Chongbin Zhao

Bruce E. Hobbs
Alison Ord

LECTURE NOTES IN EARTH SCIENCES

Fundamentals
of Computational

Geoscience

Numerical Methods and Algorithms

@ Springer



Lecture Notes in Earth Sciences

Editors:

J. Reitner, Gottingen
M. H. Trauth, Potsdam
K. Stiiwe, Graz

D. Yuen, USA

Founding Editors:

G. M. Friedman, Brooklyn and Troy
A. Seilacher, Tiibingen and Yale

122



Chongbin Zhao - Bruce E. Hobbs - Alison Ord

Fundamentals
of Computational
Geoscience

Numerical Methods and Algorithms

@ Springer



Dr. Chongbin Zhao Dr. Bruce E. Hobbs

Computational Geosciences School of Earth and Geographical Sciences
Research Centre The University of Western Australia
Central South University Perth, Australia

Changsha, China Bruce.Hobbs @csiro.au

Chongbin.zhao @iinet.net.au

Dr. Alison Ord

School of Earth and Geographical Sciences
The University of Western Australia

Perth, Australia

and CSIRO Division of

Exploration and Mining

Perth, Australia

alison.ord@csiro.au

ISBN 978-3-540-89742-2
DOI 10.1007/978-3-540-89743-9
Lecturer Notes in Earth Sciences ISSN 0930-0317

Library of Congress Control Number: 2008942068

(© Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations

are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

laws and regulations and therefore free for general use.
Cover design: deblik, Berlin

Printed on acid-free paper

987654321

springer.com

e-ISBN 978-3-540-89743-9



Acknowledgements

Dr Chongbin Zhao expresses his sincere thanks to his wife, Ms Peiying Xu, for
her persistent support and encouragement, without which it would be impossible
to write this monograph. We are very grateful to the Central South University for
financial support during writing this monograph. The partial work of this monograph
is also financially supported by the Natural Science Foundation of China (Grant
Nos: 10872219 and 10672190). We express our thanks to the anonymous referees
for their valuable reviews of this monograph.



Preamble

In recent years, numerical methods and computational simulations provide a new
way to deal with many geoscience problems, for which the traditionally-used the-
oretical and experimental methods may not be valid as a result of the large time
and length scales of the problems themselves. This enables many hitherto unsolv-
able geoscience problems to be solved using numerical methods and computational
simulations. In particular, through wide application of computational science to
geoscience problems, a new discipline, namely computational geoscience, has been
established. However, because of the extremely large length and time scales, the
numerical simulation of a real geological world also provides many challenging
problems for researchers involved in the field of computational science. For this
reason, multidisciplinary knowledge and expertise from mathematicians, physicists,
chemists, computational scientists and geoscientists are required in the process of
establishing the research methodology of computational geoscience.

Since computational geoscience is an amalgamation of geoscience and com-
putational science, theoretical analysis and computational simulation are two of its
core members. On the theoretical analysis front, we need: (1) to measure and gather
data and information through traditional geoscience observations and measurements
such as those widely used in geology, geophysics, geochemistry and many other
scientific and engineering fields; (2) to conduct research to find the key factors and
processes that control the geoscience problem under consideration; (3) to establish
the theoretical foundations of the geoscience problem through formulating a set
of partial differential equations on the basis of fundamental scientific principles;
(4) to investigate the solution characteristics of these partial differential equations
using rigorous mathematical treatments. On the computational simulation front, we
need: (1) to develop advanced numerical methods, procedures and algorithms for
simulating multi-scale and multi-process aspects of the geoscience problem on the
basis of contemporary computational science knowledge and expertise; (2) to verify
computational codes established on the basis of these advanced numerical meth-
ods, procedures and algorithms through comparing numerical solutions with bench-
mark solutions; (3) to produce and validate numerical solutions of real geoscience
problems.

Owing to the broad nature of geoscience problems, computational geoscience
is at a developing stage. Nevertheless, under the stimulus of ever-increasing demand
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viii Preamble

for natural mineral resources, computational geoscience has achieved much in the
past decade, driven from the need to understand controlling mechanisms behind
ore body formation and mineralization in hydrothermal systems within the upper
crust of the Earth. In order to disseminate widely the existing knowledge of com-
putational geoscience, to promote extensively and fastly further development of the
computational geoscience, and to facilitate efficiently the broad applications of com-
putational geoscience, it is high time to publish a monograph to report the current
knowledge in a systematic manner. This monograph aims to provide state-of-the-
art numerical methods, procedures and algorithms in the field of computational
geoscience, based on the authors’ own work during the last decade. For this pur-
pose, although some theoretical results are provided to verify numerical ones, the
main focus of this monograph is on computational simulation aspects of this newly-
developed computational geoscience discipline. The advanced numerical methods,
procedures and algorithms contained in this monograph are also applicable to a
wide range of problems of other length-scales such as engineering length-scales.
To broaden the readership of this monograph, common mathematical notations are
used to describe the theoretical aspects of geoscience problems. This enables this
monograph to be used either as a useful textbook for postgraduate students or as
an indispensable reference book for computational geoscientists, mathematicians,
engineers and geoscientists. In addition, each chapter is written independently of
the remainder of the monograph so that readers may read the chapter of interest
separately.

In this monograph we use the finite element method, the finite difference
method and the particle simulation method as basic numerical methods for deal-
ing with geoscience problems. Not only have these three methods been well de-
veloped in the field of computational science, but also they have been successfully
applied to a wide range of small-scale scientific and engineering problems. Based
on these three methods, we have developed advanced numerical procedures and
algorithms to tackle the large-scale aspects of geoscience problems. The specific
geoscience problem under consideration is the ore body formation and mineraliza-
tion problem in hydrothermal systems within the upper crust of the Earth. Towards
this end, we present the advanced procedures and algorithms in this monograph
as follows: (1) Due to the important role that convective pore-fluid flow plays in
the controlling processes of ore body formation and mineralization, a progressive
asymptotic approach procedure is proposed to solve steady-state convective pore-
fluid flow problems within the upper crust of the Earth. (2) To consider both the
thermoelastic effect and the double diffusion effect, a consistent point-searching
interpolation algorithm is proposed to develop a general interface between two com-
mercial computer codes, Fluid Dynamics Analysis Package (FIDAP) and Fast La-
grangian Analysis of Continua (FLAC). This general interface allows a combination
use of the two commercial codes for solving coupled problems between medium
deformation, pore-fluid flow, heat transfer and reactive mass transport processes
that can occur simultaneously in hydrothermal systems. (3) To simulate mineral
dissolution/precipitation and metamorphic processes, a term splitting algorithm is
developed for dealing with fluid-rock interaction problems in fluid-saturated hy-



Preamble ix

drothermal/sedimentary basins of subcritical Zhao numbers, in which the chemical
dissolution fronts are stable during their propagation. Note that the Zhao number
is a dimensionless number that can be used to represent the geometrical, hydro-
dynamic, thermodynamic and chemical kinetic characteristics of a reactive trans-
port system in a comprehensive manner. The condition, under which a chemical
dissolution front in the fluid-saturated porous medium becomes unstable, can be
expressed by the critical value of this dimensionless number. (4) For a geochemical
system of critical and supercritical Zhao numbers, a segregated algorithm is pro-
posed for solving chemical-dissolution front instability problems in fluid-saturated
porous rocks. Thus, the morphological evolution of chemical dissolution fronts in
fluid-saturated porous media can be appropriately simulated. (5) To investigate the
effects of non-equilibrium redox chemical reactions on the mineralization patterns
in hydrothermal systems, a decoupling procedure is proposed for simulating flu-
ids mixing, heat transfer and non-equilibrium redox chemical reactions in fluid-
saturated porous rocks. (6) When thermal and chemical effects of intruded magma
are taken into account, an equivalent source algorithm is presented for simulating
thermal and chemical effects of intruded magma solidification problems. This algo-
rithm enables the moving boundary problem associated with magma solidification
to be effectively and efficiently solved using the fixed finite element meshes. (7) To
simulate spontaneous crack generation in brittle rocks within the upper crust of the
Earth, the particle simulation method is extended to solve spontaneous crack gener-
ation problems associated with faulting and folding in large length-scale geological
systems. The resulting cracks may be connected to form flow channels, which can
control ore body formation and mineralization patterns within the upper crust of the
Earth.

August 12, 2008 Chongbin Zhao
Bruce E. Hobbs
Alison Ord
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Nomenclature

The following symbols are commonly used with the attached definitions, unless
otherwise specified in the monograph.

R Acritical

ST as T RANOL

=
=
2\l

area of a finite element

species concentration

species concentration vector

non-zero constant

arbitrary constant

specific heat of pore-fluid

mass diffusivity

acceleration due to gravity

reference length

medium permeability

reference medium permeability in the horizontal direction
length of a problem domain

Lewis number

pressure

pressure vector

hydrostatic pressure

mass flux on the boundary of a finite element
heat flux on the boundary of a finite element
Rayleigh number

critical Rayleigh number

boundary length of a finite element
temperature

temperature vector

temporal variable

Darcy velocity in the x direction

Darcy velocity vector

Darcy velocity in the y direction

Darcy velocity in the z direction

spatial coordinates

Zhao number



XVi Nomenclature

Zh critical critical Zhao number

A thermal conductivity

Aeo reference thermal conductivity in the horizontal direction

1) porosity

W stream function

v shape function vector for the pressure of a finite element

00 reference density of pore-fluid

7 dynamic viscosity of pore-fluid

B thermal volume expansion coefficient of pore-fluid

o stress on the boundary of a finite element

o shape function vector for the temperature, species
concentration and Darcy velocity of a finite element

n permeability ratio of the underlying medium to its
overlying folded layer

L thermal conductivity ratio of the underlying medium to its
overlying folded layer

e penalty parameter associated with the penalty finite
element approach

Subscripts

f pertaining to pore-fluid

0 pertaining to reference quantities

Superscripts

e pertaining to equivalent quantities of a porous medium

e pertaining to quantities in a finite element level

* pertaining to dimensionless quantities

s pertaining to solid matrix



Chapter 1
Introduction

Geoscience is a fundamental natural science discipline dealing with the origin,
evolutionary history and behaviour of the planet Earth. As a result of its complicated
and complex nature, the Earth system not only provides the necessary materials and
environment for mankind to live, but also brings many types of natural disasters,
such as earthquakes, volcanic eruptions, tsunamis, floods and tornadoes, to mention
just a few. With the ever-increasing demand for improving our living standards, it
has been recognized that the existing natural resources will be exhausted in the near
future and that our living environments are, in fact, deteriorating. To maintain the
sustainable development of our living standards and the further improvement of our
living environments, an inevitable and challenging task that geoscientists are now
confronting is how accurately to predict not only the occurrences of these natural
disasters, but also the locations of large concealed natural resources in the deep
Earth. For this reason, geoscientists must study the processes, rules and laws, by
which the Earth system operates, instead of simply describing and observing geo-
science phenomena. Specifically, geoscientists need to make greater efforts in the
following aspects relevant to solving contemporary geoscience problems: (1) the
complicated and complex interactions between multi-scales and multi-processes
occurring in the solid Earth; (2) gather, accumulate and analyze the large amount
of information and data that are essential to understand each of the controlling pro-
cesses within the interior of the Earth using modern observation equipment, mea-
surement tools, experimental instruments and information processing techniques;
(3) the intimate interplay between the solid Earth, biosphere, hydrosphere and atmo-
sphere. It is this intimate interplay that controls the global behaviour of the Earth
system. As a result, geoscientists must adopt scientific and predictive methods rel-
evant to conduction of contemporary geoscience research, instead of simply using
the traditional descriptive methods.

Computational science is a modern technological science discipline dealing
with the development and application of numerical methods, procedures, algo-
rithms and other numerical techniques for delivering numerical solutions for com-
plicated and complex scientific and engineering problems. With the rapid advances
and developments of modern computer technology, applications of computa-
tional science have penetrated almost all engineering fields: from the topological

C. Zhao et al., Fundamentals of Computational Geoscience, 1
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2 1 Introduction

optimization of a tooth brush to that of a giant aircraft; from the collapse simulation
of a concrete beam to that of a huge double curvature arch dam; from the optimal
layout design of a pipeline to that of a large-scale underground tunnel, to name just
a few. Since computational science is a comprehensive discipline bringing geology,
geophysics, geochemistry, mathematics, physics, chemistry, biology and numerical
techniques together, it can be used effectively and efficiently to simulate the pro-
cesses involved in complicated scientific and engineering problems in a scientific
and predictive manner. In this sense, computational science is a natural supplier to
meet the demands of geoscientists in solving contemporary geoscience problems.
It is this demand and supply relationship that has created a brand new discipline,
computational geoscience, in the past decade (Zhao et al. 2008a).

1.1 Characteristics of Computational Geoscience

Computational geoscience is a newly-developed discipline, which has been estab-
lished through applying the well-developed computational science discipline to
solve geoscience problems occurring in nature. This means that the computational
geoscience discipline is of multi-disciplinary nature crossing many fields of science.
The ultimate aim of computational geoscience is to deal with the origin, evolution
and behaviour of the Earth system in a predictive, scientific manner. Under the stim-
ulus of an ever-increasing demand for natural mineral resources, computational geo-
science has achieved, in the past decade, considerable development driven from the
need to understand the controlling mechanisms behind ore body formation and min-
eralization in hydrothermal and igneous systems within the upper crust of the Earth
(Garven and Freeze 1984, Raffensperger and Garven 1995, Doin et al. 1997, Jiang
et al. 1997, Zhao et al. 1997a, 1998a, Oliver et al. 1999, 2001, Zhao et al. 1999a,
2000a, Hobbs et al. 2000, Gow et al. 2002, Ord et al. 2002, Schaubs and Zhao
2002, Sorjonen-Ward et al. 2002, Zhao et al. 2002a, 2003a, McLellan et al. 2003,
Ord and Sorjonen-Ward 2003, Liu et al. 2005, Sheldon and Ord 2005, Zhao et al.
2005a, 20064, b, 2007a, 2008a, Zhang et al. 2007, Murphy et al. 2008). As aresult, a
fundamental and theoretical framework for the computational geoscience discipline
has been established. This enables many hitherto unsolvable geoscience problems
to be solved, both theoretically and practically, using the newly-developed research
methodology associated with computational geoscience. For instance, some typi-
cal examples of applying the newly-developed research methodology to deal with
geoscience problems are as follows: (1) the convective flow of pore-fluid within the
upper crust of the Earth (Phillips 1991, Nield and Bejan 1992, Zhao et al. 1997a,
1998b, 1999b, 2000b, 2001b, Lin et al. 2003), (2) ore body formation and mineral-
ization within hydrothermal systems (Zhao et al. 1998a, 1999c, 2000c, Gow et al.
2002, Ord et al. 2002, Zhao et al. 2002b, 2003b, 2006c), (3) pore-fluid flow focus-
ing within permeable faults (Obdam and Veling 1987, Zimmerman 1996, Zhao et
al. 1999d, 2006d, e, 2008b, ¢), (4) fluid-rock/chemical interaction associated with
ore body formation processes (Steefel and Lasaga 1994, Zhao et al. 2001c¢, 2008d,
e, f) and (5) convective flow of pore-fluid within three-dimensional permeable faults
(Zhao et al. 2003c, d, 2004, 2005b, Yang 2006).
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1.2 Basic Steps Associated with the Research Methodology
of Computational Geoscience

Generally speaking, the research methodology of computational geoscience is a
comprehensive research methodology, which is formed by combining field obser-
vation, theoretical analysis, numerical simulation and field validation. The pri-
mary aim of using this research methodology is to investigate the dynamic pro-
cesses and mechanisms involved in an observed geological phenomenon, rather than
to describe the observed geological phenomenon itself. The appropriate research
methodology of computational geoscience is usually comprised of the following
four main steps: (1) the establishment of a conceptual model for a given geoscience
problem; (2) the establishment of a mathematical model for the given problem; (3)
the construction of a numerical simulation model for the given problem and (4) the
graphical display of the numerical results obtained from the numerical simulation.

1.2.1 The Conceptual Model of a Geoscience Problem

Based on extensive data and information obtained from field and laboratory inves-
tigations of a geological phenomenon, a conceptual model is established, which
reflects the geometrical architecture and main processes associated with the phe-
nomenon. This is the key step in the process of using the research methodology of
computational geoscience to solve a problem. Due to the multiple processes and
multiple scales involved in a typical geoscience problem, only the major control-
ling dynamic processes and mechanisms associated with the problem need to be
considered during the initial establishment of the conceptual model. Since other
unimportant, or at least less critical, processes and factors are neglected, the initial
conceptual model of the problem is somewhat simplified. This conceptual model is
used to represent the main characteristics of the real geoscience problem. As under-
standing grows more detail may be added if necessary.

The fundamental principle involved in establishing the conceptual model for the
problem is that the details of the conceptual model should depend on both the length-
scale and time-scale of the problem. The conceptual model cannot be over simpli-
fied, since then it cannot be used effectively to reflect the main dynamic processes
and mechanisms of the real problem. On the other hand, the conceptual model can-
not be over complicated, for then unnecessary problems for both the theoretical anal-
ysis and the numerical simulation may arise and it may become difficult to unravel
which parts of the description of the problem are important.

1.2.2 The Mathematical Model of a Geoscience Problem

Using three fundamental principles, namely the conservation of mass, the conser-
vation of momentum and the conservation of energy, as well as the related physical
and chemical laws (Bear 1972, Bear and Bachmat 1990, Phillips 1991, Nield and
Bejan 1992, Zhao et al. 1997a), the conceptual model for the given problem can be



4 1 Introduction

translated into a mathematical model, which is usually comprised of a set of partial
differential equations. Due to the complex and complicated nature of these equa-
tions, it is very difficult, if not impossible, to find analytical solutions. Alternatively,
numerical simulation methods need to be used to find approximate solutions for the
problem.

To ensure the accuracy and reliability of the numerical simulation solution, it is
necessary to investigate the solution characteristics of the partial differential equa-
tions through a theoretical analysis. For example, some theoretical methods can be
used to investigate the solution singularity and multiple solution characteristics of
the partial differential equations, as well as the conditions under which such char-
acteristics can occur. If possible, a benchmark model should be established for a
particular kind of geoscience problem. The geometrical nature and boundary con-
ditions of this benchmark model can be further simplified, so that the theoretical
solution, known as the benchmark solution, can be obtained. This benchmark solu-
tion is valuable and indispensable for the verification of both the numerical algo-
rithm and the computer code, which are used to solve the problem that is generally
characterised by a complicated geometrical shape and complex material properties.
It must be pointed out that, due to the approximate nature of a numerical method,
the theoretical investigation of the solution characteristics associated with the partial
differential equations of a problem plays an important role in applying the research
methodology of computational geoscience to solve real problems. This is the key
step to ensure the accuracy and reliability of the numerical solution obtained from
the numerical simulation of the problem.

1.2.3 The Numerical Simulation Model of a Geoscience Problem

From a mathematical point of view, the numerical simulation model of a geoscience
problem can be also called the discretized type of mathematical model. Both the
finite element method and the finite difference method are commonly-used dis-
cretization methods for numerical simulation of geoscience problems (Zienkiewicz
1977, Zhao et al. 1998a, 2006a). The basic idea behind these numerical methods is
to translate the partial differential equations used to describe the geoscience problem
in a continuum system, into the corresponding algebraic equations in a discretized
system, which in turn is usually comprised of a large number of elements. Through
solving the resulting algebraic equations of the discretized system, a numerical solu-
tion can be obtained for the problem.

Compared with an engineering problem, a geoscience problem commonly has
both large length-scale and large time-scale characteristics. The length-scale of a
geoscience problem is commonly measured in either tens of kilometers or even
hundreds of kilometers, while the time-scale of a typical problem is often measured
in several million years or even several tens of million years. In addition, most geo-
science problems are coupled across both multiple processes and multiple scales.
Due to these significant differences between engineering problems and geoscience
problems, commercial computer programs and related algorithms, which are mainly
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designed for solving engineering problems, cannot be directly used to solve geo-
science problems without modification. For this reason, it is necessary either to
develop new computer programs for solving geoscience problems or to modify the
existing commercial computer programs, originally designed for solving engineer-
ing problems, so as to be suitable for these problems.

It is noted that the solution reliability of a geoscience problem is strongly depen-
dent on algorithm convergence, algorithm stability, mesh shape, time-step and other
factors. To ensure the accuracy and reliability of the computational simulation result
for a problem, the above-mentioned factors need to be carefully considered in the
process of establishing the computational simulation model. A newly-developed
computer program needs to be verified through the corresponding benchmark prob-
lem before it is used to solve any real geoscience problems. Otherwise, the reliabil-
ity of the numerical solution obtained from a newly-developed computer program
cannot be guaranteed.

1.2.4 Graphical Display of the Numerical Simulation Results

The numerical results obtained from the computer simulation of a geoscience prob-
lem are expressed as a large amount of data, which can be viewed using modern
technologies of computer graphical display. By comparing the numerical solution
with field observations of the geological phenomenon, the correctness of the estab-
lished conceptual model for the geoscience problem can be tested. Thus the research
methodology of computational geoscience is firstly established on the basis of field
observations, and then goes through theoretical analysis and computational simula-
tion. Finally the results must be tested through comparison with existing or new field
observations. This fundamental research methodology requires that the recognition
of a natural phenomenon start from field observations, and be completed through
further tests arising from field observations, resulting in a circular iteration.

If the numerical solution is not compatible with the field observations, then the
established conceptual model of the problem is questionable and therefore needs
to be modified through further refinement of the natural data. On the contrary, if
the numerical solution is in accord with the field observations, then the established
conceptual model of the geoscience problem is a reasonable interpretation of what
may have occurred in nature. In this case, the established conceptual model of the
geoscience problem can be further used to investigate the fundamental rules asso-
ciated with this kind of problem. In this regard, the research methodology of com-
putational geoscience can provide an effective scientific-judging method for solving
many controversial problems in the field of geoscience.

1.3 The Contextual Arrangements of this Monograph
In this monograph we use the finite element method, the finite difference method

and the particle simulation method as basic numerical methods for dealing with
geoscience problems. Based on these three methods, we have developed advanced
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numerical procedures and algorithms to tackle the large-scale aspects of geoscience
problems. The geoscience problems to be considered are closely related to ore body
formation and mineralization in hydrothermal systems within the upper crust of the
Earth. The arrangements of the forthcoming parts of this monograph are as fol-
lows: In Chap. 2, a progressive asymptotic approach procedure is proposed to solve
steady-state convective pore-fluid flow problems within the upper crust of the Earth.
In combination with the finite element method, this procedure has been applied to
simulate convective pore-fluid flow that often plays an important role in ore body
formation and mineralization. In Chap. 3, a consistent point-searching interpola-
tion algorithm is proposed to develop a general interface between two commercial
computer codes, Fluid Dynamics Analysis Package (FIDAP, Fluid Dynamics Inter-
national, 1997) and Fast Lagrangian Analysis of Continua (FLAC, Itasca Consulting
Group, 1995). With this general interface, the two commercial codes have been used,
in an iterative and alternative manner, to solve coupled problems between medium
deformation, pore-fluid flow, heat transfer and reactive mass transport processes in
hydrothermal systems. In Chap. 4, a term splitting algorithm is developed for deal-
ing with fluid-rock interaction problems that are closely associated with mineral
dissolution and precipitation as well as metamorphic processes in fluid-saturated
hydrothermal/sedimentary basins of subcritical Zhao numbers. In this case, the
chemical dissolution fronts are stable during their propagation within the reactive
mass transport system. In contrast, a segregated algorithm is proposed, in Chap. 5,
for solving chemical-dissolution front instability problems in fluid-saturated porous
rocks of critical and supercritical Zhao numbers. In this situation, the morphologi-
cal evolution of chemical dissolution fronts in fluid-saturated porous media has been
appropriately simulated. In Chap. 6, a decoupling procedure is proposed for simu-
lating fluids mixing, heat transfer and non-equilibrium redox chemical reactions in
fluid-saturated porous rocks. The proposed procedure has been applied to investi-
gate the effects of non-equilibrium redox chemical reactions on the mineralization
patterns in hydrothermal systems. In Chap. 7, an equivalent source algorithm is pre-
sented for simulating thermal and chemical effects of intruded magma solidification
problems. This algorithm has been used to simulate effectively and efficiently the
thermal and chemical effects of intruded magma in hydrothermal systems. In Chap.
8, the particle simulation method is extended to solve spontaneous crack generation
problems in brittle rocks within the upper crust of the Earth. The extended particle
method has been applied to simulate spontaneous crack generation associated with
faulting and folding in large length-scale geological systems. Finally, some conclu-
sions are given at the end of the monograph.



Chapter 2

A Progressive Asymptotic Approach Procedure
for Simulating Steady-State Natural Convective
Problems in Fluid-Saturated Porous Media

In a fluid-saturated porous medium, a change in medium temperature may lead to a
change in the density of pore-fluid within the medium. This change can be consid-
ered as a buoyancy force term in the momentum equation to determine pore-fluid
flow in the porous medium using the Oberbeck-Boussinesq approximation model.
The momentum equation used to describe pore-fluid flow in a porous medium is
usually established using Darcy’s law or its extensions. If a fluid-saturated porous
medium has the geometry of a horizontal layer, and is heated uniformly from the
bottom of the layer, then there exists a temperature difference between the top
and bottom boundaries of the layer. Since the positive direction of the tempera-
ture gradient due to this temperature difference is opposite to that of the gravity
acceleration, there is no natural convection for a small temperature gradient in the
porous medium. In this case, heat energy is solely transferred from the high tem-
perature region (the bottom of the horizontal layer) to the low temperature region
(the top of the horizontal layer) by thermal conduction. However, if the temperature
difference is large enough, it may trigger natural convection in the fluid-saturated
porous medium. This problem was first treated analytically by Horton and Rogers
(1945) as well as Lapwood (1948), and is often called the Horton-Rogers-Lapwood
problem.

This kind of natural convection problem has been found in many geoscience
fields. For example, in geoenvironmental engineering, buried nuclear waste and
industrial waste in a fluid-saturated porous medium may generate heat and result
in a temperature gradient in the vertical direction. If the Rayleigh number, which
is directly proportional to the temperature gradient, is equal to or greater than the
critical Rayleigh number, natural convection will take place in the porous medium,
so that the groundwater may be severely contaminated due to the pore-fluid flow cir-
culation caused by the natural convection. In geophysics, there exists a vertical tem-
perature gradient in the Earth’s crust. If this temperature gradient is large enough,
it will cause regional natural convection in the Earth’s crust. In this situation, the
pore-fluid flow circulation due to the natural convection can dissolve soluble min-
erals in some part of a region and carry them to another part of the region. This is
the mineralization problem closely associated with geophysics and geology. Since a
natural porous medium is often of a complicated geometry and composed of many

C. Zhao et al., Fundamentals of Computational Geoscience, 7
Lecture Notes in Earth Sciences 122, DOI 10.1007/978-3-540-89743-9_2,
© Springer-Verlag Berlin Heidelberg 2009
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different materials, numerical methods are always needed to solve the aforemen-
tioned problems.

From the mathematical point of view, the Horton-Rogers-Lapwood problem pos-
sesses a bifurcation. The linear stability theory based on the first-order perturbation
is commonly used to solve this problem analytically and numerically (Nield 1968,
Palm et al. 1972, Caltagirone 1975, 1976, Combarnous and Bories 1975, Buretta
and Berman 1976, McKibbin and O’Sullivan 1980, Kaviany 1984, Lebon and Cloot
1986, Pillatsis et al. 1987, Riley and Winters 1989, Islam and Nandakumar 1990,
Phillips 1991, Nield and Bejan 1992, Chevalier et al. 1999). However, Joly et al.
(1996) pointed out that: “The linear stability theory, in which the nonlinear term
of the heat disturbance equation has been neglected, does not describe the ampli-
tude of the resulting convection motion. The computed disturbances are correct
only for infinitesimal amplitudes. Indeed, even if the form of convective motion
obtained for low supercritical conditions is often quite similar to the critical distur-
bance, the nonlinear term may produce manifest differences, especially when strong
constraints, such as impervious or adiabatic boundaries, are considered.” Since it is
the amplitude and the form of natural convective motion that significantly affects or
dominates the contaminant transport and mineralization in a fluid-saturated porous
medium, there is a definite need for including the full nonlinear term of the energy
equation in the finite element analysis.

From the finite element analysis point of view, the direct inclusion of the full
nonlinear term of the energy equation in the steady-state Horton-Rogers-Lapwood
problem would result in a formidable difficulty. The finite element method needs
to deal with a highly nonlinear problem and often suffers difficulties in establish-
ing the true non-zero velocity field in a fluid-saturated porous medium because the
Horton-Rogers-Lapwood problem always has a zero solution as one possible solu-
tion for the velocity field of the pore-fluid. If the velocity field of the pore-fluid
used at the beginning of an iteration method is not chosen appropriately, then the
resulting finite element solution always tends to zero for the velocity field in a
fluid-saturated porous medium. Although this difficulty can be circumvented by
turning a steady-state problem into a transient one (Trevisan and Bejan 1987), it
is often unnecessary and computationally inefficient to obtain a steady-state solu-
tion from solving a transient problem. Therefore, it is highly desirable to develop
a numerical procedure to directly solve the steady-state Horton-Rogers-Lapwood
problem. For this reason, a progressive asymptotic approach procedure has been
developed in recent years (Zhao et al. 1997a, 1998a). The developed progressive
asymptotic approach procedure is based on the concept of an asymptotic approach,
which was previously and successfully applied to some other fields of the finite ele-
ment method. For instance, the h-adaptive mesh refinement (Cook et al. 1989) is
based on the asymptotic approach concept and can produce a satisfactory solution
with the progressive reduction in the size of finite elements used in the analysis.
The same asymptotic approach concept was also employed to obtain asymptotic
solutions for natural frequencies of vibrating structures in a finite element analysis
(Zhao and Steven 1996a, b, c). To solve the steady-state Horton-Rogers-Lapwood
problem with the full nonlinear term of the energy equation included in the finite
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element analysis, the asymptotic approach concept needs to be combined with the
finite element method in a different fashion (Zhao et al. 1997a).

2.1 Governing Equations of the Problem

For a two-dimensional fluid-saturated porous medium, if Darcy’s law is used to
describe pore-fluid flow and the Oberbeck-Boussinesq approximation is employed
to describe a change in pore-fluid density due to a change in pore-fluid temperature,
the governing equations of a natural convection problem, known as the steady-state
Horton-Rogers-Lapwood problem (Nield and Bejan 1992, Zhao et al. 1997a), for
incompressible pore-fluid can be expressed as

du dv

— 4+ —=0, 2.1
P + 3y 2.1
K, oP
u=—\|—7-+pr8 ), (2.2)
7 ox
K, oP
= Y . 2.3
v P ( 3y + pfg)> (2.3)
8T+ oT _, a2T+k 3T (2.4)
Procp\ X Y ay ) T ax? Yoy’ ’
pr = pyoll — Br(T — Ty)l, (2.5
)‘ex = ¢)\ﬁc + (1 - ¢))\'SX7 )\ey = ¢)"fy + (1 - ¢)}ny7 (26)

where u and v are the horizontal and vertical velocity components of the pore-fluid in
the x and y directions respectively; P is the pore-fluid pressure; T is the temperature
of the porous material; K, and K, are the permeabilities of the porous material in
the x and y directions respectively; u is the dynamic viscosity of the pore-fluid; p is
the density of the pore-fluid; prq and Ty are the reference density and temperature;
Ay and A, are the thermal conductivities of the pore-fluid and rock mass in the x
direction; A f, and A, are the thermal conductivities of the pore-fluid and rock mass
in the y direction; ¢, is the specific heat of the pore-fluid; g, and g, are the gravity
acceleration components in the x and y directions; ¢ and B are the porosity of the
porous material and the thermal volume expansion coefficient of the pore-fluid.

It is noted that Egs. (2.1), (2.2), (2.3) and (2.4) are derived under the assumption
that the porous medium considered is orthotropic, in which the y axis is upward in
the vertical direction and coincides with the principal direction of medium perme-
ability as well as that of medium conductivity.
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In order to simplify Eqgs. (2.1), (2.2), (2.3) and (2.4), the following dimensionless
variables are defined:

T —T,

* X * y *
==, ==, T = , 2.7
YT H YT H AT @7
Hproc Hproc K c
* pfOp , U*Z pf()p , P*: hpf() p(P_P()), (28)
Ae0 AeO Hheo
K K A Aey
K;(:K—X, K;;:K—y, )":x: )\‘SX’ )\':y:)\‘ﬁ’ (29)
h h e0 e0

where x* and y* are the dimensionless coordinates; u* and v* are the dimensionless
velocity components in the x and y directions respectively; P* and T* are the dimen-
sionless excess pressure and temperature; K, is a reference medium permeability
coefficient in the horizontal direction; A, is a reference conductivity coefficient of
the porous medium; AT = Tpoom — T is the temperature difference between the
bottom and top boundaries of the porous medium; H is a reference length and Py is
the static pore-fluid pressure.

Substituting the above dimensionless variables into Egs. (2.1), (2.2), (2.3) and
(2.4) yields the following dimensionless equations:

ou*  Iv*
=0, 2.10
ax* + ay* ( )
uw =K: |- + RaT%e; |, (2.11)

ax*
Vv = Ky — ay* + RaT e, (212)
L0T™ + L0T* " 92T* N 92T 2.13)
u % = —_— _— .
ax* 3y* ex ax*Z ey ay*Z

where e is a unit vector and e = e;i+e,j for a two-dimensional problem; Ra is the
Rayleigh number, defined in this particular case as

_ (procp)pro8BATKy H
:u*)‘-eO '

Ra

(2.14)
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2.2 Finite Element Formulation of the Problem

By considering the dimensionless velocity, pressure and temperature as basic vari-
ables, Egs. (2.10), (2.11), (2.12) and (2.13) can be discretized using the conventional
finite element method (Zienkiewicz 1977, Zhao et al. 1997a). For a typical 4-node
quadrilateral element, the velocity, pressure and temperature fields at the elemental
level can be expressed as

u*(x*, y*) = " U, (2.15)
Vi, v ) =" Ve, (2.16)
P*x*, y) =w" P, (2.17)
T*(x*, y) =" T, (2.18)

where U¢, V¢, P¢ and T¢ are the column vectors of the nodal velocity, excess pres-
sure and temperature of the element; ¢ is the column vector of the interpolation
functions for the dimensionless velocity and temperature fields within the element;
W is the column vector of the interpolation functions for the excess pressure within
the element. For the 4-node quadrilateral element, it is assumed that ¢ is identical
to W in the following numerical analysis.

The global coordinate components within the element can be defined as

x* =NTX, y*=NTY, (2.19)

where X and Y are the column vectors of nodal coordinate components in the x and
y directions of the global coordinate system respectively; N is the column vector of
the coordinate mapping function of the element. Based on the isoparametric element
concept, the following relationships exist:

N, n) = @&, n) = ¥(E, n), (2.20)

where £ and n are the local coordinate components of the element.

Using the Galerkin weighted-residual method, Egs. (2.10), (2.11), (2.12) and
(2.13) can be expressed, with consideration of Egs. (2.15), (2.16), (2.17) and (2.18),
as follows:

g7 g7
/\1: ¢ UedA—i—/\IlLVedA:O, 2.21)
A Ox* A Oy*

aw’
/ 0’ Ut dA +f goK;‘a—Pe dA +/ @K*Rap” T¢ ejdA =0, (2.22)
A A x* A
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T

ow
/WT Ve dA+/¢K; o P dA+/¢K;Ra¢T T e2dA =0, (2.23)
A A y A

9 T 9 T 82 T 82 T
/(pu* lT‘*dAJr/ Py dA—/ oL T dA—/ 0N, 2 TA = 0.

A ax* A By* A ax* A ay*
(2.24)

Using the Green-Gauss theorem and the technique of integration by parts, the
terms involving the second derivatives in Eq. (2.24) can be rewritten as

2 T

R R e’ /‘
A T dA = — AF T¢ dA *n,dS =0, 2.25
//;w * dx*2 .//; ax* F 9x* + quxn (2.25)

82 T P 9 T
f 0l ST dA = - / LAPSNRLY T f 0qin,dS =0, (226)
A ay* A 0y* dy* s

where g} and g are the dimensionless heat fluxes on the element boundary of a unit
normal vector, n; A and S are the area and boundary length of the element.

Note that Egs. (2.21), (2.22), (2.23) and (2.24) can be expressed in a matrix form
as follows:

M 0 -BS —AST) [ U F
0 Me —BS —A° || ve Fe

0 E 0] T [T)G [ (227
ccc o0 o]|P 0

where U¢ and V¢ are the nodal dimensionless velocity vectors of the element in the
x and y directions respectively; T¢ and P¢ are the nodal dimensionless temperature
and pressure vectors of the element; A$, A;, BS, B; C¢, C;, E€ and M€ are the
property matrices of the element; Fy, F{ and G® are the dimensionless nodal load
vectors due to the dimensionless stress and heat flux on the boundary of the element.

These matrices and vectors can be derived and expressed as follows:

3 dp”
A§=/ ? krwlia, B =/¢K;‘Ra<pTe1dA, C;:/q/ LAWY
A Ox* A A Ox*
(2.28)
3 dg”
A® =[ "’K’:-I/TdA, B¢ =[<pKfRaq)Te2dA, c= | v ua,
) A 3)7* Y y A y y 8y*
(2.29)
a7 3 3
Dﬁ(u*)Z/W* LAVI V- :/ 50 2% a8, F :[o;“ 0ds,
A ax* A4 0x* ©ox* :

(2.30)
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g7 9o _ d
D:@*):/(pu* LDV =/ P 2% A, F;:/a; 0dS,
: i i .

ox* y ay* ey ay*
(2.31)
B = DY)+ DS L4156 = - [geas. @3
: N
H Kups
M = f @' dA, q" = q, L L (2.33)
A AT Ao Uheo

where ¢ is the shape function vector for the temperature and velocity components
of the element; W is the shape function vector for the pressure of the element; o and
q are the stress and heat flux on the boundary of the element; A and S are the area
and boundary length of the element.

It is noted that since the full nonlinear term of the energy equation in the Horton-
Rogers-Lapwood problem is considered in the finite element analysis, matrix E€ is
dependent on the velocity components of the element. Thus, a prediction for the ini-
tial velocities of an element is needed to have this matrix evaluated. This is the main
motivation for proposing a progressive asymptotic approach procedure in the next
section.

From the penalty finite element approach (Zienkiewicz 1977), the following
equation exists:

C;U° + C;Ve = —eM,P". (2.34)
Equation (2.34) can be rewritten as
1
P¢ = ——M, ' (C{U* + C5V°). (2.35)
e

Substituting Eq. (2.35) into Eq. (2.27) yields the following equation in the ele-
mental level:

e _Be Ue Fe
where
—e 1
Q=M +—A°M;)'(C*), (2.37)
&
—e [Me 0 U® F®
M:[ ] Ue:{ } Fe:{ } (2.38)
0 M F A\ F¢

e_ | B e _ | A e_ | C
o3l e fE] e[ e
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M; = / wwTgA. (2.40)
A

It needs to be pointed out that ¢ is a penalty parameter in Eq. (2.37). For the pur-
pose of obtaining an accurate solution, this parameter must be chosen small enough
to approximate fluid incompressibility well, but large enough to prevent the result-
ing matrix problem from becoming too ill-conditioned to solve.

By assembling all elements in a system, the finite element equation of the system
can be expressed in a matrix form as

Q -B Us | | F
e U e ] e

where Q, B and E are global property matrices of the system; Ur and T are global
nodal velocity and temperature vectors of the system; F and G are global nodal load
vectors of the system. Since Equation (2.41) is nonlinear, either the successive sub-
stitution method or the Newton-Raphson method can be used to solve this equation.

2.3 The Progressive Asymptotic Approach Procedure
for Solving Steady-State Natural Convection Problems
in Fluid-Saturated Porous Media

To solve the steady-state Horton-Rogers-Lapwood problem with the full nonlinear
term of the energy equation included in the finite element analysis, the asymptotic
approach concept (Cook et al. 1989, Zhao and Steven 19964, b, ¢) needs to be used in
a progressive fashion (Zhao et al. 1997a). If the gravity acceleration is assumed to tilt
at a small angle, «, in the Horton -Rogers-Lapwood problem, then a non-zero veloc-
ity field in a fluid-saturated porous medium may be found using the finite element
method. The resulting non-zero velocity field can be used as the initial velocity field
of the pore-fluid to solve the original Horton-Rogers-Lapwood problem with the
tilted small angle being zero. Thus, two kinds of problems need to be progressively
solved in the finite element analysis. One is the modified Horton-Rogers-Lapwood
problem, in which the gravity acceleration is tilted a small angle, and another is
the original Horton-Rogers-Lapwood problem. This forms two basic steps of the
progressive asymptotic approach procedure. Clearly, the basic idea behind the pro-
gressive asymptotic approach procedure is that when the small angle tilted by the
gravity acceleration approaches zero, the modified Horton-Rogers-Lapwood prob-
lem asymptotically approaches the original one and as a result, a solution to the
original Horton-Rogers-Lapwood problem can be obtained.

Based on the basic idea behind the progressive asymptotic approach procedure,
the key issue of obtaining a non-zero pore-fluid flow solution for the Horton-Rogers-
Lapwood problem is to choose the initial velocity field of pore-fluid correctly. If the
initial velocity field is not correctly chosen, the finite element method will lead to



2.3 Solving Steady-State Natural Convection Problems in Fluid-Saturated Porous Media 15

a zero pore-fluid flow solution for natural convection of pore-fluid, even though
the Rayleigh number is high enough to drive the occurrence of natural convection
in a fluid-saturated porous medium. In order to overcome this difficulty, a modi-
fied Horton-Rogers-Lapwood problem, in which the gravity acceleration is assumed
to tilt a small angle o, needs to be solved. Supposing the original Horton-Rogers-
Lapwood problem has a Rayleigh number (Ra) and that the non-zero solution for the
modified Horton-Rogers-Lapwood problem is S(Ra, o), it is possible to find a non-
zero solution for the original Horton-Rogers-Lapwood problem by taking a limit of
S(Ra, @) when « approaches zero. This process can be mathematically expressed
as follows:

lim S(Ra, @) = S(Ra. 0), (2.42)

where S(Ra, 0) is a solution for the original Horton-Rogers-Lapwood problem;
S(Ra, @) is the solution for the modified Horton-Rogers-Lapwood problem; S is
any variable to be solved in the original Horton-Rogers-Lapwood problem.

It is noted that in theory, if S(Ra, «) could be expressed as a function of «
explicitly, S(Ra, 0) would follow immediately. However, in practice, it is necessary
to find out S(Ra, 0) numerically since it is very difficult and often impossible to
express S(Ra, «) in an explicit manner. Thus, the question which must be answered
is how to choose « so as to obtain an accurate non-zero solution, S(Ra, 0). From
the theoretical point of view, it is desirable to choose « as small as possible. The
reason for this is that the smaller the value of «, the closer the characteristic of
S(Ra, «) to that of S(Ra, 0). This enables a more accurate solution S(Ra, 0) to
be obtained in the computation. From the finite element analysis point of view, «
cannot be chosen too small because the smaller the value of «, the more sensitive
the solution S(Ra, «) to the initial velocity field of pore-fluid. As a result, a very
small « usually leads to a zero velocity field due to any inappropriate choice for the
initial velocity field of pore-fluid. To avoid this phenomenon, « should be chosen
big enough to eliminate the strong dependence of S(Ra, «) on the initial velocity
field of pore-fluid. For the purpose of using a big value of « and keeping the final
solution S(Ra, 0) of good accuracy in the finite element analysis, S(Ra, o) needs to
approach S(Ra, 0) in a progressive asymptotic manner, as clearly shown in Fig. 2.1.
This leads to the following processes mathematically:

lim S(Ra, o;) = S(Ra, a;y1) i=1,2,.... ,n—1), (243)
A —> Uit
limo S(Ra, a,) = S(Ra, 0), (2.44)
1
a) = a, ipt = pi; (2.45)

where 7 is the total step number for « approaching zero; R is the rate of ¢; approach-
ing «; 4. Generally, the values of «,n and R are dependent on the nature of a problem
to be analysed.
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S(Ra, o)

a= (Y”

a is too small

0 >
Ra critical Ra

Fig. 2.1 The basic concept of the progressive asymptotic approach procedure

For solving the steady-state Horton-Rogers-Lapwood problem using the pro-
gressive asymptotic approach procedure associated with the finite element method,
numerical experience has shown that 1° <o < 5°,5 < R < 10and1 <n <2
leads to acceptable solutions. Therefore, for « in the range of 1-5° and R in the
range of 5-10, S(Ra, «) can asymptotically approach S(Ra, 0) in one step or two
steps. This indicates the efficiency of the present procedure.

2.4 Derivation of Analytical Solution to a Benchmark Problem

In order to verify the applicability of the progressive asymptotic approach procedure
for solving the Horton-Rogers-Lapwood convection problem, an analytical solution
is needed for a benchmark problem, the geometry and boundary conditions of which
can be exactly modelled by the finite element method. Although the existing solu-
tions (Phillips 1991, Nield and Bejan 1992) for a horizontal layer in porous media
can be used to check the accuracy of a finite element solution within a square box
with appropriate boundary conditions, it is highly desirable to examine the progres-
sive asymptotic approach procedure as extensively as possible. For this purpose,
a benchmark problem of any rectangular geometry is constructed and shown in
Fig. 2.2. Without losing generality, the dimensionless governing equations given
in Egs. (2.10), (2.11), (2.12) and (2.13) are considered in this section. The boundary
conditions of the benchmark problem are expressed using the dimensionless vari-
ables as follows:

oT™
PP 0 (at x* =0 and x* = L%), (2.46)
X

v =0, T =1 (at y* = 0), (2.47)

V=0, T*=0 (at y* = 1), (2.48)
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N

Y o=

Fig. 2.2 Geometry of a benchmark problem

where L* is a dimensionless length in the horizontal direction and L* = L/H, in
which L is the real length of the problem domain in the horizontal direction.

For ease of deriving an analytical solution to the benchmark problem, it
is assumed that the porous medium under consideration is fluid-saturated and
isotropic. This means that K, = K, = Kj and A,, = A,, = A.. As a result,
Egs. (2.10), (2.11), (2.12) and (2.13) can be further simplified as follows:

ou*  Jv*
L, (2.49)
ax* = Jy*
opP*
u = — + RaT* ey, (2.50)
ox*
V= — + RaT”es, (2.51)
ay*

LT T 9°T*  9°T*

+ . 2.52
u ox* v ay* ax*Z ay*2 ( )

Using the linearization procedure for temperature gradient and a dimensionless
stream function ¥ simultaneously, Eqgs. (2.49), (2.50), (2.51) and (2.52) are reduced
to the following two equations:

1w Pw aT*
4+ = _Ra

, 2.53
ax*Z + ay*Z Ox* ( )

v 3T+ 3cT*
P IR (2.54)

Since Egs. (2.53) and (2.54) are linear, solutions to W and 7'* are of the following
forms:

*

W = f(y*)sin (q%) (G=mr,m=1,2,3,...), (2.55)
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%

T* = 6(y*) cos <q%) 0=y  (@=mmom=1,23, ... (2.56)

Substituting Egs. (2.55) and (2.56) into Egs. (2.53) and (2.54) yields the follow-
ing equations:

1" * q 2 kY q *
F'on=(45) £0°) = 15 Rav ). 2.57)
9o (AN ooy L ook
Lrom==(75) 607 +6"0M. 2.58)

Combining Egs. (2.57) and (2.58) leads to an equation containing f(y*) only:

ron-2( L) o - (L) [ra— (L) [ ron =0 @s9)
L* L* L* ' '

It is immediately noted that Equation (2.59) is a linear, homogeneous ordinary
differential equation so that it has a zero trivial solution. For the purpose of find-
ing out a non-zero solution, it is noted that the non-zero solution satisfying both
Equation (2.59) and the boundary conditions in Egs. (2.46), (2.47) and (2.48) can
be expressed as

f(*) = sin(ry*) r=nm,n=1,2,3,.... ). (2.60)

Using this equation, the condition under which the non-zero solution exists for
Eq. (2.59) is derived and expressed as

L, q 2 n? m 2 5
Ra= (7’ +§) = (# +§) ” 2.61)

m=1,2,3,.... n=1,2,3,.... ).

It can be observed from Eq. (2.61) that in the case of L* being an integer, the
minimum Rayleigh number is 4772, which occurs when n = 1 and m = L*. How-
ever, if L* is not an integer, the minimum Rayleigh number is (L* + 1/ L2,
which occurs when m = 1 and n = 1. Since the minimum Rayleigh number deter-
mines the onset of natural convection in a fluid-saturated porous medium for the
Horton-Rogers-Lapwood problem, it is often labelled as the critical Rayleigh num-
ber, Racrisicar-

For this benchmark problem, the mode shapes for the stream function and
related dimensionless variables corresponding to the critical Rayleigh number can
be derived and expressed as follows:

v = Crsin( ") sintrmy”
= (Cj sin Fx sin(ny™), (2.62)
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u* =nnwC sin(nZ—j*Tx*) cos(nmy™), (2.63)
V= —n;T C, cos(rz—fx*) sin(nmy®), (2.64)
C1 mim
T*:——cos(—x*)sin nry*) + (1 — vy, 2.65
L* R critica
P =""¢, cos(ﬂx*) cos(nmry*) — —eritical |2 o0 (2.66)
m L* 2

where the values of m, n and Raisicq; are dependent on whether L* is an integer
or not; C; is a non-zero constant and C; is an arbitrary constant. It is interesting
to note that since Rd,iicq 1S @ function of L*, it can vary with a non-integer L*.
This implies that if rectangular valleys are filled with porous media, they may have
different critical Rayleigh numbers when their ratios of length to height are different.

2.5 Verification of the Proposed Progressive Asymptotic
Approach Procedure Associated with Finite
Element Analysis

Using the analytical solution derived for a benchmark problem in the last section, the
proposed progressive asymptotic approach procedure associated with the finite ele-
ment analysis for solving the Horton-Rogers-Lapwood problem in a fluid-saturated
porous medium is verified in this section. A rectangular domain of L* = 1.5 is con-
sidered in the calculation. The critical Rayleigh number for the test problem con-
sidered is 16972/36. As shown in Fig. 2.3, the problem domain is discretized into

u=0 u =0
£=Q oT* 1
on W:O
v
X" o
A

Fig. 2.3 Finite element mesh for the benchmark problem
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864 nine-node quadrilateral elements of 3577 nodes in total. The mesh gradation
technique, which enables the region in the vicinity of problem boundaries to be
modelled using finite elements of small sizes, has been employed to increase the
solution accuracy in this region. The following parameters associated with the pro-
gressive asymptotic approach procedure are used in the calculation: « = 5%, n =2
and R = 5.

Figures 2.4, 2.5, 2.6 and 2.7 show the comparison of numerical solutions with
analytical ones for dimensionless velocity, stream function, temperature and pres-
sure modes respectively. In these figures, the plots above are analytical solutions,
whereas the plots below are numerical solutions for the problem. It is observed from
these results that the numerical solutions from the progressive asymptotic approach
procedure associated with the finite element method are in good agreement with the
analytical solutions. Compared with the analytical solutions, the maximum error in
the numerical solutions is less than 2%. This demonstrates the usefulness of the
present progressive asymptotic approach procedure when it is used to solve the
steady-state Horton-Rogers-Lapwood problems.

At this point, there is a need to explain why both the analytical and the numer-
ical solutions for the pore-fluid flow are non-symmetric, although the geometry
and boundary conditions for the problem are symmetric. As stated previously, the
Horton-Rogers-Lapwood problem belongs mathematically to a bifurcation problem.
The trivial solution for the pore-fluid flow of the problem is zero. That is to say, if
the Rayleigh number of the problem is less than the critical Rayleigh number, the
solution resulting from any small disturbance or perturbation converges to the trivial

(Analytical solution)

(Numerical solution)

Fig. 2.4 Comparison of numerical solution with analytical solution (Dimensionless velocity)
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Fig. 2.5 Comparison of numerical solution with analytical solution (Dimensionless stream
function)

solution. In this case, the solution for the pore-fluid flow is zero (and, of course, sym-
metric) and the system is in a stable state. However, if the Rayleigh number of the
problem is equal to or greater than the critical Rayleigh number, the solution result-
ing from any small disturbance or perturbation may lead to a non-trivial solution.
In this situation, the solution for the pore-fluid flow is non-zero and the system is in
an unstable state. Since the main purpose of this study is to find out the non-trivial
solution for problems having a high Rayleigh number, Ra > Ra,,iicq;, @ Small dis-
turbance or perturbation needs to be applied to the system at the beginning of a
computation. This is why gravity is firstly tilted a small angle away from vertical
and then gradually approaches and is finally restored to vertical in the proposed pro-
gressive asymptotic approach procedure. It is the small perturbation that makes the
non-trivial solution non-symmetric, even though the system considered is symmet-
ric. In addition, as addressed in Sect. 2.3, the solution dependence on the amplitude
of the initially-tilted small angle can be avoided by making this angle approach zero
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Fig. 2.6 Comparison of numerical solution with analytical solution (Dimensionless temperature)

in a progressive asymptotic manner. However, since there are two possible non-
symmetric solutions for convective pore-fluid flow, namely a clockwise convective
flow and an anti-clockwise convective flow, the solution dependence on the direction
of the initially-tilted small angle cannot be avoided.

2.6 Application of the Progressive Asymptotic Approach
Procedure Associated with Finite Element Analysis

2.6.1 Two-Dimensional Convective Pore-Fluid Flow Problems

The present progressive asymptotic approach procedure is employed to investi-
gate the effect of basin shapes on natural convection in a fluid-saturated porous
medium when it is heated from below. Three different basin shapes having square,
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Fig. 2.7 Comparison of numerical solution with analytical solution (Dimensionless pressure)

rectangular and trapezoidal geometries, which are filled with fluid-saturated porous
media, are considered in the analysis. For the rectangular basin, the ratio of width to
height is 1.5. For the trapezoidal basin, the ratios of top width to height and bottom
width to height are 2 and 1 respectively. In order to reflect the anisotropic behaviour
of the porous media, the medium permeability in the horizontal direction is assumed
to be three times that in the vertical direction. As shown in Fig. 2.8, all three basins
are discretized into 484 nine-node quadrilateral elements of 2041 nodes in total.
The boundary conditions of the problems are also shown in Fig. 2.8, in which 7 is
the normal direction of a boundary. Two Rayleigh numbers, namely Ra = 80 and
Ra =400, are used to examine the effect of the Rayleigh number on natural convec-
tion in a fluid-saturated porous medium. The same parameters as used in the above
model verification examples have been used here for the progressive asymptotic
approach procedure.

Figure 2.9 shows the dimensionless velocity distribution for the three different
basins, whereas Figs. 2.10 and 2.11 show the dimensionless streamline contours
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Fig. 2.8 Finite element meshes for three different basins shapes
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[T

(Trapezoidal basin, Ra=400)

(Trapezoidal basin, Ra=80)

Fig. 2.9 Dimensionless velocity distribution for different basins

due to different basin shapes for Ra = 80 and Ra = 400 respectively. It is obvi-
ous that different basin shapes have a considerable effect on the patterns of con-
vective flow in the fluid-saturated porous medium, especially in the case of higher
Rayleigh numbers. Apart from notable differences in velocity distribution patterns,
maximum velocity amplitudes for three different basins are also significantly differ-
ent. For instance, in the case of Ra = 80, the maximum amplitudes of dimensionless
velocities are 5.29, 8.93 and 11.66 for square, rectangular and trapezoidal basins
respectively. This fact indicates that different basin shapes may affect the contami-
nant transport or mineralization processes in a fluid-saturated porous medium once
natural convection is initiated in the medium.
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Fig. 2.10 Dimensionless streamline contours for different basins (Ra = 80)
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2.6.2 Three-Dimensional Convective Pore-Fluid Flow Problems

The proposed progressive asymptotic approach procedure can be straightforwardly
extended to the simulation of three-dimensional convective pore-fluid flow problems
in fluid-saturated porous media (Zhao et al. 2001a, 2003a). Since the streamline
function is not available for three dimensional fluid flow problems, it is necessary
to use the particle tracking technique to show particle movements in three dimen-
sional fluid flow systems. In the particle tracking technique, a fundamental problem,
which needs to be solved effectively, is as follows. If the initial (known) location of
a particle is point A (x4, y4, 24), Where x4, y4 and z4 are the coordinate compo-
nents of point A in the x, y and z directions of a global coordinate system, then we
need to determine where the new location (i.e. point A’) of this particle is after a
given time interval, At. Clearly, if the velocity of the particle at point A is known,
then the coordinate components of point A" in the global coordinate system can be
approximately determined for a small At as follows:

Xa = Xa + usAt, (2.67)
Ya = ya +vaAt, (2.68)
Za =24 +waAt, (2.69)

where x4, y4 and z4 are the coordinate components of point A" in the x, y and
z directions of the global coordinate system; u4, v4 and w4 are the velocity com-
ponents of point A in the x, y and z directions of the global coordinate system,
respectively.

In general cases, the location of point A is not coincident with the nodal points
in a finite element analysis so that the consistent interpolation of the finite element
solution is needed to determine the velocity components at this point. For this pur-
pose, it is essential to find the coordinate components of point A in the local coordi-
nate system from the following equations for an isoparametric finite element.

xa =Y $iEa, nar La)xi, (2.70)
i=1

YA:Z@(SA» NA, fA)Yi, (271)
i=1

24 =) $iEas mas CW)ai, 2.72)

i=1

where x4, y4 and z 4 are the coordinate components of point A in the x, y and z direc-
tions of the global coordinate system; &4, n4 and {4 are three coordinate components
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of point A in the &, 1 and ¢ directions of a local coordinate system; x;, y; and z; are
the coordinate components of nodal point i in the x, y and z directions of the global
coordinate system; n is the total nodal number of the element containing point A; ¢;
is the interpolation function of node i in the element containing point A.

In Egs. (2.70), (2.71) and (2.72), the coordinate components of point A in the
global coordinate system are known, so that the coordinate components of this point
in the local system can be determined using any inverse mapping technique (Zhao
et al. 1999f). Once the coordinate components of point A in the global coordinate
system are determined, the velocity components of point A in the global system can
be straightforwardly calculated as follows:

wa =Y iEn, na, Ca)u; (2.73)
i=1

va =) iEa, na, Vi (2.74)
i=1

wa =Y ¢iEa, na, LW, (2.75)

i=1

where u 4, v4 and w4 are the velocity components of point A in the x, y and z direc-
tions of the global coordinate system; u;, v; and w; are the velocity components of
nodal point i in the x, y and z directions of the global coordinate system, respectively.

The above-mentioned process indicates that in the finite element analysis of fluid
flow problems, the trajectory of any given particle can be calculated using the nodal
coordinate and velocity components, which are fundamental quantities and therefore
available in the finite element analysis.

To demonstrate the applicability of the progressive asymptotic approach proce-
dure for simulating convective pore-fluid flow in three dimensional situations, the
example considered in this section is a cubic box of 10 x 10 x 10 km? in size. This
box is filled with pore-fluid saturated porous rock, which is a part of the upper crust
of the Earth. In order to simulate geothermal conditions in geology, the bottom of the
box is assumed to be hotter than the top of the box. This means that the pore-fluid
saturated porous rock is uniformly heated from below. For the system considered
here, the classical analysis (Phillips 1991, Nield and Bejan 1992, Zhao et al. 1997a)
indicates that the convective flow is possible when the Rayleigh number of the sys-
tem is either critical or supercritical. For this reason, the parameters and properties
of the system are deliberately selected in such a way that the Rayleigh number of
the system is supercritical.

Figure 2.12 shows the finite element mesh of 8000 cubic elements for the three
dimensional convective flow problem. For the purpose of investigating the pertur-
bation direction on the pattern of convective flow, two cases are considered in the
following computations. In the first case, the perturbation of gravity is applied in the
x-z plane only. This means that the problem is axisymmetrical about the y axis so that
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Fig. 2.12 Finite element mesh for the three-dimensional problem

the problem can be degenerated into a two dimensional problem, from the mathe-

matical and analytical points of view. Since the solutions for the axisymmetrical
convective flow problem are available (Nield and Bejan 1992, Zhao et al. 1997a), the
numerical methods used in this study can be verified by comparing the related ana-
lytical solutions with the solutions obtained from this special three dimensional case

(i.e. axisymmetrical case). In the second case, the perturbation of gravity is equally

applied in both the x-z and y-z planes. This means that a true three dimensional con-

vective flow problem is considered in this case. Table 2.1 shows the parameters used

in the computations for both cases. To reflect the three-dimensional features of con-

vective pore-fluid flow, the following boundary conditions are used. Temperatures at

Table 2. 1 Parameters used for the three-dimensional convective flow problem

Material type

pore-fluid

porous matrix
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the top and the bottom of the computational domain are 0°C and 250°C respectively.
Both the top and the bottom of the computational domain are impermeable in the
vertical direction, while all the four side boundaries of the computational domain
are assumed to be insulated and impermeable in the horizontal direction.

Figures 2.13 and 2.14 show the numerical and analytical solutions for the dis-
tributions of pore-fluid velocity and temperature in the axisymmetrical case (i.e.
case 1) respectively. As expected, the numerical solutions for both pore-fluid veloc-
ity and temperature in this case are exactly axisymmetrical about the y axis. This
implies that the three-dimensional problem considered in this particular case can be
reasonably treated as a two-dimensional one. It is also observed that the numerical
solutions in Fig. 2.13 compare very well with the previous solutions in Fig. 2.14
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Fig. 2.13 Distributions of pore-fluid velocity and temperature in the porous medium (Case 1,
numerical solutions)
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Fig. 2.14 Distributions of pore-fluid velocity and temperature in the porous medium (Case 1,
Analytical solutions)

for the axisymmetrical convective pore-fluid flow problem (Zhao et al. 1997a). This
indicates that the progressive asymptotic approach procedure, although it was pre-
viously developed for the finite element modelling of two-dimensional convective
pore-fluid flow problems, is equally applicable to the finite element modelling of
three-dimensional convective pore-fluid flow in fluid-saturated porous media when
they are heated from below.
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Fig. 2.15 Distributions of pore-fluid velocity and temperature in the porous medium (Case 2)

Figure 2.15 shows the numerical solutions for the distributions of pore-fluid
velocity and temperature in the real three-dimensional case (i.e. case 2). By com-
paring the numerical solutions from case 1 (Fig. 2.13) with those from case 2
(Fig. 2.15), it is observed that the distribution patterns of both pore-fluid velocity
and temperature are totally different for these two cases. This demonstrates that the
perturbation of gravity at different planes may have a significant effect on the pat-
tern of convective pore-fluid flow in three-dimensional hydrothermal systems. Just
like two-dimensional convective flow problems, the solution dependence of three-
dimensional convective flow on the direction of the perturbation of gravity need to
be considered when these kinds of results are interpreted.

To further observe the movements of pore-fluid particles, the particle tracking
technique introduced in this section is used during the numerical computation.
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Fig. 2.16 Particle trajectories in the porous medium (Case 1)

We selected 24 particles, 12 of which are in the front plane and the rest are
in the back plane of the computation domain, to view the trajectories of those
particles. Figure 2.16 shows the particle trajectories in the porous media for several
different time instants in case 1. It is clear that in this case, all the particles move
within the planes they are initially located within (at = 0 s), because the convective
pore-fluid flow (in case 1) is essentially axisymmetrical about the rotation axis of
these particles considered. Figures 2.17 and 2.18 show the particle trajectories in
the porous media for several different time instants in case 2. It is observed that the
particle trajectories shown in case 2 are totally different from those shown in case
1, although the initial locations (at # = 0 5) of these 24 particles are exactly the same
for these two cases. In fact, the particle trajectories shown in case 2 are much more
complicated than those shown in case 1. Since pore-fluid is often the sole agent to
carry the minerals from the lower crust to the upper crust of the Earth, the differ-
ent patterns of particle trajectories imply that the pattern of ore body formation and
mineralization may be totally different in those two three-dimensional hydrothermal
systems.
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(t=4x101 ) (t=5%x1013 )

Fig. 2.17 Particle trajectories in the porous medium (Case 2)
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Fig. 2.18 Particle trajectories in the porous medium (Case 2)



Chapter 3

A Consistent Point-Searching Interpolation
Algorithm for Simulating Coupled Problems
between Deformation, Pore-Fluid Flow, Heat
Transfer and Mass Transport Processes

in Hydrothemal Systems

Over the past decade or so, many commercial computational codes have become
available for solving a great number of practical problems in both scientific and
engineering fields. Primary advantages of using commercial computational codes
are: (1) built-in pre-processing and post-processing tools make it very easy and
attractive to prepare, input and output data which are essential in a numerical analy-
sis; (2) provision of movie/animation functions enables numerical results, the treat-
ment of which is often a cumbersome and tedious task, to be visualised via clear and
colourful images; (3) detailed benchmark solutions and documentation as well as
many embedded robust solution algorithms allow the codes to be used more easily,
correctly, effectively and efficiently for solving a wide range of practical problems.
However, the main disadvantage of using commercial computational codes is that
each code is often designed, within a certain limit, for solving some particular kinds
of practical problems. This disadvantage becomes more and more obvious because
the ever-increasing competitiveness in the world economy requires us to deal with
more and more complicated and complex geoscience problems, which are encoun-
tered and not solved in the field of contemporary computational geoscience. There
are three basic ways to overcome the above difficulties. The first is to develop some
new commercial computational codes, which is time consuming and often not cost-
effective for numerical analysts and consultants. The second is to extend an existing
commercial computational code, which is usually impossible because the source
code is often not available for the code users. The third is to use several existing
commercial computational codes in combination. This requires development of a
data translation tool to transfer data necessary between each of the codes to be used.
Compared with the difficulties encountered in the first two approaches, the third one
is more competitive for most numerical analysts and consultants.

Our first successful example in the practice of using commercial computa-
tional codes in a combination manner was to optimize structural topologies under
either static or dynamic conditions using the commercial code STRANDG6 (G+D
Computing 1991) and a home-made code GEMDYN. As a result, a generalized
evolutionary method for numerical topological optimization of structures has been
developed and many interesting numerical results have been produced (Zhao et al.
1996d, e, 1997b, c, d, 1998c, d). To extend further the idea of using commercial
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Lecture Notes in Earth Sciences 122, DOI 10.1007/978-3-540-89743-9_3,
© Springer-Verlag Berlin Heidelberg 2009



38 3 Algorithm for Simulating Coupled Problems in Hydrothermal Systems

computational codes in combination, we attempt to use a combination of FIDAP
(Fluid Dynamics International 1997) and FLAC (Itasca Consulting Group 1995)
for solving a fully coupled problem between medium deformation, pore-fluid flow,
heat transfer and reactive species transport in a porous medium under high Rayleigh
number situations. FIDAP is a well developed, finite element method based, com-
putational fluid dynamics code, whereas FLAC, designed for civil engineering,
is based on a finite difference method, but can accommodate unstructured grids.
FIDAP can be used to model pore-fluid flow, heat transfer and reactive species trans-
port in a porous medium, but does not treat the medium deformation effects. On
the other hand, FLAC is very powerful in its modeling of geomechanical and geo-
logical deformation processes, especially for the simulation of large deformation
problems. However, the weakness of FLAC is that it cannot be used rigorously to
model steady-state pore-fluid convection and the related reactive species transport
in a fluid-saturated porous medium. Thus, it is very reasonable to envisage interac-
tively using FIDAP and FLAC for solving a fully coupled problem between medium
deformation, pore-fluid flow, heat transfer and reactive mass transport in a porous
medium under high Rayleigh number situations. In order to do this, it must be pos-
sible to relate accurately any point in the mesh for one code to the equivalent point
in the mesh for the other code.

To do this, we present a consistent point-searching interpolation algorithm, also
known as the consistent point-searching algorithm for solution interpolation in
unstructured meshes consisting of 4-node bilinear quadrilateral elements. The pro-
posed algorithm has the following significant advantages: (1) the use of a point-
searching strategy allows a point in one mesh to be accurately related to an element
(containing this point) in another mesh. Thus, to translate/transfer the solution of
any particular point from mesh 2 to mesh 1, only one element in mesh 2 needs to
be inversely mapped. This certainly minimizes the number of elements to which the
inverse mapping is applied. In this regard, the proposed consistent algorithm is very
effective and efficient. (2) Analytical solutions to the local coordinates of any point
in a four-node quadrilateral element, which are derived in a rigorous mathemati-
cal manner in the context of this chapter, make it possible to carry out an inverse
mapping process very effectively and efficiently. (3) The use of consistent interpo-
lation enables the interpolated solution to be compatible with an original solution
and therefore guarantees the interpolated solution of extremely high accuracy. Since
the algorithm is very general and robust, it makes it possible to translate and transfer
data between FIDAP and FLAC, and vice versa.

3.1 Statement of the Coupled Problem and Solution Method

In terms of simulating the physical and chemical processes associated with ore
body formation and mineralization in hydrothermal systems within the upper crust
of the Earth, the fully coupled problem between material deformation, pore-fluid
flow, heat transfer and mass transport/chemical reactions can be divided into two
sub-problems (Zhao et al. 1999¢c, 2000b). For the first sub-problem, which is the
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problem describing the steady-state pore-fluid flow, heat transfer and mass trans-
port/chemical reactions in a porous medium, the corresponding governing equations
are expressed as follows:

du  dv —0 G.1)
ax oy '
K, oP
we s (——) , (32)
nw ox
s ( e ) (3.3)
v=——-—+40prg), .
u ay M
oT N oT , 0°T v 0°T 3.4)
c Uu— Vo — | = rex 7T 5 ey 1 50 .
Procp \ " ox dy 0x2 7 9y?
u— y— — ox —— oy —— i l=1,4, ..., )
Pro\" % dy pso 0x2 Y y?
3.5)
N
pr=pPso [1 — Br(T = Tp) = Y _ Bci(Ci — cw} : (3.6)
i=1
Aex = (,b)"fx + (l - (p))\sxv )‘ey = ¢)\fv + (l - (p))“sys (37)
D, = ¢Dfxv Dey = ¢Df}a (38)

where u and v are the horizontal and vertical velocity components of the pore-fluid
in the x and y directions respectively; P is the pore-fluid pressure; T is the temper-
ature of the porous medium; a- is the normalized concentration (in a mass fraction
form relative to the pore-fluid density) of chemical species i; N is the total num-
ber of the active chemical species considered in the pore-fluid; K, and K are the
permeabilities of the porous medium in the x and y directions respectively; w is
the dynamic viscosity of the pore-fluid; o is the density of the pore-fluid and g is
the acceleration due to gravity; oo, To and C, are the reference density, reference
temperature and reference normalized concentration of the chemical species used in
the analysis; A ;. and A, are the thermal conductivities of the pore-fluid and solid
matrix in the x direction; A r, and A, are the thermal conductivities of the pore-fluid
and solid matrix in the y direction; ¢, is the specific heat of the pore-fluid; Dy, and
Dy, are the diffusivities of the chemical species in the x and y directions respec-
tively; ¢ is the porosity of the porous medium; 87 and B¢; are the thermal volume
expansion coefficient of the pore-fluid and the volumetric expansion coefficient due
to chemical species i; R; is the chemical reaction term for the transport equation of
chemical species i.
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Equation (3.6) clearly indicates that the density of the pore-fluid considered in
this study is a function of both temperature and chemical species concentrations.
This means that the double diffusion effect (Phillips 1991, Nield and Bejan 1992,
Alavyoon 1993, Gobin and Bennacer 1994, Nguyen et al. 1994, Goyeau et al. 1996,
Nithiarasu et al. 1996, Mamou et al. 1998, Zhao et al. 2000b, 2005b, 2006a) is taken
into account in the first sub-problem.

Generally, the chemical reaction term involved in a chemical species transport
equation is strongly dependent on the specific chemical reaction considered in the
analysis. For a non-equilibrium chemical reaction consisting of aqueous chemical
species only, the following type of equation can be considered as an illustrative
example.

A+BEF (3.9)

This equation states that species A and species B react chemically at a rate con-
stant of k; and the product of this reaction is species F. For this type of chemical
reaction, the reaction term involved in Equation (3.5) can be expressed as follows:

Ry = —kCCo, (3.10)
R, = —k,C,C», (3.11)
Ry =k, C,Cs, (3.12)

where C; and C, are the normalized concentrations (in a mass fraction relative to the
pore-fluid density) of species A (i.e. species 1) and B (i.e. species 2) respectively; C3
is the normalized concentration (in a mass fraction relative to the pore-fluid density)
of species F (i.e. species 3).

Note that for most of the chemical reactions encountered in the field of geoscience,
the rate of a chemical reaction is dependent on the temperature at which the chemical
reaction takes place. From a geochemical point of view (Nield and Bejan 1992), the
temperature dependent nature of the reaction rate for the chemical reaction considered
here can be taken into account using the Arrhenius law of the following form:

_Ea

where E, is the activation energy; R is the gas constant; 7 is the temperature in Kelvin
and k4 is the pre-exponential chemical reaction constant.

The second sub-problem is a static deformation problem under plane strain con-
ditions. If the hydrothermal system is initially in a mechanically equilibrium state,
then body forces can be neglected in the corresponding force equilibrium equations.
This means that we assume that the material deformation of the hydrothermal sys-
tem due to gravity has completed before the system is heated by some thermal event
from below. Under this assumption, the governing equations for static deformation
(which is labeled as the second sub-problem) in the porous medium under plane
strain conditions are:
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do, 0Ty,
— =0, (3.14)
ax dy
0Ty, d0y
T 9%, (3.15)
ax ay
E(l— EaT  ~
o= UV (v N Eelp (3.16)
(1 —=2v)(1 +v) 1— 1—2v
E(1—v) v n EaT f3 (3.17)
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where o, and o, are normal stresses of the solid matrix in the x and y directions; &,
and ¢, are the normal strains of the solid matrix in relation to o, and oy; 7,y and yy,
are shear stress and shear strain of the solid matrix; u, and v, are the horizontal and
vertical displacements of the solid matrix; P is the excess pore-fluid pressure due to
the thermal effect; E and G are the elastic and shear modulus respectively; v is the
Poisson ratio of the solid matrix and « is the linear thermal expansion coefficient of
the solid matrix.

Note that Egs. (3.14) and (3.15) represent the equilibrium equations, whereas
Egs. (3.16), (3.17), (3.18) and (3.19) are the constitutive equations and strain-
displacement relationship equations, respectively.

To couple the first sub-problem with the second sub-problem, we need to estab-
lish a relationship between the volumetric strain and the porosity of the porous
medium. For small strain problems, such a relationship can be expressed as (Itasca
Consulting Group, 1995):

I —¢o
=1- s v = &x ys 3.20
¢ TTe, e &y + &, ( )

where ¢ and ¢ are the porosity and initial porosity of the porous medium; ¢, is the
volumetric strain of the solid matrix.

Using the Carman-Kozeny formula (Nield and Bejan 1992), the permeability of
an isotropic porous medium is expressed as a function of porosity as follows:

Ko(l — 243
KX:K},:0(3—(1)0)55 (3.21)
¢o(1 — @)
where K| is the initial permeability corresponding to the initial porosity, ¢y.
Obviously, the first sub-problem is coupled with the second sub-problem through
the medium temperature, T, pore-fluid pressure, p, and permeabilities, K, and K.
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Within the first sub-problem itself, the pore-fluid flow is coupled with the thermal
flow and reactive flow through the medium temperature, aqueous chemical species
concentrations and pore-fluid velocity components, # and v. However, within the
second sub-problem itself, the medium deformation (displacement) is coupled with
the medium temperature, pore-fluid pressure and permeability through the volumet-
ric strain, &,, and the medium porosity, ¢.

With regard to the general solution method used in this study, FIDAP (Fluid
Dynamics International 1997), which is one of the most powerful finite element
codes currently available for dealing with a very wide range of practical prob-
lems in fluid dynamics, is used to solve the first sub-problem, while FLAC (Itasca
Consulting Group 1995), which is a very useful finite difference code for dealing
with material deformation problems in the fields of both geotechnical engineering
and geoscience, is used to solve the second sub-problem. A general interface pro-
gram is developed to translate and transfer data between FIDAP and FLAC. To
obtain non-trivial (convective) solutions for the pore-fluid flow under supercritical
Rayleigh number conditions, the progressive asymptotic approach procedure dis-
cussed in Chap. 2 (Zhao et al. 1997a) is also employed in the computation.

3.2 Mathematical Formulation of the Consistent Point-Searching
Interpolation Algorithm in Unstructured Meshes

The motivation of developing a consistent point-searching interpolation algorithm
is described as follows. For two totally different meshes, namely mesh 1 (mesh in
FIDAP) and mesh 2 (mesh in FLAC) shown in Fig. 3.1, finite element solutions
to the temperature and pressure due to hydrothermal effects are available (from
FIDAP) at the nodal points of mesh 1 but not known at those of mesh 2. This

Im 5 I I O

LU L T |

(Mesh 1 in FIDAP) (Mesh 2 in FLAC)

Fig. 3.1 Two totally different meshes used in FIDAP and FLAC
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indicates that to evaluate the thermal deformation using mesh 2 in FLAC, it is essen-
tial to translate/transfer the nodal solutions from mesh 1 into mesh 2. Since mesh 1
is totally different from mesh 2, it is only possible to interpolate the nodal solu-
tion of mesh 2, point by point, using the nodal solutions of mesh 1 and the related
elemental information. Thus, for any nodal point in mesh 2, it is necessary to find
out the element, which contains this particular point, in mesh 1. This is the first step,
termed point-searching, in the proposed algorithm. Once a point in mesh 2 is related
to an element (containing this point) in mesh 1, the local coordinates of this point
need to be evaluated using the related information of the element in mesh 1. This
requires an inverse mapping to be carried out for this particular element in mesh 1,
so that the nodal solution of the point in mesh 2 can be consistently interpolated
in the finite element sense. This is the main reason why the proposed algorithm is
called the consistent point-searching interpolation algorithm.

Clearly, for the purpose of developing the consistent point-searching interpola-
tion algorithm, one has to deal with the following two key issues. First, an efficient
searching strategy needs to be developed to limit the number of elements, to which
the inverse mapping is applied, so that the algorithm growth rate can be reduced
to the minimum. Second, the issue of the parametric inverse mapping between the
real (global) and element (local) coordinates should be dealt with in an appropriate
manner. Generally, the inverse mapping problem is a nonlinear one, which requires
numerical solutions for higher order elements. However, for 4-node bilinear quadri-
lateral elements, it is possible to solve this problem analytically. Since most practical
problems in finite element analysis can be modelled reasonably well using 4-node
bilinear quadrilateral elements, the analytical solution to the inverse mapping prob-
lem for this kind of element may find wide applications for many practical problems.
Given the importance of the above two key issues, they are addressed in great detail
in the following sections, respectively.

3.2.1 Point Searching Step

In this section, we deal with the first issue, i.e., the development of an efficient
searching strategy to limit the number of elements, which need to be inversely
mapped. To achieve this, we have to establish a strategy to relate a point in one
mesh to an element in another mesh accurately. Consider a four-node quadrilateral
element shown in Fig. 3.2. If any point (i.e., point A in Fig. 3.2) is located within
this element, then the following equations hold true:

2% 1A =2 k. (3.22)
23 %24 = s K. (3.23)
34 % 3A = s k. (3.24)
A1 x4A = g &, (3.25)

A >0 i=1, 2, 3, 4), (3.26)
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3

0 > *

Fig. 3.2 Point A in a fournode quadrilateral element

where 12, 23, 34 and 41 are vectors of four sides of the element; 1A, 2A, 3
and 4A are vectors of each node of the element to point A respectively; Z is a
normal vector of the plane where the element is located; A; (i = 1, 2, 3, 4) are four
different constants. Note that the left-hand sides of Egs. (3.22), (3.23), (3.24) and
(3.25) represent the cross products of two vectors.

By using the global coordinates of point A and four nodal points of the element,
Egs (3.22), (3.23), (3.24), (3.25) and (3.26) can be expressed in the following form:

(2 = x)(ya — y1) = (xa —x)(2 — y1) =21 = 0, (3.27)
(03 = x2)(ya — y2) — (xa = x2)(y3 — y2) = A2 = 0, (3.28)
(x4 —x3)(ya — y3) — (xa — x3)(ya — y3) = A3 = 0, (3.29)
(1 = x)(ya — ya) — (xa —x)(y1 — y4) = A4 = 0, (3.30)

where x; and y; are the global coordinates of nodal points of the element; x4 and y4
are the global coordinates of point A.

Note that when point A is located on the side of the element, two vectors related
to a node of the element are coincident. Consequently, the corresponding A; to this
node must be equal to zero. Since Egs. (3.27), (3.28), (3.29) and (3.30) are only
dependent on the global coordinates of five known points (i.e., point A and four
nodes of the element), they can be straightforwardly used to predict the element, in
which point A is located.

It must be pointed out that, using the point-searching strategy expressed by
Egs. (3.27), (3.28), (3.29) and (3.30), it is very easy and accurate to relate a point
in mesh 2 to an element (containing this point) in mesh 1, since Eqs. (3.27), (3.28),
(3.29) and (3.30) only involve certain simple algebraic calculations which can be
carried out by computers at a very fast speed. Thus, to translate/transfer the solution
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of any point from mesh 1 to mesh 2, only one element in mesh 1 needs to be
inversely mapped. This certainly reduces the number of elements, to which the
inverse mapping is applied, to the minimum. From the computational point of view,
the present algorithm is both effective and efficient.

3.2.2 Inverse Mapping Step

This section deals with the second key issue related to the development of the con-
sistent point-searching interpolation algorithm. In order to interpolate the solution
at point A consistently in the finite element sense, it is necessary to find out the
local coordinates of this point by an inverse mapping. For a four-node quadrilateral
isoparametric element shown in Fig. 3.3, it is possible to implement the inverse
mapping analytically. The following gives the related mathematical equations.

n
3
4
g
AY 0
1® 2
0 >
(Physical element)
AN
4 3
0 > &

1 2

(Parent element)

Fig. 3.3 A four-node quadrilateral isoparametric element (Zienkiewicz 1977; Zhao et al. 1999f)
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The forward mapping of the physical element in the global system to the parent
element in the local system reads:

where

where Ny, N, N3 and Ny are shape functions of the element.

4

X = ZN,‘X,‘,
tjl

Y= Ny,
i=l

1

Ny = Z(l = &)1 =),
1

Ny, = Z(l + &)1 —n),

1
N3 = Z(l + &)1 +n),

1
Ny =70 =8)1 +n)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

For a given point (i.e., point A), the corresponding local coordinates are £4 and
na. Substituting these local coordinates into Egs. (3.31), (3.32), (3.33), (3.34), (3.35)
and (3.36) yields the following inverse mapping:

where

aéa +asna + asganag = 4x4 —ay,

byés + bina + ba&ana = 4ya — by,

ap = X1 + X2 + X3 + Xa,
a) = —Xx1 +x2 + x3 — x4,
a3 = —Xx|1 — X +x3 + x4,
as = X1 — X3 + X3 — X4,
by =y1+y2+y3+ s
by=—=yi+y2+y3 — ya
by =—yi—y2+y3+ s,

by =y — Y2+ y3 — ya

(3.37)
(3.38)

(3.39)
(3.40)

(3.41)
(3.42)
(3.43)
(3.44)
(3.45)

(3.46)
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Since Egs. (3.37) and (3.38) are two second-order simultaneous equations, the
solution to the local coordinates, £4 and 714, can be obtained in the following differ-
ent cases.

3.2.2.1 Casel:as =0,b4 =0
In this case, Egs. (3.37) and (3.38) can be written as

aés +azna = cy, (3.47)
b6 + b3na = ca, (3.48)
where
¢y =4x4 —ay, (3.49)
Cy) = 4yA — bl. (350)

Clearly, Eqs. (3.47) and (3.48) are a set of standard linear simultaneous equations,
so that the corresponding solutions can be immediately obtained as

bgC] — dzCy
= 3.51
éa b — b (3.51)
—byc1 + axer
= 7 3.52
na b — aabs (3.52)
3.2.2.2 Case2:a4 =0,b4 #0
The corresponding equations in this case can be rewritten as
akp +asng = cy, (3.53)
baéa + b3na + bs§ana = ca. (3.54)

The solutions to Egs. (3.53) and (3.54) can be expressed for the following three
sub-cases:

(1) a2=0, 613#0
1

na = —, (3.55)
as
¢y — bang
== 27 3.56
= G F ban (3.56)
(2) (12750, (1320
T (3.57)
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¢ — by
= L7’k 3.58
M= by ¥ baga (5:38)
3) ax#0, a3 #0
—bb £ \/bb? — (4aa)cc
Na = (aa)ce (3.59)
2aa
gy = L0 (3.60)
a
where
b
aa =28 3.61)
a
byas — b
pp = 2By (3.62)
a
—b
Py (3.63)
a

3223 Case3:a4 #0,b4 =0

This case is very similar to case 2. The corresponding equations in this case are as
follows:

@éa + asna + aséana = cy, (3.64)
byta + b3ng = cs. (3.65)

Similarly, the solution to Equations (3.64) and (3.65) can be expressed in the
following three sub-cases:

(1) by =0, b3 #0

2
_ae 3.66
na b, (3.66)
£y = L B04 (3.67)
a + agna
(2) b, #0, b3 =0

£y = 2 (3.68)

A bz’ .
na = L 92E4 (3.69)
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(3) by #0, b3 #0

_ —bb £ \/bb*> — (4aa)cc

3.70
na aa (3.70)
—-b
ga= 220 (3.71)
by
where
b
aa =222 (3.72)
by
br —
pp= BB TNy (3.73)
by
cc = ~22°2 (3.74)
by
3.2.24 Cased:aqy #0,b4 0
In this case, Egs. (3.37) and (3.38) can be written in the following form:
aykx +asna +Eana = i, (3.75)
b3Ea +bina +Eana = ¢, (3.76)
where
i bi .
ar="  pr=t (i =2,3), (3.77)
as b4
C1 (&)
= 5= —. 3.78
€ @ & be (3.78)
Subtracting Eq. (3.78) from Eq. (3.77) yields the following equation:
(@5 —Db3)Ea + (a5 —b3na =] — ¢;. (3.79)

Clearly, if a5 — b; = 0, the solutions to Egs. (3.77) and (3.78) can be straightfor-
wardly expressed as

ci—c

na = —2, (3.80)
ay — bj
* *

gg=L_BT4 (3.81)

ay +na .
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Otherwise, Eq. (3.79) can be rewritten as

§a=o— Bna (3.82)
where
o=1"%2 (3.83)
a; — bj
a; — b
= = 3.84
B ey (3.84)

Therefore, the corresponding solutions can be expressed for the following sub-
cases.

(1) For B =0

£4=a. (3.85)
cf —azéa

1a e (3.86)

(2) ForB #0
gy = @B a0+ /(@ = @ - 4 —ae) e

p

En=a — Bra. (3.88)

3.2.3 Consistent Interpolation Step

Based on the concept of isoparametric elements (Zienkiewicz 1977), any nodal solu-
tion at any point (i.e., point A) in mesh 1 can be consistently interpolated using the
following equation:

4
Sa =Y Ni€a, n)Si, (3.89)

i=1

where S; is the appropriate numerical solution at a nodal point in mesh 1.

Note that since the global coordinate system used in mesh 1 is exactly the same as
in mesh 2, the nodal value of any concerned solution in mesh 2 can be interpolated
through mesh 1 and then directly transferred to mesh 2.
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3.3 Verification of the Proposed Consistent Point-Searching
Interpolation Algorithm

In order to verify the proposed consistent point-searching interpolation algorithm in
two totally different meshes, we consider a coupled problem between medium defor-
mation, pore-fluid flow and heat transfer processes in a fluid-saturated porous elastic
medium. The square computational domain is 10 x 10 km? in size. This computa-
tional domain is discretized into mesh 1 of 1625 nodes and mesh 2 of 10000 nodes
respectively. Firstly, we use FIDAP with mesh 1 to simulate the high Rayleigh num-
ber convection cells, temperature and pressure distributions in the computational
domain. Then, we use the proposed algorithm to translate/transfer the temperature
and pressure solutions in mesh 1 into FLAC’s mesh, mesh 2.

To simulate the high Rayleigh number convection cells in the computational
domain of the test problem, the following parameters are used in the compu-
tation. For pore-fluid, dynamic viscosity is 107> N x s/m?; reference density is
1000 kg/m?; volumetric thermal expansion coefficient is 2.07 x 10~*(1/°C); specific
heat is 4185 J/(kgxC); thermal conductivity coefficient is 0.6 W/(mx°C) in both
the horizontal and vertical directions. For the porous matrix, initial porosity is 0.1;
initial permeability is 10~'*m?; thermal conductivity coefficient is 3.35 W /(mx°C)
in both the horizontal and vertical directions. The temperature is 25°C at the top
of the domain, while it is 225°C at the bottom of the domain. This means that
the computational domain is heated uniformly from below. The left and right lat-
eral boundaries of the computational domain are insulated and impermeable in the
horizontal direction, whereas the top and bottom are impermeable in the vertical
direction.

Figures 3.4 and 3.5 show the comparison of the original temperature and pres-
sure solutions in mesh 1 with the corresponding translated/ transferred solutions in
mesh 2. It is clear that although mesh 2 is totally different from mesh 1, the trans-
lated/transferred solutions in mesh 2 are essentially the same as in mesh 1. This
demonstrates the correctness and effectiveness of the proposed consistent point-
searching interpolation algorithm.

To further test the robustness of the proposed algorithm, we use the concept of a
transform in mathematics below. For instance, the robustness of a numerical Fourier
transform algorithm is often tested by the following procedure: (1) implementation
of a forward Fourier transform to an original function; and (2) implementation of
an inverse Fourier transform to the forwardly transformed function. If the inversely
transformed function is exactly the same as the original function, it demonstrates
that the numerical Fourier transform algorithm is robust. Clearly, the same proce-
dure as above can be followed to examine the robustness of the proposed consis-
tent point-searching algorithm. For this purpose, the forward transform is defined as
translating/transferring solution data from mesh 1 to mesh 2, while the inverse trans-
form is defined as translating/transferring the translated/transferred solution data
back from mesh 2 to mesh 1.

Figures 3.6 and 3.7 show the comparisons of the forwardly transformed temper-
ature and pressure solutions (from mesh 1 to mesh 2) with the inversely transformed



52 3 Algorithm for Simulating Coupled Problems in Hydrothermal Systems

B
C
D
E
F
G
H
LEGEND
- 0.0000E+00
g .2500E+02
.5000E+02
F .7500E+02
.1000E+03
.1250E+03
I

A

BE-0

C =0

D-0

E-0

F-0

G - 0.1500E+03
H - 0.1750E+03
I - 0.2000E+03

(Original solution in mesh 1)

2)

Contour interval= 2.50E+01
B: 2.500E+01
I: 2.000E+02

(Translated/transferred solution in mesh 2)

Fig. 3.4 Comparison of the original solution with the translated/transferred solution (Temperature)
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Fig. 3.5 Comparison of the original solution with the translated/transferred solution (Pore-fluid
pressure)
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Fig. 3.7 Comparison of the forwardly transformed solution with the inversely transformed solution
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solutions (from mesh 2 to mesh 1). Clearly, the forwardly transformed solutions in
mesh 2 are exactly the same as the inversely transformed solutions in mesh 1. Fur-
thermore, the inversely transformed solutions in mesh 1 (see Figs. 3.6 and 3.7) also
compare very well with the original solutions in mesh 1 (see Figs. 3.4 and 3.5). This
means that after the original solutions are transformed from mesh 1 to mesh 2, they
can be transformed back exactly from mesh 2 to mesh 1. Such a reversible process
demonstrates the robustness of the proposed consistent point-searching interpola-
tion algorithm.

3.4 Application Examples of the Proposed Consistent
Point-Searching Interpolation Algorithm

3.4.1 Numerical Modelling of Coupled Problems Involving
Deformation, Pore-Fluid Flow and Heat Transfer
in Fluid-Saturated Porous Media

Since the verification example considered in Sect. 3.3 is a coupled problem between
medium deformation, pore-fluid flow and heat transfer processes in a fluid-saturated
porous elastic medium, it can be used as the first application example of the pro-
posed consistent point-searching interpolation algorithm. Thus, we can continue the
simulation of the verification example and use FLAC with the translated/transferred
temperature in mesh 2 to compute thermal deformation and stresses in the fluid-
saturated porous elastic medium. Towards this end, it is assumed that: (1) the bot-
tom boundary of the computational domain is fixed; (2) the top boundary is free; and
(3) the two lateral boundaries are horizontally fixed but vertically free. Except for
the parameters used in Sect. 3.3, the following additional parameters are used in the
continued simulation: the elastic modulus of the porous medium is 1 x 10'° Pa; Pois-
son’s ratio is 0.25; the volumetric thermal expansion coefficient is 2.07 x 1074(1/°C)
and the initial porosity is 0.1.

Figures 3.8 and 3.9 show the temperature induced deformation and stresses in
the porous elastic medium respectively. It is observed that the distribution pattern
of the volumetric strain is similar to that of the temperature. That is to say, higher
temperature results in larger volumetric strain, as expected from the physics point
of view. Owing to relatively larger volumetric strain in the left side of the compu-
tational domain, the maximum vertical displacement takes place at the upper left
corner of the domain. This is clearly evidenced in Fig. 3.8. As a direct consequence
of the thermal deformation, the temperature induced horizontal stress dominates in
the porous medium. The maximum horizontal compressive stress due to the thermal
effect takes place in the hottest region of the computational domain, while the max-
imum horizontal tensile stress occurs at the upper left corner of the domain, where
the vertical displacement reaches its maximum value. Apart from a small part of
the top region of the computational domain, the thermal induced vertical stress is
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Fig. 3.8 Deformation of the porous medium due to temperature effect
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Fig. 3.9 Temperature induced stresses in the porous medium
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well distributed anti-symmetrically. This indicates that the vertical forces are well
balanced in the horizontal cross-section of the computational domain.

3.4.2 Numerical Modelling of Coupled Problems Involving
Deformation, Pore-Fluid Flow, Heat Transfer and Mass
Transport in Fluid-Saturated Porous Media

Generally, the numerical algorithms and methods can be used to answer many what-
if questions related to ore body formation and mineralization that can be described
as coupled problems between medium deformation, pore-fluid flow, heat transfer
and reactive mass transport in fluid-saturated porous media. However, due to the
approximate nature of a numerical solution, it is essential to evaluate the accuracy
of the numerical solution, at least qualitatively if the analytical solution to the prob-
lem is not available. This requires us to have a strong theoretical understanding of
the basic governing principles and processes behind the coupled problem. Specifi-
cally, we must know, through some kind of theoretical analysis, what the pore-fluid
can and cannot do, and what reaction patterns the reactive pore-fluid can produce
in a hydrothermal system. For this reason, we have been making efforts, in recent
years, to develop theoretical solutions to verify the numerical methods developed
(Zhao and Valliappan 1993a, b, 1994a, b, Zhao et al. 1997a, 1998a, 1999b). On
the other hand, a good numerical solution can provide insights into the integrated
behaviour of different processes that occur in a hydrothermal system. Even in some
circumstances, a good numerical solution can provide some useful hints for deriving
analytical solutions to some aspects of the problem. This indicates that the numerical
and theoretical approaches are, indeed, complementary in the field of computational
geoscience. Realizing this particular relationship between the analytical method and
the numerical method, Phillips (1991) stated that: “A conceptual framework eluci-
dating the relations among flow characteristics, driving forces, structure, and reac-
tion patterns enables us not only to understand the results of numerical modelling
more clearly, but to check them. (Numerical calculations can converge to a grid-
dependent limit, and artifacts of a solution can be numerical rather than geolog-
ical.) Numerical modelling provides a quantitative description and synthesis of a
basin-wide flow in far greater detail than would be feasible analytically. The com-
bination of the two techniques is a much more powerful research tool than either
alone.” Keeping this in mind, we have used the proposed consistent point-searching
interpolation algorithm to develop a general interface between the two commercial
computational codes, FIDAP and FLAC. This development enables us to investigate
the integrated behaviour of ore body formation and mineralization in hydrothermal
systems.

The first application example, which is closely associated with the coupled prob-
lem between medium deformation, pore-fluid flow, heat transfer and reactive mass
transport in a fluid-saturated porous medium, is to answer the question: What is
the pattern of pore-fluid flow, the distributions of temperature, reactant and product
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Fig. 3.10 Geometry and boundary conditions of the coupled problem

chemical species, and the patterns of final porosity and permeability, if a deformable
hydrothermal system has two reservoirs for two different reactant chemical species,
and is heated uniformly from below?

As shown in Fig. 3.10, the computational domain considered for this example
is a square box of 10 by 10 km in size. The temperature at the top of the domain
is 25°C, while it is 225°C at the bottom of the domain. The left and right lateral
boundaries are insulated and impermeable in the horizontal direction, whereas the
top and bottom are impermeable in the vertical direction. To consider the mixing of
reactant chemical species, the normalized concentration of species 1 is 0.001 at the
left quarter of the bottom and the normalized concentration of species 2 is 0.001 at
the right quarter of the bottom. This implies that species 1 and 2 are injected into
the computational domain through two different reservoirs at different locations.
The normalized concentrations of all three species involved in the chemical reaction
are assumed to be zero at the top surface of the computational domain. Table 3.1
shows the related parameters used in the computation. In addition, the computational
domain is discretized into 2704 quadrilateral elements with 2809 nodes in total.

Figure 3.11 shows the pore-fluid velocity and temperature distributions in the
deformable porous medium. It is observed that a clockwise convection cell has
formed in the pore-fluid flow in the porous medium. This convective flow results
in the localized distribution of temperature, as can be seen clearly from Fig. 3.11.
As we mentioned in the beginning of this section, we have to validate the numeri-
cal solution, at least from a qualitative point of view. For the hydrothermal system
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Table 3.1 Parameters used for the first coupled problem involving reactive mass transport

Material type Parameter Value

pore-fluid dynamic viscosity 107N x s/m?
reference density 1000 kg/m?
volumetric thermal expansion coefficient 2.07 x 107*(1/°C)
specific heat 41857 /(kgx"C)
thermal conductivity coefficient 0.6 W/(mx°C)
chemical species diffusivity coefficient 3 x 107°m? /s
pre-exponential reaction rate constant 10~ 7kg/(m* xs)
activate energy of reaction 5 x 10*J/mol
gas constant 8.3157J/(mol x°K)

porous matrix initial porosity 0.1
initial permeability 10~ 14m?
elastic modulus 2 x 10'°Pa
Poisson’s ratio 0.25
volumetric thermal expansion coefficient 2.07 x 1073(1/°C)
thermal conductivity coefficient 3.35W/(mx°C)

studied, the temperature gradient is the main driving force to initiate the convective
pore-fluid flow. There is a criterion available (Phillips 1991, Nield and Bejan 1992,
Zhao et al. 1997a) for judging whether or not the convective pore-fluid flow is pos-
sible in such a hydrothermal system as considered here. The criterion says that if the
Rayleigh number of the hydrothermal system, which has a flat bottom and is heated
uniformly from below, is greater than the critical Rayleigh number, which has a the-
oretical value of 472, then the convective pore-fluid flow should take place in the
hydrothermal system considered. For the particular hydrothermal system consid-
ered in this application example, the Rayleigh number is 55.2, which is greater than
the critical Rayleigh number. Therefore, the convective pore-fluid flow should occur
in the hydrothermal system, from the theoretical point of view. This indicates that
the numerical solution obtained from this application example can be qualitatively
justified.

Figure 3.12 shows the normalized concentration distributions of reactant and
product chemical species, whereas Fig. 3.13 shows the final distribution of porosity
and permeability in the computational domain of this application example, where
both the material deformation due to thermal effects and the reactive mass transport
are taken into account in the numerical computation. Obviously, the distributions
of the three chemical species are different. This indicates that the convective pore-
fluid flow may significantly affect the chemical reactions (i.e. reaction flow) in the
deformable porous medium. In particular, the distribution of chemical species 3,
which is the product of the chemical reaction considered in this application exam-
ple, demonstrates that the produced chemical species in the chemical reaction may
reach its equilibrium concentration in some regions, but may not necessarily reach
its equilibrium concentration in other regions in the computational domain. This
finding might be important for the further understanding of reactive flow transport
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involved in ore body formation and mineralization in the upper crust of the Earth.
Since the feedback effect of the medium deformation on the porosity and perme-
ability has been considered in the numerical simulation, the distributions of the final
porosity and permeability are totally different from that of their initial values, which
are uniformly distributed in the computational domain.

Again, we can justify the numerical solution for the final porosity and perme-
ability in the hydrothermal system. From the physics point of view, we know that
the higher the relative temperature in a porous medium, the larger the deforma-
tion of the porous medium due to the thermal effect. On the other hand, since the
solid aggregates in the porous medium are relatively stiff, the larger the deformation
of the porous medium, the greater the porosity of the porous medium, indicating
that large deformation of a porous medium results in greater permeability of the
porous medium. This implies that for a porous medium, a region of relatively high
temperature favours the formation of flow channels because of an increase in the
porosity of the region due to the thermal effect. This kind of phenomenon can be
clearly observed from the related numerical solutions for the temperature distribu-
tion (Fig. 3.11) and the final porosity/permeability distributions (Fig. 3.13) in the
hydrothermal system. This further justifies the numerical solutions obtained from
this application example, at least from a qualitative point of view.

The next application example is to investigate how the chemical reaction rate
affects the distribution of product chemical species (i.e. produced new minerals),
if all other parameters are kept unchanged in the hydrothermal system considered
above. Since the pre-exponential reaction rate constant, to a large extent, repre-
sents how fast the chemical reaction proceeds, three different values of the pre-
exponential reaction rate constant, namely 10~5kg/(m®xs), 10~ 7kg/(m>xs) and
10~%kg/(m* x ), have been used in the corresponding computations.

Figures 3.14, 3.15 and 3.16 show the effects of chemical reaction rates on the nor-
malized concentration distributions of reactant and product chemical species in the
hydrothermal system. It is obvious that the chemical reaction rate has little influence
on either the distribution pattern or the magnitude of the reactant chemical species
concentration. Even though the chemical reaction rate may affect the magnitude
of the product chemical species concentration, it does not affect the overall distri-
bution pattern of the product chemical species concentration. This finding implies
that if the reactant minerals constitute only a small fraction of the whole matrix
in a porous medium, which is a commonly accepted assumption in geochemistry
(Phillips 1991), the distribution pattern of the normalized concentration of the new
mineral produced by chemical reactions is strongly dependent on the characteristics
of the convective pore-fluid flow, even though the magnitude of the normalized con-
centration of the product mineral may also strongly depend on the rates of chemical
reactions.

As mentioned previously, any numerical solutions have to be justified before they
can be safely accepted and used. For this purpose, we must answer the following
questions: Are the numerical results reported in Figs. 3.14, 3.15 and 3.16 correct?
Do they represent the physical and chemical characteristics of the hydrother-
mal system rather than something else (i.e. numerical rubbish)? From these
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numerical results, can we find something of more theoretical importance? In the fol-
lowing we will answer the above questions through some theoretical analysis. For
the hydrothermal system considered, the maximum change in the density of pore-
fluid due to temperature is about 4%, while the maximum change in the density of
pore-fluid due to the concentration of any reactant chemical species is only about
0.1%. This means that the buoyancy produced by temperature is much greater than
that produced by the concentration of the reactant chemical species. As a result,
the convective pore-fluid flow is predominantly driven by the temperature gradient,
rather than the concentration gradients of chemical species, even though the contri-
bution of chemical species to the buoyancy is taken into account. More specifically,
for the hydrothermal system considered, the velocity components of pore-fluid in the
system are strongly dependent on the temperature gradient, rather than the concen-
tration gradients of chemical species. This means that the concentrations of chemi-
cal species have minimal influence on the convective pore-fluid flow. Based on this
recognition, we can further explore why both the pattern and the magnitude of the
normalized concentration of reactant chemical species are very weakly dependent
on the rates of the chemical reaction. For the purpose of facilitating the theoretical
analysis, we need to rewrite the transport equation (see Eq. (3.5)) for one of the
reactant chemical species (i.e. species 1) as follows:

aC, N aC, b 92C, D 92C, Sk, T\Coe —E,
U——+v—| = x5~ ey ——>5 | — xXp| — ).

Pro\"%x dy pso 0x2 7 9y? ATIE2EXP Ror
(3.90)

Since the reactant chemical species constitutes only a small fraction of the whole
matrix in a porous medium, as is commonly assumed in geochemistry (Phillips
1991), we can view the normalized concentration of the reactant chemical species
as the first order small quantity in the above equation, at least from the mathematical
point of view. Thus, the reaction term in this equation is at least the second order
small quantity. This implies that the distribution of the reactant chemical species
is controlled by the pore-fluid velocity and the dispersivity of the porous medium,
rather than by the chemical reaction term unless the rate of chemical reaction is very
fast. This is the reason why both the pattern and the magnitude of the normalized
concentration of the reactant chemical species are very weakly dependent on the
rates of the chemical reaction in the related numerical results (Figs. 3.14 and 3.15).

Next, we will examine, analytically, why the distribution pattern of the normal-
ized concentration of the product chemical species is almost independent of the
rates of the chemical reaction, but the magnitude of the product chemical species is
strongly dependent on the rates of the chemical reaction (Fig. 3.16). In this case, we
need to rewrite the transport equation for chemical species 3 as follows:

9Cs + 9Cs p, XCs +D °Cs + kT, Cyexp (L
U——+v—- | = ox ——— X .
Pfo Pfo 92 AC1C2eXp RT

0x dy ay?
(3.91)
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Since the magnitude of the normalized concentration of the reactant chemical
species is very weakly dependent on the rates of the chemical reaction, the product
of C, and C, is almost independent of the chemical reaction rate in Eq. (3.91). As
mentioned before, the product of C, and C, is at least the second order small quan-
tity in the theoretical analysis. As a result, the normalized concentration of chemical
species 3 is at least the second (or higher) order small quantity. This means that the
magnitude of the normalized concentration of chemical species 3 is determined by
the reaction term in Eq. (3.91). More specifically, the magnitude of the normalized
concentration of chemical species 3 is strongly dependent on the rate of the chemi-
cal reaction because the product of ¢, C; and C, are eventually independent of the
chemical reaction rate in Eq. (3.91). If C34 is a solution corresponding to the reac-
tion rate constant k44 for Eq. (3.91), we can, mathematically, deduce the solution
for another reaction rate constant k4 g below.

Since C3, is a solution for Equation (3.91), we have the following equation:

3C3a 3Csa 32Ca4 92C34 _ —E,
= D« D,y kasC1C )
Pro (M ox +v oy ) p_/()( e + D, 5y + ¢kasC1Crexp RT
(3.92)

Multiplying Eq. (3.92) by kap/kaa yields the following equation:

kag 3C3a dC3a kag 82C3a 82C34 —-E,
), Kas (G g kasC1C. .

Pro <M x T ay P 52 T Do 02 +¢kapCi1Caexp RT
(3.93)

Therefore, the solution corresponding to the reaction rate constant k45 can be
straightforwardly expressed as

kap—
Cip = kA—BcsA, (3.94)

where Cjp is the solution corresponding to the reaction rate constant k,pz for
Eq. (3.91).

Equation (3.94) states that for any particular point in the hydrothermal system
considered, the normalized concentration of the product chemical species varies
linearly with the reaction rate constant. This is the reason why the distribution pat-
tern of concentration of the product chemical species is almost independent of the
rates of the chemical reaction, but the magnitude of the product chemical species
is strongly dependent on the rates of the chemical reaction (Fig. 3.16). If we fur-
ther observe the numerical solutions in Fig. 3.16, then we find that the normalized
concentration of the product chemical species, indeed, varies linearly with the reac-
tion rate constant. Therefore, the numerical analysis carried out for this application
example is further validated by the related theoretical analysis.

It needs to be pointed out that the proposed consistent point-searching interpola-
tion and the related solution methodology have been successfully applied to more
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realistic geological situations (Zhao et al. 1998b, 1999¢c, Hobbs et al 2000, Gow
et al. 2002, Ord et al. 2002, Schaubs and Zhao 2002, Sorjonen-Ward et al. 2002,
Zhang et al. 2003), where both complicated geometry and material nonhomogene-
ity are considered. Although the consistent point-searching interpolation algorithm
is developed for the unstructured meshes consisting of 4-node bilinear quadrilateral
elements, it can equally be extended to the unstructured meshes consisting of higher
order elements. In the latter case, one has to solve the inverse mapping problem
numerically, instead of analytically.



Chapter 4

A Term Splitting Algorithm for Simulating
Fluid-Rock Interaction Problems

in Fluid-Saturated Hydrothermal Systems
of Subcritical Zhao Numbers

In recent years, we have been making efforts to develop a practical and predictive
tool to explore for giant ore deposits in the upper crust of the Earth. Towards this
goal, significant progress has been made towards a better understanding of the basic
physical and chemical processes behind ore body formation and mineralization in
hydrothermal systems. On the scientific development side, we have developed ana-
lytical solutions to answer the following scientific questions (Zhao et al. 1998e,
1999b): (1) Can the pore-fluid pressure gradient be maintained at the value of the
lithostatic pressure gradient in the upper crust of the Earth? and, (2) Can convec-
tive pore-fluid flow take place in the upper crust of the Earth if there is a fluid/mass
leakage from the mantle to the upper crust of the Earth? On the modelling develop-
ment side, we have developed numerical methods to model the following problems:
(1) convective pore-fluid flow in hydrothermal systems (Zhao et al. 1997a, 1998b);
(2) coupled reactive pore-fluid flow and species transport in porous media (Zhao
et al. 1999a); (3) precipitation and dissolution of minerals in the upper crust of
the Earth (Zhao et al. 1998a, 2000a); (4) double diffusion driven pore-fluid flow in
hydrothermal systems (Zhao et al. 2000b); (5) pore-fluid flow patterns near geologi-
cal lenses in hydrodynamic and hydrothermal systems (Zhao et al. 1999d); (6) vari-
ous aspects of the fully coupled problem involving material deformation, pore-fluid
flow, heat transfer and species transport/chemical reactions in pore-fluid saturated
porous rock masses (Zhao et al. 1999¢, 1999f, 1999g). The above-mentioned work
has significantly enriched our knowledge about the physical and chemical processes
related to ore body formation and mineralization in the upper crust of the Earth.
Since fluid-rock interaction is another potential mechanism of ore body formation
and mineralization in the upper crust of the Earth, it is necessary to extend further the
developed numerical tools to solve fluid-rock interaction problems. This requires us
to deal with coupled reactive species transport phenomenon, which is the direct con-
sequence of the chemical reactions that take place between aqueous reactive species
in pore-fluid and solid minerals in pore-fluid saturated porous rock masses.

For a natural fluid-rock interaction system, the reactant chemical species consti-
tutes only a small fraction of the whole matrix in a porous rock (Phillips 1991). In
this case, the chemical dissolution front is stable if the Zhao number of the system
is subcritical, while it becomes unstable otherwise. Based on the concept of the
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generalized dimensionless pore-fluid pressure gradient (Zhao et al. 2008e), the cor-
responding dimensionless Zhao number of a single mineral dissolution system can
be defined as follows:

VAow Vi

h = ,
¢f D(¢f) kchemicalAp Ceq

where vy, is the Darcy velocity of the pore-fluid flow; (¢ f) and D (qb f) are the
final porosity of the porous medium and the corresponding diffusivity of chemical
species after the completion of soluble mineral dissolution; C,, is the equilibrium

concentration of the chemical species; V , is the average volume of the soluble grain;
A, is the averaged surface area of the soluble grain; k¢jemicq 18 the rate constant of
the chemical reaction.

To understand the physical meanings of each term in the Zhao number, Eq. (4.1)

can be rewritten in the following form:

4.1

Zh = FAdvection FDiﬁ‘usion FChemicalFShapev (42)

where Fygveciion 18 a term to represent the solute advection; Fpgsion 1S a term to
represent the solute diffusion/dispersion; Fepemicar 1S @ term to represent the chem-
ical kinetics of the dissolution reaction; Fgpqp, is a term to represent the shape fac-
tor of the soluble mineral in the fluid-rock interaction system. These terms can be
expressed as follows:

FAdvection = Vfow, (43)
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FShape = (46)

Equations (4.2), (4.3), (4.4), (4.5) and (4.6) clearly indicate that the Zhao number
is a dimensionless number that can be used to represent the geometrical, hydrody-
namic, thermodynamic and chemical kinetic characteristics of a fluid-rock system in
a comprehensive manner. The condition under which a chemical dissolution front in
a two-dimensional fluid-saturated porous rock becomes unstable can be expressed
by the critical value of this dimensionless number as follows:
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where Zhiicqr 1s the critical Zhao number of the fluid-rock interaction system;
k(¢o) is the initial permeability corresponding to the initial porosity of the porous
rock; k(¢ ) is the final permeability corresponding to the final porosity, ¢, of the
porous rock.

Using the concepts of both the Zhao number and the corresponding critical one,
the instability of a chemical dissolution front in a fluid-rock interaction system can
be determined. The focus of this chapter is to deal with fluid-rock interaction sys-
tems of subcritical Zhao numbers, while the focus of the next chapter is to deal with
fluid-rock interaction systems of critical and supercritical Zhao numbers.

In terms of numerical modelling of coupled reactive species transport phenomena
in pore-fluid saturated porous rock masses, we have divided the reactive transport
problems into the following three categories (Zhao et al. 1998a). In the first category
of reactive species transport problem, the time scale of the convective/advective flow
is much smaller than that of the relevant chemical reaction in porous rock masses so
that the rate of the chemical reaction can be essentially taken to be zero in the numer-
ical analysis. For this reason, the first category of species transport problem is often
called the non-reactive mass transport problem. In contrast, for the second category
of reactive species transport problem, the time scale of the convective/advective
flow is much larger than that of the relevant chemical reaction in pore-fluid satu-
rated porous rock masses so that the rate of the chemical reaction can be essen-
tially taken to be infinite, at least from the mathematical point of view. This means
that the equilibrium state of the chemical reaction involved is always attained in
this category of reactive species transport problem. As a result, the second category
of reactive species transport problem is called the quasi-instantaneous equilibrium
reaction transport problem. The intermediate case between the first and the sec-
ond category of reactive species transport problem belongs to the third category
of reactive species transport problem, in which the rate of the relevant chemical
reaction is a positive real number of finite value. Another significant characteris-
tic of the third category of reactive species transport problem is that the detailed
chemical kinetics of chemical reactions must be taken into account. It is the chem-
ical kinetics of a chemical reaction that describes the reaction term in a reactive
species transport equation. Due to different regimes in which a chemical reaction
proceeds, there are two fundamental reactions, namely homogeneous and heteroge-
neous reactions, in geochemistry. For homogeneous reactions, the chemical reaction
takes place solely between reactive aqueous species. However, for heterogeneous
reactions, the chemical reaction takes place at the surfaces between reactive aque-
ous species and solid minerals. This implies that both solid and fluid phases need
to be considered in the numerical modelling of reactive species transport problems
with heterogeneous reactions. Although significant achievements have been made
for the numerical modelling of non-reactive species and quasi-instantaneous equi-
librium reaction transport problems, research on the numerical modelling of the
third category of reactive species transport problem is rather limited (Steefel and
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Lasaga 1994, Raffensperger and Garven 1995). Considering this fact, we have suc-
cessfully used the finite element method to model coupled reactive multi-species
transport problems with homogeneous reactions (Zhao et al. 1999a). Here we will
extend the numerical method developed to model coupled reactive multi-species
transport problems with heterogeneous reactions.

4.1 Key Issues Associated with the Numerical Modelling
of Fluid-Rock Interaction Problems

Of central importance to the numerical modelling of fluid-rock interaction problems
in pore-fluid saturated hydrothermal/sedimentary basins is the appropriate consid-
eration of the heterogeneous chemical reaction which takes place slowly between
aqueous reactive species in the pore-fluid and solid minerals in fluid-saturated
porous rock masses. From the rock alteration point of view, the pore-fluid flow,
which carries reactive aqueous species, is the main driving force causing the hetero-
geneous chemical reactions at the interface between the pore-fluid and solid miner-
als so that the rock can be changed from one type into another. The reason for this
is that these reactions between the aqueous species and solid minerals may result
in dissolution of one kind of mineral and precipitation of another and therefore, the
reactive minerals may be changed from one type into another type. Due to the dis-
solution and precipitation of minerals, the porosity of the porous rock mass evolves
during the rock alteration. Since a change in porosity can result in a change in the
pore-fluid flow path, a feed-back loop is formed between the pore-fluid flow and
the transport of reactive chemical species involved in heterogeneous chemical reac-
tions in fluid-rock interaction systems and this porosity change in the pore-fluid
flow needs to be considered in the numerical modelling of fluid-rock interaction
problems. This implies that the average linear velocity of pore-fluid flow varies with
time due to this porosity evolution. Since both the mesh Peclet number and Courant
number are dependent on the average linear velocity, we have to overcome a dif-
ficulty in dealing with the problem of variable Peclet and Courant numbers in the
transient analysis of fluid-rock interaction problems. Generally, there are two ways
to overcome this difficulty, from the computational point of view. The first one is to
use a very fine mesh and very small time step of integration so that the requirements
for both the mesh Peclet number and Courant number can be satisfied at every time
step of the computation. The second one is to regenerate the mesh and re-determine
the time step of integration at every time step of computation so that the finite ele-
ment method can be used effectively. Since either the use of a very fine mesh in the
whole process of computation or the regeneration of the mesh at every time step of
computation is computationally inefficient, there is a definite need for developing
new numerical algorithms to deal with this kind of problem.

Another important issue related to the numerical modelling of fluid-rock interac-
tion problems is that the dissolution rates of minerals are dependent on the existence
of the dissolving minerals. Once a dissolving mineral is exhausted in the rock mass,
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the dissolution rate of this particular mineral must be identically equal to zero. This
indicates that the variation in the amount of the dissolving mineral should be con-
sidered in the dissolution rates of the minerals. Otherwise, the numerical modelling
may violate the real mechanism of the related chemical kinetics and produce incor-
rect numerical results.

Thus, in order to effectively and efficiently use the finite element method
for solving fluid-rock interaction problems in pore-fluid saturated hydrother-
mal/sedimentary basins, new concepts and numerical algorithms need to be devel-
oped for dealing with the following fundamental issues: (1) Since the fluid-rock
interaction problem involves heterogeneous chemical reactions between reactive
aqueous chemical species in the pore-fluid and solid minerals in the rock masses,
it is necessary to develop a new concept involving the generalized concentration of
a mineral, so that two types of reactive mass transport equations, namely the con-
ventional mass transport equation for the aqueous chemical species in the pore-fluid
and the degenerated mass transport equation for the solid minerals in the rock mass,
can be solved simultaneously in computation. (2) Since the reaction area between
the pore-fluid and mineral surfaces is basically a function of the generalized concen-
tration of the solid mineral, there is a need to consider the appropriate dependence
of the dissolution rate of a dissolving mineral on its generalized concentration in the
numerical analysis. (3) Considering the direct consequence of the porosity evolution
with time in the transient analysis of fluid-rock interaction problems, the problem of
variable mesh Peclet number and Courant number needs to be converted into a prob-
lem involving constant mesh Peclet and Courant numbers, so that the conventional
finite element method can be directly used to solve fluid-rock interaction problems.

Taking the above-mentioned factors into account, we focus this study on the
numerical modelling of mixed solid and aqueous species transport equations with
consideration of reaction terms from heterogeneous, isothermal chemical reactions.
This means that we will concentrate on the development of new concepts and algo-
rithms so as to solve the fluid-rock interaction problems effectively and efficiently,
using the finite element method. For this purpose, a fluid-rock interaction problem,
in which K-feldspar (KAISi3 Og) and/or muscovite (KAl3Siz O10(OH),) are dissolved
and muscovite and/or pyrophyllite (Al,Si4 O10(OH),) are precipitated, is considered
as a representative example in this chapter.

4.2 Development of the Term Splitting Algorithm

For fluid-rock interaction problems in pore-fluid saturated hydrothermal/
sedimentary basins, heterogeneous chemical reactions take place at the interface
between the reactive aqueous species in the pore-fluid and solid minerals in the
rock mass. This means that we need to deal with two types of transport equa-
tions in the numerical modelling of fluid-rock interaction problems. The first is
the conventional transport equation with the advection/convection term and the
diffusion/dispersion term for reactive aqueous species in the pore-fluid. The second
is the degenerated transport equation, in which the advection/convection term and
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the diffusion/dispersion term are identically equal to zero, for solid minerals in the
rock mass. In order to solve these two types of transport equations simultaneously,
we need to develop the new concept of the generalized concentration for the solid
mineral. The generalized concentration of a solid mineral is defined as the moles of
the solid mineral per unit total volume (i.e. the volume of void plus the volume of
solid particles) of the porous rock mass. Using this new concept, the general form
of the second type of transport equation to be solved in this study can be expressed
as follows:

0Cq;
ot

= ¢R; i=12,..., m), 4.8)

where Cg; is the generalized concentration of solid mineral/species i; ¢ is the poros-
ity of the porous rock mass; R; is the reaction rate of solid mineral/species i and m
is the number of the solid minerals to be considered in the system.

For the reactive aqueous species, the general form of the first type of trans-
port equation in a two dimensional pore-fluid saturated, isotropic and homogeneous
porous medium reads

0C¢; 90C¢; 0C¢; .
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y
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where C; is the conventional concentration of aqueous species i; u, and u, are the
Darcy velocities of pore-fluid in the x and y directions respectively; D is of the
following form:

D¢ = ¢D;, (4.10)

where D; is the dispersivity of aqueous species i.

It needs to be pointed out that under some circumstances, where the reactant
chemical species constitute only a small fraction of the whole matrix in a porous
medium (Phillips 1991), the total flux of pore-fluid flow in a horizontal aquifer may
be approximately considered as a constant. For example, in a groundwater supply
system, groundwater can be pumped out from a horizontal aquifer at a constant flow
rate. In a geological system, topographically induced pore-fluid flow can also flow
through a horizontal aquifer at a constant flow rate. This indicates that in order to
satisfy the mass conservation requirement of the pore-fluid in the above-mentioned
aquifers, the total flux of the pore-fluid flow should be constant through all vertical
cross-sections, which are perpendicular to the direction of pore-fluid flow. There-
fore, the Darcy velocity in the flow direction is constant if the horizontal aquifer has
a constant thickness. The reason for this is that the Darcy velocity is the velocity
averaged over the total area of a representative elementary area (Zhao et al. 1998e,
Phillips 1991, Nield and Bejan 1992, Zhao et al. 1994c¢), rather than over the pore
area of the representative elementary area. In other words, the Darcy velocity in
the above-mentioned aquifers can be maintained at a constant value, even though
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the vertical cross-sections, which are perpendicular to the direction of the pore-fluid
flow, may have different values of the areal porosity (Zhao 1998e, Phillips 1991,
Nield and Bejan 1992, Zhao et al. 1994c). However, the linear averaged velocity,
which is the velocity averaged over the pore area of a representative elementary
area, varies if the vertical cross-sections have different values of the areal porosity.

It is also noted that Eq. (4.9) is a typical transport equation for species i. This
equation describes the mass conservation of species i in the pore-fluid saturated
porous medium for both constant and variable porosity cases (Zhao et al. 1998e,
1994c).

In order to consider the feedback effect of porosity due to heterogeneous chemi-
cal reactions, we need a porosity evolution equation in the numerical analysis. Using
the generalized concentration of solid minerals, the evolution equation for the poros-
ity of the rock mass can be expressed as follows:

m

¢=1—ZECG,-, @.11)

i=1 "

where W; is the molecular weight of mineral i; p; is the unit weight of solid minerals.
For the transient analysis, Cg; are the functions of space and time variables, so that
the porosity of the rock mass varies with both space and time. This is the reason
why Eq. (4.11) is called the evolution equation of porosity with time.

From the chemical kinetics point of view, the reaction rates involved in Egs. (4.8)
and (4.9) can be expressed as follows (Lasaga 1984):

N
R ==Y tyrj. (4.12)
j=1

where 7;; is the contribution factor of mineral/species j to the reaction rate of min-
eral/species i; N is the number of the heterogeneous chemical reactions to be con-
sidered in the rock mass; r; is the overall dissolution rate of mineral j.

A .
r= V—’kj <1 - %) (4.13)
f J

where A is the surface area of mineral j; k; and K ; are the reaction constant and the
equilibrium constant of the jth heterogeneous chemical reaction; V is the volume of
the solution; Q; is the chemical affinity of the jth heterogeneous chemical reaction.

It needs to be pointed out that the surface area of a dissolving mineral varies in
the process of mineral dissolution. Once the dissolving mineral is depleted in the
rock mass, the surface area of the mineral must be equal to zero and therefore, the
chemical reaction dissolving this particular mineral should stop. If this area is sim-
ply assumed to be a constant in the numerical modelling, then the resulting numer-
ical solutions are incorrect because the real mechanism of chemical kinetics cannot
be simulated during the consumption of the dissolving mineral in the rock mass.
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In other words, the use of a constant surface area cannot simulate the dependent
nature of the chemical reaction rate on a change in the amount of the dissolving
mineral during the heterogeneous chemical reaction process. In addition, the use of
a constant surface area cannot automatically terminate the dissolution reaction, even
though the dissolving mineral is absolutely exhausted in the rock mass. Since the
surface area of a dissolving mineral is strongly dependent on its generalized con-
centration, we can establish the following relation between the surface area and the
generalized concentration of the dissolving mineral:

A a,;CL (4.14)
Vf ’ J

where «; and g are positive real numbers.

Like the surface area of the dissolving minerals, the values of both «; and g are
dependent on the constituents, packing form, grain size and so forth of the minerals.
For simple packing of loose uniform particles of the minerals, these values can be
determined analytically. For example, in the case of packing uniform circles in a
two dimensional domain, g = 1/2, whereas in the case of packing uniform spheres
in a three dimensional domain, ¢ = 2/3. However, for a real rock mass in pore-fluid
saturated hydrothermal/sedimentary basins, the values of both «; and g need to be
determined by field measurements and laboratory tests.

Inserting Eq. (4.14) into Eq. (4.13) yields the following equation:

J

Clearly, this equation states that once the dissolving mineral is gradually con-
sumed in the rock mass, the generalized concentration of this mineral continuously
evolves to zero and therefore, its dissolution rate is automatically set to be zero
when it is completely depleted in the numerical analysis. This is the first advantage
of introducing the new concept of the generalized concentration for solid minerals.

Another advantage of introducing the concept of the generalized concentration
for solid minerals is that both the first type and second type of transport equations
(i.e. Egs. (4.8) and (4.9)) can be solved simultaneously. Since several heterogeneous
chemical reactions take place simultaneously in dissolution problems involving
multiple minerals, it is important to solve simultaneously all the transport equations
with heterogeneous reaction terms in fluid-rock interaction problems, if we want to
simulate the chemical kinetics of these heterogeneous chemical reactions correctly.

If the transient process of a heterogeneous chemical reaction is of interest,
then the dissolution and precipitation of minerals can result in the variation of
porosity with time. This indicates that the linear average velocity of pore-fluid,
which is involved in the advection/convection term of a reactive aqueous species
transport equation, varies with time during the transient analysis. Even for a hori-
zontal aquifer, in which the horizontal Darcy velocity may be constant, the related
average linear velocity still varies with time, because it is inversely proportional
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to the porosity of the aquifer. In this regard, we have to deal with the problem of
variable Peclet and Courant numbers in the transient analysis of fluid-rock inter-
action problems. To solve this problem effectively and efficiently, we develop the
term splitting algorithm in this section. The basic idea behind this algorithm is that
through some mathematical manipulations, we invert the problem of variable Peclet
and Courant numbers into that of constant Peclet and Courant numbers so that a
fixed finite element mesh and fixed time step of integration can be safely used in the
numerical modelling of fluid-rock interaction problems.

If the pore-fluid saturated porous medium has a non-zero initial porosity, then
we can use this initial porosity as a reference porosity and change Eq. (4.9) into the
following form:

¢  9Cq Cc¢; dC¢;
¢0¢0 at i ax iy dy
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Dividing both the left and right hand sides of Eq. (4.16) by ¢/¢, yields the fol-
lowing equation:
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Using the initial Darcy velocities, u .o and u g, as reference velocities in the x and
y directions respectively, Eq. (4.17) can be rewritten as follows:
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It is noted that in Eq. (4.18), the coefficient in front of dC¢;/0x has been split
into a constant coefficient, u,o, and a variable term, (1, ¢o)/¢p — u,o. Similarly, the
coefficient in front of 9C¢;/0y has also been split into a constant coefficient, u o,
and a variable term, (u,¢o)p — u,o. This term splitting process, although it is car-
ried out mathematically, forms a very important step in the proposed term splitting
algorithm.

If the first derivative terms with constant coefficients are kept in the left hand side
of Eq. (4.18) and the rest terms are moved to the right hand side, Eq. (4.18) can be
rewritten as follows:
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where ¢ is the initial porosity of the porous rock mass; u o and u  are the reference
velocities, which are the initial Darcy velocities, in the x andy directions; Ry is the
equivalent source/sink term due to the variation in both the velocity of pore-fluid
and the porosity of the rock mass.

It is clear that the proposed term splitting algorithm consists of the following
two main steps. First, by means of some rigorous mathematical manipulations,
Eq. (4.9) with variable coefficients in front of the first and second derivatives has
been changed into Eq. (4.19), which has constant coefficients in front of the first
and second derivatives. From the mathematical point of view, this means that we
have changed a partial differential equation with variable coefficients (Eq. (4.9))
into another one with constant coefficients in front of the first and second deriva-
tives. Second, Eq. (4.19) is directly used to obtain a numerical solution for Equation
(4.9) in the finite element analysis, because both Eqs. (4.19) and (4.9) are mathemat-
ically equivalent. However, from the computational point of view, Eq. (4.19) can be
solved much easier than Eq. (4.9) in the finite element analysis. The reason for this
is that in order to solve Eq. (4.9), we need to deal with a problem with variable mesh
Peclet number and Courant number. But in order to solve Eq. (4.19), we need only
to deal with a problem with constant mesh Peclet number and Courant number. On
the other hand, the numerical solvers presently available are more stable and robust
when they are used to solve Eq. (4.19), instead of Eq. (4.9).

Note that the equivalent source/sink term presented here has a very clear physical
meaning. For a representative elementary volume/area, a change either in the poros-
ity or in the pore-fluid velocity is equivalent to the addition of a source/sink term
into the representative elementary volume/area. Since the constants involved in both
the advection and dispersion terms are basically independent of time, it is possible to
use the initial mesh and time step, which are determined using the initial conditions
at the beginning of computation, throughout the whole process of the transient anal-
ysis of fluid-rock interaction problems. As a result, the finite element method with
the proposed term splitting algorithm can be efficiently used to solve both the first
and second type of transient transport equations (i.e. Eqs. (4.8) and (4.19)) for fluid-
rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins.

4.3 Application Examples of the Term Splitting Algorithm

In order to illustrate the usefulness and applicability of the newly proposed concepts
and numerical algorithms, we have built them into a finite element code so that fluid-
rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins
can be solved effectively and efficiently. As shown in Fig. 4.1, the application exam-
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Fig. 4.1 Geometry and \ 3000 m |
initial conditions for the ! ‘
fluid-rock interaction

problem in a pore-fluid
saturated aquifer 99% Quartz + 1% K-feldspar 1000m
¢y =0.1, u,,=10"mk

ple considered in this section is an isothermal fluid-rock interaction problem in a
pore-fluid saturated horizontal aquifer within a sedimentary basin. The topographi-
cally induced pore-fluid flow is horizontally from the left to the right of the aquifer.
This means that the horizontal Darcy velocity is constant within the aquifer. The
rock of the aquifer is initially composed of K-feldspar (KAISi3 Og) and quartz (SiO;).
There is an injection of carbon dioxide gas (CO,) at the left inlet of the aquifer. The
injected carbon dioxide flow in the aquifer may dissolve K-feldspar and precipitate
muscovite (KAl3Si3010(OH),). If the injected carbon dioxide flow is strong enough,
the precipitated muscovite may be dissolved and pyrophyllite (Al,SisO10(OH),)
will be precipitated. Basically, the following three overall chemical reactions may
take place in the aquifer.

fast

COr + H0 2% HCOS + HY (4.22)
3KAISisOg + 2H" =5 2K+ + KAl3Si30,0(OH), + 6Si0,, (4.23)

2KAl3Si3010(OH), + 2H™ + 6Si0, =2 0Kt +3A1LSis010(OH),.  (4.24)

The first reaction (i.e. Eq. (4.22)) states that when the injected carbon dioxide
(CO,) gas enters the fluid-rock system, it reacts very fast with water (H, O), so that
the chemical equilibrium can be reached quasi-instantaneously. This means that the
injection of carbon dioxide (CO,) gas is equivalent to the direct injection of H™ into
the system. As will be demonstrated later, the use of this equivalence may result in
a reduction in the number of primary reactive chemical species and therefore, a
considerable reduction in the degrees of freedom of the whole system. As a direct
consequence, the number of reactive species transport equations can be reduced to
the minimum in computation. This can lead to a significant reduction in require-
ments of both the computer storage and CPU time in the numerical modelling of
fluid-rock interaction problems.

It needs to be pointed out that Eq. (4.23) describes a heterogeneous chem-
ical reaction, in which K-feldspar (KAIlSizOg) is dissolved and muscovite
(KAI3Si3019(OH),) is precipitated, while Eq. (4.24) describes a heterogeneous
chemical reaction, in which muscovite (KAl3Si3 010(OH),) is dissolved and pyro-
phyllite (Al,Sis010(OH),) is precipitated in the fluid-rock system. Chemically,
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Eq. (4.23) states that the dissolution of one mole of K-feldspar needs to consume
2/3 moles of H* and then produces 1/3 moles of muscovite, 2/3 moles of K+ and
two moles of quartz. Similarly, Eq. (4.24) states that the dissolution of one mole
of muscovite needs to consume one mole of H+ and two moles of quartz and then
produces 1.5 moles of pyrophyllite and one mole of K*. This indicates that we
only need to consider six primary chemical reactive species, namely two aqueous
species (KT and H™) in the pore-fluid and four solid minerals/species (K-feldspar,
muscovite, pyrophyllite and quartz) in the rock mass, in the computation.

As shown in Fig. 4.1, the computational domain to be used in the numerical anal-
ysis is a rectangle of 3000 m by 1000 m in size. This computational domain is dis-
cretized into 2700 4-node quadrilateral elements. Since the problem to be considered
here is essentially an initial value problem, the following initial conditions are used
in the computation. The initial porosity of the porous medium is 0.1. The initial val-
ues of the generalized concentrations of quartz and K-feldspar are 36.82 kmol/m?
and 0.87 kmol/m? respectively. It is assumed that all the aqueous reactive species
involved in the chemical reactions are in chemical equilibrium at the beginning of
the computation. Under this assumption, the initial values of the conventional con-
centrations of Kt and H* are 0.1kmol/m?® and 1.6 x 10~ kmol/m?. The hori-
zontal Darcy velocity of pore-fluid flow is 1078 m/s in the horizontal aquifer. The
dispersion coefficient of K+ is 2 x 107°m?/s. Since the injected carbon dioxide
(CO») gas diffuses much faster than aqueous species, the dispersion coefficient of
the injected H*, which is the equivalence of the injected carbon dioxide (CO») gas,
is 100 times that of K in the computation. The concentration of the injected H
is 6.4 x 10~3kmol/m?> at the left vertical boundary of the computational domain.
For the purpose of simulating the chemical kinetics of heterogeneous reactions,
the following thermodynamic data are used. The chemical equilibrium constants
are 3.89 x 107 and 8318.0 for the K-feldspar and muscovite dissolution reactions,
whereas the chemical reaction rate constants for these two dissolution reactions are
5.03 x 1072 kmol/(m?s) and 4.48 x 10~'2 kmol/(m”s) respectively. o; (j = 1, 2)
and ¢ are assumed to be unity and 0.5 in the numerical analysis. In addition, the
integration time step is set to be 3 x 10% s, which is approximately equal to 10 years,
in the computation.

Figures 4.2, 4.3 and 4.4 show the generalized concentration distributions of
K-feldspar, muscovite and pyrophyllite in the fluid-rock interaction system at four
different time instants, namely ¢t = 3 x 10%, t = 1.5 x 10'%, t = 6 x 10'% and
t = 1.5 x 10"s respectively. It is observed the dissolution front (i.e. the region from
red to blue in Fig. 4.2) of K-feldspar propagates from the left side to the right side of
the computational domain. Since muscovite can be precipitated and dissolved at the
same time, there are two propagation fronts, the precipitation front and dissolution
front, in Fig. 4.3. The precipitation front of muscovite is the region from blue to
red in the right half of the computational domain, whereas the dissolution front is
the region from red to blue in the left half of the computational domain. Both the
precipitation and dissolution fronts propagate from the left side to the right side of
the computational domain. In the case of the generalized concentration distribution
of pyrophyllite (see Fig. 4.4), there only exists the precipitation front (i.e. the region
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(t=3x10%5)
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Fig. 4.2 Distribution of K-feldspar in the fluid-rock interaction system
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Fig. 4.3 Distribution of muscovite in the fluid-rock interaction system
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Fig. 4.4 Distribution of pyrophyllite in the fluid-rock interaction system
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from blue to red in Fig. 4.4) of pyrophyllite in the computational domain. Clearly,
all the dissolution/precipitation propagation fronts propagate from the left side to
the right side of the computational domain, which is exactly in the same direction
as the pore-fluid flow in the aquifer. This indicates that when the injected carbon
dioxide (CO,) gas enters the fluid-rock interaction system, it produces H" quasi-
instantaneously at the left entrance of the system. The produced H* propagates
from the left side to the right side of the aquifer so that K-feldspar gradually dis-
solves and muscovite precipitates along the same direction as the dissolution front
propagation of K-feldspar. Since the dissolution reaction constants of K-feldspar
and muscovite are of the same order in magnitude, the dissolution process of mus-
covite is in parallel with that of K-feldspar. This is to say, the precipitated muscovite
from the dissolution of K-feldspar can be dissolved and therefore, pyrophyllite can
be precipitated at an early stage, as clearly exhibited in Fig. 4.4. This fact indicates
that in order to model the chemical kinetics of the involved heterogeneous reactions
correctly, all the reactive species transport equations should be solved simultane-
ously in the numerical analysis.

It is noted that from the mathematical point of view, the problem solved here is
an initial value problem, rather than a boundary value problem. For an initial value
problem in a homogeneous, isotropic porous medium (as we considered here), the
chemical reaction/propagation front of chemically reactive species is stable before
the system reaches a steady state, from both the physical and chemical points of
view. However, if the numerical algorithm is not robust enough and the mesh/time
step used is not appropriate in a numerical analysis, numerical error may result in an
unstable/oscillatory chemical reaction/propagation front (Zienkiewicz 1977). Just
as Phillips (1991) stated, “Numerical calculations can converge to a grid-dependent
limit, and artifacts of a solution can be numerical rather than geological”. This indi-
cates that any numerical solution must be validated, at least qualitatively if the ana-
Iytical solution to the problem is not available. We emphasise the importance of this
issue here because it is often overlooked by some purely numerical modellers. The
simplest way to evaluate a numerical solution in a qualitative manner is to check
whether or not the solution violates the common knowledge related to the problem
studied. Since all the propagation fronts of chemically reactive species in Figs. 4.2,
4.3 and 4.4 are comprised of vertically parallel lines, they agree very well with com-
mon knowledge, as the chemical dissolution system considered here is subcritical.
This demonstrates that the proposed numerical algorithms are robust enough for
solving fluid-rock interaction problems, at least from a qualitative point of view.

Figures 4.5, 4.6 and 4.7 show the conventional/generalized concentration distri-
butions of K+, H* and quartz in the fluid-rock interaction system at four different
time instants, namely r = 3x10%s,7 = 1.5x10'%,7 = 6x10'%sand r = 1.5x10''s
respectively. Generally, KT is gradually produced and accumulated with time due
to both the K-feldspar and muscovite dissolution reactions, whereas H™ is con-
tinuously injected at the left entrance of the aquifer and consumed with time due
to both the K-feldspar and muscovite dissolution reactions. Quartz is produced by
the K-feldspar dissolution reaction but is consumed by the muscovite dissolution
reaction. Since the generalized concentration of K-feldspar is greater than that of



4.3 Application Examples of the Term Splitting Algorithm 89

0.103E+00
0.102E+00
0.102E+00
0.102E+00
0.101E+00
0.101E+00
0.101E+00
0.100E+00

(t=3%10%5)

0.115E+00
0.114E+00
0.113E+00
0.111E+00
0.110E+00
0.108E+00
0.107E+00
0.106E+00

0.160E+00
0.159E+00
0.158E+00
0.157E+00
0.156E+00
0.155E+00
0.154E+00
0.153E+00

(t=15%10105)

(t=6x10105)

0.193E+00
0.193E+00
0.192E+00
0.191E+00
0.190E+00
0.189E+00
0.189E+00
0.188E+00

(t=15x1011ys)

Fig. 4.5 Distribution of K in the fluid-rock interaction system
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Fig. 4.6 Distribution of H* in the fluid-rock interaction system
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Fig. 4.7 Distribution of quartz in the fluid-rock interaction system
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Fig. 4.8 Distribution of porosity variation in the fluid-rock interaction system
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muscovite within the time frame considered, the accumulation of quartz exceeds
the consumption of quartz and therefore, the generalized concentration of quartz
increases with time due to both the K-feldspar and muscovite dissolution reac-
tions. In the case of the conventional concentration of K, its maximum values
are 0.1032 kmol/m® and 0.1942 kmol/m> at r = 3 x 10%s and r = 1.5 x 10''s
respectively. This indicates a significant increase in the conventional concentration
of Kt with the increase of time within the scope of this study. However, in the
case of the conventional concentration of H T, its maximum value is a constant of
6.4 x 103 kmol/m? at both r = 3 x 10%s and r = 1.5 x 10''s. The reason for this
is due to a continuous injection of H *at the left entrance of the aquifer. In the case
of the generalized concentration of quartz, its maximum values are 0.4051 kmol/m?
and 0.4067 kmol/m?> at 7 = 3 x 10°s and r = 1.5 x 10''s respectively. This indicates
a slight increase in the generalized concentration of quartz with the increase of time
within the scope of this study.

Figure 4.8 shows the porosity variation, (¢ — ¢o)/¢o, in the fluid-rock interac-
tion system at four different time instants. It is clear that the porosity of the porous
medium evolves with time in the process of fluid-rock interactions. The evolution of
porosity mainly depends on the evolution of the K-feldspar dissolution, muscovite
precipitation and dissolution and pyrophyllite precipitation in the fluid-rock interac-
tion system. In addition, the porosity variation front propagates from the left side to
the right side of the aquifer, which is identical to the direction of pore-fluid flow in
the aquifer. The propagation of the porosity variation front can be clearly observed
from the numerical results shown in Fig. 4.8.

In summary, the related numerical solutions from an application example, which
is a K-feldspar dissolution problem in a pore-fluid saturated, isothermal and homo-
geneous aquifer, have demonstrated that: (1) There exist only a dissolution propaga-
tion front for K-feldspar and a precipitation propagation front for pyrophyllite, but
there exist a precipitation propagation front and a dissolution propagation front for
muscovite during the heterogeneous chemical reactions in the aquifer. (2) The dis-
solution of K-feldspar and muscovite may take place simultaneously in the aquifer
so that pyrophyllite can be precipitated at the early stage of the heterogeneous chem-
ical reactions. (3) All the propagation fronts of chemically reactive species are com-
prised of vertically parallel lines, the propagation directions of which are exactly
the same as that of the pore-fluid flow in the aquifer. (4) The evolution of porosity
mainly depends on the evolution of K-feldspar dissolution, muscovite precipitation
and dissolution and pyrophyllite precipitation in the fluid-rock interaction system.



Chapter 5

A Segregated Algorithm for Simulating
Chemical Dissolution Front Instabilities
in Fluid-Saturated Porous Rocks

When fresh pore-fluid flow enters a solute-saturated porous medium, where the
concentration of the solute (i.e. aqueous mineral) reaches its equilibrium concen-
tration, the concentration of the aqueous mineral is diluted so that the solid part of
the solute (i.e. solid mineral) is dissolved to maintain the equilibrium state of the
solution. This chemical dissolution process can result in the propagation of a disso-
lution front within the fluid-saturated porous medium. Due to the dissolution of the
solid mineral, the porosity of the porous medium is increased behind the dissolution
front. Since a change in porosity can cause a remarkable change in permeability,
there is a feedback effect of the porosity change on the pore-fluid flow, according to
Darcy’s law. It is well known that because pore-fluid flow plays an important role in
the process of reactive chemical-species transport, a change in pore-fluid flow can
cause a considerable change in the chemical-species concentration within the porous
medium (Steefel and Lasaga 1990, 1994, Yeh and Tripathi 1991, Raffensperger and
Garven 1995, Shafter et al. 1998a, b, Xu et al. 1999, 2004, Ormond and Ortoleva
2000, Chen and Liu 2002, Zhao et al. 2005a, 2006c). This means that the problem
associated with the propagation of a dissolution front is a fully coupled nonlinear
problem between porosity, pore-fluid pressure and reactive chemical-species trans-
port within the fluid-saturated porous medium. If the fresh pore-fluid flow is slow,
the feedback effect of the porosity change is weak so that the dissolution front is
stable. However, if the fresh pore-fluid flow is fast enough, the feedback effect of
the porosity change becomes strong so that the dissolution front becomes unstable.
In this case, a new morphology (i.e. dissipative structure) of the dissolution front can
emerge due to the self-organization of this coupled nonlinear system. This leads to
an important scientific problem, known as the reactive infiltration instability prob-
lem (Chadam et al. 1986, 1988, Ortoleva et al. 1987), which is closely associated
with mineral dissolution in a fluid-saturated porous medium.

This kind of chemical-dissolution-front instability problem exists ubiquitously
in many scientific and engineering fields. For example, in geo-environmental engi-
neering, the rehabilitation of contaminated sites using fresh water to wash the
sites involves the propagation problem of the removed contaminant material front
in water-saturated porous medium. In mineral mining engineering, the extraction
of minerals in the deep Earth using the in-situ leaching technique may result in
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the propagation problem of the dissolved mineral front in fluid-saturated porous
medium. In the petroleum industry, the secondary recovery of oil by acidifying the
oil field to uniformly increase porosity and hence the yield of oil is associated with
the propagation of the acid-dissolved material front in porous rocks. More impor-
tantly, due to the ever-increasing demand for mineral resources and the likelihood
of the exhaust of the existing ore deposits, it is imperative to develop advanced tech-
niques to explore for new ore deposits. Towards this goal, there is a definite need
to understand the important physical and chemical processes that control ore body
formation and mineralization in the deep Earth (Raffensperger and Garven 1995,
Zhao et al. 1997a, 1998a, 1999b, d, 2000b, 2001b, d, Gow et al. 2002, Ord et al.
2002, Schaubs and Zhao 2002, Zhao et al. 2002c, 2003a). According to modern
mineralization theory, ore body formation and mineralization is mainly controlled
by pore-fluid flow focusing and the equilibrium concentration gradient of the con-
cerned minerals (Phillips 1991, Zhao et al. 1998a). Since the chemical dissolution
front can create porosity and therefore can locally enhance the pore-fluid flow, it
becomes a potentially powerful mechanism to control ore body formation and min-
eralization in the deep Earth.

Although analytical solutions can be obtained for some reactive transport prob-
lems with simple geometry, it is very difficult, if not impossible, to predict analyti-
cally the complicated morphological evolution of a chemical dissolution front in the
case of the chemical dissolution system becoming supercritical. As an alternative,
numerical methods are suitable to overcome this difficulty. Since numerical meth-
ods are approximate solution methods, they must be verified before they are used
to solve any new type of scientific and engineering problem. For this reason, it is
necessary to derive the analytical solution for the propagation of a planar dissolution
front within a benchmark problem, the geometry of which can be accurately simu-
lated using numerical methods such as the finite element method (Zienkiewicz 1977,
Lewis and Schrefler 1998) and the finite difference method. This makes it possible
to compare the numerical solution obtained from the benchmark problem with the
derived analytical solution so that the proposed numerical procedure can be verified
for simulating chemical-dissolution-front propagation problem in the fluid-saturated
porous medium.

5.1 Mathematical Background of Chemical Dissolution Front
Instability Problems in Fluid-Saturated Porous Rocks

5.1.1 A General Case of Reactive Multi-Chemical-Species

Transport with Consideration of Porosity/Permeability
Feedback

For a pore-fluid-saturated porous medium, Darcy’s law can be used to describe
pore-fluid flow and Fick’s law can be used to describe mass transport phenom-
ena respectively. If both the porosity change of the porous medium is caused by
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chemical dissolution of soluble solid minerals within the porous medium and the
feedback effect of such a change on the variation of permeability and diffusivity
are taken into account, the governing equations of the coupled nonlinear problem
between porosity, pore-fluid flow and reactive multi-chemical-species transport in
the pore-fluid-saturated porous medium can be expressed as follows:

ad -
E(/Of(b) + Ve (Iof¢ulinear) =0, (5.1
U= d)ﬁlinear = _@VPa (5.2)
I
) -
§(¢Ci) + V e (¢Cittjinear) = V @ [¢ Di($)VCi] + R; i=12,...N),
(5.3)

where i,.qr i the averaged linear velocity vector within the pore space of the
porous medium; # is the Darcy velocity vector within the porous medium; p and C;
are pressure and the concentration (moles/pore-fluid volume) of chemical species i;
w is the dynamic viscosity of the pore-fluid; ¢ is the porosity of the porous medium;
D;(¢) is the diffusivity of chemical species 7; ps is the density of the pore-fluid; N
is the total number of all the chemical species to be considered in the system; R;
is the source/sink term of chemical species i due to the dissolution/precipitation of
solid minerals within the system; k(¢) is the permeability of the porous medium.

It is noted that in Eqs. (5.1), (5.2) and (5.3), the chemical species concentration,
the fluid density and averaged linear velocity of the pore-fluid are defined in the
pore space, while the source/sink term and the Darcy velocity of the pore fluid are
defined in the whole medium space (Phillips 1991, Nield and Bejan 1992, Zhao
et al. 1994c).

Since the diffusivity of each chemical species is considered as a function of
porosity, a common phenomenological relation can be used for describing this func-
tion (Bear 1972, Chadam et al. 1986).

D;(¢) = Dy;¢* <§ =q = é) (5.4
2 2
where Dy; is the diffusivity of chemical species i in pure water.

To consider the permeability change caused by a change in porosity, an equa-
tion is needed to express the relationship between permeability and porosity. In
this regard, Detournay and Cheng (1993) state that “The intrinsic permeability k
is generally a function of the pore geometry. In particular, it is strongly dependent
on porosity ¢. According to the Carman-Kozeny law (Scheidegger 1974) which
is based on the conceptual model of packing of spheres, a power law relation of
k o< ¢* /(1 — ¢)* exists. Other models based on different pore geometry give sim-

ilar power laws. Actual measurements on rocks, however, often yield power law
relations with exponents for ¢ significantly larger than 3.” Also, Nield and Bejan
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(1992) state that “The Carman-Kozeny law is widely used since it seems to be the
best simple expression available.” For these reasons, the Carman-Kozeny law will
be used to calculate permeability k, for a given porosity ¢.

243

k@) = WP 55)
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where ¢ and k are the initial reference porosity and permeability of the porous

medium respectively.

The source/sink term of chemical species i due to the dissolution/precipitation
of solid minerals within the system can be determined in the following manner
(Chadam et al. 1986). At the particle level, it is assumed that the average volume of
soluble grains is V,, and that the density of the soluble grains is D, which is defined
as the number of the soluble gains per unit medium volume. If the volume fraction
of insoluble gains is denoted by ¢j,so1ubie, then the final (i.e. maximum) porosity of
the porous medium can be denoted by ¢y = 1 — @jyslunie. In this case, the average
volume of soluble grains can be expressed as follows:

— ¢ — ¢

V,= 5 (5.6)
P

At the particle level, the rate of grain-volume change due to a chemical reaction
is denoted by R, so that the rate of porosity change can be expressed as:

¢
Yl —D,R,,. 5.7

Without loss of generality, it is assumed that the solid grains are dissolved accord-
ing to the following formula:

N
Solid =y xiXi, (5.8)

i=1

where x; is the stoichiometric coefficient of the ith chemical species; X; represents
chemical species i in the pore-fluid.

It is commonly assumed that the rate of grain-volume change due to a chemical
reaction can be expressed as follows (Chadam et al. 1986):

N

Rp = kchemicalAp ( 1_[ C,'Xi - Keq) (59)

i=1

where A, is the averaged surface area of soluble grains; kepemicar and K, are the
rate constant and equilibrium constant of the chemical reaction respectively.
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If the molar density (i.e. moles per volume) of the soluble grains is denoted by py,
then the source/sink term of chemical species i due to the dissolution/precipitation
of solid minerals within the system can be expressed as follows:

N
Ri = _XipskchemicaleAp (1_[ ClX’ - Keq)
i=1

(5.10)
Ap al Xi
= _Xipskchemicalv_]p(qsf - ¢) 1_[ Ci - Kgq .
i=1

5.1.2 A Particular Case of Reactive Single-Chemical-Species
Transport with Consideration of Porosity/Permeability
Feedack

If the pore-fluid is incompressible, the governing equations of a reactive single-
chemical-species transport problem in a fluid-saturated porous medium can be writ-
ten as follows:

a
8_¢t) —Vel[y(p)Vp]l =0, (5.11)

d A
E(qu) —Ve [qu((b)VC + Cl/f(ff’)vP] + pskchemicalv_p(qsf - ¢)(C - Ceq) = 07

p

(5.12)
36 A
E + kchemicalV_Z((pf - ¢)(C - Ceq) =0, (513)
k
v(g) = —(¢), (5.14)
n

where C and C,, are the concentration and equilibrium concentration of the single
chemical species. Other quantities in Egs. (5.11), (5.12), (5.13) and (5.14) are of the
same meanings as those defined in Eqgs. (5.1), (5.2) (5.3), and (5.9).

Note that Eqgs. (5.11) and (5.12) can be derived by substituting the linear average
velocity into Eqgs. (5.1) and (5.3) with consideration of a single-chemical species.

It needs to be pointed out that for this single-chemical-species system, it is
very difficult, even if not impossible, to obtain a complete set of analytical solu-
tions for the pore-fluid pressure, chemical species concentration and porosity within
the fluid-saturated porous medium. However, in some special cases, it is possible
to obtain analytical solutions for some variables involved in this single-chemical-
species system. The first special case to be considered is a problem, in which a
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planar dissolution front propagates in the full space. Since the dissolution front is a
plane, the problem described in Egs. (5.11), (5.12) and (5.13) degenerates into a one-
dimensional problem. For this particular case, analytical solutions can be obtained
for both the propagation speed of the dissolution front and the downstream pressure
gradient of the pore-fluid. The second special case to be considered is an asymptotic
problem, in which the solid molar density greatly exceeds the equilibrium concen-
tration of the chemical species, implying that the region of a considerable porosity
change propagates very slowly within the fluid-saturated porous medium. In this
particular case, it is possible to derive a complete set of analytical solutions for the
pore-fluid pressure, chemical species concentration and porosity within the fluid-
saturated porous medium. In addition, it is also possible to investigate the reactive
infiltration instability associated with the dissolution front propagation in this par-
ticular case (Chadam et al. 1986).

5.1.2.1 The First Special Case

In this special case, the planar dissolution front is assumed to propagate in the pos-
itive x direction, so that all quantities are independent of the transverse coordinates
y and z. For this reason, Egs. (5.11), (5.12) and (5.13) can be rewritten as follows:

3¢_3|: ]—0 5.15
T alﬁ(@—x—, (5.15)

260 — L 1op@2S + v |+ pekoremea 22 f — $)C — Cog) = 0
E(qﬁ ) a ¢) ¢8_X qua_x Ps chemtcalv_p ¢f ¢) eq)— ’
(5.16)
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If the chemical species is initially in an equilibrium state and fresh pore-fluid is
injected at the location of x approaching negative infinite, then the boundary condi-
tions of this special problem are expressed as

0
lim C =0, lim ¢ = ¢y, lim 2 = pjﬁx (Upstream boundary),
xX——00 X——00 x—>—00 QX
(5.18)
o o .o,
lim C = C,,, lim ¢ = ¢y, lim — = p,, (Downstream boundary),
X—00 X—>00 X—>00 Bx
(5.19)

where ¢y is the initial porosity of the porous medium; p}x is the pore-fluid pressure
gradient as x approaching negative infinite in the upstream of the pore-fluid flow; p;_
is the unknown pore-fluid pressure gradient as x approaching positive infinite in the
downstream of the pore-fluid flow. Since p;x drives the pore-fluid flow continuously
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along the positive x direction, it has a negative algebraic value (i.e. p]’cx < 0) in this
analysis.

If the propagation speed of the planar dissolution front is denoted by vy, then
it is possible to transform a moving boundary problem of the dissolution front (in an
x-t coordinate system) into a steady-state boundary problem of the dissolution front
(in an £ — ¢ coordinate system) using the following coordinate mapping:

E=x— Vfrontl - (5.20)

It is necessary to relate partial derivatives with respect to £ and ¢ to those with
respect to x and ¢ (Turcotte and Schubert 1982).

9 9\, dax_(ay, @ 521)
o, =\ 7 PO Vfyont = » .
or ) \or ), oxar — \or ), " " ox
) (2 (5.22)
3 ), \ox )’ '

where derivatives are taken with x or ¢ held constant as appropriate.
Since the transformed system in the & — ¢ coordinate system is in a steady state,
the following equations can be derived from Eqgs. (5.21) and (5.22).

) d
(5)}C = _vfronzga (5.23)

9 5
(se) - (55); 520

Substituting Egs. (5.23) and (5.24) into Eqgs. (5.15), (5.16) and (5.17) yields the
following equations:

ad ap _
% |:W(¢)£ + vfront¢] - 09 (525)
i) 9C op B
9 [¢D(¢)¥ + CW(¢)£ + Vrom (C — ,05)¢} =0, (5.26)
a A
vfrant% - kchemicalv_p((bf - ¢)(C - Ceq) =0. (527)
P

Integrating Egs. (5.25) and (5.26) from negative infinite to positive infinite and
using the boundary conditions (i.e. Egs. (5.18) and (5.19)) yields the following
equations:
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Ceq w(%)l’;x + vfront(pO(Ceq - ;Os) + Ufront¢fps =0, (528)

1/’(¢0)P(,)x + vfmnt¢0 - W(‘f’f)l’}x - vfmnt¢f =0. (529)

Solving Egs. (5.28) and (5.29) simultaneously results in the following analytical
solutions:

_w(¢0)p(l)xceq — Uox Ceq
¢0Ceq + (¢f - ¢0)ps ¢OCeq + (¢f - ¢0)ps '

(5.30)

Vfront =

o = V(@ )NPoCoeq + (D r — B0)ps] o
T Y (@) @oCeq + (Bf — do) (o5 + Ceg)]

(5.31)

where u(, is the Darcy velocity in the far downstream of the flow as x approaches
positive infinite. Using Darcy’s law, uq, can be expressed as

¢0Ceq + (¢f - ¢O)ps U
$0Ceq + (bf — )05 + Cog)

Uox =

(5.32)

where uy, is the Darcy velocity in the far upstream of the flow as x approaches
negative infinite.

If the finite element method is used to solve this special problem, the accuracy
of the finite element simulation can be conveniently evaluated by comparing the
numerical solutions with the analytical ones for both the propagation speed of the
planar dissolution front (i.e. vj,,,) and the Darcy velocity in the far downstream of
the flow as x approaches positive infinite (i.e. ug,).

5.1.2.2 The Second Special Case (Base Solutions for a Stable State)

Since the solid molar density greatly exceeds the equilibrium concentration of the
chemical species, a small parameter can be defined as follows:

E =

C.
7 << 1. (5.33)
Ps

To facilitate the theoretical analysis in the limit case of ¢ approaching zero, the
following dimensionless parameters and variables can be defined.

_ X — y _ <
- _ - 5.34
T YT T (5:34)
—_ C _p = U
C= , p=—, u=—, (5.35)
Cey p* u*
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t
T = t—*e, (5.36)
where 7 is a slow dimensionless time to describe the slowness of the chemical
dissolution that takes place in the system. Other characteristic parameters used in
Egs. (5.34), (5.35) and (5.36) can be expressed as follows:

Vv
F= L L"= /4D, (5.37)
kchemicalA P Ceq
. _ ¢fD(¢f)’ oy = (/J)fD((pf)’ (5.38)
Vi(dy) Lx
¢D(¢) V(®)
D*(¢p) = ————, () = ——, 5.39
D=5p@n VYT w6 -39

Substituting Egs. (5.34), (5.35), (5.36), (5.37), (5.38) and (5.39) into Egs. (5.11),
(5.12) and (5.13) yields the following dimensionless equations:

0
8£ — Ve [y (¢)Vp]=0, (5.40)

0 — — 0
88—(¢C) — Ve [D*(@)VC + Cy*(9)VP] — 9 _ 0, (5.41)
T at
0 _
85 + (@ —p)C—-1)=0. (5.42)

Similarly, the boundary conditions for this special case can be expressed in a
dimensionless form as follows:

— o
lim C =1, lim ¢ = ¢y, lim —f = Pox (downstream boundary),
X—>00 X—00 X—>00 0X
(5.43)
o o P
lim C =0, lim ¢ = ¢y, lim — =P, (upstream boundary).
X—>—00 xX——00 T—>—00 0X !

(5.44)

It is noted that the propagation front due to chemical dissolution divides the prob-
lem domain into two regions, an upstream region and a downstream region, relative
to the propagation front. Across this propagation front, the porosity undergoes a
jump from its initial value into its final value. Thus, this dissolution-front propa-
gation problem can be considered as a Stefan moving boundary problem (Chadam
et al. 1986). In the limit case of ¢ approaching zero, the corresponding governing
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equations for the dimensionless variables of the problem in both the downstream
region and the upstream region can be expressed below:

C=1, Vp =0, ¢ =¢o (inthe downstream region),  (5.45)

Ve (VC+CVp) =0, Vip =0, =, (in the upstream region).
(5.46)

If the chemical dissolution front is denoted by S(x, 7) = 0, then the dimension-
less pressure, chemical species concentration and mass fluxes of both the chemical
species and the pore-fluid should be continuous on S(x, t) = 0. This leads to the
following interface conditions for this moving-front problem:

lim C = lim C, li —1 , 5.47
fipC=finC Jinp=jinp (547

im 2P _ Y@ o, 9P (5.48)
S = Yidy) b an

aC
li — = Vpon - s
Jim = =y (P — do)

where 7 is the unit normal vector of the moving dissolution front.

When the planar dissolution front is under stable conditions, the base solutions
for this special problem can be derived from Eqs. (5.45) and (5.46) with the related
boundary and interface conditions (i.e. Egs. (5.43), (5.44), (5.47) and (5.48)). The
resulting base solutions are expressed as follows:

CE)=1, DE) =Dpoé+Pci» ¢ =¢o (inthe downstream region), (5.49)

CE) = exp(—ppé), D) =PiE +Pcry ¢ =y (in the upstream region),
(5.50)

where p; and p., are two constants to be determined. For example, p-; can be
determined by setting the dimensionless pressure p(£) to be a constant at a pre-
scribed location of the downstream region, while p, can be determined using the
pressure continuity condition at the interface between the upstream and downstream
regions. Other parameters are defined below:

- L S
é =X — VomuT, Pox = 1//'(¢ )pfx’ Vfront = _¢f — (f)().

(5.51)

Therefore, if the finite element method is used to solve the second special prob-
lem, the accuracy of the finite element simulation can be conveniently evaluated
by comparing the numerical solutions with a complete set of analytical solutions
including porosity, the location of the chemical dissolution front, the dimensionless
chemical-species concentration and the dimensionless pressure.
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5.1.2.3 The Second Special Case (Perturbation Solutions
for an Unstable State)

When a reactive transport system represented by the above-mentioned second spe-
cial problem is stable, the planar dissolution front remains planar, even though
both small perturbations of the dissolution front and the feedback effect of
porosity/permeability change are simultaneously considered in the analysis. How-
ever, when the reactive transport system is unstable, the planar dissolution front
can change from a planar shape into a complicated one. The instability of the
above-mentioned second special problem can be determined using a linear stabil-
ity analysis (Chadam et al. 1986, 1988, Ortoleva et al. 1987). The main purpose
of conducting such a linear stability analysis is to determine the critical condition
under which the chemical dissolution front of the reactive transport system becomes
unstable.

If a small time-dependent perturbation is added to the planar dissolution front,
then the total solution of the system is equal to the summation of the base solution
and the perturbed solution of the system.

SE,y, 1)=& — Sexp(wr) cos(my), (5.52)
Do €. T, T) = P, T) + 8p(E) exp(wT) cos(my), (5.53)
Croa(€, 7, T) = C(€, T) 4 8C (&) exp(wt) cos(my), (5.54)

where w is the growth rate of the perturbation; m is the wavenumber of the perturba-
tion; § is the amplitude of the perturbation and § << 1 by the definition of a linear
stability analysis.

Since S(&, ¥, t) is a function of coordinates & and 7y, the following derivatives

exist mathematically:
<i> _989 _ (i) (5.55)
0t ) 0t 0aS  \0g )’ '
(-5 (-5 () e
0y ) ayas  \ay/s oy \a&Jg \9y /s’ '
92 92
(a—el - (52), 537

<a2>_a2sa +<35)2 2 08 & +(32> 5:58)
0y’ ) o0& | \oy) 987 " Toyogay | \ay')s '
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It is noted that the total solutions expressed in Eqs. (5.53) and (5.54) must satisfy
the governing equations that are expressed in Egs. (5.45) and (5.46). With consid-
eration of Eq. (5.58), the first-order perturbation equations of this system can be
expressed as

N 3%p
C =0, 852 —m? p+ m? Pox 0 (in the downstream region), (5.59)
826 0C C 27 2—7 —
Fra 4—pﬁ35 —m*C — m*pj exp(—py§) — P, exp(— pfxé)S 0,
3% p
08 v —m*p +m? pfx 0 (in the upstream region). (5.60)

The corresponding boundary conditions of the first-order perturbation problem
are:

N 0
C=0, lim £ =0 (downstream boundary), (5.61)
X—>00
.o . ap
lim C =0, Iim — =0 (upstream boundary). (5.62)
X——00 x—>—00 9§

Similarly, the interface conditions for this first-order perturbation problem can be
expressed as follows:

¢ =0, &%p_hmn (5.63)

b _ V@0 b

im . (5.64)
S—0- dn w(q)f) 5—>0+ on

lmaé @r —d0)
1 _— = —
soo- an 1 07

Solving Eqgs. (5.59) and (5.60) with the boundary and interface conditions (i.e.
Egs. (5.61) and (5.62)) yields the following analytical results:

C=0, pE) =Dy, [ 1 _T_ ﬁ exp(— |m| &)i| (in the downstream region),
(5.65)
C®) = {x( £) = —— explof) + — ﬂxM|—ﬂx4
pfxep pfx +ﬂep +,36p m Pfx ’
A — 1 - :3 . .
P&) =g |:1 + 15 exp(|m| S):| (in the upstream region),

(5.66)
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where

Yo k(o)

= = , 5.67

P=Y@n = ken ©-07
1/ (ﬁ,x)z + 4m2 - ﬁ,x

o= ! ! . (5.68)

2

Substituting Eq. (5.66) into Eq. (5.64) yields the following equation for the
growth rate of the small perturbation:

L TP A -
w(m) = (1~|—,3)(¢,;~—¢o)[ P — ) (Pp)? +4m? + (1 — B) |m]). (5.69)

Equation (5.69) clearly indicates that the planar dissolution front of the reactive
transport system, which is described by the above-mentioned second special prob-
lem, is stable to short wavelength (i.e. large wavenumber m) perturbations but it is
unstable to long wavelength (i.e. small wavenumber m) perturbations.

Letting w(m) = 0 yields the following critical condition, under which the reac-
tive transport system can become unstable.

_ G=pd+8)
critical — 2(1 — B)

_/|

Ph : (5.70)

where ﬁ}x|mﬁcal is the critical value of the generalized dimensionless pressure gra-
dient in the far upstream direction as x approaching negative infinite (Zhao et al.
2008e). Since ﬁi/%‘crmmz is usually of a negative value, the following critical Zhao
number is defined to judge the instability of the reactive transport system:

- 3—-p1+
Zheritical = —Pfx critical — %ﬁﬂ)ﬁ) (571)

Thus, the Zhao number of the reactive transport system can be defined as follows:

PRL* K@OL'P g, v,

Zh = —pj = =— = .
p* ¢fMD(¢f) \/¢fD(¢f) kchemimlApCeq

—Pp=—

(5.72)

Using Egs. (5.71) and (5.72), a criterion can be established to judge the instability
of a chemical dissolution front associated with the particular chemical system in this
investigation. If Zh > Zhisica1, then the chemical dissolution front of the reactive
transport system becomes unstable, while if Zh < Zhi;cq1, then the chemical dis-
solution front of the reactive transport system is stable. The case of Zh = Zh iticar
represents a situation where the chemical dissolution front of the reactive transport
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system is neutrally unstable, implying that the introduced small perturbation can be
maintained but it does not grow in the corresponding reactive transport system.

Clearly, Eq. (5.72) indicates that for the reactive chemical-species transport con-
sidered in this investigation, the dissolution-enhanced permeability destabilizes the
instability of the chemical dissolution front, while the dissolution-enhanced diffu-
sivity stabilizes the instability of the chemical dissolution front. If the shape factor
of soluble grains is represented by 6 = Vp / A, then an increase in the shape fac-
tor of soluble grains can destabilize the instability of the chemical dissolution front,
indicating that the instability likelihood of a porous medium comprised of irregu-
lar grains, is higher than that of a porous medium comprised of regular spherical
grains. Similarly, an increase in either the equilibrium concentration of the chemi-
cal species or the chemical reaction constant of the dissolution reaction can cause
the stabilization of the chemical dissolution front, for the reactive chemical-species
transport considered in this investigation.

To understand the physical meanings of each term in the Zhao number, Equation
(5.72) can be rewritten in the following form:

Zh = FAdvection FDiﬁfusion Fchemical FShapev (573)

where Fygveciion 18 a term to represent the solute advection; Fpgsion 1S a term to
represent the solute diffusion/dispersion; Fjemicqs 1S @ term to represent the chemi-
cal kinetics of the dissolution reaction; Fsgp. is a term to represent the shape fac-
tor of the soluble mineral in the fluid-rock interaction system. These terms can be
expressed as follows:

Faavection = Vflow (574)

1

F, iffusion — — ———,
I D)

/ 1
Fenemical = ﬁ7 (5.76)
chemical“ eq

14
A,

(5.75)

FShape = (5.77)

Equations (5.73), (5.74), (5.75), (5.75) and (5.77) clearly indicate that the Zhao
number is a dimensionless number that can be used to represent the geometrical,
hydrodynamic, thermodynamic and chemical kinetic characteristics of a fluid-rock
system in a comprehensive manner. This dimensionless number reveals the intimate
interaction between solute advection, solution diffusion/dispersion, chemical kinet-
ics and mineral geometry in a reactive transport system.
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5.2 Proposed Segregated Algorithm for Simulating
the Morphological Evolution of a Chemical Dissolution Front

Although analytical solutions can be obtained for the above-mentioned special
cases, it is very difficult, if not impossible, to predict analytically the compli-
cated morphological evolution process of a planar dissolution front in the case of
the chemical dissolution system becoming supercritical. As an alternative, numer-
ical methods are suitable to overcome this difficulty. Since numerical methods are
approximate solution methods, they must be verified before they are used to solve
any new type of scientific and engineering problem. For this reason, the main pur-
pose of this section is to propose a numerical procedure for simulating how a planar
dissolution front evolves into a complicated morphological front. To verify the accu-
racy of the numerical solution, a benchmark problem is constructed from the theo-
retical analysis in the previous section. As a result, the numerical solution obtained
from the benchmark problem can be compared with the corresponding analytical
solution. After the proposed numerical procedure is verified, it will be used to sim-
ulate the complicated morphological evolution process of a planar dissolution front
in the case of the chemical dissolution system becoming supercritical.

5.2.1 Formulation of the Segregated Algorithm for Simulating
the Evolution of Chemical Dissolution Fronts

In this section, Egs. (5.40), (5.41) and (5.42) are solved using the proposed numer-
ical procedure, which is a combination of both the finite element method and the
finite difference method. The finite element method is used to discretize the geo-
metrical shape of the problem domain, while the finite difference method is used to
discretize the dimensionless time. Since the system described by these equations is
highly nonlinear, the segregated algorithm, in which Egs. (5.40), (5.41) and (5.42)
are solved separately in a sequential manner, is used to derive the formulation of the
proposed numerical procedure.

For a given dimensionless time-step, T 4+ Az, the porosity can be denoted by
Grinr = ¢r + A¢riar, Where ¢, is the porosity at the previous time-step and
A¢.+a-is the porosity increment at the current time-step. Using the backward dif-
ference scheme, Eq. (5.42) can be written as follows:

[+ (1= Crea0)| Adrrar = @7 =91 = Cronn). (578)

where C. . is the dimensionless concentration at the current time-step; At is the
dimensionless time increment at the current time-step.

Mathematically, there exist the following relationships in the finite difference
sense:
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€ d (¢C) =€ A (¢T+AICT+AI) = SE‘[+A‘E Adcrar + &Qrinc —A (CHAT) )
T AT s
(5.79)
¢ A(¢riar) —
for ¢ A:A = (1= Crsac) (b7 — brrac) (5.80)
Ve [D*(¢)V€] =Ve [D*(¢T+AT)VET+AT] , (5.81)

Ve [Cy @)Vp]|=CVe[y*()VP]|+ Vpe [y #)VC]
= E1'-}—A1'V ° [w*(¢T+A‘E)Vﬁ‘[+AI] (582)
+ vﬁrJrAr b [w*((pr-&-Ar)VEr-&-Ar]

Substituting Egs. (5.79), (5.80), (5.81) and (5.82) into Eq. (5.41) yields the fol-
lowing finite difference equation:

1 - —
[é(’bﬂ'Af + g((ﬁf - ¢T+Af):| Criar— Ve [D*(¢I+Ar)vcr+Ar]
_Vﬁt‘i-AT L4 [w*(quJrAr)VftJrAr] (583)

= GeincCet (b — Bernr)
- AT t+ATCT P f T+AT
Similarly, Eq. (5.40) can be rewritten in the following discretized form:

Ve [y @VP] =V e[V @riac)VPrsnr] = 1 = Crpnr)@r — drinc). (5.84)

Using the proposed segregated scheme and finite element method, Eqgs. (5.78),
(5.83) and (5.84) are solved separately and sequentially for the porosity, dimension-
less concentration and dimensionless pressure at the current time-step. Note that
when Eq. (5.78) is solved using the finite element method, the dimensionless con-
centration at the current time-step is not known. Similarly, when Eq. (5.83) is solved
using the finite element method, the dimensionless pressure at the current time-step
remains unknown. This indicates that these three equations are fully coupled so that
an iteration scheme needs to be used to solve them sequentially. At the first iter-
ation step, the dimensionless concentration at the previous time-step is used as a
reasonable guess of the dimensionless concentration at the current time-step when
Eq. (5.78) is solved for the porosity. In a similar way, the dimensionless pressure at
the previous time-step is used as a reasonable guess for the current time-step when
Eq. (5.83) is solved for the dimensionless concentration. The resulting approximate
porosity and dimensionless concentration can be used when Eq. (5.84) is solved for
the dimensionless pressure. At the second iteration step, the same procedure as used
in the first iteration step is followed, so that the following convergence criterion can
be established after the second iteration step.
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Ny Ne

‘ =l 2 —k —k—1 2
E = Max Z (¢i,r+Ar - ¢i,r+Ar) ) Z (Ci,r+At - Ci,r+At> )

i=1 i=1

Ny

—k —k—1 2 -=
§ :(Pi.wm - pi,r+Ar) <E,
i=1

(5.85)

where E and E are the maximum error at the k-th iteration step and the allowable
error limit; Ny, N and Ny are the total numbers of the degrees-of-freedom for the
porosity, dimensionless concentration and dimensionless pressure respectively; & is

the index number at the current iteration step and k — 1 is the index number at the

. . . ik —k —k . . .
previous iteration step; ¢; . x,» C; ;4 a, and P; ., 5, are the porosity, dimensionless

concentration and dimensionless pressure of node i at both the current time-step and
the current iteration step; qbf; }r Ar Efc;lr Ap and ﬁf‘;i A7 are the porosity, dimension-
less concentration and dimensionless pressure of node i at the current time-step but
at the previous iteration step. It is noted that k > 2 in Eq. (5.85).

The convergence criterion is checked after the second iteration step. If the con-
vergence criterion is not met, then the iteration is repeated at the current time-step.
Otherwise, the convergence solution is obtained at the current time step and the
solution procedure goes to the next time-step until the final time-step is reached.

5.2.2 Verification of the Segregated Algorithm for Simulating
the Evolution of Chemical Dissolution Fronts

The main and ultimate purpose of a numerical simulation is to provide numeri-
cal solutions for practical problems in a real world. These practical problems are
impossible and impractical to solve analytically. Since numerical methods are the
basic foundation of a numerical simulation, only an approximate solution can be
obtained from a computational model, which is the discretized description of a con-
tinuum mathematical model. Due to inevitable round-off errors in computation and
discretized errors in temporal and spatial variables, it is necessary to verify the pro-
posed numerical procedure so that meaningful numerical results can be obtained
from a discretized computational model. For this reason, a benchmark problem, for
which the analytical solutions are available, is considered in this section.

Figure 5.1 shows the geometry and boundary conditions of the coupled problem
between porosity, pore-fluid pressure and reactive chemical-species transport within
a fluid-saturated porous medium. For this benchmark problem, the dimensionless-
pressure gradient (i.e. ﬁ}x = —1) is applied on the left boundary, implying that there
is a horizontal throughflow from the left to the right of the computational model. In
this case, the Zhao number of the reactive transport system is unity. The dimension-
less height and width of the computational model are 5 and 10 respectively. Except
for the left boundary, the initial porosity of the porous medium is 0.1, while the
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Fig. 5.1 Geometry and boundary conditions of the reactive infiltration problem

initial dimensionless-concentration is one within the computational domain. The
final porosity after depletion of the soluble mineral is 0.2. This final porosity is
applied on the left boundary as a boundary condition of the computational domain.
The permeability of the porous medium is calculated using the Carman-Kozeny for-
mula, which has the power of 3 in the power law. The diffusivity of chemical species
is calculated using the power law, which has the power of 2. Both the top and the
bottom boundaries are assumed to be impermeable for the pore-fluid and chemical
species. The ratio of the equilibrium concentration to the solid molar density of the
chemical species is assumed to be 0.01, while the dimensionless time-step is set
to be 0.005 in the computation. Since the computational domain of the benchmark
problem is of finite size, a time-dependent-dimensionless-concentration boundary
condition (i.e. C(t) = exp(ﬁ}xﬁfmmt)) needs to be applied on the left boundary so
that the numerical solutions can be compared with the analytical solutions derived
in the previous section. Using the above-mentioned parameters, the critical Zhao
number of the system is approximately equal to 1.77. Since the Zhao number of
the system is smaller than its critical value, the coupled system considered in this
section is sub-critical so that a planar dissolution front remains planar during its
propagation within the system. The dimensionless speed of the dissolution front
propagation is equal to 10, which is determined using Eq. (5.51). To simulate appro-
priately the propagation of the dissolution front, the whole computational domain
is simulated by 19701 four-node rectangular elements of 20000 nodal points in
total.

Figures 5.2, 5.3 and 5.4 show the comparison of numerical solutions with analyt-
ical ones for the porosity, dimensionless concentration and dimensionless pressure
distributions within the computational domain at three different time instants. In
these figures, the thick line shows the numerical results, while the thin line shows
the corresponding analytical solutions, which can be determined from Eqs. (5.49)
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Fig. 5.2 Comparison of numerical solutions with analytical ones at different time instants (Poros-
ity): the thick line shows the numerical results, while the thin line shows the corresponding analyt-
ical solutions

and (5.50) with the boundary condition of P(L,, ) = 100 at the right boundary
of the computational model. The resulting analytical solutions are expressed as
follows:

Cx =1 ¢FE1)=¢o (&> VponT), (5.86)
P(X, 1) = _ﬁZ)x(zx —X)+ 100 x > mentr)v (5.87)
C®, 1) = expl—PpE = VpowD)],  ¢E 1) =05 (X <Vpout), (5.88)

ﬁ(f7 T) = ﬁ}x(f - gfront‘[) - ﬁé)x (Zx - ifmntt) + 100 (Y = vfrontf)- (589)

From these results, it can be observed that the numerical solutions agree very
well with the analytical solutions, indicating that the proposed numerical procedure
is capable of simulating the planar dissolution-front propagation within the fluid-
saturated porous medium. As expected, the porosity propagation front is the sharpest
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Fig. 5.3 Comparison of numerical solutions with analytical ones at different time instants (Dimen-
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Fig. 5.4 Comparison of numerical solutions with analytical ones at different time instants (Dimen-
sionless pressure): the thick line shows the numerical results, while the thin line shows the corre-
sponding analytical solutions
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one among the three propagation fronts, namely a porosity propagation front, a
dimensionless-concentration propagation front and a dimensionless-pressure propa-
gation front, in the computational model. Clearly, the dimensionless-pressure prop-
agation front has the widest bandwidth, implying that it is the least sharp front
in the computational model. Although there are some smoothing effects on the
numerically-simulated propagation fronts as a result of numerical dispersion, the
propagation speed of the numerically-simulated propagation front is in good coinci-
dence with that of the analytically-predicted propagation front. For this benchmark
problem, the overall accuracy of the numerical results is indicated by the dimension-
less pressure. The maximum relative error of the numerically-simulated dimension-
less pressure is 2.2%, 4.6% and 5.8% for dimensionless times of 0.25, 0.625 and 0.8
respectively. If both a small mesh size and a small time step are used, then the max-
imum relative error can be further reduced in the numerical simulation. This quan-
titatively demonstrates that the proposed numerical procedure can produce accurate
numerical solutions for the planar dissolution-front propagation problem within a
fluid-saturated porous medium.

5.3 Application of the Segregated Algorithm for Simulating
the Morphological Evolution of Chemical Dissolution Fronts

In this section, the proposed numerical procedure is used to simulate the morpho-
logical evolution of a chemical dissolution front in a supercritical system. For this
purpose, a dimensionless-pressure gradient (i.e. ﬁ}x = —10) is applied on the left
boundary of the computational domain so that the dimensionless speed of the dis-
solution front propagation is equal to 100. This means that the dissolution front
propagates much faster than it does within the system considered in the previous
section. Due to this change, the ratio of the equilibrium concentration to the solid
molar density of the chemical species is assumed to be 0.001, while the dimension-
less time-step is also assumed to be 0.001 in the computation. The Zhao number of
the system is increased to 10, which is greater than the critical Zhao number (i.e.
approximately 1.77) of the system. The values of other parameters are exactly the
same as those used in the previous section. Since the Zhao number of the system is
greater than its critical value, the coupled system considered in this section is super-
critical so that a planar dissolution front evolves into a complicated morphology
during its propagation within the system. In order to simulate the instability of the
chemical dissolution front, a small perturbation of 1% initial porosity is randomly
added to the initial porosity field in the computational domain.

Figure 5.5 shows the porosity distributions due to the morphological evolution of
the chemical dissolution front in the fluid-saturated porous medium, while Fig. 5.6
shows the dimensionless concentration distributions due to the morphological evo-
lution of the chemical dissolution front within the computational domain. It is
observed that for the values of the dimensionless time greater than 0.03, the ini-
tial planar dissolution front gradually changes into an irregular one. With a fur-
ther increase of the dimensionless time, the amplitude of the resulting irregular
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Fig. 5.5 Porosity distributions due to morphological evolution of the chemical dissolution front in
the fluid-saturated porous medium

dissolution front increases significantly, indicating that the chemical dissolution
front is morphologically unstable during its propagation within the computational
model. Although both the porosity and the dimensionless concentration have a simi-
lar propagation front, the distribution of their maximum values along the dissolution
front is clearly different. The peak value of the porosity is in good correspondence
with the trough value of the dimensionless concentration due to the chemical dis-
solution in the system. This demonstrates that the proposed numerical procedure
is capable of simulating the morphological instability of the chemical dissolution
front in a fluid-saturated porous medium in the case of the coupled system being
supercritical.
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Fig. 5.6 Dimensionless concentration distributions due to morphological evolution of the chemical
dissolution front in the fluid-saturated porous medium

It is interesting to investigate how the dimensionless pressure and pore-fluid flow
evolve with time during propagation of the unstable dissolution front in the com-
putational model. Figure 5.7 shows the dimensionless pressure distributions dur-
ing the morphological evolution of the chemical dissolution front. It is noted that
although the dimensionless pressure is continuous, there exists a clear transition
for the dimensionless pressure-gradient distribution in the computational model.
This phenomenon can be clearly seen at the late stages of the numerical simula-
tion such as when the dimensionless time is equal to 0.06 and 0.07. The fluid-flow
pattern evolution during the propagation of the unstable dissolution front is exhib-
ited by the streamline evolution in the computational model. Figure 5.8 shows the
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Fig. 5.7 Dimensionless pressure distributions due to morphological evolution of the chemical
dissolution front in the fluid-saturated porous medium

streamline distributions during the morphological evolution of the chemical dissolu-
tion front within the coupled system between porosity, pore-fluid pressure and reac-
tive chemical-species transport. Due to the growth of the amplitude of the irregular
dissolution front, pore-fluid flow focusing takes place in the peak range of the poros-
ity, which can be observed from the streamline density (in Fig. 5.8). It is noted that
the width of the flow focusing zone is closely associated with the peak and trough
values of the irregular dissolution front in the computational model. Since both the
porosity generation and the pore-fluid flow focusing play an important role in ore
body formation and mineralization, the proposed numerical procedure can provide
a useful tool for simulating the related physical and chemical processes associated
with the generation of giant ore deposits within the upper crust of the Earth.
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Fig. 5.8 Streamline distributions due to morphological evolution of the chemical dissolution front
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Chapter 6

A Decoupling Procedure for Simulating Fluid
Mixing, Heat Transfer and Non-Equilibrium
Redox Chemical Reactions in Fluid-Saturated
Porous Rocks

Non-equilibrium redox chemical reactions of high orders are ubiquitous in
fluid-saturated porous rocks within the crust of the Earth. They play a very impor-
tant role in ore body formation and alteration closely associated with a miner-
alizing system. Since pore-fluid is a major carrier transporting chemical species
from one part of the crust into another, the chemical process is coupled with
the pore-fluid flow process in fluid-saturated porous rocks. In addition, if the
rate of a chemical reaction is dependent on temperature, the chemical process is
also coupled with the heat transfer process. When a pore-fluid carrying one type
of chemical species meets with that carrying another type of chemical species,
these two types of pore-fluids can mix together to allow the related chemical
reaction to take place due to solute molecular diffusion/dispersion and advec-
tion. For these reasons, the resulting patterns of mineral dissolution, transporta-
tion, precipitation and rock alteration are a direct consequence of coupled processes
between fluids mixing, heat transfer and chemical reactions in fluid-saturated porous
rocks.

Due to ever-increasing demands for minerals and possible exhaustion of the
existing mineral deposits in the foreseeable future, understanding the controlling
mechanisms behind ore body formation and mineralization within the upper crust
of the Earth becomes a very important research field. There is no doubt that an
improved understanding of ore forming processes can significantly promote mineral
exploration for new ore deposits within the upper crust of the Earth. Although exten-
sive studies have been carried out to understand the possible physical and chemical
processes associated with ore body formation and mineralization (Phillips 1991, Yeh
and Tripathi 1991, Nield and Bejan 1992, Steefel and Lasaga 1994, Raffensperger
and Garven 1995, Schafer et al. 1998a, b, Zhao et al. 1997a, 1998a, 1999b, Xu
et al. 1999, Zhao et al. 2000b, 2001b, 2001d, 2002¢c, Schaubs and Zhao 2002, Ord
et al. 2002, Gow et al. 2002, Zhao et al. 2003a), the kinetics of a redox chemi-
cal reaction and its interaction with physical processes are often overlooked in the
numerical modelling of ore forming systems. In most chemical reactions associated
with an ore forming system, the chemical reaction rate is finite so that an interaction
between the solute molecular diffusion/dispersion, advection and chemical kinetics
must be considered.

C. Zhao et al., Fundamentals of Computational Geoscience, 121
Lecture Notes in Earth Sciences 122, DOI 10.1007/978-3-540-89743-9_6,
© Springer-Verlag Berlin Heidelberg 2009



122 6 Fluid Mixing, Heat Transfer and Non-Equilibrium Redox Chemical Reactions

In terms of numerical modelling of coupled problems between fluids mixing,
heat transfer and chemical reactions in fluid-saturated porous rocks, it is possible to
divide the coupled problems into the following three categories (Zhao et al. 1998a).
In the first category of coupled problem, the time scale of the advective flow is much
smaller than that of the relevant chemical reaction in porous rock masses so that the
rate of the chemical reaction can be essentially taken to be zero in the numerical
analysis. For this reason, the first category of coupled problem is often called the
non-reactive mass transport problem. In contrast, for the second category of cou-
pled problem, the time scale of the advective flow is much larger than that of the
relevant chemical reaction in pore-fluid saturated porous rocks so that the rate of the
chemical reaction can be essentially taken to be infinite, at least from the mathemat-
ical point of view. This means that the equilibrium state of the chemical reaction
involved is always attained in this category of coupled problem. As a result, the
second category of coupled problem is called the quasi-instantaneous equilibrium
problem. The intermediate case between the first and the second category belongs
to the third category of coupled problem, in which the rate of the relevant chemical
reaction is a positive real number of finite value. Another significant characteristic
of the third category of coupled problem is that the detailed kinetics of the chem-
ical reactions must be taken into account. It is the kinetics of a chemical reaction
that describes the reaction term in a reactive species transport equation. If a redox
chemical reaction is considered, both the forward reaction rate and the backward
one need to be included in the reaction term of a reactive species transport equation.
Although significant achievements have been made for the numerical modelling of
non-reactive species and quasi-instantaneous equilibrium reaction transport prob-
lems, research on the numerical modelling of the third category of coupled prob-
lem with redox chemical reactions is rather limited. Considering this fact, we will
develop a numerical procedure to solve coupled problems between fluids mixing,
heat transfer and redox chemical reactions in fluid-saturated porous rocks.

Large geological faults and cracks are favorable locations for fluids carrying dif-
ferent chemical species to focus and mix. For this reason, ore body formation and
mineralization are often associated with geological faults and cracks. When the per-
meability of a fault/crack is much bigger than that of the surrounding rock, the
pore-fluid flow in the fault/crack is much faster than that in the surrounding rock.
This implies that an interaction between the solute diffusion, advection and chemi-
cal kinetics is very strong within and around a fault/crack. Although it is well known
that ore body formation and mineralization are associated with geological faults and
cracks, the major factors controlling the reaction patterns within and around large
faults and cracks remains unclear.

Keeping the above-mentioned considerations in mind, a numerical approach
based on the finite element method is used to solve coupled problems between
fluids mixing, heat transfer and redox chemical reactions in fluid-saturated porous
rocks. In order to improve the efficiency of numerical modelling, the concept of the
chemical reaction rate invariant is used to convert the conventional reactive trans-
port equations with strong chemical reaction terms into the following two different
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kinds of equations: One is the same as the first category of mass transport equation
without any reaction term; while another remains the same as the third category of
reactive transport equation with a strong reaction term. Since the solution of a reac-
tive transport equation with a chemical reaction term is computationally much more
expensive than that of a mass transport equation without a chemical reaction term,
any reduction in the total number of reactive transport equations can significantly
save computer time in a numerical computation. Based on this idea, a decoupling
numerical procedure, which can be used to remove the coupling between redox
types of reactive transport equations, is proposed to solve coupled problems between
fluids mixing, heat transfer and redox chemical reactions in fluid-saturated porous
rocks. This allows the interaction between the solute molecular diffusion/dispersion,
advection and chemical kinetics to be investigated within and around faults and
cracks in the upper crust of the Earth.

6.1 Statement of Coupled Problems between Fluids Mixing, Heat
Transfer and Redox Chemical Reactions

For pore-fluid saturated porous rocks, Darcy’s law can be used to describe pore-
fluid flow and the Oberbeck-Boussinesq approximation is employed to describe a
change in pore-fluid density due to a change in the pore-fluid temperature. Fourier’s
law and Fick’s law can be used to describe the heat transfer and mass transport
phenomena respectively. If the pore-fluid is assumed to be incompressible, the
governing equations of the coupled problem between fluids mixing, heat transfer
and redox chemical reactions in fluid-saturated porous rocks can be expressed as
follows:

AL’ ©.1)
ax  ay '
K., [ oP
u=—|-—1), 6.2)
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2 dy
T oT T 3T T
[prfcpf‘i‘(l _d))pscps]a‘f‘pfcpf Ma‘i‘”g _)\exﬁ‘i‘ eya_yz,
(6.4)
62Ci (060G p, rCi +D G +¢R,  (i=12...,N)
P u— V— | = ex ey i 1=14..., )
ot ax dy ax2 7 9y2
(6.5)

py = proll = pr(T —To)l, (6.6)



124 6 Fluid Mixing, Heat Transfer and Non-Equilibrium Redox Chemical Reactions

Aex = ¢)‘fx +1 - ¢))"va )‘ey = ¢)‘fj/ +(1 - ¢))"S,w (67)

Dex = ¢Dfxa Dey = ¢)va7 (68)

where u and v are the horizontal and vertical velocity components of the pore-fluid in
the x and y directions respectively; P is the pore-fluid pressure; 7 is the temperature
of the porous medium; C; is the concentration of chemical species i; N is the total
number of the active chemical species considered in the pore-fluid; K, and K, are
the permeabilities of the porous medium in the x and y directions respectively; u is
the dynamic viscosity of the pore-fluid; p, and p, are the densities of the pore-fluid
and solid matrix; g is the acceleration due to gravity; oo and Ty are the reference
density and reference temperature used in the analysis; Ag and A, are the thermal
conductivities of the pore-fluid and solid matrix in the x direction; A and A, are the
thermal conductivities of the pore-fluid and solid matrix in the y direction; ¢,; and
¢ps are the specific heat of the pore-fluid and solid matrix respectively; Dy and Dy,
are the diffusivities of the chemical species in the x and y directions respectively; ¢ is
the porosity of the porous medium; B7 is the thermal volume expansion coefficient
of the pore-fluid; R; is the source/sink term for the reactive transport equation of
chemical species i.

It is noted that if the aqueous mineral concentrations associated with ore body
formation and mineralization are relatively small, their contributions to the density
of the pore-fluid are negligible so that the mass transport process can be decoupled
from the pore-fluid flow and heat transfer processes. This means that the whole cou-
pled problem between fluids mixing, heat transfer and redox chemical reactions in
fluid-saturated porous rocks can be divided into two new problems. The first is a
coupled problem between the pore-fluid flow and the heat transfer process, while
the second is a coupled problem between the mass transport process and the redox
chemical reaction process. Since the first coupled problem, which is described by
Egs. (6.1), (6.2), (6.3) and (6.4), can be solved using the existing finite element
method (Lewis and Schrefler 1998, Zienkiewicz 1977), the main purpose of this
study is to develop a new decoupling procedure to effectively and efficiently solve
the second coupled problem, which is described by Eq. (6.5) and the related chemi-
cal reaction equations.

If the reaction term in Eq. (6.5) can be determined and is linearly dependent
on the chemical species concentration, then the coupled problem defined between
fluids mixing, heat transfer and redox chemical reactions in fluid-saturated porous
rocks above is solvable using the numerical methods available (Zhao et al. 1998a,
2003a). This requires that the chemical reaction be of the first order. Since many
chemical reactions of different orders are associated with ore body formation and
mineralization in fluid-saturated porous rocks, both the second order and the high
order chemical reactions are very common in nature. Without loss of generality, the
second order redox chemical reaction is considered in order to develop a concept
resulting in a new decoupling procedure for removing the coupling between reac-
tive transport equations of redox chemical reactions. In principle, the new concept
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and decoupling procedure can be extended to deal with the high order redox chem-
ical reactions. For this reason, a redox chemical reaction of the second order is
considered as follows:

A+ B % AB. (6.9)
b

where A and B are two chemical reactants; AB is the chemical product due to this
redox chemical reaction; ks and k;, are the forward and backward reaction rates of
this redox chemical reaction. It needs to be pointed out that Eq. (6.9) represents a

k k
class of redox chemical reactions such as H* + OH~ % H,O,Nat+Cl~ <k5> NaCl,
b b

k¢
Ca** + CO7~ f‘ CaCOs and so forth in geochemical systems. It is clear that in the
b

first chemical reaction example, chemical reactants A and B are H* and OH~, while
chemical product AB is H,O. In the second chemical reaction example, chemical
reactants A and B are Na™ and C1~, while chemical product AB is NaCl. Similarly,
in the third chemical reaction example, chemical reactants A and B are Ca*t and
CO?, while chemical product AB is CaCOs.

From the chemical reaction point of view, the general chemical reaction
source/sink terms due to the redox chemical reaction expressed by Eq. (6.9) can
be written as follows:

Ry =~k 'CaCp + kpr™ ' Cag, (6.10)
Rp = k"~ CaCp + kyr"™ ™' Cag, (6.11)
Rap = k™ CoCp — kyr™ ™' Cag, (6.12)

where C4, Cg and Cyp are the concentrations of chemical species A, B and AB; R4,
Rp and R,p are the chemical reaction source/sink terms associated with chemical
species A, B and AB; n; and n;, are the orders of the forward and backward reac-
tions respectively; r is a quantity of unity value to balance the unit of the reaction
source/sink terms due to different orders of chemical reactions so that it has a recip-
rocal unit of the chemical species concentration. For the redox reaction expressed by
Eq. (6.9), the forward reaction is of the second order, while the backward reaction
is of the first order. Since a redox system allows chemical reactions to be proceeded
toward both the product and the reactant directions, the orders of the forward reac-
tion (i.e. the chemical reaction proceeds toward the product direction) and backward
reaction (i.e. the chemical reaction proceeds toward the reactant direction) can be
determined from the related chemical kinetics.

It is noted that the accumulation or diffusion of chemical species in the rock
matrix may lead to some change in porosity, which in turn affects permeabil-
ity and fluid flow in the rock matrix (Zhao et al. 2001d, Xu et al. 2004). This
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influence can be straightforwardly considered using variable permeability within
the computational model. The permeability change induced by a chemical reaction
can be determined from the porosity variation induced by the chemical reaction. For
example, the Carman-Kozeny law can be used to establish a relationship between
the chemically induced porosity change and the chemically induced permeability
change in the rock matrix.

6.2 A Decoupling Procedure for Removing the Coupling between
Reactive Transport Equations of Redox Chemical Reactions

Substituting Egs. (6.10), (6.11) and (6.12) into Eq. (6.5) yields the following equa-
tions:

3CA + 3CA + 3CA D 82CA +D ach +¢R (6 13)
u v - ex e 5 .
at ax dy x2 Y 9y2 4
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= ex De Rap. 6.15
¢ o1 +<M oy TV oy ) ( o2 T Dey 0y2 + ¢Rap. (6.15)

Since the total number of linearly-independent reaction rates is identical to the
total number of chemical reactions involved, there is only one linearly-independent
reaction rate for this redox chemical reaction. From this point of view, the total num-
ber of reactive transport equations with source/sink terms due to chemical reactions
can be reduced into one, for this particular redox chemical system. This is the basic
idea behind the proposed decoupling procedure for removing the coupling between
reactive transport equations of redox chemical reactions.

Through some algebraic manipulations, Eqs. (6.13), (6.14) and (6.15) can be
rewritten as follows:
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Equations (6.16) and (6.17) are two conventional mass transport equations with-
out any source/sink terms due to the redox chemical reaction so that they can be
solved by the well-developed numerical methods available. Since the two new vari-
ables, namely C; = C4 + Cyp and C;; = C4 + Cyp, are independent of chemical
reaction rates, they can be referred to as chemical reaction rate invariants, which are
the analogues of the stress and strain invariants in the field of solid mechanics.

If the redox chemical reaction is an equilibrium one, then both the forward and
the backward reaction rates are theoretically infinite so that the chemical reaction
becomes predominant in the reactive transport process. In this case, Eq. (6.18) can
be written as

K, 'CaCp — ¥ 'Cup = 0, (6.19)

where K, = k/k; is the chemical equilibrium constant.
Inserting the two chemical reaction rate invariants, C; = C4 + Cyp and Cy; =
Cp + Cyup, into Eq. (6.19) yields the following equation:

K.r(C; — Cap)(Cyp — Cap) — Cap = 0. (6.20)
It is noted that ny = 2 and n, = 1 are substituted into Eq. (6.19) so as to

obtain Eq. (6.20). Clearly, Eq. (6.20) has the following mathematical solution for
the chemical product of the redox chemical reaction:

Cup = 6.21)

K.r(Ci+Cp) +1 [K.r(C; + Cy) + 11> — 4K2r2C,Cy
2K,r 4K2r? ’

This indicates that for an equilibrium chemical reaction, we only need to solve
the mass transport equations of chemical reaction rate invariants (i.e. C; = C4+Cyp
and C;; = Cp + Cyp in this particular example) using the conventional numerical
methods. Once the distributions of the chemical reaction rate invariants are obtained
in a computational domain, the chemical product distribution due to the chemical
reaction can be calculated analytically. As a result, the distributions of the chemical
reactants can be calculated using the distributions of both the chemical product and
the chemical reaction rate invariants.

However, for non-equilibrium chemical reactions, the chemical reaction rates
are finite so that we need to solve at least one reactive transport equation with the
source/sink term for each of the chemical reactions in the geochemical system. This
means that for the general form of the redox chemical reaction considered in this
study, we need to solve Eq. (6.18) numerically if the reaction rates of this redox
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chemical reaction are finite. For this reason, Equation (6.18) can be rewritten into
the following form:

=5 T"ox 3y a2 0T

— ¢ky | KorCiy — [Kor(Cr + Cyp) + 11 Cag + Kor € Cy} = 0.

AB AB v AB De AB AB

Since Eq. (6.22) is strongly nonlinear with the nonlinear term, ¢k, K.rC3,, the
Newton-Raphson algorithm is suitable for solving this equation.

Using the proposed decoupling procedure, the coupled problem between fluids
mixing, heat transfer and redox chemical reactions in fluid-saturated porous rocks
can be solved in the following five main steps: (1) For a given time step, the coupled
problem described by Egs. (6.1), (6.2), (6.3), (6.4) and (6.5) with the related bound-
ary and initial conditions are solved using the conventional finite element method;
(2) After the pore-fluid velocities are obtained from the first step, mass transport
equations of the chemical reaction rate invariants (i.e. Egs. (6.16) and (6.17)) with
the related boundary and initial conditions are then solved using the existing finite
element method; (3) The chemical reaction source/sink terms involved in Eq. (6.22)
is determined from the related redox chemical reaction so that Eq. (6.22) can be
solved using the Newton-Raphson algorithm; (4) According to the definitions of the
chemical reaction rate invariants, C; = C4+ Cap and C;; = Cp+ Cyp, the chemical
reactant concentrations (i.e. C4 and Cp) can be determined from simple algebraic
operations; (5) Steps (1-4) are repeated until the desired time step is reached. These
solution steps have been programmed into our research code.

6.3 Verification of the Decoupling Procedure

The main and ultimate purpose of a numerical simulation is to provide numerical
solutions for practical problems in a real world. Since numerical methods are the
basic foundation of a numerical simulation, only can an approximate solution be
obtained from a computational model, which is the discretized description of a con-
tinuum mathematical model. Due to inevitable round-off errors in computation and
discretized errors in temporal and spatial variables, it is necessary to verify, at least
from the qualitative point of view, the proposed numerical procedure so that mean-
ingful numerical results can be obtained from a discretized computational model.
For this reason, a testing coupled problem, for some aspects of which the analytical
solutions are available, is considered in this section.

Figure 6.1 shows the geometry of the coupled problem between pore-fluids mix-
ing, heat transfer and redox chemical reactions around a vertical geological fault
within the crust of the Earth. For this problem, the pore-fluid pressure is assumed
to be lithostatic, implying that there is an upward throughflow at the bottom of the
computational model. The height and width of the computational model are 10 km
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Fig. 6.1 Geometry and T=25°C, p=0, C4=0, C4=0
boundary conditions of the
fluid focusing and mixing
problem

10km
Fault

T=325°C, p= Pryarostaic
C 4= lkmol/m’® | Cy =lkmol/m’

and 20 km respectively. The length of the fault is 5 km, with an aspect ratio of 20.
The porosities of the fault and its surrounding rock are 0.35 and 0.1. The surround-
ing rock is assumed to have a permeability of 10~'® m? in both the x and y directions,
while the permeability of the fault is calculated using the Carman-Kozeny formula,
which gives rise to a permeability of about 43 times that of the surrounding rock.
The top temperature is 25°C and the geothermal gradient is 30°C/km, meaning that
the temperature at the bottom is fixed at 325°C. The two chemical reactants with a
concentration of 1 kmol/m? are injected at the left half and right half bottom bound-
ary respectively, while the concentrations of both the two reactants and the prod-
uct are assumed to be zero at the top boundary of the computational model. The
dispersion/diffusivity of the chemical species is 3 x 107! m?/s. For the pore-fluid,
dynamic viscosity is 107 N x s/m?; reference density is 1000 kg/m?®; volumetric
thermal expansion coefficient is 2.1 x 107* (1/°C); specific heat is 4184 J/(kg x °C);
thermal conductivity coefficient is 0.59 W/(m x °C) in both the x and y directions.
For the porous matrix, the thermal conductivity coefficient is 2.9 W/(m x °C) in
both the x and y directions; the specific heat is 878 J/(kg x °C); reference rock den-
sity is 2600 kg/m>. In order to simulate the fluids focusing and chemical reactions
within the fault in an appropriate manner, a mesh of small element sizes is used
to simulate the fault zone, while a mesh gradation scheme is used to simulate the
surrounding rock by gradually changing the mesh size from the outline of the fault
within the computational model. As a result, the whole computational domain is
simulated by 306,417 three-node triangle elements.

Figure 6.2 shows the streamline distribution of the system with the vertical fault
in the computational model. Since the pore-fluids carrying two different chemical
reactants are uniformly and vertically injected into the computational model at the
left and right parts of the bottom, the pore-fluid flow converges into the vertical fault
at the inlet (i.e. the lower end) of the fault, but diverges out of the vertical fault at
the outlet (i.e. the upper end) of the fault. This phenomenon can be clearly observed
from Fig. 6.3, where the velocity distributions are displayed at both the inlet and



130 6 Fluid Mixing, Heat Transfer and Non-Equilibrium Redox Chemical Reactions

\/
M

(Whole system view)

J

Val

AN

(Zoom-in view at the inlet of the fault)

N7/

(Zoom-in view at the outlet of the fault)

Fig. 6.2 Streamline distributions due to the fluid focusing within a vertical fault in the crust

outlet of the vertical fault. For an elongate elliptic fault of large aspect ratios in an
infinite medium, the existing analytical solution indicates that the streamlines of the
pore-fluid flow are parallel each other inside of the fault (Zhao et al. 1999d). As
expected, the computed streamlines concentrate vertically within the vertical fault,
indicating that the numerical result obtained from the computational model has good
agreement with the existing analytical result. This demonstrates that the proposed
numerical procedure can produce useful numerical solutions for fluid focusing and
mixing, at least from the qualitative point of view. In order quantitatively to validate
the numerical solutions, the analytical solution for the flow-focusing factor of an
elongate elliptic fault of large aspect ratios can be employed. Since the elongate fault
within the computational model is basically of a rectangular shape, the analytical
solution for its flow-focusing factor can be evaluated using the following modified
formula:
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Fig. 6.3 Velocity distributions due to the fluids focusing within a vertical fault in the crust
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where A is the pore-fluid flow focusing factor of the rectangular fault of a large
aspect ratio; g is the aspect ratio of the rectangular fault; « is the permeability ratio
of the fault to its surrounding rock.
Since the vertical velocity of the injected fluids due to the lithostatic pore-fluid
pressure is equal to 1.6 x 10 m/s and the numerical solution for the maximum
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vertical velocity within the fault is equal to 3.02 x 10 m/s, the corresponding
flow-focusing factor of the fault is equal to the ratio of the maximum velocity
within the fault to that of the injected fluids at the bottom of the computational
model. This results in a flow-focusing factor of 18.88 for the rectangular fault
within the computational model. The analytical value of the flow-focusing fac-
tor for the rectangular fault can be calculated from Eq. (6.23). Substituting the
related parameters into Eq. (6.23) yields the analytical flow-focusing factor of 18.25.
Since the relative error of the flow-focusing factor from the numerical simulation
is within 3.5%, it quantitatively demonstrates that the proposed numerical proce-
dure used in the computational model can produce accurate numerical solutions
for fluid focusing and mixing within the fault. These processes are very impor-
tant for accurately simulating the chemical species transport and reaction within the
fault.

(Reactant A, t=1000 years) (Reactant B, t = 1000 years)

(Reactant A, t=5000 years) (Reactant B, t = 5000 years)

(Reactant A, t=8000 years) (Reactant B, t = 8000 years)

Fig. 6.4 Concentration distributions of the chemical reactants at different time instants (Equilib-
rium reaction)
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In order to verify the proposed decoupling procedure for solving reactive trans-
port equations with strong nonlinear reaction source/sink terms, the redox chemi-
cal reaction due to an equilibrium reaction is considered and solved using the pro-
posed numerical procedure. The equilibrium constant is assumed to be 10 and the
time step used in the simulation is 100 years. Figure 6.4 shows the concentration
distributions of the two chemical reactants at three different time instants, while
Fig. 6.5 shows the comparison of the numerical solutions (which are obtained from
the proposed decoupling procedure) with the analytical solutions (which are derived
mathematically and expressed by Eq. (6.21)) for the chemical product. It can be
observed that with the increase of time, both chemical reactants are transported
into the computational domain from the left half and right half of the bottom. Due
to the fluid flow focusing, both chemical reactants are transported much faster in
the fault zone than in the surrounding rock. As expected, these chemical reactants

(Analytical, t = 1000 years) (Numerical, t= 1000 years)

(Analytical, t=5000 years) (Numerical, t = 5000 years)

0.000 00475  0.0957 0.143 0190 0238 0285 0333

(Analytical, t = 8000 years) (Numerical, t = 8000 years)

Fig. 6.5 Comparison of numerical solutions with analytical ones for the chemical product (Equi-
librium reaction)
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are divergent around the exit region of the fault. The comparison of the numer-
ical solutions with the analytical ones for the chemical product clearly demon-
strates that the proposed decoupling procedure can produce accurate numerical
solutions for simulating the equilibrium chemical reaction, in which the chemi-
cal reaction rate approaches infinite. It is interesting to note that there is a strong
interaction between solute advection, diffusion and chemical reaction rate in the
considered equilibrium chemical system. Although two reactants are well trans-
ported into the fault zone, the mixing of the two fluids carrying them is controlled
by the solute diffusion. Since the chemical reaction rate is infinite for the equilib-
rium reaction, the corresponding chemical equilibrium length is identical to zero
due to the solute diffusion. This implies that the chemical reaction rate is too fast
to allow both the reactants to diffuse across the common boundary between them
so that fluid mixing cannot effectively take place within the fault zone. This is the
reason why both chemical reactants are abundant but no chemical product is pro-
duced within the fault zone in the computational model. However, around the exit
region of the fault zone, the flow of the fluids is slowed and divergent so that the
fluids carrying two different reactants can be mixed. Consequently, a high con-
centration of the chemical product is produced around the exit region of the fault
zone.

6.4 Applications of the Proposed Decoupling Procedure
to Predict Mineral Precipitation Patterns in a Focusing
and Mixing System Involving Two Reactive Fluids

Mixing of two or more fluids is commonly suggested as a mechanism for precipi-
tating minerals from solution in porous rocks. Examples include uranium deposits
(Wilde and Wall 1987), MVT deposits (Appold and Garven 2000, Garven et al.
1999), Irish Pb-Zn deposits (Hitzmann, 1995, Everett et al. 1999, Murphy et al.
2008), vein gold deposits (Matthai et al. 1995, Cox et al. 1995) and Carlin gold
deposits (Cline and Hofstra 2000). The mixing process is attractive because it
enables two fluids of contrasting Eh-pH conditions to mix and hence generate chem-
ical conditions conducive to mineral precipitation. Clearly rock-fluid(s) interactions
must be involved as well as the fluid mixing process but in depth exploration of such
multi-fluid-rock reaction processes awaits robust and computationally fast ways of
handling realistic kinetic-reaction-transport phenomena.

There are three end member geometries that promote the mixing of two miscible
fluids (Fig. 6.1). The first we refer to as parallel-flow geometries of the first kind
(Figs. 6.6a, b) where two contrasting fluids are brought alongside each other by
convection or focusing in a highly permeable fault or sedimentary lens (Phillips
1991). The second involves the production of a new fluid within an existing fluid
flow system by thermal or chemical reactions with a mineral assemblage within the
flow stream (Fig. 6.6¢). An example is the production of CO, or of hydrocarbons
from carbonates or carbonaceous material within a fluid stream that is hot, acid and
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oxidised (Matthai et al. 1995, Cox et al. 1995). This is, in fact, a special example of
parallel-flow geometry except that now the new fluid source is embedded within the
primary flow stream. We refer to this process as parallel flow geometry of the second
kind. The third end member involves injection of one fluid perpendicular to the flow
field of a second fluid as shown in Figs. 6.6d, e. This mixing geometry produces
a mixing plume that expands outwards mainly in the downstream direction of the

< High Permeability

Lens
F—1
: (b)
f[Fiuid B
© (d)
© |

Fig. 6.6 Mixing geometries for two fluids: (a) and (b) are parallel mixing flows of the type
discussed in this paper; (c) is a parallel mixing flow but the second fluid is generated within the
flow field of the first fluid; (d) and (e) are perpendicular mixing flows where one fluid is injected
normal to the flow field of the other fluid
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second flow. This situation has been considered by Phillips (1991) and analytical
solutions for the composition of the resulting mixing plume presented.

6.4.1 Key Factors Controlling Mineral Precipitation Patterns
in a Focusing and Mixing System Involving
Two Reactive Fluids

We consider the first of these parallel flow geometries in some detail. The classical
approach (see Phillips 1991) is to assume that chemical equilibrium has been estab-
lished within the mixing plume so that the equilibrium concentration of a particular
chemical species is expressed as a function of the environmental parameters, namely
temperature, fluid pressure and the concentration of other chemical species. The fun-
damental point we explore here is that the overall pattern of mineralization in these
mixing systems results from intimate interactions between solute advection, solute
diffusion and/or dispersion and chemical kinetics. Thus, chemical equilibrium in
some cases may never be attained in these mixing systems.

In this section we concentrate solely on parallel flows of the first kind and show
that the patterns of chemical precipitation for such flows result from intimate rela-
tions between fluid flow (which is a first order control on solute advection), chem-
ical reaction rates, and solute diffusion and dispersion. We show, for instance, that
even for a situation where two fluids are brought together by fluid focusing within
a permeable fault zone, chemical reaction between the two fluids may never occur
even if chemical equilibrium prevails so long as the advection of solute is large with
respect to solute diffusion/dispersion. In order to focus on the principles involved for
parallel flows of the first kind we idealise the situation by considering a vertical per-
meable fault within a less permeable rock mass. The whole model is fully saturated
with fluids of different chemical compositions at different points on the system. We
consider only systems where the fluids are miscible whilst noting for future inves-
tigation that multi-phase systems, that is, fluid systems in which two or more fluids
are present that are immiscible, comprise yet another hydraulic-chemical system
where intimate mixing of contrasting chemistries is possible at the pore scale. We
need to emphasise here that although we are considering only vertical permeable
faults the discussion is just as relevant to permeable sedimentary lenses or to any
other geometry that brings two chemically contrasted fluids together. The vertical
geometry here allows simple boundary conditions to be imposed for the hydraulic
potential driving fluid flow. The discussion is equally relevant for any other orienta-
tion of the focusing “lens”.

Ore formation in the Earth’s crust is commonly considered to be a consequence
of the reaction of large fluxes of one or more fluids with rock. In many situations,
fluid flow is focused within fault zones and the important issue becomes the spatial
control exerted by the fault on the resultant mineralization. It is commonly assumed
that either fluid mixing or fluid/rock reactions or a combination of both are impor-
tant processes associated with permeable fault zones, due to the large fluid fluxes
typically inferred for such zones. However, recent extensive studies (Phillips 1991,
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Zhao et al. 1998a, 2007a) have demonstrated that ore formation is not only depen-
dent on fluid flow, but also upon solute diffusion/dispersion and chemical kinetics.

Mineralisation is commonly associated with the spatial distribution of chemical
reactions in permeable rocks (Steefel and Lasaga 1990, Phillips 1991, Raffensperger
and Garven 1995, Zhao et al. 1998a). These chemical reaction patterns are strongly
influenced by fluid flow, heat transfer and the transport of reactive chemical species.
Since fluid flow is an important agent for transporting aqueous chemical species
from one location into another (Garven and Freeze 1984, Peacock 1989, Ord and
Oliver 1997, Connolly 1997, Zhao et al. 1999d, Oliver 2001, Braun et al. 2003),
fluid flow patterns can also influence the positions where different chemical species
may meet and mix and hence where chemical reactions may take place (Yardley and
Bottrell 1992, Yardley and Lloyd 1995). In addition, heat transfer processes influ-
ence the thermal structure of the Earth’s crust and hence the spatial distribution of
chemical reaction patterns through the temperature-dependence of the equilibrium
constant and of the reaction rate (Steefel and Lasaga 1994, Xu et al. 1999, Zhao
et al. 2000b).

For aqueous species, whether chemical equilibrium is or is not attained controls
the possibility of precipitation of mineral assemblages in permeable rocks. If an
aqueous species, produced by a chemical reaction, reaches equilibrium, then that
species is saturated within the fluid and hence its concentration reaches a maxi-
mum value for a given mineralizing environment. In most cases, the solubility of
an aqueous species is directly proportional to the ambient temperature. It follows
that in cooling hydrothermal systems the saturated aqueous species becomes over-
saturated and is therefore precipitated in the porous rock. Another process caus-
ing mineral precipitation is transport within the pore-fluid of the saturated aqueous
species from a high temperature region to a low temperature region. The aqueous
species can also become oversaturated and is precipitated in the porous rock. For a
given ore formation environment, flow rates can control the total process of solute
advection. In such a case, a redox controlled chemical reaction can only reach equi-
librium through optimal coupling of solute advection, solute diffusion/dispersion
and chemical kinetics. With parallel flows taken as an example, if the solute dif-
fusion/dispersion in the direction perpendicular to the interface between the flows
is much slower than the chemical reaction rate, the chemical product cannot attain
equilibrium, even though the two fluids are perfectly miscible. On the other hand,
if the flow rate is much faster than the chemical reaction rate, the chemical product
can only attain equilibrium at a distance large with respect to a chemical equilib-
rium length-scale, which we introduce below, in the flow direction. This implies
that for a permeable fault zone with a given chemical reaction, there exists an opti-
mal flow rate resulting in chemical equilibrium being attained between two fluids
that mix and focus within the fault zone. However, for parallel flows, such as those
resulting from vertical super-hydrostatic pressure gradients, chemical equilibrium
may or may not be attained when two fluids of different origins are brought together
through focusing within a permeable vertical fault. In this case, strong interactions
occur between solute advection, diffusion/dispersion and chemical kinetics. It is
this interaction that controls the equilibrium distribution of the resulting chemical
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product. A conceptual model is presented here to investigate this interaction and the
corresponding influence on chemical reaction patterns.

6.4.2 Theoretical Analysis of Mineral Precipitation Patterns
in a Focusing and Mixing System Involving
Two Reactive Fluids

Although it is difficult, if not impossible, to obtain analytical solutions for the cou-
pled problem expressed by Egs. (6.1), (6.2), (6.3), (6.4) and (6.5) in general cases, it
is possible to gain theoretical understanding through analytical solutions for the cou-
pled problem in some limiting cases (Zhao et al. 2007a). This understanding can be
achieved by converting the reactive transport equation (i.e. Eq. (6.5)) into a dimen-
sionless one so that the controlling processes associated with the reactive chemical
species transport can be identified. This means that it is possible to investigate the
relationship between the controlling processes associated with reactive chemical
species transport so that the overall structure of their solutions can be understood.
Since there are three major controlling processes, namely solute advection, solute
diffusion/dispersion and chemical kinetics, that may play dominant roles in deter-
mining chemical reaction patterns, we need to consider the relationships between
the time scales for these three controlling processes. For this purpose, we first con-
sider a dimensionless parameter known as the Damkohler number, Da, (Steefel and
Lasaga 1990, Ormond and Ortoleva 2000) to express the relative time scales of
solute advection and reaction kinetics:

kgl
Da = ke

= Time Scale for Solute Advection/
(6.24)

Time Scale for Chemical Reaction,

where V is the characteristic Darcy velocity of the system; / is the characteris-
tic length of the controlling process in the system; kg is the controlling chemical
reaction rate with units of [s']; ¢ is the porosity of the porous medium. When the
time scale for solute advection is equal to the time scale for chemical kinetics, the
Damkohler number is equal to one. In this case, the chemical equilibrium length
scale of the system can be expressed as follows:

; Vv
hemical
Lidvection = o (6.25)
where l;ﬁfé’gfo’ﬁ is the chemical equilibrium length due to solute advection for a given

chemical reaction. Below we refer to [<h¢™ica! ag the advection chemical equilibrium

length. It is clear that if a chemical reaction rate is given, there exists an optimal
flow rate such that the chemical reaction can reach equilibrium beyond the advection

. oy . . . .] e l
chemical equ111‘br1um 1ength determined from Eq. (6.25). Thus, for'a given l‘Li i
the corresponding optimal flow rate, V,ima, for which the chemical reaction can

i : chemical .
reach equilibrium beyond the given [J3°7"' " is as follows:
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Vioptimar = Pk glchmical (6.26)

advection*

It should be noted that both l;ﬁie";l"‘o“nl and the optimal flow-rate have clear physi-

cal meanings: The physical meaning of [<#¢™i¢a! j5 that for a given fluid flow rate, a
chemical reaction with a given reaction rate can reach equilibrium once this distance
is traversed by the fluid in the flow direction, within the time scale of chemical equi-
librium. Since lgsfe”g;‘;lls directly proportional to the fluid flow rate, the greater the
fluid flow rate, the larger /<"¢™i¢! This means that fast flows require relatively long
distances in the flow direction, beyond which a chemical reaction with a given reac-
tion rate can reach equilibrium. In contrast, the physical meaning of the optimal flow
rate is that for a given lgzve;f;l‘n‘if, a chemical reaction with a given reaction rate can
reach equilibrium if the fluid flow rate is within the time scale of chemical equilib-
rium. Since the optimal flow rate is also directly proportional to [<4¢™icd! " the Jarger
[chemical i the flow direction, the greater the optimal fluid flow rate. This implies
that a large l;f}j;’j;l‘;‘,f requires a relatively fast optimal flow rate, so that chemical
reaction for a given reaction rate can reach equilibrium beyond this large l;gfe"gl‘o‘;l in
the flow direction.

If the flow paths of two fluids are parallel to each other in a fluid mixing system,
solute diffusion/dispersion normal to the flow direction plays a fundamental role
in promoting chemical reactions between different reactive chemical species. In this
case, a second dimensionless parameter, Z, needs to be defined to express the relative
time scale between the solute diffusion/dispersion process and the chemical reaction
process. Notice that Z is independent of the fluid velocity and so still has meaning

for zero fluid flow.

kR12 ) . . . .
7 = -5 = (Time Scale for Solute Dispersion/Diffusion)/ (6.27)

Time Scale for Chemical Reaction,

where D is the solute diffusion/dispersion coefficient; [ is the characteristic length
of the controlling process in the system; kg is the reaction rate. Since this dimen-
sionless number expresses the ratio of the solute diffusion/dispersion time scale to
the chemical kinetic time scale, it is unity when the two time scales are equal. In this
situation, the chemical equilibrium length, lj%ﬁf;’ of the system can be expressed

as follows:
. D
lci'temll('al — _, 6.28
diffusion kR ( )

where lgf;,‘;;’:if)il is the chemical equilibrium length due to solute diffusion/dispersion
for a given chemical reaction. For a given solute diffusion/dispersion coefficient,
there exists an optimal reaction rate such that the chemical reaction can reach equi-
librium within /g determined from Eq. (6.28). Thus, for a given [gime!, the

. B . . timal . .
corresponding optimal chemical reaction rate, k5, for which the chemical reac-

tion can reach equilibrium within the given l;lf};u”gﬁ]‘jll, is as follows:
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- D
Kl — (6.29)

2
lchemical
diffusion

Both l;f};%;‘;f and the optimal chemical reaction-rate also have clear physical

meanings: The physical meaning of [giem!is that for parallel flow with a given

solute diffusion/dispersion coefficient, a chemical reaction with a given reaction rate
can only reach equilibrium within the distance diffused by the solute in the direction
perpendicular to the fluid flow within the time scale of chemical equilibrium. Since
légﬁf%ﬁ;‘fis directly proportional to the square root of the solute diffusion/dispersion

coefficient, the greater the solute diffusion/dispersion coefficient, the larger lgf};%f)‘jf

in the direction perpendicular to the fluid flow. This implies that a large solute
diffusion/dispersion coefficient can result in a chemical reaction, with a given
reaction rate, reaching equilibrium over a large distance normal to the direction of
fluid flow. By contrast, the physical meaning of the optimal chemical reaction rate
is that for a given l;fj’?‘i%;‘ff a chemical reaction with a given reaction rate can reach
equilibrium if the chemical reaction proceeds at this chemical reaction rate within
the time scale of chemical equilibrium. Since the optimal chemical reaction rate is
inversely proportional to the square of /g™, the larger [gi"*! in the direction
perpendicular to the fluid flow, the smaller the optimal chemical reaction rate. This
implies that a large chemical equilibrium length due to solute diffusion/dispersion
in the direction perpendicular to the parallel fluid flow requires a relatively slow
optimal chemical reaction rate, so that for a given solute diffusion/dispersion
coefficient, the chemical reaction can reach equilibrium within this long chemical
equilibrium length in the direction perpendicular to the parallel fluid flow.

The combined use of these two numbers, Da and Z, can express the interaction
between solute advection, diffusion/dispersion and chemical kinetics. Note that for
a given fault zone involving pore-fluid flow focusing and mixing, it is possible to
define three different types of mineral precipitation patterns in Z-Da number space.
For this purpose, the thickness of the fault zone is chosen as the characteristic length
of the Z Number, while the length of the fault zone is chosen as the characteristic
length of the Da Number. The relationships between Da, Z and mineral precipitation

types are shown in Fig. 6.7.

6.4.3 Chemical Reaction Patterns due to Mixing and Focusing
of Two Reactive Fluids in Permeable Fault Zones

The theoretical understanding of the interaction between solute advection, solute
diffusion/dispersion and chemical kinetics presented in the previous section is, in
principle, useful for investigating chemical reaction patterns resulting from chem-
ical equilibrium associated with fluid flow in all kinds of porous rocks. Chemical
reaction patterns arising from flow focusing and mixing of two reactive fluids within
permeable vertical fault zones are the subject of this section.
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Fig. 6.7 Three fundamental types of mineral precipitation patterns in the Z-Da Number space

The geometry and problem description of two fluids mixing and focusing within
a permeable vertical fault zone are shown in Fig. 6.8. In this figure, Ly, and Wy,
are the length and width of the fault zone; L,,, represents the starting position of
mineral precipitation within the fault zone; W,,, represents the thickness of mineral
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Fig. 6.8 The conceptual model of two fluids mixing and focusing in a fault

precipitation within the fault zone. Two fluids carrying two different solutes, namely
Fluid A and Fluid B, are injected from the left and right sides of the fault axis and are
focused into the fault zone according to the principles discussed by Phillips (1991)
and Zhao et al. (1999d). Since mineral precipitation is dependent on both chemical
equilibrium and the saturation concentration of a mineral, it is assumed that the
starting position of mineral precipitation is coincident with chemical equilibrium
being attained in the following theoretical analysis. This means that for a given
chemical reaction rate, the starting position of mineral precipitation is controlled by
solute advection and is measured from the lower tip of the fault. On the other hand,
since Fluid A flows parallel to Fluid B, the mixing of these two fluids is due solely
to solute diffusion/dispersion in the direction normal to the fault zone. Hence, the
thickness of mineral precipitation is controlled solely by solute diffusion/dispersion.
The starting position of mineral precipitation within the fault zone can be expressed
as follows:

hemic \%4
me — themlwl _ (630)

advection ~— ¢kR .

Similarly, the thickness of mineral precipitation within the fault zone can be
expressed as

W, — gchenical _ 5 [ D (6.31)
mp diffusion kR : '
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Here the factor 2 arises because of the symmetry of geometry; l;g;;"si‘o‘jf is mea-
sured from the centre of the fault.

As indicated earlier in this chapter, there are three possible cases in which chemi-
cal equilibrium can be attained in the conceptual model shown in Fig. 6.8. The three
types of interest are: Type 1: chemical equilibrium is attained just at the lower tip of
the fault; Type 2: chemical equilibrium is attained at the upper tip of the fault; and
Type 3: chemical equilibrium is attained somewhere between the lower tip and upper
tip of the fault. As mentioned above, analytical solutions to Egs. (6.1), (6.2), (6.3),
(6.4) and (6.5) are difficult but we can gain some insight into the types of chem-
ical reaction patterns that are possible by considering some limiting cases below.
In the forthcoming section, we numerically examine more realistic and applicable
situations.

6.4.3.1 Type 1: Chemical Equilibrium is Attained at the Lower Tip
of the Fault

In this limiting case, the fluid velocity is zero in the whole system. Substituting a
zero velocity into Eq. (6.30) yields a zero value of the starting position of mineral
precipitation within the fault zone. In this situation, it is possible for chemical equi-
librium to be attained throughout the whole length of the fault, depending on the
actual residence time of the two chemical reactants within the system. To enable
chemical equilibrium to be reached within the whole fault length, L, the resi-
dence time for which the two chemical reactants should exist in the system is equal
to the time interval, 4., for the solute to diffuse from the lower tip to the upper
tip of the fault:

2

12
Liiguse = -;‘)”"’. (6.32)

Consider a specific example: Eq. (6.32) indicates that for a solute diffu-
sion/dispersion coefficient of 107'° m?/s and a vertical fault 1 km long, the two
chemical reactants need to be present for 10'¢ s (i.e. about 3 x 10® years) at the
bottom of the conceptual model in order for chemical equilibrium to be reached
within the whole length of the fault. Since the required duration for the existence of
these two chemical reactants is quadratically proportional to the length of a fault, it
is increased to about 25 x 10'® s (i.e. about 7.5 x 10° years) to enable the chemi-
cal reaction to reach equilibrium within the whole length of a 5 km long fault. In
this example, where the fluid flow is negligible, the time required to reach chemical
equilibrium within the whole length of a fault 5 km long is greater than the age of
the Earth.

As indicated in Eq. (6.31), the thickness of mineral precipitation within the
fault zone is dependent on both the chemical reaction rate and the solute diffu-
sion/dispersion coefficient. For a given solute diffusion/dispersion coefficient, the
optimal chemical reaction rate k""", which will enable chemical reactions to attain
equilibrium across the whole width of the fault zone, is as follows:



144 6 Fluid Mixing, Heat Transfer and Non-Equilibrium Redox Chemical Reactions

koptima/ _ 4D

optimal _ . (6.33)
Wfiult

6.4.3.2 Type 2: Chemical Equilibrium is Attained at the Upper Tip
of the Fault

This is another limiting case, in which the fluid rate (i.e. velocity) has reached a
critical value in the fault zone. The fundamental characteristic of this limiting case
is that if the fluid rate is equal to or greater than this critical value, the starting point
of chemical equilibrium is at or beyond the upper tip of the fault, indicating that the
chemical equilibrium of the chemical product and therefore mineral precipitation
cannot be attained within the fault zone. For a given chemical reaction rate, this
critical flow rate within the fault zone, V,,.q1, can be expressed as follows:

Veritical = ¢kRLfault- (634)

Equation (6.34) is useful for estimating the critical flow rate for a vertical fault.
For example, if the porosity of a vertical fault is 0.3 and the chemical reaction
rate is 107'!(1/s), then the corresponding critical flow rate is 3 x 10 m/s for a
vertical fault 1 km long. If both the fault porosity and the chemical reaction rate
remain unchanged, the corresponding critical flow rate of the fault is increased to
about 15 x 10~ m/s for a vertical fault 5 km long. Suppose the flow-focusing factor
(Phillips, 1991) of the vertical fault is of the order of 15, the corresponding critical
flow rate within the surrounding rock for a vertical fault is 10~° m/s. This critical
flow rate can be easily exceeded when the fluid within the surrounding rock of the
fault zone is under a lithostatic pressure gradient. If the permeability of the sur-
rounding rock is 107! m? and the dynamic viscosity of the fluid is 1073 N s/m?,
then the flow rate induced by the lithostatic pressure gradient within the surround-
ing rock is 1.7 x 10~ m/s. This implies that the flow rate induced by a lithostatic
pressure gradient within the surrounding rock is too high to enable minerals to be
precipitated within the vertical fault zone.

6.4.3.3 Type 3: Chemical Equilibrium is Attained Somewhere
between the Lower Tip and Upper Tip of the Fault

In this case, the equilibrium of the reaction product is attained within the fault zone.
The starting position of the chemical equilibrium is measured from the lower tip of
the fault and can be expressed by the following equation:

Ly = mp Lgauirs (6.35)

where L,,, is the starting position of chemical equilibrium within the fault zone in
the flow direction; «,,, is a coefficient to express the relative relationship between
the length of the fault and the starting position of chemical equilibrium within the
fault zone; that is oy, = Ly / Layi. It is clear that in this particular case, the value
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of a,p 1s greater than zero but less than one. A value of «,,, equal to zero represents
the first limiting case (Type 1), while a value of o, equal to one represents the
second limiting case (Type 2), as discussed above.

Similarly, the width of chemical equilibrium within the fault can be expressed as
follows:

‘/Vmp = ,Bmp Wfaulta (636)

where W, is the width of chemical equilibrium within the fault zone; Wy, is
the width of the fault; B, is a coefficient expressing the ratio between the width
of the fault and the width of chemical equilibrium within the fault zone; that is,
Bup = Wy / Wi In this case, the value of B, is greater than zero but less than
one. A value of B,, equal to zero represents the first limiting case (Type 2), whilst
a value of B,,, equal to one represents another limiting case (i.e. the limiting case
of Type 3), in which case the width of chemical equilibrium within the fault zone is
just equal to that of the fault.

If both the solute diffusion/dispersion coefficient and the width of chemical equi-
librium within the fault zone are known, the corresponding optimal chemical reac-
tion rate in this case can be estimated from the following formula:

i 4D 4D
optimal __ _
kg =W T Wi (6.37)
mp ﬁmp Sfault
Thus, the corresponding optimal flow rate in this particular case is:
; 4¢ Da,y,, L
Voptimal = ¢k;)gpnmalep = W~ (638)
'3 mp vaault

Equation (6.38) indicates that for a particular pattern of mineral precipitation
within the fault zone, there exists an optimal flow rate such that chemical equilib-
rium is attained within the region associated with this particular mineral precipita-
tion pattern.

6.4.4 Numerical Illustration of Three Types of Chemical Reaction
Patterns Associated with Permeable Fault Zones

The theoretical analysis carried out in the previous section predicts that there exist
three fundamental types of chemical reaction patterns associated with permeable
vertical fault zones due to two fluids mixing and focusing. In order to illustrate
these different types of chemical reaction patterns, the finite element method is used
to solve the coupled problem numerically involving fluid mixing, heat transfer and
chemical reactions expressed by Egs. (6.1), (6.2), (6.3), (6.4) and (6.5). In theory,
it is possible to predict exactly the three fundamental types of chemical reaction
patterns. However, in numerical practice, it is difficult to control the flow rate of
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a specific value due to numerical round off and cutoff errors. For this reason, the
numerical simulated mineral precipitation patterns here are approximate represen-
tations of the three fundamental types of mineral precipitation patterns.

The computational model (shown in Fig. 6.1) and related parameters for the ver-
ification example in the previous section (i.e. Sect. 6.3) are used to illustrate three
different types of mineral precipitation in a focusing and mixing system of two reac-
tive fluids. Two different fluid pressure gradients are considered to control the flow
rate (i.e. vertical fluid velocity) within the surrounding rock during the numerical
simulation. To simulate the fast flow rate associated with type 2 (as stated in the
previous section), the fluid pressure gradient is assumed to be a lithostatic pressure
gradient, which results in a vertical flow rate of 1.7 x 107° m/s within the surround-
ing rock. This gradient is used because it is considered to be near the highest reason-
able fluid pressure gradient likely to be encountered in nature. On the other hand,
in order to simulate the slow flow rate associated with types 1 and 3 (see the pre-
vious section), the excess fluid pressure gradient is assumed to be one percent of
a lithostatic pressure gradient minus a hydrostatic one, which results in a vertical
flow rate of 1.7 x 10~'! m/s within the surrounding rock. It is known that for fluid
pressure gradient dominated flow, the flow pattern around a permeable fault zone is
dependent only on the contrast in permeability between the fault and the surround-
ing rocks, the geometry of the fault zone and the inflow direction relative to the axis
of the fault (Phillips 1991, Zhao et al. 1999d) and is independent of the pressure
gradient along the fault. This means that although the fluid pressure gradient is dif-
ferent in the three simulations, the streamline pattern within and around the fault
zone must be identical for all three cases, as demonstrated by the related numerical
result shown in Fig. 6.2. In all cases, fluid flow converges into the fault zone at the
lower end and diverges out of the fault zone at the upper end (see also Phillips 1991,
Zhao et al. 1999d).

6.4.4.1 The First Type of Chemical Reaction Pattern

The first type of chemical reaction pattern results from an approximate representa-
tion of Type 1 in Sect. 6.4.3; the background flow velocity within the surrounding
rock is not exactly equal to zero in the numerical simulation but instead is one per-
cent of the lithostatic pressure gradient minus the hydrostatic gradient. Here two
controlling chemical reaction rates, namely 1077 (1/s) and 10~'! (1/s) are considered
to investigate the effect on chemical reaction patterns. Due to flow focusing, the
maximum vertical flow velocity within the fault zone is about 3.16 x 1071° m/s.
Figure 6.9 shows the concentration distributions of the two chemical reactants
and the corresponding chemical product at two time instants of = 500,000 and
t=2800,000 years. The distribution of the concentration of the chemical product
comprises a lenticular shape within the fault zone. This coincides with what is
expected from the previous theoretical analysis. For a fault zone of width 250 m,
the optimal chemical reaction rate calculated from Eq. (6.33) is 4.8 x 10713 (1/s) so
that chemical equilibrium can be attained within the whole width of the fault zone.
Since the optimal chemical reaction rate is much smaller than the two chemical
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Fig. 6.9 Concentration distributions of the chemical reactants and product at two different time
instants (Type 1)



148 6 Fluid Mixing, Heat Transfer and Non-Equilibrium Redox Chemical Reactions

reaction rates used in the simulation, the thickness of the chemical equilibrium
within the fault zone is much smaller than the width of the fault zone itself. The
theoretical estimate of the thickness of chemical equilibrium within the fault zone
is 10.95 m for a controlling chemical reaction rate of 10~'! (1/s), and 0.11 m for a
controlling chemical reaction rate of 10~ (1/s). Hence, the maximum concentration
distribution of the chemical product comprises a very thin membrane; that is, min-
eral precipitation comprises a thin lenticular shape within the fault zone and starting
at the lower tip of the fault. This is the fundamental characteristic of the first type of
chemical reaction pattern.

6.4.4.2 The Second Type of Chemical Reaction Pattern

The second type of chemical reaction pattern is defined as an approximate
representation of Type 2 in the previous section. In this example, the background
fluid pressure gradient within the surrounding rock is set equal to a lithostatic
pressure gradient. Two controlling chemical reaction rates, namely kg = oo and
kg = 107''(1/s), are considered to investigate the effects of different chemical
kinetics on chemical reaction patterns. From a chemical kinetics point of view,
kr = oo represents an equilibrium chemical reaction. Due to flow focusing, the
maximum vertical flow velocity within the fault zone is about 3.02 x 1078 m/s.

Figure 6.10 shows the concentration distributions for the two chemical reac-
tants and the corresponding chemical product at two time instants of ¢#= 5000
and = 8000 years. Both chemical reactants are transported into the computational
domain from the left half and right half of the base of the model. Due to fluid flow
focusing, both chemical reactants are transported much faster within the fault zone
than in the surrounding rock. There is a strong interaction between solute advec-
tion, diffusion/dispersion and chemical reaction rate (i.e. kg = 00). Although both
reactants are transported into the fault zone, the mixing of the two fluids carrying
them is controlled by solute diffusion and dispersion. Since the chemical reaction
rate is infinite, the corresponding chemical equilibrium length due to solute diffu-
sion/dispersion is identical to zero normal to the fault zone. This implies that the
controlling chemical reaction rate is too fast to allow both the reactants to diffuse
across their common boundary so that fluid mixing cannot effectively take place
within the fault zone. However, around the exit region of the fault zone, the fluid
flow decreases and, more importantly, diverges so that a high concentration of the
chemical product is produced around the exit region of the fault zone.

In the case of a non-equilibrium chemical reaction characterized by a slow chemi-
cal reaction rate (e.g. kg = 107'!(1/s)), the theoretical chemical equilibrium length
calculated from Eq. (6.28) is 5.48 m, while the theoretical chemical equilibrium
length calculated from Equation (6.25) is 8630 m in the direction of the fault axis.
Thus the chemical equilibrium length due to solute advection is greater than the
length of the fault itself, so that the chemical product distribution within the fault
zone is controlled by solute advection. Because the chemical equilibrium length due
to the solute advection is greater than the total length of the fault zone plus its exit
region (i.e. 5000 m plus 2500 m), chemical equilibrium cannot be reached within the
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Fig. 6.10 Concentration distributions of the chemical reactants and product at two different time
instants (Type 2)
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height of the model, indicating that two fluids cannot mix to produce an extensive
mixing region due to the fast advection of the fluids within the fault.

Thus, for the two end-members of chemical reaction rates, namely a very fast
equilibrium reaction and a slow reaction with a controlling chemical reaction rate of
107! (1/s), chemical equilibrium cannot be attained within the fault, implying that
mineral precipitation cannot take place within a permeable vertical fault zone for
the chemical reaction considered here. This is the fundamental characteristic of the
second type of chemical reaction pattern considered in this investigation.

6.4.4.3 The Third Type of Chemical Reaction Pattern

The third type of chemical reaction pattern is a representation of Type 3 in the
previous section. The fundamental characteristic of this type of chemical reaction
pattern is that chemical equilibrium, which results in a considerable equilibrium
thickness in the direction normal to the fault zone, can be achieved within the fault
zone. In order to enable the starting position of chemical equilibrium to be close to
the lower tip of the vertical fault, the background fluid pressure gradient within the
surrounding rock is one percent of the lithostatic pressure gradient minus the hydro-
static gradient. Due to flow focusing, the maximum vertical flow velocity within the
fault zone is about 4.68 x 107'° m/s in the numerical simulation. Since the optimal
reaction rate is directly proportional to the solute diffusion/dispersion coefficient, it
is desirable to select the value of a solute diffusion/dispersion coefficient as large as
possible, so that the total CPU time in the simulation can be significantly reduced.
For this reason, the solute diffusion/dispersion coefficient is assumed to be 3 x 1078
m?/s in the numerical simulation. If the thickness of chemical equilibrium in the lat-
eral direction of the fault zone is 80 m, the optimal chemical reaction rate is about
1.9 x 107! (1/s), as can be calculated from Eq. (6.37).

Figure 6.11 shows concentration distributions of the two chemical reactants
and the corresponding chemical product at two time instants of #+= 500,000 and
t= 800,000 years. The maximum concentration distribution of the chemical prod-
uct generates considerable thickness within the fault zone. This agrees well with
what is expected from the previous theoretical analysis given in Sect. 6.4.3. Due
to the low fluid velocity, a chemical equilibrium zone is also generated in the flow
convergent region just in front of the fault zone. It is noted that this chemical equilib-
rium zone is almost separated from the chemical equilibrium zone within the fault.
This phenomenon results from the distribution of fluid velocity vectors arising from
fluid flow focusing just outside and within the fault zone.

The geological implication of the third type of chemical reaction pattern is that if
a mineral precipitation pattern of a certain thickness and length within a permeable
vertical fault zone is observed, then it is possible to estimate both the optimal flow
rate and the optimal reaction rate during the formation of this precipitation pattern.
On the other hand, if the flow rate and reaction rate are known, then it is possible to
estimate the width of the potential mineral precipitation pattern within a permeable
vertical fault zone.
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Fig. 6.11 Concentration distributions of the chemical reactants and product at two different time
instants (Type 3)



Chapter 7

An Equivalent Source Algorithm for Simulating
Thermal and Chemical Effects of Intruded
Magma Solidification Problems

Consideration of the effects of magma ascending and solidification is important to
the further understanding of ore body formation and mineralization in the crust of
the Earth. Although various possible fundamental mechanisms of magma ascending
in the crust are proposed (Johnson and Pollard, 1973, Marsh 1982, Lister and Kerr
1991, Rubin 1995, Weinberg 1996, Bons et al. 2001), the development of numeri-
cal algorithms for simulating the proposed magma ascending mechanisms is still
under-developed. For example, continuum-mechanics-based numerical methods
have encountered serious difficulties in simulating the random generation and prop-
agation of hydro-fractured cracks, the magma flow within these cracks, the solidifi-
cation of the ascending magma due to heat losses to the surrounding rocks, and so
forth. In order to overcome these difficulties, particle-based numerical simulations
have been developed rapidly in recent years (Zhao et al. 2006f, 2007b, c, d, 2008g).
However, due to the different time and length scales involved in ore body formation
and mineralization problems, it is also very difficult, even if not impossible, to use
the present particle-based numerical methods to simulate all the important processes
associated with ore body formation and mineralization problems in the crust of the
Earth. As a long-term development strategy, we need to develop multiple time and
length scale modelling techniques and algorithms so that particle simulation meth-
ods, combined with newly-developed techniques and algorithms, can be used to
solve such large scale geological problems. As an expedient strategy, although it is
impossible to use the continuum-mechanics-based numerical methods to simulate
directly the magma ascent processes, we can develop some useful algorithms, in
combination with continuum-mechanics-based numerical methods, to simulate the
effects of the magma ascent processes. Thus, the main motivation of carrying out
this study is to develop a useful algorithm to consider the dynamic consequences
involved in magma ascent processes using continuum-mechanics-based numerical
methods.

In terms of the magma intrusion mechanism, a large amount of theoretical work
has been carried out previously, even though it is based on simple conceptual mod-
els (Johnson and Pollard, 1973, Marsh 1982, Lister and Kerr 1991, Rubin 1995,
Weinberg 1996, Bons et al. 2001). Although the previous theoretical work needs to
be quantitatively refined, it can be used to estimate the total volume of the intruded
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magma. If an analytical estimation of the volume of the intruded magma is not
available for most complicated geological situations, the particle numerical method
may be useful to simulate the magma intrusion process alone so that the volume of
the intruded magma can also be estimated. Given the total volume of the intruded
magma, we can use continuum-mechanics-based numerical methods, such as the
finite element method and finite difference method, to simulate its thermal effects
by considering the heat release during the solidification of the intruded magma. This
means that we need to develop an equivalent algorithm to transform the original
magma intrusion problem into a heat transfer problem with the internal heat gener-
ation of the intruded magma. Clearly, the key issue associated with the developed
equivalent algorithm is to determine the heat release rate of the intruded magma dur-
ing its solidification. Once the time history of the heat release rate of the intruded
magma during solidification is obtained, the finite element method can be used to
simulate the thermal effects of the intruded magma in the crust of the Earth. Using
the proposed equivalent algorithm, the moving boundary problem (Crank 1984,
Alexiades and Solomon 1993) associated with the original problem during magma
solidification can be avoided. As a direct result, the efficiency of the finite element
method can be much improved. This may be considered as one of the major advan-
tages of the proposed equivalent algorithm in dealing with the thermal effects of
magma intrusion problems in the crust of the Earth.

Geological problems may involve different time and length scales in the descrip-
tions of their different physical and chemical processes. With magma intrusion into
the Earth’s crust taken as an example, the time scale of the magma intrusion pro-
cess, which includes both the creation of the magma chamber and ascent process for
the intruded magma, is much smaller than that of the magma solidification process,
which includes both the release of volatile fluids from the magma and chemical
reaction processes within the crust due to the release of the volatile fluids. On the
other hand, the volume of the intruded magma is usually much smaller than that of
the Earth’s crust of interest. This means that the whole magma intrusion problem
is, in essence, a problem of multiple time and length scales. Nevertheless, due to
the significant time and length scale differences between the magma intrusion and
solidification processes, it is possible to simulate these two different processes using
different analytical models. This will allow the detailed mechanisms associated with
each of the two processes to be modelled using totally different methodologies. For
example, if the magma intrusion process itself is of particular interest, then particle-
based numerical methods can be used to simulate the initiation and propagation of
random cracks during the ascending of the intruded magma. However, if the thermal
and chemical effects/consequences of the intruded magma are of particular inter-
est, then continuum-mechanics-based numerical methods can be used to simulate
heat transfer and mass (i.e. chemical species) transport within the Earth’s crust. To
the best knowledge of the authors, these methods have not been used to simulate
the release of volatile fluids from the magma and the chemical reaction processes
within the crust due to the release of the volatile fluids. Since both the release of
volatile fluids from the magma and the transport of the released volatile fluids may
have significant effects on ore body formation and mineralization in the upper crust
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of the Earth, a numerical method needs to be developed to simulate the chemical
consequences of the magma solidification in porous rocks.

A large amount of geochemical research has indicated that intruded magma
in the Earth’s crust has different chemical compositions and, therefore, different
types of rocks can be formed during the solidification and crystallization of the
intruded magma. Both temperature and pressure conditions during solidification of
the magma can also affect the resulting rock types dramatically. Rhyolite and basalt,
instead of granite and gabbro, are formed if the solidification conditions of the fel-
sic and mafic magmas are changed from intrusive into extrusive. It is well known
that the solidus of the intruded magma is mainly dependent on the magma composi-
tion, the contents of water and other volatile fluids. For a particular kind of intruded
magma, the abovementioned information is obtainable from geochemical and iso-
topic analyses. Therefore, given a particular kind of intruded magma, it is possible
to determine the contents of water and other volatile fluids, which should be released
when the intruded magma becomes solidified. This implies that the volatile fluids
released from the intruded magma can be quantitatively simulated in the numerical
analysis, which is another important issue to be addressed in this study.

Due to the complex nature of the magma intrusion problem within the crust
of the Earth, it is useful to conduct numerical simulation of this kind of problem
progressively from a simplistic stage into more complicated stages. This research
methodology is rational because of the multiple time and length scales of the prob-
lem itself. Thus, we plan to solve the magma intrusion problem using the following
three level models. For the first level model, we primarily consider the effects of
the post-solidification magma on pore-fluid flow, heat transfer and ore forming pat-
terns within the upper crust of the Earth. For the second level model, we consider
the thermal and chemical effects of the post-intrusion but pre-solidification magma
on pore-fluid flow, heat transfer and ore forming patterns within the upper crust
of the Earth. In this model, we must develop some useful and efficient computer
algorithms to simulate the magma solidification problem. For the third level model,
we will consider the intrusion process itself at a much smaller scale using parti-
cle mechanics-based computer algorithms. Once efficient numerical algorithms for
dealing with above three level models are developed, it is possible to integrate them
to simulate the whole process of the magma intrusion problem. So far, we have
completed some work for the first level model (Zhao et al. 2003e). In this study, we
will develop some useful and efficient computer algorithms to simulate the magma
solidification problem associated with the second level model.

7.1 An Equivalent Source Algorithm for Simulating
Thermal and Chemical Effects of Intruded Magma
Solidification Problems

Owing to the importance for many scientific issues and technical applications, theo-
retical and numerical analyses of heat transfer with phase change have been carried
out for more than half a century. There is an extensive literature which reports and
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reviews the development of this subject (Carslaw and Jaeger 1959, Crank 1984,
Alexiades and Solomon 1993, Zhao and Heinrich 2002). The problem associated
with numerical modelling of the thermal effect of solidification of intruded magma
is that the characteristic dimension of the whole geological system under considera-
tion is on the scale of tens and hundreds of kilometers, but the characteristic dimen-
sion of the intruded magma, such as a sill or dike (Johnson and Pollard 1973, Lister
and Kerr 1991, Rubin 1995, Weinberg 1996) is on the scale of meters and tens of
meters. As a result, the detailed solidification process of the intruded magma might
not be important, but the thermal effect caused by the heat release during the solidifi-
cation of the intruded magma is important, at least from the ore body formation and
mineralization point of view. Since heat release during solidification of the intruded
magma can be represented by a physically equivalent heat source, it is possible to
transform the original heat transfer problem with phase change due to solidification
of the intruded magma into a physically equivalent heat transfer problem without
phase change but with the equivalent heat source. The above physical understand-
ing means that from the numerical modelling point of view, we can remove the
moving boundary problem associated with the detailed solidification process of the
intruded magma, so that we can use a fixed finite element mesh to consider the ther-
mal effect of the intruded magma by solving the physically equivalent heat transfer
problem with an equivalent heat source. This is the basic idea behind the proposed
equivalent algorithm for simulating the thermal effect of the intruded magma solid-
ification in this study. The similar, even though not identical, approaches, such as
the immersed boundary method (Beyer and LeVeque 1992), the level-set method
(Osher and Sethian 1998, Sethian 1999), the segment projection method (Tornberg
and Engquist 2003a) and so forth, have been used to tackle other different prob-
lems with moving interfaces or fronts (Smooke et al. 1999, Mazouchi and Homsy
2000). In terms of solving partial differential equations with delta function source
terms numerically, Walden (1999), and Tornberg and Engquist (2003b) have inves-
tigated the convergence and accuracy of the numerical method. Recently, the fixed
grid approach has been successfully used to solve the phase change problem associ-
ated with moisture transport in high-temperature concrete materials (Schrefler 2004,
Schrefler et al. 2002, Gawin et al. 2003). In this chapter, it will be extended to the
solution of the phase change problem associated with intruded magma solidification
in geological systems. The proposed algorithm is only valid when the characteristic
length scale of the system is much larger than that of the intruded magma, which is
true for most geological systems (Johnson and Pollard 1973, Lister and Kerr 1991,
Rubin 1995, Weinberg 1996).

In what follows, we will present the proposed equivalent algorithm for simulating
the chemical effect of solidification of the intruded magma in geological systems.
Since the volatile fluids released during solidification of the intruded magma may
have many different chemical components/species, it is ideal to describe the gov-
erning equation of each chemical component separately. However, if the diffusivity
of each chemical component is assumed to be identical, then the concept of the
total concentration, which is the summation of the concentration of all the chemical
components, can be used to describe the governing equation of the released volatile
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fluids. Thus, we can use one governing equation to describe variations of the total
concentration of the released volatile fluids in the system. In this way, computer
efforts can be reduced significantly in dealing with the intruded magma solidifi-
cation problems. Because the volumetric amount of the released volatile fluids is
relatively small to the intruded magma, their effects on the heat transfer process
can be neglected in the analysis of the intruded magma solidification problem. This
allows us to assume that thermal equilibrium between the released volatile fluids
and the intruded magma/rock has been achieved. Thus, the governing equations of
the original heat transfer and mass transport problem considering the phase change
during the intruded magma solidification (Carslaw and Jaeger 1959, Crank 1984,
Alexiades and Solomon 1993, Zhao and Heinrich 2002) can be described, for a
two-dimensional problem, as
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where Ty and T), are the temperature of the rock and intruded magma; pg, ¢,z and
Ag are the density, specific heat and thermal conductivity of the rock; py, cpp and
Ay are the density, specific heat and thermal conductivity of the intruded magma;
Cr is the total concentration of the released volatile fluids; D is the diffusivity of the
released volatile fluids; Q is the mass source of the released volatile fluids during
the intruded magma solidification; x; and y; are the x and y coordinate components
of the interface position; § is the delta function of values of unity and zero; Vi and
Vi are the spaces occupied by the rock and intruded magma.

It is noted that, although the released volatile fluids during the intruded magma
solidification are comprised of H,O, CO,, H,S, HCIl, HF, SO, and other substances
(Burnham 1979, Barns 1997), H,O is the most abundant magmatic volatile and CO,
is the second most abundant magmatic volatile in the intruded magma. For this rea-
son, the solubility of H»O in silicate melts has been investigated for many years.
These extensive studies (Burnham 1979, Barns 1997) have demonstrated that if the
constraints of the solution model for the NaAlSi; Og —H,0 system are imposed, H,O
solubilities in the igneous-rock melts are essentially identical to those in NaAlSiz Og
melts. Therefore, the solubility of H,O in the NaAlSi; Og melt can be used to approx-
imately determine the mass source of the released volatile fluids during the intruded
magma solidification.

Since the original magma solidification problem belongs to a moving inter-
face problem, the temperature and heat flux continuity conditions on the interface
between the rock and intruded magma are as follows:



158 7 Simulating Thermal and Chemical Effects of Intruded Magma Solidification Problems

Tr =Ty (x1, y1) € T'rum» (7.4)
aT oT, oT, oT,
AR nx—R—i—ny—R — Am nx—M—i—ny—M
ox ay ax ay
(15)
dxy ay;
=pulL + cppu(Trm — Tn)] e +ny¥ (x1, y1) € Tru,

where x; and y; are the x and y coordinate components of the interface position;
n, and n, are the x and y components of the unit normal to the interface between
the rock and intruded magma; Ty, is the temperature of the intruded magma; 7,
is the solidification temperature of the intruded magma; L is the latent heat of
fusion of the intruded magma; I'gy, is the interface between the rock and intruded
magma.

Except for the boundary conditions on the interface between the rock and
intruded magma, the boundary conditions on the other boundaries of the rock
domain and intruded magma domain can be either of the Dirichlet, Neumann or
mixed type (Carslaw and Jaeger 1959, Crank 1984, Alexiades and Solomon 1993,
Zhao and Heinrich 2002). Since the boundary conditions on the other boundaries of
the rock domain and intruded magma domain are trivial, it is not necessary to repeat
them here.

In order to develop an efficient and effective numerical algorithm for dealing with
solidification of intruded magma in sills and dikes, it is necessary to introduce some
related concepts. As shown in Fig. 7.1, supposing the initial position of the interface
between the magma and rock is at position 1, the interface moves to position 2
due to magma solidification during a time period, Afy. As a result, the magma
solidification thickness is expressed by AL),. If the length of the interface front is
ALpg, then the magma solidification area is the product of AL, and ALy during
the time period At,,. Since heat and volatile fluids are only released during magma
solidification, we may consider the released heat and volatile fluids either as surface
heat and mass sources in a two-dimensional problem or as volumetric heat and mass
sources in a three-dimensional one. This means that it is physically possible to use

Position 1 Position 2
Magma
Rock > AL,
Interface movement
direction
v
AL,
N }.7

Fig. 7.1 Basic concepts related to the magma solidification problem
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a fixed finite element mesh to consider the released heat and volatile fluids during
the magma solidification process. The key issue associated with the finite element
analysis using a fixed mesh is that, for a given magma solidification thickness AL,
which can be easily simulated by the fixed mesh, we need to determine the time
period Aty so that the interface between the magma and rock just moves a distance
being equal to ALy, in the interface movement direction. Since the magma is fully
solidified within the region of the solidification thickness AL, the delta function
used in Eq. (7.3) should have a value of unity. Except in this solidification region,
the delta function should have a value of zero, meaning that there is no magma
solidification taking place in other regions. This is the reason why the delta function
only has values of unity and zero in the present numerical algorithm. Generally, for
the same magma solidification thickness AL, the solidification time period can
vary significantly as the magma solidification proceeds. This requires us to develop
a numerical algorithm, in which the finite element mesh is fixed but the integration
time-step being equivalent to the solidification time period must be variable.

Based on the above considerations, Egs. (7.1), (7.2), (7.3), (7.4) and (7.5) can be
represented by the following equations:
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where § is the delta function with values equal to unity and zero; f(x, y, t) is the
physically equivalent heat source due to the solidification of the intruded magma.
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where ALy is the solidification thickness of the intruded magma during a time
period Atyy; k is the time-step index of integration in the finite element analysis.

The mass source of the released volatile fluids in Eq. (7.7) during the intruded
magma solidification can be determined using the solubility of H>O in the
NaAlSi; Og melt (Burnham 1979, Barns 1997). In this regard, the mole fraction of
H,0 in the NaAlSi; Og melt is expressed as follows:

X, = (X' <0.5), (7.9)
i
w
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X =05+ ——5z=1n (k_f> (X" > 0.5) (7.10)
625 = \kw

where X is the mole fraction of H,O in the NaAlSi3 Og melt; T is in Kelvin; kgf is
the equilibrium constant for H,0O in melts of feldspar composition.

Ink™ = 5+ (In P)(4.481 x 107872 — 1.51 x 107*T — 1.137)
+ (In P)*(1.831 x 107872 — 4.882 x 107°T +4.656 x 1072)
+7.8 x 1073(In P)®> —5.012 x 107*(In P)* 4+ 4.754 x 1073T
—1.621 x 10772,

(7.11)

where P is the pressure of the intruded magma; P and T are in bars and Kelvin,
respectively.

Using the concept of molar mass, the mass source of the volatile fluids released
during solidification from the intruded magma can be expressed as

0. y, 1) = Xo Wiy 7.12)
S X (= X Wi ’ ‘
— - Atk
pw palbite

where Aty is the time period required to complete the magma solidification within
a given solidification thickness ALyy; W' and p}) are the molar mass and den-
sity of the volatile fluids in the magma; W}j,.., and o7, . are the molecular mass
and density of the albite (NaAlSi; Og) melt. It is noted that using the definition in
Eq. (7.12), the mass source of the released volatile fluids has units of the density of
the albite (NaAlSiz Og) melt divided by time.

In the case of the intruded magma temperature being equal to the solidification

magma temperature, Eq. (7.8) can be rewritten as

d d
pmL <nx% + n‘%)
s Y, )= . 7.13
fx, vy, 1) N (7.13)

7.2 Implementation of the Equivalent Source Algorithm
in the Finite Element Analysis with Fixed Meshes

If the physically equivalent heat source term, f(x, y, ), is determined either ana-
Iytically or experimentally, Egs. (7.6) and (7.7) can be directly solved using the
conventional finite element method (Zienkiewicz 1977). For dike-like and sill-like
intruded magmas, the physically equivalent heat source due to the solidification can
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Fig. 7.2 A representative model for the magma solidification problem

be determined analytically through the following ideal experiment. As shown in
Fig. 7.2, the sample in the ideal experiment is a rectangular domain filled with the
intruding magma in the middle and the intruded rocks on the either side. All the
external boundaries of the sample are insulated and the temperatures of the rock and
intruded magma are Tk and T,,, respectively. The characteristic length of the rock
is Lg, while the characteristic length of the intruded magma is Ly, / 2. It is assumed
that the characteristic length of the rock is much larger than that of the intruded
magma, which is true for sills and dikes in geology (Johnson and Pollard, 1973,
Lister and Kerr 1991, Rubin 1995, Weinberg 1996). Under this assumption, the
solidification problem in the ideal experiment can be treated as a one-dimensional
Stefan solidification problem, for which the analytical solution is already available
(Carslaw and Jaeger 1959).

If the characteristic length of the intruded magma is divided into K equal parts,
which are modelled by K finite element meshes of equal length in the magma solid-
ification direction, then the length of the finite element mesh in this direction is
Ax = Ly / (2K). In order to use the fixed finite element mesh, it is useful to keep
Ax constant. For this purpose, we define that the solidification thickness of the
intruded magma during a time period Aty is equal to the length of the finite ele-
ment mesh in the magma solidification direction and, therefore, ALy = Ax =
Ly / (2K). This implies that for this ideal experiment, the scalar product of (n,, n,)
and (8x1/8t, 8y1/8t) can be expressed as follows:

Bx, 3y1 Bx, Ax ALMk
ny——+ny,—=n,— =~ = )
at ot at Atk Atk

(7.14)

where Aty is the time period when the solidification boundary moves from one
side of the kth finite element in the magma solidification direction at time ¢ = #j4—
to another side of the k#h finite element in the magma solidification direction at time

t = tyg.

Aty = tak — ke k=1,23,..., K). (7.15)
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The time, at which the intruded magma solidification boundary reaches both
sides of the kzh finite element boundary in the magma solidification direction, can
be determined from the analytical solution (Carslaw and Jaeger 1959).

L R@xy k= 1A
Me="30m Mk—1 = 4

k=1,2,3,..., K),
(7.16)

where o = Ap / (precpr) is the thermal diffusivity of the rock; 8 can be determined
from the following transcendental equation:

e? _ L7
ﬂ[l + €I’ﬂﬂ)] B CpR(Tm - TRO)’

(7.17)

where Tk is the initial temperature of the rock; erf(B) is the error function of vari-
able 8.

B
erf(B) = % /0 e dr. (7.18)

Substituting Eqgs. (7.14) into Eq. (7.13) yields the following equation:

puL
Atyk

SOy, tar) = k=1,2,3,....K). (7.19)

Finally, substituting Eq. (7.16) into Eq. (7.19) yields the following equation:

4py Lop?

m k=1,2,3,..., K), (7.20)

f(x7 Y, th) =

where Ax = ALy, = LM/(ZI() and ALy is the constant solidification thickness
of the intruded magma during the variable time period Atyyy.

It needs to be pointed out that since the magma solidification boundary passes
only through the kth finite element from the initial intruded interface between the
rock and magma during the time period Afy, both the mass source of the released
volatile fluids and the physically equivalent heat source expressed in Eqs. (7.12) and
(7.20) only need to be applied in the kth finite element, which is numbered from the
initial intruded interface between the rock and magma, in the finite element analysis.
This means that if a fixed finite element mesh is employed, the variable time step
expressed by Egs. (7.15) and (7.16) needs to be used during the magma solidification
period in the finite element analysis. From the numerical analysis point of view, a
change in the time step is much easier to implement than a change in the finite
element mesh in the finite element analysis. This is the main advantage in using the
proposed equivalent source algorithm to simulate the chemical effect of the intruded
magma solidification in geological systems.
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Due to the geometrical symmetry of the ideal experiment, analytical solutions

for the temperature distribution during the solidification of the intruded magma can
be expressed as follows.

L
TR =Ty (O =x = TM - 213\’ af, 1 =< tMMax) s (7.21)

(T, — Tro)erfe (Zx L — 4P @)

Tp = Tro + 44/ at

1+ erf(B) (7.22)
L
<TM —2BVat <x < Lg, t < tMMax> ,
pmL [cpp(Ty — Tro) + L] _ 2

Tr = Tgro + e dai t > tumar), 7.23
r = Tro Sprcypdant ( mmax),  (7.23)
where erfc(x) = 1 — erf(x) is the complementary error function of variable x;

YiMax = wa / (168?) is the maximum time instant to complete the solidification
of the intruded magma.

In summary, the proposed equivalent algorithm for simulating the chemical effect
of the intruded magma solidification includes the following five main steps: (1) For
the given values of the initial temperature of the rock, g, and the solidification
temperature of the intruded magma, 7,,, Eq. (7.17) is solved to determine the value
of B; (2) Substituting the value of g into Eq. (7.20) yields the value of the phys-
ically equivalent heat source due to the solidification of the dike-like and sill-like
intruded magma; (3) Egs. (7.12) and (7.15) are used to calculate the mass source of
the released volatile fluids during the intruded magma solidification; (4) The inte-
gration time step is determined using Eqgs. (7.15) and (7.16); (5) The conventional
finite element method is used to solve Egs. (7.6) and (7.7) for the temperature and
concentration distribution in the whole domain during and after solidification of the
intruded magma. Note that both the mass source and the physically equivalent heat
source are only applied to some elements in the finite element analysis during the
solidification process of the intruded magma. The automatic transition from solid-
ification to post-solidification of the intruded magma is another advantage in using
the proposed equivalent source algorithm for simulating the chemical effect of the
intruded magma solidification in the conventional finite element analysis.

7.3 Verification and Application of the Equivalent
Source Algorithm

Since the key part of the proposed algorithm for simulating the chemical effect of the
intruded magma during solidification is to transform the original moving interface
(i.e. the solidification interface between the rock and intruded magma) problem into
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a physical equivalent problem which can be solved using the conventional fixed-
mesh finite element method, it is necessary to use a benchmark magma solidifica-
tion problem, for which the analytical solution is available, to verify the proposed
algorithm. As mentioned in the previous section, the effect of the released volatile
fluids on the heat transfer and magma solidification is negligible due to the rela-
tively small amount of their volumetric mass sources. On the other hand, transport
of the released volatile fluids can be treated as a conventional mass transport prob-
lem, for which the conventional finite element method has been used for many years
(Zienkiewicz 1977). This indicates that we only need to verify the proposed algo-
rithm for simulating the heat transfer process associated with the intruded magma
solidification. For the above reasons, only the heat transfer process associated with
the benchmark magma solidification problem is considered to verify the proposed
algorithm. Figure 7.3 shows the finite element mesh of the benchmark magma solid-
ification problem. In this figure, the original magma intruded region, which is indi-
cated in black in the finite element mesh of the whole computational domain, is

(Finite element mesh of the whole computational domain)

0 x
(Detailed mesh for the intruded magma solidification domain)

Fig. 7.3 Finite element mesh of the benchmark magma solidification problem
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modeled using 240 four-node quadrilateral finite elements, while the whole com-
putational domain is modeled with 640 four-node quadrilateral finite elements. The
length and width of the whole computational domain are 42 m and 20 m, respec-
tively. The width of the intruded dike-like magma is assumed to be 2 m in this
benchmark problem. For the purpose of comparing the numerical solutions with
the corresponding analytical ones, the thermal properties of the intruded magma are
assumed to be the same as those of the surrounding rocks. The following parameters
are used in the finite element analysis: the densities of both the magma and surround-
ing rocks are 2900 kg/m?; specific heat is 1200 J/(kg x°C); thermal conductivity is
1.74 W/(mx°C); the latent heat of fusion of the intruded magma is 3.2 x 10 J/kg.
Since the temperature difference between the intruded magma and the surround-
ing rocks is an important indicator of this benchmark problem, it is assumed to be
1000°C in the numerical computation.

Using the above thermal properties and Eq. (7.17), the value of g is determined
to be 0.73 approximately. In order to examine the effect of time-steps of the intruded
magma solidification on the overall accuracy of the numerical solution, two compu-
tational models, namely a one-step solidification model and a three-step solidifica-
tion model, are considered in the transient finite element analysis. For the one-step
solidification model, the intruded magma is solidified just in one time step, which
is 10.86 days from Eq. (7.16). The corresponding physically-equivalent heat source
determined from Eq. (7.20) is 989.06 W/m? for this one-step solidification model.
However, for the three-step solidification model, the intruded magma is solidified in
three variable time steps so that the intruded magma solidified equal distance from
the beginning interface between the magma and surrounding/solidified rocks. Using
Eq. (7.16), the three variable time steps are 10.86/9, 10.86 /3 and (5 x 10.86)/9
days and the corresponding physically-equivalent heat sources are 8901.54 W/m?,
2967.18 W/m? and 1780.31 W/m? respectively. After completion of the intruded
magma solidification, the constant time step of 10.86 days is used throughout the
rest of the transient finite element analysis.

Figures 7.4 and 7.5 show the comparisons of the analytical solutions with the
corresponding numerical solutions from the one-step solidification model and the
three-step solidification model respectively. It is obvious that the numerical solu-
tions of the temperature difference between the intruded magma and the surround-
ing rocks, which are obtained from both the one-step solidification model and the
three-step solidification model, have very good agreement with the correspond-
ing analytical ones. For example, at the time instant of 21.73 days (i.e. t=21.73
days), the numerical solutions of the maximum temperature difference between
the intruded magma and the surrounding rocks are 732.1°C and 733.5°C for the
one-step solidification model and the three-step solidification model respectively,
while the corresponding analytical solution of the maximum temperature difference
between the intruded magma and the surrounding rocks is 737.8°C. The relative
numerical error between the numerical and analytical solutions for the maximum
temperature difference between the intruded magma and the surrounding rocks is
0.78% and 0.58% for the one-step solidification model and the three-step solidi-
fication model respectively. This demonstrates that the numerical model based on
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Fig. 7.4 Comparison of analytical solutions with numerical solutions (One-step solidification)

the proposed equivalent algorithm for simulating solidification effects of magma
intrusion problems in porous rocks can produce highly accurate numerical solu-
tions. Since the numerical solution from the one-step solidification model has sim-
ilar accuracy to that from the three-step solidification model, the one-step solidifi-
cation model is useful for simulating thermal effects of dike-like magma intrusion
problems in porous rocks. For the purpose of examining the numerical solution sen-
sitivity to the mesh density in the magma solidification direction, we have doubled
and tripled the mesh density in the magma solidification region. Since the solidi-
fication interface between the rock and intruded magma is precisely considered in
the magma solidification direction, all the three meshes of the original mesh density
(i.e. 240 finite elements to simulate the intruded magma in the solidification direc-
tion), the doubled mesh density (i.e. 480 finite elements to simulate the intruded
magma in the solidification direction) and the tripled mesh density (i.e. 720 finite
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Fig. 7.5 Comparison of analytical solutions with numerical solutions (Three-step solidification)

elements to simulate the intruded magma in the solidification direction) produce
similar numerical results. This indicates that, due to the precise consideration of the
magma solidification interface, the present numerical algorithm is not sensitive to
the mesh density in the solidification direction of the magma solidification region.
It is noted that, for intruded magma dikes and sills of large aspect ratios, one
could have expected on dimensional considerations that the solidification of the
intruded magma could be treated by means of a one-dimensional model in the solid-
ification direction and that such an approximation is asymptotically valid to the
leading order in the aspect ratio of the dike and sill. Such a one-dimensional (1D)
solidification model could be interactively used with two-dimensional (2D) models
for simulating the thermal field in the surrounding rocks. The use of the resulting
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hybrid 1D-2D model may avoid the need to introduce equivalent volumetric heat and
mass source terms. However, since the 1D and 2D models are considered separately
and interactively, one must use the 1D model to determine the temperature and ther-
mal flux boundary conditions on the solidification interface between the rock and
intruded magma, and then apply such boundary conditions to the 2D model for sim-
ulating the thermal field in the surrounding rocks. Since the magma solidification is
time-dependent, the above-mentioned boundary conditions need to be determined
and applied in the hybrid 1D-2D model repeatedly for each time step during the
intruded magma solidification. This certainly adds numerical modelling complexity
during the magma solidification, because the previous boundary conditions must be
modified and the current ones must be applied to the 2D model. This complexity
has been avoided by using the proposed numerical algorithm in this study, since
the magma solidification in the intruded magma region and heat transfer in the sur-
rounding rocks are considered simultaneously, rather than separately, in the finite
element analysis. Due to this obvious advantage in using the proposed model, there
is no need to develop the hybrid 1D-2D model for simulating the solidification prob-
lems associated with intruded magma dikes and sills.

After the verification of the proposed equivalent source algorithm for simulat-
ing solidification effects of dike-like magma intrusion problems in porous rocks,
it has been applied to investigate the chemical effects of a dike-like magma intru-
sion/solidification problem in the upper crust of the Earth. Figure 7.6 shows the finite
element mesh of the dike-like magma intrusion problem. The length and width of
the whole computational domain are 40.2 km and 10 km, the region of the intruded
dike-like magma (as indicated by black colour) is 0.2 km and 6 km in the horizontal
and vertical directions, respectively. The intruded magma region is modelled with
144 four-node quadrilateral finite elements, while the whole computational domain
is modelled with 1040 four-node quadrilateral finite elements in the transient finite
element analysis. The thermal properties of this application problem are exactly the
same as those of the previous benchmark magma solidification problem. The diffu-
sivity of the released volatile fluids is 2 x 10® m?/s. The pressure of the intruded
magma is assumed to be 3000 bars. Since the width of the intruded magma for this
application problem is 100 times that for the previous benchmark magma solidifica-
tion problem, the solidification time of the intruded magma for this application prob-
lem is 10,000 times that for the previous benchmark magma solidification problem,

0 x

Fig. 7.6 Finite element mesh of the dike-like magma intrusion problem
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as indicated from Eq. (7.16). Therefore, the time step of 9.3826 x 10° s (which is
approximately equal to 300 years) is used in the transient finite element analysis
of the dike-like magma intrusion problem in the upper crust of the Earth. For this
application problem, the boundary condition is that the temperature at the top of
the computational model is 20°C throughout the transient finite element analysis.
The initial conditions are as follows: the initial temperature of the intruded dike-like
magma is 1230°C and the initial temperature at the rest (i.e., except for the intruded
magma) of the bottom of the computational model is 320°C. The initial average
temperature of the rocks surrounding the intruded dike-like magma is 230°C. The
initial concentration of the released volatile fluids is assumed to be zero in the whole
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computational domain. Under the above temperature and pressure conditions of the
intruded magma, the density of the released volatile fluids is 374.7 kg/m?® (Haar
et al. 1984), while the density of the albite melt is 2700 kg/m3 . In addition, the mole
fraction of the released volatile fluids from the albite melt can be determined as
0.5306 from Egs. (7.10) and (7.11), which results in a mass source of 1.433 x 1078
kg/(m?3x s) for the released volatile fluids in the computation.

Figure 7.7 shows the temperature distributions of the dike-like magma intrusion
problem at four different time instants. It is clear that with increasing time, the total
temperature localization area generated by the intruded magma becomes larger and
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Fig. 7.8 Temperature distributions of the dike-like magma intrusion problem along two different
cross-sections
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larger, but the maximum temperature generated by the intruded magma becomes
smaller and smaller. These phenomena can be clearly seen from Fig. 7.8, where the
temperature distributions of the dike-like magma intrusion problem are displayed
along two typical cross-sections of the computational model. For instance, the max-
imum temperature along the cross-section of x = 20,100 m is 514.8°C, 444.4°C,
394.4°C and 354.9°C for the time instants of 1.8765 x 10'! s, 4.6673 x 10! s
9.3826 x 10'! s and 1.8765 x 10'? s respectively. Although the total temperature
localization area generated by the intruded magma is limited in the top part of the

I

(1=9.3826x10°s)

@A

(+=9.3826x10"s)

il

(+=1.8765%10"s)

LEGEND
A - 0.5000E-03
B - 0.1500E-02
— 0.2500E-02
— 0.3500E-02
0.4500E-02
0.5500E-02
0.6500E-02
0.7500E-02
0.8500E-02
0.9500E-02

“«—=TQmmon

LEGEND
A - 0.5000E-03
— 0.1500E-02
- 0.2500E-02
— 0.3500E-02
0.4500E-02
0.5500E-02
0.6500E-02
0.7500E-02
0.8500E-02
0.9500E-02

= TQTNmUNw

LEGEND
A - 0.5000E-03
— 0.1500E-02
— 0.2500E-02
0.3500E-02
0.4500E-02
0.5500E-02
0.6500E-02
0.7500E-02
0.8500E-02
0.9500E-02

“«—=IQTUmUNw

LEGEND
A - 0.5000E-03
— 0.1500E-02

B
C — 0.2500E-02
D - 0.3500E-02
— 0.4500E-02
0.5500E-02
0.6500E-02
0.7500E-02
A[B|C 0.8500E-02
0.9500E-02

(+=4.6673x10"s)

“—TQmm

Fig. 7.9 Concentration distributions of volatile fluids for the dike-like magma intrusion problem
at different time instants (Whole system view)



172 7 Simulating Thermal and Chemical Effects of Intruded Magma Solidification Problems

computational model, it is large enough to cause convective pore-fluid flow within
the whole system (Zhao et al. 1997a), if the porous rocks are saturated by the pore-
fluid in the upper crust of the Earth. Once this convective pore-fluid flow takes place,
temperature localization in the top part of the computational model can be signif-
icantly enhanced so that a favourable region for ore body formation and mineral-
ization can be created just above the intruded dike-like magma (Zhao et al. 1998a).

Figure 7.9 shows the concentration distributions of the volatile fluids for the
whole system of the dike-like magma intrusion problem at four different times,
while Figs. 7.10 and 7.11 show the detailed concentration distributions of the
volatile fluids for a zoomed-in part of the dike-like magma intrusion problem at the
same four different times. It is clear that with an increase in time, the total concen-
tration area of the volatile fluids generated during the intruded magma solidification
becomes larger and larger, but the maximum concentration of the volatile fluids gen-
erated by the intruded magma becomes smaller and smaller. These phenomena can
be clearly seen from Figs. 7.10 and 7.11, where the concentration distributions of
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the volatile fluids during the dike-like magma solidification are displayed within the
zoomed-in part of the computational model. Since the released volatile fluids can
react chemically with the surrounding rocks (Zhao et al. 2001d), an aureole, which
can be clearly observed in these figures, is formed during the intruded magma solid-
ification. Although the total area of the aureole generated by the intruded magma is
limited in the computational model, it is large enough to cause ore body formation
and mineralization to take place within the system. This indicates that the released
volatile fluids can create a favourable region for ore body formation and mineral-
ization to take place through some chemical reactions around the intruded dike-like
magma.



Chapter 8

The Particle Simulation Method for Dealing
with Spontaneous Crack Generation Problems
in Large-Scale Geological Systems

Cracking and fracturing are one class of major failure mechanisms in brittle and
semi-brittle materials. Crustal materials of the Earth can be largely considered as
brittle rocks, and so cracking and fracturing phenomena are ubiquitous. Cracks cre-
ated within the Earth’s crust often provide a very useful channel for mineral-bearing
fluids to flow, particularly from the deep crust into the shallow crust of the Earth.
If other conditions such as fluid chemistry, mineralogy, temperature and pressure
are appropriate, ore body formation and mineralization can take place as a result of
such fluid flow. Because of the ever-increasing demand for mineral resources in the
contemporary world, exploration for new mineral resources has become one of the
highest priorities for many industrial countries. For this reason, extensive studies
(Garven and Freeze 1984, Yeh and Tripathi 1989, 1991, Steefel and Lasaga 1994,
Raffensperger and Garven 1995, Zhao et al. 1997a, Schafer et al. 1998a, b, Zhao et
al. 1998a, Xu et al. 1999, Zhao et al. 2000b, Schaubs and Zhao 2002, Zhao et al.
2002a, 2003e, 2005a) have been conducted to understand the detailed physical and
chemical processes that control ore body formation and mineralization within the
upper crust of the Earth. Thus, the numerical simulation of spontaneous crack gen-
eration in brittle rocks within the upper crust of the Earth has become an important
research topic in the field of computational geoscience.

The numerical simulation of crack initiation has existed from the inception
and development of numerical fracture mechanics. This was the direct outcome
of combining conventional fracture mechanics with numerical methods such as
the finite element and the boundary element methods. Due to the increased capa-
bility of numerical fracture mechanics for considering complicated geometry and
boundary conditions, it significantly extends the applicability of conventional frac-
ture mechanics to a wide range of practical problems in civil and geotechnical
engineering fields. In the study of numerical simulation of crack initiation and
evolution, it is usually assumed that a crack initiates when the value of a local
principal stress attains the tensile strength of the brittle material. Once a crack is
initiated, propagation of the crack, including the propagation direction and incre-
mental growing length of the crack, can be determined by crack propagation the-
ories established in fracture mechanics. Although there are at least three kinds
of mixed-mode crack propagation theories available, namely a theory based on
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propagation driven by the maximum circumferential tensile stress (Erdogan and
Sih 1963), a theory based on propagation driven by strain energy density near
the crack tip (Sih and Macdonald 1974) and a theory based on crack propaga-
tion driven by maximum energy release rate (Rice 1968, Hellen 1975, Lorenzi
1985, Li et al. 1985), the maximum circumferential tensile propagation theory has
been widely used in the finite element analysis of crack initiation and propaga-
tion problems because it is not only physically meaningful, but it is also easily
implemented in a finite element code. It has been widely demonstrated that, for
the finite element simulation of a two-dimensional fracture mechanics problem,
the triangular quarter-point element, which is formed by collapsing one side of a
quadrilateral 8-noded isoparametric element, results in improved numerical results
for stress intensity factors near a crack tip (Barsoum 1976, 1977). Similarly, for
the finite element modelling of a three-dimensional fracture mechanics problem,
the prismatic quarter-point element, which is formed by collapsing one face of
a cubic 20-noded isoparametric element, can also lead to much better numerical
results for stress intensity factors near a crack tip (Barsoum 1976, 1977, Ingraf-
fea and Manu 1980). This kind of quarter-point element can be used to simulate
the 1//r singularity in elastic fracture mechanics by simply assigning the same
displacement at the nodes located on the collapsed side or face of the element,
while it can be also used to simulate the 1/r singularity in perfect plasticity by sim-
ply allowing different displacements at the nodes located on the collapsed side or
face of the element. In order to simulate appropriately displacement discontinuities
around a crack, automatic meshing and re-meshing algorithms (Zienkiewicz and
Zhu 1991, Lee and Bathe 1994, Khoei and Lewis 1999, Kwak et al. 2002, Bouchard
et al. 2003) have been developed in recent years. However, such finite element
methods with automatic meshing and re-meshing algorithms have been applied
for solving crack generation and propagation problems in systems of only a few
cracks.

For the purpose of removing this limitation associated with the conventional
numerical method (which is usually based on continuum mechanics) in simulat-
ing a large number of spontaneously generated cracks, particle simulation meth-
ods, such as the distinct element method developed as a particle flow code (Cundall
and Strack 1979, Cundall 2001, Itasca Consulting Group, inc. 1999, Potyondy and
Cundall 2004), provides a very useful tool to deal with this particular kind of prob-
lem. Since displacement discontinuities at a contact between two particles can be
readily considered in these methods, the formulation based on discrete particle sim-
ulation is conceptually simpler than that based on continuum mechanics, because
crack generation at a contact between two particles is a natural part of the particle
simulation process.

Even though the particle simulation method was initially developed for solv-
ing soil/rock mechanics, geotechnical and other engineering problems (Cundall and
Strack 1979, Bardet and Proubet 1992, Thomton et al. 1999, Tomas et al. 1999,
Salman and Gorham 2000, Klerck et al. 2004, Owen et al. 2004, McBride et al.
2004 and Schubert et al. 2005, Zhao et al. 2006f), it has been used to deal with a
large number of geological and geophysical problems in both two and three dimen-



8 Spontaneous Crack Generation Problems in Large-Scale Geological Systems 177

sions (Saltzer and Pollard 1992, Antonellini and Pollard 1995, Donze et al. 1996,
Scott 1996, Strayer and Huddleston 1997, Camborde et al. 2000, Iwashita and Oda
2000, Burbidge and Braun 2002, Strayer and Suppe 2002, Finch et al. 2003, 2004,
Imber et al. 2004, Zhao et al. 2007b, ¢, d, Zhao et al. 2008g). Although the particle
simulation method has been successfully used to solve these large-scale geologi-
cal problems, little work, if any, has been reported on using the particle simulation
method to deal with spontaneous crack generation problems in the upper crust of
the Earth. Nevertheless, the particle simulation method has been developed to sim-
ulate microscopic crack generation in small-scale laboratory specimens and mining
sites (Itasca Consulting Group, inc. 1999, Potyondy and Cundall 2004). Since both
the time-scale and the length-scale are quite different between laboratory speci-
mens and geological systems, it is necessary to deal with an upscale issue when the
particle simulation method is applied to solve spontaneous crack generation prob-
lems in the upper crust of the Earth. Due to the relative slowness of some geolog-
ical processes, many geological systems can be treated as quasi-static ones (that
is, inertia is neglected), at least from the mathematical point of view. Because the
mechanical response of a quasi-static system is theoretically independent of time,
the time-scale issue can be eliminated in the particle simulation of a quasi-static
system. For this reason, this chapter is restricted to deal with the particle simulation
of spontaneous crack generation problems within large-scale quasi-static geological
systems.

It is however computationally prohibitive to simulate a whole geological system
using real physical particles of a microscopic length-scale, even though with modern
computer capability. To overcome this difficulty, the following three approaches are
often used in dealing with the particle simulation of geological length-scale prob-
lems. In the first approach, a geological length-scale problem, which is usually of
a kilometer-scale, is scaled down to a similar problem of a small length-scale (i.e.
a meter-scale or a centimeter-scale) and then particles of small length-scale (e.g. a
microscopic length-scale) are used to simulate this small length-scale geological
problem (e.g. Antonellini and Pollard 1995, Imber et al. 2004, Schopfer et al. 2006).
In the second approach, the geological length-scale problem is directly simulated
using particles with a relative large length-scale (e.g. Strayer and Huddleston 1997,
Burbidge and Braun 2002, Strayer and Suppe 2002, Finch et al. 2003, 2004). In
this case, the particles used in the simulation can be considered as the representa-
tion of a large rock block. Although detailed microscopic deformation cannot be
simulated using the second approach, the macroscopic deformation pattern can be
reasonably simulated in this approach (e.g. Strayer and Huddleston 1997, Burbidge
and Braun 2002, Strayer and Suppe 2002, Finch et al. 2003, 2004). This implies
that if the macroscopic deformation process of a geological length-scale system is
of interest, then the second approach can produce useful simulation results. This
is particularly true for understanding the controlling process of ore body forma-
tion and mineralization, in which the macroscopic length-scale geological struc-
tures are always of special interest. In the third approach, the combined use of both
a block-mechanics-based particle simulation method and a continuum-mechanics-
based method, such as the finite element method (Zienkiewicz 1977, Lewis and
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Schrefler 1998) or the finite difference method, are used to simulate the whole
geological system (Potyondy and Cundall 2004, Suiker and Fleck 2004, Fleck and
Willis 2004). In this approach, the continuous deformation range of a system is
simulated using the continuum-mechanics-based method, and the discontinuous
deformation range of the system is simulated using the block-mechanics-based par-
ticle simulation method. Since large element sizes can be used to simulate the con-
tinuous deformation range for a quasi-static geological system, the third approach
is computationally more efficient than the first and second approaches in dealing
with large systems. However, the computational difficulty associated with the third
approach is that an adaptive interface between the continuous deformation range
and the discontinuous deformation range must be appropriately developed. This
means that if the discontinuous deformation range is obvious a priori for some kind
of geological problem, then the third approach is computationally very efficient.
Otherwise, the efficiency of using the third approach might be greatly reduced due
to the ambiguity in defining interfaces between the continuous and the discontinu-
ous deformation ranges. For this reason, the first and second approaches are com-
monly used to simulate large-scale geological systems using the particle simulation
method.

Because of the wide use of both the first and the second approaches, the fol-
lowing scientific questions are inevitably posed: Are two particle simulation results
obtained from both the first and the second approaches consistent with each other
for the same geological problem? If the two particle simulation results are consis-
tent, then what is the intrinsic relationship between the two similar particle mod-
els used in the first approach and the second approach? To the best knowledge
of the authors, these questions remain unanswered. Therefore, we will develop an
upscale theory associated with the particle simulation of two-dimensional quasi-
static geological systems at different length-scales to clearly answer these two sci-
entific questions. The present upscale theory is of significant theoretical value in
the particle simulation of two-dimensional systems, at least from the following
two points of view. (1) If the mechanical response of a particle model of a small
length-scale is used to investigate indirectly that of a large length-scale, then the
present upscale theory provides the necessary conditions that the particle model
of the small length-scale needs to satisfy so that similarity between the mechani-
cal responses of the two different length-scale particle models can be maintained.
(2) If a particle model of a large length-scale is used to investigate directly the
mechanical response of the model, then the present upscale theory can be used
to determine the necessary particle-scale mechanical properties from the macro-
scopic mechanical properties that are obtained from either a laboratory test or an
in-situ measurement. Because the particle simulation method has been used to solve
many kinds of scientific and engineering problems, the present upscale theory can
be directly used to extend the application range of the particle simulation results
for geometrically-similar problems without a need to conduct another particle sim-
ulation. This means that the present upscale theory compliments existing particle
simulation method, and is applicable for practical applications in many scientific
and engineering fields.
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8.1 Basic Formulations of the Particle Simulation Method

The basic idea behind the particle simulation method is that either a granular mate-
rial or a solid material can be simulated using an assembly of particles. In the case
of simulating granular materials, there is no cementation between two adjacent par-
ticles so that the particles are not bonded together in the assembly. However, in the
case of simulating solid materials, particles are bonded together through cementation.
Although particles may have different shapes and sizes, they are assumed to be rigid.
Thus, the motion of a particle can be described using the motion of its mass center. A
small overlapping between two particles is allowed so that deformation of the particle
assembly can be simulated. The magnitude of the overlapping depends on both the
contact force and the stiffness of a contact between any two particles. This means
that a relationship between contact force and displacement needs to be used to cal-
culate the contact force at a contact between two particles. In the case of simulating
solid materials such as brittle rocks, the strength of the material can be simulated by
using the strength of the bond at a contact between two particles. Once the contact
force reaches or exceeds the strength of the bond at a contact between two particles,
the bond is broken so that a microscopic crack is created to represent the failure of
the material at this particular bond. This consideration is very useful for explicitly
simulating the initiation of spontaneous and random microscopic cracks in a brittle
material, because there is no need to artificially describe any microscopic flaws and
cracks in the beginning of a numerical simulation. Although the above idea was ini-
tially proposed in the discrete element method (Cundall and Strack 1979, Cundall
2001, Itasca Consulting Group, inc. 1999), it has been recently enhanced and built
into a two-dimensional Particle Flow Code. In this regard, the particle simulation
method can be viewed as a particular kind of discrete element method.

Considering a particle (i.e. particle a) shown in Fig. 8.1, the position of the par-
ticle is described using its x and y coordinates in the coordinate system shown.
According to Newton’s second law, the motion of the particle can be represented
using the motion of its mass center as follows:

A

Fig. 8.1 Definition of the motion of a particle o
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d*x,

Fax=maﬁv (81)
d*y,

Fay = Mgy dt); s (8.2)
d?6,,

Maz = I, a2’ (83)

where Fy, Fy, and M, are the total translational force components and rotational
moment exerted on the mass center of particle a; m, and I, are the mass and princi-
pal moment of inertia with respect to the z axis that is perpendicular to the x-y plane;
Xq and y, are the horizontal and vertical coordinates expressing the position of par-
ticle a; 6, is the rotation angle of particle a with respect to the principal rotational
axis of the particle.

For a two-dimensional disk-shaped particle, the corresponding principal moment
of inertia is expressed as follows:

(8.4)

where R, is the radius of particle «.

The translational forces and rotational moment expressed in the above equations
can be calculated by adding all the forces and moments exerted on the particle. It
is noted that a particle can contact several particles at the same time so that there
are several contact forces exerted on the particle. For a particular contact (i.e. con-
tact C) between two particles (i.e. particles A and B) shown in Fig. 8.2, the normal
component of the contact force can be calculated using the following formula:

Contact
plane

Fig. 8.2 Definition of the X
contact between two 4
particles
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kn n n = _n .
F" = " (u Z ) (Before the normal contact bond is broken),
0 (un <uy)
(8.5)
ki‘l n n Z 0 .
F" = " (a ) (After the normal contact bond is broken),
0 (un < 0)

(8.6)

where k,, is the stiffness of contact C; u,, is the normal displacement at contact C; u,,
is the critical normal displacement in correspondence with the normal contact bond
breakage at contact C; F" is the normal contact force at contact C. The contact force
at contact C is assumed to be exerted from particle A on particle B.

Uy = Ra+ Rg — /(x5 — x2)> + (y5 — ya)?, (8.7)

where R4 and Ry are the radii of particles A and B; x4 and y, are the horizontal
and vertical coordinates expressing the position of particle A; xp and yp are the
horizontal and vertical coordinates expressing the position of particle B.

Using the definition expressed in Fig. 8.2, the position of contact C can be
described as

1

Xc =xa+ (RA - Eun> Ty, (8.8)
1

Yc = YA + <RA - Eun> ny, (89)

where x¢ and yc¢ are the horizontal and vertical coordinates expressing the position
of contact C; n, and n, are the direction cosines of the normal vector with respect
to the horizontal and vertical axes respectively.

The tangential component of the contact force at contact C can be calculated in
an incremental manner as follows:

AFS — {_ksAux = —ky(VsAt) (u, >u,) (beforethe normal

0 (u, < uy,) contact bond is broken),
(8.10)
AFS — —ksAuy = —kg(VsAt) (u, > 0) (after the normal
o (u, <0) contact bond is broken),

8.11)

where k; is the tangential stiffness of contact C; Au;, is the incremental tangential
displacement at contact C; AF? is the corresponding tangential component of the
contact force; Vy is the tangential shear velocity at contact C; At is the time step in
the numerical simulation.
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Fig. 8.3 Definition of the
shear velocity at a contact
between two particles

As shown in Fig. 8.3, the magnitude of the tangential shear velocity, Vg, at con-
tact C can be determined using the relative motion of particles A and B.

dx dx d d
Vs = — <—B — —A> ny + <£ — ﬁ) ny — a)Bz\/(XB —xc)* + (g — yc)?

dt dt dt dt

k]

- wAz\/(xA —xc) + (a — ye)’
(8.12)

where w4, and wp, are the rotational angular speeds of particles A and B with respect
to their rotational axes, which are parallel to the z axis and passing through the
corresponding mass centers of each of the two particles respectively.

It is noted that the first two terms in Eq. (8.12) represent the contributions of the
relative translational motion to the relative shear velocity between the two particles,
whereas the last two terms denote the contributions of the relative rotational motion
to the relative shear velocity between the two particles.

For any given time instant, ¢, the tangential component of the contact force at
contact C can be calculated by adding the contact force increment expressed in
Eq. (8.11) into the tangential component at the previous time, t — Af.

F' =F ,, —ky(VsAt) < pF", (8.13)
where F; and F; ,, are the tangential components of the contact force at ¢ and
t — At respectively; u is the friction coefficient at contact C. It needs to be pointed
out that Eq. (8.13) holds true only when the normal component of the contact force
is greater than zero.

The normal and tangential components of the contact force at contact C can

be straightforwardly decomposed into the horizontal and vertical components as
follows:
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Fey = F'ny + F/q,, (8.14)

Fey = F'ny + F/q,, (8.15)

where Fc, and Fc, are the horizontal and vertical components of the contact force
at contact C; g, and g, are the direction cosines of the tangential vector at contact
C with respect to the horizontal and vertical axes respectively.

Consequently, the translational and rotational forces exerted on particles A and B
due to their contact at point C can be calculated using the following formulas:

FAx == _FC.Xv FAy - _FCys (816)

Fpy = Fcy, FByZFCy (8.17)

My, = —[(xc —xa)Fex +(xc —xa)Fey+(ye —ya)Fex +(yc —ya)Feyl, (8.18)

Mp, = (xc — xp)Fcx + (x¢ —xp)Fey + (Yo — yB)Fex + (ye — yB)Fey, (8.19)

where Fy,, Fay and My, are the translational force components and rotational
moment exerted on the mass center of particle A; Fg,, F, and M, are the trans-
lational force components and rotational moment exerted on the mass center of
particle B.

Since a particle may have contacts with several particles, it is necessary to search
the number of contacts for the particular particle under consideration. Therefore, the
total translational forces and rotational moment exerted on a particle can be calcu-
lated by adding the contributions of all the contacts to the translational forces and
rotational moments exerted on the particle. After the total translational forces and
rotational moment are calculated in a particle by particle manner, the central finite
difference method is used to solve the equations of motion expressed by Egs. (8.1),
(8.2), and (8.3) for each of the particles in the simulation system, so that new dis-
placements can be determined and the position of each particle can be updated. As a
result, a solution loop is formed for each time step in the particle simulation method.
This solution loop is comprised of the following four sub-steps: (1) From the posi-
tion of particles at the beginning of a calculation time step, Egs. (8.16), (8.17) and
(8.19) are used to calculate the contributions of a contact between a particle and
each of its surrounding particles to the translational force components and rota-
tional moment exerted on the mass center of both the particle and the surrounding
particle; (2) By adding the contributions of all the contacts of a particle to the trans-
lational forces and rotational moments exerted on the particle, the total translational
forces and rotational moment exerted on the particle are calculated. (3) Sub-steps
(1) and (2) are repeated for all the particles so that the total translational forces
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and rotational moment exerted on every particle in the simulation are calculated.
(4) Using the central finite difference method, the equations of motion expressed
by Egs. (8.1), (8.2) and (8.3) are solved for each of the particles in the simulation
system, so that new displacements can be determined and the position of every par-
ticle can be updated at the end of the calculation time step. The above-mentioned
solution loop is repeated for each calculation time step until the final stage of the
simulation is reached.

8.2 Some Numerical Simulation Issues Associated
with the Particle Simulation Method

Although the particle simulation method such as the distinct element method was
developed more than two decades ago (Cundall and Strack 1979), some numeri-
cal issues associated with it may need to be further addressed. These include: (1) an
issue caused by the difference between an element used in the finite element method
and a particle used in the distinct element method; (2) an issue resulting from using
the explicit dynamic relaxation method to solve a quasi-static problem; and (3) an
issue stemming from an inappropriate loading procedure used in the particle simula-
tion method. Although some aspects of these numerical simulation issues have been
briefly discussed (Cundall and Strack 1979, Cundall 2001, Itasca Consulting Group,
inc. 1999, Potyondy and Cundall 2004), we will discuss them in greater detail so
that their impact on the particle simulation results of spontaneous crack generation
problems within large-scale quasi-static systems can be thoroughly understood.

8.2.1 Numerical Simulation Issue Caused by the Difference
between an Element and a Particle

In order to investigate the numerical simulation issue associated with the differ-
ence between an element used in the finite element method and a particle used in
the distinct element method, we need to understand how an element and a par-
ticle interact with their neighbors. Figure 8.4 shows the comparison of a typical
four-node element used in the finite element method with a typical particle used in
the distinct element method. In the finite element method, the degree-of-freedom
is represented by the nodal points of the element, while in the distinct element
one, the degree-of-freedom is represented by the mass center of the particle. In this
regard, the particle may be viewed as a rigid element of only one node. With a two-
dimensional material deformation problem taken as an example, the displacement
along the common side between two elements is continuous, implying that there is
no overlap between any two elements in the conventional finite element method.
However, particle overlap is allowed in the distinct element method. Since the ele-
ment is deformable, the mechanical properties calculated at the nodal point of an ele-
ment are dependent on the macroscopic mechanical properties of the element so that
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ANV
\ \

AR

(A) A four-node element in the mesh (B) A particle with its neighbors

Fig. 8.4 Comparison of a four-node element with a particle

the nodal mechanical property is called the consistent mechanical property of the
element. On the other hand, a particle used in the distinct element method is assumed
to be rigid and therefore, the mechanical property at a contact between the particle
and its neighboring particle is called the lumped mechanical property. Due to this
difference, the consistent mechanical properties (i.e. stiffness matrix) of an element
are directly calculated from the macroscopic mechanical properties and constitutive
law of the element material. This means that once the macroscopic mechanical prop-
erties and constitutive law of the element material are available from a laboratory
test or a field measurement, the finite element analysis of a deformation problem
can be straightforwardly carried out using these macroscopic mechanical proper-
ties and constitutive laws of the material. On the contrary, because the particle-scale
mechanical properties of materials, such as particle stiffness and bond strength, are
used in the distinct element method but are not known a priori, it is important
to deduce these particle-scale mechanical properties of materials from the related
macroscopic ones measured from both laboratory and field experiments. This indi-
cates that an inverse problem needs to be solved through the numerical simulation
of a particle system. Thus, the numerical simulation question introduced by the dif-
ference between an element used in the continuum-mechanics-based finite element
method and a particle used in the discrete-block-mechanics-based distinct element
method is how to determine particle-scale mechanical properties from macroscopic
mechanical properties available from both laboratory and field experiments. Clearly,
the problem associated with this numerical simulation issue cannot be effectively
solved unless the required particle-scale mechanical properties of particles can be
directly determined from laboratory tests in the future.

As an expedient measure, primitive trial-and-error approaches can be used to
solve any inverse problems. For the above-mentioned inverse problem, input param-
eters are the macroscopic mechanical properties of materials, while the particle-
scale mechanical properties of materials, such as the particle stiffness and bond
strength, are unknown variables and therefore, need to be determined. Due to the
difficulty in directly solving this inverse problem, it is solved indirectly using a trial-
and-error approach, in which a set of particle-scale mechanical properties of mate-
rials are assumed so that the resulting macroscopic mechanical properties can be
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determined from the mechanical response of the particle model having this particu-
lar set of particle-scale mechanical properties. If the resulting macroscopic mechani-
cal properties are different from what we expected, then another set of particle-scale
mechanical properties of materials are used in the particle model. This trial-and-
error process needs to be continued until a set of particle-scale mechanical prop-
erties of materials can produce the expected macroscopic mechanical properties.
In geological practice, a kilometer-length-scale specimen is often used to conduct a
biaxial compression test and to measure the related macroscopic mechanical proper-
ties, such as the elastic modulus and material strength, from the mechanical response
of the particle model with an assumed set of particle-scale mechanical properties of
rocks. However, if some mechanical properties are independent of particle size or
other size-dependent mechanical properties can be determined from an appropriate
upscale rule, then the expected particle-scale mechanical properties of materials to
be used in a particle model can be determined without a need to conduct the afore-
mentioned trial-and-error exercise.

8.2.2 Numerical Simulation Issue Arising from Using the Explicit
Dynamic Relaxation Method to Solve a Quasi-Static Problem

For the purpose of demonstrating the numerical simulation issue resulting from
using the explicit dynamic relaxation method to solve a quasi-static problem, it is
helpful to explain briefly how the finite element method is used to solve the same
kind of problem. For the sake of simplicity, a quasi-static elastic problem is used
to demonstrate the issue. Since the finite element method is based on continuum
mechanics, the governing equations of a two-dimensional quasi-static elastic prob-
lem in an isotropic and homogeneous material can be expressed as follows:

dor | O _ (8.20)
dx ay TV '
Ity | 00y _ f (8.21)
dx ay 7 '
Ed —v) + 2 (8.22)
oy = e e, .
A=201+vy\ " 1—v"”’
Ed —v) Yoot (8.23)
;= ey +¢e,), .
T2+ \1—v y

Toy = Tyx = 2Gyyy, (8.24)
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oug v, 1 /0uy  Jv
&y = , gy = , Viy = 3 + , (8.25)

ax ay ay ox

where o, and o, are normal stresses of the solid matrix in the x and y directions; &,
and & are the normal strains of the solid matrix in relation to o, and oy; 7y and yy,
are the shear stress and shear strain of the solid matrix; u, and vy are the horizontal
and vertical displacements of the solid matrix; E and G are the elastic and shear
modulus respectively; v is the Poisson ratio of the solid matrix; f, and f, are the
body forces in the x and y directions;.

Note that Egs. (8.20) and (8.21) represent the equilibrium equations, whereas
Egs. (8.22), (8.23), (8.24) and (8.25) are the constitutive equations and strain-
displacement relationship equations, respectively.

By using either the variational principle or the Galerkin method (Zienkiewicz
1977, Lewis and Schrefler 1998), the above-mentioned equations can be expressed
in the finite element form:

[K1{u}* = {F}, (8.26)

where [K]¢ is the stiffness matrix of an element; {¢}¢ and {F'}¢ are the displacement
and force vectors of the element.

In the finite element method, the quasi-static equilibrium problem is solved in
a global (i.e. system) manner. This means that the matrices and vectors of all the
elements in the system need to be assembled together to result in the following
global equation:

[KI{u} = {F}, (8.27)

where [K] is the global stiffness matrix of the system; {u} and {F} are the global
displacement and force vectors of the system.

Similarly, in the distinct element method, the quasi-static equilibrium equation
of a particle is of the following form:

(K17 {u}? = (F}", (8.28)

where [K]? is the stiffness matrix of a particle; {«#}” and {F}? are the relative dis-
placement and force vectors of the particle.

In order to reduce significantly the requirement for computer storage and mem-
ory, the distinct element method solves the quasi-static equilibrium equation at
the particle level, rather than at the system level. This requires that a quasi-static
problem be turned into a fictitious dynamic problem so that the explicit dynamic
relaxation method can be used to obtain the quasi-static solution from solving the
following fictitious dynamic equation:

[MP{i}? + [K1P{u}? = {F}?, (8.29)
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where [M]7 is the lumped mass matrix of the particle and {ii}” is the acceleration
vector of the particle.

A major difference between solving the global quasi-static equilibrium problem
(i.e. Eq. (4)) in the finite element analysis and solving the fictitious dynamic problem
(i.e. Eq. (8.29)) in the particle simulation is that the numerical solution to Eq. (8.26)
is unconditionally stable so that it can be solved using the Gaussian elimination
method and the like, while the numerical solution to Eq. (8.29) is conditionally
stable if an explicit solver is used. For this reason, the critical time step, which is
required to result in a stable solution for the fictitious dynamic problem, can be
expressed as follows (Itasca Consulting Group, inc. 1999):

m
Aleritical = Y ;7 (8.30)

where m is the mass of a particle and & is the stiffness between two particles.

It is immediately noted that since the value of the mass of a particle is usually
much smaller than that of the stiffness of the particle, the critical time step deter-
mined from Eq. (8.30) is considerably smaller than one. This indicates that for a
slow geological process of more than a few years, it may take too long to obtain
a particle simulation solution. To overcome this difficulty, the scaled mass is often
used in the distinct element method (Itasca Consulting Group, inc. 1999) so that the
critical time step can be increased to unity or any large number if needed. How-
ever, since the scaled mass, namely the fictitious mass, is used, the time used in the
distinct element method is fictitious, rather than physical. In order to remove pos-
sible chaotic behavior that may be caused by the use of arbitrarily-scaled masses,
fictitious damping is also added to the particles used in a distinct element simulation
(Itasca Consulting Group, inc. 1999). Thus, the numerical simulation issue resulting
from using the explicit dynamic relaxation method to solve a quasi-static problem is
that the time used in the distinct element method is fictitious, rather than physical.

If the mechanical response of a quasi-static system is elastic, then the solution to
the corresponding quasi-static problem is unique and independent of the deforma-
tion path of the system. In this case, the explicit dynamic relaxation method is valid
so that the elastic equilibrium solution can be obtained from the particle simulation
using the distinct element method. However, if any failure takes place in a quasi-
static system, then the quasi-static system behaves nonlinearly so that the solution
to the post-failure quasi-static problem is not unique and therefore, becomes depen-
dent on the deformation path of the system. Due to the use of both the fictitious
time and the fictitious scaled mass, the physical deformation path of a system can-
not be simulated using the explicit dynamic relaxation method. This implies that
the post-failure particle simulation result obtained from using the explicit dynamic
relaxation method may be problematic, at least from the rigorously scientific point
of view. Nevertheless, if one is interested in the phenomenological simulation of the
post-failure behavior of a quasi-static system, a combination of the distinct element
method and the explicit dynamic relaxation method may be used to produce some
useful simulation results in the engineering and geology fields (Cundall and Strack



8.2 Some Numerical Simulation Issues Associated with the Particle Simulation Method 189

1979, Bardet and Proubet 1992, Saltzer and Pollard 1992, Antonellini and Pollard
1995, Donze et al. 1996, Scott 1996, Strayer and Huddleston 1997, Camborde et al.
2000, Iwashita and Oda 2000, Burbidge and Braun 2002, Strayer and Suppe 2002,
Finch et al. 2003, 2004, Imber et al. 2004). In this case, it is strongly recommended
that a particle-size sensitivity analysis of at least two different models, which have
the same geometry but different smallest particle sizes, be carried out to confirm the
particle simulation result of a large-scale quasi-static geological system.

8.2.3 Numerical Simulation Issue Stemming from the Loading
Procedure Used in the Particle Simulation Method

The distinct element method is based on the idea that the time step used in the
simulation is chosen so small that force, displacement, velocity and acceleration
cannot propagate from any particle farther than its immediate neighbors during a
single time step (Potyondy and Cundall 2004). The servo-control technique (Itasca
Consulting Group, inc. 1999) is often used to apply the equivalent velocity or dis-
placement to the loading boundary of the particle model. This will pose an important
scientific question: Is the mechanical response of a particle model dependent on the
loading procedure that is used to apply “loads” at the loading boundary of the par-
ticle model? If the mechanical response of a particle model is independent of the
loading procedure, then this issue can be neglected when we extend the applica-
tion range of the particle simulation method from a small-scale laboratory test to a
large-scale geological problem.

In order to answer this scientific question associated with the distinct element
method that is used in the PFC2D (i.e. Particle Flow Code in Two Dimensions), it
is necessary to investigate how a “load” is propagated within a particle system. For
the purpose of illustrating the “load” propagation mechanism, a one-dimensional
idealized model of ten particles of the same mass is considered in Fig. 8.5. The
“load” can be either a directly-applied force or an indirectly-applied force due to
a constant velocity in this idealized conceptual model. The question that needs to
be highlighted here is that when a “load” is applied to a particle system, what is
the appropriate time to record the correct response of the whole system due to this
“load”? This issue is important due to the fact that particle-scale material properties
of a particle are employed in a particle model and that a biaxial compression test is
often used to determine the macroscopic material properties of the particle model.
If the normal stiffness coefficient between any two particles has the same value (i.e.
ki=k(@=1,2,3,...,10)) and the time step is equal to the critical time step
(Itasca Consulting Group, inc. 1999) in the particle model, then the displacement of
particle 1 (i.e. the particle with “load” P) is P/k at the end of the first time step (i.e.
t = 1At, where At is the time step). The reason for this is that in the distinct element
method, the “load” can only propagate from a particle to its immediate neighboring
particles within a time step. Thus, during the first time step, the other nine particles
in the right part of the model are still kept at rest. This is equivalent to applying a
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Fig. 8.5 Force propagation in a ten-particle system

fixed boundary condition at the right end of spring 1, as shown in Fig. 8.5. Similar
considerations can be made for the consecutive time steps (see Fig. 8.5). Ideally,
the “load” propagates through the whole system at the end of + = 10A¢, resulting
in a displacement of 10P/k for particle 1. In general, if this one-dimensional ide-
alized model is comprised of n particles of equal normal stiffness and mass, then
the displacement of particle 1 (i.e. the particle with “load” P) is n P/k at the end of
t = nAt. Clearly, if one uses the record of the “load” and displacement at the end of
the immediate loading step to determine the elastic modulus of this one-dimensional
idealized particle system, then the determined elastic modulus will be exaggerated
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by n times. Although the one-dimensional idealized particle system is a highly sim-
plified representation of particle models, it illuminates the basic force propagation
mechanism, which is valid for two- and three-dimensional particle models.

The conventional loading procedure used in the distinct element method is
shown in Fig. 8.6. In order to reduce inertial forces exerted on the loading-
boundary particles due to a suddenly-applied velocity at the first loading step,
an improved-conventional loading procedure is also used in the distinct element
method (see Fig. 8.6). Since both the conventional loading procedure and the
improved-conventional loading procedure are continuous loading procedures, it is
impossible to take the correct record of the “displacement”, just at the end of a
“load” increment. In other words, when a “load” increment is applied to the particle
system, it takes a large number of time steps for the system to reach a quasi-static
equilibrium state. It is the displacement associated with the quasi-static equilibrium
state that represents the correct displacement of the system due to this particular
“load” increment. For this reason, a new discontinuous loading procedure is pro-
posed in this section. As shown in Fig. 8.6, the proposed loading procedure com-
prises two main types of periods, a loading period and a frozen period. Note that
the proposed loading procedure shown in this figure is illustrative. In real numer-
ical practice, a loading period is only comprised of a few time steps to avoid the
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Fig. 8.6 Illustration of
different loading procedures 0 t
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for the loading of a particle
model (Proposed new loading procedure)
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occurrence of any unphysical damage/crack in the particle model, whereas a frozen
period can be comprised of thousands of time steps. In the loading period, a veloc-
ity increment is applied to the loading boundary of the system, while in the frozen
period the loading boundary is fixed to allow the system to reach a quasi-static equi-
librium state after a large number of time steps. It needs to be pointed out that a pair
of load and displacement (or stress and strain) is correctly recorded at the end of a
frozen period.

Based on the above-mentioned conceptual understanding, the theoretical expres-
sion of the proposed loading algorithm can be deduced as follows. An applied force
in the quasi-static system can be divided into M loading increments.

M
P:}jAR, (8.31)
i=1

where P is the applied force; A P; is the ith loading force increment and M is the
total number of loading steps.

For each loading force increment, A P;, it is possible to find a solution, AS;,
which satisfies the following condition:

J—=Ni

where AS;; is the solution at the jth time step due to the ith loading force incre-
ment; AS;;_; is the solution at the (j-/)th time step due to the ith loading force
increment; N; is the total number of time steps for the particle system to reach a
quasi-static equilibrium state after the application of the ith loading force increment
to the system.

From the numerical analysis point of view, Equation (8.32) can be straightfor-
wardly replaced by the following equation:

AS;j — ASi;_

max ) (at j = N;), (8.33)

where 3 is the tolerance of the solution accuracy.

It needs to be pointed out that the value of N; can be determined using the con-
vergent condition expressed by Eq. (8.33), so that different values of N; may be
obtained in the numerical simulation. It is the convergent condition that approxi-
mately warrants the solution of the quasi-static nature, if the value of 8 is not strictly
equal to zero.

Thus, the total solution S corresponding to the applied force P can be expressed as

s=§:A&. (8.34)
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It is noted that the total number of time steps to produce the total solution S is
calculated using the following formula:

M
Nioar = ) Ni. (8.35)
i=1

Similarly, at the end of each loading step, there exist the following relationships:

J

Pj=ZAP,» (j=1,2,..., M), (8.36)
i=1
J

S;=Y_AS; (=1,2,....M), (8.37)
i=1

where P; is the total applied loading force at the end of loading step j; S; is the total
solution at the end of loading step j. This indicates that at the end of a loading step,
a point (P;, S;) has been obtained in the load-solution space. Therefore, at the end
of loading step M, we have obtained M points so that it is possible to link all these M
points together to obtain a load-solution path in the load-solution space. Clearly, if
P and S represent the applied loading force and resulting displacement, then a force-
displacement curve is obtained in the force-displacement space. Alternatively, if P
and § stand for the applied loading stress and resulting strain respectively, then a
stress-strain curve is obtained in the stress-strain space.

With the biaxial compression test of a particle simulation model taken as an
example, the general steps of using the proposed loading algorithm can be sum-
marized as follows. (1) For a given load increment, which needs to be applied to
the boundary of a particle model, the servo-control technique (Itasca Consulting
Group, inc. 1999) is used to apply the equivalent velocity to the boundary of the
particle model. This means that an equivalent velocity is applied to the boundary of
the particle model for a few time steps during the particle simulation. The number
of time steps, during which the equivalent velocity needs to be applied to the bound-
ary of the particle model, depends on the desired load increment that is applied to
the boundary of the particle model. This step is called the loading step and the cor-
responding loading time or the number of related time steps is called the loading
period. It is noted that in theory, a loading period should be as small as possible, so
that any unphysical damage/crack can be prevented from occurring during the load-
ing period. (2) After a loading period, the applied equivalent velocity is set to be zero
so that the loading boundary of the particle model becomes frozen (i.e. fixed). This
step is called the frozen step. During a frozen step, the particle simulation model
is kept running until an equilibrium state is reached. Therefore, the duration of a
frozen period depends on how quickly the particle simulation model can reach its
corresponding equilibrium state. (3) When the particle simulation model reaches an
equilibrium state, an applied load increment such as a stress increment on the load-
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ing boundary of the particle model can be calculated so that the value of the desired
load increment is determined. At the same time, other quantities of interest such
as a displacement increment, strain increment and so forth can be also determined.
Thus, a point relating stress to strain in a stress-strain curve is obtained at the end
of this step. For this reason, this step is called the result acquisition step. (4) Steps
1-3 are repeated for every desired load increment until the final stage of the particle
simulation is reached. As a result, many points relating stress to strain in a stress-
strain curve have been obtained at the end of the particle simulation. (5) Finally,
all the obtained points relating stress to strain are connected to generate a stress-
strain curve, which should represent the true quasi-static behavior for the particle
simulation model.

8.3 An Upscale Theory of Particle Simulation
for Two-Dimensional Quasi-Static Problems

For the purpose of establishing an upscale theory associated with the particle sim-
ulation of two-dimensional quasi-static systems, it is necessary to understand the
particle-scale mechanical properties and their relations to macroscopic mechanical
properties, which are available from either a laboratory test or an in-situ measure-
ment. If circular particles of unit thickness are used in the simulation of a particle
assembly, the particle-scale mechanical properties such as the stiffness and bond
strength of the particle are needed for a contact-bond model. Since it is very diffi-
cult, if not impossible, to directly measure particle-scale mechanical properties from
laboratory tests, it is common practice to determine these particle-scale mechanical
properties from the macroscopic mechanical properties such as the elastic modulus,
tensile and shear strength of particle materials. From the analog of a two-circle con-
tact with an elastic beam (Itasca Consulting Group, inc. 1999), it has been demon-
strated that there may exist an upscale rule, which states that the contact stiffness of
a circular particle is only dependent on the macroscopic elastic modulus and inde-
pendent of the diameter of the circular particle. The value of the contact stiffness
of a circular particle is equal to twice that of the macroscopic elastic modulus of
the material. On the other hand, the contact bond strength of a circular particle is
directly proportional to both the tensile/shear strength of the particle material and
the diameter of the circular particle.

In order to facilitate the derivation of the corresponding similarity criteria, it is
assumed that the problem domain is comprised of a homogeneous medium. Since
a heterogeneous medium can be divided into many sub-domains of homogeneous
materials, the derived similarity criteria in this investigation is, as demonstrated later
by the test and application example in this chapter, valid and applicable for any two
similar particle models of heterogeneous media, as long as each homogeneous sub-
domain of the two similar particle models satisfies the required geometrical similar-
ity criterion. For this reason, the proposed upscale theory associated with the particle
simulation is also applicable for the particle simulation of a geometrically-similar
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geological medium, which may be non-homogeneous due to the presence of faults,
cracks and large geological structures, provided that the particle model of the geo-
logical medium satisfies the required geometrical similarity criterion.

For the analog of a two-circle contact with an elastic beam (Itasca Consulting
Group, inc. 1999), it is assumed that the behaviour of the contact between two parti-
cles is equivalent to that of an elastic beam with its ends at the two particle centres.
The beam is loaded at its ends by the force acting at the centre of each particle.
Under this assumption, the stress of the beam can be expressed as follows:

P A
c=—=FEse=FE—, (8.38)
D D

where o and ¢ are the stress and strain of the equivalent elastic beam; P is the force

acting at the centre of each particle; E is the elastic modulus of the particle material;

A is the deformation of the equivalent elastic beam; D is the diameter of the particle.
Since the two particles are connected in series, the deformation of the equivalent

elastic beam can be also expressed as follows:

A=) (8.39)

where k,, is the normal stiffness of a particle.
Substituting Eq. (8.39) into Eq. (8.38) yields the following equation:

k, = 2E. (8.40)

Since the contact-bond strength is expressed in the unit of force, the following
relationships exist mathematically:

by, = a5, D, (8.41)

by = aT,D, (8.42)

where b, and b, are the normal and tangential bond strengths at a contact between
two particles; D is the diameter of the particle; a is a constant; o,, and T are the
unit normal and tangential contact bond strengths, which are defined as the normal
and tangential contact bond strengths per unit length of the particle diameter (Zhao
et al. 2007b). If o is assumed to be equal to one, then the values and units of the
unit normal and tangential contact bond strengths are exactly the same as those of
the macroscopic tensile and shear strengths of the particle material, while the values
of the normal and tangential contact bond strengths of a particle are equal to the
product of the unit normal/tangential contact bond strengths and the diameter value
of the particle. Thus, the variation of the normal/tangential contact bond strength
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of a particle with its diameter can be straightforwardly considered in the particle
simulation.

Note that in the particle simulation method such as the distinct element method,
the contact force exerted on a particle is calculated using the following formula:

F, = kyity, (8.43)

where F), is the normal contact force at a contact between two particles; u,, is the
normal displacement at the contact. It needs to be pointed out that in the linear
elastic range of the particle material, a similar relationship to Eq. (8.43) is also valid
for the shear contact force and tangential displacement at a contact between two
particles.

For a quasi-static system, two particle models of different length-scales can be
considered to establish the upscale theory. The first particle model (i.e. model one)
is of a small length-scale such as a laboratory length-scale, while the second parti-
cle model (i.e. model two) is of a large length-scale such as a regional geological
length-scale. From elasticity theory, the necessary condition, under which these two
models are similar, is that the relative displacements (i.e. strain) of the two mod-
els are identical. This results in the following similarity criterion for two particle
models of the same number of particles:

uzzl Dml Lml

=T = T (8.44)

where ! and u"* are the displacements of models one and two; D! and D™ are
the diameters of the particles of models one and two respectively; L™ and L™? are
the geometrical lengths of the two models.

Equation (8.44) indicates that if two particle models of different length-scales are
similar, then both the displacement ratio and the diameter ratio of the two models
are equal to their geometrical length ratio. For this reason, Eq. (8.44) is called the
first similarity criterion between two particle models of different length-scales.

Consideration of Eqgs. (8.40), (8.43) and (8.44) yields the following similarity
criterion for the two particle models:

F,;lnl unml Lml
== (8.45)

m2 m2 m2’
Fn uy L

where F! and F"? are the contact forces between two particles of models one and
two respectively.

Equation (8.45) states that the similarity ratio of the contact forces of the two
models is equal to both their similarity ratio of displacements and their similarity
ratio of geometrical lengths. This equation is called the second similarity criterion
between two particle models of different length-scales.
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Similarly, consideration of Eqs. (8.41) and (8.42) results in the following simi-
larity criterion for the two particle models:

b’rlnl _ b;nl Dml Lml

b2 = b2 ~ pm2 T m2

(8.46)

where b1 and b""* are the normal bond strengths of the particles of models one and
two; bg’“ and bg"z are the tangential bond strengths of the particles of models one
and two respectively.

Equation (8.46) indicates that the similarity ratios of the (normal and tangential)
bond strengths of the two particle models are equal to both their similarity ratio of
particle diameters and their similarity ratio of geometrical lengths. This equation is
called the third similarity criterion between two particle models of different length-
scales. Since the similarity ratios of the particle bond strengths are equal to the
similarity ratio of the particle contact forces, the occurrence of the first failure should
be similar for two similar particle models. This indicates that if the first failure
occurs at a particle in model one, then the first failure should occur at a similar
counterpart in model two.

For a quasi-static geological system, it is important to consider the gravity effect
in two particle models of different length-scales. At the particle level, the gravity
force exerted on a circular particle can be expressed as follows:

"

sz4

ppgDzT, (8.47)
where G, is the gravity force exerted on a particle; p,, is the density of the particle
material; g is the gravity acceleration; 7 is the thickness of the circular particle.
Note that 7 = 1 in this investigation.

From Eq. (8.47), the similarity ratio of gravity forces for the two particle models
of different length-scales can be derived and expressed as follows:

Gml ml _ml mly2

= by 87 (D) (8.48)
ne Pyt g (DM)

where G’;,’l and G’;}z are the gravity forces exerted on the particles of models one

and two respectively; ,o;’,” and pl'fz are the densities of the particle materials of the

two models; g”! and g2 are the gravity accelerations of the particles of models one

and two respectively.

In order to implement this similarity criterion in particle simulation models, it
is desirable to keep the similarity ratio of the gravity forces equal to that of the
geometrical lengths of the two similar particle models. Since the explicit dynamic
relaxation method is used to solve the equation of motion in a particle simulation
(Itasca Consulting Group, inc. 1999), the similarity ratio of the particle densities
needs to be equal to one so that it does not affect the time-step similarity of the
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two models, as discussed below. For this reason, it is necessary to use the following
alternative relationships:

ml m2 ml
D P
gmz — pmi’ ;2 =1 (8.49)
8 Pp

Grl;ll B ’0;1711 gml (Dml)Z B Dml 850
Gm2 Wﬁ(Dnﬂy - pm2° (8.50)
p P

Clearly, Eq. (8.49) states that in order to maintain the similarity of two particle
models of different length-scales, the similarity ratio of the gravity accelerations
should be equal to the inverse of the similarity ratio of the geometrical lengths for the
two similar particle models. In this regard, Eq. (8.49) is called the fourth similarity
criterion between two particle models of different length-scales.

For the particle simulation based on the distinct element method, the numeri-
cal solution to the equation of motion is conditionally stable because the explicit
dynamic relaxation solver is used. The critical time-step, which is required to result
in a stable solution, can be expressed as follows (Itasca Consulting Group, inc.

1999):
m
Ateritical = ‘/ E (851)

where Af.incqr 18 the critical time-step; m is the mass of a particle and & is the
stiffness between two particles.

It is immediately noted from Eq. (8.51) that the critical time-steps, which are
used in two similar particle models of different length-scales, satisfy the following
similarity criterion:

ml ml 1 1

Atfiiea _ [Py D™ _ D™ (8.52)
tm2 - me Dm2 - pm2’ ’
critical p

where Atc”;iltiml and Atc”;izﬁml are the corresponding critical time-steps used in models
one and two respectively.

Equation (8.52) provides an auxiliary similarity criterion, which is a direct result
from the above-mentioned fourth similarity criterion, for the two similar particle
models of different length-scales.

It needs to be pointed out that the proposed upscale theory associated with par-
ticle simulation methods is strictly valid when the mechanical response of a two-
dimensional particle assembly is within the elastic range. If the loading increment
is small enough to prevent any unphysical damage/crack from occurring within a
two-dimensional particle assembly and the number of time-steps is large enough to
enable the particle assembly to reach a quasi-static state during this loading period,
which can be achieved using the newly-proposed loading procedure associated with
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the distinct element method (Zhao et al. 2007b), the proposed upscale theory for the
particle simulation is also approximately valid for the post-failure response of the
particle assembly, as demonstrated in the next section.

8.4 Test and Application Examples of the Particle
Simulation Method

As shown in Fig. 8.7, two samples of different sizes are considered in the particle
simulation tests. The first test sample is of a small size (1 by 2 m) and is simu-
lated using 1000 particles. It was noted that if a regular hexagonal lattice, in which
a particle is in contact with its six neighboring particles, is used in the particle
simulation (Donze et al. 1994), an unphysical, first-order geometrical control may
result in well-defined 60° planes of weakness in the lattice. These planes can fur-
ther control the geometry of the resulting failure (Donze et al. 1994). To prevent the
above-mentioned effect from taking place, we generate a particle model in which
the particles are distributed randomly so that the likelihood for the occurrence of
the preferred planes of weakness can be eliminated. The maximum and minimum
radii of particles are approximately 0.0172 m and 0.0115 m, resulting in an average
radius of 0.0144 m. On the other hand, the second test sample is of large size (1 by
2 km) and is also simulated using 1000 particles. The maximum and minimum radii
of particles are approximately 17.24 m and 11.49 m, resulting in an average radius
of 14.37 m. The initial porosity of both the small and the large test samples is set to
be 0.17 in the particle simulation. The density of the particle material is 2500 kg/m?
and the friction coefficient of the particle material is 0.5, while the confining stress is
assumed to be 10 MPa in the following numerical experiments. Due to a significant

Fig. 8.7 Two samples of the

same number of particles but
different sizes (A) 1X2 m sample (B) 1x2km sample
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size difference between the small and large test samples, the size effect of the test
sample can be investigated through the particle simulation.

The stiffness and bond strength of particles in a test sample can be predicted
using the macroscopic mechanical properties such as the elastic modulus, tensile
and shear strength of particle materials. From the analog of a two-circle contact
with an elastic beam (Itasca Consulting Group, inc. 1999), it has been demonstrated
that there may exist an upscale rule, which states that the contact stiffness of a circu-
lar particle is only dependent on the macroscopic elastic modulus and independent
of the diameter of the circular particle. The value of the contact stiffness of a circu-
lar particle is equal to twice that of the macroscopic elastic modulus of the material.
On the other hand, the contact bond strength of a circular particle is directly pro-
portional to both the tensile/shear strength of the particle material and the diameter
of the circular particle. To reflect this fact, the concept of the unit normal/tangential
contact bond strength, which is defined as normal/tangential contact bond strength
per unit length of the particle diameter, is used in this study. Using this definition,
the value of the unit normal/tangential contact bond strength is equal to that of
the macroscopic tensile/shear strength of the particle material, while the value of the
normal/tangential contact bond strength of a particle is equal to the product of the
unit normal/tangential contact bond strength and the diameter of the particle. In this
way, the variation of the normal/tangential contact bond strength of a particle with
its diameter is considered in the particle simulation. Keeping the above considera-
tions in mind, the following macroscopic mechanical properties of rock masses are
used to determine the contact mechanical properties of the particle material used in
the simulation. The macroscopic elastic modulus of the particle material is 0.5 GPa,
resulting in a contact stiffness (in both the normal and the tangential directions) of
1.0 GN/m for both the small and the large test samples. The macroscopic tensile
strength of the particle material is 10 MPa, while the macroscopic shear strength of
the particle material is 100 MPa for both the small and the large test samples. The
loading period is 10 time-steps, while the frozen period is 9990 time-steps in the
numerical biaxial compression tests.

For the particle simulation associated with the distinct element method (Itasca
Consulting Group, inc. 1999), crack initiation and generation are determined using
the following crack criteria:

Fep = by, (8.53)

|Fes| = by, (8.54)

where F¢, and F¢, are the normal and shear contact forces at a contact between any
two particles; b, and b, are the normal and tangential bond strengths at the contact
between the two particles.

Obviously, Eq. (8.53) indicates that if a normal contact force exceeds the corre-
sponding normal tensile bond strength at a contact between two particles, the nor-
mal tensile bond is broken and therefore, a tensile crack is generated at the contact.
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Similarly, Eq. (8.54) indicates that if the absolute value of a shear contact force
exceeds the corresponding tangential bond strength at a contact between two parti-
cles, the tangential shear bond is broken and therefore, a shear crack is generated
at the contact. The above-mentioned crack criteria are checked for each time step
during the particle simulation of a computational model.

8.4.1 Comparison of the Proposed Loading Procedure
with the Conventional Loading Procedure

Figure 8.8 shows the effect of the loading rate and sample size on the deviatoric
stress versus axial strain curve for both the small and the large samples of 1000
particles. The deviatoric stress is defined as the axial stress minus the confining
stress in this investigation. As usual, the servo-control technique (Itasca Consulting
Group, inc. 1999) is used to apply the equivalent velocity to the loading boundary of
the particle model. The equivalent velocity is called the loading rate hereafter. It is
obvious that the simulated stress-strain curve is independent of the two loading rates
(i.e. LR = 1.0 m/s and LR = 10 m/s in this figure) and sample sizes in the elastic
response range, where there is no occurrence of any failure in the test material. It
can be found, from the stress-strain curve, that the simulated elastic modulus of the
particle material is equal to 0.5 GPa, which is identical to the desired value of the
expected macroscopic elastic modulus of the particle material. This indicates that
the upscale rule established from the analog of a two-circle contact with an elastic
beam (Itasca Consulting Group, inc. 1999) is appropriate for predicting the elastic
modulus when the proposed loading procedure is used in the simulation of a two-
dimensional particle model.

It is worth pointing out that since the equivalent velocity is simultaneously
applied to both the upper and the lower boundaries of a test sample, the strain rate of
the sample is equal to the ratio of the loading rate to the half-length of the sample. In
the case of the small sample of 1000 particles, the corresponding strain rates of the
sample are 10 (1/s) and 1.0 (1/s) for loading rates of 10 (m/s) and 1.0 (m/s) respec-
tively. However, in the case of the large sample of 1000 particles, the corresponding
strain rates of the sample are 0.01 (1/s) and 0.001 (1/s) for the same loading rates
(i.e. 10 (m/s) and 1.0 (m/s)) as those used in the small sample. It can be observed that
due to the solution uniqueness of the samples in the elastic range, all the stress-strain
curves of both the small and the large samples are identical before the first failure
takes place in these two samples. Although the post-failure stress-strain curves of
the two samples are very similar in shape, they are not identical for both the small
and the large samples, indicating that the post-failure response of a sample is also
dependent on the strain rate of the sample. This issue needs to be considered when
a simulation result is obtained from a particle model.

Next, we compare the particle simulation results obtained from using the pro-
posed loading procedure with those obtained from using the improved conventional
loading procedure. For this purpose, both the small and the large test samples of



202 8 Spontaneous Crack Generation Problems in Large-Scale Geological Systems

5.00E+07 ~
——LR=1.0m/s
4.00E+07 A = LR=10m/s

3.00E+07 4

2.00E+07 4

Deviatoric Stress (Pa)

1.00E+07 A

0.00E+00 T T T T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Axial Strain

(A) 1x2 m sample

5.00E+07

4.00E+07

3.00E+07

2.00E+07

Deviatoric Stress (Pa)

1.00E+07 A

0.00E+00 T
0.00 0.02

0.10 0.12 0.14 0.16 0.18 0.20

Axial Strain

(B) 1x2 km sample

0.04 0.06 0.08

Fig. 8.8 Effects of loading rate and sample size on the deviatoric stress versus axial strain curve
using the proposed loading procedure

1000 particles are used to conduct biaxial compression tests using the improved
conventional loading procedure. Figure 8.9 shows the effect of the loading rate on
the curve of deviatoric stress versus axial strain for both the small and the large test
samples of 1000 particles using the improved conventional loading procedure. As
mentioned previously, the strain rates of both the small and the large test samples are
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Fig. 8.9 Effects of loading rate and sample size on the deviatoric stress versus axial strain curve
using the improved conventional loading procedure

different, even though the loading rates of these two samples are identical. It is
obvious that the general solution pattern for both the small and the large test sam-
ples of 1000 particles is, even though not identical, very similar. This indicates that
the sample size of a particle model has little influence on the mechanical response
of the model in the elastic range of the particle material, even if the improved
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conventional loading procedure is used to produce the simulation results. However,
the mechanical responses of both the small and the large test samples of 1000 par-
ticles are clearly dependent on the loading rate in the elastic range of the particle
material. In the case of a loading rate of 10 m/s, there is an oscillatory behaviour
in the stress-strain curve. Such an oscillatory behaviour does not occur in Fig. 8.8,
where the mechanical responses of both the small and the large test samples of
1000 particles are obtained from using the proposed loading procedure. Neverthe-
less, the oscillatory behaviour of the mechanical response obtained from using the
improved conventional loading procedure is greatly reduced when the smaller load-
ing rate (i.e. LR = 1.0 m/s) is used in the particle simulation, indicating that the
use of the improved conventional loading procedure in a particle simulation may
produce some useful results as long as the loading rate is kept very small in the
simulation. In the case of a loading rate of 10 m/s, the maximum yielding strength
obtained from using the improved conventional loading procedure is almost twice
that obtained from using the proposed loading procedure, implying that the maxi-
mum yielding strength can be overestimated when using the improved conventional
loading procedure. It is interesting to note that the mechanical response obtained
from using the improved conventional loading procedure exhibits stronger ductile
behavior (Fig. 8.9), while the mechanical response obtained from using the pro-
posed loading procedure exhibits stronger brittle behavior (Fig. 8.8) for exactly the
same test sample. This demonstrates that in addition to conceptual soundness, the
proposed loading procedure is more appropriate than the improved conventional
loading procedure in dealing with the numerical simulation of the brittle behavior
of crustal rocks.

8.4.2 The Similarity Test of Two Particle Samples
of Different Length-Scales

The same two samples of different length-scales are considered here. The first test
sample is of small size (1 by 2 m) and is simulated using 1000 randomly-distributed
particles. The maximum and minimum radii of the particles used in the particle sam-
ple are approximately 0.01724 m and 0.01149 m, resulting in an average radius of
0.01437 m. On the other hand, the second test sample is of large size (1 by 2 km)
and is also simulated using 1000 randomly-distributed particles. The second test
sample is artificially designed to validate the proposed upscale theory in this study.
The maximum and minimum radii of the particles used in the particle sample are
approximately 17.24 m and 11.49 m, resulting in an average radius of 14.37 m.
Since the similarity ratio (i.e. 1/1000) of particle diameters is equal to that of geo-
metrical lengths for the two samples, the first similarity criterion is satisfied between
these two test samples. The initial porosity of both the small and the large test sam-
ples is set to be 0.17 in the particle simulation. The density of the particle mate-
rial is 2500 kg/m? and the friction coefficient of the particle material is 0.5, while
the confining stress is taken as 10 MPa in the following numerical experiments.
The macroscopic elastic modulus of the particle material is 0.5 GPa, resulting in a
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contact stiffness (in both the normal and the tangential directions) of 1.0 GN/m for
each particle in both the meter-scale and the kilometer-scale test samples. Since the
same value of the contact stiffness is used in both the meter-scale and kilometer-
scale samples, the second similarity criterion is satisfied between these two test
samples.

To satisfy the third similarity criterion, it is assumed that the macroscopic tensile
strength of the particle material is 10 MPa, while the macroscopic shear strength
of the particle material is 100 MPa for both the meter-scale and the kilometer-scale
test samples. In the case of « = 1, the values of the unit normal and tangential
contact bond strengths are equal to the macroscopic tensile and shear strengths of
the particle material (Zhao et al. 2007b). Since the normal and tangential contact
bond strengths are directly proportional to the particle diameter, the third similarity
criterion is satisfied between these two test samples. Thus, all the necessary simi-
larity criteria are satisfied for these two samples of different length-scales. For the
purpose of testing the upscale theory in a wide parameter space, effects of three
important parameters, such as the confining stress, the normal bond strength and
the shear bond strength, are investigated using the two similar samples of different
length-scales.

Figure 8.10 shows the effect of the confining stress on the deviatoric stress versus
axial strain curve for both the meter-scale and the kilometer-scale samples of 1000
particles. Keeping other parameters unchanged, three different values of the confin-
ing stress, namely CS = 0.1, 1 and 10 MPa shown in Fig. 8.10, are considered in the
particle simulation of the two similar test samples. Note that the deviatoric stress is
defined as axial stress minus confining stress in this investigation. Because it is diffi-
cult to directly apply a stress boundary condition to the boundary of a particle model,
the servo-control technique (Itasca Consulting Group, inc. 1999) is used, as an alter-
native, to apply the equivalent velocity of the applied stress to the loading boundary
of the particle model. Using the newly-proposed loading procedure associated with
the distinct element method (Zhao et al. 2007b), the equivalent velocity of 1 m/s is
applied to both the upper and the lower boundaries of the two similar test samples. It
is obvious that the simulated stress-strain curve is dependent on the confining stress.
In particular, the maximum values of the failure stresses of the particle samples are
significantly different for three different confining stresses. The general trend of the
confining stress effect is that the higher the confining stress, the greater the max-
imum value of the failure stress of the particle sample. Since both the meter-scale
sample and the kilometer-scale sample are similar, the simulated stress-strain curves
are similar for these two samples of different length-scales, especially in the elas-
tic response range of the particle assemblies. This demonstrates that the proposed
upscale theory is appropriate and useful for establishing an intrinsic relationship
between two similar particle systems of different length-scales.

To examine whether or not the similar particle samples can reproduce the rock
dilation phenomenon observed from laboratory experiments, the effect of the con-
fining stress on the dilation of a particle model is also considered in the parti-
cle simulation of the test sample. Figure 8.11 shows the effect of the confining
stress on the volumetric strain versus axial strain curve for both the meter-scale
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Fig. 8.10 Effects of confining stress on the curve of deviatoric stress versus axial strain

and the kilometer-scale samples. In this figure, the compressive axial strain is posi-
tive, while the expansive volumetric strain is considered to be positive. This means
that a positive dilation stands for a volumetric expansion, whereas a negative dila-
tion represents a volumetric compression of a particle sample. It can be observed
that the confining stress has a significant influence on the dilation of both the meter-
scale and the kilometer-scale particle samples. At the early stage of the particle
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Fig. 8.11 Effects of confining stress on the curve of volumetric strain versus axial strain

simulation, the dilation of the particle sample is negative, implying that the total
volume of the particle sample decreases with an increase of the axial strain. This
phenomenon continues until the mechanical response of the particle sample reaches
a critical stage, at which a major failure takes place within the particle sample so
that there is a remarkable increase in the volumetric strain of the particle sample.
After this major failure, the volumetric strain of the particle sample becomes posi-
tive, implying that the volume expansion takes place within the particle sample. The
dilation phenomenon of the particle sample is consistent with what was observed in
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the laboratory experiments of rocks (Jaeger and Cook 1976). Since higher confining
stress can effectively prevent the lateral expansive axial stain of a test sample from
occurring at the critical stage, the value of the volumetric strain in the case of the
confining stress being 10 MPa is almost double the value of the volumetric strain in
the case of the confining stress being 0.1 MPa. This indicates that an increase in the
confining stress can result in an increase in the compressive volumetric strain at the
critical stage of the test sample. Clearly, the curves of volumetric strain versus axial
strain (as shown in Fig. 8.11) are identical in the elastic response ranges of both the
meter-scale and the kilometer-scale samples, while they are very similar in the post-
failure response ranges of the two samples of different length-scales. It is noted that
in the case of the confining stress being 0.1 MPa, there is a considerable discrepancy
between the maximum values of the volumetric strain in the post-failure response
ranges of the two samples of different length-scales. Nevertheless, this discrepancy
is significantly reduced in the case of the confining stress being increased to 10 MPa.
This further demonstrates that the proposed upscale theory is appropriate and use-
ful for establishing an intrinsic relationship between two similar particle systems of
different length-scales.

Next, we investigate the effect of the normal bond strength of particles on the
mechanical responses of both the meter-scale and the kilometer-scale samples. In
this case, the confining stress is taken as 10 MPa, while the unit shear bond strength
of particles is 100 MPa for both the test samples. Three different values of the unit
normal bond strengths of particles, namely NB = 0.1 MPa, 1 MPa and 10 MPa (as
shown in Figs. 8.12 and 8.13), are used in the particle simulation of the two similar
test samples.

Figure 8.12 shows the effect of the normal bond strength on the curves of devia-
toric stress versus axial strain, while Fig. 8.13 shows the effect of the normal bond
strength on the curves of volumetric strain (i.e. the dilation) versus axial strain for
both the meter-scale and the kilometer-scale samples. Due to the geometrical simi-
larity between these two samples, the simulation results from the meter-scale sample
are very similar to those from the kilometer-scale sample, especially in the elastic
response ranges of the two similar samples. It is also noted that the normal bond
strength of particles has a significant effect on both the stress-strain and the dilation-
strain curves of the two similar samples. The general trend is that the maximum fail-
ure stress of a particle sample increases with an increase in the normal bond strength
of the particles used in the particle sample.

Similarly, the effect of the shear bond strength on the mechanical response of the
two similar samples is examined by considering three different values of the unit
shear bond strengths, namely SB = 1, 10 and 100 MPa (as shown in Figs. 8.14 and
8.15). In this situation, both the confining stress and the unit normal bond strength
are kept as two different constants, which are equal to 10 and 1 MPa in the particle
simulation. Figures 8.14 and 8.15 show the effect of the shear bond strength of
particles on the stress-strain and dilation-strain curves for both the meter-scale and
the kilometer-scale samples respectively. In addition to a clear similarity between
the simulation results obtained from the two similar particle samples of different
length-scales, it is interesting to note that in the case of SB = 100 MPa, both the
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Fig. 8.12 Effects of normal bond strength on the curve of deviatoric stress versus axial strain

two samples exhibit a strong brittle behaviour, while in the case of SB = 1 MPa, the
same two samples exhibit a strong ductile behaviour, indicating that the shear bond
strength of particles has a significant effect on the brittle and ductile behaviour of a
particle assembly. This recognition can provide a basic guidance for the selection of
the shear bond strength of the particle material.
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Fig. 8.13 Effects of normal bond strength on the curve of volumetric strain versus axial strain

8.4.3 Particle Simulation of the Folding Process Using Two
Similar Particle Models of Different Length-Scales

As the further test and application example, two particle models of different length-
scales, as shown in Fig. 8.16, are used to simulate the folding process that occurs
within the upper crust of the Earth. In the first model, the length and thickness of
the crust are 20 m and 2.5 m, while in the second model, the length and thickness
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Fig. 8.14 Effects of shear bond strength on the curve of deviatoric stress versus axial strain

of the crust are 20 km and 2.5 km respectively. The first particle model is artificially
designed to validate the proposed upscale theory in this investigation. Each particle
model has 8000 randomly-distributed particles. The minimum and maximum radii
of the particles used in the meter-scale model are 0.020318 m and 0.030477 m,
resulting in an average radius of 0.025397 m. On the other hand, the minimum and
maximum radii of the particles used in the kilometer-scale model are 20.318 m
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Fig. 8.15 Effects of shear bond strength on the curve of volumetric strain versus axial strain

and 30.477 m, resulting in an average radius of 25.397 m. The porosities of both
the meter-scale and the kilometer-scale particle models are 0.17, while the density
and friction coefficient of the particle material are 2500 kg/m® and 0.5 respectively.
Because the geometrical similarity ratio (i.e. 1/1000) of the two particle models
is equal to the corresponding particle diameter similarity ratio, the first similarity
criterion of the upscale theory is satisfied between these two similar particle mod-
els. Since the same value of the contact stiffness is used in both the meter-scale
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Fig. 8.16 Geometries of three-layer models of different length-scales: the middle layer thickness
is 0.5 m for the meter-scale model, while it is 500 m for the kilometer-scale model

and kilometer-scale models, the second similarity criterion is obviously satisfied
between these two models. The macroscopic tensile strength of the particle material
is 80 MPa, while the macroscopic shear strength of the particle material is 800 MPa
for both the meter-scale and the kilometer-scale models. As mentioned previously,
if « = 1, the values of the unit normal and tangential contact bond strengths are
equal to those of the macroscopic tensile and shear strengths of the particle material
(Zhao et al. 2007b). Because the normal and tangential contact bond strengths are
directly proportional to the particle diameter, the third similarity criterion is also
satisfied between these two models. To satisfy the fourth similarity criterion of the
proposed upscale theory, the gravity acceleration of the kilometer-scale model is
equal to 9.81 m/s?, while the gravity acceleration of the meter-scale model is equal
to 9810 m/s?, implying that a gravity-acceleration similarity ratio of the meter-scale
model to the kilometer-scale one is equal to 1000, which is the inverse of the geo-
metrical similarity of these two similar particle models. Thus, the fourth similar-
ity criterion as indicated by Eq. (8.49) is satisfied between the meter-scale and the
kilometer-scale particle models.

Figure 8.17 shows the evolution of the folding process of the kilometer-scale
model, in which the stiffer middle layer is embedded between softer upper and
lower layers, while Fig. 8.18 shows a similar evolution of the folding process of
the meter-scale model for several different deformation stages of the model. Note
that brown segments are used to show crack patterns in these two figures. Since
crack initiation and generation can be simulated in the particle simulation of both
the kilometer-scale and meter-scale models, the corresponding crack patterns are
also shown by brown segments in these two figures. It is clear that because the mid-
dle layer is 10 times stiffer than both the upper and the lower layers, the generated
cracks are almost entirely located within this stiffer middle layer. In the case of hor-
izontal shortening deformation equal to 10.8%, the first major crack occurs at the
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Fig. 8.17 Evolution of the folding process of a stiffer middle layer embedded by softer upper and
lower layers (The kilometer-scale model)

left-hand side of both the kilometer-scale and the meter-scale models, indicating that
the mechanical responses of both the models are identical within the elastic range
of the particle material. Although there are some discrepancies between the simula-
tion results of the two models at post-failure stages, the overall deformation patterns
are very similar between the two similar models of different length-scales, indicat-
ing that the proposed upscale theory is correct and useful for revealing the intrinsic
relationship between the two similar particle models of different length-scales, even
though the two similar particle models are comprised of heterogeneous material
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Fig. 8.18 Evolution of the folding process of a stiffer middle layer embedded by softer upper and
lower layers (The meter-scale model)

regions. This implies that if the four similar criteria of the proposed upscale theory
are satisfied, it is possible to use the mechanical response of a small length-scale
model such as a laboratory length-scale model to investigate the potential mechani-
cal response of a large length-scale model such as a geological length-scale model.
From this point of view, the proposed upscale theory of the particle simulation pro-
vides a useful bridge between the simulation results obtained from any two similar
particle models of different length-scales.
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8.4.4 Particle Simulation of the Faulting Process Using
the Proposed Particle Method

The problem associated with the crustal fault-propagation folding above rigid base-
ment blocks is considered to illustrate the particle simulation of spontaneous crack
generation problems in large-scale quasi-static geological systems. Figure 8.19
shows the geometry of the computational model, in which the length and height
are 10 km and 2.5 km respectively. The dip angle of an underlying fault in the
rigid basement is 60 degrees (i.e. & = 60°). The model is simulated by 4000 parti-
cles. The maximum and minimum radii of particles are approximately 30.48 m and
20.32 m, resulting in an average radius of 25.4 m. Although the model is mechani-
cally comprised of one homogeneous layer, we use 10 approximately flat-lying and
constant-thickness marker beds to monitor the deformation patterns. The macro-
scopic elastic modulus of the particle material used in the model is 5 GPa, resulting
in a contact stiffness (in both the normal and the tangential directions) of 10 GN/m
for the computational model. The normal/tangential contact bond strength of a parti-
cle is considered in the exactly same manner as in the previous section. This means
that the value of the unit normal/tangential contact bond strength is equal to that
of the macroscopic tensile/shear strength of the particle material, while the value
of the normal/tangential contact bond strength of a particle is equal to the prod-
uct of the unit normal/tangential contact bond strength and the diameter value of the
particle. In this way, the variation of the normal/tangential contact bond strength of a
particle with its diameter value is considered in the particle simulation. The macro-
scopic tensile strength of the particle material is 20 MPa, while the macroscopic
shear strength of the particle material is 200 MPa for the computational model. The
friction coefficient of the particle material is 0.5 and the density of the particle mate-
rial is assumed to be 2500 kg/m? in the particle simulation. The loading period is
10 time-steps, while the frozen period is 1000 time-steps in the numerical simula-
tion. Particles in contact with both the lateral boundaries are not allowed to move in
the horizontal direction but are allowed to move in the vertical direction. Since the
top of the computational model is a free surface, a stress-free boundary condition is
applied to this boundary. The model is run to reach an initial equilibrium state due
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Fig. 8.19 Geometry of the computational model
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to gravity. In order to simulate the slip of the underlying fault, the right half of the
bottom is fixed, while the left half of the bottom is allowed to move in the direction
that is parallel to the underlying fault plane in the rigid basement.

As we mentioned in the previous section, the second numerical simulation issue
associated with the distinct element method is an inherent issue, which is caused
by using the explicit dynamic relaxation method to solve a quasi-static problem.
Although the problem related to this issue cannot be completely solved at this stage,
an expedient measure is strongly recommended to carry out a particle-size sensitiv-
ity analysis of at least two different models, which have the same initial geometry
but different total numbers of particles, to confirm the particle simulation result of
a large-scale quasi-static system. For this purpose, the same problem as considered
above is simulated using 8000 particles, so that the total number of particles used in
this simulation is twice that used in the previous simulation. For ease of discussion,
the previous model of 4000 particles is called the 4000-particle model, while the
model of 8000 particles is defined as the 8000-particle model. For the 8000-particle
model, the maximum and minimum radii of particles are approximately 21.55 m
and 14.37 m, resulting in an average radius of 17.96 m. Note that the average radius
of particles used in the 4000-particle model is 25.4 m.

It needs to be pointed out that in theory, the smallest particle size of a particle
model is related directly to the material fracture toughness (Potyondy and Cundall
2004), especially under mixed compressive-extensile conditions. In the case of mod-
eling damage processes for which macroscopic cracks form, the smallest particle
size and model properties should be chosen to match the material fracture toughness
as well as the unconfined compressive strength. However, it was also found that the
formation of a failure plane and secondary macro-cracks may be independent of par-
ticle size under mixed compressive-shear conditions (Potyondy and Cundall 2004),
which are those that we consider in this study. Nevertheless, in order to test whether
or not the formation of macroscopic cracks is dependent on the smallest particle
size, it is recommended that a particle-size sensitivity analysis of at least two dif-
ferent models, which have the same geometry but different smallest particle sizes,
be carried out to confirm the particle simulation result of a large-scale quasi-static
system.

Figure 8.20 shows a comparison of crack patterns within the 4000-particle and
8000-particle models respectively. Note that brown segments are used to show crack
patterns in this figure and the forthcoming figure (i.e. Fig. 8.21). It is observed that
in terms of the two major macroscopic cracks, both the 4000-particle model and
the 8000-particle model produce the identical results, although the simulation result
of the 8000-particle model is of higher resolution. This confirms that the particle
simulation results obtained from the 4000-particle model is appropriate for show-
ing the major macroscopic cracks in the computational model. It is also noted that
the deformation pattern displayed in Fig. 8.20 is very similar to that reported in a
previous publication (Finch et al. 2003). This demonstrates that in addition to the
conceptual soundness, the proposed loading procedure is correct and useful for deal-
ing with the numerical simulation of the brittle behavior of crustal rocks. For the
above-mentioned reasons, the 8000-particle model is used hereafter to investigate
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Fig. 8.20 Effect of the total
number of particles on crack
patterns in two
computational models of the
same initial geometry

(4000-particle model with showing particles)

(4000-particle model without showing particles)

(8000-particle model with showing particles)

(8000-particle model without showing particles)

the effects of the dip angle of the underlying fault on the spontaneous crack gen-
eration patterns due to the crustal fault-propagation folding above rigid basement
blocks.

Figure 8.20 also shows that spontaneous cracks are only generated in the cen-
tral part of the computational model. Since most parts of the computational model
are still in the elastic response state, they can be simulated more efficiently using
continuum-mechanics-based numerical methods such as the finite element and finite
difference methods (Zhao et al. 1999f). In this regard, it is not the most effi-
cient process to use particles to simulate the whole computational model. To over-
come this disadvantage, the combined use of both the continuum-mechanics-based
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(6=30")

(6=45")

(6=60")

Fig. 8.21 Effect of the dip angle of the underlying fault on crack generation within the computa-
tional model (Crack pattern with particles)

numerical method and the particle simulation method has been proposed in recent
years (Potyondy and Cundall 2004, Suiker and Fleck 2004, Fleck and Willis 2004).
Since the continuum-mechanics-based numerical method and particle simulation
method are used to simulate the elastic region and cracking region of a computa-
tional model respectively, the efficiency of the numerical simulation, as a whole,
can be greatly improved. Since the main purpose of this investigation is to extend
the application range of the particle simulation method from a laboratory scale into
a geological scale, the particular issue of combining the particle simulation method
with the continuum-mechanics-based numerical method is not discussed in detail
here, for the sake of saving space.

Keeping the initial geometry and material properties of the computational model
unchanged, three different dip angles, namely 6 = 30°, § = 45° and 6 = 60°, of
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the underlying fault in rigid basement blocks are considered to investigate the effect
of the dip angle of the underlying fault on spontaneous crack generation patterns
in crustal brittle rocks. Figure 8.21 shows the related numerical simulation results
of crack generation and deformation patterns in the computational model due to
three different dip angles of the underlying fault. The results shown in this fig-
ure are obtained when the vertical displacement of the left-hand-side basement is
about 30% of the whole thickness of the computational model. It is observed from
these simulation results that there are some remarkable differences in the crack gen-
eration and deformation patterns due to these three different dip angles, implying
that the dip angle of the underlying fault has a significant influence on spontaneous
crack generation patterns in crustal brittle rocks. The major reason for causing such
remarkable differences in the simulation results is that for the same amount of ver-
tical displacement of the left-hand-side basement, the corresponding horizontal dis-
placement of the left-hand-side basement is significant different for the three differ-
ent dip angles of the underlying fault. For example, when the vertical displacement
of the left-hand-side basement is about 30% of the whole thickness of the com-
putational model, the corresponding horizontal displacement of the left-hand-side
basement is about 51.97, 30 and 17.32% of the whole thickness of the computa-
tional model in the case of the dip angle being 30°, 45° and 60° respectively. Due to
the significant difference in the horizontal displacement of the left-hand-side base-
ment, the crack pattern in the computational model of § = 30° is more diffuse than
that in the computational model of 8 = 60°. In the case of 8 = 60°, a macroscopic
crack (i.e. a new fault) is formed in the slip direction of the underlying fault and also
passes the tip point of the left-hand-side basement. However, in the cases of 0 = 30°
and 0 = 45°, the dip angle of the resulting new fault in the computational model is
steeper than that of the underlying fault in the rigid basement blocks. In addition,
it is noted that in the case of 8 = 45°, there is a large crack within the hanging-
wall of the computational model. This crack penetrates into about 40% of the whole
thickness of the computational model. This phenomenon further demonstrates that
the dip angle of the underlying fault has a significant effect on spontaneous crack
generation patterns in crustal brittle rocks.
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As an amalgamation of traditional geoscience and contemporary computational
science, computational geoscience has become an emerging discipline in the past
decade. On the one hand, computational geoscience provides geoscientists with
useful modern scientific tools for revealing dynamic processes and mechanisms
behind the field observations of complicated and complex geoscience phenomena,
but on the other hand, it provides computational scientists with challenging
problems of large scales and multiple processes. In addition to the well-known
experimental and theoretical analysis methods, computational simulation has
become a third dominating and indispensable scientific method for solving a broad
range of scientific and engineering problems. Without computational simulation,
it is impossible to solve geoscience problems at a high lever of understanding the
intrinsic dynamic processes and mechanisms that lead to the oberserved geoscience
phenomena in nature.

Owing to the broad and diversity characteristics of geoscience problems, a typ-
ical kind of geoscience problem, known as ore body formation and mineralization
in hydrothermal systems within the upper crust of the Earth, has been considered
to deal with the computational aspects of recent developments of computational
geoscience. Toward this end, advanced numerical methods, procedures and algo-
rithms have been systematically presented in this monograph. Through applying
these numerical methods, procedures and algorithms to some specific aspects of
ore body formation and mineralization, the following conclusions have been drawn
from the research work reported in the monograph.

(1) The newly-developed computational geoscience discipline is obviously of
multi-disciplinary nature crossing many fields of science such as mathematics,
physics, chemistry, computational science, geoscience and so forth. The ulti-
mate aim of computational geoscience is to deal with the origin, history and
behaviours of the Earth system in a scientific and predictive manner. The
research methodology of computational geoscience is a comprehensive research
methodology, which is formed by combining field observation, theoretical anal-
ysis, numerical simulation and field validation. The primary aim of using this
research methodology is to investigate the dynamic processes and mechanisms
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of observed geoscience phenomena, rather than to describe the observed phe-
nomena themselves.

Convective pore-fluid flow, known as the steady-state Horton-Rogers-Lapwood
problem, is an important mechanism to control ore body formation and miner-
alization in hydrothermal systems within the upper crust of the Earth. This kind
of problem belongs to a kind of bifurcation problem, from a nonlinear math-
ematics point of view. A progressive asymptotic approach procedure has been
presented for solving the steady-state Horton-Rogers-Lapwood problem in a
fluid-saturated porous medium. This problem possesses a bifurcation and there-
fore makes the direct use of conventional finite element methods difficult. Even
if the Rayleigh number is high enough to drive the occurrence of natural con-
vection in a fluid-saturated porous medium, the conventional methods often pro-
duce a trivial non-convective solution. This difficulty can be overcome using the
progressive asymptotic approach procedure associated with the finite element
method. The method considers a series of modified Horton-Rogers-Lapwood
problems in which gravity is assumed to tilt a small angle away from ver-
tical. The main idea behind the progressive asymptotic approach procedure
is that through solving a sequence of such modified problems with decreas-
ing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood
problem can be obtained. This solution provides a very good initial prediction
for the solution to the original Horton-Rogers-Lapwood problem so that the
non-zero velocity solution can be successfully obtained when the tilted angle
is set to zero. Comparison of numerical solutions with analytical ones to a
benchmark problem of any rectangular geometry has demonstrated the use-
fulness of the proposed progressive asymptotic approach procedure for deal-
ing with convective pore-fluid flow problems within the upper crust of the
Earth.

To deal with coupled problem between material deformation, pore-fluid flow,
heat transfer, mass transport and chemical reactions in hydrothermal sys-
tems within the upper crust of the Earth, the combined use of two or more
commercially available computer codes is a favorable choice. A consistent
point-searching algorithm for solution interpolation in unstructured meshes
consisting of 4-node bilinear quadrilateral elements has been presented to trans-
late and transfer solution data between two totally different meshes that are used
in two different computer codes, both commercially available. The proposed
algorithm has the following significant advantages: first, the use of a point-
searching strategy allows a point in one mesh to be accurately related to an
element (containing this point) in another mesh. Thus, to translate/transfer the
solution of any particular point from the mesh used in one computer code to
that in another computer code, only one element needs to be inversely mapped.
This certainly minimizes the number of elements, to which the inverse map-
ping is applied, so that the present algorithm is very effective and efficient.
Second, analytical solutions to the local coordinates of any point in a four-node
quadrilateral element, which are derived in a rigorous mathematical manner,
make it possible to carry out an inverse mapping process very effectively and
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efficiently. Third, the use of consistent interpolation enables the interpolated
solution to be compatible with an original solution and therefore guarantees
the interpolated solution of extremely high accuracy. The related results from
the test problem have demonstrated the generality, accuracy, effectiveness, effi-
ciency and robustness of the proposed consistent point-searching integration
algorithm.

To effectively and efficiently use the finite element method for solving fluid-
rock interaction problems of subcritical Zhao numbers in pore-fluid saturated
hydrothermal/sedimentary basins, A term splitting algorithm on the basis of a
new concept of the generalized concentration of a solid mineral has been pre-
sented to deal with the following three fundamental issues associated with the
fluid-rock interaction problems. First, since the fluid-rock interaction problem
involves heterogeneous chemical reactions between reactive aqueous chemical
species in the pore-fluid and solid minerals in the rock masses, it is necessary
to develop a new concept of the generalized concentration of a solid mineral,
so that two types of reactive mass transport equations, namely the conven-
tional mass transport equation for the aqueous chemical species in the pore-
fluid and the degenerated mass transport equation for the solid minerals in the
rock mass, can be solved simultaneously in computation. Second, because the
reaction area between the pore-fluid and mineral surfaces is basically a function
of the generalized concentration of the solid mineral, there is a definite need
to appropriately consider the dependence of the dissolution rate of a dissolv-
ing mineral on its generalized concentration in the numerical analysis. Third,
to consider porosity evolution with time in the transient analysis of fluid-rock
interaction problems, the concept of the equivalent source/sink terms in mass
transport equations needs to be developed to convert the problem of variable
mesh Peclet number and Courant number into the problem of constant mesh
Peclet and Courant numbers. The related numerical results have demonstrated
the usefulness and robustness of the proposed term splitting algorithm for solv-
ing fluid-rock interaction problems of subcritical Zhao numbers in pore-fluid
saturated hydrothermal and sedimentary basins.

The chemical-dissolution-front propagation problem exists ubiquitously not
only in ore forming systems within the upper crust of the Earth, but also in
many other scientific and engineering fields. To solve this problem, it is nec-
essary to deal with a coupled system between porosity, pore-fluid pressure and
reactive chemical-species transport in fluid-saturated porous media. Due to the
morphological instability of a chemical dissolution front, this problem needs
to be solved numerically. A segregated algorithm on the basis of a combi-
nation of the finite element and finite difference methods has been proposed
for simulating the morphological evolution of chemical dissolution fronts in
reactive transport systems of critical and supercritical Zhao numbers. A set of
analytical solutions have been derived for a benchmark problem to verify the
proposed numerical procedure. Not only can the derived analytical solutions
be used to verify any numerical method before it is used to solve this kind
of chemical-dissolution-front propagation problem, but also they can be used
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to understand the fundamental mechanisms behind the morphological instabil-
ity of a chemical dissolution front during its propagation within fluid-saturated
porous media of critical and supercritical Zhao numbers. The related numeri-
cal results have demonstrated that the proposed segregated algorithm and the
related numerical procedure are useful for and capable of simulating the mor-
phological instability of a chemical dissolution front within the fluid-saturated
porous medium.

Non-equilibrium redox chemical reactions of high orders are ubiquitous in
fluid-saturated porous rocks within the crust of the Earth. The numerical mod-
elling of such high-order chemical reactions becomes a challenging prob-
lem because these chemical reactions are not only produced strong nonlin-
ear source/sink terms for reactive transport equations, but also often coupled
with the fluids mixing, heat transfer and reactive mass transport processes.
In order to solve this problem effectively and efficiently, it is desirable to
reduce the total number of reactive transport equations with strong nonlinear
source/sink terms to a minimum in a computational model. For this purpose,
a decoupling procedure on the basis of the concept of the chemical reaction
rate invariant has been developed for dealing with fluids mixing, heat transfer
and non-equilibrium redox chemical reactions in fluid-saturated porous rocks.
Using the proposed decoupling procedure, only one reactive transport equa-
tion, which is used to describe the distribution of the chemical product and has
a strong nonlinear source/sink term, needs to be solved for each of the non-
equilibrium redox chemical reactions. The original reactive transport equations
of the chemical reactants with strong nonlinear source/sink terms are turned
into the conventional mass transport equations of the chemical reaction rate
invariants without any nonlinear source/sink terms. A testing example, for some
aspects of which the analytical solutions are available, is used to verify the
proposed numerical procedure. The proposed decoupling procedure associated
with the finite element method has been used to investigate mineral precipita-
tion patterns due to two reactive fluids focusing and mixing within permeable
faults within the upper crust of the Earth. The related numerical solutions have
demonstrated that the proposed numerical procedure is useful and applicable for
dealing with the coupled problem between fluids mixing, heat transfer and non-
equilibrium redox chemical reactions of high orders in fluid-saturated porous
rocks.

The solidification of intruded magma in porous rocks can result in the follow-
ing two consequences: (1) heat release due to the solidification of the interface
between the rock and intruded magma and (2) mass release of the volatile fluids
in the region where the intruded magma is solidified into the rock. Traditionally,
the intruded magma solidification problem is treated as a moving interface (i.e.,
the solidification interface between the rock and intruded magma) problem to
consider these consequences in conventional numerical methods. An equivalent
source algorithm has been presented to simulate thermal and chemical conse-
quences/effects of magma intrusion in geological systems, which are composed
of porous rocks. Using the proposed equivalent source algorithm, an original
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magma solidification problem with a moving boundary between the rock and
intruded magma has been transformed into a new problem without the moving
boundary but with the proposed mass sources and physically equivalent heat
sources. The major advantage in using the proposed equivalent source algo-
rithm is that a fixed mesh of finite elements with a variable integration time-
step can be employed to simulate the consequences and effects of the intruded
magma solidification using the conventional finite element method. The related
results from a benchmark magma solidification problem have demonstrated the
correctness and usefulness of the proposed equivalent source algorithm.

To extend the application range of the particle simulation method from a labo-
ratory scale to a large scale such as a geological scale, we need to deal with an
upscale issue associated with simulating spontaneous crack generation prob-
lems in large-scale quasi-static systems. Toward this direction, three impor-
tant simulation issues, which may affect the quality of the particle simulation
results of a quasi-static system, have been addressed. The first simulation issue
is how to determine the particle-scale mechanical properties of a particle from
the measured macroscopic mechanical properties of rocks. The second sim-
ulation issue is that fictitious time, rather than physical time, is used in the
particle simulation of a quasi-static problem. The third simulation issue is that
the conventional loading procedure used in the particle simulation method is
conceptually inaccurate, at least from the force propagation point of view. A
new loading procedure and an upscale theory have been presented to solve the
conceptual problems arising from the first and third simulation issues. The pro-
posed loading procedure is comprised of two main types of periods, a loading
period and a frozen period. Using the proposed loading procedure and upscale
theory, the parameter selection problem stemming from the first issue can be
solved. Since the second issue is an inherent one, it is strongly recommended
that a particle-size sensitivity analysis of at least two different models, which
have the same geometry but different smallest particle sizes, be carried out
to confirm the particle simulation result of a large-scale quasi-static system.
The related simulation results have demonstrated the usefulness and correct-
ness of the proposed loading procedure and upscale theory for dealing with
spontaneous crack generation problems in large-scale quasi-static geological
systems.

This is the end of this monograph, but just the beginning of the computational
geoscience world in the sense that more and more complicated and complex
geoscience problems need to be solved from now on. During writing this mono-
graph, there was the most disastrous earthquake occurring in Wenchuan, China.
Unfortunately, both the time and location for the occurrence of this earthquake
cannot be predicted by the present day’s knowledge of geoscientists. While we
express our deep condolence to those who lost their precious lives during this
earthquake, we really hope that with the further development of computational
geoscience, we can understand all the dynamic processes and mechanisms that
control the occurrence of earthquakes better, so that we could accurately predict
it in such a way as predicting weather today.
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