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Foreword: Satellite Remote

Sensing Beyond 2015

Satellite remote sensing has progressed tremendously since
Landsat 1 was launched on June 23, 1972. Since the 1970s, sat-
ellite remote sensing and associated airborne and in situ mea-
surements have resulted in vital and indispensible observations
for understanding our planet through time. These observations
have also led to dramatic improvements in numerical simula-
tion models of the coupled atmosphere-land-ocean systems
at increasing accuracies and predictive capabilities. The same
observations document the Earth’s climate and are driving the
consensus that Homo sapiens is changing our climate through
greenhouse gas (GHG) emissions.

These accomplishments are the combined work of many
scientists from many countries and a dedicated cadre of engi-
neers who build the instruments and satellites that collect Earth
observation (EO) data from satellites, all working toward the
goal of improving our understanding of the Earth. This edi-
tion of the Remote Sensing Handbook (Remotely Sensed Data
Characterization, Classification, and Accuracies; Land Resources
Monitoring, Modeling, and Mapping with Remote Sensing; and
Remote Sensing of Water Resources, Disasters, and Urban Studies)
is a compendium of information for many research areas of our
planet that have contributed to our substantial progress since
the 1970s. The remote sensing community is now using multiple
sources of satellite and in situ data to advance our studies, what-
ever they may be. In the following paragraphs, I will illustrate
how valuable and pivotal satellite remote sensing has been in cli-
mate system study over the last five decades. The chapters in the
handbook provide many other specific studies on land, water,
and other applications using EO data of the last five decades.

The Landsat system of Earth-observing satellites has led the
way in pioneering sustained observations of our planet. From
1972 to the present, at least one and sometimes two Landsat sat-
ellites have been in operation (Irons et al. 2012). Starting with the
launch of the first NOAA-NASA Polar Orbiting Environmental
Satellites NOAA-6 in 1978, improved imaging of land, clouds,
and oceans and atmospheric soundings of temperature was
accomplished. The NOAA system of polar-orbiting meteoro-
logical satellites has continued uninterrupted since that time,
providing vital observations for numerical weather prediction.
These same satellites are also responsible for the remarkable
records of sea surface temperature and land vegetation index

© 2016 Taylor & Francis Group, LLC

from the advanced very-high-resolution radiometers (AVHRRs)
that now span more than 33 years, although no one anticipated
these valuable climate records from this instrument before the
launch of NOAA-7 in 1981 (Cracknell 1997).

The success of data from the AVHRR led to the design of
the moderate-resolution imaging spectroradiometer (MODIS)
instruments on NASA’s Earth-Observing System (EOS) of sat-
ellite platforms that improved substantially upon the AVHRR.
The first of the EOS platforms, Terra, was launched in 2000; and
the second of these platforms, Aqua, was launched in 2002. Both
of these platforms are nearing their operational life, and many of
the climate data records from MODIS will be continued with the
visible infrared imaging radiometer suite (VIIRS) instrument on
the polar orbiting meteorological satellites of NOAA. The first
of these missions, the NPOES Preparation Project (NPP), was
launched in 2012 with the first VIIRS instrument that is operat-
ing currently among several other instruments on this satellite.
Continuity of observations is crucial for advancing our under-
standing of the Earth’s climate system. Many scientists feel that
the crucial climate observations provided by remote sensing
satellites are among the most important satellite measurements
because they contribute to documenting the current state of our
climate and how it is evolving. These key satellite observations
of our climate are second in importance only to the polar orbit-
ing and geostationary satellites needed for numerical weather
prediction.

The current state of the art for remote sensing is to combine
different satellite observations in a complementary fashion for
what is being studied. Let us review climate change as an excel-
lent example of using disparate observations from multiple sat-
ellite and in situ sources to observe climate change, verify that it
is occurring, and understand the various component processes:

1. Warming of the planet, quantified by radar altimetry from
space: Remotely sensed climate observations provide the
data to understand our planet and what forces our climate.
The primary climate observation comes from radar altim-
etry that started in late 1992 with Topex/Poseidon and has
been continued by Jason-1 and Jason-2 to provide an unin-
terrupted record of global sea level. Changes in global sea
level provide unequivocal evidence if our planet is warming,
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Warming of the planet quantified by radar altimetry from space. Sea level determined from three radar altimeters from late 1992 to

the present shows global sea level increases of ~3 mm/year. Sea level is the unequivocal indicator of the Earth’s climate—when sea level rises, the
planet is warming; when sea level falls, the planet is cooling. (From Gregory, ].M. et al., J. Climate, 26(13), 4476, 2013.)

cooling, or staying at the same temperature. Radar altim-
etry from 1992 to date has shown global sea level increases of
~3 mm/year, and hence, our planet is warming (Figure E.1).
Sea level rise has two components, thermal expansion and
ice melting in the ice sheets of Greenland and Antarctica,
and to a much lesser extent, in glaciers.

2. The Sun is not to blame for global warming, based on solar
irradiance data from satellites. Next, we consider two very
different satellite observations and one in situ observing
system that enable us to understand the causes of sea level
variations: total solar irradiance, variations in the Earth’s
gravity field, and the Argo floats that record ocean tem-
perature and salinity with depth, respectively.

Observations of total solar irradiance have been made
from satellites since 1979 and show total solar irradiance
has varied only +1 partin 500 over the past 35 years, estab-
lishing that our Sun is not to blame for global warming

(Figure F.2). Thus, we must look to other remotely sensed
climate observations to explain and confirm sea level rise.
3. Sea level rise of 60% is explained by a mass balance of
melting of ice measured by GRACE satellites. Since
2002, we have measured gravity anomalies from the
Gravity Recovery and Climate Experiment Satellite
(GRACE) dual satellite system. GRACE data quantify
ice mass changes from the Antarctic and Greenland
ice sheets (AIS and GIS) and concentrations of gla-
ciers, such as in the Gulf of Alaska (GOA) (Luthcke
et al. 2013). GRACE data are truly remarkable—their
retrieval of variations in the Earth’s gravity field is
quantitatively and directly linked to mass variations.
With GRACE data, we are able to determine for the first
time the mass balance with time of the AIS and GIS
and concentrations of glaciers on land. GRACE data
show sea level rise of 60% explained by ice loss from
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FIGUREE.2 The Sun is not to blame for global warming, based on solar irradiance data from satellites. Total solar irradiance reconstructed from

multiple instruments dates back to 1979. The luminosity of our Sun varies only 0.1% over the course of the 11-year solar cycle. (From Froehlich, C.,

Space Sci. Rev., 176(1-4), 237, 2013.)
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FIGURE E.3  Sea level rise of 60% explained by mass balance of melting of ice measured by GRACE satellites. Ice mass variations from 2003
to 2010 for the Antarctic ice sheets (AIS), Greenland ice sheets (GIS) and the Gulf of Alaska (GOA) glaciers using GRACE gravity data. (From
Luthcke, S.B. et al., J. Glaciol., 59(216), 613, 2013.)

land (Figure F.3). GRACE data have many other uses,
such as indicating changes in groundwater storage, and
readers are directed to the GRACE project’s website if
interested (http://www.csr.utexas.edu/grace/).

. Sea level rise of 40% is explained by thermal expansion
in the planet’s oceans measured by in situ ~3700 drifting
floats. The other contributor to sea level rise is thermal
expansion in the planet’s oceans. This necessitates using
diving and drifting floats in the Argo network to record
temperature with depth (Roemmich et al. 2009 and
Figure F.4). Argo floats are deployed from ships; they
then submerge and descend slowly to 1000 m depth,
recording temperature, pressure, and salinity as they

descend. At 1000 m depth, they drift for 10 days con-
tinuing their measurements of temperature and salinity.
After 10 days, they slowly descend to 3000 m and then
ascend to the surface, all the time recording their mea-
surements. At the surface, each float transmits all the
data collected on the most recent excursion to a geosta-
tionary satellite and then descends again to repeat this
process.

Argo temperature data show that 40% of sea level rise results
from the warming and thermal expansion of our oceans.
Combining radar altimeter data, GRACE data, and Argo data
provides a confirmation of sea level rise and shows what is

3627 floats

~ |
60'N September 30, 2014

u sy

Ay, L

(e .

60'E 120'E 180°

FIGUREF.4 Sealevel rise of 40% explained by thermal expansion in the planet’s oceans measured by in situ ~3700 drifting floats. This is the latest
picture of the 3627 Argo floats that were in operation on September 30, 2014. These floats provide the data needed to document thermal expansion
of the oceans. (From http://www.argo.ucsd.edu/.)
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responsible for it and in what proportions. With total solar
irradiance being near constant, what is driving global warm-
ing can be determined. The analysis of surface in situ air
temperature coupled with lower tropospheric air tempera-
ture and stratospheric temperature data from remote sensing
infrared and microwave sounders shows that the surface and
near surface are warming while the stratosphere is cooling.
This is an unequivocal confirmation that greenhouse gases
are warming the planet.

Many scientists are actively working to study the Earth’s
carbon cycle, and there are several chapters in the handbook
that deal with the components of this undertaking. Much like
simultaneous observations of sea level, total solar irradiance,
the gravity field, ocean temperature, surface temperature, and
atmospheric temperatures were required to determine if the
Earth is warming and what is responsible; the carbon cycle
(Figure F.5) will require several complementary satellite and
in situ observations (Cias et al. 2014).

Carbon cycles through reservoirs on the Earth’s surface in
plants and soils exist in the atmosphere as gases, such as car-
bon dioxide (CO,) and methane (CH,), and in ocean water in
phytoplankton and marine sediments. CO, and CH, are released
into the atmosphere by the combustion of fossil fuels, land cover
changes on the Earth’s surface, respiration of green plants, and
decomposition of carbon in dead vegetation and in soils, includ-
ing carbon in permafrost. The atmospheric concentrations of
CO, and CH, control atmospheric and oceanic temperatures
through their absorption of outgoing long-wave radiation and
thus also indirectly control sea level via the regulation of plan-
etary ice volumes.
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Satellite-borne sensors provide simultaneous global car-
bon cycle observations needed for quantifying carbon cycle
processes, that is, to measure atmospheric CO, concentra-
tions and emission sources, to measure land and ocean pho-
tosynthesis, to measure the reservoir of carbon in plants on
land and its change, to measure the extent of biomass burn-
ing of vegetation on land, and to measure soil respiration and
decomposition, including decomposing carbon in permafrost.
In addition to the required satellite observations, in situ obser-
vations are needed to confirm satellite-measured CO, concen-
trations and determine soil and vegetation carbon quantities.
Understanding the carbon cycle requires a full court press of
satellite and in situ observations because all of these obser-
vations must be made at the same time. Many of these mea-
surements have been made over the past 30-40 years, but new
measurements are needed to quantify carbon storage in vege-
tation, atmospheric measurements are needed to quantify CH,
and CO, sources and sinks, better measurements are needed
to quantify land respiration, and more explicit numerical car-
bon models need to be developed.

Similar work needs to be performed for the role of clouds and
aerosols in climate because these are fundamental to under-
standing our radiation budget. We also need to improve our
understanding of the global hydrological cycle.

The remote sensing community has made tremendous prog-
ress over the last five decades as discussed in this edition of
the handbook. Chapters on aerosols in climate, because these
are fundamental, provide comprehensive understanding of
land and water studies through detailed methods, approaches,
algorithms, synthesis, and key references. Every type of remote
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FIGURE E.5 Global carbon cycle measurements from a multitude of satellite sensors. A representation of the global carbon cycle showing our
best estimates of carbon fluxes and carbon reservoirs. A series of satellite observations are needed simultaneously to understand the carbon cycle
and its role in the Earth’s climate system. (From Cias, P. et al., Biogeosciences, 11(13), 3547, 2014.)
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sensing data obtained from systems such as optical, radar,
light detection and ranging (LiDAR), hyperspectral, and
hyperspatial is presented and discussed in different chapters.
Remotely Sensed Data Characterization, Classification, and
Accuracies sets the stage with chapters in this book address-
ing remote sensing data characteristics, within and between
sensor calibrations, classification methods, and accuracies
taking a wide array of remote sensing data from a wide array
of platforms over the last five decades. Remotely Sensed Data
Characterization, Classification, and Accuracies also brings in
technologies closely linked with remote sensing such as global
positioning system (GPS), global navigation satellite system
(GNSS), crowdsourcing, cloud computing, and remote sensing
law. In all, the 82 chapters in the 3 volumes of the handbook
are written by leading and well-accomplished remote sensing
scientists of the world and competently edited by Dr. Prasad
S. Thenkabail, Research Geographer-15, at the United States
Geological Survey (USGS).

We can look forward in the next 10-20 years to improving our
quantitative understanding of the global carbon cycle, under-
standing the interaction of clouds and aerosols in our radiation
budget, and understanding the global hydrological cycle. There
is much work to do. Existing key climate observations must be
continued and new satellite observations will be needed (e.g.,
the recently launched NASA’s Orbiting Carbon Observatory-2
for atmospheric CO, measurements), and we have many well-
trained scientists to undertake this work and continue the legacy
of the past five decades.

© 2016 Taylor & Francis Group, LLC
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Preface: Remote Sensing
Advances of the Last 50 Years
and a Vision for the Future

The overarching goal of the Remote Sensing Handbook
(Remotely Sensed Data Characterization, Classification,
and Accuracies; Land Resources Monitoring, Modeling, and
Mapping with Remote Sensing; and Remote Sensing of Water
Resources, Disasters, and Urban Studies), with 82 chapters
and about 2500 pages, was to capture and provide the most
comprehensive state of the art of remote sensing science and
technology development and advancement in the last 50 years,
by clearly demonstrating the (1) scientific advances, (2) meth-
odological advances, and (3) societal benefits achieved during
this period, as well as to provide a vision of what is to come in
the years ahead. The three books are, to date and to the best of
my knowledge, the most comprehensive documentation of the
scientific and methodological advances that have taken place in
understanding remote sensing data, methods, and a wide array
of land and water applications. Written by 300+ leading global
experts in the area, each chapter (1) focuses on a specific topic
(e.g., data, methods, and applications), (2) reviews the existing
state-of-the-art knowledge, (3) highlights the advances made,
and (4) provides guidance for areas requiring future devel-
opment. Chapters in the books cover a wide array of subject
matter of remote sensing applications. The Remote Sensing
Handbook is planned as a reference material for remote sens-
ing scientists, land and water resource practitioners, natural
and environmental practitioners, professors, students, and
decision makers. The special features of the Remote Sensing
Handbook include the following:

1. Participation of an outstanding group of remote sensing
experts, an unparalleled team of writers for such a book
project

2. Exhaustive coverage of a wide array of remote sensing
science: data, methods, and applications

3. Each chapter being led by a luminary and most chapters
written by teams who further enriched the chapters

4. Broadening the scope of the book to make it ideal for
expert practitioners as well as students

© 2016 Taylor & Francis Group, LLC

5. Global team of writers, global geographic coverage of
study areas, and a wide array of satellites and sensors
6. Plenty of color illustrations

Chapters in the books cover the following aspects of remote
sensing:

State of the art

Methods and techniques

Wide array of land and water applications

Scientific achievements and advancements over the last

50 years

Societal benefits

Knowledge gaps

Future possibilities in the twenty-first century

Great advances have taken place over the last 50 years using
remote sensing in the study of the planet Earth, especially using
data gathered from a multitude of Earth observation (EO) satel-
lites launched by various governments as well as private enti-
ties. A large part of the initial remote sensing technology was
developed and tested during the two world wars. In the 1950s,
remote sensing slowly began its foray into civilian applications.
During the years of the Cold War, remote sensing applications,
both civilian and military, increased swiftly. But it was also
an age when remote sensing was the domain of a very few top
experts and major national institutes, having multiple skills in
engineering, science, and computer technology. From the 1960s
onward, there have been many governmental agencies that have
initiated civilian remote sensing. The National Aeronautics and
Space Administration (NASA) and the United States Geological
Survey (USGS) have been in the forefront of many of these efforts.
Others who have provided leadership in civilian remote sensing
include, but are not limited to, the European Space Agency (ESA)
of the European Union, the Indian Space Research Organization
(ISRO), the Centre National d’Etudes Spatiales (CNES) of
France, the Canadian Space Agency (CSA), the Japan Aerospace
Exploration Agency (JAXA), the German Aerospace Center
(DLR), the China National Space Administration (CNSA),
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the United Kingdom Space Agency (UKSA), and the Instituto
Nacional de Pesquisas Espaciais (INPE) of Brazil. Many private
entities have launched and operated satellites. These government
and private agencies and enterprises launched and operated a
wide array of satellites and sensors that captured the data of the
planet Earth in various regions of the electromagnetic spectrum
and in various spatial, radiometric, and temporal resolutions,
routinely and repeatedly. However, the real thrust for remote
sensing advancement came during the last decade of the twenti-
eth century and the beginning of the twenty-first century. These
initiatives included a launch of a series of new-generation EO
satellites to gather data more frequently and routinely, release
of pathfinder datasets, web enabling the data for free by many
agencies (e.g., USGS release of the entire Landsat archives as
well as real-time acquisitions of the world for free dissemina-
tion by web-enabling), and providing processed data ready to
users (e.g., surface reflectance products of moderate-resolution
imaging spectroradiometer [MODIS]). Other efforts like Google
Earth made remote sensing more popular and brought in a new
platform for easy visualization and navigation of remote sens-
ing data. Advances in computer hardware and software made it
possible to handle Big Data. Crowdsourcing, web access, cloud
computing, and mobile platforms added a new dimension to
how remote sensing data are used. Integration with global posi-
tioning systems (GPS) and global navigation satellite systems
(GNSS) and inclusion of digital secondary data (e.g., digital
elevation, precipitation, temperature) in analysis have made
remote sensing much more powerful. Collectively, these initia-
tives provided a new vision in making remote sensing data more
popular, widely understood, and increasingly used for diverse
applications, hitherto considered difficult. The free availability
of archival data when combined with more recent acquisitions
has also enabled quantitative studies of change over space and
time. The Remote Sensing Handbook is targeted to capture these
vast advances in data, methods, and applications, so a remote
sensing student, scientist, or a professional practitioner will have
the most comprehensive, all-encompassing reference material in
one place.

Modern-day remote sensing technology, science, and appli-
cations are growing exponentially. This growth is a result of a
combination of factors that include (1) advances and innova-
tions in data capture, access, and delivery (e.g., web enabling,
cloud computing, crowdsourcing); (2) an increasing number of
satellites and sensors gathering data of the planet, repeatedly
and routinely, in various portions of the electromagnetic spec-
trum as well as in an array of spatial, radiometric, and temporal
resolutions; (3) efforts at integrating data from multiple satel-
lites and sensors (e.g., sentinels with Landsat); (4) advances in
data normalization, standardization, and harmonization (e.g.,
delivery of data in surface reflectance, intersensor calibration);
(5) methods and techniques for handling very large data vol-
umes (e.g., global mosaics); (6) quantum leap in computer hard-
ware and software capabilities (e.g., ability to process several
terabytes of data); (7) innovation in methods, approaches, and
techniques leading to sophisticated algorithms (e.g., spectral
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matching techniques, and automated cropland classification
algorithms); and (8) development of new spectral indices to
quantify and study specific land and water parameters (e.g.,
hyperspectral vegetation indices or HVIs). As a result of these
all-around developments, remote sensing science is today very
mature and is widely used in virtually every discipline of the
earth sciences for quantifying, mapping, modeling, and moni-
toring our planet Earth. Such rapid advances are captured in a
number of remote sensing and earth science journals. However,
students, scientists, and practitioners of remote sensing science
and applications have significant difficulty gathering a complete
understanding of the various developments and advances that
have taken place as a result of their vastness spread across the
last 50 years. Therefore, the chapters in the Remote Sensing
Handbook are designed to give a whole picture of scientific and
technological advances of the last 50 years.

Today, the science, art, and technology of remote sensing are
truly ubiquitous and increasingly part of everyone’s everyday
life, often without the user knowing it. Whether looking at your
own home or farm (e.g., see the following figure), helping you
navigate when you drive, visualizing a phenomenon occurring
in a distant part of the world (e.g., see the following figure), mon-
itoring events such as droughts and floods, reporting weather,
detecting and monitoring troop movements or nuclear sites,
studying deforestation, assessing biomass carbon, addressing
disasters such as earthquakes or tsunamis, and a host of other
applications (e.g., precision farming, crop productivity, water
productivity, deforestation, desertification, water resources
management), remote sensing plays a pivotal role. Already,
many new innovations are taking place. Companies such as
the Planet Labs and Skybox are planning to capture very-high-
spatial-resolution imagery (typically, sub-meter to 5 meters),
even videos from space using a large number of microsatellite
constellations. There are others planning to launch a constella-
tion of hyperspectral or other sensors. Just as the smartphone
and social media connected the world, remote sensing is making
the world our backyard. No place goes unobserved and no event
gets reported without a satellite or other kinds of remote sensing
images or their derivatives. This is how true liberation for any
technology and science occurs.

Google Earth can be used to seamlessly navigate and
precisely locate any place on Earth, often with very-high-
spatial-resolution data (VHRI; submeters to 5 m) from satel-
lites such as IKONOS, QuickBird, and GeoEye (Note: the image
below is from one of the VHRI). Here, the editor-in-chief (EiC)
of this handbook located his village home (Thenkabail) and
surroundings that have land covers such as secondary rain-
forests, lowland paddy farms, areca nut plantations, coconut
plantations, minor roads, walking routes, open grazing lands,
and minor streams (typically, first and second order) (note: land
cover detailed is based on the ground knowledge of the EiC).
The first primary school attended by him is located precisely.
Precise coordinates (13 degree 45 minutes 39.22 seconds north-
ern latitude, 75 degrees 06 minutes 56.03 seconds eastern lon-
gitude) of Thenkabail’s village house on the planet and the date
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of image acquisition (March 1, 2014) are noted. Google Earth
images are used for visualization as well as for numerous sci-
ence applications such as accuracy assessment, reconnaissance,
determining land cover, and establishing land use for various
ground surveys. It is widely used by lay people who often have
no idea on how it all comes together but understand the infor-
mation provided intuitively. This is already happening. These
developments make it clear that we not only need to understand
the state of the art but also have a vision of where the future of
remote sensing is headed. Therefore, in a nutshell, the goal of
this handbook is to cover the developments and advancement of
six distinct eras in terms of data characterization and process-
ing as well as myriad land and water applications:

1. Pre-civilian remote sensing era of the pre-1950s: World
War I and IT when remote sensing was a military tool

2. Technology demonstration era of the 1950s and 1960s:
Sputnik-I and NOAA AVHRR era of the 1950s and 1960s

3. Landsat era of the 1970s: when the first truly operational
land remote sensing satellite (Earth Resources Technology
Satellite or ERTS, later renamed Landsat) was launched and
operated in the 1970s and early 1980s by United States

4. Earth observation era of the 1980s and 1990s: when a num-
ber of space agencies began launching and operating satellites
(e.g., Landsat 4,5 by the United States; SPOT-1,2 by France;
IRS-1a, 1b by India) from the middle to late 1980s onward till
the middle of 1990s

5. Earth observation and the first decade of the New Millennium
era of the 2000s: when data dissemination to users became as
important as launching, operating, and capturing data (e.g.,
MODIS Terra\Aqua, Landsat-8, Resourcesat) in the late 1990
and the first decade of the 2000s

6. Second decade of the New Millennium era starting in
the 2010s: when new-generation micro-\nanosatellites (e.g.,
PlanetLabs, Skybox) are added to the increasing constellation
of multiagency sensors (e.g., Sentinels, and the next generation
of satellites such as SMAP, hyperspectral satellites like NASA’s
HyspIRI and others from private industry)
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Motivation for the Remote Sensing Handbook started with a
simple conversation with Irma Shagla-Britton, acquisitior editor
for remote sensing and GIS books of Taylor & Francis Group/
CRC Press, way back in early 2013. Irma was informally get-
ting my advice about “doing a new and unique book” on remote
sensing. Neither the specific subject nor the editor was identi-
fied. What was clear to me though was that I certainly did not
want to lead the effort. I was nearing the end of my third year of
recovery from colon cancer, and the last thing I wanted to do was
to take any book project, forget a multivolume remote sensing
magnum opus, as it ultimately turned out. However, mostly out
of courtesy for Irma, I did some preliminary research. I tried to
identify a specific topic within remote sensing where there was a
sufficient need for a full-fledged book. My research showed that
there was not a single book that would provide a complete and
comprehensive coverage of the entire subject of remote sensing
starting from data capture, to data preprocessing, to data analy-
sis, to myriad land and water applications. There are, of course,
numerous excellent books on remote sensing, each covering a
specific subject matter. However, if a student, scientist, or practi-
tioner of remote sensing wanted a standard reference on the sub-
ject, he or she would have to look for numerous books or journal
articles and often a coherence of these topics would still be left
uncovered or difficult to comprehend for students and even for
many experts with less experience. Guidance on how to approach
the study of remote sensing and capture its state of the art and
advances remained hazy and often required referring to a mul-
titude of references that may or may not be immediately avail-
able, and if available, how to go about it was still hazy to most.
During this process, I asked myself, several times, what remote
sensing book will be most interesting, productive, and useful to
abroad audience? The answer, each time, was very clear: “A com-
plete and comprehensive coverage of the state-of-the-art remote
sensing, capturing the advances that have taken place over the
last 50 years, which will set the stage for a vision for the future.”
When this became clear, I started putting together the needed
topics to achieve such a goal. Soon I realized that the only way
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to achieve this goal was through a multivolume book on remote
sensing. Because the number of chapters was more than 80, this
appeared to be too daunting, too overwhelming, and too big a
project to accomplish. Yet I sent the initial idea to Irma, who I
thought would say “forget it” and ask me to focus on a single-
volume book. But to my surprise, Irma not only encouraged the
idea but also had a number of useful suggestions. So what started
as intellectual curiosity turned into this full-fledged multivol-
ume Remote Sensing Handbook.

However, what worried me greatly was the virtual impossibil-
ity (my thought at that time) of gathering the best authors. What
was also crystal clear to me was that unless the very best were
attracted to the book project, it was simply not worth the effort.
I had made up my mind to give up the book project, unless I got
the full support of a large number of the finest practitioners of
remote sensing from around the world. So, I spent a few weeks
researching the best authors to lead each chapter and wrote to
them to participate in the Remote Sensing Handbook project.
What really surprised me was that almost all the authors I con-
tacted agreed to lead and write a chapter. This was truly surreal.
These are extremely busy people of great scientific reputation
and achievements. For them to spend the time, intellect, and
energy to write an in-depth and insightful book chapter spread
across a year or more is truly amazing. Most also agreed to put
together a writing team, as I had requested, to ensure greater
perspective for each chapter. In the end, we had 300+ authors
writing 82 chapters.

At this stage, I was somewhat drawn into the project as if by
destiny and felt compelled to go ahead. One of the authors who
agreed to lead the chapter mentioned “....whether it was even
possible.” This is exactly what I felt, too. But I had reached the
stage of no return, and I took on the book project with all the
seriousness it deserved. It required some real changes to my
lifestyle: professional and personal. Travel was reduced to bare
minimum during most of the book project. Most weekends were
spent editing, writing, and organizing, and other social activi-
ties were reduced. Accomplishing such complex work requires
the highest levels of discipline, planning, and strategy. But,
above all, I felt blessed with good health. By the time the book
is published, I will have completed about 5 years from my colon
cancer surgery and chemotherapy. So I am as happy to see this
book released as I am with the miracle of cancer cure (I feel con-
fident to say so).

But it is the chapter authors who made it all feasible. They
amazed me throughout the book project. First, the quality and
content of each of the chapters were of the highest standards.
Second, with very few exceptions, chapters were delivered
on time. Third, edited chapters were revised thoroughly and
returned on time. Fourth, all my requests on various formatting
and quality enhancements were addressed. This is what made
the three-volume Remote Sensing Handbook possible and if I
may say so, a true magnum opus on the subject. My heartfelt
gratitude to these great authors for their dedication. It has been
my great honor to work with these dedicated legends. Indeed,
I call them my heroes in a true sense.
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Overall, the preparation of the Remote Sensing Handbook
took two and a half years, from the time book chapters and
authors were being identified to its final publication. The three
books are designed in such a way that a reader can have all
three books as a standard reference or have individual books to
study specific subject areas. The three books of Remote Sensing
Handbook are

Remotely Sensed Data Characterization, Classification,
and Accuracies: 31 Chapters

Land Resources Monitoring, Modeling, and Mapping with
Remote Sensing: 28 Chapters

Remote Sensing of Water Resources, Disasters, and Urban
Studies: 27 Chapters

There are about 2500 pages in the 3 volumes.

The wide array of topics covered is very comprehensive.
The topics covered in Remotely Sensed Data Characterization,
Classification, and Accuracies include (1) satellites and sensors;
(2) remote sensing fundamentals; (3) data normalization, har-
monization, and standardization; (4) vegetation indices and
their within- and across-sensor calibration; (5) image classifi-
cation methods and approaches; (6) change detection; (7) inte-
grating remote sensing with other spatial data; (8) GNSS; (9)
crowdsourcing; (10) cloud computing; (11) Google Earth remote
sensing; (12) accuracy assessments; and (13) remote sensing law.

The topics covered in Land Resources Monitoring, Modeling,
and Mapping with Remote Sensing include (1) vegetation and
biomass, (2) agricultural croplands, (3) rangelands, (4) phenol-
ogy and food security, (5) forests, (6) biodiversity, (7) ecology,
(8) land use/land cover, (9) carbon, and (10) soils.

The topics covered in Remote Sensing of Water Resources,
Disasters, and Urban Studies include (1) hydrology and water
resources; (2) water use and water productivity; (3) floods;
(4) wetlands; (5) snow and ice; (6) glaciers, permafrost, and ice;
(7) geomorphology; (8) droughts and drylands; (9) disasters;
(10) volcanoes; (11) fire; (12) urban areas; and (13) nightlights.

There are many ways to use the Remote Sensing Handbook.
A lot of thought went into organizing the books and chap-
ters. So you will see a flow from chapter to chapter and book
to book. As you read through the chapters, you will see how
they are interconnected and how reading all of them provides
you with greater in-depth understanding. Some of you may be
more interested in a particular volume. Often, having all three
books as reference material is ideal for most remote sensing
experts, practitioners, or students; however, you can also refer
to individual books based on your interest. We have also made
attempts to ensure the chapters are self-contained. That way
you can focus on a chapter and read it through, without having
to be overly dependent on other chapters. Taking this perspec-
tive, there is a slight (~5%-10%) material that may be repeated
in some of the chapters. This is done deliberately. For example,
when you are reading a chapter on LiDAR or radar, you don’t
want to go all the way back to another chapter (e.g., Chapter 1,
Remotely Sensed Data Characterization, Classification, and
Accuracies) to understand the characteristics of these sensors.
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Similarly, certain indices (e.g., vegetation condition index
[VCI], temperature condition index [TCI]) that are defined
in one chapter (e.g., on drought) may be repeated in another
chapter (also on drought). Such minor overlaps are helpful to
the reader to avoid going back to another chapter to under-
stand a phenomenon or an index or a characteristic of a sensor.
However, if you want a lot of details on these sensors or indices
or phenomena or if you are someone who has yet to gain suf-
ficient expertise in the field of remote sensing, then you will
have to read the appropriate chapter where there is in-depth
coverage of the topic.

Each book has a summary chapter (the last chapter of each
book). The summary chapter can be read two ways: (1) either as
a last chapter to recapture the main points of each of the previ-
ous chapters or (2) as an initial overview to get a feeling for what
is in the book. I suggest the readers do it both ways: Read it first
before going into the details and then read it at the end to recol-
lect what was said in the chapters.

It has been a great honor as well as a humbling experience
to edit the Remote Sensing Handbook (Remotely Sensed Data
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Characterization, Classification, and Accuracies; Land Resources
Monitoring, Modeling, and Mapping with Remote Sensing;
and Remote Sensing of Water Resources, Disasters, and Urban
Studies). I truly enjoyed the effort. What an honor to work with
luminaries in this field of expertise. I learned a lot from them
and am very grateful for their support, encouragement, and deep
insights. Also, it has been a pleasure working with outstanding
professionals of Taylor & Francis Group/CRC Press. There is no
joy greater than being immersed in pursuit of excellence, knowl-
edge gain, and knowledge capture. At the same time, I am happy
it is over. The biggest lesson I learned during this project was
that if you set yourself to a task with dedication, sincerity, persis-
tence, and belief, you will have the job accomplished, no matter
how daunting.

I expect the books to be standard references of immense value
to any student, scientist, professional, and practical practitioner
of remote sensing.

Prasad S. Thenkabail, PhD
Editor-in-Chief
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Chapter 14, Felix Rembold, Michele Meroni, Oscar Rojas,
Clement Atzberger, Frederic Ham, and Erwann Fillol
Chapter 15, Brian Wardlow, Martha Anderson, Tsegaye
Tadesse, Chris Hain, Wade T. Crow, and Matt Rodell
Chapter 16, Jinyoung Rhee, Jungho Im, and Seonyoung Park
Chapter 17, Marion Stellmes, Ruth Sonnenschein, Achim
Roder, Thomas Udelhoven, Stefan Sommer, and Joachim
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o Chapter 18, Norman Kerle

o Chapter 19, Stefan Lang, Petra Fiireder, Olaf Kranz,
Brittany Card, Shadrock Roberts, and Andreas Papp

o Chapter 20, Robert Wright

 Chapter 21, Krishna Prasad Vadrevu and Kristofer Lasko

o Chapter 22, Anupma Prakash and Claudia Kuenzer

o Chapter 23, Hasi Bagan and Yoshiki Yamagata

o Chapter 24, Yoshiki Yamagata, Daisuke Murakami, and
Hajime Seya

o Chapter 25, Prasad S. Thenkabail

These authors are “who is who” in remote sensing and come
from premier institutions of the world. For author affiliations,
please see “Contributors” list provided a few pages after this.
My deepest apologies if I have missed any name. But, I am sure
those names are properly credited and acknowledged in indi-
vidual chapters.

The authors not only delivered excellent chapters, they pro-
vided valuable insights and inputs for me in many ways through-
out the book project.

I was delighted when Dr. Compton J. Tucker, senior Earth
scientist, Earth Sciences Division, Science and Exploration
Directorate, NASA Goddard Space Flight Center (GSFC), agreed
to write the foreword for the book. For anyone practicing remote
sensing, Dr. Tucker needs no introduction. He has been a god-
father of remote sensing and has inspired a generation of scien-
tists. I have been a student of his without ever really being one.
I mean, I have not been his student in a classroom but have fol-
lowed his legendary work throughout my career. I remember
reading his highly cited paper (now with citations nearing 4000!):

o Tucker, CJ. (1979) Red and photographic infrared linear
combinations for monitoring vegetation, Remote Sensing
of Environment, 8(2),127-150.

That was in 1986 when I had just joined the National Remote
Sensing Agency (NRSA; now NRSC), Indian Space Research
Organization (ISRO). After earning his PhD from the Colorado
State University in 1975, Dr. Tucker joined NASA GSFC as a post-
doctoral fellow and became a full-time NASA employee in 1977.
Since then, he has conducted path-finding research. He has used
NOAA AVHRR, MODIS, SPOT Vegetation, and Landsat satel-
lite data for studying deforestation, habitat fragmentation, desert
boundary determination, ecologically coupled diseases, terrestrial
primary production, glacier extent, and how climate affects global
vegetation. He has authored or coauthored more than 170 journal
articles that have been cited more than 20,000 times, is an adjunct
professor at the University of Maryland, is a consulting scholar
at the University of Pennsylvania’s Museum of Archaeology and
Anthropology, and has appeared on more than twenty radio
and TV programs. He is a fellow of the American Geophysical
Union and has been awarded several medals and honors, includ-
ing NASA’s Exceptional Scientific Achievement Medal, the Pecora
Award from the U.S. Geological Survey (USGS), the National
Air and Space Museum Trophy, the Henry Shaw Medal from
the Missouri Botanical Garden, the Galathea Medal from the
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Royal Danish Geographical Society, and the Vega Medal from
the Swedish Society of Anthropology and Geography. He was the
NASA representative to the U.S. Global Change Research Program
from 2006 to 2009. He was instrumental in releasing the AVHRR
32-year (1982-2013) Global Inventory Monitoring and Modeling
Studies (GIMMS) data. I strongly recommend that everyone read
his excellent foreword before reading the book. In the foreword,
Dr. Tucker demonstrates the importance of data from EO sensors
from orbiting satellites to maintaining a reliable and consistent
climate record. Dr. Tucker further highlights the importance of
continued measurements of these variables of our planet in the
new millennium through new, improved, and innovative EO sen-
sors from Sun-synchronous and/or geostationary satellites.

I am very thankful to my USGS colleagues for their encourage-
ment and support. In particular, I mention Edwin Pfeifer, Dr. Susan
Benjamin, Dr. Dennis Dye, Larry Gaffney, Miguel Velasco,
Dr. Chandra Giri, Dr. Terrance Slonecker, Dr. Jonathan Smith, and
Dr. Thomas Loveland. There are many other colleagues who made
my job at USGS that much easier. My thanks to them all.

I am very thankful to Irma Shagla-Britton, acquisition editor
for remote sensing and GIS books at Taylor & Francis Group/CRC
Press. Without her initial nudge, this book would never have even
been completed. Thank you, Irma. You are doing a great job.

I am very grateful to my wife (Sharmila Prasad) and daugh-
ter (Spandana Thenkabail) for their usual unconditional love,
understanding, and support. They are always the pillars of my
life. I learned the values of hard work and dedication from my
revered parents. This work wouldn’t have come about without
their sacrifices to educate their children and their silent bless-
ings. I am ever grateful to my former professors at The Ohio State
University, Columbus, Ohio, United States: Prof. John G. Lyon,
Dr. Andrew D. Ward, Prof. (Late) Carolyn Merry, Dr. Duane
Marble, and Dr. Michael Demers. They have taught, encour-
aged, inspired, and given me opportunities at the right time.
The opportunity to work for six years at the Center for Earth
Observation of Yale University (YCEO) was incredibly impor-
tant. I am thankful to Prof. Ronald G. Smith, director of YCEO,
for his kindness. At YCEO, I learned and advanced myself as a
remote sensing scientist. The opportunities I got from working
for the International Institute of Tropical Agriculture (IITA),
Africa and International Water Management Institute (IWMI)
that had a global mandate for water were very important, espe-
cially from the point of view of understanding the real issues
on the ground. I learned my basics of remote sensing mainly
working with Dr. Thiruvengadachari of the National Remote
Sensing Agency/Center (NRSA/NRSC), Indian Space Research
Organization (ISRO), India, where I started my remote sens-
ing career as a young scientist. I was just 25 years old then
and had joined NRSA after earning my masters of engineer-
ing (hydraulics and water resources) and bachelors of engi-
neering (civil engineering). During my first day in the office,
Dr. Thiruvengadachari asked me how much remote sensing
did I know. I said, “zero” and instantly thought that I would be
thrown out of the room. But he said “very good” and gave me a
manual on remote sensing from the Laboratory for Applications
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of Remote Sensing (LARS), Purdue. Those were the days where
there was no formal training in remote sensing in any Indian
universities. So my remote sensing lessons began working prac-
tically on projects and one of our first projects was “drought
monitoring for India using NOAA AVHRR data.” This was an
intense period of learning remote sensing by actually practicing
it on a daily basis. Data came on 9 mm tapes; data were read on
massive computing systems; image processing was done, mostly
working on night shifts by booking time on centralized com-
puting; field work was conducted using false color composite
outputs and topographic maps (not the days of global position-
ing systems); geographic information system was in its infancy;
and a lot of calculations were done using calculators. So when
I decided to resign my NRSA job and go to the United States
to do my PhD, Dr. Thiruvengadachari told me, “Prasad, I am
losing my right hand, but you can’t miss opportunity.” Those
initial wonderful days of learning from Dr. Thiruvengadachari
will remain etched in my memory. Prof. G. Ranganna of the
Karnataka Regional Engineering College (KREC; now National
Institute of Technology), Karnataka, India, was/is one of my most
revered gurus. I have learned a lot observing him, professionally
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and personally, and he has always been an inspiration. Prof.
E.J. James, former director of the Center for Water Resources
Development and Management (CWRDM), was another origi-
nal guru from whom I have learned the values of a true pro-
fessional. I am also thankful to my good old friend Shri C. J.
Jagadeesha, who is still working for ISRO as a senior scientist.
He was my colleague at NRSA/NRSC, ISRO, and encouraged
me to grow as a scientist. This Remote Sensing Handbook is a
blessing from the most special ones dear to me. Of course, there
are many, many others to thank especially many of my dedi-
cated students over the years, but they are too many to mention
here. I thank the truly outstanding editing work performed by
Arunkumar Aranganathan and his team at SPi Global.

It has been my deep honor and great privilege to have edited
the Remote Sensing Handbook. I am sure that I won’t be taking
on any such huge endeavors in the future. I will need time for
myself, to look inside, understand, and grow. So thank you all,
for making this possible.

Prasad S. Thenkabail, PhD
Editor-in-Chief



Editor

Prasad S. Thenkabail, PhD, is currently working as a research
geographer-15 with the U.S. Geological Survey (USGS), United
States. Currently, at USGS, Prasad leads a multi-institutional
NASA MEaSUREs (Making Earth System Data Records for
Use in Research Environments) project, funded through
NASA ROSES solicitation. The project is entitled Global Food
Security-Support Analysis Data at 30 m (GFSAD30) (http:/
geography.wr.usgs.gov/science/croplands/index.html also see
https://www.croplands.org/). He is also an adjunct professor
at three U.S. universities: (1) Department of Soil, Water, and
Environmental Science (SWES), University of Arizona (UoA);
(2) Department of Space Studies, University of North Dakota
(UND); and (3) School of Earth Sciences and Environmental
Sustainability (SESES), Northern Arizona University (NAU),
Flagstaff, Arizona.

Dr. Thenkabail has conducted pioneering scientific research
work in two major areas:

1. Hyperspectral remote sensing of vegetation
2. Global irrigated and rainfed cropland mapping using
spaceborne remote sensing

His research papers on these topics are widely quoted. His hyper-
spectral work also led to his working on the scientific advisory
board of Rapideye (2001), a German private industry satellite.
Prasad was consulted on the design of spectral wavebands.

In hyperspectral research, Prasad pioneered in the following:

1. The design of optimal hyperspectral narrowbands (HNBs)
and hyperspectral vegetation indices (HVIs) for agricul-
ture and vegetation studies.

2. Certain hyperspectral data mining and data reduction
techniques such as now widely used concepts of lambda
by lambda plots.

3. Certain hyperspectral data classification methods. This
included the use of a series of methods (e.g., discrimi-
nant model, Wilk’s lambda, Pillai trace) that demonstrate
significant increases in classification accuracies of land
cover and vegetation classes as determined using HNBs as
opposed to multispectral broadbands.

In global croplands, Prasad conducted seminal research that
led to the first global map of irrigated and rainfed cropland
areas using multitemporal, multisensor remote sensing, one
book, and a series of more than ten novel peer-reviewed papers.
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In 2008, for one of these papers, Prasad (lead author) and coau-
thors (Pardhasaradhi Teluguntala, Trent Biggs, Murali Krishna
Gumma, and Hugh Turral) were the second-place recipients of
the 2008 John I. Davidson American Society of Photogrammetry
and Remote Sensing (ASPRS) President’s Award for practical
papers. The paper proposed a novel spectral matching technique
(SMT) for cropland classification. Earlier, Prasad (lead author)
and coauthors (Andy Ward, John Lyon, and Carolyn Merry), won
the 1994 Autometric Award for outstanding paper on remote
sensing of agriculture from ASPRS. Recently, Prasad (seccond
author) with Michael Marshall (lead author), won the ASPRS
ERDAS award for best scientific paper on remote sensing for their
hyperspectral remote sensing work.

Earlier to this path-breaking Remote Sensing Handbook,
Prasad has published two seminal books (both published by
Taylor & Francis Group/CRC Press) related to hyperspectral
remote sensing and global croplands:

o Thenkabail, P.S., Lyon, G.J., and Huete, A. 2011.
Hyperspectral Remote Sensing of Vegetation. CRC Press/
Taylor & Francis Group, Boca Raton, FL, 781pp.

Reviews of this book:

o http://www.crcpress.com/product/isbn/9781439845370.

o Thenkabail, P.,, Lyon, G.J., Turral, H., and Biradar, C.M.
2009. Remote Sensing of Global Croplands for Food
Security. CRC Press/Taylor & Francis Group, Boca Raton,
FL, 556pp (48 pages in color).

Reviews of this book:

o http://www.crcpress.com/product/isbn/9781420090093.
o http://gfmt.blogspot.com/2011/05/review-remote-sensing-
of-global.html.

He has guest edited two special issues for the American Society
of Photogrammetry and Remote Sensing (PE&RS):

o Thenkabail, P.S. 2014. Guest editor of special issue on
“Hyperspectral remote sensing of vegetation and agricul-
tural crops.” Photogrammetric Engineering and Remote
Sensing 80(4).

o Thenkabail, P.S. 2012. Guest editor for Global croplands
special issue. Photogrammetric Engineering and Remote
Sensing 78(8).
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He has also guest edited a special issue on global croplands for
the Remote Sensing Open Access Journal (ISSN 2072-4292):

o Thenkabail, P.S. 2010. Guest editor: Special issue on
“Global croplands” for the MDPI remote sensing open
access journal. Total: 22 papers. http://www.mdpi.com/
journal/remotesensing/special_issues/croplands/.

Prasad is, currently editor-in-chief, Remote Sensing Open Access
Journal, an on-line journal, published by MDPI; editorial board
member, Remote Sensing of Environment; editorial advisory
board member, ISPRS Journal of Photogrammetry and Remote
Sensing.

Prior to joining USGS in October 2008, Dr. Thenkabail was
a leader of the remote sensing programs of leading institutes
International Water Management Institute (IWMI), 2003-2008;
International Center for Integrated Mountain Development
(ICIMOD), 1995-1997; International Institute of Tropical
Agriculture (IITA), 1992-1995.

He also worked as a key remote sensing scientist for Yale
Center for Earth Observation (YCEQO), 1997-2003; Ohio State
University (OSU), 1988-1992; National Remote Sensing Agency
(NRSA) (now NRSC), Indian Space Research organization
(ISRO), 1986-1988.

Editor

Over the years, he has been a principal investigator (PI) of
NASA, USGS, IEEE, and other funded projects such as inland
valley wetland mapping of African nations, characterization
of eco-regions of Africa (CERA), which involved both African
savannas and rainforests, global cropland water use for food
security in the twenty-first century, automated cropland classi-
fication algorithm (ACCA) within WaterSMART (Sustain and
Manage America’s Resources for Tomorrow) project, water pro-
ductivity mapping in the irrigated croplands of California and
Uzbekistan using multisensor remote sensing, IEEE Water for
the World Project, and drought monitoring in India, Pakistan,
and Afghanistan.

The USGS and NASA selected Dr. Thenkabail to be on the
Landsat Science Team (2007-2011) for a period of five years
(http://landsat.gsfc.nasa.gov/news/news-archive/pol_0005.
html; http://ldcm.usgs.gov/intro.php). In June 2007, his team
was recognized by the Environmental System Research Institute
(ESRI) for “special achievement in GIS” (SAG award) for their
tsunami-related work (tsdc.iwmi.org) and for their innova-
tive spatial data portals (http://waterdata.iwmi.org/dtView-
Common.php; earlier http://www.iwmidsp.org). Currently,
he is also a global coordinator for the Agriculture Societal
Beneficial Area (SBA) of the Commiittee for Earth Observation

REMOTE
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HYPERSPECTRAL
REMOTE SENSING
OF VEGETATION
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Editor

Systems (CEOS). He is active in the Group on Earth Observation
(GEO) agriculture and water efforts through Earth observa-
tion. He was a co-lead of the Water for the World Project (IEEE
effort). He is the current chair of the International Society
of Photogrammetry and Remote Sensing (ISPRS) Working
Group WG VIII/7: “Land Cover and Its Dynamics, including
Agricultural & Urban Land Use” for the period 2013-2016.
Thenkabail earned his PhD from The Ohio State University
(1992). His master’s degree in hydraulics and water resources
engineering (1984) and bachelor’s degree in civil engineer-
ing (1981) were from India. He began his professional career
as a lecturer in hydrology, water resources, hydraulics, and
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open channel in India. He has 100+ publications, mostly peer-
reviewed research papers in major international remote sens-
ing journals: http://scholar.google.com/citations?user=9105Y7
YAAAA]&hl=en. Prasad has about 30 years’ experience work-
ing as a well-recognized international expert in remote sens-
ing and geographic information systems (RS/GIS) and their
application to agriculture, wetlands, natural resource manage-
ment, water resources, forests, sustainable development, and
environmental studies. His work experience spans over 25+
countries spread across West and Central Africa, Southern
Africa, South Asia, Southeast Asia, the Middle East, East Asia,
Central Asia, North America, South America, and the Pacific.


http://scholar.google.com/
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VI Vegetation index

VPD Vapor pressure deficit

VPM Vegetation photosynthesis model

VPRM Vegetation photosynthesis and respiration model
WDRVI Wide dynamic range vegetation index

1.1 Introduction

Vegetation productivity is defined as the process by which
plants use sunlight to produce organic matter from carbon
dioxide through photosynthesis. Gross primary productiv-
ity (GPP), or photosynthesis, is the rate of carbon fixation
or total plant organic matter produced per unit of time and
over a defined area, whereas the amount of carbon fixed by
plants and accumulated as biomass is known as terrestrial net
primary production (Cramer et al. 1999; Zhao and Running
2010). Productivity forms the basis of terrestrial biosphere
functioning and carbon, energy, and water budgets. Accurate
estimates of plant productivity across space and time are
thus necessary for quantifying carbon balances at regional
to global scales (Lieth 1975; Schimel 1998). Vegetation pro-
ductivity is generally limited by the availability of spatially
and temporally varying plant resources (e.g., nutrients, light,
water, and temperature) (Field et al. 1995; Churkina and
Running 1998; Nemani et al. 2003) (Figure 1.1). Improved
knowledge of the main drivers and resource constraints of
plant productivity is thus needed for predictable assessments
of climate change.

1.1.1 Measures of Productivity

Measures of productivity are essential in global change stud-
ies; yet despite their importance, they are quite challenging
to obtain or sample (Baldocchi et al. 2001). The assessment
of plant production is carried out in various ways, from plot

Temperature

Sunlight ‘

Water

FIGURE 1.1

measurements and plant harvests, micrometeorological fluxes,
remote sensing, and through empirical and process-based
models that may involve remote sensing data inputs. In situ
measures include methods that vary with biome type, for exam-
ple, tree inventories, litter traps, grassland forage estimates, and
agricultural harvests and market statistics. Plot-level meth-
ods measure aboveground net primary production (ANPP)
that often involves destructive sampling during peak biomass
periods. Established long-term experimental plots enable cross-
site production comparisons; however, they are also amenable
to many uncertainties due to differences in site-based proce-
dures, and in some cases, inconsistent sampling methods over
time at a given site (Sala et al. 1988; Biondini et al. 1991; Moran
et al. 2014). GPP has traditionally been estimated from plot
level ANPP measurements by correcting for respiratory losses
(Field et al. 1995). Agricultural yield statistics (USDA NASS)
combined with maps of cropland areas provide large-scale
NPP estimates from local to national level census statistics
(Monfreda et al. 2008; Guanter et al. 2014).

A global network of micrometeorological tower sites, known
as FLUXNET, now provide continuous measurements of car-
bon, water, and energy exchanges between ecosystems and the
atmosphere (Running et al. 1999). This yields information on
seasonal dynamics and interannual variations of net ecosystem
exchange (NEE) of carbon dioxide between the land surface and
the atmosphere (Baldocchi et al. 2001; Verma et al. 2005). This
has yielded quite valuable in situ data to independently evaluate
and assess uncertainties in carbon models and satellite carbon
products, as they are applied to global change studies.

Satellite imaging sensors offer synoptic-scale observations
of ecosystem states and landscape dynamics, and are seen as
invaluable tools to help fill the large spatial gaps of in situ mea-
surements, and constrain and improve the accuracies of models.
Remote sensing complements the restrictive coverage afforded
by experimental plots and eddy covariance (EC) tower flux

Potential limits to vegetation net primary production based on fundamental physiological limits of solar radiation, water balance,

and temperature. Greener colors depict biomes increasingly limited by radiation, while red colors are water-limited and blue colors temperature-
limited. Many regions are limited by more than one factor. (Adapted from Nemani, R.R. et al., Science, 300(5625), 1560, 2003.)

© 2016 Taylor & Francis Group, LLC
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FIGURE 1.2 MODIS net primary production satellite product (MOD17). Example showing the mean NPP across years 2000-2005 for the
global terrestrial surface. The highest production is seen across the equatorial zone encompassing southeast Asia, the Amazon basin, and equato-
rial Africa. The least productive regions appear in Australia and the Sahelian region. (Courtesy of Numerical Terradynamic Simulation Group,

University of Montana, Missoula, MT.)

measurements, facilitating observations of broad-scale patterns
of ecosystem functioning. This renders remote sensing a power-
ful tool for studying vegetation productivity at local, regional,
and global scales (Gitelson et al. 2006).

The integration of independently derived tower measured
carbon fluxes with satellite data is the focus of many investiga-
tions across many ecosystems from sparse shrublands to mesic
grasslands, and tropical to temperate forests. Estimates of daily
GPP and annual NPP are now routinely produced operation-
ally over the global terrestrial surface at 1 km spatial resolution
through production efficiency models with near real-time satel-
lite data inputs from the moderate-resolution imaging spectro-
radiometer (MODIS) (Turner et al. 2006) (Figure 1.2).

Finally, there are many empirical, diagnostic, and process-
based models that have been developed over the past decades
to monitor and assess vegetation productivity, with many of
these methods employing remote sensing data in conjunction
with micrometeorological carbon flux measurements to varying
extents.

1.1.2 Lidar

Traditionally, national-scale carbon monitoring has been
accomplished with networks of field inventory plots (FAO
2007), which provide direct carbon measurements of only very
small areas of forest, and are further difficult to install, moni-
tor, and maintain over time (Chambers et al. 2009). Airborne
laser technology called light detection and ranging (lidar)
ofters much potential for terrestrial carbon assessments.
Lidar measures the physical structure of woody vegetation,
from sparse shrublands to dense forests, and can serve as a

© 2016 Taylor & Francis Group, LLC

reliable replacement for inventory plots in areas lacking field
data (Lefsky et al. 2002; Zolkos et al. 2013). Thus, lidar inte-
gration with field inventory plots can provide calibrated lidar
estimates of aboveground carbon stocks, which can then be
scaled up using satellite data on vegetation cover, topography,
and rainfall from satellite data to model carbon stocks (Asner
etal. 2013). Opportunities to fuse temporally dynamic vegeta-
tion optical measurements with lidar have promising poten-
tial for better assessments of not only standing wood biomass,
but also forest disturbance, biomass loss, and carbon accu-
mulation through forest regrowth (Lefsky et al. 2002; Asner
et al. 2010).

1.2 Remote Sensing and Net
Primary Production

1.2.1 NDVI-{APAR Relationships

Remote sensing approaches to estimate productivity generally
employ spectral measures of vegetation, which are used for esti-
mating their capacity to absorb photosynthetically active radia-
tion (APAR). Vegetation productivity is directly related to the
interaction of solar radiation with the plant canopy, based on the
original logic of Monteith (1972), who suggested that productiv-
ity of stress-free annual crops was linearly related to vegetation
absorbed PAR. Spectral vegetation indices (VIs) such as the nor-
malized difference vegetation index (NDVI) (Tucker 1979), the
perpendicular vegetation index (PVI) (Richardson and Wiegand
1977), and the tasselled cap green vegetation index (TC-GVI)
(Kauth and Thomas 1976) were consequently developed over
croplands and grasslands.
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FIGURE 1.3 Linear relationship between in situ NDVIand field mea-
sured fAPAR across multiple cropland and biome sites in Africa. (From
Fensholt, R. et al., Remote Sens. Environ., 91(3-4), 490, 2004.)

The NDVT is written as follows:

NDVI = (PNIR — Pred)

> (1.1)
(PNIR + Prea)

where py and p,.4 are spectral reflectance values (unitless) that
exploit the chlorophyll-absorbing red band relative to the non-
absorbing and high scattering near-infrared (NIR) band. Asrar
et al. (1984) showed the NDVI was linearly related with vege-
tation absorption of light energy (APAR) or fraction of APAR
(fAPAR), and thereby related to productivity through the poten-
tial capacity of vegetation to absorb light for photosynthesis
(Figure 1.3). The linear relationship between NDVI and fAPAR
has been documented through field measurements (Ruimy et al.
1994; Fensholt et al. 2004) and theoretical analyses (Sellers 1985;
Goward and Huemmrich 1992; Myneni and Williams 1994).

1.2.2 Annual Integrated Estimates
of Productivity

Several studies suggest that annual vegetation productivity sta-
tus can be captured with the annual NDVT integral, used as sur-
rogate measures of fAPAR. Goward et al. (1985) used integrated
NDVI values derived from the advanced-very-high-resolution
radiometer (AVHRR) and found good relationships between
NPP and integrated NDVI over annual growing periods of North
American biomes (Figure 1.4). Wang et al. (2004) found that the
NDVI integral over the early growing season was strongly cor-
related to in situ forest measurements of diameter increase and
tree ring width in the U.S. central Great Plains. They also found

© 2016 Taylor & Francis Group, LLC
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FIGURE 1.4 Relationship between biome averaged integrated NDVI
from NOAA-AVHRR sensors and net primary productivity rates.
(From Goward, S.N. et al., Vegetatio, 64(1), 3, 1985.)

the previous year integrated NDVT was well correlated with cur-
rent year increases in tree height growth.

The annual integrated VI offers a robust approximation of veg-
etation productivity, because, in general, VIs provide both a mea-
sure of the capacity to absorb light energy, as well as reflect recent
environmental stress acting on the canopy, with stress forcings
showing up as reductions in NDVT expressed as either less chloro-
phyll and/or less foliage (Running et al. 2004). Photosynthesis or
primary production is essentially integrator of resource availabil-
ity, and according to the resource optimization theory (Field et al.
1995), ecological processes tend to adjust plant characteristics
over time periods of weeks or months to match the capacity of the
environment to support photosynthesis and maximize growth.

Ponce-Campos et al. (2013) compiled in situ field measures of
ANPP across 10 sites in the United States, ranging from arid grass-
land to forest and directly compared annual integrated values of
the MODIS enhanced vegetation index (EVI, or iEVI) (Figure 1.5).
Using a log-log relation to account for the uneven distribution of
ANPP estimates over time, the iEVI was found to be an effective
surrogate to estimate ANPP and quantify vegetation dynamics:

ANPP = 51.42 x iEVIM5, 1.2)
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FIGURE 1.5 Relationship between in situ estimates of aboveground
net primary production (ANPPg) and annual integrated EVI ((EVI)
derived from MODIS data (2000-2009) for 10 sites across several
biomes. The solid line represents the linear regression used to estimate
ANPP from iEVI (ANPPs). (From Ponce-Campos, G.E. et al., Nature,
494(7437), 349, 2013.)

PNIR — Pred

EVI=G- (1.3)
pNIR +L+ Cl : pred - C2 : pblue
where
Prirs Pre» and py. are atmospherically corrected spectral
reflectances

G is a gain factor

C, and C, are aerosol resistance coefficients

L functions as the soil-adjustment factor, with all terms
dimensionless (Huete et al. 2002)

In the MODIS EVI product, G =2.5,L = 1, and C, and C, are 6.0
and 7.5, respectively.

Moran et al. (2014) found plot-scale measurements of ANPP
at arid and mesic grassland sites were significantly related to
MODIS iEVI over a decadal time period in a log-log relation
(r2= 0.71, P < 0.01). Zhang et al. (2013) studied the ecological
impacts of rainfall intensification on vegetation productivity
through the use of iEVI as a surrogate measure of ANPP. They
found extreme precipitation patterns, associated with heavy
rainfall events followed by longer dry periods, caused higher
water stress conditions that resulted in strong negative influ-
ences on ANPP across biomes and reduced rainfall use efficien-
cies (20% on average) (Figure 1.6).

1.2.3 Growing Season Phenology Relationships

The annual life cycle of plant species and vegetation cano-
pies have large effects on rates of photosynthesis and annual
productivity. Phenological factors such as leaf age and life

© 2016 Taylor & Francis Group, LLC
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FIGURE 1.6 Relationship of growing season integrated MODIS EVI,
as a surrogate of annual primary production, and annual precipita-
tion for low vs. high rainfall variability. This demonstrates the nega-
tive influence of precipitation intensification for a wide range of biome
types. (Zhang, Y. et al.,, J. Geophys. Res. Biogeosci., 118(1), 148, 2013.)

expectancy play important roles on productivity (Wilson et al.
2001) with some production models explicitly incorporating
phenophase periods, such as bud burst to full leaf expansion,
and full expansion to dormancy (Xiao et al. 2004). LST satellite
data and/or meteorological air temperature data (Ta) are also
used to identify biologic inactive seasonal periods, for exam-
ple, masking cold temperature time intervals from the EVI or
NDVI integrals.

Often, there is also a need to synchronize the satellite
data with scheduled or variable destructive sampling dates.
Generally, in situ measures of productivity are made at dis-
crete times within the growing season or may be associated
with variable sampling times with uncertain estimates of the
dates of peak greenness. In such cases, remote sensing data
provides better temporal stability and opportunities to reduce
productivity uncertainties. For example, Moran et al. (2014)
found significant improvements in productivity-iEVI rela-
tionships across a range of grassland sites, when the EVI was
only partially integrated from the beginning to the peak of the
growing season period (rather than the full season). This was
due to the synchronization of time periods to peak biomass
periods when grassland ANPP destructive sampling are typi-
cally conducted.

Numerous efforts have been made to improve upon the char-
acterization of the plant growing season at regional scales using
satellite-based phenology models. Software packages such as
Timesat (Jonsson and Eklundh 2004) can be used to quantita-
tively model the growing season and facilitate the temporal syn-
chronization of in situ production measures with satellite data.
A summary of the various remote sensing methods that have
been used in estimating net primary productivity is shown in
Table 1.1.
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TABLE 1.1 Examples of Remote Sensing Methods of Deriving Net Primary Productivity with Some References

Net Primary Productivity

Measurement Biome/Location Satellite Products Used Method/Approach Equation R? Reference
Annual NPP Across different North Integrated growing season NDVI Linear regression between ~ NA 0.89 Goward et al.
American biomes from from NOAA/AVHRR NPP and integrated 0.94 (excl. crops) (1985)
tundra to forest to crops NDVI
and deserts
Growing season NPPgs, Early Natural and plantation NOAA/AVHRR NDVIintegrated ~ Linear regression between =~ NA Growing season, 0.86 Wang et al.
growing season NPPegs, Tree forests in Central Great across (1) growing season NPP and integrated Early growing season, 0.83 (2004)
ring width, stem growth, and Plains, North America (late April-October); (2) early NDVI for growing

litterfall

Annual above ground net
primary productivity (ANPP)

Annual above ground net
primary productivity (ANPP)

Aboveground carbon density
(ACD)

Ten sites ranging from
forests to mesic and
semiarid grasslands to
forest (USA)

Arid to mesic grasslands

Mangroves, dry, moist and
wet forests

growing season (May-June); and
(3) annual year.

Annual integrated values of
MODIS enhanced vegetation
index, iEVI

Annual integrated values of
MODIS enhanced vegetation
index, iEVI

LiDAR top-of-canopy height

season, early growing
season, and annual year

Log-log relation between
ANPP and iEVI

Log-log relation between
ANPP and iEVI

Exponential relation
between ACD and
top-of-canopy height (H)

ANPP =51.42 x iEVI
1.15 ANPP (g m™)

NA

ACD = 0.359 x H!7676

0.82

0.71

0.86, calibration plots
0.92, validation plots

Ponce-Campos
etal. (2013)

Moran et al.
(2014)

Asner et al.
(2013)
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1.3 Remotely Sensed Production
Efficiency Models

Remote sensing estimates of GPP and net primary production
(NPP) have been implemented at global scales, based on the
light-use efficiency (LUE) equation that defines the amount of
carbon fixed through photosynthesis as proportional to the
solar energy absorbed by green vegetation multiplied by the effi-
ciency with which the absorbed light is used in carbon fixation
(Monteith 1972; Monteith and Unsworth 1990):
GPP = ¢ x APAR = ¢ x fAPAR x PAR (1.4)
where
¢ is the efficiency of conversion of absorbed light into aboveg-
round biomass, or light-use efficiency
APAR is integrated over a time period
fAPAR is derived through spectral VI relationships (Asrar
et al. 1984; Sellers 1985; Goward and Huemmrich 1992;
Ruimy et al. 1994).

The LUE concept has been widely adopted by the remote sens-
ing community to assess and extrapolate carbon processes
through knowledge of two conversion coefficients: the fAPAR
and e. Although fAPAR is readily estimated using remotely
sensed “greenness” measures, € is very difficult to measure as it
dynamically varies with plant functional type, vegetation phe-
nophase, and different environmental stress conditions (Ruimy
et al. 1995; Turner et al. 2003; Sims et al. 2006; Jenkins et al.
2007). As a result, there are scarce measurements of € available,

particularly at the landscape scale, and potential or maximum
LUE values have only been specified for a limited set of biome
types, with these values downregulated by environmental stress
scalars derived from meteorological inputs (Zhao et al. 2005;
Heinsch et al. 2006).

1.3.1 BIOME-BGC Model

The BIOME-BGC (BioGeochemical Cycles) model calculates
daily GPP as a function of incoming solar radiation, conversion
coefficients, and environmental stresses (Running et al. 2004).
This was implemented as the first operational standard satel-
lite product for MODIS (MOD17), providing global estimates of
global GPP (Figure 1.7), expressed as follows:

GPP =g, X 0.45x SW,,q X fPAR X f(VPD) X f(Tipin), (1.5)

where

€max 18 the maximum light-use efficiency (g C MJ™) obtained
from a biome-properties look-up table (BPLUT)

SW,,q is short-wave downward solar radiation (MJ! day), of
which 45% is assumed to be PAR

f(VPD) and (T,,;,) are vapor pressure deficit and air tempera-
ture reduction scalars for the biome specific €,,,, values

fAPAR is directly input from the MODIS FPAR (MODI15)
product (Running et al. 2004; Zhao et al. 2005)

MODIS FPAR retrievals are physically based and use biome-
specific look-up tables (LUTs) generated using a three-
dimensional radiative transfer model (Myneni et al. 2002).

o
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FIGURE 1.7 MODIS gross primary production satellite product (MOD17). Example showing the mean GPP across years 2000-2005 for the
global terrestrial surface. The highest rates of photosynthesis are seen in the tropical forests of southeast Asia, the Amazon basin, and equatorial
Africa. The lowest rates of photosynthesis are seen in Australia, South Africa, western North America, the Sahel, and Atacama desert. (Courtesy
of Numerical Terradynamic Simulation Group, University of Montana, Montana, MT.)
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The reduction scalars encompass LUE variability resulting
from water stress (high daily VPD) and low temperatures (low
daily minimum temperature T, ;) (Running et al. 2004). The
MODIS GPP product is directly linked to remote sensing and
weather forecast products and can provide near real-time infor-
mation on productivity and the influence of anomalies such as
droughts. A consistent forcing meteorology is based upon the
NCEP/NCAR (National Centres for Environmental Prediction/
National Centre for Atmospheric Research) Reanalysis II datas-
ets (Kanamitsu et al. 2002) (Figure 1.7).

Using these satellite products, Zhao and Running (2010)
found that global NPP declined slightly by 0.55 petagram car-
bon (Pg C, with Pg = 10** g = 1 billion metric tonnes) due to
drought from 2000 to 2009. Ichii et al. (2007) used the BIOME-
BGC model to simulate seasonal variations in GPP for different
rooting depths, from 1 to 10 m, over Amazon forests and deter-
mine which rooting depths best estimated GPP consistent with
satellite-based EVI, and thereby were able to map rooting depths
at regional scales and improve the assessments of carbon, water,
and energy cycles in tropical forests.

The utility and accuracy of MODIS GPP/NPP products have
been validated in various FLUXNET studies, which have also
demonstrated the value of independent tower flux measures to
better understand the satellite-based GPP/NPP products (Kang
et al. 2005; Leuning et al. 2005; Zhao et al. 2005, 2006; Turner
et al. 2006). These studies highlight the capabilities of MODIS
GPP to correctly predict observed fluxes at tower sites, but also
draw attention to some of the uncertainties associated with
use of coarse resolution and interpolated meteorology inputs,
uncertainties with the LUT-based values, noise and uncertain-
ties in the satellite fAPAR inputs, and difficulties in constrain-
ing the light-use efficiency term (Zhao et al. 2005; Heinsch et al.
2006; Yuan et al. 2010; Sjostrom et al. 2013). Since meteorologi-
cal inputs are often not available at sufficiently detailed temporal
and spatial scales, they can introduce substantial errors into the
carbon exchange estimates.

Turner et al. (2006) concluded that although the MODIS
NPP/GPP products are generally responsive to spatial-temporal
trends associated with climate, land cover, and land use, they
tend to overestimate GPP at low productivity sites and underes-
timate GPP at high productivity sites. Similarly, Sjostrom et al.
(2013) found that although MODIS-GPP described seasonal-
ity at 12 African flux tower sites quite well, it tended to under-
estimate tower GPP at the dry sites in the Sahel region due to
uncertainties in the meteorological and fAPAR input data and
the underestimation of € ,,,,. Jin et al. (2013) reported the MODIS
GPP product to substantially underestimate tower GPP during
the green-up phase at a woodland savanna site in Botswana,
while overestimating tower-GPP during the brown-down phase.

Some studies have found that when properly parameterized
with site-level meteorological measurements, MODIS GPP
becomes more closely aligned with flux tower derived GPP
(Turner et al. 2003; Kanniah et al. 2009; Sjostrom et al. 2013).
Kanniah et al. (2011), however, found that utilizing site-based
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meteorology could only improve GPP estimates during the wet
season over northern Australian savannas, and suggested the
MODIS GPP product has a systematic limitation in the estima-
tion of savanna GPP in arid and semiarid areas due to the lack
of the representation of soil moisture. Sjostrom et al. (2013) also
found soil moisture information to be quite important for accu-
rate GPP estimates in drier African savannas.

1.3.2 Vegetation Index: Tower
GPP Relationships

There have also been many attempts to estimate GPP based
solely on remote sensing inputs, thereby minimizing or elimi-
nating the need for meteorological and LUE information.
Spectral VIs have been directly related to EC tower carbon flux
measurements (Rahman et al. 2005; Gitelson et al. 2006; Sims
et al. 2006; Sjostrom et al. 2011). Monteith and Unsworth (1990)
noted that VIs can legitimately be used to estimate the rate of
processes that depend on absorbed light, such as photosynthesis
and transpiration.

Wrylie et al. (2003) reported a strong relationship between
biweekly aggregated NDVI and daytime CO, flux in a
sagebrush-steppe ecosystem, while Rahman et al. (2005) found
that EVIcan provide reasonably accurate estimates of GPP across
a wide range of North American ecosystems, including dense
forests. However, the strength of the linear relationships between
EVI and tower GPP in temperate forests was greater in season-
ally contrasting deciduous forests compared with evergreen for-
ests (Rahman et al. 2005; Sims et al. 2006). Sims et al. (2006)
further noted that when data from the winter period of inactive
photosynthesis were excluded, the EVI—tower GPP relation-
ship was better than that between tower GPP and MODIS GPP
(Figure 1.8). Olofsson et al. (2008) reported strong correlations
between EVI and GPP across Northern Europe, while NDVI
showed problems with saturation in such areas of high biomass.
NDVT saturation is attributed to the strong weighing of the red
band, which is primarily absorbed by the uppermost leaf layer of
a dense crop or forest canopy while the nonabsorbing NIR band
is able to penetrate 5-7 leaf layers. Thus, the more NIR-sensitive
indices, such as EVI, PVI, TC-GV], and linear mixture models
are less prone to saturate (Huete et al. 2002, 2006).

Sjostrom et al. (2011) found EVI was able to track the seasonal
dynamics of tower GPP closely across African tropical savanna
ecosystems. Ma et al. (2013) similarly observed good conver-
gences between MODIS EVI and tower GPP across northern
Australian mesic and xeric tropical savannas, confirming the
potentials to link these two independent data sources for accu-
rate estimation of savanna GPP. Strongly linear and consistent
relationships between EVI and tower GPP were also shown
in dry to humid tropical forest sites in Southeast Asia and the
Amazon (Xiao et al. 2005; Huete et al. 2006, 2008).

These relationships have shown the EVI to estimate GPP
with relatively high accuracy, thus greatly simplifying car-
bon balance models and potentially offering opportunities for
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FIGURE 1.8 Flux tower measurements of GPP and LUE compared with satellite measures, MODIS GPP and MODIS EVT, respectively, over a

range of North American biome types. (From Sims, D.A. et al., . Geophys. Res., 111, 2006.)

region-wide scaling of carbon fluxes. The relationships between
EVI and tower GPP are partly a result of fairly good correla-
tions between LUE and EVI that make an independent esti-
mate of LUE less necessary. Sims et al. (2006) reported that
LUE derived from nine flux towers in North America was
well correlated with EVI (R? = 0.76; Figure 1.8), while Wu
et al. (2011) reported moderate correlation between EVI and
tower LUE in temperate and boreal forest ecosystems in North
America. Further, the 16-day averaging period removes much
of the influences of short-term fluctuations in solar radiation
and other environmental parameters, thereby minimizing the
need for climatic drivers. On the other hand, such relationships
were weaker in evergreen forests relative to deciduous ones and
one study in an evergreen oak forest showed no correlation
between EVI and LUE (Goerner et al. 2009); thus, correlations
between EVI and LUE may be a result of covariations between
fAPAR and LUE.
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1.3.3 Temperature and Greenness Model (T-G)

The simple VI “greenness” model, defined as the straightforward
relationship between VIs and GPP, although potentially useful
in certain cases, exhibits various limitations due to its inability
to always recognize between growth and inactive growth peri-
ods, in which spectral “greenness” may show little change. These
inactive periods are associated with evergreen vegetation in win-
ter months with low temperatures as well as evergreen vegetation
growing in Mediterranean climates in which high temperature,
vapor pressure deficit, and soil drought limit growth (Sims et al.
2008; Vickers et al. 2012).

For these reasons, Sims et al. (2008) introduced the tem-
perature and greenness (T-G) model, using combined daytime
LST (Wan 2008) and EVI products from MODIS. They found
the T-G model substantially improved the correlation between
predicted and measured GPP at 11 EC flux tower sites across
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North American biomes compared with the MODIS GPP
product or MODIS EVT alone, while keeping the model based
entirely on remotely sensed variables without any ground-based
meteorological inputs (Sims et al. 2008). The T-G model may be
described as follows:

GPP = (EVI_,j.q X LST, ,1eq) X M (1.6)
LST.ajeq = minKL:OTj; (2.5-(0.05x LST))} 1.7)
EVI,_.,=EVI-0.10 (1.8)

where
LST, ,1.q Sets GPP to zero when LST is less than zero, and

defines the inactive winter period
EVI, .4 adjusts EVI values to a zero baseline value in which
GPP is known to be zero
m is a scalar that varies between deciduous and evergreen
sites, with units of mol C m= day™!
LST,_,..q also accounts for low temperature limitations to photo-
synthesis when LST is between 0°C and 30°C, and accounts for
high temperature and high VPD stress in sites that exceed LST
values of 30°C (Sims et al. 2008) (Figure 1.9).

LST is closely related to VPD and thus can provide a mea-
sure of drought stress (Hashimoto et al. 2008), consistent with
the BIOME-BGC model, where temperature and VPD are used
as scalars directly modifying LUE (Running et al. 2004). LST
is a useful measure of physiological activity of the upper can-
opy leaves, provided that leaf cover is great enough that LST
is not significantly affected by soil surface temperature. Thus,
the T-G model has been found less useful in sparsely vegetated
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FIGURE1.9 GPP measured at the EC flux towers as a function of day-
time LST measured by the MODIS satellite. Solid line represents scaled
LST from T-G model. GPP is enhanced by increasing temperatures, but
only to approximately 30°C before being negatively influenced. (From
Sims, D.A. et al., Remote Sens. Environ., 112(4), 1633, 2008.)
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ecosystems (e.g., shrubs) where soil surface temperatures signifi-
cantly influence derived LST values, rendering them less useful
as indicators of plant physiology. As an example, Ma et al. (2014)
found coupling EVI with LST showed no improvements in pre-
dicting savanna GPP compared with using EVI alone over the
relatively open tropical savannas in northern Australia, with
appreciable soil exposure. This may also be due to temperature
not being a limiting factor or significant driver of photosynthesis
in tropical savannas (Leuning et al. 2005; Cleverly et al. 2013;
Kanniah et al. 2013b).

1.3.4 Greenness and Radiation (G-R) Model

Chlorophyll-related spectral indices have also been coupled with
measures of light energy, PAR, to provide robust estimates of GPP:

GPP = VI, x PAR,,, (1.9)

where
PAR, is the top-of-canopy measured PAR (M] m2 day™)
V1, is a chlorophyll-related spectral index

Peng et al. (2013) described two types of chlorophyll spectral
indices, (1) commonly used VIs, such as EVI and the wide
dynamic range vegetation index (WDRVI), which indirectly
indicate total chlorophyll content through “greenness” esti-
mates and (2) chlorophyll indices, such as the MERIS terrestrial
chlorophyll index (MTCI), which directly represent the leaf
chlorophyll content. The WDRVTI equation is,

WDRVI = (a* PNIR — pred)

(a* PR + pred) (110
where a is a weighing coeflicient with value between 0.1 and 0.2
(Gitelson 2004; Gitelson et al. 2006).
MTCI is the ratio of the difference in reflectance between an
NIR and red edge band and the difference in reflectance between
red edge and red band as

(P753.75 —Pr08.75 )

P708.75 — p681425)

MTCI = , (1.11)

where p;s; 75, Pros 75> a0d Pgg, »5 are reflectances in the center wave-
lengths of the MERIS narrow-band channel settings (Dash and
Curran 2004).

Canopy level chlorophyll represents a community property
that is most relevant in quantifying the amount of absorbed radi-
ation used for productivity (Whittaker and Marks 1975; Dawson
et al. 2003). Long- or medium-term changes (weeks to months)
in canopy chlorophyll are related to canopy stress, phenology,
and photosynthetic capacity of the vegetation (Ustin et al. 1998;
Zarco-Tejada et al. 2002). Ciganda et al. (2008) showed that
for the same LAI amount, the chlorophyll content during the
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green-up stage might be more than two times higher than the
chlorophyll content in leaves in the reproductive and senescence
stages. In the G-R model, both fAPAR and LUE are driven by
total chlorophyll content with strong correlations between GPP/
PAR and canopy chlorophyll content (Gitelson et al. 2006; Peng
etal. 2011).

Ma et al. (2014) found significant improvements in the use
of G-R models, relative to EVI alone, for predicting tower GPP,
demonstrating the importance of this quantity as a critical
driver of savanna vegetation productivity (Whitley et al. 2011;
Kanniah et al. 2013a). The R-G model has been successfully
applied in estimating GPP in natural ecosystems (Sjostrom et al.
2011; Wu et al. 2011, 2014) and croplands, including maize, soy-
beans, and wheat (Wu et al. 2010; Peng et al. 2011; Peng and
Gitelson 2012).

Site-based PAR,. measurements, however, may exhibit
uncertainties associated with high-frequency fluctuations that
are difficult to extrapolate beyond the tower sensor footprint
and, moreover, scale regionally. Therefore, other measures of
PAR that have been used include “potential” PAR, or maxi-
mal clear-sky PAR (PAR,na) (Gitelson et al. 2012; Peng et al.
2013; Rossini et al. 2014) and top-of-atmosphere PAR (PAR,,,).
PAR genial €an be calibrated from long-term PAR,,. measure-
ments or modeled using an atmosphere radiative transfer code
(Kotchenova and Vermote 2007).

Gitelson et al. (2012) found an improved performance of
PAR,geniia Telative to PAR,,. noting that decreases in PAR,,
during the day do not always imply a decrease in GPP. Further,
Kanniah et al. (2013a) showed that the negative forcings of wet
season cloud cover on Australian tropical savannas were partly
compensated by enhanced LUE resulting from a greater propor-
tion of diffuse radiation. Ma et al. (2014) found that coupling
of EVI with PAR, better predicted GPP than coupling EVI
with PAR,. and attributed this to tower sensor-based measure-
ment uncertainties of PAR,,, as well as better approximations of
meteorological controls on GPP by PAR,,,

Two definitions of LUE become apparent in G-R models, with
this term either defined as the ratio of GPP to APAR or defined
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as the ratio of GPP to PAR (Gower et al. 1999), with the latter
sometimes referred to as ecosystem-LUE or eLUE:

.. GPP _ GPP
APAR fAPAR x PAR’

(1.12)

GPP

eLUE=——=fAPAR x ¢ (1.13)
PAR

An advantage of using chlorophyll-based VIs in G-R models is
that the biological drivers of photosynthesis, fAPAR and light-
use efficiency (g) resulting from environmental stress and leaf
age phenology, are combined into eLUE, thereby simplifying
remote sensing-based productivity estimates.

1.3.5 Vegetation Photosynthesis Model (VPM)

Xiao et al. (2004) developed a mostly satellite-based vegetation
photosynthesis model (VPM) that estimates GPP using satellite
inputs of EVI and the land surface water index (LSWI):

GPP =¢ x fAPAR,, x PAR, (1.14)

chl

x W, x P

scalar

€= €px X Tscalar scalar (115)

where
fAPAR_,, is estimated as a linear function of EVI
PAR,,. is measured at the site

Tycatarr Wicatap Pscalar ar€ scalars for the effects of temperature,

water, and leaf phenology on vegetation, respectively
(Figure 1.10)

scalar

T,aiar is based on air temperature and uses minimum, maximum,

and optimum temperature for photosynthesis at each time step;

W,...., is based on satellite-derived LSWI that accounts for the
effect of water stress on photosynthesis:
1+LSWI
scalar — ( ) > (116)
(1+LSWl,)

Assimilated meteorological data (+GOES sun) | ¢ Tower fluxes
* Met. data
Tower data MODIS reflectances * MODIS data
o
1
é ! 1 l
g : LSWI EVI
'?a 1
1
1

GEE =\ x (Tyqiar X Wecatar ¥ Phycatar) X EVI x 1/(1+ PAR/PAR,) x PAR

R=oax T+

FIGURE 1.10 Schematic diagram of the VPRM utilizing EVI, LSWI, and scalars for temperature, leaf phenology, and canopy water content,

T,

scalar?

P r and W, respectively. The VPM model uses primarily remote sensing data along with air temperatures, while the VPRM model

additionally assimilates tower flux and meteorological information. (From Mahadevan, P. et al., Global Biogeochem. Cycles, 22(2), GB2005, 2008.)
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LSWI = (pnir - pswir)

> (1.17)
(pnir + pswir)

where
Pewir 18 the reflectance in a broadband shortwave infrared
band (e.g., MODIS, 1580-1750 nm)
LSWI,,,, is the maximum value for the growing season
P, ..r accounts for the effect of leaf age on photosynthesis and is
dependent on the growing season life expectancy of the leaves
(Wilson et al. 2001). P, is calculated over two phenophases as

scalar

1+LSWI

Pscalar = ( il ) (118)
2

from bud burst to full leaf expansion, and P, = 1, after full

expansion (Xiao et al. 2004).

The VPM model has been applied to both MODIS and SPOT-4
VEGETATION sensor data to produce tower-calibrated estimates
of GPP across a wide range of biomes, including evergreen and
deciduous forests, grasslands, and shrub sites in temperate North
America and in seasonally moist tropical evergreen forests in the
Amazon (Xiao et al. 2005; Mahadevan et al. 2008; Jin et al. 2013).

Mahadevan et al. (2008) further developed the vegetation
photosynthesis and respiration model (VPRM), a satellite-
based assimilation scheme that estimates hourly values of NEE
using EVI, LSWI, and high-resolution meteorology observa-
tions of sunlight and air temperature (Figure 1.10). NEE repre-
sents the difference between uptake (photosynthesis) and loss
(respiration) processes that vary over a wide range of timescales
(Goulden et al. 1996; Katul et al. 2001). The VPRM model pro-
vides fine-grained fields of surface CO, fluxes for application in
inverse models at continental and smaller scales (Mahadevan
et al. 2008). This capability is presently limited by the number
of vegetation classes for which NEE can be constrained using
EC tower flux data. A summary of the various remote sensing—
based estimates of GPP is shown in Table 1.2.

1.3.6 Photochemical Reflectance Index (PRI)

There is also much interest in reducing the uncertainties in GPP
models through direct remote sensing assessments of LUE.
The photochemical reflectance index (PRI) is a hyperspectral
index that provides a scaled LUE measure, or photosynthetic
efficiency, based on light absorption processes by carotenoids
(Gamon et al. 1992; Middleton et al. 2011),

p53lnm - 9570 nm )

PRI=(

1.19
(9531 nm + p570nm ) ( )

Spectral variations at 531 nm are closely associated with the
dissipation of excess light energy by xanthophyll pigments
(a major carotenoid group of yellow pigments) in order to
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protect the photosynthetic leaf apparatus (Ripullone et al.
2011). Carotenoids function in processes of light absorption
in plants as well as protecting plants from the harmful effects
of high light conditions; hence, lower carotenoid/chlorophyll
ratios indicate lower physiological stress (Pefiuelas et al. 1995;
Guo and Trotter 2004).

Several studies have shown the linear relationship between PRI
and LUE over different vegetation types (e.g., Nichol et al. 2000,
2002). Rahman et al. (2004) produced a “continuous field” retrieval
of LUE from satellite data, using the PRI as a proxy of LUE, with-
out the need of LUTSs or predetermined biome-specific LUE val-
ues. They suggested that the variations found in the continuous
LUE fields must be taken into account to accurately estimate CO,
fluxes of terrestrial vegetation. However, Barton and North (2001)
showed that PRI was most sensitive to changes in leaf area index
(LAI), and Gitelson et al (2006) noted that in order to use PRI to
predict LUE, one would need an independent estimate of LAIL

The upcoming potential launches of new hyperspectral mis-
sions, such as hyperspectral infrared imager (HyspIRI), will
provide future data fusion opportunities for the scaling and
extension of leaf physiologic processes and phenology from spe-
cies and ecosystem to regional and global scales.

1.4 Spaceborne Fluorescence Measures

Sunlight absorbed by chlorophyll in photosynthetic organisms is
mostly used to drive photosynthesis, but some radiation can also
be dissipated as heat or reradiated at longer wavelengths (650—
850 nm). This NIR light re-emitted from illuminated plants, as
a by-product of photosynthesis, is termed as solar-induced chlo-
rophyll fluorescence (SIF), and it has been found to strongly cor-
relate with GPP (Baker 2008; Meroni et al. 2009). Chlorophyll
fluorescence may be conceptualized as

SIF = g, x PAR x fAPAR (1.20)
where ¢, is the yield of fluorescence photons (i.e., the fraction of
absorbed PAR photons that are re-emitted from the canopy as
SIF photons). This expression can be combined with the GPP-
based LUE equation to remove the parallel dependence of both
processes on APAR to yield

_ SIFxg,
&f

GPP (1.21)

Empirical studies at the leaf and canopy scale indicate that the
two LUE terms tend to covary under the conditions of the satel-
lite measurement (Flexas et al. 2002). SIF data provides informa-
tion on both the light absorbed and the efficiency with which it is
being used for photosynthesis. It is an independent measurement,
linked to chlorophyll absorption, providing unique information
on photosynthesis relative to VIs. Further, SIF is more dynamic
than greenness, and will respond much more quickly to environ-
mental stress, through both change in stress-induced light-use
efficiency and canopy light absorption (Porcar-Castell et al. 2014).
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TABLE 1.2 Examples of Remote Sensing Methods of Deriving Gross Primary Productivity with Some References

Gross Primary

Productivity Other Non-Satellite Method/

Measurement Biome/Location Satellite Products Used Drivers Approach Equation R? Reference

BIOME-BGC Continental MODIS FPAR Maximum light use See GPP =¢,,, % 0.45 x SWrad x NA Running
(BioGeochemical (MOD15); efficiency (e,,,,) from a equation fPAR x f(VPD) x f(Ta) et al. (2004)
Cycles) MODIS photosynthetic active biome-properties
GPP/NPP, where radiation (PAR) as look-up table and
GPP is Gross 0.45 x SWrad maximum daily vapour
Primary (shortwave downward pressure deficit (VPD)

Productivity and solar radiation) and minimum daily air
NPP is Net Primary temperature (T,;,) from
Productivity forcing meteorology.
GPP and light use North American ecosystems ~ MODIS EVI NA Linear GPP=mx EVI+b 0.76 MODIS GPP-GPP  Sims et al.
efficiency (LUE) from evergreen needleleaf regression LUE=m x EVI+b 0.92 EVI-GPP (2006)
and deciduous forest to 0.76 EVI-LUE
grassland to savanna 0.62 MODIS LUE-LUE
GPP Tropical forests and MODIS EVI NA Linear GPP=mx EVI+b 0.5 Huete et al.
converted pastures at the regression (2006)
Amazon basin

GPP and maximum Northern Europe MODIS EVI NA Linear GPP=mxEVI+b GPP-EVI: 0.81 Olofsson
Net Ecosystem ecosystems from evergreen regression  NEE_ ., =mxEVI+b deciduous, 0.69, et al. (2008)
Exchange (NEE, ) needleleaf and deciduous coniferous forests

forest to grasslands NEE,,.—EVI:0.83
deciduous. 0.72,
coniferous forests
GPP Dry to humid tropical forest ~ MODIS EVI NA Linear GPP = 8282 x EVI + 2118, 0.74 Huete et al.
sites in Southeast Asia regression GPP (kgC ha™! month-!) (2008)
GPP African tropical savanna MODIS EVI NA Linear GPP=mx EVI+b NA Sjostrom
ecosystems including regression etal. (2011)
shrubland, woodlands,
crops and grasslands
GPP Northern Australian mesic MODIS EVI Eddy covariance Linear GPP=m x EVI+b Linear regression Ma et al.
and xeric tropical savannas ~ MODIS GPP product measured water regression  GPP =b + m(MODIS GPP) EVI-GPP ranges from (2013)
availability index (EF) GPP =b + m(EVI x PAR) 0.89 (woodland) to
and PAR GPP =b + m(EVI x PAR x EF) 0.52 (wooded
grassland)

Temperature and North American ecosystems ~ MODIS daytime land NA See GPP = (EVI g X LST,.0) xm  NA Sims et al.
Greenness Model from evergreen needleleaf surface temperature equation LST, 1 = min((LST/30); (2008)
(T-G) and deciduous forest to (LST) and EVI (2.5-(0.05 x LST))

grassland to savanna EVI g =EVI-0.10

Greenness and Crops, including soybean MODIS NDVI and a PAR,,. is the top of See GPP = VI, x PAR,, 0.84 GPP = Peng and
Radiation (G-R) and maize-soybean chlorophyll-related canopy measured PAR equation GPP = NDVI x PAR,, EVI2 x PAR,, Gitelson
model rotation spectral index (VI): 0.87 GPP = Red edge (2012)

EVI or wide dynamic NDVI x PAR,,
range vegetation 0.9-0.9 GPP =
index (WDRVT) EVIx PAR,,
(Continued)
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TABLE 1.2 (Continued) Examples of Remote Sensing Methods of Deriving Gross Primary Productivity with Some References

Gross Primary

Productivity Other Non-Satellite Method/

Measurement Biome/Location Satellite Products Used Drivers Approach Equation R? Reference

Greenness and Northern Australian mesic MODIS EVI PAR,, is the top of See GPP =EVIx PAR, NA Ma et al.
Radiation (G-R) and xeric tropical savannas atmosphere PAR equation (2014)
model

Temperature and Temperate and boreal forest ~ MODIS EVI NA Linear GPP=mx EVI+b T-G model GPP:0.27 Wu et al.
Greenness Model ecosystems in North regression  GPP = EVIg g X LST 4 to 0.91 at non-forests (2011)
(T-G) and America ~0.9 at deciduous
Greenness and forests
Radiation (G-R) 0.28-0.91 evergreen
model forests

Vegetation Single temperate deciduous MODIS EVI, NDVI, Temperature (air) and See GPP =& x fAPARchl x PARtoc ~ GPP-NDVT, 0.64 Xiao et al.
Photosynthesis broadleaf ecosystem forest LSWI, water (W yja0)> leaf phenology equation e=¢€ X T X W X P GPP-EVI, 0.84 (2004)
Model (VPM) leaf phenology (P,,..) information T,,,» Py GPP =-74.4 + 179.4 x NDVI GPP-VPM GPP, 0.92

respectively GPP = -68.3 + 299.7 x EVI,
GPP (gC m~2 10-day]

Vegetation Nine vegetation classes, MODIS EVI, and Incoming solar radiation ~ Model NA Monthly NEE - VPRM ~ Mahadevan
Photosynthesis and including evergreen and LSWI and air temperature NEE ranges from 0.96 etal. (2008)
Respiration Model deciduous forests, (deciduous temperate
(VPRM) grasslands, and shrub sites forest) to >1 at grasses

Net Ecosystem in North America and agricultural areas
Exchange, NEE =
GPP-ecosystem
respiration

Light use efficiency, Crops: sunflower Photochemical NA Linear LUE=m x PRI +b NA Gamon et al.
LUE reflectance index regression (1992)

(PRI)
LUE Crops: corn PRI NA Linear LUE = 1.37 x PRI,;, — 0.04, 0.66 Middleton
regression LUE (mol C mol~! APAR) etal. (2011)
GPP Cropland and grassland Solar- induced NA Linear US croplands: GPP = -0.88 + 0.92, US croplands Guanter
ecosystems chlorophyll regression 3.55 x SIF 0.79, Europe grasslands etal. (2014)

fluorescence (SIF)

Europe grasslands: GPP = 0.35
+3.71 x SIF

All sites: GPP = —0.17 + 3.48 x
SIE, GPP (gC m~2 day™!)

0.87, All sites

91

Sursuag a10way yIm Surddvy puv ‘SUIfopOIN ‘SULIOIITON SIOINOSIY PUvT



Monitoring Photosynthesis from Space

Global space-based estimates of SIF have recently become
available through the Japanese Greenhouse Gases Observing
Satellite (GOSAT) using solar absorption, where Fraunhofer
lines are used to derive fluorescence estimates. Subsequently,
global SIF data with better spatial and temporal sampling are
now produced from the Global Ozone Monitoring Experiment-2
(GOME-2) instrument onboard the Metop-A platform (Joiner
et al. 2013) and the Orbiting Carbon Observatory-2 (OCO-2)
launched in July 2014 (Frankenberg et al. 2014). Preparatory
studies are also underway for the future European fluorescence
explorer (FLEX) satellite mission (Meroni et al. 2009). Whereas
OCO-2 and GOME-2 were not designed specifically to measure
fluorescence and estimate only a single-wavelength SIF, the
FLEX mission will provide measurements characterizing the
spectral shape of fluorescence emission and enable estimates
of photosynthesis rates under different vegetation stress condi-
tions. In addition, the future Sentinel-5 Precursor Tropospheric
Monitoring Instrument (TROPOMI) (Veefkind et al. 2012) sat-
ellite mission will provide advance spectrometer and fluores-
cence data with significantly finer spatial resolution.

Chlorophyll fluorescence provides estimates of actual photo-
synthetic rates, as opposed to estimates of potential photosynthe-
sis that are typically derived using spectral VIs, fAPAR and LAI
products. Satellite-based SIF retrievals have thus been shown to
be highly correlated with GPP estimates derived at global and
seasonal scales (Frankenberg et al. 2011; Guanter et al. 2012).
Guanter et al. (2014) showed satellite SIF retrievals provided
direct measures of GPP of cropland and grassland ecosystems
and a more direct link with photosynthesis than found with veg-
etation greenness measures, such as VIs. Their SIF-based GPP
estimates were similar to flux-tower comparisons and found to
be significantly more accurate than empirical and process-based
productivity models, which underestimated GPP by as much as
50%-75%. This study, along with Zhang et al. (2014), has shown
the potential of SIF data to improve carbon cycle models and
provide more accurate projections of ecosystem and agricultural
productivity and climate impacts on production.

1.5 Discussion

The simple LUE-based productivity equation introduced by
Monteith (1972) comprises a great deal of biological and biophys-
ical complexity, resulting in numerous productivity modeling
approaches that attempt to deal with this complexity in different
ways. GPP is proportional to the incident shortwave radiation,
the fractional absorption of that energy (fAPAR), and the effi-
ciency with which the absorbed radiation is converted to fixed
carbon, €. The different modeling approaches tend to emphasize
one term or the other of the LUE equation, with remote sensing—
based algorithms focusing on the fAPAR term, or more recently,
the fAPAR y10r0pnyu cOmponent. Others have focused on the LUE
term as the primary determining factor of productivity either
focusing on the biome level versus species specificity of LUE
variability (e.g., Ahl et al. 2004) or focusing on the meteorologic
scalars of LUE with potential incorporation of soil moisture as
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an LUE regulator. Kanniah et al. (2009) noted that strong sea-
sonal variations in LUE at tropical mesic savanna sites were pri-
marily driven by the dynamics in understorey grasses. There is
also much attention on the role of the PAR term in explaining
seasonal and year-to-year growth variability of plant productiv-
ity, including the incorporation of light quality (direct and dif-
fuse) to complement data of radiation quantities.

With the increasing use of satellite data for large-scale pro-
ductivity assessments, it has become appealing to calibrate
such data with in situ productivity measures, such as from EC
tower sites. Glenn et al. (2008) suggested that remote sensing
is very suitable as a scaling tool of productivity when ground
data are available. Remote sensing can greatly simplify the
upscaling of ecosystem processes, such as photosynthesis,
from an expansive network of flux towers to larger landscape
units and to regional scales, as the measurement footprint of
flux towers at least partially overlaps the pixel size of daily-
return satellites (e.g., 250 m for MODIS). Further, as top-of-
canopy measurements, flux towers do not require knowledge
of LAI or details of canopy architecture to estimate fluxes
facilitating their comparisons with remote sensing measures
that similarly involve community properties resulting from
integrative, top-of-canopy radiation interactions. However,
tower data of fluxes potentially offer much more than simply
validating and/or calibrating remote sensing products and
models. An understanding of why satellite-flux tower rela-
tionships hold, or do not hold, will greatly advance and con-
tribute to our comprehension of the carbon cycle mechanisms
and scaling factors at play.

The validation of satellite-based productivity products remains
challenging due to a variety of spatial and temporal scaling issues
(Morisette et al. 2002; Turner et al. 2004). These include the
matching of large satellite pixels (~1 km) with field plot scale mea-
surements in both time and space. Li et al. (2008) demonstrated
limitations associated with disparate footprints between satellite
and tower flux measurements and the need for Landsat spatial
resolutions for flux footprint matching, particularly in nonfor-
ested canopies. Plot-level ANPP measurements are commonly
made at scales from 1 m? to 0.01 km?, while the matching MODIS
footprint may range from 62,500 m?to 1 km?2.

From a temporal perspective, plants respond to the dynamics
of environmental variables through stomatal closure and other
diurnal adjustments that cannot be easily sensed by satellite
sensors (e.g., MODIS). Variation in LUE is likely to be signifi-
cant over shorter, daily time frames when water or temperature
stress develops. However, at moderate to longer (e.g., weekly to
monthly) time scales, plants tend to increase leaf area under
favorable environments as an investment of resources into their
photosynthetic apparatus, and reduce LAI under stress when
leaves are expensive to produce and maintain. Thus, at longer
time scales, there would be a convergence of satellite greenness
signals with biologic and structural canopy properties. SIF,
however, is seen as one way to increase the effective temporal
remote sensing of vegetation photosynthesis, essentially to near
real-time.
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Despite these challenges, continuing advances made in global
weather-forecasting accuracies and the development of new sat-
ellite sensor technologies, including fluorescence, hyperspectral,
thermal, and lidar, now enable a more thorough coupling of the
environmental conditions that plants experience with improved
characterization of their biophysical states, and with better
monitoring capabilities to track plant responses to environmen-
tal changes. These advances are providing a better understand-
ing of the dynamics of terrestrial productivity and the use of
satellite data to drive productivity models of the land surface.
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MODIS Moderate-resolution imaging spectrometer
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SVM Support vector Machine
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2.1 Introduction

Estimates of canopy biophysical characteristics are required
for a wide range of agricultural, ecological, hydrological, and
meteorological applications. These should cover exhaustively
large spatial domains at several scales: from the very local one
corresponding to precision agriculture where cultural practices
are adapted to the within-field variability, through resources
and environmental management generally approached at the
landscape scale, up to biogeochemical cycling and vegeta-
tion dynamics investigated at national, continental, and global
scales. Remote sensing observations answer these requirements
with spatial resolution spanning from kilometric down to deca-
metric resolution observations according to the nomenclature
proposed by Morisette (2010). Further, remote sensing from
satellites brings the unique capacity to monitor the dynamics
required to access the functioning of the vegetation.

Few biophysical variables have been recognized as essential
climate variables (ECVs) for their key role in the main vegeta-
tion canopy processes such as photosynthesis and evapotrans-
piration (GCOS 2011). These ECVs include the leaf area index
(LAI) and the fraction of absorbed photosynthetically active
radiation (FAPAR). Since the 1980s, considerable improve-
ment in the quality of terrestrial estimates of LAT and FAPAR
derived from satellite or airborne systems has been achieved
due to the advances of measurement capability of satellite
instruments and to our understanding of the radiation regime
within vegetation canopies (Liang 2004). However, remote
sensing observations sample the radiation field reflected or
emitted by the surface, and thus do not provide directly LAI
or FAPAR estimates. It is therefore necessary to transform the
radiance values recorded by the sensor into LAI or FAPAR val-
ues. The retrieval algorithms used should ideally be accurate,
precise, and computationally efficient. Most importantly, they
should require minimal calibration since they are supposed
to be applied over diverse locations, seasons, and conditions
(Walthall et al. 2004).

Many methods have been proposed to retrieve land sur-
face characteristics from remote sensing observations (Baret
and Buis 2007; Goel 1989; Houborg and Boegh 2008; Kimes
et al. 2000; Laurent et al. 2013; Myneni et al. 1988; Pinty and
Verstraete 1991a; Verger et al. 2011a). They include empirical
methods with calibration over experimental datasets. These sim-
ple methods are limited by the size and diversity of the calibra-
tion dataset as well as by the uncertainties attached to the ground
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measurements. More complex ones based on the use of radiative
transfer models have been proposed where no in situ calibration
dataset is required. Radiative transfer models describe the physi-
cal processes involved in the photon transport within vegetation
canopies. They simulate the radiation field reflected by the sur-
face for a given observational configuration, once the vegetation
and the background are known. Retrieving canopy character-
istics from the radiation field as sampled by the sensor aboard
satellite needs to “invert” the radiative transfer model, that is,
to estimate some input variables from the measurement of the
outputs of the model.

This chapter aims at reviewing how canopy biophysical vari-
ables may be derived both from kilometric and decametric reso-
lution remote sensing observations. It will be illustrated by LAI
and FAPAR variables that will first be defined before describing
the principles of the radiative transfer model inversion used to
retrieve them. Then, the theoretical performances of LAI and
FAPAR will be investigated. Several techniques that improve the
retrievals will be discussed in detail. Finally, the possible com-
binations of methods, products, and sensors will be presented.
A conclusion will highlight the main issues to tackle, suggesting
future research avenues.

2.2 Several Definitions of
LAT and FAPAR

2.2.1 Leaf Area Index: LAI, GLAI, PAI,
GAlI, Effective and Apparent Values

LATis defined as half of the total developed area of green vegeta-
tion elements per unit ground area (m? m=2) (Chen and Black
1992; Stenberg 2006). It is a structural variable, which describes
the size of the interface for exchange of energy and mass between
the canopy and the atmosphere. It governs photosynthesis, tran-
spiration, and rain interception processes. For photosynthesis
and transpiration, the LAT definition should be restricted to the
green active area leading to the green leaf area index (GLAI)
definition. Further, the area of other organs such as stems,
branches, or fruits should be accounted for if they are green,
leading to the green area index (GAI) definition. LAI, GLAI, and
GAI may be measured using destructive techniques. However,
this is tedious and time consuming and indirect methods based
on canopy gap fraction (Po) measurements have been developed
(Jonckheere et al. 2004; Weiss et al. 2004). Since no distinction
is made by these devices between green and nongreen elements,
neither between leaves and the other elements, the actual quan-
tity measured is plant area index (PAI). However, directional
photos taken from the top of the canopy may be also used to
compute the green fraction (GF) defined as the fraction of green
area seen in the considered direction. Assuming that the green
leaves are mostly at the top of the canopy, which is generally the
case, such technique provides an estimate of the GAI (Baret et al.
2010). Similarly, remote sensing observations are mainly sensi-
tive to the green elements of the canopy and, thus, are mostly
related to the GAI (Duveiller et al. 2011; Raymaekers et al. 2014).
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TABLE 2.1 Definitions of LAI, GLAL GAI, and PAI and the Associated Indirect Measurement Methods
Only Green + Only All
Green  Non-Green Leaves  Elements Indirect Measurement Method
LAI Leaf area index v v Only destructive methods
GLAI  Green leaf area index v v Only destructive methods
GAI Green area index v v GF from the top, remote sensing
PAI Plant area index 4 4 Po measurements

Note: All quantities are expressed in m*m~2.

Table 2.1 clearly shows that indirect methods are mainly access-
ing GAI and PAI depending on the capacity to distinguish green
from nongreen elements.

The derivation of PAI or GAI from indirect measurements
requires some assumptions on canopy architecture. The turbid
medium assumption is the most commonly used, considering
that leaves have infinitesimal size and are randomly distributed
in the canopy volume. However, this simple assumption is not
always verified by actual canopies, leaves having a finite dimen-
sion and being clumped at several scales, including the shoot
(leaves grouped into shoots), plant (shoots grouped into plants),
stand (plants grouped into stands) to landscape (stands distrib-
uted in the landscape). This creates artifacts in the estimation
of the corresponding PAI (Walter et al. 2003) from gap fraction
measurements or GAI from reflectance measurements (Chen
etal. 2005). Therefore, “effective” and “apparent” quantities need
to be introduced to complement the actual “true” PAI or GAI
definitions. The effective PAI or GAI is the quantity that can be
derived from the directional gap fraction or GF based on Miller’s
formula (Miller 1967) that assumes leaves randomly distributed
in the canopy volume (Ryu et al. 2010). However, the application
of Miller’s formula requires the measurement of Po or GF in all
the directions of the hemisphere, which is rarely possible. We
therefore estimate an “apparent” PAI or GAI value that depends
on the directional sampling used. Similarly, estimates of GAI
from remote sensing are “apparent” values (Martonchik 1994)
that will depend on the observational configuration used, and
the inverse technique employed including the assumptions on
canopy architecture embedded in the radiative transfer model
considered as we will see in the following sections.

2.2.2 FAPAR: Illumination Conditions
and Green/Nongreen Elements

FAPAR is defined as the fraction of the photosynthetically active
radiation (PAR, solar radiation in the 400-700 nm spectral
domain) absorbed by a vegetation canopy (Mottus et al. 2011).
FAPAR is widely used as input in a number of primary produc-
tivity models (McCallum et al. 2009). It is therefore necessary to
consider only the green photosynthetically active elements, that
is, the green parts of the canopy. Similar to what was presented for
the LAI definition, FAPAR measurements can be computed from
the radiation balance in the 400-700 nm PAR spectral domain
(Mottus et al. 2011). The FAPAR value can be also approxi-
mated by the fraction of intercepted radiation, FIPAR, that is,
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the complement to unity of the gap faction (Asrar 1989; Begué
et al. 1991; Gobron et al. 2006; Russel et al. 1989). However, it is
not possible to distinguish the absorption or interception of the
light by the green elements from that of the nongreen elements
using these measurement techniques. Conversely, measurements
of the GF from the top of the canopy in the illumination direc-
tion provide a direct estimate of the FIPAR.

FAPAR and FIPAR variables are not intrinsic properties of the
vegetation, but result from the interaction of the light with the
canopy. FAPAR and FIPAR will thus depend on the illumination
conditions. Similarly to albedo (Martonchik 1994), the illumi-
nation conditions could be described by a component coming
only from the sun’s direction, the black sky FAPAR or FIPAR,
and a diffuse component coming from the sky hemisphere, the
white sky FAPAR or FIPAR. The black sky FAPAR or FIPAR
values depend on the sun’s direction. Most FAPAR products are
defined as the black sky values corresponding to the sun’s posi-
tion at the time of the satellite overpass (Weiss et al. 2014), that
is, around 10:30 solar time. Note that the black sky FAPAR or
FIPAR values at 10:00 local solar time have been demonstrated
to be a good estimation of the daily integrated value of FAPAR
or FIPAR (Baret et al. 2004).

2.3 Radiative Transfer Model
Inversion Methods

The light reflected by the canopy results from the radiative
transfer processes within the vegetation. It depends on canopy
state variables as well as on the illumination conditions and
the observational configuration that defines the sampling of
the reflectance field: wavebands, view direction(s), frequency of
observations, and spatial resolution. State variables characteriz-
ing the canopy structure and the optical properties of the vegeta-
tion elements include therefore some of the variables of interest
for applications such as LAI (Figure 2.1). Other variables such as
FAPAR can also be computed from the knowledge of the canopy
state variables and the illumination configuration considered
using the same radiative transfer model.

The causal relationship between the variables of interest and
remote sensing data corresponds to the forward (or direct) prob-
lem. They could be either described through empirical relation-
ships calibrated over experiments or using radiative transfer
models based on a more or less close approximation of the actual
physical processes, canopy architecture, and optical properties
of the elements including the background. Conversely, retrieving
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FIGURE 2.1 Forward (solid lines) and inverse (dashed lines) problems in remote sensing. The computation of FAPAR (Fraction of Absorbed

Photosynthetically Active Radiation) from the retrieved canopy variables is also illustrated.

the variables of interest from remote sensing measurements cor-
responds to the inverse problem, that is, developing algorithms
to estimate the variables of interest from remote sensing data
as observed in a given configuration. Prior information on
the type of surface and on the distribution of the variables of
interest can also be included in the retrieval process to improve
the performance as we will see later. Note that the estimation
of FAPAR is achieved in two steps: first, the canopy state vari-
ables are retrieved by inverting a radiative transfer model. Then,
the FAPAR is computed under specific illumination conditions
using the same radiative transfer model and the estimates of
canopy state variables.

The retrieval techniques can be split into two main approaches
depending on whether the emphasis is on the inputs (the canopy

Observation
configuration

biophysical variables-driven approach) or the outputs (radio-
metric data-driven approach) of the radiative transfer model
(Figure 2.2).

2.3.1 Radiometric Data-Driven Approach:
Minimizing the Distance between
Observed and Simulated Reflectance

The radiometric data-driven approach focuses on the outputs
of the radiative transfer model: it aims to find the best match
between the measured reflectance values and those simulated by
a radiative transfer model (Figure 2.2, right). The misfit is quan-
tified by a cost function (J) that should account for measure-
ments and model uncertainties. It can be theoretically derived

Calibration step

Observation
configuration

Reflectance*

Application step
Coefficients
Inverse Observation
model configuration

FIGURE 2.2 The two main approaches used to estimate canopy characteristics from remote sensing data for GAI estimation. On the left side,
the approach focuses on radiometric data showing the solution search process leading to the estimated LAI value, GAI*. On the right side, the
approach focuses on the biophysical variables showing the calibration of the inverse model (top) and the application using the inverse model with
its calibrated coefficients (bottom). “A” represents the cost function to be minimized over the biophysical variables (right) or over the radiometric

data (left).
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from the maximum likelihood (Tarentola 1987) assuming that
uncertainties associated to each configuration used are indepen-
dent and Gaussian distributed:
J=R-R) -W-(R-R) 2.1
where
R and R are, respectively, the vectors of observed and esti-

mated reflectances
W is the covariance matrix of uncertainties

One main limitation in applying this formalism is the difficulty
in obtaining the covariance matrix W. In most cases, just the
diagonal terms corresponding to the variance associated to the
uncertainties (6) are known. In these conditions, Equation 2.1
simplifies into the normalized Euclidean distance:

(2.2)

where N is the number of configurations used (bands, directions,
etc.). More sophisticated cost functions have been proposed to
include a regularization term that prevents the solution to be too
far away from its prior expectation. This will be reviewed later in
a separate section.

Several techniques have been used to get the solution corre-
sponding to the minimum of the cost function: iterative mini-
mization including the simplex algorithm (Nelder and Mead
1965), gradient descent-based algorithms (Bacour et al. 2002a;
Bicheron and Leroy 1999; Combal et al. 2000, 2002; Goel and
Deering 1985; Goel et al. 1984; Goel and Thompson 1984;
Jacquemoud et al. 1995; Kuusk 1991a,b; Lauvernet et al. 2008;
Pinty et al. 1990; Privette et al. 1996; VofSbeck et al. 2010), Monte
Carlo Markov chains (Zhang et al. 2005), simulated annealing
(Bacour 2001), and genetic algorithms (Fang et al. 2003; Renders
and Flasse 1996). One of the major difficulties associated with
these techniques is the possibility to get suboptimal solutions
that correspond to a local minimum of the cost function. This
can be mitigated by using several initial guesses spread over
the space of canopy realization as well as allowing some flex-
ibility and randomness along the search path toward the solu-
tion. This is unfortunately achieved at the expense of additional
computation time. However, the process can be speeded up by
using an analytical expression of the gradient of the cost func-
tion, that is, the adjoint model (Lauvernet et al. 2008). Further,
to increase the computation speed, the actual radiative trans-
fer model could be emulated into a metamodel that addition-
ally eases the derivation of the adjoint model (Jamet et al. 2005).
Note that the metamodel can be considered as an interpolation
between a set of simulated cases that can be used to populate a
look-up table (LUT) as described in the following. To limit the
problem of possible local minimum when iteratively minimizing
the cost function, a regularization term could be added based
on the knowledge of the prior distribution of the input variables
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(Tarentola 1987) or integrating some constraints. This will be
more detailed in a following sections.

LUTs working on precomputed simulations containing the
input canopy variables and the corresponding simulated reflec-
tance values have also been used directly without interpolation
(Darvishzadeh et al. 2008; Ganguly et al. 2012; Knyazikhin
et al. 1998; Vohland et al. 2010; Weiss et al. 2000). This tech-
nique is more tractable in terms of computation requirements
and limits the possibility to get trapped in a local minimum of
the cost function, as this cost function is evaluated systemati-
cally over each case of the LUT. To populate the LUT, the space
of canopy realization has to be sampled to represent the surface
response, that is, with better sampling where the sensitivity of
reflectance to canopy characteristics is the higher (Combal et al.
2002; Weiss et al. 2000). This is different from the sampling of
the training database required in canopy biophysical variable-
driven approaches as explained earlier. The cases in the LUT are
sorted according to the cost function value (J). Then, the solution
may be considered as the one corresponding to the best match
obtained with the minimum value of ], similarly to what is done
with the iterative minimization techniques. It can be also defined
as a fraction of the initial population of cases such as in Combal
et al. (2002) and Weiss et al. (2000) or using a threshold defined
by measurements and model uncertainties (Knyazikhin et al.
1998). A more rigorous way of exploiting the solutions would
be to weigh each case according to its likelihood as done in the
GLUE method (Beven and Binsley 1992; Makowski et al. 2002).

2.3.2 Canopy Biophysical Variable-Driven
Approach: Machine Learning

This approach belongs to the machine learning type of algo-
rithm that requires first to calibrate an inverse parametric model
(Figure 2.2, right). The calibration mainly consists in adjusting
the coeflicients of the inverse model to minimize the distance
between the estimated variable of interest (GAI in this example)
and the ones populating the calibration dataset. For FAPAR, the
RT model is used a second time to simulate the corresponding
FAPAR values for a given illumination condition. The inverse
model is then calibrated by minimizing the distance between
the estimated FAPAR value and the one simulated in the calibra-
tion dataset. Once calibrated, the parametric inverse model can
be used in the forward mode to compute the variables of interest
from the observed reflectance values. The learning dataset can
be generated either using simulations of radiative transfer mod-
els, or based on concurrent experimental measurements of the
variables of interest and reflectance data.

The inverse model may be calibrated both over experimental
or synthetic datasets (Asrar et al. 1984; Chen et al. 2002; Deng
et al. 2006; Huete 1988; Richardson et al. 1992; Verrelst et al.
2012; Wiegand et al. 1990, 1992). However, the use of experimen-
tal datasets may be limited by its representativeness regarding
the possible conditions encountered over the targeted surfaces,
that is, combinations of geometrical configurations, type of veg-
etation and state, including variability in development stage,
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stress level and type, and background (bare soil, understory)
and its state (roughness, moisture). Measurement errors associ-
ated both to the variables of interest and to the reflectance values
may also propagate to uncertainties and biases in the algorithm
and should be explicitly accounted for (Fernandes and Leblanc
2005; Huang et al. 2006). Further, since ground measurements
have a footprint ranging from few meters to few decameters,
specific sampling designs should be developed to represent the
sensor pixel (Weiss et al. 2007). This task is obviously more dif-
ficult for medium and coarse resolution sensors (Camacho et al.
2013; Morisette et al. 2006; Weiss et al. 2007). Radiative transfer
models could be used efficiently to generate a calibration dataset
covering a wide range of situations and configurations (Bacour
et al. 2006; Banari et al. 1996; Baret and Guyot 1991; Baret et al.
2007; Ganguly et al. 2012; Gobron et al. 2000; Huete et al. 1997;
Myneni et al., 2002; Leprieur et al. 1994; Rondeaux et al. 1996;
Sellers 1985; Verstraete and Pinty 1996).

2.3.2.1 Vegetation Index (VI)-Based Approaches

The simplest methods are based on the calibration of linear or
polynomial multiple regression functions where the dependent
variable is the biophysical variable of interest. The independent
variables are either the top of canopy reflectance in few bands, or
a transform and/or a combination of these reflectances resulting
into a vegetation index (VI). VIs are designed to minimize the
influence of confounding factors such as soil reflectance (Baret
and Guyot 1991; Richardson and Wiegand 1977) or atmospheric
effects (Huete and Lui 1994). The strong nonlinearity between
reflectances and canopy variables is reduced using these reflec-
tance transforms or band combination allowing using linear sta-
tistical models. Based on these principles, operational algorithms
developed for medium-resolution sensors are currently used:
MGVI for MERIS further extended to other sensors (Gobron
etal. 2008), MODIS back-up algorithm based on NDVI (Myneni
et al. 2002), and POLDER algorithm based on DVI computed
from bidirectional reflectance factor (BRF) (Roujean and Lacaze
2002). Nevertheless, although quite often effective, VIs are
intrinsically limited by the empiricism of their design and the
small number of bands concurrently used (generally 2-3).

2.3.2.2 Machine Learning Approaches

Alternatively, more sophisticated machine learning methods
have been proposed since the beginning of the 1990s. Neural
networks (NNTs) have been used intensively (Abuelgasim et al.
1998; Atkinson and Tatnall 1997; Danson et al. 2003; Gong et al.
1999; Kimes et al. 1998; Smith 1993). Baret etal. (1995) and Verger
et al. (2011a) demonstrated that NNTs used with individual
bands were performing better than classical approaches based
on VIs. Fang and Liang (2005) found that NNTs were perform-
ing similarly as the projection pursuit multiple regression. It was
applied over MERIS (Bacour et al. 2006) and VEGETATION
(Baret et al. 2007) kilometer spatial resolution data. The prin-
ciples have been also applied at decametric resolution over air-
borne POLDER (Weiss et al. 2002a), LANDSAT (Fang and Liang
2003), CHRIS (Verger et al. 2011a), and FORMOSAT (Claverie
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et al. 2013) sensors. Although NNTs are becoming very popu-
lar, Verrelst et al. (2012) investigated alternative machine learn-
ing methods including support vector regression (SVM) and
Gaussian process regression (GPR). They demonstrated the
interest of GPR when the training was achieved over experimen-
tal datasets. However, when applied to a large number of simu-
lated cases, GPR is limited by the computation capacity (Mackay
2003). Further, one advantage of the GPR is the possibility to
get an estimation of the associated uncertainties when applied to
experimental data. In the case of model simulations, the uncer-
tainties attached to the reflectance measurements need to be
specified, which is not an easy task.

The training dataset is obviously a major component of the
machine learning methods. It should represent the distributions
and codistributions of the input canopy biophysical variables. This
is where the prior information is mainly embedded in machine
learning methods that can be considered as a Bayesian approach.
The density of cases that populate the space of canopy realization
may rapidly decrease as a function of its dimensionality defined
by the number of required canopy variables. Experimental plans
may be conveniently used to limit local sparseness of the train-
ing dataset (Bacour et al. 2002b). Machine learning systems can
be also considered as smoothers. They thus mainly “interpolate”
between cases in the training dataset. Extrapolation outside the
definition domain (corresponding to the convex hull of the input
reflectance of the training dataset) is likely to provide unrealistic
estimates. Further, cases that are simulated but never observed
may be discarded to get a more compact training dataset and effi-
cient learning process (Baret and Buis 2007). However, it requires
compiling a large database of reflectance measurements that
should be representative of all the possible situations available.

2.3.3 Pros and Cons Associated to
the Retrieval Approaches

The pros and cons of the several approaches just briefly reviewed
are as follows:

o Computation requirements: Machine learning approaches,
once calibrated, are obviously very little demanding in
terms of computation. The inverse model is generally
relatively simple and could be run very quickly. However,
the calibration (or learning or training) process could
require large computer resources, particularly for com-
plex parametric model with a significant number of coef-
ficients to be tuned and when the training dataset is large.
The implementation of a LUT technique in algorithmic
operational chains is very efficient, because the radia-
tive transfer model is run offline. Conversely, iterative
minimization methods require large computer resources
because of its iterative nature. Improvements are possible
using a metamodel. Further, automatic segmentation or
discretization of the reflectance space (Pinty et al. 2011)
will also reduce the number of inversions to be completed
over a whole set of images.
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FIGURE 2.3 An example of an NNT used to estimate LAI from Sentinel2 top of canopy reflectance. “Norm” represents the normalization of the
inputs or output (LAI). “S” and “L” represent tangent-sigmoid and linear transfer functions associated to each neuron. ¢ and 0,0, represent, respec-
tively, the relative azimuth between sun and view directions, sun and view zenith angles. “R560” to “R2190” represent the top of canopy reflectance
in the several Sentinel 2 bands. (From Baret, E. et al., S2PAD—Sentinel-2 MSI—Level 2B Products Algorithm Theoretical Basis Document, Vega,
GmbH, Avignon, France, 2009.)

o Flexibility of the observational configuration: Iterative biome type considered (Shabanov et al. 2005). For the

optimization methods allow retrieving canopy charac-
teristics from several observational configurations. It is
even possible to invert radiative transfer models con-
currently over several pixels. This opens great potentials
for exploiting additional temporal or spatial constraints
as we will see later. LUT could theoretically cope with
variable configurations at the expense of the dimension-
ality and thus the size of the tables, making them more
difficult to manipulate. Conversely, machine learning
methods require a fixed number of inputs. The char-
acteristics of the configuration need thus to be used as
inputs of the inverse parametric model as illustrated in
Figure 2.3 where the illumination and view directions
are explicitly used. However, this increases the dimen-
sionality of the system, making the calibration step
more demanding and more difficult. One alternative is
to calibrate several parametric models for each individ-
ual configuration and then select the proper calibrated
inverse model.

Integration of prior information: The radiometric data-
driven approaches integrate the prior information
directly in the cost function within the regularization
term (see Equation 2.3). However, in the case of LUTs,
it is also possible to restrict the simulations to the range
of situations to be encountered as is done within the
MODIS LAT and FAPAR algorithm that depends on the
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machine learning approaches, prior information is intro-
duced through the distributions and codistributions of
the inputs of the radiative transfer model: when LAI
and FAPAR have to be estimated under situations where
the type of canopies and their stage of development are
known, it is more efficient to calibrate a specific inverse
model for each individual situation. Note that Qu et al.
(2008) proposed to use Bayesian networks where model
simulations could be exploited along with a description
of the distribution of the variables that may depend on
growth stages or canopy types.

Associated uncertainties: The radiometric data—driven
approaches allow getting some estimates of the uncer-
tainties associated to the solution by propagating the
uncertainties associated to the measurements and
to the model using the partial derivatives of the cost
function with regard to the measurements (Lauvernet
2005). When using LUTs, uncertainties could be esti-
mated by Monte Carlo methods or approximated by
the standard deviation of the ensemble of solutions
defined by the uncertainties in the measurements
(Knyazikhin et al. 1998). For machine learning meth-
ods, the error on the measurements may be assessed in
different ways as proposed by Aires et al. (2004), which
may also include the errors associated to the retrieval
process itself. A more simple alternative solution is also



30 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

proposed by Baret et al. (2013) based on the training
dataset. Although the estimation of uncertainties of
the retrievals is possible, it is generally limited by the
poor knowledge on the input uncertainties associated
to the reflectance measurements and radiative trans-
fer models used. Knyazikhin et al. (1998) used a 20%
relative uncertainty applied to MODIS top of canopy
reflectance for LAT and FAPAR retrieval. Baret et al.
(2007) proposes to use an additive uncertainty around
0.05 and a multiplicative uncertainty around 3%. This
example shows that the uncertainties attached to each
band are poorly known. Further, the structure of the
uncertainties may also play an important role and is
unfortunately very difficult to describe.

o Robustness of the retrieval and quality assessment: A qual-
ity index needs to be associated to the retrieved values
to inform about the status of the inversion process. For
iterative optimization techniques, it could be the criteria
used to the stop the iterations (Gilbert 2002). As a matter
of fact, the algorithm may sometimes encounter numeri-
cal problems occurring generally with very small values
of J. Conversely, no numerical problems are expected for
LUT and machine learning approaches, and the quality
index should mainly indicate whether the input reflec-
tances were inside the definition domain and if the out-
put solution is in the expected range of variation (Baret
et al. 2013). The performances of the approach will both
depend on the minimization algorithm itself and on the
level of ill-posedness of the inverse problem as a function
of measurement configuration and model and measure-
ment uncertainties.

Theoretical Performances of
Biophysical Variables Estimation

24

Several biophysical variables are potentially accessible as
reviewed previously. However, depending on the assumptions
on canopy structure and the observational configuration con-
sidered, the “apparent” values retrieved from remote sensing
observations will be associated with contrasted performances.
Further, several possible definitions for GAI and FAPAR need
also to be discussed in terms of the associated uncertainties.
The theoretical estimation performances were thus investi-
gated using a simple numerical experiment. The SLC radia-
tive transfer model (Verhoef and Bach 2007) coupled with the
PROSPECT model (Jacquemoud and Baret 1990) was used to
simulate the canopy reflectance in the Sentinel 2 (Malenovsky
et al. 2012) bands for a large set of combination of canopy
characteristics (Figure 2.5) covering the expected range of
variation of each of the canopy, leaf, and soil input variables.
The seven bands considered (560, 670, 705, 740, 865, 1610, and
2190 nm) were chosen to sample the main absorption features
of chlorophyll and water. The SLC model allows simulating
leaf clumping at the plant scale: plants are randomly sown and
are represented by ellipsoidal envelopes filled with randomly
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distributed leaves. The leaf clumping is mainly driven here by
the crown fraction, that is, the fraction of ground area casted
by the crowns in the vertical direction. Therefore, SLC allows
also simulating turbid medium canopies when the crowns
cover fully the background (crown cover = 1.0). Three typical
sun positions and five view directions were considered. The
black sky FAPAR (FAPAR,,) and white sky FAPAR (FAPAR,,),
the green fraction (GF) and the effective GAI, GAI,; were
simulated in addition to the input GAI, GAI,,.. The simulated
dataset was used as a LUT to retrieve the five variables of inter-
est: FAPAR,, FAPAR,,, GF, GAl and GAI,,,.. A subsample
of the simulated cases was used as the test dataset. The corre-
sponding reflectances were contaminated with realistic mea-
surement uncertainties. The solution is finally selected as the
case in the LUT that corresponds to the minimum of the cost
function presented in Equation 2.2, where 7 is the variance of
the reflectance of the test dataset computed from the measure-
ment uncertainties introduced. Note that no constraints or
prior information was used in the cost function. The retrieval
was achieved over turbid medium or clumped test cases using
LUT based either on turbid medium or clumped canopy struc-
ture assumption. More details can be found in Kandasamy
et al. (2010).

Results presented in Figure 2.4 show that GF and FAPAR,,
are the best estimated variables. Further, the good perfor-
mances are relatively independent from the assumptions on
canopy structure. The black sky, FAPAR,, is well estimated,
with however a significant degradation of the retrieval perfor-
mances when the test cases correspond to clumped canopies.
GAI values are much more difficult to estimate, particularly the
actual GAI,,, value for the clumped test cases. Conversely, the
effective GAI, GAl,, provides relatively stable performances
independent from the assumptions on canopy structure. Note
that the turbid medium test cases retrieved with a LUT made
of clumped canopies provide poorer estimates as compared to
those derived from the turbid medium LUT. Although turbid
medium cases are included in the LUT made with clumped
canopies, the degradation of performances is explained by
the smaller number of turbid medium cases contained in the
LUT populated with clumped canopies (less cases with crown
cover close to 1.0). Further, possible ambiguities between turbid
medium and clumped cases providing very similar reflectance
values may be encountered. The variability of retrieval perfor-
mances depending on the observation configuration is larger
for the FAPAR,, and GAI,; and more particularly for GAI,,,.,
in agreement with the overall performances associated to the
retrieval of these variables.

This simple numerical experiment demonstrates that the
retrieval of the true GAI from monodirectional reflectance
measurements is likely to be relatively inaccurate, particularly
in the case of clumped canopies. The use of a clumped canopy
model in the inversion process does not help the retrieval: more
constraints or prior information is needed to compensate for
the additional unknown variables required to describe canopy
clumping as discussed in Section 2.5.
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FIGURE 2.4 Theoretical performances (R” of the regression between the reference variable and the estimated value) of [FAPAR,, FAPAR , GF,
GALg and GAIL,,] estimation depend on the test cases considered (turbid or clumped) and the assumptions on canopy structure used in the LUT
(turbid or clumped). Box plot representation of the results for the 15 observational configurations (three sun position and five view directions).
The median value is the red line in the box plot that contains 50% of the data. Whiskers extend to the extreme values except if they are considered

as outliers that are represented by a red “+.”

2.5 Mitigating the Underdetermined
and Ill-Posed Nature of
the Inverse Problem

2.5.1 Underdetermination and Ill-Posedness
of the Inverse Problem

Canopy reflectance models will depend on a set of input vari-
ables characterizing the several components: soil, leaf, and can-
opy structure (Figure 2.5). Several models have been proposed
to describe the soil reflectance. They are either physically based

ones mostly focusing on the bidirectional variability of the
reflectance (Cierniewski et al. 2002; Hapke 1981; Jacquemoud
et al. 1992; Liang and Townshend 1996) or more empirical ones
describing the spectral variability (Bach and Mauser 1994; Liu
et al. 2002; Price 1990). At least six parameters are required to
describe both the directional and spectral variation of soil prop-
erties. Leaf reflectance and transmittance may be simulated
from the knowledge of its composition in the main absorbers
(chlorophyll, water, and dry matter), the mesophyll structure,
and the surface features (Dawson et al. 1998; Jacquemoud and
Baret 1990; Jacquemoud et al. 2009). At least four parameters

Spectral sampling

Directional sampling

Canopy structure
Leaf area,
orientation,
clumping,...

Leaf properties

Biochemistry
Mesophyll structure
Surface characteristics

Soil reflectance

Composition
Roughness
Texture/structure

Observational
configuration

Radiative
transfer model

FIGURE 2.5 The radiative transfer models used to simulate canopy reflectance and additional canopy properties as a function of the leaf, soil,

and canopy characteristics.
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are required here. The simplest description of canopy structure
could be achieved with two parameters: GAI and the orienta-
tion of the leaves. Therefore, the whole spectral and directional
reflectance field of the canopy could be simulated with at least 12
parameters that are mainly unknown and should be estimated
through radiative transfer model inversion. This needs to be
solved with at least the same amount of independent reflectance
measurements provided by the observational configuration, that
is, combination of bands and view or illumination conditions.

The actual dimensionality of remote sensing measurements
has been evaluated in different ways, generally by considering
independently the spectral and directional dimensions. Several
studies report that the bidirectional reflectance distribution
function could be decomposed using empirical or semiem-
pirical orthogonal functions with generally 2-4 kernels (Bréon
et al. 2002; Lucht 1998; Weiss et al. 2002b; Zhang et al. 2002a,b).
Other studies report a high level redundancy between bands
(Green and Boardman 2001; Liu et al. 2002; Price 1990, 1994;
Thenkabail et al. 2004) with a dimensionality varying between 5
and 60 depending on the data considered and the method used
to quantify the dimensionality. More recently, Laurent et al.
(2011) found a dimensionality of 3-4 using a singular decompo-
sition method applied to CHRIS images having a high spectral
resolution and several view directions. This finding confirmed
those of Settle (2004) and Simic and Chen (2008) showing a high
degree of redundancy between bands and directions. It is there-
fore clear that in most situations, the radiative transfer model
inversion is an underdetermined problem, since the number
of unknown variables to be estimated is larger than the actual
dimensionality of the observations.

Because of its under-determination and uncertainties
attached to models and measurements, the inverse problem
is generally ill-posed: the solution is not unique and does not
depend continuously on the observations (Garabedian 1964). In
these conditions, very similar reflectance spectra simulated by
a radiative transfer model (Figure 2.2, left) may correspond to
a wide range of solutions. This may be due to two main factors:

o Lack of sensitivity of canopy reflectance to a given vari-
able: This is the case for large GAI values because of the
well-known saturation problem: a small variation in the
measurements may correspond to a very large variation in
the retrieved GAI value. Under the same high GAI condi-
tions, the retrieved soil reflectance will be very poor, since
the measured reflectance will be no more sensitive to soil
background reflectance.

o Compensation between variables: This is obviously the case
when some variables appear combined together always the
same way in the model, such as in the form of a product:
it is thus impossible to estimate separately each variable
in this situation. However, this is also observed for other
variables that are not formally appearing as products in
the model as reported by several authors (Baret and Buis
2007; Baret et al. 1999; Shoshany 1991; Teillet et al. 1997;
Weiss et al. 2000).
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The ill-posedness of radiative transfer model inversion should
be mitigated by exploiting additional information (Baret et al.
2000; Combal et al. 2001; Myneni et al., 2002). This could be
achieved both by using prior information on the distribution of
the variables, and by exploiting some constraints on the vari-
ables. Further, reducing the model uncertainties when possible
by a proper selection of the radiative transfer model will also
improve the accuracy of the retrieval. These issues will be inves-
tigated separately in the following sections.

2.5.2 Reducing Model Uncertainties

The realism of the radiative transfer model impacts largely the
retrieval performances. The model should be physically sound
and the embedded assumptions on canopy architecture and
leaf and soil optical properties should be consistent with the
actual canopy considered. The soil is relatively well described
mainly by empirical models as reviewed in a previous section.
The leaf optical properties are also quite well described by the
PROPSECT (Jacquemoud et al. 2009) or LIBERTY (Dawson
etal. 1998; Moorthy et al. 2008) models, at least if the directional
effects are not considered (Comar et al. 2014). The canopy archi-
tecture is therefore recognized as the main limiting factor in the
modeling of vegetation reflectance. To account for particular
architectural features of a given canopy, prior knowledge on the
type of vegetation viewed is therefore mandatory. Depending on
the spatial resolution of the observation and the heterogeneity of
the scene, this information is not always accessible. Observations
at kilometric spatial resolution are often corresponding to a mix
of different vegetation types, making the use of specific radiative
transfer models challenging. Conversely, at decametric spatial
resolution, pixels are more likely to be “pure” and the type of
vegetation may be more easily identified. In these conditions,
the inversion using a radiative transfer model for which the
architecture is described in a more realistic way will reduce the
error associated to the radiative transfer model and contribute to
improve the retrieval performances. Lopez-Lozano (2008) com-
pared the inversion of a turbid medium reflectance model where
leaves are assumed randomly distributed within the canopy
volume and of infinitesimal size to that of a 3D model adapted
to maize and vineyard crops (Figure 2.6). The results showed
clearly that GAI estimation improved a lot with a 3D descrip-
tion of canopy architecture for the vineyard case, where the
turbid medium assumption is very far from reality as compared
to the maize case. The estimated GAI using a turbid medium
shows a systematic underestimation due to the leaf clumping:
when the assumptions on canopy architecture are not verified
by the canopy observed, the retrieved GAI value will be termed
“apparent.” This apparent GAI value is the one, which is acces-
sible from the remote sensing measurements and the interpreta-
tion pipeline. It will thus depend on the inverse technique and
on the radiative transfer model used. In addition, the apparent
value may also strongly depend on the observational configura-
tion used, as in the case of the vineyard canopy where the row
orientation has to be accounted for. Using more realistic canopy
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FIGURE2.6 Comparison of GAlretrieval performances when using a turbid medium radiative transfer model (a) and 3D realistic canopy archi-
tecture (b). Examples over maize (c, top) and vineyard (c, bottom). RMSE is the root mean square error. (From Lopez-Lozano, R., Tecnologias de
informacion geografica en la cartografia de parametros biofisicos de parcelas de maiz y vina para agricultura de precision, in Geografia y ordena-
cion del territorio, Universidad de Zaragoza, Zaragoza, Spain, 2008, p. 211.)

architecture implies more variables to describe the vertical and
horizontal distributions of the green area density. The gain in
realism obtained at the expense of additional unknown canopy
variables should be counterbalanced by prior information on the
distribution of these additional canopy structure variables.

2.5.3 Using Prior Information

The prior information characterizes the knowledge available on
the distribution and codistribution of the input variables of the
radiative transfer models. It is used directly in machine learn-
ing approaches to generate a calibration dataset that reflects this
knowledge. For LUTs and iterative optimization methods, prior
information is introduced in the cost function through a regu-
larization term:

J=(R-R)-W™'-(R-R) + (V-V,)' -C"-(V-V,)

Radiometric information

(2.3)

Prior information

where
V and V,, are, respectively, the vectors of the estimated and
prior values of the input biophysical variables
C is the covariance matrix characterizing the prior
information

Note that the first part of this equation corresponds to

Equation 2.1. The second part of Equation 2.3 corresponds to
the distance between the values of the estimated variables and
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those of the prior information. The theory behind this equa-
tion derives from Bayes’ theorem (Bayes and Price 1763) that
was extensively used in parameter estimation (Tarantola 2005).
However, if the theory is well known, it is not yet largely used in
the community (Combal et al. 2002; Lauvernet et al. 2008; Lewis
et al. 2012; Pinty et al. 2011).

Implementing the cost function as expressed by Equation 2.3
requires some reasonable estimates of covariance matrices
W and C as well as of the prior values V,. The terms of W should
reflect both measurement and radiative transfer model uncer-
tainties. While some rough estimates of the measurement uncer-
tainties could be derived from the sensor specification, model
uncertainties are far more difficult to estimate. Further, they
may depend significantly on the situation considered, such as
low or high vegetation amount and the discrepancy between the
canopy structure description embedded in the radiative transfer
model and that of the observed canopy. It is even more difficult
to estimate the covariance terms in W: measurement and model
uncertainties may have important structure that translates into
high covariance terms that are however very poorly known.
When using simultaneously a large number of configurations as
in the case of hyperspectral observations, these covariance terms
will allow weighing properly the several configurations used. It
thus accounts for the large redundancy exhibited between spec-
tral bands. The difficulty to estimate the covariance terms in W
explains why a small number of configurations are often selected
when a larger number is available as in the case of hyperspec-
tral and/or multidirectional observations. Thus, the reduction of
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the dimensionality of the input observations is highly desired in
most retrieval problems (Tenenbaum et al. 2000). For machine
learning methods, a reduced dimensionality is also beneficial,
since the number of coefficients of the inverse parametric model
will grow with the number of observations used as inputs, mak-
ing the calibration process more difficult and instable.

Introducing prior information in the inversion process
improves the precision by reducing the variability of the pos-
terior distribution of the estimated variables. However, this is
achieved at the expense of accuracy: the solution is biased toward
the prior information value as observed in Figure 2.7.

2.5.4 Using Additional Constraints

2.5.4.1 Temporal Constraints

The dynamics of canopy structure and leaf optical properties
results from incremental processes under the control of climate,
soil, and the genetic characteristics of the plants. Very brutal and
chaotic time courses are therefore not expected, at the excep-
tion of accidents such as fire, flooding, harvesting, or lodging.
The smooth character of the dynamics of canopy variables may
be exploited as additional constraints in the retrieval process as
proposed by Lewis et al. (2012). The use of models describing the
time course of some of the variables was proposed by Kotz et al.
(2005) to improve remote sensing estimates of GAI in maize
crops: results show a significant improvement of estimates, par-
ticularly for the larger GAI values where saturation of reflec-
tance is known to be a problem. The semi-empirical nature of the
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model with parameters having some biological meaning, allows
to accumulate prior information on them for efficient exploita-
tion. However, the results show that the improvement in GAI
retrieval is mainly coming from the “smoothing” effect of the
model: fitting the GAI dynamics model over the instantaneous
estimates corresponding to each individual date of observation
provides similar performances (Kotz et al. 2005). This explains
why compositing techniques applied to kilometric resolution
observations are very popular: very little prior information is
available on the dynamics of the surface except the expected
smoothness of the temporal profiles (Atkinson et al. 2012; Chen
et al. 2004; Kandasamy et al. 2013; Lewis et al. 2012; Refslund
et al. 2013; Verbesselt et al. 2010b; Zhu et al. 2013). The usual
sigmoidal shape of vegetation growth and senescence curves
(Jonsson and Eklundh 2004; Zhang et al. 2003), and the possible
use of the climatology, (Samain et al. 2007; Verger et al. 2012a)
have been also exploited.

2.5.4.2 Spatial Constraints

Most of the algorithms are currently applied to independent pix-
els, neglecting the possible use of spatial structures as observed
on most images. However, some authors attempted to exploit
these very obvious patterns at high spatial resolution. The “object
retrieval” approach proposed by Atzberger (2004) is based on
the use of covariance between variables as observed over a lim-
ited cluster of pixels representing the same class of object such
as an agricultural field. Results show significant improvement
of the retrieval performances for GAI, chlorophyll and water
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contents, presumably because of a better handling of compensa-
tions between GAI and leaf inclination in the retrieval process
as suggested by Atzberger (2004). The principles were further
extended using simple heuristics that could apply at the field
scale for agriculture applications (Atzberger and Richter 2012).
This implies that objects, sometimes called “patches,” are first
identified, which is now becoming a very common approach in
remote sensing image segmentation techniques (Blaschke 2010;
Pefia-Barragan et al. 2011; Vieira et al. 2012). The objects need
then to be classified to exploit some features shared by the pixels
of a single patch.

2.5.4.3 Holistic Retrieval over Coupled Models:
From Inversion to Assimilation

Retrieval of characteristics of some element of the system with-
out solving the whole system at once will be suboptimal: each
element of the system imposes constraints on other elements
through the radiative transfer physical processes, temporal or
spatial constraints as seen previously. This is clearly demon-
strated in the case of the radiative coupling between the leaves
and the canopy: when estimating structural canopy character-
istics from bottom of the atmosphere reflectance measurements
in several bands and directions, the inversion process may be
split into several parallel and independent inversions for each
band. The leaf characteristics, that is, reflectance and transmit-
tance, sometimes grouped into the single scattering albedo,
need to be estimated (Pinty and Verstraete 1991b) for each of
the bands considered. This may lead to inconsistent estimates of
the structure characteristics derived from the inversion applied
independently on each band. Further, it may lead to spectrally
inconsistent leaf optical properties estimates, since no spectral
constraints coming from a leaf optical properties model are
imposed. Solving the whole system at once using coupled leaf
and canopy radiative transfer models will therefore improve
the consistency of the estimates by imposing the spectral con-
straints coming from the leaf radiative transfer model. The inter-
est of such holistic approach was recently highlighted by Laurent
et al. (2011) when using coupled canopy and atmosphere radia-
tive transfer models.

Lauvernet et al. (2008) proposed a “multitemporal patch”
inversion scheme to account both for spatial and temporal
constraints. Reflectance data are here considered observed
from the top of the atmosphere. Atmosphere/canopy/leaf/soil
radiative transfer models are thus coupled to simulate top of
the atmosphere reflectance from the set of input variables of
each submodel. Spatial and temporal constraints are based on
the assumption that the atmosphere is stable over a limited
area (typically few kilometers) but varies from date to date,
and that surface characteristics vary only marginally over a
limited temporal window (typically + 7 days) but may strongly
change from pixel to pixel (Hagolle et al. 2008). This has obvi-
ously important consequences on the underdetermined nature
of the inverse problem, since atmospheric characteristics will
be shared between the pixels of a patch, while vegetation char-
acteristics will be shared during a limited time period. Results
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demonstrate the interest of the approach for the estimation of
most of the variables, particularly for the aerosol characteristics
and for canopy characteristics such as GAIL

However, the improvement of retrieval performances based
on such holistic approach is gained at the expense of additional
complexity in terms of the number of unknown variables to be
estimated and of the computational resources required to run
the coupled models. Machine learning approaches may reach
their limits in such conditions. Iterative optimization efficiently
implemented using the adjoint model (Lauvernet et al. 2008;
Lewis et al. 2012; Vofibeck et al. 2010) provides a convenient
solution. This could be used ultimately to couple the radiative
transfer model to a functional-structural plant model as pro-
posed by Weiss et al. (2001). However, considerable efforts are
still needed to describe the dynamics of the canopy structure
consistently with both the radiative transfer modeling and with
the canopy functioning.

2.6 Combination of Methods and
Sensors to Improve the Retrievals

2.6.1 Hybrid Methods and Ensemble Products

Verger et al. (2008) demonstrated that NNTs could be used
efficiently to replace the actual MODIS algorithm (Shabanov
et al. 2005) that is based on a LUT method: NNTs were cali-
brated over an empirical training dataset containing the MODIS
top of canopy BRF values and the corresponding MODIS LAI
products. This approach is therefore different from calibrat-
ing a machine learning algorithm directly on radiative transfer
model simulations as done by Bacour et al. (2006) or Baret et al.
(2007). It is termed hybrid, because a canopy biophysical-driven
method is calibrated over the outputs of a radiometric data-
driven approach. This principle was later used to relate the long
time series of AVHRR NDVI VI (Tucker et al. 2005) to LAI and
FAPAR MODIS products during an overlapping period between
both sensors (2000-2009) (Zhu et al. 2013).

With the compilation of results derived from several initia-
tives dedicated to the validation of global remote sensing prod-
ucts, the performances of products started to be quantified in
a more representative way (Garrigues et al. 2008). This allowed
to select the more consistent available products and to eventu-
ally combine them and propose a new “ensemble” product that
capitalizes over past development efforts (Figure 2.8): a train-
ing dataset is first built that contains a globally representative
sample of MODIS and CYCLOPES products along with reflec-
tance as measured by a sensor from which the “ensemble” prod-
uct is generated (Baret et al. 2013; Verger et al. 2014; Xiao et al.
2014). The original biophysical products in the training database
need to share the same spatial and temporal support to be con-
sistently combined. This is achieved by applying interpolation
methods that will further smooth possible spatial or temporal
discrepancies. A weighed average of the original products is then
computed to get the fused products (Figure 2.8). The weights are
derived from the results of the validation of the original products
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“ensemble” products.

using either the associated uncertainties (Xiao et al. 2014) or
heuristic arguments (Baret et al. 2013). The fused products and
the corresponding reflectance values are then used to calibrate
a machine learning algorithm. The calibrated machine learn-
ing algorithm is finally used to transform the reflectance values
into the corresponding “ensemble” product (Figure 2.8). In the
case of GEOV1 (Baret et al. 2013), the transformation is applied
using a backpropagation NNT over each individual observation
to get instantaneous fused LAl and FAPAR values. A smoothing
and gap-filling algorithm is then applied over the time series of
fused products (Verger et al. 2011b). In the case of GLASS prod-
ucts (Xiao et al. 2014), a whole year of reflectance observations
in the red and near-infrared is used to get the corresponding
yearly time series of LAI products using a generalized regression
NNT (Specht 1991). Results show that these ensemble products
are generally overperforming the original products (Camacho
etal. 2013; Fang et al. 2013; Xiao et al. 2014).

2.6.2 Combining Sensors to Build Long,
Dense, and Consistent Time Series

Monitoring the dynamics at the seasonal or multiannual scale
allows to better characterize the canopy functioning including
the phenology (Ganguly et al. 2010; Jonsson and Eklundh 2004)
and detect anomalies (Bessemoulin et al. 2004; Ciais et al. 2005),
breaks (Verbesselt et al. 2010a) or trends (Alcaraz-Segura et al.
2010; de Jong et al. 2012; Fensholt et al. 2012; Herrmann et al.
2005) across long time series of consistent observations. The
revisit frequency, consistency, and length of the period when
observations are accumulated are the main limiting factors
when exploiting the time series. For global scale applications,
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observations are currently provided by kilometric spatial resolu-
tion sensors on polar orbit (Figure 2.10). They have a relatively
large swath allowing to map the whole Earth within 1 day.
However, this potential daily observation frequency is reduced
because of the cloud occurrence. The combination of observa-
tions by different sensors will provide only marginal gain in
terms of the number of cloud-free dates of observations because
of the strong spatiotemporal correlation of the distribution of
clouds: Yang et al. (2006) reported no improvement when com-
bining MODIS products derived from AQUA and TERRA.
However, Hagolle et al. (2005) reported an improvement of both
the completeness and the precision of top of canopy reflectance
when compositing the two VEGETATION instruments as com-
pared to the use of a single one. Similarly, Verger et al. (2011b)
fused MODIS and VEGETATION data, which resulted both in
a significant reduction of the fraction of missing products as
well as an improvement of the accuracy and precision of LAI
estimates. These contrasting results are explained by the very
different compositing algorithms used in these studies, high-
lighting the importance of the compositing process that mainly
consists in smoothing and eventually gap-filling the time series
(Kandasamy et al. 2013).

The interest of fusing the data coming from several sensors
is obvious when considering the decametric spatial resolution
observations for which several days are needed to map the whole
Earth. However, except in the case of the RapidEye and DMC
constellation of satellites (Roser et al. 2005), very little attention
has been carried out on the fusion between different decametric
resolution satellites. Although the satellites currently orbiting
provide great potentials for seasonal monitoring of the vegetation
at decametric spatial resolution, this has not yet been exploited
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because of the difficulty and cost associated to the images of these
sensors that are used commercially. However, the development of
the fusion between different decametric satellites does not pose
great technical difficulties as illustrated by Figure 2.9: a very good
temporal consistency of estimates derived from different sensors
using the same algorithm is generally observed. This confirms
the results of Verger et al. (2008) and Gobron et al. (2008) who
demonstrated that applying a single algorithm to different sen-
sors provides generally consistent products if the differences in
observational configurations are carefully accounted for.

The fusion between decametric resolution images and daily
kilometric resolution data is very appealing, because it poten-
tially provides daily decametric products. However, this com-
bination has been rarely investigated for deriving decametric
dynamics of biophysical variables. It has mainly been applied for
classification (Karkee et al. 2009), for reflectances (Faivre and
Fischer 1997), including pan-sharpening (Fasbender et al. 2008),
and for vegetation indices (Cardot et al. 2008; Gao et al. 2006).
More studies should be directed toward the development of the
fusion between biophysical variables obtained from decametric
and kilometric spatial resolution sensors.

The succession of several kilometric sensors allows building
long time series of global observations since 1981 (Figure 2.10).
However, the consistency between the several sensors used to
build the time series has to be very high in order to identify
possible trends that may be very small (Beck et al. 2011). This
is currently achieved by applying a single algorithm to the suc-
cession of sensors available. Zhu et al. (2013) transformed the
long time series of NDVI derived from the several AVHRR sen-
sors (Figure 2.10) into LAI and FAPAR by calibrating an NNT
on MODIS products during and overlapping period between
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AVHRR and MODIS. The consistency and the compositing are
here achieved at the NDVT level, based on the GIMMS products
(Tucker et al. 2005). Verger et al. (2012b) built also a long time
series of observations based on AVHRR up to 2000, and then,
using VEGETATION data. The input reflectance values were
carefully processed according to Nagol et al. (2009). Then, NNTs
were calibrated over an overlapping period among AVHRR,
VEGETATION, and MODIS. The LAI and FAPAR products
from MODIS and VEGETATION were fused to be used as target
products. Finally, a compositing algorithm was applied to elimi-
nate outliers, smooth out the resulting data and fill possible gaps
(Verger et al. 2012a).

2.7 Conclusion

This review of retrieval techniques for canopy biophysical vari-
ables shows that great advancement in the maturity of the algo-
rithms has been achieved in recent years. Several products were
released to the wider community, mainly derived from kilomet-
ric resolution sensors as illustrated by Table 2.2. The multiplicity
of products allows building enough confidence from the con-
sistency observed between some of them as well as in ground
measurements. The validation exercise is therefore mandatory
to identify possible problems, improve the products, and finally
quantify the associated uncertainties. The root mean square
error (RMSE) values associated to FAPAR are in the order of
0.10-0.15 in absolute value (Weiss et al. 2014), while LAI is esti-
mated within an RMSE slightly smaller than 1.0. However, the
currently limited number of available ground measurements at
the kilometric resolution limits the evaluation of the accuracy of
remote sensing products (Garrigues et al. 2008).
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FIGURE 2.10 The series of kilometric spatial resolution sensors available from 1980 up to now.
TABLE 2.2 Several LAT and FAPAR Global Products Currently Available
Products Sensors LAI  FAPAR  Spatial Resolution ~ Time Sampling (days)  Time Period Reference
MODIS C5 MODIS v 4 1 km 8 2000 Myneni et al. (2002)
CYCLOPES V3 VEGETATION 4 4 0.009° 10 1999-2007 Baret et al. (2007)
GLOBCARBON  VEGETATION 4 v 0.009° 30 1999-2007 Deng et al. (2006)
JRC-FAPAR SEAWIFS 4 2 km 1 1997-2006 Gobron et al. (2006)
JRC-TIP MODIS 4 v 0.01° 16 2000 Pinty et al. (2010)
GIMMS_3g AVHRR v v 8 km 30 1981-2013  Ganguly et al. (2010)
GLASS MODIS/AVHRR v v 1 km 10 1981-2014 Xiao et al. (2012)
GEOV1_VEG VEGETATION v 4 0.009° 10 1999 Baret et al. (2012)
GEOV2_VEG VEGETATION 4 4 0.009° 10 1999 Verger et al. (2014)
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FIGURE 2.11 A global map of GEOV1 FAPAR product for September 5, 2003.
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When very few information or constraints are available as it
is the case for the kilometric resolution observations, the vari-
ables that are the better estimated are the GF and the black and
white sky FAPAR or FIPAR ones. Conversely, the “apparent”
LATI derived from the reflectance observations is more closely
linked with the effective GAI, GAlg while the true LAI is
poorly estimated with uncertainties that are dependent on the
observational configuration. This finding should be much bet-
ter reflected to the users of current LAI products derived from
remote sensing, although some attempts were proposed to cor-
rect for this effect (Xiao et al. 2012). However, focusing on the
GF variable will allow reaching more easily a better consistency
with the canopy functioning models that have their own specific
description of the canopy architecture.

Two main types of canopy biophysical variables retrieval
approaches were identified. Canopy biophysical variable-
driven approaches when trained over empirical datasets with
ground measurements of the canopy variables defined in
a consistent way with the variables accessible from remote
sensing observations would be ideal: they implicitly integrate
the measurement uncertainties, while no model uncertain-
ties have to be included, since no radiative transfer model is
used. Further, machine learning approaches are very com-
puter efficient once trained, allowing easy implementation
within operational processing chains. However, because of
the difficulty of getting a representative sampling of cases to
populate the training dataset, training over a database made
of radiative transfer model simulations is often preferred.
The radiative transfer models need to be well adapted to the
type of canopy they target. Unfortunately, using a more real-
istic description of the canopy architecture requiring more
variables may create problems in the inversion process if no
additional prior information or constraints are exploited.
Radiometric data—driven approaches such as iterative mini-
mization appear to be very appealing to handle a wide range of
constraints and prior information that may be available at the
decametric resolution. This may ultimately lead to the assim-
ilation of calibrated radiances into structural-functional
vegetation models coupled with atmospheric models that is
currently in the infancy stage of development. The expected
increasing accessibility of frequent decametric observations
will certainly push investigations in such a direction, exploit-
ing explicitly the whole set of available information and
knowledge on physical and biological processes.
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3.1 Introduction

Recent global observation systems provide measurements of hor-
izontal and vertical vegetation structures of ecosystems, which
will be critical for estimating global carbon storage and assessing
ecosystem response to climate change and natural and anthro-
pogenic disturbances. Remote sensing overcomes the limitations
associated with sparse field surveys; it has been used extensively
as a basis for inferring forest structure and aboveground biomass
(AGB) over large areas. This chapter summarizes recent progress
on the AGB estimate using remote sensing technology includ-
ing strength and weakness of using optical passive, radar, and
LiDAR remote sensing and fusion of multisensor for the AGB
estimates. It lays out the potential of remote sensing in the AGB
and carbon storage estimates at large scales for meeting the
requirements under the United Nations Framework Convention
on Climate Change (UNFCCC) for measuring, reporting, and
verification. The purpose of this chapter is to review recent prog-
ress on the AGB estimates using remote sensing data.

3.1.1 Importance of the Terrestrial Ecosystem
Carbon and Carbon Change Estimates

Vegetation biomass is a crucial ecological variable for under-
standing the evolution and potential future changes of the cli-
mate system. Global carbon stored in vegetation is comparable
in size to atmospheric carbon and plays an important role in
the global carbon cycle (Houghton 2005). Changes of forest bio-
mass in time can be used as an essential climate variable (ECV),
because it is a direct measure of sequestration or release of car-
bon between terrestrial ecosystems and the atmosphere. During
productive seasons, forests take up carbon dioxide (CO,) from
the atmosphere and store it as plant biomass, while they release
CO, to the atmosphere during deforestation, decomposition, and
biomass burning. Changes in the amount of vegetation biomass
due to deforestation significantly affect the global atmosphere by
acting as a net source of carbon. The Global Climate Observing
System (GCOS) recognizes the AGB and associated carbon
stocks of the world’s forests as an ECV (Hollman et al. 2013).
However, the terrestrial carbon cycle is the most uncertain
component of the global carbon cycle (Heimann and Reichstein
2008). Large uncertainties in terrestrial carbon cycle arise from
inadequate data on the current state of theland surface vegetation
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structure and the carbon density of forests. Consequently, there
is an urgent need for improved datasets that characterize the
global distribution of AGB, especially in the tropics. Therefore,
a global assessment of biomass and its dynamics is an essential
input to climate change prognostic models and mitigation and
adaptation strategies.

3.1.2 Importance of Tropical Rain
Forests in Carbon Storage

Tropical forests are disappearing rapidly due to land conversion,
selective cutting, and fires. The single biggest direct cause of
tropical forest loss is due to conversion of forests to cropland and
pasture. Humans harvest timber for construction and fuel, and
wildfires pose a big threat to Amazon forests. The tropics exhibit
a rising trend of forest loss, increasing by 2101 km?/year, half of
which occurred in South American rain forests (Hansen et al.
2013), with the recent report of reduced rate of forest loss from
high of over 40,000 km?/year in 2003-2004 and a low of under
20,000 km?/year in 2010-2011 in central America. However, this
decreasing rate of loss was counterbalanced by increased forest
loss from other tropical forest regions (Figure 3.1).

Land use, land-use change, and forestry sector is the second-
largest source of anthropogenic greenhouse gas (GHG) emis-
sions, dominated by tropical deforestation (Canadell et al. 2007).
The loss of Amazon forest releases huge carbon to the atmo-
sphere. Tropical deforestation contributes about one-eighth to
one-fifth of total anthropogenic CO, emissions to the atmo-
sphere (Houghton 2005, 2007, Houghton et al. 2012). However,
the magnitude of these emissions has remained poorly con-
strained. Emissions from land-use change remains as one of the
most uncertain components of the global carbon cycle. Global
carbon emission estimates using different approaches and the
uncertainties associated with each approach range from 10%
to 34% (Houghton et al. 2012). A recent estimate of gross car-
bon emissions across tropical regions between 2000 and 2005
was 0.81 petagram of carbon per year (PgCl/year) (Harris et al.
2012), which was only 25%-50% of recently published estimates
(FAO 2010, Pan et al. 2011, Baccini et al. 2012). Huge discrepancy
exists in the carbon emission estimates.

The lack of reliable estimates of forest carbon storage and rates
of deforestation and forestation result in the uncertainties of terres-
trial carbon emission estimates (Houghton 2005, Houghton et al.
2009, 2012). Estimates of the biomass storage disagree with biomass
obtained from large-scale wood-volume inventories (Houghton
etal. 2001). Large uncertainties in the carbon stock estimates con-
tribute to the broad range of possible emissions of carbon from
tropical deforestation and degradation (Houghton 2005).

Reducing emissions from deforestation and forest degrada-
tion (REDD) in developing countries launched by the UNFCCC
provides positive incentives to individuals, communities, proj-
ects, and government agencies, in developing countries to reduce
GHG emissions from forests through monetary compensation.
REDD was extended as REDD+ to include conservation, sus-
tainable management of forests, and the enhancement of forest
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FIGURE 3.1

Global distribution of forest cover change, ca. 1990-2000. The false-color composite was aggregated from 30 m to 5 km grid cells.

Forest loss is represented in red, forest gain in blue, and persistent forest in green. Colors are stretched in the proportion of 1 (forest): 4 (gain): 4
(loss). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this chapter.) (From Kim, D.K.
et al., Remote Sens. Environ., ISSN 0034-4257. Available online September 26, 2014, http://dx.doi.org/10.1016/j.rse.2014.08.017.)

carbon stocks. As a mechanism under the multilateral climate
change agreement, REDD+ is a vehicle to financially reward
developing countries for their verified efforts to reduce emis-
sions and enhance removals of GHGs through a variety of forest
management options.

Efforts to mitigate climate change through REDD depend on
mapping and monitoring of tropical forest carbon stocks and
emissions over large geographic areas. There are many chal-
lenges to making REDD work, and mapping forest carbon stocks
and emissions at the high resolution demanded by investors
and monitoring agencies remains a technical barrier. Foremost
among the challenges is quantifying nations’ carbon emissions
from deforestation and forest degradation, which requires infor-
mation on forest clearing and carbon storage.

3.1.3 Summary of Methods Used to Estimate
Terrestrial Biomass and Carbon Stocks

Vegetation AGB is defined as the mass per unit area (Mg/ha) of
live or dead plant organic matter. Forest biomass consists of AGB
and below-ground biomass. AGB represents all living biomass
above the soil including stem, stump, branches, bark, seeds, and
foliage, while below-ground biomass consists of all living roots
excluding fine roots (less than 2 mm in diameter) (FAO 2010).
Because AGB is relatively easy to measure and it accounts for the
majority of the total accumulated biomass in forest ecosystem,
AGB is usually estimated in many studies as to forest biomass.
At the level of individual plants and forest stand levels, aboveg-
round and belowground biomass are different, but share strik-
ingly similar scaling exponents (Figure 3.2) (Cheng and Niklas
2007). Below-ground biomass is often estimated based on AGB.
This review mainly focuses on AGB estimates.
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Biomass estimate methods range from simple to more com-
plex methods. The biome-averaged method is to estimate the
biome-averaged AGB first, and the spatial distribution of bio-
mass is mapped based on biome type. A more complex method is
to develop species- and site-specific allometric models depend-
ing on bole diameter at breast height (DBH; cm) or diameter and
tree height. The plot estimates of national forest inventories are
commonly aggregated to represent forest biomass at national
or regional scales (Brown et al. 1989, Jenkins 2003, Gibbs et al.
2007, Goetz et al. 2009).

3.1.4 Role of Remote Sensing in Terrestrial
Ecosystem Carbon Estimates

Recent global observation systems provide measurements of hor-
izontal and vertical vegetation structure of ecosystems, which
will be critical for estimating global carbon storage and assessing
ecosystem response to climate change and natural and anthro-
pogenic disturbances. Remote sensing overcomes the limitations
associated with sparse field surveys; it has been used extensively
as a basis for inferring forest structure and AGB over large areas.
Although no sensor has been developed that is capable of pro-
viding direct measures of vegetation biomass, the radiometry is
sensitive to vegetation structure (crown size, tree density height),
texture, and shadow, which are correlated with AGB. Three types
of remote sensing data are often used, which are

1. Optical remote sensing
2. Radar (radio detection and ranging, microwave) data
3. LiDAR (light detection and ranging) data

Optical spectral reflectances are sensitive to vegetation struc-
ture (leaf area index (LAI), crown size, and tree density),
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O Individual level

A Forest level

-8 -6 —4 -2 0 2 4

(a) log My

FIGURE 3.2 Log-log bivariate plots of above- vs. belowground (root) biomass (M, vs. My) (a) and stem vs. root biomass (Mg vs. M) (b) at the
level of individual plants (n = 1406) and Chinese forest samples (n = 1534). (From Cheng, D.L. and Niklas, K.J., Ann. Botany, 99, 95, 2007.)

TABLE 3.1 Strengths and Limitations of Conventional Methods to Estimate Aboveground Biomass and Forest Carbon Stocks
Methods Descriptions Input Parameters Strengths Limitations References
Direct measurement o Harvest all trees n/a o Very accurate o Very small areas Brown et al. (1989)
o Dry them
« Weigh the biomass
Biome average « Estimate average forest « Land cover types « Easy and quick » Low accuracy FAO (2010)

carbon stocks for each

biome based on each biome
inventory data
o Map carbon stocks based
on land cover types
Species-based allometric o Use allometric « DBH
method relationships to estimate  Species
AGB based on DBH
Woody volume and « Use generalized « DBH
woody density based allometric relationships o Tree height
allometric method for all species stratified » Wood density

by broad forest types or
ecological zones

wet forest)

Averaged biomass for  « Globally consistent

Forest types (dry or

Lost local variations

o Low cost

Jenkins et al. (2004)

« Easy to implement Low accuracy if the
allometric
relationship is not

local

Brown (2002) and
Chave et al.
(2005, 2014)

Need extra wood
density and tree
height
measurement

¢ Quite accurate
o Effective for
tropical forests

texture, and shadow, which are correlated with AGB. Radar
data are directly related to AGB through measuring dielectric
and geometrical properties of forests (Le Toan et al. 2011).
LiDAR remote sensing is promising in characterizing veg-
etation vertical structure and height, which are then asso-
ciated to AGB (Drake et al. 2002a,b, Lefsky et al. 2005a,b).
Vegetation structure characteristics measured from satellite
data are linked to field-based AGB estimates, and their rela-
tionships are used to map large-scale AGB from satellite
data. Recently, remote sensing has been extensively used as a
robust tool in delivering forest structure and AGB because it
provides a practical means of acquiring spatially distributed
forest biomass from local to continental areas (Houghton
2005, Lu 2006, Zhang and Kondragunta 2006, Goetz and
Dubayah 2011).
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3.1.5 Specific Topics Covered in This Chapter

Significant progress has been made in recent years regarding the
large-area application of spaceborne remote sensing for the map-
ping of terrestrial ecosystem carbon stocks, which manifested in
the release of several regional- to continental-scale maps of AGB.
This paper reviews recent progress of terrestrial AGB and carbon
stock estimations from remote sensing. It focuses on not only the
current state of remote sensing of biomass using one particular
sensor, but also recent progress on biomass mapping through
fusion of multisensors. First, we brief the traditional method of
AGB estimates, and then summarize what types of remote sens-
ing data being used for biomass estimates followed by a summary
of research methods. Later sections provide recent progresses
on biomass estimates using optical, radar, and LiDAR sensors
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and fusion of multisensors. Finally, we discuss the strengths and
potential improvement of remote sensing approaches for map-
ping terrestrial ecosystem biomass and carbon stocks and point
out future research directions.

3.2 Conventional Methods of
Carbon Stock Estimates

Table 3.1 lists the strengths and limitations of conventional
methods for carbon stock estimates. The direct method is to
harvest trees, dry, and weigh the biomass. It is the most accu-
rate method; however, the most labor intensive. For a small
area, the most direct way to measure the carbon stored in
aboveground living forest biomass is to harvest all trees, dry
them, and weigh the biomass. The dry biomass can be con-
verted to carbon content by taking half of the biomass weight
(carbon content ~#50% of biomass). This method is destructive,
expensive, extremely time consuming, and impractical for any
large regions.

No methodology can directly measure forest carbon stocks
across a landscape. Different methods are used to approximate
large-scale carbon stocks ranging from simple empirical to more
complex physically based methods. At the national level, the
Intergovernmental Panel on Climate Change (IPCC) proposed
different tiers of carbon stocks quality, ranging from Tier 1 (sim-
plest to use; globally available data) up to Tier 3 (high-resolution
methods specific for each country and repeated through time)
(Gibbs et al. 2007).

3.2.1 Biome-Average Methods

The simplest one is to use the biomass average for each biome to
approximate a nation’s carbon stocks (IPCC’s Tier 1) (Houghton
etal. 2001, Gibbs et al. 2007). Biome averages are compiled based
on tree harvesting measurements and analysis of forest inven-
tory data archived by the United Nations Food and Agricultural
Organization (FAO) (Gibbs et al. 2007).

This method has both strengths and limitations. Biomes
account for major bioclimatic gradients such as temperature,
precipitation, and geologic substrate; it is a quick and easy way
to estimate forest carbon stocks based on biomes. Besides, biome
averages are free and easily accessible to map global forest car-
bon systematically. It provides a starting point for a country
to access their carbon emission from disturbance. However,
biome averages were generally focused on mature stands and
were based on a few plots that may not adequately represent the
biome or region. Further, forest carbon stocks vary significantly
with slope, elevation, drainage class, soil type, and land-use
history within each biome; therefore, an average value cannot
adequately represent the variation for an entire forest category or
country. Finally, the carbon stock estimates over disturbed areas
could also be biased as the carbon stocks for the new growth
systematically differ from the biome-average values (Houghton
et al. 2001).
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3.2.2 Allometric Biomass Methods

Another commonly used approach is the allometric-based bio-
mass and carbon stock estimates (IPCC’s Tier 2 or 3). It depends
on forest inventory measurements to develop allometric rela-
tionships between tree diameters at breast height (DBH) alone or
in combination with tree height with AGB. Ground-based DBH
and height measurements in large areas are converted to forest
carbon stocks using allometric relationships. Many allometric
equations for estimating AGB have been published in the past
(Brown et al. 1989, West et al. 1999, Brown 2002, Jenkins 2003,
Jenkins et al. 2004, Chave et al. 2005, 2014). Two allometric-
based approaches are commonly used to estimate AGB.

3.2.2.1 Species-Based Allometric Method

The first one is a species-based approach to estimate biomass
based on a given tree DBH. It requires measuring the diameter
for each individual tree and allometric equations for each indi-
vidual tree species. For example, Jenkins et al. (2004) developed
a set of generalized allometric regression models to predict AGB
in tree components for all tree species in the United States. It is
used by the USDA Forest Service, Forest Inventory and Analysis
program to estimate the U.S. national forest carbon estimates.
This approach provides a nationally consistent method for the
estimation of biomass and C stocks at large scales and requires
only a single field-based variable—tree DBH (1.37 m)—as input.

3.2.2.2 Woody Volume—and Woody
Density—Based Allometric Method

The second approach is a more generalized one, using woody
volume and wood density to calculate biomass (Brown 2002,
Chave et al. 2005, 2014). Developing allometric equations for
each individual species can be very difficult. However, group-
ing all species together and using generalized allometric rela-
tionships, stratified by broad forest types or ecological zones,
is highly effective, particularly for the tropics because DBH
alone explains more than 95% of the variation in aboveground
tropical forest carbon stocks, even in highly diverse regions
(Brown 2002).

Chave et al. (2005) developed generalized allometric equa-
tions for the pan-tropics based on an exceptionally large dataset
of 2410 trees across a wide range of forest types. They included
wood density and tree height within their models and proposed
a global forest classification system that contains three climatic
categories (dry, moist, and wet) to account for climatic con-
straints determining the AGB variation. Very recently, Chave
et al. (2014) updated their allometric equations and developed a
single model using trunk diameter, total tree height, and wood-
specific gravity across tropical vegetation types, with no detect-
able effect of region or environmental factors. The new allometric
models should contribute to improving the accuracy of biomass
assessment protocols in tropical vegetation types and to improv-
ing accuracy of carbon stock estimates for tropical forests.

Studies show that the most important parameters in estimat-
ing biomass (in decreasing order of importance) were diameter,
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wood density, tree height, and forest type (classified as dry,
moist, or wet forest). Including tree height reduced the stan-
dard error of biomass estimates from 19.5% to 12.5% (Chave
et al. 2005). Tree biomass estimation was significantly improved
by including wood density (Brown et al. 1989) and tree height
(Brown 1997, Nogueira et al. 2008) in the allometric models in
addition to tree diameter. However, measuring height (H) and
wood density (q) requires additional work, increasing project
time and costs. This approach is not often used as it required
additional height measurements for each individual tree.

Despite the difficulty, more and more studies demonstrated
the importance of these parameters for biomass estimates. For
example, studies by Feldpausch et al. (2011, 2012) demonstrate
that incorporating height in biomass estimates for the pan-
tropical region improves biomass estimates by lowering it. For
tropical forests, carbon storage can be overestimated by 35 PgC
if height is ignored. The study by Domke et al. (2012) for the
United States also demonstrates similar results. Domke et al.
(2012) compared estimates of carbon stocks using Jenkin’s and
a tree height-based approach—the component ratio method
(Woodall et al. 2011)—for the 20 most abundant tree species in
the 48 states of the United States and found the method incor-
porating height decreased national carbon stock estimates
by an average of 16% for the species. These results implicate
that tree height, an important allometric factor, needs to be
included in future forest biomass estimates to reduce error in
the estimates of tropical carbon stocks and emissions due to
deforestation and to improve accuracy of national and global
forest carbon.

3.3 Remote Sensing Data

A variety of remote sensing systems have been used to esti-
mate AGB estimates: passive optical remote sensing, radar, and
LiDAR. Table 3.2 summarizes the characteristics of satellite sen-
sors used to estimate AGB and carbon storage.

3.3.1 Passive Optical Remote Sensing Data

Passive remote sensors measure different wavelengths of
reflected solar radiation, providing two-dimensional informa-
tion that can be indirectly linked to biophysical properties of
vegetation and AGB and carbon stocks. Several optical satellite
instruments are available for mapping AGB and carbon stocks at
different spatial scales. The spatial resolutions of these satellite
data range from meter to kilometer scales. Those data span from
1970s to current, and some recent satellite data are collected on
a daily scale. The most popular optical remote sensing satellite
data being used to map AGB are multispectral satellite data at
various spatial resolutions.

NOA A’s advanced very-high-resolution radiometer (AVHRR)
and NASA’s moderate-resolution imaging spectroradiometer
(MODIS) data are promising in producing biomass at continen-
tal and global scales (Dong et al. 2003, Baccini et al. 2004, 2008,
Zhang and Kondragunta 2006, Blackard et al. 2008). AVHRR
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provides global observations at 1 km scale every one or two days
since 1979. MODIS aboard the Aqua and Terra satellites has
imaged the entire globe approximately every two days at resolu-
tions of 250-500 m, dating as far back as 2000. These datasets are
used alone or fused with other remote sensing data to provide
AGB and carbon stock estimates at large scales.

Landsat Thematic Mapper (TM), Enhanced Thematic Mapper
Plus (ETM+), and Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) provide biomass esti-
mates at local and regional scales at high spatial resolution
(Muukkonen and Heiskanen 2005, Zhang and Kondragunta
2006, Pflugmacher et al. 2014). Landsat provides four decades
of imagery of the entire globe at 30 m spatial resolution, the
longest continuous record of space-based moderate-resolution
land remote sensing data freely available to the public. With the
advantages of being free and long-term data records, methods
of using spectral information or more complicated methods
using both spectral and temporal information or fusion with
other remote sensing data have been developed to estimate AGB
estimates. Landsat images are invaluable data sources to AGB
and carbon stock estimates. ASTER, an imaging instrument on
board Terra launched in December 1999, images the earth at
15 m resolution in visible to near-infrared spectrum, which is
the most sensitive to vegetation properties. Other passive optical
systems such as multiangular data from MISR on board Terra
and airborne/spaceborne hyperspectral data from AVIRIS and
EOL1 sensors are also used for biomass estimates (Anderson et al.
2008, Chopping et al. 2009).

3.3.2 Radar Data

Radar data physically measure biomass through the interaction
of the radar waves with tree scattering elements. The widely used
active radar data for biomass estimates are from spaceborne
synthetic aperture radar (SAR) sensors, such as the L-band
Advanced Land Observing Satellite (ALOS), Phased Array-
Type L-band Synthetic Aperture Radar (PALSAR), the C-band
European remote sensing satellite (ERS)/SAR, RADARSAT/SAR
or Environmental Satellite (ENVISAT)/Advanced Synthetic
Aperture Radar, and the X-band TerraSAR-X instrument, which
transmit microwave energy at wavelengths from 3.0 (X-band) to
23.6 cm (L-band).

ERS and ENVISAT operated by European Space Agency (ESA)
collect C-band SAR data since 1991. Canadian RADARSAT has
collected C-band data since 1995. German TerraSAR-X was in
space since 2010. Those data have been used to estimate AGB
with low density. The L-band PALSAR was launched by Japan
Aerospace Exploration Agency. ALOS/PALSAR was operated in
orbit from January 2006 until April 2011. It shows a great poten-
tial for forestry applications in the boreal regions due to high
signal/noise ratio, high resolution (~20 m), provision of cross-
polarized data, and because data are being systematically col-
lected across the Northern Hemisphere. ALOS2 was launched in
2014, and PALSAR-2 has updated features of PALSAR. A space-
borne P-band SAR, which would be less affected by saturation at
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TABLE 3.2 Characteristics of Satellite Sensors Used to Estimate Aboveground Biomass

Sensor Characteristics Sensor Spectral Range Spatial Resolution Spatial Coverage ~ Temporal Resolution Temporal Coverage
Active  LiDAR Ground LiDAR « EVI, DEWL 1064, 1548 nm  Site level Site level Discontinuous 2000s
Small-footprint o Optech ALTM 3100C 1064 nm Foot-meter scale Local Discontinuous 1988-now
LiDAR o Leica ALS50-IT
« Riegl LMS-Q140i-60
Medium-footprint ~ « LVIS 1064 nm 15-25m Regional Discontinuous 1999-now
LiDAR
Large-footprint « GLAS 1064 nm 60-90 m Global Discontinuous 2003-2009
LiDAR
Radar P-band » Biomass 200 m <50 m Semi-Global 25-45 days Scheduled launch in 2020
No Europe/USA
L-band o« ALOS-PALSAR 15-30 cm 7-89 m Global 46 days 2006-2011 (PALSAR)
o ALOS-PALSAR(2) 2014-present (PALSAR2)
X/C band « ERS 2.5-7.5cm « ERS:30 m Global 3, 35, and 336 days o 1995-present
« ENVISAT o ENVISAT:30-90 m o ERS:1991-2011
o« RADARSAT « RADARSAT:1-100 m o ENVISAT:2002-2012
o TerraSAR-X o TerraSAR-X:1-16 m o RADARSAT:1995-present
o TerraSAR-X: 2007-present
Passive ~ Multispectral/ « IKONOS VIS-NIR 1-5m Global No regular repeat 2000-present
hyperspatial o QuickBird cycle
« Orbit view
Multispectral high « Landsat VIS-TIR 30 m Global 16 days 1972-present
spatial « SPOT HRV
« ASTER
Multispectral « MODIS VIS-TIR 1 km Global Daily 2000-present
coarse resolution « AVHRR
Multispectral and o MISR VIS-NIR 1 km Global Daily 1999-present
multiangular
Hyperspectral o AVRIS VIS-IR 4-20,30 m Global Discontinuous 2000-present
» Hyperion

ASTER, advanced spaceborne thermal emission and reflection radiometer; AVHRR, advanced very-high-resolution radiometer; AVIRIS, airborne visible/infrared imaging spectrometer; DWEL, dual-
wavelength Echidna® LiDAR; EVI, Echidna® validation instrument; GLAS, geoscience laser altimeter system, on board the ice, cloud, and land elevation satellite (ICESat); LVIS, land vegetation and ice sensor;
MODIS, moderate resolution imaging spectroradiometer; NIR, near-infrared; PALSAR, phased array-type L-band synthetic aperture radar; SPOT HRYV, Le Syst'eme Pour I'Observation de la Terre High
Resolution Visible; TIR, Thermal infrared.
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higher biomass levels, is planned to launch in the coming years
in the frame of the Earth Explorer Program of the ESA. Many
airborne L-band and P-band data were also collected for bio-
mass estimates. The major advantage of all SAR systems is their
weather and daylight independency.

3.3.3 LiDAR Data

LiDAR is an active remote sensing system based on laser rang-
ing, which measures the distance between a sensor and the target
surface. Vegetation LiDAR systems typically emit at wavelengths
between 900 and 1064 nm and record the time during which the
emitted laser pulse is reflected off an object and returns to the
sensor. The time-return interval is used to calculate the range
(distance) between the sensor and the object. LIDAR provides
direct and indirect measurements of vegetation structure, which
can be used to estimate global carbon storage. Recent advances
in LiDAR technology have made LiDAR data widely available
to study vegetation structure characteristics and forest biomass.

LiDAR systems are classified as small-footprint LiDAR
(laser footprint less than 1 m scale) and large-footprint LIDAR
(laser footprint 10 m or greater) based on the size of laser foot-
print or discrete-return and full-waveform recording based on
how laser energy is recorded (Dubayah and Drake 2000, Wulder
et al. 2012). Discrete-return systems record single or multiple
returns from a given laser pulse. As the laser signal is reflected
back to the sensor, large peaks, (i.e., bright returns) represent
discrete objects in the path of the laser beam and are recorded
as discrete points. Most small-footprint LiDAR system record
discrete energy returns. In contrast, full-waveform-recording
LiDAR systems digitize the entire reflected energy from a return,
resulting in complete sub-meter vertical vegetation profiles. The
waveform is a function of canopy height and vertical distribution
of foliage, as it is made up of the reflected energy from the surface
area of canopy components such as foliage, trunks, twigs, and
branches, at varying heights within the large footprint. The total
waveform is therefore a measure of both the vertical distribution
of vegetation surface area and the distribution of the underly-
ing ground height. Waveform-recording instruments are mainly
large-footprint LiDAR systems; however, recent advances made
full-waveform instruments with increasingly smaller footprint
sizes available.

Small-footprint multiple return LiDAR data have been col-
lected in many regions of the globe, and more recently small-
footprint scanning waveform systems have become operational.
Such small-footprint airborne LiDAR systems are available on
a commercial basis and are now used at the operational level
in forest resource inventories (Neasset and Gobakken 2008). At
standard level, ground-based LiDAR data, such as EVI, were
collected and used for AGB estimates (Strahler et al. 2008,
Ni-Meister et al. 2010). With many ground LiDAR system, com-
plex and detailed vegetation structure data have been recorded
over various study sites.

The Geoscience Laser Altimeter System (GLAS) was a large-
footprint spaceborne full-waveform profiling LiDAR carried on
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the Ice, Cloud, and land Elevation Satellite (ICESat) for 2003-
2009. GLAS was the first spaceborne LiDAR, and global mea-
surement of canopy height was one of the science objectives of
the ICESat mission (Zwally et al. 2002). The size and shape of
the GLAS footprints vary from 50 to 65 m in diameter and from
elliptical to circular, depending on the date of the acquisition.
The pulses are spaced approximately 172 m apart.

Airborne data have also been collected using a Scanning
LiDAR Imager of Canopies by Echo Recovery (SLICER) with
a 15 m footprint and the Laser Vegetation and Ice Sensor
(LVIS) with a 20 m/25 m footprint over several large areas for
improved vegetation structure characterization since 1998
(Blair et al. 1999). This large-footprint LiIDAR system records
full-waveform laser energy returns. These global, regional, and
local LiDAR data can provide the detailed vegetation structure
and biomass maps necessary for carbon models and ecosystem
process studies.

3.4 Research Approaches/Methods

Many methods are adopted to convert field-measured AGB at
local scale to large scale based on remote sensing measurements
or extrapolating from small-scale LIDAR and field measure-
ments to large-scale maps of AGB. Common methods include
linear statistical models, support vector machines, nearest
neighbor-based methods, random forest, and Gaussian pro-
cesses (e.g., Figure 3.3). The most common approach is line sta-
tistical regression (Fassnacht et al. 2014), then nonparametric
nearest neighbor, machine learning (Zhao et al. 2011, Carreiras
et al. 2012), random forest (Baccini et al. 2012), and Gaussian
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FIGURE 3.3 Frequency distribution of the prediction methods used
for aboveground biomass estimates. LM, linear regression model; SVM,
support vector machines; NN, nearest neighbor-based methods; RF,
random forest; GP, Gaussian processes. (From Fassnacht, E.E. et al,,
Remote Sens. Environ., 154, 102, 2014.)
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processes (Zhao et al. 2011) (see Figure 3.3 for a summary by
Fassnacht et al. 2014). Some physically based or semiempirical
models have also been used (Saatchi et al. 2007).

3.4.1 Nonparametric Methods

With recent advancement in geospatial statistical methods and
ongoing technology improvement in performing expensive sta-
tistical computations, the nonparametric method appears more
prevalent in more recent studies (Baccini et al. 2004, 2008).
These methods perform recursive partitioning of datasets, make
no assumptions regarding the distribution and correlation of
the input data, effectively solve complex nonlinear relationships
between the response and predictor variables, and show great
advantages for nonlinear problems and often perform better
than standard linear regression models.

3.4.1.1 Tree-Based Models

Tree-based models (Breiman et al. 1984), a nonparametric
approach, are a fundamental tool in data mining. They perform
recursive partitioning of datasets to capture nonlinear relation-
ships between the response and predictor variables for predict-
ing a categorical (classification tree) or continuous (regression
tree) outcome. This method has been previously used in remote
sensing field to predict for classification and continuous vari-
ables (Baccini et al. 2004, 2008). Tree-based models are known
for their simplicity and efficiency when dealing with domains
with large number of variables and cases. However, it can also
lead to poor decision in lower levels of the tree due to the unreli-
ability of estimates based on small samples of cases.

A commonly used tree-based model in AGB estimate is ran-
dom forest (Breiman 2001, Breiman et al. 1984). Random forest

constructs a multitude of decision trees at training time in which
different bootstrap samples of the data are used to estimate each
tree and outputting the class corresponding to the individual
trees. The resulting model is more accurate and less sensitive to
noise in input data relative to conventional tree-based modeling
algorithms.

The use of random forest for biomass estimate demonstrates
the advantages of the nonparametric statistical method. For
example, Baccini et al. (2008) compared the performance
between random forest with more traditional multiple regres-
sion analysis, and they found that the traditional regression-
explained variance is 71% compared to 82% from random
forest of their AGB in their study region. LIDAR data, in com-
bination with a random forest algorithm and a large number
of reference sample units on the ground, often yield the low-
est error for biomass predictions and become very popular in
most research efforts on biomass estimates. There are, how-
ever, limitations to the random forest model in the prediction
phase. The model tends to overpredict low biomass values and
underpredict high biomass values. This trend is intrinsic of
regression tree-based models whose predictions are the aver-
age of the values within the terminal node. Different meth-
ods are used in different remote sensing field for biomass
estimates.

3.5 Remote Sensing-Based
Aboveground Biomass Estimates

Different remote sensing datasets were used to estimate AGB.
Table 3.3 listed strengths and limitations of using different
remote sensing data to estimate AGB and forest carbon stocks.
Details are discussed in the following text.

TABLE 3.3  Strengths and Limitations of Using Different Remote Sensing Data to Estimate Aboveground Biomass and Forest Carbon Stocks

Remote Sensing ~ Measured Forest Structure

Data Types Parameters Inputs Methods Strengths Limitations References
Passive optical o Reflectances o Linear regression  « High spatial « Saturation at high « Baccini et al. (2004, 2008)
remote sensing o Spectral indices » Nonparametric imaging capability biomass « Dong et al. (2003)
o Tree shadows method « Consistent at all » Chopping et al. (2009)
« Height for sparse canopy scales « Zhang and Kondragunta (2006)

Stand age
Land cover types

Free for most
imageries except

for very high
spatial data

RADAR « Radar signals o Linear regression  « Accurate at low « Saturation at high o Le Toan et al. (1992, 2004, 2011)
» Woody volume « Nonparametric biomass biomass o Askne and Santoro (2005)
« Crown center height method « High spatial « Impact from o Carreiras et al. (2012)
« Physical models imaging capability underneath o Cartus et al. (2012)
o Free data topography/ o Chowdhury et al. (2014)
roughness and soil
wetness
LiDAR o Tree height o Linear regression  « Most accurate « Sparse samplings o Asner etal. (2012, 2014)
o Height metrics « Nonparametric o Free data for spaceborne o Blair et al. (1999)
« Foliage profiles method LiDAR data o Drake et al. (2002a,b)

Crown sizes

Small regions for
small-footprint
LiDAR data

Dubayah and Drake (2000)
Garcia et al. (2010)
Lefsky et al. (2005a,b)
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3.5.1 Optical Remote Sensing

Optical remote sensing data have been extensively used to map
AGB. One simple method to map AGB is to use remotely sensed
land cover classification maps where each class is assigned an
average value of biomass density based on literature estimates
or forest inventories. The IPCC Tier 1 approach was applied to
the study area using their prescribed forest carbon density val-
ues combined with land cover data generated from the globally
available land cover dataset, Global Land Cover 2000. Land
cover data were reclassified as forest or nonforest, using all for-
est classes of GLC2000. Aboveground carbon densities were
assigned to each land cover class using IPCC values.

The other more commonly used method is the determi-
nation of relationships between in situ biomass density and
remote sensing characteristics/signals that can be consistently
mapped over large regions (Saatchi et al. 2007). This approach
has the advantage of providing spatially consistent and continu-
ous values of the amount of biomass present at any given loca-
tion. The suite of freely available optical satellite sensors, such
as Landsat, AVHRR, and MODIS, has been used extensively to
map AGB based on statistical relationships between ground-
based measurements and satellite-observed surface reflectance,
or vegetation indices or tree canopy attributes are derived from
optical satellite data (Lu 2006). Spectral reflectances of optical
remote sensing are the simplest variables in biomass estimates.
Vegetation indices are particularly useful in biomass observa-
tions because it enhances green vegetation signals and minimizes
the impacts from surface and atmospheric effects. Alternatively,
tree canopy attributes such as LAI, tree cover, crown size, den-
sity, and tree shadow fraction derived from optical satellite data
are considered to be effective proxies of AGB. Tree shadow frac-
tion is an indicator of vertical vegetation structure, which can be
an indicator of biomass.

At continental and global scale biomass mapping, the coarse
spatial resolution optical sensors, such as the NOAA AVHRR
(1.1 km) and MODIS (250 m to 1 km), have been useful for for-
est biomass estimates due to the good trade-off between spatial
resolution, image coverage, and frequency in data acquisition
(Lu 2006). Dong et al. (2003) used the normalized difference
vegetation index (NDVI) estimate provided by the AVHRR sen-
sor to estimate forest biomass at continental scale. A regression
model was developed to relate AGB to latitude and the inverse of
the AVHRR NDVI. Their results were encouraging for a study
at this scale, but were ultimately unreliable for small-area, high-
accuracy forest inventories required by small property owners
seeking to quantify their forests.

Recent studies using MODIS data using random forest
(Baccini et al. 2004, 2008) found that the shortwave infrared
(SWIR) bands (MODIS bands 6 [1628-1652 nm] and 7 [2105-
2155 nm]) are particularly sensitive to forest structural param-
eters (crown size and tree density), texture, and shadow, which
are correlated with AGB. They have found a negative relation-
ship between AGB and SWIR reflectance. They argue that SWIR
signal is a strong indicator of tree shadows, which is related to

© 2016 Taylor & Francis Group, LLC

stand age structure. Generally, the structure of young forests
is often characterized by a single canopy layer, high density,
relatively few canopy gaps, and trees of roughly the same size.
Conversely, older forests are characterized by a mix of tree ages
and sizes, canopy gaps, and multiple canopy layers resulting in
increases in the shadow component, thus decreases in SWIR
reflectance. Baccini et al. (2008) report a high accuracy, with the
map explaining 82% of the variance in AGB for 10% of field plots
held back for validation, with a root mean square error (RMSE)
of 50.5 Mg/ha. However, many other studies using MODIS data
have various successes (Blackard et al. 2008, Anaya et al. 2009).
The main limitation is that MODIS signals are not very sensi-
tive to high biomass values (Lu 2006, Zheng et al. 2007, Anaya
etal. 2009).

For quantifying biomass at local to regional scales, data pro-
vided by finer spatial resolution instruments, such as Landsat
TM (Lu et al. 2005) and ASTER (Muukkonen and Heiskanen
2005, 2007), are required. Typically, finer spatial resolution sat-
ellite data have been used as an intermediate step when relat-
ing ground reference data with coarser spatial resolution data,
usually by regression techniques. For example, Muukkonen and
Heiskanen (2005, 2007) used stand-wise forest inventory data
and moderate-resolution ASTER data to estimate biomass with
coarse-resolution MODIS data for a large area with good accu-
racy. The demonstrated approach can be used as a cost-effective
tool to produce preliminary biomass estimates for large areas
where more accurate national or large-scale forest inventories
do not exist.

The Landsat series of satellites has proven to be a successful
venture, providing decades of free-access moderate-resolution
multispectral imagery. To estimate forest biomass, many of the
studies used band combinations of the Landsat data and veg-
etation indices in a regression with a variety of standard field
variables including mean height, Lorey’s mean height (mean
stand height weighted by basal area per tree), maximum height,
crown width, and others. These efforts met with varying degrees
of success. Cartus et al. (2014) reported a great success of using
Landsat to map biomass than radar data. Landsat data, in the
form of a canopy density product, was an important predictor
for the AGB of forests in Africa (Avitabile et al. 2012) and in
the Amazon (Saatchi et al. 2007). Canopy density metrics works
well on open canopies (i.e., primarily during early successional
stages of forest development). Biomass differences between for-
ests with closed canopies are not captured. Foody et al. (2003)
employed a feed-forward neural network to model forest bio-
mass and was successful in extracting forest biomass with high
levels of accuracy. Foody et al. (2003) also note a key issue in
remote sensing of biomass: the inability of models to transfer
from study site to study site. Empirical models built from sat-
ellite imagery rarely transfer from one study area to another,
even if the study sites are composed of similar forest species and
climatic conditions. Small forest plots are not represented well
by image pixels larger than their spatial extent (Lu 2006), and
complex biophysical environments are not well represented at
the scale of Landsat data.
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Recent advances of mapping disturbance using Landsat
data lead to a new approach to map AGB dynamics using for-
est disturbance and recover history maps derived from Landsat
(Powell et al. 2010, Pflugmacher et al. 2012, 2014, Main-Knorn
et al. 2013). With recently developed algorithms that charac-
terize trends in disturbance (e.g., year of onset, duration, and
magnitude) and post-disturbance regrowth, the new method
improved Landsat-based mapping of current biomass across
large regions. The new approach includes information on vegeta-
tion trends prior to the date to enhance Landsat’s spectral rela-
tionships with biomass. The method was tested in various forests
in Oregon (USA), Arizona, Minnesota, Montana, and Europe
using Landsat-based disturbance and recovery metrics. They
found that the new method substantially improved predictions
of AGB compared to models based on only single-date reflec-
tance. Conversely, they also found that their method performed
significantly better in estimating AGB dead than LiDAR models,
and single-date Landsat data failed completely.

Chopping et al. (2008) investigated the usability of Multiangle
Imaging SpectroRadiometer (MISR) on board the Terra satellite
to measure woody biomass and other forest parameters for large
parts of Arizona and New Mexico. The advantage of MISR over
active or other passive sensors is timely and extensive estimates
of forest biomass and other parameters at low cost.

Gonzalez et al. (2010) used QuickBird’s panchromatic band
to automatically detect tree crowns and then used regression
techniques to estimate biomass from the diameter of each tree
crown. They found that the QuickBird imagery resulted in
higher error and lower total biomass estimates than the LiDAR
data due to the shadowing that interfered with the crown detec-
tion algorithm. The cost of acquiring the images from these sen-
sors is prohibitive for most research purposes. While the spatial
resolution offered by these sensors is excellent for crown delinea-
tion, care must be taken with shadowing and other effects of sun
angle and tree height, further reducing the utility of these data
for small-area forest quantification (Gleason and Im 2011).

3.5.2 Radar

Radar signals are sensitive to dielectric and geometric proper-
ties of forests and are thus directly related to measurements of
AGB. The ability of radar sensors to measure biomass mainly
depends on how deep the radar signals can penetrate into the
canopy. The longer the wavelength is, the deeper the penetra-
tion is. The L- and P-band backscatter, particularly HV- and
HH-polarized backscatter, is strongly dependent on biomass
amount (Le Toan et al. 1992, Ranson and Sun 1994, Imhoff
1995, Saatchi 2007, Saatchi et al. 2012). P-band backscatter
shows stronger dependence on biomass than L-band backscat-
ter. The radar backscatter increases approximately linearly with
increasing biomass until it is saturated at a certain biomass
level that varies with the radar wavelength (Imhoff 1995). The
biomass level for backscatter saturation is about 200 tons/ha at
P-band, 100 tons/ha at L-band, and 30-50 tons/ha at X- and
C-bands (Le Toan et al. 2011).
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The observed relationship between radar backscatter and
biomass can be physically illustrated using electromagnetic
scattering models (Sun and Ranson 1995). HV backscatter is
dominated by volume scattering from the woody elements in the
trees, so that HV is strongly related to AGB. For the HH and
VV polarizations, ground conditions can affect the biomass-
backscatter relationship, because HH backscatter comes mainly
from trunk-ground scattering, while VV backscatter results
from both volume and ground scattering.

Application of the radar biomass estimation at continental or
globe scale is best at 1.0 ha scale (100 m x 100 m pixel size). At
this scale, the distribution of AGB over the landscape is both
stationary and normal, and the radar resolution is large enough
to reduce the speckle noise and the geolocation error between
radar pixel and the plot location. Errors associated with the bio-
mass estimation from radar backscatter or height measurements
at this scale can be reduced to acceptable levels (10%-20%) for
mapping the AGB globally (Saatchi et al. 2011, 2012).

SAR sensors on board several satellites (ERS-1, JERS-1,
ENVISAT, and RADARSAT) with C- and X-bands were used
to quantify forest carbon stocks in relatively homogeneous or
young forests, but the signal tends to saturate at fairly low biomass
levels (~50-100 tons C/ha) (Le Toan et al. 2004). Mountainous
or hilly conditions also increase errors. Several studies have
used the phased array-type L-band SAR (PALSAR) on board
the Japanese ALOS launched in 2005 to estimate biomass and
carbon stocks in sparse canopies from African savanna wood-
lands to boreal forests (Carreiras et al. 2012, Cartus et al. 2012,
Peregon and Yamagata 2013, Mermoz et al. 2014). Those stud-
ies found that ALOS/PALSAR data can successfully map AGB
in sparse canopies when aggregating the ALOS biomass maps
at large scale (county scale or hectare scale). Synergistic use of
L- and X-band SAR can provide large-scale AGB (Englhart et al.
2011). They combined multitemporal TerraSAR-X x-band and
ALOS PALSAR L-band to estimate large-scale biomass for tropi-
cal forests with r> = 0.53 with an RMSE of 79 tons/ha.

Many studies have demonstrated that radar backscattering
works best only to estimate biomass for sparse canopy. As an
alternative to SAR backscatter intensity, recent advancement
in interferometric radar analysis techniques such as polari-
metric and interferometric radar (PolInSAR) has shown great
potential to predict biomass (Askne and Santoro 2005). These
interferometric techniques allow for a characterization of the
vertical forest structure and thus a more immediate estimation
of forest biophysical attributes. Coherence saturation levels are
generally higher than those reported for backscatter intensity.
Under favorable conditions, correlations exist for values of up
to 250-300 tons/ha (Santoro et al. 2007, Chowdhury et al. 2014).
The backscattering intensity for C- and X-bands is not very good
for forest biomass estimation. But the InSAR coherence and the
phase center height of X-band InSAR can be used for the pur-
pose. However, the potential to implement such experimental
techniques across large areas depends on suitable configura-
tions of future spaceborne SAR missions. With the advancement
in interferometric radar analysis techniques, radar data have a
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great potential for global biomass estimates due to its indepen-
dence from clouds and therefore the possibility to obtain con-
tinuous global coverage.

3.5.3 LiDAR

Use of LiDAR to estimate forest biomass has accelerated rapidly
in recent years. Observation from both discrete and full-return
LiDAR can be translated into various forest structure met-
rics such as maximum canopy height and multistrata heights
aboveground as well as characteristic height at which different
proportions of the total reflected energy are returned to the sen-
sor. The various derived metrics can be related to AGB, typically
via correlative model with associated field measurements (Goetz
and Dubayah 2011, Wulder et al. 2012).

Many studies have demonstrated the strong relationship
between AGB and LiDAR-measured height metrics, ranging
from boreal conifers to equatorial rain forests. LIDAR has been
widely used to map AGB using different LIDAR system. LiDAR
is recognized as the state-of-the-art remote sensing technology
for mapping AGB because it is much less sensitive to the satura-
tion problem, compared to conventional remote sensing optical
and radar data. We summarize recent progress on LiDAR-based
biomass mapping activities from the following two perspectives:

3.5.3.1 Small-Footprint Discrete-Return LiDAR

AGB has been estimated successfully with remote sensing, espe-
cially using small-footprint discrete LIDAR data (Nelson 1988,
Nelson etal. 2004, Neesset and Nelson 2007, Neesset and Gobakken
2008, Garcia et al. 2010). Nelson et al. (2004) demonstrated that
tree height obtained from airborne LiDAR is a good predic-
tor of biomass for large area averages. Neesset and Goabakken
(2008) found that LiDAR tree height and forest density were able
to explain 88% and 85% of the variability in aboveground and
belowground biomass, respectively, for 1395 sample plots in the
coniferous boreal zone of Norway. These studies often use LIDAR
data alone or in combination with passive optical or radar data.

Most studies were conducted based on regression equations
relating vegetation biomass to LiDAR-derived variables across
different scales from individual tree to plot and stand scales. The
plot-based approach commonly involves field-measured bio-
mass regressed against derived statistics from plot-level LIDAR
data. The LiDAR statistics can be from the individual returns
or from the height of canopy (also called canopy height model
[CHM]). This approach adopts distributional metrics such as the
mean canopy height and the standard deviation of the canopy
height derived from the CHM or the raw returns. These met-
rics are then used in conjunction with regression equations to
predict forest properties (Nelson 1988, 2004, Garcia et al. 2010).
However, many recent studies used LiDAR return intensities
rather than height metrics to estimate biomass. Garcia et al.
(2010) found that several biomass estimation models based on
LiDAR intensity or height combined with intensity data provide
better biomass estimate than using height metrics alone.
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3.5.3.2 Large-Footprint Full-Waveform LiDAR

Large-footprint full-waveform systems have been shown to pro-
vide accurate estimates of AGB in tropical and temperate decid-
uous, conifer, and mixed forests over a wide range of conditions.
Over the past decade, several airborne Land Vegetation Ice
System (LVIS) and SLICER LiDAR systems have demonstrated
the ability to retrieve AGB over various biomes ranging from
boreal conifers to equatorial rain forests (Drake et al. 2002a,b,
Lefsky et al. 2005b, Anderson et al. 2006, 2008, Dubayah et al.
2010). Most studies adapted stepwise multiple regressions to
predict ground-based measures of stand structure from both
conventional canopy structure indices include mean and maxi-
mum canopy surface height, canopy cover, and indices derived
from the canopy height profile (CHP), vegetation height metrics:
RH100, RH75, RH50, and RH25 defined as the relative height
(RH), relative to the ground elevation, at which 100%, 75%, 50%,
and 25%, respectively, of the accumulated full-waveform energy
occurs (Blair et al. 1999).

The GLAS, on board the ICESat, is a full-waveform digitiz-
ing LiDAR system with a nominal footprint size of ~65 m that
acquires information on topography and the vertical structure of
the vegetation (Zwally et al. 2002, Carabajal and Harding 2005,
Harding and Carabajal 2005). A series of studies using GLAS
data have successfully demonstrated the capabilities of GLAS
data for estimating forest biomass on ground plots in tropical,
temperate, and conifer forests (Lefsky et al. 2005a, Boudreau
et al. 2008, Nelson et al. 2009, Baccini et al. 2012).

One major limitation of current spaceborne LiDAR systems
(i.e., ICESat GLAS) is the lack of imaging capabilities and the
fact that it provides sparse sampling information on the for-
est structure. To overcome this problem, it has been fused with
other data to map large-scale AGB. Boudreau et al. (2008) and
Nelson et al. (2009) used a multiphase sampling approach to
relate GLAS waveforms to airborne profiling LIDAR measure-
ments and profiling LIDAR measurement to field estimates of
total aboveground dry biomass in Québec, Canada, and Siberia,
USSR. Some combines with optical remote sensing images with
GLAS data to map biomass at large scales (Baccini et al. 2008,
2012). Another issue of ICESat data is that the LiDAR wave-
form mixes LiDAR energy returns from both vegetation and
underneath topography. To mitigate this problem, researchers
have limited their analyses to area with <10 DEG slope (Nelson
et al. 2009). Lefsky et al. (2005a,b) uses waveform shapes to
remove the impact of underneath topography on waveform.
Yang et al. (2011) developed a physical approach to remove
the underneath topography effect. It is important to evaluate
the accuracy, precision, and sources of uncertainty involved
in using GLAS for large-scale biomass estimation in different
regions of the world.

Full-waveform instruments such as GLAS (and LVIS and
SLICER) must use high pulse energies in order to penetrate
dense canopy and detect the ground surface. As a result of the
high pulse energies, the pulse rate must be low, which lim-
its the spatial sampling and resolution of these instruments.
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Furthermore, the width of the pulse “acts as a low-pass filter,
thereby smoothing the waveform and limiting the vertical res-
olution of the canopy features”. This also broadens the return
from the ground and reduces its amplitude thus making its
detection more difficult.

3.5.4 Multisensor Fusion

The use of LiDAR data, particularly spaceborne data, is lim-
ited by its sparse spatial sampling. Both radar and passive opti-
cal remote sensing provide large scale of imaging capability.
However, both optical and SAR estimates of AGB are limited
by a loss of sensitivity with increasing biomass, commonly
known as “saturation.” A promising development is to com-
bine radar/passive optical data with LiDAR to develop models
that improve biomass estimates by exploiting the strengths of
each sensor. The fusion of metrics from multiple sensors has

produced biomass models with high accuracy. While results
have been variable, multisensor fusion can produce models
with accuracy levels similar to or better than those of LIDAR
alone (see Table 3.4 for a summary).

Many studies investigate if additional hyperspectral sig-
nature from hyperspectral data or radar and optical imaging
capability besides LIDAR measurements improve biomass esti-
mates (Anderson et al. 2008, Gonzalez et al. 2010, Sun et al.
2011, Swatantran et al. 2011). The results vary. But most stud-
ies found that LIDAR provides the best biomass estimates, and
additional optical passive or radar data do not improve biomass
estimates.

However, another series of multisensor fusion study for AGB
is fusion of airborne LiDAR, spaceborne radar, Landsat, and
field data to map AGB at large scales through two stages of
upscaling: scaling from field measurements to airborne LIDAR
scale, then from airborne LiDAR scale to spaceborne radar

TABLE 3.4 Capabilities to Estimate Aboveground Biomass and Forest Carbon Stocks through Multisensor Fusion

Multisensors Study Area Biomass Parameters Method Resolution Accuracy References
GLAS/ICESat, « Tropical Forests: Lorey’s height Maximum 1, 10, o 1km scale: +6%-53% Saatchi
MODIS, SRTM, Latin America entropy 100 km e 10 km scale: £5% etal. (2011)
and QSCAT Sub-Saharan Africa o 100 km scale: +1%
SE Asia
GLAS/ICESat, Pantropical forest o Waveform metrics ~ Random 500 m « Tropical America: +8.4/117.7=7%  Baccini
MODIS, and o Surface reflectance forest o Africa: +£8.4/64.5 =13% etal. (2012)
SRTM » Temperature o Asia: +3.0/46.5 = 6%
» Topography
Airborne LiDAR, Colombia and Peru « MCH Random 1.1 km RMSE Barccini and
GLAS/ICESat, « Surface reflectance forest Colombia: +15.7 Mg C/ha Asner (2013)
and MODIS » Temperature Peru: +17.6 Mg C/ha
« Topography
GLAS, MODIS South-central Siberia o GLAS waveform Neural 500 m o <10°slope: +11.8/163.4 = 7% Nelson
metrics network o >10°slope: +£12.4/171.9 = 7% et al. (2009)
« MODIS land cover
Airborne LIDAR ~ Quebec, Canada o GLAS waveform Regression 30 m « Carbon density: +2.2/39 = 6% Boudreau
GLAS/ICESat 1.3 M km? metrics « Total carbon: +£0.3/4.9 = 6% et al. (2008)
Landsat ETM+ « Land cover « R?=0.56-0.65
SRTM
GLAS/ICESat CA o Tree height Regression 30m « RMSE: 40-150 Mg C/ha Zhang
Landsat o LAI « Relative error: +40% etal. (2014)
Airborne LIDAR ~ Peruvian Amazon « MCH Regression 0.1and « At0.land 5 ha: RMSE = 23 and Asner
Landsat 43 Mha « Forest cover 5ha 5 Mg C/ha etal. (2010)
LVIS and AVIRIS  Bartlett forest « RH50 Stepwise 20 m o RMSE improved from 0.55 to Anderson
« AVIRIS MNF regression 0.51 when combined Mg/ha etal. (2008)
« Adjusted R?from 027,0.3 to 0.39
« Fusion reduced error by 5%-8%
LVIS and AVIRIS  Sierra Nevada, CA « RH100, RH75, Regression 20 m « r2=0.84, RMSE = 58.78 Mg/ha Swatantran
RH50, RH25 Species « No significant improvement etal. (2011)
« NDVI, NDWI, based fusing AVIRIS and LiDAR
DGVI, CC comparing to LiDAR alone

AVIRIS MNE, AVIRIS minimum noise fraction transform (MNF) rotation; CC, Canopy cover; DGVI, First/second derivative of red edge normalized to
626-795 nm baseline; Lorey’s height, basal area weighted height of all trees >10 cm in diameter; MCH, mean canopy vertical height profiles, the distance from
ground (digital terrain models) to the approximate centroid of the tree crowns; NDVI, Normalized difference of vegetation index; NDWI, Normalized different
of water index; RH100, Relative height (RH) to the ground elevation at which 100% of the accumulated full-waveform energy occurs; RH75, Relative height
(RH) to the ground elevation at which 75% of the accumulated full-waveform energy occurs; RH50, Relative height (RH) to the ground elevation at which 50%
of the accumulated full-waveform energy occurs; RH25, Relative height (RH) to the ground elevation at which 25% of the accumulated full-waveform energy

occurs; SRTM, Shuttle radar topography mission.
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scale (Asner 2009, Nelson et al. 2009, Asner et al. 2010, 2012,
Nelson 2010, Asner and Mascaro 2014). Baccini et al. (2008)
generated AGB estimates of tropical Africa from MODIS
data using GLAS height metrics (average height and height of
median energy or HOME metrics). Asner et al. (2010, 2012) use
airborne LiDAR and Landsat data together with field data to
map AGB and carbon at high spatial scale in Amazon. Nelson
et al. (2009) and Nelson (2010) combine field data, airborne
LiDAR, and spaceborne GLAS data to map AGB at large scales
in boreal forests.

Most recent development on biomass and carbon estimates
using remote sensing data is large regional mapping of AGB
through multisensor fusion. Those activities include fusion
LiDAR and multispectral data (Asner 2009, Asner et al. 2012,
Baccini et al. 2012) together with radar data (Saatchi et al. 2011).
Two independent studies have produced pantropical maps
of AGB at 500 and 1 m spatial resolutions (Saatchi et al. 2011,
Baccini et al. 2012). These two maps have been widely used by
subnational- and national-level activities in relation to REDD+.

Both maps use similar input data layers and are driven by the
same spaceborne LiDAR dataset providing systematic forest
height and canopy structure estimates, but use different ground
datasets for calibration and different spatial modeling method-
ologies. Field data were upscaled to GLAS footprint level (70 m)
over a broad range of conditions in tropical Africa, America,
and Asia based on the statistical relationships between LiDAR
metrics and filed AGB, then GLAS footprint biomass was scaled
to 500 m wall-to-wall biomass map through a random forest

Above ground
biomass (Mg/ha)
B 0-25

B 26-50

B si-75
[176-100
[]101-150
[ J151-200
[]201-250
[ 251-300
B 301-350
Bl 351-400
B 400

(a)

machine learning using MODIS BRDF, surface temperature,
and SRTM digital elevation data (Baccini et al. 2012).

Saatchi et al. (2011) calibrated ICESat/GLAS Lorey’s height
(basal area—weighted height of all trees >10 cm in diameter)
to AGB using field data collected from 4079 in situ inventory
plots across three tropical continents. These AGB estimates were
extrapolated from inventory plots (0.25 ha) to the entire land-
scape at 1 km scale based on spatial imagery from multiple sen-
sors (MODIS, shuttle radar topography mission [SRTM], and
quick scatterometer—[QSCAT]) using a data fusion model based
on the maximum entropy (MaxEnt) approach. This benchmark
map of biomass carbon stocks over 2.5 billion ha of forests on
three continents, encompassing all tropical forests, for the early
2000s (see Figure 3.4).

A recent study compared these two maps and found signifi-
cant difference in their AGB estimates over a wide variety of
forest cover types and scales; however, at country level, there
is general agreement, with much of the country-level differ-
ence explained by the choice of different allometric equations
(Mitchard et al. 2013). These two maps were also compared
to a high-resolution, locally calibrated map (Asner 2009).
A further limitation present in both studies is the lack of local
wood density or diameter-height calibration. Both are known
to vary considerably across the landscape but using constant

wood density or/and diameter-height relationship smooth out
the variations of AGB estimates. This has an important impli-
cation for REDD+—it appears we have the algorithms and
tools to estimate biomass stocks with some certainty.

ML L I Kilometers
01000 2000 4000 6000

FIGURE 3.4 Distribution of forest aboveground biomass (Saatchi et al. 2011). (a) Forest aboveground biomass is mapped at 1 km spatial resolu-
tion. The study region was bounded at 30° north latitude and 40° south latitude to cover forests of Latin America and sub-Saharan Africa and from
60° to 155° east and west longitude. The map was colored on the basis of 25-50 Mg/ha AGB classes to clearly show the overall spatial patterns of
forest biomass in tropical regions. Histogram distributions of forest area (at 10% tree cover) for each biomass class were calculated by summing the

pixels over Latin America in.
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Distribution of forest aboveground biomass (Saatchi et al. 2011). (b) Africa in (c), and Asia in (d). Similarly, total AGB

for each class was computed by summing the values in each region with distributions provided for Latin America in (e), Africa in (f), and Asia
in (g). All error bars were computed by using the prediction errors from spatial modeling.

3.6 Summary

A variety of remote sensing data types including optical, LiDAR,
and RADAR (mostly SAR) are used to estimate biomass. The
most frequently applied sensors were discrete-return airborne
LiDAR, spaceborne multispectral, and airborne or spaceborne
RADAR systems (Figure 3.5) (Fassnacht et al. 2014).

Several studies were conducted for an analysis of reported
biomass accuracy estimates using different remote sensing
platforms (airborne and spaceborne) and sensor types (opti-
cal, radar, and LiDAR) (Zolkos et al. 2013) (Goetz and Dubayah
2011). These studies reported that LiDAR is significantly better
at estimating biomass than passive optical or radar sensors used
alone (Figure 3.6). AGB models developed from airborne LiDAR
metrics are significantly more accurate than those using radar
or passive optical data. The LiDAR model error is positively
correlated with the magnitude of AGB and varies at higher bio-
mass and decreases with plot size (Figure 3.7). Fusion of LIDAR
and other sensors does not always improve biomass estimates.
The spatial extent of airborne LiDAR is typically restricted to
relatively small areas (tens of km?) and is also often integrated
with imaging sensors for larger area mapping. Airborne LiDAR
metrics—-produced AGB models were significantly more accurate
than those based on the spaceborne GLAS instrument due to its
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FIGURE 3.5 Frequency distribution of the data sources (sensors) for
aboveground biomass estimates. AL, airborne LiDAR; SL, spaceborne
LiDAR; AMS, airborne multispectral; SMS, spaceborne multispectral;
AR, airborne RADAR; SR, spaceborne RADAR; AHS, airborne hyper-
spectral; comb, studies using data from at least two sensors. (From
Fassnacht, F.E. et al., Remote Sens. Environ., 154, 102, 2014.)
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FIGURE 3.6 LiDAR model RSE vs. mean field-estimated AGB for (a) 51 LiDAR-only studies and (b) RSE (%) variability with plot size for 48

studies. (From Zolkos, S.G. et al., Remote Sens. Environ., 128, 289, 2013.)
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FIGURE 3.7 (a) RSE of remote sensing—AGB regression models, with dotted horizontal line at RSE = 20 Mg/ha, and (b) RSE (%) (RSE standard-
ized by mean AGB from field measurements) categorized by sensor type, with dotted horizontal line at RSE = 20% of mean AGB. The number of
studies for each type is indicated in parentheses. Not all studies reported both mean AGB and RSE values; hence, the slight disparity in sample sizes
between mean RSE and AGB by sensor type. DRL, discrete-return LiDAR; FRL, full-return LiDAR; MS, multisensor; RDR, radar, POP, passive

optical. (From Zolkos, S.G. et al., Remote Sens. Environ., 128, 289, 2013.

sparse samplings. The sparse sampling density of GLAS requires
fusion with image data for any AGB mapping application, with
associated losses in model accuracy.

Previous studies have reported that the error varies with for-
est types, with higher accuracies for biomass estimates in conif-
erous stands compared with hardwood stands (Nelson et al.
2004, Ni-Meister et al. 2010). Studies also reported that model
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errors tend to decrease with increasing plot size (Frazer et al.
2011). Large plot size lowers between-plot variance and has
greater spatial overlap and is more resilient to GPS positional
errors (Frazer et al. 2011).

Zolkos et al. (2013) reported that the error from LiDAR and
multisensor models, but not radar or passive optical alone,
may satisfy measurement, reporting, and verification (MRV)
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guidelines, particularly in tropical forests. The best LiDAR
model and fusion of LiIDAR and imaging satellite data at large
spatial extents have demonstrated accuracies that may be suit-
able for carbon accounting purposes at the project level.

3.7 Conclusions and Future Directions

Tremendous progress has been made to estimate AGB in the last
decade or so. With the development of new LiDAR technology, a
number of investigators have developed innovative approaches to
fuse passive optical imagery or radar imaging data with spatially
extend point-based estimates of biophysical parameters derived
from LiDAR to develop high-quality wall-to-wall AGB maps with
unprecedented accuracy and spatial resolution. Particularly, the
synergy of spaceborne large-footprint LiDAR (ICESAT GLAS)
and medium-resolution optical data, primarily from MODIS,
has been exploited to map canopy height and biomass at regional
to continental scales. Combining with high-quality forest loss
maps, these high-quality carbon stock maps are being used to
estimate carbon emission due to forest cover change at regional
and continental scales (Baccini et al. 2012, Harris et al. 2012).
Those large-scale maps of biomass, carbon, and carbon emission
can be extremely useful for REDD and global carbon monitoring
program and have the potential to substantially reduce uncer-
tainty in global carbon exchanges and net carbon budgets.

Developing accurate and consistent biomass maps is still
challenging. One issue is a lack of large-scale densely sampled
LiDAR data at continental and global scales. We call an urgent
need for a LIDAR mission to quantify forest carbon store and car-
bon change at global scale. Currently a laser-based instrument
called the Global Ecosystem Dynamics Investigation LiDAR is
being developed for the International Space Station, which will
provide a unique 3D view of the earth’s forest structure, as the
valuable information for global carbon estimates. Combining
high vertical and spatial resolution, photon-counting systems
might overcome the limitations of full-waveform low-detector
sensitivity and restricted vertical and spatial resolution.
However, how much vegetation structure properties can be
retrieved from future spaceborne LiDAR missions, ICESat-II,
scheduled to launch in 2017 with a 10 kHz, 532 nm micropulse
photon counting laser altimeter still needs further investigation.
With recent advancement in polarimetric and interferometric
radar (PolInSAR), fusion LiDAR and PolInSAR may have a great
potential to provide accurate AGB estimates at centennial and
global scales. However, implementation of such experimental
techniques across large areas heavily depends on suitable con-
figurations of future spaceborne SAR missions.

With increasing use of remote sensing technology to map
AGB and carbon stocks at large scales, their calibration will still
rely on the accuracy of ground-based carbon storage estimation.
Accuracy of aboveground estimates using remote sensing data
depends heavily on the accuracy of allometric equations cho-
sen. Different allometric equations used to calibrate the remote
sensing data resulted in different carbon estimates. Recent stud-
ies suggested that regional variation allometric equations were
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an important source of variation in tree AGB (Feldpausch et al.
2012, Goodman 2014). With the recently updated allometric
equations for tropical forests (Chave et al. 2014), remote sensing
products could be improved.

There is an urgent need for improved datasets that charac-
terize the global distribution of AGB, especially in the trop-
ics. For the UN Framework Convention on Climate Change
to implement the Reduced Emissions from Deforestation and
Degradation (REDD) scheme, more accurate and precise coun-
try-based carbon inventories are needed. With recent progress
made on biomass and carbon store estimates at continental
scales and recently published global high-resolution (30 m) for-
est cover change maps (Hansen et al. 2013), accurate estimates of
global carbon store and carbon emission estimates are possible
in the next future.
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4.1 Introduction

The development of satellite-based remote sensing technologies
was, for a long time, driven by agricultural information needs
(Becker-Reshef et al., 2010a). In the United States, for example,
preliminary research and development of civil satellite monitor-
ing is reported having started in the early 1970s (launch of Earth
Resources Technology Satellite later renamed Landsat-1) follow-
ing unanticipated severe wheat shortages in Russia (Figure 4.1)
(Pinter et al., 2003).

Monthly wheat prices 1960—2011($/metric ton)
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Monthly wheat prices from 1960 to 2011 (in USD per metric ton). (From http://wmp.gsfc.nasa.gov/uploads/science/slides/Justice_
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Specific Challenges of Agricultural Activities Favoring the Use of Remote Sensing Data Compared to Other Data Sources

Agricultural production depends on physical landscape (e.g., soil type), as well as climatic driving variables and agricultural management practices, all these

factors being highly variable in space and time

Agricultural production follows strong seasonal patterns related to the biological life cycle of crops

Productivity can be quickly affected by unfavorable growing conditions, pests, and diseases

Many agricultural items are perishable

Agricultural trade and prices are globally linked and therefore affecting the actions of various stakeholders ranging from farmer to traders and governments

Agricultural commodities are subjected to excessive market speculation, resulting in price spikes often affecting the poorest people most strongly

Although the focus of remote sensing has broadened over the
years, agriculture is still important as shown by the large—and
increasing—number of publications dealing with remote sensing
and agriculture. Not surprisingly, most remote sensing scientific
conferences have at least one session dealing with agriculture.

The importance of remote sensing in agriculture stems from
the fact that agricultural activities face specific challenges not
common to other economic sectors (Table 4.1). As a result, agri-
cultural activities have to be monitored from local to global
scales at high temporal frequency.

In recent years, we observed an increased use of remote sens-
ing data and related technologies in agricultural production
systems. First, remote sensing data have found their entrance
in precision farming aiming to increase agricultural efficiency
(Moran et al., 1997; Seelan et al., 2003; Mulla, 2013). Second,
remote sensing is also a very valuable tool for monitoring agri-
cultural expansion (e.g., following deforestation) (Galford et al.,
2008; Gibbs et al., 2010). Finally, by providing timely, compre-
hensive, objective, transparent, accurate, and unbiased data,
remotely derived information can eventually prevent excessive
market speculation and resulting price spikes (Naylor, 2011).

High—and volatile—food prices repeatedly restrict food access
in the most vulnerable parts of the world (Figure 4.2). For example,
between 2006 and 2008, average world prices for rice, wheat, corn,
and soybeans rose between 107% and 217%. This demonstrates
that remote sensing has more to offer than just an ecological and
economic component in monitoring systems. Indeed, the example

shows the social component of remote sensing, as the poorest peo-
ple are usually the most affected by rising food prices.

One can expect that the impact of remote sensing data in agri-
culture and agronomy will continue to increase in the future, as
the agricultural sector itself is under high pressure. A number
of external drivers require a quick and widespread adaptation of
agriculture practices:

o Agriculture must strongly increase its production for
feeding the nine-billion people predicted by mid-century
(Foley et al., 2011).

o Agricultural production and productivity must be
increased while minimizing the environmental impact of
agriculture (Zaks and Kucharik, 2011).

o Agriculture must cope with climate change (Olesen and
Bindi, 2002).

o Agriculture must deal with land users not involved in
food production (e.g., use of agricultural land for bio-
fuel production, and urban expansion) (Demirbas and
Balat, 2006).

To avoid information gaps, the progress of these necessary adap-
tations has to be monitored through appropriate agricultural
monitoring systems. For example, policy makers and stakehold-
ers should be informed about the state of the agricultural sector
and the pathway that led to the current situation. Information is
also critical for delivering feedbacks to decision makers regard-
ing the actual impact of their policies and investments. Reliable

Food price volatility and spikes (2002-2013)
Sources: IFPRI and FAO

Price volatility (days) - left axis

Maize B Soybeans

mmm Soft wheat WM Hard wheat

Price (US$/ton) - right axis Maize === Soybeans === Softwheat === Hard wheat
350 700
175} 350
(0] 10

FIGURE 4.2 Food price volatility (left axis) and price (right axis) between 2002 and 2013. Price spikes refer to a steep rise in prices over a short

period, whereas volatility is defined as high dispersion of prices around the average market price. (From http://www.ifpri.org/sites/default/files/

publications/2020resilienceconfbr16.pdf.)
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TABLE 4.2 Strengths and Applications of Remote Sensing
in the Fields of Agronomy and Agriculture

Biomass and yield estimates
Crop acreage information

Objective and unbiased assessment of crop conditions over large
(agricultural) areas with high revisit frequency

Mapping of disturbances and stresses

Assessment of disastrous climatic events on agricultural production
Identification of cropping patterns and agricultural production systems
Provision of baseline information for index-based (agricultural) insurances
Information for helping understanding possible effects of climate change
Identification of areas with yield gaps

Mapping of crop phenological development

Mapping of irrigated areas and water requirements

Increased productivity efficiency through precision farming

Monitoring of agricultural expansion/farmland abandonment

information also facilitates risk reduction and would lead to opti-
mized statistical analyses at a range of scales, enabling a timely
and accurate national to regional agricultural statistical reporting.

To cope with these conditions and information needs, two
important requirements have to be met:

1. Information has to be provided globally at a reasonably
detailed spatial scale and with a frequent updating fre-
quency (Bruinsma, 2003).

2. Information is needed in due time—information is worth
little, if it becomes available too late (FAO, 2011).

Remote sensing can significantly contribute to provide a timely
and accurate picture of the agricultural sector. Remote sensing is
probably also the most cost-efficient means for gathering timely,
detailed, and reliable information over large areas with high
revisit frequency (Table 4.2).

Remote sensing techniques are particularly well suited for
assessing the two components of crop production (GEO, 2013):

1. Yield (e.g., Doraiswamy et al., 2005; Zhang et al., 2005;
Bernardes et al. 2012; Duveiller et al., 2013; Meroni et al.,
2013a; Mulianga et al., 2013; Rembold et al., 2013)

2. Acreage (e.g., Gallego, 2004; Fritz et al., 2008; Galford
etal., 2008; Pittman et al., 2010; Boryan et al., 2011; Mello
etal., 2013ac)

Moreover, the remotely retrieved information permits decision
makers to better anticipate the effects of (disastrous) climatic
events (predicted to increase in strength and frequency) and to
get an objective and unbiased spatial picture over large areas (for
risk assessment). Remotely sensed data can also be used as base-
line information to provide cost-efficient (index-based) insur-
ance schemes stimulating investments of smallholder farmers
(De Leeuw et al., 2014). By putting the current situation in a his-
torical context, an agricultural monitoring system permits bet-
ter understanding of the possible effects of climate change (for
preparedness and mitigation) and identification of areas with the
highest yield potential—a prerequisite for closing the huge yield
gaps in many parts of the world. In addition, crop phenological
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information (Sakamoto et al., 2005; Shen et al., 2013), stress
situations (Gu et al., 2007; Rembold et al., 2013), and distur-
bances (Zhan et al., 2002; Verbesselt et al., 2010) can be detected.
Finally, remote sensing is also well suited for documenting the
state of the land surface, and existing image archives provide
ample material to study how agriculture changed over the past
decades (Cousins, 2001; Dramstad et al., 2002).

4.2 Agricultural Challenges

4.2.1 Limiting the Environmental
Impacts of Agriculture

Agriculture and natural resources are both under strong pres-
sure. The main drivers are population growth, increasing
consumption of calorie- and meat-intensive diets, and an
increasing use of cropland for bioenergy production (Hill et al.,
2006; FAO, 2009; Pelletier and Tyedmers, 2010; Foley et al., 2011).

The resulting negative impacts of current crop production are
manifold and can be related to agricultural expansion and inten-
sification (Foley et al., 2011; Tilman et al., 2011):

 Biodiversity is threatened by land clearing and habitat
fragmentation (Dirzo and Raven, 2003).

o Greenhouse gas (GHG) emissions from land clearing,
crop production, and fertilization contribute already to
one-third of global GHG emissions (Burney et al., 2010).

 Global nitrogen and phosphorus cycles have been disrupted,
with impacts on water quality, aquatic ecosystems, and
marine fisheries (Vitousek et al., 1997; Canfield et al., 2010).

o Freshwater resources are depleted, as nearly 80% of fresh-
water currently used by humans is for irrigation (Postel
et al., 1996; Thenkabail et al., 2009; Thenkabail, 2010).

4.2.2 Coping with Increasing
Global Food Demand

As demonstrated by Tilman et al. (2011), on a global scale, per
capita food demand is closely related to per capita gross domes-
tic product (GDP). For example, people in the richest countries
(group A—the United States, for instance) consume roughly 8000
kcal day! compared to an average consumption of 4000 kcal day™!
for people in groups C and D (Brazil and Indonesia, respectively).

Assuming that the GDP and global population will continue
to increase in the future, the past trend of strongly increas-
ing food demand is expected to last for three to four decades.
Tilman et al. (2011), for example, project that per capita demand
for crops will double between 2005 and 2050. Following these
assumptions, the strongest increases (in absolute values) are pre-
dicted within economic groups C-E (Figure 4.3).

Based on this and other forecasts, most agronomists and inter-
national food organizations, such as the Food and Agriculture
Organization of the United Nations (FAO), agree that food
production must grow substantially for meeting the world’s
future food security and sustainability needs. At the same time,
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agriculture’s environmental footprint must shrink dramatically
(The Royal Society, 2005; Godfray et al., 2010; Foley et al., 2011).

Hence, in the coming decades, a crucial challenge for human-
ity will be meeting future food demands without undermin-
ing further the integrity of the earth’s environmental systems
(Mueller et al., 2012). The necessary transformation will have
to take place in times of climate change, adding supplemen-
tary difficulties (Jones and Thornton, 2003; Trnka et al., 2014).
For example, it is expected that temperature and precipitation
patterns will change in the next decades, with more frequent
extreme meteorological conditions (IPCC, 2007, 2013; Godfray
et al,, 2010). The necessary agricultural transition phase should
be monitored at various temporal and spatial scales.

4.2.3 Pathways for Increasing
Agricultural Production

The environmental impacts of an increased global crop produc-
tion will depend on how this increase is pursued (Foley et al.,
2011; Tilman et al., 2011). Production could be increased by

© 2016 Taylor & Francis Group, LLC

agricultural extensification or intensification. Extensification
implies clearing or adapting additional land for crop production.
Intensification, on the other hand, achieves higher yields through
increased inputs, improved agronomic practices (e.g., drop
irrigation), improved crop varieties, and other innovations.

According to Tilman et al. (2011), the “land sparing trajec-
tory” (i.e., intensification) to an increased global production is
the preferred solution, as closing the yield gap would minimize
both land clearing and GHG emissions, compared to a continu-
ation of current practices of extensification in the poorer coun-
tries (“past trend trajectory”). The yield gap is here defined as
the difference between realized productivity and the best that
can be achieved using current plant material. On a global scale,
huge differences in yield gap exist, exemplified in Figure 4.4
for cereals.

This view on intensification is also shared by Foley et al. (2011).
Their analysis showed how many calories could be produced by
closing existing yield gaps (Figure 4.5 top). In some countries,
additional calories could be produced by allocating a higher frac-
tion of the cropland to growing food crops (crops that are directly
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FIGURE 4.4 Average yield gaps for major cereal crops: corn, wheat, and rice. The yield gap is the differences between the potential yield and the
realized yield at a given location. (From Mueller, N.D. et al., Nature, 490, 254, 2012.)

consumed by people) instead of using this land for animal feed,
bioenergy crops, fibers, etc. (Figure 4.5, center and bottom).

If adopted, the proposed land sparing trajectory could meet
the 2050 projected global crop demand, while clearing only
0.2 billion ha of land globally (compared to 1.0 billion ha from
“past trend trajectory”) and producing global GHG emissions of
just 1 Gtyear™! (instead of 3 Gt-year™). In particular, Foley et al.
(2011) suggested that tremendous progress could be made by
simultaneously adopting the following five strategies:

. Halting agricultural expansion

. Closing yield gaps on underperforming lands
. Increasing cropping efficiency

. Shifting diets to less meat demanding ones

G W N~

. Reducing waste within the agricultural production chain

Together, these five strategies could double food production,
while greatly reducing the environmental impacts of agricul-
ture. Similar conclusions are drawn by Godfray et al. (2010),
promoting a “multifaceted and linked global strategy” to ensure
sustainable and equitable food security.

4.3 Remote Sensing for Assessing
Yield and Biomass

Agricultural vegetation develops from sowing to harvest as a
function of meteorological driving variables (e.g., temperature,
sunlight, and precipitation). Plant growth is further modified by
soil and plant characteristics (genetics) as well as farming prac-
tices. As changes in crop vigor, density, health, and productivity
affect canopy optical properties, crop development and growth
can be monitored remotely (Jones and Vaughan, 2010).
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The relationship between the spectral properties of crops and
their biomass/yield has been recognized since the very first spec-
trometric field experiments. For example, Tucker and cowork-
ers showed already in the early 1980s that an agricultural crop
can be monitored through its spectral reflectance properties
(Tucker, 1979; Tucker et al., 1980). The use of spectral data was
studied extensively by using satellite imagery after the launch of
the first civil earth observation satellite (Landsat-1). However,
only since the early 1980s, with the growing availability of
low-spatial-resolution images from the advanced very-high-
resolution radiometer (AVHRR) sensor on board of meteorolog-
ical satellite series known as National Oceanic and Atmospheric
Administration (NOAA), similar analyses have been extended
to large areas, including many countries in arid and semiarid
climates (Johnson et al., 1987; Hutchinson, 1991). Thanks to
their large swath width, low-resolution systems have a much bet-
ter synoptic view and temporal revisit frequency compared to
high-spatial-resolution sensors. The intrinsic drawback of these
sensors is, of course, related to their low spatial resolution, with
pixel sizes of about 1 km?, that is, far above typical field sizes. As
a consequence, recorded spectral radiances are mostly composed
by mixed information from several surface types. This seriously
complicates the interpretation (and validation) of the signal,
as well as the reliability of the derived information products.
Several approaches for deriving sub-pixel information exist, but
reveal serious limitations (Foody and Cox, 1994; Atkinson et al.,
1997; Busetto et al., 2008; Atzberger and Rembold, 2013).

Grassland productivity for large areas, such as the Sahel
region, was investigated by using AVHHR images by Tucker et al.
(1983) and Prince (1991a,b). Other studies were made to move
directly to the prediction of grain yield instead of total biomass
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FIGURE 4.5 Pathways for increasing agricultural production: (a) Additional calories that could be produced by closing current yield gaps of
crops, (b) increased food supply (in calories) by shifting crops to 100% human food and away from current mix of uses, and (c) fraction of cropland
that is allocated in 2000 to growing food crops (crops that are directly consumed by people) versus all other crop uses, including animal feed and
bioenergy crops. (From Foley, J.A. et al., Nature, 478, 337, 2011.)

© 2016 Taylor & Francis Group, LLC



78 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

by using field measured radiances (Tucker et al., 1981), Landsat
images (Pinter et al., 1981; Barnett and Thompson, 1983), and
finally NOAA AVHRR normalized difference vegetation index
(NDVI) (Quarmby et al., 1993). With the increasing popular-
ity of low-resolution satellite images for monitoring large geo-
graphic areas, an early warning of water stress as indicator for
lowered final productivity became a well-established practice
(Henricksen and Durkin, 1986; Johnson et al., 1987; Maselli
et al,, 1993). Both at national and regional levels, experimental
crop monitoring systems were put in place starting in the late
1970s in the United States with the Large Area Crop Inventory
Experiment (LACIE) and continuing in the 1980s in the EU with
the Monitoring Agriculture with Remote Sensing (MARS) proj-
ect. In many cases, these systems led to operational services that
are still in existence today.

Nowadays, a much larger range of satellite sensors regularly
provides data covering a wide spectral range (from optical
through microwave) and using both active and passive devices
(Belward and Skeien, 2014). Data are acquired from various orbits
and in different spatial and temporal resolutions. For analyzing
the recorded images, and for deriving the sought information, a
large number of analysis tools have been developed (Macdonald
and Hall, 1980; Verstraete et al., 1996; Justice et al., 2002).
Besides analyzing the recorded spectral and temporal signatures
(e.g., Badhwar et al., 1982; Lobell and Asner, 2004; Wardlow
et al,, 2007; Udelhoven et al., 2009; Vuolo and Atzberger, 2012;
Mello et al., 2013b), one can also analyze the directional reflec-
tance properties of vegetation (e.g., Clevers et al., 1994; Barnsley
et al,, 1997; Gobron et al., 2002; Vuolo et al., 2008; Koukal and
Atzberger, 2012; Schlerf and Atzberger, 2012). Further useful
information can be retrieved from the spatial arrangement of
the pixels, that is, the texture of the image (Vintrou et al., 2012)
as well as object size and association (Blaschke, 2010).

For the remainder of this chapter, we distinguish five main
groups of techniques for mapping crop biomass and yield estima-
tion. The five groups also summarize the evolution from purely
qualitative to more quantitative and process-based approaches and
hence—in some way—the history of agricultural remote sensing:

. Qualitative crop monitoring

. Regression modeling

. Application of Monteith’s efficiency equation

. Assimilation of remote sensing data into (mechanistic and
dynamic) crop growth models (CGMs)

5. Data mining (DM) approaches

B W N =

Not surprisingly, some techniques can be seen as partially
belonging to two different groups, while other methods may not
strictly fit into any of these major subdivisions. However, the
adopted simplification is believed to help the reader distinguish
the main broad approaches that can be found in this field.

4.3.1 Qualitative Crop Monitoring

Crop monitoring methods that are based on the qualitative
(or comparative) interpretation of remote sensing-derived
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indicators are in the following summarized under the term
“qualitative crop monitoring.” In general, these methods are
based on the comparison of the actual crop status to previous
seasons or to what can be assumed to be the average or “normal”
situation. Detected divergences (or “anomalies”) are then used
to draw conclusions on possible yield limitations.

For qualitative crop growth monitoring, a large number of
remotely sensed vegetation indices or biophysical products have
been used. Most studies, however, used the NDVI for study-
ing agricultural (and natural) vegetation. The usefulness of
vegetation characterization by using arithmetic combinations
of vegetation reflectances in different spectral bands (so called
“vegetation indices”) was established in the early 1980s by
Tucker, Deering, and coworkers (Deering, 1978; Tucker, 1979;
Tucker et al., 1980) that proposed the NDVI, using the red and
near-infrared reflectances. The NDVI became subsequently the
most popular indicator for studying vegetation health and crop
production using qualitative approaches. The NDVI has been
later demonstrated to hold a close relation to the canopy leaf area
index (LAI) and fraction of absorbed photosynthetically active
radiation (FAPAR) (Baret and Guyot, 1991; Prince, 1991a). Due to
its almost linear relation with fAPAR, the NDVTI can therefore
also be seen as an indirect measure of primary productivity.

Low-resolution satellites are best suited for regional to con-
tinental monitoring of vegetation using this technique as they
offer a high temporal revisit frequency with an extended geo-
graphical coverage at low data costs per unit area.

Crop monitoring systems making use of “anomaly maps” are
particularly useful in arid and semiarid countries, where tempo-
ral and geographic rainfall variability leads to high interannual
fluctuations in primary production and to a large risk of famines
(Hutchinson, 1991). These environmental situations, along with
the wide extent of the areas to monitor and the generally poor
availability of efficient agricultural data collection systems, rep-
resent a scenario where qualitative monitoring can produce valid
information for releasing early warnings about possible crop
stress. Such systems are typically used in many food-insecure
countries by FAO, FEWS-NET (Famine Early Warning System)
of United States Agency for International Development (USAID),
and the MARS project of the European Commission.

However, qualitative crop monitoring is not necessarily linked
to an early warning context in arid areas but can also be very
useful to get a quick overview of vegetation stress for large areas
in temperate climatic zones. An example is given in Figure 4.6,
which depicts vegetation condition index (VCI) anomalies
(May-July) for 2009, 2010, and 2011 in Central Europe. VCI
(Kogan, 1995) scales the NDVI value of a given 10-day period
(dekad) within its min-max range as derived from the histori-
cal archive of observations for that dekad. France and Germany
reported low cereal yields in 2011 and good yields in 2009
(with intermediate values in 2010). This is well reflected in the
3-monthly VCI values (May-July) for these two countries.

Vegetation performance anomaly detection with low-resolution
images continues to be a fundamental component of agricul-
tural (and drought) monitoring systems at the regional scale.
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NDVI anomalies (May—]July) over Central Europe
(2009-2011)
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FIGURE 4.6 NDVI anomalies (3-monthly VCI) from 2009 (a), 2010 (b), and 2011 (c) over central Europe. The displayed VCI values are from
filtered and gap-filled moderate-resolution imaging spectroradiometer (MODIS) data and always refer to the period from May to end of July (12
weeks). Cereal yields (in t/ha) according to World bank are reported for France (FR) and Germany (DE). (From data.worldbank.org/indicator/
AG.YLD.CREL.KG and own data.)
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For applications at more detailed scales, the limitations created by
the mixed nature of low-resolution pixels are being progressively
reduced by the higher resolution offered by new sensors (Belward
and Skeien, 2014). However, the continuity of existing systems
remains crucial for ensuring the availability of long time series as
needed by the majority of the yield prediction methods used today
(Rembold et al., 2013).

4.3.2 Crop Yield Predictions Using
Regression Analysis

In the previous section, approaches have been described using
(low-resolution) satellite imagery for providing qualitative indi-
cations of crop growth (e.g., crop growth worse/better than aver-
age). In this section, two methods will be described that quantify
the expected yield (e.g., in t/ha) using regression models. In con-
trast to the qualitative approaches, the regression approaches
must necessarily be calibrated using appropriate reference infor-
mation. In most cases, agricultural statistics and, specifically,
crop yield are used as reference information. Of course, this
prerequisite limits its applicability in many regions of the world.
We will distinguish purely remote sensing-based approaches

1.0 +
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and mixed approaches where additional bioclimatic predictor
variables are used.

The already mentioned relationship between vegetation
indices/fAPAR and biomass enables the early estimation of crop
yield, since yield of many crops is mainly determined by the
photosynthetic activity of agricultural plants in certain periods
prior to harvest (Baret et al., 1989; Benedetti and Rossini, 1993).
As fAPAR and NDVI are linearly linked, NDVT is often used as
an independent variable in empirical regression models to esti-
mate final crop grain yield (the dependent variable).

The basic assumption of this method is that sufficiently long
and consistent time series of both remote sensing images and
agricultural statistics are available. The latter are normally
aggregated at the level of subnational administrative units, for
which average NDVI values can be extracted. At the aggregation
stage, it can be decided if pixels are weighted or not according to
crop coverage. Examples of NDV1/yield regressions for cereals at
national level are shown in Figure 4.7.

Many studies reported useful statistical relationships using
NDVT values at the peak of the growing season and final crop
yield. The different empirical techniques appear to be relatively
accurate for crops with low final production because biomass
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FIGURE 4.7 NDVlI/yield linear regressions for cereals in North Africa. (a) Evolution of the coeflicient of determination (R?) between NDVIand
yield over time. (b) Scatter plots between NDVT and cereal yield for Morocco (left) and Egypt (right). Each dot corresponds to the annual yield for
agricultural areas at national level and to the monthly NDVI best correlated to yield. (Modified from Maselli, F. and Rembold, F., Photogramm.

Eng. Remote Sens., 67, 593, 2001.)
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is the limiting factor to yield, and the relationship between
LAT and the vegetation response (NDVI) is below the range of
saturation (Delécolle et al., 1992). Empirical relationships also
appear to be relatively accurate for grass crops, where dry matter
(DM) is the harvestable yield.

Linear regression models relating NDVT to crop yield have,
for example, been developed by Rasmussen (1992) and Groten
(1993) for Burkina Faso and by Maselli et al. (1993) for Niger.
The same and other investigations showed that yield forecast-
ing can be obtained by the use of NDVI data of specific periods,
which depend on the eco-climatic conditions of the areas and
the types of crop grown (Hayes and Decker, 1996; Lewis et al.,
1998; Maselli et al., 2000).

It has to be noted that the correlation between crop yield and
spectral measurements varies during the growing season, and
regression coefficients show strong temporal variations (Rudorff
and Batista, 1990a,b). Established relationships are therefore, to
some degree, “good fortune” and usually time and site specific
(Baret et al. 1989). In cases where the aboveground biomass is
not the harvestable yield, one has also to consider that the rela-
tion between crop yield and spectral data is only indirect (Hayes
and Decker, 1996). Besides classical (multiple) linear regression,
other statistical techniques such as partial least square regres-
sion or principle component regression may be more appropri-
ate to model the relation between the sought variable(s) and the
spectral reflectances (Hansen and Schjoerring, 2003; Nguyen
et al., 2006; Atzberger et al., 2010).

Various authors postulated that accumulated radiometric
data are more closely related to crop production than instanta-
neous measurements. Several choices of temporal NDVT inte-
gration can be found, reaching from the simple selection of the
maximum NDVT value of the season, to the average of the peak
values (plateau) to the sum of the total NDVI values of the total
crop cycle. A recent example for winter wheat yield estimation
at national level is provided by Meroni et al. (2013a) for Tunisia.
Instead of using a fixed integration period, the integral is com-
puted between the start of the growing period and the beginning
of the descending phase. The two dates are computed for each
pixel and each crop season separately.

Pinter et al. (1981) argued that the accumulation of radio-
metric data was similar to a measure of the duration of green
leaf area. They consequently related yield of wheat and barley to
an accumulated NDVI index and obtained satisfactory results.
However, their results reveal that the performance of the inte-
gration is only optimum if it starts at a specific phenological
event (i.e., at heading stage). When the optimum data could not
be specified accurately, predictions were less accurate.

For the area of North America, Goward and Dye (1987)
showed that an integrated NDVI from NOAA AVHRR gave a
good description of the produced biomass. Tucker et al. (1983)
found a strong correlation between the integrated NOAA-7
NDVI data and end-of-season aboveground dry biomass for
ground samples collected over a 3-year period in the Sahel
region. The correlation was higher than the one obtained from
instantaneous NDVI values.
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A less used technique involves the concept of aging or senes-
cence, first developed by Idso et al. (1980). Idso and coworkers
found that yield of wheat could be estimated by an evaluation
of the rate of senescence as measured by a ratio index following
heading. The lower the rate of senescence, the larger the yield
as stressed plants begins to senesce sooner. The same technique
was later applied by Baret and Guyot (1986). They confirmed that
final yield production in winter wheat was correlated with the
senescence rate. More recently, Koaudio et al. (2012) used LAI
trajectories during the senescence phase to estimate wheat yield
in the European Union. Examples of regression-based yield pre-
diction studies are summarized in Table 4.3.

One important limitation of the regression approach is (as for
any other empirical approach) that most of the mentioned stud-
ies are linked to the environmental characteristics of specific
geographic areas or are limited by the availability of large and
homogeneous data sets of low-resolution data. A common prob-
lem in crop monitoring and yield forecasting in many countries
of the world is the difficulty in extending locally calibrated fore-
casting methods to other areas or to other scales.

One should also note that where the crop area is not known,
the NDVI/yield relationship does not provide information on
final crop production, which is what many users of crop moni-
toring information are ultimately interested in.

In many cases, the predictive power of remotely sensed indi-
cators can be improved by adding independent meteorological
(or bioclimatic) variables into the regression models. Several bio-
climatic variables have proven to be highly correlated with yield
for certain crops in specific areas (Lewis et al., 1998; Rasmussen,
1998; Reynolds et al., 2000). These variables can be measured
either directly (like rainfall coming from synoptic weather sta-
tions) or by satellites (like rainfall estimates) or can be the result
of other models as it is normally the case of agro-meteorological
variables like ETa (actual evapotranspiration) or soil moisture.

Potdar et al. (1999) observed that the spatiotemporal rain-
fall distribution can be successfully incorporated into crop
yield models (in addition to vegetation indices), to predict
crop yield of different cereal crops grown in rain-fed condi-
tions. Such hybrid models often show higher correlation and
predictive capability compared to models using solely remote
sensing indicators (Manjunath et al., 2002; Balaghi et al., 2008)
as the input variables complement each other. The bioclimatic
variables introduce information about the environmental driv-
ers of vegetation growth (e.g., solar radiation, temperature, air
humidity, and soil water availability), whereas the spectral com-
ponent introduces information about the actual growth out-
come of such drivers, thus indirectly taking into account crop
management, varieties, and other stresses not directly consid-
ered by the agro-meteorological models (Rudorff and Batista,
1990a). However, it must be noted that many bioclimatic indica-
tors, especially if they are derived from satellites as well, are not
really independent from vegetation indices. The interrelation of
the different input variables should be considered and corrected
when integrating bioclimatic and spectral indicators into mul-
tiple regression models.
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TABLE 4.3 Examples of Regression-Based Yield Prediction Studies

Target Yield Data Geographic Crop Mask Regression
Crop Aggregation Location Predictor Sensor Used Specific Processing Type R? Reference
Sugarcane Field-level data ~ Brazil NIR/RED ratio MSS Not applicable = Single image before Linear 0.50- Rudorff
harvest 0.69° etal.
(1990a)
Millet Field-level data ~ Burkina Dekadal NDVI NOAA-  Notapplicable NDVI integration Linear 0.93% Rasmussen
Faso AVHRR during a fixed (1992)
reproductive phase
Millet and  FAO stats Niger Dekadal NDVI NOAA- No Single and fixed date  Linear 0.28- Maselli
sorghum  (subdistrict AVHRR standardized NDVI, 0.72° etal.
level) standardization of (1993)
yield
Millet Official stats Burkina Dekadal NDVI NOAA- No Single-date NDVI, Linearand  Upto Groten
(provincial Faso AVHRR integration, quadratic 0.87° (1993)
level) multi-dekad
multiple regression
Wheat Official stats Italy Dekadal NDVI NOAA- No NDVI integration Linear 0.52° Benedetti
(sub-provincial AVHRR during a fixed grain and
level) filling period Rossini
(1993)
Maize Official stats United Weekly NDVI NOAA- Transformation into  Quadratic 0.54° Hayes and
(production States AVHRR VCI (vegetation Decker
district level) condition index) (1996)
Maize Official stats Kenya Dekadal NDVI NOAA- No Annual maximum Linear 0.56° Lewis et al.
(district level) AVHRR NDVI (1998)
Millet Field-level data ~ Senegal 9-Day NDVI NOAA-  Notapplicable NDVT integration Linear (and  0.76° Rasmussen
(plus AVHRR during a fixed grain multi- (0.88%)  (1998)
environmental filling period linear)
and climatic
data)
Millet and  FAO stats Niger Dekadal NDVI,  NOAA-  Yield- Standardization of Multi-linear  0.62° Maselli
sorghum  (subdistrict corrected for AVHRR  masking NDVTI and yield, etal.
level) background approach selection of the (2000)
effect (see Section contiguous 3 dekads
3.6) having maximum
correlation with yield
Main FAO stats North Monthly NDVI NOAA-  Yield- Selection of the Linear 0.65- Maselli and
cereals (country level) Africa composite AVHRR  masking monthly NDVI 0.93° Rembold
approach composite having (2001)
(see Section maximum
3.6) correlation with yield
Maize Official stats Kenya Deakadal NDVI ~ SPOT- Yes Area fraction cover Multi-linear ~ 0.81%, Rojas
(province-level (plus modeled VGT weighting of NDVI, 0.83° (2007)
production) meteo data, and NDVT integration
water balance during a fixed
model output) growing season
Wheat Official stats Marocco Dekadal NDVI NOAA-  Yes Selection of best yield = Stepwise 0.97¢ Balaghi
(province (plus rainfall AVHRR predictor regression etal.
level) and air combination (2008)
temperature)
Wheat Official stats Belgium GAI (Green MODIS  Yes Maximum GAI Multi- 0.70- Koaudio
(province and area index) value and linear 0.722 et al.
level) northern phenology metric (2012)
France
Wheat Official stats Tunisia Dekadal FAPAR  SPOT- Yes Cumulative FAPAR Panel 0.77 Meroni
(district level) VGT value during regression etal.
growing season (as model (2013a)

from phenology
retrieval)

@ Cross-validated.

b Fitting.
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Rasmussen (1998) used multiple regression models by intro-
ducing environmental information such as grazing pressure,
density, and percentage of cultivated land, and arrived to explain
88% of the millet grain yield variance. Rojas (2007) used the
actual evapotranspiration (ETa) calculated by the FAO CWSB
model and the CNDVT as independent variables in a regression
analysis in order to estimate maize yield in Kenya during the
first cropping season. CNDVI and ETa combined explained 83%
of the maize crop yield variance with a root mean square error
(RMSE) of 0.33 t/ha (coefficient of variation of 21%). The optimal
prediction capability of the independent variables was 20 and
30 days for the short and long maize crop cycles, respectively. If
validated over long time series, such models are expected to be
utilized in an operational way.

Although linear regression modeling is likely the most com-
mon method to produce yield predictions by using remote
sensing-derived indicators together with bioclimatic informa-
tion, this is not the only one. Numerous other methods have
been developed that include, for instance, similarity analysis
and (nonlinear) neural networks (NN; Stathakis et al., 2006).

4.3.3 Use of Monteith’s Efficiency Equation

Remotely sensed images were first proposed in the 1980s for
assessing and mapping the crop’s assimilation potential. One
of the first steps in this direction was the introduction of the
Monteith’s light-use efficiency equation (Monteith, 1972, 1977).
In this approach, it is assumed that the biomass production can
be described as the simple multiplication of three variables: the
incident photosynthetically active radiation (PAR, 400-700 nm);
the PAR fraction, which is actually absorbed by the vegetation
layer (fAPAR), and finally ¢, the energy to DM conversion factor.
The approach has a sound physiological basis as the biomass
production of a crop is linearly related to the amount of photo-
synthetically active solar radiation (PAR) absorbed (Tucker and
Sellers, 1986). Other important climatic and ecological factors
(e.g., temperature conditions and water/nutrient availability)
controlling actual photosynthesis can be used to modulate the &,
The amount of radiation available to the photosynthetic process
is the absorbed solar radiation (APAR) and is a function of the
incoming PAR and the crop’s PAR interception capacity, fAPAR:

fAPAR = ATAR
PAR

(4.1)
fAPAR depends mainly (but not solely) on the leaf area of the
canopy (Baret et al., 1989). Generally, an exponential relation
between LAI and fAPAR is admitted:

fAPAR = fAPARmax (1 — exp(-k x LAI)) (4.2)
with fAPARmax between 0.93 and 0.97 and extinction coefhi-
cient k between 0.6 and 2.2 (Baret et al., 1989). The close link
between fAPAR and LAI also explains why so many studies
attempt mapping leaf area (Guérif and Delécolle, 1993).
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Similarly, a close link between NDVI and fAPAR has been
confirmed from both theoretical considerations and experimen-
tal field studies (Myneni and Williams, 1994). The studies agree
that a quasi-linear relation between NDVI and fAPAR can be
assumed:

fAPAR =a + b x NDVI (4.3)
Most studies reviewed by Atzberger (1997) found a slope (b)
between 1.2 and 1.4 and an intercept (a) between —0.2 and —0.4.
The negative intercept reflects the fact that the NDVI of bare
soils (i.e., fAPAR = 0) is often between 0.2 and 0.4.

The relation between fAPAR and NDVI is not surprising
because PAR interception and canopy reflectance/NDVI are
functionally interdependent as they both depend on the same
factors (Baret, 1988; Baret et al., 1989). The main factors deter-
mining PAR interception and canopy reflectance/NDVI are
(in the order of decreasing importance) (1) LAIL (2) leaf optical
properties (especially leaf pigment concentration), (3) leaf angle
distribution, (4) soil optical properties, and (5) the sun—target-
sensor geometry.

The mechanism by which the incident PAR is transformed
into DM can be written as (Steinmetz et al., 1990)

ADM =PAR x fAPAR x g, (4.4)
with

ADM is the net primary production (NPP) (g-m=2-day™!)

PAR is the incident photosynthetically active radiation

(MJ-m2day™)

fAPAR is the fraction of incident PAR that is intercepted and

absorbed by the canopy (dimensionless)

g, is the light-use efficiency of absorbed photosynthetically

active radiation (g-MJ™).

When calculated over the entire growth cycle—and in the
absence of growth stresses—the light-use efficiency (e,) is rela-
tively constant for crops like winter wheat (with a value of about
2.0 g¢-MJ!) (Baret et al., 1989). However, the light-use efficiency is
not constant when calculated over small periods of the growth cycle
(Steinmetz et al., 1990; Leblon et al., 1991). The short-term variabil-
ity of the light-use efficiency is a result of temperature, nutrient, and
water conditions that eventually can lead to plant stress.

Remotely sensed data can be well used in Monteith’s efficiency
equation (Equation 4.4) if one manages to map the seasonal cycle of
fAPAR (i.e., if enough images are available so that the full temporal
fAPAR profile can be reconstructed). Incident PAR must be also
known (e.g., from meteorological stations) or estimated (e.g., using
general circulation model as done by ECMWF, using meteorologi-
cal satellite observations as in Roerink et al., 2012). As explained, at
the same time, the light-use efficiency (g,) must either be relatively
constant/known or should be assessed using other remote sensing
inputs (e.g., from thermal data revealing plant stress).

Provided that enough images are available, the seasonal inte-
gration of radiometric measurements theoretically improves the
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FIGURE 4.8 Linear relation between the seasonally integrated
absorbed PAR (from sowing to harvest) and dry matter at harvest
(g'm™). Each point corresponds to one commercial winter wheat plot
(n = 9). (From Atzberger, C., Estimates of Winter Wheat Production
through Remote Sensing and Crop Growth Modelling: A Case Study on
the Camargue Region, Verlag fiir Wissenschaft und Forschung, Berlin,
Germany, 1997.)

capability of estimating biomass compared to one-time measure-
ments, since the approach is based on sound physical and bio-
logical theory, whereas the relationship between instantaneous
measurements of canopy reflectance and biomass is mainly empir-
ical (Baret et al., 1989). For example, Figure 4.8 shows the close
correspondence between seasonally integrated absorbed PAR
(FAPAR x PAR) and the DM at harvest for nine commercial winter
wheat plots in the Camargue region of France (Atzberger, 1997).

Nowadays, fAPAR is routinely assessed using various
approaches and algorithms (Verstraete et al., 1996; Gobron
et al., 2002; Baret et al., 2013) and applied to different sensors
(VGT, MODIS, AVHRR, and others). Likewise, operational NPP
products based on Monteith’s formula are available.

Monteith’s efficiency equation has been further extended to
include, for example, temperature dependency of photosynthe-
sis and respiration. For example, VITO (Eerens et al., 2004) uses
the following formula for the NPP calculation:

ADM =PAR xfAPAR x g, x p(T)x CO,fert x (1-r(T)) (4.5)

where
ADM is the increase in DM or NPP (g-m2-day!)
PAR is incident photosynthetically active solar radiation
(MJ-m2-day™)
fAPAR is fraction of intercepted and absorbed PAR calculated
by means of a linear equation from NDVTI (dimensionless)
g, is photosynthetic efficiency (g-MJ™)

p(T) is normalized temperature dependency factor
(dimensionless)

CO,fert is normalized CO, fertilization factor [85]
(dimensionless)

r(T) is fraction of assimilated photosynthesis consumed by
autotrophic respiration; r is modeled as a simple linear
function of daily mean air temperature
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Hence, compared to Equation 4.4, ¢, is reduced/increased as
a function of temperature and CO, content to mimic the ear-
lier-mentioned plant reactions to changing growth conditions.
Similar approaches are often used in NPP approaches (Goward
and Dye, 1987).

To calculate final yield (Y) from Equation 4.4 or Equation 4.5,
it has to be assumed that a portion of the cumulated biomass
at the end of the growing season (the harvest index, HI) is the
harvestable yield, that is,

harvest
Z ADM

sowing

Y =HIx (4.6)

The HI may be obtained by traditional regression analysis
between primary production and statistical crop yields.

A number of studies found that the use of cumulated DM over
the crop growing period gives more reliable results compared
with NDVT for crop yield forecasting in many Mediterranean
and Central Asian countries. For corn, Gallo et al. (1985),
for example, found that the cumulated daily absorbed PAR
explained 73% of the variance in the observed grain yield. The
absorbed PAR was computed from the daily incident PAR and
fAPAR predicted from NDVI. Only 56% and 58% of variance
were accounted by the cumulated LAI and cumulated NDVI,
respectively. Similarly, Meroni et al. (2013a) found that the
cumulative value of APAR during the growing season explained
80% of the wheat yield variability in Tunisia. Several other stud-
ies using this technique are summarized in Table 4.4.

The main disadvantage of models based on Monteith’s effi-
ciency equation relates to their need for complete series of
fAPAR information from sowing to harvest. Such information
is currently provided (at the necessary temporal frequency) only
at coarse spatial resolution. Of course, these data are often too
coarse to resolve, for example, individual fields.

4.3.4 Remote Sensing Data Assimilation
into Dynamic Crop Growth Models

The approaches described in the previous sections aimed either
to qualitatively assess vegetation vigor (by comparing observed
vegetation greenness against the “normal” situation) or to quan-
titatively estimate the crop yield using semiempirical regression
techniques.

In this section, we will introduce a group of techniques involv-
ing modeling of crop physiology including feedback mecha-
nisms. Approaches in this group of techniques are also known
as crop growth modeling, soil-vegetation-atmosphere transfer
(SVAT) modeling, or agro-meteorological modeling.

As defined by Delécolle et al. (1992), crop growth model-
ing involves the use of mathematical simulation models for-
malizing the analytical knowledge previously gained by plant
physiologists. The models describe the primary physiological
mechanisms of crop growth (e.g., phenological development,
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TABLE 4.4 Examples of Light-Use Efficiency-Based Yield Estimation Studies
Yield Data Geographic Crop Mask

Target Crop Aggregation Location Variables and Sources Used LUE Specification R? Reference

Maize Field level data ~ United States ~ VIs from field N.A. Integration during the 0.73¢ Gallo et al.
spectroscopy, PAR from whole season, constant g, (1985)
field measurements

Rice (two Field-level data ~ France VIs from field N.A. Integration during the ~0.80° Leblon et al.

cultivars) spectroscopy, PAR from growing season with (1991)
meteorological station variable g,

Wheat Field-level data ~ France fAPAR from SPOT-HRYV, N.A. Integration during the 0.76 Atzberger
PAR from whole season, constant (1997)
meteorological station and fixed ¢, and HI

Wheat, rice, ~ Official stats Pakistan AVHRR NDVT, linearly Yes Integration during the whole  Relative Bastiananssen

cotton, (district level) scaled to FAPAR, season, g, modulated using RMSEP: and Ali
and AVHRR surface temperature and water 26%-49% (2003)
sugarcane temperature constraints

Wheat Official stats Italy AVHRR NDVTJ, linearly Yes Integration during the 0.73-0.77>  Moriondo

(province scaled to FAPAR whole season, constant ¢, et al. (2007)
level) HI derived from NDVI

Wheat Official stats Tunisia Dekadal SPOT-VGT Yes Integration during the 0.80° Meroni et al.

(district level) FAPAR, PAR from growing phase of the (2013a)
ECMWF model season, constant g,
Maize and Official stats United States ~ MODIS GPP estimates Yes Integration during the 0.66-0.77>  Xinetal.
soybeans (county level) growing season, fixed ¢, (2013)
and HI

* Fitting.

b Cross-validated.
photosynthesis, DM portioning, and organogenesis), as well -k 1k Time

o . . . . . —] - | Environmental variables | H

as their interactions with the underlying environmental driv- o -

ing variables (e.g., air temperature, soil moisture, and nutrient < Time ».

availability) using mechanistic equations (Delécolle et al., 1992). step |InP11tS for one time Stepl

Importantly, state variables (such as phenological development

stage, biomass, LAI, and soil water content) are updated in a Model loo

computational loop that is usually performed daily (Guérif and P

Delécolle, 1993) (Figure 4.9). Development

parameters LAI parameters

In the computational loop (Figure 4.9), model state variables
such as development stage, organ dry mass, and LAI are linked
to environmental driving variables such as temperature and
precipitation, which are usually provided with a daily time step
(Delécolle et al., 1992). Soil and plant parameters are used to
mimic the plant’s reaction to these driving variables. Whereas
model state variables are constantly updated within the com-
putational loop, model parameters remain unchanged during
the simulation run (e.g., soil texture information). All state
variables have to be initialized at the beginning of the simula-
tion run.

It worth noting that Monteith efficiency equation (described
in the previous section) lacks the computational loop and feed-
backs included in CGM:s and is therefore not a dynamic model,
albeit it represents a physical description of the growth process.

CGMs are excellent analytical tools because they exhibit three
distinct characteristics that distinguish them from the previ-
ously described approaches (Delécolle et al., 1992):

1. They are dynamic in that they operate on a time step for
ordering input data and updating state variables.
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FIGURE 4.9 Simplified scheme of a crop process model. Model state
variables such as development phase, organ dry mass, or leaf area
index are linked to input variables, including weather, geographic, and
management variables. (Modified from Delécolle, R. et al., ISPRS J.
Photogramm., 47, 145, 1992.)
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2. They contain parameters that allow a general scheme of
equations to be adopted to the specific growth behavior of
different crop species.

3. They include a strategy for describing phenological devel-
opment of a crop to order organ appearance and portion-
ing/division of photosynthetic products.
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TABLE 4.5 Techniques Used for Assimilating Remote Sensing Data in Dynamic Crop Growth Models

Technique

Example

Recalibration or re-parameterization

Maas (1988a,b, 1992), Bouman (1992, 1995), Clevers and van Leeuwen (1996), Launay and Guérif (2005), Clevers

Bach and Mauser (2003), Nouvellon et al. (2001), Guérif and Duke (1998), Doraiswamy et al. (2003)

of CGM et al. (1994), Guérif and Duke (1998)
Reinitialization of CGM
Forcing of CGM Maas (1988a,b), Bouman (1995), Clevers et al. (2002)
Updating of CGM Bach and Mauser (2003), Pellenq and Boulet (2004)

Note that the provided examples sometimes combine two techniques. The “forcing” technique has been added to the table to complete the list, albeit it is not

strictly speaking an assimilation technique.

The first CGMs were developed by the end of World War II
(Sinclair and Seligman, 1996). In subsequent decades, they
became both more complex and potentially more useful (Boote
etal., 1996). Deterministic CGMs have been validated for cereals,
as well as for potato, sugar beet, oilseed, rice, canola, and sun-
flower. Most of these models include water and energy balance
modules and run on a daily time basis over the whole life cycle
of a crop. Prominent models are, for example, CERES (Jones
and Kiniry, 1986), WOFOST (Supit et al., 1994), OILCROPSUN
(Villalobos et al., 1996), CROPSYST (Stockle et al., 2003), and
STICS (Brisson et al., 1998). Some simpler models (without
water and energy balance) such as SAFY (Duchemin et al., 2008)
and GRAMI (Maas, 1992) also exist. More sophisticated models
attempt to integrate numerous factors that affect crop growth
and development, such as plant available soil water, tempera-
ture, wind, genetics, management choices, and pest infestations.
Currently, attempts are made to permit the integration and com-
bination of various submodels from different model developers
describing a specific plant behavior (e.g., phenology) (Donatelli
et al., 2010).

The strength of CGMs as research tools resides in their abil-
ity to capture the soil-environment-plant interactions, but their
initialization and parameterization generally require a number
of physiological and pedological parameters that are not easily
available. In addition, given the high model parameterization,
careful validation strategies have to be employed for obtaining
the required predictive power (Bellochi et al., 2010).

CGMs are covered here in some detail because CGM and
remote sensing nicely complement each other: CGMs pro-
vide a continuous estimate of crop growth over time, while
remote sensing provides temporally discontinuous but spatially
detailed pictures of crop actual status (e.g., LAI) within a given
area (Clevers and van Leeuwen, 1996; Guérif and Duke, 2000;
Doraiswamy et al., 2003, 2004; Padilla et al., 2012). The comple-
mentary nature of remote sensing and crop growth modeling
was first recognized by S. Maas from USDA, who described rou-
tines for using satellite-derived information in mechanistic crop
models (Maas, 1988ab).

Remotely sensed images are particularly useful in spatially
distributed modeling frameworks (Moulin et al., 1998; Weiss
et al., 2001; Running and Nemani, 1988). In this case, all model
inputs and parameters have to be provided in spatialized form. As
remote sensing provides spatial status maps, the use of remotely
sensed information makes the CGM more robust (Moulin et al.,
1998; Guérif and Duke, 2000; Doraiswamy et al., 2003).
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Spatialized information is readily available concerning many
meteorological driving variables (e.g., from global circulation
models like ECMWF). However, other parameters and initial
conditions required by GCMs may not be available spatially, for
instance, (1) soil, plant, and management parameters and (2) initial
values of all crop state variables (Doraiswamy et al., 2003). In the
following, we present different approaches for using remote sens-
ing data to fill this gap in spatially distributed crop growth model-
ing (Table 4.5). All ideas are extracted from the outstanding paper
of Delécolle et al. (1992). Useful overviews are also given in Moulin
etal. (1998), Bach and Mauser (2003), and Dorigo et al. (2007).

In the most straightforward way, remote sensing may be used
to parameterize and/or initialize CGMs. Hereafter, the term
“parameterization” refers to the provision of model parameters
required by crop growth and agro-meteorological models, for
example, soil texture information, photosynthetic pathway
information, crop type, and sowing date. The term “initializa-
tion” refers to the provision of model state variables at the start
of the simulation (e.g., the soil water content at sowing).

For the purpose of parameterization or initialization, satel-
lite imagery covering different wavelength ranges (i.e., optical
to microwave) may be combined. In the simplest case, remotely
sensed data are used to provide information about crop type.
With known crop type, plant-specific parameter settings can be
assigned (therefore the term parameterization). Optical imagery
of bare soil conditions may be used to map soil organic matter
content, soil texture, and soil albedo (Ben-Dor, 2002; Viscarra
Rossel et al., 2009). These three model parameters are often
used in CGMs as they influence nutrient release, water capacity,
and radiation budget (Ungaro et al., 2005). Other imagery (e.g.,
microwave) may be used to provide an estimate of soil water
content at the beginning of the simulation run, that is, at sowing
(Wagner et al., 2007). This will result in a model initialization, as
the state variable “soil water content” has been attributed a value
for the start of the simulation.

In the “recalibration” or “re-parameterization” approach,
one assumes that some parameters of the CGM are inaccurately
calibrated, although the model as a whole is formally adequate
(Delécolle et al., 1992). By providing “reference” observations of
some key vegetation properties (e.g., remotely derived LAI), some
crop model parameters can be calibrated (Figure 4.10), provided
that such parameters do have an effect on the vegetation property
as described by the model. This is usually achieved by (iteratively)
adjusting the model parameters until measured and simulated
temporal profiles of the selected variable (here LAI values) match
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FIGURE4.10  Schematic description of the recalibration method using
remotely sensed state variables as inputs (here the assimilated variable
corresponds to LAI). The crop growth model simulates the leaf devel-
opment (LAI) over time. (a) Without assimilation, the simulated LAI is
far from the four LAI observations. (b) After assimilation (e.g., after the
nonlinear minimization procedure), new model coeflicients are assigned
to the crop growth model such that the residues between observed and
simulated LAT are minimized. (Modified from Houles, V., Mise au point
d’un outile de modulation intra-parcellaire de la fertilization azotee du
ble d’hiver base sur la teledetection et un modele de culture, Thése de
Doctorat, Institut National Agronomique Paris-Grignon, France, 2004.)

Forcing
Time
——0—0—0—0—0—0>
&
3
g
)
> <
Y 3
£ o
)
-2
o
: Ll L 111
p

Crop growth model

—
)
=

87

each other (Doraiswamy et al., 2003). In spatially distributed mod-
eling, this recalibration has of course to be done pixel by pixel.

The “reinitialization” of CGMs works in a very similar way;
however, instead of adjusting model parameters, one simply
tunes the initial values of state variables until a good match
between observed and simulated state variables is obtained. In
both cases, the remote sensing—derived variables are considered
as an absolute reference for the model simulation. The exact
timing of the remotely sensed observations is of minor impor-
tance. Already as few as one reference observations are useful
(Atzberger, 1997; Launay and Guerif, 2005; Baret et al., 2007).
However, the more satellite observations are available and the
better they are distributed across the growing season, the more/
better model parameters can be calibrated and/or initialized
(Doraiswamy et al., 2003).

Alternatively, one may also choose to infer important state
variables from remotely sensed data for each time step of the
model simulation (e.g., LAI) for direct ingestion into the model,
thus “forcing” the model to follow the remotely sensed infor-
mation (Figure 4.11, left). Such a simplification makes CGMs
very similar to the Monteith efficiency equation (Equation 4.4),
as one breaks the computational loop in the model shown in
Figure 4.10. As the model does no longer determine the values
of that variable by itself, inconsistent model states may result
(Delécolle et al., 1992).

In a very similar way, remotely sensed data are used in the
“updating” of CGMs (Figure 4.11, right). One simply replaces
simulated values of crop state variables by remotely sensed val-
ues each time these are available (not necessarily at each time
step). The computations then continue with these updated values
until new (remote sensing) inputs are provided. As for the “forc-
ing” method, the replacement of simulated by observed state
variables may result in inconsistent model states as one does not

Updating
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FIGURE 4.11

Schematic description of “forcing” and “updating” methods. (a) In the forcing approach, the complete time profile of a crop state

variable (here: LAI) is reconstructed from remote sensing data and introduced (e.g., “forced”) into the dynamic crop growth model at each time
step in the simulation. (b) In the updating approach, the crop growth model is run (with standard parameter settings) until a remotely sensed state
variable is available (in black). When new observations are available, the simulated state variable at this point is replaced by the remotely observed
state variable and the crop growth simulation is continued without changing the parameter setting until another (if any) new observation becomes
available. (Modified from Dorigo, W.A. et al,, Int. J. Appl. Earth Observ. Geoinform., 9(2), 165, 2007.)
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correct for apparent errors in the model calibration, which are
causing the differences between simulated and observed state
variables.

4.3.5 Yield-Correlation Masking

One obstacle to successful modeling and prediction of crop
yields using remotely sensed imagery is the identification of suit-
able image masks (Kastens et al., 2005). Problems and possible
solution will be described hereafter with major ideas extracted
from the outstanding paper of Kastens et al. (2005). According
to this paper, image masking involves restricting the analysis to
a subset of a region’s pixels, rather than using all of the pixels
in the scene. Cropland masking, where all sufficiently cropped
pixels are included in the mask regardless of crop type, has
been shown to generally improve crop yield forecasting abil-
ity. Doraiswamy and Cook (1995), for example, used 3 years of
AVHRR NDVI imagery to assess spring wheat yields in North
and South Dakota in the United States. They concluded that the
most promising way to improve the use of AVHRR NDVT for
estimating crop yields at regional scales would be to use better
crop masks. This was also confirmed by Lee et al. (2000). They
used a 10-year, biweekly AVHRR data set to forecast corn yields
in the U.S. state of Iowa. They found that the most accurate fore-
casts of crop yield were made using accumulated NDVI and a
cropland mask. Similarly, Maselli and Rembold (2001) found
that application of cropland masks improved relationships
between NDVI and final yield in four Mediterranean countries.
For simplicity, in the remaining of this section, we will refer to
NDVTalthough any other remote sensing indicator of vegetation
biomass and vigor can be used (e.g., fAPAR, LAI, other VIs).

For crop yield forecasting, the ideal approach would be to
use crop-specific masks. This would allow one to consider only
the remote sensing information pertaining to the crop of inter-
est. However, when such masking is applied to multiple years of
imagery, several difficulties arise (Becker-Reshef et al., 2010b).
A major problem relates to the widespread practice of crop rota-
tion. In areas with crop rotation, a single and static crop-specific
mask would not be appropriate. Instead, year-specific masks
would be needed. For retrospective analysis, this implies the
production of a crop mask for each year of interest, a challenging
but still feasible task using the observed NDVI temporal profiles.
However, in operational yield forecasting, this task presents even
greater difficulties, as only incomplete growing season NDVI
information is available. This is especially true early in the sea-
son, when the crop has low biomass and does not produce a large
NDVI response.

A more feasible alternative to crop-specific masking is crop-
land masking, which refers to using pixels dominated by “ara-
ble land.” The studies discussed earlier used this approach.
Cropland masks usually are derived from existing land use/
land cover (LU/LC) maps. If the area of interest was not subject
to major land use changes with regard to cropland during the
period of interest, a single mask can be applied. Albeit simpler
to realize compared to crop-specific masking (i.e., one mask
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per crop type and year), it has to be considered that all agricul-
tural crops are now lumped in the general class of “cropland.”
Thus, crop-specific growth patterns are neglected.

To overcome the shortcomings related to cropland masking
and crop-specific masking, Kastens et al. (2005) proposed a new
masking technique, called yield-correlation masking. The main
idea behind this concept is that all vegetated pixel in a region
(ie., crops and natural vegetation) integrate the season’s cumu-
lative growing conditions in some fashion. Hence, in the yield-
masking approach, all pixels are considered for use in crop yield
prediction. In practical terms, yield-correlation masking gener-
ates a unique mask for each NDVI variable (e.g., each time step at
which NDVTis available) and each combined pair of crop x region.
The technique is initiated by correlating each of the historical,
pixel-level NDVT variable values with the region’s yield history.
The highest correlating pixels are retained for further processing
and evaluation of the (NDVI) variable at hand. A diagram outlin-
ing this process for a single NDVI variable is shown in Figure 4.12.

Though computationally intensive, the yield-correlation
masking technique overcomes the major problems afflicting
crop-specific masking and cropland masking. Unlike these
approaches, yield-correlation masking readily can be applied to
low-producing regions and regions possessing sparse crop distri-
bution. Also, since yield-correlation masks are not constrained
to include pixels dominated by cropland, they are not necessarily
hindered by the weak and insensitive NDVTI responses exhibited
by crops early in their respective growing seasons. Furthermore,
once the issue of identifying optimal mask size (i.e., determining
how many pixels should be included in the masks) is addressed,
the entire modeling procedure becomes completely automated.

The most important appeal of yield-correlation masking is
that no land cover map is required to implement the procedure,
while the procedure results in forecasts of comparable accuracy
to those obtained when using cropland masking or crop-specific
masks (Kastens et al.,, 2005). The procedure requires only an
adequate time series of imagery and a corresponding record of
the region’s crop yields. Problems regarding this approach can
be expected when the land cover/land use of the selected yield
proxies changes. In addition, the procedure used to select the
pixels to be retained in the mask increases the parameteriza-
tion of the final yield forecast model, so that its predictive power
must be carefully scrutinized. The combined use of data sets
from different sensors remains difficult, given the observed large
discrepancies described, for example, in Meroni et al. (2013b).

A recent application of the yield-masking approach is
presented in Mello et al. (2014), and described hereafter. The
study is focused on the estimation of sugarcane yield at the
municipal level in Brazil. For each municipality, yearly sug-
arcane yield data from 2003 to 2012 are available as reference
information (IBGE, 2013).

To model yield, weekly smoothed and gap-filled MODIS
NDVT time series (MOD13) from BOKU University (Austria)
was used (Atzberger, 2015). A rectangular area was chosen so
that a buffer of >60 km around the centroid of each of the five
municipalities is covered.
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FIGURE 4.12 Illustration of the yield-masking approach involving a data set of 11 years. (From Kastens, J.H. et al., Remote Sens. Environ., 99,
341, 2005.)

To simulate within-seasonal yield forecasts in near-real time
for 2012, the official yield data from 2003 to 2011 were used to
select, within the area covered by the MODIS time series, the
100 pixels where the NDVTI time series best match the yield time
series. These 100 pixels are called proxies. The quality of the
match between official yield and remote sensing time series was
based on the RMSE between the two variables. Before calculat-
ing the RMSE, both variables were standardized to zero mean
and unit standard deviation.

Proxy selection was done in weekly intervals from January to
June 2012, always considering the average of the last 10 weeks
(starting from the week of interest) of standardized NDVI. From
the selected proxies of each week, yield was estimated using the
median of the (standardized) NDVTI values. The official yield
data for 2012 (not used to select proxies) were then used to assess
the weekly estimates over the year 2012.

The weekly differences between official and modeled yield are
shown (in % difference) in Figure 4.13 for each of the five munic-
ipalities as well as for all municipalities together; values above
zero indicate overestimated yield.

The thick gray line, representing the average of the differ-
ence for the five municipalities tested, revealed that the remote
sensing approach proposed showed an increasing overestima-
tion of the sugarcane yield between February and June 2012.
The development of sugarcane reaches its maximum in March
(which is also the end of the rainy season), when sugar accu-
mulation period usually ends. As sugarcane yield is strongly
influenced by the sugar contents, this period is critical to define
yield (Rudorft and Batista, 1990a). In fact, Figure 4.13 showed
that the period from January to March presented the best esti-
mates for remote sensing-based yield (when the differences
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FIGURE 4.13 Difference (given in %) between the sugarcane yield
estimated based on the yield-masking approach and the official yield
published by IBGE (2013). (From Mello, M.P. et al., Near real time
yield estimation for sugarcane in Brazil combining remote sensing and
official statistical data, in Proceedings of the 34rd IEEE International
Geoscience and Remote Sensing Symposium (IGARSS 2014), IEEE,
Montreal, Quebec, Canada (in press), 2014.)

between remote sensing-based and official yield were close to
zero). From April to June, the remote sensing approach tended
to overestimate sugarcane yield for all municipalities evaluated.
The reduced performances of the model are justified by the fact
that this period represents the start of the harvest season in Sao
Paulo, which ends in December (Rudorff et al., 2010). Although
remote sensing-based estimates in January were found to be
already valuable to predict sugarcane yield with good accuracy
for this particular year, in operational yield forecasting, it would
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be important to monitor yield throughout several months, espe-
cially until April, to spot possible reduction of the forecasted
yield, since heavy rains as well as frost in some growing areas
may affect the sugar concentration and, consequently, yield
(Monteiro and Sentelhas, 2014).

4.4 Crop Acreage Estimation

Cropland areas are often characterized by a diverse mosaic of
LULC types that change over various spatial and temporal scales
in response to different management practices and agricultural
policies (e.g., Galford et al., 2008; Epiphanio et al., 2010; Hostert
et al.,, 2011; Kuemmerle et al., 2011; Atzberger and Rembold,
2013). As a result, detailed regional-scale cropping patterns
need to be mapped on a repetitive basis (Wardlow et al., 2007;
Atzberger and Rembold, 2012; Vieira et al., 2012). As described
earlier, in many approaches, crop masks are also necessary for
building yield models and for obtaining signals related to the
class of interest (e.g., the actual crop being investigated). Some
important applications requiring information about cropped
surfaces and crop type area are listed in Table 4.6.

For example, information about crop extent (often referred
to as “acreage”) is necessary to better understand the role and
response of regional cropping practices in relation to various
environmental issues (e.g., climate change, groundwater deple-
tion, soil erosion) that potentially threaten the long-term sus-
tainability of major agricultural producing areas (Galford et al.,
2008). Monitoring the time and location of land cover changes is
important for establishing links between policy decisions, regu-
latory actions, and subsequent land use activities, as outlined by
Galford et al. (2008). Determining the physical and temporal
patterns of agricultural extensification or expansion and inten-
sification is the first step in understanding their implications,
for example, for long-term crop production and environmental,
agricultural, and economic sustainability (Galford et al., 2008).
The acreage of the different crops must also be known for each
growing season for accurate production estimates (Gallego, 2005;

TABLE 4.6 Main Applications of Agriculture-Related LULC Maps
Derived from Remote Sensing

Application Example

Bolton and Friedl (2013), Becker-
Reshef et al. (2009), Becker-Reshef
et al. (2010b), Pittman et al. (2010)

Estimation of agricultural
production

Monitoring of agricultural
management practices

Monitoring of the effects of climate
change on agriculture

Monitoring of agricultural policies

Assessment of the impact of
agriculture on natural resources

Crop masking

Unmixing of coarse-resolution
satellite data

Brown and Pervez (2014), Han et al.
(2012)

Brink and Eva (2009), Romo-Leon
etal. (2014)

De Beurs and Henebry (2004),
Bryan et al. (2009)

Cardille and Foley (2003), Dale and
Polasky (2007), Duro et al. (2007)
Becker-Reshef et al. (2010a), Kogan

etal. (2013)
Oleson et al. (1995), Maselli et al.
(1998), Busetto et al. (2008)
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Baruth et al., 2008). The recent review paper of Olofsson et al.
(2014) offers a guidance for accurate estimation and change in
land use, whereas the excellent work of Wardlow et al. (2007)
provides a valuable discussion of different approaches focused
on crop mapping. The following is a summary of the latter work.

4.4.1 Crop Mapping Using High-Resolution
Satellite Data

Remotely sensed data from satellite-based sensors have proven
useful for large-area LULC characterization due to their synop-
tic and repeat coverage. Considerable progress has been made
classifying LULC patterns using multispectral, high-resolution
Landsat TM data as a primary input (Vogelmann et al., 2001).

In most cases, crop maps are generated by supervised clas-
sification (Congalton et al., 1998; Beltran and Belmonte, 2001).
EO images for classification are generally acquired at key pheno-
logical stages for optimizing class separability. These approaches
are labor and cost intensive, and require amounts of cloud-free
high-spatial resolution imagery. This impedes an operational
implementation over large areas and in multiple years (Lobell
and Asner, 2004). Data availability—particularly if specific
crop stages need to be imaged—is often insufficient (Annoni
and Perdiago, 1997). Although generally feasible, the problems
mentioned have limited the possibility of automatically updat-
ing land cover maps over large areas at regular (annual) inter-
vals (Chang et al., 2007). For example, for the United States, it is
expected that the Landsat-based National Land Cover Database
(NLCD) will result in a 6-year delay between data collection and
product availability (Lunetta et al., 2006). The NLCD of 2011, for
example, became available at the time of writing (2014).

Conventional pixel-based procedures of digital classification
occasionally reveal difficulties regarding the automatic pattern
recognition, mainly because of the phenological variability of
crops, different cropping systems, and nonuniform measure-
ment conditions (e.g., atmospheric disturbances) (Vieira et al.,
2012). This is particularly true in cases using only single-date
imagery. In such a context, object-based image analysis (OBIA)
using multi-temporal (satellite) imagery appears promising.

The most common approach used to generate image objects
is image segmentation (Pal and Pal, 1993; Benz et al., 2004). The
segmentation process is the subdivision of an image into homoge-
neous regions through the grouping of pixels in accordance with
determined criteria of homogeneity and heterogeneity (Haralick
and Shapiro, 1985; Comaniciu and Meer, 2002). For each object
created in a segmentation process, spectral, textural, morphic,
and contextual attributes can be generated and may be employed
in image analysis (Blaschke, 2010). In very-high-resolution (VHR)
images, textural and shape information is particularly important.

After the process of outlining objects in an image, the next
step is to assign them to a certain class, by comparing objects
identified in the image with patterns previously defined, thus
performing the classification of image objects considering them
thematically homogeneous. This is what is called object-oriented
classification (Whiteside and Ahmad, 2005).
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FIGURE 4.14 Flowchart illustrating the main stages that are part of the OBIA+ DM approach proposed to classify sugarcane areas (RH) from

Landsat time-series images. Hachures illustrate the different computational environments used in each methodological stage. Broken-lined arrows
indicate iteration possibilities. (From Vieira, M.A. et al., Remote Sens. Environ., 123, 553, 2012.)

Having a sometimes huge set of attributes for automatic
classification available, it may be very difficult for a human to
identify the optimum descriptive attributes of the objects for
a successful classification (Witten and Frank, 2005). In such
cases, DM techniques can be employed. DM techniques enable
the automatic generation of a structure of knowledge (Silva
et al.,, 2008). Among the many available DM techniques, deci-
sion trees (DTs)—and ensemble of DTs called “random forest”
(Breiman, 2001)—are particular easy and appealing. An impor-
tant advantage of classification trees is that they are structurally
explicit, allowing for clear interpretation of the links between
the dependent variable of class membership and the indepen-
dent variables of remote sensing and/or ancillary data (Lawrence
and Wright, 2001). An operational example of the application
of DT algorithm is the annual national-level coverage product
of the United States (Cropland Data Layer; Boryan et al., 2011).

DTs have been preferred to statistical classifiers such as maxi-
mum likelihood classifier because they do not make implicit
assumptions about normal distributions in the input data
(Friedl and Brodley, 1997). As stated by Brown de Colstoun et al.
(2003), DT classifiers can also accept a wide variety of input data,
including non-remotely sensed ancillary data and in the form
of both continuous and/or categorical variables. Further advan-
tages of DTs include an ability to handle data measured on dif-
ferent scales, lack of any assumptions concerning the frequency
distributions of the data in each of the classes, flexibility, and
ability to handle nonlinear relationships between features and
classes (Friedly and Brodley, 1997).

Pefia-Barragan et al. (2011) successfully combined OBIA
and DT methodology for identification of 13 major crops culti-
vated in the agricultural area of Yolo County (California, USA).
They explored the use of several vegetation indices and textural
features derived from visible, near-infrared, and short-wave
infrared bands of ASTER satellite scenes collected during three
distinct growing season periods. Their multi-seasonal assess-
ment of a large number of crop types and field status reported an
overall accuracy of 79%.
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Brown de Colstoun et al. (2003) used multi-temporal ETM+/
Landsat-7 data and a DT classifier to map 11 types of land cover
classes, acquiring a final land cover map with an overall accu-
racy of 82%. Grouping the 11 land cover classes in forest vs. non-
forest classes, this same accuracy was 99.5%.

Vieira et al. (2012) combined OBIA and DT to map harvest-
ready sugarcane in Brazil. To derive the binary map indicating
the area of harvest-ready sugarcane, four Landsat images (TM-5
and ETM+) acquired between September 2000 and March 2001
were used. An overview of the methodology and processing steps
is outlined in Figure 4.14. For image segmentation, eCognition
software was used and resulted in a quite precise delineation of
the different field boundaries (Figure 4.15). A large number of

FIGURE 4.15 Example of the segmentation result used by Vieira
et al. (2012) for mapping harvest-ready sugarcane. The underlying RGB
composite consists of a TM image taken in the month of February 2011,
with composition R(4) G(5) B(3). (From Vieira, M.A. et al., Remote Sens.
Environ., 123, 553, 2012.)
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attributes were afterward extracted for each polygon (object).
The attributes included spectral, spatial, and textural features as
described in Blaschke (2010).

The map shown in Figure 4.16, depicting the location of
harvest-ready sugarcane fields, was derived by application of the
trained DT. Validation using an independent set of 500 reference
points not used during DT training yielded an overall accuracy
of 94% (Kappa 0.84).

Interestingly, only a small set of features was selected by the
DT for obtaining these good results (i.e., NDVI, spectral signa-
tures, and one textural feature). As expected, multi-temporal
information was necessary to differentiate between harvest-
ready sugarcane and the other land uses. Textural attributes
were relevant where and when areas with high-biomass sugar-
cane were confounded with other high-biomass areas (e.g., for-
ests). Spatial attributes (e.g., shape, dimension) were not selected
in this study area since most agricultural fields, both sugarcane
and the other crops, had similar geometric characteristics.

4.4.2 Crop Mapping Using Medium- to
Coarse-Resolution Satellite Data

At national to global scales, advances have been made in LULC
classification using multi-temporal, coarse-resolution data such
as SPOT-VGT or NOAA-AVHRR (Loveland et al., 2000; Defries
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Map of harvest-ready sugarcane areas using and integrated OBIA and DT approach. (From Vieira, M.A. et al., Remote Sens.

et al., 1998). The high temporal resolution of satellite time series
data allows land cover types to be discriminated based on their
unique phenological (seasonal) characteristics (de Fries et al.,
1998; Vuolo and Atzberger, 2012, 2014). However, few of these
mapping efforts have classified detailed, crop-related LULC pat-
terns, particularly at the annual time step required to reflect
common agricultural LULC changes (Wardlow et al., 2007).
This is mainly due to the mixed nature of coarse-resolution pix-
els. For similar reasons, it is not surprising that existing LULC
maps often reveal strong differences, making harmonization
attempts necessary (Vancutsem et al., 2013). Indeed, most glob-
ally available land cover products reveal significant differences,
even if maps are recoded into a few (broad) classes. This is exem-
plified in Figure 4.17 for Europe.

The observed differences constitute a real limitation for using
remote sensing data. This is unfortunate, as coarse-resolution
satellite data will constitute for a number of years the main input
for regional-scale crop mapping and monitoring protocols. The
situation will probably change significantly only with the launch
of Sentinel-2 (scheduled for mid-2015) offering five-daily global
revisit time at 10 m spatial resolution. Today, only the mentioned
coarse-resolution data sets have wide geographic coverage and
high temporal resolution. This is achieved at the expenses of
their spatial resolution that, compared to the granularity of the
landscape (i.e., typical field size), is often inadequate. Remotely
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FIGURE 4.17 Different LULC maps of Europe demonstrating the large uncertainty in available information. The legends of the four maps have
been harmonized to ease interpretation. (From Vuolo, F. and Atzberger, C., Remote Sens., 4, 3143, 2014.)
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sensed data from traditional sources, such as Landsat, fulfill the
spatial resolution needs, but are limited for such a protocol, due
to their temporal resolution, availability, and/or cost.

For areas with relatively large field sizes, MODIS provides
interesting data at 250 m spatial resolution in particular com-
pared to (1-8 km) AVHRR and 1 km SPOT-VGT data. This offers
an opportunity for a more detailed, large-area LULC character-
ization by providing global coverage with daily revisit frequency
and intermediate spatial resolution (Justice et al., 2002). The data
set is available at no cost, including 16-day composites of NDVI
and enhanced vegetation index updated every 8 days. Several
studies have already successfully demonstrated the potential of
these data for detailed LULC characterization in an agricultural
setting (Lobell and Asner, 2004; Wardlow et al., 2007; Lunetta
etal., 2010).

Wardlow et al. (2007), for example, found that MODIS time
series at 250 m ground resolution had sufficient temporal and
radiometric resolution to discriminate major crop types and
crop-related land use practices in Kansas, United States. For
each crop, a unique multi-temporal VI profile consistent with
the known crop phenology was detected. Most crop classes were
separable at some point during the growing season based on
their phenology-driven differences expressed in the VI tempo-
ral trajectory. Even regional intra-class variations were detected,
reflecting the climate and planting date gradient in the study
area. They also found that MODIS’s 250 m spatial resolution was
an appropriate scale at which to map the general cropping pat-
terns of the U.S. Central Great Plains.

Lunetta et al. (2010) used MODIS 16-day NDVI composite
data to successfully develop annual cropland and crop-specific
map products (corn, soybeans, and wheat) for the Laurentian
Great Lakes Basin. The crop area distributions and changes in
crop rotations were characterized by comparing annual crop
map products for 2005, 2006, and 2007.

Other studies also confirmed that crop area estimations were
significantly improved since the introduction of the MODIS sen-
sor with 250 m ground resolution (Lunetta et al., 2006; Chang
et al., 2007; Fritz et al., 2008; Wardlow and Egbert, 2008). Not
surprisingly, the best results were obtained for agricultural areas
such as the central plains of the United States and the Don River
basin in Russia, where typical field sizes are large. Of course, for
other parts of the world with (much) smaller field sizes, the reso-
lution of MODIS can be much less adequate.

4.4.3 Fractional Abundances from Medium-
to Coarse-Resolution Satellite Data

The use of coarse-resolution data is effective because it offers
numerous advantages: global coverage and low cost, high
temporal frequency, easy processing at a regional to conti-
nental scale, availability of long-term records (e.g., from 1980
thanks to AVHRR instruments onboard of NOAA satellites),
and finally continuity of data provision as ensured by sev-
eral current (MODIS, Suomi-NPP, SPOT-VGT, Proba-V) and
planned (Sentinel-3) missions. However, because of sub-pixel
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heterogeneity, the application of traditional hard classification
approaches faces intrinsic methodological limitations and may
result in significant errors in the estimated crop areas (Defries
etal., 1995; Chang et al., 2007).

To address sub-pixel heterogeneity common for many areas
of the world with fragmented landscapes, Quarmby (1992) used
linear mixture model techniques applied to coarse-resolution
data. Hansen et al. (2002) used the continuous field algorithm
for mapping vegetative traits, such as tree cover, using MODIS
data. In the continuous field approach, each coarse-resolution
pixel is characterized as 0%-100% cover of a vegetation class,
ameliorating the primary limitation of coarse spatial resolution
data (Chang et al., 2007).

Several authors combined high-resolution images with
NOAA AVHRR 1 km imagery to improve sub-pixel crop moni-
toring capabilities (Maselli et al., 1998; Doraiswamy et al., 2004).
However, insufficient contrast between endmembers often leads
to unstable solutions, resulting in inaccurate fraction images
(Lobell and Asner, 2004). On the other hand, too few endmem-
bers will fail to correctly represent the input signature.

A probabilistic linear unmixing approach with MODIS
spectral/temporal data was developed and tested by Lobell and
Asner (2004). The approach estimates sub-pixel fractions of
crop area based on the temporal reflectance signatures through-
out the growing season. In this approach, endmember sets are
constructed using Landsat data to identify pure pixels, mainly
located within large fields. Rather than defining endmembers
with a single spectrum, endmembers are defined as a set of
spectra that represent the full range of potential variability. The
uncertainty in endmember fractions arising from endmember
variability can then be quantified using Monte Carlo techniques.
The performance of the proposed approach was assessed over
Mexico and the Southern Great Plains and varied depending on
the scale of comparison. Coefficients of determination ranged
from greater 80% for crop cover within areas over 10 km? to
roughly 50% for estimating crop area within individual MODIS
pixels.

Several studies used spectral angle mapping (SAM) for
measuring interannual crop area changes based on NDVI
time series from NOAA-AVHRR (Rembold and Maselli, 2004,
2006). The studies found that it was feasible to derive relatively
accurate interannual winter crop acreage changes for the region
of Tuscany, Italy. However, good results could be obtained only
by estimating the crop acreage changes of single years from
the average of a high number (seven) of reference years. The
results were significantly worse by using less or single years of
reference data.

Regression tree analysis was used by Chang et al. (2007) for the
percentage of the corn and soybean area mapping using 500 m
MODIS time series data set. The strength of the regression tree is
its use as a DM tool. Numerous phenological measures and data
transformations may be input to such a model to identify which
ones are the most useful for crop-type discrimination.

Verbeiren et al. (2008) used NNs and monthly maximum value
compositing of SPOT-VGT (between March and October) to
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model the area fraction images (AFI) of eight classes in 2003 for
Belgium. Relatively good results were obtained, especially if the
initial (pixel-based) results were aggregated to coarser regional
levels. The portability across growing seasons was investigated
in an accompanying paper on the same data set by Bossyns et al.
(2007). The NNs were trained on data of one growing season and
then applied to SPOT-VGT of the training year plus three addi-
tional seasons. High and stable accuracies of the estimated AFIs
were obtained for the training data. For example, at regional level,
the R? for winter wheat of the training years was ~0.8 (0.67-0.87).
On average, however, this value decreased by 0.45 units when the
networks were applied to different seasons, probably because of a
too high interannual variability of the endmembers.

To better cope with the natural year-to-year variability of
NDVI profiles of vegetated surfaces, Atzberger and Rembold
(2013) trained networks with AVHRR time series. The target
variable represented the sub-pixel winter crop fractional cover-
age. To permit the net distinguishing for various proportions of
non-arable land within the mixed pixels (e.g., forested areas and
urban land), CORINE land cover information was used as addi-
tional input. A positive impact was demonstrated regarding the
concurrent use of ancillary information. In-season predictions
improved compared to the mentioned work of Rembold and
Maselli (2004, 2006) using the same data set and linear predic-
tion models. On average (median), 79% of the spatial variability
of the (sub-pixel) winter crop abundances was explained by the
NN approach (Figure 4.18).

For the individual years, the cross-validated R? ranged
between 0.70 (1988) and 0.82 (2000). The cross-validated RMSE
values were around ~10% (relative to the winter crop area). For
the year 2000, Figure 4.19 shows the relation between the winter
wheat area fractions independently derived from Landsat imag-
ery and the modeled results.

The same approach was tested by Atzberger and Rembold
(2012) for its portability across years and its usefulness to derive
regional statistics. Data from 3 years between 1988 and 2001
were used to train the NN (Figure 4.20). The trained net was
then applied to the period 2002-2009.

Cross-validated results—Tuscany’s total winter crop area
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FIGURE 4.18 Spatialization of winter crop acreages (AFIw) using
neural networks: cross-validated results showing (a) coefficient of deter-
mination, and (b) relative root mean squared error between predicted
and Landsat TM/ETM+-derived reference information. Each bar cor-
responds to 1 year of the 8-year dataset. The horizontal red line corre-
sponds to the median of the 8 years. (From Atzberger, C. and Rembold,
F., Remote Sens., 5(3), 1335, 2013.)
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FIGURE 4.19 Scatterplot between reference winter crop abundances
(AFIw) of Tuscany at 1 km scale (x-axis) and modeled results (y-axis).
The modeled results were obtained in a leave-one-out approach. The
reference information was obtained from Landsat images. (From
Atzberger, C. and Rembold, F., Remote Sens., 5(3), 1335, 2013.)
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FIGURE 4.20 Reference winter wheat surface data for the region of
Tuscany, Italy. Large squares indicate the 8 years for which high-reso-
lution TM/ETM+ imagery is available (data set 1). The second data set
(data set 2; shown as small dots) was used for assessing the portability of
networks across growing seasons. For stratified sampling, data set 1 was
split into three categories: low (1988, 1992), medium (1995, 1997, 1998,
2001), and high winter crop acreages (1991, 2000). (From Atzberger, C.
and Rembold, F., Eur. J. Remote Sens., 45, 371, 2012.)

Despite the fact that 2 years of the validation data set had
(extreme) conditions not previously seen by the NN (e.g., with
exceptionally high and low winter wheat areas, respectively), the
NN performed remarkably well (Figure 4.21).

Other studies also used successfully NNs. For example,
Atkinson et al. (1997) showed how NN can be used for unmix-
ing single-date (five wavebands) AVHRR imagery to map sub-
pixel proportional land cover. The use of NN for estimating
sub-pixel land cover from temporal signatures was investigated
by Karkee et al. (2009). Braswell et al. (2003) demonstrated that
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FIGURE 4.21 Estimated total winter crop acreage for Tuscany (Italy)
obtained with sixteen neural nets trained with 3 years of available ref-
erence data (data set 1 of Figure 4.20) and applied to the time series
(2002-2009) (data set 2). The red points and whiskers indicate the sim-
ulated averages and standard deviations across the sixteen individual
nets. The 1-to-1 line is also drawn. (From Atzberger, C. and Rembold,
F., Eur. . Remote Sens., 45, 371, 2012.)

network-based nonlinear regression offers significant improve-
ment relative to linear unmixing for the estimation of sub-pixel
land cover fractions in the heterogeneous disturbed areas of
Brazilian Amazonia. The improvement was related to the fact
that linear unmixing assumes the existence of pure sub-pixel
classes (endmembers) with fixed reflectance signatures. The NN
approach proposed by Braswell et al. (2003) estimates nonlin-
ear relationships between each land cover fraction and spectral-
directional reflectances, without making assumptions about the
physics of sub-pixel mixing.

4.4.4 Combined Use of Satellite Data
and Ancillary Information

The combined use of remotely sensed data and ancillary informa-
tion was presented by Mello et al. (2013c¢) for the case of soybean
mapping in Mato Grosso State, Brazil. The approach is based on
a computer-aided Bayesian networks (BNs). These networks are
able to incorporate experts’ knowledge in complex classification
tasks and therefore help to characterize phenomena through
plausible reasoning inferences based on evidence. Mato Grosso
State (total size of about 900,000 km?) was selected by Mello et al.
(2013c¢) as a study region because it is the largest Brazilian soy-
bean producer (about 30% of the total domestic production) and
an important global hub for tropical agricultural production.
For Mato Grosso, tabulated agricultural statistics at munici-
pality level exist, which are however released only with a delay
of about 2 years after harvest. The absence of timely and spatial
data restricts investigations related to crop monitoring and fore-
cast. It also hinders the monitoring of the possible spread of soy-
bean cropping into new, sometimes environmentally sensitive,
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areas. As such, there is demand for the use of remote sensing
images as an accurate, efficient, timely, and cost-effective way to
monitor agricultural crops (Rudorff et al., 2010).

Bayes’s theorem, which is used in BN, updates the knowledge
(prior probability) of a specific event in light of additional evidence
(conditional probabilities), allowing one to have a plausible reason-
ing based on a degree of belief (posteriori probability) (McGrayne,
2011). Therefore, observations made upon variables that are related
to a particular phenomenon may be used to develop plausible rea-
soning about the phenomenon, its causes, and consequences (Jaynes,
2003). When the number of variables increases or even when the
complexity of the interactions among the variables involved in a spe-
cific phenomenon rises, the BN is a representation suited to model
and handle such tasks (Pearl, 1988; Jensen and Nielsen, 2007).

The joint probability of any instantiation (sometimes called
realization) of all the variables in a BN can be computed as the
product of only n probabilities. Thus, one can determine any
probability of the form

P(Vi | Vy,.., V) 4.7)
where V, are sets of variables with known values. This ability
to compute posterior probabilities given some evidence is called
inference. In the case of using Equation 4.7 for inferences about
a phenomenon, Mello et al. (2013¢) named “target variable” the
variable that represents the phenomenon, and “context variables”
the variables that are somehow related to the phenomenon.

Besides remotely sensed spectral and temporal informa-
tion, several other context variables are closely related with
soybean occurrence in a given field (e.g., soil type and dis-
tance to roads and other infrastructure facilities) (Garrett
et al,, 2013). In the mentioned study, this information was
combined within a BN structure to optimize soybean identifi-
cation and mapping.

The selected context variables used in the study of Mello
etal. (2013c¢) to compose the model are listed in Table 4.7. From
expert knowledge, it is known that each context variable influ-
ences soybean occurrence.

The resulting probability image (PI) is shown in Figure 4.22.
The PI shows the spatial distribution of (the probability of)
soybean crops throughout Mato Grosso territory in crop year
2005/2006. Green-colored pixels represent areas with higher
probability of soybean presence based on observation of the con-
text variables. Mello et al. (2013¢) found a high agreement of the

TABLE 4.7 Summary of the Six Context Variables Used in the
Soybean Mapping Case Study of Mello et al. (2013c¢)

Variable Description

C CEF* value in the current crop year (2005/2006)
L CET* value in the last crop year (2004/2005)

A Soil aptitude

T Terrain slope (given in %)

w Distance to the nearest water body (given in km)
R Distance to the nearest road (given in km)

2 Crop Enhancement Index.
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FIGURE 4.22 Probability image (PI) of soybean presence for Mato Grosso State, Brazil. Main soybean producer centers and the capital, Cuiab4,
are highlighted. The color indicates the calculated probability of soybean presence in 2005/2006 given the observations made for the context
variables. (From Mello, M.P. et al., Spatial statistic to assess remote sensing acreage estimates: An analysis of sugarcane in Sao Paulo State, Brazil,
in Proceedings of the 33rd IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2013), IEEE, Melbourne, Victoria, Australia,
2013a, pp. 4233-4236; Mello, M.P. et al., IEEE Trans. Geosci. Remote Sens., 51(4), 1897, 2013b; Mello, M.P. et al., Remote Sens., 5(11), 5999, 2013c.)

mapped soybean acreage with (independent) official statistics.
Moreover, the BN approach proposed by the authors quantified
the influence of each context variable on soybean mapping, stat-
ing that remote sensing data were the most important variables
used to infer about soybean occurrence.

4.4.5 Accuracy Considerations

As Olofsson et al. (2014) pointed out, “a key strength of remote
sensing is that it enables spatially exhaustive, wall-to-wall cover-
age of the area of interest. However, as might be expected with
any mapping process, the results are rarely perfect. Placing
spatially and categorically continuous conditions into discrete
classes may result in confusion at the categorical transitions.
Error can also result from the mapping process, the data used,
and analyst biases (Foody, 2010).” Map users on the other hand
are acutely interested in understanding the quality of the pro-
vided maps (Olofsson et al., 2014).
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The mentioned paper of Olofsson et al. (2014) provides excel-
lent guidance on how to assess map accuracy in a consistent and
transparent manner. An example of good practice is also pro-
vided. We therefore invite interested readers to consult this work
as well as work published by Foody (2002), Strahler et al. (2006),
Foody (2010), and Gallego (2012).

4.5 Crop Development and Phenology

The phenological dynamics of terrestrial ecosystems—both
natural vegetation and agricultural crops—reflect the response
of the earth’s biosphere to inter- and intra-annual dynamics of
the earth’s climate and hydrologic regimes (Zhang et al., 2003).
Example NDVT images of four different months during 2005 are
shown in Figure 4.23. The maps that cover large parts of Europe
are derived from MODIS data at 250 m ground resolution
(Atzberger and Klisch, 2014). Also shown are selected temporal
profiles extracted from the same data set.
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(b) Example temporal NDVTI profiles at weekly temporal resolution from 2005 for five randomly selected pixels. Black arrows indicate the timing
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Once again, moderate to coarse spatial resolution data possess
significant potential for monitoring vegetation/crop dynamics
for several reasons:

» Synoptic global coverage

o Frequent temporal sampling (e.g., daily)
o Short leap time (usually less than 3 days)
« Free and easy access

Using such (NDVI) time series, it is, for example, possible to
extract (Figure 4.24) and monitor simple “phenological” events,
such as the start (Figure 4.25) and peak of vegetation growth
(Figure 4.26). For both land surface phenological events, a
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sometimes huge interannual variability can be observed (Figure
4.26, bottom).

Mapping of a crop’s phenological development is important
as the phenology is sometimes closely related to biomass pro-
duction and crop yield (Meroni et al., 2014a). For example, cool
summers may result in delayed heading and thus decreased
yields. Besides, the temporal signature of vegetated surfaces is
also useful for distinguishing land cover types and for mapping
land use change (Badhwar et al., 1982; Wardlow et al., 2007;
Galford et al., 2008; Vuolo and Atzberger, 2012). Several appli-
cations for land surface phenology (LSP) products are listed in
Table 4.8.
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This “multiple use” makes phenological metrics very interesting
within agricultural monitoring systems. Croplands, for example,
present a more complex phenology than natural land cover, due to
their many peaks resulting from multiple crops planted sequen-
tially within a growing season (Galford et al., 2008; Arvor et al.,

© 2016 Taylor & Francis Group, LLC

99

MODIS
10°0°'0"E 20°0°0"E

0°0°0"

Median of MOS

Oct
Sep
Aug
Jul
Jun
May
Apr
" Mar
Feb

' Jan
Dec
Nov

40°0°'0"N  50°0'0"N  60°0'0"N
40°0'0"N 50°0'0"N 60°0'0" N

0°0'0"

10°0°'0"E 20°0'0"E

—
2o
=

Range of MOS
in days

[ No data
. 0-10
B 1020
B 20-30
[ 30-40
[ ]40-50
[ 50-75
B 75-100
B 100-150
B >150

z
I
o
(=}
O
z
o
(e}
g
(=}
mn

| =
o
S
g
(=}
<

40°0°'0"N  50°0'0"N  60°0'0"N

(b) 0°0'0”  10°0'0"E 20°0'0"E

FIGURE 4.26 Spatial distribution of maximum of season (MOS)
derived from MODIS time series. (a) averaged MOS (median) over all years
(2003-2011) and (b) interannual range. Land pixels without vegetation and
water surfaces are masked out (in gray). (From Atzberger, C. et al., 2014.)

TABLE 4.8 Applications of LSP Products Related to Agriculture

Application Example

Sakamoto et al. (2011), Kawamura
et al. (2005)

Moulin et al. (1998), Boschetti et al.
(2009)

Moro and Manjunath (2013), Galford
et al. (2008), Pena-Barragan et al.
(2011)

Galford et al. (2010)

Mapping of crop development and
conditions

Use in data assimilation approaches
within crop growth models

Mapping of crop type and crop
rotation

Mapping of land cover and land use
change

Xin et al. (2002), Meroni et al.
(2013a), Bolton and Friedl (2013)

Use as predictor in yield models

2011; Atkinson et al., 2012) (Figure 4.23, bottom). Additionally,
the uniform cover of green leaves in an agricultural field creates
very high observed greenness, especially as compared to the bare
soils left after harvest. Consequently, several studies have identi-
fied land cover based on specific properties of the observed green
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leaf phenology, such as start of season, dry season minimums,
and amplitude of maximums (e.g., Badhwar et al., 1982; Guérif
et al., 1996; Zhang et al., 2003; Bradley et al., 2007; Galford et al.,
2008). Other studies analyze the detected phenological indicators
with respect to climate variables (Udelhoven et al., 2008) and/
or run trend analysis (Jong et al., 2011). As CGMs have to order
organ appearance and assimilation portioning/distribution, the
phenological stage of a crop has to be simulated (mostly as a sim-
ple function of accumulated growing degree days since planting).
Hence, externally provided information about crop emergence,
etc., can be assimilated into such models (Moulin et al., 1998).

To determine the timing of vegetation green-up and senes-
cence from remotely sensed VI time series, a number of different
approaches have been developed. Following Beck et al. (2006),
the different methods can be grouped in two categories:

1. Methods estimating the timing of single phenological
events (Reed et al., 1994; White et al., 1997; Badeck et al.,,
2004)

2. Methods modeling the entire time series using a mathe-
matical function (Jonsson and Eklundh, 2002; Stockli and
Vidale, 2004; Beck et al., 2006)

Approaches belonging to the two groups are summarized in
Table 4.9. Relevant references are also given.

Modeling VI time series as such has the advantage of con-
serving a maximum amount of information in the VI data,
while reducing the dimensionality of the data (Jonsson and
Eklundh, 2004). Therefore, in addition to the phenological
dates, other parameters can be estimated from the models’ out-
put (Beck et al., 2006). However, such methods are difficult to
apply for large regions and generally do not apply well for eco-
systems characterized by multiple growth cycles (e.g., double-
or triple-cropping systems and semiarid systems with multiple

TABLE 4.9 Methods for Determining Land Surface Phenological
Events from EO Data Such As Green-Up and Senescence

Methods timing single phenological events

Use of specific (NDVT) White et al. (1997), Lloyd (1990),
thresholds Atzberger et al. (2014)

Detection of the largest Kaduk and Heinmann (1996)
(NDVT) increase

Use of backward-looking
moving averages

Reed et al. (1994)

Methods modeling the entire time series

Use of principal Hirosawa et al. (1996)

component analysis
Use of Fourier and
harmonic analysis

Atkinson et al. (2012), Azzali and Menenti
(2000), Jakubauskas et al. (2001)

Use of wavelet Anyamba and Eastman (1996), Sakamoto

decomposition et al. (2005)

Curve fitting (global) Zhang et al. (2003), Beck et al. (2006),
Jonsson and Eklundh (2002), Meroni
et al. (2014b)

Curve fitting (local) Zhang et al. (2003)
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rainy seasons). This was demonstrated, for example, recently by
Atkinson et al. (2012) over India.

The traditional Fourier transform, for example, expects peri-
odicity in the data not always given (e.g., in the case of land use
change). Additionally, application of Fourier transforms often
reveals spurious oscillations (Hermance, 2007). This happens
frequently when many harmonics have to be combined for fit-
ting nontrivial temporal patterns (e.g., related to double/triple
cropping).

Nonstationary data with irregular temporal shapes is better
handled by the wavelet transform (Galford et al., 2008). In an
agricultural application, wavelet-smoothed time series were suc-
cessfully used to identify the start of the growing season and the
time of harvest with relatively low errors (+2 weeks) (Sakamoto
et al., 2005). Wavelet analysis is capable of handling the range
of agricultural patterns that occur through time, as well as the
spatial heterogeneity of fields that result from precipitation and
management decisions, because the transform is localized in
time and frequency.

Curve fitting using predefined functions (e.g., double logistic)
is another approach modeling the entire time series (Badhwar
et al., 1982; Guérif et al., 1992; Beck et al., 2006; Meroni et al.,
2014b). A fitted curve simplifies the parameterization necessary
for identification of metrics, such as start of season. In addi-
tion, data gaps are easily handled. A drawback of curve-fitting
approaches is that a priori information is necessary to inform
the algorithm about the number of cropping seasons within a
12-month period and the probable location of vegetation peaks
(Jonsson and Eklundh, 2004). A large number of additional tem-
poral features can be extracted using software like TimeStats
(Udelhoven, 2011).

4.6 Existing Operational Agricultural
Monitoring Systems

Agriculture monitoring is not a new concern. In fact, the basics
of geometry and land surveying were developed in ancient Egypt
(Luiz et al., 2011). The aim was assessing cultivated areas affected
by water-level fluctuations of the River Nile, with the purposes of
taxation and famine prevention.

Today, probably more urgently as ever before, a regional to
global agricultural intelligence is needed to respond to various
societal needs. For example, national and international agri-
cultural policies, global agricultural trade, and organizations
dealing with food security issues heavily depend on reliable and
timely crop production information (Becker-Reshef et al., 2010a).

Agricultural monitoring systems should be able to provide
timely information on crop production, status, and yield in a
standardized and regular manner at the (sub)regional to the
national level. Estimates should be provided as early as possible
during the growing season(s) and updated periodically through
the season until harvest. Based on the information provided,
stakeholders are enabled to take early decisions and identify
geographically the areas with large variation in production
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and productivity. The system should provide homogeneous and
interchangeable data sets with statistically valid precision and
accuracy. Probably, only (satellite) remote sensing—combined
with sophisticated modeling tools—can provide such informa-
tion in a timely manner, over large areas, in sufficient spatial
detail and with reasonable costs (Macdonald and Hall, 1980).

The first agricultural monitoring system based on remote
sensing data was developed in the United States in the 1970s
(Pinter et al., 2003; Becker-Reshef et al., 2010a). In 1974, the
USDA, together with NASA and NOAA, initiated LACIE
(Bauer, 1979). The goal of this experiment was to improve
domestic and international crop forecasting methods (Pinter
et al., 2003). With enhancements that became available from the
NOAA AVHRR sensor, the Agriculture and Resource Inventory
Surveys Through Aerospace Remote Sensing program was initi-
ated in the early 1980s (Pinter et al., 2003; Becker-Reshef et al.,
2010a). At this stage, the NOAA AVHRR sensor allowed for the
first time a daily global monitoring. Through the research con-
ducted in these NASA-USDA joint programs, the considerable
potential for use of remotely sensed information for monitoring
and management of agricultural lands was identified.

One of the most recent efforts that NASA and the USDA
Foreign Agricultural Service (FAS) have initiated is the Global
Agricultural Monitoring (GLAM) Project (Becker-Reshef et al.,
2009, 2010a). The GLAM project focuses on applying data from
NASA’s MODIS instrument to feed FAS decision support system
needs (pecad.fas.usda.gov/).

Besides the GLAM system, there are currently several other
regional to global operational agricultural monitoring systems
providing critical agricultural information at a range of scales
(Pinter et al., 2003; Becker-Reshef et al., 2010a; GEO, 2013;
Rembold et al., 2013) (Table 4.10).

However, the USDA FAS with its GLAM system is currently
the only provider of regular, timely, objective crop production

TABLE 4.10 Major Global Agricultural Monitoring Systems Making
Strong Use of Remotely Sensed Inputs

Name Monitoring System Access Points
GLAM USDA (FAS) Global agricultural glam1.gsfc.nasa.gov/
monitoring system
FEWS-NET  USAID Famine Early Warning fews.net/
System
GIEWS UN Food and Agriculture fao.org/giews/
Organization (FAO) Global
Information and Early Warning
System
MARS JRC’s Monitoring Agricultural mars.jrc.ec.europa.eu/
ResourceS action of the
European Commission
GMES European Union Global gmfs.info/
Monitoring of Food Security
program
CropWatch ~ Crop Watch Program at the cropwatch.com.cn/en/

Institute of Remote Sensing
Applications of the Chinese
Academy of Sciences (CAS)
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forecasts at a global scale. This unique capability is in part
afforded by the USDA’s partnership with NASA, providing
global coverage of the earth observation data, as well as analysis
tools for crop condition monitoring and production assessment
at the global scale (Becker-Reshef et al., 2010a).

The GLAM projectisalso playing aleadership role in the Group
on Earth Observations (GEO) agricultural monitoring compo-
nent AG-07-03. GEO itself is part of Global Earth Observation
System of Systems (GEOSS), providing decision-support tools
to a wide variety of users. Recently, the GEOGLAM initiative
was created integrating GLAM into GEOSS (Soares et al., 2011).
The group defined observation requirements that remote sens-
ing data should meet, ranging from meteorological conditions to
area and yield estimates (Figure 4.27).

The graph exemplifies that different approaches (and differ-
ent sensors) will be needed to access the requested information
encompassing local to global scales. Many of the requested qual-
itative to quantitative information needs were covered within
this chapter.

4.7 Conclusions and Recommendations

The chapter demonstrated the strong role remote sensing plays
within the agricultural sector. The number of applications is
huge. However, the most important applications focus on yield
and area estimation. Such information is regularly needed for
various decision makers. The information need is expected
to increase in the future, as the agricultural sector is in a very
dynamic phase (e.g., for meeting food requirements and envi-
ronmental restrictions). Remotely sensed information can help
to identify yield gaps and to monitor related agricultural prac-
tices. In parallel, environmentally sensitive areas can be iden-
tified for protective purposes. With appropriate preprocessing
of time series (e.g., gap filling and smoothing), phenological
indicators, such as start of the growing season, can probably be
estimated with acceptable accuracy (e.g., 7-10 days). Vegetation
anomalies related to local meteorological conditions (e.g.,
droughts) can be readily detected from space and combined
with other data sources to identify stress-affected regions. This
information not only is important for organizations dealing
with food security, but can also help to identify a region’s vul-
nerability to (drought) stress. Finally, the detection and moni-
toring of (permanent) land cover changes is best achieved using
remotely sensed data. This is, for example, important for estab-
lishing links between policy decisions, regulatory actions, and
subsequent land use activities.

Although we mainly described approaches using globally
available (moderate to coarse resolution) data sets (plus some
examples using Landsat-type data), it is clear that additional
information can be derived from (very) high spatial resolution
data (plus ground sensors). Thus, besides investments in the
agricultural sector, the related monitoring components should
be strengthened. Elements of the necessary monitoring compo-
nent exist, but should be further integrated and consolidated.
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FIGURE 4.27 Observation requirements defined by GEOGLAM. (From http://wmp.gsfc.nasa.gov/uploads/science/slides/Justice_ ASP-WR_2012-09-

06.pdf))

Similar to the objectives of the GEOGLAM initiative
(Soares et al., 2011), the following recommendations are drawn
(Atzberger, 2013):

o Agriculture depends strongly on the timeliness of the pro-
vided information. Information is worth little if it comes
(too) late (FAQ, 2011). Thus, the issue of timeliness should
be dealt with in all developments.

o Product developers have only limited access to ground
truth information to evaluate their products under various
environmental settings. International efforts are needed
to establish such networks of validation sites (Justice et al.,
2000; Baret et al., 2006; Morisette et al., 2006; Olofsson
et al.,, 2012; 2014; Stehman et al., 2012). This also requires
substantial funding by space agencies and/or environ-
mental institutions.

o More use should be made of crowd-sourced informa-
tion (Fritz et al., 2009, 2012; Foody and Boyd, 2013;
Foody et al., 2013). Interesting attempts are, for example,
GeoWiki (Fritz et al.,, 2009), JECAM (jecam.org/), and
USAID (Silversmith and Tulchin, 2013).

 Space agencies and sensor developers spend huge amounts
of money for precise radiometric calibration of the deployed
instruments. However, these efforts have little positive
effect unless the much stronger radiometric distortions
introduced by the atmosphere are removed. Operational
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implementations of precise atmospheric correction algo-
rithms are mandatory. Instead of relying on (aerosol) clima-
tologies, the algorithms should be fed with local atmospheric
properties (probably also derived from satellites).

In the future, multisensor studies will become frequent.
Thus, sensor intercalibration studies are urgently needed
(Meroni et al., 2013b).

Access of data and derived products is sometimes still too
complicated. Efforts are necessary to permit users to visu-
alize (and possibly download) information products in a
very simple way (such as realized in Google Earth).
Approaches are still very scattered and not always imple-
mented in operational processing chains. Funding organi-
zations should facilitate international cooperation, while
limiting administrative burdens. With the new generation
of (Sentinel) images, IT solutions are to be developed sus-
taining the processing of huge data sets as well as the coop-
erative development of algorithms, etc. (Wagner et al.,
2014). For example, with Sentinel-2, a global coverage at
10 m spatial resolution and three-to-five daily updating
frequency will be achieved. This amount of data cannot be
handled any longer using traditional approaches.

For potential users, the wide variety of products can be
confusing. Efforts are necessary to clearly explain the pur-
pose (and limits) of a given product.


http://wmp.gsfc.nasa.gov/
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5.1 Introduction

The world population is expected to reach 9.3 billion in 2050
(UN, 2010). To feed this population, the Food and Agriculture
Organization’s last global projection exercise forecasted that the
world’s agricultural production will need to increase by approxi-
mately 70% by 2050, compared with the 2005 production levels
(FAO, 2011). Approximately 80% of the increased agricultural
production will need to come from yield increases, and higher
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cropping intensities such as increased multiple cropping and/or
shortening of fallow periods.

Such evolutions must cope with climate change (character-
ized by changing rainfall patterns and an increasing number of
extreme weather events) and its consequences (changing distri-
butions of plant and vector-borne diseases, and increased crop
yield variability), more competition for land (increased compe-
tition between food and bioenergy production), and the associ-
ated increased environmental pressures (e.g., overexploitation of
ground water resources, water quality degradation, and soil deg-
radation). As a consequence, in addition to the need to increase
crop production, another major agricultural challenge is the task
of improving the management of natural resources, especially
through the adoption of more environmental-friendly prac-
tices, such as ecological intensification or conservation agricul-
ture. Major agricultural powers such as Europe and Brazil have
launched ambitious programs, for example, the Good Agricultural
Practices (GAP) guidelines and the ABC Program (Brazilian Low
Carbon Agriculture Program), respectively. These programs give
a special role to multifunctional landscapes to establish sustain-
able agriculture. Landscapes must be considered a whole land use
system at the heart of human-nature relationships that need to
be efficiently managed to preserve and restore ecosystem services
(DeFries and Rosenzweig, 2010), and to contribute to sustainable
solutions, especially regarding food security challenges (Verburg
et al,, 2013). In view of these global challenges, there is an urgent
need to better characterize agricultural systems at the regional and
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global scales, with a particular emphasis on the various pathways
toward agricultural intensification. Those systems are the key to
understanding land use sustainability in agricultural territories.

Although everyone agrees on the need to qualify agricultural
systems at the regional scale, few examples exist in the literature.
Leenhardt et al. (2010) reviewed cropping system descriptions and
locations at the regional scale,and concluded that both remain highly
unclear for most world regions. The FAO continental farming sys-
tem maps (Dixon et al., 2001) and the U.S. Agency for International
Development (USAID) Famine Early Warning Systems Network
(FEWS NET) national livelihood maps for Africa (USAID, 2009)
are produced at very broad scales. More detailed, regional maps of
rice areas in southeast Asia (Bridhikitti and Overcamp, 2012) or
sugarcane areas in Brazil (Adami etal., 2012) have recently been pro-
duced using remote sensing data only. But these simple approaches,
based on the dominant crop type with limited consideration of land
management, are insufficient to draw a complete picture of coupled
human-environment systems (Verburg et al., 2009).

So, evolving from traditional remote sensing land cover mapping
to land use system mapping is not straightforward and requires
processing new data, implementing new methods, and, above all,
an enhanced integration between land science research disciplines
(Verburg et al., 2009; Koschke et al., 2013). Vaclavik et al. (2013)
derived a global representation of land use systems using land use
intensity datasets, environmental conditions, and socioeconomic
indicators. Land use intensity was derived from satellite-based land
cover maps and subnational statistics. The authors noted that the
scope of the study was limited, because the quality of the statistical
datasets they used was geographically distributed unevenly world-
wide. Kuemmerle et al. (2013) proposed a review of the current
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input (crop type, cropping frequency, capital, labor intensity, etc.)
and output (yields and carbon stock, etc.) land intensity metrics
that could be provided directly or indirectly by satellite remote
sensing. They concluded that satellite-based approaches are still
experimental in that domain and cannot readily be applied across
large areas. Despite these issues, new opportunities are arising.
The objective of the present study is to give an overview of
remote sensing-based approaches for regional mapping of agri-
cultural systems and to illustrate the diversity of these approaches
through case studies. To do this, we propose and introduce a
general framework, including satellite data and land mapping
approaches, to characterize agricultural systems at different scales.
These approaches are illustrated by three case studies representing
a wide diversity of agricultural systems across the tropical world.
Based on these case studies and a literature review, the opportuni-
ties and challenges for agricultural systems mapping at regional
and global scales are discussed, and further research is proposed.

5.2 Roles of Remote Sensing in the
Assessment of Agricultural Systems

5.2.1 Diversity of the Agricultural
Systems in the World

To our knowledge, the most complete global agricultural map
is the map produced by the FAO and the World Bank (Dixon
et al., 2001), which covers the six main regions of the developing
world. This map represents 72 farming systems (Figure 5.1a) that
were defined according to (1) the available natural resource base
(water, land, climate, altitude, etc.), (2) the dominant pattern of
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Farming system maps of the developing regions of the world (Dixon et al., 2001): (a) the original FAO 72-class map (see Dixon et al.,
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(D)

FIGURE 5.1 (Continued)

Farming system maps of the developing regions of the world (Dixon et al., 2001): (b) the FAO 8-broad categories

(see Table 5.1 for legend). Black dots in (b) correspond to the location of the three case studies.

TABLE 5.1 Broad category of farming systems (Dixon et al., 2001)

Farming System Name

Characteristics

Irrigated farming systems

Wetland rice based
Rainfed farming systems in humid (and subhumid) areas

Rainfed farming systems in steep and highland areas

Rainfed farming systems in dry or cold areas

Mixed large commercial and small holder
Coastal artisanal fishing mixed

Urban based

C00 00000

Dominated by smallholder producers

Dominated by smallholder producers, dependent upon seasonal rains
supplemented by irrigation

Dominated by smallholder producers, characterized by specific dominant crops or
mixed crop-livestock systems

Dominated by smallholder producers, often mixed crop-livestock systems

Dominated by smallholder producers, with mixed crop-livestock and pastoral
systems merging into systems with very low current productivity

Dualistic, across a variety of ecologies and with diverse production patterns
Dominated by smallholder producers, incorporates mixed farming elements

Dominated by smallholder producers, typically focused on horticultural and
livestock production

farm activities and household livelihoods, including relation-
ship to markets, and (3) the intensity of production activities.
These detailed farming systems are grouped into eight broad cat-
egories (Figure 5.1b; Table 5.1). It is interesting to note that seven
out of the eight broad farming systems categories are based on
smallholder producers (less than 2 ha land, according to FAO).

5.2.2 A Conceptual Framework Based
on Land Mapping Issues

Remote sensing-based information can play different roles in
the assessment of agricultural systems. Figure 5.2 illustrates
how satellite images can help derive “land maps” (land cover,
land use, and land use system maps; @ in Figure 5.2) using
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various processing approaches (@ in Figure 5.2). In the case of
agriculture-dominated landscapes, these “land maps” can be
interpreted as “agricultural system” maps (cropland, cropping
system, and farming system; @ in Figure 5.2).

Based on this framework, monitoring and mapping agricul-
tural systems using remote sensing require clearly defined con-
cepts and objects, that is, which “land maps” to monitor which
“agricultural systems”? In the proposed conceptual framework
(Figure 5.2), we tried to build bridges between the land maps
(land cover, land use, and land use system), that can be obtained
with the contribution of remote sensing data, and the agricultural
systems (cropland, cropping system, and farming system, respec-
tively) that are addressed in this chapter. These bridges are based
on a set of definitions and hypotheses that are presented hereafter.
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FIGURE 5.2 Conceptual framework used in this study.

o Land cover addresses the description of the land surface in
terms of soil and vegetation layers, including natural veg-
etation, crops, and human structures (Burley, 1961). Land
use refers to the purpose for which humans exploit the
land cover (Lambin et al., 2006), including land manage-
ment techniques (Verburg et al., 2009). In remote sensing-
derived maps, mixed land use/land cover (LULC) legends
are often used, because concepts concerning land cover
and land use activities are closely related and, in many
cases, can be used interchangeably (Anderson et al., 1976).
Cropping systems are defined, at least, by the dominant
crop type. Crop types, or at least crop groups (e.g., win-
ter and summer crops; Atzberger and Rembold, 2013), are
often represented in these satellite-derived LULC maps.
More recently, information on the intensification mode,
such as the use of irrigation (e.g., Thenkabail et al., 2010) or
the adoption of multiple cropping (e.g., Arvor et al., 2011),
appears in the LULC maps, improving the characteriza-
tion of the cropping systems using remote sensing data.

o Land use system can be defined as a coupled human-
environment system. It describes how land, as an essential
resource, is being used and managed. Remote sensing data
do not record human activities and thus cannot be directly
used for land use system mapping. Photointerpreters
historically used patterns, tones, textures, shapes, and
site associations to derive initial land cover information
into land use information (Anderson et al., 1976). This
approach is consistent with Verburg et al. (2009) who
proposed obtaining land use system maps from land
cover maps supplemented by observations, inferred from
landscape structures. Farming systems, defined by most
experts as a combination of biophysical, socioeconomic,
and human elements of a farm, can be seen as the land use
system version for agriculture.
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To conclude, LULC mapping can be obtained by classifying sat-
ellite images, while land use system mapping needs a larger view
and must be approached on a larger scale (landscape scale).

5.2.3 Processing Approaches

Alarge panel of methods and tools to produce agricultural system
maps from remote sensing data are described in the literature.
The methods can be grouped into three types: radiometric-based
method, landscape approach, and allocation models.

5.2.3.1 Radiometric-Based Methods

Radiometric-based methods are largely used for cropland and
crop type mapping. Most of the publications report pixel or
object-based classifications, and photointerpretation methods.
Examples are discussed in Chapter 4, and this topic will not be
further discussed in this chapter.

Beyond crop type, many examples concerning remote sens-
ing and cropping practices are found in the literature. Most
of the methods are based on statistical relationships between
surface variables and image variables (reflectance, spectral
index, texture index, etc.), while others use signal-processing
techniques. The examples listed in Table 5.2 show that there
is a strong link between the type of cropping practice and the
sensor. High-resolution image primarily identifies intercrop-
ping and mixed-cropping, and agroforestry composition and
structure. High image acquisition frequency usually helps to
identify double cropping practices, crop types or groups of crop
types, and sowing/harvest dates, while spectral richness is used
to distinguish cultivars. Irrigation, crop residues, and tillage
practices are mainly obtained through multispectral image
analyses conducted at different scales depending on the struc-
ture of the fields.
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TABLE 5.2 Literature Examples of Use of Remote Sensing for Mapping Cropping Practices

Cropping Practice Crop (Sensor) Example of Studies
Crop variety Sugarcane (Hyperion) Galvao et al. (2005)

Sugarcane (Landsat) Fortes and Dematte (2006)
Double cropping Soybean and others (MODIS) Arvor etal. (2011)

Harvest date

Sowing date

Harvest mode

Irrigation

Crop residue

Tillage

Row orientation and width

Cereals (MODIS) Qiu et al. (2014)
Sugarcane (SPOT) Lebourgeois et al. (2007)
Sugarcane (SPOT) El Hajj et al. (2009)
Soybean (MODIS) Maatoug et al. (2012)

Sugarcane (Landsat, DMC)
Sugarcane (Landsat, CBERS)
Various crops (MODIS)
Wheat (FORMOSAT, ASAR)
Review

Various crops (Landsat)
Review

Wheat (FORMOSAT, ASAR)
Various crops (Landsat)
Vineyard (aerial photos)
Olive groves (QuickBird)
Orchards (Ikonos)

Aguiar et al. (2011)
Goltz et al. (2009)
Gumma et al. (2011)
Hadria et al. (2009)
Ozdogan et al. (2010)
Pacheco et al. (2006)
Zhang et al. (2011)
Hadria et al. (2009)
Sullivan et al. (2008)
Delenne et al. (2008)
Amoruso et al. (2009)
Aksoy et al. (2012)
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Vineyard, cereals (aerial photos)

Lefebvre et al. (2011)

Note: References in bold are review papers.

A detailed analysis of the publications on cropping practices
and remote sensing shows that, even if the proportion of publi-
cations addressing this issue is increasing (4% of the total remote
sensing and agriculture publications in the 1990s, and 9% cur-
rently), these publications primarily concern only one cropping
practice at a time, and the analyses are generally conducted at
local scale. Literature on the cropping system itself is still limited
in terms of the number of publications (2% of the total published
remote sensing and agriculture papers), and does not progress
significantly.

5.2.3.2 Landscape Approach

Cropland and crop type maps can be viewed as a mosaic of
patches, where the patches are the landscape elements. In that
case, landscape metrics can be used to characterize the agri-
cultural system. The term “landscape metrics” refers to indi-
ces developed for categorical map patterns (McGarigal, 2014).
Landscape metrics exist at the patch, class (patch type), and
landscape levels. At the class and landscape levels, some of the
metrics quantify the landscape composition (e.g., the relative
abundance of crop patch types), while others quantify the land-
scape configuration (e.g., the position, connectivity, or the edge-
to-area ratios of the cropland).

Although very few articles use landscape metrics to char-
acterize agrosystems compared to ecosystems (see review by
Uuemaa et al., 2013), some of them use crop class metrics as an
input for ecological studies (e.g., Pocas et al., 2011), and a few
use landscape research for agricultural perspectives. The aim of
these latter is generally to evaluate different policies on agricul-
tural landscapes or to assess the sustainability of the agricultural
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systems. For example, Plexida et al. (2014) discussed the role of
modern cultivation methods in the simplification of landscape
patterns in central Greece. They showed that the landscape in
the agricultural lowlands was characterized by connectedness
(high values of patch cohesion index) and simple geometries
(low values of fractal dimension index), whereas the landscape
pattern of the pastoral uplands was found to be highly diverse
(high Shannon diversity index). Panigrahy et al. (2005) and
Panigrahy et al. (2011) used landscape composition metrics to
assess and evaluate the efficiency and sustainability of the agri-
cultural systems in India. They proposed and calculated three
indices, namely, the multiple cropping index (MCI), area diver-
sity index (ADI), and cultivated land utilization index (CLUI),
using three satellite-derived seasonal land cover maps. The MCI
measures the cropping intensity as the number of crops grown
temporally in a particular area over a period of 1 year, the ADI
measures the multiplicity of crops or farm products planted in
a single year, and the CLUI measures how efficient the available
land area has been used over the year (see Panigrahy et al., 2005
for formula). The indices were categorized as high, medium, and
low to evaluate the cropping system performance in each of the
districts.

An example of landscape metrics based on the spatial con-
figuration of the classes is given in Colson et al. (2011). They
used eight landscape metrics to quantify and investigate the
spatial patterns of cattle pasture and cropland throughout the
states of Pard, Mato Grosso, Rondénia, and Amazonas, and
concluded that these metrics showed evidence of a possible
measure for discerning the patterns of agriculture attached to
a certain state.
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5.2.3.3 Spatial Allocation Modeling

Global cropping system maps (crop type and irrigation) are
emerging at coarse resolution (see Anderson et al. (2014) for the
description and comparison of these products). They are based on
statistical data downscaled at the administrative level into grid-
cell specific values. An illustrative example of spatial allocation is
the spatial allocation model (SPAM), developed at the mesoscale
by You and Wood (2006) and You et al. (2009), to spatially disag-
gregate crop production data (acreage and yield) within geopolit-
ical units (e.g., countries or subnational provinces and districts),
using a cross-entropy approach. The pixel-scale allocations are
performed by compiling and merging relevant spatially explicit
data, including production statistics, satellite-derived land cover
data, biophysical crop suitability assessments, and population
density. In such models, remote sensing is mainly used to locate
cropland at regional scales as an input for the allocation models
(to spatially disaggregate statistics data for instance), while the
crop-determining factors are generally established by expertise
or statistical analyses (Leenhardt et al., 2010). Recent examples
showed that satellite images can also be used to understand and
model the environmental drivers of cropping systems. For exam-
ple, Jasinski et al. (2005) used a multiple logistic regression to
model the role of environmental variables (vegetation type, soil
type, altitude, slope, and rainfall) in the southeastern Amazonian
cropland dynamics previously assessed using remote sensing
data. More recently, Arvor et al. (2014) showed that the adoption
of intensive double cropping practices was related to the spatial
variability of rainfall regimes and favored by a high annual rain-
fall, a long rainy season, and a low variability of the onset date.
However, a major drawback of the spatial allocation models
approach is that it is not always possible to obtain determinis-
tic relations between easily accessible factors (climate, soil, etc.)
and cropping system elements, especially in “intensive systems”
compared to “traditional systems,” which are more dependent on
environmental factors (Figure 5.3). According to Jouve (2006), in

[ )

Land use and practices

(anthropogenic factors)

Intensive
Traditional systems
systems

Natural resources
(biotic and abiotic factors)

[ ]

FIGURE 5.3 Relative weights of the determining factors in the tradi-
tional and intensive agricultural systems.
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southern countries where traditional systems are important and
make little use of modern means of production (mechanization,
fertilization), the farmer’s capacity to artificialize their environ-
ment and get rid of the environmental constraints is limited. In
those cases, the relationship between the cropping systems and
environmental conditions is strong, and the spatial distribution
of the cropping systems reflects more the environmental differ-
ences than the farming differences. Additionally, the relation-
ship can be identified at the rural community scale. Inversely,
in intensive systems, the determining factors approach is more
difficult to set up and the spatial allocation models can be more
difficult to implement.

5.3 Examples of Agricultural System
Studies Using Remote Sensing

Three case studies—agroforestry in Bali (Indonesia), double
cropping in the southeastern Amazon (Brazil), and traditional
rain-fed agriculture in Mali—were selected to illustrate the
use of remote sensing for mapping agricultural systems. Two
of them, Bali and Mali, are characterized by smallholder agri-
culture, while the Brazilian case is characterized by commer-
cial agriculture (Figure 5.1b). These case studies are far from
representing all of the possible uses of remote sensing, but they
illustrate a diversity of technical and scientific approaches, while
addressing some worldwide agricultural issues (geographic cer-
tification, agricultural system sustainability, food security, etc.).

5.3.1 Presentation of the Case Studies
5.3.1.1 Agro-Forestry in Bali

In tropical regions, small stakeholders’ agroforestry is the most
common traditional cropping system. It associates different
crops inside a single plot, with multifunctional trees to produce
fruits, cash-crops, wood, medicines, shading, or to conserve bio-
diversity in various proportions and organizations. This system
allows a relative sustainability in food diversification, but not
in incomes, which depends on the trading market fluctuations.
Agroforestry is promoted by agronomists for environmental
and livelihood quality, and is questioned by socioeconomists
because of the cash-crop vulnerability. This emphasizes the need
for evaluating the actual environmental, social, and economic
benefits of such cropping systems. Remote sensing studies
now propose new tools to objectively characterize the agrofor-
estry systems at the intraplot scale (Pefia-Barragan et al., 2004;
Mougel and Lelong, 2008; Aksoy et al., 2012; Ursani et al., 2012;
Coltri et al., 2013; Guillen-Climent et al., 2014), at the farm level
(distribution among neighbors), and to replace it in the land-
scape matrix (Lei et al., 2012; Wistfelt et al., 2012). This allows
associating different environmental, agricultural, and socio-
economic conditions in integrated analyses to understand the
drivers of agricultural choices and resilience (Fox et al., 1994;
Gobin et al., 2001; Kunwar, 2010), and the level of productivity
and quality of the production.
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FIGURE 5.4 Map products in Central Bali: (a) main cropping systems map derived from QuickBird image visual interpretation, (b) agrosystems
map derived from spatial analysis of the cropping system map, (c) location map of 40 sampled coffees and quality notation rate for each type of
aromatic value, and (d) digital elevation model derived from topographic maps.

The case study presented in this chapter is situated in Bali,
an active volcanic island of Indonesia. Coffee is cropped almost
everywhere in the central highlands. The study focused on a
220 km? area located in Kintamani county, which is famous for
its coffee crops. The landscape is shaped by the local topography,
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which ranges from 300 to 1800 m (Figure 5.4). This work aims
at producing a cropping system map in order to understand
coffee quality drivers, and helps in delimitating an area labeled
by the distinction of the protected geographical indication on

Arabica coffee.
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5.3.1.2 Double Cropping in Southeastern Amazon

For nearly 40 years, the Brazilian southeastern Amazon expe-
riences severe agricultural dynamics. Cropland expanded
dramatically to support commercial cultivation of important
commodities such as soybean, maize, and cotton. The severity of
the agricultural dynamics explains the abundance of large-scale
monitoring studies using remote sensing. To date, most remote
sensing-based studies were carried out with MODIS data for
three reasons: (1) monitoring such a large area requires a huge
number of high remote sensing data to be processed, (2) high
cloud cover rates during the rainy season prevent the acquisi-
tion of good-quality, high-resolution images during the crop-
ping period, and (3) the mean field area is about 180 ha so that
even 250 m medium-resolution images are valid for crop type
mapping. Consequently, most MODIS-based approaches to date
were based on the interpretation of vegetation index (NDVT or
EVI) time series. Such time series have long been successfully
used to estimate cropland areas, thus evidencing the rapid agri-
cultural expansion during the 2000s (Anderson et al., 2003;
Morton et al., 2006).

In Mato Grosso state, Arvor et al. (2012) estimated that net
cropped areas increased by 43% between 2000 and 2007, reach-
ing an area of 55,988 km?. In the same time, farmers adopted
new agricultural management practices to intensify the produc-
tion process. The cultivation of two successive crops, such as
soybean and cotton, benefits from a long rainy season (Arvor
et al,, 2014) and regular rainfall from mid-September to late
May. In this context, the Mato Grosso case study aims at pro-
ducing a cropping system map showing the main crop type and
the intensification practices in relation to the rainfall, and a
land use system map to analyze the agricultural transition in
Mato Grosso.

5.3.1.3 Rain-Fed Agriculture in Mali

In the Sudano-Sahelian region, farming is the main source of
income for many people, where millet and sorghum are the main
food crops. The vast majority of the population (80%) consists of
subsistence farmers. A few larger farms produce crops for sale
(cash crops), mainly cotton and peanuts. In the Sudano-Sahelian
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zone, the strong dependence on rain-fed agriculture implies
exposure to climate variability in addition to the impacts that
population growth has on food security. Key deliverables of food
security systems for crop monitoring consist of early estimates
of cultivated area and crop-type distribution, cropping prac-
tices, detection of growth anomalies, and crop yield estimates.
Unfortunately, the national statistics can be deficient in insecure
countries, and remote sensing has an important role to play in
delivering information for crop monitoring (e.g., Hutchinson,
1991; Thenkabail et al., 2009). Remote sensing techniques face
numerous challenges for crop mapping in regions where the
cropland is fragmented, made of small, highly heterogeneous
fields covered with many trees. In Mali, Vintrou et al. (2011)
showed that 20%-40% of cropland classification errors using
MODIS is inherent to the structure of the landscape.

Southern Mali case study aims at producing farming system
map (food-producing, intensive, and mixed agricultures) in
support to food security analyses (USAID, 2009). Because local
factors, such as climate, soil, water availability, access to mar-
kets, and fertilizers, influence the agricultural systems, mapping
these systems can help to determine which region and which
population may be vulnerable to different hazards. Additionally,
the cropping system map can be used for spatialized agrome-
teorological modeling and forecasting at regional scales (see
example in Vintrou et al., 2014).

5.3.2 Remote Sensing Data and Methods

The data (remote sensing images, ancillary data) and methods
used to produce agricultural maps are presented in Table 5.3 for
the three case studies.

In Bali, a multispectral QuickBird image at 0.6 m resolution
was photointerpreted to delineate the field limits and identify
six cropping systems based on the field survey: citrus monocrop,
coffee monocrop without shade, coffee associated with light
shadow (citrus), coffee under dense shadow (erythrina, albizias,
leucaenas, etc.), clove crops associated or not with coffee, and
food-crops. An agrosystem map was then obtained by apply-
ing a majority filter (1 ha square corresponding to a dozen of

TABLE5.3 Typology, Data, and Methods Used to Produce Agricultural System Maps for the Three Case Studies

Case Study Agriculture Satellite Data
(Area) Type (Acquisition Year) Other Data Method Map Products
Bali island Smallholder  QuickBird bundle DEM Photointerpretation Cropping system
(220 km?) agriculture (2003) 760 ground survey points Spatial analysis (majority filter; Farming system
1 ha window) (agrosystem)
Mato Grosso Commercial MOD13Q1 EVI Pixel-based supervised classification ~ Crop type
(906,000 km?) agriculture product (2005-2008) Landscape analysis (land cover Cropping system
and land use classes metrics; Farming system
770 km? window)
Southern Mali Smallholder =~ MOD13Q1 NDVI 100 villages field survey (2001-2004)  Texture analysis (MODIS NDVI) Farming system
(165 790 km?) agriculture product (2007) Cropland map at 250 m resolution. Landscape analysis (land cover
MCD12Q2 phenology  Climate type, DEM and population classes metrics; 100 km? window)

product (2007)

4000 villages location

Random forest classification
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crop plots) on the cropping system map, and was defined by its
upper vegetation layer in four classes: citrus, clove, dense shad-
ing trees, and food crops. The term agrosystem is preferred here
to the term farming system whose definition goes beyond what is
studied in this case.

In Mato Grosso, MOD13Q1 EVI products acquired dur-
ing 2005-2008 period were used to produce a cropping sys-
tem map showing the main crop types (soybean, corn, and
cotton), and their intensification practices (monocropping
and double cropping). Arvor et al. (2013a) used a landscape
approach to better characterize the land use system across the
state. The strategy consisted of applying a regular grid where
each cell represented an approximation of a district territory
(a district was considered as an administrative sublevel, below
the municipality level). There were 1,175 districts in Mato
Grosso, a total of 906,000 km?, and the grid cell was fixed at
27.75 x 27.75 km?, approximating an area of 770 km?. A set of
landscape indices was then computed for each cell based on
MODIS-based land use classifications and deforestation maps.
Those indices referred to the proportion of wilderness areas,
the proportion of cropped areas in deforested areas, and the
proportion of intensive practices observed in cropped areas.
Some thresholds were applied to identify different land use
systems, such as presettlement area, noncropland occupation,
cropland occupation, noncropland consolidation, cropland
consolidation, noncropland intensifying, cropland intensify-
ing, and intensive cropland.

In Mali, the field size and MODIS spatial resolution prevent
from producing a crop type map. We then mapped directly the
farming system map using a 3-class typology. This typology
was defined at the village scale, and based on a field survey car-
ried out in 100 villages in southern Mali (Soumare, 2008). The
typology was created using expert knowledge, and considering
the main crop types cultivated in the village and the intensi-
fication of production (use of fertilizers, equipment, livestock,
etc.): the “food-producing agriculture” class groups the mil-
let- and sorghum-based agricultural systems, the “intensive
agriculture” class includes farms with maize and cotton, and
the “mixed agriculture” class encompasses farms where both
coarse grain (sorghum) and a cash crop (cotton) are found
(Vintrou et al., 2012). A random forest algorithm (Breiman,
2001) was trained on the 100-village dataset, and on a set of
30 variables composed of 4 spectral metrics (annual maxi-
mum, annual mean, annual amplitude, and seasonal mean
from May through November; MOD13Q1 product), 12 texture
indices (maximum and mean of the variance and skewness
indices, calculated with a pattern size of 7 MODIS pixels for
March, June, and September; MODI13Q1 product), 7 phenol-
ogy metrics (MCD12Q2 product), 3 spatial metrics (the frac-
tion of cropped area, number of cultivated patches, and the
mean cultivated patch size inside a 10 x 10 km? area centered
on the village; MCD12Q1 product), 3 environmental indices
(climate type, maximum, and mean of elevation), and 1 popula-
tion index. All of the indices were extracted for cropland only.
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The random forest model trained on the 100-village ground
survey was applied to the 4000 villages in south Mali.

5.3.3 Results
5.3.3.1 Agroforestry in Bali

In Bali, the cropping system map is presented in Figure 5.4a.
Photointerpretation performed on the ground-truth plots
showed that confusion between citrus and coffee under citrus is
less than 10%, whereas other class errors lie below 2%. The anal-
ysis of the distribution of each cropping system showed that the
most frequent are the citrus-based crops (18%) and those shaded
by large trees (15%), followed by the food-crops (12%), and the
associated coffee and citrus crops (10%). The mean size of a plot
is approximately 0.7 ha, but the clove plots are generally bigger
(1.2 ha) and the food-crops are smaller (0.3 ha).

The agrosystem map is presented in Figure 5.4b. The citrus-
based agrosystem is largely dominant. Coffee, as being cropped
below the dominant trees, does not appear in the map legend.

At first glance, the cropping system and agrosystem spatial
distribution looks complex because of a number of factors, such
as a north/south contrast, altitude, and local geographic char-
acteristics, such as river network density, slope, exposition to
wind, and the presence of lava-flows and forests. The cropping
and agrosystem maps were then used to analyze the distribu-
tion of each agricultural system, in relation to altimetry because
of the strong relationship between coffee quality and altitude
(Florinsky, 1998; Wintgens, 2004; Montagnon, 2006). The area
covered by all of the different cropping systems is plotted for each
100 m-altitude bin, between 1000 and 1800 m in Figure 5.5a,
while Figure 5.5b represents the altitude distribution for the area
covered by the coffee-based cropping systems alone. The two
principal coffee-based cropping systems were found to be those
dominated by citrus or dense shading trees. The former is most
common at high altitudes (64% from 1200 to 1400 m), while
the latter dominates coffee crops at lower altitudes (68% below
1100 m). The third coffee-based cropping system, dominated by
clove shading, covers a small acreage and is spatially restricted.
It is present at the lowest altitudes, mainly below 1100 m (68%)
and 1200 m (28%). The unshaded coffee monoculture is not typi-
cal in this territory.

The coffee samples location and sensorial quality rates were
plotted in both the cropping and agrosystem maps to under-
stand the spatial distribution of the coffee characteristics at the
two scales (Figure 5.4c). A landscape analysis provided spatial
and topographic distribution information about the three coffee
quality classes, and helped to identify the relationships between
quality of coffee beans and the local and regional environments.
This integrated analysis suggests that good coffee is only found
in the citrus-dominated agrosystem, even if it is not cultivated
in association with citrus at the plot level, and cropped above
1200 m. This area was validated by both the coffee farmers and
the traders, and accepted by the Indonesian government as the
official limits of the labeled territory.
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FIGURE5.5 Areal altimetry distribution per bin of 100 m between 1000 and 1800 m in Kintamani territory in Bali: (a) per cropping system class,
and (b) per coffee-based cropping system class (Arabica monocrop is not displayed, because it covers less than 2 ha).

5.3.3.2 Double Cropping in Southeastern Amazon

Time series of vegetation indices were used to detect crop types
and cropping practices using an analysis of agricultural cal-
endars. The producers undertake two successive harvests per
rainy season: they cultivate soybean from late September to
early February, and then cultivate maize or cotton until June or
July. The double cropping systems show very different patterns
in their vegetation index time series and can be easily discrimi-
nated (Arvor et al., 2011). The user’s and producer’s accuracies
of the cropland were higher than 95%. Main crop types were
also correctly detected (Figure 5.6) with good kappa index (0.68)
and overall accuracy (74%). Once the double cropping classes
are grouped (i.e., the “soybean + corn” and “soybean + cot-
ton” classes; Figure 5.7a), the user’s and producer’s accuracies
increased up to 95% and 86%, respectively. The main uncertain-
ties to be considered in these maps refer to sorghum or millet that
is sometimes sown after the soybean harvest (to prevent soil ero-
sion from intense rainfall) and can thus be confused with maize.
Such issue highlights a main limitation of EVI time series—based
classification (different crops with similar agricultural calendars
may be confused) that could be overcome with a better spa-
tial and radiometric resolution (since only blue, red, and near-
infrared bands are used to compute the EVI used in that work).
Beyond such limitations, those results are in agreement
with results obtained by different authors (Galford et al., 2008;
Arvor et al., 2011; Brown et al., 2013) who successfully mapped
double cropping systems in Mato Grosso and confirmed the
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generalization of such intensive practices. Arvor et al. (2012)
estimated that the proportion of croplands permanently covered
by double cropping vegetation during the rainy season increased
from 35% to 62% between 2000 and 2007. This trend raises a
major issue regarding the sustainability of cropland systems in
Mato Grosso. Fu et al. (2013) proved that the length of the rainy
season is decreasing in the southern Amazon, which leads to the
question of whether the adoption of double cropping practices
would still be viable in the changing climate. Even if intensive
practices are a relevant strategy to contain deforestation, it raises
new issues regarding agricultural sustainability in that region.
The land use system map shows a good overview of the soybean
agricultural frontier in the southeastern Amazon (Figure 5.7b). It
demonstrates the efficiency of public policies to simultaneously
contain deforestation (through the creation of protected areas)
and encourage crop expansion (through the construction of
important infrastructures, such as the Trans-Amazonian roads).

5.3.3.3 Rain-Fed Agriculture in Mali

The random forest model classified the agricultural systems
with an estimated overall accuracy of 60% calculated from out-
of-bag observations (Figure 5.8). The “food-producing agricul-
ture” class was dominant in the Sudano-Sahelian part of the
area. Sorghum and millet are well adapted to this zone, because
they are resistant, and have a short growth cycle of about
90 days. In the traditional cotton basin, the dominant system
is agroforestry/pastoral agriculture mainly with rain-fed crops.
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FIGURE 5.6 Maps of the three main crop types (soybean, corn, and cotton) for the 2006-2007 harvest for the four main agricultural regions in
Mato Grosso: (a) Parecis plateau, (b) along the BR163 highway, (c) southeastern region, (d) eastern region (Arvor et al., 2011). Maps were obtained
through supervised classification of MODIS vegetation index (EVI) time series.
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FIGURE 5.7 Maps of (a) cropping systems and (b) land use systems obtained from MODIS vegetation index time series and landscape analysis
for the 2006-2007 harvest. (From Arvor, D. et al., Appl. Geog., 32, 702, 2012; Arvor, D. et al., GeoJournal, 78, 833, 2013a.)
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FIGURE 5.8 Village-based farming systems in South Mali predicted by the random forest model (Vintrou et al., 2012). The model was based on
100 village samples, and 30 MODIS-derived and socioenvironmental metrics calculated on agricultural areas.

Agriculture is focused on cotton, the main cash crop, and cor-
responds to the class “intensive agriculture”. The Sudanian zone
part of the area is also a cotton-based system zone, but is more
diversified, with the simultaneous presence of “intensive agricul-
ture” and “mixed agriculture” systems. The length of the rainy
season in this region makes it possible to grow a wide range of
species. Farmers usually cultivate different species and varieties
to ensure a certain degree of production stability.

Class errors ranged from 30% to 50%. Globally, producer’s and
user’s accuracies were reasonably balanced for each class (less than
10% difference): the village agricultural systems were estimated

correctly. Misclassifications can be explained by three main fac-
tors: (1) the small size of the crop patches compared to the 250 m
spatial resolution of MODIS sensor, and the natural and crop veg-
etation seasonal synchronization due to a short rainy season, (2)
the size of the training dataset (100 villages), and (3) the definition
of the classes (a rough proportion of different crop types, and crop
intensification variables) that is expert dependent and includes
variables that cannot be directly related to landscape features.

The analysis of the contribution of the different metrics
(Figure 5.9) shows the role of the texture of the MODIS images in
the classification of the cropland, even if the fields are not visible
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FIGURES5.9  Accuracy of class and overall classification of random forest run with different sets of metrics (NDVT, texture, and phenology met-
rics). The dotted line corresponds to the overall accuracy obtained with all the metrics.
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at the MODIS resolution. The field crop information is hidden in
these broad images, but can be identified with landscape metrics,
such asimage texture indices. This indirect analysis was confirmed
by Bisquert et al. (2015) who showed that the texture of broad-scale
images is an important variable for land stratification in relation to
land cover, even if the land cover units are not detectable.

5.4 Discussion

While remote sensing approaches have proven to be efficient for
cropland (land cover) mapping, they still remain ill-suited for crop-
ping system (land use) monitoring at the regional and global scales
because of their inability to distinguish crop types and the associ-
ated practices (Monfreda et al., 2008). In this section, we consider
the main present limitations of remote sensing studies for regional
mapping of cropping systems, and introduce some emerging
research areas to overcome such limitations. We then discuss the
opportunity to work on an extended landscape agronomy approach.

5.4.1 Difficulties of Mapping the Cropping
Systems at Regional Scales

Remote sensing-based land use maps suffer from uncertainties
related to the spatial and temporal resolutions of the observing
system, and to the landscape structure.

The spatial resolution issue is particularly true for smallhold-
ers agriculture (Figure 5.1b), for which remote sensing data are
unable to resolve individual fields (Ozdogan, 2010). Rather than a
sensor resolution issue, it should actually be considered as a scale
issue to be addressed through the concept of H-resolution and
L-resolution (Strahler et al., 1986; Blaschke et al., 2014). H- and
L-resolution terms are different from high and low spatial reso-
lution images as generally mentioned in remote sensing studies.
In the latter, the resolution refers to the sensor spatial resolution
independently of the geographic objects concerned. H-resolution
model is valid when scene objects are much larger than the image
spatial resolution; thus, several pixels may represent a single object
(afield, atree, etc.). Meanwhile, L-resolution model is when objects
are much smaller than the image spatial resolution. An image may
contain both H- and L-resolution information (Hay et al., 2001).
Marceau et al. (1994) place the limit between H- and L- when the
dimension of the resolution cells is ¥2-% the size of the objects of
interest in the scene. This threshold should be a guide for assessing
whether the analysis should be performed at H- or L-resolution.

 For an H-resolution situation—agricultural fields in Mato
Grosso using MODIS sensor—a cropping system can be
assessed directly by characterizing crop types and their
associated cropping practices using inner field informa-
tion (derived from relatively pure pixels).

 For an L-resolution situation—cropped trees in Bali using
QuickBird sensor or cropped fields in Mali using MODIS
sensor—pixels correspond to a mixture of different crop
(or trees) types and other landscape elements (natural veg-
etation, water bodies, buildings, roads, etc.).
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The temporal resolution issue in crop mapping is highly
dependent on the environmental and agronomic conditions.
For example, in tropical dry areas where rainfall is the main
driver of vegetation growth (e.g., the Sahelian part of Mali),
natural and cultivated vegetation are difficult to separate
using phenology. In equatorial areas (e.g., Bali) characterized
by a low seasonality, it is difficult to discriminate crops due
to fluctuating crop calendars. However, even in regions with
contrasted seasons (e.g., Mato-Grosso), different cropping sys-
tems with similar agricultural calendars cannot be separated
using MODIS EVI time series. A better temporal resolution
(less than 16 days) would surely improve crop discrimination
in most of the agricultural systems.

The quality of the land maps produced by image pixel-based
classification is usually evaluated using a set of indices (pro-
ducer’s accuracy, user’s accuracy, overall accuracy, and kappa
index), which are commonly calculated from an error matrix (or
confusion matrix; see Congalton and Green, 1999). While such
accuracy metrics have been widely accepted by the scientific
community for a long time, they have also been regularly criti-
cized (Pontius and Millones, 2011). These metrics tell nothing
about the source of error that can be linked to the performance of
the classification algorithm, or to the resolution of the remotely
sensed data (Boschetti et al., 2004). For instance, Vintrou et al.
(2011) using the Pareto boundary method showed that in Mali,
20%-40% of cropland classification errors using MODIS data is
inherent to the landscape structure. In this context, new process-
ing and evaluation approaches are required to better consider
landscape properties in order to overcome these limitations and
allow an efficient monitoring of farming systems at regional scale.

5.4.2 Emerging Remote Sensing Research

There was a challenge in land cover mapping in the 2000s, and
today, there is a challenge in land use system mapping. It is an
emerging area for the remote sensing community that needs
to focus on land use and land function (Verburg et al., 2009).
It requires developing new data, methods, and a further integra-
tion of the disciplines involved in land science research. These
developments are presented hereafter according to the resolu-
tion situation (the direct and indirect cases).

When the landscape elements are larger than the pixel size
(H-resolution situation), many examples in the literature showed
that cropping practices can be directly assessed (Table 5.2).
Except for rare examples of mapping crop type and cropping
intensity in regions where the plot size is compatible with broad
scale sensors (Mato Grosso case study), the research was mainly
developed atlocal scale, and for one practice at a time. To further
characterize regional scale cropping practices, research needs to
focus on developing automatic or semiautomatic crop type clas-
sification procedures, and on the combination of different sen-
sors to catch different practices in the same area. Another way
to work at broader scales is to properly translate local findings
to larger regions by using case study results from specific land
functions (Verburg et al., 2009). This approach needs to define
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the spatial extent and function for the local studies representa-
tive of a region. Land stratification into homogeneous landscape
units could be a way to reach this objective. Bisquert et al. (2015)
showed that processing broad-scale remote sensing data with
spectral and textural segmentation techniques permits to delin-
eate radiometrically homogeneous landscapes that were consis-
tent in terms of land cover.

When the landscape elements are smaller than the pixel size
(L-resolution situation), research needs to focus on the role of
landscape as an indirect mean to characterize the cropping sys-
tems. Research on landscape metrics for agricultural systems
characterization must be pursued and enhanced. Furthermore,
given the multidimensional nature of agricultural systems, focus-
ing on multiple metrics within a system perspective is needed
(Kuemmerle et al., 2013). As the current approaches based on the
remote sensing data are not sufficient to develop a comprehensive
understanding of situational changes for multiple land functions,
remote sensing—based metrics should be completed by other types
of metrics, such as socioeconomic descriptors (demography, eth-
nic spatialized data, etc.). To merge heterogeneous information,
new data-processing tools, such as fuzzy logic and data-mining
tools (Korting et al., 2013; Vintrou et al., 2013), must be tested to
characterize and map agricultural systems and processes.

To implement both approaches (direct and indirect), the scien-
tific community should benefit from recent promising advances
in remote sensing such as geographic object-based image analy-
sis (GEOBIA) and ontologies. GEOBIA is based on the hypoth-
esis that partitioning an image into objects is related to the way
humans conceptually organize the landscape to comprehend it
(Hay and Castilla, 2008). It is actually based on two main com-
ponents. First, a segmentation delineates regions (objects) of the
image that have common attributes. Second, the approach incor-
porates the user (expert) knowledge in the image-processing
operation to produce reliable maps. However, to date, GEOBIA is
still limited by important issues related to product evaluation and
knowledge management. Indeed, it is still unclear how to assess
a segmentation quality (actually considered as an ill-posed prob-
lem), even if Clinton et al. (2010) proposed interesting metrics to
assess GEOBIA segmentation goodness through vector-based
measures. Although the integration of knowledge expertise in the
image interpretation process is a main strength of GEOBIA, it can
also be considered as a main limitation as long as two experts do
not share a consensual knowledge (Belgiu et al., 2014). In such
a context, it is likely that knowledge representation techniques
such as ontologies can play a pivotal role (Arvor et al., 2013b).
This point is especially meaningful in the case of agricultural
system mapping where expert knowledge is crucial and often
difficult to formalize. In case of land cover products, Comber
et al. (2005) investigated the semantic and ontological meanings
of land cover classes and concluded that current paradigms for
reporting data quality do not adequately communicate the pro-
ducer’s knowledge. In case of land use and land use system prod-
ucts, the ontological meaning of the classes is even more difficult
to formalize. For example, agricultural practices such as double
cropping or no-tillage have been studied in various regions of the
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world although they might correspond to different practices on
the ground (different types of crop, different levels of soil manage-
ment). In conclusion, ontologies might play an important role to
allow the comparison of complex and heterogeneous land maps.

5.4.3 Toward an Extended Landscape
Agronomy Approach

Landscape and agronomy have long been considered as closely
associated. The first references on the relationship between agri-
cultural landscapes and field management appeared in the 1990s
(e.g., Baudry, 1993; Deffontaines et al., 1995) and addressed how
farming activities produce agricultural landscapes, that is, explain
the spatial distribution of patches (fields and associated boundar-
ies). Since then, very few studies were published on the relation-
ship between agricultural practices and landscape properties
(e.g., Herzog et al., 2006; Galli et al., 2010). Most of the research
focused on the characterization and understanding of landscape
patterns to relate them to ecological issues (e.g., Baudry, 1993;
Herzog et al., 2006). Benoit et al. (2012) argued why and how agron-
omy can contribute to landscape research with a conceptual model.
He suggested a new perspective on farming practices as a crucial
driver in the landscape pattern-agricultural process relationship.
He proposed to develop a new research area called landscape agron-
omy (see also Rizzo et al,, 2013) defined as “the relations among
farming practices, natural resources and landscape patterns, which
are involved in the dynamics of agricultural landscapes.”

We previously mentioned that few landscape studies related
to agricultural issues use remote sensing. Although it is now
widely understood that cropping practices adopted in agricul-
tural systems shape rural landscapes, we believe it is time to
use landscape agronomy and quantitative remote sensing sci-
ences. Applying concepts of landscape ecology to agricultural
systems monitoring and mapping is a major idea. The case stud-
ies from Bali and Mato Grosso illustrate this new trend in land-
scape agronomy research and show that, thanks to its ability to
identify spatial land cover patterns at local (Bali) and regional
(Mato-Grosso) scales, remote sensing has become an essential
source of information to identify agricultural systems.

However, landscape agronomy research will have to face the
same limitations as landscape research. These limitations concern
the numerous sources of error or uncertainty with producing land
cover/land use maps from remote sensing imagery, and on the choice
of thelandscape metrics, which need to show a close association with
the processes to be detected (Newton et al., 2009; Hurni et al., 2013).
Another source of limitation is the simplistic approach of thematic
mapping and the derivation of two-dimensional pattern metrics in
landscape ecology (Newton et al., 2009), while remote sensing data
have the potential to provide a three-dimensional characterization
oflandscapes and their component parts (as seen in Bali study case)
and quantitative surface variables (as seen in Mali study case) that
could be directly integrated in the landscape analysis. We showed
through the Mali study case that the agricultural landscapes could
be indirectly characterized by using a set of satellite-derived metrics
(spectral, textural, and temporal metrics) without going through a
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thematic map of the crop types. This approach is essential when the
ratio between the field size and the sensor spatial resolution is low
(L-resolution)—land use maps cannot be produced, but it can also
be used in H-resolution situation.

5.5 Conclusions

Itis widely recognized that accurate, updated, and spatially explicit
information on cropping systems (and thus cropping intensity) is
urgently needed at the global and regional scales to provide insight
into the direction and magnitude of world agricultural production
in terms of crop type acreage and yield (Lobell and Field, 2007),
and in terms of agricultural impacts on natural environments
(Galford et al., 2008) and water resources (Thenkabail et al., 2010).
Additionally, information is needed locally to monitor resources,
preserve cultural landscapes, and for land certification (Jouve,
2006). This information is not yet included in the regional land
cover datasets, and remote sensing entirely overlooks the actual
practice of agriculture (what is grown, how it is grown, and what
inputs are used) at this scale (Monfreda et al., 2008).

In this chapter, we showed how the current generation of
Earth observation systems can contribute to the characteriza-
tion of agricultural systems locally and regionally, through bibli-
ographic studies and three case studies. We showed that remote
sensing’s ability to describe cropping systems is mainly related
to the ratio between the spatial resolution of the sensor and the
size of the landscape elements. This ratio determines if the fields
(or the trees) can be identified by the observation system, or if
the remote sensing data offers only a view of the cropland in its
environment. This latter case leads to the development of new
tools and methods to indirectly connect the spatial patterns of
the agricultural landscape to the cropping management prac-
tices over large territories.

This bibliographic overview shows that the research com-
munity is now at a turning point where landscape research is
not devoted to ecological issues only, but has started to embrace
agricultural matters also. We believe that landscape agronomy
is on the right track, and that the current and future Earth
observing systems (such as Landsat8 and Sentinel-2) will have
an important role to play in this new research area.
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Acronyms and Definitions

6.1 Introduction

ACCA Automated cropland classification algorithm

ASTER Advanced spaceborne thermal emission and reflec-
tion radiometer

AVHRR  Advanced very-high-resolution radiometer

AWIFS Advanced wide field sensor

CDL The Cropland Data Layer (CDL) was created by the
USDA, National Agricultural Statistics Service

CEOS Committee on Earth Observing Satellites (CEOS)

EDS Euclidean distance similarity

FPA Full pixel areas

GCAD Global cropland area database

GCE Global cropland extent

GCE V1.0 Global cropland extent version 1.0

GDEM ASTER-derived digital elevation data

GEO Group on Earth Observations

GEOSS Global Earth Observation System of Systems

GFSAD Global food security support analysis data

GIMMS  Global Inventory Modeling and Mapping Studies

JERS SAR  Japanese Earth Resources Satellite-1 (JERS-1)

ISDBIA  Ideal Spectra Data Bank on Irrigated Areas

LEDAPS  LandsatEcosystem Disturbance Adaptive Processing
System

MFDC Mega File Data Cube

MODIS Moderate-resolution imaging spectroradiometer

MSAS Modified spectral angle similarity

NASS National Agricultural Statistics Service of USDA

NDVI Normalized difference vegetation index

NOAA National Oceanic and Atmospheric Administration

SAR Synthetic aperture radar

SCS Spectral correlation similarity

SIT Strategic Implementation Team

SMT Spectral matching techniques

SPA Subpixel areas

SPOT Systeme Pour I’Observation de la Terre

SSv Spectral similarity value

USDA United States Department of Agriculture

USGS United States Geological Survey

VGT Vegetation sensor of SPOT satellite

VHRI Very-high-resolution imagery

VHRR Very-high-resolution radiometer
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The precise estimation of the global agricultural cropland—
extents, areas, geographic locations, crop types, cropping inten-
sities, and their watering methods (irrigated or rain-fed; type of
irrigation)—provides a critical scientific basis for the develop-
ment of water and food security policies (Thenkabail et al., 2010,
2011, 2012, Turral et al., 2009). By year 2100, the global human
population is expected to grow to 10.4 billion under median fer-
tility variants or higher under constant or higher fertility vari-
ants (Table 6.1) with over three-quarters living in developing
countries and in regions that already lack the capacity to produce
enough food. With current agricultural practices, the increased
demand for food and nutrition would require about 2 billion
hectares of additional cropland, about twice the equivalent to the
land area of the United States, and lead to significant increases
in greenhouse gas emissions (GHG) associated with agricultural
practices and activities (Tillman et al., 2011). For example, dur-
ing 1960-2010, world population more than doubled from 3 to
7 billion. The nutritional demand of the population also grew
swiftly during this period from an average of about 2000 calories
per day per person in 1960 to nearly 3000 calories per day per
person in 2010. The food demand of increased population along
with increased nutritional demand during this period was met by
the “green revolution,” which more than tripled the food produc-
tion, even though croplands decreased from about 0.43 ha per
capita to 0.26 ha per capita (FAO, 2009; Funk and Brown, 2009).
The increase in food production during the green revolution
was the result of factors such as: (1) expansion of irrigated crop-
lands, which had increased in 2000 from 130 Mha in the 1960s to
between 278 Mha (Siebert et al., 2006) and 467 Mha (Thenkabail
etal., 2009a,b,c), with the larger estimate due to consideration of
cropping intensity; (2) increase in yield and per capita produc-
tion of food (e.g., cereal production from 280 to 380 kg/person
and meat from 22 to 34 kg/person (McIntyre, 2008); (3) new cul-
tivar types (e.g., hybrid varieties of wheat and rice, biotechnol-
ogy); and (4) modern agronomic and crop management practices
(e.g., fertilizers, herbicide, pesticide applications).

Although modern agriculture met the challenge to increase
food production last century, lessons learned from the twenti-
eth century “green revolution” and our current circumstances
impact the likelihood of another such revolution. The intensive
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TABLE 6.1 World Population (Thousands) Under All Variants,
1950-2100

Medium Constant

Fertility High Fertility Low Fertility Fertility
Year Variant Variant Variant Variant
1950 2,529,346 2,529,346 2,529,346 2,529,346
1955 2,763,453 2,763,453 2,763,453 2,763,453
1960 3,023,358 3,023,358 3,023,358 3,023,358
1965 3,331,670 3,331,670 3,331,670 3,331,670
1970 3,685,777 3,685,777 3,685,777 3,685,777
1975 4,061,317 4,061,317 4,061,317 4,061,317
1980 4,437,609 4,437,609 4,437,609 4,437,609
1985 4,846,247 4,846,247 4,846,247 4,846,247
1990 5,290,452 5,290,452 5,290,452 5,290,452
1995 5,713,073 5,713,073 5,713,073 5,713,073
2000 6,115,367 6,115,367 6,115,367 6,115,367
2005 6,512,276 6,512,276 6,512,276 6,512,276
2010 6,916,183 6,916,183 6,916,183 6,916,183
2015 7,324,782 7,392,233 7,256,925 7,353,522
2020 7,716,749 7,893,904 7,539,163 7,809,497
2025 8,083,413 8,398,226 7,768,450 8,273,410
2030 8,424,937 8,881,519 7,969,407 8,750,296
2035 8,743,447 9,359,400 8,135,087 9,255,828
2040 9,038,687 9,847,909 8,255,351 9,806,383
2045 9,308,438 10,352,435 8,323,978 10,413,537
2050 9,550,945 10,868,444 8,341,706 11,089,178
2055 9,766,475 11,388,551 8,314,597 11,852,474
2060 9,957,399 11,911,465 8,248,967 12,729,809
2065 10,127,007 12,442,757 8,149,085 13,752,494
2070 10,277,339 12,989,484 8,016,514 14,953,882
2075 10,305,146 13,101,094 7,986,122 15,218,723
2080 10,332,223 13,213,515 7,954,481 15,492,520
2085 10,358,578 13,326,745 7,921,618 15,775,624
2090 10,384,216 13,440,773 7,887,560 16,068,398
2095 10,409,149 13,555,593 7,852,342 16,371,225
2100 10,433,385 13,671,202 7,815,996 16,684,501

Source: UNDP, Human Development Report 2012: Overcoming Barriers:
Human Mobility and Development, New York, United Nations, 2012.

use of chemicals has adversely impacted the environment in
many regions, leading to salinization and decreasing water qual-
ity and degrading croplands. From 1960 to 2000, worldwide
phosphorous use doubled from 10 million tons (MT) to 20 MT,
pesticide use tripled from near zero to 3 MT, and nitrogen use as
fertilizer increased to a staggering 80 M T from just 10 MT (Foley
et al,, 2007; Khan and Hanjra, 2008). Diversion of croplands to
biofuels is taking water away from food production (Bindraban
et al., 2009), even as the economic, carbon sequestration, envi-
ronmental, and food security impacts of biofuel production are
proving to be a net negative (Gibbs et al., 2008; Lal and Pimentel,
2009; Searchinger et al., 2008). Climate models predict that the
hottest seasons on record will become the norm by the end of the
century in most regions of the world—a prediction that bodes ill
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for feeding the world (Kumar and Singh, 2005). Increasing per
capita meat consumption is increasing agricultural demands
on land and water (Vinnari and Tapio, 2009). Cropland areas
are decreasing in many parts of the world due to urbanization,
industrialization, and salinization (Khan and Hanjra, 2008).
Ecological and environmental imperatives, such as biodiver-
sity conservation and atmospheric carbon sequestration, have
put a cap on the possible expansion of cropland areas to other
lands such as forests and rangelands (Gordon et al., 2009). Crop
yield increases of the green revolution era have now stagnated
(Hossain et al., 2005). Given these factors and limitations, fur-
ther increase in food production through increase in cropland
areas and/or increased allocations of water for croplands is
widely considered unsustainable or simply infeasible.

Clearly, our continued ability to sustain adequate global
food production and achieve future food security in the
twenty-first century is challenged. So, how does the world con-
tinue to meet its food and nutrition needs? Solutions may come
from biotechnology and precision farming. However, develop-
ments in these fields are not currently moving at rates that will
ensure global food security over the next few decades (Foley
et al., 2011). Further, there is a need for careful consideration
of possible adverse effects of biotechnology. We should not be
looking back 30-50 years from now with regrets, like we are
looking back now at many mistakes made during the green
revolution. During the green revolution, the focus was only on
getting more yield per unit area. Little thought was given to
the serious damage done to our natural environments, water
resources, and human health as a result of detrimental factors
such as uncontrolled use of herbicides, pesticides, and nutri-
ents, drastic groundwater mining, and salinization of fertile
soils due to overirrigation. Currently, there are discussions
of a “second green revolution” or even an “evergreen revolu-
tion,” but definitions of what these terms actually mean are still
debated and are evolving (e.g., Monfreda et al., 2008). One of
the biggest issues that has not been given adequate focus is the
use of large quantities of water for food production. Indeed,
an overwhelming proportion (60%-90%) of all human water
use in the World, for example, goes for producing their food
(Falkenmark and Rockstrom, 2006). But such intensive water
use for food production is no longer sustainable due to increas-
ing competition for water in alternative uses (EPW, 2008), such
as urbanization, industrialization, environmental flows, biofu-
els, and recreation. This has brought into sharp focus the need
to grow more food per drop of water (or crop water productiv-
ity or crop per drop) leading to the need for a “blue revolution”
in agriculture (Pennisi, 2008).

A significant part of the solution lies in determining how global
croplands are currently used and how they might be better managed
to optimize the use of resources in food production. This will require
development of an advanced global cropland area database (GCAD)
with an ability to map global croplands and their attributes routinely,
rapidly, consistently, and with sufficient accuracies. This in turn
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requires the creation of a framework of best practices for cropland
mapping and an advanced global geospatial information system on
global croplands. Such a system would need to be consistent across
nations and regions by providing information on issues such as the
composition and location of cropping, cropping intensities (e.g., sin-
gle, double crop), rotations, crop health/vigor, and irrigation status.
Opportunities to establish such a global system can be achieved by
fusing advanced remote sensing data from multiple platforms and
agencies (e.g., http://eros.usgs.gov/ceos/satellites_midresl.shtml;
http://www.ceos-cove.org/index.php) in combination with national
statistics, secondary data (e.g., elevation, slope, soils, temperature,
and precipitation), and the systematic collection of field level obser-
vations. An example of such a system on a regional scale is USDA,
NASS Cropland Data Layer (CDL), which is a raster, georeferenced,
crop-specific land cover data layer with a ground resolution of 30 m
(Johnson and Mueller, 2010). The GCAD will be a major contribu-
tion to Group on Earth Observations (GEO) Global Agricultural
Monitoring Initiative (GLAM), to the overarching vision of GEO
Agriculture and Water Societal Beneficial Areas (GEO Ag. SBAs),
G20 Agriculture Ministers initiatives, and ultimately to the Global
Earth Observation System of Systems (GEOSS). These initiatives
are also supported by the Committee on Earth Observing Satellites
(CEOS) Strategic Implementation Team (SIT).

Within the context of the above facts, the overarching
goal of this chapter is to provide a comprehensive overview
of the state-of-art of global cropland mapping procedures
using remote sensing as characterized and envisioned by
the “Global Food Security Support Analysis Data @ 30 m
(GFSAD30)” project working group team. First, the chapter
will provide an overview of existing cropland maps and their
characteristics along with establishing the gaps in knowl-
edge related to global cropland mapping. Second, definitions
of cropland mapping along with key parameters involved in
cropland mapping based on their importance in food security
analysis, and cropland naming conventions for standardized
cropland mapping using remote sensing will be presented.
Third, existing methods and approaches for cropland mapping
will be discussed. This will include the type of remote sens-
ing data used in cropland mapping and their characteristics
along with discussions on the secondary data, field-plot data,
and cropland mapping algorithms. Fourth, currently existing
global cropland products derived using remote sensing will
be presented and discussed. Fifth, a synthesis of all existing
products leading to a composite global cropland extent ver-
sion 1.0 (GCE V1.0) is presented and discussed. Sixth, a way
forward for advanced global cropland mapping is visualized.

6.2 Global Distribution of Croplands
and Other Land Use and Land
Cover: Baseline for the Year 2000

The first comprehensive global map of croplands was created by
Ramankutty et al. in 1998. A more current version for the year
2000 shows the spatial distribution of global croplands along
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with other land use and land cover classes (Figure 6.1). This
provides a first view of where global croplands are concentrated
and helps us to focus on the appropriate geographic locations
for detailed cropland studies. Water and snow (Class 8 and 9,
respectively) have zero croplands and occupy 44% of the total
terrestrial land surface. Further, forests (Class 6) occupy 17% of
the terrestrial area and deserts (Class 7) an additional 12%. In
these two classes, <5% of the total croplands exist. Therefore,
in order to study croplands systematically and intensively, one
must prioritize mapping in the areas of Classes 1-5 (26% of the
terrestrial area) where >95% of all global croplands exist, with
the first 3 classes (Class 1, 2, and 3) having ~75% and the next 2
~20%. In the future, it is likely some of the noncroplands may
be converted to croplands (e.g., especially in Africa where large
farmlands are introduced in recent years in otherwise over-
whelmingly small-holder dominant farming) or vice versa,
highlighting the need for repeated and systematic global map-
ping of croplands. Segmenting the world into cropland versus
noncropland areas routinely will help us understand and study
these change dynamics better.

6.2.1 Existing Global Cropland Maps:
Remote Sensing and Non-Remote
Sensing Approaches

There are currently six major global cropland maps:
(1) Thenkabail et al. (2009a,b), (2) Ramankutty and Foley
(1998), (3) Goldewijk et al. (2011), (4) Portmann et al. (2010),
(5) Pittman et al. (2010), and (6) Yu et al. (2013). These studies
estimated the total global cropland area to be around 1.5 to 1.7
billion hectares for the year 2000 as a baseline. However, there
are two significant differences in these products: (1) spatial dis-
agreement on where the actual croplands are, and (2) irrigated
to rain-fed cropland proportions and their precise spatial loca-
tions. Globally, cropland areas have increased from around 265
Mha in year 1700 to around 1471 Mha in year 1990, while the
area of pasture has increased approximately sixfold from 524 to
3451 Mha (Foley et al., 2011). Ramankutty and Foley (1998) esti-
mated the cropland and pasture to represent about 36% of the
world’s terrestrial surface (148,940,000 km?), of which, accord-
ing to different studies, roughly 12% is croplands and 24% pas-
ture. Multiple studies (Goldewijk et al., 2011; Portmann et al.,
2010; Ramankutty et al., 2008) integrated agricultural statistics
and census data from the national systems with spatial mapping
technologies involving geographic information systems (GIS) to
derive global cropland maps.

Thenkabail and others (2009a,b, 2011) produced the first remote
sensing-based global irrigated and rain-fed cropland maps and
statistics through multisensor remote sensing data fusion along
with secondary data and in situ data. They further used five domi-
nant crop types (wheat, rice, corn, barley, and soybeans) using par-
cel-based inventory data (Monfreda et al., 2005, 2008; Portmann
etal.,, 2010; Ramankutty et al., 2008) to produce a classification of
global croplands with crop dominance (Thenkabail et al., 2012).
The five crops account for about 60% of the total global cropland
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FIGURE 6.1

areas. The precise spatial location of these crops is only an approx-
imation due to the coarse resolution (approximately 1 km?) and
fractional representation (1%-100% crop in a pixel) of the crop
data in each grid cell of all the maps from which this compos-
ite map is produced (Thenkabail et al., 2012). The existing global
cropland datasets also differ from each other due to inherent
uncertainties in establishing the precise location of croplands, the
watering methods (rain-fed versus irrigated), cropping intensities,
crop types and/or dominance, and crop characteristics (e.g., crop
or water productivity measures such as biomass, yield, and water
use). Improved knowledge of the uncertainties (Congalton and
Green, 2009) in these estimates will lead to a suite of highly accu-
rate spatial data products (Goodchild and Gopal, 1989) in support
of crop modeling, food security analysis, and decision support.

6.3 Key Remote Sensing-Derived
Cropland Products: Global
Food Security

The production of a repeatable global cropland product requires a
standard set of metrics and attributes that can be derived consis-
tently across the diverse cropland regions of the world. Four key
cropland information systems attributes that have been identified
for global food security analysis and that can be readily derived
from remote sensing include (Figure 6.2): (1) cropland extent/areas,
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Global croplands and other land use and land cover: Baseline.

(2) watering methods (e.g., irrigated, supplemental irrigated, and
rain-fed), (3) crop types, and (4) cropping intensities (e.g., single
crop, double crop, and continuous crop). Although not the focus
of this chapter, many other parameters are also derived in local
regions, such as: (5) precise location of crops, (6) cropping calen-
dar, (7) crop health/vigor, (8) flood and drought information, (9)
water use assessments, and (10) yield or productivity (expressed per
unit of land and/or unit of water). Remote sensing is specifically
suited to derive the four key products over large areas using fusion
of advanced remote sensing (e.g., Landsat, Resourcesat, MODIS)
in combination with national statistics, ancillary data (e.g., eleva-
tion, precipitation), and field-plot data. Such a system, at the global
level, will be complex in data handling and processing and requires
coordination between multiple agencies leading to development of
a seamless, scalable, transparent, and repeatable methodology. Asa
result, it is important to have a systematic class labeling convention
as illustrated in Figure 6.3. A standardized class identifying and
labeling process (Figure 6.3) will enable consistent and systematic
labeling of classes, irrespective of analysts. First, the area is sepa-
rated into cropland versus noncropland. Then, within the cropland
class, labeling will involve (Figure 6.3): (1) cropland extent (crop-
land versus noncropland), (2) watering source (e.g., irrigated versus
rain-fed), (3) irrigation source (e.g., surface water, ground water),
(4) crop type or dominance, (5) scale (e.g., large or contiguous,
small or fragmented), and (6) cropping intensity (e.g., single crop,
double crop). The detail at which one maps at each stage and each
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1. Global cropland extent/area
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FIGURE 6.2 Key global cropland area products that will support food security analysis in the twenty-first century.
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parameter would depend on many factors such as resolution of the
imagery, available ground data, and expert knowledge. For exam-
ple, if there is no sufficient knowledge on whether the irrigation is
by surface water or ground water, but it is clear that the area is irri-
gated, one could just map it as irrigated without mapping greater
details on the type of irrigation. But, for every cropland class, one
has the potential to map the details as shown in Figure 6.3.

6.4 Definition of Remote Sensing—
Based Cropland Mapping Products

Key to effective mapping is a precise and clear definition of what
will be mapped. It is the first and primary step, with different
definitions leading to different products. For example, irrigated
areas are defined and understood differently in different appli-
cations and contexts. One can define them as areas that receive
irrigation at least once during their crop growing period.
Alternatively, they can be defined as areas that receive irriga-
tion to meet at least half their crop water requirements during
the growing season. One other definition can be that these are
areas that are irrigated throughout the growing season. In each
of these cases, the extent of irrigated area mapped will vary.
Similarly, croplands can be defined as all agricultural areas irre-
spective of the types of crops grown or they may be limited to
food crops (and not the fodder crops or plantation crops). So, it
is obvious that having a clear understanding of the definitions
of what we map is extremely important for the integrity of the
products developed. We defined cropland products as follows:

o Minimum mapping unit: The minimum mapping unit of a
particular crop is an area of 3 by 3 (0.81 ha) Landsat pixels
identified as having the same crop type.

o Cropland extent: All cultivated plants harvested for food,
feed, and fiber, including plantations (e.g., orchards, vine-
yards, coffee, tea, rubber).

o What is a cropland pixel?: sub-pixel composition is used to
calculate area. This involves multiplying full pixel area (FPA)
with cropland area fraction (CAF). CAF provides what % of
pixel is cropped. So, sub-pixel area/actual area = FPA*CAF

o Irrigated areas: Irrigation is defined as artificial applica-
tion of any amount of water to overcome crop water stress.
Irrigated areas are those areas that are irrigated one or
more times during crop growing season.

o Rain-fed areas: Areas that have no irrigation whatsoever
and are precipitation dependent.

o Cropping intensity: Number of cropping cycles within a
12-month period.

o Crop type: Eight crops (wheat, corn, rice, barley, soybeans,
pulses, cotton, and potatoes), that occupy approx. 70%
global cropland areas are considered. The rest of the crops
are under “others”. However, in particular continents where
other crops like sugarcane or cassava etc. are important,
they will be mapped as well.
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6.5 Data: Remote Sensing and Other
Data for Global Cropland Mapping

Cropland mapping using remote sensing involves multiple types
of data: satellite data with a consistent and useful global repeat
cycle, secondary data, statistical data, and field plot data. When
these data are used in an integrated fashion, the output products
achieve highest possible accuracies (Thenkabail et al., 2009b,c).

6.5.1 Primary Satellite Sensor Data

Cropland mapping will require satellite sensor data across spa-
tial, spectral, radiometric, and temporal resolutions from a wide
array of satellite/sensor platforms (Table 6.2) throughout the
growing season. These satellite sensors are “representative” of
hyperspectral, multispectral, and hyperspatial data. The data
points per hectare (Table 6.2, last column) will indicate the spa-
tial detail of agricultural information gathered. In addition to
satellite-based sensors, it is always valuable to gather ground-
based hand-held spectroradiometer data from hyperspectral
sensors (Thenkabail et al., 2013), and/or imaging spectroscopy
from ground-based, airborne, or space borne sensors for vali-
dation and calibration purposes (Thenkabail et al., 2011). Much
greater details of a wide array of sensors available to gather
data are presented in Chapters 1 and 2 of Remotely Sensed Data
Characterization, Classification, and Accuracies.

6.5.2 Secondary Data

There is a wide array of secondary or ancillary data such as the
ASTER-derived digital elevation data (GDEM), long (50-100
years) records of precipitation and temperature (CRU), digital
maps of soil types, and administrative boundaries. Many sec-
ondary data are known to improve crop classification accuracies
(Thenkabail et al., 2009a,b). The secondary data will also form
core data for the spatial decision support system and final visu-
alization tool in many systems.

6.5.3 Field-Plot Data

Field-plot data (e.g., Figure 6.4) will be used for purposes such
as: (1) class identification and labeling; (2) determining irrigated
area fractions (AFs), and (3) establishing accuracies, errors, and
uncertainties. At each field point (e.g., Figure 6.3), data such as
cropland or noncropland, watering method (irrigated or rain-
fed), crop type, and cropping intensities are recorded along
with GPS locations, digital photographs, and other information
(e.g., yield, soil type) as needed. Field plot data will also help in
gathering an ideal spectral data bank of croplands. One could
use the precise locations and the crop characteristics and gener-
ate coincident remote sensing data characteristics (e.g., MODIS
time-series monthly NDVT).
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TABLE 6.2 Characteristics of Some of the Key Satellite Sensor Data Currently Used in Cropland Mapping

Wavelength Spatial Spectral Temporal Radiometric
Satellite Sensor Range (pm) Resolution (m) Bands (#) (days) (bits) Data Points (per ha)
A. Hyperspectral
EO-1 Hyperion 196 16 16 11.1 points for 30 m pixel
VNIR 0.43-0.93 30 (0.09 ha per pixel)
SWIR 0.93-2.40 30
B. Advanced multispectral
Landsat TM 7/8 16 8
Multispectral
Band 1 0.45-0.52 30 44.4 points for 15 m pixel
Band 2 0.53-0.61 30 11.1 points for 30 m pixel
Band 3 0.63-0.69 30 2.77 points for 60 m pixel
Band 4 0.78-0.90 30 0.69 points for 120 m pixel
Band 5 1.55-1.75 30
Band 6 10.40-12.50 120/60
Band 7 2.09-2.35 30
Panchromatic 0.52-0.90 15
EO-1ALI 10 16 16
Multispectral
Band 1 0.43-0.45 30
Band 2 0.45-0.52 30
Band 3 0.52-0.61 30
Band 4 0.63-0.69 30
Band 5 0.78-0.81 30
Band 6 0.85-0.89 30
Band 7 1.20-1.30 30
Band 8 1.55-1.75 30
Band 9 2.08-2.35 30
Panchromatic 0.48-0.69 10
ASTER 14 16 8
VNIR 15
Band 1 0.52-0.60
Band 2 0.63-0.69
Band 3N/3B 0.76-0.86
SWIR 30
Band 4 1.600-1.700
Band 5 2.145-2.185
Band 6 2.185-2.225
Band 7 2.235-2.285
Band 8 2.295-2.365
Band 9 2.360-2.430
TIR 90 1.23 points for 90 m
Band 10 8.125-8.475
Band 11 8.475-8.825
Band 12 8.925-9.275
Band 13 10.25-10.95
Band 14 10.95-11.65
MODIS
MOD09Q1 250 2 1 12 0.16 points for 250 m
Band 1 0.62-0.67
Band 2 0.84-0.876
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TABLE 6.2 (Continued)
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Characteristics of Some of the Key Satellite Sensor Data Currently Used in Cropland Mapping

Wavelength Spatial Spectral Temporal Radiometric
Satellite Sensor Range (um) Resolution (m) Bands (#) (days) (bits) Data Points (per ha)
MODO09A1 500 7%/36 1 12 0.04 points for 500 m
Band 1 0.62-0.67
Band 2 0.84-0.876
Band 3 0.459-0.479
Band 4 0.545-0.565
Band 5 1.23-1.25
Band 6 1.63-1.65
Band 7 2.11-2.16
C. Hyperspatial
GeoEye-1
Multispectral 1.65 5 <3 11
Band 1 0.45-0.52 59,488 points for 0.41 m
Band 2 0.52-0.60 26,874 points for 0.61 m
Band 3 0.63-0.70 10,000 points for 1 m
Band 4 0.76-0.90 3673 points for 1.65 m
Panchromatic 0.45-0.90 0.41 1679 points for 2.44 m
IKONOS 5 3 11
Multispectral 4
Band 1 0.45-0.52 625 points for 4 m
Band 2 0.51-0.60 400 points for 5 m
Band 3 0.63-0.70 236 points for 6.5 m
Band 4 0.76-0.85 100 points for 10 m
Panchromatic 0.53-0.93 1 44.4 points for 15 m
QuickBird 5 1-6 11
Multispectral 244
Band 1 0.45-0.52
Band 2 0.52-0.60
Band 3 0.63-0.69
Band 4 0.76-0.90
Panchromatic 0.45-0.90 0.61
RapidEye 5-6.5 5 1-6 16
Band 1 0.44-0.51
Band 2 0.52-0.59
Band 3 0.63-0.68
Band 4 0.69-0.73
Band 5 0.76-0.85

@ MODIS has 36 bands, but we considered only the first 7 bands (Mod09A1).

6.5.4 Very-High-Resolution Imagery Data

Very-high-resolution (submeter to 5 m) imagery (VHRI; see
hyperspatial data characteristics in Table 6.2) is widely avail-
able these days from numerous sources. These data can be
used as ground samples in localized areas to classify as well
as verify classification results of the coarser resolution imag-
ery. For example, in Figure 6.5, VHRI tiles identify uncertain-
ties existing in cropland classification of coarser resolution
imagery. VHRI is specifically useful for identifying croplands
versus noncroplands (Figure 6.5). They can also be used for
identifying irrigation based on associated features such as
canals and tanks.
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6.5.5 Data Composition: Mega File
Data Cube (MFDC) Concept

Data preprocessing requires that all the acquired imagery is
harmonized and standardized in known time intervals (e.g.,
monthly, biweekly). For this, the imagery data is either acquired
or converted to at-sensor reflectance (see Chander et al., 2009;
Thenkabail et al., 2004) and then converted to surface reflec-
tance using Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) codes for Landsat (Masek et al., 2006) or similar
codes for other sensors. All data are processed and mosaicked to
required geographic levels (e.g., global, continental). One method
to organize these disparate but colocated datasets is through the
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FIGURE 6.4 Field plot data for cropland studies collected over the globe.

FIGURE 6.5 Very-high-resolution imagery used to resolve uncertainties in cropland mapping of Australia.

use of a MFDC. Numerous secondary datasets are combined in
an MFDC, which is then stratified using image segmentation into
distinct precipitation-elevation-temperature-vegetation ~zones.
Data within the MFDC can include ASTER-derived refined digital
elevation from SRTM (GDEM), monthly long-term precipitation,
monthly thermal skin temperature, and forest cover and density.
This segmentation allows cropland mapping to be focused; creating
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distinctive segments of MFDCs and analyzing them separately for
croplands will enhance accuracy. For example, the likelihood of
croplands in a temperature zone of <280°K is very low. Similarly,
croplands in elevation above 1500 m will be of distinctive charac-
teristics (e.g., patchy, on hilly terrain most likely plantations of cof-
fee or tea). Every layer of data is geolinked (having precisely same
projection and datum and are georeferenced to one another).
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The purpose of MFDC (MFDC; see Thenkabail et al., 2009b
for details) is to ensure numerous remote sensing and second-
ary data layers are all stacked one over the other to form a
data cube akin to hyperspectral data cube. This approach has
been used by X to map croplands in Y (reference). The MFDC
allows us to have the entire data stack for any geographic loca-
tion (global to local) as a single file available for analysis. For
example, one can classify 10s or 100s or even 1000s of data layers
(e.g., monthly MODIS NDVT time series data for a geographic
area for an entire decade along with secondary data of the same
area) stacked together in a single file and classify the image. The
classes coming out of such a MFDC inform us about the phenol-
ogy along with other characteristics of the crop.

6.6 Cropland Mapping Methods

6.6.1 Remote Sensing-Based Cropland
Mapping Methods for Global,
Regional, and Local Scales

There is a growing literature on cropland mapping across resolutions
for both irrigated and rain-fed crops (Friedl et al., 2002; Gumma
et al.,, 2011; Hansen et al., 2002; Kurz and Seelan, 2007; Loveland
et al., 2000; Olofsson et al., 2011; Ozdogan and Woodcock, 2006;
Thenkabail et al., 2009a,c; Wardlow and Egbert, 2008; Wardlow
et al., 2006, 2007). Based on these studies, an ensemble of meth-
ods that is considered most efficient include: (1) spectral matching
techniques (SMTs) (Thenkabail et al., 2007a, 2009a,¢c); (2) decision
tree algorithms (DeFries et al., 1998); (3) Tassel cap brightness-
greenness-wetness (Cohen and Goward, 2004; Crist and Cicone,
1984; Masek et al., 2008); (4) space-time spiral curves and change
vector analysis (Thenkabail et al., 2005); (5) phenology (Loveland
et al., 2000; Wardlow et al., 2006); and (6) climate data fusion with
MODIS time-series spectral indices using decision tree algorithms
and subpixel classification (Ozdogan and Gutman, 2008). More
recently, cropland mapping algorithms that analyze end-member
spectra have been used for global mapping by Thenkabail et al.
(2009a, 2011).

6.6.2 Spectral Matching Techniques
(SMTs) Algorithms

SMTs (Thenkabail et al., 2007a, 2009a, 2011) are innovative methods
ofidentifying and labeling classes (see illustration in Figures 6.6 and
6.7a). For each derived class, this method identifies its characteris-
tics over time using MODIS time-series data (e.g., Figure 6.6). NDVI
time-series or other metrics (Biggs et al., 2006; Dheeravath et al.,
2010; Thenkabail et al., 2005, 2007a) are analogous to spectra, where
time is substituted for wavelength. The principle in SMT is to match
the shape, or the magnitude or both to an ideal or target spectrum
(pure class or “end-member”). The spectra at each pixel to be clas-
sified is compared to the end-member spectra and the fit is quanti-
fied using the following SMTs (Thenkabail et al., 2007a): (1) spectral
correlation similarity (SCS)—a shape measure; (2) spectral similar-
ity value (SSV)—a shape and magnitude measure; (3) Eucledian
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distance similarity (EDS)—a distance measure; and (4) modified
spectral angle similarity (MSAS)—a hyperangle measure.

6.6.2.1 Generating Class Spectra

The MFDC (Section 6.4.5) of each of segment (Figures 6.6 and 6.7a)
is processed using ISOCLASS K-means classification to produce
a large number of class spectra with a unsupervised classification
technique that are then interpreted and labeled. In more localized
applications, it is common to undertake a field-plot data collection
to identify and label class spectra. However, at the global scale, this
is not possible due to the enormous resources required to cover vast
areas to identify and label classes. Therefore, SMTs (Thenkabail
etal., 2007a) to match similar classes or to match class spectra from
the unsupervised classification with a library of ideal or target spec-
tra (e.g., Figure 6.6a) will be used to identify and label the classes.

6.6.2.2 Creating Ideal Spectra Data Bank (ISDB)

The term “ideal or target” spectra refers to time-series spectral
reflectivity or NDVI generated for classes for which we have pre-
cise location-specific ground knowledge. From these locations,
signatures are extracted using MFDC, synthesized, and aggre-
gated to generate a few hundred signatures that will constitute
an ISDB (e.g., Figures 6.6 and 6.7a).

6.6.2.3 Matching Class Spectra with Ideal Spectra
Using Spectral Matching Techniques (SMTs)

Once the class spectra are generated, they are compared with
ideal spectra to match, identify, and label classes. Often quan-
titative spectral matching techniques like spectral correlation
similarity R-square (SCS R-square) and spectral similarity value
(SSV) are used (Thenkabail et al., 2007a).

6.7 Automated Cropland
Classification Algorithm

The first part of the automated cropland classification algorithm
(ACCA) method involves knowledge capture to understand and
map agricultural cropland dynamics by: (1) identifying croplands
versus noncroplands and crop type/dominance based on SMTs,
decision trees tassel cap bispectral plots, and very-high-resolution
imagery; (2) determining watering method (e.g., irrigated or rain-
fed) based on temporal characteristics (e.g., NDVI), crop water
requirement (water use by crops), secondary data (elevation, pre-
cipitation, temperature), and irrigation structure (e.g., canals and
wells); (3) establishing croplands that are large scale (i.e., contigu-
ous) versus small scale (i.e., fragmented); (4) characterizing crop-
ping intensities (single, double, triple, and continuous cropping);
(5) interpreting MODIS NDVI temporal bispectral plots to identify
andlabel classes; and (6) using in situ data from very-high-resolution
imagery, field-plot data, and national statistics (see Figure 6.7b for
details). The second part of the method establishes accuracy of the
knowledge-captured agricultural map (Congalton, 1991 and 2009)
and statistics by comparison with national statistics, field-plot data,
and very-high-resolution imagery. The third part of the method
makes use of the captured knowledge to code and map cropland
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FIGURE 6.6 SMT. In SMTs, the class temporal profile (NDVI curves) are matched with the ideal temporal profile (quantitatively based on tem-
poral profile similarity values) in order to group and identify classes as illustrated for a rice class in this figure. (a) Ideal temporal profile illustrated
for “irrigated- surface-water-rice-double crop”; (b) some of the class temporal profile signatures that are similar; (c) ideal temporal profile signature
(Figure 6.6a) matched with class temporal profiles (Figure 6.6b); and (d) the ideal temporal profile (Figure 6.6a, in deep green) matches with class
temporal profiles of Classes 17 and 33 perfectly. Then one can label Classes 17 and 33 to be same as the ideal temporal profile (“irrigated-surface-
water-rice-double crop”). This is a qualitative illustration of SMTs. For quantitative methods, refer to Thenkabail et al. (2007a).

dynamics through an automated algorithm. The fourth part of the
method compares the agricultural cropland map derived using an
automated algorithm (classified data) with that derived based on
knowledge capture (reference map). The fifth part of the method
applies the tested algorithm on an independent dataset of the same
area to automatically classify and identify agricultural cropland
classes. The sixth part of the method assesses accuracy and vali-
dates the classes derived from independent dataset using an auto-
mated algorithm (Thenkabail et al., 2012; Wu et al., 2014a,b).

6.8 Remote Sensing-Based Global
Cropland Products: Current
State-of-the-Art Maps, Their
Strengths, and Limitations

Remote sensing offers the best opportunity to map and charac-
terize global croplands most accurately, consistently, and repeat-
edly. Currently, there are three global cropland maps that have
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been developed using remote sensing techniques. In addition,
we also considered a recent MODIS global land cover and land
use map where croplands are included. We examined these maps
to identify their strengths and weaknesses, to see how well they
compare with each other, and to understand the knowledge gaps
that need to be addressed. These maps were produced by:

1. Thenkabail et al. (2009b, 2011; Biradar et al., 2009)
2. Pittman et al. (2010)

3. Yuetal. (2013)

4. Friedl et al. (2010)

Thenkabail et al. (2009b, 2011; Figure 6.8; Table 6.3) used a com-
bination of AVHRR, SPOT VGT, and numerous secondary (e.g.,
precipitation, temperature, and elevation) data to produce a global
irrigated area map (Thenkabail et al., 2009b, 2011) and a global
map of rain-fed cropland areas (Biradar et al., 2009; Thenkabail
et al,, 2011; Figure 6.8; Table 6.3). Pittman et al. (2010; Figure 6.9;
Table 6.4) used MODIS 250 m data to map global cropland extent.
More recently, Yu et al. (2013; Figure 6.10; Table 6.5) produced a
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FIGURE 6.7 (Continued) (b) Cropland mapping methods illustrated for a global scale. Top half shows ACCA (see Thenkabail and Wu, 2012; Wu
et al,, 2014a) and bottom half shows class identification and labeling process.
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FIGURE 6.8 Global cropland product by Thenkabail et al. (2011, 2009b) using the method illustrated in Figure 6.7 and described in Section 6.1.1
(details in Thenkabail et al., 2011, 2009b). This includes irrigated and rain-fed areas of the world. The product is derived using remotely sensed data
fusion (e.g., NOAA AVHRR, SPOT VGT, JERS SAR), secondary data (e.g., elevation, temperature, and precipitation), and in situ data. Total area

of croplands is 2.3 billion hectares.

nominal 30 m resolution cropland extent of the world. These three
global cropland extent maps are the best available current state-
of-the-art products. Friedl et al. (2010; Figure 6.11; Table 6.6) used
500 m MODIS data in their global land cover and land use product
(MCD12Q1) where croplands were one of the land cover classes.
The methods, approaches, data, and definitions used in each of

TABLE 6.3 Global Cropland Extent at Nominal 1-km Based
on Thenkabail et al. (2009b, 2011)?

Pixels

Class # Class Description (Names) (1 km) Percent (%)
1 Croplands, irrigated dominance 9,359,647 40
2 Croplands, rain-fed dominance 14,273,248 60
3 Natural vegetation with minor 5,504,037

cropland fractions
4 Natural vegetation dominance with 44,170,083

very minor cropland fractions

23,632,895 100

* Total of approximately 2.3 billion hectares; Note that these are FPAs.
Actual area is SPA. The SPA is not estimated here. See Thenkabail et al. (2007b)
for the methods for calculating SPAs; % calculated based on Class 1 and 2.
Class 3 and 4 are very small cropland fragments.
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these products differ extensively. As a result, the cropland extents
mapped by these products also vary significantly. The areas in
Tables 6.3 through 6.6 only show the full pixel areas (FPAs) and
not subpixel areas (SPAs). SPAs are actual areas, which can be esti-
mated by reprojecting these maps to appropriate projections and
calculating the areas. For the purpose of this chapter, we did not
estimate SPAs. However, a comparison of the FPAs of the four
maps (Figures 6.8 through 6.11) shows significant differences in the
cropland areas (Tables 6.3 through 6.6) as well as significant differ-
ences in the precise locations of the croplands (Figures 6.8 through
6.11), the reasons for which are discussed in the next section.

6.8.1 Global Cropland Extent at
Nominal 1 km Resolution

We synthesized the four global cropland products discussed
and produced a unified global cropland extent map GCE V1.0
at nominal 1 km (Table 6.7a; Figure 6.12a). The process involved
resampling each global cropland product to a common resolu-
tion of 1 km and then performing GIS data overlays to determine
where the cropland extents matched and where they differed.
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FIGURE 6.9 Global cropland extent map by Pittman et al. (2010) derived using MODIS 250 m data. There is only one cropland class, which
includes irrigated and rain-fed areas of the world. There is no discrimination between rain-fed and irrigated areas. Total area of croplands is

0.9 billion hectares.

TABLE 6.4 Global Cropland Extent at Nominal 250 m Based
on Pittman et al. (2010)*

Class # Class Description (Names) Pixels (1 km) Percent (%)

1 Croplands 8,948,507 100

2 Total of approximately 0.9 billion hectares. Note that these are FPAs.
Actual area is SPA. SPA is not estimated here. See Thenkabail et al. (2007b) for
the methods for calculating SPAs; % calculated based on Class 1.

Figure 6.12a shows the aggregated global cropland extent
map with its statistics in Table 6.7a. Class 1 in Figure 6.12a and
Table 6.7a provides the global cropland extent included in all
four maps. Actual area of this extent is not calculated yet, but
it includes approximately 2.3 billion hectares FPAs (Table 6.7a).
The spatial distribution of these 2.3 billion hectares is demon-
strated as Class 1 in Figure 12a. Classes 2 and 3 are areas with
minor or very minor cropland fractions. Class 2 and Class 3 are
classes with large areas of natural vegetation and/or desert lands
and other lands.

Figure 6.12b and Table 6.7b demonstrate where and by how
much the four products match with one another. For example,
2,802,397 pixels (Class 1, Table 6.7b; Figure 6.12b) are croplands
that are irrigated. Some of the products do not separately clas-
sify irrigated versus rain-fed croplands, although all four prod-
ucts show where croplands are. We first identified where all four
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products match as croplands and then added irrigation status or
other indicators (e.g., irrigation dominance, rain-fed; Table 6.7b)
from the product by Thenkabail et al. (2009b, 2011).

Table 6.7b and Figure 6.12b show 12 classes of which Classes 1
and 2 are croplands with irrigated agriculture, Classes 3 and 4
are croplands with rain-fed agriculture, Classes 5 and 6 are crop-
lands where irrigated agriculture dominates, Classes 7 and 8 are
croplands where rain-fed agriculture dominates, and Classes
9-12 are areas with minor or very minor cropland fractions.
Classes 9-12 are those with large areas of natural vegetation
and\or desert lands and other lands.

Interestingly, and surprisingly as well, only 20% (Class 1 and 3;
Table 6.7b; Figure 6.12b) of the total cropland extent are matched
precisely in all four products. Further, 49% (Class 1, 2, 3,4, and 7;
Table 6.7b; Figure 6.12b) of the total cropland areas match in at
least three of the four products. This implies that all the four
products have considerable uncertainties in determining the
precise location of the croplands. The great degree of uncertainty
in the cropland products can be attributed to factors including

1. Coarse resolution of the imagery used in the study
2. Definition of mapping products of interest

3. Methods and approaches adopted

4. Limitations of the data
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FIGURE 6.10 Global cropland extent map by Yu et al. (2013) derived at nominal 30 m data. Total area of croplands is 2.2 billion hectares. There

is no discrimination between rain-fed and irrigated areas.

TABLE 6.5 Global Cropland Extent at Nominal 30 m Based
on Yu et al. (2013)?

Class # Class Description (Names) Pixels (1 km) Percent

1 Croplands (Classes 10-14) 7,750,467 35

2 Bare-cropland (Classes 94 and 24) 14,531,323 65
22,281,790 100

2 Total of approximately 2.2 billion hectares. Note that these are FPAs.
Actual area is SPA. SPA is not estimated here. See Thenkabail et al. (2007b) for
the methods for calculating SPAs; % calculated based on Class 1 and 2.

Table 6.7c and Figure 6.12c show five classes of which Classes 1
and 2 are croplands with irrigated agriculture, Class 3 is crop-
land with rain-fed agriculture, Classes 4 and 5 have ONLY
minor or very minor cropland fractions. We recommend the use
of this aggregated five class global cropland map (Figure 12c and
Table 6.7c) produced based on the four major cropland mapping
efforts [i.e., Thenkabail et al. (2009a, 2011), Pittman et al. (2010),
Yu et al. (2013), and Friedl et al. (2010)] using remote sensing.
This map (Figure 6.12c; Table 6.7c) provides clear consensus
view on of four major studies on global:

o Cropland extent location
+ Cropland watering method (irrigation versus rain-fed)
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The product (Figure 6.12¢; Table 6.7c) does not show where the
crop types are or even the crop dominance. However, cropping
intensity can be gathered using multitemporal remote sensing
over these cropland areas.

6.9 Change Analysis

Once the croplands are mapped (Figure 6.13), we can use the
time-series historical data such as continuous global cover-
age of remote sensing data from NOAA very-high-resolution
radiometer (VHRR) and advanced VHRR (AVHRR), Global
Inventory Modeling and Mapping Studies (GIMMS; 1982-
2000), and MODIS time-series (2001-present) to help build
an inventory of historical agricultural development (e.g.,
Figures 6.13 and 6.14). Such an inventory will provide infor-
mation including identifying areas that have switched from
rain-fed to irrigated production (full or supplemental), and
noncropped to cropped (and vice versa). A complete history
will require systematic analysis of remotely sensed data as
well as a systematic compilation of all routinely populated
cropland databases from the agricultural departments of
all countries throughout the world. The differences in pixel
sizes in AVHRR versus MODIS will: (1) influence class
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Global cropland classes (Class 12 and Class 14) extracted from MODIS Global land use and land cover (GLC) 500 m product

MCD12Q2 by Friedl et al. (2010). Total area of croplands is 2.7 billion hectares. There is no discrimination between rain-fed and irrigated crop-

land areas.

TABLE 6.6 Global Cropland Extent at Nominal 500 m Based
on Friedl et al. (2010)!

Class # Class Description (Names) Pixels (1 km) Percent

1 Global croplands (Class 12 and 14) 27,046,084 100

@ Approximately, total 2.7 billion hectares based on Class 12 and 14. Note
that these are FPAs. Actual area is SPA. SPA is not estimated here. See
Thenkabail et al. (2007b) for the methods for calculating SPAs.

identification and labeling, and (2) cause different levels
of uncertainties. We will address these issues by determin-
ing SPAs and uncertainties involved in class accuracies and
uncertainties in areas at various spatial resolutions using
methods detailed in recent work of this team (Ozdogan and
Woodcock, 2006; Thenkabail et al., 2007b; Velpuri et al.,
2009). Change analyses (Tomlinson, 2003) are conducted in
order to investigate both the spatial and temporal changes in
croplands (e.g., Figures 6.13 and 6.14) that will help estab-
lish: (1) change in total cropland areas, (2) change in spatial
location of cropland areas, (3) expansion on croplands into
natural vegetation, (4) expansion of irrigation, (5) change
from croplands to biofuels, and (6) change from croplands to
urban. Massive reductions in cropland areas in certain parts
of the world will be detected, including cropland lost as a
result of reductions in available ground water supply due to
overdraft (Jiang, 2009; Rodell et al., 2009; Wada et al., 2012).
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6.10 Uncertainties of Existing
Cropland Products

Currently, the main causes of uncertainties in areas reported
in various studies (Ramankutty et al.,, 2008; Thenkabail et al.,
2009a,c) can be attributed to, but not limited to: (1) reluctance
of national and state agencies to furnish the census data on irri-
gated area and concerns of their institutional interests in sharing
of water and water data; (2) reporting of large volumes of census
data with inadequate statistical analysis; (3) subjectivity involved
in the observation-based data collection process; (4) inadequate
accounting of irrigated areas, especially minor irrigation from
groundwater, in national statistics; (5) definitional issues involved
in mapping using remote sensing as well as national statistics; (6)
difficulties in arriving at precise estimates of AFs using remote
sensing; (7) difficulties in separating irrigated from rain-fed crop-
lands; and (8) imagery resolution in remote sensing. Other limita-
tions include (Thenkabail et al., 2009a, 2011)

1. Absence of precise spatial location of the cropland areas

for training and validation

. Uncertainties in differentiating irrigated areas from rain-
fed areas

. Absence of crop types and cropping intensities

. Inability to generate cropland maps and statistics, routinely

. Absence of dedicated web\data portal for dissemination

cropland products
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TABLE 6.7 Global Cropland Extent at Nominal 1-km Based on Four Major Studies: Thenkabail et al.
(2009b, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010).

Class # Class Description (Names) Pixels (1 km) Percent (%)
(a) Three class map*
Croplands 23,493,936 100
2 Cropland minor fractions 13,700,176
Cropland very minor fractions 44,662,570
(b) Twelve class map®
1 Croplands all 4, irrigated 2,802,397 12
2 Croplands 3 of 4, irrigated 289,591 1
3 Croplands all 4, rain-fed 1,942,333 8
4 Croplands 3 of 4, rain-fed 427,731 2
5 Croplands, 2 of 4, irrigation dominance 3,220,330 14
6 Croplands, 2 of 4, irrigation dominance 1,590,539 7
7 Croplands, 3 of 4, rain-fed dominance 6,206,419 26
8 Croplands, 2 of 4, rain-fed dominance 3,156,561 13
9 Croplands, minor fragments, 2 of 4 3,858,035 17
10 Croplands, very minor fragments, 2 of 4 6,825,290
11 Croplands, minor fragments, 1 of 4 6,874,886
12 Croplands, very minor fragments, 1 of 4 44,662,570
Class 1-9 total 23,493,936 100
(c) Five class map*
1 Croplands, irrigation major 3,091,988 13
2 Croplands, irrigation minor 4,810,869 21
3 Croplands, rain-fed 11,733,044 50
4 Croplands, rain-fed minor fragments 3,858,035 16
5 Croplands, rain-fed very minor fragments 13,700,176
Classes 1-4 total 23,493,936 100.0%

@ Approximately 2.3 billion hectares (Class 1) of cropland is estimated. But this is full pixel area (FPA). Actual area is sub
pixel area (SPA). SPA is not estimated here. See Thenkabail et al. (2007b) for the methods for calculating SPAs; % calculated
based on Class 1; Class 2 and 3 are minor/very minor cropland fragments.

b Approximately 2.3 billion hectares (Class 1-9) of cropland is estimated. But this is FPA. Actual area is SPA. SPA is not
estimated here. See Thenkabail et al. (2007b) for the methods for calculating SPAs; % calculated based on Class 1-9; Classes
10, 11, and 12 are minor cropland fragments; All 4 means, all 4 studies agreed.

¢ Approximately 2.3 billion hectares (Class 1-4) of cropland is estimated. But this is FPA. Actual area is SPA. SPA is not
estimated here. See Thenkabail et al. (2007b) for the methods for calculating SPAs; % calculated based on Class 1-4; Class

5 is very minor cropland fragments.

These limitations are a major hindrance in accurate/reliable global,
regional, and country-by-country water use assessments that in
turn support crop productivity (productivity per unit of land,
kg/m?) studies, water productivity (productivity per unit of water,
kg/m?) studies, and food security analyses. The higher degrees of
uncertainty in coarser resolution data are a result of an inability to
capture fragmented, smaller patches of croplands accurately, and
the homogenization of both crop and noncrop land within areas of
patchy land cover distribution. In either case, there is a strong need
for finer spatial resolution to resolve the confusion.

6.11 Way Forward

Given theaforementionedissues with existing maps of global crop-
lands, the way forward will be to produce global cropland maps at
finer spatial resolution and applying a suite of advanced analysis
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methods. Previous research has shown that at finer spatial resolu-
tion, the accuracy of irrigated and rain-fed area class delineations
improves, because at finer spatial resolution, more fragmented
and smaller patches of irrigated and rain-fed croplands can be
delineated (Ozdogan and Woodcock, 2006; Velpuri et al., 2009).
Further, greater details of crop characteristics such as crop types
(e.g., Figure 6.15) can be determined at finer spatial resolutions.
Crop type mapping will involve the use of advanced methods of
analysis such as data fusion of higher spatial resolution images
from sensors such as Resourcesat\Landsat and AWiFS\MODIS
(e.g., Table 6.2) supported by extensive ground surveys and ideal
spectral data bank (ISDB) (Thenkabail et al., 2007a). Harmonic
analysis is often adopted to identify crop types (Sakamoto et al.,
2005) using methods such as the conventional Fourier analysis
and adopting a Fourier filtered cycle similarity (FFCS) method.
Mixed classes are resolved using hierarchical crop mapping
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FIGURE 6.12 (a) An aggregated three class global cropland extent map at nominal 1 km based on four major studies: Thenkabail et al. (2009a,
2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). Class 1 is total cropland extent; total cropland extent is 2.3 billion hectares
(FPAs). Class 2 and Class 3 have ONLY minor fractions of croplands. Refer to Table 6.7a for cropland statistics of this map. (b) A disaggregated
twelve class global cropland extent map derived at nominal 1-km based on four major studies: Thenkabail et al. (2009a, 2011), Pittman et al. (2010),
Yuetal. (2013), and Friedl et al. (2010). Classes 1-9 are cropland classes that are dominated by irrigated and rain-fed agriculture. Classes 10-12 have
ONLY minor or very minor fractions of croplands. Refer to Table 6.7b for cropland statistics of this map. (Continued)
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FIGURE 6.12 (Continued)

(c) A disaggregated five class global cropland extent map derived at nominal 1-km based on four major studies:

Thenkabail et al. (2009a, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). Classes 1-5 are cropland classes, that are dominated
by irrigated and rain-fed agriculture. However, Class 4 and Class 5 have ONLY minor or very minor fractions of croplands. Refer to Table 6.7c
for cropland statistics of this map. Note: Irrigation major: areas irrigated by large reservoirs created by large and medium dams, barrages, and

even large ground water pumping. Irrigation minor: areas irrigated by small reservoirs, irrigation tanks, open wells, and other minor irrigation.
However, it is very hard to draw a strict boundary between major and minor irrigations and in places, there can be significant mixing. Major irri-
gated areas such as the Ganges basin, California’s central valley, Nile basin, etc., are clearly distinguishable as major irrigation, and in other areas

major and minor irrigation may be intermixed.

protocol based on decision tree algorithm (Wardlow and Egbert,
2008). Irrigated versus rain-fed croplands will be distinguished
using spectral libraries (Thenkabail et al., 2007b) and ideal spec-
tral data banks (Thenkabail et al., 2007a, 2009a). Similar classes
will be grouped by matching class spectra with ideal spectra based
on SMTs (SMTs; Thenkabail et al., 2007a). Details such as crop
types are crucial for determining crop water use, crop productiv-
ity, and water productivity, leading to providing crucial informa-
tion needed for food security studies. However, the high spatial
resolution must be fused with high temporal resolution data in
order to obtain time-series spectra that are crucial for monitoring
crop growth dynamics and cropping intensity (e.g., single crop,
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double crop, and continuous year round crop). Numerous other
methods and approaches exist. But, the ultimate goal using mul-
tisensor remote sensing is to produce croplands products such as

1. Cropland extent\area

2. Crop types (initially focused on eight crops that occupy
70% of global croplands)

3. Irrigated versus rain-fed croplands

4. Cropping intensities\phenology (single, double, triple, and
continuous cropping)

5. Cropped area computation

6. Cropland change over space and time
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FIGURE 6.13 Center image of global cropland (irrigated and rainfed) areas @ 1 km for year 2000 produced by overlying the remote sensing derived product of the International Water
Management Institute (IWMTI; Thenkabail et al., 2012, 2011, 2009a,b; http://www.iwmigiam.org) over five dominant crops (wheat, rice, maize, barley, and soybeans) of the world produced by
Ramankutty et al. (2008). The five crops constitute about 60% of all global cropland areas. The IWMI remote sensing product is derived using remotely sensed data fusion (e.g., NOAA AVHRR,
SPOT VGT, and JERS SAR), secondary data (e.g., elevation, temperature, and precipitation), and in situ data. Total area of croplands is 1.53 billion hectares, of which 399 million hectares is
total area available for irrigation (without considering cropping intensity) and 467 million hectares is annualized irrigated areas (considering cropping intensity). Surrounding NDVI images
ofiirrigated areas: From January to December irrigated area NDVI dynamics is produced using NOAA AVHRR NDVI. The irrigated areas were determined by Thenkabail et al. (2011, 2009a,b).
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FIGURE6.14 Global agricultural dynamics over two decades illustrated here for some of the most significant agricultural areas of the World. Once we establish GCAD2010 and GCAD1990
at nominal 30 m resolution for the entire world, we will use AVHRR-MODIS monthly MVC NDVT time-series from 1982 to 2017 to provide a continuous time history of global irrigated and
rain-fed croplands, establish their spatial and temporal changes, and highlight the hot spots of change. The GCAD2010, GCAD1990, and GCAD four decade’s data will be made available on
USGS global cropland data portal (currently under construction): http://powellcenter.usgs.gov/current_projects.php#GlobalCroplandsAbstract. Further, the need to map accurately specific
cropland characteristics such as crop types and watering methods (e.g., irrigated versus rain-fed) is crucial in food security analysis. For example, the importance of irrigation to global food
security is highlighted in a recent study by Siebert and D61l (2010) who show that without irrigation, there would be a decrease in production of various foods including dates (60%), rice (39%),
cotton (38%), citrus (32%), and sugarcane (31%) from their current levels. Globally, without irrigation, cereal production would decrease by a massive 43%, with overall cereal production, from
irrigated and rain-fed croplands, decreasing by 20%.
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FIGURE 6.15 Rice map of south Asia produced using the method illustrated in Figure 6.6. (From Gumma, M. K. et al,, J. Appl. Rem. Sens., 5,

053547, September 1, 2011, doi:10.1117/1.3619838, 2011.)

6.12 Conclusions

This chapter provides an overview of the importance of global
cropland products in food security analysis. It is obvious that
only remote sensing from Earth-observing (EO) satellites pro-
vides consistent, repeated, high-quality data for characterizing
and mapping key cropland parameters for global food security
analysis. Importance of definitions and class naming conventions
in cropland mapping has been reiterated. Typical EO systems
and their spectral, spatial, temporal, and radiometric character-
istics useful for cropland mapping have been highlighted. The
chapter provides a review of various cropland mapping methods
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used at global, regional, and local levels. Some of the remote sens-
ing methods for global cropland mapping have been illustrated.
The current state-of-the-art provides four-key global cropland
products (-e.g., Figure 6.12) derived from remote sensing, based
on the work conducted by four major studies (Thenkabail et al.
(2009a, 2011, Pittman et al. 2010, Yu et al. 2013, and Friedl et al.
2010). These studies were conducted using: (1) time-series of mul-
tisensor data and secondary data, (2) 250 m MODIS time-series
data, (3) 30 m Landsat data, and (4) a MODIS 500 m time-series
derived cropland classes from a land use\land cover product
has been used. These four studies help synthesized, at nominal
1 km, to obtain a consensus cropland mask of the world (global
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cropland extent version 1.0 or GCE V1.0). It was demonstrated
from these products that the uncertainty in location of croplands
in any one given product is quite high and no single product
maps croplands particularly well. Therefore, a synthesis identi-
fies where some or all of these products agree and where they
disagree. This provides a starting point for the next level of more
detailed cropland mapping at 250 and 30 m (see ongoing efforts
at: http://geography.wr.usgs.gov/science/croplands/ and https:/
www.croplands.org/). The five key cropland products identified
to be derived from remote sensing are: (1) cropland extent\areas,
(2) cropping intensities, (3) watering method (irrigated versus
rain-fed), (4) crop type, and (5) cropland change over time and
space. From these primary products, one can derive crop produc-
tivity and water productivity. Such products have great impor-
tance and relevance in global food security analysis.

Authors recommend the use of composite global cropland
map (see Figure 6.12¢; Table 6.7c) that provides clear consensus
view on of four major cropland studies on global

o Cropland extent location
+ Cropland watering method (irrigation versus rain-fed)

The nominal 1 km product (Figure 6.12c and Table 6.7c) does
not show where the crop types are or even where the crop domi-
nance occur. However, cropping intensity can be generated
using multitemporal remote sensing for every pixel over these
cropland areas.
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7.1 Introduction

The world population is increasing rapidly, and by 2050, it is
estimated that there will be nearly nine billion people to feed
(Cohen, 2003). Agricultural production to feed this large popu-
lation will be severely constrained by a lack of additional arable
land combined with a diminishing supply of water and increas-
ing pressure to protect the quality of water resources beyond the
edge of agricultural fields. These constraints mean that it will
be increasingly imperative to prevent losses in crop productiv-
ity due to water stress, nutrient deficiencies, weeds, insects, and
crop diseases. These losses in productivity often occur at specific
locations within fields and at critical growth stages. They are
not typically uniform in severity across locations within a field.
Thus, farmers must take measures to identify where crop stress
occurs in a timely fashion, they must identify what is causing
crop stress, and they must try to use management practices that
overcome crop stress at specific locations and times.

This chapter provides an overview of remote sensing tech-
niques used in precision farming to efficiently identify locations
affected by crop stress. Crop stresses discussed include water
stress, nutrient deficiencies, insect damage, disease infestations,
and weed pressure. Crop stresses are typically identified by
professional scouts who walk through fields looking for char-
acteristic symptoms on crop leaves and stems. Remote sensing
offers the potential to improve the efficiency of locating areas of
crop stress and identifying which type of stress is present. For
each stress, the key wavelengths and spectral indices that can
be used to identify crop stress are reviewed. The relative advan-
tages and disadvantages of satellite, airplane, unmanned aerial
vehicles (UAVs), and proximal sensing platforms are discussed.
The chapter concludes by identifying key knowledge gaps that
must be overcome in order to accelerate the adoption of remote
sensing in precision agriculture.

7.2 Precision Farming

Precision farming is one of the top 10 revolutions in agriculture
(Crookston, 2006), ranking below conservation tillage, fertilizer
and herbicide management, and improved crop genetics. It can
be generally defined as doing the right management practices
at the right location, in the right rate, and at the right time.
Management practices commonly used in precision farming
include variable rate fertilizer (Diacono et al., 2013) or pesticide
application, variable rate seeding or tillage, and variable rate
irrigation. Precision farming offers several benefits, including
improved efficiency of farm management inputs, increases in
crop productivity or quality, and reduced transport of fertilizers
and pesticides beyond the edge of field (Mulla et al., 1996).
Precision farming is also known as precision agriculture or
site-specific crop management. Precision farming as it is prac-
ticed today had its beginnings in the mid-1980s with two con-
trasting philosophies, namely, farming by soil (Larson and
Robert, 1991) versus grid soil sampling for delineation of man-
agement zones (MZs) (Bhatti et al., 1991; Mulla, 1991, 1993).

© 2016 Taylor & Francis Group, LLC

Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Precision farming aims to improve site-specific agricultural
decision-making through collection and analysis of data, for-
mulation of site-specific management recommendations, and
implementation of management practices to correct the factors
that limit crop growth, productivity, and quality (Mulla and
Schepers, 1997).

Precision farming has always relied on technology for data
collection and analysis at specific locations and times across
agricultural fields. The earliest technology was geographic infor-
mation system (GIS), followed by variable rate spreaders, yield
monitors, global positioning system (GPS), and remote sensing.
As technology has improved, the scale at which management
actions are implemented has become finer spatially and tem-
porally. Ultimately, technology will lead to the ability to man-
age individual plants within an agricultural field in real time
(Freeman et al., 2007; Shanahan et al., 2008).

Adoption rates of technology in precision agriculture vary
widely (Whipker and Akridge, 2006). GPS (including autosteer)
and yield monitors are widely used. Variable rate spreaders are
moderately popular. Remote sensing has not yet been widely
adopted for use in precision agriculture (Moran et al., 1997;
Mulla, 2013). The main reasons include the difficulty in inter-
preting spectral signatures, the slow processing time for data,
the high expense, and the need to collect confirmatory data
from ground surveys in order to diagnose causative factors for
anomalous spectral reflectance data. Clearly, there is a signifi-
cant scope for improving the interpretation and utility of remote
sensing data for precision agriculture.

Remote sensing in precision farming started with Landsat
Thematic Mapper (TM) imagery for improved mapping of soil
fertility patterns across complex agricultural landscapes (Bhatti
et al.,, 1991). Proximal sensing of soil organic matter content or
weeds was also developed for early application in precision farm-
ing, and this approach now includes detection of crop nutrient
deficiencies. Commercial satellite imagery was first provided to
agricultural users at the beginning of the twenty-first century
with IKONOS and QuickBird. Spatial and spectral resolution
and return frequencies of satellite remote sensing platforms
have improved rapidly since then with the advent of RapidEye,
GeoEye, and WorldView imagery. Satellite imagery is typically
unavailable on days with significant cloud cover.

Interest in remote sensing from airplanes and UAVs has
recently been very intense (Berni et al., 2009; Zhang and
Kovacs, 2012; Huang et al., 2013). One of the most active
emerging areas of research in precision agriculture uses cam-
eras mounted on UAVs. The UAVs are relatively inexpensive,
can be deployed rapidly at low altitudes when crop stress is
starting to appear, and have the flexibility to be flown during
windy or partially cloudy conditions. Their limitations include
a ban on their use for commercial purposes; difficulty in
obtaining certificates of authorization (COA) from the Federal
Aviation Administration (FAA); inability to carry heavy cam-
eras, mounts, and GPS units; and short battery life. UAVs also
have other advantages and disadvantages, which are described
more fully in Section 7.12.
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Several companies offer precision farming services that rely
on remote sensing. These include companies that are based pri-
marily on satellite imagery, including DigitalGlobe, Satellite
Imaging Corp., Geosys SST/GeoVantage, and Winfield Solutions.
Companies that offer equipment for proximal sensing of crop
nutrient deficiencies include Trimble’s GreenSeeker (Solie
et al., 1996), Agleader’s OptRx (Holland et al., 2012), Topcon’s
CropSpec (Reusch et al., 2010), and Yara’s N-sensor (Link and
Reusch, 2006). Trimble also offers equipment for proximal sens-
ing of weeds (WeedSeeker; Hanks and Beck, 1998). Numerous
companies offer aerial remote sensing services with panchro-
matic imagery, broadband multispectral imagery or hyperspec-
tral imagery. One example is InTime Corp., which operates a fleet
of airplanes that collect remote sensing imagery for cotton, veg-
etable, rice, and tree crops. This imagery is used for crop scouting
and prescription maps for variable rate growth regulator applica-
tions on cotton and variable rate herbicide, insecticide, or fertil-
izer applications.

Commercial applications of remote sensing for precision
farming have not always been successful. John Deere’s Agri-
Services division partnered with GeoVantage in 2006 to provide
the OptiGro precision remote sensing service to farmers. This
service proved to be unprofitable for John Deere, and they sold it
to GeoVantage in 2008.

7.3 Management Zones

Conventional agriculture involves uniform management of
fields. In contrast, precision agriculture involves customized
management in areas that are much smaller than fields (e.g.,
a 1 ha farm can be divided into 10,000 pixels of 1 m? and one
can monitor each of these 10,000 pixels or any combination of
them as a unique MZ as described in the following text). MZs
(Mulla, 1991, 1993) are used in precision farming to divide field
regions that differ in their requirements for fertilizer, pesticide,
irrigation, seed, or tillage. MZs are relatively homogeneous units
within the field that differ from one another in their response to
fertilizer, irrigation, or pesticides. They can be delineated based
on differences in crop yield, soil type, topography, or soil proper-
ties (fertility, moisture content, pH, organic matter, etc.). Remote
sensing has been used to delineate MZs based on variations in
soil organic matter content (Mulla, 1997; Fleming et al., 2004;
Christy, 2008). Boydell and McBratney (2002) used 11 years of
Landsat TM imagery for a cotton field to identify MZs based on
yield stability.

7.4 Irrigation Management

Water stress is one of the major causes for loss of crop produc-
tivity (Moran et al., 2004). Irrigation is widely used to overcome
crop water stress but, when applied uniformly, can lead to draw-
down of water supply and environmental pollution. In precision
irrigation, also known as variable rate irrigation (Sadler et al.,
2005), sprinkler heads deliver water at rates that are varied using
either microprocessors (Stark et al., 1993) or solenoids connected
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to manifolds (Omary et al., 1997). Nozzle spray rates are varied
depending on spatial patterns in soil moisture (Hedley and Yule,
2009), crop stress (Bastiaanssen and Bos, 1999), or soil or land-
scape patterns, including rock outcroppings (Sadler et al., 2005).
Variable rate irrigation uses water more efficiently than uniform
irrigation, leading to better water conservation and improved
environmental quality, without affecting crop yield.

Remote sensing can be used in variable rate irrigation applica-
tions to detect crop water stress through thermal infrared (TIR)
(Moran et al., 2004; Rud et al., 2014) or microwave (Vereecken
etal., 2012) sensing. TIR sensing can be used to measure canopy
temperature and crop water stress, and this measurement, when
combined with reflectance measurements in the red and near-
infrared (NIR) regions, can be used to construct reflectance
index-temperature space graphs that lead to identification of
field locations where nutrient and/or water stress occurs (Lamb
et al., 2014). TIR sensing can also be used to infer crop water
stress by measuring a crop water stress index (CWSI) that is pro-
portional to the difference between canopy and air temperatures
(Moran et al., 2004) but also depends on the atmospheric vapor
pressure deficit. CWSI values are estimated relative to the can-
opy and air temperatures for a nonstressed (well-watered) crop.
This method works well for full crop canopies in close proximity
to a well-watered section of the crop. Meron et al. (2010) devel-
oped a simplified approach for estimating CWSI that involves
TIR measurements of canopy temperature relative to the tem-
perature of a nearby artificial reference surface consisting of a
wet, white fabric covering polystyrene floating in a container of
water. Care must be taken to segment thermal images in fields
with partial canopy cover in order to eliminate errors due to
high soil temperatures. Meron et al. (2010) and Rud et al. (2014)
showed that TIR measurements of CWSI based on the artificial
reference surface approach could be used to develop maps show-
ing spatial patterns in crop water stress with an 82% accuracy
relative to leaf water potential measurements. These maps were
useful for guiding the application of variable rates of irrigation.

7.5 Crop Scouting

Crop scouting is used for timely detection of crop stressors that
pose an economic risk to production (Linker et al., 1999; Fishel
etal., 2001; Mueller and Pope, 2009). If detected at an early stage,
management actions can be taken to control crop water stress
and nutrient deficiencies, kill weeds or insects, and eradicate
crop diseases. Crop scouting traditionally involves having a
trained professional walk in a predetermined pattern through
an agricultural field in order to conduct a limited and some-
what random sampling to detect and identify crop stress. This
approach is time-consuming and labor intensive, and it does not
guarantee that the sampling strategy covered the right spatial
locations or occurred at the right time. Remote sensing offers
the potential for improved crop scouting, with better spatial and
temporal coverage than would be possible with a trained profes-
sional walking through fields. While remote sensing can accu-
rately identify locations where crop stress is occurring, remote
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sensing alone is often unable to distinguish between crop stress
caused by nutrient deficiencies, weed or insect pressure, or crop
diseases. This inability has slowed the adoption of remote sens-
ing in precision farming.

7.6 Wavelengths and Band Ratios
of Interest in Precision Farming

Remote sensing in precision farming has focused on reflectance
in the visible (VIS) and NIR, emission of radiation in the TIR,
and fluorescence in the VIS spectrum. Remote sensing of soil
is responsive to spatial patterns in soil moisture and organic
matter content, as well as soil carbonate and iron oxide content.
Remote sensing of crop canopies in the VIS spectrum responds
to plant pigments such as chlorophyll a and b, anthocyanins,
and carotenoids (Pinter et al., 2003; Blackburn, 2007; Hatfield
et al., 2008). Plant pigments absorb radiation in narrow wave-
length bands centered around 430 nm (blue or B) and 650 nm
(red or R) for chlorophyll a and 450 nm (B) and 650 nm (R)
for chlorophyll b. Wavelengths with low absorption character-
istics conversely have high reflectance, particularly in the green
(550 nm) wavelength. Remote sensing of crops in the NIR spec-
trum (particularly at 780, 800, and 880 nm) responds to crop
canopy biomass and leaf area index (LAI), leaf orientation,
and leaf size and geometry. Plant pigments and crop canopy
architecture in turn respond to many crop stresses, including
water stress (Bastiaanssen et al., 2000), nutrient deficiencies
(Samborski et al., 2009), crop diseases (West et al., 2003), and
infestations of insects (Seelan et al., 2003) or weeds (Lamb and
Brown, 2001; Thorp and Tian, 2004). As a result, remote sensing
has often proved useful at indirectly detecting crop stresses for
applications in precision farming.

In contrast to broadband multispectral reflectance imag-
ery collected with older satellite platforms such as Landsat,
QuickBird, and IKONOS, recent attention in remote sensing has
turned to analysis of narrow bands (10 nm wide) collected using
hyperspectral imagery (Miao et al,, 2009; Thenkabail et al,,
2010; Yao et al., 2010). The hyperspectral data cube can be used
to represent crop reflectance over large areas at each of these
narrow bands (Figure 7.1; Nigon et al., 2014), illustrating the
large amount of spatial and spectral information collected with
hyperspectral imaging. In theory, hyperspectral imaging offers
the capability of sensing a wide variety of soil and crop char-
acteristics simultaneously, including moisture status, organic
matter, nutrients, chlorophyll, carotenoids, cellulose, LAI, and
crop biomass (Haboudane et al., 2002, 2004; Goel et al., 2003).
Thenkabail et al. (2000) showed that hyperspectral data can be
used to construct three general categories of predictive spectral
indices, including (1) optimal multiple narrowband reflectance
indices (OMNBR), (2) narrowband normalized difference veg-
etative indices (NDVIs), and (3) soil-adjusted vegetation indi-
ces (SAVIs). Only two to four narrow bands were needed to
describe plant characteristics with OMNBR. The greatest infor-
mation about plant characteristics in OMNBR includes the lon-
ger red wavelengths (650-700 nm), shorter green wavelengths
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FIGURE 7.1
potato field showing the spatial and spectral resolution available with
hyperspectral imaging. The circular slices in front represent a combina-
tion of reflectance values at red, green, and blue wavelengths, whereas
the cubical slices in the back represent narrrowband reflectance across
a broad range of VIS and NIR wavelengths.

Hyperspectral data cube for an irrigated Minnesota

(500-550 nm), red edge (720 nm), and two NIR (900-940 and
982 nm) spectral bands. The information in these bands is
only available in narrow increments of 10-20 nm and is easily
obscured in broad multispectral bands that are available with
older satellite imaging systems. The best combination of two
narrow bands in NDVI-like indices was centered in the red
(682 nm) and NIR (920 nm) wavelengths but varied depending
on the type of crop (corn, soybean, cotton, or potato) as well as
the plant characteristic of interest (LAI biomass, etc.). Analysis
of hyperspectral imagery can potentially involve advanced
chemometric methods that are not possible with broadband
multispectral imagery, including (1) lambda-lambda plots, (2)
spectral derivatives, (3) discriminant analysis, and (4) partial
least squares analysis (Jain et al., 2007; Alchanatis and Cohen,
2010, Li et al., 2014b, Yuan et al., 2014).

The sharp contrast in reflectance behavior between the red
and NIR portions of the spectrum is the motivation for devel-
opment of spectral indices that are based on ratios of reflec-
tance values in the VIS and NIR regions (Sripada et al., 2008).
Commonly used spectral reflectance indices (Table 7.1) include
NDVI (NDVI = (NIR - red)/(NIR + red)), green NDVI, and
ratio vegetation index (RVI = NIR/R). These indices, along
with indices that are based on reflectance in the red-edge spec-
trum region (700-740 nm), have been found to be very sensi-
tive to crop canopy chlorophyll and nitrogen status due to the
rapid change in leaf reflectance caused by the strong absorption
by pigments in the red spectrum and leaf scattering in the NIR
spectrum (Hatfield et al., 2008; Nguy-Robertson et al., 2012).
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TABLE 7.1 Multispectral Broadband Vegetation Indices or Commercial Sensor Midpoint Wavelengths Available

for Use in Precision Agriculture

Index Definition References
GNDVI (NIR - G)/(NIR + G) Gitelson et al. (1996)
MSAVI2 0.5 % [2 x (NIR + 1) - SQRT((2 x NIR + 1) - 8 x (NIR —(R))] Qi etal. (1994)

NDVI (NIR - R)/(NIR + R) Rouse et al. (1973)
OSAVI (NIR - R)/(NIR + R + 0.16) Rondeaux et al. (1996)
REIP R/(NIR + R+ G) Sripada et al. (2005)
RVI NIR/R Jordan (1969)

SAVI 1.5 x [(NIR — R)/(NIR + R + 0.5)] Huete (1988)

Crop Circle ACS 430 Re00 Ro300 Rygo Holland et al. (2012)
CropSpec R30 Rygs Reusch et al. (2010)
GreenSeeker Resor Ry Solie et al. (1996)

Yara N sensor ALS R;300 Rygo. Rogor Rozg Link and Reusch (2006)

G refers to green reflectance, NIR to near infrared, and R to red reflectance. For commercial sensors, Rx refers to the center

wavelength x of the reflectance band used by the sensor.

Several red-edge-based vegetation indices such as trans-
formed chlorophyll absorption reflection index (TCARI) have
been identified from hyperspectral imagery (Haboudane et al.,
2002) for estimating crop nitrogen status (Table 7.2). For exam-
ple, red-edge inflation point (REIP; Guyot et al., 1988) uses a
red band (670 nm), two red-edge bands (700 and 740 nm), and
an NIR band (780 nm). It accurately estimated nitrogen sup-
ply to the plant, plant nitrogen concentration and uptake, and
the nitrogen nutrition index (NNI) and was not affected sig-
nificantly by interfering factors (e.g., zenith angle of the sun,
cloud cover, and soil color) (Heege et al., 2008; Mistele and
Schmidhalter, 2008). The canopy chlorophyll content index
(CCCI) is an integrated index based on the theory of 2D pla-
nar domain illustrated by Clarke et al. (2001) using three bands
(red, red-edge, and NIR). It uses NDVI as a surrogate for ground
cover to separate soil signal from plant signal and the normal-
ized difference red-edge (NDRE) index as a measure of canopy
nitrogen status (Fitzgerald et al., 2010). It is not significantly
affected by ground cover (Fitzgerald et al., 2010) and worked
well for estimating plant nitrogen status in the early growing

season of maize (Li et al., 2014a). Other red-edge indices include
red-edge chlorophyll index (ClIred edge) (Gitelson et al., 2005),
red-edge ratio index (Erdle et al., 2011), DATT index (Datt,
1999), medium-resolution imaging spectrometer terrestrial
chlorophyll index (MTCI) (Shiratsuchi et al., 2011), red-edge
soil-adjusted vegetation index (RESAVI), modified RESAVI
(MRESAVI), red-edge difference vegetation index (REDVI), and
red-edge renormalized difference vegetation index (RERDVT)
(Cao et al., 2013).

The ultraviolet (UV), violet, and blue spectral regions have
also been found to be important for estimating plant nitrogen
concentration (Li et al., 2010). Wang et al. (2012) developed a
new three-band vegetation index using NIR, red-edge, and blue
bands [(Ry,, — Ryg5 + 2 X Ryp3)/(Ryyy + Ryp5 — 2 X Ryys)], which
was found to be closely related to wheat and rice leaf nitrogen
concentration. Far NIR (FNIR) and shortwave infrared (SWIR)
bands were found to be important for estimating plant aboveg-
round biomass (Thenkabail et al., 2004; Gnyp et al., 2014). These
bands are currently missing from the commercial active canopy
sensors commonly used in precision farming.

TABLE 7.2 Hyperspectral Narrowband Vegetation Indices Available for Use in Precision Agriculture

Index Definition References
Aphid index (AI) (Rsz6 = Rogg)/(Rys6 — Ryy6) Mirik et al. (2007)
Clred edge (Rys3/Ryp0) — 1 Gitelson et al. (2005)
DATT index (Resy = Ropo)/(Rso — Rego) Datt (1999)

Damage sensitive spectral index (DSSI)

(R576 - Rsss - Rsos - R54o)/[(R716 - Rsss) + (Rsos - R54o)]

700 + 40 x {[(Rgs7 = Ry55)/2 = Ryl /(Ry55 + Ry}

Leathopper index (LHI) (Rye1 = Rgo1)/ (Rsz0 — Ryy5)
MTCI (Rysy = Rygo)/ (Ryg = Regy)
NDRE (Rygp = Ryp0)/ (Rygg + Ryng)
REIP

Red edge ratio index (Rygo/Ry30)

PK index (Rygss = Ryzis)/ (Rygss = Ryzps)
PRI (Rs31 = Rspo)/ (Rsg; + Rag)

S index (Rizg0 = Rego)/ (Ryzg0 + Rego)
TCARI

3 % [(Rygp = Rezp) = 0.2 X (Rygg = Rese) (Rygo/ Rezo)]

Mirik et al. (2007)
Prabhakar et al. (2011)
Dash and Curran (2004)
Barnes et al. (2000)
Guyot et al. (1988)
Erdle et al. (2011)
Pimstein et al. (2011)
Gamon et al. (1992)
Mabhajan et al. (2014)
Haboudane et al. (2002)

R refers to reflectance at the wavelength (nm) in subscript. NIR refers to near-infrared reflectance.
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(b)

FIGURE 7.2 Hyperspectral estimates of (a) NDVI values and (b) TCARI-OSAVTI values for small plots in a Minnesota potato field with two crop
varieties receiving a wide range of nitrogen fertilizer application rates and timings. NDVT values exhibit a small range of values due to saturation.
In contrast, TCARI-OSAVI values exhibit a large range of values and are better suited for identifying differences in nitrogen stress for each variety.

The commonly used NDVI can easily become saturated at
moderate to high canopy coverage conditions (Figure 7.2; Nigon
etal., 2014). One reason is due to the normalization effect embed-
ded in the calculation formula of this index (Nguy-Robertson
et al,, 2012; Gnyp et al., 2014), and another reason is due to the
different transmittance of red and NIR radiation through the
crop canopy leaves. The saturation effect of NDVI can be par-
tially addressed by using RVI or wavelengths having similar
penetration into the canopy (Van Niel and McVicar, 2004; Gnyp
etal., 2014; Li et al., 2014a).

It should be noted that the sensitive spectral reflectance bands
for precision farming change at different crop growth stages in
response to crop growth and development (Li et al., 2010; Gnyp
et al., 2014). Different vegetation indices are needed for different
crops, with different crop growth parameters at different growth
stages (Hatfield and Prueger, 2010).

Fluorescence of leaf chlorophyll is an emerging research area
in precision farming (Tremblay et al., 2012). When leaves that
have been in the dark are exposed to UV or blue light, chlo-
rophyll a in photosystem II (PSII) is excited to the first singlet
state (Sayed, 2003), and upon decay to the ground energy state,
these molecules are capable of fluorescence. Leaf fluorescence is
affected by many factors including the wavelength and inten-
sity of incident light, temperature, canopy structure, and leaf
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chlorophyll content, which may be affected by crop stresses
from water, nitrogen, and salinity (Sayed, 2003; Tremblay et al.,
2012). On first exposure to light, quinine acceptors in PSII are
maximally oxidized (Baker and Rosenqvist, 2004), leading to a
minimal fluorescence level (F,). After further exposure to light,
maximal fluorescence (F,) may be attained, indicating that all
electron acceptors are reduced (Baker and Rosenqvist, 2004).
Interpretation of plant stress levels is often based on combina-
tions or ratios of these two parameters (Sayed, 2003; Baker and
Rosenqvist, 2004; Tremblay et al., 2012). Variable fluorescence
(F,) is defined as F | — F_, and F/F, represents the photochemi-
cal efficiency of PSII (Tremblay et al., 2012). High values of F,
indicate plant stress (Tremblay et al., 2012), whereas low values
of F /F indicate nitrogen stress (Baker and Rosenqvist, 2004).
Diagnosis of specific types of crop stress may be facilitated by
combining fluorescence spectroscopy with hyperspectral or
multispectral imaging (Moshou et al., 2012).

7.7 Nutrient Deficiencies

Crop nutrient deficiencies are a major cause of crop stress and
reductions in crop yield or quality. Nutrient deficiencies may
be caused by macronutrients such as nitrogen, phosphorus,
or potassium, or by micronutrients such as sulfur, calcium,
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magnesium, or zinc. Nutrient deficiencies often cause changes
in leaf pigment concentrations, particularly for chlorophyll
a and b. Changes in chlorophyll a or b content can be detected
using remote sensing in the green (550 nm) and red-edge
(710 nm) wavelengths. Nutrient deficiencies from either macro-
or micronutrients cause spectral reflectance of crop leaves
to increase in the green portion of the spectrum. Reflectance
spectra of deficient leaves alone are insufficient in many cases to
determine which nutrient is responsible for the deficiency and
what rate or formulation of fertilizer is needed to correct the
deficiency. Crop deficiencies also cause changes in crop biomass
that can be detected using NIR reflectance.

Crop scout professionals have learned to distinguish and
identify nutrient deficiencies based on coloration, pattern, loca-
tion, and timing of the deficiency. Several examples for corn
illustrate the approach used by crop scouts (Mueller and Pope,
2009). Nitrogen deficiency in corn appears as a yellowing of leaf
color, starting with lower leaves. Deficiencies first appear at leaf
tips and progress toward the base of the leaf in a v-shaped pat-
tern. Phosphorus deficiency appears as red to purple leaf tips in
the older leaves of young corn plants that appear to have stunted
growth. Newly emerged leaves do not show phosphorus deficien-
cies, and the distinctive coloration associated with phosphorus
deficiencies disappears when the crop grows to a meter or more
in height. Potassium deficiency appears in corn as a yellowing
along the edges of leaves at growth stage V6. It is often associated
with conditions that lead to poor rooting depth. Remote sens-
ing offers the potential to identify characteristic colors, patterns,
and locations on a plant affected by nutrient deficiencies if the
spatial resolution of imagery is on the order of a few centimeters.

Nutrient deficiencies that are detected and diagnosed in a
timely fashion can be corrected using variable rate technology
(VRT). VRT involves applying the right rate of fertilizer, at the
right blend, in the right location, and at the right time. There
is a long history of VRT in precision farming, with a primary
focus on correcting nutrient deficiencies caused by phospho-
rus or nitrogen. In the earliest application of remote sensing for
precision farming, Landsat TM images were used along with
auxiliary data from soil sampling to develop maps showing spa-
tial variability in phosphorus fertilizer recommendations for a
wheat farm in Washington State (Bhatti et al., 1991). Landsat
imagery was used to estimate spatial patterns in soil organic
matter content, which were indirectly correlated with spatial
patterns in soil phosphorus.

Proximal sensing of crops is currently the primary tool used to
detect nutrient deficiencies for variable rate application of fertil-
izer. This is based on research that showed nitrogen deficiencies
could be detected using spectral reflectance in the green, red, red
edge, and NIR portions of the spectrum. Commercial sensors
used in precision farming to detect crop nitrogen deficiencies
(Figure 7.3; Table 7.1) are mainly active crop canopy sensors with
their own light sources to avoid the influence of different envi-
ronmental light conditions, including the GreenSeeker, Crop
Circle, CropSpec, and Yara N-sensor (Barker and Sawyer, 2010;
Kitchen et al., 2010; Shaver et al., 2011). GreenSeeker operates
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FIGURE7.3 Active crop canopy sensors commonly used in precision
farming in the United States. (GreenSeeker, left; Crop Circle ACS 430,
middle; Crop Circle ACS 470, right.)

in the red (650 nm) and NIR (770 nm). Crop Circle ACS 210
operates in the green (590 nm) and NIR (880 nm), while Crop
Circle ACS 430 has red (670 nm), red edge (730 nm), and NIR
(780 nm) bands. Crop Circle ACS 470 sensor also has three
bands but is user-configurable with a choice of six spectral bands
covering blue (450 nm), green (550 nm), red (650, 670 nm), red
edge (730 nm), and NIR (>760 nm) regions (Cao et al., 2013).
CropSpec operates in the red edge (730 nm) and NIR (805 nm).
Yara’s traditional N-sensor operates at 730 (red) and 760 (NIR)
nm. A newer version of the Yara N sensor allows the operator to
select four reflectance bands between 730 and 970 nm.

One limitation of the GreenSeeker, Yara N, CropSpec,
and Crop Circle sensors is that they cannot directly estimate
the amount of N fertilizer needed to overcome crop N stress
(Samborski et al., 2009). Instead, sensor readings have to be
compared to readings in reference strips receiving sufficient
N fertilizer (Blackmer and Schepers, 1995; Raun et al., 2002;
Sripada et al., 2008; Kitchen et al., 2010). These comparisons are
the basis for N fertilizer response functions that relate sensor
readings to the amount of N fertilizer needed to overcome crop
N stress (Scharf et al., 2011). Clay et al. (2012) have shown that
for wheat, when both water and nitrogen stress occur simultane-
ously, N fertilizer recommendations based on NDVI values are
more accurate when reference strips have both sufficient nitro-
gen and insufficient moisture (water stress) in comparison with
reference strips with both sufficient nitrogen and sufficient mois-
ture (no water stress). Kitchen et al. (2010) found that use of Crop
Circle sensors was able to accurately identify N stress in corn
50% of the time in 22 field studies conducted over 4 years across
a wide range of soil types in Missouri.

Phosphorus deficiencies typically appear as changes in reflec-
tance in the NIR and blue portions of the spectrum. There has
been little research on remote sensing methods to distinguish
nitrogen, phosphorus, and potassium deficiencies in crops
(Pimstein et al., 2011; Mahajan et al., 2014). Spectral signatures
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for nitrogen, phosphorus, and potassium deficiency show
responses at different wavelengths (Pimstein et al., 2011). NDVI
values (such as those estimated using GreenSeeker technology)
are often not able to distinguish between N and P deficiencies
(Grove and Navarro, 2013). To distinguish nitrogen, phospho-
rus, and potassium deficiencies in wheat, Pimstein et al. (2011)
proposed new spectral indices that require collecting reflectance
data in the SWIR region (1450, 1645, and 1715 nm). These new
indices were able to predict P or K deficiency with an accuracy
ranging from 78% to 80%, but accuracy levels decreased as vari-
ability in crop biomass increased. Mahajan et al. (2014) found
that distinguishing between sulfur and nitrogen deficiency
in wheat required the collection of SWIR data. They proposed
a sulfur deficiency index that involves an NDVI-like ratio of
reflectances at 1260 and 660 nm (Mahajan et al., 2014). The per-
formance of the sulfur index was nominally better than other
standard vegetative indices, including NDVI and SAVI.

In order to distinguish between different types of nutrient defi-
ciencies, remote sensing must rely on more than changes in reflec-
tance at key wavelengths. A diagnosis with remote sensing must
also be able to detect where on the plant (upper vs. lower leaves,
leaf tips or edges, etc.) symptoms of deficiency occur and in what
pattern. These patterns change over time, and early detection is
important. High-resolution imagery at the scale of centimeter-size
pixels is needed for early detection; otherwise it will be difficult to
identify whether or not symptoms of deficiency are in upper or
lower leaves, at leaf tips or basal regions, or along the edges or in
interveinal regions of the leaf. For deficiencies that tend to occur
in young plants, remote sensing must be able to compensate for
reflectance from bare soil; hence, spectral indices such as SAVI
(Huete, 1988), modified SAVI (MSAVT; Qi et al., 1994), or opti-
mized SAVI (OSAVI; Rondeaux et al., 1996) may be useful.

7.8 Insect Detection

Insects cause crop damage by sucking plant sap, eating plant tis-
sue, or damaging crop roots. Examples include European corn
borer and Russian wheat aphid. These damages usually result
in decreased crop biomass and deformed or stripped leaves.
Because decreased biomass also occurs in response to other
crop stressors, identifying insect damage via remote sensing has
proved challenging.

Insect growth and development is more strongly linked
with temperature and growing degree days than crop phenol-
ogy (Hicks and Naeve, 1998; MacRae, 1998). Insects can first
appear in a variety of locations, including along edges of fields,
on undersides of leaves, or in the soil. It is difficult to detect
insects in soil or on the undersides of leaves with remote sensing.
Remote sensing often detects crop damage caused by insects,
rather than the insects themselves. Harmful insects should be
detected and identified before they can cause significant dam-
age to crops. Proper identification is important because control
methods vary by insect species.

Remote sensing is not widely used in precision farming for
detecting insect infestations. Franke and Menz (2007) used
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hyperspectral imaging from an airplane in Iowa corn plots
inoculated with European corn borer. Spectral indices were
largely ineffective at differentiating inoculated plots from con-
trol plots during the first generation of insect growth. NDVI was
consistently able to identify inoculated plots during the second
generation of corn borer growth. These results show that it is
difficult to use remote sensing for early detection of European
corn borer. Mirik et al. (2007) used a handheld hyperspectral
radiometer to measure reflectance in the VIS and NIR wave-
lengths for Texas, Colorado, and Oklahoma winter wheat plots
with and without significant Russian wheat aphid infestations.
Their results showed that aphid damage resulted in changes in
biomass that reduced NIR reflectance in infested plants relative
to undamaged plants. They also showed increased reflectance in
the green portion of the spectrum due to changes in chlorophyll
content of leaves for infested plants relative to uninfested plants.
They proposed using an aphid index (AI) and a damage sensi-
tive spectral index (DSSI) to detect Russian wheat aphid damage
(Table 7.2). Al is estimated based on (Rs;5 — Rype)/(Rys6 — Ry16),
where R is reflectance and the subscript denotes the wavelength
(nm) of interest. DSSI is more complicated and is estimated using
(Ry16 = Ry = Rsgs = Rago)/ [(Ry16 — Rgs) + (Rsps — Rsyo)]. Because the
field of view for the handheld spectrometer was narrow, there
was little mixing of pixels from infested and uninfested leaves,
something that would be a significant impediment if reflectance
measurements were obtained using satellites. Aphid damage
was identified in four fields at different times of the year with an
accuracy ranging from 46% to 80% using the Al

Prabhakar et al. (2011) used hyperspectral imaging to detect
leathopper damage in cotton. They found that leathopper dam-
age was associated with decreases in the content of chlorophyll
a and b pigments in leaves. The best spectral indices for identi-
fying leathopper damage were based on changes in leaf reflec-
tance in the VIS (376, 496, and 691 nm) and NIR (761, 1124, and
1457 nm) portions of the spectrum. A leathopper index defined
as (R — Reo1)/(Rsso — R;;5) could explain from 46% to 82% of the
variability in leathopper damage across three fields. A number of
other spectral indices also performed relatively well, including
NDVI, OSAVI, AL and DSSI (Table 7.2).

7.9 Disease Detection

Diseases are caused by infestations of virus, fungi, or bacteria.
They can affect any part of the plant, including leaves, stalks,
roots, or grain. Damage to leaves often occurs as lesions or pus-
tules that may lead to white, tan, brown, or orange leaf colors
(Mueller and Pope, 2009). Lesions can occur in shapes as varied as
spots, rectangles, or strips that vary in size and area. Each disease
has a specific location where infection tends to occur and each
is associated with different shapes and colors of infected areas.
Infected plants may eventually become stunted and have chlo-
rotic or necrotic leaves (Mirik et al., 2011). Early detection of dis-
ease is essential to limit economic damage (Sankaran et al., 2010).

Spectral characteristics of crops are often affected by disease,
as described by West et al. (2003). Disease propagules often
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influence reflectance in the VIS spectrum. Necrotic or chlorotic
damage affects chlorophyll content and reflectance in the green
and red-edge regions. Senescence affects reflectance in the red
to NIR region. Stunting and reduced leaf area influences NIR
reflectance. Impacts of disease on photosynthesis affect fluores-
cence in the spectral region between 450-550 and 690-740 nm
(West et al., 2003). Crop disease also affects transpiration rates
and water contents of leaves; these effects can be detected in the
shortwave and TIR regions.

Remote sensing is not widely used to detect crop disease in
precision farming; however, research has shown that remote
sensing has the potential to be used for such purposes (Table 7.2).
Remote sensing has been used to detect fungal and viral infec-
tions in soybean (Das et al., 2013) and wheat (Muhammed,
2005; Huang et al., 2007; Mewes et al., 2011; Mirik et al., 2011).
Yellow rust infections of wheat in China were detected with
a 91%-97% accuracy over 2 years using aerial hyperspectral
remote sensing and a photochemical reflectance index (PRI)
(Huang et al., 2007). Values of PRI were estimated using reflec-
tance values at 531 and 570 nm. Fluorescence at 550 and 690 nm
was also useful for distinguishing wheat leaves infected with
yellow rust from uninfected leaves (Bravo et al., 2004). Wheat
infected with septoria leaf blotch in France was accurately
distinguished from uninfected wheat using a combination of
NDVI and TIR measurements (Nicolas, 2004). Infestations of
powdery mildew and leaf rust on wheat in Germany were dif-
ficult to detect at early stages of infection with QuickBird-like
NDVI values (Franke and Menz, 2007), with an accuracy of
only 57%. This is because at early stages of infection, reflectance
in the red portion of the spectrum is affected, but NIR reflec-
tance is not (Lorenzen and Jensen, 1989). At more advanced
stages of infection, plant canopy structure and biomass are
affected, causing changes in NIR reflectance that result in large
decreases in NDVI values and higher accuracy (89%) in detect-
ing infection.

Yuan et al. (2014) used hyperspectral imaging to simultane-
ously detect and distinguish damage to wheat leaves caused by
yellow rust and powdery mildew diseases and Russian wheat
aphids. Reflectance in leaves damaged by disease and insect
generally increased relative to undamaged leaves at wavelengths
between 500 and 690 nm. Distinguishing between disease and
insect damage required analysis of reflectance in the NIR por-
tion of the spectrum between 750 and 1300 nm. Powdery mildew
and aphid damage caused reflectance in this region to decrease,
whereas reflectance in this region increased for yellow rust
damage. Partial least squares regression of reflectance in these
regions, along with spectral derivative parameters and con-
ventional spectral indices such as AI (Table 7.3), could explain
73% of the variability in intensity of wheat damage by the three
stressors studied. Distinguishing damage from yellow rust ver-
sus powdery mildew versus aphids with hyperspectral imaging
and Fisher linear discriminant analysis was more challenging,
however, especially at low intensities of infestation. Further
work is needed to extend the research of Yuan et al. (2014) to
entire crop canopies.
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TABLE 7.3 Spectral Indices or Commercial Sensors Available
for Diagnosis of Nutrient Deficiencies, Crop Disease, and Insect
or Weed Infestations in Precision Agriculture

Index N,PorK Disease Insects Weeds

Aphid index (AI) X
Clred edge X
DATT index X

Damage sensitive X
spectral index (DSSI)

Fluorescence
Leathopper index (LHI) X
MERIS TCI

NDRE

NDVI

REIP

Red edge ratio index
RVI

PK index

PRI X
SAVT (or related)

S index

TCARI

Crop Circle ACS 430
CropSpec

>
>

Mo X

GreenSeeker

oI I I A A

Yara N sensor
WeedSeeker X

7.10 Weed Detection

Weeds compete with crops for light, water, and nutrients. Above
critical weed density thresholds, crop yields and quality will
decline substantially. In most fields, weed infestations are not
uniform; rather, weeds tend to occur in patches or clusters, leav-
ing up to 80% of the field free of weeds (Wiles et al., 1992; Lamb
and Brown, 2001). Because of this, there has been quite a bit of
interest in precision farming (variable rate herbicide applica-
tion) to control weeds that occur in patches while avoiding her-
bicide application in areas without weeds (Stafford and Miller,
1993; Mulla et al., 1996; Hanks and Beck, 1998; Khakural et al.,
1999). Variable rate herbicide application is especially of interest
in Europe, where genetically modified crops (such as Roundup
Ready soybean) are not allowed.

Weeds can be identified using remote sensing based on their
spectral signatures, leaf shape, and organization of the weedy
plant. Detecting and identifying weeds in a bare soil that is crop-
free is easier than detecting and identifying weeds in an actively
growing crop (Thorp and Tian, 2004; Lopez-Granados, 2011).
Detecting weeds that occur in large, dense clusters is easier with
aerial remote sensing than identifying small, isolated weeds.

Remote sensing with satellites or airplanes is adequate for
detecting weeds that occur in large, dense clusters within a crop
or in bare crop-free soil (Lamb and Brown, 2001). Ground-based
proximal sensing is more suited than aerial remote sensing to
detect and identify small, isolated weeds in a growing crop (Thorp
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and Tian, 2004). Proximal sensing has been used for real-time
monitoring and spraying of weeds from a field herbicide appli-
cator (Lopez-Granados, 2011). A commercial example of this
technology is WeedSeeker (Hanks and Beck, 1998), which uses
gallium arsenide photoelectric emitters to detect weeds grow-
ing in bare soil or in a crop canopy (Sui et al., 2008). This tech-
nology is best suited to detecting weeds at intermediate growth
stages that are growing between crop rows. It is not well suited to
detecting recently emerged weeds (Thorp and Tian, 2004).

Zwiggelaar (1998) reviewed remote sensing methods for dis-
tinguishing weeds from soils or crops. Remote sensing is only
useful if weeds have a spectral signature that is uniquely different
from surrounding bare soil or crops and if the spatial resolution
of images is fine enough to detect individual weeds or patches
of weeds (Lamb and Brown, 2001). Distinguishing weeds from
soil is often based on graphing reflectance in the red portion of
the spectrum versus reflectance in the NIR portion of the spec-
trum. A graph of these two reflectance bands for bare soil gives
the soil line (Wiegand et al., 1991). For fields with mixtures of
bare soil and weeds, the presence of weeds increases with verti-
cal distance above the soil line along the NIR axis. Graphs of red
versus NIR reflectance are commonly referred to as tasseled cap
transformations. Band ratios have also been used to distinguish
weeds from bare soil. The most common approach for detection
of weeds in bare soil is to use the NDVI ratio (Table 7.3). This
ratio has the advantage of canceling out effects of shadows pro-
duced by weeds. Reflectance from bare soil can also be dimin-
ished through use of SAVI (OSAVI, MSAV], etc).

Spectral reflectance patterns of weeds and crops are in gen-
eral very similar when bare soil is absent (Zwiggelaar, 1998;
Lamb and Brown, 2001). When bare soil is present, reflectance
values at two wavelengths (e.g., 758 and 658 nm) can be used
along with discriminant analysis to distinguish crops from
weeds from soil (Borregaard et al., 2000). RVI (= NIR/R) and
NDVT have also often been used to discriminate between weeds
and crops (Table 7.3), especially when crops occur in system-
atic rows and weeds occur as patches between rows. Detection
of weeds at early growth stages is very challenging (Lépez-
Granados, 2011), especially if they occur in recently germinated
crops with similar physiology (e.g., grassy weeds in cereal crops
or broad leaf weeds in dicotyledonous crops). Detection is easier
at later growth stages, when spectral differences between weeds
and crops are greatest (Lopez-Granados, 2011). Accuracies at
discriminating weeds from bare soil range from 75% to 92%,
while accuracies in distinguishing one weed species from
another often range between 61% and 88% (Thorp and Tian,
2004; Lopez-Granados, 2011).

7.11 Machine Vision for Weed
Discrimination

Discrimination between weeds and crops requires high spa-
tial resolution of imagery (Zwiggelaar, 1998). Remote sensing
images with a spatial resolution of tens of meters will not be suf-
ficient for discrimination of weeds and crops. Images at a spatial
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resolution of tens of centimeters to a meter are needed to distin-
guish plants from weeds (Lamb and Brown, 2001; Rasmussen
et al., 2013). However, even spectral indices at this fine scale of
resolution are often by themselves not sufficient because crops
and weeds often have similar reflectance signatures. Crops and
weeds are more easily distinguished based on differences in their
canopy or leaf shapes, heights, and structures. These features can
be described and distinguished from one another using machine
vision analysis of color images or video imagery (Gée et al., 2008;
Burgos-Artizzu et al., 2011).

Discrimination of one weed species from another is more
challenging than discriminating weeds from crops. Gibson
et al. (2004) used supervised classification of weeds in soybean
based on aerial remote sensing in the yellow, green, red, and NIR
bands. While weedy areas could be distinguished from soybeans
or bare soil with accuracies of greater than 90%, distinguishing
giant foxtail from velvetleaf had accuracy levels ranging from
41% to 83%.

Machine vision is commonly used for precision farming appli-
cations of discriminating weeds from bare soil or crops (Thorp
and Tian, 2004). There are two basic steps in discriminating
weeds (Gée et al., 2008; Burgos-Artizzu et al., 2011). The first is
distinguishing regions with vegetation from regions with bare
soil (segmentation). The second is distinguishing weeds from
crops (discrimination). As an example of this two-step process,
Gée et al. (2008) used a red-green-blue color image in various
row crops to estimate an excess green index (Gée et al., 2008),
which was then reclassified into black (soil) and white (vegeta-
tion) components. The reclassified image was then subjected to
a double Hough transformation (DHT) to identify the position
of the linear crop rows. Blobs of white (vegetation) that were off-
set from rows were assumed to be weeds. Burgos-Artizzu et al.
(2011) use real-time analysis of video imagery to perform these
same two steps and were able to accurately identify 85% of the
weeds in a field of maize.

Examples of machine vision for precision weed management
are numerous. The University of Tokyo developed an autono-
mous vehicle for mechanical weeding and variable rate applica-
tion of chemicals (Torii, 2000). This vehicle is guided along crop
rows based on a hue, saturation, and intensity transformation.
Tillet et al. (2008) used real-time machine vision in conjunction
with a mechanical weeder to reduce weed populations in cab-
bage by 62%-87%. Blasco et al. (2002) used machine vision with a
robotic weeder that produced an electrical discharge of 15,000 V.
These studies both show that it is possible to use precision farm-
ing techniques to avoid using herbicides to control weeds.

7.12 Remote Sensing Platforms

Remote sensing imagery for precision farming can be obtained
using satellites, airplanes, UAVs, ground robots, or agricultural
machinery (Moran et al., 1997; Zhang and Kovacs, 2012; Mulla,
2013). Remote sensing imagery from satellites has improved
in spatial resolution, spectral resolution, and the frequency of
return visits since the launch of Landsat in the 1970s. Spatial
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TABLE 7.4 Characteristics of Data Gathered from Satellite Sensors of Different Eras Suitable for Precision Farming

Satellite/Sensor Spatial Resolution (m) Spectral Bands (Number of Bands) Data Points or Pixels per Hectare
MODIS-Terra 250-1000 m 36 0.16, 0.01
Terra EOS ASTER 15, 30, 90 m (VIS, SWIR, TIR) 4,6,5 44.4,11.1,1.26
Landsat-7 TM 15m (P), 30 m (M) 7 44.4,11.1

ALI 10 m (P), 30 m (M) 1,9 100, 11.1
Hyperion 30 220 (400-2500 nm) 11.1

IRS-1C LISS 5m (P), 23.5 m (M) 3 400, 18.1
IRS-1D LISS 5m (P), 23.5m (M) 3 400, 18.1
SPOT-1,2,3,4 HRV 10 m (P), 20 m (P) 4 100, 25
Landsat-4,5 TM 30 m (M) 7 11.1
Landsat-1,2,3 MSS 56 x 79 4 2.26

M, multispectral; P, panchromatic; VIS, visible; SWIR, shortwave infrared; TIR, thermal infrared.

TABLE 7.5 Characteristics of Data Gathered from Very-High-Spatial-Resolution Satellites/Sensors Suitable for Precision Farming

Satellite/Sensor Spatial Resolution (m) Spectral Resolution (Number of Bands) Data Points or Pixels per Hectares

IKONOS 2 0.82 m (P), 4 m (M) 14,872, 625

QuickBird 0.61 m (P), 4 m (M) 26,874, 625

EROS A 1.82 m (P) 3,020

RapidEye 5 (M) 4 + red-edge 400

GeoEye-1 1.65 (M) 3,673

WorldView-3 1.24 (M), 3.7 (SWIR) 8 (M), 8 (SWIR) 6,504, 730

AISA Eagle 1(H) 63 10,000

Tetracam 0.066 (M) 5 + red-edge 2,295,684
Mini-MCA6

M, multispectral; P, panchromatic; H, hyperspectral.

resolution has improved from 30 m with Landsat 4 to 1.24 m
with WorldView-3 for multispectral satellite imagery (Tables 7.4
and 7.5). Spectral resolution (number of bands) has improved
from four broad bands in the blue, green, red, and NIR regions
to multiple narrowband imagery in the purple, blue, green, yel-
low, red, red edge, and NIR wavelengths. Return frequencies
have improved from several weeks to a day or 2. Despite these
improvements, satellite imagery in the VIS and NIR regions still
suffers from an inability to penetrate cloud cover. Furthermore,
there are continuing issues with satellite providers who are
unable to reliably provide agricultural imagery at desired time
intervals.

Aerial remote sensing imagery offers excellent capabilities for
precision farming applications. Spatial resolution is typically a
meter or better, and spectral resolution ranges from broadband
blue, green, red, and NIR to hyperspectral imaging (e.g., with
the AISA Eagle camera; Table 7.5). Aerial imaging can typically
be obtained when and where it is needed with high reliability.
Cloud cover is a continuing challenge for remote sensing from
airplanes. Even though airplanes can fly below cloud cover,
shadows from clouds cause difficulties in interpreting imagery.

Remote sensing imagery obtained by proximal sensing from
agricultural equipment is very popular in precision farming.
Examples include on-the-go sensing from fertilizer spreaders
for variable rate application of nitrogen fertilizer and on-the-
go sensing from herbicide sprayers for variable rate application
of herbicides. Sensors used for proximal sensing are typically
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limited to two or three narrow bands of reflectance, thereby lim-
iting the number of spectral indices that can be used to diagnose
causes of stress. This is particularly limiting in mature crops
with LAI values greater than three for sensors that calculate
NDVT values. The NDVTI values are less sensitive to spatial varia-
tions in chlorophyll content of leaves in mature crop canopies
than at earlier growth stages.

Researchers are beginning to explore the use of UAVs for
acquisition of remote sensing imagery (Figure 7.4). UAVs typi-
cally include fixed-wing aircraft or helicopters that fly at alti-
tudes of roughly 100 m (Zhang and Kovacs, 2012). Because
of the low altitude, many images are typically acquired, and
these must be tiled or mosaicked together to produce a con-
tinuous image of the field or farm of interest (Gémez-Candén
et al., 2014). Fixed-wing aircraft generally have longer flight
time (greater power supply) and payload capacity than heli-
copters. Aircraft have faster flight speeds than helicopters,
and this may result in blurring of images due to the low alti-
tude. Helicopter UAVs have the advantages of flexibility and
less space restriction by allowing vertical takeoff and the abil-
ity to land vertically, hover, and fly forward, backward, and
laterally as compared with fixed-wing UAVs, allowing them
to inspect isolated small fields closer to obstructions, which
may be difficult for fixed-wing UAVs (Huang et al., 2013).
Helicopters are generally more stable than aircraft, resulting
in fewer problems with variations in viewing angle from one
image to another. Remote sensing imagery from UAVs has
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FIGURE 7.4 Different types of UAVs used in precision farming: (a) fixed-wing aircraft, (b) helicopter, (c) quadrocopter, and (d) octocopter.

very high spatial resolution, typically on the order of 7-50 cm
(Table 7.5; Tetracam Mini-MCAG6). This allows individual
plants to be studied. However, it also requires special care in
correcting geometric distortion. Cameras used on UAVs range
from inexpensive digital cameras that provide panchromatic
images to expensive multispectral cameras that provide nar-
rowband reflectance in the blue, yellow, green, red, red edge,
and NIR regions of the spectrum (Table 7.5; Tetracam Mini-
MCAG6). Promising results have been obtained using UAV-
based remote sensing for estimating crop LAI, biomass, plant
height, nitrogen status, water stress, weed infestation, yield,
and grain protein content (Berni et al., 2009; Swain et al., 2010;
Samseemoung et al., 2012; Bendig et al., 2013). It is expected to
become a major remote sensing platform for precision farming
in the future.

7.13 Knowledge Gaps

Remote sensing applications in precision farming have increased
dramatically over the last 25 years (Mulla, 2013). This increased
adoption is associated with investments in precision farming
research, coupled with improvements in the spatial and spec-
tral resolution and return frequency of aerial remote sensing
imagery, and the development of proximal sensors. Aerial and
proximal remote sensing are primarily used for variable rate
application of irrigation water and nitrogen fertilizer or for
detection of weeds. Remote sensing is not widely used for detec-
tion of crop stresses by insects or plant diseases and is rarely
used for detection of nutrient deficiencies other than nitrogen.

© 2016 Taylor & Francis Group, LLC

There is a pressing need for broader use of proximal and
remote sensing in precision farming. Current applications of
remote sensing are rarely able to simultaneously identify loca-
tions of a field afflicted with crop stress and distinguish between
stresses caused by water, nutrients, weeds, insects, and dis-
ease. Furthermore, remote sensing is rarely able to distinguish
between stresses caused by different types of nutrients, differ-
ent types of diseases, or different types of insects. The main rea-
son for this failure is that remote sensing applications typically
rely only on spectral signatures at a few important wavelengths
(green, red, red edge, and NIR) or combinations of these wave-
lengths where different types of crop stress have similar influ-
ences on chlorophyll content of leaves and adverse effects on
crop biomass or canopy structure (Table 7.3). Distinguishing
between stresses caused by water, nutrients, weeds, insects, and
disease will require fusion of remote sensing information (e.g.,
hyperspectral and fluorescence spectroscopy) that are sensitive
to these influences and effects, combined with machine vision to
identify the locations on a plant (stems or leaves, leaf tips or leaf
edges, and upper leaves or lower leaves), colors of stress (yellow,
purple, red, brown, white, etc.), and the shapes associated with
stresses (e.g., monocotyledonous vs. dicotyledonous weeds,
spots vs. stripes).

Further development of remote sensing applications in preci-
sion farming will require multidisciplinary efforts by experts in
crop water, nutrient, weed, insect, and disease stresses working
collaboratively with experts in remote sensing and engineering.
At present, these types of multidisciplinary team efforts are rare.
Further development of remote sensing applications in precision
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farming will require use of high-resolution (centimeter scale)
aerial imagery at key wavelengths to identify locations affected by
crop stress, coupled with proximal sensing and machine vision
to differentiate between different types of crop stress in order to
diagnose the problem. Platforms to collect remote sensing imag-
ery must be capable of deployment at intervals of at least every
week during the growth of the crop, and these platforms must
be capable of distinguishing between stresses caused by water,
nutrients, weeds, diseases, and insects. UAVs and proximal sen-
sors offer significant potential to address these capabilities, and
further research with these platforms and sensors is encouraged.

7.14 Conclusions

Precision farming is one of the top 10 revolutions in agricul-
ture (Crookston, 2006). It can be generally defined as doing the
right management practices at the right location, in the right
rate, and at the right time. Precision farming offers several ben-
efits, including improved efficiency of farm management inputs,
increases in crop productivity or quality, and reduced transport
of fertilizers and pesticides beyond the edge of field.

Losses in crop productivity often occur nonuniformly at specific
locations within fields and at critical growth stages. Crop stress
must be detected in a timely fashion, the type of stress causing
it must be identified, and management practices must be imple-
mented at the right locations and times to overcome crop stress.

Research applications of remote sensing in precision farm-
ing are numerous and include techniques for detecting water
stress, nitrogen stress, weed infestations, fungal disease, and
insect damage. Remote sensing has shown the ability to identify
locations experiencing stress, with accuracies ranging from 50%
to 80% for nutrient stress, 46% to 82% for insect damage, 57%
to 97% for crop disease, and 75% to 92% for weeds. Accuracy
depends on the growth stage of crop, the level of crop stress, the
spectral index used for assessment of stress, and the spatial and
spectral resolution of remote sensing.

Significant advances have been made in identifying key
wavelengths and spectral indices at which these stresses influ-
ence the reflectance or fluorescence properties of plant pig-
ments and crop canopy architecture. However, little research
has been conducted on detecting locations affected by crop
stress and simultaneously distinguishing between different
types of crop stress. A basic problem is that remote sensing does
not typically respond directly to water, nutrient, weed, insect,
or disease stresses; rather it responds indirectly to the changes
in chlorophyll or crop canopy architecture caused by these crop
stresses. For this reason, remote sensing has not yet been widely
adopted by farmers for routine use in precision agriculture. The
main reasons include the difficulty in interpreting spectral sig-
natures, the slow processing time for data, the high expense,
and the need to collect confirmatory data from ground surveys
in order to diagnose causative factors for anomalous spectral
reflectance data. Clearly, there is a significant scope for improv-
ing the interpretation and utility of remote sensing data for pre-
cision agriculture.
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Researchers have focused significant effort on identifying
key wavelengths at which areas with crop stress can be distin-
guished from areas without crop stress. These wavelengths, and
spectral indices based on them, typically occur in the green, red,
red edge, and NIR bands. Significant progress has been made
in identifying spectral indices that respond to changes in leaf
pigmentation or canopy biomass and architecture, or indices
that are capable of eliminating interference from shadows and
soil background effects. As the spatial resolution of remote sens-
ing imagery used in precision farming has improved (from 30 m
to submeter resolution), techniques for discriminating crops,
soils, and weeds have also improved. As spectral bandwidth has
decreased (from broadband blue, green, red, and NIR to narrow-
band hyperspectral and fluorescence spectroscopy), research-
ers have discovered that crop stress is more easily detected
with narrow bands (10-20 nm wide) rather than broad bands
(50-100 nm wide) at these key wavelengths. Narrowband hyper-
spectral imagery is amenable to image analysis with advanced
chemometric techniques that allow for better diagnosis of crop
stress, including lambda-lambda plots, derivative analysis, and
partial least squares analysis.

Less progress has been made in the use of remote sensing cou-
pled with computer vision for differentiating between specific
types of crop stress based on the location within the plant where
stress occurs and the shape or color of the stressor. Advances in
computer vision are needed that required collaborative research
by multidisciplinary teams of agronomists, engineers, and
remote sensing experts working with high-resolution hyper-
spectral and video imagery that is capable of viewing individual
plants. High-resolution imagery is increasingly possible because
of improvements in camera technology and proximal sensors
deployed on UAVs or ground vehicles that collect imagery at
short distances from the growing crop.
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8.1 Introduction

Tillage prepares the seedbed by mechanical disturbance to
loosen and smooth the soil surface, often mixing topsoil with
surface organic debris to aerate soil, assist in weed suppression,
control insects and pests, and, in midlatitudes, promote spring-
time warming and drying. Tillage has been practiced, in varied
forms, throughout the world since antiquity. During the 1700s
and 1800s, innovations in designs of plowshares greatly increased
tillage effectiveness by increasing depth of the disturbed soil and
by turning the surface soil to more completely mix surface crop
residue (also referred to as plant litter, senescent vegetation, or
nonphotosynthetic vegetation [NPV]) with disturbed soil.

For millennia, mechanical disturbance of the soil was accom-
plished using hand tools and animal power. By the mid-nineteenth
century, steam-powered tractors (later replaced by internal com-
bustion engines) greatly increased tillage efficiency and speed and
expanded tillage into a wider range of slopes, topography, and
ecosystems. Notable impacts of mechanization are the expansion
of tillage into formerly uncultivated environments, especially prai-
ries and steppes of several continents that have since become some
of the most productive agricultural systems, but also some of the
most susceptible to drought and erosion. Mechanization also led
to further innovations in designs of specialized tillage implements
and to increases in tillage operations, which often created the con-
text for soil and water erosion.

Detrimental impacts of tillage include increased wind and
water erosion; increased soil compaction, especially in the con-
text of mechanization; decreased soil organic matter; reduced
water infiltration; and increased amounts of nutrients reach-
ing streams and rivers. By the 1940s, increased awareness of
detrimental aspects of tillage (Faulkner 1943), combined with
availability of herbicides, led to alternative practices to mini-
mize adverse aspects of tillage. Such practices include increased
use of tillage instruments that minimize soil disturbance and
leave crop residue on the soil surface.

Recognized environmental benefits of conservation tillage sys-
tems include reduced soil erosion from wind and water, carbon
emission reductions, and improvements of air, soil, and water
quality (Wander and Drinkwater 2000). Long-term adoption of
conservation tillage practices can increase soil organic matter
content and, hence, can potentially sequester atmospheric car-
bon into soils (Lal 2004). Conservation tillage practices increase
soil water infiltration, improve nutrient cycling, and, in general,
improve water quality because of improved retention of soil
nutrients (Karlen et al. 1994). Soil quality is improved because
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accumulation of surface organic matter increases aggregate stabil-
ity and higher levels of crop residues provide shelter and food for
wildlife. As for economic perspective, conservation tillage prac-
tices decrease labor and fuel costs because of reduced tillage oper-
ations and reduced fertilizer requirements as a result of improved
soil quality (West and Marland 2002). Conservation tillage, espe-
cially no-till, requires fewer field operations and reduces the num-
ber of field days needed to plant a crop. As a result, it reduces the
risk of delayed planting due to unfavorable weather conditions
and also provides possibilities to practice double-cropping.

As alternative tillage practices gained acceptance and were
implemented, conservationists needed objective data to gauge the
extent and benefits of their use. The Soil Tillage Intensity Rating
(STIR), developed by USDA-Natural Resource Conservation
Services (NRCS), provides a physically based evaluation of tillage
systems across the spectrum from true no-till to conventional
plow systems (USDA-NRCS 2014). STIR requires information
on (1) each tillage implement used, (2) the operating speed of
the implement, (3) the depth of tillage, and (4) the fraction of
the total soil surface disturbed by the tillage implement. STIR
provides robust evaluations of complex tillage systems and crop
rotations for conservation planning. However, STIR is impracti-
cal for surveys over many fields and large regions.

Tillage intensity can also be characterized by the fraction of the
soil surface covered by crop residue. The Conservation Technology
Information Center (CTIC) defined the following categories of till-
age based on the crop residue cover on the soil surface shortly after
planting: conventional tillage has <15% residue cover, reduced till-
age has 15%-30% residue cover, and conservation tillage has >30%
residue cover (CTIC 2014). This less robust definition of tillage
intensity has a few caveats that must be considered, for example,
fields where crop residues were harvested for feed or biofuel may
have low crop residue cover without soil-disturbing tillage.

Over time, varied efforts to collect information on tillage
intensity have included visual assessment, field measurements,
agricultural censuses, and remote-sensing techniques. Such
information is required by a number of agroecosystem models
and is important for assessing the impacts of tillage practices on
soil erosion, soil carbon sequestration, and water quality. Field
measurements and agricultural surveys to acquire tillage infor-
mation are time-consuming and difficult. Moreover, it is unre-
alistic to survey every single field using these methods over large
regions and over time. Therefore, it is of great interest to develop
techniques that can routinely and systematically map tillage
practices. Synoptic remote-sensing imagery offers opportuni-
ties to provide spatial-temporal information on tillage practices
efficiently at low costs. The first investigation on the potential of
using remote-sensing imagery to map crop residues can be traced
back to Gausman et al. (1975). Thereafter, both aerial and satel-
lite imagery were tested to differentiate different tillage practices
and estimate crop residue cover. For instance, Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) data were found to be
useful for crop residue cover estimation (Daughtry et al. 2005).

Although aerial imagery, properly timed and collected at suit-
able resolutions, offers the capability to assess soil tillage status,
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the broadscale surveys require the areal coverage, revisit capabili-
ties, and spectral channels that are, as a practical matter, available
only through satellite observation systems. Here we discuss the
two main classes of satellite systems with the potential for rou-
tine broadscale tillage assessment: (1) optical remote sensing (vis-
ible, near-infrared [NIR], and midinfrared imaging sensors) and
(2) microwave remote sensing (synthetic aperture radar [SAR]).

8.2 Field Assessment of Crop
Residue Cover

Methods appropriate for assessing crop residue cover in fields can
be grouped into intercept and photographic techniques (Morrison
et al. 1993). Intercept methods use a system of grid points, cross-
hairs, or points along a line where the presence or absence of resi-
due is determined. The standard technique used by USDA-NRCS
is the line-point transect method where a 15-30 m line with 100
evenly spaced markers along the line is stretched diagonally across
the crop rows in the field and markers intersecting crop residue
are counted. Accuracy of the line-point transect method depends
on the length of the line, the number of points per line, and the
skill of the observer. At least 500 points must be observed to deter-
mine corn residue cover to within 15% of the mean (Laflen et al.
1981). Significant modifications to the line-point transect method
include the use of measuring tapes, meter sticks, and wheels with
pointers (Corak et al. 1993; Morrison et al. 1993). However, the
line-point transect is impractical for monitoring crop residue
cover in many fields over broad areas in a timely manner.

For the photographic method, a color or color infrared digital
camera is used to take multiple vertical photographs within a sam-
pling area where residue conditions appear visually homogeneous.
A grid or crosshairs is superimposed on the digital images and
the points intersecting residue are counted. Software programs,
such as SamplePoint, can randomly select sample points within
each image for the user to identify and can tabulate the propor-
tion of each class (Booth et al. 2006). Alternatively, the image may
be classified into soil and residue classes using objective image
analysis procedures. Classification errors occur when the spectral
differences between soil and residues classes are not sufficiently
large for discrimination. Shortly after harvest, crop residues are
often much brighter than soils, but as the residues decompose, the
residues may be brighter or darker than the soil. The best time to
acquire information of tillage practices in the field is shortly after
sowing and before crop emergence, which is also the optimal time
window to acquire images to map tillage practices.

The CTIC, established at Purdue University in 1983 as clear-
inghouse for tillage and conservation information, has conducted
field surveys to assess tillage status in the United States (http:/
www.ctic.purdue.edu). For the CTIC surveys, trained observ-
ers visually assessed tillage status in fields at regular intervals
along selected routes through participating counties. The survey
provided county-level estimates of overall tillage practices. The
roadside assessment task is subject to various degrees of error
and uncertainty because it mainly relies on visual interpretation.

© 2016 Taylor & Francis Group, LLC

181

TABLE 8.1 Tillage Types and Their Corresponding Crop Residue Cover

Crop Residue
Tillage Category Tillage Types Description Cover (%)
Conservation No-till/ Minimal soil >30 (likely
strip-till disturbance (<25%) >70)
Ridge till Residue left on the >30
surface between
ridges
Mulch till 100% Soil surface >30
disturbance
Nonconservation Reduced till 15%-30% 15-30
Conventional ~ <15% <15

till or
intensive till

The quality of the data has also varied from time to time and
from county to county due to a variety of reasons, such as unfa-
vorable weather conditions at the time of survey and inconsistent
levels of experience among the observers. Finally, some counties
have stopped acquiring tillage data after the national survey pro-
gram was discontinued in 2004 (CTIC 2014).

Limited soil tillage information is available for other coun-
tries. Canada conducts tillage inventory as part of its 5-year
census of agriculture. Tillage practices are reported by province
in three categories: (1) tillage incorporating most of the crop
residue into the soil, (2) tillage retaining most of the crop resi-
due on the surface, and (3) no-till seeding or zero-till seeding.
Thus, it is difficult and impractical to evaluate tillage practices
over time, and by nation, because of wide variations in field data
collection, survey responses, and agricultural censuses (Zheng
etal. 2014). The tillage categories defined by Canada are less pre-
cise than the CTIC definitions. Definitions of tillage categories
may slightly differ from one country to another and even differ
from organization to organization. To evaluate tillage practices
for a particular field using visual assessment or remote-sens-
ing methodologies, we have to link the ground surface status
observed from the ground, air, or space to types of tillage prac-
tices. Although soil texture and smoothness can be one of the
indicators for different tillage status, the amount of crop resi-
dues left on the ground after planting are often considered as the
most reliable indicator. Here, we list types of tillage practices
and their expected crop residue cover according to CTIC and
NRCS’s definitions in Table 8.1. Globally, a systematic monitor-
ing of soil tillage is needed to manage the finite soil resources as
demand for food, feed, fiber, and fuel intensifies.

8.3 Monitoring with Optical
Remote Sensing

Optical remote-sensing imagery is valuable for monitoring bio-
physical properties of various objects on the Earth. Crop residue,
although spectrally similar to soils, has a unique absorption fea-
ture near 2100 nm. The absorption depth becomes deeper as the
amount of crop residue increases. Thus, optical remote-sensing
imagery provides a better capability for estimating crop residue
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cover than does radar data. This section firstly describes spectral
properties of soils, green vegetation, and NPV, following with
Section 8.3.2 on tillage spectral indices based on spectral dif-
ferences among soils, green vegetations, and NPV. Section 8.3.3
reviews tillage assessment using different remote-sensing plat-
forms, followed by Section 8.3.4, which discusses current chal-
lenges and future possibilities.

8.3.1 Spectral Properties of Soils,
Green Vegetation, and
Nonphotosynthetic Vegetation

Soil tillage intensity is defined by the proportion of the soil sur-
face covered by crop residue shortly after planting. Green veg-
etation may also be present in the field as the planted crop or as
weeds. This section focuses on the spectral properties of soils,
green vegetation, and crop residues.

8.3.1.1 Spectral Properties of Soils

Soil reflectance typically increases monotonically with increas-
ing wavelength (Figure 8.1). Major contributors to the reflec-
tance spectra of soils include moisture content, iron oxide
content, organic matter content, particle-size distribution, min-
eralogy, and soil structure (Baumgardner et al. 1986; Ben-Dor
2002). Stoner and Baumgardner (1981) measured the spectral
reflectance of 485 soil samples representing 10 soil taxonomic
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orders and identified 5 distinct soil reflectance curve forms. Soil
organic matter content and iron oxide content were the primary
factors determining shape of the reflectance spectra.

In general, soil reflectance decreases as soil moisture con-
tent, organic matter content, and iron oxide content increase.
Spectral reflectance is strongly correlated with soil organic mat-
ter among soils from the same parent materials (Henderson
et al. 1992). Reflectance spectra of soils may also have absorp-
tion features near 2210 nm that are associated with AI-OH in
phyllosilicate clays (Figures 8.1 and 8.2) (Serbin et al. 2009b).
However, mineral absorption features evident in the reflectance
spectra of dry soils are often obscured by the strong absorption
of water in the reflectance spectra of wet soils (Stoner et al. 1980;
Daughtry et al. 2004).

Soil tillage roughens the soil surface and often decreases
soil reflectance, but the effect is short-lived and soil reflectance
increases as the soil surface is smoothed by precipitation or addi-
tional tillage operations (Irons et al. 1989). As water wets the soil
surface and fills pore spaces, soil reflectance decreases.

8.3.1.2 Spectral Properties of Green Vegetation

Reflectance of solar radiation from a dense canopy of actively
growing green plants is characterized by three distinct regions:
visible, NIR, and shortwave infrared (SWIR) (Figure 8.1). In
the visible wavelength region (400-700 nm), chlorophyll and
other leaf pigments strongly absorb blue and red wavelengths,
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FIGURE 8.1

Spectra of a soil, corn residue, and live corn canopy for the visible through SWIR and relative spectral response (RSR) for ASTER

and Landsat OLI bands. Note that reflectance values vary from sample to sample. (Adapted from Daughtry, C.S.T. et al., Agron. J., 97(3), 864, 2005,

doi: 10.2134/agronj2003.0291.)
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FIGURE 8.2 (a) Spectra of a soil, corn residue, and live corn canopy in

the SWIRand (b) RSR for ASTERbands6and7and 11 nmwide CAIbands
centered at 2030, 2100, and 2210 nm. (Adapted from Serbin, G. et al,,
Remote Sens. Lett., 4(6), 552, 2013, doi: 10.1080/2150704x.2013.76747p.)

which largely determines the reflectance and transmittance
spectra (Thomas and Gausman 1977). In the NIR wavelength
region (700-1200 nm), there is very little absorption, and spec-
tral reflectance and transmittance are largely determined by leaf
mesophyll structure and cell wall-air interfaces (Slaton et al.
2001). Reflectance and transmittance in the SWIR wavelength
region (1200-2500 nm) are affected primarily by the amount
of water in the leaves (Hunt 1989; Yilmaz et al. 2008). Thus, a
distinguishing spectral characteristic of green vegetation is the
steplike transition from low reflectance and low transmittance
in the visible region to high reflectance and transmittance in
the NIR (Figure 8.1). Soils and NPV lack this spectral feature.
Spectral vegetation indices that exploit this fundamental spec-
tral feature are particularly sensitive to green vegetation, for
example, the normalized difference vegetation index (NDVT)
(Rouse et al. 1973; Asrar et al. 1989).

8.3.1.3 Spectral Properties of Nonphotosynthetic
Vegetation

NPV broadly refers to any senesced vegetation and includes
crop residues, which are the portions of a cultivated crop
remaining in the field after harvest. Initially, crop residues may
completely cover the soil surface, but when the soil is tilled or
the crop residues are harvested for feed or biofuel, crop residue
cover decreases. Crop residues on the soil surface decrease soil
erosion, increase soil organic matter, and improve soil quality
(Lal et al. 1998). Quantification of crop residue cover is required
to assess the effectiveness and extent of conservation tillage
practices.

© 2016 Taylor & Francis Group, LLC
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The reflectance spectra of both soils and crop residues lack
the unique spectral signature of green vegetation (Figure 8.1).
Crop residues and soils are spectrally similar and differ only in
amplitude in the 400-1100 nm wavelength region, which makes
quantification of crop residue cover by spectral reflectance chal-
lenging (Streck et al. 2002). Crop residues may be brighter than
the soil shortly after harvest, but as residues weather and decom-
pose, they may become either brighter or darker than the soil
(Nagler et al. 2000; Daughtry et al. 2010). Residue water content
also has impacts on its spectral properties. The presence of water
in crop residues decreases reflectance across all wavelengths
(Daughtry 2001). Thus, assessing crop residue cover with broad-
band multispectral data can be challenging and may require
extensive local calibration data.

An alternative approach for discriminating crop residues
from soils is based on detecting absorption features in the
2100-2350 nm wavelength regions that are associated with cel-
lulose and lignin in crop residues (Workman and Weyer 2008).
High residue water content can obscure the absorption feature
at 2100 nm (Daughtry 2001). Increases in soil moisture con-
tent also decrease our ability to separate crop residue from soils
(Daughtry 2001). Thus, it becomes more difficult to discrimi-
nate crop residue from soils as residue and soil water content
increases. As illustrated in Figure 8.2, these absorption features
are not shared by common soil minerals but are obscured by the
strong absorption of water often present in soils, crop residues,
and green vegetation, which can significantly attenuate the cel-
lulose and lignin absorption features (Daughtry and Hunt 2008;
Serbin et al. 2009a).

8.3.2 Spectral Indices for Assessing
Crop Residue Cover

Spectral vegetation indices designed for assessing green vegeta-
tion, such as NDVI, cannot distinguish soil and crop residues.
Numerous tillage or residue indices use various combinations of
visible, NIR, and shortwave multispectral bands to discriminate
crop residues from soils. The index best suited for crop residue
cover estimation from single scenes is the cellulose absorption
index (CAI), which specifically targets this feature. It has the
distinct advantage that crop residues always have CAI > 0, live
vegetation = 0, and soils < 0 (Figure 8.3). The CAI is defined as
the relative intensity of the absorption feature at 2100 nm, which
is attributed to an O-H stretching and C-O bending combina-
tion in cellulose and other carbohydrates in crop residues. CAI
is measured using three relatively narrow (10-30 nm spectral
resolution depending on the sensors) spectral bands—two on
the shoulders and one near the center of the absorption feature
at 2100 nm (Nagler et al. 2000) (Table 8.2). CAl is effective in dis-
criminating crop residues from soils for dry to moderately moist
mixtures of crop residues and soils but less effective for mixtures
of wet crop residues and soils (Daugthtry 2001).

Additional spectral indices that also target the cellulose
and lignin absorption features of crop residues have used the
relatively narrow (30-90 nm) SWIR bands of the Advanced
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FIGURE 8.3 Spectral index values for surface soils, crop residues,
and live corn canopy. (Adapted from Serbin, G. et al., Soil Sci. Soc.
Am. J., 73(5), 1545, 2009a, doi: 10.2136/sss2j2008.0311; Serbin, G. et al.,
Remote Sens. Lett., 4(6), 552, 2013, doi: 10.1080/2150704x.2013.767479.)

Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) on the NASA Terra satellite, that is, the lignin cellulose
absorption (LCA) and the shortwave infrared normalized differ-
ence residue index (SINDRI) (Daughtry et al. 2005; Serbin et al.
2009c¢). For two-band normalized difference indices (NDIs), the
ASTER-based SINDRI performs well and targets a decrease in
reflectance associated with cellulose and lignin features between
ASTER SWIR bands 6 and 7 (Serbin et al. 2009¢; Table 8.2).
However, SINDRI is sensitive to green vegetation (Figures 8.2
and 8.3) and certain soil minerals (Figure 8.4), which also

TABLE 8.2 Selected Tillage Indices and Their Calculation
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FIGURE 8.4 (a) Spectra of Gibbsite HS423.3B (Clark et al. 2007), a

gibbsitic Ultisol (Brown et al. 2006), and corn residue with convolved
spectral band values. (b) Relative spectral response functions (RSR)
for 11-nm wide bands centered at 2030, 2100, and 2210 nm (CAI),
and ASTER bands 6 and 7 (SINDRI). (Adapted from Serbin, G. et al,,
Remote Sens. Lett., 4(6), 552, 2013, doi: 10.1080/2150704x.2013.767479.)

experience reflectance decreases between these bands, such
that it may not work well for a limited number of soils or where
emerged crops may be present (Serbin et al. 2013).

While Landsat Thematic Mapper (TM)/Enhanced Thematic
Mapper (ETM) bands 5 and 7 and Landsat 8 Operational Land
Imager (OLI) bands 6 and 7 are too wide and not properly placed
to capture the cellulose absorption feature at 2100 nm, they can be
used for tillage estimation via normalized difference tillage index
(NDTTI) (van Deventer et al. 1997; Table 8.2). In addition to NDTI,
NDI (McNairn and Protz 1993) and simple tillage index (STI)
(van Deventer et al. 1997) are Landsat-based tillage indices. Serbin
et al. (2009a) showed that NDTI performed the best of several
Landsat-based tillage indices but underperformed in comparison
to CAland the ASTER-based LCA. Furthermore, NDTI was found
to lack adequate contrast for a number of soils with high content
of kaolinite or smectite and had a much stronger signal for live
vegetation than either crop residues or soil minerals (Figure 8.3).
In Figure 8.3, the median values of NDTTI for crop residues are

Tillage
Sensor Indices Formula Description References
Landsat TM and ETM+ NDTI (B5 - B7)/(B5 + B7) B5, B7: Landsat bands 5 and 7. Van Deventer et al. (1997)
AVIRIS CAI 100 x [0.5(R 503 + R,03 and R, are the reflectances of the shoulders at 2030  Daughtry et al. (2005)
Hyperion Ryy10) — Ryl and 2210 nm; R, is at the center of the absorption. Daughtry et al. (2006)
ASTER LCA 100(2 x B6 — B5 — B8) B5, B6, B7, B8: ASTER shortwave infrared bands 5, 6, 7, Daughtry et al. (2005)
SINDRI (B6 - B7)/(B6 + B7) and 8. Serbin et al. (2009a)
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consistently higher than the median values of surface soils.
However, discrimination of some combinations of soils and
crop residues may be difficult without adequate quantities of
local data for calibration and validation. For example, the NDTI
values of most crop residues may not differ significantly from
NDTI values of soils with high content of kaolinite or smectite
(Serbin et al. 2009a). As the fraction of green vegetation in a
scene increases, NDTT also increases, which alters the estima-
tion of crop residue cover. One approach is to exclude pixels
with green vegetation using an NDVT threshold (Thoma et al.
2004; Daughtry et al. 2005). Another robust approach to reduce
effects of soil and green vegetation on estimates of crop residue
cover is to identify the minimum NDTI (minNDTI) values from
multitemporal NDTI data, because the minNDTI values were
found to be well correlated with crop residue cover (Zheng et al.
2012, 2013a). This method was found to be similar in accuracy
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to single collects using SINDRI or CAI (Figure 8.5) (Zheng et al.
2013a). However, as we can see in Figure 8.5 that minNDTI
results in higher root mean squared errors (RMSE), NDTI is
more subject to the negative influences of soil moisture and soil
organic carbon than SINDRI and CAI (Zheng et al. 2013a).

8.3.3 Tillage Assessment Using
Airborne and Satellite Imagery

Until recently, most assessments of crop residue cover and till-
age intensity were snapshots of conditions using single dates
of multispectral imagery. For example, various spectral indi-
ces using Landsat TM bands 5 and 7 successfully differentiated
conventional tillage from conservation tillage using logistic
regression (van Deventer et al. 1997; Gowda et al. 2001). Other
classification methods (e.g., minimum distance, Mahalanobis
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Fulton, IN (year 2006 and 2007). (Adapted from Zheng, B. et al., J. Soil Water Conserv., 68(2), 120, 2013a.)
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distance, maximum likelihood, spectral angle mapping, and
cosine of the angle concept) and data mining approaches (e.g.,
random forest classifier and support vector machine) have been
examined for identifying two broad tillage categories (South
et al. 2004; Bricklemyer et al. 2006; Watts et al. 2008; Sudheer
et al. 2010; Samui et al. 2012). These studies demonstrated the
capability of Landsat TM imagery to discriminate between two
broad tillage categories (i.e., conventional and conservation till-
age) (van Deventer et al. 1997; Gowda et al. 2001) but fell short of
achieving the reliability and consistency required for operational
applications. Based on previous studies, it remains unclear which
classification approach performs the best in classifying tillage
categories. Research also has been conducted to test the feasibil-
ity of estimating crop residue cover using Landsat data (McNairn
and Protz 1993; Thoma et al. 2004; Daughtry et al. 2006). These
studies used single-date multispectral images and yielded mixed
results. The inconsistent results of these studies may be related to
the spectral resolution of Landsat TM data, different image pre-
processing strategies to correct for atmospheric transmittance,
spatial and temporal variations in soils, and green vegetation.
Tillage indices developed using hyperspectral and advanced
multispectral (e.g., ASTER) data have provided consistent
assessments of crop residue cover across years and study sites
(Table 8.3; Figure 8.5). These tillage indices (e.g., CAI, SINDRI)
detect absorption features associated with cellulose and lignin
and are robust for discriminating crop residues from soils and
green vegetation. However, the sensor systems with the appro-
priate spectral bands have very limited spatial and temporal
coverage, which limits their usefulness for monitoring crop
residue cover and tillage intensity over large areas. Finally, the
SWIR bands of ASTER needed to characterize residue cover
are no longer available due to detector failure in April 2008
(NASA/JPL 2008). Spaceborne multispectral imagery, however,

Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

is favorable due to its ability to provide extended repetitive
coverage of the Earth. Landsat TM/ETM+ imagery, thus, is
extremely attractive for monitoring tillage practices and crop
residue cover over large areas because it is freely available and
provides a long-term synoptic view of the Earth with a 16-day
revisit frequency.

Timing of image acquisition is very important for monitor-
ing agricultural resources because agricultural land surfaces
change rapidly as growers prepare soils for planting and as
crops emerge from soils, mature, and are harvested. It is well
recognized that soil and residue status change rapidly during
the planting season and vary in space and time (McNairn et al.
2001; Watts et al. 2008), but tillage and crop residue mapping
have been long treated as a one-time mapping effort using
only one image at a time, until Watts et al. (2011) incorpo-
rated temporal dimensions into tillage mapping. Zheng et al.
(2012) emphasized the need to consider varied timings of till-
age and planting in tillage mapping and significantly improved
mapping accuracy using multitemporal Landsat imagery
(Table 8.3). Minimum NDTI values were extracted from a time-
series Landsat image that included images from 1 to 2 months
before expected planting date to 1-2 months after planting date
(Zheng et al. 2012). The method was designated as minNDTI
and forms an effective way to minimize confounding effects of
green vegetation (Zheng et al. 2012). Figure 8.6 shows a till-
age map and its corresponding NDTI values of Champaign
County, Illinois. The left image in Figure 8.6 is the minNDTI
values extracted from a time-series NDTI image. Agricultural
fields managed with conservation tillage are relatively brighter
because higher levels of crop residue cover result in higher
NDTTI values. The multitemporal approach requires the use
of surface reflectance Landsat data products, which are avail-
able from EarthExplorer (http://earthexplorer.usgs.gov/) and

TABLE 8.3 Summary of Studies in Crop Residue Estimation Using Remote-Sensing Imagery

Sensor n? Image Dates Indices or Methods R? References
Landsat TM 266 4/18/1990 NDI 0.74 McNairn and Protz (1993)
Landsat ETM+ 468 03/28/2000 NDI 0.38 Thoma et al. (2004)
06/03/2001 STI 0.47
11/10/2001 NDTI 0.48
Landsat TM 54 06/12/2004 NDI 0.14 Daughtry et al. (2006)
NDTI 0.11
SPOT Varied Varied Spectral unmixing ~ 0.58-0.78 Pacheco and McNairn (2010)
Landsat TM 39 05/28/2008 0.69
Hyperion 54 05/03/2004 CAI 0.85 Daughtry et al. (2006)
Landsat TMP Varied Varied NDTI 0.004-0.64  Serbin et al. (2009¢)
ASTER® Varied Varied LCA 0.39-0.86
SINDRI 0.61-0.87
Airborne hyperspectral data Varied Varied CAI 0.72-0.89
Landsat TM and ETM+ 31 Multitemporal minNDTI 0.89 Zheng et al. (2012)
Landsat TM and ETM+ Varied Multitemporal ~ minNDTI 0.66-0.89 Zheng et al. (2013a)

2 n denotes number of samples.

b Data were simulated using ASTER data when Landsat TM imagery was unavailable.

¢ Data were simulated using airborne hyperspectral data when ASTER imagery was unavailable.
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FIGURE 8.6 2006 Tillage map of Champaign County (left), Illinois, and its corresponding minNDTT values (right) extracted from a time-series
NDTI image. Agricultural fields with brighter tones indicate higher levels of crop residue cover, which corresponds to the conservation tillage

category.

USGS EROS Science Processing Architecture (ESPA) ordering
interface (https://espa.cr.usgs.gov). The minNDTI approach
was also applied to six additional datasets collected in differ-
ent regions of the United States and the technique was com-
parable to CAI and SINDRI in achieving similar classification
accuracy of three tillage categories (Zheng et al. 2013a). Zheng
et al. (2013a) reported 68%-86% overall accuracies for three
tillage categories—a significant improvement compared to
42%-56% accuracies reported by Thoma et al. (2004). However,
the minNDTTI approach cannot address the effects of surface
soil variability as its performance was degraded when applied
to a larger geographical area. Nevertheless, a multitemporal
approach has shown a substantial potential to track changes
of tillage practices over time and space using freely available
Landsat and Landsat-like data (Watts et al. 2011; Zheng et al.
2012, 2013a).

© 2016 Taylor & Francis Group, LLC

8.3.4 Summary
8.3.4.1 Challenges

The primary challenges for operational tillage mapping using
optical remote-sensing imagery include the following: (1) Revisit
rates of moderate-spatial-resolution imagery are not frequent
enough to capture the rapid changes in agricultural land sur-
faces during planting season, (2) there is limited spatial cover-
age of satellite hyperspectral imagery, (3) there are confounding
effects of soil background and green vegetation, and (4) there is a
lack of transferability of locally developed models.

Landsat is currently the best satellite system to provide the
capabilities for long-term and broadscale tillage assessment.
Although the minNDTI technique showed promises in till-
age mapping at large scales, the 8-day revisit rate of combined
Landsat 8 OLI and 7 ETM+ cannot guarantee adequate numbers
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of cloud-free observations to capture the recently tilled surface.
In tropical regions or other areas that have persistent cloud cover,
one may be lucky to obtain two or three cloud-free images per
year. The data gap issues of Landsat 7 ETM+ imagery also pre-
vent rapid application of the minNDTI technique because addi-
tional image preprocessing skills are required to fill the missing
data. Zheng et al. (2013b) have presented an easy way to fill the
missing data for broadscale tillage mapping using the multiscale
segmentation method. Landsat images with partial cloud cover
can be incorporated into the time series; however, estimation
of tillage status for the cloud-contaminated pixels could be less
accurate, and a quality assessment map should be provided to
inform users about locations of cloud and cloud shadow pixels
(Zheng et al. 2014).

The spatial and temporal adaptive reflectance fusion model
(STARFM) (Gao et al. 2006), which produces cloud-free syn-
thetic Landsat images with 30 m spatial resolution at Moderate
Imaging Spectroradiometer (MODIS) temporal frequency, could
be an alternative option to enhance temporal resolution for till-
age mapping. The enhanced STARFM (Zhu et al. 2010), future
improvement of data fusion techniques, and the higher quality of
Landsat 8 and the European Space Agency (ESA) Sentinel-2 data
could open possibilities to provide data optimized in both tem-
poral and spatial resolutions for tillage assessment. However, the
potential to incorporate data fusion techniques into minNDTI
technique to improve our ability to map tillage practices cur-
rently remains unknown and required for future investigation
(Zheng et al. 2014).

Locally developed empirical models often show degraded
performance when applied to the same location over time or to
a broader region. Variations in weather, soil, and terrain con-
ditions across landscape are the main reasons for the degraded
performance when a model is extrapolated to new situations.
Zheng et al. (2013a) reported superior performance of local
models than a universal model and highlighted negative impacts
of local variation in terrain, moisture, and soil color upon crop
residue estimation. Thus, estimation of crop residue cover with
broadband multispectral may require extensive local calibration
data. Alternatively, the effects of soil variation can be reduced or
minimized using local soil-adjusted tillage indices (Biard and
Baret 1997) or the spectral unmixing approach (Pacheco and
McNairn 2010). The spectral unmixing approach has the poten-
tial to map crop residue cover over large geographic regions as
the approach is insensitive to variations in soil and residue when
end-members are retrieved directly from the image (Pacheco
and McNairn 2010). However, future work is required to exam-
ine how well the unmixing approach performs in the presence
of green vegetation.

Much of the research to apply remote sensing to tillage assess-
ment has been developed in the context of midlatitude agri-
culture, characterized by distinct seasonal cycles, large field
sizes, common use of monoculture, or reduced crop diversity,
over large regions. In other regions of the world, or in irrigated
regions, there may be a much larger range of crops, with a vari-
ety of planting and harvesting dates, not synchronized with
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each other, and smaller field sizes—in such situations, the tillage
assessment task requires different strategies than may be effec-
tive in midlatitude regions.

8.3.4.2 Future Capabilities

At the time of this writing, due to the limited availability of
hyperspectral data, the minNDTTI approach is probably the most
effective method to map tillage practices at broadscale using
optical remote-sensing imagery. The minNDTT can be applied
to Landsat 7 ETM+ and Landsat 8 OLI, which together provides
an 8-day observation cycle. The OLI imagery has potential to
enhance our ability to accurately estimate crop residue cover
with its narrower spectral bands and 12-bit dynamic range, as
indicated by Galloza et al. (2013), who found that the Advanced
Land Imager (ALI) has better capability to discriminate crop
residues from soils than Landsat TM data.

The upcoming launch of ESA Sentinel-2 satellite will provide
enhanced Landsat-type data with <5-day revisit time. Sentinel-2
is particularly useful for monitoring the rapid changes of agricul-
turallands. Operational tillage assessment is likely to involve mul-
tisensor multidate image fusion and could be implemented using
Landsat and Sentinel-2 data together. The planned hyperspectral
satellite missions, including ESA Environmental Mapping and
Analysis Program (EnMAP) and NASA Hyperspectral Infrared
Imager (HyspIRI), will also make contribution to large-scale till-
age assessment. These hyperspectral data can be used to calcu-
late CAI. Fusion of hyperspectral and multispectral images could
estimate crop residue cover at the multispectral spatial extent
with improved accuracy (Galloza et al. 2013). The WorldView-3
satellite launched in August 2014 includes SWIR bands equiva-
lent to ASTER SWIR sensor (DigitalGlobe, 2014), which can be
used to derive SINDRI for crop residue estimation. The very high
spatial resolution (3.7 m) of WorldView-3 SWIR data will permit
fine-scale assessment of crop residue cover, soil texture, and soil
roughness.

8.4 Monitoring with SAR

8.4.1 Introduction

SARs are considered active remote-sensing sensors as they gener-
ate pulses of energy thatare propagated toward a target. SARs then
record the energy scattered by the target, back toward the radar
antenna. The strength (intensity) of the received or backscattered
signal is measured as sigma naught (¢°), expressed in decibels
(dB). Since these sensors provide their own source of energy,
SARs are able to collect data day or night. SARs generate energy
at microwave frequencies (0.2-300 GHz), with Earth-observing
SAR satellites typically operating at X-band (2.40-3.75 cmy;
8.0-12.5 GHz), C-band (3.75-7.5 cm; 4.0-8.0 GHz), and L-band
(15-30 cm; 1.0-2.0 GHz) (Lewis and Henderson 1998) (Table 8.4).
These lower frequencies are unaffected by the presence of cloud
and haze. Given this context and the sensitivity of microwaves to
soil conditions, SARs are an important data source for mapping
and monitoring tillage and residue.
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TABLE 8.4 Selected Civilian Spaceborne Radar Sensors
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Frequency Incidence

(in GHz) Sensor Polarization® Angle (°) Resolution (m) ~ Swath (km)  Dates of Operation

X 8600 COSMO-SkyMed 1 SP, DP 25-50 1-100 10-200 2007~

COSMO-SkyMed 2 SP, DP 2007-
COSMO-SkyMed 3 SP, DP 2008-
COSMO-SkyMed 4 SP, DP 2010-
8.650  TerraSAR-X SP, DP, QP 15-60 0.25-40 4-270 2007-
8.650 TanDEM-X SP, DP, QP 15-60 0.25-40 4-270 2010-

C 5300 RADARSAT-1 SP (HH) 10-60 8-100 45-500 1995-2013
5300 ERS-2 SP (VV) 20-26 30 100 1995-2011
5.331 Envisat ASAR SP, DP 15-45 10-1000 5-405 2002-2012
5.350 RISAT-1 SP, DP, QP, CP 12-55 1-50 25-223 2012-
5405 RADARSAT-2 SP, DP, QP 10-60 3-100 18-500 2007-
5.405 RADARSAT Constellation ~ SP, DP, QP, CP 10-60 1-500 5-500 2018
5.405 Sentinel 1A SP, DP 20-45 5-40 80-400 2014-

Sentinel 1B SP, DP 20-45 5-40 80-400 2016

L 1.200  ALOS/PALSAR-1 SP, DP, QP 8-60 10-100 20-350 2006-2011
1.200  ALOS/PALSAR-2 SP, DP, QP, CP 8-60 1-100 25-490 2014-
1260 SMAP SP, VV/HH/HV? 40 1-3 (km) 1000 2015-
1.275 SAOCOM 1A SP, DP, QP, CP 17-51 10-100 20-350 2015

SAOCOM 1B 2016

In the polarization column, SP = single polarization, DP = dual polarization, QP = quadrature polarization, and CP = compact

polarization.

® SMAP has now been launched. Thus this should say “SMAP acquires radar imagery simultaneously in VV, HH, and HV.

8.4.2 Critical Variables for Tillage Assessment

The interaction of microwaves with a target and the characteris-
tics of the scatter that results from this interaction are a function
of the condition of the target as well as the SAR sensor speci-
fications. SAR response is driven by the dielectric permittivity,
roughness, and structural properties of the target. In the context
of tillage monitoring, SARs are sensitive to small-scale rough-
ness and large macrostructures produced by farming imple-
ments, as well as volumetric soil moisture. In addition to their
spatial resolution, SARs are characterized by their frequency,
incidence angle, and polarization—configurations that also
affect the target interaction.

8.4.2.1 Sensitivity of SAR to Soil Characteristics
8.4.2.1.1 Surface Roughness

Random and periodic roughness determines the angular scat-
tering pattern with diffuse scattering increasing as roughness
increases. For agricultural fields, roughness is created by land
management activities (principally tillage and seedbed prepara-
tion) modified over time by water and wind erosion. Roughness
is defined by two parameters: the root mean square (RMS)
variance and surface correlation length (I). RMS describes the
surface’s random vertical statistical variability relative to a ref-
erence surface; while correlation length is an autocorrelation
function that measures the statistical independence of surface
heights at two points (Ulaby et al. 1986). For very smooth sur-
faces, as expected from no-till fields, the random roughness
(RMS) is small and the height of every point is correlated with
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the height of every other point (hence [ is large). In this case,
most microwave energy is forward scattered and backscatter is
low. Inversely randomly rough surfaces, created by tillage, result
in more diffuse scattering with a greater proportion of the inci-
dent energy scattered back to the sensor. These surfaces have
higher RMS, short correlation lengths, and higher backscatter.

8.4.2.1.2 Dielectric Permittivity

The intensity of backscatter from soils is largely determined
by the soil permittivity (dielectric constant), while the angu-
lar pattern of microwave scattering is governed by the surface
roughness. The permittivity ¢ is a frequency-dependent com-
plex quantity [e(f) = €'(f)—je"(f)], where the real component &’
describes the polarizability of a material when an electric field is
applied and the imaginary component &” energy losses (Hasted
1973). Dielectric losses are due to relaxation £}¢ and direct cur-
rent electrical conductivity ¢ in S/m: €"(f) = er(f) + o/2nfe,,
where ¢, is the permittivity of free space (8.854:10-'2 F/m). On
agricultural fields (without vegetation cover), scattering occurs
at the air/soil boundary as a dielectric discontinuity exists at
this interface. The majority of dry soils have €’ of 3-8, and bulk
soil permittivity increases with water content. This is due to the
much greater, albeit frequency-dependent, permittivity of water,
which at 1.4 GHz ranges from 84.1 - j10.7 at 5°C to 74.5 - j4.1
at 35°C, 69.0 — j32.1 ~ 71.4 - j14.6 at 5.3 GHz, and 49.2 - j39.7 ~
65.1 - j23.7 at 9.6 GHz for pure water where s = 0 S/m for pure
water where 6 = 0 S/m. Increases in either part of the permittiv-
ity will increase soil reflectivity. Electromagnetic wavelength is
an inverse function of €’; thus the wavelength becomes shorter
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within the soil as it becomes wetter. As backscatter intensity
is a function of permittivity, a strong linear relationship exists
between soil moisture and backscatter. The depth of sensitivity
within the soil volume is dependent upon three parameters: the
SAR configuration, soil moisture, and bulk soil &”. Penetration
depth is an inverse function of bulk soil permittivity and, thus,
soil moisture and conductivity. Consequently, SARs respond to
moisture over deeper volumes as soils dry. Regardless, sensitiv-
ity is still near surface with this depth approximately equivalent
to the microwave wavelength (Boisvert et al. 1995).

8.4.2.1.3 Residue

If vegetation (green or senesced vegetation or postharvest resi-
due) is present, SAR response will be affected if water is present
in the vegetation. Residue is considered “dead” vegetation, and
thus its effect on backscatter is often assumed insignificant, effec-
tively transparent to the incident microwaves. This assumption
has proven invalid in circumstances where residue retains water.
The impact of residue on backscatter varies depending upon the
volume of water held, a function of the amount and type of resi-
due (McNairn et al. 2001). Jackson and O’Neill (1991) reported
that residue can retain significant moisture with McNairn et al.
(2001) measuring up to 60% and 40%-50% moisture in corn and
barley residue, respectively, following rain events.

8.4.2.1.4 Row Direction

Land management practices (planting, harvesting, and tillage)
can create row effects and row direction relative to the radar look
direction impacts SAR response. When row direction is perpen-
dicular to the look direction, SAR response is stronger when
compared to a look direction parallel to rows (Beaudoin et al.
1990; McNairn et al. 1996). Producers follow a rectangular pat-
tern operating parallel to the long and short axes of fields. This
practice creates a “bow-tie” effect visible on SAR imagery where,
within a single field, backscatter is significantly higher for the
axis of the field oriented perpendicular to the sensor.

8.4.2.2 Impact of SAR Configuration

SAR sensors are defined by three configurations—frequency
(GHz, or cm, if characterized as free-space wavelength), inci-
dence angle (degrees), and polarization. These configurations
affect how microwaves interact with the target in terms of
backscatter intensity and scattering characteristics. SAR con-
figurations can be selected to maximize sensitivity to the tar-
get property of interest (soil moisture, surface roughness, or
residue). Alternatively, as these properties are confounded in the
microwave signal, multiple configurations can be used together
to resolve individual contributions.

8.4.2.2.1 Frequency

As well as affecting penetration depth, SAR frequency deter-
mines sensitivity to surface roughness. Thus, surface roughness
must be considered relative to frequency. Surfaces are defined
as rough or smooth according to the Rayleigh criterion. Surfaces
are smooth if & < A/25 sint and rough if & > A/4.4 sint where
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h is the RMS, A is the wavelength, and 7 is the depression angle
(Sabins 1986). Assuming flat terrain, T is the complement of the
incidence angle (8 = 90—1). In practice, this means that a field
will appear rougher (higher backscatter) at shorter wavelengths
(i.e., X-band) than at longer wavelengths (i.e., L-band). With
this strong dependency, the choice of wavelength is especially
important when monitoring tillage. Short-wavelength (high-
frequency) SARs will see many fields as rough and thus may not
differentiate among tillage classes at the upper ranges of rough-
ness. Several studies (Pacheco et al. 2010; Aubert et al. 2011;
Panciera et al. 2013) reported that X-band data from TerraSAR-X
were not well suited for roughness mapping when RMS was
high. Panciera et al. (2013) found that TerraSAR-X backscatter
was sensitive to roughness (RMS), which fell between 0.5 and
1.5 cm, but that the signal saturated beyond 2 cm. Conversely,
large-wavelength (low-frequency) SARs may view even tilled
fields as smooth. Nevertheless, numerous studies have reported
sensitivity of C- and L-band responses to roughness and residue
(McNairn et al. 2001, 2002; Baghdadi et al. 2008). Baghdadi et al.
(2008) compared three frequencies (X-, C-, and L-band) demon-
strating that sensitivity to roughness increased with wavelength.

8.4.2.2.2 Incidence Angle

Regardless of the target, backscatter decreases with increas-
ing incidence angle, which is defined as the angle between the
radar beam and a line perpendicular to the surface. The rate of
decrease is target dependent, with backscatter decreasing with
angle at a higher rate when soils are smooth. This differential rate
of decrease can be used to separate smooth from rough fields, if
fields are imaged at contrasting incidence angles (McNairn et al.
1996). As simultaneous multiangle data are typically unavail-
able from spaceborne SARs, a simpler approach is to select an
incidence angle that maximizes sensitivity to surface roughness.
Steeper (smaller) angles minimize roughness contributions to
backscatter and are thus more suited to estimate soil moisture,
while shallower (larger) angles maximize roughness effects on
backscatter (McNairn et al. 1996). Similarly, larger angles are
more sensitive to residue as soil moisture contributions are mini-
mized, and more microwave interaction occurs with residue at
these angles (McNairn et al. 2001). Although these larger angles
are more suited to roughness and residue applications, contribu-
tions from soil moisture are not completely eliminated. Aubert
et al. (2011) noted that the range in X-HH backscatter due to
surface roughness increased as incidence angle increased, with
backscatter varying 3.5 and 1.9 dB at angles of 50° and 25°, respec-
tively. Baghdadi et al. (2008) reported a slightly larger range in
X-band backscatter (5.5 dB at 50°-52° and 4 dB at 26°-28°).

8.4.2.2.3 Polarization

Polarization is defined by the orientation of the electric field
vectors of the transmitted and received electromagnetic wave.
Polarization should be considered relative to the target structure
and response interpreted according to the characteristics of scat-
tering from the target, including the sources of scattering and
the randomness of the scatter. Scattering is categorized as single
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bounce (surface), multiple (volume), or double bounce. Targets
usually produce more than one type of scattering although typi-
cally one source dominates. For smooth soils devoid of residue,
surface single-bounce scattering dominates. Rough soils result
in multiple scattering of microwaves. Residue (depending on the
amount and water content) also causes multiple scattering and,
if residue is vertically oriented, double-bounce events may also
contribute.

Most SAR sensors transmit and receive microwaves in
the horizontal (H) and/or vertical (V) linear polarizations
(Table 8.4). Early satellites transmitted and received micro-
waves in a single linear polarization (European Remote Sensing
[ERS]-1 and 2 [VV], Japanese Earth Resources Satellite [JERS]-1
[HH], and RADARSAT-1 [HH]). Next-generation sensors (i.e.,
Advanced Synthetic Aperture Radar [Envisat ASAR]) transmit-
ted and/or received in both linear polarizations, which permit-
ted acquisition of like (HH and/or VV) and cross (HV or VH)
polarizations. When targets are physically oriented parallel to
the polarization of the incident wave, greater microwave inter-
action occurs. This is most obvious for targets like crops where
their vertical structure aligns well with vertical transmitted
waves. Consequently, a VV configuration provides more infor-
mation on crops than HH. For soils without residue, horizontal
or vertical orientation is absent and thus HH and V'V backscat-
ter is correlated. A linear cross polarization response (HV or
VH) results when the transmitted wave (i.e., H) is repolarized
to its orthogonal polarization (i.e., V). Repolarization of H to
V (or V to H) occurs as a result of multiple scattering (at least
two bounces), and thus a target must be able to cause more than
a single scatter event to elicit an HV or VH response. Smooth
soils, devoid of structure, are dominated by single-bounce for-
ward scattering and produce very low cross-polarized back-
scatter. For soils with random roughness or residue (assuming
moisture in the residue), incident waves experience multiple
scattering and higher cross polarization response is observed.
McNairn et al. (2001) reported that, of all the linear polariza-
tions, the cross polarization was most sensitive to the amount of
residue. The cross polarization has the advantage of being insen-
sitive to planting, harvesting, or tillage row direction (McNairn
and Brisco 2004). This is important considering that Brisco et al.
(1991) established that row direction from tillage significantly
impacted like-polarized backscatter.

8.4.2.2.4 Polarimetry

Some satellites (i.e., ALOS PALSAR, RADARSAT-2, and
TerraSAR-X) are polarimetric capable. Polarimetric sensors cap-
ture the complete characterization of the scattering field mean-
ing that they record all four mutually coherent channels (HH,
VYV, HV, and VH), with phase information between orthogonal
polarizations retained and processed. Any linear, elliptical, or
circular polarization can be synthesized from polarimetric
data. Circular polarizations are described by their handedness
(direction of rotation) relative to the observer. Right-handed
circular waves (R) rotate clockwise (relative to observer), while
left-handed waves (L) rotate counterclockwise. The application
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of circular polarizations for agriculture has received limited
attention although for soils, circular and linear backscatter is
highly correlated (Sokol et al. 2004). As with linear polariza-
tions, multiple scattering must occur to change the handedness
of the transmitted circular polarization. Roughness or residue
can cause two or more bounces, changing the handedness and
resulting in a higher circular copolarization (RR or LL) response
(recall rotation is defined relative to the observer). Indeed,
de Matthaeis et al. (1992) observed high circular cross-polar-
ized backscatter (LR) returns for surfaces with dominant sur-
face scattering. Circular copolarized (RR) backscatter increases
when the mechanisms producing volume scattering dominate
(McNairn et al. 2002).

Polarimetric data can be processed to extract additional
parameters, which characterize scattering and thus tillage and
residue conditions. SARs transmit completely polarized waves
but with multiple scattering, microwaves become completely
or partially depolarized. The degree of depolarization (or pro-
portion of unpolarized energy) is indicative of the randomness
of scattering within the target. Smooth soils create little depo-
larization (Evans and Smith 1991). The degree of depolariza-
tion increases with roughness and residue cover as the phase
becomes unpredictable from point to point within the target.
The degree of depolarization can be measured by pedestal height
with height increasing as roughness increases or in the presence
of residue (van Zyl 1989; de Matthaeis et al. 1991; McNairn et al.
2002; Adams et al. 2013a). Adams et al. (2013a) also reported
that the dynamic range of the degree of polarization (A,q;)
was sensitive to roughness and residue. A, is the difference
between the maximum and minimum degree of polarization
and reflects the heterogeneity of scattering mechanisms within
the target (Touzi et al. 1992).

Absolute phase (@) of a scattered wave is a function of dis-
tance from the target and carries no target scattering informa-
tion (Langman and Inggs 1994). However, the difference in the
phase between two orthogonal polarizations (i.e., H and V) is
of interest for tillage monitoring. Shifts in the phase (charac-
terized by the copolarized phase difference [PPD] [@yy — @pyl)
occur due to double-bounce or multiple scattering. For smooth
soils with minimal contributions from multiple scattering, HH
and VV are in phase and mean PPD is close to zero (Evans et al.
1988). A vertical structure can cause a double bounce and here
PPD values approach 180° (de Matthaeis et al. 1991). Large phase
differences are typically associated with cropped fields although
high PPD values have been observed for standing senesced crops
(McNairn et al. 2002). Ulaby et al. (1987) reported that plowed
and disked fields, as well as those with corn and soybean residue,
had a mean PPD close to zero. However, the standard deviation
of the phase difference among the disked, plowed, residue and
standing crops was very different. These results were confirmed
by McNairn et al. (2002) where multiple scattering in residue
caused a highly varying PPD with a noise-like distribution for
these fields. The copolarized complex correlation coefficient
(pun_yv) measures the decorrelation of the phase and some sen-
sitivity to residue has also been reported (Adams et al. 2013a).
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Methods that decompose the SAR signal have drawn consider-
able interest with the Cloude-Pottier (Cloude and Pottier 1997)
and Freeman-Durden (Freeman and Durden 1998) decomposi-
tions showing sensitivity to tillage and residue. Cloude-Pottier
decomposes the signal into a set of eigenvectors (which character-
ize the scattering mechanism) and eigenvalues (which estimate the
intensity of each mechanism) (Alberga et al. 2008). From the eigen-
values, entropy (H) and anisotropy (A) are calculated. H measures
the degree of randomness of the scattering (from 0 to 1); values
near zero are characteristic of single scatter targets (i.e., smooth
soils). Rough soils and those with residue have larger contribu-
tions from multiple scattering. This increase in randomness of
scattering is measured as an increase in H. Anisotropy estimates
the relative importance of the dominant scattering mechanism
and the contribution from secondary and tertiary scattering
mechanisms. Zero A identifies two mechanisms of approximately
equal proportions, while values approaching 1 indicate that the
second mechanism dominates the third (Lee and Pottier 2009).
The Cloude-Pottier decomposition also calculates the average
alpha (a) angle (0°-90°), which identifies the dominant scattering
source (Alberga etal. 2008). Smooth soils with single-bounce scat-
tering have angles close to 0°, volume scatterers close to 45° and
double bounce nearing 90°. Adams et al. (2013a) reported that H
and o were significantly correlated with roughness and percent
crop residue. The Freeman-Durden decomposition separates the
total power of every SAR resolution cell into contributions from
three scattering mechanisms—volume (multiple), double-bounce,
and single-bounce (surface) scattering. Adams et al. (2013b) dem-
onstrated that H, &, and the Freeman-Durden multiple scatter-
ing could statistically separate fields with different harvesting,
tillage, and residue conditions, particularly at higher incidence
angles (49°). In addition, the best separability was found between
unharvested or fields not tilled and conventionally tilled fields;
fields under conservation tillage were confused with other tillage
classes (Adams et al. 2013b).

8.4.3 Methods

8.4.3.1 Change Detection and Classification

Change detection identifies and measures differences between
two (or more) images, indicated by a change in SAR response
or in derived surface properties (roughness, residue). Several
SAR metrics can be used to capture change and include (1)
incoherent SAR backscatter (HH, VV, HV, and VH), (2) degree
of polarization, (3) copolarized phase parameters, (4) decom-
position parameters, and (5) coherent change. When change
is measured directly from SAR response, consideration must
be given to the confounding effects of target parameters, SAR
configuration, and sensor calibration. To isolate change in SAR
response due to roughness (or residue), soil moisture must not
vary and thus the period between acquisitions should be mini-
mized. Since frequency, incidence angle, and polarization affect
target interaction, images must have the exact same SAR con-
figuration. For spaceborne SARs, this means using exact repeat
orbits. Constellations of satellites (such as the planned Canadian
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RADARSAT Constellation) will be of interest for change detec-
tion since repeat acquisitions in the same SAR configuration will
be possible within a short period of time. Finally, SARs must be
well calibrated; scene to scene calibration of spaceborne sensors
is typically well below 1 dB. If changes in derived properties
(roughness, residue) are used, errors in methods or model per-
formance will be carried forward in the change detection pro-
cess. Whatever metric is adopted, interpretation of the change
is required. This means that a threshold must be determined,
above which change is considered significant. In addition,
change must be linked to information meaningful for tillage
monitoring (type of implement used, tillage or residue class,
change in residue amount).

McNairn et al. (1998) applied a simple change detection
approach to a pair of RADARSAT-1 (HH) images acquired
one week apart. The incidence angle difference between the
Standard Mode 2 and 3 images was limited to 6° and was con-
sidered of secondary importance. In the one week separating
the first from second acquisition, C-HH backscatter remained
stable (average difference of 0.7 dB) for fields not tilled. No rain
fell during the week, and the small difference was attributed to
the 6° difference in angles. For fields that were tilled, the aver-
age change (increase) in backscatter was 5.6 dB. This technique
(Figure 8.7) enabled the identification of broad conservation
tillage classes (no-till, intermediate, and tilled) and flagged
fields where harvesting and tillage had occurred. Hadria et al.
(2008) combined SAR (Envisat ASAR) and optical data to clas-
sify broad categories of tillage. The authors used a combination
of image thresholding and decision tree classification. Envisat
ASAR was especially helpful at differentiating smooth surfaces
(no-till) from other rougher (tilled) surfaces.

Coherent change detection (CCD) exploits the coherence
between two polarimetric complex images acquired at different
times but in the same imaging geometry (Milisavljevi¢ etal. 2010).
A pixel-by-pixel correlation of the coherence between the images
reveals changes in the target; if no change has taken place, the
pixels remain correlated. This technique requires that the target
is coherent, allowing changes in coherence from image to image
to be measured. Random phase characterizes most distributed
natural targets like forests and crops. These targets typically have
low coherence and are not ideal candidates for this method. As
well, external effects like wind can cause these targets to tempo-
rally decorrelate. Polarimetric interferometric (PolInSAR) may
be useful in optimizing coherence for detecting change in dis-
tributed targets like crops (Li et al. 2014). Although CCD for till-
age change detection has not been explored, this approach may
be capable of observing changes from tillage activities.

8.4.3.2 Semiempirical and Physical Models

Physical scattering models estimate backscatter using the soil’s
physical properties and sensor configurations. Soil properties
include the dielectric constant, RMS, and correlation length.
The small perturbation and Kirchhoff models (geometrical
optics and physical optics models) are two common physical
models. However, these models are not suited to targets with
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(d

FIGURES8.7 Detection of tillage and harvesting activities using RADARSAT-1 over an agricultural site in Canada (Altona, Manitoba). Standard
beam mode images were collected on October 10 (a) and October 17 (b) in 1996. A difference image (c) and a change detection product (d) were
produced from the backscatter. (Adapted from McNairn, H. et al., Can. J. Remote Sens., 24, 28, 1998.)

multiple sources of scattering and large ranges of roughness, as
expected from agricultural fields. The Integral Equation Model
(IEM) (Fung et al. 1992) integrates these two models and is bet-
ter adapted for targets with surface and multiple scattering and
with roughness ranging from smooth to rough.

The goodness of fit between backscatter predicted by the
IEM and that observed by SARs has varied depending on the
roughness, frequency, and incidence angle. Speculation has been
that in many cases, the error in IEM-simulated backscatter is
due to inaccurate representation of the correlation length (I), a
parameter difficult to adequately measure in the field (Merzouki
etal. 2010). As a solution, Baghdadi et al. (2004) proposed a cali-
brated version of the IEM, introducing an optimum correlation
length (I,,,). The optimum correlation length is derived from a
set of equations that relates correlation length (/) to RMS, as a
function of polarization and incidence angle (Baghdadi et al.
2006). Simulated backscatter from the calibrated IEM has more
closely matched backscatter from the C-band SAR backscatter
(Merzouki et al. 2010). Figure 8.8a is an example of a surface
roughness (RMS height [hRMS]) map derived from this study
(Merzouki et al. 2010). Rahman et al. (2008) also derived surface
roughness over sparsely vegetated fields using Envisat ASAR
and the IEM in a multiangle approach. The image-derived
RMS (2.19 cm) overestimated the field-derived RMS (0.79 c¢m)
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(Figure 8.8b). The subsurface rock fragments may have caused
multiple bounce interactions, thus increasing response and gen-
erating a larger radar-perceived roughness (Rahman et al. 2008).

Inversion of the IEM or calibrated IEM is difficult due to the
complexity of the model. As well, multiple unknowns in the
IEM (dielectric constant, RMS, and [) and the calibrated IEM
(dielectric constant and RMS) require multiple sources of SAR
information. In this case, a lookup table (LUT) approach can
be used to estimate roughness or dielectric from SAR response
(Merzouki et al. 2011). Forward runs of the model are used
to create the LUTs with incremental steps in dielectric, RMS,
I, and incidence angle and their modeled backscatter (in HH
and VV). Direct search functions are used to find the LUT
entry that minimizes the difference between the measured
(from SAR sensor) and modeled (from IEM) backscatter. This
LUT entry provides the model estimate of soil dielectric and
surface roughness. With multiple unknowns, multiple SAR
configurations are needed to solve the IEM (three unknowns)
or calibrated IEM (two unknowns). Typically, SAR data
acquired at two polarizations (i.e., HH and VV) are used with
the calibrated IEM. With a third unknown (I), an additional
source of backscatter is needed to implement the original
IEM. One approach is to use SAR data acquired at two polar-
izations (HH and VV) and two contrasting incidence angles.
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FIGURES8.8 Surface roughness maps derived from radar images and the IEM over two agricultural sites: an area within the Red River Watershed
in Southern Manitoba in Canada (a) and Walnut Gulch Experimental Watershed in Arizona in the United States (b). The surface roughness
map for the Red River Watershed is expressed in hRMS in centimeters. (Adapted from Merzouki et al. 2010.) The Walnut Gulch Experimental
Watershed surface roughness map is defined by the hRMS variation of the surface at centimeter scale. The solid line represents the boundary of the
Watershed. (Adapted from Rahman, M.M., et al., Remote Sens. Environ., 112(2), 391, 2008, doi:10.1016/j.rse.2006.10.026.)

The Oh (Oh et al. 1992; Oh 2004) and Dubois (Dubois et al.
1995) models are semiempirical models created from the collec-
tion of large experimental datasets and subsequently empirically
relating soil dielectric (directly or via the Fresnel reflectivity),
RMS, the wavelength (through the wave number), and the inci-
dence angle to SAR backscatter. Oh modeled backscatter from
all three linear polarizations (HH, VV, and HV) and for three
frequencies (X, C, and L). In contrast, the Dubois model uses
only the copolarized backscatter (HH and VV) and was devel-
oped using data collected only at L-band. As with the IEM, the
Oh model can be inverted using a LUT. The Dubois model is
easily inverted by solving the model’s two backscatter equations.
Because these models were created with experimental data,
application of these models to target conditions or SAR config-
urations beyond those of the experimental data used to create
them may yield uncertain results. Indeed, Merzouki et al. (2010)
found that these models tended to overestimate backscatter
when modeled backscatter was compared to that measured by
RADARSAT-2, which would lead to an overestimation of RMS.
The Oh model resulted in larger errors between modeled and
measured backscatter on smoother fields (<2 cm). Conversely,
errors were greater on rougher fields (>1.5 cm) for the Dubois
model.

Hajnsek et al. (2003) developed a model to invert surface
roughness by coupling a Bragg scattering term and a rough-
ness variable derived from the scattering entropy, anisotropy
and alpha angle. This model was validated against airborne
polarimetric L-band (E-SAR) data and yielded low RMSE (19%).
Figure 8.9 shows a roughness map created using this approach.

8.4.4 Linking Radar Products
to Tillage Information

SAR sensors can provide information on roughness (RMS) and
residue, as well as changes in these conditions. However, to be
meaningful, roughness and residue must be linked to informa-
tion of interest such as tillage implement or tillage class. This
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linkage is required for applications such as watershed man-
agement, soil erosion risk assessment or estimation of carbon
sequestration. Establishing this linkage is not a simple task given
the complexity and dynamics of tillage activities. Producers use
a combination of tillage implements and tillage occurs peri-
odically and at a range of soil depths and directions. Tillage-
induced roughness also varies depending upon soil texture and
moisture and is modified over time by erosion events. Winter
crops and weeds present on fields also complicate tillage map-
ping. How to link SAR-derived products and tillage informa-
tion will vary depending on the approach used to create these
products. For example, if models are used to estimate roughness
(RMS), an association between RMS and tillage operation could
be established. Such an approach was proposed by Jackson et al.
(1997). However, the roughness (RMS) created by each tillage
implement, and sequences of tillage applications, is likely to vary
field to field due to soil conditions, erosion, and characteristics
of the implement itself. Consequently, a much larger database of
roughness responses to tillage is required, and these data must
be acquired over regions with varying tillage systems. For exam-
ple, Pacheco et al. (2010) found that in eastern Canada, some
conservation tilled fields (chiseled plowed) had greater rough-
ness (RMS) than conventional tilled fields (moldboard plowed).
As well, RMS varied greatly within the chisel class, creating con-
fusion when attempting to use backscatter to identify classes.
Classifications or change detection approaches typically identify
broad tillage classes (untilled, conservation, and conventional).
While these classes may be useful for some mapping applica-
tions (identifying adoption of no-till for carbon sequestration),
they may not be adequate for others (erosion modeling).

8.4.5 Summary

Given the dynamics of tillage activities during the preseeding and
postharvest seasons, SAR sensors can be a valuable data source
for time-critical applications (McNairn et al. 1998). With longer
wavelengths, SAR data acquisition is unaffected by atmospheric
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FIGURE 8.9 Estimated surface roughness, ranging from 0 to 1, over two study sites in Germany: Elbe-Auen (a) and Weiherbach (b). Areas in
black represent data gaps. (Adapted from Hajnsek, I. et al., IEEE Trans. Geosci. Remote Sens., 41(4), 727, 2003, doi: 10.1109/tgrs.2003.810702.)

conditions such as cloud cover and haze. The number of SAR
satellites in orbit continues to increase and the engineering
behind these satellites has led to a greater diversity in SAR con-
figurations. This means that users now have choices in incidence
angle and polarization and, in some cases, access to polarimetric
data (Table 8.4). Research has demonstrated that success in this
application will be best achieved when data can be accessed at
more than one frequency and polarization. The choice of inci-
dence angle and polarization is clear with researchers agreeing
that shallower angles and cross polarizations are best for rough-
ness and residue mapping. The availability of polarimetric-
capable sensors is relatively recent, and thus more research is
needed to develop methods to exploit these complex data. The
primary challenge is the coupling of roughness, soil moisture,
and residue in the SAR response. This coupling complicates
the extraction of tillage information from the signal but can
be accomplished by exploiting SAR data acquired at multiple
configurations (frequency, angle, or polarization). Planned, and
recently launched, satellites include the C-band RADARSAT
Constellation (Canada), C-band Sentinel-1A and B (ESA), and
L-band SAOCOM-1A and B (Comisién Nacional de Actividades
Espaciales (CONAE)) (Table 8.4). These satellites will provide
frequent data at a range of angles and polarizations and promise
to provide an important source of data for monitoring tillage.

© 2016 Taylor & Francis Group, LLC

8.5 Review and Outlook

This chapter has summarized recent progress to advance appli-
cations of remote-sensing technologies to broadscale assessment
of tillage status. Nonetheless, important challenges remain.
Here we recap some of the key elements of current research to
apply remote-sensing technologies to broadscale, site-specific
tillage assessment and then highlight some of the principal chal-
lenges this effort faces as further research progresses (see also
Zheng et al. 2014).

Optical remote sensing and SAR data provide different capa-
bilities for tillage assessment. Whereas optical remote-sensing
imagery provides the spectral basis for detection of crop residues
on soil surface, SAR data provide information on soil physical
properties, such as roughness and texture, which can reveal the
nature of tillage practices. With the presence of green vegetation,
both SAR and optical remote-sensing data have difficulties to dis-
criminate different tillage categories. Remotely sensed imagery
sensitive to radiation near 2100 nm cellulose absorption bands
provides the best opportunity to estimate crop residue cover and
to map tillage practices. In this context, the best three tillage
indices are CAIL, SINDRI, and NDTI. Because current satellite
hyperspectral systems cannot provide systematic spatial cover-
age, at present, multispectral imagery now forms the preferred
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candidate for a broadscale tillage assessment. Multitemporal
imagery is required to provide accurate assessment on tillage
practices for regions with diverse crop calendars—a range of
dates for soil preparation and planting schedules. The upcom-
ing launch of several new satellite systems with optical sensors
will offer solid opportunities to enhance our ability to monitor
rapid changes of agricultural lands, providing timely, and low-
cost, information for monitoring site-specific tillage assessment.

8.5.1 Challenges—Optical Systems

As noted previously, optical systems provide capabilities for
monitoring tillage in a systematic manner. Yet they are subject
to disruptive influences of soil moisture variations and uneven
terrain. Possible solutions include (1) development of terrain and
soil data layers that can guide interpretations of image data in
such areas and (2) development of specialized indices or other
strategies to detect or adjust for spectral variations caused by
these effects. Further, although current systems can provide
revisit intervals adequate in key agricultural regions, these capa-
bilities may not be adequate in other regions, where higher cloud
cover may require more frequent revisit capabilities to acquire
cloud-free coverage necessary for the temporal sequences
required for the minNDTI strategy.

From evaluation of the SINDRI and CAI tillage indices, we
know that carefully, and narrowly, defined spectral channels are
effective in tillage assessment. However, it seems unlikely that
future satellite systems are likely to incur the costs of designing
and operating new bands to support a single application mis-
sion. As a result, future opportunities for optical tillage assess-
ment seem likely to be based on the NDTI model (which relies
upon broadly defined spectral channels, but ones that support
a range of application missions), relying upon the sequential
imagery to apply strategies, such as the minNDTL

8.5.2 Challenges—SAR Systems

Although specific strategies for application of SAR for monitor-
ing tillage status are still under development, it has great potential
for systematic tillage assessment, in part because of its ability to
acquire data in the presence of cloud cover and the potential to
extract a suit of terrain measurements as part of a tillage assess-
ment mission. As reported here, current research has been suc-
cessful in applying radar fundamentals to the tillage assessment
task, although the multiplicity of system variables that interact
with each other and with the landscape offers challenges in isolat-
ing tillage information. The SAR tillage effort has yet to scale cur-
rent findings to examine larger regions, allowing identification of
unexpected effects of local terrain, interactions between agricul-
tural practices, and the geometries of varied SAR satellite systems.

8.5.3 Challenges—Sequential Observations

Monitoring tillage status by remote sensing by its nature requires
broadscale observation of very large regions. Within such broad
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regions, weather, terrain, and local practices vary, necessarily
dispersing tillage and planting data operations over intervals of
several weeks. Because the tillage event is ephemeral, soon con-
cealed by the foliage of the emerging crop, it must be assessed as
it occurs, not at a later date. As a result, a single snapshot satel-
lite image can capture only a partial record of a region’s tillage
pattern. This effect is significant regardless of the sensor system
or tillage assessment strategy—sequential imagery of the entire
planting season is necessary to observe the correct tillage sta-
tus of a landscape. Otherwise, the inventory will record only a
portion of the tillage operations within the area. In this context,
both SAR and optical satellite systems are challenged to pro-
vide reliable coverage in the sense that current revisit intervals
of optical systems are subject to disruption by cloud cover, and
current SAR systems are challenged to simultaneously provide
the spatial detail, broadscale coverage, and revisit intervals nec-
essary to observe the full planting season.

8.5.4 Challenges—Global Tillage Monitoring

Current research to apply remote sensing to tillage assessment
has been developed largely in midlatitudes, in regions charac-
terized by large fields, simple crop calendars that apply for very
large areas, limited numbers of crops, known crop rotation
sequences, and availability of supporting data. These conditions
may apply in many of the other major grain-producing regions
(e.g., Brazil, China, Argentina, Ukraine, and Mexico), where
current tillage assessment strategies may transfer. Many of the
world’s other agricultural regions present much different condi-
tions that do not favor their direct transfer. For irrigated crops,
there may be several planting cycles. Many tropical regions are
characterized by smaller fields and complicated crop calendars,
so investigators may require mastery of detailed knowledge of
a diversity of cropping systems and irrigation practices, which
may all vary within short distances. Such agricultural systems
may exhibit levels of spatial and temporal variability that will
greatly complicate applications of remote-sensing strategies that
have been successful in the context of midlatitude agricultural
systems.

8.5.5 Challenges—Field and Validation Data

Further advances in tillage assessment will require develop-
ment of additional strategies for collection of field data for
preparation of assessment model and for valuation of survey
findings. Field data collection campaigns following established
and co-coordinated protocols have a role in broadscale survey,
especially when it is feasible to mobilize a network or experi-
enced volunteers to support campaigns. However, such efforts
inevitably encounter logistical problems, especially when unfa-
vorable weather creates uncertainties or prevents acquisition
of viable imagery. Work to investigate alternative strategies,
including the feasibility of using commercial satellite imagery to
collect tillage observations to support model development and
validation of project findings, deserves attention.
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9.1 Introduction

Remote sensing data are considered hyperspectral when the
data are gathered from numerous wavebands, contiguously
over an entire range of the spectrum (e.g., 400-2500 nm). Goetz
(1992) defines hyperspectral remote sensing as “The acquisition
of images in hundreds of registered, contiguous spectral bands
such that for each picture element of an image it is possible
to derive a complete reflectance spectrum.” However, Jensen
(2004) defines hyperspectral remote sensing as “The simulta-
neous acquisition of images in many relatively narrow, con-
tiguous and/or non contiguous spectral bands throughout the
ultraviolet, visible, and infrared portions of the electromagnetic
spectrum.”

Opverall, the three key factors in considering data to be hyper-
spectral are the following:

1. Contiguity in data collection: Data are collected contigu-
ously over a spectral range (e.g., wavebands spread across
400-2500 nm).

2. Number of wavebands: The number of wavebands by itself
does not make the data hyperspectral. For example, if
there are numerous narrowbands in 400-700 nm wave-
lengths, but have only a few broadbands in 701-2500 nm,
the data cannot be considered hyperspectral. However,
even relatively broad bands of width, say, for example,
30 nm bandwidths spread equally across 400-2500 nm,
for a total of ~70 bands, are considered hyperspectral due
to contiguity.

3. Bandwidths: Often, hyperspectral data are collected in
very narrow bandwidths of ~1 to ~10 nm, contiguously
over the entire spectral range (e.g., 400-2500 nm). Such
narrow bandwidths are required to get hyperspectral sig-
natures. But one can have a combination of narrowbands
and broadbands spread across the spectrum and meet the
criterion for hyperspectral remote sensing.
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In summary

Remote sensing data are called hyperspectral when the
data are collected contiguously over a spectral range, pref-
erably in narrow bandwidths and in reasonably high num-
ber of bands.

Such a definition will meet many requirements and expec-
tations of hyperspectral data.

Hyperspectral remote sensing is also referred to as imag-
ing spectroscopy since data for each pixel are acquired in
numerous contiguous wavebands resulting in (1) 3d image
cube and (2) hyperspectral signatures. The various forms
and characteristics of hyperspectral data (imaging spec-
troscopy) are illustrated in Figures 9.1 through 9.7. The dis-
tinction between hyperspectral and multispectral is based
on the narrowness and contiguous nature of the measure-
ments, not the “number of bands” (Qi et al., 2012).

The overarching goal of this chapter is to provide an intro-
duction to hyperspectral remote sensing, its characteristics, data
mining approaches, and methods of analysis for terrestrial appli-
cation. First, hyperspectral sensors from various platforms are

Reflectance (-)

0 . , . .
500 1000 1500 2000 2500

(c) Wavelength (nm)

FIGURE9.1 Treespectra. Analytical Spectral Devices (ASD) FieldSpec

JR spectroradiometer. Hyperspectral shape-based unmixing to improve
intra- and interclass variabilities for forest and agro-ecosystem monitor-
ing. A detail of a 30-by-30 m image pixel of the virtual forest consisting
of two species with a different structure, with 10% of the trees removed
to include gaps in the canopy (a). An example of a virtual tree for the
two species, used to build up the forest, is shown in (b), while the spec-
tral variability of the two species and the soil is given as well (c). (From
Tits, L. et al., ISPRS J. Photogramm. Remote Sens., 74, 163, 2012.)
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noted. Second, data mining to overcome data redundancy is enu-
merated. Third, concept of Hughes’s phenomenon and the need to
overcome it are highlighted. Fourth, hyperspectral data analysis
methods are presented and discussed. Methods section includes
approaches to optimal band selection, deriving hyperspectral
vegetation indices (HVIs) and various classification methods.

9.2 Hyperspectral Sensors

Hyperspectral data (or imaging spectroscopy) are gathered
from various sensors. These are briefly discussed in the follow-
ing text.

9.2.1 Spectroradiometers

The most common and widely used over last 50 years is hand-held
or platform-mounted spectroradiometers. Typically, spectro-
radiometers gather hyperspectral data ~1 nm wide narrowbands
over the entire spectral range (e.g., 400-13,500 nm). For example,
Figure 9.1 illustrates the hyperspectral data gathered for Beech
versus Poplar forests (Thomas, 2012; Tits et al., 2012; Zhang, 2012;
Tanner, 2013) based on FieldSpec Pro FR spectroradiometer man-
ufactured by Analytical Spectral Devices (ASD). Data are acquired
over 400-2,500 nm at every 1 nm bandwidth. Gathering spectra at
any given location involved optimizing the integration time (typi-
cally set at 17 ms), providing foreoptic information, recording dark
current, collecting white reference reflectance, and then obtaining
target reflectance at set field of view such as 18° (Thenkabail et al.,
2004a). Data are either in radiance (W m2 sr! um™') or reflec-
tance factor as shown in Figure 9.1 or in percentage.

9.2.2 Airborne Hyperspectral Remote Sensing

Airborne hyperspectral remote sensing platform is the next
most common hyperspectral data, which has a history of over
30 years. The most common is the airborne visible/infrared

Scaled reflectance
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imaging spectrometer (AVIRIS) by NASAs Jet Propulsion
Laboratory (JPL). As an imaging spectrometer, AVIRIS gath-
ers data in 614-pixel swath, in 224 bands, over 400-2500 nm
wavelength. The data can be constituted as image cube
(e.g., Figure 9.2; [Guo et al., 2013]). Figure 9.2 shows hyper-
spectral imaging data gathered by AVIRIS over an agricultural
area. The hyperspectral signatures of tilled versus untilled lands
of corn and soybean farms as well as few other crops are illus-
trated by Guo et al. 2013 (Figure 9.2). Spectral reflectivity of no-
till corn fields is highest in the red (around 680 nm). In contrast,
grass/pasture and woods are highest around 680 nm, and reflec-
tivity is highest for these land covers in the near-infrared (NIR;
760-900 nm). The healthy grass/pasture and woods also absorb
heavily around 960-970 nm range. There are many other unique
features that can even be observed qualitatively by someone
trained in imaging spectroscopy.

Another frequently used airborne hyperspectral imager is the
Australian HyMap. It has 126 wavebands over 400-2500 nm.
The data captured by HyMap are illustrated in Figure 9.3
(Andrew and Ustin, 2008). Typical characteristics of healthy
vegetation for certain species is obvious as described earlier
for wavelengths centered in red and NIR. In contrast, the soil
and the litter have comparable spectra, with litter having higher
reflectivity than soil in NIR and SWIR bands. Water absorbs
heavily in NIR and SWIR, and hence the reflectivities are very
low or zero (Figure 9.3).

9.2.3 Spaceborne Hyperspectral Data

In the year 2000, NASA launched the first civilian space-
borne hyperspectral imager called Hyperion onboard Earth
Observing-1 (EO-1) satellite. Hyperion gathers data in 242 bands
spread across 400-2500 nm. Each band is 10 nm wide. Of the
original 242 Hyperion bands, 196 are unique and calibrated:
bands 8 (427.55 nm) to 57 (925.85 nm) from the visible and
near-infrared (VNIR) sensors, and bands 79 (932.72 nm) to 224

Corn-notill
Corn-min
Grass/pasture [
Grass/trees
Hay-windrowed
Soybeans-notill
Soybeans-min |
Soybeans-clean
—— Woods

mm

0 50 100 150 200

Band number

FIGURE 9.2 Corn-till. AVIRIS Indian Pines data set: (a) 3D hyperspectral cube and (b) the scaled reflectance plot. (From Guo, X. et al., ISPRS

] Photagramm. Remote Sens., 83, 50, 2013.)
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FIGURE 9.3 Reflectance spectra derived from HyMap imagery of the dominant species at (a) Rush Ranch, (b) Jepson Prairie, and (c) Consumes
River Preserve. These spectra were used as training end members for the mixture-tuned matched filtering (MTMF). (From Andrew, M.E. and

Ustin, S.L., Remote Sens. Environ., 112, 4301, 2008.)
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~64,000 Hyperion images of the world from 2000 to 2013.
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FIGURE9.4 EO-1Hyperion is the first spaceborne civilian hyperspectral sensor that was launched in year 2000 and has so far acquired ~64,000 images
of the world (see the area covered by Hyperion images marked in red on global image). Each image is 7.5 km by 185 km, has 242 bands over 400-2500 nm.
A single such image data cube is shown in the center with spectral signatures derived from the Hyperion sensor shown for few land cover themes. Typical
ASD spectroradiometer gathered hyperspectral data of crops are shown in photos. The gaps in ASD hyperspectral data are in areas of atmospheric win-
dows where data is too noisy and hence deleted. (Plotted using Data available from http://earthexplorer.usgs.gov/; http://eol.gsfc.nasa.gov/.)

(2395.53 nm) from the SWIR sensors (Thenkabail et al., 2004b).
The redundant and uncalibrated bands are in the spectral range:
357-417, 936-1068, and 852-923 nm. The 196 bands are further
reduced to 157 bands after dropping bands in atmospheric win-
dows: 1306-1437, 1790-1992, and 2365-2396 nm ranges, which
show high noise level (Thenkabail et al., 2004b).

From year 2000 to 2014, Hyperion has acquired ~64,000
images spread across the world (Figure 9.4) that are now freely
available from the U.S. Geological Survey’s (USGS) EarthExplorer
and Glovis portals. Each image is 7.5 km by 185 km with a pixel
resolution of 30 m. The data cubes composed from these images
allow us to derive hyperspectral signature banks of various land
cover or cropland themes (e.g., Figure 9.4). Figure 9.5a illustrates
two Hyperion images acquired over California as well as a num-
ber of hyperspectral signatures of major crops gathered using
ASD field spectroradiometer.

© 2016 Taylor & Francis Group, LLC

9.2.4 Unmanned Aerial Vehicles

Hyperspectral sensorsare increasingly carried onboard unmanned
aerial vehicles (UAVs; Colomina and Molina, 2014). The UAVs are
fast evolving as widely used remote sensing platform. A wide array
of UAVs (e.g., Figure 9.5b) are currently used to carry hyperspec-
tral sensors as well as many different types of sensors.

9.2.5 Multispectral versus Hyperspectral

Whereas multispectral broadband data-acquired from sensors
such as the Landsat ETM+ only offer few possibilities, in contrast
Hyperion offers many possibilities for visualizations and quantifi-
cation of terrestrial earth features (e.g., Figure 9.6). In Figure 9.6,
depiction of different false color composites (FCCs) of Hyperion
(e.g., RGB: 843, 680, 547 nm; or RGB: 680, 547, 486 nm, and so on)
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FIGURE9.5 Hyperspectral spectral signatures of some of the major crops of California. The depicted spectral signatures are representative of the particular crops measured using ASD spec-
troradiometer. Two Hyperion images (each of 7.5 km-by-185 km) are also illustrated. (a) Microdrone MD4-1000 flying over the experimental crop. (From Torres-Sénchez, J. et al., Comput.
Electron. Agric., 103, 104, 2014.) (Continued)
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(b)

FIGURE 9.5 (Continued) Hyperspectral spectral signatures of some of the major crops of California. The depicted spectral signatures are representative of the particular crops measured
using ASD spectroradiometer. Two Hyperion images (each of 7.5 km-by-185 km) are also illustrated. (a) Microdrone MD4-1000 flying over the experimental crop.
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FIGURE 9.6 Hyperion images displayed in a number of different combinations of false color composites (FCCs) (e.g., wavebands centered at
843, 680, 547 nm, which are NIR, red, green as RGB FCC) and compared with classic RGB 4, 3, 2 (NIR, red, green) FCC combination of Landsat
ETM+ data on top left. Unlike multispectral data, hyperspectral data offer numerous different opportunities to depict, quantify, and study the

Planet Earth.

and comparison with FCC of Landsat ETM+ bands 4, 3, 2 clearly
demonstrate, even by visual observation, the many possibilities that
exist with Hyperion. For example, a seven-band Landsat will pro-
vide 21 unique indices (7 x 7 = 49 indices — 7 indices on the diago-
nal of the matrix divided by 2 since the values above and below
the matrix are transpose of each other). In contrast, 157-band clean
Hyperion data (after reduced from original 242 bands by eliminat-
ing bands in atmospheric windows and uncalibrated bands) allow
for 12,246 unique indices (157 x 157 = 24,640 indices—157 indices
on the diagonal of the matrix divided by 2 since the values above
and below the matrix are the transpose of each other).

9.2.6 Hyperspectral Data: 3D Data
Cube Visualization and Spectral
Data Characterization

One quick way to visualize the hyperspectral data is to cre-
ate 3D cubes as illustrated by an EO-1 Hyperion data in Figure
9.7. The 3D cube basically is a data layer stack of 242 bands over

© 2016 Taylor & Francis Group, LLC

400-2500 nm. Looking through this stack, when there is same
color along the bands 1-242, it indicates less diversity in data. The
spectral regions with significant diversity are in different color
(e.g., red versus cyan in Figure 9.7). Hyperion digital numbers
(DNs) are 16-bit radiances and are stored as 16-bit signed integer,
which are then converted to radiances using a scaling factor pro-
vided in the header file, then to at-sensor reflectance, and finally
to ground reflectance (see Thenkabail et al., 2004b). So, a click
on any pixel will give reflectances in 242 bands, which is then
plotted as hyperspectral signature (e.g., Figure 9.6) and analyzed
quantitatively.

9.2.7 Past, Present, and Near-Future
Spaceborne Hyperspectral Sensors

Hyperspectral sensors are of increasing interest to the remote
sensing community given its their natural inherent advan-
tages over multispectral sensors (Qi et al., 2012; Thenkabail
et al., 2012a). As a result, we are seeing a number of spaceborne
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— Wetlands (64)

— Barren rocky area (32)
—— Built-up (69)

— Forest: young (113)
—— Forest: primary (79)
—— Cocoa (33)
—— Bamboo (21)
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FIGURE 9.7 Hyperspectral signatures derived from Hyperion data cube for certain land cover themes. The numbers within brackets show sample sizes.
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hyperspectral imagers for Ocean, Atmosphere, and Land (Table
9.1). These include (Table 9.1) NASA’s Hyperion, HyspIRI, OMI,
HICO, German’s EnMap, Italy’s PRISMA, ESA’s SCTAMACHY,
and CHRIS PROBA (Miura and Yoshioka, 2012; Ortenberg,
2012; Qi et al.,, 2012). There are also current initiatives from pri-
vate industry in the commercial sector, like that from Boeing to
launch hyperspectral sensors. The spatial, spectral, radiometric,
and temporal characteristics of some of the key ocean, atmo-
spheric, and land observation spaceborne hyperspectral data are
provided in Table 9.1.

9.2.8 Data Normalization Hyperspectral Data

We illustrate the hyperspectral data normalization taking the case
of Hyperion data. The DNs of the Hyperion level 1 products are
16-bit radiances and are stored as 16-bit signed integers. The DNs
were converted to radiances (W m™ sr! pm™) using an appropri-
ate scaling (e.g., for a Hyperion image dated March 21, 2002, fac-
tor: 40 for visible and VNIR, and 80 for SWIR). However, users
should check the header file of the image they work with to deter-
mine the exact scaling factor for their image.

Radiance (W m~2 sr! um™!) for VNIR bands = DN/40
Radiance (W m~2 sr! um™) for SWIR bands = DN/80
Radiance to at-sensor top of atmosphere reflectance is then cal-
culated using
2
Reflectance (%) = n%
ESUN;.cosOg
where,
TOA reflectance (at-satellite exoatmospheric reflectance)
L, is the radiance (W m= sr! um™)
d is the earth-to-sun distance in astronomic units at the
acquisition date (see Markham and Barker, 1987)
ESUN, is the irradiance (W m= sr! pm™) or solar flux
(Neckel and Labs, 1984)
0, is the solar Zenith angle

Note: 0, is solar Zenith angle in degrees (i.e., 90° minus the sun
elevation or sun angle when the scene was recorded as given in
the image header file).

Atmospheric correction methods include (1) dark object sub-
traction technique (Chavez, 1988), (2) improved dark object
subtraction technique (Chavez, 1989), (3) radiometric normal-
ization technique: Bright and dark object regression (Elvidge
etal., 1995), and (4) 6S model (Vermote et al. 2002). Readers with
further interest in this topic are referred to Chapters 4 through 8
in Remotely Sensed Data Characterization, Classification, and
Accuracies and Chander et al. (2009).

9.3 Data Mining and Data Redundancy
of Hyperspectral Data

Data mining is one of the critical first steps in hyperspectral
data analysis. The primary goal of data mining is to eliminate
redundant data and retain only the useful data. Data volumes
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are reduced through data mining methods such as feature
selection (e.g., principal component analysis (PCA), deriva-
tive analysis, and wavelets), lambda-by-lambda correlation
plots (Thenkabail et al., 2000), minimum noise fraction (MNF)
(Green et al., 1988; Boardman and Kruse, 1994), and HVIs
(e.g., Thenkabail et al., 2014). Data 