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Preface

Cyber-physical systems (CPSs) are an emerging research topic born from the
ever increasing complexity of engineered systems. Future systems will have to
interact with each other and with the physical world in a very tight and well-
coordinated fashion, and designing such systems is the research challenge behind
CPSs. CPSs have been defined as “computational thinking and integration of com-
putation around the physical dynamic systems where sensing, decision, actuation,
computation, networking, and physical processes are mixed”. Given such a defini-
tion of CPSs, it is trivial to observe that there are two main entities in a CPS: the
“cyber” end of the system that is composed of the hardware and software, and the
“physical” end of the system that relates to part of the environment. The problem of
designing the cyber part may not be trivial but can be solved from scratch. However,
the physical part, usually a natural physical process, is inherently given and has to
be identified in order to propose an appropriate cyber part to be adopted. Therefore,
one of the first steps in designing a CPS is to identify its physical part. The physical
part can belong to a large array of system classes. Among the possible candidates,
we focus our interest on distributed parameter systems (DPSs) whose dynamics can
be modeled by partial differential equations (PDEs). DPSs are by nature very chal-
lenging to observe as their states are distributed throughout the spatial domain of
interest. Therefore, systematic approaches have to be developed to obtain the opti-
mal locations of sensors to optimally estimate the parameters of a given DPS.

With this monograph, we wish to provide our reader with a comprehensive un-
derstanding of CPS and emphasize on our past experience in the topic. For the past
five years, we have worked on the topic of optimal mobile sensing and actuation
policies in CPSs and directed our research effort from purely theoretical results to
more applicable results. That is why the reader will find not only sensing and actua-
tion, but also remote sensing, an online solution to the problem of optimal sensing,
and communication topologies.

We first review the recent methods from the literature as the foundations of our
contributions. Then, we define new research problems within the above optimal
parameter estimation framework. Two different yet important problems considered
are the optimal mobile sensor trajectory planning and the accuracy effects and al-
location of heterogeneous sensors. Under the remote sensing setting, we are able to
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determine the optimal trajectories of remote sensors. The problem of optimal robust
estimation is then introduced and solved using an interlaced “online” or “real-time”
scheme. Actuation policies are introduced into the framework to improve the esti-
mation by providing the best stimulation of the DPS for optimal parameter iden-
tification, where trajectories of both sensors and actuators are optimized simulta-
neously. We also introduced a new methodology to solving fractional-order optimal
control problems, with which we demonstrate that we can solve optimal sensing pol-
icy problems when sensors move in complex media, displaying fractional dynamics.
We consider and solve the problem of optimal scale reconciliation using satellite im-
agery, ground measurements, and unmanned aerial vehicles (UAVs)-based personal
remote sensing.

Finally, to provide the reader with all the necessary background, the appendices
contain important concepts and theorems from the literature as well as the MATLAB
codes used to numerically solve some of the described problems.

Christophe Tricaud
YangQuan Chen

Columbus, IN, USA
Logan, UT, USA
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Chapter 1
Introduction

1.1 Background on Cyber-physical Systems and Distributed
Parameter Systems

1.1.1 Cyber-physical Systems

1.1.1.1 What is a Cyber-physical System?

The term cyber-physical systems is one of the new buzzwords in the engineering
community. It originates from the need to have a denomination for a new category
of embedded systems where the emphasis was made on the increased interactions
between the physical part and the computational part of the system [95]. It was
loosely defined by the National Science Foundation (NSF) as “the tight conjoin-
ing of and coordination between computational and physical resources” [72]. Since
its emergence, the term CPS has been given a lot of definitions, and most of these
definitions depend on the field of research of the people giving them. For exam-
ple, CPSs are defined in [134] in the following way: “Cyber-physical Systems are a
next-generation network-connected collection of loosely coupled distributed cyber
systems and physical systems monitored/controlled by user defined semantic laws”.
This definition reflects the point of view of the computer engineering community.
The emphasis is made on the software and hardware and not equally on the phys-
ical part in itself. The system considered is mostly “cyber” and does not take into
full account the “tight conjoining” mentioned by the NSF. This vision of a CPS is
illustrated in Fig. 1.1 [134]. Similar definitions can be found in [121, 135].

The definition of CPS for the computer science community has a larger scale
than the original definition from NSF:

“The Internet has made the world ‘flat’ by transcending space. We can now in-
teract with people and get useful information around the globe in a fraction of a
second. The Internet has transformed how we conduct research, studies, business,
services, and entertainment. However, there is still a serious gap between the cyber
world, where information is exchanged and transformed, and the physical world in
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Fig. 1.1 A prototype architecture of a CPS [134]

which we live. The emerging cyber-physical systems shall enable a modern grand
vision for new societal-level services that transcend space and time at scales never
possible before”. Chap. 1 in [145].

CPS is defined in [34] in the following way: “Computational thinking and in-
tegration of computation around the physical dynamic systems form CPS where
sensing, decision, actuation, computation, networking and physical processes are
mixed.” This vision of a CPS is illustrated in Fig. 1.2.

Evidence of the misunderstanding of the term CPS is the emergence of terms
such as “networked” CPS [97], or “distributed” CPS [6], or “wireless” CPS [106],
or “complex” CPS [28].

CPS is foreseen to become a highly researched area in the years to come with its
own conferences [3, 4], books [131], and journals [5].
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Fig. 1.2 Measurement and control architecture of a CPS

1.1.1.2 CPS Applications

The “Applications of CPS arguably have the potential to dwarf the 20th century IT
revolution” [94]. CPS applications can be found in

• tele-physical services [75, 91]
• medical devices and systems [29, 96]
• aerospace [15]
• automotive and air traffic control [175]
• advanced automotive systems [46, 66, 70]
• infrastructure management [68, 99]
• environmental monitoring [53, 172]
• water usage control
• cooperative robotics
• smart buildings
• etc.

Because of the vastness of applications for embedded systems, the area of appli-
cations for CPSs is even larger. Here, we describe some of those envisioned by CPS
pioneers.

Automotive Transportation Communication between vehicles will make possi-
ble the cooperation of nearby vehicles. Many functions of the vehicles will be able
to be executed in a distributed manner enhancing its performance, emission reduc-
tion, and safety [168]. For example, the braking system not only will ensure the
car stops but will also avoid incoming obstacles. If a collision is unavoidable, the
system will choose the best trajectory to minimize the impact on the passengers.
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By having information about the neighboring vehicles, it will be possible to have
a consensus while changing lanes or, by maintaining platooning with small spaces
between vehicles, reduced traffic congestion, and improved commute time. We can
envision increased communication with the road itself and traffic signs to tell cars
about the location of traffic signs, and vice-versa, tell traffic signs that a vehicle with
priority is incoming.

Buildings CPS-enhanced buildings are usually called “smart buildings”. Many
building functions (such as HVAC and lighting) could significantly improve energy
efficiency and lower the overall energy consumption and, consequently, our green-
house gas emissions. A network of sensors (temperature, humidity, presence detec-
tors) and actuators (HVAC, fans, water heater) embedded into the building could
make sense of all the information and operate the building in an optimal way (with
respect to energy consumption and uniformity of comfort, for example).

Communication Systems A lot of people see cognitive radios as the CPS of
communications [95]. “Cognitive radio signifies a radio that employs model based
reasoning to achieve a specified level of competence in radio related domains” [101],
but most of the time, a cognitive radio has to fulfill three main functions. It should
sense the spectral environment over a wide bandwidth, detect the presence/absence
of primary users, and adapt the parameters of their communication scheme only if
the communication does not interfere with primary users. Using a CPS infrastruc-
ture between radios and cooperative control techniques would allow cognitive ra-
dios to use distributed consensus about available bandwidth, improving their overall
performance.

Medical Systems There is a growing need for communication between medical
devices in modern healthcare systems [88]. In recent years, the quantity of devices
for health monitoring and diagnostics has drastically increased, and because the de-
vices lack communication capabilities, healthcare employees have to gather data
and make sense of it. One of the main specifications in medical systems is the need
for failsafe systems as the malfunction of one system could result in harmful conse-
quences to patients. The main justification for the need for improvement can be seen
in statistical reports such as [71] in which numbers say that, of the 284,798 deaths
that occurred among patients who developed one or more patient safety incidents
between 2003 and 2005, 247,662 could have been avoided (89%).

Water Distribution Systems When assuming the enhancement of the current
infrastructure of water distribution systems with networked flow-meter, water qual-
ity sensors, and gates, one can foresee improvements in water conservation and
efficient power management [78]. Sensor data can be assimilated into a global hy-
draulic model that can predict the hydraulic state of the system or optimize pumping
operations. Potential leaks will also be easier to detect and locate, allowing quick
repair of the infrastructure. Chemical attacks to the network could also be detected
early and allow a quick response of the authorities.
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1.1.1.3 Research Challenges

There are two main directions for research in CPSs; the first one consists of dealing
with the increased complexity of embedded systems [27], and the other is to build
CPSs from scratch [6]. Because of the relatively young age of CPSs, a lot of research
challenges have been identified, each of them related to one of the engineering fields
that CPSs belong to.

Security The emergence and growth of CPSs will lead them to be used in critical
infrastructure and industry. It is therefore necessary to develop hardware and soft-
ware solutions to protect them from attacks. Among the potential attackers, several
profiles have been identified [30]. Cybercriminals attack blindly any networked sys-
tem as long as they can enter its operating system. Even though the attacks mean
no harm, they can leave the system infected with malware and may modify its func-
tionalities. Disgruntled employees constitute the largest threat in CPSs, the reason
being their authorized access to the system’s network. Terrorists, activists, and or-
ganized criminal groups can be identified as a threat to CPSs as attacks on them
are cheaper, less risky, and not constrained by distance. A CPS usually communi-
cates on a simple network: There is usually a single server, the number of nodes is
known, the communications are poorly encrypted, and the number of protocols is
limited. The amount of work required to prepare an intrusion on such a network may
be small, but so would be the implementation of security measures. The identified
research directions for security in CPSs are low-cost security, intrusion detection,
redundancy, and recovery. Many research directions in CPS security can be found
in [7, 30, 136].

Communication and Data Fusion In general, control loops are designed so that
all the measurements from the sensors within the network (usually vast in space)
are transmitted to the actuators and the actuator node does the computation of the
control law. Such a method is very cumbersome for the network and usually results
in long communications from sensor node to sensor node up to the actuator. How-
ever, not all the sensor data are necessary for the control purpose, and most of the
sensor data could be fused to reduce the quantity of information flowing through the
network. By performing small computations at each node, only the valuable part of
the measurement data should be transmitted to the actuator node [133].

Software The software of CPSs will be very challenging to design. There are
many reasons for these challenges, and here is a list of the most important ones [164,
170]:

• CPSs will be composed of a large variety of hardware platforms, and hence they
will require the implementation of distributed and embedded applications. These
applications themselves will have to be diverse in order to work with all the plat-
forms.

• There will be a need for a unified component model. CPSs are globally virtual and
locally physical. It will be required for the component to reflect this characteristic
and provide a unified view from local components to global systems.
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• The gaps in semantics of programming languages will have to be reduced or
closed. In current embedded systems, semantics of physical, hardware, and soft-
ware components are significantly different. To combine all these components in
a system setting, researchers will have to bridge those semantic gaps and come
up with a unified programming language.

Scalability Scalability will also be a big research challenge in CPSs. Software
and hardware should be developed in such a manner that the design of a CPS with
1000 nodes should be as simple as one with 10 nodes.

Resilience Because of the potentially large scale of CPSs, their maintenance
could be costly (especially for nature monitoring CPSs). Resilient CPSs would be
of interest to reduce those costs but also to avoid absence of data in critical infras-
tructures. Three main research directions for resilience in CPSs have been identi-
fied [157]:

• Network self-organization to preserve/increase resilience. If the network is de-
signed with self-healing and reconfiguration methodologies, its resilience would
be increased. The information could be routed in an organic manner to naturally
avoid problems.

• Risk mitigation via eNetworks. The network could be given the capability of
quickly evaluating the system vulnerability with respect to new threats and react
accordingly to remedy the vulnerability.

• Study of the impact of interdependencies. By identifying the critical parts of the
system (the ones whose failure leads to the system’s failure), a strategy reorga-
nizing or shutting down major hubs could improve the robustness of the overall
system.

Quality of Service (QoS) Since the array of applications of CPSs is extremely
large, it is not hard to envision that CPSs will be omnipresent in our daily lives.
Therefore, it will be necessary for them to provide QoS support because they will
have to fulfill requirements from various sources (specifications, users, etc.) [169].
In CPSs, QoS can be achieved in several ways; communication protocols need to
be aware of the QoS requirements and need to be designed with constraints on the
platform heterogeneity to optimize the flow of information. The CPS will have to
manage its resources (computation time, memory, bandwidth, energy) in a dynamic
way and will probably need a resource managing application taking into account
QoS specifications.

Modeling Most of the research directions in CPSs have been introduced by em-
bedded systems engineering and computer science scholars. Therefore, most of the
literature eludes the problems of modeling for CPSs. We believe that most of the
literature on CPSs in the near future will be limited to single-input single-output
(SISO) and multiple-input multiple-output (MIMO) finite-dimensional physical sys-
tems. In this monograph, we believe that the “physical” part of a CPS should be as
complex as its “cyber” part. Therefore, we concentrate our efforts in modeling the



1.2 Motivations for Monograph Research and Application Scenarios 7

physical part using a PDE, which is infinite dimensional in nature. Before creating a
CPS, a mandatory step will be to understand its physical part and therefore develop
a model for its dynamics. Next, we describe the system structure we consider in this
monograph.

1.1.2 Distributed Parameter Systems

1.1.2.1 Definition of a DPS

DPSs are dynamical systems in which the states depend on not only time but also
space or spatial variables, which makes the system infinite dimensional. In the liter-
ature, DPSs are also called spatio-temporal dynamic systems. They are usually used
in opposition to lumped parameter systems. The usual model of a DPS involves par-
tial differential equations (PDEs). In many cases, the physical part of a CPS cannot
be modeled with a lumped parameter approach, and a DPS would be the best fit.

There are several, well-identified research directions [129] in the study of DPSs
including optimal control, measurement, model reduction, and numerical methods
[50–52].

Mathematical definitions and general results about DPSs are given in Chap. 2.

1.1.2.2 Applications of DPSs

Numerous fields of engineering make use of DPSs for modeling. The following is a
short collection of them:

• Fluid dynamics [21]
• Signal transmission lines dynamics [67]
• Soil dynamics [113]
• Electromagnetic dynamics [139]
• Heat dynamics [20]

A more complete review of DPS applications can be found in [67]. With the tech-
nology advances, many new aspects in DPS research involving CPS contexts are
identified and addressed in this monograph while these aspects were not discussed
in previous DPS research.

1.2 Motivations for Monograph Research and Application
Scenarios

When dealing with lumped parameter systems (SISO or MIMO), the decision on
where to implement the sensors and the actuators is a rather straightforward pro-
cess that is seldom discussed. However, if the system is of a distributed nature, their
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properties, location, and communication topologies have a big impact on the way the
system is operated. For example, a mobile sensor will be able to ambulate in the do-
main of interest, and the design of its optimal sensing trajectory becomes a research
problem. Similarly, the global performance of a control strategy will be improved if
the sensors can communicate with the actuators. Now, we will present motivations
for this monograph research and list some motivating application scenarios in this
section.

1.2.1 Optimal Measurements in DPS

States in DPSs vary both spatially and temporally, but it is generally impossible to
measure them over the whole spatial domain. Consequently, we are faced with the
design problem on how to locate a limited number of measurement sensors so as
to obtain as much information as possible about the process at hand. The location
for the available sensors is not necessarily dictated by physical considerations or by
intuition, and, therefore, some systematic approaches must be developed in order to
reduce the cost of instrumentation and to increase the efficiency of measurement.

There are several lines of research linked with optimal location of sensors in
DPSs—observability, state estimation, parameter estimation, detection of unknown
sources, and model discrimination—and each of them is linked to some specific
application scenarios.

1.2.1.1 Observability

In a DPS, the notion of observability is linked to the possibility to reconstruct the
state of the system in a finite duration using sensor measurements. It is obvious that
the location and coverage of the sensors are going to affect the observability of a
given DPS. Therefore, using the observability as a performance criterion, it is possi-
ble to optimize the location/trajectories of the sensors to maximize the observability
of the system [124].

1.2.1.2 State Estimation

Similar to the optimal measurement for best observability, the problem of optimal
sensor location for state estimation consists of finding the best location so as to re-
construct the state of the system with minimum estimation error variance. However,
it may not be necessary to seek the reconstruction of the state over the whole domain
but, instead, to look at the reconstruction on the boundary [93].
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1.2.1.3 Parameter Estimation

The parameter estimation problem is usually linked with a forecast problem. When
faced with a DPS, the general form of its dynamics usually may be known (diffusion,
advection, hyperbolic), but the parameters may not be. It is therefore necessary to
look into systematic methodologies to determine the optimal locations/trajectories
of stationary/mobile sensors for parameter estimation.

A relevant example is the design of optimal sensor location for air quality mon-
itoring. The purpose of sensor networks in air quality monitoring is to measure
pollutant concentration but, more important and practical, to produce information
regarding the expected finite levels of those pollutants. Such a forecast can only
be obtained by using a fog diffusion model. In general, fog can be modeled by
an advection–diffusion partial differential equation. For the forecast to be accurate,
a calibration is required by estimating the spatially varying turbulent diffusivity ten-
sor of the model based on the data collection obtained by sensors. Because of lim-
ited resources, the problem arises on where to install those sensors to obtain the
most precise model [152].

1.2.2 Scenarios for Optimal Operations of a Mobile
Actuator/Sensor Network

The main motivation and application scenario driving the research effort in this
monograph comes from our research center’s own project called MAS-net [2]. This
project envisions the use of networked mobile sensors and mobile actuators to iden-
tify, estimate, forecast, and control a DPS with the following scenario. More details
about the MAS-net project can be found in [33, 39, 102]. An illustration of the
scenario is given in Fig. 1.3.

1. A plume of a harmful chemical or biological agent is released into an urban en-
vironment. The dynamics of the plume in the air can be modeled by a diffusion
process with the addition of transport because of the wind and specific bound-
aries due to the surrounding buildings.

2. A fraction of the harmful plume is detected by one sensor within a widespread
array of networked static sensors.

3. The detection of a harmful agent triggers the deployment of a team of unmanned
aerial vehicles (UAVs) equipped with chemical concentration sensors and com-
munication capabilities that flies into the plume to estimate its parameters and
the evolving boundary.

4. The group of UAVs send back to the ground station all the data they gather as
well as their current locations.

5. Based on the original assumptions on the dynamics of the plumes, the data re-
ceived by the main station help the estimation of the parameters of the diffusion
plus transport process. Reciprocally, new destinations are assigned to the UAVs
to gather more sensible data with respect to parameter estimation and/or state
estimation.
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Fig. 1.3 Application scenario for the MAS-net project [131]

6. Once the estimation of the parameters has converged and the base station is con-
fident with its identification, the UAVs are sent into the optimal locations within
the plume to release an anti-agent to mitigate or neutralize the harmful effects.

7. Once the plume has been eliminated, the UAVs return to the base station.

From our experience in the framework of optimal operations of a mobile actua-
tor/sensor network, many potential applications exist in the field of environmental
science. Here, we describe a few we have identified so far.

1.2.2.1 Algal Blooms Monitoring and Control Using Mobile Actuator/Sensor
Networks

Harmful algal blooms (HABs) are a menace to water wildlife as the release of tox-
ins into habitats can generate a large population death count. However, the lack of
systematic approach to detect, forecast, and control HABs means that most scien-
tists study their aftermaths rather than their prevention. So far, scientists have used
poorly calibrated tools for their problems. They either used satellite images, which
are too low in resolution, both spatially and temporally, to accurately observe the dy-
namics of algaes, or used data collected by monitoring stations, which lack enough
spatial information. We believe that the solution to monitor algae effectively lies in
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Fig. 1.4 Application scenario for algal blooms monitoring and control

the emergence of new remote sensing platforms that are UAV multispectral imag-
ing [32], which improve the resolution of the measurements while still covering an
area large enough for dynamic modeling. In addition, there is an increasing number
of techniques for mitigation of HABs. Using information from sensors, the actua-
tors could be sent where the release of mitigating agents would have the most impact
on either the population of algae or the harmful chemical. An illustration for these
scenarios is depicted in Fig. 1.4.

1.2.2.2 Wildfire Control Scenario

Another scenario where the consideration of optimal sensor and actuator location
could be very beneficial resides in wildfire control. Imagine the following scenario
(Fig. 1.5):

1. During the dry season, the monitoring of forests is increased to detect potential
wildfire.

2. Thanks to the acute monitoring, a wildfire is detected in its early stage.
3. A group of UAVs is sent to detect the boundary of the fire, and fire fighters are

dispatched in the area surrounding the fire, waiting for instructions.
4. Using a mathematical model combined with information such as wind speed and

direction, humidity, forest density, and current location of the fire, an algorithm
provides information to the fire marshal on where he should send the different
resources available. For example, fire fighters could fight the fire at its boundary
while water bombers release fire retardant or water inside the blaze.
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Fig. 1.5 Application scenario for wildfire control

5. The wildfire is quickly under control, and the resources can be sent to another
location if necessary.

6. During the wet season, the data gathered during the wildfire season are analyzed
to improve the models and their calibration.

For more scenarios on CPSs, refer to Dr. Chen’s CPS talk slides in [38].

1.2.3 Fractional-Order Cyber-physical Systems (FOCPS)

A large number of real-world physical systems can be more properly described by
fractional-order dynamics, meaning that their behavior is governed by fractional-
order differential equations [110]. As an example, it has been illustrated that ma-
terials with memory and hereditary effects, and dynamical processes, including gas
diffusion and heat conduction, in fractal porous media can be more adequately mod-
eled by fractional-order models than integer-order models [173].

During the past decade, a new category of systems has developed interest in
fractional dynamics: scale-free networks. The concept of a scale-free network was
introduced because it allows the merging of the theories of complex systems in bi-
ology and in physical and social studies. The most peculiar property of a scale-free
network is its invariance to changes in scale. The term scale-free refers to a sys-
tem defined by a functional form f (x) that remains unchanged within a multiplica-
tive factor under a rescaling of the independent variable x. Effectively, this means
power-law forms, since these are the only solutions to f (ax) = bf (x) for all x ∈R.
The scale-invariance property is often interpreted as self-similarity. Any part of the
scale-free network is stochastically similar to the whole network, and parameters are
assumed to be independent of the system size. Other mathematical laws that might
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fit to describe similar qualitative properties of the network degree distribution will
not satisfy an important condition of the scale invariance. Therefore, a network is
defined as scale-free if a randomly picked node has k connections with other nodes
with a probability that follows a power-law p(k) ∼ kγ , where γ is the power-law
exponent.

The scale-free framework has been introduced because of the need to find a new
type of model that can match the self-similarity properties of biological and social
networks.

In case of an epidemic, gathering information about the infected people is crucial.
The traditional source of information comes from healthcare practitioners (hospitals,
ERs, physicians) and helps the determination of the stage of the epidemic. Nowa-
days, with the emergence of online social networks [1], information about people’s
health is also available by other means. Monitoring those networks could allow au-
thorities to obtain increased information from people who do not have health insur-
ance and do not go to the hospital. With such an elaborate picture of the state of
the network, we can consider the problem of vaccination to fight the epidemic in
the most efficient way, for example, by prioritizing the most important nodes of the
network to limit the propagation of the virus. As mentioned earlier, because of the
self-similarity of the social network, the decision of whom to be given the vaccine
to with what priority becomes a fractional optimal control problem (FOCP).

An FOCP is an optimal control problem in which the criterion and/or the differ-
ential equations governing the dynamics of the system contain at least one fractional
derivative operator. Integer-order optimal controls (IOOCs) have been discussed for
a long time, and a large collection of numerical techniques have been developed to
solve IOOC problems. The collection of optimal control solvers is rather large [82,
126, 161]. It is therefore of interest to make use of such a solver to solve FOCPs. To
achieve this goal, we need to use rational approximations of the fractional differenti-
ation operator and reformulate the FOCP into an IOOC problem accordingly [143].

1.3 Summary of Monograph Contributions

This monograph provides the following contributions to the state of the art of CPS
research:

• An approach is proposed to joint optimization of trajectories and measurement
accuracies of mobile nodes in a mobile sensor network collecting measurements
for parameter estimation of a distributed parameter system.

• We propose a method to obtain the optimal trajectories of a team of mobile robots
remotely monitoring a distributed parameter system for its parameter estimation.

• Given a DPS with unknown parameters, a numerical solution method for gen-
erating and refining a mobile sensor motion trajectory for the estimation of the
parameters of DPS in the “closed-loop” sense is provided.

• We discuss the influence of the communication topology of mobile sensors on the
estimation of the parameters of a distributed parameter system.
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• We discuss the problem of determining optimal sensors’ trajectories so as to esti-
mate a set of unknown parameters for a system of a distributed nature where the
bounds on the parameters’ values are known.

• We introduce a numerical procedure to optimize the trajectory of mobile actua-
tors to find parameter estimates of a distributed parameter system given a sensor
configuration.

• We introduce a framework to solve the problem of determining optimal sensors
and actuators’ trajectories so as to estimate a set of unknown parameters in what
constitutes a CPS.

• We discuss fractional-order optimal control problems and their solution by means
of rational approximation. The original problem is then reformulated to fit the
definition used in general-purpose optimal control problem (OCP) solvers.

• A different direction to approximately solving FOCPs is introduced. The method
uses a rational approximation of the fractional derivative operator obtained from
the singular value decomposition of the Hankel data matrix of the impulse re-
sponse and can potentially solve any type of FOCPs.

• We propose a methodology to optimize the trajectories of mobile sensors whose
dynamics contains fractional derivatives to find parameter estimates of a dis-
tributed parameter system.

• We introduce a methodology to obtain the optimal trajectories of a group of mo-
bile remote sensors for scale reconciliation for surface soil moisture.

1.4 Preview of Chapters

The outline of this monograph follows a direction from introductory notions and
definitions to the development of methodologies for optimal sensing and actuation
under particular conditions. This work is divided into nine chapters described as
follows.

Chapter 1 The important terms motivating this work are defined, and extensive
literature review is conducted. Motivation and application scenarios are provided
for various research areas. The contributions of the monograph are summarized.

Chapter 2 We provide important definitions from the field of DPSs. We introduce
the dynamic equations of the system, the mathematical descriptions of a sensor and
an actuator. The concepts of regional controllability and observability for DPSs are
derived from those definitions. Definitions of the parameter estimation and optimal
sensor location framework are given. We discuss two issues linked to the framework:
the sensor clusterization phenomenon and the dependence of the solution on initial
parameter estimates.

Chapter 3 We show that some methods from the optimum experimental design
(OED) framework for linear regression models can be applied to the formulation of
the mobile sensor trajectory design problem for DPS parameter estimation when it
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is desirable to simultaneously optimize the number of sensors, their trajectories, and
their accuracies (noise characteristics).

Chapter 4 We extend the existing optimal sensor location to encompass the case
of remote sensors. We introduce a remote sensing function linking the mobility
domain and the sensing domain. We provide an example that can be linked with
the optimal trajectories of UAVs carrying imaging payloads.

Chapter 5 To circumvent the issue of the dependence of the optimal location on
the parameter estimates, we introduce the design of moving sensor optimal trajecto-
ries, which does not rely on initial estimates of the parameters but instead is based
on knowledge of upper and lower bounds of the parameter values and on offline
computation type of solution. We also introduce an online scheme where the pa-
rameter estimates are evaluated iteratively, which allows us to introduce the concept
of communication topology into the framework.

Chapter 6 The “stimulation” of the system being an implicit variable to the pa-
rameter estimation problem, we introduce the optimization of the trajectories of a
group of mobile actuators. We solve the problem of optimal actuation for parameter
estimation with given sensor location/trajectories. We combine this new framework
with the optimal sensor location framework to optimize both the trajectories of sen-
sors and actuators together.

Chapter 7 We introduce a new formulation toward solving a wide class of frac-
tional optimal control problems. The formulation made use of an approximation to
model the fractional dynamics of the system in terms of a state space realization.
This approximation creates a bridge with a fractional optimal control problem and
a readily available optimal control solver. The methodology allows us to reproduce
results from the literature as well as to solve the more complex problem of optimal
trajectories of sensors with fractional dynamics.

Chapter 8 We focus on the downscaling problem in the framework of surface soil
moisture measurement. Our purpose is to introduce a new methodology to transform
or fuse low-resolution remote sensing data, ground measurements, and low-altitude
remote sensing (typically images obtained from a UAV) into a high-resolution data
set.

Chapter 9 The contributions of this monograph are summarized. Discussion of
potential future research directions is presented.

Appendices A–C We provide a list of general notation used in this monograph
as well as specific notation for several chapters. We give a short tutorial about the
optimal control problem solver (RIOTS_95) used in the illustrative examples. We
provide the MATLAB code for some of the illustrative examples used in this mono-
graph.



Chapter 2
Distributed Parameter Systems: Controllability,
Observability, and Identification

2.1 Mathematical Description

We introduce the class of systems to be considered in the framework of this mono-
graph and definitions on configurations of sensors and actuators. Important concepts
are defined for parameter identification and optimal experiment design.

This section introduces important concepts for the analysis of distributed param-
eter systems from the literature [8].

2.1.1 System Definition

Here, we consider a class of linear DPSs whose dynamics can be described by the
given state equation

{
ẏ(t) = Ay(t) + Bu(t), 0 < t < T,

y(0) = y0,
(2.1)

where the state space is given as Y = L2(Ω), and the set Ω is a bounded open
subset of Rn with a sufficiently regular boundary Γ = ∂Ω . The considered domain
Ω stands for the geometrical support of the system defined by (2.1). The opera-
tor A is a linear operator describing the dynamics of system (2.1). A generates a
strongly continuous semigroup (Φ(t))t≥0 on Y . The operator B ∈ L(U,Y ) (the set
of linear maps from U to Y ) is the input operator; u ∈ L2(]0, T [;U) (space of inte-
grable functions f : ]0, T [ �→ U such that t �→ ‖f (t)‖p is integrable on ]0, T [ ); U

is a Hilbert control space. The considered system can be augmented by the output
equation

z(t) = Cy(t), (2.2)

where C ∈L(L2(Ω),Z), and Z is a Hilbert observation space. While such a defini-
tion can be used for the analysis of distributed parameter systems, it is fairly abstract
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when considering controls. That is why we introduce the notions of actuators and
sensors, as well as notions of spatial distribution. These notions allow one to study
the system not only with respect to the operators A, B , and C, but also with respect
to the spatial distribution, location, and number of the actuators and sensors.

Sensors and actuators have two separate roles in a DPS. The actuators provide
an excitation on the system, and the sensors give information (measurements) about
the state of the system. Both sensors and actuators can be of different natures: zone
or pointwise, internal or boundary, stationary or moving, communicating or non-
communicating, collocated or noncollocated.

An important notion of the framework of a DPS is the region. It is generally
defined as a subdomain of Ω in which we are especially interested. Instead of con-
sidering a problem on the whole domain Ω , it is possible to consider only a sub-
region ω of Ω . This has allowed the generalization of the concepts, theorems, and
results of the analysis of DPSs to any subdomain of Ω . In the following, we give
the mathematical definitions for actuators and sensors.

2.1.2 Actuator Definition

Let Ω be an open regular bounded subset of Rn with a sufficiently regular boundary
Γ = ∂Ω . The set Ω stands for the geometrical support of a considered DPS [79].

Definition 2.1

1. An actuator is a couple (D,g) where D is the geometrical support of the actuator,
D = supp(g) ⊂ Ω , and g is its spatial distribution.

2. An actuator (D,g) is defined as:

• A zonal actuator if D is a nonempty subregion of Ω .
• A pointwise actuator if D is reduced to a point b ∈ Ω . In that situation, we

have g = δb where δb is the Dirac function concentrated at b. The actuator is
then denoted as (b, δb).

3. An actuator (zonal or pointwise) is called a boundary actuator if its support
D ⊂ Γ .

An illustration of actuator’s support is given in Fig. 2.1. In the previous defini-
tion, g is assumed to be in L2(D). For p actuators (Di, gi)1≤i≤p , the control space
is U = R

p , and

B : Rp → L2(Ω)

u(t) → Bu(t) =
p∑

i=1

giui(t)
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Fig. 2.1 Illustration of
actuator’s support

Fig. 2.2 Illustration of the
geometrical support and
spatial distribution of an
actuator

where u = (u1, . . . , up)T ∈ L2(]0, T [;Rp) and gi ∈ L2(Di) with Di = supp (gi) ⊂
Ω for i = 1, . . . , p and Di ∩ Dj = ∅ for i �= j , and we have

B	y = (〈g1, y〉, . . . , 〈gp, y〉)T for z ∈ L2(Ω),

where MT is the transpose of M , and 〈·, ·〉 = 〈·, ·〉Y is the inner product in Y , and
for v ∈ Y , if supp (v) = D, we have

〈v, ·〉 = 〈v, ·〉L2(D).

If D is independent of the time instant t , the actuator (D,g) is defined as fixed or
stationary. If D varies with t , it is called a moving or mobile actuator denoted by
(Dt , gt ), where Dt and gt are, respectively, the geometrical support and the spatial
distribution of the actuator at time t . An illustration of the geometrical support and
spatial distribution of an actuator is given in Fig. 2.2.

2.1.3 Sensor Definition

Let us provide some concepts and definitions for sensors in DPSs [79].
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Fig. 2.3 Illustration of
sensor’s support

Definition 2.2 A sensor is defined as a couple (D,h), where D is the spatial support
of the sensor, D = supp(h) ⊂ Ω , and h is its spatial distribution.

An illustration of sensor’s support is given in Fig. 2.3. It is generally assumed
that h ∈ L2(D). In a similar fashion, we can define zonal, pointwise, internal, bound-
ary, fixed, or moving sensors. If the output of the system is given by means of q zonal
sensors (Di,hi)1≤i≤q with hi ∈ L2(Di), Di = supp (hi) ⊂ Ω for i = 1, . . . , q and
Di ∩ Dj = ∅ if i �= j , then in the case of a zonal output, the DPS’s output operator
C is defined by

C : L2(Ω) → R
p

y → Cy = (〈h1, y〉, . . . , 〈hq, y〉)T

and the output of the sensors is given by

z(t) =

⎡
⎢⎢⎢⎣

〈h1, y〉L2(D1)〈h2, y〉L2(D2)
...

〈hq, y〉L2(Dq)

⎤
⎥⎥⎥⎦ . (2.3)

A sensor (D,h) is said to be a zonal sensor if D is a nonempty subregion of Ω .
A sensor (D,h) is called pointwise if D is reduced to a point c ∈ Ω , and h = δc is
the Dirac function concentrated at c. The sensor is then denoted as (c, δc). For zonal
or pointwise sensors, if D ⊂ Γ = ∂Ω , a sensor (D,h) is said to be a boundary sen-
sor. If D does not depend on time, the sensor (D,h) is said to be fixed or stationary;
otherwise, it is said to be moving (or scanning) and is denoted as (Dt , ht ). In the
case of q pointwise fixed sensors located in (ci)1≤i≤q , the output function is a vector
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defined as

z(t) =

⎡
⎢⎢⎢⎣

y(t, c1)

y(t, c2)
...

y(t, cq)

⎤
⎥⎥⎥⎦ , (2.4)

where ci is the position of the ith sensor, and y(t, ci) is the value of the state of the
system in ci at time t .

2.2 Regional Controllability

Let Ω be an open regular bounded subset of Rn, and Y = L2(Ω) be the state space.
In what follows, we denote Q = Ω ×]0, T [ and Σ = ∂Ω ×]0, T [, and we consider
the system described by the state equation

{
ẏ(t) = Ay(t) + Bu(t), 0 < t < T,

y(0) = y0 ∈ D(A),
(2.5)

where D(A) is the domain of the operator A. The operator A generates a strongly
continuous semigroup (Φ(t))t≥0 on Z, B ∈ L(Rp,Y ), and u ∈ L2(0, T ;Rp). The
mild solution y of (2.5), denoted y(·, u), is given by

y(t, u) = Φ(t)y0 +
∫ t

0
Φ(t − s)Bu(s)ds, (2.6)

and we have y(·, u) ∈ C[0, T ;Y ].
We consider a given region ω ⊂ Ω of positive Lebesgue measure and a given

desired state yd ∈ L2(ω) [55].

Definition 2.3

1. System (2.5) is said to be exactly regionally controllable (or exactly ω-control-
lable) if there exists a control u ∈ L2(]0, T [;Rp) such that

pωy(T ,u) = yd. (2.7)

2. System (2.5) is said to be weakly regionally controllable (or weakly ω-control-
lable) if, given ε > 0, there exists a control u ∈ L2(]0, T [;Rp) such that

∥∥pωy(T ,u) − yd

∥∥
L2

ω
≤ ε, (2.8)

where y(·, u) is given by (2.6), and pωy is the restriction of y to ω.

In the case of pointwise or boundary controls, B /∈ L(Rp,Z). We consider the
operator

H : L2(]0, T [;Rp
)→ Y
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defined by

Hu =
∫ T

0
Φ(T − τ)Bu(τ)dτ (2.9)

and

pω : L2(Ω) → L2(ω) (2.10)

defined by

pωy = y|ω. (2.11)

Then, from Definition 2.3, system (2.5) is exactly (respectively weakly) regionally
controllable if

Im(pωH) = L2(ω)
(
respectively ImpωH = L2(ω)

)
. (2.12)

We have equivalently

Im(pωH) = L2(ω) ⇔ Ker
(
H	iω

)= {0}, (2.13)

where iω holds for the adjoint of pω. Characterizations (2.12) and (2.13) are often
used in applications. We also have the following result [56].

Lemma 2.4 1. System (2.5) is exactly regionally controllable if and only if

Ker(pω) + Im(H) = L2(Ω). (2.14)

2. System (2.5) is weakly regionally controllable if and only if

ker(pω) + Im(H) = L2(Ω). (2.15)

It is easy to show that (2.15) is equivalent to

Ker(H	) ∩ Im(iω) = {0}, (2.16)

where iω = p	
ω : L2(ω) → L2(Ω) is given by

iωz =
{

y(x), x ∈ ω,

0, x ∈ Ω\ω.

2.3 Regional Observability

Let z be the state of a linear system with state space Y = L2(Ω), and suppose that
the initial state y0 is unknown. Measurements are given by means of an output z

depending on the number and the structure of the sensors. The problem to be studied
here concerns the reconstruction of the initial state y0 on the subregion ω. Let Ω be
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a regular bounded open set of Rn with boundary Γ = ∂Ω , ω be a nonempty subset
of Ω , and [0, T ] with T > 0 be a time interval. We denote Q = Ω × ]0, T [ and
σ = ∂Ω × ]0, T [, and we consider the autonomous system described by the state
equation {

ẏ(t) = Ay(t), 0 < t < T,

y(0) = y0 supposed to be unknown,
(2.17)

where A generates a strongly continuous semigroup (Φ(t))t≥0 on the state space Y .
An output function gives measurements of the state y by

z(t) = Cy(t), (2.18)

where

C : y ∈ L2(]0, T [;Y) → z ∈ L2(]0, T [;Rq
)

(2.19)

depends on the sensors’ structure. In the case where the considered sensor is point-
wise and located in b ∈ Ω , we have, with (2.18),

z(t) =
∫

Ω

y(x, t)δ(x − b)dx = y(b, t). (2.20)

The problem consists in the reconstruction of the initial state, assumed to be un-
known, in the subregion ω. We consider the following decomposition:

y0 =
{

ye, x ∈ ω,

yu, x ∈ Ω\ω,
(2.21)

where ye is the state to be estimated, and yu is the undesired part of the state. Then,
the problem consists in reconstructing ye with the knowledge of (2.17) and (2.18).
As system (2.17) is autonomous, (2.18) gives

z(t) = CΦ(t)y0 = K(t)y0, (2.22)

where K is an operator Y → L2(]0, T [;Rq). The adjoint K	 is given by

K	y =
∫ T

0
Φ	(s)C	z(s)ds. (2.23)

We recall that system (2.17) with the output (2.18) is said to be weakly observable if
Ker(K) = {0}. The associated sensor is then said to be strategic [56]. Consider now
the restriction mapping

χω : L2(Ω) → L2(ω) (2.24)

defined by

χωz = z|ω, (2.25)

where z|ω is the restriction of z to ω. For simplification, along this section we denote
γ = χω. Then, we introduce the following definition [80]:
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Definition 2.5 System (2.17)–(2.18) is said to be regionally observable on ω (or
ω-observable) if

Im
(
γK	

)= L2(ω). (2.26)

System (2.17)–(2.18) is said to be weakly regionally observable on ω (or weakly
ω-observable) if

Im
(
γK	

)= L2(ω). (2.27)

From the above definition we deduce the following characterization [56]:

Lemma 2.6 System (2.17)–(2.18) is exactly ω-observable if there exists ω > 0 such
that, for all z0 ∈ L2(ω),

‖γy0‖L2(ω) ≤ ν
∥∥Kγ 	y0

∥∥
L2(]0,T [;Rq )

. (2.28)

2.4 Parameter Identification and Optimal Experiment Design

2.4.1 System Definition

Due to the nature of the considered parameter identification problem, the abstract
operator-theoretic formalism used in (2.1) to define the dynamics of a DPS is not
convenient. In this section, the following PDE-based general definitions are given.
Consider a DPS described by n partial differential equations of the following form:

F1(x, t)
∂y(x, t)

∂t
= F2

(
x, t, y(x, t),∇y(x, t),∇2y(x, t), θ

)
,

(x, t) ∈ Ω × T ⊂ R
d+1 (2.29)

with initial and boundary conditions

B(x, t, y) = 0, (x, t) ∈ ∂Ω × T , (2.30)

N(x, t, y) = 0, (x, t) ∈ Ω × {0}, (2.31)

where

• Ω ⊂ R
n is a bounded spatial domain with sufficiently smooth boundary Γ = ∂Ω ,

• t is the time instant,
• T = [0, tf ] is a bounded time interval called observation interval,
• x = (x1, x2, . . . , xd) is a spatial point belonging to Ω = Ω ∪ Γ ,
• y = (y1(x, t), y2(x, t), . . . , yn(x, t)) stands for the state vector, and
• F1, F2, B, and N are some known functions.
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We assume that the system of equations (2.29)–(2.31) has a unique solution that is
sufficiently regular. We can see that (2.29)–(2.31) contains an unknown set of pa-
rameters θ whose values belong to an admissible parameter space Θad. Even though
Θad can have different forms, we make an assumption that the parameters are con-
stant (θ ∈ R

m). The set of unknown parameters θ has to be determined based on
observations made by N mobile pointwise sensors over the observation horizon T .
We define xj : T → Ωad as the trajectory of the j th mobile sensor, with Ωad ⊂ Ω

being the region where measurements can be made. The observations are assumed
to be of the form

zj (t) = y
(
xj (t), t

)+ ε
(
xj (t), t

)
, t ∈ T , j = 1, . . . ,N. (2.32)

The collection of measurements z(t) = [z1(t), z2(t), . . . , zN(t)]T is the N -dimen-
sional observation vector, and ε represents the measurement noise assumed to be
white, zero-mean, Gaussian, and spatial uncorrelated with the following statistics:

e
{
ε
(
xj (t), t

)
ε
(
xi(t ′), t ′

)}= σ 2δjiδ(t − τ), (2.33)

where σ 2 stands for the standard deviation of the measurement noise, and δij and
δ( · ) are the Kronecker and Dirac delta functions, respectively.

2.4.2 Parameter Identification

According to this setup, the parameter identification problem is defined as fol-
lows. Given the model (2.29)–(2.31) and the measurements z(t) along the trajec-
tories (xj ), j = 1, . . . ,N , obtain an estimation θ̂ ∈ Θad minimizing the following
weighted least-squares criterion as in [18] and [109]:

J(θ) = 1

2

∫ T

0

∥∥z(t) − ŷ(x, t; θ)
∥∥2 dt, (2.34)

where ŷ(x, t; θ) stands for the solution to (2.29)–(2.31) corresponding to a given set
of parameters θ , and ‖ · ‖ stands for the Euclidean norm.

The estimated values of the parameters θ̂ are influenced by the sensors’ trajecto-
ries xj (t), and our objective is to obtain the best estimates of the system parameters.
Therefore, deciding on the trajectory based on a quantitative measure related to the
expected accuracy of the parameter estimates to be obtained from the data collected
seems to be practically logical.

2.4.3 Sensor Location Problem

The Fisher information matrix (FIM) [119, 132] is a well-known performance mea-
sure when looking for best measurements and is widely used in optimum experi-
mental design theory for lumped systems. Its inverse constitutes an approximation
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of the covariance matrix for the estimate of θ [16, 60, 162]. Let us give the following
definition of the experiment:

s(t) = (x1(t), . . . , xN(t)
) ∀t ∈ T , (2.35)

and let n = dim(s(t)). Under such conditions, the FIM can be written as [118]

M(s) =
N∑

j=1

∫ T

0
g
(
xj (t), t

)
gT
(
xj (t), t

)
dt, (2.36)

where g(x, t) = ∇θ y(x, t; θ)|θ=θ0 is the vector made of the sensitivity coefficients,
θ0 being the previous estimate of the unknown parameter vector θ [146, 147].

By choosing s such that it minimizes a scalar function Ψ (·) of the FIM, one
can determine the optimal mobile sensor trajectories. There are many candidates for
such a function [16, 60, 162]:

• The A-optimality criterion suppresses the variance of the estimates

Ψ (M) = trace
(
M−1). (2.37)

• The D-optimality criterion minimizes the volume of the confidence ellipsoid for
the parameters

Ψ (M) = − log det(M). (2.38)

• The E-optimality criterion minimizes the largest width of the confidence ellipsoid

Ψ (M) = λmax
(
M−1). (2.39)

• The sensitivity criterion’ minimization increases the sensitivity of the outputs
with respect to parameter changes

Ψ (M) = − trace(M). (2.40)

2.4.4 Sensor Clustering Phenomenon

The assumption on the spatial uncorrelation of the measurement noise can create a
clustering of the sensors, which can be problematic in practice. We use an example
from [147] to illustrate the sensor clustering problem.

Example 2.1 Consider the following parabolic partial differential equation:

∂y(x, t)

∂t
= θ1

∂2y(x, t)

∂x2
, x ∈ (0,π), t ∈ (0,1),



2.4 Parameter Identification and Optimal Experiment Design 27

Fig. 2.4 Contour plot of
det(M(x1, x2)) versus the
sensors’ locations (θ1 = 0.1
and θ2 = 1)

with boundary and initial conditions

y(0, t) = y(π, t) = 0, t ∈ (0,1),

y(x,0) = θ2 sin(x), x ∈ (0,π).

The two parameters θ1 and θ2 are assumed to be constant but unknown. In addition,
we assume that the measurements are taken by two static sensors whose locations
are decided by maximizing the determinant of the FIM. The analytical solution of
the PDE can be easily obtained as

y(x, t) = θ2 exp(−θ1t) sin(x).

The assumption is made that the signal noise statistic σ = 1 does not change the
optimal location of the sensors. The determinant of the matrix is given by

det
(
M
(
x1, x2)) = θ2

2

16θ4
1

(−4θ2
1 exp(−2θ1) − 2 exp(−2θ1) + exp(−4θ1) + 1

)

× (2 − cos2(x1) − cos2(x2)
)2

.

The results are shown in Fig. 2.4, and one quick observation allows one to determine
that the best location for both sensors is at the center of the interval (0,π).

2.4.5 Dependence of the Solution on Initial Parameter Estimates

Another serious issue in the FIM framework of optimal measurements for param-
eter estimation of DPS is the dependence of the solution on the initial guess on
parameters. We illustrate the problem using an example from [111].
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Fig. 2.5 Contour plot of
M(x1; θ)

Example 2.2 Consider the following hyperbolic partial differential equation:

∂2y(x, t)

∂t2
= θ

∂2y(x, t)

∂x2
, x ∈ (0,π), t ∈ (0,π),

with boundary and initial conditions

y(0, t) = 1

4
cos(t), y(π, t) = sin(πθ) sin(t) + 1

4
cos(πθ) cos(t), t ∈ (0,π),

y(x,0) = 1

4
cos θx,

∂y(x, t)

∂t

∣∣∣∣
t=0

= sin(θx), x ∈ (0,π).

The parameter θ is assumed to be constant and unknown. In addition, we assume
that the measurements are taken by one static sensor located at x1 ∈ (0,π). The
analytical solution of the PDE can be easily obtained and is given as

M
(
x1)=

∫ π

0

(
∂y(x1, t; θ)

∂θ

)2

dt

= 1

2
x2π cos2(θx) + 1

32
x2π sin(θx).

The results are shown in Fig. 2.5 (the optimal location of the sensor is represented
by a dashed line), and it is easy to observe that the optimal sensor location depends
on the value of θ .

The dependence of the optimal location on θ is very problematic; however, some
techniques called “robust designs” have been developed to minimize or elude the
influence [132, 162]. We propose similar methodologies in Chap. 5.
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2.5 Chapter Summary

In this chapter, we gave very important definitions in the framework of DPSs. We
defined the dynamic equations of the system, the mathematical descriptions of a sen-
sor and an actuator. From those definitions we introduced the concepts of regional
controllability and observability. Then, we described the dynamics of the system in
an appropriate way for the FIM framework of optimal sensor location for parameter
estimation. We gave the definitions of the parameter estimation and optimal sensor
location. Finally, we discussed two of the important issues of the FIM framework:
the sensor clustering phenomenon and the dependence of the solution on initial pa-
rameter estimates.



Chapter 3
Optimal Heterogeneous Mobile Sensing
for Parameter Estimation of Distributed
Parameter Systems

3.1 Introduction

States in distributed parameter systems (DPSs), i.e., systems described by partial
differential equations (PDEs), vary both spatially and temporally, but it is generally
impossible to measure them over the whole spatial domain. Consequently, we are
faced with the design problem of how to locate a limited number of measurement
sensors so as to obtain as much information as possible about the process at hand.
The location of sensors is not necessarily dictated by physical considerations or by
intuition, and, therefore, some systematic approaches should be developed in order
to reduce the cost of instrumentation and to increase the efficiency of parameter
estimation.

Although it is well known that the estimation accuracy of DPS parameters de-
pends significantly on the choice of sensor locations, there have been relatively
few contributions to the optimal experimental design for those systems. The im-
portance of sensor planning has been recognized in many application domains, e.g.,
regarding air quality monitoring systems, groundwater-resources management, re-
covery of valuable minerals and hydrocarbon, model calibration in meteorology and
oceanography, chemical engineering, hazardous environments, and smart materials
[19, 45, 49, 84, 85, 104, 105, 116, 132, 147]. Over the past years, increasingly
thorough research on the development of strategies for efficient sensor placement
has been observed (for reviews, see papers [92, 158] and comprehensive mono-
graphs [147, 150]). Nevertheless, much still has to be done in this respect, particu-
larly in light of recent advances in wireless sensor networks [31, 41, 48, 50–52, 81,
128, 174].

Nowadays, mobile platforms for sensors are available (mobile robots or un-
manned air vehicles) that offer an appealing alternative to common stationary sen-
sors with fixed positions in space [31, 41, 48, 107, 128]. The complexity of the
resulting design problem is expected to be compensated by a number of benefits.
Specifically, sensors are not assigned to fixed positions that are optimal only on the
average, but are capable of tracking points that provide at a given time instant the
best information about the parameters to be identified. Consequently, by actively re-
configuring a sensor system, we can expect the minimal value of an adopted design
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criterion to be lower than the one for the stationary case. Areas of direct application
of such mobile sensing techniques include air pollutant measurements in the envi-
ronment obtained from monitoring cars moving in an urban area, or atmospheric
variables acquired using instruments carried in a satellite or aircraft [103]. Low-cost
mobile platforms with wireless communication capabilities for sensor networks are
now available. They get cheaper and cheaper, and more advanced ones are under
development. With a group of such autonomous vehicles equipped with sensors, we
can enhance the performance of the measurements.

The number of publications on optimized mobile observations for parameter esti-
mation is limited. In a seminal article [119], Rafajłowicz considers the D-optimality
criterion and seeks an optimal time-dependent measure, rather than the trajecto-
ries themselves. On the other hand, Uciński [146, 147, 156], apart from general-
izations of Rafajłowicz’s results, develops some computational algorithms based
on the Fisher information matrix. He reduces the problem to a state-constrained
optimal-control one for which solutions are obtained via the methods of successive
linearizations that are capable of handling various constraints imposed on sensor
motions. In turn, in [153] Uciński and Chen attempted to properly formulate and
solve the time-optimal problem for moving sensors that observe the state of a DPS
so as to estimate some of its parameters.

In the literature on mobile sensors, it is most often assumed that the optimal mea-
surement problem occurs in the design of trajectories of a given number of identical
sensors. In this chapter, we formulate it in a quite different manner. First of all, apart
from sensor controls and initial positions, the number of sensors constitutes an ad-
ditional design variable. Additionally, we can allow for different levels of measure-
ment accuracies for individual sensors, which are quantified by weights steering the
corresponding measurement variances. This leads to a much more general formula-
tion that most often produces an uneven allocation of experimental efforts between
different sensors. The corresponding solutions could then be implemented on a sen-
sor network with heterogeneous mobile nodes. It turns out that these solutions can
be determined using convex optimization tools commonly used in optimum exper-
imental design [16, 62, 162]. As a result, much better accuracies of the parameter
estimates can be achieved.

3.2 Optimal Sensor Location Problem

Let Ω ⊂ R
n be a bounded spatial domain with sufficiently smooth boundary Γ ,

and let T = (0, tf ] be a bounded time interval. Consider a distributed parameter
system (DPS) whose scalar state at a spatial point x ∈ Ω̄ ⊂ R

n and time instant
t ∈ T is denoted by y(x, t). Mathematically, the system state is governed by the
partial differential equation

∂y

∂t
= F(x, t, y, θ) in Ω × T , (3.1)
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where F is a well-posed, possibly nonlinear, differential operator that involves first-
and second-order spatial derivatives and may include terms accounting for forcing
inputs specified a priori. The PDE (3.1) has the following appropriate boundary and
initial conditions:

B(x, t, y, θ) = 0 on Γ × T , (3.2)

y = y0 in Ω × {t = 0}, (3.3)

respectively, where B is an operator acting on the boundary Γ , and y0 = y0(x) is a
given function. Conditions (3.2) and (3.3) complement (3.1) so that the existence of
a sufficiently smooth and unique solution is guaranteed. We assume that the forms
of F and B are given explicitly up to an m-dimensional vector of unknown constant
parameters θ , which must be estimated using observations of the system. The im-
plicit dependence of the state y on the parameter vector θ will be reflected by the
notation y(x, t; θ).

We assume that the vector θ ∈ R
m is to be estimated from measurements made

by N moving sensors over the observation horizon T . We call x
j
s : T → Ωad the

trajectory of the j th sensor, where Ωad ⊂ Ω ∪ Γ is a compact set representing the
area where the mobile sensing measurements can be made. The observations are of
the form

zj (t) = y
(
x

j
s (t), t

)+ ε
(
x

j
s (t), t

)
, t ∈ T , j = 1, . . . ,N, (3.4)

where ε constitutes the measurement noise, which is assumed to be zero-mean,
Gaussian, spatial uncorrelated, and white [14, 109, 118], i.e.,

e
{
ε
(
x

j
s (t), t

)
ε
(
xi

s (τ ), τ
)}= δjiδ(t − τ)

σ 2

pj

, (3.5)

where σ 2/pj defines the intensity of the noise, σ 2 is a constant, pj stands for a
positive scaling factor, and δij and δ( · ) stand for the Kronecker and Dirac delta
functions, respectively. Although white noise is a physically impossible process,
it constitutes a reasonable approximation to a disturbance whose adjacent samples
are uncorrelated at all time instants for which the time increment exceeds some
value that is small compared with the time constants of the DPS. The white-noise
assumption is consistent with most of the literature on the subject.

Note that instead of several mobile sensors whose accuracies are characterized by
the equal variance σ 2, we use sensors for which the variance of measurement errors
is σ 2/pj . This means that a large weight pj indicates that the j th sensor guarantees
more precise measurements than sensors with lower weight values. With no loss
of generality, we assume that the weights pj satisfy the following normalization
condition:

N∑
j=1

pj = 1, pj ≥ 0, j = 1, . . . ,N, (3.6)

i.e., they belong to the probability simplex.
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In the presented framework, the parameter identification problem is usually for-
mulated as follows: Given the model (3.1)–(3.3) and the outcomes of the measure-
ments zj along the trajectories x

j
s , j = 1, . . . ,N , determine an estimate θ̂ ∈ Θad

(Θad being the set of admissible parameters) that minimizes the generalized output
least-squares fit-to-data functional given by [18, 109]

θ̂ = arg min
ϑ∈Θad

N∑
j=1

pj

∫
T

[
zj (t) − y

(
x

j
s (t), t;ϑ

)]2 dt, (3.7)

where y now solves (3.1)–(3.3) for θ replaced by ϑ .
We feel, intuitively, that the parameter estimate θ̂ depends on the number of sen-

sors N , the trajectories x
j
s , and the associated weights pj since the right-hand side

of (3.7) does. This fact suggests that we may attempt to select these design variables
so as to produce best estimates of the system parameters after performing the actual
experiment. Note that the weights pj can be interpreted here as sensor costs, which
are inversely proportional to the variances of the corresponding measurement errors
introduced by them. The weights must sum up to unity, which means that our bud-
get on the experiment is fixed. Then, the problem is how to spend it, i.e., how many
and how accurate sensors to buy so as to get the most accurate parameter estimates
while assuming that their trajectories are also going to be optimized.

To form a basis for the comparison of different design settings, a quantitative
measure of the “goodness” of particular settings is required. A logical approach is
to choose a measure related to the expected accuracy of the parameter estimates to
be obtained from the data collected (note that the design is to be performed offline,
before taking any measurements). Such a measure is usually based on the concept
of the Fisher information matrix (FIM) [119, 132], which is widely used in optimum
experimental design theory for lumped systems [16, 62, 162]. When the time hori-
zon is large, the nonlinearity of the model with respect to its parameters is mild, and
the measurement errors are independently distributed and have small magnitudes,
the inverse of the FIM constitutes a good approximation of the covariance matrix
for the estimate of θ [16, 62, 162].

The FIM has the following representation [118, 147]:

M =
N∑

j=1

pj

∫
T

g
(
x

j
s (t), t

)
gT(xj

s (t), t
)

dt, (3.8)

where

g(x, t) = ∇ϑy(x, t;ϑ)|ϑ=θ0 (3.9)

denotes the vector of the so-called sensitivity coefficients, θ0 being a prior estimate
to the unknown parameter vector θ [146, 147].

The sought optimal design settings can be found by maximizing some scalar
function Ψ of the information matrix. The introduction of the design criterion per-
mits one to cast the sensor location problem as an optimization problem, and the
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criterion itself can be treated as a measure of the information content of the obser-
vations. Several choices exist for such a function [16, 62, 162], and the most popular
one is the D-optimality criterion

Ψ [M] = − log det(M). (3.10)

Its use yields the minimal volume of the confidence ellipsoid for the estimates. In
what follows, we shall restrict our attention to this optimality criterion.

3.3 Mobile Sensor Model

3.3.1 Node Dynamics

Although measurement accuracies may vary from sensor to sensor, we assume that
all sensors are conveyed by identical vehicles whose motions are described by

ẋ
j
s (t) = f

(
x

j
s (t),u

j
s (t)
)

a.e. on T , x
j
s (0) = x

j

s0, (3.11)

where a given function f : Rn × R
r → R

n is required to be continuously differ-
entiable, x

j

s0 ∈ R
n defines an initial sensor configuration, and u

j
s : T → R

r is a
measurable control function that satisfies

usl ≤ u
j
s (t) ≤ usu a.e. on T (3.12)

for some constant bound vectors usl and usu, j = 1, . . . ,N .
For each j = 1, . . . ,N , given any initial position x

j

s0 and any control function,

there is a unique absolutely continuous function x
j
s : T → R

n that satisfies (3.11)
a.e. on T . In what follows, we will call it the state trajectory corresponding to x

j

s0

and u
j
s .

3.3.2 Pathwise State Constraints

In reality, some restrictions on the motions are inevitably imposed. First of all, all
sensors should stay within the admissible region Ωad where measurements are al-
lowed. We assume that it is a compact set defined as follows:

Ωad = {x ∈ Ω ∪ Γ | bi(x) ≤ 0, i = 1, . . . , I
}
, (3.13)

where bis are given continuously differentiable functions. Accordingly, the condi-
tions

bi

(
x

j
s (t)
)≤ 0 ∀t ∈ T (3.14)

must be fulfilled, where 1 ≤ i ≤ I and 1 ≤ j ≤ N .
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3.3.3 Parameterization of Vehicle Controls

From now on, we make the assumption that the controls of the available vehicles
can be represented in the parametric form

u
j
s (t) = η

(
t,aj

)
, t ∈ T , (3.15)

where η denotes a given function such that η( · ,aj ) is continuous for each fixed
aj , and η(t, · ) is continuous for each fixed t , the constant parameter vector aj

ranging over a compact set A ⊂ R
q . An exemplary parameterization is using B-

splines as employed in numerous optimal control solvers, e.g., RIOTS_ 95 [126]
to be described in Appendix B.

Based on a specific parameterization, we can define the mapping χ which assigns
every cj = (x

j

s0,a
j ) ∈ Ωad × A a trajectory x

j
s = χ(cj ) through solving (3.11) for

the initial position x
j

s0 and control defined by (3.15).
Since only the controls and trajectories satisfying the imposed constraints are of

our interest, we introduce the set

C = {c = (xs0,a) ∈ A × Ωad : η( · ,a) satisfies (3.12), χ(c) satisfies (3.14)
}

(3.16)

and assume that it is nonempty. A trivial verification shows that C is also compact.
Given N sensors, we thus obtain trajectories x

j
s corresponding to vectors cj ∈

R
n+q , j = 1, . . . ,N . The FIM can then be rewritten as

M(ξN) =
N∑

j=1

pj

∫
T

g
(
x(t), t

)
gT(x(t), t

)∣∣
x=χ(cj )

dt, (3.17)

where, for simplicity of notation, we represent the decision variables as the follow-
ing table:

ξN =
{

c1, c2, . . . , cN

p1, p2, . . . , pN

}
. (3.18)

Applying the terminology of optimum experimental design, we call this table a dis-
crete design, while c1, . . . , cN are termed the support points, and p1, . . . , pN are
referred to as the corresponding weights.

Observe that a design ξN can be interpreted as a discrete probability distribution
on a finite subset of C, cf. (3.6). As is standard in optimum experimental design
theory [61], we can extend this idea and regard a design as a probability measure ξ

for all Borel sets of C, including single points. With such a modification, we can
define the FIM analogous to (3.17) for the design ξ :

M(ξ) =
∫

C

Υ (c) ξ(dc), (3.19)
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where

Υ (c) =
∫

T

g
(
x(t), t

)
gT(x(t), t

)∣∣
x=χ(c)

dt. (3.20)

The integration in (3.19) is to be understood in the Lebesgue–Stieltjes sense. This
leads to the so-called continuous designs that constitute the basis of the modern the-
ory of optimal experiments and originate in seminal works by Kiefer and Wolfowitz
[87]. It turns out that such an approach drastically simplifies the design, and the
remainder of the chapter is devoted to this design issue.

3.4 Characterization of Optimal Solutions

For clarity, we adopt the following notational conventions. Here and subsequently,
we will use the symbol Ξ(C) to denote the set of all probability measures on C.
Let us also introduce the notation M(C) for the set of all admissible information
matrices, i.e.,

M(C) = {M(ξ) : ξ ∈ Ξ(C)
}
. (3.21)

Then we may redefine an optimal design as a solution to the following optimization
problem:

ξ	 = arg max
ξ∈Ξ(C)

Ψ
[
M(ξ)

]
. (3.22)

The theoretical results presented in this section constitute straightforward adap-
tations of their counterparts of Chap. 3 in [147]. We begin with certain convexity
and representation properties of M(ξ).

Lemma 3.1 For any ξ ∈ Ξ(C), the information matrix M(ξ) is symmetric and
nonnegative definite.

Lemma 3.2 M(C) is compact and convex.

Lemma 3.3 For any M0 ∈ M(C), there always exists a purely discrete design ξ

of the form (3.18) with no more than m(m + 1)/2 + 1 support points such that
M(ξ) = M0. If M0 lies on the boundary of M(C), then the number of support
points is less than or equal to m(m + 1)/2.

The above lemma justifies that we can restrict our attention only to discrete de-
signs with a limited number of supporting points, so the introduction of continuous
designs being probability measures for all Borel sets of C is feasible technically. In
this way, it greatly simplifies the solution process.

The next result provides a characterization of the optimal designs.

Theorem 3.4 We have the following properties:
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(i) An optimal design exists that is discrete and comprises no more than m(m +
1)/2 support points (i.e., one less than predicted by Lemma 3.3).

(ii) The set of optimal designs is convex.
(iii) A design ξ	 is optimal if and only if

max
c∈C

ϕ
(
c, ξ 	

)= m, (3.23)

where

ϕ(c, ξ) = trace
[
M−1(ξ)Υ (c)

]
. (3.24)

(iv) For any purely discrete optimal design ξ	, the function ϕ( · , ξ	) has value zero
at all support points.

It is now clear that the function ϕ is of paramount importance in our consider-
ations, as it determines the location of the support points in the optimal design ξ	

(they are among its points of global maximum). Moreover, given any design ξ , it in-
dicates points at which a new observation contributes to the greatest extent. Indeed,
adding a new observation at a single point c+ amounts to constructing a new design

ξ+ = (1 − λ)ξ + λξc+ (3.25)

for some λ ∈ (0,1). If λ is sufficiently small, then it may be concluded that

Ψ
[
M
(
ξ+)]− Ψ

[
M(ξ)

]≈ λϕ
(
c+, ξ

)
, (3.26)

i.e., the resulting increase in the criterion value is approximately equal to λϕ(c+, ξ).
Analytical determination of optimal designs is possible only in simple situations,

and for general systems, it is usually the case that some iterative design procedure
will be required. The next theorem, called the equivalence theorem, is useful in
checking for optimality of designs [117].

Theorem 3.5 The following characterizations of an optimal design ξ	 are equiva-
lent in the sense that each implies the other two:

(i) the design ξ	 maximizes Ψ [M(ξ)],
(ii) the design ξ	 minimizes maxc∈C ϕ(c, ξ), and

(iii) maxc∈C ϕ(c, ξ 	) = m.

All the designs satisfying (i)–(iii) and their convex combinations have the same in-
formation matrix M(ξ	).

The above results provide us with tests for the optimality of designs. In particu-
lar:

1. If the sensitivity function ϕ(c, ξ) is less than or equal to m for all c ∈ C, then ξ

is optimal.
2. If the sensitivity function ϕ(c, ξ) exceeds m, then ξ is not optimal.
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An interesting aspect of these results is that in addition to revealing striking mini-
max properties of optimal designs, they also provide sequential numerical design
algorithms. That is, suppose that we have an arbitrary (nonoptimal) design ξk ob-
tained after k iteration steps and let ϕ( · , ξk) attain its maximum (necessarily > m)
at c = c0

k . Then, the design

ξk+1 = (1 − λk)ξk + λkξc0
k

(3.27)

(here ξc0
k

stands for the unit-weight design concentrated at c0
k) leads to an increase

in the value of Ψ [M(ξk+1)] for a suitably small λk . This follows since the derivative
with respect to λk is positive, i.e.,

∂

∂λk

Ψ
[
M(ξk+1)

]∣∣
λk=0+= m − ϕ

(
c0
k, ξk

)
> 0. (3.28)

Therefore, the procedure in using the above outlined gradient method can be
briefly summarized as follows [57, 62, 120, 162]:

Step 1. Guess a discrete nondegenerate starting design measure ξ0 (we must have
det(M(ξ0)) �= 0). Choose some positive tolerance ε � 1. Set k = 0.

Step 2. Determine c0
k = arg maxc∈C ϕ(c, ξk). If ϕ(c0

k, ξk) < m + ε, then STOP.
Step 3. For an appropriate value of 0 < λk < 1, set

ξk+1 = (1 − λk)ξk + λkξc0
k
,

increase k by one, and go to Step 2.

In the same way as for the classical first-order algorithms commonly used in opti-
mum experimental designs for many years, it can be shown that the above algorithm
converges to an optimal design, provided that the sequence {λk} is suitably chosen.
For example, the choices that satisfy one of the conditions below will ensure the
convergence:

(i) limk→∞ λk = 0,
∑∞

k=0 λk = ∞ (Wynn’s algorithm),
(ii) λk = arg minλ Ψ [(1 − λ)M(ξk) + λM(ξc0

k
)] (Fedorov’s algorithm).

Computationally, Step 2 is of crucial significance, but at the same time it is
the most time-consuming step in the algorithm. Complications arise, among other
things, due to the necessity of calculating a global maximum of ϕ( · , ξk), which is
usually multimodal (getting stuck in one of local maxima leads to premature termi-
nation of the algorithm). Therefore, while implementing this part of the computa-
tional procedure, an effective global optimizer seems to be essential.
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3.5 Optimal Control Formulation of the Search
for the Candidate Support Point

Step 2 of the Wynn–Fedorov algorithm in the previous section is necessary in the
determination of arg maxc∈C ϕ(c, ξk). This formulation can be interpreted as a finite-
dimensional approximation to the following optimization problem:

Find the pair (xs0,us) that maximizes

J (xs0,us) = trace

[
M−1(ξk

)∫
T

g
(
x(t), t

)
gT(x(t), t

)
dt

]

=
∫

T

gT(x(t), t
)
M−1(ξk

)
g
(
x(t), t

)
dt (3.29)

over the set of feasible pairs

P = {(xs0,us) |us : T → R
r is measurable,

usl ≤ us(t) ≤ usu a.e. on T , xs0 ∈ Ωad
}
,

subject to the pathwise state inequality constraints (3.14).
Evidently, its high nonlinearity excludes any possibility of finding closed-form

formulas for its solution. Accordingly, we must resort to numerical techniques.
A number of possibilities exist in this respect [73, 115], but since this problem
is already in canonical form, we can solve it using one of the existing packages
for numerically solving dynamic optimization problems, such as RIOTS_95 [126],
DIRCOL [161], or MISER [82]. In our implementation, we employed the first of
them, i.e., RIOTS_95, which is designed as a MATLAB toolbox written mostly
in C and running under Windows 98/2000/XP and Linux. It provides an interactive
environment for solving a very broad class of optimal control problems. The users’
problems can be prepared purely as M-files, and no compiler is required to solve
them. To speed up the solution process, the functions defining the problem can
be coded in C and then compiled and linked with some prebuilt linking libraries.
The implemented numerical methods are supported by the theory outlined in [115],
which uses the approach of consistent approximations. Systems dynamics can be
integrated with fixed step-size Runge–Kutta integration, a discrete-time solver, or
a variable step-size method. The software automatically computes gradients for all
functions with respect to the controls and any free initial conditions. The controls
are represented as splines, which allows for a high degree of function approxima-
tion accuracy without requiring a large number of control parameters. There are
three main optimization routines, each suited for different levels of generality, and
the most general is based on sequential quadratic programming methods [26] (it was
also used in our computations reported in the next section).

Note that in RIOTS_95 the controls are internally approximated by linear,
quadratic, or cubic splines, and this immediately defines the parameterization (3.15).
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3.6 Illustrative Example

In this section, we use a demonstrative example to illustrate our method. We con-
sider the following two-dimensional diffusion equation:

∂y

∂t
= ∇ · (κ∇y) + F (3.30)

for x ∈ Ω = (0,1)2 and t ∈ [0,1], subject to homogeneous zero initial and Dirichlet
boundary conditions, where F(x, t) = 20 exp(−50(x1 − t)2). The spatial distribu-
tion of the diffusion coefficient is assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (3.31)

In our example, we select the initial estimates of the parameter values as θ0
1 = 0.1,

θ0
2 = −0.05, and θ0

3 = 0.2, which are assumed to be nominal and known prior to the
experiment. The excitation function F in (3.30) simulates a source with a vertical
line support along the x2-axis, which moves like a plane wave with constant speed
from the left to the right boundary of Ω within the observation interval [0,1].

The determination of the Fisher information matrix for a given experiment re-
quires the knowledge of the vector of the sensitivity coefficients g = col[g1, g2, g3]
along sensor trajectories. The FIM can be obtained using the direct differentiation
method [147] by solving the following system of PDEs:

∂y

∂t
= ∇ · (κ∇y) + F,

∂g1

∂t
= ∇ · ∇y + ∇ · (κ∇g1),

∂g2

∂t
= ∇ · (x1∇y) + ∇ · (κ∇g2),

∂g3

∂t
= ∇ · (x2∇y) + ∇ · (κ∇g3),

(3.32)

in which the first equation represents the original state equation, and the next three
equations are obtained from the differentiation of the first equation with respect to
the three unknown parameters θ1, θ2, and θ3, respectively. The initial and Dirichlet
boundary conditions for all four equations are homogeneous.

System (3.32) has been solved numerically using the routines from the MATLAB
PDE toolbox and stored g1, g2, and g3 interpolated at the nodes of a rectangular grid
in a four-dimensional array (we applied uniform partitions using 21 grid points per
each spatial dimension and 31 points in time), see Appendix I in [147] for details.
Since values of g1, g2, and g3 may have been required at points that were not neces-
sarily nodes of that grid, the relevant interpolation was thus performed using cubic
splines in space (for this purpose, MATLAB’s procedure interp2 has been ap-
plied) and linear splines in time. Since, additionally, the derivatives of g with respect



42 3 Optimal Heterogeneous Mobile Sensing for Parameter Estimation of DPSs

to spatial variables and time were required during the trajectory optimization pro-
cess, these derivatives were approximated numerically using the central difference
formula.

Next, we used RIOTS_95 to determine D-optimal sensor trajectories in accor-
dance with the Wynn–Fedorov algorithm. The dynamics of the sensor mobility plat-
form follow the following single integrator kinematic model:

ẋ
j
s (t) = u

j
s (t), x

j
s (0) = x

j

s0, (3.33)

and additional constraints

∣∣uj
si(t)

∣∣≤ 0.7, t ∈ T , i = 1, . . . ,6, (3.34)

restricting the maximum mobile sensor velocity components that are imposed on
the controls. Our goal is to design their trajectories so as to obtain the best possible
estimates of θ1, θ2, and θ3.

A program was implemented using a low-end PC (AMD Athlon 3800+, 2GB
RAM) running on Windows XP and MATLAB 701 (R2006a). We ran the program
twice with 4 iterations and 200 randomly chosen initial positions for each iteration.
Each run took between 10 and 45 seconds for each initial position. This is necessary
if we wish to get an approximation to a global maximum in Step 2 of the Wynn–
Fedorov algorithm. This is a trade-off between the computation time and the number
of possible initial positions.

Figures 3.1 and 3.3 present the results obtained for these two simulations. The
initial sensor positions are marked with open circles, and the sensors’ positions at the
consecutive points of the time grid are marked with dots. When available, weights
are inserted inside the figures, each weight being positioned by its respective trajec-
tory.

The first run gives two different trajectories with weights of 0.54807 and
0.45193. Based on the generalized weighted least-squares criterion, each weight
can be interpreted in terms of an experimental cost, which is inversely proportional
to the variance of the observation error along a given trajectory. Thus, we may think
of the weights as the cost related, for example, to the sensitivity of the measurement
devices. Following this interpretation, we should spend approximately 55% of to-
tal experimental costs to assure a more accurate sensor for the first trajectory, and
approximately 45% to the second trajectory, which requires a less sensitive sensor.
On the contrary, the second run results in three distinct trajectories with weights of
0.44464, 0.34726, and 0.2081 (see Fig. 3.3). However, combining second and third
trajectories together with the total weight 0.55536, we can observe that this solution
is quite similar to the previous one with only two distinct sensor paths. The differ-
ences can be explained in terms of the suboptimality of the solutions for the internal
problem in Step 2 of the Wynn–Fedorov algorithm (in order to assure the compro-
mise between the computational burden and the quality of solution, in practice we
are satisfied with fairly good approximation to the global optimum). Thus, in both
simulations we come up with only different suboptimal solutions to our problem,
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Fig. 3.1 Optimal trajectory
of two mobile sensors using
weighted D-optimality
criterion (Ψ = 7.4888)

but with acceptable quality in the practical sense. The obtained Fisher information
matrices are

M(1) =
⎛
⎝124.3815 68.0614 25.7666

68.0614 41.5653 13.4240
25.7666 13.4240 8.7691

⎞
⎠ (3.35)

and

M(2) =
⎛
⎝130.0149 72.3503 26.6154

72.3503 44.2181 14.1798
26.6154 14.1798 8.6267

⎞
⎠ (3.36)

with the criterion values Ψ equal to 7.4888 and 7.3672, respectively.
For comparison, we also present the results obtained using the technique de-

scribed in [147] for D-optimum trajectories of moving sensors. This strategy is sim-
ilar to ours but does not use weights in the computation of the FIM (or more pre-
cisely, the weights are fixed and assumed to be equal for each trajectory). Results
are shown in Fig. 3.2 (two mobile sensors) and Fig. 3.4 (three mobile sensors).

3.7 Optimal Measurement Problem in the Average Sense

3.7.1 A Limitation of the Design of Optimal Sensing Policies
for Parameter Estimation

As mentioned in Sect. 2.4, one of the main practical issues in optimal sensing poli-
cies is the dependence of the policy on the assumed values of the parameters’ esti-
mates. In most of the literature, the traditional approach is to consider a prior esti-
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Fig. 3.2 Optimal trajectory
of two mobile sensors using
standard D-optimality
criterion (Ψ = 7.4017)

Fig. 3.3 Optimal trajectory
of three mobile sensors using
weighted D-optimality
criterion (Ψ = 7.3672)

mate θ0 of the true value of the parameters. But in practice, θ0 can be very far from
the true value θ true, and a sensing policy designed for θ0 can be a poor fit for θ true.

One of the solutions described in the literature [111, 147] consists of creating
an optimal sensing policy in the average sense. Such sensing policy is based on the
fact that the true value of the parameters θ true belongs to the known compact set
Θad. An average sensing policy can be obtained such that its performance is good
enough for any θ ∈ Θad. Another solution that will be presented in Chap. 5 is to
create a finite-horizon control (FHC)-related method, where the sensing policy is
divided into subpolicies. During each subexperiment, an optimal sensing policy is
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Fig. 3.4 Optimal trajectory
of three mobile sensors using
standard D-optimality
criterion (Ψ = 7.4959)

determined based on the available parameter estimate, and the measurements taken
are used to refine the value of the parameter estimates.

3.7.2 Problem Definition

When considering bounded parameter values, the optimal sensing policy problem
can be defined by reformulating the FIM in the following way:

M =
N∑

j=1

∫
T

g
(
x

j
s (t), t

)
gT(xj

s (t), t
)

dt, (3.37)

where

g(x, t) =
∫

Θad

∇y(x, t; θ)dθ (3.38)

denotes the vector of the so-called sensitivity coefficients in the average sense. We
can observe that contrary to the previous definition (3.8), this one does not depend
on a specific set of parameters θ0 but on the whole set of possible parameter values.

The purpose of the optimal measurement problem is to determine the forces (con-
trols) applied to each vehicle, which minimize the design criterion Ψ (·) defined on
the FIMs of the form (3.37), which are determined unequivocally by the correspond-
ing trajectories, subject to constraints on the magnitude of the controls and induced
state constraints. To increase the degree of optimality, our approach considers s0 as
a control parameter vector to be optimized in addition to the control function us .
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Fig. 3.5 Average D-optimal
trajectories of a team of three
sensors (two of them are
collocated). The initial
positions are marked with
open circles, and the final
positions are designated by
triangles

Given the above formulation, we can cast the optimal measurement policy prob-
lem as the following optimization problem: Find the pair (s0,us) that minimizes

J (s0,us) = Φ
[
M(s)

]
(3.39)

over the set of feasible pairs

P = {(s0,us)
∣∣us : T →R

r is measurable,

usl ≤ us(t) ≤ usu a.e. on T , s0 ∈ Ωad
}
, (3.40)

subject to the constraint (3.14).

3.7.3 An Illustrative Example

In this section, we consider the following two-dimensional diffusion equation simi-
lar to (3.30):

∂y

∂t
= ∇ · (κ∇y) + 20 exp

(−50(x1 − t)2) (3.41)

for x = [x1 x2]T ∈ Ω = (0,1)2 and t ∈ [0,1], subject to homogeneous zero initial
and Dirichlet boundary conditions. The spatial distribution of the diffusion coeffi-
cient is assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (3.42)

In this example, the chosen value intervals for the parameter are θ1 ∈ [0.1,0.7],
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Fig. 3.6 Control inputs of the mobile sensors

θ2 ∈ [0.2,0.6], and θ3 ∈ [0.5;1.0], which are assumed to be known prior to the ex-
periment. The dynamics of the mobile sensors follow the single integrator kinematic
model

ẋ
j
s (t) = u

j
s (t), x

j
s (0) = x

j

s0, (3.43)

and additional constraints
∣∣uj

si(t
)∣∣≤ 0.7, t ∈ T , j = 1, . . . ,N, i = 1, . . . ,2. (3.44)
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Fig. 3.7 Average D-optimal
trajectories of a team of three
sensors (two of them are
collocated) for intermediate
parameter values

Fig. 3.8 Average D-optimal
trajectories of a team of three
sensors (two of them are
collocated) for parameter
values at the lower bound

Our goal is to design their trajectories so as to obtain possibly the best estimates of
θ1, θ2, and θ3 in the average sense.

In order to avoid getting stuck in a local minimum, computations were repeated
several times from different initial solutions. Figure 3.5 presents the resulting tra-
jectories for the best run. Steering signals for both sensor and actuator are displayed
in Fig. 3.6.

For illustration purposes, the problem is solved for several particular values of
the parameters. The resulting trajectories for the median values (θ1 = 0.4, θ2 = 0.4,
and θ3 = 0.75) can be observed in Fig. 3.7, lower values (θ1 = 0.1, θ2 = 0.2, and
θ3 = 0.5) in Fig. 3.8, and upper values (θ1 = 0.7, θ2 = 0.6, and θ3 = 1.0) in Fig. 3.9.
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Fig. 3.9 D-optimal
trajectories of a team of three
sensors for parameter values
at the upper bound

It is important to notice that the obtained results include cases where two sensors
have the same trajectories. It is due to the uncorrelated nature of the measurement
noise. From its definition, two collocated sensors could potentially provide more
information than sensors with different trajectories.

3.8 Chapter Summary

The results in this chapter show that some well-known methods of optimum ex-
perimental design for linear regression models can be applied to the setting of the
mobile sensor trajectory design problem for optimal parameter estimation of DPSs
in case we wish to simultaneously optimize the number of sensors and their trajecto-
ries as well as to optimally allocate the experimental effort. The latter is understood
here as allowing for different measurement accuracies of individual sensors, which
are quantified by weights steering the corresponding measurement variances. This
leads to a much more general setting that most frequently produces an uneven allo-
cation of experimental effort between different sensors. This remains in contrast to
the existing approaches. The corresponding solutions proposed in this chapter could
obviously be implemented on a sensor network with heterogeneous mobile nodes.
We demonstrate that these solutions can be determined using convex optimization
tools commonly employed in optimum experimental design and show how to apply
numerical tools of optimal control to determine the optimal solutions.

We also introduced the design of moving sensor optimal trajectories, which does
not rely on initial estimates of the parameters but instead is based on knowledge
of upper and lower bounds of the parameter values. In most research, the issue
of initial estimates has been widely disregarded. Here, instead of using stochastic
approximation algorithms for the search, we chose to rely on using the sensitivity
coefficients in the average sense.



Chapter 4
Optimal Mobile Remote Sensing Policies

4.1 Introduction

We consider the case of an application where the use of mobile ground sensors
is not practical or even feasible, for example, when the domain of interest is not
smooth. Under those conditions, we are required to use mobile remote sensors, and,
therefore, it is important to extend the framework of optimal mobile sensing policies
to take into account the eventuality of remote sensing.

4.1.1 Literature Review

The juxtaposition of “real-life” physical systems and communication networks has
brought to light a new generation of engineered systems, cyber-physical systems
[72]. A definition of CPSs was given in [34] in the following way: “Computational
thinking and integration of computation around the physical dynamic systems form
CPS where sensing, decision, actuation, computation, networking and physical pro-
cesses are mixed.” Given its recent emergence and wide array of applications, the
topic and study of CPSs are believed to become a highly researched area in the
years to come including its conferences [3, 4] and journals [69]. “Applications of
CPS arguably have the potential to dwarf the 20th century IT revolution” [94]. The
applications of CPSs are numerous and include medical devices and systems, pa-
tient monitoring devices, automotive and air traffic control, advanced automotive
systems, process control, environmental monitoring, avionics, instrumentation, oil
refineries, water usage control, cooperative robotics, manufacturing control, smart
buildings, etc.

Within these potential applications, the one we are interested in falls into the
environmental monitoring category. It is believed that applying remote sensing can
help determine the evapotranspiration of a given agricultural field and hence give
improved information on crop condition and yield to perform better irrigation con-
trol. In the same vein of research, remote sensing can offer information correlated
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Systems, DOI 10.1007/978-1-4471-2262-3_4, © Springer-Verlag London Limited 2012

51

http://dx.doi.org/10.1007/978-1-4471-2262-3_4


52 4 Optimal Mobile Remote Sensing Policies

to the water stress level of the crops [83]. Remote sensing could provide important
information to the farmers or even be used as feedback for a more real-time large
scale irrigation control algorithm. Our ongoing project consists of developing UAVs
equipped with multispectral aerial imagers to develop such a control algorithm [32].

In the considered framework, the system is a distributed parameter system, that
is to say, the states are evolving along both time and space. Consequently, the tradi-
tional finite-dimensional input–output relationships have to be put aside, and partial
differential equations have to be used to model the system. This increased complex-
ity of the system leads to challenging problems. Whereas the location of sensors
is rather straightforward when considering a finite-dimensional system, determin-
ing where measurement should be done is not a straightforward task in a DPS. One
needs to consider the location of the sensors so that the gathered information best
helps the parameter estimation. Therefore, it is a necessity to develop systematic ap-
proaches in order to increase the efficiency of PDE parameter estimation techniques.

The problem of sensor location in DPSs has been studied before as one can find
in review papers [92, 147]. So far, the literature has limited the movements of the
sensors within the domain of the distributed parameter system. However, with the
emergence of remote sensing, we should extend the framework to mirror this new
way of taking measurements. Our main motivation comes from our own projects
[37]. With the help of small UAVs, we are capable of taking pictures and obtaining
information on the amount of soil moisture on a specific plot of land. Such UAVs
could also be used to gather information on soil water dynamics and help improve
prediction of soil moisture. This approach is reflected in the illustrative example
used later in this chapter.

4.1.2 Problem Formulation for PDE Parameter Estimation

Consider a DPS described by the partial differential equation

∂y

∂t
= F(x, t, y, θ) in Ωsys × T , (4.1)

with initial and boundary conditions

B(x, t, y, θ) = 0 on Γsys × T , (4.2)

y = y0 in Ωsys × {t = 0}, (4.3)

where y(x, t) stands for the scalar state at a spatial point x ∈ Ω̄sys ⊂ R
n and a

time instant t ∈ T . Ωsys ⊂ R
n is a bounded spatial domain with sufficiently smooth

boundary Γ , and T = (0, tf ] is a bounded time interval. F is assumed to be a known,
well-posed, possibly nonlinear, differential operator that includes first- and second-
order spatial derivatives and includes terms for forcing inputs. B is a known operator
acting on the boundary Γ , and y0 = y0(x) is a given function.
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We assume that the state y depends on the parameter vector θ ∈R
m of unknown

parameters to be determined from measurements made by N moving sensors. Those
mobile sensors are assumed to ambulate in a spatial domain Ωsens �= Ωsys. The sen-
sors are able to remotely take measurements in Ωmeas ⊂ Ωsys over the observation

horizon T . We call x
j
s : T → Ωsens the position/trajectory of the j th sensor, where

Ωsens is a compact set representing the domain where the sensors can move. We
call z

j
s : T → Ω the collection of measurements in Ωmeas where the j th sensor is

observing. We assume that a function f meas : Ωsens → Ωmeas linking the position
of the sensor and measurements exists. The observations for the j th sensor are as-
sumed to be of the form

z
j
s (t) = y

(
f meas

(
x

j
s (t)
)
, t
)+ ε

(
f meas

(
x

j
s (t)
)
, t
)
, t ∈ T , j = 1, . . . ,N, (4.4)

where ε represents the measurement noise assumed to be white, zero-mean, Gaus-
sian, and spatial uncorrelated with the following statistics:

e
{
ε
(
f meas

(
x

j
s (t)
)
, t
)
ε
(
f meas

(
xi

s

(
t ′
))

, t ′
)}= σ 2δjiδ

(
t − t ′

)
, (4.5)

where σ 2 stands for the standard deviation of the measurement noise, and δij and
δ( · ) are the Kronecker and Dirac delta functions, respectively.

With the above settings, similar to [147], the optimal parameter estimation prob-
lem is formulated as follows: Given the model (4.1)–(4.3) and the measurements z

j
s

from the sensors x
j
s , j = 1, . . . ,N , determine an estimate θ̂ ∈ Θad (Θad being the

set of admissible parameters) of the parameter vector that minimizes the generalized
output least-squares fit-to-data functional given by

θ̂ = arg min
ϑ∈Θad

N∑
j=1

∫
T

[
z
j
s (t) − ŷ

(
f meas

(
x

j
s (t)
)
, t;ϑ)]2 dt (4.6)

where ŷ is the solution of (4.1)–(4.3) with θ replaced by ϑ .
By observing (4.6), it is possible to foresee that the parameter estimate θ̂ de-

pends on the number of sensors N and the mobile sensor trajectories x
j
s . This fact

triggered the research on the topic and explains why the literature so far focused on
optimizing both the number of sensors and their trajectories. The intent was to select
these design variables so as to produce best estimates of the system parameters after
performing the actual experiment.

Since our approach is based on the methodology developed for optimal sensor
location, we display it here as an introduction to the theory from [147] and [111]. In
order to achieve optimal sensor location, some quality measure of sensor configura-
tions based on the accuracy of the parameter estimates obtained from the observa-
tions is required. Such a measure is usually related to the concept of the Fisher infor-
mation matrix, which is frequently referred to in the theory of optimal experimental
design for lumped parameter systems [62]. Its inverse constitutes an approximation
of the covariance matrix for the estimate of θ . Given the assumed statistics of the
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measurement noise, the FIM has the following representation [118, 147]:

M =
N∑

j=1

∫
T

g
(
f meas

(
x

j
s (t)
)
, t
)
gT(f meas

(
x

j
s (t)
)
, t
)

dt, (4.7)

where

g(x, t) = ∇ϑy(x, t;ϑ)
∣∣
ϑ=θ0 (4.8)

denotes the vector of the so-called sensitivity coefficients, θ0 being a prior estimate
to the unknown parameter vector θ [146, 147].

As mentioned earlier, the FIM in its matrix format cannot be used directly in an
optimization. Therefore, we have to rely on some scalar function Ψ of the FIM to
perform the optimization. As described in Sect. 2.4, there are several candidates,
and we choose the D-optimality criterion defined as

Ψ [M] = − log det(M). (4.9)

4.2 Optimal Measurement Problem

4.2.1 Mobile Sensor Model

4.2.1.1 Sensor Dynamics

We assume that the sensing devices are equipped on vehicles whose dynamics can
be described by the following differential equation:

ẋ
j
s (t) = f

(
x

j
s (t),u

j
s (t)
)

a.e. on T , x
j
s (0) = x

j

s0. (4.10)

With this nomenclature, the function f : RN × R
rs → R

N has to be continu-
ously differentiable, the vector x

j

s0 ∈ R
N represents the initial disposition of the j th

sensor, and us : T → R
rs is a measurable control function satisfying the following

inequality:

usl ≤ us(t) ≤ usu a.e. on T (4.11)

for some known constant vectors usl and usu. Let us introduce

s(t) = (x1
s (t),x

2
s (t), . . . ,x

N
s (t)

)T
, (4.12)

where x
j
s : T → Ωsens is the trajectory of the j th sensor.
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4.2.1.2 Mobility Constraints

We assume that all the mobile nodes equipped with sensors are confined within an
admissible region ΩsensAD (a given compact set) where the sensors are allowed to
travel. ΩsensAD can be conveniently defined as

ΩsensAD = {x ∈ Ωsens : bsi(x) = 0, i = 1, . . . , I
}
, (4.13)

where the bsi are known continuously differentiable functions. That is to say, the
following constraints have to be satisfied:

hij

(
s(t)
)= bsi

(
x

j
s (t)
)≤ 0 ∀t ∈ T , (4.14)

where 1 ≤ i ≤ I and 1 ≤ j ≤ N . For simpler notation, we reformulate the conditions
described in (4.14) in the following way:

γsl

(
s(t)
)≤ 0 ∀t ∈ T , (4.15)

where γsl , l = 1, . . . , ν, tally with (4.14), ν = I × N . It would be possible to con-
sider additional constraints on the path of the vehicles such as specific dynamics,
collision avoidance, communication range maintenance, and any other conceivable
constraints.

4.2.1.3 Remote Sensing Constraints

As mentioned earlier, we assume that the sensors are capable of taking measure-
ments in Ωsys, while being physically in Ωsens. For that purpose, we introduce a
remote sensing function f giving the location of the measurement based on the lo-
cation of the sensor. Similar to path constraints, we assume that the remote sensing
is only allowed within an admissible region ΩmeasAD where the measurements are
possible. The constraints on remote sensing can be defined as constraints on mea-
surement location and then transformed into mobility ones. We can define ΩmeasAD
as

ΩmeasAD = {x ∈ Ωsens : bmi

(
f meas(x)

)= 0, i = 1, . . . , I
}
, (4.16)

where the bmi functions have the same properties as bsi . Similarly, we can regroup
the remote sensing constraints into an inequality

γml

(
s(t)
)≤ 0, t ∈ T . (4.17)

Remark For our project [32], UAVs equipped with multispectral imagers are used
for collecting aerial images of agricultural fields. The purpose of remote sensing is
to gather data about the ground surface while avoiding contact with it. Multispec-
tral imagers can generate an image for each different wavelength band ranging from
visible spectra to infrared or thermal band for various applications. Having such a
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diverse and wide range of wavelengths allows for a better analysis of the ground sur-
face properties. Under such circumstances, the domain where the sensors ambulate
(space) is different from the domain where measurements are taken (ground). The
constraints on mobility (such as collision avoidance between UAVs and/or environ-
ment) are different from the constraints on remote sensing (such as maintaining the
images within the domain of interest that is the crop field).

4.2.2 Problem Definition

The purpose of the optimal measurement problem is to determine the forces (con-
trols) applied to each vehicle, which minimize the design criterion Ψ (·) defined on
the FIMs of the form (4.7), determined unequivocally by the corresponding trajec-
tories, subject to constraints on the magnitude of the controls and the imposed state
constraints. To increase the degree of optimality, our approach considers s(0) = s0
as a control parameter vector to be optimized in addition to the control function us .

Given the above formulation, we can cast the optimal measurement policy prob-
lem as the following optimization problem: Find the pair (s0,us) that minimizes

J (s0,us) = Φ
[
M(s)

]
(4.18)

over the set of feasible pairs

P = {(s0, us)|u : T → R
r is measurable,

usl ≤ us(t) ≤ usu a.e. on T , s0 ∈ Ωsens
}
, (4.19)

subject to the constraints (4.15) and (4.17).
This problem can hardly have an analytical solution. It is therefore necessary to

rely on numerical techniques to solve the problem. A wide variety of techniques
is available [115]. However, the problem can be reformulated as the classic Mayer
problem where the performance index is defined only via terminal values of state
variables.

4.3 Optimal Control Formulation

In this section, the problem is converted into a canonical optimal control one, mak-
ing possible the use of existing optimal control problem solvers such as RIOTS_95.

To simplify our presentation, we define the function svec: Sm → R
m(m+1)/2,

where S
m denotes the subspace of all symmetric matrices in R

m×m, that takes the
lower triangular part (the elements only on the main diagonal and below) of a sym-
metric matrix A and stacks them into a vector a:

a = svec(A) = col[A11,A21, . . . ,Am1,A22, . . .A32, . . . ,Am2, . . . ,Amm]. (4.20)
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Reciprocally, let A = Smat(a) be a symmetric matrix such that svec(Smat(a)) = a

for any a ∈R
m(m+1)/2.

Consider the matrix-valued function

Π
(
s(t), t

)=
N∑

j=1

g
(
f meas

(
x

j
s (t)
)
, t
)
gT
(
f meas

(
x

j
s (t)
)
, t
)
. (4.21)

Setting r : T → R
m(m+1)/2 as the solution of the differential equations

ṙ(t) = svec
(
Π
(
s(t), t

))
, r(0) = 0, (4.22)

we obtain

M(s) = Smat
(
r(tf )

)
, (4.23)

i.e., minimization of Φ[M(s)] thus reduces to minimization of a function of the
terminal value of the solution to (4.22). We introduce an augmented state vector

q(t) =
[

s(t)

r(t)

]
(4.24)

with

q0 = q(0) =
[
s0
0

]
. (4.25)

Then, the equivalent canonical optimal control problem occurs in finding a pair
(q0,us) ∈ P̄ that minimizes the performance index

J̄ (q0,us) = φ
(
q(tf )

)
(4.26)

subject to ⎧⎪⎪⎨
⎪⎪⎩

q̇(t) = φ(q(t),us(t), t),

q(0) = q0,

γ̄sl(q(t)) ≤ 0,

γ̄ml(q(t)) ≤ 0,

(4.27)

where

P̄ = {(q0,u)|u : T → R
r is measurable,

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ ΩM
sens

}
, (4.28)

and

φ(q,u, t) =
[

f (s(t),u(t))

svec(Π(s(t), t))

]
, (4.29)

γ̄sl

(
q(t)

) = γsl

(
s(t)
)
, (4.30)
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γ̄ml

(
q(t)

) = γml

(
s(t)
)
. (4.31)

The problem formulated above is clearly in a normal form that can be solved
with readily available software packages for solving dynamic optimization prob-
lems numerically. A nonexhaustive list of such packages includes RIOTS_95 [126],
DIRCOL [161], and MISER [82]. Like in most of our work, we use RIOTS_95,
which is designed as a MATLAB toolbox written mostly in C and runs under Win-
dows 98/2000/XP/Vista and Linux. The theory behind RIOTS_95 and its numerical
methods can be found in [125].

4.4 An Illustrative Example

In this section, we use a simple example to illustrate the method developed earlier in
this chapter. The system we consider here consists of the following two-dimensional
diffusion equation:

∂y(x, t)

∂t
= ∇ · (κ∇y(x, t)

)+ 20 exp
(−50(x1 − t)2) (4.32)

for x = [x1 x2]T ∈ Ωsys = (0,1)2 and t ∈ [0,1], subject to homogeneous zero initial
and Dirichlet boundary conditions. The spatial distribution of the diffusion coeffi-
cient is assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (4.33)

In this example, the guessed values of the diffusion coefficient parameters (which
we want to estimate) are θ0

1 = 0.1, θ0
2 = −0.05, and θ0

3 = 0.2. They are assumed to
be known prior to the experiment. The dynamics of the mobile sensors follow the
given dynamical model

ẋs
j (t) = u

j
s (t), x

j
s (0) = x

j

s0, (4.34)

for x
j
s = [xj

s1 x
j

s2 x
j

s3]T ∈ Ωsens = (0,1)3 with additional constraints

∣∣uj
i (t)
∣∣≤ 0.7, t ∈ T , j = 1, . . . ,N, i = 1,2, (4.35)

∣∣uj
i (t)
∣∣≤ 0.2, t ∈ T , j = 1, . . . ,N, i = 3. (4.36)

We can notice that Ωsens is of dimension 3 and Ωsys is of dimension 2 and that Ωsys
lies in the boundary of Ωsens. The remote sensing function f meas is defined in a way
that is very similar to a downward looking camera mounted on an unmanned aerial
vehicle. We assume that the mobile node’s attitude is determined by an orthogonal
basis directed by the control input u

j
s . u

j
s gives us the direction that the robot is

facing, the second axis is taken parallel to the x3 = 0 plane, and the third axis is
obtained by completing the orthogonal basis in a direct way. The obtained basis is
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Fig. 4.1 Illustration of the
remote sensing function

{ej1, ej2, ej3}, with ej1 = u
j
s . The view vector of the j th sensor is taken as −ej3,

which can be seen as a camera facing downward. The vertical field of view is chosen
as π

3 and the horizontal field of view is taken as π
2 . Since we decided to model our

remote sensor as a camera, we choose a resolution of 3×3. Measurements are taken
at the intersection of the field of view and Ωsys. To give the reader a better insight
of the remote sensing function, we provide a visual description in Fig. 4.1. The
orthogonal basis is in black, the view vector is represented by a red line, and the
visual footprint is represented by a blue trapezoid.

The purpose of our optimization is to obtain the trajectories of a team of three
sensors so as to determine the best possible estimates of the parameters θ1, θ2,
and θ3.

Since the sensing function is not pointwise, we reformulate (4.8) for our illustra-
tive example:

g(x, t) =
res∑
i=1

res∑
j=1

∇ϑy(xij , t;ϑ)|ϑ=θ0/res2, (4.37)

where res stands for the resolution of the sensor (three in our case). In addition, to
prevent the mobile nodes from intersecting with the system’s domain Ωsys, which
would be equivalent to a crash, the optimality criteria are reformulated as

J (s0,u) = Φ
[
M(s)

]+ 1

|x3| . (4.38)

The resulting optimal trajectory of one mobile sensor can be observed in Fig. 4.2.
The results for a team of two sensors are displayed in Fig. 4.3, and the case for three
sensors is given in Fig. 4.4.

4.5 Chapter Summary

We have extended the existing framework of the design of mobile sensor trajecto-
ries that minimizes the volume of the confidence ellipsoid for the estimates to the
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Fig. 4.2 D-optimal trajectory
of one mobile remote sensor.
The initial positions are
marked with open circles, and
the final positions are
designated by triangles. The
measured area is delineated
by a blue trapezoid

Fig. 4.3 D-optimal
trajectories of two mobile
remote sensors. The initial
positions are marked with
open circles, and the final
positions are designated by
triangles. The measured area
is delineated by a blue
trapezoid

Fig. 4.4 D-optimal
trajectories of three mobile
remote sensors. The initial
positions are marked with
open circles, and the final
positions are designated by
triangles. The measured area
is delineated by a blue
trapezoid

emerging field of remote sensing. For that purpose, we introduced a remote sensing
function linking the mobility domain and the sensing domain. It is important to no-
tice that the introduced formulation can still be transformed into a canonical optimal
control problem. This reformulation allows the problem to be solved by the MAT-
LAB toolbox RIOTS_95, a collection of routines capable of solving a large class of
finite-time optimal control problems, with the help of the MATLAB Partial Differ-
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ential Equation Toolbox. The method was then applied to an illustrative example to
demonstrate its applicability.

This remote sensing policy framework is becoming more important by the day
because of the growing interest from the scientific community (especially in earth
sciences) of using unmanned aerial platforms for collecting ground data. The remote
sensing framework will be considered again in Chap. 8 but to solve the problem of
downscaling surface soil moisture data.



Chapter 5
Online Optimal Mobile Sensing Policies:
Finite-Horizon Control Framework

5.1 Introduction

This chapter is dedicated to the online solution to the problem of the sensitivity of
optimal sensing policies to initial parameter estimates.

The work we present here enters the category of what is called “robust designs”
[147]. The major problem with optimization of sensor locations is the dependence
of the solution on the real values of the parameters to be estimated, as illustrated
in Sect. 2.4. In general, this problem is solved by using a prior estimate of the pa-
rameter instead of the real value. In some cases, it may occur that this initial guess
is very far from the real value and therefore the “optimal” solution obtained is far
from the real optimum. Different approaches were introduced to remove this initial
guess from the equation. The envisioned designs fall in four categories: sequential
designs, optimal designs in the average sense, optimal designs in the minimax sense,
and the use of randomized algorithms. For more information, please check Chap. 6
of [147]. Most work on the topic was based on stochastic approximation algorithms
[148, 149, 151, 155] to limit the computational burden. With the rapid growth of
computer power available, computationally intensive approaches are more and more
viable. In addition, since those methods are based on offline computations, as long
as the duration is reasonable, they do not present a major burden.

In [141], for the first time, we solved this problem by the proposed optimal in-
terlaced mobile sensor motion planning and parameter estimation. The problem for-
mulation is given in detail with a numerical solution for generating and refining the
mobile sensor motion trajectories for parameter estimation of the distributed param-
eter system. The basic idea is to use the finite-horizon control type of scheme. First,
the optimal trajectories are computed in a finite time horizon based on the assumed
parameter values. For the following time horizon, the parameters of the distributed
parameter system are estimated using the measured data in the previous time hori-
zon, and the optimal trajectories are updated accordingly based on these estimated
parameters obtained. Simulations are offered to illustrate the advantages of the pro-
posed interlaced method over the noninterlaced techniques. We call the proposed
scheme online or real-time, and it offers practical solutions to optimal measurement
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and estimation of a distributed parameter system when mobile sensors are used. It
should be mentioned that this online problem has been recognized in the last chapter
of [111] as an “extremely important” research effort.

We continue the type of research problem first introduced in [141]. We intro-
duce communication topologies into the framework and study their influence on the
behavior of the team of mobile sensors.

5.2 Optimal Mobile Sensing Policy: Finite-Horizon Closed-Loop
Solution

5.2.1 A DPS and Its Mobile Sensors

To get ready for simulation demonstration, let us start with a generic DPS model de-
scribing a diffusion process with unknown parameters. Then, we define the mobile
sensors used for taking measurements of this system. Our ultimate goal is to best
identify the unknown DPS parameters using these mobile sensors.

The model used for a specific diffusion process is the same as in [130] except that
the parameters are now assumed unknown. This allows us to compare the results
between different estimation techniques.

The dynamics of the system under consideration are defined by

∂y(x1, x2, t)

∂t
= ∂

∂x1

(
κ(x1, x2)

∂y(x1, x2, t)

∂x1

)

+ ∂

∂x2

(
κ(x1, x2)

∂y(x1, x2, t)

∂x2

)

+ 20 exp
(−50(x1 − t)2

)
,

(x1, x2) ∈ Ω = (0,1) × (0,1), t ∈ T ,

y(x1, x2,0) = 0,

y(x1, x2, t) = 0,

T = {t |t ∈ (0,1)
}
,

κ = θ1 + θ2x1 + θ3x2,

θ1 = 0.1, θ2 = 0.6, θ3 = 0.8,

where y(x1, x2, t) is the concentration of the considered diffusing substance,
κ(x1, x2) is the diffusion coefficient for the spatial coordinate (x1, x2), t is the time,
and θ1, θ2, and θ3 are the unknown values of the parameters to be estimated. The
assigned values for θ1, θ2, and θ3 are just for simulation comparison purposes.
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5.2.2 Interlaced Optimal Trajectory Planning

5.2.2.1 Optimal Trajectory Planning

In order to solve the problem, we need to reformulate the problem in the optimal
control framework. The solver used for this optimal control problem is called RI-
OTS [126]. RIOTS stands for “recursive integration optimal trajectory solver.” It is a
MATLAB toolbox programmed to solve a very broad class of optimal control prob-
lems. According to [126], our optimal trajectory planning problem can be solved
using the RIOTS toolbox if rephrased as follows:

min
(u,ξ)∈L2N∞[t0,tf ]×RK

J (u, ξ), (5.1)

where

J (u, ξ) = g0
(
ξ,x(tf )

)+
∫ tf

t0

l0(x, t, u)dt, (5.2)

subject to the following conditions and constraints:

ẋ = h(x, t, τ ),

x(t0) = ξ, t ∈ [t0, tf ],
u

(j)

min(t) ≤ u(j)(t) ≤ u
(j)
max(t), j = 1, . . . ,N, t ∈ [t0, tf ],

ξ
(j)

min(t) ≤ ξ (j)(t) ≤ ξ
(j)
max(t), j = 1, . . . ,K, t ∈ [t0, tf ],

lti
(
x(t), t, τ (t)

)≤ 0, t ∈ [t0, tf ],
gei

(
ξ,x(tf )

)≤ 0, gee

(
ξ,x(tf )

)= 0.

In the case of our optimal trajectory planning problem, ẋ = h(t,x, u) = Ax + Bu.
Instead of defining l0(ξ,x(tf )) = Ψ (M), we choose to define g0(ξ,x(tf )) =∫ tf
t0

Ψ (M)dt , in order to lower the amount of calculations. The reformulation is
achieved by using the “Mayer equivalent problem” technique described in Sect. 4.3.

5.2.2.2 Measurements and Parameters Estimation

Once the optimal trajectories have been computed, the measurements are done as
described in Sect. 3.2. However, the observations are completed until the end of the
finite horizon for which the trajectory was computed. Instead, after a fraction of the
horizon, the data gathered so far are used to refine the estimation of the parameters
values.

In order to determine refined values of the parameters, we use the MATLAB com-
mand “lsqnonlin”, a routine for solving nonlinear least-squares problems, and
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Fig. 5.1 The interlaced
scheme illustrated

especially for our case, the least-squares fitting problems. “lsqnonlin” allows
the user to incorporate one’s own function to compute. In our problem, the input of
the function is a set of parameters as well as the measurements, and the output is the
error between the measurement and the simulated value of the measurement for the
set of parameters:

min
θ

= 1

2

N∑
i=1

fi(θ)2 (5.3)

with

fi(θ) = zi(t0, . . . , tk)

−H
(
y
(
xi

s (t0, . . . , tk), t0, . . . , tk; θ
)
,xi

s(t0, . . . , tk), t0, . . . , tk
)
. (5.4)

Prior to the experiment, we determine the value of the state y(x, t, θ) for a set of
parameter values θ ∈ Θad in an offline manner. We assume that the state variations
between two values of a parameter are linear enough to allow interpolation. Using
this database obtained offline allows faster computation of the function to be called
by the optimization algorithm.

5.2.2.3 Summary of the Interlaced Scheme

Let us summarize the interlaced strategy step by step:

1. Given a set of parameters θ̂ for the DPS (its initial value being given prior to the
first iteration), we design an optimal experiment, i.e., optimal trajectories for the
mobile sensors to follow.

2. The sensors take measurements along their individually assigned trajectories.
Measurements are simulated, taking the real value of the state along the trajectory
and adding zero-mean white noise.

3. Measurement data are used to refine the estimate of the parameters using an
optimization routine such as “lsqnonlin”. The optimization routine com-
putes the parameters such that the difference between the measurements and
the simulated values of the state along the trajectory is minimized. Go back to
Step 1.

The above algorithm is illustrated in Fig. 5.1.
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5.2.3 Illustrative Simulations

We focus our attention on the performance of the methodology. The experiment is
run for different noise statistics, and for each case, results are given in the form of
sensor trajectories and parameter estimates. For Case 1, σ = 0.0001, for Case 2,
σ = 0.001, and for Case 3, σ = 0.01. In all cases, we consider three mobile sen-
sors. The control of the mobile sensors u is limited between −0.7 and 0.7. All
three sensors have fixed initial positions (x1(0) = (0.1,0.1), x2(0) = (0.1,0.5),
and x3(0) = (0.1,0.9)). The results for the previously defined case are respectively
given in Fig. 5.2 for Case 1, in Fig. 5.3 for Case 2, and in Fig. 5.4 for Case 3. For
each figure, subfigure (a) gives the sensor trajectories, the evolution of the estimates
is shown in (b), and the measurements are given in (c).

From these figures, we have the following observations:

• In all the cases, the sensors have similar trajectories as they try to follow the
excitation wave along the x1 axis 20 exp(−50(x1 − t)2).

• For low noise amplitude (Cases 1 and 2), the experiment is long enough to obtain
good estimates of the parameters. In Case 3, the experiment is not long enough
to reach convergence.

• In all cases, we can clearly observe that the trajectories of the mobile sensors
change as the estimated values of the parameters are getting closer to the real
values.

5.2.4 A Second Illustrative Example

We use the same DPS as earlier, but we consider the mobile remote sensing problem
from Chap. 4. The dynamics of the mobile sensors follow the same dynamical model

ẋ
j
s (t) = u

j
s (t), x

j
s (0) = x

j

s0, (5.5)

for x = [x1 x2 x3]T ∈ Ωsens = (0,1)3 and additional constraints

∣∣uj
i (t)
∣∣≤ 0.6, t ∈ T , j = 1, . . . ,2, i = 1,2, (5.6)

∣∣uj
i (t)
∣∣≤ 0.2, t ∈ T , j = 1, . . . ,N, i = 3. (5.7)

The remote sensor has a fixed initial position (x1(0) = (0.1,0.5,0.1)). The initial
estimates for the parameter values are θ1 = 0.3, θ2 = 0.5, and θ3 = 0.5.

The resulting optimal trajectory of one mobile sensor can be observed in Fig. 5.5,
and the evolution of the parameter estimates is given in Fig. 5.6.
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Fig. 5.2 Closed-loop
D-optimum experiment for
σ = 0.0001
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Fig. 5.3 Closed-loop
D-optimum experiment for
σ = 0.001
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Fig. 5.4 Closed-loop
D-optimum experiment for
σ = 0.01
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Fig. 5.5 Closed-loop
D-optimal trajectory of one
mobile remote sensor. The
initial position is marked with
an open circle, and the final
position is designated by a
triangle. The measured area is
delineated by blue trapezoids

Fig. 5.6 Evolution of the
online parameter estimates
during the mobile remote
sensing

5.3 Communication Topology in Online Optimal Sensing Policy
for Parameter Estimation of Distributed Parameter Systems

5.3.1 The Interlaced Scheme with Communication Topology

The interlaced strategy when considering communication topology can be described
as follows:

1. Given a set of parameters θ̂ for the DPS, and the other sensors’ current location,
each sensor computes its optimal trajectory.

2. The sensors take measurements along the path of the obtained trajectory. The
data gathered are then exchanged with other sensors according to a given com-
munication topology.

3. Measurement data are used to refine the estimate of the parameters using an
optimization routine, and a new set of system parameters is obtained.
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Fig. 5.7 Communication
topologies considered for the
illustrative example

Fig. 5.8 Closed-loop
D-optimum experiment for
Case 1

5.3.2 An Illustrative Example

Here, we use a demonstrative example to illustrate our method. We consider the
two-dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) + F(x, t) (5.8)
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Fig. 5.9 Closed-loop
D-optimum experiment for
Case 2

for x = [x1 x2]T ∈ Ω = (0,1)2 and t ∈ [0,1], subject to homogeneous zero ini-
tial and Dirichlet boundary conditions. The actuation function is given by F(x, t) =
20 exp(−50(2x1 − t)2). We can see that the excitation function F in (5.8) can be
described as a source with a vertical line shape along the x2-axis and moves like
a wave with constant speed from the left to the right boundary of Ω between time
[0,2]. The spatial distribution of the diffusion coefficient is assumed to have the
form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (5.9)

In this example, the chosen values for the parameter are θ1 = 0.1, θ2 = 0.6, and
θ3 = 0.8. Next, we are using RIOTS_95 to determine time-optimal sensor trajecto-
ries. The dynamics follow the simple model

ẋs(t) = us(t), x(0) = xs0, (5.10)
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Fig. 5.10 Closed-loop
D-optimum experiment for
Case 3

and the constraints
∣∣usi(t)

∣∣≤ 0.7, t ∈ T , i = 1, . . . ,6, (5.11)

imposed on the controls; we are interested in designing their trajectories so as to
obtain estimates of θ1, θ2, and θ3. All three sensors have fixed initial positions
(x1

s (0) = (0.1,0.1), x2
s (0) = (0.1,0.5), and x3

s (0) = (0.1,0.9)). The initial esti-
mates for the parameter values are θ1 = 0.5, θ2 = 0.5, and θ3 = 0.5.

We consider five different cases with different communication topologies. These
topologies are detailed in Fig. 5.7.

The resulting experiments can be observed in Figs. 5.8 to 5.12. In each case, the
initial positions are marked with open circles, and the final positions are designated
by triangles. Sensors communicating with each other have the same color. Each
figure contains both the resulting trajectories and the evolution of the parameters’
estimates.

We can observe that for all cases, the sensors’ trajectories follow the trend of the
actuation function F . As expected, the communication topology has a great influ-
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Fig. 5.11 Closed-loop
D-optimum experiment for
Case 4

ence on the experiment outcome. In Case 1, where all three sensors communicate
with each other, the estimates become accurate starting from iteration 5. In Cases 2,
3, and 4, the two sensors communicating obtain a good estimate from iteration 7
(6 for Case 3), whereas the isolated sensor is not able to obtain accurate parameter
values. In Case 5, it is surprising that the second sensor is able to estimate the sys-
tem’s parameters accurately from iteration 6. However, the two other sensors do not
converge to the real parameter values.

5.4 Convergence of the Interlaced Scheme

The proof of the convergence of the parameter estimation in the interlaced scheme
is still under investigation. We have identified two directions to follow in the liter-
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Fig. 5.12 Closed-loop
D-optimum experiment for
Case 5

ature that could provide leads to demonstrate the proof. The first one is linked with
the stability in the model predictive control (MPC) framework [54]. The second
comes from the framework of sequential designs for parameter estimation for linear
systems [163]. The first step in the proof will consist of finding the proper assump-
tions. The first assumption that has been identified is the weak persistent excitation
condition.

Once the proof of convergence is obtained, we will focus on determining the
convergence speed of the interlaced scheme based on the system’s parameters. Then,
we will study the effects of communication topologies on the convergence and its
speed. Finally, we will be able to consider directed communication topologies. The
directed communication topologies are fascinating in the online optimal sensing
policy framework because the sensors not only can share their location, but they can
also share their measurements, their parameter estimates, and their trajectories.
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5.5 Chapter Summary

We introduced a numerical procedure for optimal sensor-motion scheduling of dif-
fusion systems for parameter estimation. With the knowledge of the PDE govern-
ing a given DPS, mobile sensors find an initial trajectory to follow and refine the
trajectory as their measurements allow finding a better estimate of the system’s pa-
rameters. Using the MATLAB PDE toolbox for the system’s simulations, RIOTS
MATLAB toolbox for solving the optimal path-planning problem, and MATLAB
Optimization toolbox for the estimation of the system’s parameters, we were able
to solve this parameter identification problem in an interlaced manner successfully.
Simulation results are presented to show both the advantages of the strategy and the
convergence of the estimation.

We were able to introduce the concept of communication topology into the
framework of optimal sensor-motion scheduling of diffusion systems for param-
eter estimation. The method was successfully applied to an example. Our results
show that when the sensors are not communicating, the lack of information greatly
decreases the performance of the strategy.



Chapter 6
Optimal Mobile Actuation/Sensing Policies
for Parameter Estimation of Distributed
Parameter Systems

6.1 Introduction

So far in this monograph, our interest has been focused on optimal sensing policies.
But as with any system, the actuation can also provide useful information for the
estimation of parameters when combined with sensors. The main contribution of
this chapter is the introduction of the actuation policy as a design variable in the
framework, rather than a given input.

Determining a rich excitation to increase the relevance of observations and mea-
surements of the states of a distributed parameter system is not a straightforward
task. One needs to consider the actuation capabilities and location of the actuators
so that the gathered information best helps the parameter estimation. Therefore, it
is a necessity to develop systematic approaches in order to increase the efficiency
of PDE parameter estimators. The problem of sensor location is not new as in, for
example, review papers [92] and [147]. However, the investigation on how to best
excite the PDE system for optimal parameter estimation has not been attempted
so far. This chapter presents a framework for such optimal mobile actuation pol-
icy aiming at optimal parameter estimation of a class of distributed parameter sys-
tems.

In the field of mobile sensor trajectory planning, few approaches have been de-
veloped so far, but numerous scenarios have been considered. Rafajłowicz [119]
investigated the problem using the determinant of the Fisher information matrix as-
sociated with the parameters he wanted to estimate. However, his results are more
of an optimal time-dependent measure than a trajectory. In [147] and [146], Uciński
reformulated the problem of time-optimal path planning into a state-constrained
optimal-control one that allows the addition of different constraints on the dynam-
ics of the mobile sensor. In [153], Uciński tried to properly formulate and solve the
time-optimal problem for moving sensors that observe the state of a DPS in order to
estimate its parameters. In [154], Turing’s Measure of Conditioning was used to ob-
tain optimal sensor trajectories. The problem was solved for heterogeneous sensors
(i.e., with different measurement accuracies) in [144]. Limited power resource was
considered in [112]. In [130], Song and colleagues added realistic constraints to the
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dynamics of the mobile sensor by considering a differential-drive mobile robot in
the framework of the MAS-net Project.

The system is considered to have a known sensor setup, and mobile actuators
are used to stimulate the system so that measurements from the sensors, possibly
mobile, provide the best information for parameter estimation.

6.1.1 Problem Formulation for PDE Parameter Estimation

Consider a distributed parameter system described by the partial differential equa-
tion

∂y

∂t
= F(x, t, y, θ) in Ω × T , (6.1)

with initial and boundary conditions

B(x, t, y, θ) = 0 on Γ × T , (6.2)

y = y0 in Ω × {t = 0}, (6.3)

where y(x, t) stands for the scalar state at a spatial point x ∈ Ω̄ ⊂ Rn and time
instant t ∈ T . Ω ⊂ Rn is a bounded spatial domain with sufficiently smooth bound-
ary Γ = ∂Ω , and T = (0, tf ] is a bounded time interval. F is assumed to be a
known well-posed, possibly nonlinear, differential operator that includes first- and
second-order spatial derivatives and includes terms for forcing inputs. B is a known
operator acting on the boundary Γ , and y0 = y0(x) is a given function.

We assume that the state y depends on the unknown parameter vector θ ∈ Rm to
be determined from measurements made by N static or moving pointwise sensors
over the observation horizon T . We call x

j
s : T → Ωad the position/trajectory of the

j th sensor, where Ωad ⊂ Ω ∪ Γ is a compact set representing the domain where
measurements are possible. The observations for the j th sensor are assumed to be
of the form

zj (t) = y
(
x

j
s (t), t

)+ ε
(
x

j
s (t), t

)
, t ∈ T , j = 1, . . . ,N, (6.4)

where ε represents the measurement noise assumed to be white, zero-mean, Gaus-
sian, and spatial uncorrelated with the following statistics

e
{
ε
(
x

j
s (t), t

)
ε
(
xi

s

(
t ′
)
, t ′
)}= σ 2δjiδ(t − t ′), (6.5)

where σ 2 stands for the standard deviation of the measurement noise, and δij and
δ( · ) are the Kronecker and Dirac delta functions, respectively.

With the above settings, similar to [147], the optimal parameter estimation prob-
lem is formulated as follows: Given the model (6.1)–(6.3) and the measurements zj

from the sensors x
j
s , j = 1, . . . ,N , determine an estimate θ̂ ∈ Θad (Θad being the
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set of admissible parameters) of the parameter vector that minimizes the generalized
output least-squares fit-to-data functional given by

θ̂ = arg min
ϑ∈Θad

N∑
j=1

∫
T

[
zj (t) − y

(
x

j
s (t), t;ϑ

)]2 dt, (6.6)

where y is the solution of (6.1)–(6.3) with θ replaced by ϑ .
By observing (6.6), it is possible to foresee that the parameter estimate θ̂ de-

pends on the number of sensors N and the mobile sensor trajectories x
j
s . This fact

triggered the research on the topic and explains why the literature so far focused on
optimizing both the number of sensors and their trajectories. The intent was to select
these design variables so as to produce best estimates of the system parameters after
performing the actual experiment.

Note that, besides these explicit design variables, there exists an implicit one that
is the forcing input in (6.1). Therefore, for given sensor trajectories, our interest
here focuses on designing the optimal forcing input so as to get the most accurate
parameter estimates.

6.2 Optimal Actuation Problem

The optimal actuation problem is very close to the optimal measurement problem in
the sense that both use the sensitivity coefficients as a measure of the quality of the
parameter estimation. However, both problems differ in the following ways:

• The optimal measurement problem assumes that the forcing input in (6.1) is
known whereas the optimal actuation problem attempts to optimize trajectories
of mobile actuators constituting part of the entirety of the forcing input.

• In the optimal actuation problem, the sensors’ positions/trajectories are known
beforehand and are not optimized.

6.2.1 Mobile Actuator Model

We assume that the actuators are mounted on vehicles whose dynamics are described
by the following equation:

ẋ
j
a(t) = f

(
x

j
a(t),u

j (t)
)

a.e. on T , x
j
a(0) = x

j

a0, (6.7)

where the function f : RM × R
r → R

M has to be continuously differentiable,
x

j

a0 ∈ R
M represents the initial disposition of the actuators, and u : T → R

r is a
measurable control function satisfying the following inequality:

ual ≤ ua(t) ≤ uau a.e. on T (6.8)
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for some constant vectors ual and uau. Let us introduce

s(t) = (x1
a(t),x

2
a(t), . . . ,x

M
a (t)

)
, (6.9)

where xk
a : T → Ωad is the trajectory of the kth actuator. We assume that all the

vehicles are confined within an admissible region Ωad (a given compact set) where
the actuation is possible. Ωad can be conveniently defined as

Ωad = {x ∈ Ω : bi(x) = 0, i = 1, . . . , I
}
, (6.10)

where the bi functions are known continuously differentiable functions. That is to
say, that the following constraints have to be satisfied:

hij

(
s(t)
)= bi

(
x

j
a(t)
)≤ 0 ∀t ∈ T , (6.11)

where 1 ≤ i ≤ I and 1 ≤ j ≤ N . For simpler notation, we reformulate the conditions
described in (6.11) in the following way:

γl

(
s(t)
)≤ 0 ∀t ∈ T , (6.12)

where γl , l = 1, . . . , ν, tally with (6.11), ν = I × N .
The actuation function for the ith mobile actuator is assumed to have the follow-

ing form:

Fi (x, t) = Gi

(
x,xi

a, t
)
. (6.13)

6.2.2 Problem Definition

To define the considered problem, we reformulate (6.1):

∂y

∂t
= F(x, t, y, θ) +

M∑
k=1

Fk(x, t) in Ω × T , (6.14)

and initial and boundary conditions remain unchanged. F may still include forcing
inputs terms.

For the framework of optimal actuation, the FIM is given by the following new
representation:

M(s) =
M∑

k=1

∫
T

h
(
xk

a(t), t
)

dt, (6.15)

where for the kth actuator,

h
(
xk

a(t), t
)=

N∑
j=1

g
(
xk

a(t),x
j
s (t), t

)
gT(xk

a(t),x
j
s (t), t

)
, (6.16)
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and

g
(
xk

a(t),x(t), t
)=

∫
T

∇ϑy
(
x(τ ), τ ;ϑ)∣∣

ϑ=θ0 dτ. (6.17)

In (6.17), y is the solution of (6.14) for Fk(x, τ ) = Gi (x,xi
a, τ )δ(t − τ) for all

k ∈ [1, M].
The purpose of the optimal actuation problem is to determine the forces (con-

trols) applied to each vehicle conveying an actuator, which minimize the design
criterion Ψ ( · ) defined on the FIMs of the form (6.15), which are determined by the
corresponding trajectories. Our approach considers s0 as a control parameter vector
to be optimized in addition to the control function ua .

Given the above formulation, we can cast the optimal actuation policy problem
as the following optimization problem: Find the pair (s0,ua) that minimizes

J (s0,ua) = Φ
[
M(s)

]
(6.18)

over the set of feasible pairs

P = {(s0,ua)|ua : T →R
r is measurable,

ual ≤ ua(t) ≤ uau a.e. on T , s0 ∈ ΩM
ad

}
, (6.19)

subject to the constraint (6.12).
This problem does not have an analytical solution. It is therefore necessary to

rely on numerical techniques to solve the problem. However, the problem can be
reformulated as a classic Mayer problem where the performance index is defined
only via terminal values of state variables. The reformulation is achieved by using
the reformulation described in Sect. 4.3.

6.2.3 An Illustrative Example

In this section, we use a demonstrative example to illustrate our method. We con-
sider the two-dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) +

M∑
i=1

Fi (6.20)

for x = [x1 x2]T ∈ Ω = (0,1)2 and t ∈ [0,1], subject to homogeneous zero initial
and Dirichlet boundary conditions. The spatial distribution of the diffusion coeffi-
cient is assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (6.21)

In our example, we select the initial estimates of the parameter values as θ0
1 = 0.1,

θ0
2 = −0.05, and θ0

3 = 0.2, which are assumed to be nominal and known prior to the
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experiment. The actuation function is

Fi

(
x,xi

a, t
)= 1000 exp

(−50
((

xi
a1 − x1

)2 + (xi
a2 − x2

)2))
, (6.22)

where xi
a = [xi

a1 xi
a2]T . The dynamics of the mobile actuators follow the simple

model

ẋ
j
a(t) = u

j
a(t), x

j
a(0) = x

j

a0, (6.23)

and additional constraints
∣∣uj

ai(t)
∣∣≤ 0.7, t ∈ T , i = 1, . . . ,M. (6.24)

Our goal is to design their trajectories so as to obtain possibly the best estimates
of θ1, θ2, and θ3.

The determination of the Fisher information matrix for a given experiment re-
quires the knowledge of the vector of the sensitivity coefficients g = [g1, g2, g3]T
along sensor trajectories. The FIM can be obtained using the direct differentiation
method [147] by solving the following set of PDEs:

∂y

∂t
= ∇ · (κ∇y) +

∑
Fk,

∂g1

∂t
= ∇ · ∇y + ∇ · (κ∇g1),

∂g2

∂t
= ∇ · (x1∇y) + ∇ · (κ∇g2),

∂g3

∂t
= ∇ · (x2∇y) + ∇ · (κ∇g3),

(6.25)

in which the first equation represents the original state equation, and the next three
equations are obtained from the differentiation of the first equation with respect
to the parameters θ1, θ2, and θ3, respectively. The initial and Dirichlet boundary
conditions for all four equations are homogeneous.

Five different given sensor setups are considered, and for each setup, optimal
actuation trajectories of different numbers of actuators (1, 2, and 3) are compared:

• One static sensor located in the center of the domain (0.5,0.5).
• One static sensor located near one of the corners of the domain (0.2,0.8).
• Three static sensors located throughout the domain ((0.1,0.7), (0.5,0.2),

(0.6,0.4)).
• One moving sensor with a linear motion (0.1,0.2) → (0.6,0.7).
• Two moving sensors. One moving sensor with a linear motion (0.1,0.2) →

(0.6,0.7), and the other one moves along an arc.

Results for the different cases are summarized in Table 6.1, and the resulting tra-
jectories can be observed in Figs. 6.1–6.5. In the figures, static sensor locations are
represented by a red ×, mobile sensor trajectories are in red, and actuator trajecto-
ries are in blue (© locates the starting point, and � the ending point).
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Table 6.1 Values of the
D-optimality criterion Ψ (M)

for different test cases

Case 1 Case 2 Case 3 Case 4 Case 5

1 actuator 15.991 18.051 10.904 14.465 12.547

2 actuators 12.582 14.273 7.36 11.095 7.4806

3 actuators 11.28 13.022 5.8136 9.8976 6.4512

As expected, for all cases, the performance criterion value decreases as the num-
ber of actuators increases. We can also notice that the mobility, population, and
location of the sensors have a direct impact on the performance of the strategy.
Therefore, we can suppose the existence of an optimal combination of sensor and
actuator trajectories.

6.3 Optimal Measurement/Actuation Problem

6.3.1 Mobile Sensor/Actuator Model

We assume that both sensors and actuators are equipped on vehicles whose dynam-
ics can be described by the following differential equation:

ẋ
j
x(t) = f x

(
x

j
x(t),u

j
x(t)

)
a.e. on T , x

j
x(0) = x

j

x0, (6.26)

where x can stand for two different categories, the first being s for sensors, and the
second being a for actuators.

With this nomenclature, the function f x (f s :RN ×R
rs →R

N for sensors, f a :
R

M ×R
ra → R

M for actuators) has to be continuously differentiable, the vector x
j

x0

(xj

s0 ∈ R
N for sensors, x

j

a0 ∈ R
M for actuators) represents the initial disposition

of the j th sensor/actuator, and ux (us : T → R
rs for sensors, ua : T → R

ra for
actuators) is a measurable control function satisfying the following inequality

uxl ≤ ux(t) ≤ uxu a.e. on T (6.27)

for some known constant vectors uxl and uxu. Let us introduce

s(t) = (x1
s (t),x

2
s (t), . . . ,x

N
s (t),x1

a(t), . . . ,x
M
a (t)

)T
, (6.28)

where x
j
s : T → Ωsad is the trajectory of the j th sensor, and xk

a : T → Ωaad is the
trajectory of the kth actuator. We assume that all the mobile nodes equipped with
sensors are confined within an admissible region Ωsad (a given compact set) where
the measurements are possible and reciprocally that all mobile nodes equipped with
actuators are restrained in a domain Ωaad where actuation can be achieved. Consid-
ering the general index x defined earlier, Ωxad can be conveniently defined as

Ωxad = {xx ∈ Ω : bxi(xx) = 0, i = 1, . . . , I
}
, (6.29)
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Fig. 6.1 D-optimum
trajectories of mobile
actuators for one stationary
sensor
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Fig. 6.2 D-optimum
trajectories of mobile
actuators for one stationary
sensor



88 6 Optimal Mobile Actuation/Sensing Policies for Parameter Estimation

Fig. 6.3 D-optimum
trajectories of mobile
actuators for three stationary
sensors
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Fig. 6.4 D-optimum
trajectories of mobile
actuators for one mobile
sensor
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Fig. 6.5 D-optimum
trajectories of mobile
actuators for two mobile
sensors
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where bxi are known continuously differentiable functions. That is to say, the fol-
lowing constraints have to be satisfied:

hij

(
s(t)
)= bxi

(
x

j
x(t)

)≤ 0, t ∈ T , (6.30)

where 1 ≤ i ≤ I and 1 ≤ j ≤ (N + M). For simpler notation, we reformulate the
conditions described in (6.30) in the following way:

γl

(
s(t)
)≤ 0, t ∈ T , (6.31)

where γl, l = 1, . . . , ν, tally with (6.30), ν = I × (N + M). It would be possible to
consider additional constraints on the path of the vehicles such as specific dynamics,
collision avoidance, communication range maintenance, and any other conceivable
constraints.

The actuation function for the kth mobile actuator is assumed to depend on the
actuator’s position as reflected by the following definition:

Fk(x, t) = Gk

(
x,xk

a, t
)
. (6.32)

6.3.2 Problem Definition

The purpose of the optimal measurement/actuation problem is to determine the
forces (controls) applied to each vehicle (conveying either a sensor or an actuator),
which minimize the design criterion Ψ (·) defined on the FIMs of the form (6.15),
which are determined by the corresponding sensor and actuator trajectories, subject
to constraints on the magnitude of the controls and state constraints. To increase the
degree of optimality, our approach considers s0 as a control parameter vector to be
optimized in addition to the control function u = [us ,ua]T .

Given the above formulation, we can cast the optimal measurement/actuation
policy problem as the following optimization problem: Find the pair (s0,u) that
minimizes

J (s0,u) = Φ
[
M(s)

]
(6.33)

over the set of feasible pairs

P = {(s0,u)|u : T → R
rs+ra is measurable,

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ Ωsad × Ωaad
}
, (6.34)

subject to the constraint (6.31).
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6.3.3 An Illustrative Example

In this section, we use a demonstrative example to illustrate our method. We con-
sider the two-dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) +

M∑
k=1

Fk (6.35)

for x = [x1 x2]T ∈ Ω = (0,1)2 and t ∈ [0,1], subject to homogeneous zero initial
and Dirichlet boundary conditions. The spatial distribution of the diffusion coeffi-
cient is assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (6.36)

In our example, we select the initial estimates of the parameter values as θ0
1 = 0.1,

θ0
2 = −0.05, and θ0

3 = 0.2, which are assumed to be nominal and known prior to the
experiment. The actuation function is

Fk

(
x,xk

a, t
)= 10e−50((xk

a1−x1)
2+(xk

a2−x2)
2), (6.37)

where xi
a = [xi

a1 xi
a2]T . The dynamics of the mobile actuators follow the simple

model

ẋk
a(t) = uk

a(t), xk
a(0) = xk

a0, (6.38)

and additional constraints
∣∣uk

ai(t)
∣∣≤ 0.7, t ∈ T , k = 1, . . . ,M, i = 1, . . . ,2. (6.39)

The dynamics of the mobile sensors follow the same model

ẋ
j
s (t) = u

j
s (t), x

j
s (0) = x

j

s0, (6.40)

and additional constraints
∣∣uj

si(t)
∣∣≤ 0.7, t ∈ T , j = 1, . . . ,N, i = 1, . . . ,2. (6.41)

Our goal is to design their trajectories so as to obtain possibly the best estimates
of θ1, θ2, and θ3.

The strategy is tested on a simple team of one sensor and one actuator. In or-
der to avoid getting stuck in a local minimum, computations were repeated several
times from different initial solutions. Figure 6.6 presents the resulting trajectories
for the run where the initial solutions lead to the best results (minimal value of the
D-optimality criteria). Steering signals for both sensor and actuator are displayed in
Figs. 6.7 and 6.8. Resulting trajectories for two sensors and one actuator are given
in Fig. 6.9, and three sensors and one actuator in Fig. 6.10. Sensor trajectories are
displayed in blue, while actuator trajectories are red.
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Fig. 6.6 D-optimal
trajectories of a team of one
mobile sensor and one mobile
actuator. The initial positions
are marked with open circles,
and the final positions are
designated by triangles

Fig. 6.7 Optimal control signal of the mobile sensor

Fig. 6.8 Optimal control signal of the mobile actuator
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Fig. 6.9 D-optimal
trajectories of a team of two
mobile sensors and one
mobile actuator

Fig. 6.10 D-optimal
trajectories of a team of three
mobile sensors and one
mobile actuator

6.4 Chapter Summary

We introduced the optimal actuation framework for parameter identification in dis-
tributed parameter systems. The problem was formulated as an optimization prob-
lem using the concept of the Fisher information matrix. The problem was then re-
formulated into an optimal control one. With the help of the MATLAB PDE toolbox
for the system simulations and RIOTS_95 MATLAB toolbox for solving the optimal
control problem, we successfully obtained the optimal solutions for an illustrative
example.

We introduced the optimal measurement/actuation framework for parameter
identification in a cyber-physical system constituted of mobile sensors and actua-
tors behaving in a distributed parameter system. The problem was formulated as
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an optimization problem using the concept of the Fisher information matrix. The
problem was then reformulated into an optimal control one. We successfully ob-
tained the optimal solutions for an illustrative example. Combined with the online
scheme introduced in [141], this research represents a realistic example of a CPS.
Mobile sensors and actuators are communicating to achieve the parameter estima-
tion of the physical system that they are monitoring/stimulating. An exciting appli-
cation consists of center-pivot operations, where our research center has a project
of using camera-equipped unmanned aerial vehicles for soil moisture measurement
combined with irrigators to stimulate the farming field. Thanks to this framework,
an accurate model of the soil dynamics can be derived, and water savings can be
obtained via optimal operations of the center pivot.



Chapter 7
Optimal Mobile Sensing with Fractional Sensor
Dynamics

7.1 Introduction

The idea of fractional derivative dates back to a conversation between two math-
ematicians: Leibniz and L’Hôpital. In 1695, they exchanged about the meaning of
a derivative of order 1/2. Their correspondence has been well documented and is
stated as the foundation of fractional calculus [108].

Many real-world physical systems display fractional-order dynamics, that is,
their behavior is governed by fractional-order differential equations [110]. For ex-
ample, it has been illustrated that materials with memory and hereditary effects, and
dynamical processes, including gas diffusion and heat conduction, in fractal porous
media can be more adequately modeled by fractional-order models than integer-
order models [173].

The general definition of an optimal control problem requires minimization of a
criterion function of the states and control inputs of the system over a set of admis-
sible control functions. The system is subject to constrained dynamics and control
variables. Additional constraints such as final time constraints can be considered.
We introduce an original formulation and a general numerical scheme for a poten-
tially almost unlimited class of FOCPs. An FOCP is an optimal control problem in
which the criterion and/or the differential equations governing the dynamics of the
system contain at least one fractional derivative operator.

Integer-order optimal controls (IOOCs) have been discussed for a long time, and
a large collection of numerical techniques has been developed to solve IOOC prob-
lems. However, the number of publications on FOCPs is limited. A general formula-
tion and a solution scheme for FOCPs were first introduced in [10], where fractional
derivatives were introduced in the Riemann–Liouville sense, and FOCP formulation
was expressed using the fractional variational principle and the Lagrange multiplier
technique. The state and the control variables were given as a linear combination
of test functions, and a virtual work type approach was used to obtain solutions. In
[11, 12], the FOCPs were formulated using the definition of fractional derivatives
in the sense of Caputo, the FDEs were substituted into Volterra-type integral equa-
tions, and a direct linear solver helped in calculating the solution of the obtained

C. Tricaud, Y.Q. Chen, Optimal Mobile Sensing and Actuation Policies in Cyber-physical
Systems, DOI 10.1007/978-1-4471-2262-3_7, © Springer-Verlag London Limited 2012
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algebraic equations. In [13], the fractional dynamics of the FOCPs were defined
in terms of the Riemann–Liouville fractional derivatives. The Grunwald–Letnikov
formula was used as an approximation, and the resulting equations were solved us-
ing a direct scheme. Frederico and Torres [63–65], using similar definitions of the
FOCPs, formulated a Noether-type theorem in the general context of the fractional
optimal control in the sense of Caputo and studied fractional conservation laws in
FOCPs. However, none of this work has taken advantage of the colossal research
achieved in the numerical solutions of IOOCs.

In this chapter, we present a formulation and a numerical scheme for FOCP based
on IOOC problem formulation. Therefore, the class of FOCP solvable by the pro-
posed methodology is closely related to the considered IOOC solver RIOTS_95 [40,
126]. The fractional derivative operator is approximated in a frequency domain by
using Oustaloup’s Recursive Approximation, which results in a state space realiza-
tion. The fractional differential equation governing the dynamics of the system is
expressed as an integer-order state space realization. The FOCP can then be refor-
mulated into an IOOC problem, solvable by a wide variety of algorithms from the
literature. Three examples are solved to demonstrate the performance of the method.
The work described here was first introduced in [142].

7.2 Fractional Optimal Control Problem Formulation

In this section, we briefly give some definitions regarding fractional derivatives,
allowing us to formulate a general definition of an FOCP.

There are different definitions of the fractional derivative operator. The left
Riemann–Liouville fractional derivative (LRLFD) of a function f (t) is defined as

aD
α
t f (t) = 1

Γ (n − α)

(
d

dt

)n ∫ t

a

(t − τ)n−α−1f (τ)dτ, (7.1)

where the order of the derivative α satisfies n − 1 ≤ α < n. The right Riemann–
Liouville fractional derivative (RRLFD) is defined as

tD
α
b f (t) = 1

Γ (n − α)

(
− d

dt

)n ∫ b

t

(t − τ)n−α−1f (τ)dτ. (7.2)

Another fractional derivative is the left Caputo fractional derivative (LCFD) defined
as

C
a Dα

t f (t) = 1

Γ (n − α)

∫ t

a

(t − τ)n−α−1
(

d

dt

)n

f (τ)dτ. (7.3)

The right Caputo fractional derivative (RCFD) is defined as

C
t Dα

b f (t) = 1

Γ (n − α)

∫ b

t

(t − τ)n−α−1
(

d

dt

)n

f (τ)dτ. (7.4)
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From any of these definitions, we can specify a general FOCP: Find the optimal
control u(t) for a fractional dynamical system that minimizes the following perfor-
mance criterion:

J (u) = G
(
x(a), x(b)

)+
∫ b

a

L(x,u, t)dt, (7.5)

subject to the system dynamics

aD
α
t x(t) = H(x,u, t) (7.6)

with initial condition

x(a) = xa (7.7)

and constraints

umin(t) ≤ u(t) ≤ umax(t), (7.8)

xmin(a) ≤ x(a) ≤ xmax(a), (7.9)

Lν
ti

(
t, x(t), u(t)

)≤ 0, (7.10)

Gν
ei

(
x(a), x(b)

)≤ 0, (7.11)

Gν
ee

(
x(a), x(b)

)= 0, (7.12)

where x is the state variable, t ∈ [a, b] stands for the time, and F , G, and H are
arbitrary given nonlinear functions. The subscripts t i, ei, and ee on the functions
G(·, ·) and L(·, ·, ·) stand for, respectively, trajectory constraint, endpoint inequality
constraint, and endpoint equality constraint.

7.3 Oustaloup Recursive Approximation of the Fractional
Derivative Operator

Oustaloup recursive approximation (ORA) was introduced and is now utilized to
approximate fractional-order transfer functions using a rational transfer function
[36, 171]. The approximation is given by

sα =
N∏

n=1

1 + s/ωz,n

1 + s/ωp,n

. (7.13)

The resulting approximation is valid only within a frequency range [ωl ωh]. The
number of poles and zeros N has to be decided beforehand, and the performance of
the approximation strongly depends on its approximation parameter choice: small
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values of N cause low-order, simpler approximations. Consequently, the Bode dia-
gram exhibits undulations in both phase and gain responses around the real response.
Such undulations can easily be removed by increasing the value of N , at the cost of
higher order and increased amount of calculations. Frequencies of poles and zeros
in (7.13) are obtained, given α, N , ωl , and ωh, by [173]:

ωz,1 = ωl
√

η, (7.14)

ωp,n = ωz,nε; n ∈ [1 N ], (7.15)

ωz,n+1 = ωp,nη; n ∈ [1 N − 1], (7.16)

ε = (ωh/ωl)
α/N , (7.17)

η = (ωl/ωh)
(1−α)/N . (7.18)

When α < 0, inverting (7.13) helps in obtaining the approximation. For |α| > 1, our
definition does not hold anymore. A practical solution is to separate the fractional
orders of s in the following way:

sα = snsδ; α = n + δ; n ∈ Z; δ ∈ [0,1]. (7.19)

Under such a condition, only sδ needs to be approximated. Discrete approximation
for the fractional differentiation operator can be found in [35].

For FOCP, such a definition of ORA as a zero-pole transfer function is not help-
ful. Instead, a state space realization of the approximation is required. The first step
toward a state space realization is to expand the transfer function given in (7.13):

sα =
∑N

i=0 ais
i∑N

j=0 bj sj
, (7.20)

where

ai =
N∑

k=i

k∏
l=0

1

ω(z, l)
(7.21)

and

bj =
N∑

k=j

k∏
l=0

1

ω(p, l)
. (7.22)

Equation (7.20) can further be modified to match the following definition:

sα =
∑N−1

i=0 cis
i

∑N
j=0 bj sj

+ d (7.23)
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with bN = 1. It is finally possible to approximate the operator sα using a state space
definition

aD
α
t x(t) ≈

{
ż = Az + Bu

x = Cz + Du

}
(7.24)

with

A =

⎡
⎢⎢⎢⎢⎢⎣

−bN−1 −bN−2 · · · −b1 −b0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

, (7.25)

B =

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦

, (7.26)

C = [cN−1 cN−2 · · · c1 c0
]
, (7.27)

D = d. (7.28)

7.4 Fractional Optimal Control Problem Reformulation-I

With our state space approximation of the fractional derivative operator, it is now
possible to reformulate the FOCP described in (7.5)–(7.12). Find the optimal control
u(t) for a dynamical system that minimizes the performance criterion

J (u) = G
(
Cz(a) + Du(a),Cz(b) + Du(b)

)+
∫ b

a

L(Cz + Du,u, t)dt, (7.29)

subject to the dynamics

ż(t) = Az + B
(
H(Cz + Du,u, t)

)
(7.30)

with initial condition

z(a) = xaw/(Cw) (7.31)

and constraints

umin(t) ≤ u(t) ≤ umax(t), (7.32)

xmin(a) ≤ Cz(a) + Du(a) ≤ xmax(a), (7.33)

Lν
ti

(
t,Cz(t) + Du(t), u(t)

)≤ 0, (7.34)
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Gν
ei

(
Cz(a) + Du(a),Cz(b) + Du(b)

)≤ 0, (7.35)

Gν
ee

(
Cz(a) + Du(a),Cz(b) + Du(b)

)= 0, (7.36)

where z is the state vector, w is a vector of size N , t ∈ [a, b] stands for the time, and
F , G, and H are arbitrary nonlinear functions. The subscripts t i, ei, and ee on the
functions G(·, ·) and L(·, ·, ·) stand for, respectively, trajectory constraint, endpoint
inequality constraint, and endpoint equality constraint.

The choice for the vector w is indeed important as it can improve the convergence
of the optimization. Since B has the form given in (7.26), our method here is to
choose w as

w = [1 0 · · · 0 ]T . (7.37)

The state x(t) of the initial FOCP can be retrieved from

x(t) = Cz(t) + Du(t). (7.38)

The choice of [ωl,ωh] needs to be carefully taken into consideration as a narrow
bandwidth may lead to inaccurate results because of possible missing dynamics, and
a large bandwidth would create a large computational burden as N would increase.
The choice of N is not considered here as we use the rule of thumb N = log(ωh) −
log(ωl).

This framework allows us to approximately solve a large variety of FOCPs thanks
to the link we created with the traditional optimal control problems. In fact, the
proposed conversion allows us to apply any readily available IOOC solver to find
an approximate solution of almost any given FOCP problem. We decide to use the
RIOTS_95 MATLAB toolbox.

7.5 Impulse-Response-Based Linear Approximation
of Fractional Transfer Functions

7.5.1 Approximation Method

This methodology was derived from [76]. Consider the analytical impulse response
h(t) of a given fractional system. The approximation problem occurs in obtaining
a linear system of order n whose impulse response ha(t) coincides with h(t) well.
The linear system is modeled by the following state space realization:

ẋ(t) = Ax(t) + bu(t), (7.39)

y(t) = cx(t), (7.40)

where the state x(t) is of size n, and the system matrix A is n by n. The impulse
response ha(t) can be expressed in terms of A, b, and c by [165]

h(t) = ceAtb, (7.41)
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where the state-transition matrix eAt denotes the exponential of the matrix At . Let us
describe the methodology for solving the approximation problem. We consider a set
of sampled data h(kT ) from the analytical impulse response h(t), with T standing
for the sampling period. An approximate linear system would have the following
property:

h(kT ) ≈ ceAkT b = c
(
eAT

)k
b, (7.42)

which can be reformulated in the following way:

h(kT ) ≈ c
(
eAd
)k

b (7.43)

with

Ad = eAT . (7.44)

We then take 2p data points from the sampled impulse response to form a Hankel
data matrix H defined as

H =

⎛
⎜⎜⎜⎝

h(0) h(1) . . . h(p − 1)

h(1) h(2) . . . h(p)
...

... . . .
...

h(p) h(p − 1) . . . h(2p − 1)

⎞
⎟⎟⎟⎠

p+1,p

, (7.45)

that is,

H =

⎛
⎜⎜⎜⎝

cb cAdb . . . cA
p−1
d b

cAdb cA2
db . . . cA

p
d b

...
... . . .

...

cA
p
d b cA

p+1
d b . . . cA

2p−1
d b

⎞
⎟⎟⎟⎠ . (7.46)

H is further reformulated by the factorization

H =

⎛
⎜⎜⎜⎝

c

cAd

...

cA
p−1
d

⎞
⎟⎟⎟⎠

p+1,n

(
b Adb . . . A

p−1
d b

)
= OC, (7.47)

where n is the approximated numerical rank of the Hankel data matrix H and is de-
termined by its singular values (square roots of eigenvalues of HHT ). By examining
singular values of H , we are able to choose a proper integer n to be the dimension of
the approximating linear system. In other words, n is the number of state variables
of the linear system that are adequate in describing the distributed system speci-
fied by h(t). Since the matrix H is given, factorization of H into a product of two
matrices is always possible using the singular value decomposition. After O and C
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are generated from the Hankel data matrix, matrices A, b, and c can be obtained as
follows:

c = 1st row of O, (7.48)

b = 1st column of C. (7.49)

Define

O1 = O without the last row, (7.50)

O2 = O without the first row. (7.51)

Then

O2 = O1Ad. (7.52)

Solving the above equation yields

Ad = (OT
1 O1

)−1
OT

1 O2. (7.53)

Finally, we recall the relationship A = eAT and obtain A from Ad by

A = ln(Ad)/T , (7.54)

where ln denotes the natural log of a matrix.

7.5.2 Suboptimal Approximation of the Fractional Integrator

We try to approximate the fractional transfer function

H(s) = 1

sα
(7.55)

with α ∈ [0,1]. The analytical impulse response of such a system is given by

h(t) = t−α−1

�(−α)
, (7.56)

where �(·) represents the Gamma function. For a given transfer function, an infi-
nite number of approximations can be performed. Therefore, for a given order n of
the state space realization of the approximation, we wish to find the values of T

and p that give the best approximation. In addition, the impulse response of a frac-
tional integrator displays a singularity at the origin (t = 0) as observed in (7.56).
Therefore, to avoid this infinite term, h(0) has to be approximated by a finite value.
This finite initial value giving the best approximation is also sought. The best ap-
proximation is obtained via an exhaustive search. The performance criterion used to
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Table 7.1 Parameter values
used for the exhaustive search
of the best approximation

T 10−3 5 × 10−4 10−4 5 × 10−5 10−5

5 × 10−6 10−6 5 × 10−7 10−7

p 25 50 75 100 250

500 750 1000

h(0) 10 · h(1) 102 · h(1) 103 · h(1) 104 · h(1)

assess the quality of an approximation is the ITSE of the step response because of
the absence of singularity and improved results. The analytical step response of the
system described by (7.55) is

s(t) = t−α

�(−α + 1)
. (7.57)

The search is performed for approximation orders n ranging from 1 to 10. Table 7.1
summarizes the different values used in the search for the best parameters set, and
Table 7.2 gives the obtained ITSE for each order of approximation and for each
order of derivation. These values were upper bounded by the computer’s memory.

7.6 Fractional Optimal Control Problem Reformulation-II

With our state space approximation of the fractional derivative operator, it is now
possible to reformulate the FOCP described in (7.5)–(7.12). Find the optimal control
u(t) for a dynamical system that minimizes the performance criterion

J (u) = G
(
cz(a), cz(b)

)+
∫ b

a

L(cz,u, t)dt, (7.58)

subject to the dynamics

ż(t) = Az + b
(
H(cz,u, t)

)
(7.59)

with initial condition

z(a) = xaw/(cw). (7.60)

Equation (7.60) ensures that the initial condition cz(a) = xa is maintained with the
following constraints:

umin(t) ≤ u(t) ≤ umax(t), (7.61)

xmin(a) ≤ Ccz(a) ≤ xmax(a), (7.62)

Lν
ti

(
t, cz(t), u(t)

)≤ 0, (7.63)
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Table 7.2 ITSE of the best
model for different
approximation orders and
fractional orders

aIndicates the best
approximate

ITSE α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

n = 1 1.05e−2 2.62e−3 6.26e−2 1.77e−2 3.12e−3

n = 2 3.61e−4 1.39e−3 1.56e−3 6.47e−4 8.50e−4

n = 3 2.81e−4 1.34e−3 1.40e−4 5.40e−5 1.49e−4

n = 4 3.45e−5 1.30e−3 1.01e−4a 2.01e−6 4.22e−5

n = 5 3.25e−6a 1.25e−3 2.27e−4 1.49e−6 1.86e−5

n = 6 8.40e−6 1.25e−3 3.13e−4 1.51e−7a 1.15e−5

n = 7 2.80e−5 1.31e−3 3.61e−4 1.41e−6 6.09e−6

n = 8 2.00e−4 1.14e−3 3.92e−4 3.26e−6 2.94e−6

n = 9 4.33e−4 8.96e−4 4.14e−4 5.10e−6 2.53e−6

n = 10 6.80e−4 7.55e−4a 4.32e−4 6.84e−6 2.46e−6a

ITSE α = 0.6 α = 0.7 α = 0.8 α = 0.9

n = 1 2.32e−3 8.98e−4 4.72e−4 1.85e−4

n = 2 7.07e−4 3.96e−4 2.10e−4 6.01e−5

n = 3 9.39e−5 4.47e−5 1.56e−5 3.42e−6

n = 4 2.89e−5 1.26e−5 4.12e−6 1.02e−6

n = 5 1.51e−5 6.93e−6 2.40e−6 6.77e−7

n = 6 1.01e−5 5.35e−6 1.93e−6 4.00e−7

n = 7 4.50e−6 2.31e−6 8.51e−7 2.38e−7a

n = 8 3.85e−6a 2.06e−6a 7.80e−7a 2.53e−7

n = 9 4.17e−6 2.28e−6 8.71e−7 2.78e−7

n = 10 4.39e−6 2.44e−6 9.29e−7 2.89e−7

Gν
ei

(
cz(a), cz(b)

)≤ 0, (7.64)

Gν
ee

(
cz(a), cz(b)

)= 0, (7.65)

where z is the state vector, w is a vector of size N , t ∈ [a, b] stands for the time,
and F , G, and H are arbitrary nonlinear functions. The subscripts t i, ei, and ee

on the functions G(·, ·), and L(·, ·, ·) stand for, respectively, “trajectory constraint”,
“endpoint inequality constraint”, and “endpoint equality constraint”.

The choice for the vector w is indeed important as it can improve the convergence
of the optimization. To make computation faster, our experiments have shown that

w = [1 0 · · · 0 ]T (7.66)

represents the best choice. The state x(t) of the initial FOCP can be retrieved from

x(t) = cz(t). (7.67)
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7.7 Illustrative Examples

In this section, we demonstrate the capability of the introduced approach. First,
we solve two widely used examples from the literature, and then we introduce a
new problem that none of the previously introduced methodologies attempted to
solve. For each problem, we examine the solution for different values of α. For this
purpose, α was taken between 0.1 and 1. Problems are first stated in the traditional
FOCP framework and then reformulated via our introduced methodology. Results
of these studies are given at the end of each subsection.

7.7.1 A Linear Time-Invariant Problem

Our first example can be found in [10, 12, 13, 142]. It is a linear time-invariant
(LTI) fractional-order optimal control problem stated as follows. Find the control
u(t) which minimizes the quadratic performance index

J (u) = 1

2

∫ 1

0

[
x2(t) + u2(t)

]
dt, (7.68)

subject to the dynamics

0D
α
t x = −x + u (7.69)

with free terminal condition and the initial condition

x(0) = 1. (7.70)

According to [9], the analytical solution of the problem defined above for α = 1
is

x(t) = cosh(
√

2t) + β sinh(
√

2t), (7.71)

u(t) = (1 + √
2β) cosh(

√
2t) + (

√
2 + β) sinh(

√
2t), (7.72)

where

β = −cosh(
√

2) + √
2 sinh(

√
2t)√

2 cosh(
√

2) + sinh(
√

2t)
≈ −0.98.

Using the methodology we just introduced, we reformulate the problem defined
by (7.68)–(7.70). Find the control u(t) which minimizes the quadratic performance
index

J (u) = 1

2

∫ 1

0

(
cz(t)

)2 + u2(t)dt, (7.73)

subject to the dynamics

ż = Az + B
(−(cz) + u

)
(7.74)
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Fig. 7.1 State x(t) as a
function of t for the LTI
problem for different α

(dashed blue: α = 0.1, dashed
green: α = 0.2, dashed red:
α = 0.3, dashed magenta:
α = 0.4, dashed black:
α = 0.5, solid blue: α = 0.6,
solid green: α = 0.7, solid
red: α = 0.8, solid magenta:
α = 0.9, solid black: α = 1)

Fig. 7.2 Control u(t) as a
function of t for the LTI
problem for different α

(dashed-blue: α = 0.1,
dashed green: α = 0.2,
dashed red: α = 0.3, dashed
magenta: α = 0.4, dashed
black: α = 0.5, solid blue:
α = 0.6, solid green: α = 0.7,
solid red: α = 0.8, solid
magenta: α = 0.9, solid
black: α = 1)

and the initial condition

z(0) = [1 0 · · · 0 ]T . (7.75)

Figures 7.1 and 7.2 show the state x(t) and the control input u(t) as functions of
time t for different values of α. For α = 1, the results match those of the analytical
solution. Results are comparable to those obtained in [10, 13, 142].

7.7.2 A Linear Time-Variant Problem

The second example studied here is also studied in [10, 12, 13, 142]. It is a linear
time-variant (LTV) problem stated as follows. Find the control u(t) which mini-
mizes the quadratic performance index

J (u) = 1

2

∫ 1

0

[
x2(t) + u2(t)

]
dt, (7.76)
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Fig. 7.3 State x(t) as a
function of t for the LTV
problem for different α

(dashed blue: α = 0.1, dashed
green: α = 0.2, dashed red:
α = 0.3, dashed magenta:
α = 0.4, dashed black:
α = 0.5, solid blue: α = 0.6,
solid green: α = 0.7, solid
red: α = 0.8, solid magenta:
α = 0.9, solid black: α = 1)

subject to the dynamics

0D
α
t x = tx + u (7.77)

with free terminal condition and the initial condition

x(0) = 1. (7.78)

Using the proposed methodology, we reformulate the problem defined by (7.76)–
(7.78). Find the control u(t) which minimizes the quadratic performance index

J (u) = 1

2

∫ 1

0

(
cz(t)

)2 + u2(t)dt, (7.79)

subject to the dynamics

ż = Az + b
(
(cz)t + u

)
(7.80)

and the initial condition

z(0) = [1 0 · · · 0 ]T . (7.81)

Figures 7.3 and 7.4 show the state x(t) and the control u(t) as functions of t for
different values of α (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1). For α = 1, the op-
timal control problem has been solved in [9]. In that paper, the author used a scheme
specific to integer-order optimal control problems. The numerical solution obtained
with the proposed methodology for α = 1 is accurate, and results for fractional or-
ders of α match those found in the literature [10, 13, 142].
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Fig. 7.4 Control u(t) as a
function of t for the LTV
problem for different α

(dashed blue: α = 0.1, dashed
green: α = 0.2, dashed red:
α = 0.3, dashed magenta:
α = 0.4, dashed black:
α = 0.5, solid blue: α = 0.6,
solid green: α = 0.7, solid
red: α = 0.8, solid magenta:
α = 0.9, solid black: α = 1)

7.8 Optimal Mobile Sensing Policies with Fractional Sensor
Dynamics

7.8.1 Sensor Dynamics

We assume that both sensors and actuators are equipped on vehicles whose dynam-
ics can be described by the following differential equation:

aD
α
t xj (t) = f

(
xj (t),uj (t)

)
a.e. on T xj (0) = x

j

0. (7.82)

With this nomenclature, the function f has to be continuously differentiable, the
vector x

j

0 represents the initial disposition of the j th sensor, and u is a measurable
control function satisfying the following inequality:

ul ≤ u(t) ≤ uu a.e. on T (7.83)

for some known constant vectors ul and uu. Let us introduce

s(t) = (x1(t),x2(t), . . . ,xN(t)
)T

, (7.84)

where xj : T → Ωad is the trajectory of the j th sensor. We define s0 = s(0) as the
initial location of the mobile sensors. We assume that all the mobile nodes equipped
with sensors are confined within an admissible region Ωad (a given compact set)
where the measurements are possible. Considering the general index defined earlier,
Ωad can be conveniently defined as

Ωad = {x ∈ Ω : bi(x) = 0, i = 1, . . . , I
}
, (7.85)

where bi are known continuously differentiable functions. That is to say, the follow-
ing constraints have to be satisfied:

hij

(
s(t)
)= bi

(
xj (t)

)≤ 0, t ∈ T , (7.86)
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where 1 ≤ i ≤ I and 1 ≤ j ≤ N . For simpler notation, we reformulate the conditions
described in (7.86) in the following way:

γl

(
s(t)
)≤ 0, t ∈ T , (7.87)

where γl, l = 1, . . . , ν, tally with (7.86), ν = I × N . It would be possible to con-
sider additional constraints on the path of the vehicles such as specific dynamics,
collision avoidance, communication range maintenance, and any other conceivable
constraints.

7.8.2 Optimal Measurement Problem

The measurement problem for bounded parameter values can be defined by refor-
mulating the FIM associated with the problem in the following way:

M =
N∑

j=1

∫
T

g
(
x

j
s (t), t

)
gT(xj

s (t), t
)

dt, (7.88)

where

g(x, t) = ∇θy(x, t; θ)|θ=θ0 (7.89)

denotes the vector of the so-called sensitivity coefficients, θ0 being a prior estimate
to the unknown parameter vector θ .

The purpose of the optimal measurement problem is to determine the forces (con-
trols) applied to each vehicle that minimize the design criterion Ψ (·) defined on the
FIMs of the form (7.88), which are determined unequivocally by the correspond-
ing trajectories, subject to constraints on the magnitude of the controls and induced
state constraints. To increase the degree of optimality, our approach considers s0 as
a control parameter vector to be optimized in addition to the control function u.

Given the above formulation, we can cast the optimal measurement policy prob-
lem as the following optimization problem: Find the pair (s0,u) that minimizes

J (s0,u) = Φ
[
M(s)

]
(7.90)

over the set of feasible pairs

P = {(s0,u)|u : T → R
r is measurable,

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ Ωad
}
, (7.91)

subject to the constraint (7.87).
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7.8.3 Optimal Control Problem Reformulation

The problem is converted into a canonical optimal control one, making possible
the use of existing optimal control problem solvers. The first step consists of ap-
proximating the fractional operator using a rational approximation. It is possible to
approximate the operator aD

α
t using a state space definition:

aD
α
t x = f (x,u, t) ⇔

{
ż = Az + bf (cz,u, t)

x = cz

}
. (7.92)

The dynamics of the mobile sensors can hence be written as
{

żj (t) = Azj (t) + bf (czj (t),uj (t)),

xj (t) = czj (t).
(7.93)

Accordingly, a new experiment sz(t) can be defined as

sz(t) = (z1(t),z2(t), . . . ,zN(t)
)T

, (7.94)

and s(t) can be recovered by

s(t) = (cz1(t), cz2(t), . . . , czN(t)
)T (7.95)

and

s0 = csz(0). (7.96)

We also define the function f z given as

ṡz(t) = f z

(
sz(t),u(t), t

)
, (7.97)

so that the experiment sz(t) can be recovered from the control input u(t).
Consider the matrix-valued function

Π
(
sz(t), t

)=
N∑

j=1

g
(
czj (t), t

)
gT
(
czj (t), t

)
. (7.98)

Setting r : T → R
m(m+1)/2 as the solution of the differential equations

ṙ(t) = svec
(
Π
(
sz(t), t

))
, r(0) = 0, (7.99)

we obtain

M(sz) = Smat
(
r(tf )

)
, (7.100)

i.e., minimization of Φ[M(s)] thus reduces to minimization of a function of the
terminal value of the solution to (7.99). Introducing an augmented state vector

q(t) =
[
sz(t)

r(t)

]
, (7.101)
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we obtain

q0 = q(0) =
[
sz0
0

]
. (7.102)

Then, the equivalent canonical optimal control problem occurs in finding a pair
(q0,u) ∈ P̄ that minimizes the performance index

J̄ (q0,u) = φ
(
q(tf )

)
, (7.103)

subject to ⎧⎨
⎩

q̇(t) = φ(q(t),u(t), t),

q(0) = q0,

γ̄l(q(t)) ≤ 0,

(7.104)

where

P̄ = {(q0,u)|u : T →R
r is measurable,

ul ≤ u(t) ≤ uu a.e. on T , csz0 ∈ ΩN
ad

}
, (7.105)

and

φ(q,u, t) =
[

f z(sz(t),u(t), t)

svec(Π(sz(t), t))

]
, (7.106)

γ̄l

(
q(t)

) = γl

(
csz(t)

)
. (7.107)

7.8.4 An Illustrative Example

We consider again the following two-dimensional diffusion equation:

∂y

∂t
= ∇ · (κ∇y) + 20 exp

(−50(x1 − t)2) (7.108)

for x = [x1 x2]T ∈ Ω = (0,1)2 and t ∈ [0,1], subject to homogeneous zero initial
and Dirichlet boundary conditions. The spatial distribution of the diffusion coeffi-
cient is assumed to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (7.109)

In this example, the chosen values for the parameter are θ1 = 0.1, θ2 = −0.05, and
θ0

3 = 0.2, which are assumed to be known prior to the experiment. The dynamics
of the mobile sensors follow the following model:

aD
α
t xj (t) = uj (t), xj (0) = x

j

0, (7.110)

and additional constraints
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Fig. 7.5 D-optimal trajectory
of one mobile sensor for
α = 0.8

Fig. 7.6 D-optimal trajectory
of one sensor mobile for
α = 0.9.

∣∣uj
i (t)
∣∣≤ 0.7, t ∈ T , j = 1, . . . ,N, i = 1, . . . ,2. (7.111)

Our goal is to design their trajectories so as to obtain possibly the best estimates
of θ1, θ2, and θ3. In order to avoid getting stuck in a local minimum, computations
were repeated several times from different initial solutions. Figure 7.5 presents the
resulting trajectories for the best run for one sensor with fractional dynamics of
order α = 0.8. The trajectory for α = 0.9 is given in Fig. 7.6. The trajectories for
two sensors are displayed in Fig. 7.7 (α = 0.8) and Fig. 7.8 (α = 0.9). Finally, the
trajectories of a team of three sensors are given in Fig. 7.9 (α = 0.9).
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Fig. 7.7 D-optimal
trajectories of two mobile
sensors for α = 0.8

Fig. 7.8 D-optimal
trajectories of two mobile
sensors for α = 0.9

7.9 Chapter Summary

A new formulation toward solving a wide class of fractional optimal control prob-
lems has been introduced. The formulation made use of an analytical impulse-
response-based approximation to model the fractional dynamics of the system in
terms of a state space realization. This approximation created a bridge with a classic
optimal control problem, and a readily available optimal control solver was used to
solve the fractional optimal control problem. The methodology allowed us to repro-
duce results from the literature and solve a more complex problem of a fractional
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Fig. 7.9 D-optimal
trajectories of three mobile
sensors for α = 0.9

free final time problem. Numerical results show that the methodology, though sim-
ple, achieves good results. For all examples, the solution for the integer-order case
of the problem is also obtained for comparison purposes.

For the first time, fractional dynamics of the mobile sensors were considered.
It is important to note the fact that the introduced formulation has proven to be
transcribable into an optimal control problem that can then be solved by readily
available optimal control software, in our case, the MATLAB toolbox RIOTS_95.
We successfully solved the example of a diffusion system for several teams of sen-
sors and different dynamics. We were also able to use the approximation to obtain
the optimal trajectories of a team of sensors with fractional dynamics.



Chapter 8
Optimal Mobile Remote Sensing Policy
for Downscaling and Assimilation Problems

8.1 Background on Downscaling and Data Assimilation

In this chapter, our efforts focus on the downscaling problem in the framework of
surface soil moisture. Our purpose is to introduce a new methodology to transform
low-resolution remote sensing data (for example, from a satellite) about soil mois-
ture to higher-resolution information that contains better information for use in hy-
drologic studies or water management decision making. Our goal is to obtain a
high-resolution data set with the help of a combination of ground measurements
and low-altitude remote sensing (typically images obtained from a UAV). In the
following, we first describe the methodology developed using only low-resolution
information and ground truth. Then, we introduce in two different ways the opti-
mal trajectories of remote sensors, first to solve the problem of maximum coverage
knowing the location of ground measurements, and then to solve the problem of op-
timal data assimilation to optimally improve the assimilation problem using remote
sensors.

Because the reader most likely has an electrical engineering background, we give
a short introduction of the principles used as a base for the piece of work. These
principles come from geoscience and require some definitions and motivation.

8.1.1 Downscaling

The earliest piece of literature that can be linked to downscaling was written by
Klein in 1948 [90]. At the beginning, statistical downscaling was used in the
field of weather forecasting where global models were not able to provide local
information of climate. At that time, downscaling was referred to as specifica-
tion. Later, in the 1980s, similar methodologies were called a “statistical prob-
lem of climate inversion” [17, 89]. Another term used is “model output statis-
tics” [167].

C. Tricaud, Y.Q. Chen, Optimal Mobile Sensing and Actuation Policies in Cyber-physical
Systems, DOI 10.1007/978-1-4471-2262-3_8, © Springer-Verlag London Limited 2012
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The interest and emergence of downscaling are linked to the tools it is based
upon, namely, global climate models. Such models appeared only in the 1980s,
which explains the young age of this topic.

Readers interested in comprehensive reviews on downscaling should read
[22, 159, 166] and references therein.

8.1.1.1 Definition of Downscaling

Even if it is a popular topic in geoscience, as an electrical engineer, one of the first
questions one might ask is “What is downscaling?” one basic definition of down-
scaling is “the process of making the link between the state of some variable rep-
resenting a large space (henceforth referred to as the ‘large scale’) and the state
of some variable representing a much smaller space (henceforth referred to as the
‘small scale’)” [22].

Let us take this definition as a starting point and give insight about what is meant
by link, large scale, and small scale. As an example, in the downscaling frame-
work for weather modeling, the large-scale variable may, for instance, represent the
circulation pattern over a large region, whereas the small scale may be the local
temperature as measured at one given point (station measurement).

One of the critical conditions generally assumed for the large-scale variable is
the fact that its variations should be slow and smooth in space. The small-scale vari-
able may be a reading from a thermometer or barometer or measurement from a
soil moisture probe. It is also important that the large scale and the small scale are
physically linked and not just related by a statistical fluctuation or a coincidence.
The theory of downscaling requires an implicit and fundamental link between both
scales. It is important to distinguish the two concepts of large scale and large vol-
ume/area. The two are not necessarily the same, as a large volume may contain many
noisy and incoherent small-scale processes. The term small scale could be a little
misleading, but what is meant is that the small scale should be local to the domain
of interest instead of defined using a small scale. In fact, the local process must be
associated with large spatial scales for downscaling to be possible. The main pur-
pose of downscaling is to identify synchronized time behavior on large and small
scales. Therefore, practical downscaling focuses on the time dimension.

8.1.1.2 Motivation

The second question we need to ask ourselves is “Why downscaling?” the answer
to this question is usually linked to a specific purpose, for example, using global
climate models to make an inference about the local climate in a specific area. The
global mean value of the temperature is usually not directly relevant for practical
use, and more details are required to perform a study.

Global circulation models are a very important tool when studying the earth’s
climate. However, using them for the study of local climate would provide very
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Fig. 8.1 Unmanned aerial
image

poor results. It is therefore common to downscale the results from the GCMs either
through a local, high-resolution regional climate model (RCM) [42–44] or through
empirical/statistical downscaling (ESD) [160]. The GCMs usually do not provide an
exact depiction of the real climate system. They frequently involve simple statistical
models giving an approximate representation of subgrid processes. It is important to
mention one of the limitations of downscaling that the statistical models are based on
historical data. It means that there is no guarantee that the past identified statistical
relationships between the different data fields will still be true in the future.

8.1.1.3 The Future of Downscaling

It is of importance to note that the use of downscaling may dim in the future. There
are two trends in technology that would let us believe so. The first one is the increase
in resolution in remote sensors (Fig. 8.1). Nowadays, camera resolution usually dou-
bles every few years. We can imagine that in the near future, even satellite images
will be provided at a small-scale resolution, and the frequency of observation can
be increased by using unmanned aerial imagery. The second trend is the increase
in computing power. Every year, several supercomputers are built that allow more
and more detailed GCMs. We provide an illustration (Fig. 8.2) of the increase in
detail of GCMs over recent years. During the 1990s, high-resolution GCMs were
simulated on the T42 resolution scheme (upper left). For the T42 resolution, the
variables (temperature, moisture) were given a single average value over an area of
about 200 by 300 km. In 2007, increased computing power allowed scientists to run
GCMs at T85 resolution (upper right); variables were averaged over an area of 100
by 150 km. In the future, better resolution will give an enhanced depiction of atmo-
spheric processes and allow for a more realistic topography, increasing the accuracy
on regional climate.
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Fig. 8.2 Illustrations of several resolution models for global circulation models (© UCAR, illus-
tration courtesy Warren Washington, NCAR)

8.1.2 Data Assimilation

In geophysics, the process of approximating the true state of a physical system at
a given time is called analysis. The information on which the analysis is based in-
cludes observational data and a model of the physical system, together with some
background information on initial and boundary conditions and possibly additional
constraints on the analysis. The analysis is useful in itself as a description of the
physical system, but it can also be used, for example, as an initial state for studying
the further time evolution of the system.

An analysis can be very simple, for example, a spatial interpolation of obser-
vations. However, much better results can be obtained by including the dynamic
evolution of the physical system in the analysis. An analysis that combines time-
distributed observations and a dynamic model is called assimilation or data assimi-
lation.

Data assimilation methods are designed to combine any type of measurements
with estimates from geophysical models. Here are some general reasons to use data
assimilation [123]:

1. When comparing the quantity of in situ measurements in the environment and
the quantity of satellite remote sensing observations, the latter is much larger.
However, their spatial and temporal coverage is still not sufficient for many ap-
plications. Data assimilation methods are required to interpolate and extrapolate
the remote sensing data.

2. Remote sensing instruments typically observe electromagnetic properties of the
Earth system. This implies that most satellite observations are limited to the parts
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of the Earth system that can be penetrated by electromagnetic radiation at mi-
crowave, infrared, or visible frequencies. Data assimilation systems can spread
information from remote sensing observations to all model variables that are in
some way connected to the observations.

3. The temporal or spatial resolution of remote sensing data is often too coarse or
too fine for a given application. By merging the satellite data with models that
resolve the scale of interest, data assimilation methods are capable of aggregating
or downscaling the remote sensing data.

4. Some types of remote sensing data are plentiful to the point of overwhelm-
ing processing capabilities. Typically, data assimilation systems for numerical
weather prediction include sophisticated thinning algorithms for satellite obser-
vations, with the consequence that only a small fraction of the available satellite
data is actually used in the preparation of a weather forecast. Moreover, there is a
great deal of redundancy in satellite observations from different platforms. Data
assimilation systems can organize and merge potentially redundant or conflicting
satellite data and conventional observations into a single best estimate.

5. In an assimilation system, the physical constraints imposed by models offer ad-
ditional valuable information. Moreover, models are often forced with boundary
conditions that are based on observations. Such boundary conditions may offer
indirect and independent observational information about the remotely sensed
fields—information that can be captured through data assimilation.

The basic tenet of data assimilation is to combine the complementary informa-
tion from measurements and models of the Earth system into an optimal estimate of
the geophysical fields of interest. In doing so, data assimilation systems interpolate
and extrapolate the remote sensing observations and provide complete estimates at
the scales required by the application, both in time and spatial dimensions. Data
assimilation systems thereby organize the useful and redundant observational in-
formation into physically consistent estimates of the variables of relevance to data
users. The optimal combination of the measurements with the model information
rests on the consideration of the respective uncertainties (or error bars) that come
with the observations and the model estimates. Whenever and wherever highly ac-
curate remote sensing data are available, the assimilation estimates will be close to
these observations. At times and locations that are not observed by any instrument,
the assimilation estimates will draw close to the model solution but will nonetheless
be subject to the influence of satellite data in spatial or temporal proximity to the
location of interest.

The basic concept of data assimilation is easily understood by considering a
scalar model variable m with uncertainty (or error variance) σ 2

m and a corresponding
scalar observation o with uncertainty σ 2

o . The model estimate m represents prior or
background information and may, for example, come from an earlier model forecast
that is valid at the time of the newly arrived observation o. The goal is to find the
least-squares estimate x̂ of the true state x based on the available information. To
this end, an objective function J (also known as a cost function, penalty function, or
misfit) is defined to quantify the misfit between the true state x and the model esti-
mate and the observation, respectively. In our simple case, the objective function J
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is

J = (x − m)2

σ 2
m

+ (x − o)2

σ 2
o

. (8.1)

Minimization of J with respect to x (by solving dJ/dx = 0) yields

x̂ = mσ 2
m + oσ 2

o

σ 2
m + σ 2

o

, (8.2)

which is typically rewritten as

x̂ = (1 − K)m + Ko, where K = σ 2
m

σ 2
m + σ 2

o

. (8.3)

This best estimate (or analysis) x̂ is a weighted sum of the model background m

and the observation o. The weights are determined by the relative uncertainties of
the model and the observation and are expressed in the (Kalman) gain K (note that
0 ≤ K ≤ 1). If the measurement error variance σ 2

o is small compared to the model
uncertainty σ 2

m, the gain will be large, and the resulting estimate will draw closely
to the observation, and vice versa. Equal model and measurement error variances
σ 2

o = σ 2
m produce equal weights (K = 0.5), reflecting our equal trust in the model

and the observation. Rewriting (8.3) as

x̂ − m = K(o − m) (8.4)

shows that the assimilation increment (difference between the assimilation estimate
x̂ and the model estimate m) is proportional to the innovation or background depar-
ture (difference between the observation o and the model estimate m). The Kalman
gain serves as the constant of proportionality. Equation (8.4) is sometimes called
the update equation, because the prior model estimate m is updated with informa-
tion from the observation o. If the errors in the model forecast and the observation
are uncorrelated, the error variance of the assimilation estimate is

σ 2
x̂

= (1 − K)σ 2
m = Kσ 2

o (8.5)

and is smaller than the error variances of either the model estimate or the observation
alone (recall that 0 ≤ K ≤ 1), reflecting the increased knowledge about the true
state x after data assimilation.

The assimilation problem can be discussed from many angles, depending on the
background and preferences (control theory, estimation theory, probability theory,
variational analysis, etc.). A few excellent introductions to data assimilation from
different points of view are given by [23–25, 59, 77, 98, 100, 137, 138].

There are numerous data assimilation techniques. We restrict our discussion to
advanced data assimilation methods that are based on some measure of model and
observation error characteristics.
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8.1.2.1 Variational Data Assimilation

In a realistic application, the first right-hand-side term of (8.1) consists of a large
sum of model states. The error variance σ 2

m then becomes the error covariance matrix
of these model states. Similarly, the second right-hand-side term of (8.1) becomes
a large sum over the individual conventional and satellite observations weighted
by the inverse measurement error covariance. Because of the immense size of the
vectors and matrices and because of nonlinearities, analytic solutions such as (8.3)
are impossible. Instead, variational data assimilation algorithms employ advanced
numerical methods to minimize J directly. The two terms of the simple objective
function (8.1) are representative of the main ingredients of most current, large-scale
atmospheric data assimilation systems. If both terms correspond to a single instant
in time, the resulting static data assimilation methods include common techniques
such as Optimal Interpolation, Physical-Space Statistical Analysis System (PSAS),
1DVAR, and 3DVAR (where 1D and 3D refer to one and three spatial dimensions,
respectively). If the objective function J contains measurements at several different
times within an assimilation interval and if the minimum of J is sought for this
interval (by varying the model initial condition), the assimilation method is known
as 4DVAR (where 4D refers to three spatial dimensions plus the time dimension). In
4DVAR, the error covariance evolution is sometimes referred to as implicit because
the assimilation estimates can be obtained without ever explicitly computing their
full error covariance matrix. The 4DVAR data assimilation step is thus more flow-
dependent than in 3DVAR, and the quality of the estimates improves.

8.1.2.2 The Kalman Filter

Data assimilation algorithms known as Kalman filters share the static update (8.2)
with some of the variational techniques, but Kalman filter algorithms also explicitly
compute the error covariances through an additional matrix equation (not shown)
that propagates error information from one update time to the next, subject to pos-
sibly uncertain model dynamics. The error covariance propagation in the traditional
Kalman filter and its nonlinear variant, the extended Kalman filter (EKF), however,
is prohibitively expensive for large-scale applications. Like variational methods, the
Kalman filter can be derived from an objective function, given a number of addi-
tional assumptions about the error structure, including model and observation errors
that are uncorrelated in time and mutually uncorrelated. The EKF has been demon-
strated successfully for soil moisture data assimilation [122, 127]. Reduced-rank
approximations such as the ensemble Kalman filter (EnKF) [58, 74, 140] are de-
signed to reduce the number of degrees of freedom to a manageable level. The idea
behind the EnKF—a Monte Carlo variant of the Kalman filter—is that a compa-
rably small ensemble of model trajectories captures the relevant parts of the error
structure. The EnKF is flexible in its treatment of errors in model dynamics and
parameters. It is also very suitable for modestly nonlinear problems.
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8.2 Downscaling and Assimilation Problems for Surface Soil
Moisture

The work described in this section is based on [86]. We would like to orient the
reader looking for more details to this article.

8.2.1 Introduction

In hydrology, when trying to simulate a system using PDEs or trying to identify the
dynamics, it is important that the data used as initial conditions or used to know the
state of the system have a similar scale to the model. Because most of the time it is
not the case, we need to be able to modify the scale of a given measurement and fit
it to match our model scale. Among the potential candidates of scale modification
techniques, the one we discuss here uses data assimilation such that the best use of
the collected information at different scales can be achieved. Such a problem is also
called scale reconciliation and is defined as the process of data assimilation done to
merge data at different scales.

Most of the time, collecting information is not an issue as data can be gathered
in many different ways—from satellites, UAV imagery, or ground measurements.
However, combining the data from all those different sources in the most efficient
way for a given application becomes a research problem. Indeed, each different plat-
form provides data at different temporal and spatial resolutions, most of the time not
matching the model scale. Therefore, the problem is in extracting the information
of interest within all this heterogeneous sensor data, in both temporal and spatial
scales.

In the work under consideration, the purpose of the introduced methodology is
to combine information from a coarse-resolution image and point measurements.
More precisely, we are interested only in the merging of the spatial scale. Under
such consideration, we need to assume that the continuity of soil moisture and the
correlation distance of soil moisture have to be larger than the spacing between
ground measurements.

The sources for soil moisture measurement are generally twofold. First, the tradi-
tional soil moisture measurement methods provide pointwise data and are based on
gravimetric, nuclear and electromagnetic, and tensiometric and hygrometric meth-
ods. On the other hand, remote sensing measurements in the microwave region can
give useful information about soil moisture due to the strong contrast between the
dielectric constant of dry soil and water and its effect on microwave emission. They
provide coarse-resolution images of the distribution of surface soil moisture.

8.2.2 Kaheil and McKee’s Algorithm

We consider the downscaling of an image G0 at resolution 0 down to a fine im-
age Gn at resolution n. The structure considered for downscaling is described in
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Fig. 8.3 Description of the
downscaling structure

Fig. 8.3. As can be observed, for the lowest resolution 0, a given pixel possesses
only one value, and at the next resolution, there are four values. At the final nth
resolution, the original area containing the pixel will contain 4n values.

The purpose of the introduced algorithm is to create an image at a high resolution
satisfying two conditions. The first condition to be met is that the generated image
should be close to the original image when upscaled back to the lower resolution.
The second condition requires the final image to incorporate the point measurement
information. The proposed approach can be portrayed as the repetition (n times)
of two steps (initialization and spatial pattern search) and a final assimilation using
pointwise ground measurements. The initialization and the spatial pattern search are
here to generate an image at resolution n based solely on the underlying dynamics
of the system and the original satellite coarse image. The assimilation step is here
to combine the new generated image and the ground measurements to produce the
final image. To illustrate each step, we provide in Fig. 8.4a graphical illustration of
the inner workings of the method.

8.2.2.1 Initialization

The initialization step is composed of three tasks. The first task is a maximum-
likelihood parameter estimation (MLE) analysis executed on the low-resolution im-
age G0, assumed to be the true image at resolution 0. The end result of the MLE is a
list of parameters linked with the variogram of the coarse image G0. The parameters
estimated are then used to create an image at the next finer resolution called G′

ui+1.
In G′

ui+1, i stands for the current iteration number, u refers to the “unsorted” nature
of the image, and the apostrophe stands for an unassimilated image. The unsorted
nature of the generated image comes from a given variogram and not the image
itself. Therefore, the spatial properties of the two images are the same, but the spa-
tial patterns are different. The second part of the initialization consists of upscaling
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Fig. 8.4 Hierarchical algorithm Step 1 [86]
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image G′
ui+1 back to the former resolution (resolution i) to obtain an image G′

ui .
Because of the unsorted nature of the image generated by the MLE, its upscaled
version will be different from the original image in both value and spatial pattern.
The third task of the initialization consists of rearranging the pixels within image
G′

ui so that the order of these pixels (minimum to maximum) will follow the same
order as those of the true image. The resulting image is called G′

i . In this task, only
the pixels at a coarse resolution are rearranged, which means that the arrangement
of pixels within a coarse pixel is untouched. The resulting image is called G′

i+1.
The spatial pattern issue being solved, the value deviation issue is addressed using
a ratio bias remover to correct for the values. The values in each of image G′

i+1 are
multiplied by the ratio R =∑(Gi)/

∑
(G′

i ) to correct for the value bias. After this
third task, the resulting image G′

i+1 is similar to its coarse image when upscaled.
However, there is still a discontinuity coming from the transfer of pixel blocks; each
pixel within the coarse pixels have not been rearranged. These discontinuities are
polished in the next step using a spatial pattern search technique.

8.2.2.2 Spatial Pattern Search

The image resulting from the initialization step is at a finer resolution and is very
close to the coarse image when upscaled. However, there are still some disconti-
nuities between two coarse neighboring pixels. To address this problem, the pixels
within the “initialized” image are rearranged and sorted. The reference for this re-
arrangement of pixels is an interpolated version Gi at resolution i + 1 called GT

i+1.
There are several interpolation techniques that can be used to generate GT

i+1 such
as a linear interpolation or cubic splines. Let us consider the four pixels from G′

i+1
belonging to the same original pixel in Gi . These four pixels are rearranged ac-
cording to the distribution of pixels within the reference interpolated image. This
task still guarantees that the resulting image provides little error when upscaled to
the true coarser image but improves the smoothness between two neighboring pixel
blocks. The resulting image is still called G′

i+1. The initialization and the spatial
pattern search are repeated, increasing the value of the subscript with each iteration
until the final resolution n is reached. The final image G′

n is generated after n itera-
tions. However, G′

n still does not account for the ground measurements. Therefore,
another bias remover is required and is described next.

8.2.2.3 Assimilation

The third step, called assimilation, consists of fine-tuning the final image based on
the original image and point measurements. The method introduced here makes use
of support vector machines (SVMs). An SVM is a machine learning paradigm based
on statistical learning theory. The theory and algorithms for SVMs can be found in
[47] and references therein. The main idea behind using SVMs for the assimila-
tion step is to approximate a one-to-one function between the approximated coarse
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image and the true coarse image. The resulting function at the coarse resolution
is applied at the fine resolution to obtain a new approximation of the fine image.
Therefore, the relation at the coarsest resolution between the observed image and
model-generated image is learned through the application of the SVM algorithm.
The advantage of using SVMs for our application is the fact that the point measure-
ment data can be added to the training set. The training data set of the SVM consists
of random pixels of image G′

n at resolution 0 as input, corresponding pixels of G0
as output, and readings of fine pixels from G′

n at point measurement locations ver-
sus corresponding point measurement values Pz. Once the SVM has finished the
training process, it is applied to G′

n to get the final fine-scaled image Gn.

8.3 Introduction of UAV-Based Remote Sensors

The framework introduced in Sect. 8.2 considers only a single coarse image (from
either a satellite or an aerial vehicle) and ground measurements. However, it would
be possible to extend the framework for multiscale downscaling and assimilation
where the observations could come from both satellite, UAV(s), and ground mea-
surements. The introduction of UAVs into the framework can be challenging as it
was developed from static measurements. UAVs are by nature mobile platforms,
which means that their locations can be variable. Based on this observation, we can
see that there is an infinite number of possible trajectories for these UAVs, and we
need to decide on one based on some criterion. This criterion could be used in an
optimization to generate the trajectory of the UAVs.

There are several potential candidates for the optimality criterion of the UAV
trajectories. For example, we could optimize the trajectory of the UAVs so that they
maximize the coverage of the area defined by G0 but avoid the location of ground
sensors to reduce redundancy.

When comparing the original image G0 and the final image upscaled back to its
initial coarse resolution Gn→0, an error may still exist at certain locations. We call
such an image Ge0 = |G0 − Gn→0| (Fig. 8.5). The image Ge0 can be seen as the
residual error from the downscaling and assimilation procedure. In the following,
we develop a methodology that optimizes the trajectory of UAVs so as to maximize
the coverage of Ge0, providing the best information for another downscaling and
assimilation procedure, enhanced with remote aerial measurements.

8.4 Optimal Trajectories for Data Assimilation

8.4.1 Description of the Problem

The purpose of the optimal measurement problem is to determine the steering of the
UAV which minimizes a design criterion J (·) defined by the area covered by the
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Fig. 8.5 Illustration of the downscaling residual error

UAV and Ge0. The value of the design criterion is determined by the trajectories
resulting from that steering, subject to constraints on the magnitude of the controls
and induced state constraints.

The mobile remote sensors are assumed to ambulate in a spatial domain
Ωsens ∈ R

3. The sensors are able to remotely take measurements in Ωmeas ∈ R
2

over a given observation horizon T = [t0, tf ]. We call xj = [xj

1 (t), x
j

2 (t), x
j

3 (t)]T :
T → Ωsens the trajectory of the j th remote sensor. We call zj : T → Ω the collec-
tion of measurements in Ωmeas where the j th sensor is observing. We assume that
a function f : Ωsens → Ωmeas linking the position of the sensor and measurements
exists. The observations for the j th sensor are assumed to be of the form

zj (t) = y
(
f
(
xj (t)

)
, t
)+ ε

(
f
(
xj (t)

)
, t
)
, (8.6)

where ε stands for the measurement noise. We assume that the UAV’s dynamics can
be described by the following differential equation:

ẋj (t) = g
(
xj (t),uj (t)

)
a.e. on T , xj (0) = x

j

0, (8.7)

where the vector x
j

0 ∈ R
3 represents the initial location of the j th sensor, and u :

T → R
rs is a measurable control function satisfying the inequality

ul ≤ u(t) ≤ uu a.e. on T , (8.8)

for some known constant vectors ul and uu. We define the remote sensing function
as follows:

yi (x,u, t) = Ge0
(
f
(
xi (t)

))
, (8.9)

where f is the geographical remote sensing function, giving the location of the mea-
surements on the ground. We define the weighting function linked with the altitude
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of a sensor as follows:

G(x) =

⎧⎪⎨
⎪⎩

0 if x3 > z0,

i/n if zi+1 > x3 > zi,

1 if zn > x3.

(8.10)

Let us introduce

s(t) = (x1(t),x2(t), . . . ,xN(t)
)T

, (8.11)

where xj : T → Ωsens is the trajectory of the j th sensor. We define the set s0 of
initial locations as

s0 = (x1(0),x2(0), . . . ,xN(0)
)T

. (8.12)

8.4.2 Problem Formulation

Given the above formulation, we can cast the optimal measurement policy problem
as the following optimization problem: Find the pair (s0,u) that minimizes

J (s0,u) =
N∑

i=1

(∫
Ω

(
Ge0(x)

)
dx −

∫
Ω

(∫ tf

t0

yi

(
xi ,u, t

)
G
(
xi
)

dt

)
dx

)2

(8.13)

over the set of feasible pairs

P = {(s0,u)|u : T → R
r is measurable,

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ Ωsens
}
, (8.14)

subject to constraints on the control input.

8.4.3 Numerical Method to Find the Solution

This problem can hardly be solved using analytical methods. It is therefore neces-
sary to use a numerical method to solve the problem. We use the MATLAB toolbox
called RIOTS_95 [126]. It is a powerful tool for solving a large class of optimal
control problems. The considered problem can be described with M-files. The the-
ory behind the toolbox can be found in [115] and uses the approach of consistent
approximations.

The performance criterion J (·) is calculated using the following steps. First, the
left-hand side of the criterion

∫
Ω

Ge0(x)dx is calculated based on the given Ge0.
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Then, based on the trajectories of the UAVs and the defined remote sensing func-
tion, the resulting measurement footprint is evaluated. The convex hull of the mea-
surement footprint is then calculated in order to discard the redundancies of mea-
surements on the ground. Each point of the convex hull is then assigned a weight
based on the distance of the UAV from the ground. Then, the convex hull is trans-
formed into a Delaunay triangulation, and the integral of Ge0(x) of each triangle
is computed. The sum of the integrals of all triangles is then added to compute the
right-hand side of the criterion

∫
Ω

(
∫ tf
t0

yi(x
i ,u, t)G(xi )dt)dx.

8.5 An Illustrative Example

8.5.1 System’s Description

We use a demonstrative example to illustrate the method developed earlier. We con-
sider the mapping Ge0 of the residual error of a downscaling problem as

Ge0(x) = θ1 + θ2x1 + θ3x2 + ε(x) (8.15)

for x = [x1 x2]T ∈ Ωsys = (0,1)2 and t ∈ [0,1]. ε(x) refers to a random field of am-
plitude σ 2. The dynamics of the mobile sensors follow the given dynamical model

ẋj (t) = uj (t), xj (0) = x
j

0, (8.16)

for x = [x1 x2 x3]T ∈ Ωsens = (0,1)3 and additional constraints
∣∣uj

i (t)
∣∣≤ 0.7, t ∈ T , j = 1, . . . ,2, i = 1,2, (8.17)

∣∣uj
i (t)
∣∣≤ 0.2, t ∈ T , j = 1, . . . ,N, i = 3. (8.18)

We consider three different sets of values for θ1, θ2, θ3, and σ .

8.5.2 Results

8.5.2.1 θ1 = 1, θ2 = 0.1, θ3 = 0.2, σ = 0

These parameter values are considered to test the methodology when Ge0 is lin-
ear in space. This allows us to test the numerical method under smooth conditions
and make sure that the implementation allows convergence of the optimization. The
resulting trajectory for one UAV is given in Fig. 8.6, where both the initial loca-
tion of the UAV and the trajectory are optimized. The optimal trajectories of two
UAVs are given in Fig. 8.7, the initial locations are set as x1

0 = [0.9,0.9,0.4]T and
x2

0 = [0.9,0.8,0.4]T , and only the trajectory is optimized. We can observe that the
covering of Ge0 is mostly located in the higher values. This can be expected as we
are trying to maximize the coverage of Ge0.
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Fig. 8.6 Optimal trajectory
of one sensor for θ1 = 1,
θ2 = 0.1, θ3 = 0.2, and σ = 0

Fig. 8.7 Optimal trajectory
of two sensors for θ1 = 1,
θ2 = 0.1, θ3 = 0.2, and σ = 0

8.5.2.2 θ1 = 0, θ2 = 0, θ3 = 0, σ = 1

We consider this example to see how the methodology would perform under a re-
alistic scenario. Ge0 is a pseudo-random field that would be likely to happen from
the outcome of a downscaling and assimilation procedure as described in Sect. 8.2.
The optimization can hardly converge because of the randomness of the field. We

provide the resulting trajectories for the best attempt in Fig. 8.8.
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Fig. 8.8 Optimal trajectory
of one sensor for θ1 = 0,
θ2 = 0, θ3 = 0, and σ = 1

Fig. 8.9 Optimal trajectory
of 1 sensor for θ1 = 1, θ2 = 0,
θ3 = 0, and σ = 0.1

8.5.2.3 θ1 = 1, θ2 = 0, θ3 = 0, σ = 0.1

Because of the poor results obtained when the field is random, we introduce an
offset to encourage the optimization to increase the coverage. The result is given in
Fig. 8.9. In most cases, the optimization is able to converge. Several attempts are
necessary to obtain a good trajectory.

8.6 Chapter Summary

In this chapter, we were able to address the problem of downscaling soil moisture
data. Based on an existing methodology to downscale, we introduced the problem of
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optimal remote sensor trajectory so as to maximize the coverage of the areas where
the downscaling was inaccurate. The problem was formulated as an optimal control
one, which allowed us to use optimal control solvers. A numerical method to solve
the problem was introduced and successfully applied to a numerical example.



Chapter 9
Conclusions and Future Work

9.1 Conclusions

CPSs constitute one of the next big challenges of the engineering community. They
will require advances from a lot of different domains of engineering in order to be
successful.

Among the challenges of CPSs, system identification has to be one of the first to
be addressed, especially when the system under consideration is a DPS. Because of
the complexity of DPSs, the identification procedure will itself be a CPS with actu-
ators to ensure a good enough excitation and sensors to gather measurements about
the dynamics of the system. However, the distributed nature of the DPS makes the
location of such actuators and sensors a question to be addressed. The solution will
depend not only on the dynamics of the system but also on the nature of those actu-
ators and sensors. The nature of sensors and actuators can be their dynamics, their
geometrical support (pointwise, zonal, whole domain, boundary), their communica-
tion topology, their autonomy, and their precision. Most of this monograph focuses
on providing methodologies to obtain the optimal sensing and actuation policies in
a CPS of a distributed nature.

In this monograph, we provide the following list of contributions to the state of
the art:

• We propose an approach to optimize both the trajectories of mobile sensors and
their measurement accuracy for parameter estimation of a distributed parameter
system. Using sensors with different accuracies can lead to better parameter esti-
mates than homogeneous sensors. This approach has the advantage of providing
the maximum number of sensors necessary (a sensor with an accuracy of 0 can
be discarded).

• We consider the case of remote sensing where the sensor is not located inside
the considered DPS but in a different domain. We introduce a method to obtain
the optimal trajectories of those mobile robots remotely monitoring a distributed
parameter system with respect to parameter estimation.

• We provide a numerical solution for generating and refining a mobile sensor mo-
tion trajectory for the estimation of the parameters of a DPS in the “closed-loop”

C. Tricaud, Y.Q. Chen, Optimal Mobile Sensing and Actuation Policies in Cyber-physical
Systems, DOI 10.1007/978-1-4471-2262-3_9, © Springer-Verlag London Limited 2012

135

http://dx.doi.org/10.1007/978-1-4471-2262-3_9


136 9 Conclusions and Future Work

sense. The basic idea is to use the finite-horizon control type of scheme. First,
the optimal trajectories are computed in a finite time horizon based on the as-
sumed parameter values. For the following time horizon, the parameters of the
distributed parameter system are estimated using the measured data in the previ-
ous time horizon, and the optimal trajectories are updated accordingly based on
these estimated parameters obtained.

• Under such a closed-loop scheme, we discuss the influence of the communica-
tion topology between the mobile sensors on the estimation of the parameters of
a distributed parameter system. Of course, more communication leads to faster
estimates, but acceptable results can be obtained with limited communication.

• We introduce the problem of determining the optimal sensors’ trajectories so as to
estimate a set of unknown parameters for a system of a distributed nature where
the bounds on the parameters’ values are known. This leads to average trajectories
that can be fairly close to those obtained with the real parameter values.

• Besides the explicit design variables that are the sensor trajectories, there exists an
implicit one that is the excitation of the system, that is to say, the actuation. Given
a sensor configuration (static and/or mobile), we propose a numerical procedure
to optimize the trajectory of mobile actuators to find parameter estimates of a
distributed parameter system.

• Based on the newly introduced optimal actuation policy, we develop a framework
to solve the problem of determining optimal sensors’ and actuators’ trajectories
so as to estimate a set of unknown parameters in what constitutes a CPS.

• We discuss fractional-order optimal control problems (FOCPs) and their solution
by means of rational approximation. The original problem is then reformulated to
fit the definition used in general-purpose optimal control problem (OCP) solvers.

• A different direction to approximately solving FOCPs is introduced. The method
uses a rational approximation of the fractional derivative operator obtained from
the singular value decomposition of the Hankel data matrix of the impulse re-
sponse and can potentially solve any type of FOCPs.

• We propose a methodology to optimize the trajectory of mobile sensors whose dy-
namics contain fractional derivatives to find parameter estimates of a distributed
parameter system.

• We introduce a methodology to obtain the optimal trajectories of a group of mo-
bile remote sensors for scale reconciliation for surface soil moisture.

9.2 Future Research Directions

Even though the framework has been greatly extended by the work described in this
monograph, there are still plenty of research opportunities.
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9.2.1 Communication Topology Influence on Regional
Controllability and Observability for DPS

The framework of regional controllability and observability of DPSs was introduced
a long time ago, before applications even existed. Since then, little progress has
been achieved to bring the framework further. The reason is that sensors and ac-
tuators in DPSs were first introduced as mathematical concepts rather than based
on real applications. Therefore, concepts such as communication topologies have
never been considered. Nowadays, communication topology is a highly competitive
research direction because of its direct impact on mobile robots’ algorithm. A natu-
ral evolution of the framework is to introduce communication topology in regional
controllability and observation.

9.2.2 Directed Communication Topologies

A good way to improve the estimation would be the use of directed communication
topology where at least one sensor would be able to receive information from all
other sensors and therefore have great information regarding the system. The use of
such topologies will be part of our future research efforts.

9.2.3 Regional Identifiability of a DPS

Identifiability is a term mostly used in statistics. The concept of identifiability has
proved useful when attempting to answer questions like “Is it theoretically possible
to learn the true value of this model’s underlying parameter after obtaining an infi-
nite number of observations from it?” The problem of identifiability of a DPS has
been studied in the past. However, the problem of regional identifiability has not yet
been investigated.
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Notation

A.1 General Notation

R Set of real numbers
N Set of natural numbers
Z Set of integer numbers
y State variable
u Control variable
(z) Measurements
t Time
tf Final time of the experiment
T (0, tf )

Ω Space domain, an open bounded regular subset of Rn

Γ or ∂Ω Boundary of Ω

Ω Ω ∪ ∂Ω

Q Ω × ]0, T [
Σ ∂Ω × ]0, T [
L(X,Y ) Space of linear maps from X to Y

L(X) L(X,X)

Lp(0, T ;X) Integrable functions f : ]0, T [ �→ X such that t �→ ‖f (t)‖p is inte-
grable on ]0, T [

L2(Ω) Space of square-integrable functions on Ω

D(H) Domain of the operator H

θ Parameter vector
θ̂ Estimate of the parameter vector
det(A) Determinant of the matrix A

trace(A) Trace of the matrix A

λmax(A) Largest eigenvalue of the matrix A
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A.2 Special Notation in Chap. 2

A,B,C Dynamics, control, and observation operators
Z Observation space (Hilbert space)
U Control space (Hilbert space)
Y State space (Hilbert space)
(Φ(t))t≥0 Semigroup generated by A

ω Subregion of Ω

Im(H) Image of H

Ker(H) Kernel of the operator H

H	 Adjoint operator of H

PAx Projection of x on A

〈·, ·〉H Inner product in H

pω or χω Restriction to the region ω

p	
ω or iω Adjoint of pω

Ā Closure of A

supp(g) Support of a function g

A.3 Special Notation in Chap. 3

pi Measurement precision weight of the ith sensor
ξN Design of an experiment
ξ	 Optimal design
M Set of admissible information matrices

A.4 Special Notation in Chap. 4

Ωsys Space domain where the system is defined
Ωsens Space domain where sensors can ambulate
Ωmeas Space domain where sensors can take measurements
res Resolution of the remote sensors

A.5 Special Notation in Chap. 6

Gi (x,xi
a, t) Actuation function for the kth actuator

xk
a Trajectory of the kth actuator
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A.6 Special Notation in Chap. 7

α Order of derivation
aD

α
t f (.) Left Riemann–Liouville fractional derivative of a function f (·)

tD
α
b f (·) Right Riemann–Liouville fractional derivative of a function f (·)

C
a Dα

t f (.) Left Caputo fractional derivative of a function f (·)
C
t Dα

b f (.) Right Caputo fractional derivative of a function f (·)
A State matrix
B Input matrix
C Output matrix
D Feedthrough matrix
� Gamma function �(x) = ∫ 0

∞ tx−1e−t dt



Appendix B
RIOTS Tutorial

B.1 Introduction

RIOTS_95 is designed as a MATLAB toolbox written mostly in C, Fortran, and
M-file scripts. It provides an interactive environment for solving a very broad class
of optimal control problems (OPCs). RIOTS_95 comes precompiled for use with
the Windows 95/98/2000 or Windows NT operating systems. The user-OCPs can be
prepared purely in M-files, and no compiler is needed to solve the OCPs. To speed
up the OCP solving process, there are two ways to go: by using the MATLAB Com-
piler or by providing the user-OCP in C, which is to be compiled by a C-compiler
and then linked with some prebuilt linking libraries. This chapter describes the use
and operation of RIOTS_95 together with two demonstrative examples in solving
optimal control problems, one of which is an application in chemical engineering.

The numerical methods used by RIOTS_95 are supported by the theory in the
PhD dissertations of Dr. Adam L. Schwartz [125], who uses the approach of con-
sistent approximations as defined by Polak [114]. In this approach, a solution is
obtained as an accumulation point of the solutions to a sequence of discrete-time
optimal control problems that are, in a specific sense, consistent approximations to
the original continuous-time, optimal control problem. The discrete-time optimal
control problems are constructed by discretizing the system dynamics with one of
four fixed step-size Runge–Kutta integration methods and by representing the con-
trols as finite-dimensional B-splines. Note that RIOTS_95 also includes a variable
step-size integration routine and a discrete-time solver. The integration proceeds on
a (possibly nonuniform) mesh that specifies the spline breakpoints. The solution
obtained for one such discretized problem can be used to select a new integration
mesh upon which the optimal control problem can be rediscretized to produce a
new discrete-time problem that more accurately approximates the original problem.
In practice, only a few such rediscretizations need to be performed to achieve an
acceptable solution.

RIOTS_95 provides three different programs that perform the discretization and
solve the finite-dimensional discrete-time problem. The appropriate choice of op-
timization program depends on the type of problem being solved and on the num-
ber of points in the integration mesh. In addition to these optimization programs,
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RIOTS_95 also includes other utility programs that are used to refine the discretiza-
tion mesh, to compute estimates of integration errors, to compute estimates for the
error between the numerically obtained solution and the optimal control, and to
deal with oscillations that arise in the numerical solution of singular optimal control
problems.

B.2 Features of RIOTS_95

RIOTS_95 is a collection of programs that are callable from the mathematical
simulation program MATLAB for Windows. Most of these programs are written
in either C, Fortran (and linked into MATLAB using its MEX/DLL facility), or
MATLAB M-script language. All of MATLAB functionality, including command
line execution and data entry and data plotting, are available to the user. The follow-
ing is a list of some of the main features of RIOTS_95:

• Solves a very large class of finite-time optimal control problems that includes tra-
jectory and endpoint constraints, control bounds, variable initial conditions (free
final time problems), and problems with integral and/or endpoint cost functions.

• System functions can be supplied by the user as either object code or M-files.
• System dynamics can be integrated with fixed step-size Runge–Kutta integration,

a discrete-time solver, or a variable step-size method. The software automatically
computes gradients for all functions with respect to the controls and any free
initial conditions. These gradients are computed exactly for the fixed step-size
routines.

• The controls are represented as splines. This allows for a high degree of function
approximation accuracy without requiring a large number of control parameters.

• The optimization routines use a coordinate transformation that creates an or-
thonormal basis for the spline subspace of controls. The use of an orthogonal
basis can result in a significant reduction in the number of iterations required to
solve a problem and an increase in the solution accuracy. It also makes the termi-
nation tests independent of the discretization level.

• There are three main optimization routines, each suited for different levels of
generality of the optimal control problem. The most general is based on sequential
quadratic programming methods. The most restrictive, but most efficient for large
discretization levels, is based on the projected descent method. A third algorithm
uses the projected descent method in conjunction with an augmented Lagrangian
formulation.

• There are programs that provide estimates of the integration error for the fixed
step-size Runge–Kutta methods and estimates of the error of the numerically ob-
tained optimal control.

• The main optimization routine includes a special feature for dealing with singular
optimal control problems.

• The algorithms are all founded on rigorous convergence theory.
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In addition to being able to accurately and efficiently solve a broad class of op-
timal control problems, RIOTS_95 is designed in a modular, toolbox fashion that
allows the user to experiment with the optimal control algorithms and construct
new algorithms. The programs outer and aug_lagrng, described in detail in
[126], are examples of this toolbox approach to constructing algorithms.

B.3 Class of Optimal Control Problems Solvable by RIOTS_95

RIOTS_95 is designed to solve optimal control problems of the form

OCP: min
(u,ξ)∈Lm∞[a,b]×Rn

{
f (u, ξ)

.= go(ξ, x(b)) +
∫ b

a

lo(t, x, u)dt

}
,

subject to ẋ = h(t, x,u), x(a) = ξ, t ∈ [a, b],
u

j

min(t) ≤ uj (t) ≤ u
j
max(t), j = 1, . . . ,m,

ξ
j

min ≤ ξj ≤ ξ
j
max, j = 1, . . . , n,

lνti
(
t, x(t), u(t)

)≤ 0, ν ∈ qt i , t ∈ [a, b],
gν

ei

(
ξ, x(b)

)≤ 0, ν ∈ qei ,

gν
ee

(
ξ, x(b)

)= 0, ν ∈ qee,

where x(t) ∈ Rn, u(t) ∈ Rm, g : Rn × Rn → R, l : R × Rn × Rm → R, and h :
R × Rn × Rm → Rn, and we have used the notation q .= 1, . . . , q , and Lm∞[a, b] is
the space of Lebesgue-measurable, essentially bounded functions [a, b] → Rm. The
functions in OCP can also depend upon parameters that are passed from MATLAB
at execution time using get_flags. Refer to [126], Sect. 4, for details.

The subscripts o, t i, ei, and ee on the functions g(·, ·) and l(·, ·, ·) stand for,
respectively, “objective function”, “trajectory constraint”, “endpoint inequality con-
straint”, and “endpoint equality constraint”. The subscripts for g(·, ·) and l(·, ·, ·)
are omitted when all functions are being considered without regard to the subscript.
The functions in the description of problem OCP and the derivatives of these func-
tions,1 must be supplied by the user as either object code or M-files. The bounds
on the components of xi and u are specified on the MATLAB command line at
runtime.

The optimal control problem OCP allows optimization over both the control u

and one or more of the initial states ξ . To be concise, we will define the variable

η = (u, ξ) ∈ H2
.= Lm∞[a, b] × Rn.

1If the user does not supply derivatives, the problem can still be solved using RIOTS with finite-
difference computation of the gradients.
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With this notation, we can write, for example, f (η) instead of f (ξ,u). We define
the inner product on H2 as

〈η1, η2〉H2

.= 〈u1, u2〉L2 + 〈ξ1, ξ2〉.

The norm corresponding to this inner product is given by ‖ η ‖H2= 〈η,η〉1/2
H2

. Note
that H2 is a pre-Hilbert space.



Appendix C
Implementations

C.1 Remote Sensors Trajectory Optimization

In this section, we provide the file required to simulate the example given in
Chap. 4. Table C.1 gives the main MATLAB program used to define the initial
conditions of the problem and call the RIOTS function. Table C.2 gives the function
sys_init.m, which provides information about the dimensions of the optimiza-
tion problem. Table C.3 gives the function sys_h.m in which the dynamic model
is defined. Table C.4 gives the function sys_g.m, which is used to compute the
endpoint cost function. Table C.5 gives the function sys_l.m, which is used to
compute values for the integrands of cost functions. Table C.6 gives the function
interp_sensitivities.m, which is used to estimate the value of the sensi-
tivity coefficients at a given location.
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Table C.1 Main function to call RIOTS used in Chap. 4

load sensitivities
global WGHT_CTRL

n_sensors = 3; % number of sensors
n_ctrls = 3 * n_sensors; % number of control input
WGHT_CTRL = 2.0 / n_ctrls;
n_sensor_dynamics = n_ctrls; % number of sensor dynamics
s0 = [0.1; 0.1; 0.2 ; ...

0.1; 0.5; 0.2 ; ...
0.1; 0.9 ; 0.2]; % initial conditions for 3 sensors

s_lower = zeros(n_sensor_dynamics, 1);
s_upper = ones(n_sensor_dynamics, 1);
n_df_ctrl = length(TGRID) + 1;
u0 = [0.4*ones(1, n_df_ctrl); % 1 sensor

0.0*ones(1, n_df_ctrl);
0.0*ones(1, n_df_ctrl)];

u0= [u0 ; 0.4*ones(1, n_df_ctrl); % 2 sensors
0.0*ones(1, n_df_ctrl);
0.0*ones(1, n_df_ctrl)];

u0= [u0 ; 0.4*ones(1, n_df_ctrl); % 3 sensors
0.0*ones(1, n_df_ctrl);
0.0*ones(1, n_df_ctrl)];

u_min = [-0.7 ; -0.7 ; -0.2 ; ...
-0.7 ; -0.7 ; -0.2; ...
-0.7 ; -0.7 ; -0.2]; % minimum control input

u_max = [0.7 ; 0.7 ; 0.2 ; ...
0.7 ; 0.7 ; 0.2; ...
0.7 ; 0.7 ; 0.2]; % maximum control input

n_params = size(SENSVS, 4); % number of parameters
n_additional_state_vars = n_params * (n_params + 1) / 2;
x0 = [s0; zeros(n_additional_state_vars, 1)];
x0_lower = [s_lower; zeros(n_additional_state_vars, 1)];
x0_upper = [s_upper; zeros(n_additional_state_vars, 1)];
fixed = [zeros(n_sensor_dynamics, 1); ...

ones(n_additional_state_vars, 1)];
X0 = [x0, fixed, x0_lower, x0_upper];
[u, x, crit_val] = riots(X0, u0, TGRID, u_min, u_max, ...

[], [300, 0, 1], 4);
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Table C.2 sys_init.m file for RIOTS used in Chap. 4

function neq = sys_init(params)

global SENSVS

if isempty(params)
n_sensors = 3;
n_controls = 3 * n_sensors;
n_parameters = size(SENSVS, 4);
n_states = 3 * n_sensors + n_parameters ...

* (n_parameters + 1) / 2;
neq = [1 n_states; 2 n_controls];

else
global sys_params
sys_params = params;

end

Table C.3 sys_h.m file for RIOTS used in Chap. 4.

function xdot = sys_h(neq, t, x, u)

global sys_params IND_TRIANGLE

n_sensor_dynamics = neq(2);
n_sensors = round(neq(2) / 3);
n_parameters = round(sqrt(IND_TRIANGLE(end)));

x1 = x(1: 3: n_sensor_dynamics - 2);
x2 = x(2: 3: n_sensor_dynamics - 1);
x3 = x(3: 3: n_sensor_dynamics);
u1 = u(1: 3: n_sensor_dynamics - 2);
u2 = u(2: 3: n_sensor_dynamics - 1);
u3 = u(3: 3: n_sensor_dynamics);
g = interp_sensitivities(x1, x2, x3, u1, u2, u3, t, neq(4));
a = zeros(n_parameters, n_parameters);
for loop = 1: n_sensors

a = a + g(loop, :)’ * g(loop, :);
end

xdot = [u; a(IND_TRIANGLE)];
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Table C.4 sys_g.m file for RIOTS used in Chap. 4

function J = sys_g(neq, t, x0, xf)

global sys_params IND_TRIANGLE

n_sensor_dynamics = neq(2);
n_parameters = round(sqrt(IND_TRIANGLE(end)));

F_NUM = neq(5);

if F_NUM == 1
fim = zeros(n_parameters, n_parameters);
fim(IND_TRIANGLE) = xf(n_sensor_dynamics + 1: end);
fim = fim’;
fim(IND_TRIANGLE) = xf(n_sensor_dynamics + 1: end);
J = -log(det(fim));

else
error(’Reference to a non-existing constraint ...

on initial/final state’)
end

Table C.5 sys_l.m file for RIOTS used in Chap. 4

function z = sys_l(neq,t,x,u)

global sys_params WGHT_CTRL

F_NUM = neq(5);
n_sensor_dynamics = neq(2);
n_sensors = round(neq(2) / 3);

x3 = x(3: 3: n_sensor_dynamics);

if F_NUM == 1
z = 0.1 / sqrt(x3’ * x3);

else
error(’Reference to a non-existing state constraint’)

end
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Table C.6 interp_sensitivities.m file for RIOTS used in Chap. 4

function g = interp_sensitivities(x,y,z,xdot,ydot,zdot,t,k)
global TGRID XGRID YGRID SENSVS
wr = (t - TGRID(k)) / (TGRID(k + 1) - TGRID(k));
wl = 1.0 - wr;
g = zeros(length(x), size(SENSVS, 4));

[thetadot,phidot,rdot] = cart2sph(xdot,ydot,zdot);
phidot = phidot - pi/2;

rTR = rdot;
thetaTR = thetadot - pi/4 ;
phiTR = phidot + pi/6;
[xTR,yTR,zTR] = sph2cart(thetaTR,phiTR,rTR);
xTR = x + xTR;
yTR = y + yTR;
zTR = z + zTR;
xGTR = x + z.*(xTR-x)./(z-zTR);
yGTR = y + z.*(yTR-y)./(z-zTR);

rTL = rdot;
thetaTL = thetadot + pi/4 ;
phiTL = phidot + pi/6;
[xTL,yTL,zTL] = sph2cart(thetaTL,phiTL,rTL);
xTL = x + xTL;
yTL = y + yTL;
zTL = z + zTL;
xGTL = x + z.*(xTL-x)./(z-zTL);
yGTL = y + z.*(yTL-y)./(z-zTL);

rBR = rdot;
thetaBR = thetadot + pi/4 ;
phiBR = phidot - pi/6;
[xBR,yBR,zBR] = sph2cart(thetaBR,phiBR,rBR);
xBR = x + xBR;
yBR = y + yBR;
zBR = z + zBR;
xGBR = x + z.*(xBR-x)./(z-zBR);
yGBR = y + z.*(yBR-y)./(z-zBR);

rBL = rdot;
thetaBL = thetadot - pi/4 ;
phiBL = phidot - pi/6;
[xBL,yBL,zBL] = sph2cart(thetaBL,phiBL,rBL);
xBL = x + xBL;
yBL = y + yBL;
zBL = z + zBL;
xGBL = x + z.*(xBL-x)./(z-zBL);
yGBL = y + z.*(yBL-y)./(z-zBL);
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Table C.6 (Continued)

for j = 1 : length(x)
res = 3;
XI = zeros(res,res);
YI = zeros(res,res);

T = [linspace(xGTL(j),xGTR(j),res); ...
linspace(yGTL(j),yGTR(j),res)];

B = [linspace(xGBL(j),xGBR(j),res); ...
linspace(yGBL(j),yGBR(j),res)];

% L = [linspace(xGTL,xGBL,res);linspace(yGTL,yGBL,res)];
% R = [linspace(xGTR,xGBR,res);linspace(yGTR,yGBR,res)];

for i = 1:res
XI(i,:) = linspace(T(1,i),B(1,i),res);
YI(i,:) = linspace(T(2,i),B(2,i),res);

end

for loop = 1: size(SENSVS, 4)
g(j, loop) = wl * sum(sum(interp2(XGRID, YGRID, ...

SENSVS(:, :, k, loop), XI, YI, ’*cubic’, 0))) / res^2 ...
+ wr * sum(sum(interp2(XGRID, YGRID, ...

SENSVS(:, :, k + 1, loop), XI, YI, ’*cubic’, 0))) / res^2;
end

end

end

C.2 Online Scheme for Trajectory Optimization

In this section, we provide the file required to simulate the example given in
Chap. 5. Table C.7 gives the main MATLAB program used to define the initial
conditions of the problem and call the RIOTS function. Table C.8 gives the func-
tion sys_init.m, which provides information about the dimensions of the op-
timization problem. Table C.9 gives the function sys_h.m in which the dynamic
model is defined. Table C.10 gives the function sys_g.m, which is used to com-
pute the endpoint cost function. Table C.11 gives the function sys_l.m, which
is used to compute values for the integrands of cost functions. Table C.12 gives
the function interp_sensitivities.m, which is used to estimate the value
of the sensitivity coefficients at a given location. Table C.13 gives the function
paramestimatenonlin.m, which is used to estimate the parameters of the sys-
tem based in a set of measurements.
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Table C.7 Main function to call RIOTS used in Chap. 5

global WGHT_CTRL
load sensitivities
load simulations
startup;
a = 0.1;
b = 0.6;
c = 0.8;
reala = 0.1;
realb = 0.6;
realc = 0.8;
n_sensors = 3; %to change also in sys_init
n_params = size(SENSVS, 4);
n_ctrls = 2 * n_sensors;
WGHT_CTRL = 2.0 / n_ctrls;
n_sensor_dynamics = n_ctrls;
u_min = -0.6;
u_max = 0.6;
s0 = [0.1; 0.1; 0.1; 0.5; 0.1; 0.9];
s_lower = zeros(n_sensor_dynamics, 1);
s_upper = ones(n_sensor_dynamics, 1);
ob_int = 10;
ob_num = 10;

n_df_ctrl = ob_num + 1 ;
u0 = [0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl);

0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl);
0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl)];

n_additional_state_vars = n_params * (n_params + 1) / 2;
x0 = [s0; zeros(n_additional_state_vars, 1)];
x0_lower = [s_lower; zeros(n_additional_state_vars, 1)];
x0_upper = [s_upper; zeros(n_additional_state_vars, 1)];
fixed = [ones(n_sensor_dynamics, 1); ...

ones(n_additional_state_vars, 1)];
X0 = [x0, fixed, x0_lower, x0_upper];

% Definition of the initial conditions
% for the first iteration of the sensitivity
n_xgrid_divs = 20;
n_ygrid_divs = n_xgrid_divs;
pdesize = (n_xgrid_divs + 1)*(n_ygrid_divs + 1);
w0 = [repmat(0, pdesize, 1); zeros(n_sensors * pdesize, 1)];
param=[]; traj=[]; timeest=[]; measest=[]; xest=[];
%
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Table C.7 (Continued)

for i=1:ob_int
timehor = linspace((i-1)/ob_int,(i-1)/ob_int+1,ob_num+1);
timeopt = linspace((i-1)/ob_int,i/ob_int,ob_num+1);
[SENSVS,unused] = sensitivity(a,b,c,timehor,w0);
[unused,w] = sensitivity(a,b,c,timehor,w0);
unused = [];
w0 = [w(1:pdesize,end);zeros(n_sensors * pdesize, 1)];
n_additional_state_vars = n_params * (n_params + 1) / 2;
X0 = [x0, fixed, x0_lower, x0_upper];
[u, x, crit_val] = riots(X0, u0, timehor, u_min ...

* ones(n_ctrls, 1), u_max * ones(n_ctrls, 1), ...
[], 200, 4, [], 10, 2);

x = interp1(timehor’,x’,timeopt’,’cubic’)’;
x0 = x(:,end);
u0 = [u(1,end)*ones(1, n_df_ctrl);
u(2,end)*ones(1, n_df_ctrl);
u(3,end)*ones(1, n_df_ctrl);
u(4,end)*ones(1, n_df_ctrl);
u(5,end)*ones(1, n_df_ctrl);
u(6,end)*ones(1, n_df_ctrl)];
traj=[traj,x];
SENSVS = [];
for j=1:n_sensors
meas(j,:) = interpn(XGRID,YGRID,TGRID,PGRID1,PGRID2, ...

PGRID3,SIMS,x(2*j-1,:),x(2*j,:), ...
timeopt, reala*ones(length(timeopt),1)’, ...
realb*ones(length(timeopt),1)’, ...
realc*ones(length(timeopt),1)’,’cubic’);

end
meas = meas + 0.0001*randn(n_sensors,length(meas));

timeest=[timeest timeopt(:,2:end)];
measest=[measest meas(:,2:end)];
xest=[xest x(:,2:end)];

a = paramestimatenonlin(measest, xest, timeest, ...
XGRID, YGRID, TGRID, PGRID1, PGRID2, PGRID3, ...
SIMS, n_sensors, [a,b,c]);

b = a(2);
c = a(3);
a = a(1);
param=[param,[a;b;c]];

end
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Table C.8 sys_init.m file for RIOTS used in Chap. 5

function neq = sys_init(params)

global SENSVS

if isempty(params)
n_sensors = 3;
n_controls = 2 * n_sensors;
n_parameters = size(SENSVS, 4);
n_states = 2 * n_sensors + n_parameters ...

* (n_parameters + 1) / 2;
neq = [1 n_states; 2 n_controls ];

else
global sys_params
sys_params = params;

end
end

Table C.9 sys_h.m file for RIOTS used in Chap. 5

function xdot = sys_h(neq, t, x, u)

global sys_params IND_TRIANGLE

n_sensor_dynamics = neq(2);
n_sensors = round(neq(2) / 2);
n_parameters = round(sqrt(IND_TRIANGLE(end)));

x1 = x(1: 2: n_sensor_dynamics - 1);
x2 = x(2: 2: n_sensor_dynamics);
g = interp_sensitivities(x1, x2, t, neq(4));
a = zeros(n_parameters, n_parameters);
for loop = 1: n_sensors

a = a + g(loop, :)’ * g(loop, :);
end

xdot = [u; a(IND_TRIANGLE)];
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Table C.10 sys_g.m file for RIOTS used in Chap. 5

function J = sys_g(neq, t, x0, xf)

global sys_params IND_TRIANGLE

n_sensor_dynamics = neq(2);
n_parameters = round(sqrt(IND_TRIANGLE(end)));

F_NUM = neq(5);

if F_NUM == 1
fim = zeros(n_parameters, n_parameters);
fim(IND_TRIANGLE) = xf(n_sensor_dynamics + 1: end);
fim = fim’;
fim(IND_TRIANGLE) = xf(n_sensor_dynamics + 1: end);
J = -log(det(fim));

else
error(’Reference to a non-existing ...

constraint on initial/final state’)
end

Table C.11 sys_l.m file for RIOTS used in Chap. 5

function z = l(neq,t,x,u)

global sys_params WGHT_CTRL

F_NUM = neq(5);

if F_NUM == 1
z = 0;

else
error(’Reference to a non-existing state constraint’)

end
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Table C.12 interp_sensitivities.m file for RIOTS used in Chap. 5

function g = interp_sensitivities(x, y, t, k)
global TGRID XGRID YGRID SENSVS
wr = (t - TGRID(k)) / (TGRID(k + 1) - TGRID(k));
wl = 1.0 - wr;
g = zeros(length(x), size(SENSVS, 4));
for loop = 1: size(SENSVS, 4)

g(:, loop) = wl * interp2(XGRID, YGRID, ...
SENSVS(:, :, k, loop), x, y, ’*cubic’) ...

+ wr * interp2(XGRID, YGRID, ...
SENSVS(:, :, k + 1, loop), x, y, ’*cubic’);

end

Table C.13 paramestimatenonlin.m file for RIOTS used in Chap. 5

function a = paramestimatenonlin(meas, x, time, XGRID, ...
YGRID, TGRID, PGRID1, PGRID2, PGRID3, SIMS, n_sensors, a)

options = optimset(’TolFun’,1e-4,’MaxTime’,500);
a = lsqnonlin(@myfun ,a ,0 ,1 ,options);

function F = myfun(a)

for j = 1:n_sensors
est = interpn(XGRID,YGRID,TGRID,PGRID1,PGRID2,PGRID3, ...

SIMS, x(2*j-1,:),x(2*j,:),time, ...
a(1)*ones(length(time),1)’, ...
a(2)*ones(length(time),1)’, ...
a(3)*ones(length(time),1)’,’cubic’);

F(j) = sum(meas(j,:)-est);
end

end

end

C.3 Fractional-Order Trajectory Optimization

In this section, we provide the file required to simulate the example given in Chap. 7.
Table C.14 gives the main MATLAB program used to define the initial condi-
tions of the problem and call the RIOTS function. Table C.15 gives the function
sys_init.m, which provides information about the dimensions of the optimiza-
tion problem. Table C.16 gives the function sys_h.m in which the dynamic model
is defined. Table C.17 gives the function sys_g.m, which is used to compute the
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endpoint cost function. Table C.18 gives the function sys_l.m, which is used to
compute values for the integrands of cost functions. Table C.19 gives the function
interp_sensitivities.m, which is used to estimate the value of the sensi-
tivity coefficients at a given location.

Table C.14 Main function to call RIOTS used in Chap. 7.

clear all
load sensitivities
load res09.mat

global WGHT_CTRL A b c

n=5;
A = res{n}.A;
b = res{n}.b;
c = res{n}.c;
sys=ss(A,b,c,0);

n_sensors = 3;
n_ctrls = 2 * n_sensors * length(c’);
WGHT_CTRL = 2.0 / (2 * n_sensors);
n_sensor_dynamics = n_ctrls;
u_min = -0.7;
u_max = 0.7;
s0 = 0.1*[1;zeros(length(c’)-1,1)] ...

/ (c*[1;zeros(length(c’)-1,1)]);
s0 = [s0 ; 0.2*c’/(c*c’)];
s0 = [s0 ; 0.1*c’/(c*c’)];
s0 = [s0 ; 0.5*c’/(c*c’)];
s0 = [s0 ; 0.1*c’/(c*c’)];
s0 = [s0 ; 0.8*c’/(c*c’)];
s_lower = zeros(n_sensor_dynamics, 1);
s_upper = ones(n_sensor_dynamics, 1);
n_df_ctrl = length(TGRID) + 1;
u0 = [0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl);

0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl);
0.4*ones(1, n_df_ctrl); 0.0*ones(1, n_df_ctrl)];

n_params = size(SENSVS, 4);
n_additional_state_vars = n_params * (n_params + 1) / 2;
x0 = [s0; zeros(n_additional_state_vars, 1)];
x0_lower = [s_lower; zeros(n_additional_state_vars, 1)];
x0_upper = [s_upper; zeros(n_additional_state_vars, 1)];
fixed = [zeros(n_sensor_dynamics, 1); ...

ones(n_additional_state_vars, 1)];
X0 = [x0, fixed, x0_lower, x0_upper];
[u, x, crit_val] = riots(X0, u0, TGRID, ...

u_min * ones(2 * n_sensors, 1), ...
u_max * ones(2 * n_sensors, 1), ...
[], [100, 0, 1], 4);
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Table C.15 sys_init.m file for RIOTS used in Chap. 7.

function neq = sys_init(params)

global SENSVS c

if isempty(params)
n_sensors = 3;
n_controls = 2 * n_sensors;
n_parameters = size(SENSVS, 4);
n_states = 2 * n_sensors * length(c’) ...
+ n_parameters * (n_parameters + 1) / 2;
neq = [1 n_states; 2 n_controls ];

else
global sys_params
sys_params = params;

end

Table C.16 sys_h.m file for RIOTS used in Chap. 7.

function xdot = sys_h(neq, t, x, u)

global sys_params IND_TRIANGLE A b c

n_sensor_dynamics = neq(2);
n_sensors = round(neq(2) / 2);
n_parameters = round(sqrt(IND_TRIANGLE(end)));

x1 = x(1: length(c’));
x2 = x(length(c’) + 1 : 2 * length(c’));
x3 = x(2 * length(c’) + 1 : 3 * length(c’));
x4 = x(3 * length(c’) + 1 : 4 * length(c’));
x5 = x(4 * length(c’) + 1 : 5 * length(c’));
x6 = x(5 * length(c’) + 1 : 6 * length(c’));
a = zeros(n_parameters, n_parameters);
g = interp_sensitivities(c*x1, c*x2, t, neq(4));
a = a + g’ * g;
g = interp_sensitivities(c*x3, c*x4, t, neq(4));
a = a + g’ * g;
g = interp_sensitivities(c*x5, c*x6, t, neq(4));
a = a + g’ * g;
state1 = A*x1 + b*u(1);
state2 = A*x2 + b*u(2);
state3 = A*x3 + b*u(3);
state4 = A*x4 + b*u(4);
state5 = A*x5 + b*u(5);
state6 = A*x6 + b*u(6);
xdot = [state1 ; state2 ; state3 ; state4 ; ...

state5 ; state6 ; a(IND_TRIANGLE)];
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Table C.17 sys_g.m file for RIOTS used in Chap. 7.

function J = sys_g(neq, t, x0, xf)

global sys_params IND_TRIANGLE c

n_sensor_dynamics = neq(2);
n_parameters = round(sqrt(IND_TRIANGLE(end)));

F_NUM = neq(5);

if F_NUM == 1
fim = zeros(n_parameters, n_parameters);
fim(IND_TRIANGLE) = xf(n_sensor_dynamics ...

* length(c’) + 1: end);
fim = fim’;
fim(IND_TRIANGLE) = xf(n_sensor_dynamics ...

* length(c’) + 1: end);
J = -log(det(fim))

else
error(’Reference to a non-existing ...
constraint on initial/final state’)

end

Table C.18 sys_l.m file for RIOTS used in Chap. 7

function z = l(neq,t,x,u)

global sys_params WGHT_CTRL

F_NUM = neq(5);

if F_NUM == 1
z = 0;

else
error(’Reference to a non-existing state constraint’)

end

Table C.19 interp_sensitivities.m file for RIOTS used in Chap. 7

function g = interp_sensitivities(x, y, t, k)
global TGRID XGRID YGRID SENSVS
wr = (t - TGRID(k)) / (TGRID(k + 1) - TGRID(k));
wl = 1.0 - wr;
g = zeros(length(x), size(SENSVS, 4));
for loop = 1: size(SENSVS, 4)

g(:, loop) = wl * interp2(XGRID, YGRID, ...
SENSVS(:, :, k, loop), x, y, ’*cubic’) ...

+ wr * interp2(XGRID, YGRID, ...
SENSVS(:, :, k + 1, loop), x, y, ’*cubic’);

end
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