sin ρ0 ρ2
1 + (ρ2

2 + ρ2
3) cos ρ0

.

⎞⎠
(17.16)

This matrix exponential has determinant 1, and hence is similar to a three-
dimensional proper rotation. So, the exponential in (17.7) and (17.14) act
like a rotation operator upon the initial direction of the particle.

The closeness criterium can be written∣∣∣∣Ti

(
exp
(
Eijk

∫ s

0

T̂ (s′)ds′
))

ij

t0j

∣∣∣∣ < δ < 1, (17.17)

or in more condensed matrix notation

|T ˆexpt0| < δ < 1, (17.18)

where ˆexp represents the exponential matrix in (17.17). There is no point in
using the Stokes equation∮

BTk(s′)ds′ = Eijk

∫∫
S

(
∂

∂xi
− ∂

∂xj

)
BdA,

because the exponential of each of the two terms in the above transforma-
tion do not commute, so we cannot separate the exponential of the difference
in a product of exponentials. However, such a transformation is useful to
prover that for an axial B = (0, 0, B0) = const. uniform field, of a pure
poloidal or toroidal field, the exponent is a diagonal matrix, so the expo-
nential matrix is also diagonal. Equation (17.18) has a maximum value of
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1 if the vector t0 is an eigenvector for the matrix ˆexp. This matrix has
one real eigenvalue 1, and two complex conjugated eigenvalues. For the real
eigenvalue the eigenvector is (ρ3/ρ1, ρ2/ρ1, 1). So, the necessary condition for
closeness of the particle trajectories is to choose the initial direction such that
|t0 − (ρ3/ρ1, ρ2/ρ1, 1)| > δ > 0.

Let us check this criterium on a toroidal geometry, for example, where
we try to confine the plasma inside a torus surface. The surface of a torus
of larger radius R, and smaller radius r, parametrized by the polar (v), and
azimuthal (or toroidal u) angles has the form

r(u, v) = ((R+ r cosu) cos v, (R+ cos v) sin v, r sinu). (17.19)

In the case of a poloidal magnetic field

T pol = (−r cos v sinu,−r sin v sinu, s cosu), (17.20)

the matrix ˆexp is diagonal for all s, so the trajectories will not close. The
same thing happens for a toroidal field

T tor = (−(R+ r cosu) sin v, (R+ cos v)cos v, 0). (17.21)

Only a linear combination of toroidal and poloidal field could fulfill the cri-
terion in (17.17).

Usually, the particles travel distances longer than their Larmor radius
(1/κ), so the exponential matrix cannot be approximated with its Tay-
lor polynomial. The smallness parameter for such an expansion would be
maxs∈[0,l]ρ0 = l/Rmin. A Taylor expansion in this smallness order works
rather in escape areas, or for weak fields, than along regular field lines. For
the sake of completeness we present here such an expansion, in the case of
constant magnitude of magnetic field along the path (C = C0 = const.), and
valid only if the length of the trajectory is smaller than the Larmor radius
(s mv0/qB0). We can write

cos θ(s) = T (s) · t0 + C0

∫ s

0

T̂ (s′)ds′ +
C2

0

2

∫ s

0

T̂ ds′
∫ s

0

T̂ ds′′ + . . . . (17.22)

The general term in this expansion has the form of toroidal multipoles

(−1)nCn
0

n!

∫ s

0

∫ s1

0

. . .

∫ sn

0

T (s)·T (s1)×(T (s2)×···×(T (sn)×t0)) . . .)ds1ds2 . . . dsn.

In the first-order approximation we have

cos θ(s) 	 t0 ·
[
T (s)− C )

∫ s

0
T (s)× T (s′)ds′

+C2
0
2

∫ s

0

∫ s′

0
T (s′)(T (s) · T (s′′))− T (s)(T (s′) · T (s′′))

]
ds′ds′′,

and the closeness criterion becomes∫ l

0

T (s) · t0ds− C0

∫ l

0

∫ s

0

T (s) · (T (s′)× t0)dsds′ < δ < 1. (17.23)
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In conclusion, (17.17) and (17.18) provide the criterion needed by the mag-
netic field configuration, and by the initial conditions of the particle velocity
to have the trajectory confined closer to the field lines. The smaller δ in these
equations, the more confinement we realize. It is interesting how theorems
from differential geometry of curves and surfaces help to solve this problem.
Apparently Bonnet theorem is more powerful. First, it provides a sufficient
condition for confinement: if the Gaussian curvature is larger than a given
positive limit, the surface carrying the particle trajectories is bounded. Sec-
ond, it provides a local, differential criterion, which is more helpful than a
global one. Third, it provides a quantitative criterion. If one finds a lower pos-
itive bound for the Gaussian curvature, this limit provides a measurement
of the diameter of the surface (see Theorem 19). Although the equivalent
theorems for curves, namely the Fenchel and Fary–Milnor ones, are only nec-
essary conditions, they are only global (integral) conditions, and they do not
provide but a qualitative result. It is also true that the result these theorems
provide for curves is more restrictive than the result provided by the Bonnet
theorem for surface. This is because closeness is a more specific restriction
than compactness.

17.1.3 Magnetic Surfaces in Static Equilibrium

If a vessel containing plasma is placed in an uniform magnetic field B0, the
plasma particles cannot reach the side walls, but they will strike the ends
of the vessel. To prevent the particles from coming into contact with the
material walls in this way, special types of magnetic fields configurations are
introduced. One can either increase the magnetic field intensity at the ends of
the container so that the particles are reflected by tandem magnetic mirror,
or one can curve the magnetic filed lines to form loops, in such a way that
the particles are trapped inside a magnetic surface. The mirror configurations
(also called the linear configuration) is not quite the best because the par-
ticle collision effects render the system liable to high particles losses at the
mirror points. Such systems are not being considered as potential controlled
thermonuclear fusion reactors. More interesting from the geometrical point
of view, there are three main types of closed magnetic surfaces configuration:
Tokamak, Stellarator, and Reversed field pinch systems. The confinement so-
lution consists in closing the magnetic field lines B(r) on themselves to trap
the particles. In such an ideal configuration, the magnetic field lines would lie
on closed surfaces, named magnetic surfaces. The magnetic field is tangent
to this surface at any point and interacts with the charged particle velocity
field, i.e., the plasma current [313, 314]. It can be described by the velocity
field v(r), or by the density of electric current j(r) = curlB/μ, where μ is
the magnetic permeability of plasma. In the following we provide analytical
criteria for the magnetic field to create confining surfaces.
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Let us have a constant magnetic field B(r) fulfilling

divB = 0, (17.24)

and let us assume the existence of a regular parametrized surface S of equa-
tion r(u, v), such that the magnetic field is tangent to S at any of its points,
B(r) ∈ TrS. We can choose the parametrization of S such that it fulfills the
condition

ru = B(r(u, v)). (17.25)

The magnetic field lines provide natural coordinate curves on S. In addi-
tion we request that the other coordinate curves on S fulfill the differential
equation

rv = ∇×B(r(u, v)). (17.26)

In this situation, the Lorentz force acting on plasma currents

F L = j ×B =
1
μ

(∇×B)×B,

fulfills the equation

F L =
1
μ

(ru × rv) =
1
μ
|ru × rv|N . (17.27)

This configuration provides a Lorentz force parallel to the normal of the mag-
netic surface S. If S is oriented and closed we realized a confinement system
configuration. This is because the Lorentz force acts always perpendicular
on the magnetic surface, toward its inside, and hence the particles are sup-
posed to be trapped. Even if (17.24)–(17.26) describe the magnetic surface,
we need a criterion for its existence. The condition for the existence of an
integral magnetic surface is provided by the Frobenius criterium of involution
(Theorem 5) between the two vector fields

[B · ∇, (∇×B) · ∇] = 0. (17.28)

Equation (17.28) can be also written in the form

DB(∇×B) = D∇×BB, (17.29)

or DBj = DjB, i.e., the directional derivatives of the magnetic field and
the current with respect to one other should commute. A simple example
of such a surface is provided by an axisymmetric configuration of magnetic
field (Fig. 17.1), where the field is toroidal and the resulting electric current
is axial. A more complicated example of open configuration is presented in
Fig. 17.2. Such exact polynomial solutions are useful in providing estimates
of the displacement of the magnetic boundaries with plasma flow [313].

However, such open surfaces cannot confine the particles because it is open.
To have an equilibrium confinement situation we need two more criteria: one
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j field

B field

Fig. 17.1 Pure toroidal magnetic field, and corresponding axial current j

for compactness and one for closeness of the magnetic surface. The magnetic
surface S is compact if its Gaussian curvature is everywhere larger then a
positive constant δ > 0 (Theorem 19). The unit normal to the magnetic
surface is

N =
B × curlB
|B × curlB| ,

and the Gaussian curvature results in a complicated expression

K =
(

(B×curlB)·[(B·∇)B]
B|B×curlB|

(B×curlB)·[(curlB·∇)curlB]
|curlB||B×curlB|

−
(

(B×curlB)·(B·∇)curlB
B|B×curlB|

)2)
· [B2curlB2 − (B · curlB)2]−1.

(17.30)

We can write the Bonnet condition (17.30) in a simpler form by using the
notation jμ = |∇ ×B|

B(N ·DBB)(N ·Djj)
μj(N ·DBj)(N ·DjB)

> 1 + δ > 1, (17.31)
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Fig. 17.2 Example of cylindrical magnetohydrodynamic surface r(x, y) = (10x+30 cos y+
y, 10y sin y, 2x) generated by {j, B} containing closed pockets

where DXY represents the directional derivative of field Y in the direction
of the field X. Equation (17.31), coupled with (17.24), represents a sufficient
condition for the magnetic field to create a compact magnetic surface. It
requests that a combination of directional derivatives of the magnetic field
and the current projected along the unit normal fulfill a certain inequal-
ity. The second criterium (for closeness) is derived from the Gauss–Bonnet
Theorem 19. If the integral of the Gaussian curvature all over the surface
(the total curvature ) is equal to 4π, 0,−4π, . . . , then the surface is closed.
This even multiplier of 2π in the RHS of the total curvature is the Euler
characteristics χ(S) of the surface S. For a sphere χ = 2 and for a torus
χ = 0. In conclusion, the conditions fulfilled by a magnetic field to create a
stationary confinement system is to have δ > 0 and g = 0, 2, . . . such that

K(u, v) > δ, and
∫∫

S

KdA = 2πχ(S) = 4π(1− g),

where K(u, v) is the Gaussian curvature in the (u, v) parametrization.
Let us choose, for example, a poloidal magnetic field (Fig. 17.3)

described by
B(r) = (axz, byz, c(z2 + d− x2 − y2)),

together with its curl

∇×B = (−(b+ 2c)y, (a+ 2c)x, 0),
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Fig. 17.3 Poloidal field

Fig. 17.4 Toroidal field

which is a toroidal field (Fig. 17.4). It is easy to check that the Frobenius inte-
grability condition [B,∇×B] = 0 is fulfilled for the two fields (Theorem 5).
Consequently, (17.25) and (17.26) describe the coordinate curves of an inte-
gral surface

ru = B, and rv = ∇×B.

A particular solution can be chosen with z = z(u), and it results x =
ξ(u) cos v, y = ξ(u) sin v, and a = b. From (17.25) we have ξ′ = aξz(u)
and z′ = (ξ′′ξ − ξ′2)/(aξ2). Since zu = z′ = c(z2 + d − x2 − y2) we have
a(ξ′′ξ − ξ′2) = cξ′2 + a2cdξ2 − a2cξ4. A solution is

ξ =
√
B2 − 1

2c(B + cosu)
, d =

1
uc2

, a = 2c,
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where B is an arbitrary integration constant. If we choose c = 1/2 we can
write the integral surface, i.e., the magnetic surface, equation in the form

r =
(√

B2 − 1 cos v
B + cosu

,

√
B2 − 1 sin v
B + cosu

,
sinu

B + cosu

)
,

which is actually a T1 torus. Indeed, by denoting B = coshs and from√
B2 − 1 = sinh s we can rewrite the surface equation in the toroidal co-

ordinates (s, u, v)

r(s, u, v) =
(

sinh s cos v
cosh s+ cosu

,
sinh s sin v

cosh s+ cosu
,

sinu
cosh s+ cosu

)
.

Toroidal coordinates form an orthogonal three-dimensional curvilinear coor-
dinate system (among other 11 orthogonal curvilinear coordinates in R3, like
cartesian, cylindrical, spherical, parabolic, elliptic, hyperbolic, etc.), and are
defined in the theory of separation of variables for Laplace’s equation (cf. [9]
and references herein in Sect. 1.3). The orthogonal coordinate surfaces are
represented by concentric coaxial tori s = const. of small radius inversely
proportional to s, meridian planes v = const. localized at different azimuthal
angles v ∈ [0, 2π), and concentric spheres u = const., of radius proportional to
u (see Fig. 17.5). Expressed in toroidal coordinates, the magnetic vector field
has a “flat” appearance B = −2 ∂

∂u . The resulting Lorentz force is oriented

Fig. 17.5 Toroidal coordinates: s = const., concentric tori, v = const., meridian planes,
and u = const., concentric hemispheres
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Fig. 17.6 The magnetohydrodynamic pressure j × B directed toward inside the closed
surface, along N

toward the inside of the integral torus (Fig. 17.6). It is easy to verify that the
total curvature of this configuration is zero.

There are several other approaches on the problem of plasma stability
and confinement inside magnetic surfaces, both analytical and numerical.
For example in [313] the authors use a special type of curvilinear coordi-
nates (Boozer’s flux coordinates) consisting in a normal coordinate ρ and two
angular coordinates θB , ξB . The magnetic surface is parametrized by isomag-
netic lines defined by B = const., and another surface solenoidal isomagnetic
vector, iB = ∇(B · ∇ρ), such that the Frobenius criterium of integrability
is fulfilled [d/dλ, d/dB] = 0. The isomagnetic lines are parametrized by a
parameter λ, and their equation is

dB

dλ
=

(∇(B · ∇ρ) · ∇)B
(B · ∇)B

= 0,

where we used the normalized isomagnetic vector iB/|iB |. In this approach,
the condition for the regularity of the surface is related to the property of
pseudosymmetry (or quasisymmetry) of the magnetic field. This property
requests that the isomagnetic field form no islands on S, and the distance
between two adjacent isomagnetic lines to be the same (omnigenous sys-
tems [314]). In vector notation this condition becomes

B · ∇(B · ∇ρ)
B · ∇ρ = bounded.

It is interesting that the sufficient condition for such a pseudosymmetry con-
figuration is provided by the boundness of the third coefficient of the first
fundamental form of S, namely δ = const.> 0, F = rλ · rB ≤ δ.
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17.2 Elastic Spheres

A natural question inspired by the existence of solitons on the surface of shal-
low water is whether solitons may also propagate along the surface of a solid
medium. The problem has received new actuality since recent experiments
of formation of solitary elastic surface pulses on metal-oxide films [273]. In
this interesting experiment, the soliton was initiated by laser-generated pulse
focusing on a flat surface. To have a medium with both nonlinear elastic
response and normal and anomalous dispersion, Lomonosov et al. prepared
a surface made of metal or titanium nitride film coated with isotropic fused
silica. The traveling acoustic waves pulse triggered by the pulsed laser were
registered by a probe-beam deflection technique at two locations. Function
of the treatment of the surface, the measured solitary waves traveled faster
or slower than the corresponding Rayleigh velocity. The dynamics is mod-
eled by a nonlinear evolution equation with nonlocal nonlinearity and non-
local dispersion of the KdV type. The solitary waves have the profile of a
“Mexican hat.”

Another favorable experiment, performed this time on a compact surface,
put into evidence the existence of solitary waves on elastic materials [272].
The authors excited a glass sphere of 80 mm diameter with a finite length
ultrasonic transducer with a frequency of 1 MHz placed on the sphere. The
surface waves were detected with similar PZT transducers at different points
on the surface of the sphere. The surface acoustic waves were propagated
along the equator of the sphere in a direction perpendicular to the line
source without beam spreading. The traveling wave was both very local-
ized (about 30◦ width) and propagated around for at least four round trips
with a velocity very close to the corresponding Rayleigh surface wave speed
in glass (3,334 m s−1). Moreover, in another experiment, a signal produced
on the surface at a certain point generated two twin surface wave pulses
that traveled in opposite direction along the equator, intersect, interact, and
return back without damping. This phenomenon is very much in favor of
existence of solitary acoustic waves, even solitons, on the surface of the glass
sphere.

A theoretical analysis of the existence of surface acoustic solitons was
performed in [274]. The Rayleigh waves propagating along the surface (x–y
plane) of an elastic medium give rise to a dynamical corrugation of the
surface. The strain field produced by this corrugation decays into the bulk
medium after a distance when compared with the wavelength. Consequently,
for planar homogeneous media, the Rayleigh waves are nondispersive, and
the balance between nonlinearity and dispersion can be obtained only by
modifying the surface, by coating, grating, or just damaging the surface. In a
second-order nonlinearity approach, the dynamics is governed by the equation

Tαβ = Cαβμνuμν +
1
2
Sαβμνζξuμνuζξ,
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where T̂ is the Euler–Piola stress tensor, uαβ = ∂uα/∂xβ are the displace-
ment gradients, and the coefficients are the elastic moduli of the substrate,
of second and second–third order, respectively. The equation of motion is

ρAα = Tαβ,β ,

where A is the surface acceleration and ρ is the mass density of the substrate.
The displacement field is expanded in an asymptotic series in terms of a
smallness coefficient ε of the same order of magnitude as the depth of the
layer. This asymptotic series is plugged into the boundary condition at the
surface

Tα3|z=0 = d(Dαβuβ,11 − ρFAα)z=0,

where d is the thickness of the layer, D is another material coefficient, and
ρF is the film material density. We expand the displacement field in plane
waves

u =
∑

k

eik(x−V t)w(z, k)
k

Bk,

where w(z, k) is the depth profile of the linear Rayleigh wave, k is the wave
number, and Bk are strain amplitudes. By introducing this series in the
dynamic equation, and in the boundary conditions, one obtains a dynam-
ical nonlinear recursion relations for the strain amplitudes equivalent to the
Bejamin–Ono (BO) equation [274]. Numerical simulations show the existence
of traveling waves very similar to the cnoidal waves of the KdV equation, or
the solitons of the BO equation. Numerical tests show that these solitons are
linearly stable. Moreover, same numerical procedure was used to simulate
collision between two such solitons. The two models show different behavior.
The BO solitons repel each other at a certain minimum distance and bounce
off with unchanged shapes. On the contrary, the KdV pulses strongly contract
while accelerating and radiation is shed after the collision. Consequently, the
authors conclude that solitary nonlinear waves can propagate on the surface
of a nonlinear homogeneously coated elastic solid. These solitary waves are
stable with respect to perturbations, but they do not survive collisions with
each other. A possibility to enhance the soliton character of such nonlinear
waves is to use curved surfaces, and take profit both from the diffraction-free
propagation along curved surfaces, and from the geometrical nonlinearities
that occur in this case.

17.3 Nonlinear Evolution of Oscillation Modes
in Neutron Stars

The recent discovery of a millisecond pulsar binary system [111], with an
orbital period of 2.2 h, brings the question of the importance of different inter-
action mechanisms between the stars in such close binaries. In particular, the
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tidal interactions have an important role in producing gravitational waves. In
fact, even if the majority of the gravitational radiation in the binary systems
comes from the orbital mass distribution quadrupole, the asymmetry created
in the neutron star by the tidal bulge can produce certain amount of gravi-
tational waves, and the effect is even more enhanced if the bulge can rotate
fast. The neutron star systems are very layered so the surface waves induced
by the binary interaction are very dispersive. On the other hand, the neu-
tron star’s oscillations, especially the so-called r-modes [112], can be highly
nonlinear, being driven toward instability by gravitational radiation. All in
all, it looks like such systems are appropriate for the occurrence of solitary
waves on their surface, especially since long duration movement of tides have
been detected. A factor that can suppress the occurrence of solitons is the
existence of strong dissipative mechanisms, many of them are still completely
unknown.

The nonlinear evolution of a neutron star can be modeled using Newtonian
equations of motion, like the equation of continuity and the Euler equation
in a compact domain D

ρt +∇ · (ρV ) = 0,

ρ(V t + (V · ∇)V ) = −∇P − ρ∇Φ+ ρF GR,

where V, ρ, and P are the velocity, density, and pressure of the neutron fluid,
respectively; Φ is the Newtonian gravitational potential fulfilling the Poisson
equation

�Φ = 4πGρ,

and F GR is gravitational radiation reaction force. This last term is due to
the time-varying current quadrupole and can be written [112]

F x
GR − iF y

GR = −κi(x+ iy)[3V zJ
(5)
22 + zJ (6)

22 ],

F z
GR = −κ Im

[
(x+ iy)2

(
3
V x + iV y

x+ iy
J

(5)
22 + J (6)

22

)]
,

where J (n)
22 represents the nth time derivative of the quadrupole moment

J22 =
∫

D

ρr2V · Y B∗
22 d

3x,

where Y B
22 = r×r∇Y22/

√
6 is the magnetic type vector spherical harmonics.

The parameter describing the strength of the gravitational radiation force is

κ =
32
√
πG

45
√

5c7
,

from general relativity theory. The authors mentioned in [112] solve this com-
plicated nonlinear evolutionary system numerically, and investigated the evo-
lution of the so-called r-modes. These are modes specific for rotational stars,
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whose restoring force is the Coriolis force, and can balance the dissipative
effects even for slow rotations. In time, the r-mode grows to a relative large
amplitude on behalf of the gravitational radiation reaction force. However,
shock waves begin to form at the leading edges of the surface of the neutron
star at this point, which have as result suppressing the r-modes. The shock
waves occur most likely because of the nonlinear coupling between various os-
cillatory modes within the star, or from elliptic flow instability similar to the
one identified in fluid that are forced to flow along elliptical stream lines [113].



Chapter 18

Mathematical Annex

This chapter represents a mathematical annex. We briefly remember the
properties of the Riccati equation and of some elliptic functions used in soli-
ton theory. We also describe the one-soliton solutions of the KdV and MKdV
equations. In the end we present a simple procedure, the so called nonlinear
dispersion relation approach, through which one can find information about
the relations between amplitude, half-width and speed of a soliton solution
of any nonlinear equation (scalar, vector, or system, no matter of the nature
of the nonlinearity) without actually solve the equation, providing such an
equation admits soliton solutions. Several examples on well known cases are
also given in order to illustrate how this procedure works.

18.1 Differentiable Manifolds

Definition 48. We define a d-dimensional Cp differentiable manifold M =
(X, p ≥ 1, d ≥ 1, {Ui, φi}i∈I) to be the set of a Hausdorff topological space
X, and a family (atlas) of pairs of open sets Ui and bijective applications
φi : Ui → φi(Ui) ⊂ Rd fulfilling the properties:

– {Ui}i∈I is an open covering of X.
– ∀i, j ∈ I, φi(Ui ∩ Uj) ⊂ Rd is open.
– ∀i, j ∈ I, φj ◦φ−1

i : φi(Ui∩Uj)→ φj(Ui∩Uj) is a Cp diffeomorphism (i.e.,
bijective function of class Cp together with its inverse).

Every such set (Ui, φi) is called a chart, and ∀x ∈ X such that x ∈ Ui, φi(x)
are called the local coordinates of x. All the mappings φ : U → φ(U) are
homeomorphisms. Two different atlases are compatible if their reunion is also
an atlas. An equivalence class modulo this compatibility relation is called a
differentiable structure onM. No matter of the original topology of X, there
is always a canonical topology induced by Rd, where the open sets are reunion
of chart domains. In that, the differential manifold is inheriting locally the

445
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topological properties of Rd. Differentiable manifolds are locally compact and
locally connected topological spaces. Moreover, they are connected if and only
if they are path connected.

18.2 Riccati Equation

The Riccati differential equation for f(x) : R→ R has the form

f ′ +Af +Bf2 = C, (18.1)

where A,B, and C are differentiable functions of x. Equation (18.1) can be
linearized if we perform the substitution f = θ′(Bθ)−1

θ′′ +
(
A− B

′

B

)
θ′ −BCθ = 0. (18.2)

Conversely, the reduction of order from (18.2) to (18.1) is a consequence of
the invariance of (18.2) under the scale transformation (x, θ(x))→ (x, λθ(x)).
If θ1,2 are two independent particular solutions of (18.2), then the general
solution of the Riccati equation depends only on one free parameter c and
has the form

fgen(x) =
cθ′1 + θ′2

cBθ1 +Bθ2
. (18.3)

Another representation of the general solution of (18.1) in terms of two
independent particular solutions f1,2 of the same equation can be given in
the form

fgen(x) =
f2 − f1Ce

∫ x B(x′)(f1(x
′)−f2(x

′))dx′

1− Ce
∫ x B(x′)(f1(x′)−f2(x′))dx′ . (18.4)

If we know just one particular solution fp of (18.1), we still can build the
general solution in the form

fgen(x) =
1
Fgen

+ f1(x), (18.5)

where Fgen(x) is the general solution of the adjunct equation

F ′ − (A+ 2Bf1)F −B = 0, (18.6)

for which there are quadrature formulas.

18.3 Special Functions

The solutions of all nonlinear PDEs are very much related to the Jacobi
elliptic functions and Jacobi elliptic integrals. The incomplete elliptic integral
of the first kind is defined as
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F (ϕ|k) =
∫ ϕ

0

1√
1− k2 sin2 θ

dθ

and the complete elliptic integral of the first kind is K(k) = F (π/2|k). Simi-
larly, we define the elliptic integral of the second kind in the form

E(ϕ|k) =
∫ ϕ

0

√
1− k2 sin2 θdθ,

and its complete elliptic integral of the second kind is E(k) = E(π/2|k).
The inverse of the elliptic integral of the first kind, i.e., if u = F (ϕ|k) the
ϕ = am(u|k), is called the amplitude for the Jacobi elliptic functions. The am-
plitude can generate the 12 cnoidal functions, among which the most used
in soliton theory is the cnoidal sine function sn(u|k) = sin(ϕ), cnoidal cosine
function cn(u|k) = cos(ϕ), and dn(u|k) =

√
1− k2sn2(u). The sn and cn

functions have the remarkable property of making smooth transition bet-
ween periodic functions and aperiodic functions, so basically they connect
the compact and noncompact structures. We have sn(u|0) = sin(u), sn(u|1) =
tanh(u), cn(u|0) = cos(u), cn(u|1) = sech(u). The cnoidal sine and cosine are
double periodic functions. The real period is T = 4K(k), and the imaginary
one is 4iK(k). The cnoidal sine is the solution of the nonlinear ODE

(fx)2 = (1− f)(1− k2f), (18.7)

i.e., f(x) = sn(x|k).
The spherical harmonics Ylm(θ, ϕ), with l = 0, 1, . . . and Z � m ∈ (−l, l),

form an orthonormal complete basis of harmonic (�S2Ylm = 0) polynomial
functions defined on the unit sphere S2 ⊂ R3. The general expression is

Ylm = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pm

l (cos θ)eimϕ,

where Pm
l (x) : [−1, 1]→ R are the associate Legendre functions defined as

Pm
l (x) =

(1− x2)
m
2

2ll!
dl+m

dxl+m
(x2 − 1)l.

The restriction P 0
l = Pl is called Legendre polynomial. The orthonormality

and closure relations are∫
S2

Y ∗
lmYl′m′ sin θdθdϕ = δmm′δll′ ,

∞∑
l=0

l∑
m=−l

Y ∗
lm(θ, ϕ)Ylm(θ′, ϕ′) =

1
sin θ

δ(θ − θ′)δ(ϕ− ϕ′).

From their definition, the spherical harmonics are the natural solutions of
the Laplace equation in spherical coordinates, so any harmonic functions
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defined on the unit sphere can be expanded in series of spherical harmonics.
The same role is played by the Legendre polynomial of the unit circle S1.
In a physical problem the angular part of the solution is usually handled by
spherical harmonics, and the radial dependence is usually manipulated with
the help of the spherical Bessel functions jl(r), nl(r) : [0,∞)→ R. The ODE
for the spherical Bessel functions is(

1
r

d2

dr2
r + 1− l(l + 1)

r2

)
ql = 0,

where ql(r) is either jl(r) or nl(r). The jl solution is regular in the origin,
and the nL one (Neumann function) is irregular in the origin. With these
solutions we can also construct the Hankel functions as h1,2

l (x) = jl ± inl.
More details and proofs, integral or series representations and summations
formulae, recursion formulas, and asymptotic relations about these special
functions can be found in several books, among which we mention [200–203].

18.4 One-Soliton Solutions for the KdV, MKdV,
and Their Combination

The Korteweg–de Vries equation (KdV or K(2, 1)) in η(x, t)

Aηt +Dηx +Bηηx + Cηxxx = 0 (18.8)

with traveling solutions η(x, t) = f(ξ), ξ = x−V t where V is a free parameter,
becomes

−V Af ′ +Bff ′ + Cf ′′′ +Df ′ = 0, (18.9)

where f ′ = df(ξ)
dξ and A is the original coefficient of the time derivative evo-

lutionary equation Adη/dt→ Adf/dξ. The

η(x, t) = η0 sn2

(
x− V t
L

∣∣∣∣k2

)
+ η1 (18.10)

is the “cnoidal” sine Jacobi elliptic solution to the KdV equation, and k is
the modulus of the cnoidal sine (Sect. 18.3). The solutions depend on the free
parameter aη0, i.e., its amplitude. The half-width is L, and the velocity V is
given by

L =

√
−12kC
η0B

,
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V =
D

A
+
B

3A

[
η0

(
1 +

1
k

)
+ η1

]
. (18.11)

In the limit k → 1, the cnoidal solution approaches the one-soliton solution
and the parameters become

η(x, t) = η0sech
2x− V t

L
+ η1, (18.12)

L =

√
−12C
aB

,

V =
D

A
+
B

3A

(
η0 + 3η1

)
. (18.13)

We note that the amplitude η0 is proportional to the velocity V (higher
solitons run faster), and the width L is inversely proportional to the amplitude
a (higher solitons are narrower).

Another typical equation is the modified KdV (MKdV or K(3, 1))

Aηt +Dηx +Bη2ηx + Cηxxx = 0, (18.14)

which reduces for traveling solutions to

−V Af ′ +Bf2f ′ + Cf ′′′ +Df ′ = 0. (18.15)

A one-soliton solution family is

η(x, t) = asech
x− V t
L

(18.16)

depending on the free a parameter, the amplitude. The half-width L and the
velocity V of the shape are given by

L =

√
6C
a2B

,

V =
a2B

6A
+
D

A
. (18.17)

We note that the square of the amplitude a is proportional to the velocity V
(higher solitons run faster), and the width L is inversely proportional to the
amplitude a (higher solitons are narrower).

Another solution of the MKdV equation is given by the topological
soliton, i.e.,

η(x, t) = aTanh
x− V t
L

, (18.18)

with the following relations among the parameters:



450 18 Mathematical Annex

L =

√
− 6C
Ba2

V =
D

A
+
Ba2

3A
. (18.19)

A mixed nonlinear equation which contains both the KdV and the MKdV
specific terms is always equivalent to a MKdV equation. Suppose we have

ηt + dηx + aηηx + bη2ηx + cηxxx = 0, (18.20)

then this equation is equivalent with

ft +
(
d+

a2

4b

)
fx + bf2fx + cfxxx = 0,

f(x, t) = η(x, t) +
a

2b
. (18.21)

18.5 Scaling and Nonlinear Dispersion Relations1

In this book we focus our investigations on solutions of nonlinear PDE de-
fined on compact contours or surfaces. Before solving such a system, it is
natural to look for a simple and qualitative criterion to find out if solu-
tions could exist on such compact spaces. The idea is to extract informa-
tion on simple properties of possible soliton solutions, like half-width, ampli-
tude, and velocity, without actually solving the equation, i.e., to analyze the
nonlinear dispersion relation (NLDR) associated to the system [315, 316].
We present in the table below some NLDR results for several nonlinear
PDEs. In order, the equations analyzed in the first column of this table
are KdV, mKdV, K(n,n), K(n,m), Burgers, a nonlinear dispersion equation,
sine–Gordon, Φ4-equation, Schrödinger cubic, Schrödinger higher nonlinear-
ity, generalized nonlinear Schrödinger equation, vector nonlinear Schrödinger
equation, and the two-dimensional KP equation.

The NLDR does provide a type of dimensional analysis of the solutions of
nonlinear PDEs. The procedure is the following. For a PDE of the form

G(u, ut, utt, . . . , ux, uxx, . . . ) = 0, (18.22)

where x ∈ R, subscripts denote partial derivatives, and u(x, t) is a real,
complex, or vector-valued function, we substitute in the PDE, according to

1 I am indebted to Dr. Panayotis Kevrekidis for the existence of this section.
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PDE Analytic solution and NLDR

parameters (ξ = x − V t) (∼ means proportional)

ut + 6uux + uxxx = 0 u = A sech2(ξ/L), L = 1/
√

3A − V ,

V = 2A, L =
√

2/A V ∼ A → L ∼ 1/
√

A

ut + 6u2ux + uxxx = 0 u = A sech(ξ/L), L = 1/
√

2A2 − V ,

V = A2, L = 1/A V = A2 → L = 1/A

ut + (un)x + (un)xxx = 0 u = [A cos2(ξ/L)]
1

n−1 L =
√

1
1−α = const.

if |ξ| ≤ 2nπ
n−1 , 0 else;

L = 4n
(n−1) , V =

(n+1)An−1

2n if V = αAn−1

ut + (un)x + (um)xxx = 0 Unknown L =
√

An−1

Am−1−V
,

if n �= m V ∼ Am−1 → L ∼ A(n−m)/2

ut + uux − uxx = 0 u = 2A tan(Aξ + C1) + V , L = 1/(A − V ),

A =
√

C2 − V 2 V ∼ A → L ∼ 1/A

ut + a(um)x − μ(uk)xx Only particular cases cAγ−1L2 + (amAm−1 − V )L

+cuγ = 0 known +μk(2 − k)Ak−1 = 0

utt − uxx + sin u = 0 u = 4 tan−1 e
ξ
L , L2 = −(1 − V 2)/ cos AL,

L2 = V 2 − 1 AL = cst. → L2 = V 2 − 1

utt − uxx − m2u + u3 = 0 u = ±m tanh(ξ/L), L2 = 1−V 2

m2−3A2L2

L2 = 2(1 − V 2)/m2 if AL �const.

→ L2 ∼ 1 − V 2

iΨt + Ψxx + |Ψ |2Ψ = 0 Aei(V x/2+A2t/2−V 2t/4)sech

(
ξ
L

)
; L1 = 1

A2+(V 2/4−ω)
,

L =
√

2/A ω − V 2/4 ∼ A2 → L ∼ 1/A

iΨt + Ψxx + |Ψ |σΨ = 0 Unknown in general L = 1
A

1√
Aσ−1+ V 2

4A2

if V ∼ A, L ∼ A− σ+1
2

i ∂u
∂t + uxx − |u|ku

1+γ|u|k e
i[ V

2 x−( V 2
4 +ω− 4

kL2 )t] · L =
−V 2±

√
V 4+4( Ak

1+γAk
−ω)

2( Ak

1+γAk
−ω)

,

= ωu · A sech
2
k

ξ
L V 2 ∼ Ak/2

(1+γAk)1/2 ∼ ω1/2,

L =
(

2(2+k)
k2

) 1
2
(

Ak

1+γAk

)− 1
2 L ∼

(
Ak

(1+γAk)

)−1/2

iq
(1)
t + q(1)

xx 2P ηe−2iζx+4i(ζ2−η2)t−i π
2 · L(j) = 1

A ,

= −2(|q(1)|2 + |q(2)|2)q(1), ·sech(2ηx − 8ζηt − 2δ0) A =
√

(A(1))2 + (A(2))2

iq
(2)
t + q(2)

xx L = 1
2η

= −2(|q(1)|2 + |q(2)|2)q(2)

(−4ut + 6uux + uxxx)x
(k1−k2)2

2 sech2
(

x
k2−k1

2 L2 = 1
A+α2− 4

3 V
,

+3uyy = 0 +y
k2
1−k2

2
2 + t

k3
2−k3

1
2

)
α2 − 4V/3 ∼ A → L2 ∼ 1/A

for ki << kj

ut → −V ux (18.23)

u → A, u(k)
xx...x → (−1)k−1 A

Lk
, k > 0, (18.24)∫

udx → AL, (18.25)
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where the superscript denotes the number of derivatives with respect to x.
The result of the substitution is to obtain the NLDR connecting the length
scale of the solution L, its speed V and amplitude A in the form

G

(
A,−V A

L
,−V 2 A

L2
, . . . ,

A

L
,− A
L2
, . . .

)
= 0. (18.26)
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Index

1-form, 38

action of vector field, 36

acyclic flow, 269

affine connection, 59, 118

affine vector, 58

arc length, 70

area, 107, 213

asymptotic directions, 271

atlas, 33

barotropic flow, 207

base space, 55, 167

binormal, 70

binormal lines, 75

Bonnet theorem, 435

boundary modes, 392

boundary operators, 21

canonical representation, 74

Cauchy condition, 40

Cauchy problem, 40

chain group, 21

Christoffel symbols, 52, 112, 118, 126

circuit lines, 161

circulation, 130

circulation of the velocity, 206

circulation theorem, 130, 206

closed curve, 76

closed form, 57

closure, 49

closure property, 27

cluster models, 391

cnoidal cos, 339

cnoidal functions, 447

cnoidal sine, 373

cnoidal waves, 11, 243, 374

co-differential, 38

coefficient of dilatational viscosity, 204

coefficient of interfacial dilatational
elasticity, 312

coefficient of interfacial dilatational
viscosity, 147, 312

coefficient of interfacial shear elasticity, 312

coefficient of interfacial shear viscosity,
147, 312

coefficient of surface tension, 205, 312

collective modes, 391

collective motion, 355

combined coefficient of surface dilatational
elastic and viscosity, 312

combined coefficient of surface shear elastic
and viscosity, 312

compact, 47, 122, 435

compact nonlinear surfaces, 359

compact support, 47

compactons, 92, 247

compatible, 34

complete, 46, 179, 429

complete elliptic integral of the first kind,
339

complete surface, 114, 122, 370

complex lamellar, 235

configuration, 137

confinement, 424

connection, 56

connection coefficients, 52, 59

conservation law, 6

conservative, 228

conservative forces, 269

constant of motion, 53

constitutive hypotheses, 146

contact, 74

contour dynamics, 81

461



462 Index

convected, 157

convected coordinates, 137

convective time derivative, 144, 175

convective velocity, 139

convex curve, 77

coordinate charts, 34

coordinate maps, 34

coupling terms, 336

covariant derivative, 59, 64, 113, 115

covariant time derivative, 50, 159, 176

cross-section, 55, 167, 169

curvature, 70, 368

curvature tensor, 60

curvature vector, 115

curve parametrization, 69

curve-shortening equation, 92

curvilinear coordinates, 219

cyclic flow, 269

cylindrical helix, 71, 75

Darboux trihedron, 41, 115

Debye potentials, 229

decomposition, 231

diameter, 122

differentiable, 34, 69

differentiable k-forms, 38

differentiable manifold, 33, 168

differential, 35

differential invariants, 123

differential k-form , 48

differential map, 37

dilatational viscosity, 204

directional derivative, 37, 113, 161

distance minimizing, 113

divergence free, 169

eikonal, 92

elliptical points, 110

energy density, 372

equation of continuity, 186

Equation of Gauss, 61

Euclidean space, 58

Euler characteristics, 436

Euler equation, 204

Euler-Bernoulli energy functional, 388

Euler-Poincaré characteristic, 72, 121

Eulerian, 157

exponential map, 44, 48, 427

extendable surface, 114

exterior derivative, 27, 49

exterior product, 49

Fary-Milnor Theorem, 78

Fenchel’s Theorem, 77

fiber, 55

fiber bundle, 54, 55, 167

fiber-preserving, 168

filaments, 161

first fundamental form, 105, 116, 123, 214,

270, 429

flow, 36, 427

flow box, 45, 50, 179

flow net, 170

flow of a vector field, 47

fluid, 157

fluid surface, 137

foliation, 47, 181

free surface, 184

free surface kinematic condition, 184

Frobenius, 44, 434, 437

fundamental theorem of curve theory, 112

fundamental theorem of surface theory, 112

gauge freedom, 173

gauge transformation, 229, 268

Gauss map, 108

Gauss-Bonnet theorem, 120

Gaussian curvature, 62, 110, 111, 120, 122,

370, 429, 435

general helix, 71

generic connection, 56

genus, 121

geodesic, 113

geodesic curvature, 115, 125

geodesic torsion, 113, 115

geometric collective model, 408

geometrical model, 355

gradient field, 36

half-width, 448, 449

Hasimoto transformation, 101

Hausdorff, 33

helix, 75

helix pitch, 71

Hessian, 270

Hirota equation, 386

homeomorphisms, 31

homology group, 22

homotopy, 19, 32

hybrid surface covariant derivative, 119

hybrid tensor, 116

hyperbolic, 222

hyperbolic points, 111

incompressible, 169, 249, 291, 368, 392

incompressible flow, 268

index of a vector field, 271

indicatrix, 73
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infinitesimal generator, 48, 169

inner modes, 282

integrable, 40, 43

integral curve, 36, 45

integral of a vector field, 47

integral submanifold, 43

interior, 76

interior product, 49

intrinsic geometrical property, 73

invariant, 31, 53

inviscid, 206, 249

involution, 43, 427, 434

irrotational, 228, 249, 268

isentropic, 206, 207, 367

isometric, 134

isothermal, 117, 126, 220

isotropic tensor, 203

Jacobi elliptic functions, 339

jet bundle, 168

Jordan curve theorem, 76

Lagrangian, 157

Lagrangian derivative, 158

Lamme coefficients, 62

Laplace operator, 221

Laplacean flow, 268

leaves, 47

level curves, 123

Lie algebra, 44, 173, 174

Lie bracket, 43

Lie derivative, 50

lift, 168

line of curvature, 110, 113

linear modes, 293

lines of curvature, 227

lines of motion, 159

magnetic surface, 433

magnetohydrodynamics, 423

material acceleration, 146

material contour, 161

material lines, 159, 161

material points, 167, 168

material time derivative, 158

material velocity, 138

maximal integral curve, 47

mean curvature, 62, 110, 120, 205, 270, 271

mean curvature vector, 221

metric, 69, 106, 168

metric tensor, 116

metrics coefficients, 62

minimal, 222

minimal constrains, 169

minimal surface, 111, 127

mixed covariant derivative, 61, 143

modified Korteweg-de Vries, 374, 419

modulus, 339

momentum flux tensor, 202

motion group, 355

natural parametrization, 70

Navier-Stokes equation, 204

Newtonian fluid, 203

NLS3, 374, 381

Noether current, 170

non-compact, 222

non-Newtonian viscosity, 228

nonlinear dispersion, 92

nonlinear evolution system, 6

nonlinear motion group, 358

nonlinear Schrödinger equation, 374

nonplanar point, 271

normal curvature, 109, 270

normal frequencies, 292

normal lines, 75

normal plane, 70, 385

normal variation, 212, 213, 226

orientable, 104, 184

orthogonal curvilinear coordinates, 62, 227

orthogonal parametrization, 219

osculating plane, 70

parabolic points, 111

parallel, 60

parallel transport, 113

parametrized differentiable curve, 69

parametrized surface, 103

partial differential equation, 40

particle circuit, 208

particle contours, 161

particle lines, 161

particle path, 164

Pascal principle, 217

path lines, 179

paths, 159

PDE, 39, 40, 43

perfect fluid, 206, 367

poloidal, 432

poloidal field, 234

polymeric fluids, 228

positively oriented curve, 76

potential, 291

potential flow, 268

potential picture, 92, 243

potentials, 229

principal curvatures, 109
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principal directions, 109, 227
principal normal, 70, 109

projection, 55, 168
pull-back, 38

quantum Hall, 412
quasimolecular shapes, 391

rank, 34
rank-invariant, 36, 44
rate of deformation, 203
rate of expansion, 203
rate of strain, 203
rectifying plane, 70
reference fluid container, 164, 169
regular, 429
regular curve, 69, 178

regular point, 69

regular surface, 103, 184, 208
relabeling, 170
representation formulas, 23
resonant terms, 331
Riccati, 380, 381, 446
Riemann–Christoffel tensor, 60
rotation index, 430
rotational motion, 367

saddle, 111

second fundamental form, 61, 109, 119
second fundamental form of the surface,

214
Serret-Frenet trihedron, 70, 369
shape function, 224
shape space, 172
simple, 77, 368
simple curve, 69, 76
simplex, 21
simply connected, 268
sine-Gordon, 386
smooth curve, 69
smooth map, 34
smoothness, 32
solenoidal, 228
solitary wave solution, 6
solitary waves, 11
soliton, 6, 337
solitons, 11
spatial points, 169
spatial velocity, 139
spherical harmonics, 292
spherical image, 73, 224
stagnation point, 47, 270
stereographic projections, 34
Stokes’ stream function, 234

Stokesian fluid, 203

strain tensor, 144

stream function, 267
stream lines, 179
stress tensor, 145, 202
structure constants, 44
submarine explosions, 305
substantial time derivative, 175
surface continuity equation, 146
surface curl, 127, 128, 216
surface divergence, 125
surface gradient, 78, 117, 123, 128

surface Laplacian, 126
surface stress, 145

surface tension, 145, 212

surface tension coefficient, 213

tangent bundle, 36
tangent functions, 35
tangent map, 37, 38, 108
tangent plane, 103, 271
tangent space, 35, 36
tangent vectors, 35
tensor of type (r,s), 58
the structure group, 55
thermonuclear fusion, 423
topological group of transformations, 55

toroidal, 234
torsion, 70, 119, 368
torsion tensor, 59, 60
total curvature, 77, 121, 436
total derivative, 158
trace, 69
transition functions, 55
triply orthogonal, 227
tube, 77, 122, 368, 427, 429
tube of flow, 208
tubular neighborhood, 368
tubular surface, 122

unit normal, 113, 212
unit normal vector field, 104
unit tangent, 35, 70, 178

vector field, 36

velocity field, 158
velocity potential, 267, 291
vertical subbundle, 56
viscoelastic fluids, 228

viscoplastic fluids, 228

vortex, 368
vortex filament, 368
vortex filament equation, 371, 384
vortex motion, 367
vortex tubes, 368
vorticity, 267, 309, 367

winding number, 76
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