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xi

Satellite remote sensing has progressed tremendously since 
Landsat 1 was launched on June 23, 1972. Since the 1970s, sat-
ellite remote sensing and associated airborne and in situ mea-
surements have resulted in vital and indispensible observations 
for understanding our planet through time. These observations 
have also led to dramatic improvements in numerical simula-
tion models of the coupled atmosphere–land–ocean systems 
at increasing accuracies and predictive capabilities. The same 
observations document the Earth’s climate and are driving the 
consensus that Homo sapiens is changing our climate through 
greenhouse gas (GHG) emissions.

These accomplishments are the combined work of many 
scientists from many countries and a dedicated cadre of engi-
neers who build the instruments and satellites that collect Earth 
observation (EO) data from satellites, all working toward the 
goal of improving our understanding of the Earth. This edi-
tion of the Remote Sensing Handbook (Remotely Sensed Data 
Characterization, Classification, and Accuracies; Land Resources 
Monitoring, Modeling, and Mapping with Remote Sensing; and 
Remote Sensing of Water Resources, Disasters, and Urban Studies) 
is a compendium of information for many research areas of our 
planet that have contributed to our substantial progress since 
the 1970s. The remote sensing community is now using multiple 
sources of satellite and in situ data to advance our studies, what-
ever they may be. In the following paragraphs, I will illustrate 
how valuable and pivotal satellite remote sensing has been in cli-
mate system study over the last five decades. The chapters in the 
handbook provide many other specific studies on land, water, 
and other applications using EO data of the last five decades.

The Landsat system of Earth-observing satellites has led the 
way in pioneering sustained observations of our planet. From 
1972 to the present, at least one and sometimes two Landsat sat-
ellites have been in operation (Irons et al. 2012). Starting with the 
launch of the first NOAA–NASA Polar Orbiting Environmental 
Satellites NOAA-6 in 1978, improved imaging of land, clouds, 
and oceans and atmospheric soundings of temperature was 
accomplished. The NOAA system of polar-orbiting meteoro-
logical satellites has continued uninterrupted since that time, 
providing vital observations for numerical weather prediction. 
These same satellites are also responsible for the remarkable 
records of sea surface temperature and land vegetation index 

from the advanced very-high-resolution radiometers (AVHRRs) 
that now span more than 33 years, although no one anticipated 
these valuable climate records from this instrument before the 
launch of NOAA-7 in 1981 (Cracknell 1997).

The success of data from the AVHRR led to the design of 
the moderate-resolution imaging spectroradiometer (MODIS) 
instruments on NASA’s Earth-Observing System (EOS) of sat-
ellite platforms that improved substantially upon the AVHRR. 
The first of the EOS platforms, Terra, was launched in 2000; and 
the second of these platforms, Aqua, was launched in 2002. Both 
of these platforms are nearing their operational life, and many of 
the climate data records from MODIS will be continued with the 
visible infrared imaging radiometer suite (VIIRS) instrument on 
the polar orbiting meteorological satellites of NOAA. The first 
of these missions, the NPOES Preparation Project (NPP), was 
launched in 2012 with the first VIIRS instrument that is operat-
ing currently among several other instruments on this satellite. 
Continuity of observations is crucial for advancing our under-
standing of the Earth’s climate system. Many scientists feel that 
the crucial climate observations provided by remote sensing 
satellites are among the most important satellite measurements 
because they contribute to documenting the current state of our 
climate and how it is evolving. These key satellite observations 
of our climate are second in importance only to the polar orbit-
ing and geostationary satellites needed for numerical weather 
prediction.

The current state of the art for remote sensing is to combine 
different satellite observations in a complementary fashion for 
what is being studied. Let us review climate change as an excel-
lent example of using disparate observations from multiple sat-
ellite and in situ sources to observe climate change, verify that it 
is occurring, and understand the various component processes:

	 1.	 Warming of the planet, quantified by radar altimetry from 
space: Remotely sensed climate observations provide the 
data to understand our planet and what forces our climate. 
The primary climate observation comes from radar altim-
etry that started in late 1992 with Topex/Poseidon and has 
been continued by Jason-1 and Jason-2 to provide an unin-
terrupted record of global sea level. Changes in global sea 
level provide unequivocal evidence if our planet is warming, 

Foreword: Satellite Remote 
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xii Foreword

cooling, or staying at the same temperature. Radar altim-
etry from 1992 to date has shown global sea level increases of 
~3 mm/year, and hence, our planet is warming (Figure F.1). 
Sea level rise has two components, thermal expansion and 
ice melting in the ice sheets of Greenland and Antarctica, 
and to a much lesser extent, in glaciers.

	 2.	 The Sun is not to blame for global warming, based on solar 
irradiance data from satellites. Next, we consider two very 
different satellite observations and one in situ observing 
system that enable us to understand the causes of sea level 
variations: total solar irradiance, variations in the Earth’s 
gravity field, and the Argo floats that record ocean tem-
perature and salinity with depth, respectively.

Observations of total solar irradiance have been made 
from satellites since 1979 and show total solar irradiance 
has varied only ±1 part in 500 over the past 35 years, estab-
lishing that our Sun is not to blame for global warming 

(Figure F.2). Thus, we must look to other remotely sensed 
climate observations to explain and confirm sea level rise.

	 3.	 Sea level rise of 60% is explained by a mass balance of 
melting of ice measured by GRACE satellites. Since 
2002, we have measured gravity anomalies from the 
Gravity Recovery and Climate Experiment Satellite 
(GRACE) dual satellite system. GRACE data quantify 
ice mass changes from the Antarctic and Greenland 
ice sheets (AIS and GIS) and concentrations of gla-
ciers, such as in the Gulf of Alaska (GOA) (Luthcke 
et  al. 2013). GRACE data are truly remarkable—their 
retrieval of variations in the Earth’s gravity field is 
quantitatively and directly linked to mass variations. 
With GRACE data, we are able to determine for the first 
time the mass balance with time of the AIS and GIS 
and concentrations of glaciers on land. GRACE data 
show sea level rise of 60% explained by ice loss from 
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Figure F.1  Warming of the planet quantified by radar altimetry from space. Sea level determined from three radar altimeters from late 1992 to 
the present shows global sea level increases of ~3 mm/year. Sea level is the unequivocal indicator of the Earth’s climate—when sea level rises, the 
planet is warming; when sea level falls, the planet is cooling. (From Gregory, J.M. et al., J. Climate, 26(13), 4476, 2013.)
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Figure F.2  The Sun is not to blame for global warming, based on solar irradiance data from satellites. Total solar irradiance reconstructed from 
multiple instruments dates back to 1979. The luminosity of our Sun varies only 0.1% over the course of the 11-year solar cycle. (From Froehlich, C., 
Space Sci. Rev., 176(1–4), 237, 2013.)
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xiiiForeword

land (Figure F.3). GRACE data have many other uses, 
such as indicating changes in groundwater storage, and 
readers are directed to the GRACE project’s website if 
interested (http://www.csr.utexas.edu/grace/).

	 4.	 Sea level rise of 40% is explained by thermal expansion 
in the planet’s oceans measured by in situ ~3700 drifting 
floats. The other contributor to sea level rise is thermal 
expansion in the planet’s oceans. This necessitates using 
diving and drifting floats in the Argo network to record 
temperature with depth (Roemmich et  al. 2009 and 
Figure F.4). Argo floats are deployed from ships; they 
then submerge and descend slowly to 1000 m depth, 
recording temperature, pressure, and salinity as they 

descend. At 1000 m depth, they drift for 10  days con-
tinuing their measurements of temperature and salinity. 
After 10 days, they slowly descend to 3000 m and then 
ascend to the surface, all the time recording their mea-
surements. At the surface, each float transmits all the 
data collected on the most recent excursion to a geosta-
tionary satellite and then descends again to repeat this 
process.

Argo temperature data show that 40% of sea level rise results 
from the warming and thermal expansion of our oceans. 
Combining radar altimeter data, GRACE data, and Argo data 
provides a confirmation of sea level rise and shows what is 
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Figure F.4  Sea level rise of 40% explained by thermal expansion in the planet’s oceans measured by in situ ~3700 drifting floats. This is the latest 
picture of the 3627 Argo floats that were in operation on September 30, 2014. These floats provide the data needed to document thermal expansion 
of the oceans. (From http://www.argo.ucsd.edu/.)
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Figure F.3  Sea level rise of 60% explained by mass balance of melting of ice measured by GRACE satellites. Ice mass variations from 2003 
to 2010 for the Antarctic ice sheets (AIS), Greenland ice sheets (GIS) and the Gulf of Alaska (GOA) glaciers using GRACE gravity data. (From 
Luthcke, S.B. et al., J. Glaciol., 59(216), 613, 2013.)
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responsible for it and in what proportions. With total solar 
irradiance being near constant, what is driving global warm-
ing can be determined. The analysis of surface in  situ air 
temperature coupled with lower tropospheric air tempera-
ture and stratospheric temperature data from remote sensing 
infrared and microwave sounders shows that the surface and 
near surface are warming while the stratosphere is cooling. 
This is an unequivocal confirmation that greenhouse gases 
are warming the planet.

Many scientists are actively working to study the Earth’s 
carbon cycle, and there are several chapters in the handbook 
that deal with the components of this undertaking. Much like 
simultaneous observations of sea level, total solar irradiance, 
the gravity field, ocean temperature, surface temperature, and 
atmospheric temperatures were required to determine if the 
Earth is warming and what is responsible; the carbon cycle 
(Figure F.5) will require several complementary satellite and 
in situ observations (Cias et al. 2014).

Carbon cycles through reservoirs on the Earth’s surface in 
plants and soils exist in the atmosphere as gases, such as car-
bon dioxide (CO2) and methane (CH4), and in ocean water in 
phytoplankton and marine sediments. CO2 and CH4 are released 
into the atmosphere by the combustion of fossil fuels, land cover 
changes on the Earth’s surface, respiration of green plants, and 
decomposition of carbon in dead vegetation and in soils, includ-
ing carbon in permafrost. The atmospheric concentrations of 
CO2 and CH4 control atmospheric and oceanic temperatures 
through their absorption of outgoing long-wave radiation and 
thus also indirectly control sea level via the regulation of plan-
etary ice volumes.

Satellite-borne sensors provide simultaneous global car-
bon cycle observations needed for quantifying carbon cycle 
processes, that is, to measure atmospheric CO2 concentra-
tions and emission sources, to measure land and ocean pho-
tosynthesis, to measure the reservoir of carbon in plants on 
land and its change, to measure the extent of biomass burn-
ing of vegetation on land, and to measure soil respiration and 
decomposition, including decomposing carbon in permafrost. 
In addition to the required satellite observations, in situ obser-
vations are needed to confirm satellite-measured CO2 concen-
trations and determine soil and vegetation carbon quantities. 
Understanding the carbon cycle requires a full court press of 
satellite and in  situ observations because all of these obser-
vations must be made at the same time. Many of these mea-
surements have been made over the past 30–40 years, but new 
measurements are needed to quantify carbon storage in vege-
tation, atmospheric measurements are needed to quantify CH4 
and CO2 sources and sinks, better measurements are needed 
to quantify land respiration, and more explicit numerical car-
bon models need to be developed.

Similar work needs to be performed for the role of clouds and 
aerosols in climate because these are fundamental to under-
standing our radiation budget. We also need to improve our 
understanding of the global hydrological cycle.

The remote sensing community has made tremendous prog-
ress over the last five decades as discussed in this edition of 
the handbook. Chapters on aerosols in climate, because these 
are fundamental, provide comprehensive understanding of 
land and water studies through detailed methods, approaches, 
algorithms, synthesis, and key references. Every type of remote 
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Figure F.5  Global carbon cycle measurements from a multitude of satellite sensors. A representation of the global carbon cycle showing our 
best estimates of carbon fluxes and carbon reservoirs. A series of satellite observations are needed simultaneously to understand the carbon cycle 
and its role in the Earth’s climate system. (From Cias, P. et al., Biogeosciences, 11(13), 3547, 2014.)
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sensing data obtained from systems such as optical, radar, 
light detection and ranging (LiDAR), hyperspectral, and 
hyperspatial is presented and discussed in different chapters. 
Remotely Sensed Data Characterization, Classification, and 
Accuracies sets the stage with chapters in this book address-
ing remote sensing data characteristics, within and between 
sensor calibrations, classification methods, and accuracies 
taking a wide array of remote sensing data from a wide array 
of platforms over the last five decades. Remotely Sensed Data 
Characterization, Classification, and Accuracies also brings in 
technologies closely linked with remote sensing such as global 
positioning system (GPS), global navigation satellite system 
(GNSS), crowdsourcing, cloud computing, and remote sensing 
law. In all, the 82 chapters in the 3 volumes of the handbook 
are written by leading and well-accomplished remote sensing 
scientists of the world and competently edited by Dr. Prasad 
S. Thenkabail, Research Geographer-15, at the United States 
Geological Survey (USGS).

We can look forward in the next 10–20 years to improving our 
quantitative understanding of the global carbon cycle, under-
standing the interaction of clouds and aerosols in our radiation 
budget, and understanding the global hydrological cycle. There 
is much work to do. Existing key climate observations must be 
continued and new satellite observations will be needed (e.g., 
the recently launched NASA’s Orbiting Carbon Observatory-2 
for atmospheric CO2 measurements), and we have many well-
trained scientists to undertake this work and continue the legacy 
of the past five decades.
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xvii

The overarching goal of the Remote Sensing Handbook 
(Remotely Sensed Data Characterization, Classification, 
and Accuracies; Land Resources Monitoring, Modeling, and 
Mapping with Remote Sensing; and Remote Sensing of Water 
Resources, Disasters, and Urban Studies), with 82 chapters 
and about 2500 pages, was to capture and provide the most 
comprehensive state of the art of remote sensing science and 
technology development and advancement in the last 50 years, 
by clearly demonstrating the (1) scientific advances, (2) meth-
odological advances, and (3) societal benefits achieved during 
this period, as well as to provide a vision of what is to come in 
the years ahead. The three books are, to date and to the best of 
my knowledge, the most comprehensive documentation of the 
scientific and methodological advances that have taken place in 
understanding remote sensing data, methods, and a wide array 
of land and water applications. Written by 300+ leading global 
experts in the area, each chapter (1) focuses on a specific topic 
(e.g., data, methods, and applications), (2) reviews the existing 
state-of-the-art knowledge, (3) highlights the advances made, 
and (4) provides guidance for areas requiring future devel-
opment. Chapters in the books cover a wide array of subject 
matter of remote sensing applications. The Remote Sensing 
Handbook is planned as a reference material for remote sens-
ing scientists, land and water resource practitioners, natural 
and environmental practitioners, professors, students, and 
decision makers. The special features of the Remote Sensing 
Handbook include the following:

	 1.	 Participation of an outstanding group of remote sensing 
experts, an unparalleled team of writers for such a book 
project

	 2.	 Exhaustive coverage of a wide array of remote sensing 
science: data, methods, and applications

	 3.	 Each chapter being led by a luminary and most chapters 
written by teams who further enriched the chapters

	 4.	 Broadening the scope of the book to make it ideal for 
expert practitioners as well as students

	 5.	 Global team of writers, global geographic coverage of 
study areas, and a wide array of satellites and sensors

	 6.	 Plenty of color illustrations

Chapters in the books cover the following aspects of remote 
sensing:

State of the art
Methods and techniques
Wide array of land and water applications
Scientific achievements and advancements over the last 

50 years
Societal benefits
Knowledge gaps
Future possibilities in the twenty-first century

Great advances have taken place over the last 50  years using 
remote sensing in the study of the planet Earth, especially using 
data gathered from a multitude of Earth observation (EO) satel-
lites launched by various governments as well as private enti-
ties. A large part of the initial remote sensing technology was 
developed and tested during the two world wars. In the 1950s, 
remote sensing slowly began its foray into civilian applications. 
During the years of the Cold War, remote sensing applications, 
both civilian and military, increased swiftly. But it was also 
an age when remote sensing was the domain of a very few top 
experts and major national institutes, having multiple skills in 
engineering, science, and computer technology. From the 1960s 
onward, there have been many governmental agencies that have 
initiated civilian remote sensing. The National Aeronautics and 
Space Administration (NASA) and the United States Geological 
Survey (USGS) have been in the forefront of many of these efforts. 
Others who have provided leadership in civilian remote sensing 
include, but are not limited to, the European Space Agency (ESA) 
of the European Union, the Indian Space Research Organization 
(ISRO), the Centre National d’Études Spatiales (CNES) of 
France, the Canadian Space Agency (CSA), the Japan Aerospace 
Exploration Agency (JAXA), the German Aerospace Center 
(DLR), the China National Space Administration (CNSA), 
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the United Kingdom Space Agency (UKSA), and the Instituto 
Nacional de Pesquisas Espaciais (INPE) of Brazil. Many private 
entities have launched and operated satellites. These government 
and private agencies and enterprises launched and operated a 
wide array of satellites and sensors that captured the data of the 
planet Earth in various regions of the electromagnetic spectrum 
and in various spatial, radiometric, and temporal resolutions, 
routinely and repeatedly. However, the real thrust for remote 
sensing advancement came during the last decade of the twenti-
eth century and the beginning of the twenty-first century. These 
initiatives included a launch of a series of new-generation EO 
satellites to gather data more frequently and routinely, release 
of pathfinder datasets, web enabling the data for free by many 
agencies (e.g., USGS release of the entire Landsat archives as 
well as real-time acquisitions of the world for free dissemina-
tion by web-enabling), and providing processed data ready to 
users (e.g., surface reflectance products of moderate-resolution 
imaging spectroradiometer [MODIS]). Other efforts like Google 
Earth made remote sensing more popular and brought in a new 
platform for easy visualization and navigation of remote sens-
ing data. Advances in computer hardware and software made it 
possible to handle Big Data. Crowdsourcing, web access, cloud 
computing, and mobile platforms added a new dimension to 
how remote sensing data are used. Integration with global posi-
tioning systems (GPS) and global navigation satellite systems 
(GNSS) and inclusion of digital secondary data (e.g., digital 
elevation, precipitation, temperature) in analysis have made 
remote sensing much more powerful. Collectively, these initia-
tives provided a new vision in making remote sensing data more 
popular, widely understood, and increasingly used for diverse 
applications, hitherto considered difficult. The free availability 
of archival data when combined with more recent acquisitions 
has also enabled quantitative studies of change over space and 
time. The Remote Sensing Handbook is targeted to capture these 
vast advances in data, methods, and applications, so a remote 
sensing student, scientist, or a professional practitioner will have 
the most comprehensive, all-encompassing reference material in 
one place.

Modern-day remote sensing technology, science, and appli-
cations are growing exponentially. This growth is a result of a 
combination of factors that include (1) advances and innova-
tions in data capture, access, and delivery (e.g., web enabling, 
cloud computing, crowdsourcing); (2) an increasing number of 
satellites and sensors gathering data of the planet, repeatedly 
and routinely, in various portions of the electromagnetic spec-
trum as well as in an array of spatial, radiometric, and temporal 
resolutions; (3) efforts at integrating data from multiple satel-
lites and sensors (e.g., sentinels with Landsat); (4) advances in 
data normalization, standardization, and harmonization (e.g., 
delivery of data in surface reflectance, intersensor calibration); 
(5) methods and techniques for handling very large data vol-
umes (e.g., global mosaics); (6) quantum leap in computer hard-
ware and software capabilities (e.g., ability to process several 
terabytes of data); (7) innovation in methods, approaches, and 
techniques leading to sophisticated algorithms (e.g., spectral 

matching techniques, and automated cropland classification 
algorithms); and (8) development of new spectral indices to 
quantify and study specific land and water parameters (e.g., 
hyperspectral vegetation indices or HVIs). As a result of these 
all-around developments, remote sensing science is today very 
mature and is widely used in virtually every discipline of the 
earth sciences for quantifying, mapping, modeling, and moni-
toring our planet Earth. Such rapid advances are captured in a 
number of remote sensing and earth science journals. However, 
students, scientists, and practitioners of remote sensing science 
and applications have significant difficulty gathering a complete 
understanding of the various developments and advances that 
have taken place as a result of their vastness spread across the 
last 50  years. Therefore, the chapters in the Remote Sensing 
Handbook are designed to give a whole picture of scientific and 
technological advances of the last 50 years.

Today, the science, art, and technology of remote sensing are 
truly ubiquitous and increasingly part of everyone’s everyday 
life, often without the user knowing it. Whether looking at your 
own home or farm (e.g., see the following figure), helping you 
navigate when you drive, visualizing a phenomenon occurring 
in a distant part of the world (e.g., see the following figure), mon-
itoring events such as droughts and floods, reporting weather, 
detecting and monitoring troop movements or nuclear sites, 
studying deforestation, assessing biomass carbon, addressing 
disasters such as earthquakes or tsunamis, and a host of other 
applications (e.g., precision farming, crop productivity, water 
productivity, deforestation, desertification, water resources 
management), remote sensing plays a pivotal role. Already, 
many new innovations are taking place. Companies such as 
the Planet Labs and Skybox are planning to capture very-high-
spatial-resolution imagery (typically, sub-meter to 5 meters), 
even videos from space using a large number of microsatellite 
constellations. There are others planning to launch a constella-
tion of hyperspectral or other sensors. Just as the smartphone 
and social media connected the world, remote sensing is making 
the world our backyard. No place goes unobserved and no event 
gets reported without a satellite or other kinds of remote sensing 
images or their derivatives. This is how true liberation for any 
technology and science occurs.

Google Earth can be used to seamlessly navigate and 
precisely locate any place on Earth, often with very-high-
spatial-resolution data (VHRI; submeters to 5 m) from satel-
lites such as IKONOS, QuickBird, and GeoEye (Note: the image 
below is from one of the VHRI). Here, the editor-in-chief (EiC) 
of this handbook located his village home (Thenkabail) and 
surroundings that have land covers such as secondary rain-
forests, lowland paddy farms, areca nut plantations, coconut 
plantations, minor roads, walking routes, open grazing lands, 
and minor streams (typically, first and second order) (note: land 
cover detailed is based on the ground knowledge of the EiC). 
The first primary school attended by him is located precisely. 
Precise coordinates (13 degree 45 minutes 39.22 seconds north-
ern latitude, 75 degrees 06 minutes 56.03 seconds eastern lon-
gitude) of Thenkabail’s village house on the planet and the date 
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of image acquisition (March 1, 2014) are noted. Google Earth 
images are used for visualization as well as for numerous sci-
ence applications such as accuracy assessment, reconnaissance, 
determining land cover, and establishing land use for various 
ground surveys. It is widely used by lay people who often have 
no idea on how it all comes together but understand the infor-
mation provided intuitively. This is already happening. These 
developments make it clear that we not only need to  understand 
the state of the art but also have a vision of where the future of 
remote sensing is headed. Therefore, in a nutshell, the goal of 
this handbook is to cover the developments and advancement of 
six distinct eras in terms of data characterization and process-
ing as well as myriad land and water applications:

1. Pre–civilian remote sensing era of the pre-1950s: World 
War I and II when remote sensing was a military tool

2. Technology demonstration era of the 1950s and 1960s: 
Sputnik-I and NOAA AVHRR era of the 1950s and 1960s

3. Landsat era of the 1970s: when the first truly operational 
land remote sensing satellite (Earth Resources Technology 
Satellite or ERTS, later renamed Landsat) was launched and 
operated in the 1970s and early 1980s by United States

4. Earth observation era of the 1980s and 1990s: when a num-
ber of space agencies began launching and operating satellites 
(e.g., Landsat 4,5 by the United States; SPOT-1,2 by France; 
IRS-1a, 1b by India) from the middle to late 1980s onward till 
the middle of 1990s

5. Earth observation and the first decade of the New Millennium 
era of the 2000s: when data dissemination to users became as 
important as launching, operating, and capturing data (e.g., 
MODIS Terra\Aqua, Landsat-8, Resourcesat) in the late 1990 
and the first decade of the 2000s

6. Second decade of the New Millennium era starting in 
the 2010s: when new-generation micro-\nanosatellites (e.g., 
PlanetLabs, Skybox) are added to the increasing constellation 
of multiagency sensors (e.g., Sentinels, and the next generation 
of satellites such as SMAP, hyperspectral satellites like NASA’s 
HyspIRI and others from private industry)

Motivation for the Remote Sensing Handbook started with a 
simple conversation with Irma Shagla-Britton, acquisitior editor 
for remote sensing and GIS books of Taylor & Francis Group/
CRC Press, way back in early 2013. Irma was informally get-
ting my advice about “doing a new and unique book” on remote 
sensing. Neither the specific subject nor the editor was identi-
fied. What was clear to me though was that I certainly did not 
want to lead the effort. I was nearing the end of my third year of 
recovery from colon cancer, and the last thing I wanted to do was 
to take any book project, forget a multivolume remote sensing 
magnum opus, as it ultimately turned out. However, mostly out 
of courtesy for Irma, I did some preliminary research. I tried to 
identify a specific topic within remote sensing where there was a 
sufficient need for a full-fledged book. My research showed that 
there was not a single book that would provide a complete and 
comprehensive coverage of the entire subject of remote sensing 
starting from data capture, to data preprocessing, to data analy-
sis, to myriad land and water applications. There are, of course, 
numerous excellent books on remote sensing, each covering a 
specific subject matter. However, if a student, scientist, or practi-
tioner of remote sensing wanted a standard reference on the sub-
ject, he or she would have to look for numerous books or journal 
articles and often a coherence of these topics would still be left 
uncovered or difficult to comprehend for students and even for 
many experts with less experience. Guidance on how to approach 
the study of remote sensing and capture its state of the art and 
advances remained hazy and often required referring to a mul-
titude of references that may or may not be immediately avail-
able, and if available, how to go about it was still hazy to most. 
During this process, I asked myself, several times, what remote 
sensing book will be most interesting, productive, and useful to 
a broad audience? The answer, each time, was very clear: “A com-
plete and comprehensive coverage of the state-of-the-art remote 
sensing, capturing the advances that have taken place over the 
last 50 years, which will set the stage for a vision for the future.” 
When this became clear, I started putting together the needed 
topics to achieve such a goal. Soon I realized that the only way 
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to achieve this goal was through a multivolume book on remote 
sensing. Because the number of chapters was more than 80, this 
appeared to be too daunting, too overwhelming, and too big a 
project to accomplish. Yet I sent the initial idea to Irma, who I 
thought would say “forget it” and ask me to focus on a single-
volume book. But to my surprise, Irma not only encouraged the 
idea but also had a number of useful suggestions. So what started 
as intellectual curiosity turned into this full-fledged multivol-
ume Remote Sensing Handbook.

However, what worried me greatly was the virtual impossibil-
ity (my thought at that time) of gathering the best authors. What 
was also crystal clear to me was that unless the very best were 
attracted to the book project, it was simply not worth the effort. 
I had made up my mind to give up the book project, unless I got 
the full support of a large number of the finest practitioners of 
remote sensing from around the world. So, I spent a few weeks 
researching the best authors to lead each chapter and wrote to 
them to participate in the Remote Sensing Handbook project. 
What really surprised me was that almost all the authors I con-
tacted agreed to lead and write a chapter. This was truly surreal. 
These are extremely busy people of great scientific reputation 
and achievements. For them to spend the time, intellect, and 
energy to write an in-depth and insightful book chapter spread 
across a year or more is truly amazing. Most also agreed to put 
together a writing team, as I had requested, to ensure greater 
perspective for each chapter. In the end, we had 300+ authors 
writing 82 chapters.

At this stage, I was somewhat drawn into the project as if by 
destiny and felt compelled to go ahead. One of the authors who 
agreed to lead the chapter mentioned “…..whether it was even 
possible.” This is exactly what I felt, too. But I had reached the 
stage of no return, and I took on the book project with all the 
seriousness it deserved. It required some real changes to my 
lifestyle: professional and personal. Travel was reduced to bare 
minimum during most of the book project. Most weekends were 
spent editing, writing, and organizing, and other social activi-
ties were reduced. Accomplishing such complex work requires 
the highest levels of discipline, planning, and strategy. But, 
above all, I felt blessed with good health. By the time the book 
is published, I will have completed about 5 years from my colon 
cancer surgery and chemotherapy. So I am as happy to see this 
book released as I am with the miracle of cancer cure (I feel con-
fident to say so).

But it is the chapter authors who made it all feasible. They 
amazed me throughout the book project. First, the quality and 
content of each of the chapters were of the highest standards. 
Second, with very few exceptions, chapters were delivered 
on time. Third, edited chapters were revised thoroughly and 
returned on time. Fourth, all my requests on various formatting 
and quality enhancements were addressed. This is what made 
the three-volume Remote Sensing Handbook possible and if I 
may say so, a true magnum opus on the subject. My heartfelt 
gratitude to these great authors for their dedication. It has been 
my great honor to work with these dedicated legends. Indeed, 
I call them my heroes in a true sense.

Overall, the preparation of the Remote Sensing Handbook 
took two and a half years, from the time book chapters and 
authors were being identified to its final publication. The three 
books are designed in such a way that a reader can have all 
three books as a standard reference or have individual books to 
study specific subject areas. The three books of Remote Sensing 
Handbook are

Remotely Sensed Data Characterization, Classification, 
and Accuracies: 31 Chapters

Land Resources Monitoring, Modeling, and Mapping with 
Remote Sensing: 28 Chapters

Remote Sensing of Water Resources, Disasters, and Urban 
Studies: 27 Chapters

There are about 2500 pages in the 3 volumes.
The wide array of topics covered is very comprehensive. 

The topics covered in Remotely Sensed Data Characterization, 
Classification, and Accuracies include (1) satellites and sensors; 
(2) remote sensing fundamentals; (3) data normalization, har-
monization, and standardization; (4) vegetation indices and 
their within- and across-sensor calibration; (5) image classifi-
cation methods and approaches; (6) change detection; (7) inte-
grating remote sensing with other spatial data; (8) GNSS; (9) 
crowdsourcing; (10) cloud computing; (11) Google Earth remote 
sensing; (12) accuracy assessments; and (13) remote sensing law.

The topics covered in Land Resources Monitoring, Modeling, 
and Mapping with Remote Sensing include (1) vegetation and 
biomass, (2) agricultural croplands, (3) rangelands, (4) phenol-
ogy and food security, (5) forests, (6) biodiversity, (7) ecology, 
(8) land use/land cover, (9) carbon, and (10) soils.

The topics covered in Remote Sensing of Water Resources, 
Disasters, and Urban Studies include (1) hydrology and water 
resources; (2) water use and water productivity; (3) floods; 
(4) wetlands; (5) snow and ice; (6) glaciers, permafrost, and ice; 
(7) geomorphology; (8) droughts and drylands; (9) disasters; 
(10) volcanoes; (11) fire; (12) urban areas; and (13) nightlights.

There are many ways to use the Remote Sensing Handbook. 
A lot of thought went into organizing the books and chap-
ters. So you will see a flow from chapter to chapter and book 
to book. As you read through the chapters, you will see how 
they are interconnected and how reading all of them provides 
you with greater in-depth understanding. Some of you may be 
more interested in a particular volume. Often, having all three 
books as reference material is ideal for most remote sensing 
experts, practitioners, or students; however, you can also refer 
to individual books based on your interest. We have also made 
attempts to ensure the chapters are self-contained. That way 
you can focus on a chapter and read it through, without having 
to be overly dependent on other chapters. Taking this perspec-
tive, there is a slight (~5%–10%) material that may be repeated 
in some of the chapters. This is done deliberately. For example, 
when you are reading a chapter on LiDAR or radar, you don’t 
want to go all the way back to another chapter (e.g., Chapter 1, 
Remotely Sensed Data Characterization, Classification, and 
Accuracies) to understand the characteristics of these sensors. 
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Similarly, certain indices (e.g., vegetation condition index 
[VCI], temperature condition index [TCI]) that are defined 
in one chapter (e.g., on drought) may be repeated in another 
chapter (also on drought). Such minor overlaps are helpful to 
the reader to avoid going back to another chapter to under-
stand a phenomenon or an index or a characteristic of a sensor. 
However, if you want a lot of details on these sensors or indices 
or phenomena or if you are someone who has yet to gain suf-
ficient expertise in the field of remote sensing, then you will 
have to read the appropriate chapter where there is in-depth 
coverage of the topic.

Each book has a summary chapter (the last chapter of each 
book). The summary chapter can be read two ways: (1) either as 
a last chapter to recapture the main points of each of the previ-
ous chapters or (2) as an initial overview to get a feeling for what 
is in the book. I suggest the readers do it both ways: Read it first 
before going into the details and then read it at the end to recol-
lect what was said in the chapters.

It has been a great honor as well as a humbling experience 
to edit the Remote Sensing Handbook (Remotely Sensed Data 

Characterization, Classification, and Accuracies; Land Resources 
Monitoring, Modeling, and Mapping with Remote Sensing; 
and Remote Sensing of Water Resources, Disasters, and Urban 
Studies). I truly enjoyed the effort. What an honor to work with 
luminaries in this field of expertise. I learned a lot from them 
and am very grateful for their support, encouragement, and deep 
insights. Also, it has been a pleasure working with outstanding 
professionals of Taylor & Francis Group/CRC Press. There is no 
joy greater than being immersed in pursuit of excellence, knowl-
edge gain, and knowledge capture. At the same time, I am happy 
it is over. The biggest lesson I learned during this project was 
that if you set yourself to a task with dedication, sincerity, persis-
tence, and belief, you will have the job accomplished, no matter 
how daunting.

I expect the books to be standard references of immense value 
to any student, scientist, professional, and practical practitioner 
of remote sensing.

Prasad S. Thenkabail, PhD
Editor-in-Chief
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The Remote Sensing Handbook (Remotely Sensed Data Charac
terization, Classification, and Accuracies; Land Resources 
Monitoring, Modeling, and Mapping with Remote Sensing; and 
Remote Sensing of Water Resources, Disasters, and Urban Studies) 
brought together a galaxy of remote sensing legends. The lead 
authors and coauthors of each chapter are internationally rec-
ognized experts of the highest merit on the subject about which 
they have written. The lead authors were chosen carefully by me 
after much thought and discussions, who then chose their coau-
thors. The overwhelming numbers of chapters were written over 
a period of one year. All chapters were edited and revised over the 
subsequent year and a half.

Gathering such a galaxy of authors was the biggest challenge. 
These are all extremely busy people, and committing to a book 
project that requires a substantial work load is never easy. However, 
almost all those whom I asked agreed to write the chapter, and only 
had to convince a few. The quality of the chapters should convince 
readers why these authors are such highly rated professionals and 
why they are so successful and accomplished in their field of exper-
tise. They not only wrote very high quality chapters but delivered 
on time, addressed any editorial comments timely without com-
plaints, and were extremely humble and helpful. What was also 
most impressive was the commitment of these authors for quality 
science. Three lead authors had serious health issues and yet they 
delivered very high quality chapters in the end, and there were few 
others who had unexpected situations (e.g., family health issues) 
and yet delivered the chapters on time. Even when I offered them 
the option to drop out, almost all of them wanted to stay. They only 
asked for a few extra weeks or months but in the end honored their 
commitment. I am truly honored to have worked with such great 
professionals.

In the following list are the names of everyone who contributed 
and made possible the Remote Sensing Handbook. In the end, 
we had 82 chapters, a little over 2500 pages, and a little over 300 
authors.

My gratitude to the following authors of chapters in Remotely 
Sensed Data Characterization, Classification, and Accuracies. The 
authors are listed in chapter order starting with the lead author.

•	 Chapter 1, Drs. Sudhanshu S. Panda, Mahesh Rao, Prasad 
S. Thenkabail, and James P. Fitzerald

•	 Chapter 2, Natascha Oppelt, Rolf Scheiber, Peter Gege, Martin 
Wegmann, Hannes Taubenboeck, and Michael Berger

•	 Chapter 3, Philippe M. Teillet
•	 Chapter 4, Philippe M. Teillet and Gyanesh Chander
•	 Chapter 5, Rudiger Gens and Jordi Cristóbal Rosselló
•	 Chapter 6, Dongdong Wang
•	 Chapter 7, Tomoaki Miura, Kenta Obata, Javzandulam T. 

Azuma, Alfredo Huete, and Hiroki Yoshioka
•	 Chapter 8, Michael D. Steven, Timothy Malthus, and 

Frédéric Baret
•	 Chapter 9, Sunil Narumalani and Paul Merani
•	 Chapter 10, Soe W. Myint, Victor Mesev, Dale Quattrochi, 

and Elizabeth A. Wentz
•	 Chapter 11, Mutlu Ozdogan
•	 Chapter 12, Jun Li and Antonio Plaza
•	 Chapter 13, Claudia Kuenzer, Jianzhong Zhang, and 

Stefan Dech
•	 Chapter 14, Thomas Blaschke, Maggi Kelly, and Helena 

Merschdorf
•	 Chapter 15, Stefan Lang and Dirk Tiede
•	 Chapter 16, James C. Tilton, Selim Aksoy, and Yuliya 

Tarabalka
•	 Chapter 17, Shih-Hong Chio, Tzu-Yi Chuang, Pai-Hui 

Hsu, Jen-Jer Jaw, Shih-Yuan Lin, Yu-Ching Lin, Tee-Ann 
Teo, Fuan Tsai, Yi-Hsing Tseng, Cheng-Kai Wang, Chi-
Kuei Wang, Miao Wang, and Ming-Der Yang

•	 Chapter 18, Daniela Anjos, Dengsheng Lu, Luciano Dutra, 
and Sidnei Sant’Anna

•	 Chapter 19, Jason A. Tullis, Jackson D. Cothren, David P. 
Lanter, Xuan Shi, W. Fredrick Limp, Rachel F. Linck, Sean 
G. Young, and Tareefa S. Alsumaiti

•	 Chapter 20, Gaurav Sinha, Barry J. Kronenfeld, and Jeffrey 
C. Brunskill

•	 Chapter 21, May Yuan
•	 Chapter 22, Stefan Lang, Stefan Kienberger, Michael 

Hagenlocher, and Lena Pernkopf
•	 Chapter 23, Mohinder S. Grewal
•	 Chapter 24, Kegen Yu, Chris Rizos, and Andrew Dempster
•	 Chapter 25, D. Myszor, O. Antemijczuk, M. Grygierek, 

M. Wierzchanowski, and K.A. Cyran
•	 Chapter 26, Fabio Dell’Acqua
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•	 Chapter 28, John Bailey
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Alemu Gonsamo, Holly Croft, Quanfa Zhang, Matthew 
Dannenberg, Yulong Zhang, Christopher Hakkenberg, 
Juxiang Li

•	 Chapter 21, John Rogan and Nathan Mietkiewicz
•	 Chapter 22, Zhixin Qi, Anthony Gar-On Yeh, and Xia Li
•	 Chapter 23, Richard A. Houghton
•	 Chapter 24, José A.M. Demattê, Cristine L.S. Morgan, 

Sabine Chabrillat, Rodnei Rizzo, Marston H.D. 
Franceschini, Fabrício da S. Terra, Gustavo M. Vasques, 
and Johanna Wetterlind

•	 Chapter 25, E. Ben-Dor and José A.M. Demattê
•	 Chapter 26, Prasad S. Thenkabail

My gratitude to the following authors of chapters in Remote 
Sensing of Water Resources, Disasters, and Urban Studies. The 
authors are listed in chapter order starting with the lead author.

•	 Chapter 1, Sadiq I. Khan, Ni-Bin Chang, Yang Hong, 
Xianwu Xue, and Yu Zhang

•	 Chapter 2, Santhosh Kumar Seelan
•	 Chapter 3, Trent W. Biggs, George P. Petropoulos, Naga 

Manohar Velpuri, Michael Marshall, Edward P. Glenn, 
Pamela Nagler, and Alex Messina

•	 Chapter 4, Antônio de C. Teixeira, Fernando B. T. 
Hernandez, Morris Scherer-Warren, Ricardo G. Andrade, 
Janice F. Leivas, Daniel C. Victoria, Edson L. Bolfe, Prasad 
S. Thenkabail, and Renato A. M. Franco

•	 Chapter 5, Allan S. Arnesen, Frederico T. Genofre, 
Marcelo P. Curtarelli, and Matheus Z. Francisco

•	 Chapter 6, Sandro Martinis, Claudia Kuenzer, and André 
Twele

•	 Chapter 7, Chandra Giri
•	 Chapter 8, D. R. Mishra, Shuvankar Ghosh, C. Hladik, 

Jessica L. O’Connell, and H. J. Cho
•	 Chapter 9, Murali Krishna Gumma, Prasad S. Thenkabail, 

Irshad A. Mohammed, Pardhasaradhi Teluguntla, and 
Venkateswarlu Dheeravath

•	 Chapter 10, Hongjie Xie, Tiangang Liang, Xianwei Wang, 
and Guoqing Zhang

•	 Chapter 11, Qingling Zhang, Noam Levin, Christos 
Chalkias, and Husi Letu

•	 Chapter 12, James B. Campbell and Lynn M. Resler
•	 Chapter 13, Felix Kogan and Wei Guo
•	 Chapter 14, Felix Rembold, Michele Meroni, Oscar Rojas, 

Clement Atzberger, Frederic Ham, and Erwann Fillol
•	 Chapter 15, Brian Wardlow, Martha Anderson, Tsegaye 

Tadesse, Chris Hain, Wade T. Crow, and Matt Rodell
•	 Chapter 16, Jinyoung Rhee, Jungho Im, and Seonyoung Park
•	 Chapter 17, Marion Stellmes, Ruth Sonnenschein, Achim 

Röder, Thomas Udelhoven, Stefan Sommer, and Joachim 
Hill
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•	 Chapter 18, Norman Kerle
•	 Chapter 19, Stefan Lang, Petra Füreder, Olaf Kranz, 

Brittany Card, Shadrock Roberts, and Andreas Papp
•	 Chapter 20, Robert Wright
•	 Chapter 21, Krishna Prasad Vadrevu and Kristofer Lasko
•	 Chapter 22, Anupma Prakash and Claudia Kuenzer
•	 Chapter 23, Hasi Bagan and Yoshiki Yamagata
•	 Chapter 24, Yoshiki Yamagata, Daisuke Murakami, and 

Hajime Seya
•	 Chapter 25, Prasad S. Thenkabail

These authors are “who is who” in remote sensing and come 
from premier institutions of the world. For author affiliations, 
please see “Contributors” list provided a few pages after this. 
My deepest apologies if I have missed any name. But, I am sure 
those names are properly credited and acknowledged in indi-
vidual chapters.

The authors not only delivered excellent chapters, they pro-
vided valuable insights and inputs for me in many ways through-
out the book project.

I was delighted when Dr. Compton J. Tucker, senior Earth 
scientist, Earth Sciences Division, Science and Exploration 
Directorate, NASA Goddard Space Flight Center (GSFC), agreed 
to write the foreword for the book. For anyone practicing remote 
sensing, Dr. Tucker needs no introduction. He has been a god-
father of remote sensing and has inspired a generation of scien-
tists. I have been a student of his without ever really being one. 
I mean, I have not been his student in a classroom but have fol-
lowed his legendary work throughout my career. I remember 
reading his highly cited paper (now with citations nearing 4000!):

•	 Tucker, C.J. (1979) Red and photographic infrared linear 
combinations for monitoring vegetation, Remote Sensing 
of Environment, 8(2),127–150.

That was in 1986 when I had just joined the National Remote 
Sensing Agency (NRSA; now NRSC), Indian Space Research 
Organization (ISRO). After earning his PhD from the Colorado 
State University in 1975, Dr. Tucker joined NASA GSFC as a post-
doctoral fellow and became a full-time NASA employee in 1977. 
Since then, he has conducted path-finding research. He has used 
NOAA AVHRR, MODIS, SPOT Vegetation, and Landsat satel-
lite data for studying deforestation, habitat fragmentation, desert 
boundary determination, ecologically coupled diseases, terrestrial 
primary production, glacier extent, and how climate affects global 
vegetation. He has authored or coauthored more than 170 journal 
articles that have been cited more than 20,000 times, is an adjunct 
professor at the University of Maryland, is a consulting scholar 
at the University of Pennsylvania’s Museum of Archaeology and 
Anthropology, and has appeared on more than twenty radio 
and TV programs. He is a fellow of the American Geophysical 
Union and has been awarded several medals and honors, includ-
ing NASA’s Exceptional Scientific Achievement Medal, the Pecora 
Award from the U.S. Geological Survey (USGS), the National 
Air and Space Museum Trophy, the Henry Shaw Medal from 
the Missouri Botanical Garden, the Galathea Medal from  the 

Royal Danish Geographical Society, and the Vega Medal from 
the Swedish Society of Anthropology and Geography. He was the 
NASA representative to the U.S. Global Change Research Program 
from 2006 to 2009. He was instrumental in releasing the AVHRR 
32-year (1982–2013) Global Inventory Monitoring and Modeling 
Studies (GIMMS) data. I strongly recommend that everyone read 
his excellent foreword before reading the book. In the foreword, 
Dr. Tucker demonstrates the importance of data from EO sensors 
from orbiting satellites to maintaining a reliable and consistent 
climate record. Dr. Tucker further highlights the importance of 
continued measurements of these variables of our planet in the 
new millennium through new, improved, and innovative EO sen-
sors from Sun-synchronous and/or geostationary satellites.

I am very thankful to my USGS colleagues for their encourage-
ment and support. In particular, I mention Edwin Pfeifer, Dr. Susan 
Benjamin, Dr. Dennis Dye, Larry Gaffney, Miguel Velasco, 
Dr. Chandra Giri, Dr. Terrance Slonecker, Dr. Jonathan Smith, and 
Dr. Thomas Loveland. There are many other colleagues who made 
my job at USGS that much easier. My thanks to them all.

I am very thankful to Irma Shagla-Britton, acquisition editor 
for remote sensing and GIS books at Taylor & Francis Group/CRC 
Press. Without her initial nudge, this book would never have even 
been completed. Thank you, Irma. You are doing a great job.

I am very grateful to my wife (Sharmila Prasad) and daugh-
ter (Spandana Thenkabail) for their usual unconditional love, 
understanding, and support. They are always the pillars of my 
life. I learned the values of hard work and dedication from my 
revered parents. This work wouldn’t have come about without 
their sacrifices to educate their children and their silent bless-
ings. I am ever grateful to my former professors at The Ohio State 
University, Columbus, Ohio, United States: Prof. John G. Lyon, 
Dr. Andrew D. Ward, Prof. (Late) Carolyn Merry, Dr. Duane 
Marble, and Dr. Michael Demers. They have taught, encour-
aged, inspired, and given me opportunities at the right time. 
The opportunity to work for six years at the Center for Earth 
Observation of Yale University (YCEO) was incredibly impor-
tant. I am thankful to Prof. Ronald G. Smith, director of YCEO, 
for his kindness. At YCEO, I learned and advanced myself as a 
remote sensing scientist. The opportunities I got from working 
for the International Institute of Tropical Agriculture (IITA), 
Africa and International Water Management Institute (IWMI) 
that had a global mandate for water were very important, espe-
cially from the point of view of understanding the real issues 
on the ground. I learned my basics of remote sensing mainly 
working with Dr. Thiruvengadachari of the National Remote 
Sensing Agency/Center (NRSA/NRSC), Indian Space Research 
Organization (ISRO), India, where I started my remote sens-
ing career as a young scientist. I was just 25  years old then 
and had joined NRSA after earning my masters of engineer-
ing (hydraulics and water resources) and bachelors of engi-
neering (civil engineering). During my first day in the office, 
Dr.  Thiruvengadachari asked me how much remote sensing 
did I know. I said, “zero” and instantly thought that I would be 
thrown out of the room. But he said “very good” and gave me a 
manual on remote sensing from the Laboratory for Applications 
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of Remote Sensing (LARS), Purdue. Those were the days where 
there was no formal training in remote sensing in any Indian 
universities. So my remote sensing lessons began working prac-
tically on projects and one of our first projects was “drought 
monitoring for India using NOAA AVHRR data.” This was an 
intense period of learning remote sensing by actually practicing 
it on a daily basis. Data came on 9 mm tapes; data were read on 
massive computing systems; image processing was done, mostly 
working on night shifts by booking time on centralized com-
puting; field work was conducted using false color composite 
outputs and topographic maps (not the days of global position-
ing systems); geographic information system was in its infancy; 
and a lot of calculations were done using calculators. So when 
I decided to resign my NRSA job and go to the United States 
to do my PhD, Dr. Thiruvengadachari told me, “Prasad, I am 
losing my right hand, but you can’t miss opportunity.” Those 
initial wonderful days of learning from Dr. Thiruvengadachari 
will remain etched in my memory. Prof. G. Ranganna of the 
Karnataka Regional Engineering College (KREC; now National 
Institute of Technology), Karnataka, India, was/is one of my most 
revered gurus. I have learned a lot observing him, professionally 

and personally, and he has always been an inspiration. Prof. 
E.J. James, former director of the Center for Water Resources 
Development and Management (CWRDM), was another origi-
nal guru from whom I have learned the values of a true pro-
fessional. I am also thankful to my good old friend Shri C. J. 
Jagadeesha, who is still working for ISRO as a senior scientist. 
He was my colleague at NRSA/NRSC, ISRO, and encouraged 
me to grow as a scientist. This Remote Sensing Handbook is a 
blessing from the most special ones dear to me. Of course, there 
are many, many others to thank especially many of my dedi-
cated students over the years, but they are too many to mention 
here. I thank the truly outstanding editing work performed by 
Arunkumar Aranganathan and his team at SPi Global.

It has been my deep honor and great privilege to have edited 
the Remote Sensing Handbook. I am sure that I won’t be taking 
on any such huge endeavors in the future. I will need time for 
myself, to look inside, understand, and grow. So thank you all,  
for making this possible.

Prasad S. Thenkabail, PhD
Editor-in-Chief
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Prasad S. Thenkabail, PhD, is currently working as a research 
geographer-15 with the U.S. Geological Survey (USGS), United 
States. Currently, at USGS, Prasad leads a multi-institutional 
NASA MEaSUREs (Making Earth System Data Records for 
Use in Research Environments) project, funded through 
NASA ROSES solicitation. The project is entitled Global Food 
Security-Support Analysis Data at 30 m (GFSAD30) (http://
geography.wr.usgs.gov/science/croplands/index.html also see 
https://www.croplands.org/). He is also an adjunct professor 
at three U.S. universities: (1) Department of Soil, Water, and 
Environmental Science (SWES), University of Arizona (UoA); 
(2) Department of Space Studies, University of North Dakota 
(UND); and (3) School of Earth Sciences and Environmental 
Sustainability (SESES), Northern Arizona University (NAU), 
Flagstaff, Arizona.

Dr. Thenkabail has conducted pioneering scientific research 
work in two major areas:

	 1.	 Hyperspectral remote sensing of vegetation
	 2.	 Global irrigated and rainfed cropland mapping using 

spaceborne remote sensing

His research papers on these topics are widely quoted. His hyper-
spectral work also led to his working on the scientific advisory 
board of Rapideye (2001), a German private industry satellite. 
Prasad was consulted on the design of spectral wavebands.

In hyperspectral research, Prasad pioneered in the following:

	 1.	 The design of optimal hyperspectral narrowbands (HNBs) 
and hyperspectral vegetation indices (HVIs) for agricul-
ture and vegetation studies.

	 2.	 Certain hyperspectral data mining and data reduction 
techniques such as now widely used concepts of lambda 
by lambda plots.

	 3.	 Certain hyperspectral data classification methods. This 
included the use of a series of methods (e.g., discrimi-
nant model, Wilk’s lambda, Pillai trace) that demonstrate 
significant increases in classification accuracies of land 
cover and vegetation classes as determined using HNBs as 
opposed to multispectral broadbands.

In global croplands, Prasad conducted seminal research that 
led to the first global map of irrigated and rainfed cropland 
areas using multitemporal, multisensor remote sensing, one 
book, and a series of more than ten novel peer-reviewed papers. 

In 2008, for one of these papers, Prasad (lead author) and coau-
thors (Pardhasaradhi Teluguntala, Trent Biggs, Murali Krishna 
Gumma, and Hugh Turral) were the second-place recipients of 
the 2008 John I. Davidson American Society of Photogrammetry 
and Remote Sensing (ASPRS) President’s Award for practical 
papers. The paper proposed a novel spectral matching technique 
(SMT) for cropland classification. Earlier, Prasad (lead author) 
and coauthors (Andy Ward, John Lyon, and Carolyn Merry), won 
the 1994 Autometric Award for outstanding paper on remote 
sensing of agriculture from ASPRS. Recently,  Prasad (seccond 
author) with Michael Marshall (lead author), won the ASPRS 
ERDAS award for best scientific paper on remote sensing for their 
hyperspectral remote sensing work.

Earlier to this path-breaking Remote Sensing Handbook, 
Prasad has published two seminal books (both published by 
Taylor  & Francis Group/CRC Press) related to hyperspectral 
remote sensing and global croplands:

•	 Thenkabail, P.S., Lyon, G.J., and Huete, A. 2011. 
Hyperspectral Remote Sensing of Vegetation. CRC Press/
Taylor & Francis Group, Boca Raton, FL, 781pp.

Reviews of this book: 

•	 http://www.crcpress.com/product/isbn/9781439845370.
•	 Thenkabail, P., Lyon, G.J., Turral, H., and Biradar, C.M. 

2009. Remote Sensing of Global Croplands for Food 
Security. CRC Press/Taylor & Francis Group, Boca Raton, 
FL, 556pp (48 pages in color).

Reviews of this book:

•	 http://www.crcpress.com/product/isbn/9781420090093.
•	 http://gfmt.blogspot.com/2011/05/review-remote-sensing-

of-global.html.

He has guest edited two special issues for the American Society 
of Photogrammetry and Remote Sensing (PE&RS):

•	 Thenkabail, P.S. 2014. Guest editor of special issue on 
“Hyperspectral remote sensing of vegetation and agricul-
tural crops.” Photogrammetric Engineering and Remote 
Sensing 80(4).

•	 Thenkabail, P.S. 2012. Guest editor for Global croplands 
special issue. Photogrammetric Engineering and Remote 
Sensing 78(8).

Editor
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He has also guest edited a special issue on global croplands for 
the Remote Sensing Open Access Journal (ISSN 2072-4292):

•	 Thenkabail, P.S. 2010. Guest editor: Special issue on 
“Global croplands” for the MDPI remote sensing open 
access journal. Total: 22 papers. http://www.mdpi.com/
journal/remotesensing/special_issues/croplands/.

Prasad is, currently editor-in-chief, Remote Sensing Open Access 
Journal, an on-line journal, published by MDPI; editorial board 
member, Remote Sensing of Environment; editorial advisory 
board member, ISPRS Journal of Photogrammetry and Remote 
Sensing.

Prior to joining USGS in October 2008, Dr. Thenkabail was 
a leader of the remote sensing programs of leading institutes 
International Water Management Institute (IWMI), 2003–2008; 
International Center for Integrated Mountain Development 
(ICIMOD), 1995–1997; International Institute of Tropical 
Agriculture (IITA), 1992–1995.

He also worked as a key remote sensing scientist for Yale 
Center for Earth Observation (YCEO), 1997–2003; Ohio State 
University (OSU), 1988–1992; National Remote Sensing Agency 
(NRSA) (now NRSC), Indian Space Research organization 
(ISRO), 1986–1988.

Over the years, he has been a principal investigator (PI) of 
NASA, USGS, IEEE, and other funded projects such as inland 
valley wetland mapping of African nations, characterization 
of eco-regions of Africa (CERA), which involved both African 
savannas and rainforests, global cropland water use for food 
security in the twenty-first century, automated cropland classi-
fication algorithm (ACCA) within WaterSMART (Sustain and 
Manage America’s Resources for Tomorrow) project, water pro-
ductivity mapping in the irrigated croplands of California and 
Uzbekistan using multisensor remote sensing, IEEE Water for 
the World Project, and drought monitoring in India, Pakistan, 
and Afghanistan.

The USGS and NASA selected Dr. Thenkabail to be on the 
Landsat Science Team (2007–2011) for a period of five  years 
(http://landsat.gsfc.nasa.gov/news/news-archive/pol_0005.
html; http://ldcm.usgs.gov/intro.php). In June 2007, his team 
was recognized by the Environmental System Research Institute 
(ESRI) for “special achievement in GIS” (SAG award) for their 
tsunami-related work (tsdc.iwmi.org) and for their innova-
tive spatial data portals (http://waterdata.iwmi.org/dtView-
Common.php; earlier http://www.iwmidsp.org). Currently, 
he is also a global coordinator for the Agriculture Societal 
Beneficial Area (SBA) of the Committee for Earth Observation 
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Systems (CEOS). He is active in the Group on Earth Observation 
(GEO) agriculture and water efforts through Earth observa-
tion. He was a co-lead of the Water for the World Project (IEEE 
effort). He is the current chair of the International Society 
of Photogrammetry and Remote Sensing (ISPRS) Working 
Group WG VIII/7: “Land Cover and Its Dynamics, including 
Agricultural & Urban Land Use” for the period 2013–2016. 
Thenkabail earned his PhD from The Ohio State University 
(1992). His master’s degree in hydraulics and water resources 
engineering (1984) and bachelor’s degree in civil engineer-
ing (1981) were from India. He began his professional career 
as a lecturer in hydrology, water resources, hydraulics, and 

open channel in India. He has 100+ publications, mostly peer-
reviewed research papers in major international remote sens-
ing journals: http://scholar.google.com/citations?user=9IO5Y7
YAAAAJ&hl=en. Prasad has about 30 years’ experience work-
ing as a well-recognized international expert in remote sens-
ing and geographic information systems (RS/GIS) and their 
application to agriculture, wetlands, natural resource manage-
ment, water resources, forests, sustainable development, and 
environmental studies. His work experience spans over 25+ 
countries spread across West and Central Africa, Southern 
Africa, South Asia, Southeast Asia, the Middle East, East Asia, 
Central Asia, North America, South America, and the Pacific.
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4 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

VI	 Vegetation index
VPD	 Vapor pressure deficit
VPM	 Vegetation photosynthesis model
VPRM	� Vegetation photosynthesis and respiration model
WDRVI	 Wide dynamic range vegetation index

1.1 I ntroduction

Vegetation productivity is defined as the process by which 
plants use sunlight to produce organic matter from carbon 
dioxide through photosynthesis. Gross primary productiv-
ity (GPP), or photosynthesis, is the rate of carbon fixation 
or total plant organic matter produced per unit of time and 
over a defined area, whereas the amount of carbon fixed by 
plants and accumulated as biomass is known as terrestrial net 
primary production (Cramer et al. 1999; Zhao and Running 
2010). Productivity forms the basis of terrestrial biosphere 
functioning and carbon, energy, and water budgets. Accurate 
estimates of plant productivity across space and time are 
thus necessary for quantifying carbon balances at regional 
to global scales (Lieth 1975; Schimel 1998). Vegetation pro-
ductivity is generally limited by the availability of spatially 
and temporally varying plant resources (e.g., nutrients, light, 
water, and temperature) (Field et  al. 1995; Churkina and 
Running 1998; Nemani et  al. 2003) (Figure 1.1). Improved 
knowledge of the main drivers and resource constraints of 
plant productivity is thus needed for predictable assessments 
of climate change.

1.1.1  Measures of Productivity

Measures of productivity are essential in global change stud-
ies; yet despite their importance, they are quite challenging 
to obtain or sample (Baldocchi et  al. 2001). The assessment 
of plant production is carried out in various ways, from plot 

measurements and plant harvests, micrometeorological fluxes, 
remote sensing, and through empirical and process-based 
models that may involve remote sensing data inputs. In  situ 
measures include methods that vary with biome type, for exam-
ple, tree inventories, litter traps, grassland forage estimates, and 
agricultural harvests and market statistics. Plot-level meth-
ods measure aboveground net primary production (ANPP) 
that often involves destructive sampling during peak biomass 
periods. Established long-term experimental plots enable cross-
site production comparisons; however, they are also amenable 
to many uncertainties due to differences in site-based proce-
dures, and in some cases, inconsistent sampling methods over 
time at a given site (Sala et al. 1988; Biondini et al. 1991; Moran 
et  al. 2014). GPP has traditionally been estimated from plot 
level ANPP measurements by correcting for respiratory losses 
(Field et  al. 1995). Agricultural yield statistics (USDA NASS) 
combined with maps of cropland areas provide large-scale 
NPP estimates from local to national level census statistics 
(Monfreda et al. 2008; Guanter et al. 2014).

A global network of micrometeorological tower sites, known 
as FLUXNET, now provide continuous measurements of car-
bon, water, and energy exchanges between ecosystems and the 
atmosphere (Running et  al. 1999). This yields information on 
seasonal dynamics and interannual variations of net ecosystem 
exchange (NEE) of carbon dioxide between the land surface and 
the atmosphere (Baldocchi et al. 2001; Verma et al. 2005). This 
has yielded quite valuable in situ data to independently evaluate 
and assess uncertainties in carbon models and satellite carbon 
products, as they are applied to global change studies.

Satellite imaging sensors offer synoptic-scale observations 
of ecosystem states and landscape dynamics, and are seen as 
invaluable tools to help fill the large spatial gaps of in situ mea-
surements, and constrain and improve the accuracies of models. 
Remote sensing complements the restrictive coverage afforded 
by experimental plots and eddy covariance (EC) tower flux 

Temperature

Water

Sunlight

Figure 1.1  Potential limits to vegetation net primary production based on fundamental physiological limits of solar radiation, water balance, 
and temperature. Greener colors depict biomes increasingly limited by radiation, while red colors are water-limited and blue colors temperature-
limited. Many regions are limited by more than one factor. (Adapted from Nemani, R.R. et al., Science, 300(5625), 1560, 2003.)
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5Monitoring Photosynthesis from Space

measurements, facilitating observations of broad-scale patterns 
of ecosystem functioning. This renders remote sensing a power-
ful tool for studying vegetation productivity at local, regional, 
and global scales (Gitelson et al. 2006).

The integration of independently derived tower measured 
carbon fluxes with satellite data is the focus of many investiga-
tions across many ecosystems from sparse shrublands to mesic 
grasslands, and tropical to temperate forests. Estimates of daily 
GPP and annual NPP are now routinely produced operation-
ally over the global terrestrial surface at 1 km spatial resolution 
through production efficiency models with near real-time satel-
lite data inputs from the moderate-resolution imaging spectro-
radiometer (MODIS) (Turner et al. 2006) (Figure 1.2).

Finally, there are many empirical, diagnostic, and process-
based models that have been developed over the past decades 
to monitor and assess vegetation productivity, with many of 
these methods employing remote sensing data in conjunction 
with micrometeorological carbon flux measurements to varying 
extents.

1.1.2  Lidar

Traditionally, national-scale carbon monitoring has been 
accomplished with networks of field inventory plots (FAO 
2007), which provide direct carbon measurements of only very 
small areas of forest, and are further difficult to install, moni-
tor, and maintain over time (Chambers et al. 2009). Airborne 
laser technology called light detection and ranging (lidar) 
offers much potential for terrestrial carbon assessments. 
Lidar measures the physical structure of woody vegetation, 
from sparse shrublands to dense forests, and can serve as a 

reliable replacement for inventory plots in areas lacking field 
data (Lefsky et al. 2002; Zolkos et al. 2013). Thus, lidar inte-
gration with field inventory plots can provide calibrated lidar 
estimates of aboveground carbon stocks, which can then be 
scaled up using satellite data on vegetation cover, topography, 
and rainfall from satellite data to model carbon stocks (Asner 
et al. 2013). Opportunities to fuse temporally dynamic vegeta-
tion optical measurements with lidar have promising poten-
tial for better assessments of not only standing wood biomass, 
but also forest disturbance, biomass loss, and carbon accu-
mulation through forest regrowth (Lefsky et  al. 2002; Asner 
et al. 2010).

1.2 � Remote Sensing and Net 
Primary Production

1.2.1 N DVI–fAPAR Relationships

Remote sensing approaches to estimate productivity generally 
employ spectral measures of vegetation, which are used for esti-
mating their capacity to absorb photosynthetically active radia-
tion (APAR). Vegetation productivity is directly related to the 
interaction of solar radiation with the plant canopy, based on the 
original logic of Monteith (1972), who suggested that productiv-
ity of stress-free annual crops was linearly related to vegetation 
absorbed PAR. Spectral vegetation indices (VIs) such as the nor-
malized difference vegetation index (NDVI) (Tucker 1979), the 
perpendicular vegetation index (PVI) (Richardson and Wiegand 
1977), and the tasselled cap green vegetation index (TC-GVI) 
(Kauth and Thomas 1976) were consequently developed over 
croplands and grasslands.

0 200 400 600
Mean NPP (2000–2005) gC m–2/year–1

800 1000 1200

Figure 1.2  MODIS net primary production satellite product (MOD17). Example showing the mean NPP across years 2000–2005 for the 
global terrestrial surface. The highest production is seen across the equatorial zone encompassing southeast Asia, the Amazon basin, and equato-
rial Africa. The least productive regions appear in Australia and the Sahelian region. (Courtesy of Numerical Terradynamic Simulation Group, 
University of Montana, Missoula, MT.)
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The NDVI is written as follows:

	
NDVI NIR red

NIR red

( )

( )
,= −

+
ρ ρ
ρ ρ

	 (1.1)

where ρNIR and ρred are spectral reflectance values (unitless) that 
exploit the chlorophyll-absorbing red band relative to the non-
absorbing and high scattering near-infrared (NIR) band. Asrar 
et  al. (1984) showed the NDVI was linearly related with vege-
tation absorption of light energy (APAR) or fraction of APAR 
(fAPAR), and thereby related to productivity through the poten-
tial capacity of vegetation to absorb light for photosynthesis 
(Figure 1.3). The linear relationship between NDVI and fAPAR 
has been documented through field measurements (Ruimy et al. 
1994; Fensholt et al. 2004) and theoretical analyses (Sellers 1985; 
Goward and Huemmrich 1992; Myneni and Williams 1994).

1.2.2 � Annual Integrated Estimates 
of Productivity

Several studies suggest that annual vegetation productivity sta-
tus can be captured with the annual NDVI integral, used as sur-
rogate measures of fAPAR. Goward et al. (1985) used integrated 
NDVI values derived from the advanced-very-high-resolution 
radiometer (AVHRR) and found good relationships between 
NPP and integrated NDVI over annual growing periods of North 
American biomes (Figure 1.4). Wang et al. (2004) found that the 
NDVI integral over the early growing season was strongly cor-
related to in situ forest measurements of diameter increase and 
tree ring width in the U.S. central Great Plains. They also found 

the previous year integrated NDVI was well correlated with cur-
rent year increases in tree height growth.

The annual integrated VI offers a robust approximation of veg-
etation productivity, because, in general, VIs provide both a mea-
sure of the capacity to absorb light energy, as well as reflect recent 
environmental stress acting on the canopy, with stress forcings 
showing up as reductions in NDVI expressed as either less chloro-
phyll and/or less foliage (Running et al. 2004). Photosynthesis or 
primary production is essentially integrator of resource availabil-
ity, and according to the resource optimization theory (Field et al. 
1995), ecological processes tend to adjust plant characteristics 
over time periods of weeks or months to match the capacity of the 
environment to support photosynthesis and maximize growth.

Ponce-Campos et al. (2013) compiled in situ field measures of 
ANPP across 10 sites in the United States, ranging from arid grass-
land to forest and directly compared annual integrated values of 
the MODIS enhanced vegetation index (EVI, or iEVI) (Figure 1.5). 
Using a log–log relation to account for the uneven distribution of 
ANPP estimates over time, the iEVI was found to be an effective 
surrogate to estimate ANPP and quantify vegetation dynamics:

	 ANPP = 51.42 × iEVI1.15,	 (1.2)

In situ measured MODIS NDVI

y = 1.51x –0.40
R2 = 0.92
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Figure 1.3  Linear relationship between in situ NDVI and field mea-
sured fAPAR across multiple cropland and biome sites in Africa. (From 
Fensholt, R. et al., Remote Sens. Environ., 91(3–4), 490, 2004.)
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from NOAA-AVHRR sensors and net primary productivity rates. 
(From Goward, S.N. et al., Vegetatio, 64(1), 3, 1985.)
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EVI G

L C C
NIR red

NIR red blue

= ⋅ −
+ + ⋅ − ⋅

ρ ρ
ρ ρ ρ1 2

	 (1.3)

where
ρNIR, ρred, and ρblue are atmospherically corrected spectral 

reflectances
G is a gain factor
C1 and C2 are aerosol resistance coefficients
L functions as the soil-adjustment factor, with all terms 

dimensionless (Huete et al. 2002)

In the MODIS EVI product, G = 2.5, L = 1, and C1 and C2 are 6.0 
and 7.5, respectively.

Moran et al. (2014) found plot-scale measurements of ANPP 
at arid and mesic grassland sites were significantly related to 
MODIS iEVI over a decadal time period in a log–log relation 
(r2 =  0.71, P < 0.01). Zhang et al. (2013) studied the ecological 
impacts of rainfall intensification on vegetation productivity 
through the use of iEVI as a surrogate measure of ANPP. They 
found extreme precipitation patterns, associated with heavy 
rainfall events followed by longer dry periods, caused higher 
water stress conditions that resulted in strong negative influ-
ences on ANPP across biomes and reduced rainfall use efficien-
cies (20% on average) (Figure 1.6).

1.2.3  Growing Season Phenology Relationships

The annual life cycle of plant species and vegetation cano-
pies have large effects on rates of photosynthesis and annual 
productivity. Phenological factors such as leaf age and life 

expectancy play important roles on productivity (Wilson et al. 
2001) with some production models explicitly incorporating 
phenophase periods, such as bud burst to full leaf expansion, 
and full expansion to dormancy (Xiao et al. 2004). LST satellite 
data and/or meteorological air temperature data (Ta) are also 
used to identify biologic inactive seasonal periods, for exam-
ple, masking cold temperature time intervals from the EVI or 
NDVI integrals.

Often, there is also a need to synchronize the satellite 
data with scheduled or variable destructive sampling dates. 
Generally, in  situ measures of productivity are made at dis-
crete times within the growing season or may be associated 
with variable sampling times with uncertain estimates of the 
dates of peak greenness. In such cases, remote sensing data 
provides better temporal stability and opportunities to reduce 
productivity uncertainties. For example, Moran et  al. (2014) 
found significant improvements in productivity–iEVI rela-
tionships across a range of grassland sites, when the EVI was 
only partially integrated from the beginning to the peak of the 
growing season period (rather than the full season). This was 
due to the synchronization of time periods to peak biomass 
periods when grassland ANPP destructive sampling are typi-
cally conducted.

Numerous efforts have been made to improve upon the char-
acterization of the plant growing season at regional scales using 
satellite-based phenology models. Software packages such as 
Timesat (Jönsson and Eklundh 2004) can be used to quantita-
tively model the growing season and facilitate the temporal syn-
chronization of in situ production measures with satellite data. 
A summary of the various remote sensing methods that have 
been used in estimating net primary productivity is shown in 
Table 1.1.
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as a surrogate of annual primary production, and annual precipita-
tion for low vs. high rainfall variability. This demonstrates the nega-
tive influence of precipitation intensification for a wide range of biome 
types. (Zhang, Y. et al., J. Geophys. Res. Biogeosci., 118(1), 148, 2013.)
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biomes. The solid line represents the linear regression used to estimate 
ANPP from iEVI (ANPPs). (From Ponce-Campos, G.E. et al., Nature, 
494(7437), 349, 2013.)
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Table 1.1  Examples of Remote Sensing Methods of Deriving Net Primary Productivity with Some References

Net Primary Productivity 
Measurement Biome/Location Satellite Products Used Method/Approach Equation R2 Reference 

Annual NPP Across different North 
American biomes from 
tundra to forest to crops 
and deserts

Integrated growing season NDVI 
from NOAA/AVHRR

Linear regression between 
NPP and integrated 
NDVI

NA 0.89
0.94 (excl. crops)

Goward et al. 
(1985)

Growing season NPPgs, Early 
growing season NPPegs, Tree 
ring width, stem growth, and 
litterfall

Natural and plantation 
forests in Central Great 
Plains, North America

NOAA/AVHRR NDVI integrated 
across (1) growing season 
(late April–October); (2) early 
growing season (May–June); and 
(3) annual year.

Linear regression between 
NPP and integrated 
NDVI for growing 
season, early growing 
season, and annual year

NA Growing season, 0.86
Early growing season, 0.83

Wang et al. 
(2004)

Annual above ground net 
primary productivity (ANPP)

Ten sites ranging from 
forests to mesic and 
semiarid grasslands to 
forest (USA)

Annual integrated values of 
MODIS enhanced vegetation 
index, iEVI

Log-log relation between 
ANPP and iEVI

ANPP = 51.42 × iEVI 
1.15 ANPP (g m−2)

0.82 Ponce-Campos 
et al. (2013)

Annual above ground net 
primary productivity (ANPP)

Arid to mesic grasslands Annual integrated values of 
MODIS enhanced vegetation 
index, iEVI

Log-log relation between 
ANPP and iEVI

NA 0.71 Moran et al. 
(2014)

Aboveground carbon density 
(ACD)

Mangroves, dry, moist and 
wet forests

LiDAR top-of-canopy height Exponential relation 
between ACD and 
top-of-canopy height (H)

ACD = 0.359 × H1.7676 0.86, calibration plots
0.92, validation plots

Asner et al. 
(2013)
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1.3 � Remotely Sensed Production 
Efficiency Models

Remote sensing estimates of GPP and net primary production 
(NPP) have been implemented at global scales, based on the 
light-use efficiency (LUE) equation that defines the amount of 
carbon fixed through photosynthesis as proportional to the 
solar energy absorbed by green vegetation multiplied by the effi-
ciency with which the absorbed light is used in carbon fixation 
(Monteith 1972; Monteith and Unsworth 1990):

	 GPP = ε × APAR = ε × fAPAR × PAR	 (1.4)

where
ε is the efficiency of conversion of absorbed light into aboveg-

round biomass, or light-use efficiency
APAR is integrated over a time period
fAPAR is derived through spectral VI relationships (Asrar 

et  al. 1984; Sellers 1985; Goward and Huemmrich 1992; 
Ruimy et al. 1994).

The LUE concept has been widely adopted by the remote sens-
ing community to assess and extrapolate carbon processes 
through knowledge of two conversion coefficients: the fAPAR 
and ε. Although fAPAR is readily estimated using remotely 
sensed “greenness” measures, ε is very difficult to measure as it 
dynamically varies with plant functional type, vegetation phe-
nophase, and different environmental stress conditions (Ruimy 
et  al. 1995; Turner et  al. 2003; Sims et  al. 2006; Jenkins et  al. 
2007). As a result, there are scarce measurements of ε available, 

particularly at the landscape scale, and potential or maximum 
LUE values have only been specified for a limited set of biome 
types, with these values downregulated by environmental stress 
scalars derived from meteorological inputs (Zhao et  al. 2005; 
Heinsch et al. 2006).

1.3.1  BIOME-BGC Model

The BIOME-BGC (BioGeochemical Cycles) model calculates 
daily GPP as a function of incoming solar radiation, conversion 
coefficients, and environmental stresses (Running et al. 2004). 
This was implemented as the first operational standard satel-
lite product for MODIS (MOD17), providing global estimates of 
global GPP (Figure 1.7), expressed as follows:

	 GPP SW fPAR f VPD f Trad= × × × × ×εmax min. ( ) ( ),0 45 	 (1.5)

where
εmax is the maximum light-use efficiency (g C MJ−1) obtained 

from a biome-properties look-up table (BPLUT)
SWrad is short-wave downward solar radiation (MJ−1 day−1), of 

which 45% is assumed to be PAR
f(VPD) and f(Tmin) are vapor pressure deficit and air tempera-

ture reduction scalars for the biome specific εmax values
fAPAR is directly input from the MODIS FPAR (MOD15) 

product (Running et al. 2004; Zhao et al. 2005)

MODIS FPAR retrievals are physically based and use biome-
specific look-up tables (LUTs) generated using a three-
dimensional radiative transfer model (Myneni et al. 2002).

0 400 800 1200
Mean GPP (2000–2005) gC m–2 year–1

1600 2000 2400

Figure 1.7  MODIS gross primary production satellite product (MOD17). Example showing the mean GPP across years 2000–2005 for the 
global terrestrial surface. The highest rates of photosynthesis are seen in the tropical forests of southeast Asia, the Amazon basin, and equatorial 
Africa. The lowest rates of photosynthesis are seen in Australia, South Africa, western North America, the Sahel, and Atacama desert. (Courtesy 
of Numerical Terradynamic Simulation Group, University of Montana, Montana, MT.)

© 2016 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19322-3&iName=master.img-013.jpg&w=360&h=194


10 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

The reduction scalars encompass LUE variability resulting 
from water stress (high daily VPD) and low temperatures (low 
daily minimum temperature Tmin) (Running et  al. 2004). The 
MODIS GPP product is directly linked to remote sensing and 
weather forecast products and can provide near real-time infor-
mation on productivity and the influence of anomalies such as 
droughts. A consistent forcing meteorology is based upon the 
NCEP/NCAR (National Centres for Environmental Prediction/
National Centre for Atmospheric Research) Reanalysis II datas-
ets (Kanamitsu et al. 2002) (Figure 1.7).

Using these satellite products, Zhao and Running (2010) 
found that global NPP declined slightly by 0.55 petagram car-
bon (Pg C, with Pg = 1015 g = 1 billion metric tonnes) due to 
drought from 2000 to 2009. Ichii et al. (2007) used the BIOME-
BGC model to simulate seasonal variations in GPP for different 
rooting depths, from 1 to 10 m, over Amazon forests and deter-
mine which rooting depths best estimated GPP consistent with 
satellite-based EVI, and thereby were able to map rooting depths 
at regional scales and improve the assessments of carbon, water, 
and energy cycles in tropical forests.

The utility and accuracy of MODIS GPP/NPP products have 
been validated in various FLUXNET studies, which have also 
demonstrated the value of independent tower flux measures to 
better understand the satellite-based GPP/NPP products (Kang 
et al. 2005; Leuning et al. 2005; Zhao et al. 2005, 2006; Turner 
et al. 2006). These studies highlight the capabilities of MODIS 
GPP to correctly predict observed fluxes at tower sites, but also 
draw attention to some of the uncertainties associated with 
use of coarse resolution and interpolated meteorology inputs, 
uncertainties with the LUT-based values, noise and uncertain-
ties in the satellite fAPAR inputs, and difficulties in constrain-
ing the light-use efficiency term (Zhao et al. 2005; Heinsch et al. 
2006; Yuan et al. 2010; Sjöström et al. 2013). Since meteorologi-
cal inputs are often not available at sufficiently detailed temporal 
and spatial scales, they can introduce substantial errors into the 
carbon exchange estimates.

Turner et  al. (2006) concluded that although the MODIS 
NPP/GPP products are generally responsive to spatial–temporal 
trends associated with climate, land cover, and land use, they 
tend to overestimate GPP at low productivity sites and underes-
timate GPP at high productivity sites. Similarly, Sjostrom et al. 
(2013) found that although MODIS-GPP described seasonal-
ity at 12 African flux tower sites quite well, it tended to under-
estimate tower GPP at the dry sites in the Sahel region due to 
uncertainties in the meteorological and fAPAR input data and 
the underestimation of εmax. Jin et al. (2013) reported the MODIS 
GPP product to substantially underestimate tower GPP during 
the green-up phase at a woodland savanna site in Botswana, 
while overestimating tower-GPP during the brown-down phase.

Some studies have found that when properly parameterized 
with site-level meteorological measurements, MODIS GPP 
becomes more closely aligned with flux tower derived GPP 
(Turner et al. 2003; Kanniah et al. 2009; Sjostrom et al. 2013). 
Kanniah et  al. (2011), however, found that utilizing site-based 

meteorology could only improve GPP estimates during the wet 
season over northern Australian savannas, and suggested the 
MODIS GPP product has a systematic limitation in the estima-
tion of savanna GPP in arid and semiarid areas due to the lack 
of the representation of soil moisture. Sjöström et al. (2013) also 
found soil moisture information to be quite important for accu-
rate GPP estimates in drier African savannas.

1.3.2 � Vegetation Index: Tower 
GPP Relationships

There have also been many attempts to estimate GPP based 
solely on remote sensing inputs, thereby minimizing or elimi-
nating the need for meteorological and LUE information. 
Spectral VIs have been directly related to EC tower carbon flux 
measurements (Rahman et al. 2005; Gitelson et al. 2006; Sims 
et al. 2006; Sjöström et al. 2011). Monteith and Unsworth (1990) 
noted that VIs can legitimately be used to estimate the rate of 
processes that depend on absorbed light, such as photosynthesis 
and transpiration.

Wylie et  al. (2003) reported a strong relationship between 
biweekly aggregated NDVI and daytime CO2 flux in a 
sagebrush-steppe ecosystem, while Rahman et al. (2005) found 
that EVI can provide reasonably accurate estimates of GPP across 
a wide range of North American ecosystems, including dense 
forests. However, the strength of the linear relationships between 
EVI and tower GPP in temperate forests was greater in season-
ally contrasting deciduous forests compared with evergreen for-
ests (Rahman et  al. 2005; Sims et  al. 2006). Sims et  al. (2006) 
further noted that when data from the winter period of inactive 
photosynthesis were excluded, the EVI—tower GPP relation-
ship was better than that between tower GPP and MODIS GPP 
(Figure 1.8). Olofsson et al. (2008) reported strong correlations 
between EVI and GPP across Northern Europe, while NDVI 
showed problems with saturation in such areas of high biomass. 
NDVI saturation is attributed to the strong weighing of the red 
band, which is primarily absorbed by the uppermost leaf layer of 
a dense crop or forest canopy while the nonabsorbing NIR band 
is able to penetrate 5–7 leaf layers. Thus, the more NIR-sensitive 
indices, such as EVI, PVI, TC-GVI, and linear mixture models 
are less prone to saturate (Huete et al. 2002, 2006).

Sjöström et al. (2011) found EVI was able to track the seasonal 
dynamics of tower GPP closely across African tropical savanna 
ecosystems. Ma et  al. (2013) similarly observed good conver-
gences between MODIS EVI and tower GPP across northern 
Australian mesic and xeric tropical savannas, confirming the 
potentials to link these two independent data sources for accu-
rate estimation of savanna GPP. Strongly linear and consistent 
relationships between EVI and tower GPP were also shown 
in dry to humid tropical forest sites in Southeast Asia and the 
Amazon (Xiao et al. 2005; Huete et al. 2006, 2008).

These relationships have shown the EVI to estimate GPP 
with relatively high accuracy, thus greatly simplifying car-
bon balance models and potentially offering opportunities for 
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region-wide scaling of carbon fluxes. The relationships between 
EVI and tower GPP are partly a result of fairly good correla-
tions between LUE and EVI that make an independent esti-
mate of LUE less necessary. Sims et  al. (2006) reported that 
LUE derived from nine flux towers in North America was 
well correlated with EVI (R2 = 0.76; Figure 1.8), while Wu 
et  al. (2011) reported moderate correlation between EVI and 
tower LUE in temperate and boreal forest ecosystems in North 
America. Further, the 16-day averaging period removes much 
of the influences of short-term fluctuations in solar radiation 
and other environmental parameters, thereby minimizing the 
need for climatic drivers. On the other hand, such relationships 
were weaker in evergreen forests relative to deciduous ones and 
one study in an evergreen oak forest showed no correlation 
between EVI and LUE (Goerner et al. 2009); thus, correlations 
between EVI and LUE may be a result of covariations between 
fAPAR and LUE.

1.3.3 T emperature and Greenness Model (T-G)

The simple VI “greenness” model, defined as the straightforward 
relationship between VIs and GPP, although potentially useful 
in certain cases, exhibits various limitations due to its inability 
to always recognize between growth and inactive growth peri-
ods, in which spectral “greenness” may show little change. These 
inactive periods are associated with evergreen vegetation in win-
ter months with low temperatures as well as evergreen vegetation 
growing in Mediterranean climates in which high temperature, 
vapor pressure deficit, and soil drought limit growth (Sims et al. 
2008; Vickers et al. 2012).

For these reasons, Sims et  al. (2008) introduced the tem-
perature and greenness (T-G) model, using combined daytime 
LST (Wan 2008) and EVI products from MODIS. They found 
the T-G model substantially improved the correlation between 
predicted and measured GPP at 11 EC flux tower sites across 
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Figure 1.8  Flux tower measurements of GPP and LUE compared with satellite measures, MODIS GPP and MODIS EVI, respectively, over a 
range of North American biome types. (From Sims, D.A. et al., J. Geophys. Res., 111, 2006.)
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North American biomes compared with the MODIS GPP 
product or MODIS EVI alone, while keeping the model based 
entirely on remotely sensed variables without any ground-based 
meteorological inputs (Sims et al. 2008). The T-G model may be 
described as follows:

	 GPP = (EVIscaled × LSTscaled) × m	 (1.6)

	
LST min

LST

3
2 5 5 LSTscaled =







 −( )







0

0 0; . ( . )× 	 (1.7)

	 EVIscaled = EVI − 0.10	 (1.8)

where
LSTscaled sets GPP to zero when LST is less than zero, and 

defines the inactive winter period
EVIscaled adjusts EVI values to a zero baseline value in which 

GPP is known to be zero
m is a scalar that varies between deciduous and evergreen 

sites, with units of mol C m−2 day−1

LSTscaled also accounts for low temperature limitations to photo-
synthesis when LST is between 0°C and 30°C, and accounts for 
high temperature and high VPD stress in sites that exceed LST 
values of 30°C (Sims et al. 2008) (Figure 1.9).

LST is closely related to VPD and thus can provide a mea-
sure of drought stress (Hashimoto et al. 2008), consistent with 
the BIOME-BGC model, where temperature and VPD are used 
as scalars directly modifying LUE (Running et  al. 2004). LST 
is a useful measure of physiological activity of the upper can-
opy leaves, provided that leaf cover is great enough that LST 
is not significantly affected by soil surface temperature. Thus, 
the T-G model has been found less useful in sparsely vegetated 

ecosystems (e.g., shrubs) where soil surface temperatures signifi-
cantly influence derived LST values, rendering them less useful 
as indicators of plant physiology. As an example, Ma et al. (2014) 
found coupling EVI with LST showed no improvements in pre-
dicting savanna GPP compared with using EVI alone over the 
relatively open tropical savannas in northern Australia, with 
appreciable soil exposure. This may also be due to temperature 
not being a limiting factor or significant driver of photosynthesis 
in tropical savannas (Leuning et  al. 2005; Cleverly et  al. 2013; 
Kanniah et al. 2013b).

1.3.4  Greenness and Radiation (G-R) Model

Chlorophyll-related spectral indices have also been coupled with 
measures of light energy, PAR, to provide robust estimates of GPP:

	 GPP = VIchl × PARtoc	 (1.9)

where
PARtoc is the top-of-canopy measured PAR (MJ m−2 day−1)
VIchl is a chlorophyll-related spectral index

Peng et al. (2013) described two types of chlorophyll spectral 
indices, (1) commonly used VIs, such as EVI and the wide 
dynamic range vegetation index (WDRVI), which indirectly 
indicate total chlorophyll content through “greenness” esti-
mates and (2) chlorophyll indices, such as the MERIS terrestrial 
chlorophyll index (MTCI), which directly represent the leaf 
chlorophyll content. The WDRVI equation is,

	
WDRVI

a

a
NIR red

NIR red

=
−( )
+( )

*

*

ρ ρ
ρ ρ

	 (1.10)

where a is a weighing coefficient with value between 0.1 and 0.2 
(Gitelson 2004; Gitelson et al. 2006).

MTCI is the ratio of the difference in reflectance between an 
NIR and red edge band and the difference in reflectance between 
red edge and red band as

	
MTCI

753 75 7 8 75

7 8 75 681 25

=
−( )
−( )

ρ ρ
ρ ρ

. .

. .

,
0

0

	 (1.11)

where ρ753.75, ρ708.75, and ρ681.25 are reflectances in the center wave-
lengths of the MERIS narrow-band channel settings (Dash and 
Curran 2004).

Canopy level chlorophyll represents a community property 
that is most relevant in quantifying the amount of absorbed radi-
ation used for productivity (Whittaker and Marks 1975; Dawson 
et al. 2003). Long- or medium-term changes (weeks to months) 
in canopy chlorophyll are related to canopy stress, phenology, 
and photosynthetic capacity of the vegetation (Ustin et al. 1998; 
Zarco-Tejada et  al. 2002). Ciganda et  al. (2008) showed that 
for the same LAI amount, the chlorophyll content during the 
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Figure 1.9  GPP measured at the EC flux towers as a function of day-
time LST measured by the MODIS satellite. Solid line represents scaled 
LST from T-G model. GPP is enhanced by increasing temperatures, but 
only to approximately 30°C before being negatively influenced. (From 
Sims, D.A. et al., Remote Sens. Environ., 112(4), 1633, 2008.)
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green-up stage might be more than two times higher than the 
chlorophyll content in leaves in the reproductive and senescence 
stages. In the G-R model, both fAPAR and LUE are driven by 
total chlorophyll content with strong correlations between GPP/
PAR and canopy chlorophyll content (Gitelson et al. 2006; Peng 
et al. 2011).

Ma et  al. (2014) found significant improvements in the use 
of G-R models, relative to EVI alone, for predicting tower GPP, 
demonstrating the importance of this quantity as a critical 
driver of savanna vegetation productivity (Whitley et al. 2011; 
Kanniah et  al. 2013a). The R-G model has been successfully 
applied in estimating GPP in natural ecosystems (Sjöström et al. 
2011; Wu et al. 2011, 2014) and croplands, including maize, soy-
beans, and wheat (Wu et  al. 2010; Peng et  al. 2011; Peng and 
Gitelson 2012).

Site-based PARtoc measurements, however, may exhibit 
uncertainties associated with high-frequency fluctuations that 
are difficult to extrapolate beyond the tower sensor footprint 
and, moreover, scale regionally. Therefore, other measures of 
PAR that have been used include “potential” PAR, or maxi-
mal clear-sky PAR (PARpotential) (Gitelson et al. 2012; Peng et al. 
2013; Rossini et al. 2014) and top-of-atmosphere PAR (PARtoa). 
PARpotential can be calibrated from long-term PARtoc measure-
ments or modeled using an atmosphere radiative transfer code 
(Kotchenova and Vermote 2007).

Gitelson et  al. (2012) found an improved performance of 
PARpotential relative to PARtoc noting that decreases in PARtoc 
during the day do not always imply a decrease in GPP. Further, 
Kanniah et al. (2013a) showed that the negative forcings of wet 
season cloud cover on Australian tropical savannas were partly 
compensated by enhanced LUE resulting from a greater propor-
tion of diffuse radiation. Ma et  al. (2014) found that coupling 
of EVI with PARtoa better predicted GPP than coupling EVI 
with PARtoc and attributed this to tower sensor-based measure-
ment uncertainties of PARtoc, as well as better approximations of 
meteorological controls on GPP by PARtoa.

Two definitions of LUE become apparent in G-R models, with 
this term either defined as the ratio of GPP to APAR or defined 

as the ratio of GPP to PAR (Gower et al. 1999), with the latter 
sometimes referred to as ecosystem-LUE or eLUE:

	
ε = =GPP

APAR

GPP

fAPAR PAR×
, 	 (1.12)

	
eLUE

GPP

PAR
fAPAR= = × ε 	 (1.13)

An advantage of using chlorophyll-based VIs in G-R models is 
that the biological drivers of photosynthesis, fAPAR and light-
use efficiency (ε) resulting from environmental stress and leaf 
age phenology, are combined into eLUE, thereby simplifying 
remote sensing–based productivity estimates.

1.3.5  Vegetation Photosynthesis Model (VPM)

Xiao et al. (2004) developed a mostly satellite-based vegetation 
photosynthesis model (VPM) that estimates GPP using satellite 
inputs of EVI and the land surface water index (LSWI):

	 GPP = ε × fAPARchl × PARtoc	 (1.14)

	 ε = εmax × Tscalar × Wscalar × Pscalar	 (1.15)

where
fAPARchl is estimated as a linear function of EVI
PARtoc is measured at the site
Tscalar, Wscalar, Pscalar are scalars for the effects of temperature, 

water, and leaf phenology on vegetation, respectively 
(Figure 1.10)

Tscalar is based on air temperature and uses minimum, maximum, 
and optimum temperature for photosynthesis at each time step; 
Wscalar is based on satellite-derived LSWI that accounts for the 
effect of water stress on photosynthesis:

	
W

1 LSWI

1 LSWI
scalar

max

=
+( )

+( )
, 	 (1.16)
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Figure 1.10  Schematic diagram of the VPRM utilizing EVI, LSWI, and scalars for temperature, leaf phenology, and canopy water content, 
Tscalar, Pscalar, and Wscalar, respectively. The VPM model uses primarily remote sensing data along with air temperatures, while the VPRM model 
additionally assimilates tower flux and meteorological information. (From Mahadevan, P. et al., Global Biogeochem. Cycles, 22(2), GB2005, 2008.)
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LSWI

nir swir

nir swir

=
−( )
+( )

ρ ρ
ρ ρ

, 	 (1.17)

where
ρswir is the reflectance in a broadband shortwave infrared 

band (e.g., MODIS, 1580–1750 nm)
LSWImax is the maximum value for the growing season

Pscalar accounts for the effect of leaf age on photosynthesis and is 
dependent on the growing season life expectancy of the leaves 
(Wilson et al. 2001). Pscalar is calculated over two phenophases as

	
P  

1 LSWI
scalar =

+( )
2

	 (1.18)

from bud burst to full leaf expansion, and Pscalar = 1, after full 
expansion (Xiao et al. 2004).

The VPM model has been applied to both MODIS and SPOT-4 
VEGETATION sensor data to produce tower-calibrated estimates 
of GPP across a wide range of biomes, including evergreen and 
deciduous forests, grasslands, and shrub sites in temperate North 
America and in seasonally moist tropical evergreen forests in the 
Amazon (Xiao et al. 2005; Mahadevan et al. 2008; Jin et al. 2013).

Mahadevan et  al. (2008) further developed the vegetation 
photosynthesis and respiration model (VPRM), a satellite-
based assimilation scheme that estimates hourly values of NEE 
using EVI, LSWI, and high-resolution meteorology observa-
tions of sunlight and air temperature (Figure 1.10). NEE repre-
sents the difference between uptake (photosynthesis) and loss 
(respiration) processes that vary over a wide range of timescales 
(Goulden et al. 1996; Katul et al. 2001). The VPRM model pro-
vides fine-grained fields of surface CO2 fluxes for application in 
inverse models at continental and smaller scales (Mahadevan 
et al. 2008). This capability is presently limited by the number 
of vegetation classes for which NEE can be constrained using 
EC tower flux data. A summary of the various remote sensing–
based estimates of GPP is shown in Table 1.2.

1.3.6  Photochemical Reflectance Index (PRI)

There is also much interest in reducing the uncertainties in GPP 
models through direct remote sensing assessments of LUE. 
The photochemical reflectance index (PRI) is a hyperspectral 
index that provides a scaled LUE measure, or photosynthetic 
efficiency, based on light absorption processes by carotenoids 
(Gamon et al. 1992; Middleton et al. 2011),

	
PRI

531 nm 57 nm

531 nm 57 nm

=
( )

+( )
ρ ρ
ρ ρ

− 0

0

	 (1.19)

Spectral variations at 531  nm are closely associated with the 
dissipation of excess light energy by xanthophyll pigments 
(a major carotenoid group of yellow pigments) in order to 

protect the photosynthetic leaf apparatus (Ripullone et  al. 
2011). Carotenoids function in processes of light absorption 
in plants as well as protecting plants from the harmful effects 
of high light conditions; hence, lower carotenoid/chlorophyll 
ratios indicate lower physiological stress (Peñuelas et al. 1995; 
Guo and Trotter 2004).

Several studies have shown the linear relationship between PRI 
and LUE over different vegetation types (e.g., Nichol et al. 2000, 
2002). Rahman et al. (2004) produced a “continuous field” retrieval 
of LUE from satellite data, using the PRI as a proxy of LUE, with-
out the need of LUTs or predetermined biome-specific LUE val-
ues. They suggested that the variations found in the continuous 
LUE fields must be taken into account to accurately estimate CO2 
fluxes of terrestrial vegetation. However, Barton and North (2001) 
showed that PRI was most sensitive to changes in leaf area index 
(LAI), and Gitelson et al (2006) noted that in order to use PRI to 
predict LUE, one would need an independent estimate of LAI.

The upcoming potential launches of new hyperspectral mis-
sions, such as hyperspectral infrared imager (HyspIRI), will 
provide future data fusion opportunities for the scaling and 
extension of leaf physiologic processes and phenology from spe-
cies and ecosystem to regional and global scales.

1.4  Spaceborne Fluorescence Measures

Sunlight absorbed by chlorophyll in photosynthetic organisms is 
mostly used to drive photosynthesis, but some radiation can also 
be dissipated as heat or reradiated at longer wavelengths (650–
850 nm). This NIR light re-emitted from illuminated plants, as 
a by-product of photosynthesis, is termed as solar-induced chlo-
rophyll fluorescence (SIF), and it has been found to strongly cor-
relate with GPP (Baker 2008; Meroni et al. 2009). Chlorophyll 
fluorescence may be conceptualized as

	 SIF = εf × PAR × fAPAR	 (1.20)

where εf is the yield of fluorescence photons (i.e., the fraction of 
absorbed PAR photons that are re-emitted from the canopy as 
SIF photons). This expression can be combined with the GPP-
based LUE equation to remove the parallel dependence of both 
processes on APAR to yield

	
GPP

SIF p

f

=
× ε
ε

	 (1.21)

Empirical studies at the leaf and canopy scale indicate that the 
two LUE terms tend to covary under the conditions of the satel-
lite measurement (Flexas et al. 2002). SIF data provides informa-
tion on both the light absorbed and the efficiency with which it is 
being used for photosynthesis. It is an independent measurement, 
linked to chlorophyll absorption, providing unique information 
on photosynthesis relative to VIs. Further, SIF is more dynamic 
than greenness, and will respond much more quickly to environ-
mental stress, through both change in stress-induced light-use 
efficiency and canopy light absorption (Porcar-Castell et al. 2014).
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Table 1.2  Examples of Remote Sensing Methods of Deriving Gross Primary Productivity with Some References

Gross Primary 
Productivity 
Measurement  Biome/Location Satellite Products Used 

Other Non-Satellite 
Drivers 

Method/
Approach Equation R2 Reference 

BIOME-BGC 
(BioGeochemical 
Cycles) MODIS 
GPP/NPP, where 
GPP is Gross 
Primary 
Productivity and 
NPP is Net Primary 
Productivity

Continental MODIS FPAR 
(MOD15); 
photosynthetic active 
radiation (PAR) as 
0.45 × SWrad 
(shortwave downward 
solar radiation)

Maximum light use 
efficiency (εmax) from a 
biome-properties 
look-up table and 
maximum daily vapour 
pressure deficit (VPD) 
and minimum daily air 
temperature (Tmin) from 
forcing meteorology.

See 
equation

GPP = εmax × 0.45 × SWrad × 
fPAR × f(VPD) × f(Ta)

NA Running 
et al. (2004)

GPP and light use 
efficiency (LUE)

North American ecosystems 
from evergreen needleleaf 
and deciduous forest to 
grassland to savanna

MODIS EVI NA Linear 
regression

GPP = m × EVI + b
LUE = m × EVI + b

0.76 MODIS GPP–GPP
0.92 EVI–GPP
0.76 EVI–LUE
0.62 MODIS LUE–LUE

Sims et al. 
(2006)

GPP Tropical forests and 
converted pastures at the 
Amazon basin

MODIS EVI NA Linear 
regression

GPP = m × EVI + b 0.5 Huete et al. 
(2006)

GPP and maximum 
Net Ecosystem 
Exchange (NEEmax)

Northern Europe 
ecosystems from evergreen 
needleleaf and deciduous 
forest to grasslands

MODIS EVI NA Linear 
regression

GPP = m × EVI + b
NEEmax = m × EVI + b

GPP–EVI: 0.81 
deciduous, 0.69, 
coniferous forests

NEEmax−EVI:0.83 
deciduous. 0.72, 
coniferous forests

Olofsson 
et al. (2008)

GPP Dry to humid tropical forest 
sites in Southeast Asia

MODIS EVI NA Linear 
regression

GPP = 8282 × EVI + 2118, 
GPP (kgC ha−1 month−1)

0.74 Huete et al. 
(2008)

GPP African tropical savanna 
ecosystems including 
shrubland, woodlands, 
crops and grasslands

MODIS EVI NA Linear 
regression

GPP = m × EVI + b NA Sjöström 
et al. (2011)

GPP Northern Australian mesic 
and xeric tropical savannas

MODIS EVI
MODIS GPP product

Eddy covariance 
measured water 
availability index (EF) 
and PAR

Linear 
regression

GPP = m × EVI + b
GPP = b + m(MODIS GPP)
GPP = b + m(EVI × PAR)
GPP = b + m(EVI × PAR × EF)

Linear regression 
EVI–GPP ranges from 
0.89 (woodland) to 
0.52 (wooded 
grassland)

Ma et al. 
(2013)

Temperature and 
Greenness Model 
(T–G)

North American ecosystems 
from evergreen needleleaf 
and deciduous forest to 
grassland to savanna

MODIS daytime land 
surface temperature 
(LST) and EVI

NA See 
equation

GPP = (EVIscaled × LSTscaled) × m
LSTscaled = min((LST/30); 

(2.5 – (0.05 × LST))
EVIscaled = EVI – 0.10

NA Sims et al. 
(2008)

Greenness and 
Radiation (G–R) 
model

Crops, including soybean 
and maize–soybean 
rotation

MODIS NDVI and a 
chlorophyll-related 
spectral index (VIchl): 
EVI or wide dynamic 
range vegetation 
index (WDRVI)

PARtoc is the top of 
canopy measured PAR

See 
equation

GPP = VIchl × PARtoc

GPP = NDVI × PARtoc

0.84 GPP = 
EVI2 × PARtoc

0.87 GPP = Red edge 
NDVI × PARtoc

0.9–0.9 GPP = 
EVI × PARtoc

Peng and 
Gitelson 
(2012)

(continued )
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Table 1.2 (continued )  Examples of Remote Sensing Methods of Deriving Gross Primary Productivity with Some References

Gross Primary 
Productivity 
Measurement  Biome/Location Satellite Products Used 

Other Non-Satellite 
Drivers 

Method/
Approach Equation R2 Reference 

Greenness and 
Radiation (G–R) 
model

Northern Australian mesic 
and xeric tropical savannas

MODIS EVI PARtoa is the top of 
atmosphere PAR

See 
equation

GPP = EVI × PARtoa NA Ma et al. 
(2014)

Temperature and 
Greenness Model 
(T–G) and 
Greenness and 
Radiation (G–R) 
model

Temperate and boreal forest 
ecosystems in North 
America

MODIS EVI NA Linear 
regression

GPP = m × EVI + b
GPP = EVIScaled × LSTScaled

T–G model GPP:0.27 
to 0.91 at non-forests

~0.9 at deciduous 
forests

0.28–0.91 evergreen 
forests

Wu et al. 
(2011)

Vegetation 
Photosynthesis 
Model (VPM)

Single temperate deciduous 
broadleaf ecosystem forest

MODIS EVI, NDVI, 
LSWI, water (Wscalar), 
leaf phenology (Pscalar)

Temperature (air) and 
leaf phenology 
information Tscalar, Pscalar, 
respectively

See 
equation

GPP = ε × fAPARchl × PARtoc
ε = εmax × Tscalar × Wscalar × Pscalar

GPP = −74.4 + 179.4 × NDVI
GPP = −68.3 + 299.7 × EVI, 

GPP (gC m−2 10−day]

GPP–NDVI, 0.64
GPP–EVI, 0.84
GPP–VPM GPP, 0.92

Xiao et al. 
(2004)

Vegetation 
Photosynthesis and 
Respiration Model 
(VPRM)

Net Ecosystem 
Exchange, NEE = 
GPP–ecosystem 
respiration

Nine vegetation classes, 
including evergreen and 
deciduous forests, 
grasslands, and shrub sites 
in North America

MODIS EVI, and 
LSWI

Incoming solar radiation 
and air temperature

Model NA Monthly NEE − VPRM 
NEE ranges from 0.96 
(deciduous temperate 
forest) to >1 at grasses 
and agricultural areas

Mahadevan 
et al. (2008)

Light use efficiency, 
LUE

Crops: sunflower Photochemical 
reflectance index 
(PRI)

NA Linear 
regression

LUE = m × PRI + b NA Gamon et al. 
(1992)

LUE Crops: corn PRI NA Linear 
regression

LUE = 1.37 × PRI570 − 0.04, 
LUE (mol C mol−1 APAR)

0.66 Middleton 
et al. (2011)

GPP Cropland and grassland 
ecosystems

Solar- induced 
chlorophyll 
fluorescence (SIF)

NA Linear 
regression

US croplands: GPP = −0.88 + 
3.55 × SIF

Europe grasslands: GPP = 0.35 
+ 3.71 × SIF

All sites: GPP = −0.17 + 3.48 × 
SIF, GPP (gC m−2 day−1)

0.92, US croplands
0.79, Europe grasslands
0.87, All sites

Guanter 
et al. (2014)
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Global space-based estimates of SIF have recently become 
available through the Japanese Greenhouse Gases Observing 
Satellite (GOSAT) using solar absorption, where Fraunhofer 
lines are used to derive fluorescence estimates. Subsequently, 
global SIF data with better spatial and temporal sampling are 
now produced from the Global Ozone Monitoring Experiment-2 
(GOME-2) instrument onboard the Metop-A platform (Joiner 
et  al. 2013) and the Orbiting Carbon Observatory-2 (OCO-2) 
launched in July 2014 (Frankenberg et  al. 2014). Preparatory 
studies are also underway for the future European fluorescence 
explorer (FLEX) satellite mission (Meroni et al. 2009). Whereas 
OCO-2 and GOME-2 were not designed specifically to measure 
fluorescence and estimate only a single-wavelength SIF, the 
FLEX mission will provide measurements characterizing the 
spectral shape of fluorescence emission and enable estimates 
of photosynthesis rates under different vegetation stress condi-
tions. In addition, the future Sentinel-5 Precursor Tropospheric 
Monitoring Instrument (TROPOMI) (Veefkind et al. 2012) sat-
ellite mission will provide advance spectrometer and fluores-
cence data with significantly finer spatial resolution.

Chlorophyll fluorescence provides estimates of actual photo-
synthetic rates, as opposed to estimates of potential photosynthe-
sis that are typically derived using spectral VIs, fAPAR and LAI 
products. Satellite-based SIF retrievals have thus been shown to 
be highly correlated with GPP estimates derived at global and 
seasonal scales (Frankenberg et  al. 2011; Guanter et  al. 2012). 
Guanter et  al. (2014) showed satellite SIF retrievals provided 
direct measures of GPP of cropland and grassland ecosystems 
and a more direct link with photosynthesis than found with veg-
etation greenness measures, such as VIs. Their SIF-based GPP 
estimates were similar to flux-tower comparisons and found to 
be significantly more accurate than empirical and process-based 
productivity models, which underestimated GPP by as much as 
50%–75%. This study, along with Zhang et al. (2014), has shown 
the potential of SIF data to improve carbon cycle models and 
provide more accurate projections of ecosystem and agricultural 
productivity and climate impacts on production.

1.5  Discussion

The simple LUE-based productivity equation introduced by 
Monteith (1972) comprises a great deal of biological and biophys-
ical complexity, resulting in numerous productivity modeling 
approaches that attempt to deal with this complexity in different 
ways. GPP is proportional to the incident shortwave radiation, 
the fractional absorption of that energy (fAPAR), and the effi-
ciency with which the absorbed radiation is converted to fixed 
carbon, ε. The different modeling approaches tend to emphasize 
one term or the other of the LUE equation, with remote sensing–
based algorithms focusing on the fAPAR term, or more recently, 
the fAPARchlorophyll component. Others have focused on the LUE 
term as the primary determining factor of productivity either 
focusing on the biome level versus species specificity of LUE 
variability (e.g., Ahl et al. 2004) or focusing on the meteorologic 
scalars of LUE with potential incorporation of soil moisture as 

an LUE regulator. Kanniah et al. (2009) noted that strong sea-
sonal variations in LUE at tropical mesic savanna sites were pri-
marily driven by the dynamics in understorey grasses. There is 
also much attention on the role of the PAR term in explaining 
seasonal and year-to-year growth variability of plant productiv-
ity, including the incorporation of light quality (direct and dif-
fuse) to complement data of radiation quantities.

With the increasing use of satellite data for large-scale pro-
ductivity assessments, it has become appealing to calibrate 
such data with in situ productivity measures, such as from EC 
tower sites. Glenn et al. (2008) suggested that remote sensing 
is very suitable as a scaling tool of productivity when ground 
data are available. Remote sensing can greatly simplify the 
upscaling of ecosystem processes, such as photosynthesis, 
from an expansive network of flux towers to larger landscape 
units and to regional scales, as the measurement footprint of 
flux towers at least partially overlaps the pixel size of daily-
return satellites (e.g., 250 m for MODIS). Further, as top-of-
canopy measurements, flux towers do not require knowledge 
of LAI or details of canopy architecture to estimate fluxes 
facilitating their comparisons with remote sensing measures 
that similarly involve community properties resulting from 
integrative, top-of-canopy radiation interactions. However, 
tower data of fluxes potentially offer much more than simply 
validating and/or calibrating remote sensing products and 
models. An understanding of why satellite–flux tower rela-
tionships hold, or do not hold, will greatly advance and con-
tribute to our comprehension of the carbon cycle mechanisms 
and scaling factors at play.

The validation of satellite-based productivity products remains 
challenging due to a variety of spatial and temporal scaling issues 
(Morisette et  al. 2002; Turner et  al. 2004). These include the 
matching of large satellite pixels (~1 km) with field plot scale mea-
surements in both time and space. Li et al. (2008) demonstrated 
limitations associated with disparate footprints between satellite 
and tower flux measurements and the need for Landsat spatial 
resolutions for flux footprint matching, particularly in nonfor-
ested canopies. Plot-level ANPP measurements are commonly 
made at scales from 1 m2 to 0.01 km2, while the matching MODIS 
footprint may range from 62,500 m2 to 1 km2.

From a temporal perspective, plants respond to the dynamics 
of environmental variables through stomatal closure and other 
diurnal adjustments that cannot be easily sensed by satellite 
sensors (e.g., MODIS). Variation in LUE is likely to be signifi-
cant over shorter, daily time frames when water or temperature 
stress develops. However, at moderate to longer (e.g., weekly to 
monthly) time scales, plants tend to increase leaf area under 
favorable environments as an investment of resources into their 
photosynthetic apparatus, and reduce LAI under stress when 
leaves are expensive to produce and maintain. Thus, at longer 
time scales, there would be a convergence of satellite greenness 
signals with biologic and structural canopy properties. SIF, 
however, is seen as one way to increase the effective temporal 
remote sensing of vegetation photosynthesis, essentially to near 
real-time.
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Despite these challenges, continuing advances made in global 
weather-forecasting accuracies and the development of new sat-
ellite sensor technologies, including fluorescence, hyperspectral, 
thermal, and lidar, now enable a more thorough coupling of the 
environmental conditions that plants experience with improved 
characterization of their biophysical states, and with better 
monitoring capabilities to track plant responses to environmen-
tal changes. These advances are providing a better understand-
ing of the dynamics of terrestrial productivity and the use of 
satellite data to drive productivity models of the land surface.
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Acronyms and Definitions

J	 Cost function
W	� Covariance matrix of measurement and model 

uncertainties
GAIeff	 Effective GAI
V̂ 	 Estimated values of canopy biophysical variables
Vp	 Prior values of canopy biophysical variables
R	 Vector of observed BRF values
R̂	 Vector of simulated BRF values
FAPARbs	 Black sky FAPAR
GAItrue	 True GAI
FAPARws	 White sky FAPAR
C	� Covariance matrix of the prior distribution of 

variables
N	 Number of configurations
Po	 Gap fraction
σ²	� Variance associated to measurement and model 

uncertainties
AVHRR	 Advanced very-high-resolution radiometer

BRF	 Bidirectional reflectance factor
CHRIS	 Compact high-resolution imaging spectrometer
DMC	 Disaster Monitoring Constellation
ECV	 Essential climate variable
FAPAR	� Fraction of absorbed photosynthetically active 

radiation
FIPAR	� Fraction of intercepted photosynthetically active 

radiation
FORMOSAT	 FORMOse SATellite
GAI	 Green area index
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GF	 Green fraction
GIMMS	 Global Inventory Modeling and Mapping Studies
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GPR	 Gaussian process regression
LAI	 Leaf area index
LANDSAT	 LAND SATellite
LUT	 Look-up table
MERIS	 Medium-resolution imaging spectrometer
MGVI	 MERIS global vegetation index
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MODIS	 Moderate-resolution imaging spectrometer
NDVI	 Normalized difference vegetation index
NNT	 Neural network
PAI	 Plant area index
POLDER	� Polarization and directionality of Earth’s reflectance
RT	 Radiative transfer
SLC	 Soil leaf Canopy
SVM	 Support vector Machine
VI	 Vegetation index

2.1 I ntroduction

Estimates of canopy biophysical characteristics are required 
for a wide range of agricultural, ecological, hydrological, and 
meteorological applications. These should cover exhaustively 
large spatial domains at several scales: from the very local one 
corresponding to precision agriculture where cultural practices 
are adapted to the within-field variability, through resources 
and environmental management generally approached at the 
landscape scale, up to biogeochemical cycling and vegeta-
tion dynamics investigated at national, continental, and global 
scales. Remote sensing observations answer these requirements 
with spatial resolution spanning from kilometric down to deca-
metric resolution observations according to the nomenclature 
proposed by Morisette (2010). Further, remote sensing from 
satellites brings the unique capacity to monitor the dynamics 
required to access the functioning of the vegetation.

Few biophysical variables have been recognized as essential 
climate variables (ECVs) for their key role in the main vegeta-
tion canopy processes such as photosynthesis and evapotrans-
piration (GCOS 2011). These ECVs include the leaf area index 
(LAI) and the fraction of absorbed photosynthetically active 
radiation (FAPAR). Since the 1980s, considerable improve-
ment in the quality of terrestrial estimates of LAI and FAPAR 
derived from satellite or airborne systems has been achieved 
due to the advances of measurement capability of satellite 
instruments and to our understanding of the radiation regime 
within vegetation canopies (Liang 2004). However, remote 
sensing observations sample the radiation field reflected or 
emitted by the surface, and thus do not provide directly LAI 
or FAPAR estimates. It is therefore necessary to transform the 
radiance values recorded by the sensor into LAI or FAPAR val-
ues. The retrieval algorithms used should ideally be accurate, 
precise, and computationally efficient. Most importantly, they 
should require minimal calibration since they are supposed 
to be applied over diverse locations, seasons, and conditions 
(Walthall et al. 2004).

Many methods have been proposed to retrieve land sur-
face characteristics from remote sensing observations (Baret 
and Buis 2007; Goel 1989; Houborg and Boegh 2008; Kimes 
et  al. 2000; Laurent et  al. 2013; Myneni et  al. 1988; Pinty and 
Verstraete 1991a; Verger et  al. 2011a). They include empirical 
methods with calibration over experimental datasets. These sim-
ple methods are limited by the size and diversity of the calibra-
tion dataset as well as by the uncertainties attached to the ground 

measurements. More complex ones based on the use of radiative 
transfer models have been proposed where no in situ calibration 
dataset is required. Radiative transfer models describe the physi-
cal processes involved in the photon transport within vegetation 
canopies. They simulate the radiation field reflected by the sur-
face for a given observational configuration, once the vegetation 
and the background are known. Retrieving canopy character-
istics from the radiation field as sampled by the sensor aboard 
satellite needs to “invert” the radiative transfer model, that is, 
to estimate some input variables from the measurement of the 
outputs of the model.

This chapter aims at reviewing how canopy biophysical vari-
ables may be derived both from kilometric and decametric reso-
lution remote sensing observations. It will be illustrated by LAI 
and FAPAR variables that will first be defined before describing 
the principles of the radiative transfer model inversion used to 
retrieve them. Then, the theoretical performances of LAI and 
FAPAR will be investigated. Several techniques that improve the 
retrievals will be discussed in detail. Finally, the possible com-
binations of methods, products, and sensors will be presented. 
A conclusion will highlight the main issues to tackle, suggesting 
future research avenues.

2.2 � Several Definitions of 
LAI and FAPAR

2.2.1 � Leaf Area Index: LAI, GLAI, PAI, 
GAI, Effective and Apparent Values

LAI is defined as half of the total developed area of green vegeta-
tion elements per unit ground area (m2 m−2) (Chen and Black 
1992; Stenberg 2006). It is a structural variable, which describes 
the size of the interface for exchange of energy and mass between 
the canopy and the atmosphere. It governs photosynthesis, tran-
spiration, and rain interception processes. For photosynthesis 
and transpiration, the LAI definition should be restricted to the 
green active area leading to the green leaf area index (GLAI) 
definition. Further, the area of other organs such as stems, 
branches, or fruits should be accounted for if they are green, 
leading to the green area index (GAI) definition. LAI, GLAI, and 
GAI may be measured using destructive techniques. However, 
this is tedious and time consuming and indirect methods based 
on canopy gap fraction (Po) measurements have been developed 
(Jonckheere et al. 2004; Weiss et al. 2004). Since no distinction 
is made by these devices between green and nongreen elements, 
neither between leaves and the other elements, the actual quan-
tity measured is plant area index (PAI). However, directional 
photos taken from the top of the canopy may be also used to 
compute the green fraction (GF) defined as the fraction of green 
area seen in the considered direction. Assuming that the green 
leaves are mostly at the top of the canopy, which is generally the 
case, such technique provides an estimate of the GAI (Baret et al. 
2010). Similarly, remote sensing observations are mainly sensi-
tive to the green elements of the canopy and, thus, are mostly 
related to the GAI (Duveiller et al. 2011; Raymaekers et al. 2014). 
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Table 2.1 clearly shows that indirect methods are mainly access-
ing GAI and PAI depending on the capacity to distinguish green 
from nongreen elements.

The derivation of PAI or GAI from indirect measurements 
requires some assumptions on canopy architecture. The turbid 
medium assumption is the most commonly used, considering 
that leaves have infinitesimal size and are randomly distributed 
in the canopy volume. However, this simple assumption is not 
always verified by actual canopies, leaves having a finite dimen-
sion and being clumped at several scales, including the shoot 
(leaves grouped into shoots), plant (shoots grouped into plants), 
stand (plants grouped into stands) to landscape (stands distrib-
uted in the landscape). This creates artifacts in the estimation 
of the corresponding PAI (Walter et al. 2003) from gap fraction 
measurements or GAI from reflectance measurements (Chen 
et al. 2005). Therefore, “effective” and “apparent” quantities need 
to be introduced to complement the actual “true” PAI or GAI 
definitions. The effective PAI or GAI is the quantity that can be 
derived from the directional gap fraction or GF based on Miller’s 
formula (Miller 1967) that assumes leaves randomly distributed 
in the canopy volume (Ryu et al. 2010). However, the application 
of Miller’s formula requires the measurement of Po or GF in all 
the directions of the hemisphere, which is rarely possible. We 
therefore estimate an “apparent” PAI or GAI value that depends 
on the directional sampling used. Similarly, estimates of GAI 
from remote sensing are “apparent” values (Martonchik 1994) 
that will depend on the observational configuration used, and 
the inverse technique employed including the assumptions on 
canopy architecture embedded in the radiative transfer model 
considered as we will see in the following sections.

2.2.2 � FAPAR: Illumination Conditions 
and Green/Nongreen Elements

FAPAR is defined as the fraction of the photosynthetically active 
radiation (PAR, solar radiation in the 400–700  nm spectral 
domain) absorbed by a vegetation canopy (Mõttus et al. 2011). 
FAPAR is widely used as input in a number of primary produc-
tivity models (McCallum et al. 2009). It is therefore necessary to 
consider only the green photosynthetically active elements, that 
is, the green parts of the canopy. Similar to what was presented for 
the LAI definition, FAPAR measurements can be computed from 
the radiation balance in the 400–700 nm PAR spectral domain 
(Mõttus et  al. 2011). The FAPAR value can be also approxi-
mated by the fraction of intercepted radiation, FIPAR, that is, 

the complement to unity of the gap faction (Asrar 1989; Begué 
et al. 1991; Gobron et al. 2006; Russel et al. 1989). However, it is 
not possible to distinguish the absorption or interception of the 
light by the green elements from that of the nongreen elements 
using these measurement techniques. Conversely, measurements 
of the  GF from the top of the canopy in the illumination direc-
tion provide a direct estimate of the FIPAR.

FAPAR and FIPAR variables are not intrinsic properties of the 
vegetation, but result from the interaction of the light with the 
canopy. FAPAR and FIPAR will thus depend on the illumination 
conditions. Similarly to albedo (Martonchik 1994), the illumi-
nation conditions could be described by a component coming 
only from the sun’s direction, the black sky FAPAR or FIPAR, 
and a diffuse component coming from the sky hemisphere, the 
white sky FAPAR or FIPAR. The black sky FAPAR or FIPAR 
values depend on the sun’s direction. Most FAPAR products are 
defined as the black sky values corresponding to the sun’s posi-
tion at the time of the satellite overpass (Weiss et al. 2014), that 
is, around 10:30 solar time. Note that the black sky FAPAR or 
FIPAR values at 10:00 local solar time have been demonstrated 
to be a good estimation of the daily integrated value of FAPAR 
or FIPAR (Baret et al. 2004).

2.3 � Radiative Transfer Model 
Inversion Methods

The light reflected by the canopy results from the radiative 
transfer processes within the vegetation. It depends on canopy 
state variables as well as on the illumination conditions and 
the observational configuration that defines the sampling of 
the reflectance field: wavebands, view direction(s), frequency of 
observations, and spatial resolution. State variables characteriz-
ing the canopy structure and the optical properties of the vegeta-
tion elements include therefore some of the variables of interest 
for applications such as LAI (Figure 2.1). Other variables such as 
FAPAR can also be computed from the knowledge of the canopy 
state variables and the illumination configuration considered 
using the same radiative transfer model.

The causal relationship between the variables of interest and 
remote sensing data corresponds to the forward (or direct) prob-
lem. They could be either described through empirical relation-
ships calibrated over experiments or using radiative transfer 
models based on a more or less close approximation of the actual 
physical processes, canopy architecture, and optical properties 
of the elements including the background. Conversely, retrieving 

Table 2.1  Definitions of LAI, GLAI, GAI, and PAI and the Associated Indirect Measurement Methods

Only 
Green 

Green + 
Non-Green 

Only 
Leaves 

All 
Elements Indirect Measurement Method 

LAI Leaf area index ✓ ✓ Only destructive methods
GLAI Green leaf area index ✓ ✓ Only destructive methods
GAI Green area index ✓ ✓ GF from the top, remote sensing
PAI Plant area index ✓ ✓ Po measurements

Note:	 All quantities are expressed in m²·m−2.
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the variables of interest from remote sensing measurements cor-
responds to the inverse problem, that is, developing algorithms 
to estimate the variables of interest from remote sensing data 
as observed in a given configuration. Prior information on 
the type of surface and on the distribution of the variables of 
interest can also be included in the retrieval process to improve 
the performance as we will see later. Note that the estimation 
of FAPAR is achieved in two steps: first, the canopy state vari-
ables are retrieved by inverting a radiative transfer model. Then, 
the FAPAR is computed under specific illumination conditions 
using the same radiative transfer model and the estimates of 
canopy state variables.

The retrieval techniques can be split into two main approaches 
depending on whether the emphasis is on the inputs (the canopy 

biophysical variables–driven approach) or the outputs (radio-
metric data–driven approach) of the radiative transfer model 
(Figure 2.2).

2.3.1 � Radiometric Data–Driven Approach: 
Minimizing the Distance between 
Observed and Simulated Reflectance

The radiometric data–driven approach focuses on the outputs 
of the radiative transfer model: it aims to find the best match 
between the measured reflectance values and those simulated by 
a radiative transfer model (Figure 2.2, right). The misfit is quan-
tified by a cost function (J) that should account for measure-
ments and model uncertainties. It can be theoretically derived 
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Figure 2.2  The two main approaches used to estimate canopy characteristics from remote sensing data for GAI estimation. On the left side, 
the approach focuses on radiometric data showing the solution search process leading to the estimated LAI value, GAI*. On the right side, the 
approach focuses on the biophysical variables showing the calibration of the inverse model (top) and the application using the inverse model with 
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from the maximum likelihood (Tarentola 1987) assuming that 
uncertainties associated to each configuration used are indepen-
dent and Gaussian distributed:

	 J R R W R Rt= − ⋅ ⋅ −−( ) ( )ˆ ˆ1 	 (2.1)

where
R and R̂ are, respectively, the vectors of observed and esti-

mated reflectances
W is the covariance matrix of uncertainties

One main limitation in applying this formalism is the difficulty 
in obtaining the covariance matrix W. In most cases, just the 
diagonal terms corresponding to the variance associated to the 
uncertainties (σ²) are known. In these conditions, Equation 2.1 
simplifies into the normalized Euclidean distance:

	
J
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N

= −

=
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2
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	 (2.2)

where N is the number of configurations used (bands, directions, 
etc.). More sophisticated cost functions have been proposed to 
include a regularization term that prevents the solution to be too 
far away from its prior expectation. This will be reviewed later in 
a separate section.

Several techniques have been used to get the solution corre-
sponding to the minimum of the cost function: iterative mini-
mization including the simplex algorithm (Nelder and Mead 
1965), gradient descent–based algorithms (Bacour et al. 2002a; 
Bicheron and Leroy 1999; Combal et  al. 2000, 2002; Goel and 
Deering 1985; Goel et  al. 1984; Goel and Thompson 1984; 
Jacquemoud et  al. 1995; Kuusk 1991a,b; Lauvernet et  al. 2008; 
Pinty et al. 1990; Privette et al. 1996; Voßbeck et al. 2010), Monte 
Carlo Markov chains (Zhang et al. 2005), simulated annealing 
(Bacour 2001), and genetic algorithms (Fang et al. 2003; Renders 
and Flasse 1996). One of the major difficulties associated with 
these techniques is the possibility to get suboptimal solutions 
that correspond to a local minimum of the cost function. This 
can be mitigated by using several initial guesses spread over 
the space of canopy realization as well as allowing some flex-
ibility and randomness along the search path toward the solu-
tion. This is unfortunately achieved at the expense of additional 
computation time. However, the process can be speeded up by 
using an analytical expression of the gradient of the cost func-
tion, that is, the adjoint model (Lauvernet et al. 2008). Further, 
to increase the computation speed, the actual radiative trans-
fer model could be emulated into a metamodel that addition-
ally eases the derivation of the adjoint model (Jamet et al. 2005). 
Note that the metamodel can be considered as an interpolation 
between a set of simulated cases that can be used to populate a 
look-up table (LUT) as described in the following. To limit the 
problem of possible local minimum when iteratively minimizing 
the cost function, a regularization term could be added based 
on the knowledge of the prior distribution of the input variables 

(Tarentola 1987) or integrating some constraints. This will be 
more detailed in a following sections.

LUTs working on precomputed simulations containing the 
input canopy variables and the corresponding simulated reflec-
tance values have also been used directly without interpolation 
(Darvishzadeh et  al. 2008; Ganguly et  al. 2012; Knyazikhin 
et  al. 1998; Vohland et  al. 2010; Weiss et  al. 2000). This tech-
nique is more tractable in terms of computation requirements 
and limits the possibility to get trapped in a local minimum of 
the cost function, as this cost function is evaluated systemati-
cally over each case of the LUT. To populate the LUT, the space 
of canopy realization has to be sampled to represent the surface 
response, that is, with better sampling where the sensitivity of 
reflectance to canopy characteristics is the higher (Combal et al. 
2002; Weiss et al. 2000). This is different from the sampling of 
the training database required in canopy biophysical variable–
driven approaches as explained earlier. The cases in the LUT are 
sorted according to the cost function value (J). Then, the solution 
may be considered as the one corresponding to the best match 
obtained with the minimum value of J, similarly to what is done 
with the iterative minimization techniques. It can be also defined 
as a fraction of the initial population of cases such as in Combal 
et al. (2002) and Weiss et al. (2000) or using a threshold defined 
by measurements and model uncertainties (Knyazikhin et  al. 
1998). A more rigorous way of exploiting the solutions would 
be to weigh each case according to its likelihood as done in the 
GLUE method (Beven and Binsley 1992; Makowski et al. 2002).

2.3.2 �C anopy Biophysical Variable–Driven 
Approach: Machine Learning

This approach belongs to the machine learning type of algo-
rithm that requires first to calibrate an inverse parametric model 
(Figure 2.2, right). The calibration mainly consists in adjusting 
the coefficients of the inverse model to minimize the distance 
between the estimated variable of interest (GAI in this example) 
and the ones populating the calibration dataset. For FAPAR, the 
RT model is used a second time to simulate the corresponding 
FAPAR values for a given illumination condition. The inverse 
model is then calibrated by minimizing the distance between 
the estimated FAPAR value and the one simulated in the calibra-
tion dataset. Once calibrated, the parametric inverse model can 
be used in the forward mode to compute the variables of interest 
from the observed reflectance values. The learning dataset can 
be generated either using simulations of radiative transfer mod-
els, or based on concurrent experimental measurements of the 
variables of interest and reflectance data.

The inverse model may be calibrated both over experimental 
or synthetic datasets (Asrar et al. 1984; Chen et al. 2002; Deng 
et  al. 2006; Huete 1988; Richardson et  al. 1992; Verrelst et  al. 
2012; Wiegand et al. 1990, 1992). However, the use of experimen-
tal datasets may be limited by its representativeness regarding 
the possible conditions encountered over the targeted surfaces, 
that is, combinations of geometrical configurations, type of veg-
etation and state, including variability in development stage, 
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stress level and type, and background (bare soil, understory) 
and its state (roughness, moisture). Measurement errors associ-
ated both to the variables of interest and to the reflectance values 
may also propagate to uncertainties and biases in the algorithm 
and should be explicitly accounted for (Fernandes and Leblanc 
2005; Huang et al. 2006). Further, since ground measurements 
have a footprint ranging from few meters to few decameters, 
specific sampling designs should be developed to represent the 
sensor pixel (Weiss et al. 2007). This task is obviously more dif-
ficult for medium and coarse resolution sensors (Camacho et al. 
2013; Morisette et al. 2006; Weiss et al. 2007). Radiative transfer 
models could be used efficiently to generate a calibration dataset 
covering a wide range of situations and configurations (Bacour 
et al. 2006; Banari et al. 1996; Baret and Guyot 1991; Baret et al. 
2007; Ganguly et al. 2012; Gobron et al. 2000; Huete et al. 1997; 
Myneni et al., 2002; Leprieur et al. 1994; Rondeaux et al. 1996; 
Sellers 1985; Verstraete and Pinty 1996).

2.3.2.1  Vegetation Index (VI)-Based Approaches

The simplest methods are based on the calibration of linear or 
polynomial multiple regression functions where the dependent 
variable is the biophysical variable of interest. The independent 
variables are either the top of canopy reflectance in few bands, or 
a transform and/or a combination of these reflectances resulting 
into a vegetation index (VI). VIs are designed to minimize the 
influence of confounding factors such as soil reflectance (Baret 
and Guyot 1991; Richardson and Wiegand 1977) or atmospheric 
effects (Huete and Lui 1994). The strong nonlinearity between 
reflectances and canopy variables is reduced using these reflec-
tance transforms or band combination allowing using linear sta-
tistical models. Based on these principles, operational algorithms 
developed for medium-resolution sensors are currently used: 
MGVI for MERIS further extended to other sensors (Gobron 
et al. 2008), MODIS back-up algorithm based on NDVI (Myneni 
et  al. 2002), and POLDER algorithm based on DVI computed 
from bidirectional reflectance factor (BRF) (Roujean and Lacaze 
2002). Nevertheless, although quite often effective, VIs are 
intrinsically limited by the empiricism of their design and the 
small number of bands concurrently used (generally 2–3).

2.3.2.2  Machine Learning Approaches

Alternatively, more sophisticated machine learning methods 
have been proposed since the beginning of the 1990s. Neural 
networks (NNTs) have been used intensively (Abuelgasim et al. 
1998; Atkinson and Tatnall 1997; Danson et al. 2003; Gong et al. 
1999; Kimes et al. 1998; Smith 1993). Baret et al. (1995) and Verger 
et  al. (2011a) demonstrated that NNTs used with individual 
bands were performing better than classical approaches based 
on VIs. Fang and Liang (2005) found that NNTs were perform-
ing similarly as the projection pursuit multiple regression. It was 
applied over MERIS (Bacour et  al. 2006) and VEGETATION 
(Baret et  al. 2007) kilometer spatial resolution data. The prin-
ciples have been also applied at decametric resolution over air-
borne POLDER (Weiss et al. 2002a), LANDSAT (Fang and Liang 
2003), CHRIS (Verger et al. 2011a), and FORMOSAT (Claverie 

et al. 2013) sensors. Although NNTs are becoming very popu-
lar, Verrelst et al. (2012) investigated alternative machine learn-
ing methods including support vector regression (SVM) and 
Gaussian process regression (GPR). They demonstrated the 
interest of GPR when the training was achieved over experimen-
tal datasets. However, when applied to a large number of simu-
lated cases, GPR is limited by the computation capacity (Mackay 
2003). Further, one advantage of the GPR is the possibility to 
get an estimation of the associated uncertainties when applied to 
experimental data. In the case of model simulations, the uncer-
tainties attached to the reflectance measurements need to be 
specified, which is not an easy task.

The training dataset is obviously a major component of the 
machine learning methods. It should represent the distributions 
and codistributions of the input canopy biophysical variables. This 
is where the prior information is mainly embedded in machine 
learning methods that can be considered as a Bayesian approach. 
The density of cases that populate the space of canopy realization 
may rapidly decrease as a function of its dimensionality defined 
by the number of required canopy variables. Experimental plans 
may be conveniently used to limit local sparseness of the train-
ing dataset (Bacour et al. 2002b). Machine learning systems can 
be also considered as smoothers. They thus mainly “interpolate” 
between cases in the training dataset. Extrapolation outside the 
definition domain (corresponding to the convex hull of the input 
reflectance of the training dataset) is likely to provide unrealistic 
estimates. Further, cases that are simulated but never observed 
may be discarded to get a more compact training dataset and effi-
cient learning process (Baret and Buis 2007). However, it requires 
compiling a large database of reflectance measurements that 
should be representative of all the possible situations available.

2.3.3 � Pros and Cons Associated to 
the Retrieval Approaches

The pros and cons of the several approaches just briefly reviewed 
are as follows:

•	 Computation requirements: Machine learning approaches, 
once calibrated, are obviously very little demanding in 
terms of computation. The inverse model is generally 
relatively simple and could be run very quickly. However, 
the calibration (or learning or training) process could 
require large computer resources, particularly for com-
plex parametric model with a significant number of coef-
ficients to be tuned and when the training dataset is large. 
The implementation of a LUT technique in algorithmic 
operational chains is very efficient, because the radia-
tive transfer model is run offline. Conversely, iterative 
minimization methods require large computer resources 
because of its iterative nature. Improvements are possible 
using a metamodel. Further, automatic segmentation or 
discretization of the reflectance space (Pinty et  al. 2011) 
will also reduce the number of inversions to be completed 
over a whole set of images.
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•	 Flexibility of the observational configuration: Iterative 
optimization methods allow retrieving canopy charac-
teristics from several observational configurations. It is 
even possible to invert radiative transfer models con-
currently over several pixels. This opens great potentials 
for exploiting additional temporal or spatial constraints 
as we will see later. LUT could theoretically cope with 
variable configurations at the expense of the dimension-
ality and thus the size of the tables, making them more 
difficult to manipulate. Conversely, machine learning 
methods require a fixed number of inputs. The char-
acteristics of the configuration need thus to be used as 
inputs of the inverse parametric model as illustrated in 
Figure 2.3 where the illumination and view directions 
are explicitly used. However, this increases the dimen-
sionality of the system, making the calibration step 
more demanding and more difficult. One alternative is 
to calibrate several parametric models for each individ-
ual configuration and then select the proper calibrated 
inverse model.

•	 Integration of prior information: The radiometric data–
driven approaches integrate the prior information 
directly in the cost function within the regularization 
term (see Equation 2.3). However, in the case of LUTs, 
it is also possible to restrict the simulations to the range 
of situations to be encountered as is done within the 
MODIS LAI and FAPAR algorithm that depends on the 

biome type considered (Shabanov et  al. 2005). For the 
machine learning approaches, prior information is intro-
duced through the distributions and codistributions of 
the inputs of the radiative transfer model: when LAI 
and FAPAR have to be estimated under situations where 
the type of canopies and their stage of development are 
known, it is more efficient to calibrate a specific inverse 
model for each individual situation. Note that Qu et al. 
(2008) proposed to use Bayesian networks where model 
simulations could be exploited along with a description 
of the distribution of the variables that may depend on 
growth stages or canopy types.

•	 Associated uncertainties: The radiometric data–driven 
approaches allow getting some estimates of the uncer-
tainties associated to the solution by propagating the 
uncertainties associated to the measurements and 
to the model using the partial derivatives of the cost 
function with regard to the measurements (Lauvernet 
2005). When using LUTs, uncertainties could be esti-
mated by Monte Carlo methods or approximated by 
the standard deviation of the ensemble of solutions 
defined by the uncertainties in the measurements 
(Knyazikhin et al. 1998). For machine learning meth-
ods, the error on the measurements may be assessed in 
different ways as proposed by Aires et al. (2004), which 
may also include the errors associated to the retrieval 
process itself. A more simple alternative solution is also 
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Figure 2.3  An example of an NNT used to estimate LAI from Sentinel2 top of canopy reflectance. “Norm” represents the normalization of the 
inputs or output (LAI). “S” and “L” represent tangent-sigmoid and linear transfer functions associated to each neuron. ϕ and θsθo represent, respec-
tively, the relative azimuth between sun and view directions, sun and view zenith angles. “R560” to “R2190” represent the top of canopy reflectance 
in the several Sentinel 2 bands. (From Baret, F. et al., S2PAD—Sentinel-2 MSI—Level 2B Products Algorithm Theoretical Basis Document, Vega, 
GmbH, Avignon, France, 2009.)
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proposed by Baret et  al. (2013) based on the training 
dataset. Although the estimation of uncertainties of 
the retrievals is possible, it is generally limited by the 
poor knowledge on the input uncertainties associated 
to the ref lectance measurements and radiative trans-
fer models used. Knyazikhin et  al. (1998) used a 20% 
relative uncertainty applied to MODIS top of canopy 
ref lectance for LAI and FAPAR retrieval. Baret et  al. 
(2007) proposes to use an additive uncertainty around 
0.05 and a multiplicative uncertainty around 3%. This 
example shows that the uncertainties attached to each 
band are poorly known. Further, the structure of the 
uncertainties may also play an important role and is 
unfortunately very difficult to describe.

•	 Robustness of the retrieval and quality assessment: A qual-
ity index needs to be associated to the retrieved values 
to inform about the status of the inversion process. For 
iterative optimization techniques, it could be the criteria 
used to the stop the iterations (Gilbert 2002). As a matter 
of fact, the algorithm may sometimes encounter numeri-
cal problems occurring generally with very small values 
of J. Conversely, no numerical problems are expected for 
LUT and machine learning approaches, and the quality 
index should mainly indicate whether the input reflec-
tances were inside the definition domain and if the out-
put solution is in the expected range of variation (Baret 
et al. 2013). The performances of the approach will both 
depend on the minimization algorithm itself and on the 
level of ill-posedness of the inverse problem as a function 
of measurement configuration and model and measure-
ment uncertainties.

2.4 �T heoretical Performances of 
Biophysical Variables Estimation

Several biophysical variables are potentially accessible as 
reviewed previously. However, depending on the assumptions 
on canopy structure and the observational configuration con-
sidered, the “apparent” values retrieved from remote sensing 
observations will be associated with contrasted performances. 
Further, several possible definitions for GAI and FAPAR need 
also to be discussed in terms of the associated uncertainties. 
The theoretical estimation performances were thus investi-
gated using a simple numerical experiment. The SLC radia-
tive transfer model (Verhoef and Bach 2007) coupled with the 
PROSPECT model (Jacquemoud and Baret 1990) was used to 
simulate the canopy reflectance in the Sentinel 2 (Malenovský 
et  al. 2012) bands for a large set of combination of canopy 
characteristics (Figure 2.5) covering the expected range of 
variation of each of the canopy, leaf, and soil input variables. 
The seven bands considered (560, 670, 705, 740, 865, 1610, and 
2190 nm) were chosen to sample the main absorption features 
of chlorophyll and water. The SLC model allows simulating 
leaf clumping at the plant scale: plants are randomly sown and 
are represented by ellipsoidal envelopes filled with randomly 

distributed leaves. The leaf clumping is mainly driven here by 
the crown fraction, that is, the fraction of ground area casted 
by the crowns in the vertical direction. Therefore, SLC allows 
also simulating turbid medium canopies when the crowns 
cover fully the background (crown cover = 1.0). Three typical 
sun positions and five view directions were considered. The 
black sky FAPAR (FAPARbs) and white sky FAPAR (FAPARws), 
the green fraction (GF) and the effective GAI, GAIeff were 
simulated in addition to the input GAI, GAItrue. The simulated 
dataset was used as a LUT to retrieve the five variables of inter-
est: FAPARbs, FAPARws, GF, GAIeff, and GAItrue. A subsample 
of the simulated cases was used as the test dataset. The corre-
sponding reflectances were contaminated with realistic mea-
surement uncertainties. The solution is finally selected as the 
case in the LUT that corresponds to the minimum of the cost 
function presented in Equation 2.2, where σ² is the variance of 
the reflectance of the test dataset computed from the measure-
ment uncertainties introduced. Note that no constraints or 
prior information was used in the cost function. The retrieval 
was achieved over turbid medium or clumped test cases using 
LUT based either on turbid medium or clumped canopy struc-
ture assumption. More details can be found in Kandasamy 
et al. (2010).

Results presented in Figure 2.4 show that GF and FAPARws 
are the best estimated variables. Further, the good perfor-
mances are relatively independent from the assumptions on 
canopy structure. The black sky, FAPARbs, is well estimated, 
with however a significant degradation of the retrieval perfor-
mances when the test cases correspond to clumped canopies. 
GAI values are much more difficult to estimate, particularly the 
actual GAItrue value for the clumped test cases. Conversely, the 
effective GAI, GAIeff, provides relatively stable performances 
independent from the assumptions on canopy structure. Note 
that the turbid medium test cases retrieved with a LUT made 
of clumped canopies provide poorer estimates as compared to 
those derived from the turbid medium LUT. Although turbid 
medium cases are included in the LUT made with clumped 
canopies, the degradation of performances is explained by 
the smaller number of turbid medium cases contained in the 
LUT populated with clumped canopies (less cases with crown 
cover close to 1.0). Further, possible ambiguities between turbid 
medium and clumped cases providing very similar reflectance 
values may be encountered. The variability of retrieval perfor-
mances depending on the observation configuration is larger 
for the FAPARbs and GAIeff and more particularly for GAItrue, 
in agreement with the overall performances associated to the 
retrieval of these variables.

This simple numerical experiment demonstrates that the 
retrieval of the true GAI from monodirectional reflectance 
measurements is likely to be relatively inaccurate, particularly 
in the case of clumped canopies. The use of a clumped canopy 
model in the inversion process does not help the retrieval: more 
constraints or prior information is needed to compensate for 
the additional unknown variables required to describe canopy 
clumping as discussed in  Section 2.5.
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2.5 � Mitigating the Underdetermined 
and Ill-Posed Nature of 
the Inverse Problem

2.5.1 � Underdetermination and Ill-Posedness 
of the Inverse Problem

Canopy reflectance models will depend on a set of input vari-
ables characterizing the several components: soil, leaf, and can-
opy structure (Figure 2.5). Several models have been proposed 
to describe the soil reflectance. They are either physically based 

ones mostly focusing on the bidirectional variability of the 
reflectance (Cierniewski et  al. 2002; Hapke 1981; Jacquemoud 
et al. 1992; Liang and Townshend 1996) or more empirical ones 
describing the spectral variability (Bach and Mauser 1994; Liu 
et al. 2002; Price 1990). At least six parameters are required to 
describe both the directional and spectral variation of soil prop-
erties. Leaf reflectance and transmittance may be simulated 
from the knowledge of its composition in the main absorbers 
(chlorophyll, water, and dry matter), the mesophyll structure, 
and the surface features (Dawson et al. 1998; Jacquemoud and 
Baret 1990; Jacquemoud et  al. 2009). At least four parameters 
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are required here. The simplest description of canopy structure 
could be achieved with two parameters: GAI and the orienta-
tion of the leaves. Therefore, the whole spectral and directional 
reflectance field of the canopy could be simulated with at least 12 
parameters that are mainly unknown and should be estimated 
through radiative transfer model inversion. This needs to be 
solved with at least the same amount of independent reflectance 
measurements provided by the observational configuration, that 
is, combination of bands and view or illumination conditions.

The actual dimensionality of remote sensing measurements 
has been evaluated in different ways, generally by considering 
independently the spectral and directional dimensions. Several 
studies report that the bidirectional reflectance distribution 
function could be decomposed using empirical or semiem-
pirical orthogonal functions with generally 2–4 kernels (Bréon 
et al. 2002; Lucht 1998; Weiss et al. 2002b; Zhang et al. 2002a,b). 
Other studies report a high level redundancy between bands 
(Green and Boardman 2001; Liu et  al. 2002; Price 1990, 1994; 
Thenkabail et al. 2004) with a dimensionality varying between 5 
and 60 depending on the data considered and the method used 
to quantify the dimensionality. More recently, Laurent et  al. 
(2011) found a dimensionality of 3–4 using a singular decompo-
sition method applied to CHRIS images having a high spectral 
resolution and several view directions. This finding confirmed 
those of Settle (2004) and Simic and Chen (2008) showing a high 
degree of redundancy between bands and directions. It is there-
fore clear that in most situations, the radiative transfer model 
inversion is an underdetermined problem, since the number 
of unknown variables to be estimated is larger than the actual 
dimensionality of the observations.

Because of its under-determination and uncertainties 
attached to models and measurements, the inverse problem 
is generally ill-posed: the solution is not unique and does not 
depend continuously on the observations (Garabedian 1964). In 
these conditions, very similar reflectance spectra simulated by 
a radiative transfer model (Figure 2.2, left) may correspond to 
a wide range of solutions. This may be due to two main factors:

•	 Lack of sensitivity of canopy reflectance to a given vari-
able: This is the case for large GAI values because of the 
well-known saturation problem: a small variation in the 
measurements may correspond to a very large variation in 
the retrieved GAI value. Under the same high GAI condi-
tions, the retrieved soil reflectance will be very poor, since 
the measured reflectance will be no more sensitive to soil 
background reflectance.

•	 Compensation between variables: This is obviously the case 
when some variables appear combined together always the 
same way in the model, such as in the form of a product: 
it is thus impossible to estimate separately each variable 
in this situation. However, this is also observed for other 
variables that are not formally appearing as products in 
the model as reported by several authors (Baret and Buis 
2007; Baret et al. 1999; Shoshany 1991; Teillet et al. 1997; 
Weiss et al. 2000).

The ill-posedness of radiative transfer model inversion should 
be mitigated by exploiting additional information (Baret et al. 
2000; Combal et  al. 2001; Myneni et al., 2002). This could be 
achieved both by using prior information on the distribution of 
the variables, and by exploiting some constraints on the vari-
ables. Further, reducing the model uncertainties when possible 
by a proper selection of the radiative transfer model will also 
improve the accuracy of the retrieval. These issues will be inves-
tigated separately in the following sections.

2.5.2  Reducing Model Uncertainties

The realism of the radiative transfer model impacts largely the 
retrieval performances. The model should be physically sound 
and the embedded assumptions on canopy architecture and 
leaf and soil optical properties should be consistent with the 
actual canopy considered. The soil is relatively well described 
mainly by empirical models as reviewed in a previous section. 
The leaf optical properties are also quite well described by the 
PROPSECT (Jacquemoud et  al. 2009) or LIBERTY (Dawson 
et al. 1998; Moorthy et al. 2008) models, at least if the directional 
effects are not considered (Comar et al. 2014). The canopy archi-
tecture is therefore recognized as the main limiting factor in the 
modeling of vegetation reflectance. To account for particular 
architectural features of a given canopy, prior knowledge on the 
type of vegetation viewed is therefore mandatory. Depending on 
the spatial resolution of the observation and the heterogeneity of 
the scene, this information is not always accessible. Observations 
at kilometric spatial resolution are often corresponding to a mix 
of different vegetation types, making the use of specific radiative 
transfer models challenging. Conversely, at decametric spatial 
resolution, pixels are more likely to be “pure” and the type of 
vegetation may be more easily identified. In these conditions, 
the inversion using a radiative transfer model for which the 
architecture is described in a more realistic way will reduce the 
error associated to the radiative transfer model and contribute to 
improve the retrieval performances. Lopez-Lozano (2008) com-
pared the inversion of a turbid medium reflectance model where 
leaves are assumed randomly distributed within the canopy 
volume and of infinitesimal size to that of a 3D model adapted 
to maize and vineyard crops (Figure 2.6). The results showed 
clearly that GAI estimation improved a lot with a 3D descrip-
tion of canopy architecture for the vineyard case, where the 
turbid medium assumption is very far from reality as compared 
to the maize case. The estimated GAI using a turbid medium 
shows a systematic underestimation due to the leaf clumping: 
when the assumptions on canopy architecture are not verified 
by the canopy observed, the retrieved GAI value will be termed 
“apparent.” This apparent GAI value is the one, which is acces-
sible from the remote sensing measurements and the interpreta-
tion pipeline. It will thus depend on the inverse technique and 
on the radiative transfer model used. In addition, the apparent 
value may also strongly depend on the observational configura-
tion used, as in the case of the vineyard canopy where the row 
orientation has to be accounted for. Using more realistic canopy 
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architecture implies more variables to describe the vertical and 
horizontal distributions of the green area density. The gain in 
realism obtained at the expense of additional unknown canopy 
variables should be counterbalanced by prior information on the 
distribution of these additional canopy structure variables.

2.5.3  Using Prior Information

The prior information characterizes the knowledge available on 
the distribution and codistribution of the input variables of the 
radiative transfer models. It is used directly in machine learn-
ing approaches to generate a calibration dataset that reflects this 
knowledge. For LUTs and iterative optimization methods, prior 
information is introduced in the cost function through a regu-
larization term:

	

J R R W R Rt= − ⋅ ⋅ −−( ) ( )ˆ ˆ1

Radiometric information
� ���������� ����������� � ���������� ����+ − ⋅ ⋅ −−( ) ( )V V C V Vtˆ ˆ

p p

Prior information

1

������� 	 (2.3)

where
V̂  and Vp are, respectively, the vectors of the estimated and 

prior values of the input biophysical variables
C is the covariance matrix characterizing the prior 

information

Note that the first part of this equation corresponds to 
Equation  2.1. The second part of Equation 2.3 corresponds to 
the distance between the values of the estimated variables and 

those of the prior information. The theory behind this equa-
tion derives from Bayes’ theorem (Bayes and Price 1763) that 
was extensively used in parameter estimation (Tarantola 2005). 
However, if the theory is well known, it is not yet largely used in 
the community (Combal et al. 2002; Lauvernet et al. 2008; Lewis 
et al. 2012; Pinty et al. 2011).

Implementing the cost function as expressed by Equation 2.3 
requires some reasonable estimates of covariance matrices 
W and C as well as of the prior values Vp. The terms of W should 
reflect both measurement and radiative transfer model uncer-
tainties. While some rough estimates of the measurement uncer-
tainties could be derived from the sensor specification, model 
uncertainties are far more difficult to estimate. Further, they 
may depend significantly on the situation considered, such as 
low or high vegetation amount and the discrepancy between the 
canopy structure description embedded in the radiative transfer 
model and that of the observed canopy. It is even more difficult 
to estimate the covariance terms in W: measurement and model 
uncertainties may have important structure that translates into 
high covariance terms that are however very poorly known. 
When using simultaneously a large number of configurations as 
in the case of hyperspectral observations, these covariance terms 
will allow weighing properly the several configurations used. It 
thus accounts for the large redundancy exhibited between spec-
tral bands. The difficulty to estimate the covariance terms in W 
explains why a small number of configurations are often selected 
when a larger number is available as in the case of hyperspec-
tral and/or multidirectional observations. Thus, the reduction of 
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the dimensionality of the input observations is highly desired in 
most retrieval problems (Tenenbaum et al. 2000). For machine 
learning methods, a reduced dimensionality is also beneficial, 
since the number of coefficients of the inverse parametric model 
will grow with the number of observations used as inputs, mak-
ing the calibration process more difficult and instable.

Introducing prior information in the inversion process 
improves the precision by reducing the variability of the pos-
terior distribution of the estimated variables. However, this is 
achieved at the expense of accuracy: the solution is biased toward 
the prior information value as observed in Figure 2.7.

2.5.4  Using Additional Constraints

2.5.4.1 T emporal Constraints

The dynamics of canopy structure and leaf optical properties 
results from incremental processes under the control of climate, 
soil, and the genetic characteristics of the plants. Very brutal and 
chaotic time courses are therefore not expected, at the excep-
tion of accidents such as fire, flooding, harvesting, or lodging. 
The smooth character of the dynamics of canopy variables may 
be exploited as additional constraints in the retrieval process as 
proposed by Lewis et al. (2012). The use of models describing the 
time course of some of the variables was proposed by Kötz et al. 
(2005) to improve remote sensing estimates of GAI in maize 
crops: results show a significant improvement of estimates, par-
ticularly for the larger GAI values where saturation of reflec-
tance is known to be a problem. The semi-empirical nature of the 

model with parameters having some biological meaning, allows 
to accumulate prior information on them for efficient exploita-
tion. However, the results show that the improvement in GAI 
retrieval is mainly coming from the “smoothing” effect of the 
model: fitting the GAI dynamics model over the instantaneous 
estimates corresponding to each individual date of observation 
provides similar performances (Kötz et al. 2005). This explains 
why compositing techniques applied to kilometric resolution 
observations are very popular: very little prior information is 
available on the dynamics of the surface except the expected 
smoothness of the temporal profiles (Atkinson et al. 2012; Chen 
et al. 2004; Kandasamy et al. 2013; Lewis et al. 2012; Refslund 
et  al. 2013; Verbesselt et  al. 2010b; Zhu et  al. 2013). The usual 
sigmoidal shape of vegetation growth and senescence curves 
(Jönsson and Eklundh 2004; Zhang et al. 2003), and the possible 
use of the climatology, (Samain et al. 2007; Verger et al. 2012a) 
have been also exploited.

2.5.4.2  Spatial Constraints

Most of the algorithms are currently applied to independent pix-
els, neglecting the possible use of spatial structures as observed 
on most images. However, some authors attempted to exploit 
these very obvious patterns at high spatial resolution. The “object 
retrieval” approach proposed by Atzberger (2004) is based on 
the use of covariance between variables as observed over a lim-
ited cluster of pixels representing the same class of object such 
as an agricultural field. Results show significant improvement 
of the retrieval performances for GAI, chlorophyll and water 
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contents, presumably because of a better handling of compensa-
tions between GAI and leaf inclination in the retrieval process 
as suggested by Atzberger (2004). The principles were further 
extended using simple heuristics that could apply at the field 
scale for agriculture applications (Atzberger and Richter 2012). 
This implies that objects, sometimes called “patches,” are first 
identified, which is now becoming a very common approach in 
remote sensing image segmentation techniques (Blaschke 2010; 
Peña-Barragán et al. 2011; Vieira et al. 2012). The objects need 
then to be classified to exploit some features shared by the pixels 
of a single patch.

2.5.4.3 � Holistic Retrieval over Coupled Models: 
From Inversion to Assimilation

Retrieval of characteristics of some element of the system with-
out solving the whole system at once will be suboptimal: each 
element of the system imposes constraints on other elements 
through the radiative transfer physical processes, temporal or 
spatial constraints as seen previously. This is clearly demon-
strated in the case of the radiative coupling between the leaves 
and the canopy: when estimating structural canopy character-
istics from bottom of the atmosphere reflectance measurements 
in several bands and directions, the inversion process may be 
split into several parallel and independent inversions for each 
band. The leaf characteristics, that is, reflectance and transmit-
tance, sometimes grouped into the single scattering albedo, 
need to be estimated (Pinty and Verstraete 1991b) for each of 
the bands considered. This may lead to inconsistent estimates of 
the structure characteristics derived from the inversion applied 
independently on each band. Further, it may lead to spectrally 
inconsistent leaf optical properties estimates, since no spectral 
constraints coming from a leaf optical properties model are 
imposed. Solving the whole system at once using coupled leaf 
and canopy radiative transfer models will therefore improve 
the consistency of the estimates by imposing the spectral con-
straints coming from the leaf radiative transfer model. The inter-
est of such holistic approach was recently highlighted by Laurent 
et al. (2011) when using coupled canopy and atmosphere radia-
tive transfer models.

Lauvernet et  al. (2008) proposed a “multitemporal patch” 
inversion scheme to account both for spatial and temporal 
constraints. Reflectance data are here considered observed 
from the top of the atmosphere. Atmosphere/canopy/leaf/soil 
radiative transfer models are thus coupled to simulate top of 
the atmosphere reflectance from the set of input variables of 
each submodel. Spatial and temporal constraints are based on 
the assumption that the atmosphere is stable over a limited 
area (typically few kilometers) but varies from date to date, 
and that surface characteristics vary only marginally over a 
limited temporal window (typically ± 7 days) but may strongly 
change from pixel to pixel (Hagolle et al. 2008). This has obvi-
ously important consequences on the underdetermined nature 
of the inverse problem, since atmospheric characteristics will 
be shared between the pixels of a patch, while vegetation char-
acteristics will be shared during a limited time period. Results 

demonstrate the interest of the approach for the estimation of 
most of the variables, particularly for the aerosol characteristics 
and for canopy characteristics such as GAI.

However, the improvement of retrieval performances based 
on such holistic approach is gained at the expense of additional 
complexity in terms of the number of unknown variables to be 
estimated and of the computational resources required to run 
the coupled models. Machine learning approaches may reach 
their limits in such conditions. Iterative optimization efficiently 
implemented using the adjoint model (Lauvernet et  al. 2008; 
Lewis et  al. 2012; Voßbeck et  al. 2010) provides a convenient 
solution. This could be used ultimately to couple the radiative 
transfer model to a functional-structural plant model as pro-
posed by Weiss et al. (2001). However, considerable efforts are 
still needed to describe the dynamics of the canopy structure 
consistently with both the radiative transfer modeling and with 
the canopy functioning.

2.6 �C ombination of Methods and 
Sensors to Improve the Retrievals

2.6.1  Hybrid Methods and Ensemble Products

Verger et  al. (2008) demonstrated that NNTs could be used 
efficiently to replace the actual MODIS algorithm (Shabanov 
et  al. 2005) that is based on a LUT method: NNTs were cali-
brated over an empirical training dataset containing the MODIS 
top of canopy BRF values and the corresponding MODIS LAI 
products. This approach is therefore different from calibrat-
ing a machine learning algorithm directly on radiative transfer 
model simulations as done by Bacour et al. (2006) or Baret et al. 
(2007). It is termed hybrid, because a canopy biophysical-driven 
method is calibrated over the outputs of a radiometric data–
driven approach. This principle was later used to relate the long 
time series of AVHRR NDVI VI (Tucker et al. 2005) to LAI and 
FAPAR MODIS products during an overlapping period between 
both sensors (2000–2009) (Zhu et al. 2013).

With the compilation of results derived from several initia-
tives dedicated to the validation of global remote sensing prod-
ucts, the performances of products started to be quantified in 
a more representative way (Garrigues et al. 2008). This allowed 
to select the more consistent available products and to eventu-
ally combine them and propose a new “ensemble” product that 
capitalizes over past development efforts (Figure 2.8): a train-
ing dataset is first built that contains a globally representative 
sample of MODIS and CYCLOPES products along with reflec-
tance as measured by a sensor from which the “ensemble” prod-
uct is generated (Baret et al. 2013; Verger et al. 2014; Xiao et al. 
2014). The original biophysical products in the training database 
need to share the same spatial and temporal support to be con-
sistently combined. This is achieved by applying interpolation 
methods that will further smooth possible spatial or temporal 
discrepancies. A weighed average of the original products is then 
computed to get the fused products (Figure 2.8). The weights are 
derived from the results of the validation of the original products 
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using either the associated uncertainties (Xiao et  al. 2014) or 
heuristic arguments (Baret et al. 2013). The fused products and 
the corresponding reflectance values are then used to calibrate 
a machine learning algorithm. The calibrated machine learn-
ing algorithm is finally used to transform the reflectance values 
into the corresponding “ensemble” product (Figure 2.8). In the 
case of GEOV1 (Baret et al. 2013), the transformation is applied 
using a backpropagation NNT over each individual observation 
to get instantaneous fused LAI and FAPAR values. A smoothing 
and gap-filling algorithm is then applied over the time series of 
fused products (Verger et al. 2011b). In the case of GLASS prod-
ucts (Xiao et al. 2014), a whole year of reflectance observations 
in the red and near-infrared is used to get the corresponding 
yearly time series of LAI products using a generalized regression 
NNT (Specht 1991). Results show that these ensemble products 
are generally overperforming the original products (Camacho 
et al. 2013; Fang et al. 2013; Xiao et al. 2014).

2.6.2 �C ombining Sensors to Build Long, 
Dense, and Consistent Time Series

Monitoring the dynamics at the seasonal or multiannual scale 
allows to better characterize the canopy functioning including 
the phenology (Ganguly et al. 2010; Jönsson and Eklundh 2004) 
and detect anomalies (Bessemoulin et al. 2004; Ciais et al. 2005), 
breaks (Verbesselt et al. 2010a) or trends (Alcaraz-Segura et al. 
2010; de Jong et al. 2012; Fensholt et al. 2012; Herrmann et al. 
2005) across long time series of consistent observations. The 
revisit frequency, consistency, and length of the period when 
observations are accumulated are the main limiting factors 
when exploiting the time series. For global scale applications, 

observations are currently provided by kilometric spatial resolu-
tion sensors on polar orbit (Figure 2.10). They have a relatively 
large swath allowing to map the whole Earth within 1 day. 
However, this potential daily observation frequency is reduced 
because of the cloud occurrence. The combination of observa-
tions by different sensors will provide only marginal gain in 
terms of the number of cloud-free dates of observations because 
of the strong spatiotemporal correlation of the distribution of 
clouds: Yang et al. (2006) reported no improvement when com-
bining MODIS products derived from AQUA and TERRA. 
However, Hagolle et al. (2005) reported an improvement of both 
the completeness and the precision of top of canopy reflectance 
when compositing the two VEGETATION instruments as com-
pared to the use of a single one. Similarly, Verger et al. (2011b) 
fused MODIS and VEGETATION data, which resulted both in 
a significant reduction of the fraction of missing products as 
well as an improvement of the accuracy and precision of LAI 
estimates. These contrasting results are explained by the very 
different compositing algorithms used in these studies, high-
lighting the importance of the compositing process that mainly 
consists in smoothing and eventually gap-filling the time series 
(Kandasamy et al. 2013).

The interest of fusing the data coming from several sensors 
is obvious when considering the decametric spatial resolution 
observations for which several days are needed to map the whole 
Earth. However, except in the case of the RapidEye and DMC 
constellation of satellites (Röser et al. 2005), very little attention 
has been carried out on the fusion between different decametric 
resolution satellites. Although the satellites currently orbiting 
provide great potentials for seasonal monitoring of the vegetation 
at decametric spatial resolution, this has not yet been exploited 
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Figure 2.8  Principle of the GEOV1 (Baret et  al. 2013), GEOV2 (Verger et  al. 2014), and GLASS (Xiao et  al. 2014) algorithms to generate 
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because of the difficulty and cost associated to the images of these 
sensors that are used commercially. However, the development of 
the fusion between different decametric satellites does not pose 
great technical difficulties as illustrated by Figure 2.9: a very good 
temporal consistency of estimates derived from different sensors 
using the same algorithm is generally observed. This confirms 
the results of Verger et al. (2008) and Gobron et al. (2008) who 
demonstrated that applying a single algorithm to different sen-
sors provides generally consistent products if the differences in 
observational configurations are carefully accounted for.

The fusion between decametric resolution images and daily 
kilometric resolution data is very appealing, because it poten-
tially provides daily decametric products. However, this com-
bination has been rarely investigated for deriving decametric 
dynamics of biophysical variables. It has mainly been applied for 
classification (Karkee et  al. 2009), for reflectances (Faivre and 
Fischer 1997), including pan-sharpening (Fasbender et al. 2008), 
and for vegetation indices (Cardot et al. 2008; Gao et al. 2006). 
More studies should be directed toward the development of the 
fusion between biophysical variables obtained from decametric 
and kilometric spatial resolution sensors.

The succession of several kilometric sensors allows building 
long time series of global observations since 1981 (Figure 2.10). 
However, the consistency between the several sensors used to 
build the time series has to be very high in order to identify 
possible trends that may be very small (Beck et  al. 2011). This 
is currently achieved by applying a single algorithm to the suc-
cession of sensors available. Zhu et  al. (2013) transformed the 
long time series of NDVI derived from the several AVHRR sen-
sors (Figure 2.10) into LAI and FAPAR by calibrating an NNT 
on MODIS products during and overlapping period between 

AVHRR and MODIS. The consistency and the compositing are 
here achieved at the NDVI level, based on the GIMMS products 
(Tucker et al. 2005). Verger et al. (2012b) built also a long time 
series of observations based on AVHRR up to 2000, and then, 
using VEGETATION data. The input reflectance values were 
carefully processed according to Nagol et al. (2009). Then, NNTs 
were calibrated over an overlapping period among AVHRR, 
VEGETATION, and MODIS. The LAI and FAPAR products 
from MODIS and VEGETATION were fused to be used as target 
products. Finally, a compositing algorithm was applied to elimi-
nate outliers, smooth out the resulting data and fill possible gaps 
(Verger et al. 2012a).

2.7 C onclusion

This review of retrieval techniques for canopy biophysical vari-
ables shows that great advancement in the maturity of the algo-
rithms has been achieved in  recent years. Several products were 
released to the wider community, mainly derived from kilomet-
ric resolution sensors as illustrated by Table 2.2. The multiplicity 
of products allows building enough confidence from the con-
sistency observed between some of them as well as in ground 
measurements. The validation exercise is therefore mandatory 
to identify possible problems, improve the products, and finally 
quantify the associated uncertainties. The root mean square 
error (RMSE) values associated to FAPAR are in the order of 
0.10–0.15 in absolute value (Weiss et al. 2014), while LAI is esti-
mated within an RMSE slightly smaller than 1.0. However, the 
currently limited number of available ground measurements at 
the kilometric resolution limits the evaluation of the accuracy of 
remote sensing products (Garrigues et al. 2008).
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Table 2.2  Several LAI and FAPAR Global Products Currently Available

Products Sensors LAI FAPAR Spatial Resolution Time Sampling (days) Time Period Reference 

MODIS C5 MODIS ✓ ✓ 1 km 8 2000 Myneni et al. (2002)
CYCLOPES V3 VEGETATION ✓ ✓ 0.009° 10 1999–2007 Baret et al. (2007)
GLOBCARBON VEGETATION ✓ ✓ 0.009° 30 1999–2007 Deng et al. (2006)
JRC-FAPAR SEAWIFS ✓ 2 km 1 1997–2006 Gobron et al. (2006)
JRC-TIP MODIS ✓ ✓ 0.01° 16 2000 Pinty et al. (2010)
GIMMS_3g AVHRR ✓ ✓ 8 km 30 1981–2013 Ganguly et al. (2010)
GLASS MODIS/AVHRR ✓ ✓ 1 km 10 1981–2014 Xiao et al. (2012)
GEOV1_VEG VEGETATION ✓ ✓ 0.009° 10 1999 Baret et al. (2012)
GEOV2_VEG VEGETATION ✓ ✓ 0.009° 10 1999 Verger et al. (2014)
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Figure 2.11  A global map of GEOV1 FAPAR product for September 5, 2003.
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When very few information or constraints are available as it 
is the case for the kilometric resolution observations, the vari-
ables that are the better estimated are the GF and the black and 
white sky FAPAR or FIPAR ones. Conversely, the “apparent” 
LAI derived from the reflectance observations is more closely 
linked with the effective GAI, GAIeff, while the true LAI is 
poorly estimated with uncertainties that are dependent on the 
observational configuration. This finding should be much bet-
ter reflected to the users of current LAI products derived from 
remote sensing, although some attempts were proposed to cor-
rect for this effect (Xiao et al. 2012). However, focusing on the 
GF variable will allow reaching more easily a better consistency 
with the canopy functioning models that have their own specific 
description of the canopy architecture.

Two main types of canopy biophysical variables retrieval 
approaches were identified. Canopy biophysical variable–
driven approaches when trained over empirical datasets with 
ground measurements of the canopy variables defined in 
a consistent way with the variables accessible from remote 
sensing observations would be ideal: they implicitly integrate 
the measurement uncertainties, while no model uncertain-
ties have to be included, since no radiative transfer model is 
used. Further, machine learning approaches are very com-
puter efficient once trained, allowing easy implementation 
within operational processing chains. However, because of 
the difficulty of getting a representative sampling of cases to 
populate the training dataset, training over a database made 
of radiative transfer model simulations is often preferred. 
The radiative transfer models need to be well adapted to the 
type of canopy they target. Unfortunately, using a more real-
istic description of the canopy architecture requiring more 
variables may create problems in the inversion process if no 
additional prior information or constraints are exploited. 
Radiometric data–driven approaches such as iterative mini-
mization appear to be very appealing to handle a wide range of 
constraints and prior information that may be available at the 
decametric resolution. This may ultimately lead to the assim-
ilation of calibrated radiances into structural–functional 
vegetation models coupled with atmospheric models that is 
currently in the infancy stage of development. The expected 
increasing accessibility of frequent decametric observations 
will certainly push investigations in such a direction, exploit-
ing explicitly the whole set of available information and 
knowledge on physical and biological processes.
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Acronyms and Definitions

AGB	 Aboveground biomass
ASTER	� Advanced spaceborne thermal emission and 

reflection radiometer
AVHRR	 Advanced very-high-resolution radiometer
AVIRIS	� NASA’s airborne visible/infrared imaging 

spectrometer
BEF	� Bartlett experimental forest (BEF) in central 

new Hampshire (USA)
CC	 Canopy cover
DBH	 Crown diameter at breast height
DGVI	� First/second derivative of red edge normalized 

to 626–795 nm baseline
DWEL	 Dual-wavelength Echidna® LiDAR
ETM	 Enhanced thematic mapper
EVI	 Echidna® validation instrument
GLAS/ICESat	� Geoscience laser altimeter system (GLAS), on 

board the ice, cloud, and land elevation satellite 
(ICESat)

LVIS	 Land vegetation and ice sensor
MCH	� Mean canopy vertical height profiles, the dis-

tance from ground (digital terrain models) to 
the approximate centroid of the tree crowns

MODIS	� Moderate-resolution imaging spectroradiometer
NDVI	 Normalized difference of vegetation index
NDWI	 Normalized different of water index
NIR	 Near infrared
PALSAR	� Phased array-type L-band synthetic aperture 

radar
QSCAT	 Quick scatterometer
RH25	� Relative height (RH) to the ground elevation at 

which 25% of the accumulated full-waveform 
energy occurs

RH50	� Relative height (RH) to the ground elevation at 
which 50% of the accumulated full-waveform 
energy occurs

RH75	� Relative height (RH) to the ground elevation at 
which 75% of the accumulated full-waveform 
energy occurs
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RH100	� Relative height (RH) to the ground elevation at 
which 100% of the accumulated full-waveform 
energy occurs

SIR-C/X-SAR	� Spaceborne imaging radar-C/X-band synthetic 
aperture radar

SLICER	� Scanning LiDAR imager of canopies by echo 
recovery

SPOT HRV	� Le Système Pour l’Observation de la Terre high 
resolution visible

SRTM	 Shuttle radar topography mission
TIR	 Thermal infrared

3.1 I ntroduction

Recent global observation systems provide measurements of hor-
izontal and vertical vegetation structures of ecosystems, which 
will be critical for estimating global carbon storage and assessing 
ecosystem response to climate change and natural and anthro-
pogenic disturbances. Remote sensing overcomes the limitations 
associated with sparse field surveys; it has been used extensively 
as a basis for inferring forest structure and aboveground biomass 
(AGB) over large areas. This chapter summarizes recent progress 
on the AGB estimate using remote sensing technology includ-
ing strength and weakness of using optical passive, radar, and 
LiDAR remote sensing and fusion of multisensor for the AGB 
estimates. It lays out the potential of remote sensing in the AGB 
and carbon storage estimates at large scales for meeting the 
requirements under the United Nations Framework Convention 
on Climate Change (UNFCCC) for measuring, reporting, and 
verification. The purpose of this chapter is to review recent prog-
ress on the AGB estimates using remote sensing data.

3.1.1 �I mportance of the Terrestrial Ecosystem 
Carbon and Carbon Change Estimates

Vegetation biomass is a crucial ecological variable for under-
standing the evolution and potential future changes of the cli-
mate system. Global carbon stored in vegetation is comparable 
in size to atmospheric carbon and plays an important role in 
the global carbon cycle (Houghton 2005). Changes of forest bio-
mass in time can be used as an essential climate variable (ECV), 
because it is a direct measure of sequestration or release of car-
bon between terrestrial ecosystems and the atmosphere. During 
productive seasons, forests take up carbon dioxide (CO2) from 
the atmosphere and store it as plant biomass, while they release 
CO2 to the atmosphere during deforestation, decomposition, and 
biomass burning. Changes in the amount of vegetation biomass 
due to deforestation significantly affect the global atmosphere by 
acting as a net source of carbon. The Global Climate Observing 
System (GCOS) recognizes the AGB and associated carbon 
stocks of the world’s forests as an ECV (Hollman et al. 2013).

However, the terrestrial carbon cycle is the most uncertain 
component of the global carbon cycle (Heimann and Reichstein 
2008). Large uncertainties in terrestrial carbon cycle arise from 
inadequate data on the current state of the land surface vegetation 

structure and the carbon density of forests. Consequently, there 
is an urgent need for improved datasets that characterize the 
global distribution of AGB, especially in the tropics. Therefore, 
a global assessment of biomass and its dynamics is an essential 
input to climate change prognostic models and mitigation and 
adaptation strategies.

3.1.2 �I mportance of Tropical Rain 
Forests in Carbon Storage

Tropical forests are disappearing rapidly due to land conversion, 
selective cutting, and fires. The single biggest direct cause of 
tropical forest loss is due to conversion of forests to cropland and 
pasture. Humans harvest timber for construction and fuel, and 
wildfires pose a big threat to Amazon forests. The tropics exhibit 
a rising trend of forest loss, increasing by 2101 km2/year, half of 
which occurred in South American rain forests (Hansen et al. 
2013), with the recent report of reduced rate of forest loss from 
high of over 40,000 km2/year in 2003–2004 and a low of under 
20,000 km2/year in 2010–2011 in central America. However, this 
decreasing rate of loss was counterbalanced by increased forest 
loss from other tropical forest regions (Figure 3.1).

Land use, land-use change, and forestry sector is the second-
largest source of anthropogenic greenhouse gas (GHG) emis-
sions, dominated by tropical deforestation (Canadell et al. 2007). 
The loss of Amazon forest releases huge carbon to the atmo-
sphere. Tropical deforestation contributes about one-eighth to 
one-fifth of total anthropogenic CO2 emissions to the atmo-
sphere (Houghton 2005, 2007, Houghton et al. 2012). However, 
the magnitude of these emissions has remained poorly con-
strained. Emissions from land-use change remains as one of the 
most uncertain components of the global carbon cycle. Global 
carbon emission estimates using different approaches and the 
uncertainties associated with each approach range from 10% 
to 34% (Houghton et al. 2012). A recent estimate of gross car-
bon emissions across tropical regions between 2000 and 2005 
was 0.81 petagram of carbon per year (PgC/year) (Harris et al. 
2012), which was only 25%–50% of recently published estimates 
(FAO 2010, Pan et al. 2011, Baccini et al. 2012). Huge discrepancy 
exists in the carbon emission estimates.

The lack of reliable estimates of forest carbon storage and rates 
of deforestation and forestation result in the uncertainties of terres-
trial carbon emission estimates (Houghton 2005, Houghton et al. 
2009, 2012). Estimates of the biomass storage disagree with biomass 
obtained from large-scale wood-volume inventories (Houghton 
et al. 2001). Large uncertainties in the carbon stock estimates con-
tribute to the broad range of possible emissions of carbon from 
tropical deforestation and degradation (Houghton 2005).

Reducing emissions from deforestation and forest degrada-
tion (REDD) in developing countries launched by the UNFCCC 
provides positive incentives to individuals, communities, proj-
ects, and government agencies, in developing countries to reduce 
GHG emissions from forests through monetary compensation. 
REDD was extended as REDD+ to include conservation, sus-
tainable management of forests, and the enhancement of forest 
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carbon stocks. As a mechanism under the multilateral climate 
change agreement, REDD+ is a vehicle to financially reward 
developing countries for their verified efforts to reduce emis-
sions and enhance removals of GHGs through a variety of forest 
management options.

Efforts to mitigate climate change through REDD depend on 
mapping and monitoring of tropical forest carbon stocks and 
emissions over large geographic areas. There are many chal-
lenges to making REDD work, and mapping forest carbon stocks 
and emissions at the high resolution demanded by investors 
and monitoring agencies remains a technical barrier. Foremost 
among the challenges is quantifying nations’ carbon emissions 
from deforestation and forest degradation, which requires infor-
mation on forest clearing and carbon storage.

3.1.3 � Summary of Methods Used to Estimate 
Terrestrial Biomass and Carbon Stocks

Vegetation AGB is defined as the mass per unit area (Mg/ha) of 
live or dead plant organic matter. Forest biomass consists of AGB 
and below-ground biomass. AGB represents all living biomass 
above the soil including stem, stump, branches, bark, seeds, and 
foliage, while below-ground biomass consists of all living roots 
excluding fine roots (less than 2 mm in diameter) (FAO 2010). 
Because AGB is relatively easy to measure and it accounts for the 
majority of the total accumulated biomass in forest ecosystem, 
AGB is usually estimated in many studies as to forest biomass. 
At the level of individual plants and forest stand levels, aboveg-
round and belowground biomass are different, but share strik-
ingly similar scaling exponents (Figure 3.2) (Cheng and Niklas 
2007). Below-ground biomass is often estimated based on AGB. 
This review mainly focuses on AGB estimates.

Biomass estimate methods range from simple to more com-
plex methods. The biome-averaged method is to estimate the 
biome-averaged AGB first, and the spatial distribution of bio-
mass is mapped based on biome type. A more complex method is 
to develop species- and site-specific allometric models depend-
ing on bole diameter at breast height (DBH; cm) or diameter and 
tree height. The plot estimates of national forest inventories are 
commonly aggregated to represent forest biomass at national 
or regional scales (Brown et al. 1989, Jenkins 2003, Gibbs et al. 
2007, Goetz et al. 2009).

3.1.4 � Role of Remote Sensing in Terrestrial 
Ecosystem Carbon Estimates

Recent global observation systems provide measurements of hor-
izontal and vertical vegetation structure of ecosystems, which 
will be critical for estimating global carbon storage and assessing 
ecosystem response to climate change and natural and anthro-
pogenic disturbances. Remote sensing overcomes the limitations 
associated with sparse field surveys; it has been used extensively 
as a basis for inferring forest structure and AGB over large areas. 
Although no sensor has been developed that is capable of pro-
viding direct measures of vegetation biomass, the radiometry is 
sensitive to vegetation structure (crown size, tree density height), 
texture, and shadow, which are correlated with AGB. Three types 
of remote sensing data are often used, which are

	 1.	 Optical remote sensing
	 2.	 Radar (radio detection and ranging, microwave) data
	 3.	 LiDAR (light detection and ranging) data

Optical spectral ref lectances are sensitive to vegetation struc-
ture (leaf area index (LAI), crown size, and  tree  density), 

Forest

Loss

Gain

Figure 3.1  Global distribution of forest cover change, ca. 1990–2000. The false-color composite was aggregated from 30 m to 5 km grid cells. 
Forest loss is represented in red, forest gain in blue, and persistent forest in green. Colors are stretched in the proportion of 1 (forest): 4 (gain): 4 
(loss). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this chapter.) (From Kim, D.K. 
et al., Remote Sens. Environ., ISSN 0034–4257. Available online September 26, 2014, http://dx.doi.org/10.1016/j.rse.2014.08.017.)
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texture, and shadow, which are correlated with AGB. Radar 
data are directly related to AGB through measuring dielectric 
and  geometrical properties of forests (Le Toan et  al. 2011). 
LiDAR remote sensing is promising in characterizing veg-
etation vertical structure and height, which are then asso-
ciated to AGB (Drake et  al. 2002a,b, Lefsky et  al. 2005a,b). 
Vegetation structure characteristics measured from satellite 
data are linked to field-based AGB estimates, and their rela-
tionships are used to map large-scale AGB from satellite 
data. Recently, remote sensing has been extensively used as a 
robust tool in delivering forest structure and AGB because it 
provides a practical means of acquiring spatially distributed 
forest biomass from local to continental areas (Houghton 
2005, Lu 2006, Zhang and Kondragunta 2006, Goetz and 
Dubayah 2011).

3.1.5  Specific Topics Covered in This Chapter

Significant progress has been made in recent years regarding the 
large-area application of spaceborne remote sensing for the map-
ping of terrestrial ecosystem carbon stocks, which manifested in 
the release of several regional- to continental-scale maps of AGB. 
This paper reviews recent progress of terrestrial AGB and carbon 
stock estimations from remote sensing. It focuses on not only the 
current state of remote sensing of biomass using one particular 
sensor, but also recent progress on biomass mapping through 
fusion of multisensors. First, we brief the traditional method of 
AGB estimates, and then summarize what types of remote sens-
ing data being used for biomass estimates followed by a summary 
of research methods. Later sections provide recent progresses 
on biomass estimates using optical, radar, and LiDAR sensors 
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Figure 3.2  Log–log bivariate plots of above- vs. belowground (root) biomass (MA vs. MR) (a) and stem vs. root biomass (MS vs. MR) (b) at the 
level of individual plants (n = 1406) and Chinese forest samples (n = 1534). (From Cheng, D.L. and Niklas, K.J., Ann. Botany, 99, 95, 2007.)

Table 3.1  Strengths and Limitations of Conventional Methods to Estimate Aboveground Biomass and Forest Carbon Stocks

Methods Descriptions Input Parameters Strengths Limitations References 

Direct measurement •	 Harvest all trees
•	 Dry them
•	 Weigh the biomass

n/a •	 Very accurate •	 Very small areas Brown et al. (1989)

Biome average •	 Estimate average forest 
carbon stocks for each 
biome based on 
inventory data

•	 Map carbon stocks based 
on land cover types

•	 Land cover types
•	 Averaged biomass for 

each biome

•	 Easy and quick
•	 Globally consistent
•	 Low cost

•	 Low accuracy
•	 Lost local variations

FAO (2010)

Species-based allometric 
method

•	 Use allometric 
relationships to estimate 
AGB based on DBH

•	 DBH
•	 Species

•	 Easy to implement •	 Low accuracy if the 
allometric 
relationship is not 
local

Jenkins et al. (2004)

Woody volume and 
woody density based 
allometric method

•	 Use generalized 
allometric relationships 
for all species stratified 
by broad forest types or 
ecological zones

•	 DBH
•	 Tree height
•	 Wood density
•	 Forest types (dry or 

wet forest)

•	 Quite accurate
•	 Effective for 

tropical forests

•	 Need extra wood 
density and tree 
height 
measurement

Brown (2002) and 
Chave et al. 
(2005, 2014)
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and fusion of multisensors. Finally, we discuss the strengths and 
potential improvement of remote sensing approaches for map-
ping terrestrial ecosystem biomass and carbon stocks and point 
out future research directions.

3.2 �C onventional Methods of 
Carbon Stock Estimates

Table 3.1 lists the strengths and limitations of conventional 
methods for carbon stock estimates. The direct method is to 
harvest trees, dry, and weigh the biomass. It is the most accu-
rate method; however, the most labor intensive. For a small 
area, the most direct way to measure the carbon stored in 
aboveground living forest biomass is to harvest all trees, dry 
them, and weigh the biomass. The dry biomass can be con-
verted to carbon content by taking half of the biomass weight 
(carbon content ≈50% of biomass). This method is destructive, 
expensive, extremely time consuming, and impractical for any 
large regions.

No methodology can directly measure forest carbon stocks 
across a landscape. Different methods are used to approximate 
large-scale carbon stocks ranging from simple empirical to more 
complex physically based methods. At the national level, the 
Intergovernmental Panel on Climate Change (IPCC) proposed 
different tiers of carbon stocks quality, ranging from Tier 1 (sim-
plest to use; globally available data) up to Tier 3 (high-resolution 
methods specific for each country and repeated through time) 
(Gibbs et al. 2007).

3.2.1  Biome-Average Methods

The simplest one is to use the biomass average for each biome to 
approximate a nation’s carbon stocks (IPCC’s Tier 1) (Houghton 
et al. 2001, Gibbs et al. 2007). Biome averages are compiled based 
on tree harvesting measurements and analysis of forest inven-
tory data archived by the United Nations Food and Agricultural 
Organization (FAO) (Gibbs et al. 2007).

This method has both strengths and limitations. Biomes 
account for major bioclimatic gradients such as temperature, 
precipitation, and geologic substrate; it is a quick and easy way 
to estimate forest carbon stocks based on biomes. Besides, biome 
averages are free and easily accessible to map global forest car-
bon systematically. It provides a starting point for a country 
to access their carbon emission from disturbance. However, 
biome averages were generally focused on mature stands and 
were based on a few plots that may not adequately represent the 
biome or region. Further, forest carbon stocks vary significantly 
with slope, elevation, drainage class, soil type, and land-use 
history within each biome; therefore, an average value cannot 
adequately represent the variation for an entire forest category or 
country. Finally, the carbon stock estimates over disturbed areas 
could also be biased as the carbon stocks for the new growth 
systematically differ from the biome-average values (Houghton 
et al. 2001).

3.2.2  Allometric Biomass Methods

Another commonly used approach is the allometric-based bio-
mass and carbon stock estimates (IPCC’s Tier 2 or 3). It depends 
on forest inventory measurements to develop allometric rela-
tionships between tree diameters at breast height (DBH) alone or 
in combination with tree height with AGB. Ground-based DBH 
and height measurements in large areas are converted to forest 
carbon stocks using allometric relationships. Many allometric 
equations for estimating AGB have been published in the past 
(Brown et al. 1989, West et al. 1999, Brown 2002, Jenkins 2003, 
Jenkins et  al. 2004, Chave et  al. 2005, 2014). Two allometric-
based approaches are commonly used to estimate AGB.

3.2.2.1  Species-Based Allometric Method

The first one is a species-based approach to estimate biomass 
based on a given tree DBH. It requires measuring the diameter 
for each individual tree and allometric equations for each indi-
vidual tree species. For example, Jenkins et al. (2004) developed 
a set of generalized allometric regression models to predict AGB 
in tree components for all tree species in the United States. It is 
used by the USDA Forest Service, Forest Inventory and Analysis 
program to estimate the U.S. national forest carbon estimates. 
This approach provides a nationally consistent method for the 
estimation of biomass and C stocks at large scales and requires 
only a single field-based variable—tree DBH (1.37 m)—as input.

3.2.2.2 � Woody Volume—and Woody 
Density—Based Allometric Method

The second approach is a more generalized one, using woody 
volume and wood density to calculate biomass (Brown 2002, 
Chave et al. 2005, 2014). Developing allometric equations for 
each individual species can be very difficult. However, group-
ing all species together and using generalized allometric rela-
tionships, stratified by broad forest types or ecological zones, 
is highly effective, particularly for the tropics because DBH 
alone explains more than 95% of the variation in aboveground 
tropical forest carbon stocks, even in highly diverse regions 
(Brown 2002).

Chave et  al. (2005) developed generalized allometric equa-
tions for the pan-tropics based on an exceptionally large dataset 
of 2410 trees across a wide range of forest types. They included 
wood density and tree height within their models and proposed 
a global forest classification system that contains three climatic 
categories (dry, moist, and wet) to account for climatic con-
straints determining the AGB variation. Very recently, Chave 
et al. (2014) updated their allometric equations and developed a 
single model using trunk diameter, total tree height, and wood-
specific gravity across tropical vegetation types, with no detect-
able effect of region or environmental factors. The new allometric 
models should contribute to improving the accuracy of biomass 
assessment protocols in tropical vegetation types and to improv-
ing accuracy of carbon stock estimates for tropical forests.

Studies show that the most important parameters in estimat-
ing biomass (in decreasing order of importance) were diameter, 
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wood density, tree height, and forest type (classified as dry, 
moist, or wet forest). Including tree height reduced the stan-
dard error of biomass estimates from 19.5% to 12.5% (Chave 
et al. 2005). Tree biomass estimation was significantly improved 
by including wood density (Brown et al. 1989) and tree height 
(Brown 1997, Nogueira et al. 2008) in the allometric models in 
addition to tree diameter. However, measuring height (H) and 
wood density (q) requires additional work, increasing project 
time and costs. This approach is not often used as it required 
additional height measurements for each individual tree.

Despite the difficulty, more and more studies demonstrated 
the importance of these parameters for biomass estimates. For 
example, studies by Feldpausch et al. (2011, 2012) demonstrate 
that incorporating height in biomass estimates for the pan-
tropical region improves biomass estimates by lowering it. For 
tropical forests, carbon storage can be overestimated by 35 PgC 
if height is ignored. The study by Domke et al. (2012) for the 
United States also demonstrates similar results. Domke et al. 
(2012) compared estimates of carbon stocks using Jenkin’s and 
a tree height–based approach—the component ratio method 
(Woodall et al. 2011)—for the 20 most abundant tree species in 
the 48 states of the United States and found the method incor-
porating height decreased national carbon stock estimates 
by an average of 16% for the species. These results implicate 
that tree height, an important allometric factor, needs to be 
included in future forest biomass estimates to reduce error in 
the estimates of tropical carbon stocks and emissions due to 
deforestation and to improve accuracy of national and global 
forest carbon.

3.3  Remote Sensing Data

A variety of remote sensing systems have been used to esti-
mate AGB estimates: passive optical remote sensing, radar, and 
LiDAR. Table 3.2 summarizes the characteristics of satellite sen-
sors used to estimate AGB and carbon storage.

3.3.1  Passive Optical Remote Sensing Data

Passive remote sensors measure different wavelengths of 
reflected solar radiation, providing two-dimensional informa-
tion that can be indirectly linked to biophysical properties of 
vegetation and AGB and carbon stocks. Several optical satellite 
instruments are available for mapping AGB and carbon stocks at 
different spatial scales. The spatial resolutions of these satellite 
data range from meter to kilometer scales. Those data span from 
1970s to current, and some recent satellite data are collected on 
a daily scale. The most popular optical remote sensing satellite 
data being used to map AGB are multispectral satellite data at 
various spatial resolutions.

NOAA’s advanced very-high-resolution radiometer (AVHRR) 
and NASA’s moderate-resolution imaging spectroradiometer 
(MODIS) data are promising in producing biomass at continen-
tal and global scales (Dong et al. 2003, Baccini et al. 2004, 2008, 
Zhang and Kondragunta 2006, Blackard et  al. 2008). AVHRR 

provides global observations at 1 km scale every one or two days 
since 1979. MODIS aboard the Aqua and Terra satellites has 
imaged the entire globe approximately every two days at resolu-
tions of 250–500 m, dating as far back as 2000. These datasets are 
used alone or fused with other remote sensing data to provide 
AGB and carbon stock estimates at large scales.

Landsat Thematic Mapper (TM), Enhanced Thematic Mapper 
Plus (ETM+), and Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) provide biomass esti-
mates at local and regional scales at high spatial resolution 
(Muukkonen and Heiskanen 2005, Zhang and Kondragunta 
2006, Pflugmacher et  al. 2014). Landsat provides four decades 
of imagery of the entire globe at 30 m spatial resolution, the 
longest continuous record of space-based moderate-resolution 
land remote sensing data freely available to the public. With the 
advantages of being free and long-term data records, methods 
of using spectral information or more complicated methods 
using both spectral and temporal information or fusion with 
other remote sensing data have been developed to estimate AGB 
estimates. Landsat images are invaluable data sources to AGB 
and carbon stock estimates. ASTER, an imaging instrument on 
board Terra launched in December 1999, images the earth at 
15 m resolution in visible to near-infrared spectrum, which is 
the most sensitive to vegetation properties. Other passive optical 
systems such as multiangular data from MISR on board Terra 
and airborne/spaceborne hyperspectral data from AVIRIS and 
EO1 sensors are also used for biomass estimates (Anderson et al. 
2008, Chopping et al. 2009).

3.3.2  Radar Data

Radar data physically measure biomass through the interaction 
of the radar waves with tree scattering elements. The widely used 
active radar data for biomass estimates are from spaceborne 
synthetic aperture radar (SAR) sensors, such as the L-band 
Advanced Land Observing Satellite (ALOS), Phased Array-
Type L-band Synthetic Aperture Radar (PALSAR), the C-band 
European remote sensing satellite (ERS)/SAR, RADARSAT/SAR 
or Environmental Satellite (ENVISAT)/Advanced Synthetic 
Aperture Radar, and the X-band TerraSAR-X instrument, which 
transmit microwave energy at wavelengths from 3.0 (X-band) to 
23.6 cm (L-band).

ERS and ENVISAT operated by European Space Agency (ESA) 
collect C-band SAR data since 1991. Canadian RADARSAT has 
collected C-band data since 1995. German TerraSAR-X was in 
space since 2010. Those data have been used to estimate AGB 
with low density. The L-band PALSAR was launched by Japan 
Aerospace Exploration Agency. ALOS/PALSAR was operated in 
orbit from January 2006 until April 2011. It shows a great poten-
tial for forestry applications in the boreal regions due to high 
signal/noise ratio, high resolution (~20 m), provision of cross-
polarized data, and because data are being systematically col-
lected across the Northern Hemisphere. ALOS2 was launched in 
2014, and PALSAR-2 has updated features of PALSAR. A space-
borne P-band SAR, which would be less affected by saturation at 
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Table 3.2  Characteristics of Satellite Sensors Used to Estimate Aboveground Biomass

Sensor Characteristics Sensor Spectral Range Spatial Resolution Spatial Coverage Temporal Resolution Temporal Coverage 

Active LiDAR Ground LiDAR •	 EVI, DEWL 1064, 1548 nm Site level Site level Discontinuous 2000s
Small-footprint 

LiDAR
•	 Optech ALTM 3100C
•	 Leica ALS50-II
•	 Riegl LMS-Q140i-60

1064 nm Foot-meter scale Local Discontinuous 1988–now

Medium-footprint 
LiDAR

•	 LVIS 1064 nm 15–25 m Regional Discontinuous 1999–now

Large-footprint 
LiDAR

•	 GLAS 1064 nm 60–90 m Global Discontinuous 2003–2009

Radar P-band •	 Biomass 200 m <50 m Semi-Global
No Europe/USA

25–45 days Scheduled launch in 2020

L-band •	 ALOS-PALSAR
•	 ALOS-PALSAR(2)

15–30 cm 7–89 m Global 46 days 2006–2011 (PALSAR)
2014–present (PALSAR2)

X/C band •	 ERS
•	 ENVISAT
•	 RADARSAT
•	 TerraSAR-X

2.5–7.5 cm •	 ERS:30 m
•	 ENVISAT:30–90 m
•	 RADARSAT:1–100 m
•	 TerraSAR-X: 1–16 m

Global 3, 35, and 336 days •	 1995–present
•	 ERS:1991–2011
•	 ENVISAT:2002–2012
•	 RADARSAT:1995–present
•	 TerraSAR-X: 2007–present

Passive Multispectral/
hyperspatial

•	 IKONOS
•	 QuickBird
•	 Orbit view

VIS-NIR 1–5 m Global No regular repeat 
cycle

2000–present

Multispectral high 
spatial

•	 Landsat
•	 SPOT HRV
•	 ASTER

VIS-TIR 30 m Global 16 days 1972–present

Multispectral 
coarse resolution

•	 MODIS
•	 AVHRR

VIS-TIR 1 km Global Daily 2000–present

Multispectral and 
multiangular

•	 MISR VIS-NIR 1 km Global Daily 1999–present

Hyperspectral •	 AVRIS
•	 Hyperion

VIS-IR 4–20, 30 m Global Discontinuous 2000–present

ASTER, advanced spaceborne thermal emission and reflection radiometer; AVHRR, advanced very-high-resolution radiometer; AVIRIS, airborne visible/infrared imaging spectrometer; DWEL, dual-
wavelength Echidna® LiDAR; EVI, Echidna® validation instrument; GLAS, geoscience laser altimeter system, on board the ice, cloud, and land elevation satellite (ICESat); LVIS, land vegetation and ice sensor; 
MODIS, moderate resolution imaging spectroradiometer; NIR, near-infrared; PALSAR, phased array-type L-band synthetic aperture radar; SPOT HRV, Le Syst`eme Pour l’Observation de la Terre High 
Resolution Visible; TIR, Thermal infrared.
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higher biomass levels, is planned to launch in the coming years 
in the frame of the Earth Explorer Program of the ESA. Many 
airborne L-band and P-band data were also collected for bio-
mass estimates. The major advantage of all SAR systems is their 
weather and daylight independency.

3.3.3  LiDAR Data

LiDAR is an active remote sensing system based on laser rang-
ing, which measures the distance between a sensor and the target 
surface. Vegetation LiDAR systems typically emit at wavelengths 
between 900 and 1064 nm and record the time during which the 
emitted laser pulse is reflected off an object and returns to the 
sensor. The time-return interval is used to calculate the range 
(distance) between the sensor and the object. LiDAR provides 
direct and indirect measurements of vegetation structure, which 
can be used to estimate global carbon storage. Recent advances 
in LiDAR technology have made LiDAR data widely available 
to study vegetation structure characteristics and forest biomass.

LiDAR systems are classified as small-footprint LiDAR 
(laser footprint less than 1 m scale) and large-footprint LiDAR 
(laser footprint 10 m or greater) based on the size of laser foot-
print or discrete-return and full-waveform recording based on 
how laser energy is recorded (Dubayah and Drake 2000, Wulder 
et  al. 2012). Discrete-return systems record single or multiple 
returns from a given laser pulse. As the laser signal is reflected 
back to the sensor, large peaks, (i.e., bright returns) represent 
discrete objects in the path of the laser beam and are recorded 
as discrete points. Most small-footprint LiDAR system record 
discrete energy returns. In contrast, full-waveform-recording 
LiDAR systems digitize the entire reflected energy from a return, 
resulting in complete sub-meter vertical vegetation profiles. The 
waveform is a function of canopy height and vertical distribution 
of foliage, as it is made up of the reflected energy from the surface 
area of canopy components such as foliage, trunks, twigs, and 
branches, at varying heights within the large footprint. The total 
waveform is therefore a measure of both the vertical distribution 
of vegetation surface area and the distribution of the underly-
ing ground height. Waveform-recording instruments are mainly 
large-footprint LiDAR systems; however, recent advances made 
full-waveform instruments with increasingly smaller footprint 
sizes available.

Small-footprint multiple return LiDAR data have been col-
lected in many regions of the globe, and more recently small-
footprint scanning waveform systems have become operational. 
Such small-footprint airborne LiDAR systems are available on 
a commercial basis and are now used at the operational level 
in forest resource inventories (Næsset and Gobakken 2008). At 
standard level, ground-based LiDAR data, such as EVI, were 
collected and used for AGB estimates (Strahler et  al. 2008, 
Ni-Meister et al. 2010). With many ground LiDAR system, com-
plex and detailed vegetation structure data have been recorded 
over various study sites.

The Geoscience Laser Altimeter System (GLAS) was a large-
footprint spaceborne full-waveform profiling LiDAR carried on 

the Ice, Cloud, and land Elevation Satellite (ICESat) for 2003–
2009. GLAS was the first spaceborne LiDAR, and global mea-
surement of canopy height was one of the science objectives of 
the ICESat mission (Zwally et al. 2002). The size and shape of 
the GLAS footprints vary from 50 to 65 m in diameter and from 
elliptical to circular, depending on the date of the acquisition. 
The pulses are spaced approximately 172 m apart.

Airborne data have also been collected using a Scanning 
LiDAR Imager of Canopies by Echo Recovery (SLICER) with 
a 15 m footprint and the Laser Vegetation and Ice Sensor 
(LVIS) with a 20 m/25 m footprint over several large areas for 
improved vegetation structure characterization since 1998 
(Blair et  al. 1999). This large-footprint LiDAR system records 
full-waveform laser energy returns. These global, regional, and 
local LiDAR data can provide the detailed vegetation structure 
and biomass maps necessary for carbon models and ecosystem 
process studies.

3.4  Research Approaches/Methods

Many methods are adopted to convert field-measured AGB at 
local scale to large scale based on remote sensing measurements 
or extrapolating from small-scale LiDAR and field measure-
ments to large-scale maps of AGB. Common methods include 
linear statistical models, support vector machines, nearest 
neighbor-based methods, random forest, and Gaussian pro-
cesses (e.g., Figure 3.3). The most common approach is line sta-
tistical regression (Fassnacht et  al. 2014), then nonparametric 
nearest neighbor, machine learning (Zhao et al. 2011, Carreiras 
et  al. 2012), random forest (Baccini et  al. 2012), and Gaussian 
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Figure 3.3  Frequency distribution of the prediction methods used 
for aboveground biomass estimates. LM, linear regression model; SVM, 
support vector machines; NN, nearest neighbor-based methods; RF, 
random forest; GP, Gaussian processes. (From Fassnacht, F.E. et  al., 
Remote Sens. Environ., 154, 102, 2014.)
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processes (Zhao et  al. 2011) (see Figure 3.3 for a summary by 
Fassnacht et al. 2014). Some physically based or semiempirical 
models have also been used (Saatchi et al. 2007).

3.4.1 N onparametric Methods

With recent advancement in geospatial statistical methods and 
ongoing technology improvement in performing expensive sta-
tistical computations, the nonparametric method appears more 
prevalent in more recent studies (Baccini et  al. 2004, 2008). 
These methods perform recursive partitioning of datasets, make 
no assumptions regarding the distribution and correlation of 
the input data, effectively solve complex nonlinear relationships 
between the response and predictor variables, and show great 
advantages for nonlinear problems and often perform better 
than standard linear regression models.

3.4.1.1 T ree-Based Models

Tree-based models (Breiman et  al. 1984), a nonparametric 
approach, are a fundamental tool in data mining. They perform 
recursive partitioning of datasets to capture nonlinear relation-
ships between the response and predictor variables for predict-
ing a categorical (classification tree) or continuous (regression 
tree) outcome. This method has been previously used in remote 
sensing field to predict for classification and continuous vari-
ables (Baccini et al. 2004, 2008). Tree-based models are known 
for their simplicity and efficiency when dealing with domains 
with large number of variables and cases. However, it can also 
lead to poor decision in lower levels of the tree due to the unreli-
ability of estimates based on small samples of cases.

A commonly used tree-based model in AGB estimate is ran-
dom forest (Breiman 2001, Breiman et al. 1984). Random forest 

constructs a multitude of decision trees at training time in which 
different bootstrap samples of the data are used to estimate each 
tree and outputting the class corresponding to the individual 
trees. The resulting model is more accurate and less sensitive to 
noise in input data relative to conventional tree-based modeling 
algorithms.

The use of random forest for biomass estimate demonstrates 
the advantages of the nonparametric statistical method. For 
example, Baccini et  al. (2008) compared the performance 
between random forest with more traditional multiple regres-
sion analysis, and they found that the traditional regression–
explained variance is 71% compared to 82% from random 
forest of their AGB in their study region. LiDAR data, in com-
bination with a random forest algorithm and a large number 
of reference sample units on the ground, often yield the low-
est error for biomass predictions and become very popular in 
most research efforts on biomass estimates. There are, how-
ever, limitations to the random forest model in the prediction 
phase. The model tends to overpredict low biomass values and 
underpredict high biomass values. This trend is intrinsic of 
regression tree-based models whose predictions are the aver-
age of the values within the terminal node. Different meth-
ods are used in different remote sensing field for biomass 
estimates.

3.5 � Remote Sensing–Based 
Aboveground Biomass Estimates

Different remote sensing datasets were used to estimate AGB. 
Table 3.3 listed strengths and limitations of using different 
remote sensing data to estimate AGB and forest carbon stocks. 
Details are discussed in the following text.

Table 3.3  Strengths and Limitations of Using Different Remote Sensing Data to Estimate Aboveground Biomass and Forest Carbon Stocks

Remote Sensing 
Data Types 

Measured Forest Structure 
Parameters Inputs Methods Strengths Limitations References 

Passive optical 
remote sensing

•	 Reflectances
•	 Spectral indices
•	 Tree shadows
•	 Height for sparse canopy
•	 Stand age
•	 Land cover types

•	 Linear regression
•	 Nonparametric 

method

•	 High spatial 
imaging capability

•	 Consistent at all 
scales

•	 Free for most 
imageries except 
for very high 
spatial data

•	 Saturation at high 
biomass

•	 Baccini et al. (2004, 2008)
•	 Dong et al. (2003)
•	 Chopping et al. (2009)
•	 Zhang and Kondragunta (2006)

RADAR •	 Radar signals
•	 Woody volume
•	 Crown center height

•	 Linear regression
•	 Nonparametric 

method
•	 Physical models

•	 Accurate at low 
biomass

•	 High spatial 
imaging capability

•	 Free data

•	 Saturation at high 
biomass

•	 Impact from 
underneath 
topography/
roughness and soil 
wetness

•	 Le Toan et al. (1992, 2004, 2011)
•	 Askne and Santoro (2005)
•	 Carreiras et al. (2012)
•	 Cartus et al. (2012)
•	 Chowdhury et al. (2014)

LiDAR •	 Tree height
•	 Height metrics
•	 Foliage profiles
•	 Crown sizes

•	 Linear regression
•	 Nonparametric 

method

•	 Most accurate
•	 Free data

•	 Sparse samplings 
for spaceborne 
LiDAR data

•	 Small regions for 
small-footprint 
LiDAR data

•	 Asner et al. (2012, 2014)
•	 Blair et al. (1999)
•	 Drake et al. (2002a,b)
•	 Dubayah and Drake (2000)
•	 Garcia et al. (2010)
•	 Lefsky et al. (2005a,b)
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3.5.1 O ptical Remote Sensing

Optical remote sensing data have been extensively used to map 
AGB. One simple method to map AGB is to use remotely sensed 
land cover classification maps where each class is assigned an 
average value of biomass density based on literature estimates 
or forest inventories. The IPCC Tier 1 approach was applied to 
the study area using their prescribed forest carbon density val-
ues combined with land cover data generated from the globally 
available land cover dataset, Global Land Cover 2000. Land 
cover data were reclassified as forest or nonforest, using all for-
est classes of GLC2000. Aboveground carbon densities were 
assigned to each land cover class using IPCC values.

The other more commonly used method is the determi-
nation of relationships between in  situ biomass density and 
remote sensing characteristics/signals that can be consistently 
mapped over large regions (Saatchi et al. 2007). This approach 
has the advantage of providing spatially consistent and continu-
ous values of the amount of biomass present at any given loca-
tion. The suite of freely available optical satellite sensors, such 
as Landsat, AVHRR, and MODIS, has been used extensively to 
map AGB based on statistical relationships between ground-
based measurements and satellite-observed surface reflectance, 
or vegetation indices or tree canopy attributes are derived from 
optical satellite data (Lu 2006). Spectral reflectances of optical 
remote sensing are the simplest variables in biomass estimates. 
Vegetation indices are particularly useful in biomass observa-
tions because it enhances green vegetation signals and minimizes 
the impacts from surface and atmospheric effects. Alternatively, 
tree canopy attributes such as LAI, tree cover, crown size, den-
sity, and tree shadow fraction derived from optical satellite data 
are considered to be effective proxies of AGB. Tree shadow frac-
tion is an indicator of vertical vegetation structure, which can be 
an indicator of biomass.

At continental and global scale biomass mapping, the coarse 
spatial resolution optical sensors, such as the NOAA AVHRR 
(1.1 km) and MODIS (250 m to 1 km), have been useful for for-
est biomass estimates due to the good trade-off between spatial 
resolution, image coverage, and frequency in data acquisition 
(Lu 2006). Dong et  al. (2003) used the normalized difference 
vegetation index (NDVI) estimate provided by the AVHRR sen-
sor to estimate forest biomass at continental scale. A regression 
model was developed to relate AGB to latitude and the inverse of 
the AVHRR NDVI. Their results were encouraging for a study 
at this scale, but were ultimately unreliable for small-area, high-
accuracy forest inventories required by small property owners 
seeking to quantify their forests.

Recent studies using MODIS data using random forest 
(Baccini et  al. 2004, 2008) found that the shortwave infrared 
(SWIR) bands (MODIS bands 6 [1628–1652 nm] and 7 [2105–
2155 nm]) are particularly sensitive to forest structural param-
eters (crown size and tree density), texture, and shadow, which 
are correlated with AGB. They have found a negative relation-
ship between AGB and SWIR reflectance. They argue that SWIR 
signal is a strong indicator of tree shadows, which is related to 

stand age structure. Generally, the structure of young forests 
is often characterized by a single canopy layer, high density, 
relatively few canopy gaps, and trees of roughly the same size. 
Conversely, older forests are characterized by a mix of tree ages 
and sizes, canopy gaps, and multiple canopy layers resulting in 
increases in the shadow component, thus decreases in SWIR 
reflectance. Baccini et al. (2008) report a high accuracy, with the 
map explaining 82% of the variance in AGB for 10% of field plots 
held back for validation, with a root mean square error (RMSE) 
of 50.5 Mg/ha. However, many other studies using MODIS data 
have various successes (Blackard et al. 2008, Anaya et al. 2009). 
The main limitation is that MODIS signals are not very sensi-
tive to high biomass values (Lu 2006, Zheng et al. 2007, Anaya 
et al. 2009).

For quantifying biomass at local to regional scales, data pro-
vided by finer spatial resolution instruments, such as Landsat 
TM (Lu et  al. 2005) and ASTER (Muukkonen and Heiskanen 
2005, 2007), are required. Typically, finer spatial resolution sat-
ellite data have been used as an intermediate step when relat-
ing ground reference data with coarser spatial resolution data, 
usually by regression techniques. For example, Muukkonen and 
Heiskanen (2005, 2007) used stand-wise forest inventory data 
and moderate-resolution ASTER data to estimate biomass with 
coarse-resolution MODIS data for a large area with good accu-
racy. The demonstrated approach can be used as a cost-effective 
tool to produce preliminary biomass estimates for large areas 
where more accurate national or large-scale forest inventories 
do not exist.

The Landsat series of satellites has proven to be a successful 
venture, providing decades of free-access moderate-resolution 
multispectral imagery. To estimate forest biomass, many of the 
studies used band combinations of the Landsat data and veg-
etation indices in a regression with a variety of standard field 
variables including mean height, Lorey’s mean height (mean 
stand height weighted by basal area per tree), maximum height, 
crown width, and others. These efforts met with varying degrees 
of success. Cartus et al. (2014) reported a great success of using 
Landsat to map biomass than radar data. Landsat data, in the 
form of a canopy density product, was an important predictor 
for the AGB of forests in Africa (Avitabile et  al. 2012) and in 
the Amazon (Saatchi et al. 2007). Canopy density metrics works 
well on open canopies (i.e., primarily during early successional 
stages of forest development). Biomass differences between for-
ests with closed canopies are not captured. Foody et al. (2003) 
employed a feed-forward neural network to model forest bio-
mass and was successful in extracting forest biomass with high 
levels of accuracy. Foody et  al. (2003) also note a key issue in 
remote sensing of biomass: the inability of models to transfer 
from study site to study site. Empirical models built from sat-
ellite imagery rarely transfer from one study area to another, 
even if the study sites are composed of similar forest species and 
climatic conditions. Small forest plots are not represented well 
by image pixels larger than their spatial extent (Lu 2006), and 
complex biophysical environments are not well represented at 
the scale of Landsat data.
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Recent advances of mapping disturbance using Landsat 
data lead to a new approach to map AGB dynamics using for-
est disturbance and recover history maps derived from Landsat 
(Powell et al. 2010, Pflugmacher et al. 2012, 2014, Main-Knorn 
et  al. 2013). With recently developed algorithms that charac-
terize trends in disturbance (e.g., year of onset, duration, and 
magnitude) and post-disturbance regrowth, the new method 
improved Landsat-based mapping of current biomass across 
large regions. The new approach includes information on vegeta-
tion trends prior to the date to enhance Landsat’s spectral rela-
tionships with biomass. The method was tested in various forests 
in Oregon (USA), Arizona, Minnesota, Montana, and Europe 
using Landsat-based disturbance and recovery metrics. They 
found that the new method substantially improved predictions 
of AGB compared to models based on only single-date reflec-
tance. Conversely, they also found that their method performed 
significantly better in estimating AGB dead than LiDAR models, 
and single-date Landsat data failed completely.

Chopping et al. (2008) investigated the usability of Multiangle 
Imaging SpectroRadiometer (MISR) on board the Terra satellite 
to measure woody biomass and other forest parameters for large 
parts of Arizona and New Mexico. The advantage of MISR over 
active or other passive sensors is timely and extensive estimates 
of forest biomass and other parameters at low cost.

Gonzalez et al. (2010) used QuickBird’s panchromatic band 
to automatically detect tree crowns and then used regression 
techniques to estimate biomass from the diameter of each tree 
crown. They found that the QuickBird imagery resulted in 
higher error and lower total biomass estimates than the LiDAR 
data due to the shadowing that interfered with the crown detec-
tion algorithm. The cost of acquiring the images from these sen-
sors is prohibitive for most research purposes. While the spatial 
resolution offered by these sensors is excellent for crown delinea-
tion, care must be taken with shadowing and other effects of sun 
angle and tree height, further reducing the utility of these data 
for small-area forest quantification (Gleason and Im 2011).

3.5.2  Radar

Radar signals are sensitive to dielectric and geometric proper-
ties of forests and are thus directly related to measurements of 
AGB. The ability of radar sensors to measure biomass mainly 
depends on how deep the radar signals can penetrate into the 
canopy. The longer the wavelength is, the deeper the penetra-
tion is. The L- and P-band backscatter, particularly HV- and 
HH-polarized backscatter, is strongly dependent on biomass 
amount (Le Toan et  al. 1992, Ranson and Sun 1994, Imhoff 
1995, Saatchi 2007, Saatchi et  al. 2012). P-band backscatter 
shows stronger dependence on biomass than L-band backscat-
ter. The radar backscatter increases approximately linearly with 
increasing biomass until it is saturated at a certain biomass 
level that varies with the radar wavelength (Imhoff 1995). The 
biomass level for backscatter saturation is about 200 tons/ha at 
P-band, 100 tons/ha at L-band, and 30–50 tons/ha at X- and 
C-bands (Le Toan et al. 2011).

The observed relationship between radar backscatter and 
biomass can be physically illustrated using electromagnetic 
scattering models (Sun and Ranson 1995). HV backscatter is 
dominated by volume scattering from the woody elements in the 
trees, so that HV is strongly related to AGB. For the HH and 
VV polarizations, ground conditions can affect the biomass–
backscatter relationship, because HH backscatter comes mainly 
from trunk-ground scattering, while VV backscatter results 
from both volume and ground scattering.

Application of the radar biomass estimation at continental or 
globe scale is best at 1.0 ha scale (100 m × 100 m pixel size). At 
this scale, the distribution of AGB over the landscape is both 
stationary and normal, and the radar resolution is large enough 
to reduce the speckle noise and the geolocation error between 
radar pixel and the plot location. Errors associated with the bio-
mass estimation from radar backscatter or height measurements 
at this scale can be reduced to acceptable levels (10%–20%) for 
mapping the AGB globally (Saatchi et al. 2011, 2012).

SAR sensors on board several satellites (ERS-1, JERS-1, 
ENVISAT, and RADARSAT) with C- and X-bands were used 
to quantify forest carbon stocks in relatively homogeneous or 
young forests, but the signal tends to saturate at fairly low biomass 
levels (∼50–100 tons C/ha) (Le Toan et al. 2004). Mountainous 
or hilly conditions also increase errors. Several studies have 
used the phased array-type L-band SAR (PALSAR) on board 
the Japanese ALOS launched in 2005 to estimate biomass and 
carbon stocks in sparse canopies from African savanna wood-
lands to boreal forests (Carreiras et al. 2012, Cartus et al. 2012, 
Peregon and Yamagata 2013, Mermoz et al. 2014). Those stud-
ies found that ALOS/PALSAR data can successfully map AGB 
in sparse canopies when aggregating the ALOS biomass maps 
at large scale (county scale or hectare scale). Synergistic use of 
L- and X-band SAR can provide large-scale AGB (Englhart et al. 
2011). They combined multitemporal TerraSAR-X x-band and 
ALOS PALSAR L-band to estimate large-scale biomass for tropi-
cal forests with r2 = 0.53 with an RMSE of 79 tons/ha.

Many studies have demonstrated that radar backscattering 
works best only to estimate biomass for sparse canopy. As an 
alternative to SAR backscatter intensity, recent advancement 
in interferometric radar analysis techniques such as polari-
metric and interferometric radar (PolInSAR) has shown great 
potential to predict biomass (Askne and Santoro 2005). These 
interferometric techniques allow for a characterization of the 
vertical forest structure and thus a more immediate estimation 
of forest biophysical attributes. Coherence saturation levels are 
generally higher than those reported for backscatter intensity. 
Under favorable conditions, correlations exist for values of up 
to 250–300 tons/ha (Santoro et al. 2007, Chowdhury et al. 2014). 
The backscattering intensity for C- and X-bands is not very good 
for forest biomass estimation. But the InSAR coherence and the 
phase center height of X-band InSAR can be used for the pur-
pose. However, the potential to implement such experimental 
techniques across large areas depends on suitable configura-
tions of future spaceborne SAR missions. With the advancement 
in interferometric radar analysis techniques, radar data have a 
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great potential for global biomass estimates due to its indepen-
dence from clouds and therefore the possibility to obtain con-
tinuous global coverage.

3.5.3  LiDAR

Use of LiDAR to estimate forest biomass has accelerated rapidly 
in recent years. Observation from both discrete and full-return 
LiDAR can be translated into various forest structure met-
rics such as maximum canopy height and multistrata heights 
aboveground as well as characteristic height at which different 
proportions of the total reflected energy are returned to the sen-
sor. The various derived metrics can be related to AGB, typically 
via correlative model with associated field measurements (Goetz 
and Dubayah 2011, Wulder et al. 2012).

Many studies have demonstrated the strong relationship 
between AGB and LiDAR-measured height metrics, ranging 
from boreal conifers to equatorial rain forests. LiDAR has been 
widely used to map AGB using different LiDAR system. LiDAR 
is recognized as the state-of-the-art remote sensing technology 
for mapping AGB because it is much less sensitive to the satura-
tion problem, compared to conventional remote sensing optical 
and radar data. We summarize recent progress on LiDAR-based 
biomass mapping activities from the following two perspectives:

3.5.3.1  Small-Footprint Discrete-Return LiDAR

AGB has been estimated successfully with remote sensing, espe-
cially using small-footprint discrete LiDAR data (Nelson 1988, 
Nelson et al. 2004, Næsset and Nelson 2007, Næsset and Gobakken 
2008, García et al. 2010). Nelson et al. (2004) demonstrated that 
tree height obtained from airborne LiDAR is a good predic-
tor of biomass for large area averages. Næsset and Goabakken 
(2008) found that LiDAR tree height and forest density were able 
to explain 88% and 85% of the variability in aboveground and 
belowground biomass, respectively, for 1395 sample plots in the 
coniferous boreal zone of Norway. These studies often use LiDAR 
data alone or in combination with passive optical or radar data.

Most studies were conducted based on regression equations 
relating vegetation biomass to LiDAR-derived variables across 
different scales from individual tree to plot and stand scales. The 
plot-based approach commonly involves field-measured bio-
mass regressed against derived statistics from plot-level LiDAR 
data. The LiDAR statistics can be from the individual returns 
or from the height of canopy (also called canopy height model 
[CHM]). This approach adopts distributional metrics such as the 
mean canopy height and the standard deviation of the canopy 
height derived from the CHM or the raw returns. These met-
rics are then used in conjunction with regression equations to 
predict forest properties (Nelson 1988, 2004, Garcia et al. 2010). 
However, many recent studies used LiDAR return intensities 
rather than height metrics to estimate biomass. Garcia et  al. 
(2010) found that several biomass estimation models based on 
LiDAR intensity or height combined with intensity data provide 
better biomass estimate than using height metrics alone.

3.5.3.2  Large-Footprint Full-Waveform LiDAR

Large-footprint full-waveform systems have been shown to pro-
vide accurate estimates of AGB in tropical and temperate decid-
uous, conifer, and mixed forests over a wide range of conditions. 
Over the past decade, several airborne Land Vegetation Ice 
System (LVIS) and SLICER LiDAR systems have demonstrated 
the ability to retrieve AGB over various biomes ranging from 
boreal conifers to equatorial rain forests (Drake et al. 2002a,b, 
Lefsky et al. 2005b, Anderson et al. 2006, 2008, Dubayah et al. 
2010). Most studies adapted stepwise multiple regressions to 
predict ground-based measures of stand structure from both 
conventional canopy structure indices include mean and maxi-
mum canopy surface height, canopy cover, and indices derived 
from the canopy height profile (CHP), vegetation height metrics: 
RH100, RH75, RH50, and RH25 defined as the relative height 
(RH), relative to the ground elevation, at which 100%, 75%, 50%, 
and 25%, respectively, of the accumulated full-waveform energy 
occurs (Blair et al. 1999).

The GLAS, on board the ICESat, is a full-waveform digitiz-
ing LiDAR system with a nominal footprint size of ~65 m that 
acquires information on topography and the vertical structure of 
the vegetation (Zwally et al. 2002, Carabajal and Harding 2005, 
Harding and Carabajal 2005). A series of studies using GLAS 
data have successfully demonstrated the capabilities of GLAS 
data for estimating forest biomass on ground plots in tropical, 
temperate, and conifer forests (Lefsky et  al. 2005a, Boudreau 
et al. 2008, Nelson et al. 2009, Baccini et al. 2012).

One major limitation of current spaceborne LiDAR systems 
(i.e., ICESat GLAS) is the lack of imaging capabilities and the 
fact that it provides sparse sampling information on the for-
est structure. To overcome this problem, it has been fused with 
other data to map large-scale AGB. Boudreau et al. (2008) and 
Nelson et  al. (2009) used a multiphase sampling approach to 
relate GLAS waveforms to airborne profiling LiDAR measure-
ments and profiling LiDAR measurement to field estimates of 
total aboveground dry biomass in Québec, Canada, and Siberia, 
USSR. Some combines with optical remote sensing images with 
GLAS data to map biomass at large scales (Baccini et al. 2008, 
2012). Another issue of ICESat data is that the LiDAR wave-
form mixes LiDAR energy returns from both vegetation and 
underneath topography. To mitigate this problem, researchers 
have limited their analyses to area with <10 DEG slope (Nelson 
et  al. 2009). Lefsky et  al. (2005a,b) uses waveform shapes to 
remove the impact of underneath topography on waveform. 
Yang et  al. (2011) developed a physical approach to remove 
the underneath topography effect. It is important to evaluate 
the accuracy, precision, and sources of uncertainty involved 
in using GLAS for large-scale biomass estimation in different 
regions of the world.

Full-waveform instruments such as GLAS (and LVIS and 
SLICER) must use high pulse energies in order to penetrate 
dense canopy and detect the ground surface. As a result of the 
high pulse energies, the pulse rate must be low, which lim-
its the spatial sampling and resolution of these instruments. 
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Furthermore, the width of the pulse “acts as a low-pass filter, 
thereby smoothing the waveform and limiting the vertical res-
olution of the canopy features”. This also broadens the return 
from the ground and reduces its amplitude thus making its 
detection more difficult.

3.5.4  Multisensor Fusion

The use of LiDAR data, particularly spaceborne data, is lim-
ited by its sparse spatial sampling. Both radar and passive opti-
cal remote sensing provide large scale of imaging capability. 
However, both optical and SAR estimates of AGB are limited 
by a loss of sensitivity with increasing biomass, commonly 
known as “saturation.” A promising development is to com-
bine radar/passive optical data with LiDAR to develop models 
that improve biomass estimates by exploiting the strengths of 
each sensor. The fusion of metrics from multiple sensors has 

produced biomass models with high accuracy. While results 
have been variable, multisensor fusion can produce models 
with accuracy levels similar to or better than those of LiDAR 
alone (see Table 3.4 for a summary).

Many studies investigate if additional hyperspectral sig-
nature from hyperspectral data or radar and optical imaging 
capability besides LiDAR measurements improve biomass esti-
mates (Anderson et  al. 2008, Gonzalez et  al. 2010, Sun et  al. 
2011, Swatantran et al. 2011). The results vary. But most stud-
ies found that LiDAR provides the best biomass estimates, and 
additional optical passive or radar data do not improve biomass 
estimates.

However, another series of multisensor fusion study for AGB 
is fusion of airborne LiDAR, spaceborne radar, Landsat, and 
field data to map AGB at large scales through two stages of 
upscaling: scaling from field measurements to airborne LiDAR 
scale, then from airborne LiDAR scale to spaceborne radar 

Table 3.4  Capabilities to Estimate Aboveground Biomass and Forest Carbon Stocks through Multisensor Fusion

Multisensors Study Area Biomass Parameters  Method Resolution Accuracy References 

GLAS/ICESat, 
MODIS, SRTM, 
and QSCAT

•	 Tropical Forests:
Latin America
Sub-Saharan Africa
SE Asia

Lorey’s height Maximum 
entropy

1, 10, 
100 km

•	 1 km scale: ±6%–53%
•	 10 km scale: ±5%
•	 100 km scale: ±1%

Saatchi 
et al. (2011)

GLAS/ICESat, 
MODIS, and 
SRTM

Pantropical forest •	 Waveform metrics
•	 Surface reflectance
•	 Temperature
•	 Topography

Random 
forest

500 m •	 Tropical America: ±8.4/117.7 = 7%
•	 Africa: ±8.4/64.5 = 13%
•	 Asia: ±3.0/46.5 = 6%

Baccini 
et al. (2012)

Airborne LiDAR, 
GLAS/ICESat, 
and MODIS

Colombia and Peru •	 MCH
•	 Surface reflectance
•	 Temperature
•	 Topography

Random 
forest

1.1 km RMSE
Colombia: ±15.7 Mg C/ha
Peru: ±17.6 Mg C/ha

Barccini and 
Asner (2013)

GLAS, MODIS South-central Siberia •	 GLAS waveform 
metrics

•	 MODIS land cover

Neural 
network

500 m •	 <100 slope: ±11.8/163.4 = 7%
•	 >100 slope: ±12.4/171.9 = 7%

Nelson 
et al. (2009)

Airborne LiDAR
GLAS/ICESat
Landsat ETM+
SRTM

Quebec, Canada
1.3 M km2

•	 GLAS waveform 
metrics

•	 Land cover

Regression 30 m •	 Carbon density: ±2.2/39 = 6%
•	 Total carbon: ±0.3/4.9 = 6%
•	 R2 = 0.56–0.65

Boudreau 
et al. (2008)

GLAS/ICESat
Landsat

CA •	 Tree height
•	 LAI

Regression 30 m •	 RMSE: 40–150 Mg C/ha
•	 Relative error: ±40%

Zhang 
et al. (2014)

Airborne LiDAR
Landsat

Peruvian Amazon
43 Mha

•	 MCH
•	 Forest cover

Regression 0.1 and 
5 ha

•	 At 0.1and 5 ha: RMSE = 23 and 
5 Mg C/ha

Asner 
et al. (2010)

LVIS and AVIRIS Bartlett forest •	 RH50
•	 AVIRIS MNF

Stepwise 
regression

20 m •	 RMSE improved from 0.55 to 
0.51 when combined Mg/ha

•	 Adjusted R2 from 027,0.3 to 0.39
•	 Fusion reduced error by 5%–8%

Anderson 
et al. (2008)

LVIS and AVIRIS Sierra Nevada, CA •	 RH100, RH75, 
RH50, RH25

•	 NDVI, NDWI, 
DGVI, CC

Regression 20 m
Species 

based

•	 r2 = 0.84, RMSE = 58.78 Mg/ha
•	 No significant improvement 

fusing AVIRIS and LiDAR 
comparing to LiDAR alone

Swatantran 
et al. (2011)

AVIRIS MNF, AVIRIS minimum noise fraction transform (MNF) rotation; CC, Canopy cover; DGVI, First/second derivative of red edge normalized to 
626–795 nm baseline; Lorey’s height, basal area weighted height of all trees >10 cm in diameter; MCH, mean canopy vertical height profiles, the distance from 
ground (digital terrain models) to the approximate centroid of the tree crowns; NDVI, Normalized difference of vegetation index; NDWI, Normalized different 
of water index; RH100, Relative height (RH) to the ground elevation at which 100% of the accumulated full-waveform energy occurs; RH75, Relative height 
(RH) to the ground elevation at which 75% of the accumulated full-waveform energy occurs; RH50, Relative height (RH) to the ground elevation at which 50% 
of the accumulated full-waveform energy occurs; RH25, Relative height (RH) to the ground elevation at which 25% of the accumulated full-waveform energy 
occurs; SRTM, Shuttle radar topography mission.
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scale (Asner 2009, Nelson et al. 2009, Asner et al. 2010, 2012, 
Nelson 2010, Asner and Mascaro 2014). Baccini et  al. (2008) 
generated AGB estimates of tropical Africa from MODIS 
data using GLAS height metrics (average height and height of 
median energy or HOME metrics). Asner et al. (2010, 2012) use 
airborne LiDAR and Landsat data together with field data to 
map AGB and carbon at high spatial scale in Amazon. Nelson 
et  al. (2009) and Nelson (2010) combine field data, airborne 
LiDAR, and spaceborne GLAS data to map AGB at large scales 
in boreal forests.

Most recent development on biomass and carbon estimates 
using remote sensing data is large regional mapping of AGB 
through multisensor fusion. Those activities include fusion 
LiDAR and multispectral data (Asner 2009, Asner et al. 2012, 
Baccini et al. 2012) together with radar data (Saatchi et al. 2011). 
Two independent studies have produced pantropical maps 
of AGB at 500 and 1 m spatial resolutions (Saatchi et al. 2011, 
Baccini et al. 2012). These two maps have been widely used by 
subnational- and national-level activities in relation to REDD+.

Both maps use similar input data layers and are driven by the 
same spaceborne LiDAR dataset providing systematic forest 
height and canopy structure estimates, but use different ground 
datasets for calibration and different spatial modeling method-
ologies. Field data were upscaled to GLAS footprint level (70 m) 
over a broad range of conditions in tropical Africa, America, 
and Asia based on the statistical relationships between LiDAR 
metrics and filed AGB, then GLAS footprint biomass was scaled 
to 500 m wall-to-wall biomass map through a random forest 

machine learning using MODIS BRDF, surface temperature, 
and SRTM digital elevation data (Baccini et al. 2012).

Saatchi et  al. (2011) calibrated ICESat/GLAS Lorey’s height 
(basal area–weighted height of all trees >10  cm in diameter) 
to AGB using field data collected from 4079 in  situ inventory 
plots across three tropical continents. These AGB estimates were 
extrapolated from inventory plots (0.25 ha) to the entire land-
scape at 1 km scale based on spatial imagery from multiple sen-
sors (MODIS, shuttle radar topography mission [SRTM], and 
quick scatterometer—[QSCAT]) using a data fusion model based 
on the maximum entropy (MaxEnt) approach. This benchmark 
map of biomass carbon stocks over 2.5 billion ha of forests on 
three continents, encompassing all tropical forests, for the early 
2000s (see Figure 3.4).

A recent study compared these two maps and found signifi-
cant difference in their AGB estimates over a wide variety of 
forest cover types and scales; however, at country level, there 
is general agreement, with much of the country-level differ-
ence explained by the choice of different allometric equations 
(Mitchard et  al. 2013). These two maps were also compared 
to a high-resolution, locally calibrated map (Asner 2009). 
A further limitation present in both studies is the lack of local 
wood density or diameter–height calibration. Both are known 
to vary considerably across the landscape but using constant 
wood density or/and diameter-height relationship smooth out 
the variations of AGB estimates. This has an important impli-
cation for REDD+—it appears we have the algorithms and 
tools to estimate biomass stocks with some certainty.
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Figure 3.4  Distribution of forest aboveground biomass (Saatchi et al. 2011). (a) Forest aboveground biomass is mapped at 1 km spatial resolu-
tion. The study region was bounded at 30° north latitude and 40° south latitude to cover forests of Latin America and sub-Saharan Africa and from 
60° to 155° east and west longitude. The map was colored on the basis of 25–50 Mg/ha AGB classes to clearly show the overall spatial patterns of 
forest biomass in tropical regions. Histogram distributions of forest area (at 10% tree cover) for each biomass class were calculated by summing the 
pixels over Latin America in.� (continued )
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3.6  Summary

A variety of remote sensing data types including optical, LiDAR, 
and RADAR (mostly SAR) are used to estimate biomass. The 
most frequently applied sensors were discrete-return airborne 
LiDAR, spaceborne multispectral, and airborne or spaceborne 
RADAR systems (Figure 3.5) (Fassnacht et al. 2014).

Several studies were conducted for an analysis of reported 
biomass accuracy estimates using different remote sensing 
platforms (airborne and spaceborne) and sensor types (opti-
cal, radar, and LiDAR) (Zolkos et al. 2013) (Goetz and Dubayah 
2011). These studies reported that LiDAR is significantly better 
at estimating biomass than passive optical or radar sensors used 
alone (Figure 3.6). AGB models developed from airborne LiDAR 
metrics are significantly more accurate than those using radar 
or passive optical data. The LiDAR model error is positively 
correlated with the magnitude of AGB and varies at higher bio-
mass and decreases with plot size (Figure 3.7). Fusion of LiDAR 
and other sensors does not always improve biomass estimates. 
The spatial extent of airborne LiDAR is typically restricted to 
relatively small areas (tens of km2) and is also often integrated 
with imaging sensors for larger area mapping. Airborne LiDAR 
metrics–produced AGB models were significantly more accurate 
than those based on the spaceborne GLAS instrument due to its 
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Figure 3.4 (continued)  Distribution of forest aboveground biomass (Saatchi et al. 2011). (b) Africa in (c), and Asia in (d). Similarly, total AGB 
for each class was computed by summing the values in each region with distributions provided for Latin America in (e), Africa in (f), and Asia 
in (g). All error bars were computed by using the prediction errors from spatial modeling.
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Figure 3.5  Frequency distribution of the data sources (sensors) for 
aboveground biomass estimates. AL, airborne LiDAR; SL, spaceborne 
LiDAR; AMS, airborne multispectral; SMS, spaceborne multispectral; 
AR, airborne RADAR; SR, spaceborne RADAR; AHS, airborne hyper-
spectral; comb, studies using data from at least two sensors. (From 
Fassnacht, F.E. et al., Remote Sens. Environ., 154, 102, 2014.)
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sparse samplings. The sparse sampling density of GLAS requires 
fusion with image data for any AGB mapping application, with 
associated losses in model accuracy.

Previous studies have reported that the error varies with for-
est types, with higher accuracies for biomass estimates in conif-
erous stands compared with hardwood stands (Nelson et  al. 
2004, Ni-Meister et al. 2010). Studies also reported that model 

errors tend to decrease with increasing plot size (Frazer et  al. 
2011). Large plot size lowers between-plot variance and has 
greater spatial overlap and is more resilient to GPS positional 
errors (Frazer et al. 2011).

Zolkos et al. (2013) reported that the error from LiDAR and 
multisensor models, but not radar or passive optical alone, 
may satisfy measurement, reporting, and verification (MRV) 
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Figure 3.6  LiDAR model RSE vs. mean field-estimated AGB for (a) 51 LiDAR-only studies and (b) RSE (%) variability with plot size for 48 
studies. (From Zolkos, S.G. et al., Remote Sens. Environ., 128, 289, 2013.)
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guidelines, particularly in tropical forests. The best LiDAR 
model and fusion of LiDAR and imaging satellite data at large 
spatial extents have demonstrated accuracies that may be suit-
able for carbon accounting purposes at the project level.

3.7 C onclusions and Future Directions

Tremendous progress has been made to estimate AGB in the last 
decade or so. With the development of new LiDAR technology, a 
number of investigators have developed innovative approaches to 
fuse passive optical imagery or radar imaging data with spatially 
extend point-based estimates of biophysical parameters derived 
from LiDAR to develop high-quality wall-to-wall AGB maps with 
unprecedented accuracy and spatial resolution. Particularly, the 
synergy of spaceborne large-footprint LiDAR (ICESAT GLAS) 
and medium-resolution optical data, primarily from MODIS, 
has been exploited to map canopy height and biomass at regional 
to continental scales. Combining with high-quality forest loss 
maps, these high-quality carbon stock maps are being used to 
estimate carbon emission due to forest cover change at regional 
and continental scales (Baccini et  al. 2012, Harris et  al. 2012). 
Those large-scale maps of biomass, carbon, and carbon emission 
can be extremely useful for REDD and global carbon monitoring 
program and have the potential to substantially reduce uncer-
tainty in global carbon exchanges and net carbon budgets.

Developing accurate and consistent biomass maps is still 
challenging. One issue is a lack of large-scale densely sampled 
LiDAR data at continental and global scales. We call an urgent 
need for a LiDAR mission to quantify forest carbon store and car-
bon change at global scale. Currently a laser-based instrument 
called the Global Ecosystem Dynamics Investigation LiDAR is 
being developed for the International Space Station, which will 
provide a unique 3D view of the earth’s forest structure, as the 
valuable information for global carbon estimates. Combining 
high vertical and spatial resolution, photon-counting systems 
might overcome the limitations of full-waveform low-detector 
sensitivity and restricted vertical and spatial resolution. 
However, how much vegetation structure properties can be 
retrieved from future spaceborne LiDAR missions, ICESat-II, 
scheduled to launch in 2017 with a 10 kHz, 532 nm micropulse 
photon counting laser altimeter still needs further investigation. 
With recent advancement in polarimetric and interferometric 
radar (PolInSAR), fusion LiDAR and PolInSAR may have a great 
potential to provide accurate AGB estimates at centennial and 
global scales. However, implementation of such experimental 
techniques across large areas heavily depends on suitable con-
figurations of future spaceborne SAR missions.

With increasing use of remote sensing technology to map 
AGB and carbon stocks at large scales, their calibration will still 
rely on the accuracy of ground-based carbon storage estimation. 
Accuracy of aboveground estimates using remote sensing data 
depends heavily on the accuracy of allometric equations cho-
sen. Different allometric equations used to calibrate the remote 
sensing data resulted in different carbon estimates. Recent stud-
ies suggested that regional variation allometric equations were 

an important source of variation in tree AGB (Feldpausch et al. 
2012, Goodman 2014). With the recently updated allometric 
equations for tropical forests (Chave et al. 2014), remote sensing 
products could be improved.

There is an urgent need for improved datasets that charac-
terize the global distribution of AGB, especially in the trop-
ics. For the UN Framework Convention on Climate Change 
to implement the Reduced Emissions from Deforestation and 
Degradation (REDD) scheme, more accurate and precise coun-
try-based carbon inventories are needed. With recent progress 
made on biomass and carbon store estimates at continental 
scales and recently published global high-resolution (30 m) for-
est cover change maps (Hansen et al. 2013), accurate estimates of 
global carbon store and carbon emission estimates are possible 
in the next future.
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Acronyms and Definitions

AFI	 Area fraction image
AgRISTARS	� Agriculture and Resource Inventory Surveys 

through Aerospace Remote Sensing
ASTER	� Advanced Spaceborne Thermal Emission and 

Reflection Radiometer
AVHRR	 Advanced very-high-resolution radiometer
BN	 Bayesian network
BOKU	� University of Natural Resources and Life 

Science, Vienna
CERES	 Name of crop growth model
CGM	 Crop growth model
CNDVI	 Crop-specific NDVI
CORINE	� Coordination of Information on the 

Environment Programme
CROPSYST	 Name of crop growth model
CWSB	 Crop water satisfaction boundary model
DM	 Data mining
DSS	 Decision support system

DT	 Decision tree
ECMWF	� European Centre for Medium-Range Weather 

Forecasts
ERTS	 Earth Resources Technology Satellite
ETa	 Actual evapotranspiration
ETM+	 Enhanced thematic mapper
EU	 European Union
FAO	� Food and Agriculture Organization of the 

United Nations
fAPAR	� Fraction of absorbed photosynthetically active 

radiation
FAS	 Foreign Agricultural Service
FEWS-NET	 Famine Early Warning System
GDP	 Gross domestic product
GEO	 Group of earth observations
GEOSS	 Global Earth Observation System of Systems
GeoWiki	 Project name
GHG	 Greenhouse gas
GLAM	 Global agricultural monitoring
GRAMI	 Name of crop growth model
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IFPRI	 International Food Policy Research Institute
INPE	 National Institute for Space Research of Brazil
IPCC	 Intergovernmental Panel on Climate Change
IT	 Information technology
JECAM	� Joint Experiment for Crop Assessment and 

Monitoring
JRC	� Joint Research Center of the European 

Commission
LACIE	 Large area crop inventory experiment
LAI	 Leaf area index
LULC	 Land use/land cover
MARS	 Monitoring agriculture by remote sensing
MLC	 Maximum likelihood classifier
MODIS	� Moderate-resolution imaging 

spectroradiometer
MVC	 Maximum value composit(ing)
NASA	� National Aeronautics and Space 

Administration
NDVI	 Normalized difference vegetation index
NLCD	 National Land Cover Database
NN	 Neural network
NOAA	� National Oceanic and Atmospheric 

Administration
NPP	 Net primary production
OBIA	 Object-based image analysis
OILCROPSUN	 Name of crop growth model
PAR	 Photosynthetically active radiation
PCR	 Principal component regression
PI	 Probability image
PLSR	 Partial least square regression
RF	 Random forest

RMSE	 Root mean square error
SAM	 Spectral angle mapping
Sentinel	 Name of satellite
SOS	 Start of season
SPOT	 Satellite Pour l’Observation de la Terre
STICS	 Name of crop growth model
Suomi-NPP	� Suomi National Polar-Orbiting Partnership 

Satellite
SVAT	 Soil vegetation atmosphere transfer modeling
TM	 Thematic mapper
U.S.	 United States
USAID	� United States Agency for International 

Development
USDA	 United States Department of Agriculture
VCI	 Vegetation condition index
VGT	 Name of sensor (vegetation) onboard SPOT
VHR	 Very high resolution
VI	 Vegetation index
VITO	 Flemish Institute for Technological Research
WOFOST	 Name of crop growth model

4.1 I ntroduction

The development of satellite-based remote sensing technologies 
was, for a long time, driven by agricultural information needs 
(Becker-Reshef et al., 2010a). In the United States, for example, 
preliminary research and development of civil satellite monitor-
ing is reported having started in the early 1970s (launch of Earth 
Resources Technology Satellite later renamed Landsat-1) follow-
ing unanticipated severe wheat shortages in Russia (Figure 4.1) 
(Pinter et al., 2003).
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Figure 4.1  Monthly wheat prices from 1960 to 2011 (in USD per metric ton). (From http://wmp.gsfc.nasa.gov/uploads/science/slides/Justice_
ASP-WR_2012-09-06.pdf.)
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Although the focus of remote sensing has broadened over the 
years, agriculture is still important as shown by the large—and 
increasing—number of publications dealing with remote sensing 
and agriculture. Not surprisingly, most remote sensing scientific 
conferences have at least one session dealing with agriculture.

The importance of remote sensing in agriculture stems from 
the fact that agricultural activities face specific challenges not 
common to other economic sectors (Table 4.1). As a result, agri-
cultural activities have to be monitored from local to global 
scales at high temporal frequency.

In recent years, we observed an increased use of remote sens-
ing data and related technologies in agricultural production 
systems. First, remote sensing data have found their entrance 
in precision farming aiming to increase agricultural efficiency 
(Moran et  al., 1997; Seelan et  al., 2003; Mulla, 2013). Second, 
remote sensing is also a very valuable tool for monitoring agri-
cultural expansion (e.g., following deforestation) (Galford et al., 
2008; Gibbs et al., 2010). Finally, by providing timely, compre-
hensive, objective, transparent, accurate, and unbiased data, 
remotely derived information can eventually prevent excessive 
market speculation and resulting price spikes (Naylor, 2011).

High—and volatile—food prices repeatedly restrict food access 
in the most vulnerable parts of the world (Figure 4.2). For example, 
between 2006 and 2008, average world prices for rice, wheat, corn, 
and soybeans rose between 107% and 217%. This demonstrates 
that remote sensing has more to offer than just an ecological and 
economic component in monitoring systems. Indeed, the example 

shows the social component of remote sensing, as the poorest peo-
ple are usually the most affected by rising food prices.

One can expect that the impact of remote sensing data in agri-
culture and agronomy will continue to increase in the future, as 
the agricultural sector itself is under high pressure. A number 
of external drivers require a quick and widespread adaptation of 
agriculture practices:

•	 Agriculture must strongly increase its production for 
feeding the nine-billion people predicted by mid-century 
(Foley et al., 2011).

•	 Agricultural production and productivity must be 
increased while minimizing the environmental impact of 
agriculture (Zaks and Kucharik, 2011).

•	 Agriculture must cope with climate change (Olesen and 
Bindi, 2002).

•	 Agriculture must deal with land users not involved in 
food production (e.g., use of agricultural land for bio-
fuel production, and urban expansion) (Demirbas and 
Balat, 2006).

To avoid information gaps, the progress of these necessary adap-
tations has to be monitored through appropriate agricultural 
monitoring systems. For example, policy makers and stakehold-
ers should be informed about the state of the agricultural sector 
and the pathway that led to the current situation. Information is 
also critical for delivering feedbacks to decision makers regard-
ing the actual impact of their policies and investments. Reliable 
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Sources: IFPRI and FAO
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Figure 4.2  Food price volatility (left axis) and price (right axis) between 2002 and 2013. Price spikes refer to a steep rise in prices over a short 
period, whereas volatility is defined as high dispersion of prices around the average market price. (From http://www.ifpri.org/sites/default/files/
publications/2020resilienceconfbr16.pdf.)

Table 4.1  Specific Challenges of Agricultural Activities Favoring the Use of Remote Sensing Data Compared to Other Data Sources

Agricultural production depends on physical landscape (e.g., soil type), as well as climatic driving variables and agricultural management practices, all these 
factors being highly variable in space and time

Agricultural production follows strong seasonal patterns related to the biological life cycle of crops
Productivity can be quickly affected by unfavorable growing conditions, pests, and diseases
Many agricultural items are perishable
Agricultural trade and prices are globally linked and therefore affecting the actions of various stakeholders ranging from farmer to traders and governments
Agricultural commodities are subjected to excessive market speculation, resulting in price spikes often affecting the poorest people most strongly
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information also facilitates risk reduction and would lead to opti-
mized statistical analyses at a range of scales, enabling a timely 
and accurate national to regional agricultural statistical reporting.

To cope with these conditions and information needs, two 
important requirements have to be met:

	 1.	 Information has to be provided globally at a reasonably 
detailed spatial scale and with a frequent updating fre-
quency (Bruinsma, 2003).

	 2.	 Information is needed in due time—information is worth 
little, if it becomes available too late (FAO, 2011).

Remote sensing can significantly contribute to provide a timely 
and accurate picture of the agricultural sector. Remote sensing is 
probably also the most cost-efficient means for gathering timely, 
detailed, and reliable information over large areas with high 
revisit frequency (Table 4.2).

Remote sensing techniques are particularly well suited for 
assessing the two components of crop production (GEO, 2013):

	 1.	 Yield (e.g., Doraiswamy et  al., 2005; Zhang et  al., 2005; 
Bernardes et al. 2012; Duveiller et al., 2013; Meroni et al., 
2013a; Mulianga et al., 2013; Rembold et al., 2013)

	 2.	 Acreage (e.g., Gallego, 2004; Fritz et  al., 2008; Galford 
et al., 2008; Pittman et al., 2010; Boryan et al., 2011; Mello 
et al., 2013ac)

Moreover, the remotely retrieved information permits decision 
makers to better anticipate the effects of (disastrous) climatic 
events (predicted to increase in strength and frequency) and to 
get an objective and unbiased spatial picture over large areas (for 
risk assessment). Remotely sensed data can also be used as base-
line information to provide cost-efficient (index-based) insur-
ance schemes stimulating investments of smallholder farmers 
(De Leeuw et al., 2014). By putting the current situation in a his-
torical context, an agricultural monitoring system permits bet-
ter understanding of the possible effects of climate change (for 
preparedness and mitigation) and identification of areas with the 
highest yield potential—a prerequisite for closing the huge yield 
gaps in many parts of the world. In addition, crop phenological 

information (Sakamoto et  al., 2005; Shen et  al., 2013), stress 
situations (Gu et  al., 2007; Rembold et  al., 2013), and distur-
bances (Zhan et al., 2002; Verbesselt et al., 2010) can be detected. 
Finally, remote sensing is also well suited for documenting the 
state of the land surface, and existing image archives provide 
ample material to study how agriculture changed over the past 
decades (Cousins, 2001; Dramstad et al., 2002).

4.2  Agricultural Challenges

4.2.1 � Limiting the Environmental 
Impacts of Agriculture

Agriculture and natural resources are both under strong pres-
sure. The main drivers are population growth, increasing 
consumption of calorie- and meat-intensive diets, and an 
increasing use of cropland for bioenergy production (Hill et al., 
2006; FAO, 2009; Pelletier and Tyedmers, 2010; Foley et al., 2011).

The resulting negative impacts of current crop production are 
manifold and can be related to agricultural expansion and inten-
sification (Foley et al., 2011; Tilman et al., 2011):

•	 Biodiversity is threatened by land clearing and habitat 
fragmentation (Dirzo and Raven, 2003).

•	 Greenhouse gas (GHG) emissions from land clearing, 
crop production, and fertilization contribute already to 
one-third of global GHG emissions (Burney et al., 2010).

•	 Global nitrogen and phosphorus cycles have been disrupted, 
with impacts on water quality, aquatic ecosystems, and 
marine fisheries (Vitousek et al., 1997; Canfield et al., 2010).

•	 Freshwater resources are depleted, as nearly 80% of fresh-
water currently used by humans is for irrigation (Postel 
et al., 1996; Thenkabail et al., 2009; Thenkabail, 2010).

4.2.2 �C oping with Increasing 
Global Food Demand

As demonstrated by Tilman et  al. (2011), on a global scale, per 
capita food demand is closely related to per capita gross domes-
tic product (GDP). For example, people in the richest countries 
(group A—the United States, for instance) consume roughly 8000 
kcal day−1 compared to an average consumption of 4000 kcal day−1 
for people in groups C and D (Brazil and Indonesia, respectively).

Assuming that the GDP and global population will continue 
to increase in the future, the past trend of strongly increas-
ing food demand is expected to last for three to four decades. 
Tilman et al. (2011), for example, project that per capita demand 
for crops will double between 2005 and 2050. Following these 
assumptions, the strongest increases (in absolute values) are pre-
dicted within economic groups C–E (Figure 4.3).

Based on this and other forecasts, most agronomists and inter-
national food organizations, such as the Food and Agriculture 
Organization of the United Nations (FAO), agree that food 
production must grow substantially for meeting the world’s 
future food security and sustainability needs. At the same time, 

Table 4.2  Strengths and Applications of Remote Sensing 
in the Fields of Agronomy and Agriculture

Biomass and yield estimates
Crop acreage information
Objective and unbiased assessment of crop conditions over large 

(agricultural) areas with high revisit frequency
Mapping of disturbances and stresses
Assessment of disastrous climatic events on agricultural production
Identification of cropping patterns and agricultural production systems
Provision of baseline information for index-based (agricultural) insurances
Information for helping understanding possible effects of climate change
Identification of areas with yield gaps
Mapping of crop phenological development
Mapping of irrigated areas and water requirements
Increased productivity efficiency through precision farming
Monitoring of agricultural expansion/farmland abandonment
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agriculture’s environmental footprint must shrink dramatically 
(The Royal Society, 2005; Godfray et al., 2010; Foley et al., 2011).

Hence, in the coming decades, a crucial challenge for human-
ity will be meeting future food demands without undermin-
ing further the integrity of the earth’s environmental systems 
(Mueller et  al., 2012). The necessary transformation will have 
to take place in times of climate change, adding supplemen-
tary difficulties (Jones and Thornton, 2003; Trnka et al., 2014). 
For example, it is expected that temperature and precipitation 
patterns will change in the next decades, with more frequent 
extreme meteorological conditions (IPCC, 2007, 2013; Godfray 
et al., 2010). The necessary agricultural transition phase should 
be monitored at various temporal and spatial scales.

4.2.3 � Pathways for Increasing 
Agricultural Production

The environmental impacts of an increased global crop produc-
tion will depend on how this increase is pursued (Foley et  al., 
2011; Tilman et  al., 2011). Production could be increased by 

agricultural extensification or intensification. Extensification 
implies clearing or adapting additional land for crop production. 
Intensification, on the other hand, achieves higher yields through 
increased inputs, improved agronomic practices (e.g.,  drop 
irrigation), improved crop varieties, and other innovations.

According to Tilman et  al. (2011), the “land sparing trajec-
tory” (i.e., intensification) to an increased global production is 
the preferred solution, as closing the yield gap would minimize 
both land clearing and GHG emissions, compared to a continu-
ation of current practices of extensification in the poorer coun-
tries (“past trend trajectory”). The yield gap is here defined as 
the difference between realized productivity and the best that 
can be achieved using current plant material. On a global scale, 
huge differences in yield gap exist, exemplified in Figure 4.4 
for cereals.

This view on intensification is also shared by Foley et al. (2011). 
Their analysis showed how many calories could be produced by 
closing existing yield gaps (Figure 4.5 top). In some countries, 
additional calories could be produced by allocating a higher frac-
tion of the cropland to growing food crops (crops that are directly 
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Figure 4.3  Increasing global food demand: (a) Global population, (b) per capita gross domestic product (GDP), (c) per capita demand for crop 
calories, and (d) global demand for crop calories. Indicators for 2005 in black and projected 2050 increases (white; percent increases above bars). 
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consumed by people) instead of using this land for animal feed, 
bioenergy crops, fibers, etc. (Figure 4.5, center and bottom).

If adopted, the proposed land sparing trajectory could meet 
the 2050 projected global crop demand, while clearing only 
0.2 billion ha of land globally (compared to 1.0 billion ha from 
“past trend trajectory”) and producing global GHG emissions of 
just 1 Gt·year−1 (instead of 3 Gt·year−1). In particular, Foley et al. 
(2011) suggested that tremendous progress could be made by 
simultaneously adopting the following five strategies:

	 1.	 Halting agricultural expansion
	 2.	 Closing yield gaps on underperforming lands
	 3.	 Increasing cropping efficiency
	 4.	 Shifting diets to less meat demanding ones
	 5.	 Reducing waste within the agricultural production chain

Together, these five strategies could double food production, 
while greatly reducing the environmental impacts of agricul-
ture. Similar conclusions are drawn by Godfray et  al. (2010), 
promoting a “multifaceted and linked global strategy” to ensure 
sustainable and equitable food security.

4.3 � Remote Sensing for Assessing 
Yield and Biomass

Agricultural vegetation develops from sowing to harvest as a 
function of meteorological driving variables (e.g., temperature, 
sunlight, and precipitation). Plant growth is further modified by 
soil and plant characteristics (genetics) as well as farming prac-
tices. As changes in crop vigor, density, health, and productivity 
affect canopy optical properties, crop development and growth 
can be monitored remotely (Jones and Vaughan, 2010).

The relationship between the spectral properties of crops and 
their biomass/yield has been recognized since the very first spec-
trometric field experiments. For example, Tucker and cowork-
ers showed already in the early 1980s that an agricultural crop 
can be monitored through its spectral reflectance properties 
(Tucker, 1979; Tucker et al., 1980). The use of spectral data was 
studied extensively by using satellite imagery after the launch of 
the first civil earth observation satellite (Landsat-1). However, 
only since the early 1980s, with the growing availability of 
low-spatial-resolution images from the advanced very-high-
resolution radiometer (AVHRR) sensor on board of meteorolog-
ical satellite series known as National Oceanic and Atmospheric 
Administration (NOAA), similar analyses have been extended 
to large areas, including many countries in arid and semiarid 
climates (Johnson et  al., 1987; Hutchinson, 1991). Thanks to 
their large swath width, low-resolution systems have a much bet-
ter synoptic view and temporal revisit frequency compared to 
high-spatial-resolution sensors. The intrinsic drawback of these 
sensors is, of course, related to their low spatial resolution, with 
pixel sizes of about 1 km2, that is, far above typical field sizes. As 
a consequence, recorded spectral radiances are mostly composed 
by mixed information from several surface types. This seriously 
complicates the interpretation (and validation) of the signal, 
as well as the reliability of the derived information products. 
Several approaches for deriving sub-pixel information exist, but 
reveal serious limitations (Foody and Cox, 1994; Atkinson et al., 
1997; Busetto et al., 2008; Atzberger and Rembold, 2013).

Grassland productivity for large areas, such as the Sahel 
region, was investigated by using AVHHR images by Tucker et al. 
(1983) and Prince (1991a,b). Other studies were made to move 
directly to the prediction of grain yield instead of total biomass 

Major cereals: Attainable yield achieved (%)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.4  Average yield gaps for major cereal crops: corn, wheat, and rice. The yield gap is the differences between the potential yield and the 
realized yield at a given location. (From Mueller, N.D. et al., Nature, 490, 254, 2012.)
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figure 4.5  Pathways for increasing agricultural production: (a) Additional calories that could be produced by closing current yield gaps of 
crops, (b) increased food supply (in calories) by shifting crops to 100% human food and away from current mix of uses, and (c) fraction of cropland 
that is allocated in 2000 to growing food crops (crops that are directly consumed by people) versus all other crop uses, including animal feed and 
bioenergy crops. (From Foley, J.A. et al., Nature, 478, 337, 2011.)
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by using field measured radiances (Tucker et al., 1981), Landsat 
images (Pinter et  al., 1981; Barnett and Thompson, 1983), and 
finally NOAA AVHRR normalized difference vegetation index 
(NDVI) (Quarmby et  al., 1993). With the increasing popular-
ity of low-resolution satellite images for monitoring large geo-
graphic areas, an early warning of water stress as indicator for 
lowered final productivity became a well-established practice 
(Henricksen and Durkin, 1986; Johnson et  al., 1987; Maselli 
et al., 1993). Both at national and regional levels, experimental 
crop monitoring systems were put in place starting in the late 
1970s in the United States with the Large Area Crop Inventory 
Experiment (LACIE) and continuing in the 1980s in the EU with 
the Monitoring Agriculture with Remote Sensing (MARS) proj-
ect. In many cases, these systems led to operational services that 
are still in existence today.

Nowadays, a much larger range of satellite sensors regularly 
provides data covering a wide spectral range (from optical 
through microwave) and using both active and passive devices 
(Belward and Skøien, 2014). Data are acquired from various orbits 
and in different spatial and temporal resolutions. For analyzing 
the recorded images, and for deriving the sought information, a 
large number of analysis tools have been developed (Macdonald 
and Hall, 1980; Verstraete et  al., 1996; Justice et  al., 2002). 
Besides analyzing the recorded spectral and temporal signatures 
(e.g., Badhwar et  al., 1982; Lobell and Asner, 2004; Wardlow 
et al., 2007; Udelhoven et al., 2009; Vuolo and Atzberger, 2012; 
Mello et al., 2013b), one can also analyze the directional reflec-
tance properties of vegetation (e.g., Clevers et al., 1994; Barnsley 
et al., 1997; Gobron et al., 2002; Vuolo et al., 2008; Koukal and 
Atzberger, 2012; Schlerf and Atzberger, 2012). Further useful 
information can be retrieved from the spatial arrangement of 
the pixels, that is, the texture of the image (Vintrou et al., 2012) 
as well as object size and association (Blaschke, 2010).

For the remainder of this chapter, we distinguish five main 
groups of techniques for mapping crop biomass and yield estima-
tion. The five groups also summarize the evolution from purely 
qualitative to more quantitative and process-based approaches and 
hence—in some way—the history of agricultural remote sensing:

	 1.	 Qualitative crop monitoring
	 2.	 Regression modeling
	 3.	 Application of Monteith’s efficiency equation
	 4.	 Assimilation of remote sensing data into (mechanistic and 

dynamic) crop growth models (CGMs)
	 5.	 Data mining (DM) approaches

Not surprisingly, some techniques can be seen as partially 
belonging to two different groups, while other methods may not 
strictly fit into any of these major subdivisions. However, the 
adopted simplification is believed to help the reader distinguish 
the main broad approaches that can be found in this field.

4.3.1  Qualitative Crop Monitoring

Crop monitoring methods that are based on the qualitative 
(or comparative) interpretation of remote sensing–derived 

indicators are in the following summarized under the term 
“qualitative crop monitoring.” In general, these methods are 
based on the comparison of the actual crop status to previous 
seasons or to what can be assumed to be the average or “normal” 
situation. Detected divergences (or “anomalies”) are then used 
to draw conclusions on possible yield limitations.

For qualitative crop growth monitoring, a large number of 
remotely sensed vegetation indices or biophysical products have 
been used. Most studies, however, used the NDVI for study-
ing agricultural (and natural) vegetation. The usefulness of 
vegetation characterization by using arithmetic combinations 
of vegetation reflectances in different spectral bands (so called 
“vegetation indices”) was established in the early 1980s by 
Tucker, Deering, and coworkers (Deering, 1978; Tucker, 1979; 
Tucker et al., 1980) that proposed the NDVI, using the red and 
near-infrared reflectances. The NDVI became subsequently the 
most popular indicator for studying vegetation health and crop 
production using qualitative approaches. The NDVI has been 
later demonstrated to hold a close relation to the canopy leaf area 
index (LAI) and fraction of absorbed photosynthetically active 
radiation (fAPAR) (Baret and Guyot, 1991; Prince, 1991a). Due to 
its almost linear relation with fAPAR, the NDVI can therefore 
also be seen as an indirect measure of primary productivity.

Low-resolution satellites are best suited for regional to con-
tinental monitoring of vegetation using this technique as they 
offer a high temporal revisit frequency with an extended geo-
graphical coverage at low data costs per unit area.

Crop monitoring systems making use of “anomaly maps” are 
particularly useful in arid and semiarid countries, where tempo-
ral and geographic rainfall variability leads to high interannual 
fluctuations in primary production and to a large risk of famines 
(Hutchinson, 1991). These environmental situations, along with 
the wide extent of the areas to monitor and the generally poor 
availability of efficient agricultural data collection systems, rep-
resent a scenario where qualitative monitoring can produce valid 
information for releasing early warnings about possible crop 
stress. Such systems are typically used in many food-insecure 
countries by FAO, FEWS-NET (Famine Early Warning System) 
of United States Agency for International Development (USAID), 
and the MARS project of the European Commission.

However, qualitative crop monitoring is not necessarily linked 
to an early warning context in arid areas but can also be very 
useful to get a quick overview of vegetation stress for large areas 
in temperate climatic zones. An example is given in Figure 4.6, 
which depicts vegetation condition index (VCI) anomalies 
(May–July) for 2009, 2010, and 2011 in Central Europe. VCI 
(Kogan, 1995) scales the NDVI value of a given 10-day period 
(dekad) within its min–max range as derived from the histori-
cal archive of observations for that dekad. France and Germany 
reported low cereal yields in 2011 and good yields in 2009 
(with intermediate values in 2010). This is well reflected in the 
3-monthly VCI values (May–July) for these two countries.

Vegetation performance anomaly detection with low-resolution 
images continues to be a fundamental component of agricul-
tural (and drought) monitoring systems at the regional  scale. 
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NDVI anomalies (May–July) over Central Europe
(2009–2011)
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figure 4.6  NDVI anomalies (3-monthly VCI) from 2009 (a), 2010 (b), and 2011 (c) over central Europe. The displayed VCI values are from 
filtered and gap-filled moderate-resolution imaging spectroradiometer (MODIS) data and always refer to the period from May to end of July (12 
weeks). Cereal yields (in t/ha) according to World bank are reported for France (FR) and Germany (DE). (From data.worldbank.org/indicator/
AG.YLD.CREL.KG and own data.)
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For applications at more detailed scales, the limitations created by 
the mixed nature of low-resolution pixels are being progressively 
reduced by the higher resolution offered by new sensors (Belward 
and Skøien, 2014). However, the continuity of  existing systems 
remains crucial for ensuring the availability of long  time series as 
needed by the majority of the yield prediction methods used today 
(Rembold et al., 2013).

4.3.2 �C rop Yield Predictions Using 
Regression Analysis

In the previous section, approaches have been described using 
(low-resolution) satellite imagery for providing qualitative indi-
cations of crop growth (e.g., crop growth worse/better than aver-
age). In this section, two methods will be described that quantify 
the expected yield (e.g., in t/ha) using regression models. In con-
trast to the qualitative approaches, the regression approaches 
must necessarily be calibrated using appropriate reference infor-
mation. In most cases, agricultural statistics and, specifically, 
crop yield are used as reference information. Of course, this 
prerequisite limits its applicability in many regions of the world. 
We will distinguish purely remote sensing–based approaches 

and mixed approaches where additional bioclimatic predictor 
variables are used.

The already mentioned relationship between vegetation 
indices/fAPAR and biomass enables the early estimation of crop 
yield, since yield of many crops is mainly determined by the 
photosynthetic activity of agricultural plants in certain periods 
prior to harvest (Baret et al., 1989; Benedetti and Rossini, 1993). 
As fAPAR and NDVI are linearly linked, NDVI is often used as 
an independent variable in empirical regression models to esti-
mate final crop grain yield (the dependent variable).

The basic assumption of this method is that sufficiently long 
and consistent time series of both remote sensing images and 
agricultural statistics are available. The latter are normally 
aggregated at the level of subnational administrative units, for 
which average NDVI values can be extracted. At the aggregation 
stage, it can be decided if pixels are weighted or not according to 
crop coverage. Examples of NDVI/yield regressions for cereals at 
national level are shown in Figure 4.7.

Many studies reported useful statistical relationships using 
NDVI values at the peak of the growing season and final crop 
yield. The different empirical techniques appear to be relatively 
accurate for crops with low final production because biomass 
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figure 4.7  NDVI/yield linear regressions for cereals in North Africa. (a) Evolution of the coefficient of determination (R2) between NDVI and 
yield over time. (b) Scatter plots between NDVI and cereal yield for Morocco (left) and Egypt (right). Each dot corresponds to the annual yield for 
agricultural areas at national level and to the monthly NDVI best correlated to yield. (Modified from Maselli, F. and Rembold, F., Photogramm. 
Eng. Remote Sens., 67, 593, 2001.)

© 2016 Taylor & Francis Group, LLC

  



81Agriculture

is the limiting factor to yield, and the relationship between 
LAI and the vegetation response (NDVI) is below the range of 
saturation (Delécolle et  al., 1992). Empirical relationships also 
appear to be relatively accurate for grass crops, where dry matter 
(DM) is the harvestable yield.

Linear regression models relating NDVI to crop yield have, 
for example, been developed by Rasmussen (1992) and Groten 
(1993) for Burkina Faso and by Maselli et  al. (1993) for Niger. 
The same and other investigations showed that yield forecast-
ing can be obtained by the use of NDVI data of specific periods, 
which depend on the eco-climatic conditions of the areas and 
the types of crop grown (Hayes and Decker, 1996; Lewis et al., 
1998; Maselli et al., 2000).

It has to be noted that the correlation between crop yield and 
spectral measurements varies during the growing season, and 
regression coefficients show strong temporal variations (Rudorff 
and Batista, 1990a,b). Established relationships are therefore, to 
some degree, “good fortune” and usually time and site specific 
(Baret et al. 1989). In cases where the aboveground biomass is 
not the harvestable yield, one has also to consider that the rela-
tion between crop yield and spectral data is only indirect (Hayes 
and Decker, 1996). Besides classical (multiple) linear regression, 
other statistical techniques such as partial least square regres-
sion or principle component regression may be more appropri-
ate to model the relation between the sought variable(s) and the 
spectral reflectances (Hansen and Schjoerring, 2003; Nguyen 
et al., 2006; Atzberger et al., 2010).

Various authors postulated that accumulated radiometric 
data are more closely related to crop production than instanta-
neous measurements. Several choices of temporal NDVI inte-
gration can be found, reaching from the simple selection of the 
maximum NDVI value of the season, to the average of the peak 
values (plateau) to the sum of the total NDVI values of the total 
crop cycle. A recent example for winter wheat yield estimation 
at national level is provided by Meroni et al. (2013a) for Tunisia. 
Instead of using a fixed integration period, the integral is com-
puted between the start of the growing period and the beginning 
of the descending phase. The two dates are computed for each 
pixel and each crop season separately.

Pinter et  al. (1981) argued that the accumulation of radio-
metric data was similar to a measure of the duration of green 
leaf area. They consequently related yield of wheat and barley to 
an accumulated NDVI index and obtained satisfactory results. 
However, their results reveal that the performance of the inte-
gration is only optimum if it starts at a specific phenological 
event (i.e., at heading stage). When the optimum data could not 
be specified accurately, predictions were less accurate.

For the area of North America, Goward and Dye (1987) 
showed that an integrated NDVI from NOAA AVHRR gave a 
good description of the produced biomass. Tucker et al. (1983) 
found a strong correlation between the integrated NOAA-7 
NDVI data and end-of-season aboveground dry biomass for 
ground samples collected over a 3-year period in the Sahel 
region. The correlation was higher than the one obtained from 
instantaneous NDVI values.

A less used technique involves the concept of aging or senes-
cence, first developed by Idso et al. (1980). Idso and coworkers 
found that yield of wheat could be estimated by an evaluation 
of the rate of senescence as measured by a ratio index following 
heading. The lower the rate of senescence, the larger the yield 
as stressed plants begins to senesce sooner. The same technique 
was later applied by Baret and Guyot (1986). They confirmed that 
final yield production in winter wheat was correlated with the 
senescence rate. More recently, Koaudio et al. (2012) used LAI 
trajectories during the senescence phase to estimate wheat yield 
in the European Union. Examples of regression-based yield pre-
diction studies are summarized in Table 4.3.

One important limitation of the regression approach is (as for 
any other empirical approach) that most of the mentioned stud-
ies are linked to the environmental characteristics of specific 
geographic areas or are limited by the availability of large and 
homogeneous data sets of low-resolution data. A common prob-
lem in crop monitoring and yield forecasting in many countries 
of the world is the difficulty in extending locally calibrated fore-
casting methods to other areas or to other scales.

One should also note that where the crop area is not known, 
the NDVI/yield relationship does not provide information on 
final crop production, which is what many users of crop moni-
toring information are ultimately interested in.

In many cases, the predictive power of remotely sensed indi-
cators can be improved by adding independent meteorological 
(or bioclimatic) variables into the regression models. Several bio-
climatic variables have proven to be highly correlated with yield 
for certain crops in specific areas (Lewis et al., 1998; Rasmussen, 
1998; Reynolds et  al., 2000). These variables can be measured 
either directly (like rainfall coming from synoptic weather sta-
tions) or by satellites (like rainfall estimates) or can be the result 
of other models as it is normally the case of agro-meteorological 
variables like ETa (actual evapotranspiration) or soil moisture.

Potdar et  al. (1999) observed that the spatiotemporal rain-
fall distribution can be successfully incorporated into crop 
yield models (in addition to vegetation indices), to predict 
crop yield of different cereal crops grown in rain-fed condi-
tions. Such hybrid models often show higher correlation and 
predictive capability compared to models using solely remote 
sensing indicators (Manjunath et al., 2002; Balaghi et al., 2008) 
as the input variables complement each other. The bioclimatic 
variables introduce information about the environmental driv-
ers of vegetation growth (e.g., solar radiation, temperature, air 
humidity, and soil water availability), whereas the spectral com-
ponent introduces information about the actual growth out-
come of such drivers, thus indirectly taking into account crop 
management, varieties, and other stresses not directly consid-
ered by the agro-meteorological models (Rudorff and Batista, 
1990a). However, it must be noted that many bioclimatic indica-
tors, especially if they are derived from satellites as well, are not 
really independent from vegetation indices. The interrelation of 
the different input variables should be considered and corrected 
when integrating bioclimatic and spectral indicators into mul-
tiple regression models.
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Table 4.3  Examples of Regression-Based Yield Prediction Studies

Target 
Crop

Yield Data 
Aggregation 

Geographic 
Location Predictor Sensor 

Crop Mask 
Used Specific Processing 

Regression 
Type R2 Reference 

Sugarcane Field-level data Brazil NIR/RED ratio MSS Not applicable Single image before 
harvest

Linear 0.50–
0.69a

Rudorff 
et al. 
(1990a)

Millet Field-level data Burkina 
Faso

Dekadal NDVI NOAA-
AVHRR

Not applicable NDVI integration 
during a fixed 
reproductive phase

Linear 0.93b Rasmussen 
(1992)

Millet and 
sorghum

FAO stats 
(subdistrict 
level)

Niger Dekadal NDVI NOAA-
AVHRR

No Single and fixed date 
standardized NDVI, 
standardization of 
yield

Linear 0.28–
0.72b

Maselli 
et al. 
(1993)

Millet Official stats 
(provincial 
level)

Burkina 
Faso

Dekadal NDVI NOAA-
AVHRR

No Single-date NDVI, 
integration, 
multi-dekad 
multiple regression

Linear and 
quadratic

Up to 
0.87b

Groten 
(1993)

Wheat Official stats 
(sub-provincial 
level)

Italy Dekadal NDVI NOAA-
AVHRR

No NDVI integration 
during a fixed grain 
filling period

Linear 0.52b Benedetti 
and 
Rossini 
(1993)

Maize Official stats 
(production 
district level)

United 
States

Weekly NDVI NOAA-
AVHRR

Transformation into 
VCI (vegetation 
condition index)

Quadratic 0.54b Hayes and 
Decker 
(1996)

Maize Official stats 
(district level)

Kenya Dekadal NDVI NOAA-
AVHRR

No Annual maximum 
NDVI

Linear 0.56a Lewis et al. 
(1998)

Millet Field-level data Senegal 9-Day NDVI 
(plus 
environmental 
and climatic 
data)

NOAA-
AVHRR

Not applicable NDVI integration 
during a fixed grain 
filling period

Linear (and 
multi-
linear)

0.76b 
(0.88b)

Rasmussen 
(1998)

Millet and 
sorghum

FAO stats 
(subdistrict 
level)

Niger Dekadal NDVI, 
corrected for 
background 
effect

NOAA-
AVHRR

Yield-
masking 
approach 
(see Section 
3.6)

Standardization of 
NDVI and yield, 
selection of the 
contiguous 3 dekads 
having maximum 
correlation with yield

Multi-linear 0.62b Maselli 
et al. 
(2000)

Main 
cereals

FAO stats 
(country level)

North 
Africa

Monthly NDVI 
composite

NOAA-
AVHRR

Yield-
masking 
approach 
(see Section 
3.6)

Selection of the 
monthly NDVI 
composite having 
maximum 
correlation with yield

Linear 0.65–
0.93a

Maselli and 
Rembold 
(2001)

Maize Official stats 
(province-level 
production)

Kenya Deakadal NDVI 
(plus modeled 
meteo  data, and 
water balance 
model output)

SPOT-
VGT

Yes Area fraction cover 
weighting of NDVI, 
NDVI integration 
during a fixed 
growing season

Multi-linear 0.81a, 
0.83b

Rojas 
(2007)

Wheat Official stats 
(province 
level)

Marocco Dekadal NDVI 
(plus rainfall 
and air 
temperature)

NOAA-
AVHRR

Yes Selection of best yield 
predictor 
combination

Stepwise 
regression

0.97a Balaghi 
et al. 
(2008)

Wheat Official stats 
(province 
level)

Belgium 
and 
northern 
France

GAI (Green 
area index)

MODIS Yes Maximum GAI 
value and 
phenology metric

Multi-
linear

0.70–
0.72a

Koaudio 
et al. 
(2012)

Wheat Official stats 
(district level)

Tunisia Dekadal FAPAR SPOT-
VGT

Yes Cumulative FAPAR 
value during 
growing season (as 
from phenology 
retrieval)

Panel 
regression 
model

0.77a Meroni 
et al. 
(2013a)

a	Cross-validated.
b	Fitting.
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Rasmussen (1998) used multiple regression models by intro-
ducing environmental information such as grazing pressure, 
density, and percentage of cultivated land, and arrived to explain 
88% of the millet grain yield variance. Rojas (2007) used the 
actual evapotranspiration (ETa) calculated by the FAO CWSB 
model and the CNDVI as independent variables in a regression 
analysis in order to estimate maize yield in Kenya during the 
first cropping season. CNDVI and ETa combined explained 83% 
of the maize crop yield variance with a root mean square error 
(RMSE) of 0.33 t/ha (coefficient of variation of 21%). The optimal 
prediction capability of the independent variables was 20 and 
30 days for the short and long maize crop cycles, respectively. If 
validated over long time series, such models are expected to be 
utilized in an operational way.

Although linear regression modeling is likely the most com-
mon method to produce yield predictions by using remote 
sensing–derived indicators together with bioclimatic informa-
tion, this is not the only one. Numerous other methods have 
been developed that include, for instance, similarity analysis 
and (nonlinear) neural networks (NN; Stathakis et al., 2006).

4.3.3  Use of Monteith’s Efficiency Equation

Remotely sensed images were first proposed in the 1980s for 
assessing and mapping the crop’s assimilation potential. One 
of the first steps in this direction was the introduction of the 
Monteith’s light-use efficiency equation (Monteith, 1972, 1977). 
In this approach, it is assumed that the biomass production can 
be described as the simple multiplication of three variables: the 
incident photosynthetically active radiation (PAR, 400–700 nm); 
the PAR fraction, which is actually absorbed by the vegetation 
layer (fAPAR), and finally εb, the energy to DM conversion factor.

The approach has a sound physiological basis as the biomass 
production of a crop is linearly related to the amount of photo-
synthetically active solar radiation (PAR) absorbed (Tucker and 
Sellers, 1986). Other important climatic and ecological factors 
(e.g., temperature conditions and water/nutrient availability) 
controlling actual photosynthesis can be used to modulate the εb.

The amount of radiation available to the photosynthetic process 
is the absorbed solar radiation (APAR) and is a function of the 
incoming PAR and the crop’s PAR interception capacity, fAPAR:

	
fAPAR

APAR

PAR
= 	 (4.1)

fAPAR depends mainly (but not solely) on the leaf area of the 
canopy (Baret et  al., 1989). Generally, an exponential relation 
between LAI and fAPAR is admitted:

	 fAPAR = fAPARmax (1 − exp(−k × LAI))	 (4.2)

with fAPARmax between 0.93 and 0.97 and extinction coeffi-
cient k between 0.6 and 2.2 (Baret et  al., 1989). The close link 
between fAPAR and LAI also explains why so many studies 
attempt mapping leaf area (Guérif and Delécolle, 1993).

Similarly, a close link between NDVI and fAPAR has been 
confirmed from both theoretical considerations and experimen-
tal field studies (Myneni and Williams, 1994). The studies agree 
that a quasi-linear relation between NDVI and fAPAR can be 
assumed:

	 fAPAR = a + b × NDVI	 (4.3)

Most studies reviewed by Atzberger (1997) found a slope (b) 
between 1.2 and 1.4 and an intercept (a) between −0.2 and −0.4. 
The negative intercept reflects the fact that the NDVI of bare 
soils (i.e., fAPAR = 0) is often between 0.2 and 0.4.

The relation between fAPAR and NDVI is not surprising 
because PAR interception and canopy reflectance/NDVI are 
functionally interdependent as they both depend on the same 
factors (Baret, 1988; Baret et al., 1989). The main factors deter-
mining PAR interception and canopy reflectance/NDVI are 
(in the order of decreasing importance) (1) LAI, (2) leaf optical 
properties (especially leaf pigment concentration), (3) leaf angle 
distribution, (4) soil optical properties, and (5) the sun–target–
sensor geometry.

The mechanism by which the incident PAR is transformed 
into DM can be written as (Steinmetz et al., 1990)

	 ∆DM PAR fAPAR b= × ×ε 	 (4.4)

with
ΔDM is the net primary production (NPP) (g·m−2·day−1)
PAR is the incident photosynthetically active radiation 

(MJ·m−2·day−1)
fAPAR is the fraction of incident PAR that is intercepted and 

absorbed by the canopy (dimensionless)
εb is the light-use efficiency of absorbed photosynthetically 

active radiation (g·MJ−1).

When calculated over the entire growth cycle—and in the 
absence of growth stresses—the light-use efficiency (εb) is rela-
tively constant for crops like winter wheat (with a value of about 
2.0 g·MJ−1) (Baret et al., 1989). However, the light-use efficiency is 
not constant when calculated over small periods of the growth cycle 
(Steinmetz et al., 1990; Leblon et al., 1991). The short-term variabil-
ity of the light-use efficiency is a result of temperature, nutrient, and 
water conditions that eventually can lead to plant stress.

Remotely sensed data can be well used in Monteith’s efficiency 
equation (Equation 4.4) if one manages to map the seasonal cycle of 
fAPAR (i.e., if enough images are available so that the full temporal 
fAPAR profile can be reconstructed). Incident PAR must be also 
known (e.g., from meteorological stations) or estimated (e.g., using 
general circulation model as done by ECMWF, using meteorologi-
cal satellite observations as in Roerink et al., 2012). As explained, at 
the same time, the light-use efficiency (εb) must either be relatively 
constant/known or should be assessed using other remote sensing 
inputs (e.g., from thermal data revealing plant stress).

Provided that enough images are available, the seasonal inte-
gration of radiometric measurements theoretically improves the 
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capability of estimating biomass compared to one-time measure-
ments, since the approach is based on sound physical and bio-
logical theory, whereas the relationship between instantaneous 
measurements of canopy reflectance and biomass is mainly empir-
ical (Baret et  al., 1989). For example, Figure 4.8 shows the close 
correspondence between seasonally integrated absorbed PAR 
(fAPAR × PAR) and the DM at harvest for nine commercial winter 
wheat plots in the Camargue region of France (Atzberger, 1997).

Nowadays, fAPAR is routinely assessed using various 
approaches and algorithms (Verstraete et  al., 1996; Gobron 
et al., 2002; Baret et  al., 2013) and applied to different sensors 
(VGT, MODIS, AVHRR, and others). Likewise, operational NPP 
products based on Monteith’s formula are available.

Monteith’s efficiency equation has been further extended to 
include, for example, temperature dependency of photosynthe-
sis and respiration. For example, VITO (Eerens et al., 2004) uses 
the following formula for the NPP calculation:

	 ∆DM PAR fAPAR p(T) CO fert r(T)b= × × × × × −ε 2 1( ) 	 (4.5)

where
ΔDM is the increase in DM or NPP (g·m−2·day−1)
PAR is incident photosynthetically active solar radiation 

(MJ·m−2·day−1)
fAPAR is fraction of intercepted and absorbed PAR calculated 

by means of a linear equation from NDVI (dimensionless)
εb is photosynthetic efficiency (g·MJ−1)
p(T) is normalized temperature dependency factor 

(dimensionless)
CO2fert is normalized CO2 fertilization factor [85] 

(dimensionless)
r(T) is fraction of assimilated photosynthesis consumed by 

autotrophic respiration; r is modeled as a simple linear 
function of daily mean air temperature

Hence, compared to Equation 4.4, εb is reduced/increased as 
a function of temperature and CO2 content to mimic the ear-
lier-mentioned plant reactions to changing growth conditions. 
Similar approaches are often used in NPP approaches (Goward 
and Dye, 1987).

To calculate final yield (Y) from Equation 4.4 or Equation 4.5, 
it has to be assumed that a portion of the cumulated biomass 
at the end of the growing season (the harvest index, HI) is the 
harvestable yield, that is,

	
Y HI DM

sowing

harvest

= × ∑ ∆ 	 (4.6)

The HI may be obtained by traditional regression analysis 
between primary production and statistical crop yields.

A number of studies found that the use of cumulated DM over 
the crop growing period gives more reliable results compared 
with NDVI for crop yield forecasting in many Mediterranean 
and Central Asian countries. For corn, Gallo et  al. (1985), 
for example, found that the cumulated daily absorbed PAR 
explained 73% of the variance in the observed grain yield. The 
absorbed PAR was computed from the daily incident PAR and 
fAPAR predicted from NDVI. Only 56% and 58% of variance 
were accounted by the cumulated LAI and cumulated NDVI, 
respectively. Similarly, Meroni et  al. (2013a) found that the 
cumulative value of APAR during the growing season explained 
80% of the wheat yield variability in Tunisia. Several other stud-
ies using this technique are summarized in Table 4.4.

The main disadvantage of models based on Monteith’s effi-
ciency equation relates to their need for complete series of 
fAPAR information from sowing to harvest. Such information 
is currently provided (at the necessary temporal frequency) only 
at coarse spatial resolution. Of course, these data are often too 
coarse to resolve, for example, individual fields.

4.3.4 � Remote Sensing Data Assimilation 
into Dynamic Crop Growth Models

The approaches described in the previous sections aimed either 
to qualitatively assess vegetation vigor (by comparing observed 
vegetation greenness against the “normal” situation) or to quan-
titatively estimate the crop yield using semiempirical regression 
techniques.

In this section, we will introduce a group of techniques involv-
ing modeling of crop physiology including feedback mecha-
nisms. Approaches in this group of techniques are also known 
as crop growth modeling, soil–vegetation–atmosphere transfer 
(SVAT) modeling, or agro-meteorological modeling.

As defined by Delécolle et  al. (1992), crop growth model-
ing involves the use of mathematical simulation models for-
malizing the analytical knowledge previously gained by plant 
physiologists. The models describe the primary physiological 
mechanisms of crop growth (e.g., phenological development, 
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figure 4.8  Linear relation between the seasonally integrated 
absorbed PAR (from sowing to harvest) and dry matter at harvest 
(g·m−2). Each point corresponds to one commercial winter wheat plot 
(n = 9). (From Atzberger, C., Estimates of Winter Wheat Production 
through Remote Sensing and Crop Growth Modelling: A Case Study on 
the Camargue Region, Verlag für Wissenschaft und Forschung, Berlin, 
Germany, 1997.)
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photosynthesis, DM portioning, and organogenesis), as well 
as their interactions with the underlying environmental driv-
ing variables (e.g., air temperature, soil moisture, and nutrient 
availability) using mechanistic equations (Delécolle et al., 1992). 
Importantly, state variables (such as phenological development 
stage, biomass, LAI, and soil water content) are updated in a 
computational loop that is usually performed daily (Guérif and 
Delécolle, 1993) (Figure 4.9).

In the computational loop (Figure 4.9), model state variables 
such as development stage, organ dry mass, and LAI are linked 
to environmental driving variables such as temperature and 
precipitation, which are usually provided with a daily time step 
(Delécolle et al., 1992). Soil and plant parameters are used to 
mimic the plant’s reaction to these driving variables. Whereas 
model state variables are constantly updated within the com-
putational loop, model parameters remain unchanged during 
the simulation run (e.g., soil texture information). All state 
variables have to be initialized at the beginning of the simula-
tion run.

It worth noting that Monteith efficiency equation (described 
in the previous section) lacks the computational loop and feed-
backs included in CGMs and is therefore not a dynamic model, 
albeit it represents a physical description of the growth process.

CGMs are excellent analytical tools because they exhibit three 
distinct characteristics that distinguish them from the previ-
ously described approaches (Delécolle et al., 1992):

	 1.	 They are dynamic in that they operate on a time step for 
ordering input data and updating state variables.

	 2.	 They contain parameters that allow a general scheme of 
equations to be adopted to the specific growth behavior of 
different crop species.

	 3.	 They include a strategy for describing phenological devel-
opment of a crop to order organ appearance and portion-
ing/division of photosynthetic products.

Table 4.4  Examples of Light-Use Efficiency-Based Yield Estimation Studies

Target Crop 
Yield Data 

Aggregation 
Geographic 

Location Variables and Sources 
Crop Mask 

Used LUE Specification R2 Reference 

Maize Field level data United States VIs from field 
spectroscopy, PAR from 
field measurements

N.A. Integration during the 
whole season, constant εb

0.73a Gallo et al. 
(1985)

Rice (two 
cultivars)

Field-level data France VIs from field 
spectroscopy, PAR from 
meteorological station

N.A. Integration during the 
growing season with 
variable εb

~0.80a Leblon et al. 
(1991)

Wheat Field-level data France fAPAR from SPOT-HRV, 
PAR from 
meteorological station

N.A. Integration during the 
whole season, constant 
and fixed εb and HI

0.76a Atzberger 
(1997)

Wheat, rice, 
cotton, 
and 
sugarcane

Official stats 
(district level)

Pakistan AVHRR NDVI, linearly 
scaled to FAPAR, 
AVHRR surface 
temperature

Yes Integration during the whole 
season, εb modulated using 
temperature and water 
constraints

Relative 
RMSEb: 
26%–49%

Bastiananssen 
and Ali 
(2003)

Wheat Official stats 
(province 
level)

Italy AVHRR NDVI, linearly 
scaled to FAPAR

Yes Integration during the 
whole season, constant εb, 
HI derived from NDVI

0.73–0.77b Moriondo 
et al. (2007)

Wheat Official stats 
(district level)

Tunisia Dekadal SPOT-VGT 
FAPAR, PAR from 
ECMWF model

Yes Integration during the 
growing phase of the 
season, constant εb

0.80b Meroni et al. 
(2013a)

Maize and 
soybeans

Official stats 
(county level)

United States MODIS GPP estimates Yes Integration during the 
growing season, fixed εb 
and HI

0.66–0.77b Xin et al. 
(2013)

a	Fitting.
b	Cross-validated.

Environmental variables

Inputs for one time step

Model loop

Time
step

Time

Development
parameters

Development
routine

Development
status

Partitioning

Dry
matter

Interception

Growth
parameters

Assimilation

LAI

figure 4.9  Simplified scheme of a crop process model. Model state 
variables such as development phase, organ dry mass, or leaf area 
index are linked to input variables, including weather, geographic, and 
management variables. (Modified from Delécolle, R. et  al., ISPRS J. 
Photogramm., 47, 145, 1992.)
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The first CGMs were developed by the end of World War II 
(Sinclair and Seligman, 1996). In subsequent decades, they 
became both more complex and potentially more useful (Boote 
et al., 1996). Deterministic CGMs have been validated for cereals, 
as well as for potato, sugar beet, oilseed, rice, canola, and sun-
flower. Most of these models include water and energy balance 
modules and run on a daily time basis over the whole life cycle 
of a crop. Prominent models are, for example, CERES (Jones 
and Kiniry, 1986), WOFOST (Supit et al., 1994), OILCROPSUN 
(Villalobos et al., 1996), CROPSYST (Stöckle et al., 2003), and 
STICS (Brisson et  al., 1998). Some simpler models (without 
water and energy balance) such as SAFY (Duchemin et al., 2008) 
and GRAMI (Maas, 1992) also exist. More sophisticated models 
attempt to integrate numerous factors that affect crop growth 
and development, such as plant available soil water, tempera-
ture, wind, genetics, management choices, and pest infestations. 
Currently, attempts are made to permit the integration and com-
bination of various submodels from different model developers 
describing a specific plant behavior (e.g., phenology) (Donatelli 
et al., 2010).

The strength of CGMs as research tools resides in their abil-
ity to capture the soil–environment–plant interactions, but their 
initialization and parameterization generally require a number 
of physiological and pedological parameters that are not easily 
available. In addition, given the high model parameterization, 
careful validation strategies have to be employed for obtaining 
the required predictive power (Bellochi et al., 2010).

CGMs are covered here in some detail because CGM and 
remote sensing nicely complement each other: CGMs pro-
vide a continuous estimate of crop growth over time, while 
remote sensing provides temporally discontinuous but spatially 
detailed pictures of crop actual status (e.g., LAI) within a given 
area (Clevers and van Leeuwen, 1996; Guérif and Duke, 2000; 
Doraiswamy et al., 2003, 2004; Padilla et al., 2012). The comple-
mentary nature of remote sensing and crop growth modeling 
was first recognized by S. Maas from USDA, who described rou-
tines for using satellite-derived information in mechanistic crop 
models (Maas, 1988ab).

Remotely sensed images are particularly useful in spatially 
distributed modeling frameworks (Moulin et  al., 1998; Weiss 
et al., 2001; Running and Nemani, 1988). In this case, all model 
inputs and parameters have to be provided in spatialized form. As 
remote sensing provides spatial status maps, the use of remotely 
sensed information makes the CGM more robust (Moulin et al., 
1998; Guérif and Duke, 2000; Doraiswamy et al., 2003).

Spatialized information is readily available concerning many 
meteorological driving variables (e.g., from global circulation 
models like ECMWF). However, other parameters and initial 
conditions required by GCMs may not be available spatially, for 
instance, (1) soil, plant, and management parameters and (2) initial 
values of all crop state variables (Doraiswamy et al., 2003). In the 
following, we present different approaches for using remote sens-
ing data to fill this gap in spatially distributed crop growth model-
ing (Table 4.5). All ideas are extracted from the outstanding paper 
of Delécolle et al. (1992). Useful overviews are also given in Moulin 
et al. (1998), Bach and Mauser (2003), and Dorigo et al. (2007).

In the most straightforward way, remote sensing may be used 
to parameterize and/or initialize CGMs. Hereafter, the term 
“parameterization” refers to the provision of model parameters 
required by crop growth and agro-meteorological models, for 
example, soil texture information, photosynthetic pathway 
information, crop type, and sowing date. The term “initializa-
tion” refers to the provision of model state variables at the start 
of the simulation (e.g., the soil water content at sowing).

For the purpose of parameterization or initialization, satel-
lite imagery covering different wavelength ranges (i.e., optical 
to microwave) may be combined. In the simplest case, remotely 
sensed data are used to provide information about crop type. 
With known crop type, plant-specific parameter settings can be 
assigned (therefore the term parameterization). Optical imagery 
of bare soil conditions may be used to map soil organic matter 
content, soil texture, and soil albedo (Ben-Dor, 2002; Viscarra 
Rossel et  al., 2009). These three model parameters are often 
used in CGMs as they influence nutrient release, water capacity, 
and radiation budget (Ungaro et al., 2005). Other imagery (e.g., 
microwave) may be used to provide an estimate of soil water 
content at the beginning of the simulation run, that is, at sowing 
(Wagner et al., 2007). This will result in a model initialization, as 
the state variable “soil water content” has been attributed a value 
for the start of the simulation.

In the “recalibration” or “re-parameterization” approach, 
one assumes that some parameters of the CGM are inaccurately 
calibrated, although the model as a whole is formally adequate 
(Delécolle et al., 1992). By providing “reference” observations of 
some key vegetation properties (e.g., remotely derived LAI), some 
crop model parameters can be calibrated (Figure 4.10), provided 
that such parameters do have an effect on the vegetation property 
as described by the model. This is usually achieved by (iteratively) 
adjusting the model parameters until measured and simulated 
temporal profiles of the selected variable (here LAI values) match 

Table 4.5  Techniques Used for Assimilating Remote Sensing Data in Dynamic Crop Growth Models

Technique Example 

Recalibration or re-parameterization 
of CGM

Maas (1988a,b, 1992), Bouman (1992, 1995), Clevers and van Leeuwen (1996), Launay and Guérif (2005), Clevers 
et al. (1994), Guérif and Duke (1998)

Reinitialization of CGM Bach and Mauser (2003), Nouvellon et al. (2001), Guérif and Duke (1998), Doraiswamy et al. (2003)
Forcing of CGM Maas (1988a,b), Bouman (1995), Clevers et al. (2002)
Updating of CGM Bach and Mauser (2003), Pellenq and Boulet (2004)

Note that the provided examples sometimes combine two techniques. The “forcing” technique has been added to the table to complete the list, albeit it is not 
strictly speaking an assimilation technique.
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each other (Doraiswamy et al., 2003). In spatially distributed mod-
eling, this recalibration has of course to be done pixel by pixel.

The “reinitialization” of CGMs works in a very similar way; 
however, instead of adjusting model parameters, one simply 
tunes the initial values of state variables until a good match 
between observed and simulated state variables is obtained. In 
both cases, the remote sensing–derived variables are considered 
as an absolute reference for the model simulation. The exact 
timing of the remotely sensed observations is of minor impor-
tance. Already as few as one reference observations are useful 
(Atzberger, 1997; Launay and Guerif, 2005; Baret et  al., 2007). 
However, the more satellite observations are available and the 
better they are distributed across the growing season, the more/
better model parameters can be calibrated and/or initialized 
(Doraiswamy et al., 2003).

Alternatively, one may also choose to infer important state 
variables from remotely sensed data for each time step of the 
model simulation (e.g., LAI) for direct ingestion into the model, 
thus “forcing” the model to follow the remotely sensed infor-
mation (Figure 4.11, left). Such a simplification makes CGMs 
very similar to the Monteith efficiency equation (Equation 4.4), 
as one breaks the computational loop in the model shown in 
Figure 4.10. As the model does no longer determine the values 
of that variable by itself, inconsistent model states may result 
(Delécolle et al., 1992).

In a very similar way, remotely sensed data are used in the 
“updating” of CGMs (Figure 4.11, right). One simply replaces 
simulated values of crop state variables by remotely sensed val-
ues each time these are available (not necessarily at each time 
step). The computations then continue with these updated values 
until new (remote sensing) inputs are provided. As for the “forc-
ing” method, the replacement of simulated by observed state 
variables may result in inconsistent model states as one does not 
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correct for apparent errors in the model calibration, which are 
causing the differences between simulated and observed state 
variables.

4.3.5  Yield-Correlation Masking

One obstacle to successful modeling and prediction of crop 
yields using remotely sensed imagery is the identification of suit-
able image masks (Kastens et al., 2005). Problems and possible 
solution will be described hereafter with major ideas extracted 
from the outstanding paper of Kastens et al. (2005). According 
to this paper, image masking involves restricting the analysis to 
a subset of a region’s pixels, rather than using all of the pixels 
in the scene. Cropland masking, where all sufficiently cropped 
pixels are included in the mask regardless of crop type, has 
been shown to generally improve crop yield forecasting abil-
ity. Doraiswamy and Cook (1995), for example, used 3 years of 
AVHRR NDVI imagery to assess spring wheat yields in North 
and South Dakota in the United States. They concluded that the 
most promising way to improve the use of AVHRR NDVI for 
estimating crop yields at regional scales would be to use better 
crop masks. This was also confirmed by Lee et al. (2000). They 
used a 10-year, biweekly AVHRR data set to forecast corn yields 
in the U.S. state of Iowa. They found that the most accurate fore-
casts of crop yield were made using accumulated NDVI and a 
cropland mask. Similarly, Maselli and Rembold (2001) found 
that application of cropland masks improved relationships 
between NDVI and final yield in four Mediterranean countries. 
For simplicity, in the remaining of this section, we will refer to 
NDVI although any other remote sensing indicator of vegetation 
biomass and vigor can be used (e.g., fAPAR, LAI, other VIs).

For crop yield forecasting, the ideal approach would be to 
use crop-specific masks. This would allow one to consider only 
the remote sensing information pertaining to the crop of inter-
est. However, when such masking is applied to multiple years of 
imagery, several difficulties arise (Becker-Reshef et  al., 2010b). 
A major problem relates to the widespread practice of crop rota-
tion. In areas with crop rotation, a single and static crop-specific 
mask would not be appropriate. Instead, year-specific masks 
would be needed. For retrospective analysis, this implies the 
production of a crop mask for each year of interest, a challenging 
but still feasible task using the observed NDVI temporal profiles. 
However, in operational yield forecasting, this task presents even 
greater difficulties, as only incomplete growing season NDVI 
information is available. This is especially true early in the sea-
son, when the crop has low biomass and does not produce a large 
NDVI response.

A more feasible alternative to crop-specific masking is crop-
land masking, which refers to using pixels dominated by “ara-
ble land.” The   studies discussed earlier used this approach. 
Cropland masks usually are derived from existing land use/
land cover (LU/LC) maps. If the area of interest was not subject 
to major land use changes with regard to cropland during the 
period of interest, a single mask can be applied. Albeit simpler 
to realize compared to crop-specific masking (i.e., one mask 

per crop type and year), it has to be considered that all agricul-
tural crops are now lumped in the general class of “cropland.” 
Thus, crop-specific growth patterns are neglected.

To overcome the shortcomings related to cropland masking 
and crop-specific masking, Kastens et al. (2005) proposed a new 
masking technique, called yield-correlation masking. The main 
idea behind this concept is that all vegetated pixel in a region 
(i.e.,  crops and natural vegetation) integrate the season’s cumu-
lative growing conditions in some fashion. Hence, in the yield-
masking approach, all pixels are considered for use in crop yield 
prediction. In practical terms, yield-correlation masking gener-
ates a unique mask for each NDVI variable (e.g., each time step at 
which NDVI is available) and each combined pair of crop x region. 
The technique is initiated by correlating each of the historical, 
pixel-level NDVI variable values with the region’s yield history. 
The highest correlating pixels are retained for further processing 
and evaluation of the (NDVI) variable at hand. A diagram outlin-
ing this process for a single NDVI variable is shown in Figure 4.12.

Though computationally intensive, the yield-correlation 
masking technique overcomes the major problems afflicting 
crop-specific masking and cropland masking. Unlike these 
approaches, yield-correlation masking readily can be applied to 
low-producing regions and regions possessing sparse crop distri-
bution. Also, since yield-correlation masks are not constrained 
to include pixels dominated by cropland, they are not necessarily 
hindered by the weak and insensitive NDVI responses exhibited 
by crops early in their respective growing seasons. Furthermore, 
once the issue of identifying optimal mask size (i.e., determining 
how many pixels should be included in the masks) is addressed, 
the entire modeling procedure becomes completely automated.

The most important appeal of yield-correlation masking is 
that no land cover map is required to implement the procedure, 
while the procedure results in forecasts of comparable accuracy 
to those obtained when using cropland masking or crop-specific 
masks (Kastens et  al., 2005). The procedure requires only an 
adequate time series of imagery and a corresponding record of 
the region’s crop yields. Problems regarding this approach can 
be expected when the land cover/land use of the selected yield 
proxies changes. In addition, the procedure used to select the 
pixels to be retained in the mask increases the parameteriza-
tion of the final yield forecast model, so that its predictive power 
must be carefully scrutinized. The combined use of data sets 
from different sensors remains difficult, given the observed large 
discrepancies described, for example, in Meroni et al. (2013b).

A recent application of the yield-masking approach is 
presented in Mello et  al. (2014), and described hereafter. The 
study is focused on the estimation of sugarcane yield at the 
municipal level in Brazil. For each municipality, yearly sug-
arcane yield data from 2003 to 2012 are available as reference 
information (IBGE, 2013).

To model yield, weekly smoothed and gap-filled MODIS 
NDVI time series (MOD13) from BOKU University (Austria) 
was used (Atzberger, 2015). A rectangular area was chosen so 
that a buffer of >60 km around the centroid of each of the five 
municipalities is covered.
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To simulate within-seasonal yield forecasts in near-real time 
for 2012, the official yield data from 2003 to 2011 were used to 
select, within the area covered by the MODIS time series, the 
100 pixels where the NDVI time series best match the yield time 
series. These 100 pixels are called proxies. The quality of the 
match between official yield and remote sensing time series was 
based on the RMSE between the two variables. Before calculat-
ing the RMSE, both variables were standardized to zero mean 
and unit standard deviation.

Proxy selection was done in weekly intervals from January to 
June 2012, always considering the average of the last 10 weeks 
(starting from the week of interest) of standardized NDVI. From 
the selected proxies of each week, yield was estimated using the 
median of the (standardized) NDVI values. The official yield 
data for 2012 (not used to select proxies) were then used to assess 
the weekly estimates over the year 2012.

The weekly differences between official and modeled yield are 
shown (in % difference) in Figure 4.13 for each of the five munic-
ipalities as well as for all municipalities together; values above 
zero indicate overestimated yield.

The thick gray line, representing the average of the differ-
ence for the five municipalities tested, revealed that the remote 
sensing approach proposed showed an increasing overestima-
tion of the sugarcane yield between February and June 2012. 
The development of sugarcane reaches its maximum in March 
(which is also the end of the rainy season), when sugar accu-
mulation period usually ends. As sugarcane yield is strongly 
influenced by the sugar contents, this period is critical to define 
yield (Rudorff and Batista, 1990a). In fact, Figure 4.13 showed 
that the period from January to March presented the best esti-
mates for remote sensing–based yield (when the differences 

between remote sensing–based and official yield were close to 
zero). From April to June, the remote sensing approach tended 
to overestimate sugarcane yield for all municipalities evaluated. 
The reduced performances of the model are justified by the fact 
that this period represents the start of the harvest season in São 
Paulo, which ends in December (Rudorff et al., 2010). Although 
remote sensing–based estimates in January were found to be 
already valuable to predict sugarcane yield with good accuracy 
for this particular year, in operational yield forecasting, it would 

11 images
corresponding
to a particular
NDVI-based

variable
(1 image/year)

Year 3

Year 11

NDVI-based variable value increases
from light gray to dark gray.

Compute
spatial average

of retained
pixels

Apply to
image stack
from  rst

step
By choice of threshold,
obtain a mask with a

particular area
(black pixels retained
for further analysis)

(keeping
highest
values)

�reshold
to obtain

mask

r-value increases from
light gray to dark gray.

Correlation
map

Pixel-by-pixel

correlation

11
Regional
 nal yield
estimates

�e variable’s time
series representation
in the variable pool

x1
x2
x3

x11

.

.

.

y1
y2
y3

y11

.

.

.

Year 2
Year 1

figure 4.12  Illustration of the yield-masking approach involving a data set of 11 years. (From Kastens, J.H. et al., Remote Sens. Environ., 99, 
341, 2005.)

Caiuá
Marabá Paulista
Presidente Venceslau
Santo Anastácio
Teodoro Sampaio
Mean for the �ve municipalities

% 
D

i�
er

en
ce

 b
et

w
ee

n 
es

tim
at

ed
an

d 
ob

se
rv

ed
 yi

el
d

Jan Feb Mar
2012

25

20

15

10

5

0

–5
Apr May Jun
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estimated based on the yield-masking approach and the official yield 
published by IBGE (2013). (From Mello, M.P. et  al., Near real time 
yield estimation for sugarcane in Brazil combining remote sensing and 
official statistical data, in Proceedings of the 34rd IEEE International 
Geoscience and Remote Sensing Symposium (IGARSS 2014), IEEE, 
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be important to monitor yield throughout several months, espe-
cially until April, to spot possible reduction of the forecasted 
yield, since heavy rains as well as frost in some growing areas 
may affect the sugar concentration and, consequently, yield 
(Monteiro and Sentelhas, 2014).

4.4 C rop Acreage Estimation

Cropland areas are often characterized by a diverse mosaic of 
LULC types that change over various spatial and temporal scales 
in response to different management practices and agricultural 
policies (e.g., Galford et al., 2008; Epiphanio et al., 2010; Hostert 
et  al., 2011; Kuemmerle et  al., 2011; Atzberger and Rembold, 
2013). As a result, detailed regional-scale cropping patterns 
need to be mapped on a repetitive basis (Wardlow et al., 2007; 
Atzberger and Rembold, 2012; Vieira et al., 2012). As described 
earlier, in many approaches, crop masks are also necessary for 
building yield models and for obtaining signals related to the 
class of interest (e.g., the actual crop being investigated). Some 
important applications requiring information about cropped 
surfaces and crop type area are listed in Table 4.6.

For example, information about crop extent (often referred 
to as “acreage”) is necessary to better understand the role and 
response of regional cropping practices in relation to various 
environmental issues (e.g., climate change, groundwater deple-
tion, soil erosion) that potentially threaten the long-term sus-
tainability of major agricultural producing areas (Galford et al., 
2008). Monitoring the time and location of land cover changes is 
important for establishing links between policy decisions, regu-
latory actions, and subsequent land use activities, as outlined by 
Galford et  al. (2008). Determining the physical and temporal 
patterns of agricultural extensification or expansion and inten-
sification is the first step in understanding their implications, 
for example, for long-term crop production and environmental, 
agricultural, and economic sustainability (Galford et al., 2008). 
The acreage of the different crops must also be known for each 
growing season for accurate production estimates (Gallego, 2005; 

Baruth et al., 2008). The recent review paper of Olofsson et al. 
(2014) offers a guidance for accurate estimation and change in 
land use, whereas the excellent work of Wardlow et  al. (2007) 
provides a valuable discussion of different approaches focused 
on crop mapping. The following is a summary of the latter work.

4.4.1 �C rop Mapping Using High-Resolution 
Satellite Data

Remotely sensed data from satellite-based sensors have proven 
useful for large-area LULC characterization due to their synop-
tic and repeat coverage. Considerable progress has been made 
classifying LULC patterns using multispectral, high-resolution 
Landsat TM data as a primary input (Vogelmann et al., 2001).

In most cases, crop maps are generated by supervised clas-
sification (Congalton et al., 1998; Beltran and Belmonte, 2001). 
EO images for classification are generally acquired at key pheno-
logical stages for optimizing class separability. These approaches 
are labor and cost intensive, and require amounts of cloud-free 
high–spatial resolution imagery. This impedes an operational 
implementation over large areas and in multiple years (Lobell 
and Asner, 2004). Data availability—particularly if specific 
crop stages need to be imaged—is often insufficient (Annoni 
and Perdiago, 1997). Although generally feasible, the problems 
mentioned have limited the possibility of automatically updat-
ing land cover maps over large areas at regular (annual) inter-
vals (Chang et al., 2007). For example, for the United States, it is 
expected that the Landsat-based National Land Cover Database 
(NLCD) will result in a 6-year delay between data collection and 
product availability (Lunetta et al., 2006). The NLCD of 2011, for 
example, became available at the time of writing (2014).

Conventional pixel-based procedures of digital classification 
occasionally reveal difficulties regarding the automatic pattern 
recognition, mainly because of the phenological variability of 
crops, different cropping systems, and nonuniform measure-
ment conditions (e.g., atmospheric disturbances) (Vieira et al., 
2012). This is particularly true in cases using only single-date 
imagery. In such a context, object-based image analysis (OBIA) 
using multi-temporal (satellite) imagery appears promising.

The most common approach used to generate image objects 
is image segmentation (Pal and Pal, 1993; Benz et al., 2004). The 
segmentation process is the subdivision of an image into homoge-
neous regions through the grouping of pixels in accordance with 
determined criteria of homogeneity and heterogeneity (Haralick 
and Shapiro, 1985; Comaniciu and Meer, 2002). For each object 
created in a segmentation process, spectral, textural, morphic, 
and contextual attributes can be generated and may be employed 
in image analysis (Blaschke, 2010). In very-high-resolution (VHR) 
images, textural and shape information is particularly important.

After the process of outlining objects in an image, the next 
step is to assign them to a certain class, by comparing objects 
identified in the image with patterns previously defined, thus 
performing the classification of image objects considering them 
thematically homogeneous. This is what is called object-oriented 
classification (Whiteside and Ahmad, 2005).

Table 4.6  Main Applications of Agriculture-Related LULC Maps 
Derived from Remote Sensing

Application Example 

Estimation of agricultural 
production

Bolton and Friedl (2013), Becker-
Reshef et al. (2009), Becker-Reshef 
et al. (2010b), Pittman et al. (2010)

Monitoring of agricultural 
management practices

Brown and Pervez (2014), Han et al. 
(2012)

Monitoring of the effects of climate 
change on agriculture

Brink and Eva (2009), Romo-Leon 
et al. (2014)

Monitoring of agricultural policies De Beurs and Henebry (2004), 
Bryan et al. (2009)

Assessment of the impact of 
agriculture on natural resources

Cardille and Foley (2003), Dale and 
Polasky (2007), Duro et al. (2007)

Crop masking Becker-Reshef et al. (2010a), Kogan 
et al. (2013)

Unmixing of coarse-resolution 
satellite data

Oleson et al. (1995), Maselli et al. 
(1998), Busetto et al. (2008)
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Having a sometimes huge set of attributes for automatic 
classification available, it may be very difficult for a human to 
identify the optimum descriptive attributes of the objects for 
a successful classification (Witten and Frank, 2005). In such 
cases, DM techniques can be employed. DM techniques enable 
the automatic generation of a structure of knowledge (Silva 
et al., 2008). Among the many available DM techniques, deci-
sion trees (DTs)—and ensemble of DTs called “random forest” 
(Breiman, 2001)—are particular easy and appealing. An impor-
tant advantage of classification trees is that they are structurally 
explicit, allowing for clear interpretation of the links between 
the dependent variable of class membership and the indepen-
dent variables of remote sensing and/or ancillary data (Lawrence 
and Wright, 2001). An operational example of the application 
of DT algorithm is the annual national-level coverage product 
of the United States (Cropland Data Layer; Boryan et al., 2011).

DTs have been preferred to statistical classifiers such as maxi-
mum likelihood classifier because they do not make implicit 
assumptions about normal distributions in the input data 
(Friedl and Brodley, 1997). As stated by Brown de Colstoun et al. 
(2003), DT classifiers can also accept a wide variety of input data, 
including non–remotely sensed ancillary data and in the form 
of both continuous and/or categorical variables. Further advan-
tages of DTs include an ability to handle data measured on dif-
ferent scales, lack of any assumptions concerning the frequency 
distributions of the data in each of the classes, flexibility, and 
ability to handle nonlinear relationships between features and 
classes (Friedly and Brodley, 1997).

Peña-Barragán et  al. (2011) successfully combined OBIA 
and DT methodology for identification of 13 major crops culti-
vated in the agricultural area of Yolo County (California, USA). 
They explored the use of several vegetation indices and textural 
features derived from visible, near-infrared, and short-wave 
infrared bands of ASTER satellite scenes collected during three 
distinct growing season periods. Their multi-seasonal assess-
ment of a large number of crop types and field status reported an 
overall accuracy of 79%.

Brown de Colstoun et al. (2003) used multi-temporal ETM+/
Landsat-7 data and a DT classifier to map 11 types of land cover 
classes, acquiring a final land cover map with an overall accu-
racy of 82%. Grouping the 11 land cover classes in forest vs. non-
forest classes, this same accuracy was 99.5%.

Vieira et al. (2012) combined OBIA and DT to map harvest-
ready sugarcane in Brazil. To derive the binary map indicating 
the area of harvest-ready sugarcane, four Landsat images (TM-5 
and ETM+) acquired between September 2000 and March 2001 
were used. An overview of the methodology and processing steps 
is outlined in Figure 4.14. For image segmentation, eCognition 
software was used and resulted in a quite precise delineation of 
the different field boundaries (Figure 4.15). A large number of 

4. Interpretation
and evaluation

5. Classification of
multi-temporal series

6. Evaluation of
classi�cation

Decision tree

Definiens developer WEKA

Patterns

3. Data mining

2. Training set

1. Segmentation

Segmented images

Attribute table

Multi-temporal
series

Computational environments

figure 4.14  Flowchart illustrating the main stages that are part of the OBIA+ DM approach proposed to classify sugarcane areas (RH) from 
Landsat time-series images. Hachures illustrate the different computational environments used in each methodological stage. Broken-lined arrows 
indicate iteration possibilities. (From Vieira, M.A. et al., Remote Sens. Environ., 123, 553, 2012.)

figure 4.15  Example of the segmentation result used by Vieira 
et al. (2012) for mapping harvest-ready sugarcane. The underlying RGB 
composite consists of a TM image taken in the month of February 2011, 
with composition R(4) G(5) B(3). (From Vieira, M.A. et al., Remote Sens. 
Environ., 123, 553, 2012.)
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attributes were afterward extracted for each polygon (object). 
The attributes included spectral, spatial, and textural features as 
described in Blaschke (2010).

The map shown in Figure 4.16, depicting the location of 
harvest-ready sugarcane fields, was derived by application of the 
trained DT. Validation using an independent set of 500 reference 
points not used during DT training yielded an overall accuracy 
of 94% (Kappa 0.84).

Interestingly, only a small set of features was selected by the 
DT for obtaining these good results (i.e., NDVI, spectral signa-
tures, and one textural feature). As expected, multi-temporal 
information was necessary to differentiate between harvest-
ready sugarcane and the other land uses. Textural attributes 
were relevant where and when areas with high-biomass sugar-
cane were confounded with other high-biomass areas (e.g., for-
ests). Spatial attributes (e.g., shape, dimension) were not selected 
in this study area since most agricultural fields, both sugarcane 
and the other crops, had similar geometric characteristics.

4.4.2 �C rop Mapping Using Medium- to 
Coarse-Resolution Satellite Data

At national to global scales, advances have been made in LULC 
classification using multi-temporal, coarse-resolution data such 
as SPOT-VGT or NOAA-AVHRR (Loveland et al., 2000; Defries 

et al., 1998). The high temporal resolution of satellite time series 
data allows land cover types to be discriminated based on their 
unique phenological (seasonal) characteristics (de Fries et  al., 
1998; Vuolo and Atzberger, 2012, 2014). However, few of these 
mapping efforts have classified detailed, crop-related LULC pat-
terns, particularly at the annual time step required to reflect 
common agricultural LULC changes (Wardlow et  al., 2007). 
This is mainly due to the mixed nature of coarse-resolution pix-
els. For similar reasons, it is not surprising that existing LULC 
maps often reveal strong differences, making harmonization 
attempts necessary (Vancutsem et al., 2013). Indeed, most glob-
ally available land cover products reveal significant differences, 
even if maps are recoded into a few (broad) classes. This is exem-
plified in Figure 4.17 for Europe.

The observed differences constitute a real limitation for using 
remote sensing data. This is unfortunate, as coarse-resolution 
satellite data will constitute for a number of years the main input 
for regional-scale crop mapping and monitoring protocols. The 
situation will probably change significantly only with the launch 
of Sentinel-2 (scheduled for mid-2015) offering five-daily global 
revisit time at 10 m spatial resolution. Today, only the mentioned 
coarse-resolution data sets have wide geographic coverage and 
high temporal resolution. This is achieved at the expenses of 
their spatial resolution that, compared to the granularity of the 
landscape (i.e., typical field size), is often inadequate. Remotely 
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sensed data from traditional sources, such as Landsat, fulfill the 
spatial resolution needs, but are limited for such a protocol, due 
to their temporal resolution, availability, and/or cost.

For areas with relatively large field sizes, MODIS provides 
interesting data at 250 m spatial resolution in particular com-
pared to (1–8 km) AVHRR and 1 km SPOT-VGT data. This offers 
an opportunity for a more detailed, large-area LULC character-
ization by providing global coverage with daily revisit frequency 
and intermediate spatial resolution (Justice et al., 2002). The data 
set is available at no cost, including 16-day composites of NDVI 
and enhanced vegetation index updated every 8  days. Several 
studies have already successfully demonstrated the potential of 
these data for detailed LULC characterization in an agricultural 
setting (Lobell and Asner, 2004; Wardlow et al., 2007; Lunetta 
et al., 2010).

Wardlow et al. (2007), for example, found that MODIS time 
series at 250 m ground resolution had sufficient temporal and 
radiometric resolution to discriminate major crop types and 
crop-related land use practices in Kansas, United States. For 
each crop, a unique multi-temporal VI profile consistent with 
the known crop phenology was detected. Most crop classes were 
separable at some point during the growing season based on 
their phenology-driven differences expressed in the VI tempo-
ral trajectory. Even regional intra-class variations were detected, 
reflecting the climate and planting date gradient in the study 
area. They also found that MODIS’s 250 m spatial resolution was 
an appropriate scale at which to map the general cropping pat-
terns of the U.S. Central Great Plains.

Lunetta et  al. (2010) used MODIS 16-day NDVI composite 
data to successfully develop annual cropland and crop-specific 
map products (corn, soybeans, and wheat) for the Laurentian 
Great Lakes Basin. The crop area distributions and changes in 
crop rotations were characterized by comparing annual crop 
map products for 2005, 2006, and 2007.

Other studies also confirmed that crop area estimations were 
significantly improved since the introduction of the MODIS sen-
sor with 250 m ground resolution (Lunetta et al., 2006; Chang 
et al., 2007; Fritz et al., 2008; Wardlow and Egbert, 2008). Not 
surprisingly, the best results were obtained for agricultural areas 
such as the central plains of the United States and the Don River 
basin in Russia, where typical field sizes are large. Of course, for 
other parts of the world with (much) smaller field sizes, the reso-
lution of MODIS can be much less adequate.

4.4.3 � Fractional Abundances from Medium- 
to Coarse-Resolution Satellite Data

The use of coarse-resolution data is effective because it offers 
numerous advantages: global coverage and low cost, high 
temporal frequency, easy processing at a regional to conti-
nental scale, availability of long-term records (e.g., from 1980 
thanks to AVHRR instruments onboard of NOAA satellites), 
and finally continuity of data provision as ensured by sev-
eral current (MODIS, Suomi-NPP, SPOT-VGT, Proba-V) and 
planned (Sentinel-3) missions. However, because of sub-pixel 

heterogeneity, the application of traditional hard classification 
approaches faces intrinsic methodological limitations and may 
result in significant errors in the estimated crop areas (Defries 
et al., 1995; Chang et al., 2007).

To address sub-pixel heterogeneity common for many areas 
of the world with fragmented landscapes, Quarmby (1992) used 
linear mixture model techniques applied to coarse-resolution 
data. Hansen et al. (2002) used the continuous field algorithm 
for mapping vegetative traits, such as tree cover, using MODIS 
data. In the continuous field approach, each coarse-resolution 
pixel is characterized as 0%–100% cover of a vegetation class, 
ameliorating the primary limitation of coarse spatial resolution 
data (Chang et al., 2007).

Several authors combined high-resolution images with 
NOAA AVHRR 1 km imagery to improve sub-pixel crop moni-
toring capabilities (Maselli et al., 1998; Doraiswamy et al., 2004). 
However, insufficient contrast between endmembers often leads 
to unstable solutions, resulting in inaccurate fraction images 
(Lobell and Asner, 2004). On the other hand, too few endmem-
bers will fail to correctly represent the input signature.

A probabilistic linear unmixing approach with MODIS 
spectral/temporal data was developed and tested by Lobell and 
Asner (2004). The approach estimates sub-pixel fractions of 
crop area based on the temporal reflectance signatures through-
out the growing season. In this approach, endmember sets are 
constructed using Landsat data to identify pure pixels, mainly 
located within large fields. Rather than defining endmembers 
with a single spectrum, endmembers are defined as a set of 
spectra that represent the full range of potential variability. The 
uncertainty in endmember fractions arising from endmember 
variability can then be quantified using Monte Carlo techniques. 
The performance of the proposed approach was assessed over 
Mexico and the Southern Great Plains and varied depending on 
the scale of comparison. Coefficients of determination ranged 
from greater 80% for crop cover within areas over 10  km2 to 
roughly 50% for estimating crop area within individual MODIS 
pixels.

Several studies used spectral angle mapping (SAM) for 
measuring interannual crop area changes based on NDVI 
time series from NOAA-AVHRR (Rembold and Maselli, 2004, 
2006). The studies found that it was feasible to derive relatively 
accurate interannual winter crop acreage changes for the region 
of Tuscany, Italy. However, good results could be obtained only 
by estimating the crop acreage changes of single years from 
the average of a high number (seven) of reference years. The 
results were significantly worse by using less or single years of 
reference data.

Regression tree analysis was used by Chang et al. (2007) for the 
percentage of the corn and soybean area mapping using 500 m 
MODIS time series data set. The strength of the regression tree is 
its use as a DM tool. Numerous phenological measures and data 
transformations may be input to such a model to identify which 
ones are the most useful for crop-type discrimination.

Verbeiren et al. (2008) used NNs and monthly maximum value 
compositing of SPOT-VGT (between March and October) to 
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model the area fraction images (AFI) of eight classes in 2003 for 
Belgium. Relatively good results were obtained, especially if the 
initial (pixel-based) results were aggregated to coarser regional 
levels. The portability across growing seasons was investigated 
in an accompanying paper on the same data set by Bossyns et al. 
(2007). The NNs were trained on data of one growing season and 
then applied to SPOT-VGT of the training year plus three addi-
tional seasons. High and stable accuracies of the estimated AFIs 
were obtained for the training data. For example, at regional level, 
the R2 for winter wheat of the training years was ~0.8 (0.67–0.87). 
On average, however, this value decreased by 0.45 units when the 
networks were applied to different seasons, probably because of a 
too high interannual variability of the endmembers.

To better cope with the natural year-to-year variability of 
NDVI profiles of vegetated surfaces, Atzberger and Rembold 
(2013) trained networks with AVHRR time series. The target 
variable represented the sub-pixel winter crop fractional cover-
age. To permit the net distinguishing for various proportions of 
non-arable land within the mixed pixels (e.g., forested areas and 
urban land), CORINE land cover information was used as addi-
tional input. A positive impact was demonstrated regarding the 
concurrent use of ancillary information. In-season predictions 
improved compared to the mentioned work of Rembold and 
Maselli (2004, 2006) using the same data set and linear predic-
tion models. On average (median), 79% of the spatial variability 
of the (sub-pixel) winter crop abundances was explained by the 
NN approach (Figure 4.18).

For the individual years, the cross-validated R2 ranged 
between 0.70 (1988) and 0.82 (2000). The cross-validated RMSE 
values were around ~10% (relative to the winter crop area). For 
the year 2000, Figure 4.19 shows the relation between the winter 
wheat area fractions independently derived from Landsat imag-
ery and the modeled results.

The same approach was tested by Atzberger and Rembold 
(2012) for its portability across years and its usefulness to derive 
regional statistics. Data from 3  years between 1988 and 2001 
were used to train the NN (Figure 4.20). The trained net was 
then applied to the period 2002–2009.

Despite the fact that 2  years of the validation data set had 
(extreme) conditions not previously seen by the NN (e.g., with 
exceptionally high and low winter wheat areas, respectively), the 
NN performed remarkably well (Figure 4.21).

Other studies also used successfully NNs. For example, 
Atkinson et al. (1997) showed how NN can be used for unmix-
ing single-date (five wavebands) AVHRR imagery to map sub-
pixel proportional land cover. The use of NN for estimating 
sub-pixel land cover from temporal signatures was investigated 
by Karkee et al. (2009). Braswell et al. (2003) demonstrated that 
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network-based nonlinear regression offers significant improve-
ment relative to linear unmixing for the estimation of sub-pixel 
land cover fractions in the heterogeneous disturbed areas of 
Brazilian Amazonia. The improvement was related to the fact 
that linear unmixing assumes the existence of pure sub-pixel 
classes (endmembers) with fixed reflectance signatures. The NN 
approach proposed by Braswell et  al. (2003) estimates nonlin-
ear relationships between each land cover fraction and spectral-
directional reflectances, without making assumptions about the 
physics of sub-pixel mixing.

4.4.4 �C ombined Use of Satellite Data 
and Ancillary Information

The combined use of remotely sensed data and ancillary informa-
tion was presented by Mello et al. (2013c) for the case of soybean 
mapping in Mato Grosso State, Brazil. The approach is based on 
a computer-aided Bayesian networks (BNs). These networks are 
able to incorporate experts’ knowledge in complex classification 
tasks and therefore help to characterize phenomena through 
plausible reasoning inferences based on evidence. Mato Grosso 
State (total size of about 900,000 km2) was selected by Mello et al. 
(2013c) as a study region because it is the largest Brazilian soy-
bean producer (about 30% of the total domestic production) and 
an important global hub for tropical agricultural production.

For Mato Grosso, tabulated agricultural statistics at munici-
pality level exist, which are however released only with a delay 
of about 2 years after harvest. The absence of timely and spatial 
data restricts investigations related to crop monitoring and fore-
cast. It also hinders the monitoring of the possible spread of soy-
bean cropping into new, sometimes environmentally sensitive, 

areas. As such, there is demand for the use of remote sensing 
images as an accurate, efficient, timely, and cost-effective way to 
monitor agricultural crops (Rudorff et al., 2010).

Bayes’s theorem, which is used in BN, updates the knowledge 
(prior probability) of a specific event in light of additional evidence 
(conditional probabilities), allowing one to have a plausible reason-
ing based on a degree of belief (posteriori probability) (McGrayne, 
2011). Therefore, observations made upon variables that are related 
to a particular phenomenon may be used to develop plausible rea-
soning about the phenomenon, its causes, and consequences (Jaynes, 
2003). When the number of variables increases or even when the 
complexity of the interactions among the variables involved in a spe-
cific phenomenon rises, the BN is a representation suited to model 
and handle such tasks (Pearl, 1988; Jensen and Nielsen, 2007).

The joint probability of any instantiation (sometimes called 
realization) of all the variables in a BN can be computed as the 
product of only n probabilities. Thus, one can determine any 
probability of the form

	 P V V Vn( | , , )1 2 … 	 (4.7)

where Vi are sets of variables with known values. This ability 
to compute posterior probabilities given some evidence is called 
inference. In the case of using Equation 4.7 for inferences about 
a phenomenon, Mello et al. (2013c) named “target variable” the 
variable that represents the phenomenon, and “context variables” 
the variables that are somehow related to the phenomenon.

Besides remotely sensed spectral and temporal informa-
tion, several other context variables are closely related with 
soybean occurrence in a given field (e.g., soil type and dis-
tance to roads and other infrastructure facilities) (Garrett 
et  al., 2013). In the mentioned study, this information was 
combined within a BN structure to optimize soybean identifi-
cation and mapping.

The selected context variables used in the study of Mello 
et al. (2013c) to compose the model are listed in Table 4.7. From 
expert knowledge, it is known that each context variable influ-
ences soybean occurrence.

The resulting probability image (PI) is shown in Figure 4.22. 
The PI shows the spatial distribution of (the probability of) 
soybean crops throughout Mato Grosso territory in crop year 
2005/2006. Green-colored pixels represent areas with higher 
probability of soybean presence based on observation of the con-
text variables. Mello et al. (2013c) found a high agreement of the 

Table 4.7  Summary of the Six Context Variables Used in the 
Soybean Mapping Case Study of Mello et al. (2013c)

Variable Description

C CEIa value in the current crop year (2005/2006)
L CEIa value in the last crop year (2004/2005)
A Soil aptitude
T Terrain slope (given in %)
W Distance to the nearest water body (given in km)
R Distance to the nearest road (given in km)

a	Crop Enhancement Index.
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Figure 4.21  Estimated total winter crop acreage for Tuscany (Italy) 
obtained with sixteen neural nets trained with 3 years of available ref-
erence data (data set 1 of Figure 4.20) and applied to the time series 
(2002–2009) (data set 2). The red points and whiskers indicate the sim-
ulated averages and standard deviations across the sixteen individual 
nets. The 1-to-1 line is also drawn. (From Atzberger, C. and Rembold, 
F., Eur. J. Remote Sens., 45, 371, 2012.)
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mapped soybean acreage with (independent) official statistics. 
Moreover, the BN approach proposed by the authors quantified 
the influence of each context variable on soybean mapping, stat-
ing that remote sensing data were the most important variables 
used to infer about soybean occurrence.

4.4.5  Accuracy Considerations

As Olofsson et al. (2014) pointed out, “a key strength of remote 
sensing is that it enables spatially exhaustive, wall-to-wall cover-
age of the area of interest. However, as might be expected with 
any mapping process, the results are rarely perfect. Placing 
spatially and categorically continuous conditions into discrete 
classes may result in confusion at the categorical transitions. 
Error can also result from the mapping process, the data used, 
and analyst biases (Foody, 2010).” Map users on the other hand 
are acutely interested in understanding the quality of the pro-
vided maps (Olofsson et al., 2014).

The mentioned paper of Olofsson et al. (2014) provides excel-
lent guidance on how to assess map accuracy in a consistent and 
transparent manner. An example of good practice is also pro-
vided. We therefore invite interested readers to consult this work 
as well as work published by Foody (2002), Strahler et al. (2006), 
Foody (2010), and Gallego (2012).

4.5 C rop Development and Phenology

The phenological dynamics of terrestrial ecosystems—both 
natural vegetation and agricultural crops—reflect the response 
of the earth’s biosphere to inter- and intra-annual dynamics of 
the earth’s climate and hydrologic regimes (Zhang et al., 2003). 
Example NDVI images of four different months during 2005 are 
shown in Figure 4.23. The maps that cover large parts of Europe 
are derived from MODIS data at 250 m ground resolution 
(Atzberger and Klisch, 2014). Also shown are selected temporal 
profiles extracted from the same data set.
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figure 4.22  Probability image (PI) of soybean presence for Mato Grosso State, Brazil. Main soybean producer centers and the capital, Cuiabá, 
are highlighted. The color indicates the calculated probability of soybean presence in 2005/2006 given the observations made for the context 
variables. (From Mello, M.P. et al., Spatial statistic to assess remote sensing acreage estimates: An analysis of sugarcane in São Paulo State, Brazil, 
in Proceedings of the 33rd IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2013), IEEE, Melbourne, Victoria, Australia, 
2013a, pp. 4233–4236; Mello, M.P. et al., IEEE Trans. Geosci. Remote Sens., 51(4), 1897, 2013b; Mello, M.P. et al., Remote Sens., 5(11), 5999, 2013c.)
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Once again, moderate to coarse spatial resolution data possess 
significant potential for monitoring vegetation/crop dynamics 
for several reasons:

•	 Synoptic global coverage
•	 Frequent temporal sampling (e.g., daily)
•	 Short leap time (usually less than 3 days)
•	 Free and easy access

Using such (NDVI) time series, it is, for example, possible to 
extract (Figure 4.24) and monitor simple “phenological” events, 
such as the start (Figure 4.25) and peak of vegetation growth 
(Figure 4.26). For both land surface phenological events,  a 

sometimes huge interannual variability can be observed (Figure 
4.26, bottom).

Mapping of a crop’s phenological development is important 
as the phenology is sometimes closely related to biomass pro-
duction and crop yield (Meroni et al., 2014a). For example, cool 
summers may result in delayed heading and thus decreased 
yields. Besides, the temporal signature of vegetated surfaces is 
also useful for distinguishing land cover types and for mapping 
land use change (Badhwar et  al., 1982; Wardlow et  al., 2007; 
Galford et al., 2008; Vuolo and Atzberger, 2012). Several appli-
cations for land surface phenology (LSP) products are listed in 
Table 4.8.
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figure 4.23  Temporal variability of vegetation biomass (NDVI) over Europe/Maghreb. (a) Observed spatial NDVI pattern throughout the 
year 2005 derived from MODIS. From left to right are shown: March (week 12), June (week 24), September (week 37), and December (week 50). 
(b) Example temporal NDVI profiles at weekly temporal resolution from 2005 for five randomly selected pixels. Black arrows indicate the timing 
of the NDVI values relative to the aforementioned displayed maps. (From Atzberger, C. and Klisch, A., 2014.)
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This “multiple use” makes phenological metrics very interesting 
within agricultural monitoring systems. Croplands, for example, 
present a more complex phenology than natural land cover, due to 
their many peaks resulting from multiple crops planted sequen-
tially within a growing season (Galford et al., 2008; Arvor et al., 

2011; Atkinson et al., 2012) (Figure 4.23, bottom). Additionally, 
the uniform cover of green leaves in an agricultural field creates 
very high observed greenness, especially as compared to the bare 
soils left after harvest. Consequently, several studies have identi-
fied land cover based on specific properties of the observed green 
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figure 4.24  Basic phenological metrics that can be extracted from 
NDVI time series: start of season, maximum/peak of season, and end of 
season. For extracting the start of season (SOS), the relative threshold 
approach (20% of seasonal amplitude) is used and illustrated with gray 
lines. (From Atzberger, C. and Klisch, A., 2014.)
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Figure 4.25  Spatial distribution of start of season (SOS) derived 
from MODIS time series in 2007 over Europe/Maghreb. Land pixels 
without vegetation and water surfaces are masked out (in gray). (From 
Atzberger, C. et al., 2014.)
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Figure 4.26  Spatial distribution of maximum of season (MOS) 
derived from MODIS time series. (a) averaged MOS (median) over all years 
(2003–2011) and (b) interannual range. Land pixels without vegetation and 
water surfaces are masked out (in gray). (From Atzberger, C. et al., 2014.)

Table 4.8  Applications of LSP Products Related to Agriculture

Application Example

Mapping of crop development and 
conditions

Sakamoto et al. (2011), Kawamura 
et al. (2005)

Use in data assimilation approaches 
within crop growth models

Moulin et al. (1998), Boschetti et al. 
(2009)

Mapping of crop type and crop 
rotation

Moro and Manjunath (2013), Galford 
et al. (2008), Peña-Barragán et al. 
(2011)

Mapping of land cover and land use 
change

Galford et al. (2010)

Use as predictor in yield models Xin et al. (2002), Meroni et al. 
(2013a), Bolton and Friedl (2013)
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leaf phenology, such as start of season, dry season minimums, 
and amplitude of maximums (e.g., Badhwar et al., 1982; Guérif 
et al., 1996; Zhang et al., 2003; Bradley et al., 2007; Galford et al., 
2008). Other studies analyze the detected phenological indicators 
with respect to climate variables (Udelhoven et  al., 2008) and/
or run trend analysis (Jong et al., 2011). As CGMs have to order 
organ appearance and assimilation portioning/distribution, the 
phenological stage of a crop has to be simulated (mostly as a sim-
ple function of accumulated growing degree days since planting). 
Hence, externally provided information about crop emergence, 
etc., can be assimilated into such models (Moulin et al., 1998).

To determine the timing of vegetation green-up and senes-
cence from remotely sensed VI time series, a number of different 
approaches have been developed. Following Beck et al. (2006), 
the different methods can be grouped in two categories:

	 1.	 Methods estimating the timing of single phenological 
events (Reed et al., 1994; White et al., 1997; Badeck et al., 
2004)

	 2.	 Methods modeling the entire time series using a mathe-
matical function (Jönsson and Eklundh, 2002; Stöckli and 
Vidale, 2004; Beck et al., 2006)

Approaches belonging to the two groups are summarized in 
Table 4.9. Relevant references are also given.

Modeling VI time series as such has the advantage of con-
serving a maximum amount of information in the VI data, 
while reducing the dimensionality of the data (Jönsson and 
Eklundh, 2004). Therefore, in addition to the phenological 
dates, other parameters can be estimated from the models’ out-
put (Beck et al., 2006). However, such methods are difficult to 
apply for large regions and generally do not apply well for eco-
systems characterized by multiple growth cycles (e.g., double- 
or triple-cropping systems and semiarid systems with multiple 

rainy seasons). This was demonstrated, for example, recently by 
Atkinson et al. (2012) over India.

The traditional Fourier transform, for example, expects peri-
odicity in the data not always given (e.g., in the case of land use 
change). Additionally, application of Fourier transforms often 
reveals spurious oscillations (Hermance, 2007). This happens 
frequently when many harmonics have to be combined for fit-
ting nontrivial temporal patterns (e.g., related to double/triple 
cropping).

Nonstationary data with irregular temporal shapes is better 
handled by the wavelet transform (Galford et  al., 2008). In an 
agricultural application, wavelet-smoothed time series were suc-
cessfully used to identify the start of the growing season and the 
time of harvest with relatively low errors (±2 weeks) (Sakamoto 
et al., 2005). Wavelet analysis is capable of handling the range 
of agricultural patterns that occur through time, as well as the 
spatial heterogeneity of fields that result from precipitation and 
management decisions, because the transform is localized in 
time and frequency.

Curve fitting using predefined functions (e.g., double logistic) 
is another approach modeling the entire time series (Badhwar 
et al., 1982; Guérif et al., 1992; Beck et al., 2006; Meroni et al., 
2014b). A fitted curve simplifies the parameterization necessary 
for identification of metrics, such as start of season. In addi-
tion, data gaps are easily handled. A drawback of curve-fitting 
approaches is that a priori information is necessary to inform 
the algorithm about the number of cropping seasons within a 
12-month period and the probable location of vegetation peaks 
(Jönsson and Eklundh, 2004). A large number of additional tem-
poral features can be extracted using software like TimeStats 
(Udelhoven, 2011).

4.6 �E xisting Operational Agricultural 
Monitoring Systems

Agriculture monitoring is not a new concern. In fact, the basics 
of geometry and land surveying were developed in ancient Egypt 
(Luiz et al., 2011). The aim was assessing cultivated areas affected 
by water-level fluctuations of the River Nile, with the purposes of 
taxation and famine prevention.

Today, probably more urgently as ever before, a regional to 
global agricultural intelligence is needed to respond to various 
societal needs. For example, national and international agri-
cultural policies, global agricultural trade, and organizations 
dealing with food security issues heavily depend on reliable and 
timely crop production information (Becker-Reshef et al., 2010a).

Agricultural monitoring systems should be able to provide 
timely information on crop production, status, and yield in a 
standardized and regular manner at the (sub)regional to the 
national level. Estimates should be provided as early as possible 
during the growing season(s) and updated periodically through 
the season until harvest. Based on the information provided, 
stakeholders are enabled to take early decisions and identify 
geographically the areas with large variation in production 

Table 4.9  Methods for Determining Land Surface Phenological 
Events from EO Data Such As Green-Up and Senescence

Methods timing single phenological events
Use of specific (NDVI) 

thresholds
White et al. (1997), Lloyd (1990), 

Atzberger et al. (2014)
Detection of the largest 

(NDVI) increase
Kaduk and Heinmann (1996)

Use of backward-looking 
moving averages

Reed et al. (1994)

Methods modeling the entire time series
Use of principal 

component analysis
Hirosawa et al. (1996)

Use of Fourier and 
harmonic analysis

Atkinson et al. (2012), Azzali and Menenti 
(2000), Jakubauskas et al. (2001)

Use of wavelet 
decomposition

Anyamba and Eastman (1996), Sakamoto 
et al. (2005)

Curve fitting (global) Zhang et al. (2003), Beck et al. (2006), 
Jönsson and Eklundh (2002), Meroni 
et al. (2014b)

Curve fitting (local) Zhang et al. (2003)
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and productivity. The system should provide homogeneous and 
interchangeable data sets with statistically valid precision and 
accuracy. Probably, only (satellite) remote sensing—combined 
with sophisticated modeling tools—can provide such informa-
tion in a timely manner, over large areas, in sufficient spatial 
detail and with reasonable costs (Macdonald and Hall, 1980).

The first agricultural monitoring system based on remote 
sensing data was developed in the United States in the 1970s 
(Pinter et  al., 2003; Becker-Reshef et  al., 2010a). In 1974, the 
USDA, together with NASA and NOAA, initiated LACIE 
(Bauer, 1979). The goal of this experiment was to improve 
domestic and international crop forecasting methods (Pinter 
et al., 2003). With enhancements that became available from the 
NOAA AVHRR sensor, the Agriculture and Resource Inventory 
Surveys Through Aerospace Remote Sensing program was initi-
ated in the early 1980s (Pinter et al., 2003; Becker-Reshef et al., 
2010a). At this stage, the NOAA AVHRR sensor allowed for the 
first time a daily global monitoring. Through the research con-
ducted in these NASA–USDA joint programs, the considerable 
potential for use of remotely sensed information for monitoring 
and management of agricultural lands was identified.

One of the most recent efforts that NASA and the USDA 
Foreign Agricultural Service (FAS) have initiated is the Global 
Agricultural Monitoring (GLAM) Project (Becker-Reshef et al., 
2009, 2010a). The GLAM project focuses on applying data from 
NASA’s MODIS instrument to feed FAS decision support system 
needs (pecad.fas.usda.gov/).

Besides the GLAM system, there are currently several other 
regional to global operational agricultural monitoring systems 
providing critical agricultural information at a range of scales 
(Pinter et  al., 2003; Becker-Reshef et  al., 2010a; GEO, 2013; 
Rembold et al., 2013) (Table 4.10).

However, the USDA FAS with its GLAM system is currently 
the only provider of regular, timely, objective crop production 

forecasts at a global scale. This unique capability is in part 
afforded by the USDA’s partnership with NASA, providing 
global coverage of the earth observation data, as well as analysis 
tools for crop condition monitoring and production assessment 
at the global scale (Becker-Reshef et al., 2010a).

The GLAM project is also playing a leadership role in the Group 
on Earth Observations (GEO) agricultural monitoring compo-
nent AG-07-03. GEO itself is part of Global Earth Observation 
System of Systems (GEOSS), providing decision-support tools 
to a wide variety of users. Recently, the GEOGLAM initiative 
was created integrating GLAM into GEOSS (Soares et al., 2011). 
The group defined observation requirements that remote sens-
ing data should meet, ranging from meteorological conditions to 
area and yield estimates (Figure 4.27).

The graph exemplifies that different approaches (and differ-
ent sensors) will be needed to access the requested information 
encompassing local to global scales. Many of the requested qual-
itative to quantitative information needs were covered within 
this chapter.

4.7 C onclusions and Recommendations

The chapter demonstrated the strong role remote sensing plays 
within the agricultural sector. The number of applications is 
huge. However, the most important applications focus on yield 
and area estimation. Such information is regularly needed for 
various decision makers. The information need is expected 
to increase in the future, as the agricultural sector is in a very 
dynamic phase (e.g., for meeting food requirements and envi-
ronmental restrictions). Remotely sensed information can help 
to identify yield gaps and to monitor related agricultural prac-
tices. In parallel, environmentally sensitive areas can be iden-
tified for protective purposes. With appropriate preprocessing 
of time series (e.g., gap filling and smoothing), phenological 
indicators, such as start of the growing season, can probably be 
estimated with acceptable accuracy (e.g., 7–10 days). Vegetation 
anomalies related to local meteorological conditions (e.g., 
droughts) can be readily detected from space and combined 
with other data sources to identify stress-affected regions. This 
information not only is important for organizations dealing 
with food security, but can also help to identify a region’s vul-
nerability to (drought) stress. Finally, the detection and moni-
toring of (permanent) land cover changes is best achieved using 
remotely sensed data. This is, for example, important for estab-
lishing links between policy decisions, regulatory actions, and 
subsequent land use activities.

Although we mainly described approaches using globally 
available (moderate to coarse resolution) data sets (plus some 
examples using Landsat-type data), it is clear that additional 
information can be derived from (very) high spatial resolution 
data (plus ground sensors). Thus, besides investments in the 
agricultural sector, the related monitoring components should 
be strengthened. Elements of the necessary monitoring compo-
nent exist, but should be further integrated and consolidated.

Table 4.10  Major Global Agricultural Monitoring Systems Making 
Strong Use of Remotely Sensed Inputs

Name Monitoring System Access Points 

GLAM USDA (FAS) Global agricultural 
monitoring system

glam1.gsfc.nasa.gov/

FEWS-NET USAID Famine Early Warning 
System

fews.net/

GIEWS UN Food and Agriculture 
Organization (FAO) Global 
Information and Early Warning 
System

fao.org/giews/

MARS JRC’s Monitoring Agricultural 
ResourceS action of the 
European Commission

mars.jrc.ec.europa.eu/

GMFS European Union Global 
Monitoring of Food Security 
program

gmfs.info/

CropWatch Crop Watch Program at the 
Institute of Remote Sensing 
Applications of the Chinese 
Academy of Sciences (CAS)

cropwatch.com.cn/en/

© 2016 Taylor & Francis Group, LLC

  



102 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Similar to the objectives of the GEOGLAM initiative 
(Soares et al., 2011), the following recommendations are drawn 
(Atzberger, 2013):

•	 Agriculture depends strongly on the timeliness of the pro-
vided information. Information is worth little if it comes 
(too) late (FAO, 2011). Thus, the issue of timeliness should 
be dealt with in all developments.

•	 Product developers have only limited access to ground 
truth information to evaluate their products under various 
environmental settings. International efforts are needed 
to establish such networks of validation sites (Justice et al., 
2000; Baret et  al., 2006; Morisette et  al., 2006; Olofsson 
et al., 2012; 2014; Stehman et al., 2012). This also requires 
substantial funding by space agencies and/or environ-
mental institutions.

•	 More use should be made of crowd-sourced informa-
tion (Fritz et  al., 2009, 2012; Foody and Boyd, 2013; 
Foody et al., 2013). Interesting attempts are, for example, 
GeoWiki (Fritz et  al., 2009), JECAM (jecam.org/), and 
USAID (Silversmith and Tulchin, 2013).

•	 Space agencies and sensor developers spend huge amounts 
of money for precise radiometric calibration of the deployed 
instruments. However, these efforts have little positive 
effect unless the much stronger radiometric distortions 
introduced by the atmosphere are removed. Operational 

implementations of precise atmospheric correction algo-
rithms are mandatory. Instead of relying on (aerosol) clima-
tologies, the algorithms should be fed with local atmospheric 
properties (probably also derived from satellites).

•	 In the future, multisensor studies will become frequent. 
Thus, sensor intercalibration studies are urgently needed 
(Meroni et al., 2013b).

•	 Access of data and derived products is sometimes still too 
complicated. Efforts are necessary to permit users to visu-
alize (and possibly download) information products in a 
very simple way (such as realized in Google Earth).

•	 Approaches are still very scattered and not always imple-
mented in operational processing chains. Funding organi-
zations should facilitate international cooperation, while 
limiting administrative burdens. With the new generation 
of (Sentinel) images, IT solutions are to be developed sus-
taining the processing of huge data sets as well as the coop-
erative development of algorithms, etc. (Wagner et  al., 
2014). For example, with Sentinel-2, a global coverage at 
10 m spatial resolution and three-to-five daily updating 
frequency will be achieved. This amount of data cannot be 
handled any longer using traditional approaches.

•	 For potential users, the wide variety of products can be 
confusing. Efforts are necessary to clearly explain the pur-
pose (and limits) of a given product.
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figure 4.27  Observation requirements defined by GEOGLAM. (From http://wmp.gsfc.nasa.gov/uploads/science/slides/Justice_ASP-WR​_2012-09-
06.pdf.)
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Acronyms and Definitions

ABC	 Brazilian Low Carbon Agriculture
ADI	 Area Diversity Index
CLUI	 Cultivated Land Utilization Index
DEM	 Digital Elevation Model
EVI	 Enhanced Vegetation Index
FAO	 Food and Agriculture Organization
FEWS-NET	 Famine Early Warning System-Network
GAP	 Good Agricultural Practices
GEOBIA	 GEOgraphic Object-Based Image Analysis
LULC	 Land Use/Land Cover
MCI	 Multiple Cropping Index
MODIS	� MODerate resolution Imaging Spectroradiometer
NDVI	 Normalized Difference Vegetation Index
SPAM	 Spatial Allocation Model
USAID	� United State Agency for International Development

5.1 I ntroduction

The world population is expected to reach 9.3 billion in 2050 
(UN, 2010). To feed this population, the Food and Agriculture 
Organization’s last global projection exercise forecasted that the 
world’s agricultural production will need to increase by approxi-
mately 70% by 2050, compared with the 2005 production levels 
(FAO, 2011). Approximately 80% of the increased agricultural 
production will need to come from yield increases, and higher 

cropping intensities such as increased multiple cropping and/or 
shortening of fallow periods.

Such evolutions must cope with climate change (character-
ized by changing rainfall patterns and an increasing number of 
extreme weather events) and its consequences (changing distri-
butions of plant and vector-borne diseases, and increased crop 
yield variability), more competition for land (increased compe-
tition between food and bioenergy production), and the associ-
ated increased environmental pressures (e.g., overexploitation of 
ground water resources, water quality degradation, and soil deg-
radation). As a consequence, in addition to the need to increase 
crop production, another major agricultural challenge is the task 
of improving the management of natural resources, especially 
through the adoption of more environmental-friendly prac-
tices, such as ecological intensification or conservation agricul-
ture. Major agricultural powers such as Europe and Brazil have 
launched ambitious programs, for example, the Good Agricultural 
Practices (GAP) guidelines and the ABC Program (Brazilian Low 
Carbon Agriculture Program), respectively. These programs give 
a special role to multifunctional landscapes to establish sustain-
able agriculture. Landscapes must be considered a whole land use 
system at the heart of human–nature relationships that need to 
be efficiently managed to preserve and restore ecosystem services 
(DeFries and Rosenzweig, 2010), and to contribute to sustainable 
solutions, especially regarding food security challenges (Verburg 
et al., 2013). In view of these global challenges, there is an urgent 
need to better characterize agricultural systems at the regional and 
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global scales, with a particular emphasis on the various pathways 
toward agricultural intensification. Those systems are the key to 
understanding land use sustainability in agricultural territories.

Although everyone agrees on the need to qualify agricultural 
systems at the regional scale, few examples exist in the literature. 
Leenhardt et al. (2010) reviewed cropping system descriptions and 
locations at the regional scale, and concluded that both remain highly 
unclear for most world regions. The FAO continental farming sys-
tem maps (Dixon et al., 2001) and the U.S. Agency for International 
Development (USAID) Famine Early Warning Systems Network 
(FEWS NET) national livelihood maps for Africa (USAID, 2009) 
are produced at very broad scales. More detailed, regional maps of 
rice areas in southeast Asia (Bridhikitti and Overcamp, 2012) or 
sugarcane areas in Brazil (Adami et al., 2012) have recently been pro-
duced using remote sensing data only. But these simple approaches, 
based on the dominant crop type with limited consideration of land 
management, are insufficient to draw a complete picture of coupled 
human–environment systems (Verburg et al., 2009).

So, evolving from traditional remote sensing land cover mapping 
to land use system mapping is not straightforward and requires 
processing new data, implementing new methods, and, above all, 
an enhanced integration between land science research disciplines 
(Verburg et al., 2009; Koschke et al., 2013). Vaclavik et al. (2013) 
derived a global representation of land use systems using land use 
intensity datasets, environmental conditions, and socioeconomic 
indicators. Land use intensity was derived from satellite-based land 
cover maps and subnational statistics. The authors noted that the 
scope of the study was limited, because the quality of the statistical 
datasets they used was geographically distributed unevenly world-
wide. Kuemmerle et  al. (2013) proposed a review of the current 

input (crop type, cropping frequency, capital, labor intensity, etc.) 
and output (yields and carbon stock, etc.) land intensity metrics 
that could be provided directly or indirectly by satellite remote 
sensing. They concluded that satellite-based approaches are still 
experimental in that domain and cannot readily be applied across 
large areas. Despite these issues, new opportunities are arising.

The objective of the present study is to give an overview of 
remote sensing–based approaches for regional mapping of agri-
cultural systems and to illustrate the diversity of these approaches 
through case studies. To do this, we propose and introduce a 
general framework, including satellite data and land mapping 
approaches, to characterize agricultural systems at different scales. 
These approaches are illustrated by three case studies representing 
a wide diversity of agricultural systems across the tropical world. 
Based on these case studies and a literature review, the opportuni-
ties and challenges for agricultural systems mapping at regional 
and global scales are discussed, and further research is proposed.

5.2 � Roles of Remote Sensing in the 
Assessment of Agricultural Systems

5.2.1 � Diversity of the Agricultural 
Systems in the World

To our knowledge, the most complete global agricultural map 
is the map produced by the FAO and the World Bank (Dixon 
et al., 2001), which covers the six main regions of the developing 
world. This map represents 72 farming systems (Figure 5.1a) that 
were defined according to (1) the available natural resource base 
(water, land, climate, altitude, etc.), (2) the dominant pattern of 

2000 km

(a)
1000 ml

Figure 5.1  Farming system maps of the developing regions of the world (Dixon et al., 2001): (a) the original FAO 72-class map (see Dixon et al., 
2001 for legend).� (continued )
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farm activities and household livelihoods, including relation-
ship to markets, and (3) the intensity of production activities. 
These detailed farming systems are grouped into eight broad cat-
egories (Figure 5.1b; Table 5.1). It is interesting to note that seven 
out of the eight broad farming systems categories are based on 
smallholder producers (less than 2 ha land, according to FAO).

5.2.2 � A Conceptual Framework Based 
on Land Mapping Issues

Remote sensing–based information can play different roles in 
the assessment of agricultural systems. Figure 5.2 illustrates 
how satellite images can help derive “land maps” (land cover, 
land use, and land use system maps; ① in Figure 5.2) using 

various processing approaches (② in Figure 5.2). In the case of 
agriculture-dominated landscapes, these “land maps” can be 
interpreted as “agricultural system” maps (cropland, cropping 
system, and farming system; ③ in Figure 5.2).

Based on this framework, monitoring and mapping agricul-
tural systems using remote sensing require clearly defined con-
cepts and objects, that is, which “land maps” to monitor which 
“agricultural systems”? In the proposed conceptual framework 
(Figure 5.2), we tried to build bridges between the land maps 
(land cover, land use, and land use system), that can be obtained 
with the contribution of remote sensing data, and the agricultural 
systems (cropland, cropping system, and farming system, respec-
tively) that are addressed in this chapter. These bridges are based 
on a set of definitions and hypotheses that are presented hereafter.

(b)

Figure 5.1 (continued )  Farming system maps of the developing regions of the world (Dixon et al., 2001): (b) the FAO 8-broad categories 
(see Table 5.1 for legend). Black dots in (b) correspond to the location of the three case studies.

Table 5.1  Broad category of farming systems (Dixon et al., 2001)

Farming System Name Characteristics

Irrigated farming systems Dominated by smallholder producers

Wetland rice based Dominated by smallholder producers, dependent upon seasonal rains 
supplemented by irrigation

Rainfed farming systems in humid (and subhumid) areas Dominated by smallholder producers, characterized by specific dominant crops or 
mixed crop-livestock systems

Rainfed farming systems in steep and highland areas Dominated by smallholder producers, often mixed crop-livestock systems

Rainfed farming systems in dry or cold areas Dominated by smallholder producers, with mixed crop-livestock and pastoral 
systems merging into systems with very low current productivity

Mixed large commercial and small holder Dualistic, across a variety of ecologies and with diverse production patterns

Coastal artisanal fishing mixed Dominated by smallholder producers, incorporates mixed farming elements

Urban based Dominated by smallholder producers, typically focused on horticultural and 
livestock production
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•	 Land cover addresses the description of the land surface in 
terms of soil and vegetation layers, including natural veg-
etation, crops, and human structures (Burley, 1961). Land 
use refers to the purpose for which humans exploit the 
land cover (Lambin et al., 2006), including land manage-
ment techniques (Verburg et al., 2009). In remote sensing–
derived maps, mixed land use/land cover (LULC) legends 
are often used, because concepts concerning land cover 
and land use activities are closely related and, in many 
cases, can be used interchangeably (Anderson et al., 1976). 
Cropping systems are defined, at least, by the dominant 
crop type. Crop types, or at least crop groups (e.g., win-
ter and summer crops; Atzberger and Rembold, 2013), are 
often represented in these satellite-derived LULC maps. 
More recently, information on the intensification mode, 
such as the use of irrigation (e.g., Thenkabail et al., 2010) or 
the adoption of multiple cropping (e.g., Arvor et al., 2011), 
appears in the LULC maps, improving the characteriza-
tion of the cropping systems using remote sensing data.

•	 Land use system can be defined as a coupled human–
environment system. It describes how land, as an essential 
resource, is being used and managed. Remote sensing data 
do not record human activities and thus cannot be directly 
used for land use system mapping. Photointerpreters 
historically used patterns, tones, textures, shapes, and 
site associations to derive initial land cover information 
into land use information (Anderson et  al., 1976). This 
approach is consistent with Verburg et  al. (2009) who 
proposed obtaining land use system maps from land 
cover maps supplemented by observations, inferred from 
landscape structures. Farming systems, defined by most 
experts as a combination of biophysical, socioeconomic, 
and human elements of a farm, can be seen as the land use 
system version for agriculture.

To conclude, LULC mapping can be obtained by classifying sat-
ellite images, while land use system mapping needs a larger view 
and must be approached on a larger scale (landscape scale).

5.2.3  Processing Approaches

A large panel of methods and tools to produce agricultural system 
maps from remote sensing data are described in the literature. 
The methods can be grouped into three types: radiometric-based 
method, landscape approach, and allocation models.

5.2.3.1  Radiometric-Based Methods

Radiometric-based methods are largely used for cropland and 
crop type mapping. Most of the publications report pixel or 
object-based classifications, and photointerpretation methods. 
Examples are discussed in Chapter 4, and this topic will not be 
further discussed in this chapter.

Beyond crop type, many examples concerning remote sens-
ing and cropping practices are found in the literature. Most 
of the methods are based on statistical relationships between 
surface variables and image variables (reflectance, spectral 
index, texture index, etc.), while others use signal-processing 
techniques. The examples listed in Table 5.2 show that there 
is a strong link between the type of cropping practice and the 
sensor. High-resolution image primarily identifies intercrop-
ping and mixed-cropping, and agroforestry composition and 
structure. High image acquisition frequency usually helps to 
identify double cropping practices, crop types or groups of crop 
types, and sowing/harvest dates, while spectral richness is used 
to distinguish cultivars. Irrigation, crop residues, and tillage 
practices are mainly obtained through multispectral image 
analyses conducted at different scales depending on the struc-
ture of the fields.

Land maps

Radiometric-based Landscape metrics Allocation model

Processing approaches2

1

3

Cropping systemCropland

Satellite
images

Agricultural systems

Crop types, intensi�cation...

Land cover Land use Land use system

Farming system

Figure 5.2  Conceptual framework used in this study.
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A detailed analysis of the publications on cropping practices 
and remote sensing shows that, even if the proportion of publi-
cations addressing this issue is increasing (4% of the total remote 
sensing and agriculture publications in the 1990s, and 9% cur-
rently), these publications primarily concern only one cropping 
practice at a time, and the analyses are generally conducted at 
local scale. Literature on the cropping system itself is still limited 
in terms of the number of publications (2% of the total published 
remote sensing and agriculture papers), and does not progress 
significantly.

5.2.3.2  Landscape Approach

Cropland and crop type maps can be viewed as a mosaic of 
patches, where the patches are the landscape elements. In that 
case, landscape metrics can be used to characterize the agri-
cultural system. The term “landscape metrics” refers to indi-
ces developed for categorical map patterns (McGarigal, 2014). 
Landscape metrics exist at the patch, class (patch type), and 
landscape levels. At the class and landscape levels, some of the 
metrics quantify the landscape composition (e.g., the relative 
abundance of crop patch types), while others quantify the land-
scape configuration (e.g., the position, connectivity, or the edge-
to-area ratios of the cropland).

Although very few articles use landscape metrics to char-
acterize agrosystems compared to ecosystems (see review by 
Uuemaa et al., 2013), some of them use crop class metrics as an 
input for ecological studies (e.g., Pocas et  al., 2011), and a few 
use landscape research for agricultural perspectives. The aim of 
these latter is generally to evaluate different policies on agricul-
tural landscapes or to assess the sustainability of the agricultural 

systems. For example, Plexida et al. (2014) discussed the role of 
modern cultivation methods in the simplification of landscape 
patterns in central Greece. They showed that the landscape in 
the agricultural lowlands was characterized by connectedness 
(high values of patch cohesion index) and simple geometries 
(low values of fractal dimension index), whereas the landscape 
pattern of the pastoral uplands was found to be highly diverse 
(high Shannon diversity index). Panigrahy et  al. (2005) and 
Panigrahy et  al. (2011) used landscape composition metrics to 
assess and evaluate the efficiency and sustainability of the agri-
cultural systems in India. They proposed and calculated three 
indices, namely, the multiple cropping index (MCI), area diver-
sity index (ADI), and cultivated land utilization index (CLUI), 
using three satellite-derived seasonal land cover maps. The MCI 
measures the cropping intensity as the number of crops grown 
temporally in a particular area over a period of 1 year, the ADI 
measures the multiplicity of crops or farm products planted in 
a single year, and the CLUI measures how efficient the available 
land area has been used over the year (see Panigrahy et al., 2005 
for formula). The indices were categorized as high, medium, and 
low to evaluate the cropping system performance in each of the 
districts.

An example of landscape metrics based on the spatial con-
figuration of the classes is given in Colson et  al. (2011). They 
used eight landscape metrics to quantify and investigate the 
spatial patterns of cattle pasture and cropland throughout the 
states of Pará, Mato Grosso, Rondônia, and Amazonas, and 
concluded that these metrics showed evidence of a possible 
measure for discerning the patterns of agriculture attached to 
a certain state.

Table 5.2  Literature Examples of Use of Remote Sensing for Mapping Cropping Practices

Cropping Practice Crop (Sensor) Example of Studies 

Crop variety Sugarcane (Hyperion) Galvao et al. (2005)
Sugarcane (Landsat) Fortes and Dematte (2006)

Double cropping Soybean and others (MODIS) Arvor et al. (2011)
Cereals (MODIS) Qiu et al. (2014)

Harvest date Sugarcane (SPOT) Lebourgeois et al. (2007)
Sugarcane (SPOT) El Hajj et al. (2009)

Sowing date Soybean (MODIS) Maatoug et al. (2012)
Harvest mode Sugarcane (Landsat, DMC) Aguiar et al. (2011)

Sugarcane (Landsat, CBERS) Goltz et al. (2009)
Irrigation Various crops (MODIS) Gumma et al. (2011)

Wheat (FORMOSAT, ASAR) Hadria et al. (2009)
Review Ozdogan et al. (2010)

Crop residue Various crops (Landsat) Pacheco et al. (2006)
Review Zhang et al. (2011)

Tillage Wheat (FORMOSAT, ASAR) Hadria et al. (2009) 
Various crops (Landsat) Sullivan et al. (2008)

Row orientation and width Vineyard (aerial photos) Delenne et al. (2008)
Olive groves (QuickBird) Amoruso et al. (2009)
Orchards (Ikonos) Aksoy et al. (2012)
Vineyard, cereals (aerial photos) Lefebvre et al. (2011)

Note:	 References in bold are review papers.
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5.2.3.3  Spatial Allocation Modeling

Global cropping system maps (crop type and irrigation) are 
emerging at coarse resolution (see Anderson et al. (2014) for the 
description and comparison of these products). They are based on 
statistical data downscaled at the administrative level into grid-
cell specific values. An illustrative example of spatial allocation is 
the spatial allocation model (SPAM), developed at the mesoscale 
by You and Wood (2006) and You et al. (2009), to spatially disag-
gregate crop production data (acreage and yield) within geopolit-
ical units (e.g., countries or subnational provinces and districts), 
using a cross-entropy approach. The pixel-scale allocations are 
performed by compiling and merging relevant spatially explicit 
data, including production statistics, satellite-derived land cover 
data, biophysical crop suitability assessments, and population 
density. In such models, remote sensing is mainly used to locate 
cropland at regional scales as an input for the allocation models 
(to spatially disaggregate statistics data for instance), while the 
crop-determining factors are generally established by expertise 
or statistical analyses (Leenhardt et al., 2010). Recent examples 
showed that satellite images can also be used to understand and 
model the environmental drivers of cropping systems. For exam-
ple, Jasinski et  al. (2005) used a multiple logistic regression to 
model the role of environmental variables (vegetation type, soil 
type, altitude, slope, and rainfall) in the southeastern Amazonian 
cropland dynamics previously assessed using remote sensing 
data. More recently, Arvor et al. (2014) showed that the adoption 
of intensive double cropping practices was related to the spatial 
variability of rainfall regimes and favored by a high annual rain-
fall, a long rainy season, and a low variability of the onset date.

However, a major drawback of the spatial allocation models 
approach is that it is not always possible to obtain determinis-
tic relations between easily accessible factors (climate, soil, etc.) 
and cropping system elements, especially in “intensive systems” 
compared to “traditional systems,” which are more dependent on 
environmental factors (Figure 5.3). According to Jouve (2006), in 

southern countries where traditional systems are important and 
make little use of modern means of production (mechanization, 
fertilization), the farmer’s capacity to artificialize their environ-
ment and get rid of the environmental constraints is limited. In 
those cases, the relationship between the cropping systems and 
environmental conditions is strong, and the spatial distribution 
of the cropping systems reflects more the environmental differ-
ences than the farming differences. Additionally, the relation-
ship can be identified at the rural community scale. Inversely, 
in intensive systems, the determining factors approach is more 
difficult to set up and the spatial allocation models can be more 
difficult to implement.

5.3 �E xamples of Agricultural System 
Studies Using Remote Sensing

Three case studies—agroforestry in Bali (Indonesia), double 
cropping in the southeastern Amazon (Brazil), and traditional 
rain-fed agriculture in Mali—were selected to illustrate the 
use of remote sensing for mapping agricultural systems. Two 
of them, Bali and Mali, are characterized by smallholder agri-
culture, while the Brazilian case is characterized by commer-
cial agriculture (Figure 5.1b). These case studies are far from 
representing all of the possible uses of remote sensing, but they 
illustrate a diversity of technical and scientific approaches, while 
addressing some worldwide agricultural issues (geographic cer-
tification, agricultural system sustainability, food security, etc.).

5.3.1  Presentation of the Case Studies

5.3.1.1  Agro-Forestry in Bali

In tropical regions, small stakeholders’ agroforestry is the most 
common traditional cropping system. It associates different 
crops inside a single plot, with multifunctional trees to produce 
fruits, cash-crops, wood, medicines, shading, or to conserve bio-
diversity in various proportions and organizations. This system 
allows a relative sustainability in food diversification, but not 
in incomes, which depends on the trading market fluctuations. 
Agroforestry is promoted by agronomists for environmental 
and livelihood quality, and is questioned by socioeconomists 
because of the cash-crop vulnerability. This emphasizes the need 
for evaluating the actual environmental, social, and economic 
benefits of such cropping systems. Remote sensing studies 
now propose new tools to objectively characterize the agrofor-
estry systems at the intraplot scale (Peña-Barragán et al., 2004; 
Mougel and Lelong, 2008; Aksoy et al., 2012; Ursani et al., 2012; 
Coltri et al., 2013; Guillen-Climent et al., 2014), at the farm level 
(distribution among neighbors), and to replace it in the land-
scape matrix (Lei et al., 2012; Wästfelt et al., 2012). This allows 
associating different environmental, agricultural, and socio-
economic conditions in integrated analyses to understand the 
drivers of agricultural choices and resilience (Fox et  al., 1994; 
Gobin et al., 2001; Kunwar, 2010), and the level of productivity 
and quality of the production.

Land use and practices
(anthropogenic factors)

Socio-economy, policies

Natural resources
(biotic and abiotic factors)

Global change

Intensive
systemsTraditional

systems

Figure 5.3  Relative weights of the determining factors in the tradi-
tional and intensive agricultural systems.
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The case study presented in this chapter is situated in Bali, 
an active volcanic island of Indonesia. Coffee is cropped almost 
everywhere in the central highlands. The study focused on a 
220 km2 area located in Kintamani county, which is famous for 
its coffee crops. The landscape is shaped by the local topography, 

which ranges from 300 to 1800 m (Figure 5.4). This work aims 
at producing a cropping system map in order to understand 
coffee quality drivers, and helps in delimitating an area labeled 
by the distinction of the protected geographical indication on 
Arabica coffee.
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Figure 5.4  Map products in Central Bali: (a) main cropping systems map derived from QuickBird image visual interpretation, (b) agrosystems 
map derived from spatial analysis of the cropping system map, (c) location map of 40 sampled coffees and quality notation rate for each type of 
aromatic value, and (d) digital elevation model derived from topographic maps.
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5.3.1.2  Double Cropping in Southeastern Amazon

For nearly 40 years, the Brazilian southeastern Amazon expe-
riences severe agricultural dynamics. Cropland expanded 
dramatically to support commercial cultivation of important 
commodities such as soybean, maize, and cotton. The severity of 
the agricultural dynamics explains the abundance of large-scale 
monitoring studies using remote sensing. To date, most remote 
sensing–based studies were carried out with MODIS data for 
three reasons: (1) monitoring such a large area requires a huge 
number of high remote sensing data to be processed, (2) high 
cloud cover rates during the rainy season prevent the acquisi-
tion of good-quality, high-resolution images during the crop-
ping period, and (3) the mean field area is about 180 ha so that 
even 250 m medium-resolution images are valid for crop type 
mapping. Consequently, most MODIS-based approaches to date 
were based on the interpretation of vegetation index (NDVI or 
EVI) time series. Such time series have long been successfully 
used to estimate cropland areas, thus evidencing the rapid agri-
cultural expansion during the 2000s (Anderson et  al., 2003; 
Morton et al., 2006).

In Mato Grosso state, Arvor et al. (2012) estimated that net 
cropped areas increased by 43% between 2000 and 2007, reach-
ing an area of 55,988 km2. In the same time, farmers adopted 
new agricultural management practices to intensify the produc-
tion process. The cultivation of two successive crops, such as 
soybean and cotton, benefits from a long rainy season (Arvor 
et  al., 2014) and regular rainfall from mid-September to late 
May. In this context, the Mato Grosso case study aims at pro-
ducing a cropping system map showing the main crop type and 
the intensification practices in relation to the rainfall, and a 
land use system map to analyze the agricultural transition in 
Mato Grosso.

5.3.1.3  Rain-Fed Agriculture in Mali

In the Sudano–Sahelian region, farming is the main source of 
income for many people, where millet and sorghum are the main 
food crops. The vast majority of the population (80%) consists of 
subsistence farmers. A few larger farms produce crops for sale 
(cash crops), mainly cotton and peanuts. In the Sudano–Sahelian 

zone, the strong dependence on rain-fed agriculture implies 
exposure to climate variability in addition to the impacts that 
population growth has on food security. Key deliverables of food 
security systems for crop monitoring consist of early estimates 
of cultivated area and crop-type distribution, cropping prac-
tices, detection of growth anomalies, and crop yield estimates. 
Unfortunately, the national statistics can be deficient in insecure 
countries, and remote sensing has an important role to play in 
delivering information for crop monitoring (e.g., Hutchinson, 
1991; Thenkabail et  al., 2009). Remote sensing techniques face 
numerous challenges for crop mapping in regions where the 
cropland is fragmented, made of small, highly heterogeneous 
fields covered with many trees. In Mali, Vintrou et  al. (2011) 
showed that 20%–40% of cropland classification errors using 
MODIS is inherent to the structure of the landscape.

Southern Mali case study aims at producing farming system 
map (food-producing, intensive, and mixed agricultures) in 
support to food security analyses (USAID, 2009). Because local 
factors, such as climate, soil, water availability, access to mar-
kets, and fertilizers, influence the agricultural systems, mapping 
these systems can help to determine which region and which 
population may be vulnerable to different hazards. Additionally, 
the cropping system map can be used for spatialized agrome-
teorological modeling and forecasting at regional scales (see 
example in Vintrou et al., 2014).

5.3.2  Remote Sensing Data and Methods

The data (remote sensing images, ancillary data) and methods 
used to produce agricultural maps are presented in Table 5.3 for 
the three case studies.

In Bali, a multispectral QuickBird image at 0.6 m resolution 
was photointerpreted to delineate the field limits and identify 
six cropping systems based on the field survey: citrus monocrop, 
coffee monocrop without shade, coffee associated with light 
shadow (citrus), coffee under dense shadow (erythrina, albizias, 
leucaenas, etc.), clove crops associated or not with coffee, and 
food-crops. An agrosystem map was then obtained by apply-
ing a majority filter (1 ha square corresponding to a dozen of 

Table 5.3  Typology, Data, and Methods Used to Produce Agricultural System Maps for the Three Case Studies

Case Study 
(Area) 

Agriculture 
Type 

Satellite Data 
(Acquisition Year) Other Data Method Map Products 

Bali island 
(220 km2)

Smallholder 
agriculture

QuickBird bundle 
(2003)

DEM
760 ground survey points

Photointerpretation
Spatial analysis (majority filter; 

1 ha window)

Cropping system
Farming system 

(agrosystem)
Mato Grosso 

(906,000 km2)
Commercial 

agriculture
MOD13Q1 EVI 

product (2005–2008)
Pixel-based supervised classification
Landscape analysis (land cover 

and land use classes metrics; 
770 km2 window)

Crop type
Cropping system
Farming system

Southern Mali 
(165 790 km2)

Smallholder 
agriculture

MOD13Q1 NDVI 
product (2007)

MCD12Q2 phenology 
product  (2007)

100 villages field survey (2001–2004)
Cropland map at 250 m resolution.
Climate type, DEM and population
4000 villages location

Texture analysis (MODIS NDVI)
Landscape analysis (land cover 

classes metrics; 100 km2 window)
Random forest classification

Farming system
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crop plots) on the cropping system map, and was defined by its 
upper vegetation layer in four classes: citrus, clove, dense shad-
ing trees, and food crops. The term agrosystem is preferred here 
to the term farming system whose definition goes beyond what is 
studied in this case.

In Mato Grosso, MOD13Q1 EVI products acquired dur-
ing 2005–2008 period were used to produce a cropping sys-
tem map showing the main crop types (soybean, corn, and 
cotton), and their intensification practices (monocropping 
and double cropping). Arvor et  al. (2013a) used a landscape 
approach to better characterize the land use system across the 
state. The strategy consisted of applying a regular grid where 
each cell represented an approximation of a district territory 
(a district was considered as an administrative sublevel, below 
the municipality level). There were 1,175 districts in Mato 
Grosso, a total of 906,000 km2, and the grid cell was fixed at 
27.75 × 27.75 km2, approximating an area of 770 km2. A set of 
landscape indices was then computed for each cell based on 
MODIS-based land use classifications and deforestation maps. 
Those indices referred to the proportion of wilderness areas, 
the proportion of cropped areas in deforested areas, and the 
proportion of intensive practices observed in cropped areas. 
Some thresholds were applied to identify different land use 
systems, such as presettlement area, noncropland occupation, 
cropland occupation, noncropland consolidation, cropland 
consolidation, noncropland intensifying, cropland intensify-
ing, and intensive cropland.

In Mali, the field size and MODIS spatial resolution prevent 
from producing a crop type map. We then mapped directly the 
farming system map using a 3-class typology. This typology 
was defined at the village scale, and based on a field survey car-
ried out in 100 villages in southern Mali (Soumare, 2008). The 
typology was created using expert knowledge, and considering 
the main crop types cultivated in the village and the intensi-
fication of production (use of fertilizers, equipment, livestock, 
etc.): the “food-producing agriculture” class groups the mil-
let- and sorghum-based agricultural systems, the “intensive 
agriculture” class includes farms with maize and cotton, and 
the “mixed agriculture” class encompasses farms where both 
coarse grain (sorghum) and a cash crop (cotton) are found 
(Vintrou et  al., 2012). A random forest algorithm (Breiman, 
2001) was trained on the 100-village dataset, and on a set of 
30 variables composed of 4 spectral metrics (annual maxi-
mum, annual mean, annual amplitude, and seasonal mean 
from May through November; MOD13Q1 product), 12 texture 
indices (maximum and mean of the variance and skewness 
indices, calculated with a pattern size of 7 MODIS pixels for 
March, June, and September; MOD13Q1 product), 7 phenol-
ogy metrics (MCD12Q2 product), 3 spatial metrics (the frac-
tion of cropped area, number of cultivated patches, and the 
mean cultivated patch size inside a 10 × 10 km2 area centered 
on the village; MCD12Q1 product), 3 environmental indices 
(climate type, maximum, and mean of elevation), and 1 popula-
tion index. All of the indices were extracted for cropland only. 

The random forest model trained on the 100-village ground 
survey was applied to the 4000 villages in south Mali.

5.3.3  Results

5.3.3.1  Agroforestry in Bali

In Bali, the cropping system map is presented in Figure 5.4a. 
Photointerpretation performed on the ground-truth plots 
showed that confusion between citrus and coffee under citrus is 
less than 10%, whereas other class errors lie below 2%. The anal-
ysis of the distribution of each cropping system showed that the 
most frequent are the citrus-based crops (18%) and those shaded 
by large trees (15%), followed by the food-crops (12%), and the 
associated coffee and citrus crops (10%). The mean size of a plot 
is approximately 0.7 ha, but the clove plots are generally bigger 
(1.2 ha) and the food-crops are smaller (0.3 ha).

The agrosystem map is presented in Figure 5.4b. The citrus-
based agrosystem is largely dominant. Coffee, as being cropped 
below the dominant trees, does not appear in the map legend.

At first glance, the cropping system and agrosystem spatial 
distribution looks complex because of a number of factors, such 
as a north/south contrast, altitude, and local geographic char-
acteristics, such as river network density, slope, exposition to 
wind, and the presence of lava-flows and forests. The cropping 
and agrosystem maps were then used to analyze the distribu-
tion of each agricultural system, in relation to altimetry because 
of the strong relationship between coffee quality and altitude 
(Florinsky, 1998; Wintgens, 2004; Montagnon, 2006). The area 
covered by all of the different cropping systems is plotted for each 
100 m-altitude bin, between 1000 and 1800 m in Figure  5.5a, 
while Figure 5.5b represents the altitude distribution for the area 
covered by the coffee-based cropping systems alone. The two 
principal coffee-based cropping systems were found to be those 
dominated by citrus or dense shading trees. The former is most 
common at high altitudes (64% from 1200 to 1400 m), while 
the latter dominates coffee crops at lower altitudes (68% below 
1100 m). The third coffee-based cropping system, dominated by 
clove shading, covers a small acreage and is spatially restricted. 
It is present at the lowest altitudes, mainly below 1100 m (68%) 
and 1200 m (28%). The unshaded coffee monoculture is not typi-
cal in this territory.

The coffee samples location and sensorial quality rates were 
plotted in both the cropping and agrosystem maps to under-
stand the spatial distribution of the coffee characteristics at the 
two scales (Figure 5.4c). A landscape analysis provided spatial 
and topographic distribution information about the three coffee 
quality classes, and helped to identify the relationships between 
quality of coffee beans and the local and regional environments. 
This integrated analysis suggests that good coffee is only found 
in the citrus-dominated agrosystem, even if it is not cultivated 
in association with citrus at the plot level, and cropped above 
1200 m. This area was validated by both the coffee farmers and 
the traders, and accepted by the Indonesian government as the 
official limits of the labeled territory.
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5.3.3.2  Double Cropping in Southeastern Amazon

Time series of vegetation indices were used to detect crop types 
and cropping practices using an analysis of agricultural cal-
endars. The producers undertake two successive harvests per 
rainy season: they cultivate soybean from late September to 
early February, and then cultivate maize or cotton until June or 
July. The double cropping systems show very different patterns 
in their vegetation index time series and can be easily discrimi-
nated (Arvor et  al., 2011). The user’s and producer’s accuracies 
of the cropland were higher than 95%. Main crop types were 
also correctly detected (Figure 5.6) with good kappa index (0.68) 
and overall accuracy (74%). Once the double cropping classes 
are grouped (i.e., the “soybean + corn” and “soybean  + cot-
ton” classes; Figure 5.7a), the user’s and producer’s accuracies 
increased up to 95% and 86%, respectively. The main uncertain-
ties to be considered in these maps refer to sorghum or millet that 
is sometimes sown after the soybean harvest (to prevent soil ero-
sion from intense rainfall) and can thus be confused with maize. 
Such issue highlights a main limitation of EVI time series–based 
classification (different crops with similar agricultural calendars 
may be confused) that could be overcome with a better spa-
tial and radiometric resolution (since only blue, red, and near-
infrared bands are used to compute the EVI used in that work).

Beyond such limitations, those results are in agreement 
with results obtained by different authors (Galford et al., 2008; 
Arvor et al., 2011; Brown et al., 2013) who successfully mapped 
double cropping systems in Mato Grosso and confirmed the 

generalization of such intensive practices. Arvor et  al. (2012) 
estimated that the proportion of croplands permanently covered 
by double cropping vegetation during the rainy season increased 
from 35% to 62% between 2000 and 2007. This trend raises a 
major issue regarding the sustainability of cropland systems in 
Mato Grosso. Fu et al. (2013) proved that the length of the rainy 
season is decreasing in the southern Amazon, which leads to the 
question of whether the adoption of double cropping practices 
would still be viable in the changing climate. Even if intensive 
practices are a relevant strategy to contain deforestation, it raises 
new issues regarding agricultural sustainability in that region.

The land use system map shows a good overview of the soybean 
agricultural frontier in the southeastern Amazon (Figure 5.7b). It 
demonstrates the efficiency of public policies to simultaneously 
contain deforestation (through the creation of protected areas) 
and encourage crop expansion (through the construction of 
important infrastructures, such as the Trans-Amazonian roads).

5.3.3.3  Rain-Fed Agriculture in Mali

The random forest model classified the agricultural systems 
with an estimated overall accuracy of 60% calculated from out-
of-bag observations (Figure 5.8). The “food-producing agricul-
ture” class was dominant in the Sudano–Sahelian part of the 
area. Sorghum and millet are well adapted to this zone, because 
they are resistant, and have a short growth cycle of about 
90  days. In the traditional cotton basin, the dominant system 
is agroforestry/pastoral agriculture mainly with rain-fed crops. 
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Agriculture is focused on cotton, the main cash crop, and cor-
responds to the class “intensive agriculture”. The Sudanian zone 
part of the area is also a cotton-based system zone, but is more 
diversified, with the simultaneous presence of “intensive agricul-
ture” and “mixed agriculture” systems. The length of the rainy 
season in this region makes it possible to grow a wide range of 
species. Farmers usually cultivate different species and varieties 
to ensure a certain degree of production stability.

Class errors ranged from 30% to 50%. Globally, producer’s and 
user’s accuracies were reasonably balanced for each class (less than 
10% difference): the village agricultural systems were estimated 

correctly. Misclassifications can be explained by three main fac-
tors: (1) the small size of the crop patches compared to the 250 m 
spatial resolution of MODIS sensor, and the natural and crop veg-
etation seasonal synchronization due to a short rainy season, (2) 
the size of the training dataset (100 villages), and (3) the definition 
of the classes (a rough proportion of different crop types, and crop 
intensification variables) that is expert dependent and includes 
variables that cannot be directly related to landscape features.

The analysis of the contribution of the different metrics 
(Figure 5.9) shows the role of the texture of the MODIS images in 
the classification of the cropland, even if the fields are not visible 
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at the MODIS resolution. The field crop information is hidden in 
these broad images, but can be identified with landscape metrics, 
such as image texture indices. This indirect analysis was confirmed 
by Bisquert et al. (2015) who showed that the texture of broad-scale 
images is an important variable for land stratification in relation to 
land cover, even if the land cover units are not detectable.

5.4  Discussion

While remote sensing approaches have proven to be efficient for 
cropland (land cover) mapping, they still remain ill-suited for crop-
ping system (land use) monitoring at the regional and global scales 
because of their inability to distinguish crop types and the associ-
ated practices (Monfreda et al., 2008). In this section, we consider 
the main present limitations of remote sensing studies for regional 
mapping of cropping systems, and introduce some emerging 
research areas to overcome such limitations. We then discuss the 
opportunity to work on an extended landscape agronomy approach.

5.4.1 � Difficulties of Mapping the Cropping 
Systems at Regional Scales

Remote sensing–based land use maps suffer from uncertainties 
related to the spatial and temporal resolutions of the observing 
system, and to the landscape structure.

The spatial resolution issue is particularly true for smallhold-
ers agriculture (Figure 5.1b), for which remote sensing data are 
unable to resolve individual fields (Ozdogan, 2010). Rather than a 
sensor resolution issue, it should actually be considered as a scale 
issue to be addressed through the concept of H-resolution and 
L-resolution (Strahler et al., 1986; Blaschke et al., 2014). H- and 
L-resolution terms are different from high and low spatial reso-
lution images as generally mentioned in remote sensing studies. 
In the latter, the resolution refers to the sensor spatial resolution 
independently of the geographic objects concerned. H-resolution 
model is valid when scene objects are much larger than the image 
spatial resolution; thus, several pixels may represent a single object 
(a field, a tree, etc.). Meanwhile, L-resolution model is when objects 
are much smaller than the image spatial resolution. An image may 
contain both H- and L-resolution information (Hay et al., 2001). 
Marceau et al. (1994) place the limit between H- and L- when the 
dimension of the resolution cells is ½–¾ the size of the objects of 
interest in the scene. This threshold should be a guide for assessing 
whether the analysis should be performed at H- or L-resolution.

•	 For an H-resolution situation—agricultural fields in Mato 
Grosso using MODIS sensor—a cropping system can be 
assessed directly by characterizing crop types and their 
associated cropping practices using inner field informa-
tion (derived from relatively pure pixels).

•	 For an L-resolution situation—cropped trees in Bali using 
QuickBird sensor or cropped fields in Mali using MODIS 
sensor—pixels correspond to a mixture of different crop 
(or trees) types and other landscape elements (natural veg-
etation, water bodies, buildings, roads, etc.).

The temporal resolution issue in crop mapping is highly 
dependent on the environmental and agronomic conditions. 
For example, in tropical dry areas where rainfall is the main 
driver of vegetation growth (e.g., the Sahelian part of Mali), 
natural and cultivated vegetation are difficult to separate 
using phenology. In equatorial areas (e.g., Bali) characterized 
by a low seasonality, it is difficult to discriminate crops due 
to fluctuating crop calendars. However, even in regions with 
contrasted seasons (e.g., Mato-Grosso), different cropping sys-
tems with similar agricultural calendars cannot be separated 
using MODIS EVI time series. A better temporal resolution 
(less than 16 days) would surely improve crop discrimination 
in most of the agricultural systems.

The quality of the land maps produced by image pixel–based 
classification is usually evaluated using a set of indices (pro-
ducer’s accuracy, user’s accuracy, overall accuracy, and kappa 
index), which are commonly calculated from an error matrix (or 
confusion matrix; see Congalton and Green, 1999). While such 
accuracy metrics have been widely accepted by the scientific 
community for a long time, they have also been regularly criti-
cized (Pontius and Millones, 2011). These metrics tell nothing 
about the source of error that can be linked to the performance of 
the classification algorithm, or to the resolution of the remotely 
sensed data (Boschetti et al., 2004). For instance, Vintrou et al. 
(2011) using the Pareto boundary method showed that in Mali, 
20%–40% of cropland classification errors using MODIS data is 
inherent to the landscape structure. In this context, new process-
ing and evaluation approaches are required to better consider 
landscape properties in order to overcome these limitations and 
allow an efficient monitoring of farming systems at regional scale.

5.4.2 E merging Remote Sensing Research

There was a challenge in land cover mapping in the 2000s, and 
today, there is a challenge in land use system mapping. It is an 
emerging area for the remote sensing community that needs 
to focus on land use and land function (Verburg et  al., 2009). 
It requires developing new data, methods, and a further integra-
tion of the disciplines involved in land science research. These 
developments are presented hereafter according to the resolu-
tion situation (the direct and indirect cases).

When the landscape elements are larger than the pixel size 
(H-resolution situation), many examples in the literature showed 
that cropping practices can be directly assessed (Table  5.2). 
Except for rare examples of mapping crop type and cropping 
intensity in regions where the plot size is compatible with broad 
scale sensors (Mato Grosso case study), the research was mainly 
developed at local scale, and for one practice at a time. To further 
characterize regional scale cropping practices, research needs to 
focus on developing automatic or semiautomatic crop type clas-
sification procedures, and on the combination of different sen-
sors to catch different practices in the same area. Another way 
to work at broader scales is to properly translate local findings 
to larger regions by using case study results from specific land 
functions (Verburg et al., 2009). This approach needs to define 
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the spatial extent and function for the local studies representa-
tive of a region. Land stratification into homogeneous landscape 
units could be a way to reach this objective. Bisquert et al. (2015) 
showed that processing broad-scale remote sensing data with 
spectral and textural segmentation techniques permits to delin-
eate radiometrically homogeneous landscapes that were consis-
tent in terms of land cover.

When the landscape elements are smaller than the pixel size 
(L-resolution situation), research needs to focus on the role of 
landscape as an indirect mean to characterize the cropping sys-
tems. Research on landscape metrics for agricultural systems 
characterization must be pursued and enhanced. Furthermore, 
given the multidimensional nature of agricultural systems, focus-
ing on multiple metrics within a system perspective is needed 
(Kuemmerle et al., 2013). As the current approaches based on the 
remote sensing data are not sufficient to develop a comprehensive 
understanding of situational changes for multiple land functions, 
remote sensing–based metrics should be completed by other types 
of metrics, such as socioeconomic descriptors (demography, eth-
nic spatialized data, etc.). To merge heterogeneous information, 
new data-processing tools, such as fuzzy logic and data-mining 
tools (Korting et al., 2013; Vintrou et al., 2013), must be tested to 
characterize and map agricultural systems and processes.

To implement both approaches (direct and indirect), the scien-
tific community should benefit from recent promising advances 
in remote sensing such as geographic object-based image analy-
sis (GEOBIA) and ontologies. GEOBIA is based on the hypoth-
esis that partitioning an image into objects is related to the way 
humans conceptually organize the landscape to comprehend it 
(Hay and Castilla, 2008). It is actually based on two main com-
ponents. First, a segmentation delineates regions (objects) of the 
image that have common attributes. Second, the approach incor-
porates the user (expert) knowledge in the image-processing 
operation to produce reliable maps. However, to date, GEOBIA is 
still limited by important issues related to product evaluation and 
knowledge management. Indeed, it is still unclear how to assess 
a segmentation quality (actually considered as an ill-posed prob-
lem), even if Clinton et al. (2010) proposed interesting metrics to 
assess GEOBIA segmentation goodness through vector-based 
measures. Although the integration of knowledge expertise in the 
image interpretation process is a main strength of GEOBIA, it can 
also be considered as a main limitation as long as two experts do 
not share a consensual knowledge (Belgiu et  al., 2014). In such 
a context, it is likely that knowledge representation techniques 
such as ontologies can play a pivotal role (Arvor et  al., 2013b). 
This point is especially meaningful in the case of agricultural 
system mapping where expert knowledge is crucial and often 
difficult to formalize. In case of land cover products, Comber 
et al. (2005) investigated the semantic and ontological meanings 
of land cover classes and concluded that current paradigms for 
reporting data quality do not adequately communicate the pro-
ducer’s knowledge. In case of land use and land use system prod-
ucts, the ontological meaning of the classes is even more difficult 
to formalize. For example, agricultural practices such as double 
cropping or no-tillage have been studied in various regions of the 

world although they might correspond to different practices on 
the ground (different types of crop, different levels of soil manage-
ment). In conclusion, ontologies might play an important role to 
allow the comparison of complex and heterogeneous land maps.

5.4.3 �T oward an Extended Landscape 
Agronomy Approach

Landscape and agronomy have long been considered as closely 
associated. The first references on the relationship between agri-
cultural landscapes and field management appeared in the 1990s 
(e.g., Baudry, 1993; Deffontaines et  al., 1995) and addressed how 
farming activities produce agricultural landscapes, that is, explain 
the spatial distribution of patches (fields and associated boundar-
ies). Since then, very few studies were published on the relation-
ship between agricultural practices and landscape properties 
(e.g., Herzog et al., 2006; Galli et al., 2010). Most of the research 
focused on the characterization and understanding of landscape 
patterns to relate them to ecological issues (e.g., Baudry, 1993; 
Herzog et al., 2006). Benoit et al. (2012) argued why and how agron-
omy can contribute to landscape research with a conceptual model. 
He suggested a new perspective on farming practices as a crucial 
driver in the landscape pattern–agricultural process relationship. 
He proposed to develop a new research area called landscape agron-
omy (see also Rizzo et al., 2013) defined as “the relations among 
farming practices, natural resources and landscape patterns, which 
are involved in the dynamics of agricultural landscapes.”

We previously mentioned that few landscape studies related 
to agricultural issues use remote sensing. Although it is now 
widely understood that cropping practices adopted in agricul-
tural systems shape rural landscapes, we believe it is time to 
use landscape agronomy and quantitative remote sensing sci-
ences. Applying concepts of landscape ecology to agricultural 
systems monitoring and mapping is a major idea. The case stud-
ies from Bali and Mato Grosso illustrate this new trend in land-
scape agronomy research and show that, thanks to its ability to 
identify spatial land cover patterns at local (Bali) and regional 
(Mato-Grosso) scales, remote sensing has become an essential 
source of information to identify agricultural systems.

However, landscape agronomy research will have to face the 
same limitations as landscape research. These limitations concern 
the numerous sources of error or uncertainty with producing land 
cover/land use maps from remote sensing imagery, and on the choice 
of the landscape metrics, which need to show a close association with 
the processes to be detected (Newton et al., 2009; Hurni et al., 2013). 
Another source of limitation is the simplistic approach of thematic 
mapping and the derivation of two-dimensional pattern metrics in 
landscape ecology (Newton et al., 2009), while remote sensing data 
have the potential to provide a three-dimensional characterization 
of landscapes and their component parts (as seen in Bali study case) 
and quantitative surface variables (as seen in Mali study case) that 
could be directly integrated in the landscape analysis. We showed 
through the Mali study case that the agricultural landscapes could 
be indirectly characterized by using a set of satellite-derived metrics 
(spectral, textural, and temporal metrics) without going through a 
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thematic map of the crop types. This approach is essential when the 
ratio between the field size and the sensor spatial resolution is low 
(L-resolution)—land use maps cannot be produced, but it can also 
be used in H-resolution situation.

5.5 C onclusions

It is widely recognized that accurate, updated, and spatially explicit 
information on cropping systems (and thus cropping intensity) is 
urgently needed at the global and regional scales to provide insight 
into the direction and magnitude of world agricultural production 
in terms of crop type acreage and yield (Lobell and Field, 2007), 
and in terms of agricultural impacts on natural environments 
(Galford et al., 2008) and water resources (Thenkabail et al., 2010). 
Additionally, information is needed locally to monitor resources, 
preserve cultural landscapes, and for land certification (Jouve, 
2006). This information is not yet included in the regional land 
cover datasets, and remote sensing entirely overlooks the actual 
practice of agriculture (what is grown, how it is grown, and what 
inputs are used) at this scale (Monfreda et al., 2008).

In this chapter, we showed how the current generation of 
Earth observation systems can contribute to the characteriza-
tion of agricultural systems locally and regionally, through bibli-
ographic studies and three case studies. We showed that remote 
sensing’s ability to describe cropping systems is mainly related 
to the ratio between the spatial resolution of the sensor and the 
size of the landscape elements. This ratio determines if the fields 
(or the trees) can be identified by the observation system, or if 
the remote sensing data offers only a view of the cropland in its 
environment. This latter case leads to the development of new 
tools and methods to indirectly connect the spatial patterns of 
the agricultural landscape to the cropping management prac-
tices over large territories.

This bibliographic overview shows that the research com-
munity is now at a turning point where landscape research is 
not devoted to ecological issues only, but has started to embrace 
agricultural matters also. We believe that landscape agronomy 
is on the right track, and that the current and future Earth 
observing systems (such as Landsat8 and Sentinel-2) will have 
an important role to play in this new research area.
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Acronyms and Definitions

ACCA	 Automated cropland classification algorithm
ASTER	� Advanced spaceborne thermal emission and reflec-

tion radiometer
AVHRR	 Advanced very-high-resolution radiometer
AWiFS	 Advanced wide field sensor
CDL	� The Cropland Data Layer (CDL) was created by the 

USDA, National Agricultural Statistics Service
CEOS	 Committee on Earth Observing Satellites (CEOS)
EDS	 Euclidean distance similarity
FPA	 Full pixel areas
GCAD	 Global cropland area database
GCE	 Global cropland extent
GCE V1.0	 Global cropland extent version 1.0
GDEM	 ASTER-derived digital elevation data
GEO	 Group on Earth Observations
GEOSS	 Global Earth Observation System of Systems
GFSAD	 Global food security support analysis data
GIMMS	 Global Inventory Modeling and Mapping Studies
JERS SAR	 Japanese Earth Resources Satellite-1 (JERS-1)
ISDB IA	 Ideal Spectra Data Bank on Irrigated Areas
LEDAPS	� Landsat Ecosystem Disturbance Adaptive Processing 

System
MFDC	 Mega File Data Cube
MODIS	 Moderate-resolution imaging spectroradiometer
MSAS	 Modified spectral angle similarity
NASS	 National Agricultural Statistics Service of USDA
NDVI	 Normalized difference vegetation index
NOAA	 National Oceanic and Atmospheric Administration
SAR	 Synthetic aperture radar
SCS	 Spectral correlation similarity
SIT	 Strategic Implementation Team
SMT	 Spectral matching techniques
SPA	 Subpixel areas
SPOT	 Système Pour l’Observation de la Terre
SSV	 Spectral similarity value
USDA	 United States Department of Agriculture
USGS	 United States Geological Survey
VGT	 Vegetation sensor of SPOT satellite
VHRI	 Very-high-resolution imagery
VHRR	 Very-high-resolution radiometer

6.1 I ntroduction

The precise estimation of the global agricultural cropland—
extents, areas, geographic locations, crop types, cropping inten-
sities, and their watering methods (irrigated or rain-fed; type of 
irrigation)—provides a critical scientific basis for the develop-
ment of water and food security policies (Thenkabail et al., 2010, 
2011, 2012, Turral et al., 2009). By year 2100, the global human 
population is expected to grow to 10.4 billion under median fer-
tility variants or higher under constant or higher fertility vari-
ants (Table 6.1) with over three-quarters living in developing 
countries and in regions that already lack the capacity to produce 
enough food. With current agricultural practices, the increased 
demand for food and nutrition would require about 2 billion 
hectares of additional cropland, about twice the equivalent to the 
land area of the United States, and lead to significant increases 
in greenhouse gas emissions (GHG) associated with agricultural 
practices and activities (Tillman et al., 2011). For example, dur-
ing 1960–2010, world population more than doubled from 3 to 
7 billion. The nutritional demand of the population also grew 
swiftly during this period from an average of about 2000 calories 
per day per person in 1960 to nearly 3000 calories per day per 
person in 2010. The food demand of increased population along 
with increased nutritional demand during this period was met by 
the “green revolution,” which more than tripled the food produc-
tion, even though croplands decreased from about 0.43 ha per 
capita to 0.26 ha per capita (FAO, 2009; Funk and Brown, 2009). 
The increase in food production during the green revolution 
was the result of factors such as: (1) expansion of irrigated crop-
lands, which had increased in 2000 from 130 Mha in the 1960s to 
between 278 Mha (Siebert et al., 2006) and 467 Mha (Thenkabail 
et al., 2009a,b,c), with the larger estimate due to consideration of 
cropping intensity; (2) increase in yield and per capita produc-
tion of food (e.g., cereal production from 280 to 380 kg/person 
and meat from 22 to 34 kg/person (McIntyre, 2008); (3) new cul-
tivar types (e.g., hybrid varieties of wheat and rice, biotechnol-
ogy); and (4) modern agronomic and crop management practices 
(e.g., fertilizers, herbicide, pesticide applications).

Although modern agriculture met the challenge to increase 
food production last century, lessons learned from the twenti-
eth century “green revolution” and our current circumstances 
impact the likelihood of another such revolution. The intensive 
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use of chemicals has adversely impacted the environment in 
many regions, leading to salinization and decreasing water qual-
ity and degrading croplands. From 1960 to 2000, worldwide 
phosphorous use doubled from 10 million tons (MT) to 20 MT, 
pesticide use tripled from near zero to 3 MT, and nitrogen use as 
fertilizer increased to a staggering 80 MT from just 10 MT (Foley 
et al., 2007; Khan and Hanjra, 2008). Diversion of croplands to 
biofuels is taking water away from food production (Bindraban 
et al., 2009), even as the economic, carbon sequestration, envi-
ronmental, and food security impacts of biofuel production are 
proving to be a net negative (Gibbs et al., 2008; Lal and Pimentel, 
2009; Searchinger et al., 2008). Climate models predict that the 
hottest seasons on record will become the norm by the end of the 
century in most regions of the world—a prediction that bodes ill 

for feeding the world (Kumar and Singh, 2005). Increasing per 
capita meat consumption is increasing agricultural demands 
on land and water (Vinnari and Tapio, 2009). Cropland areas 
are decreasing in many parts of the world due to urbanization, 
industrialization, and salinization (Khan and Hanjra, 2008). 
Ecological and environmental imperatives, such as biodiver-
sity conservation and atmospheric carbon sequestration, have 
put a cap on the possible expansion of cropland areas to other 
lands such as forests and rangelands (Gordon et al., 2009). Crop 
yield increases of the green revolution era have now stagnated 
(Hossain et al., 2005). Given these factors and limitations, fur-
ther increase in food production through increase in cropland 
areas and/or increased allocations of water for croplands is 
widely considered unsustainable or simply infeasible.

Clearly, our continued ability to sustain adequate global 
food production and achieve future food security in the 
twenty-first century is challenged. So, how does the world con-
tinue to meet its food and nutrition needs? Solutions may come 
from biotechnology and precision farming. However, develop-
ments in these fields are not currently moving at rates that will 
ensure global food security over the next few decades (Foley 
et al., 2011). Further, there is a need for careful consideration 
of possible adverse effects of biotechnology. We should not be 
looking back 30–50  years from now with regrets, like we are 
looking back now at many mistakes made during the green 
revolution. During the green revolution, the focus was only on 
getting more yield per unit area. Little thought was given to 
the serious damage done to our natural environments, water 
resources, and human health as a result of detrimental factors 
such as uncontrolled use of herbicides, pesticides, and nutri-
ents, drastic groundwater mining, and salinization of fertile 
soils due to overirrigation. Currently, there are discussions 
of a “second green revolution” or even an “evergreen revolu-
tion,” but definitions of what these terms actually mean are still 
debated and are evolving (e.g., Monfreda et al., 2008). One of 
the biggest issues that has not been given adequate focus is the 
use of large quantities of water for food production. Indeed, 
an overwhelming proportion (60%–90%) of all human water 
use in the World, for example, goes for producing their food 
(Falkenmark and Rockström, 2006). But such intensive water 
use for food production is no longer sustainable due to increas-
ing competition for water in alternative uses (EPW, 2008), such 
as urbanization, industrialization, environmental flows, biofu-
els, and recreation. This has brought into sharp focus the need 
to grow more food per drop of water (or crop water productiv-
ity or crop per drop) leading to the need for a “blue revolution” 
in agriculture (Pennisi, 2008).

A significant part of the solution lies in determining how global 
croplands are currently used and how they might be better managed 
to optimize the use of resources in food production. This will require 
development of an advanced global cropland area database (GCAD) 
with an ability to map global croplands and their attributes routinely, 
rapidly, consistently, and with sufficient accuracies. This in turn 

Table 6.1  World Population (Thousands) Under All Variants, 
1950–2100

Year 

Medium 
Fertility 
Variant 

High Fertility 
Variant 

Low Fertility 
Variant 

Constant 
Fertility 
Variant 

1950 2,529,346 2,529,346 2,529,346 2,529,346
1955 2,763,453 2,763,453 2,763,453 2,763,453
1960 3,023,358 3,023,358 3,023,358 3,023,358
1965 3,331,670 3,331,670 3,331,670 3,331,670
1970 3,685,777 3,685,777 3,685,777 3,685,777
1975 4,061,317 4,061,317 4,061,317 4,061,317
1980 4,437,609 4,437,609 4,437,609 4,437,609
1985 4,846,247 4,846,247 4,846,247 4,846,247
1990 5,290,452 5,290,452 5,290,452 5,290,452
1995 5,713,073 5,713,073 5,713,073 5,713,073
2000 6,115,367 6,115,367 6,115,367 6,115,367
2005 6,512,276 6,512,276 6,512,276 6,512,276
2010 6,916,183 6,916,183 6,916,183 6,916,183
2015 7,324,782 7,392,233 7,256,925 7,353,522
2020 7,716,749 7,893,904 7,539,163 7,809,497
2025 8,083,413 8,398,226 7,768,450 8,273,410
2030 8,424,937 8,881,519 7,969,407 8,750,296
2035 8,743,447 9,359,400 8,135,087 9,255,828
2040 9,038,687 9,847,909 8,255,351 9,806,383
2045 9,308,438 10,352,435 8,323,978 10,413,537
2050 9,550,945 10,868,444 8,341,706 11,089,178
2055 9,766,475 11,388,551 8,314,597 11,852,474
2060 9,957,399 11,911,465 8,248,967 12,729,809
2065 10,127,007 12,442,757 8,149,085 13,752,494
2070 10,277,339 12,989,484 8,016,514 14,953,882
2075 10,305,146 13,101,094 7,986,122 15,218,723
2080 10,332,223 13,213,515 7,954,481 15,492,520
2085 10,358,578 13,326,745 7,921,618 15,775,624
2090 10,384,216 13,440,773 7,887,560 16,068,398
2095 10,409,149 13,555,593 7,852,342 16,371,225
2100 10,433,385 13,671,202 7,815,996 16,684,501

Source:	 UNDP, Human Development Report 2012: Overcoming Barriers: 
Human Mobility and Development, New York, United Nations, 2012.
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requires the creation of a framework of best practices for cropland 
mapping and an advanced global geospatial information system on 
global croplands. Such a system would need to be consistent across 
nations and regions by providing information on issues such as the 
composition and location of cropping, cropping intensities (e.g., sin-
gle, double crop), rotations, crop health/vigor, and irrigation status. 
Opportunities to establish such a global system can be achieved by 
fusing advanced remote sensing data from multiple platforms and 
agencies (e.g.,  http://eros.usgs.gov/ceos/satellites_midres1.shtml; 
http://www.ceos-cove.org/index.php) in combination with national 
statistics, secondary data (e.g., elevation, slope, soils, temperature, 
and precipitation), and the systematic collection of field level obser-
vations. An example of such a system on a regional scale is USDA, 
NASS Cropland Data Layer (CDL), which is a raster, georeferenced, 
crop-specific land cover data layer with a ground resolution of 30 m 
(Johnson and Mueller, 2010). The GCAD will be a major contribu-
tion to Group on Earth Observations (GEO) Global Agricultural 
Monitoring Initiative (GLAM), to the overarching vision of GEO 
Agriculture and Water Societal Beneficial Areas (GEO Ag. SBAs), 
G20 Agriculture Ministers initiatives, and ultimately to the Global 
Earth Observation System of Systems (GEOSS). These initiatives 
are also supported by the Committee on Earth Observing Satellites 
(CEOS) Strategic Implementation Team (SIT).

Within the context of the above facts, the overarching 
goal of this chapter is to provide a comprehensive overview 
of the state-of-art of global cropland mapping procedures 
using remote sensing as characterized and envisioned by 
the “Global Food Security Support Analysis Data @ 30 m 
(GFSAD30)” project working group team. First, the chapter 
will provide an overview of existing cropland maps and their 
characteristics along with establishing the gaps in knowl-
edge related to global cropland mapping. Second, definitions 
of cropland mapping along with key parameters involved in 
cropland mapping based on their importance in food security 
analysis, and cropland naming conventions for standardized 
cropland mapping using remote sensing will be presented. 
Third, existing methods and approaches for cropland mapping 
will be discussed. This will include the type of remote sens-
ing data used in cropland mapping and their characteristics 
along with discussions on the secondary data, field-plot data, 
and cropland mapping algorithms. Fourth, currently existing 
global cropland products derived using remote sensing will 
be presented and discussed. Fifth, a synthesis of all existing 
products leading to a composite global cropland extent ver-
sion 1.0 (GCE V1.0) is presented and discussed. Sixth, a way 
forward for advanced global cropland mapping is visualized.

6.2 � Global Distribution of Croplands 
and Other Land Use and Land 
Cover: Baseline for the Year 2000

The first comprehensive global map of croplands was created by 
Ramankutty et al. in 1998. A more current version for the year 
2000 shows the spatial distribution of global croplands along 

with other land use and land cover classes (Figure 6.1). This 
provides a first view of where global croplands are concentrated 
and helps us to focus on the appropriate geographic locations 
for detailed cropland studies. Water and snow (Class 8 and 9, 
respectively) have zero croplands and occupy 44% of the total 
terrestrial land surface. Further, forests (Class 6) occupy 17% of 
the terrestrial area and deserts (Class 7) an additional 12%. In 
these two classes, <5% of the total croplands exist. Therefore, 
in order to study croplands systematically and intensively, one 
must prioritize mapping in the areas of Classes 1–5 (26% of the 
terrestrial area) where >95% of all global croplands exist, with 
the first 3 classes (Class 1, 2, and 3) having ∼75% and the next 2 
∼20%. In the future, it is likely some of the noncroplands may 
be converted to croplands (e.g., especially in Africa where large 
farmlands are introduced in recent years in otherwise over-
whelmingly small-holder dominant farming) or vice versa, 
highlighting the need for repeated and systematic global map-
ping of croplands. Segmenting the world into cropland versus 
noncropland areas routinely will help us understand and study 
these change dynamics better.

6.2.1 �E xisting Global Cropland Maps: 
Remote Sensing and Non–Remote 
Sensing Approaches

There are currently six major global cropland maps: 
(1)  Thenkabail et  al. (2009a,b), (2) Ramankutty and Foley 
(1998), (3) Goldewijk et  al. (2011), (4) Portmann et  al. (2010), 
(5) Pittman et al. (2010), and (6) Yu et al. (2013). These studies 
estimated the total global cropland area to be around 1.5 to 1.7 
billion hectares for the year 2000 as a baseline. However, there 
are two significant differences in these products: (1) spatial dis-
agreement on where the actual croplands are, and (2) irrigated 
to rain-fed cropland proportions and their precise spatial loca-
tions. Globally, cropland areas have increased from around 265 
Mha in year 1700 to around 1471 Mha in year 1990, while the 
area of pasture has increased approximately sixfold from 524 to 
3451 Mha (Foley et al., 2011). Ramankutty and Foley (1998) esti-
mated the cropland and pasture to represent about 36% of the 
world’s terrestrial surface (148,940,000 km2), of which, accord-
ing to different studies, roughly 12% is croplands and 24% pas-
ture. Multiple studies (Goldewijk et  al., 2011; Portmann et  al., 
2010; Ramankutty et al., 2008) integrated agricultural statistics 
and census data from the national systems with spatial mapping 
technologies involving geographic information systems (GIS) to 
derive global cropland maps.

Thenkabail and others (2009a,b, 2011) produced the first remote 
sensing–based global irrigated and rain-fed cropland maps and 
statistics through multisensor remote sensing data fusion along 
with secondary data and in situ data. They further used five domi-
nant crop types (wheat, rice, corn, barley, and soybeans) using par-
cel-based inventory data (Monfreda et al., 2005, 2008; Portmann 
et al., 2010; Ramankutty et al., 2008) to produce a classification of 
global croplands with crop dominance (Thenkabail et al., 2012). 
The five crops account for about 60% of the total global cropland 
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areas. The precise spatial location of these crops is only an approx-
imation due to the coarse resolution (approximately 1 km2) and 
fractional representation (1%–100% crop in a pixel) of the crop 
data in each grid cell of all the maps from which this compos-
ite map is produced (Thenkabail et al., 2012). The existing global 
cropland datasets also differ from each other due to inherent 
uncertainties in establishing the precise location of croplands, the 
watering methods (rain-fed versus irrigated), cropping intensities, 
crop types and/or dominance, and crop characteristics (e.g., crop 
or water productivity measures such as biomass, yield, and water 
use). Improved knowledge of the uncertainties (Congalton and 
Green, 2009) in these estimates will lead to a suite of highly accu-
rate spatial data products (Goodchild and Gopal, 1989) in support 
of crop modeling, food security analysis, and decision support.

6.3 � Key Remote Sensing–Derived 
Cropland Products: Global 
Food Security

The production of a repeatable global cropland product requires a 
standard set of metrics and attributes that can be derived consis-
tently across the diverse cropland regions of the world. Four key 
cropland information systems attributes that have been identified 
for global food security analysis and that can be readily derived 
from remote sensing include (Figure 6.2): (1) cropland extent/areas, 

(2) watering methods (e.g., irrigated, supplemental irrigated, and 
rain-fed), (3) crop types, and (4) cropping intensities (e.g., single 
crop, double crop, and continuous crop). Although not the focus 
of this chapter, many other parameters are also derived in local 
regions, such as: (5) precise location of crops, (6) cropping calen-
dar, (7) crop health/vigor, (8) flood and drought information, (9) 
water use assessments, and (10) yield or productivity (expressed per 
unit of land and/or unit of water). Remote sensing is specifically 
suited to derive the four key products over large areas using fusion 
of advanced remote sensing (e.g., Landsat, Resourcesat, MODIS) 
in combination with national statistics, ancillary data (e.g., eleva-
tion, precipitation), and field-plot data. Such a system, at the global 
level, will be complex in data handling and processing and requires 
coordination between multiple agencies leading to development of 
a seamless, scalable, transparent, and repeatable methodology. As a 
result, it is important to have a systematic class labeling convention 
as illustrated in Figure 6.3. A standardized class identifying and 
labeling process (Figure 6.3) will enable consistent and systematic 
labeling of classes, irrespective of analysts. First, the area is sepa-
rated into cropland versus noncropland. Then, within the cropland 
class, labeling will involve (Figure 6.3): (1) cropland extent (crop-
land versus noncropland), (2) watering source (e.g., irrigated versus 
rain-fed), (3) irrigation source (e.g., surface water, ground water), 
(4) crop type or dominance, (5)  scale  (e.g.,  large or contiguous, 
small or fragmented), and (6) cropping intensity (e.g., single crop, 
double crop). The detail at which one maps at each stage and each 
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Figure 6.1  Global croplands and other land use and land cover: Baseline.
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Figure 6.2  Key global cropland area products that will support food security analysis in the twenty-first century.
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parameter would depend on many factors such as resolution of the 
imagery, available ground data, and expert knowledge. For exam-
ple, if there is no sufficient knowledge on whether the irrigation is 
by surface water or ground water, but it is clear that the area is irri-
gated, one could just map it as irrigated without mapping greater 
details on the type of irrigation. But, for every cropland class, one 
has the potential to map the details as shown in Figure 6.3.

6.4 � Definition of Remote Sensing–
Based Cropland Mapping Products

Key to effective mapping is a precise and clear definition of what 
will be mapped. It is the first and primary step, with different 
definitions leading to different products. For example, irrigated 
areas are defined and understood differently in different appli-
cations and contexts. One can define them as areas that receive 
irrigation at least once during their crop growing period. 
Alternatively, they can be defined as areas that receive irriga-
tion to meet at least half their crop water requirements during 
the growing season. One other definition can be that these are 
areas that are irrigated throughout the growing season. In each 
of these cases, the extent of irrigated area   mapped will vary. 
Similarly, croplands can be defined as all agricultural areas irre-
spective of the types of crops grown or they may be limited to 
food crops (and not the fodder crops or plantation crops). So, it 
is obvious that having a clear understanding of the definitions 
of what we map is extremely important for the integrity of the 
products developed. We defined cropland products as follows:

•	 Minimum mapping unit: The minimum mapping unit of a 
particular crop is an area of 3 by 3 (0.81 ha) Landsat pixels 
identified as having the same crop type.

•	 Cropland extent: All cultivated plants harvested for food, 
feed, and fiber, including plantations (e.g., orchards, vine-
yards, coffee, tea, rubber).

•	 What is a cropland pixel?: sub-pixel composition is used to 
calculate area. This involves multiplying full pixel area (FPA) 
with cropland area fraction (CAF). CAF provides what % of 
pixel is cropped. So, sub-pixel area/actual area = FPA*CAF

•	 Irrigated areas: Irrigation is defined as artificial applica-
tion of any amount of water to overcome crop water stress. 
Irrigated areas are those areas that are irrigated one or 
more times during crop growing season.

•	 Rain-fed areas: Areas that have no irrigation whatsoever 
and are precipitation dependent.

•	 Cropping intensity: Number of cropping cycles within a 
12-month period.

•	 Crop type: Eight crops (wheat, corn, rice, barley, soybeans, 
pulses, cotton, and potatoes), that occupy approx. 70% 
global cropland areas are considered. The rest of the crops 
are under “others”. However, in particular continents where 
other crops like sugarcane or cassava etc. are important, 
they will be mapped as well.

6.5 � Data: Remote Sensing and Other 
Data for Global Cropland Mapping

Cropland mapping using remote sensing involves multiple types 
of data: satellite data with a consistent and useful global repeat 
cycle, secondary data, statistical data, and field plot data. When 
these data are used in an integrated fashion, the output products 
achieve highest possible accuracies (Thenkabail et al., 2009b,c).

6.5.1  Primary Satellite Sensor Data

Cropland mapping will require satellite sensor data across spa-
tial, spectral, radiometric, and temporal resolutions from a wide 
array of satellite/sensor platforms (Table 6.2) throughout the 
growing season. These satellite sensors are “representative” of 
hyperspectral, multispectral, and hyperspatial data. The data 
points per hectare (Table 6.2, last column) will indicate the spa-
tial detail of agricultural information gathered. In addition to 
satellite-based sensors, it is always valuable to gather ground-
based hand-held spectroradiometer data from hyperspectral 
sensors (Thenkabail et al., 2013), and/or imaging spectroscopy 
from ground-based, airborne, or space borne sensors for vali-
dation and calibration purposes (Thenkabail et al., 2011). Much 
greater details of a wide array of sensors available to gather 
data are presented in Chapters 1 and 2 of Remotely Sensed Data 
Characterization, Classification, and Accuracies.

6.5.2  Secondary Data

There is a wide array of secondary or ancillary data such as the 
ASTER-derived digital elevation data (GDEM), long (50–100 
years) records of precipitation and temperature (CRU), digital 
maps of soil types, and administrative boundaries. Many sec-
ondary data are known to improve crop classification accuracies 
(Thenkabail et al., 2009a,b). The secondary data will also form 
core data for the spatial decision support system and final visu-
alization tool in many systems.

6.5.3  Field-Plot Data

Field-plot data (e.g., Figure 6.4) will be used for purposes such 
as: (1) class identification and labeling; (2) determining irrigated 
area fractions (AFs), and (3) establishing accuracies, errors, and 
uncertainties. At each field point (e.g., Figure 6.3), data such as 
cropland or noncropland, watering method (irrigated or rain-
fed), crop type, and cropping intensities are recorded along 
with GPS locations, digital photographs, and other information 
(e.g., yield, soil type) as needed. Field plot data will also help in 
gathering an ideal spectral data bank of croplands. One could 
use the precise locations and the crop characteristics and gener-
ate coincident remote sensing data characteristics (e.g., MODIS 
time-series monthly NDVI).
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Table 6.2  Characteristics of Some of the Key Satellite Sensor Data Currently Used in Cropland Mapping

Satellite Sensor 
Wavelength 
Range (μm) 

Spatial 
Resolution (m) 

Spectral 
Bands (#) 

Temporal 
(days) 

Radiometric 
(bits) Data Points (per ha) 

A. Hyperspectral
EO-1 Hyperion 196 16 16 11.1 points for 30 m pixel

VNIR 0.43–0.93 30 (0.09 ha per pixel)
SWIR 0.93–2.40 30

B. Advanced multispectral
Landsat TM 7/8 16 8

Multispectral
Band 1 0.45–0.52 30 44.4 points for 15 m pixel
Band 2 0.53–0.61 30 11.1 points for 30 m pixel
Band 3 0.63–0.69 30 2.77 points for 60 m pixel
Band 4 0.78–0.90 30 0.69 points for 120 m pixel
Band 5 1.55–1.75 30
Band 6 10.40–12.50 120/60
Band 7 2.09–2.35 30

Panchromatic 0.52–0.90 15

EO-1 ALI 10 16 16
Multispectral

Band 1 0.43–0.45 30
Band 2 0.45–0.52 30
Band 3 0.52–0.61 30
Band 4 0.63–0.69 30
Band 5 0.78–0.81 30
Band 6 0.85–0.89 30
Band 7 1.20–1.30 30
Band 8 1.55–1.75 30
Band 9 2.08–2.35 30

Panchromatic 0.48–0.69 10

ASTER 14 16 8
VNIR 15

Band 1 0.52–0.60
Band 2 0.63–0.69
Band 3N/3B 0.76–0.86

SWIR 30
Band 4 1.600–1.700
Band 5 2.145–2.185
Band 6 2.185–2.225
Band 7 2.235–2.285
Band 8 2.295–2.365
Band 9 2.360–2.430

TIR 90 1.23 points for 90 m
Band 10 8.125–8.475
Band 11 8.475–8.825
Band 12 8.925–9.275
Band 13 10.25–10.95
Band 14 10.95–11.65

MODIS
MOD09Q1 250 2 1 12 0.16 points for 250 m

Band 1 0.62–0.67
Band 2 0.84–0.876

(continued )
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6.5.4  Very-High-Resolution Imagery Data

Very-high-resolution (submeter to 5 m) imagery (VHRI; see 
hyperspatial data characteristics in Table 6.2) is widely avail-
able these days from numerous sources. These data can be 
used as ground samples in localized areas to classify as well 
as verify classification results of the coarser resolution imag-
ery. For example, in Figure 6.5, VHRI tiles identify uncertain-
ties existing in cropland classification of coarser resolution 
imagery. VHRI is specifically useful for identifying croplands 
versus noncroplands (Figure 6.5). They can also be used for 
identifying irrigation based on associated features such as 
canals and tanks.

6.5.5 � Data Composition: Mega File 
Data Cube (MFDC) Concept

Data preprocessing requires that all the acquired imagery is 
harmonized and standardized in known time intervals (e.g., 
monthly, biweekly). For this, the imagery data is either acquired 
or converted to at-sensor reflectance (see Chander et  al., 2009; 
Thenkabail et  al., 2004) and then converted to surface reflec-
tance using Landsat Ecosystem Disturbance Adaptive Processing 
System (LEDAPS) codes for Landsat (Masek et al., 2006) or similar 
codes for other sensors. All data are processed and mosaicked to 
required geographic levels (e.g., global, continental). One method 
to organize these disparate but colocated datasets is through the 

Table 6.2 (continued )  Characteristics of Some of the Key Satellite Sensor Data Currently Used in Cropland Mapping

Satellite Sensor 
Wavelength 
Range (μm) 

Spatial 
Resolution (m) 

Spectral 
Bands (#) 

Temporal 
(days) 

Radiometric 
(bits) Data Points (per ha) 

MOD09A1 500 7a/36 1 12 0.04 points for 500 m
Band 1 0.62–0.67
Band 2 0.84–0.876
Band 3 0.459–0.479
Band 4 0.545–0.565
Band 5 1.23–1.25
Band 6 1.63–1.65
Band 7 2.11–2.16

C. Hyperspatial
GeoEye-1

Multispectral 1.65 5 <3 11
Band 1 0.45–0.52 59,488 points for 0.41 m
Band 2 0.52–0.60 26,874 points for 0.61 m
Band 3 0.63–0.70 10,000 points for 1 m
Band 4 0.76–0.90 3673 points for 1.65 m

Panchromatic 0.45–0.90 0.41 1679 points for 2.44 m

IKONOS 5 3 11
Multispectral 4

Band 1 0.45–0.52 625 points for 4 m
Band 2 0.51–0.60 400 points for 5 m
Band 3 0.63–0.70 236 points for 6.5 m
Band 4 0.76–0.85 100 points for 10 m

Panchromatic 0.53–0.93 1 44.4 points for 15 m

QuickBird 5 1–6 11
Multispectral 2.44

Band 1 0.45–0.52
Band 2 0.52–0.60
Band 3 0.63–0.69
Band 4 0.76–0.90

Panchromatic 0.45–0.90 0.61

RapidEye 5–6.5 5 1–6 16
Band 1 0.44–0.51
Band 2 0.52–0.59
Band 3 0.63–0.68
Band 4 0.69–0.73
Band 5 0.76–0.85

a	MODIS has 36 bands, but we considered only the first 7 bands (Mod09A1).

© 2016 Taylor & Francis Group, LLC

  



141Global Food Security Support Analysis Data at Nominal 1 km (GFSAD1km)

use of a MFDC. Numerous secondary datasets are combined in 
an MFDC, which is then stratified using image segmentation into 
distinct precipitation-elevation-temperature-vegetation zones. 
Data within the MFDC can include ASTER-derived refined digital 
elevation from SRTM (GDEM), monthly long-term precipitation, 
monthly thermal skin temperature, and forest cover and density. 
This segmentation allows cropland mapping to be focused; creating 

distinctive segments of MFDCs and analyzing them separately for 
croplands will enhance accuracy. For example, the likelihood of 
croplands in a temperature zone of <280°K is very low. Similarly, 
croplands in elevation above 1500 m will be of distinctive charac-
teristics (e.g., patchy, on hilly terrain most likely plantations of cof-
fee or tea). Every layer of data is geolinked (having precisely same 
projection and datum and are georeferenced to one another).

Ground reference data points (Global collection: Total 125,796 points)
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Figure 6.4  Field plot data for cropland studies collected over the globe.
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Figure 6.5  Very-high-resolution imagery used to resolve uncertainties in cropland mapping of Australia.
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The purpose of MFDC (MFDC; see Thenkabail et al., 2009b 
for details) is to ensure numerous remote sensing and second-
ary data layers are all stacked one over the other to form a 
data cube akin to hyperspectral data cube. This approach has 
been used by X to map croplands in Y (reference). The MFDC 
allows us to have the entire data stack for any geographic loca-
tion (global to local) as a single file available for analysis. For 
example, one can classify 10s or 100s or even 1000s of data layers 
(e.g., monthly MODIS NDVI time series data for a geographic 
area for an entire decade along with secondary data of the same 
area) stacked together in a single file and classify the image. The 
classes coming out of such a MFDC inform us about the phenol-
ogy along with other characteristics of the crop.

6.6 C ropland Mapping Methods

6.6.1 � Remote Sensing–Based Cropland 
Mapping Methods for Global, 
Regional, and Local Scales

There is a growing literature on cropland mapping across resolutions 
for both irrigated and rain-fed crops (Friedl et al., 2002; Gumma 
et al., 2011; Hansen et al., 2002; Kurz and Seelan, 2007; Loveland 
et al., 2000; Olofsson et al., 2011; Ozdogan and Woodcock, 2006; 
Thenkabail et  al., 2009a,c; Wardlow and Egbert, 2008; Wardlow 
et al., 2006, 2007). Based on these studies, an ensemble of meth-
ods that is considered most efficient include: (1) spectral matching 
techniques (SMTs) (Thenkabail et al., 2007a, 2009a,c); (2) decision 
tree algorithms (DeFries et  al., 1998); (3) Tassel cap brightness-
greenness-wetness (Cohen and Goward, 2004; Crist and Cicone, 
1984; Masek et al., 2008); (4) space-time spiral curves and change 
vector analysis (Thenkabail et al., 2005); (5) phenology (Loveland 
et al., 2000; Wardlow et al., 2006); and (6) climate data fusion with 
MODIS time-series spectral indices using decision tree algorithms 
and subpixel classification (Ozdogan and Gutman, 2008). More 
recently, cropland mapping algorithms that analyze end-member 
spectra have been used for global mapping by Thenkabail et  al. 
(2009a, 2011).

6.6.2 � Spectral Matching Techniques 
(SMTs) Algorithms

SMTs (Thenkabail et al., 2007a, 2009a, 2011) are innovative methods 
of identifying and labeling classes (see illustration in Figures 6.6 and 
6.7a). For each derived class, this method identifies its characteris-
tics over time using MODIS time-series data (e.g., Figure 6.6). NDVI 
time-series or other metrics (Biggs et al., 2006; Dheeravath et al., 
2010; Thenkabail et al., 2005, 2007a) are analogous to spectra, where 
time is substituted for wavelength. The principle in SMT is to match 
the shape, or the magnitude or both to an ideal or target spectrum 
(pure class or “end-member”). The spectra at each pixel to be clas-
sified is compared to the end-member spectra and the fit is quanti-
fied using the following SMTs (Thenkabail et al., 2007a): (1) spectral 
correlation similarity (SCS)—a shape measure; (2) spectral similar-
ity value (SSV)—a shape and magnitude measure; (3) Eucledian 

distance similarity (EDS)—a distance measure; and (4) modified 
spectral angle similarity (MSAS)—a hyperangle measure.

6.6.2.1  Generating Class Spectra

The MFDC (Section 6.4.5) of each of segment (Figures 6.6 and 6.7a) 
is processed using ISOCLASS K-means classification to produce 
a large number of class spectra with a unsupervised classification 
technique that are then interpreted and labeled. In more localized 
applications, it is common to undertake a field-plot data collection 
to identify and label class spectra. However, at the global scale, this 
is not possible due to the enormous resources required to cover vast 
areas to identify and label classes. Therefore, SMTs (Thenkabail 
et al., 2007a) to match similar classes or to match class spectra from 
the unsupervised classification with a library of ideal or target spec-
tra (e.g., Figure 6.6a) will be used to identify and label the classes.

6.6.2.2 C reating Ideal Spectra Data Bank (ISDB)

The term “ideal or target” spectra refers to time-series spectral 
reflectivity or NDVI generated for classes for which we have pre-
cise location-specific ground knowledge. From these locations, 
signatures are extracted using MFDC, synthesized, and aggre-
gated to generate a few hundred signatures that will constitute 
an ISDB (e.g., Figures 6.6 and 6.7a).

6.6.2.3 � Matching Class Spectra with Ideal Spectra 
Using Spectral Matching Techniques (SMTs)

Once the class spectra are generated, they are compared with 
ideal spectra to match, identify, and label classes. Often quan-
titative spectral matching techniques like spectral correlation 
similarity R-square (SCS R-square) and spectral similarity value 
(SSV) are used (Thenkabail et al., 2007a).

6.7 � Automated Cropland 
Classification Algorithm

The first part of the automated cropland classification algorithm 
(ACCA) method involves knowledge capture to understand and 
map agricultural cropland dynamics by: (1) identifying croplands 
versus noncroplands and crop type/dominance based on SMTs, 
decision trees tassel cap bispectral plots, and very-high-resolution 
imagery; (2) determining watering method (e.g., irrigated or rain-
fed) based on temporal characteristics (e.g., NDVI), crop water 
requirement (water use by crops), secondary data (elevation, pre-
cipitation, temperature), and irrigation structure (e.g., canals and 
wells); (3) establishing croplands that are large scale (i.e., contigu-
ous) versus small scale (i.e., fragmented); (4) characterizing crop-
ping intensities (single, double, triple, and continuous cropping); 
(5) interpreting MODIS NDVI temporal bispectral plots to identify 
and label classes; and (6) using in situ data from very-high-resolution 
imagery, field-plot data, and national statistics (see Figure 6.7b for 
details). The second part of the method establishes accuracy of the 
knowledge-captured agricultural map (Congalton, 1991 and 2009) 
and statistics by comparison with national statistics, field-plot data, 
and very-high-resolution imagery. The third part of the method 
makes use of the captured knowledge to code and map cropland 
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dynamics through an automated algorithm. The fourth part of the 
method compares the agricultural cropland map derived using an 
automated algorithm (classified data) with that derived based on 
knowledge capture (reference map). The fifth part of the method 
applies the tested algorithm on an independent dataset of the same 
area to automatically classify and identify agricultural cropland 
classes. The sixth part of the method assesses accuracy and vali-
dates the classes derived from independent dataset using an auto-
mated algorithm (Thenkabail et al., 2012; Wu et al., 2014a,b).

6.8 � Remote Sensing–Based Global 
Cropland Products: Current 
State-of-the-Art Maps, Their 
Strengths, and Limitations

Remote sensing offers the best opportunity to map and charac-
terize global croplands most accurately, consistently, and repeat-
edly. Currently, there are three global cropland maps that have 

been developed using remote sensing techniques. In addition, 
we also considered a recent MODIS global land cover and land 
use map where croplands are included. We examined these maps 
to identify their strengths and weaknesses, to see how well they 
compare with each other, and to understand the knowledge gaps 
that need to be addressed. These maps were produced by:

	 1.	 Thenkabail et al. (2009b, 2011; Biradar et al., 2009)
	 2.	 Pittman et al. (2010)
	 3.	 Yu et al. (2013)
	 4.	 Friedl et al. (2010)

Thenkabail et al. (2009b, 2011; Figure 6.8; Table 6.3) used a com-
bination of AVHRR, SPOT VGT, and numerous secondary (e.g., 
precipitation, temperature, and elevation) data to produce a global 
irrigated area map (Thenkabail et  al., 2009b, 2011) and a global 
map of rain-fed cropland areas (Biradar et  al., 2009; Thenkabail 
et al., 2011; Figure 6.8; Table 6.3). Pittman et al. (2010; Figure 6.9; 
Table 6.4) used MODIS 250 m data to map global cropland extent. 
More recently, Yu et al. (2013; Figure 6.10; Table 6.5) produced a 
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Figure 6.6  SMT. In SMTs, the class temporal profile (NDVI curves) are matched with the ideal temporal profile (quantitatively based on tem-
poral profile similarity values) in order to group and identify classes as illustrated for a rice class in this figure. (a) Ideal temporal profile illustrated 
for “irrigated- surface-water-rice-double crop”; (b) some of the class temporal profile signatures that are similar; (c) ideal temporal profile signature 
(Figure 6.6a) matched with class temporal profiles (Figure 6.6b); and (d) the ideal temporal profile (Figure 6.6a, in deep green) matches with class 
temporal profiles of Classes 17 and 33 perfectly. Then one can label Classes 17 and 33 to be same as the ideal temporal profile (“irrigated-surface-
water-rice-double crop”). This is a qualitative illustration of SMTs. For quantitative methods, refer to Thenkabail et al. (2007a).
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Figure 6.7 (continued )  (b) Cropland mapping methods illustrated for a global scale. Top half shows ACCA (see Thenkabail and Wu, 2012; Wu 
et al., 2014a) and bottom half shows class identification and labeling process.
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nominal 30 m resolution cropland extent of the world. These three 
global cropland extent maps are the best available current state-
of-the-art products. Friedl et al. (2010; Figure 6.11; Table 6.6) used 
500 m MODIS data in their global land cover and land use product 
(MCD12Q1) where croplands were one of the land cover classes. 
The methods, approaches, data, and definitions used in each of 

these products differ extensively. As a result, the cropland extents 
mapped by these products also vary significantly. The areas in 
Tables 6.3 through 6.6 only show the full pixel areas (FPAs) and 
not subpixel areas (SPAs). SPAs are actual areas, which can be esti-
mated by reprojecting these maps to appropriate projections and 
calculating the areas. For the purpose of this chapter, we did not 
estimate SPAs. However, a comparison of the FPAs of the four 
maps (Figures 6.8 through 6.11) shows significant differences in the 
cropland areas (Tables 6.3 through 6.6) as well as significant differ-
ences in the precise locations of the croplands (Figures 6.8 through 
6.11), the reasons for which are discussed in the next section.

6.8.1 � Global Cropland Extent at 
Nominal 1 km Resolution

We synthesized the four global cropland products discussed 
and produced a unified global cropland extent map GCE V1.0 
at nominal 1 km (Table 6.7a; Figure 6.12a). The process involved 
resampling each global cropland product to a common resolu-
tion of 1 km and then performing GIS data overlays to determine 
where the cropland extents matched and where they differed.

90°0΄0˝

70°0΄0˝N

160°0΄0˝W 140°0΄0˝W 120°0΄0˝W 100°0΄0˝W 80°0΄0˝W 60°0΄0˝W 40°0΄0˝W 20°0΄0˝W 20°0΄0˝E 40°0΄0˝E 60°0΄0˝E 80°0΄0˝E 100°0΄0˝E 120°0΄0˝E 140°0΄0˝E 160°0΄0˝E0°0΄0˝

160°0΄0˝W 140°0΄0˝W 120°0΄0˝W 100°0΄0˝W 80°0΄0˝W 60°0΄0˝W 40°0΄0˝W 20°0΄0˝W 20°0΄0˝E 40°0΄0˝E 60°0΄0˝E 80°0΄0˝E 100°0΄0˝E 120°0΄0˝E 140°0΄0˝E 160°0΄0˝E0°0΄0˝

50°0΄0˝N

30°0΄0˝N

10°0΄0˝N

10°0΄0˝S

30°0΄0˝S

50°0΄0˝S

70°0΄0˝S

90°0΄0˝

90°0΄0˝

N

S
EW

70°0΄0˝N

50°0΄0˝N

30°0΄0˝N

10°0΄0˝N

10°0΄0˝S

30°0΄0˝S

50°0΄0˝S

70°0΄0˝S

90°0΄0˝

1. Croplands, irrigated dominance

2. Croplands, rainfed dominance

3. Natural vegetation with minor cropland fractions

4. Natural vegetation dominance with very minor
cropland fractions

Figure 6.8  Global cropland product by Thenkabail et al. (2011, 2009b) using the method illustrated in Figure 6.7 and described in Section 6.1.1 
(details in Thenkabail et al., 2011, 2009b). This includes irrigated and rain-fed areas of the world. The product is derived using remotely sensed data 
fusion (e.g., NOAA AVHRR, SPOT VGT, JERS SAR), secondary data (e.g., elevation, temperature, and precipitation), and in situ data. Total area 
of croplands is 2.3 billion hectares.

Table 6.3  Global Cropland Extent at Nominal 1-km Based 
on Thenkabail et al. (2009b, 2011)a

Class # Class Description (Names) 
Pixels 
(1 km) Percent (%) 

1 Croplands, irrigated dominance 9,359,647 40
2 Croplands, rain-fed dominance 14,273,248 60
3 Natural vegetation with minor 

cropland fractions
5,504,037

4 Natural vegetation dominance with 
very minor cropland fractions

44,170,083

23,632,895 100

a	Total of approximately 2.3 billion hectares; Note that these are FPAs. 
Actual area is SPA. The SPA is not estimated here. See Thenkabail et al. (2007b) 
for the methods for calculating SPAs; % calculated based on Class 1 and 2. 
Class 3 and 4 are very small cropland fragments.
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Figure 6.12a shows the aggregated global cropland extent 
map with its statistics in Table 6.7a. Class 1 in Figure 6.12a and 
Table 6.7a provides the global cropland extent included in all 
four maps. Actual area of this extent is not calculated yet, but 
it includes approximately 2.3 billion hectares FPAs (Table 6.7a). 
The spatial distribution of these 2.3 billion hectares is demon-
strated as Class 1 in Figure 12a. Classes 2 and 3 are areas with 
minor or very minor cropland fractions. Class 2 and Class 3 are 
classes with large areas of natural vegetation and/or desert lands 
and other lands.

Figure 6.12b and Table 6.7b demonstrate where and by how 
much the four products match with one another. For example, 
2,802,397 pixels (Class 1, Table 6.7b; Figure 6.12b) are croplands 
that are irrigated. Some of the products do not separately clas-
sify irrigated versus rain-fed croplands, although all four prod-
ucts show where croplands are. We first identified where all four 

products match as croplands and then added irrigation status or 
other indicators (e.g., irrigation dominance, rain-fed; Table 6.7b) 
from the product by Thenkabail et al. (2009b, 2011).

Table 6.7b and Figure 6.12b show 12 classes of which Classes 1 
and 2 are croplands with irrigated agriculture, Classes 3 and 4 
are croplands with rain-fed agriculture, Classes 5 and 6 are crop-
lands where irrigated agriculture dominates, Classes 7 and 8 are 
croplands where rain-fed agriculture dominates, and Classes 
9–12 are areas with minor or very minor cropland fractions. 
Classes 9–12 are those with large areas of natural vegetation 
and\or desert lands and other lands.

Interestingly, and surprisingly as well, only 20% (Class 1 and 3; 
Table 6.7b; Figure 6.12b) of the total cropland extent are matched 
precisely in all four products. Further, 49% (Class 1, 2, 3, 4, and 7; 
Table 6.7b; Figure 6.12b) of the total cropland areas match in at 
least three of the four products. This implies that all the four 
products have considerable uncertainties in determining the 
precise location of the croplands. The great degree of uncertainty 
in the cropland products can be attributed to factors including

	 1.	 Coarse resolution of the imagery used in the study
	 2.	 Definition of mapping products of interest
	 3.	 Methods and approaches adopted
	 4.	 Limitations of the data
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1. Croplands

Figure 6.9  Global cropland extent map by Pittman et al. (2010) derived using MODIS 250 m data. There is only one cropland class, which 
includes irrigated and rain-fed areas of the world. There is no discrimination between rain-fed and irrigated areas. Total area of croplands is 
0.9 billion hectares.

Table 6.4  Global Cropland Extent at Nominal 250 m Based 
on Pittman et al. (2010)a

Class # Class Description (Names) Pixels (1 km) Percent (%)

1 Croplands 8,948,507 100

a	Total of approximately 0.9 billion hectares. Note that these are FPAs. 
Actual area is SPA. SPA is not estimated here. See Thenkabail et al. (2007b) for 
the methods for calculating SPAs; % calculated based on Class 1.
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Table 6.7c and Figure 6.12c show five classes of which Classes 1 
and 2 are croplands with irrigated agriculture, Class 3 is crop-
land with rain-fed agriculture, Classes 4 and 5 have ONLY 
minor or very minor cropland fractions. We recommend the use 
of this aggregated five class global cropland map (Figure 12c and 
Table 6.7c) produced based on the four major cropland mapping 
efforts [i.e., Thenkabail et al. (2009a, 2011), Pittman et al. (2010), 
Yu et al. (2013), and Friedl et al. (2010)] using remote sensing. 
This map (Figure 6.12c; Table 6.7c) provides clear consensus 
view on of four major studies on global:

•	 Cropland extent location
•	 Cropland watering method (irrigation versus rain-fed)

The product (Figure 6.12c; Table 6.7c) does not show where the 
crop types are or even the crop dominance. However, cropping 
intensity can be gathered using multitemporal remote sensing 
over these cropland areas.

6.9 C hange Analysis

Once the croplands are mapped (Figure 6.13), we can use the 
time-series historical data such as continuous global cover-
age of remote sensing data from NOAA very-high-resolution 
radiometer (VHRR) and advanced VHRR (AVHRR), Global 
Inventory Modeling and Mapping Studies (GIMMS; 1982–
2000), and MODIS time-series (2001–present) to help build 
an inventory of historical agricultural development (e.g., 
Figures 6.13 and 6.14). Such an inventory will provide infor-
mation including identifying areas that have switched from 
rain-fed to irrigated production (full or supplemental), and 
noncropped to cropped (and vice versa). A complete history 
will require systematic analysis of remotely sensed data as 
well as a systematic compilation of all routinely populated 
cropland databases from the agricultural departments of 
all countries throughout the world. The differences in pixel 
sizes in AVHRR versus MODIS will: (1) inf luence class 
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1. Croplands (10–14) 2. Bare-cropland (94 and 24)

Figure 6.10  Global cropland extent map by Yu et al. (2013) derived at nominal 30 m data. Total area of croplands is 2.2 billion hectares. There 
is no discrimination between rain-fed and irrigated areas.

Table 6.5  Global Cropland Extent at Nominal 30 m Based 
on Yu et al. (2013)a

Class # Class Description (Names) Pixels (1 km) Percent 

1 Croplands (Classes 10–14) 7,750,467 35
2 Bare-cropland (Classes 94 and 24) 14,531,323 65

22,281,790 100
a	Total of approximately 2.2 billion hectares. Note that these are FPAs. 

Actual area is SPA. SPA is not estimated here. See Thenkabail et al. (2007b) for 
the methods for calculating SPAs; % calculated based on Class 1 and 2.
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identification and labeling, and (2) cause different levels 
of uncertainties. We will address these issues by determin-
ing SPAs and uncertainties involved in class accuracies and 
uncertainties in areas at various spatial resolutions using 
methods detailed in recent work of this team (Ozdogan and 
Woodcock, 2006; Thenkabail et  al., 2007b; Velpuri et  al., 
2009). Change analyses (Tomlinson, 2003) are conducted in 
order to investigate both the spatial and temporal changes in 
croplands (e.g., Figures 6.13 and 6.14) that will help estab-
lish: (1) change in total cropland areas, (2) change in spatial 
location of cropland areas, (3) expansion on croplands into 
natural vegetation, (4) expansion of irrigation, (5) change 
from croplands to biofuels, and (6) change from croplands to 
urban. Massive reductions in cropland areas in certain parts 
of the world will be detected, including cropland lost as a 
result of reductions in available ground water supply due to 
overdraft (Jiang, 2009; Rodell et al., 2009; Wada et al., 2012).

6.10 � Uncertainties of Existing 
Cropland Products

Currently, the main causes of uncertainties in areas reported 
in various studies (Ramankutty et  al., 2008; Thenkabail et  al., 
2009a,c) can be attributed to, but not limited to: (1) reluctance 
of national and state agencies to furnish the census data on irri-
gated area and concerns of their institutional interests in sharing 
of water and water data; (2) reporting of large volumes of census 
data with inadequate statistical analysis; (3) subjectivity involved 
in the observation-based data collection process; (4) inadequate 
accounting of irrigated areas, especially minor irrigation from 
groundwater, in national statistics; (5) definitional issues involved 
in mapping using remote sensing as well as national statistics; (6) 
difficulties in arriving at precise estimates of AFs using remote 
sensing; (7) difficulties in separating irrigated from rain-fed crop-
lands; and (8) imagery resolution in remote sensing. Other limita-
tions include (Thenkabail et al., 2009a, 2011)

	 1.	 Absence of precise spatial location of the cropland areas 
for training and validation

	 2.	 Uncertainties in differentiating irrigated areas from rain-
fed areas

	 3.	 Absence of crop types and cropping intensities
	 4.	 Inability to generate cropland maps and statistics, routinely
	 5.	 Absence of dedicated web\data portal for dissemination 

cropland products
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Figure 6.11  Global cropland classes (Class 12 and Class 14) extracted from MODIS Global land use and land cover (GLC) 500 m product 
MCD12Q2 by Friedl et al. (2010). Total area of croplands is 2.7 billion hectares. There is no discrimination between rain-fed and irrigated crop-
land areas.

Table 6.6  Global Cropland Extent at Nominal 500 m Based 
on Friedl et al. (2010)1

Class # Class Description (Names) Pixels (1 km) Percent 

1 Global croplands (Class 12 and 14) 27,046,084 100

a	Approximately, total 2.7 billion hectares based on Class 12 and 14. Note 
that these are FPAs. Actual area is SPA. SPA is not estimated here. See 
Thenkabail et al. (2007b) for the methods for calculating SPAs.
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These limitations are a major hindrance in accurate/reliable global, 
regional, and country-by-country water use assessments that in 
turn support crop productivity (productivity per unit of land, 
kg/m2) studies, water productivity (productivity per unit of water, 
kg/m3) studies, and food security analyses. The higher degrees of 
uncertainty in coarser resolution data are a result of an inability to 
capture fragmented, smaller patches of croplands accurately, and 
the homogenization of both crop and noncrop land within areas of 
patchy land cover distribution. In either case, there is a strong need 
for finer spatial resolution to resolve the confusion.

6.11  Way Forward

Given the aforementioned issues with existing maps of global crop-
lands, the way forward will be to produce global cropland maps at 
finer spatial resolution and applying a suite of advanced analysis 

methods. Previous research has shown that at finer spatial resolu-
tion, the accuracy of irrigated and rain-fed area class delineations 
improves, because at finer spatial resolution, more fragmented 
and smaller patches of irrigated and rain-fed croplands can be 
delineated (Ozdogan and Woodcock, 2006; Velpuri et al., 2009). 
Further, greater details of crop characteristics such as crop types 
(e.g., Figure 6.15) can be determined at finer spatial resolutions. 
Crop type mapping will involve the use of advanced methods of 
analysis such as data fusion of higher spatial resolution images 
from sensors such as Resourcesat\Landsat and AWiFS\MODIS 
(e.g., Table 6.2) supported by extensive ground surveys and ideal 
spectral data bank (ISDB) (Thenkabail et al., 2007a). Harmonic 
analysis is often adopted to identify crop types (Sakamoto et al., 
2005) using methods such as the conventional Fourier analysis 
and adopting a Fourier filtered cycle similarity (FFCS) method. 
Mixed classes are resolved using hierarchical crop mapping 

Table 6.7  Global Cropland Extent at Nominal 1-km Based on Four Major Studies: Thenkabail et al. 
(2009b, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010).

Class # Class Description (Names) Pixels (1 km) Percent (%) 

(a) Three class mapa

1 Croplands 23,493,936 100
2 Cropland minor fractions 13,700,176
3 Cropland very minor fractions 44,662,570

(b) Twelve class mapb

1 Croplands all 4, irrigated 2,802,397 12
2 Croplands 3 of 4, irrigated 289,591 1
3 Croplands all 4, rain-fed 1,942,333 8
4 Croplands 3 of 4, rain-fed 427,731 2
5 Croplands, 2 of 4, irrigation dominance 3,220,330 14
6 Croplands, 2 of 4, irrigation dominance 1,590,539 7
7 Croplands, 3 of 4, rain-fed dominance 6,206,419 26
8 Croplands, 2 of 4, rain-fed dominance 3,156,561 13
9 Croplands, minor fragments, 2 of 4 3,858,035 17

10 Croplands, very minor fragments, 2 of 4 6,825,290
11 Croplands, minor fragments, 1 of 4 6,874,886
12 Croplands, very minor fragments, 1 of 4 44,662,570

Class 1–9 total 23,493,936 100

(c) Five class mapc

1 Croplands, irrigation major 3,091,988 13
2 Croplands, irrigation minor 4,810,869 21
3 Croplands, rain-fed 11,733,044 50
4 Croplands, rain-fed minor fragments 3,858,035 16
5 Croplands, rain-fed very minor fragments 13,700,176

Classes 1–4 total 23,493,936 100.0%

a	Approximately 2.3 billion hectares (Class 1) of cropland is estimated. But this is full pixel area (FPA). Actual area is sub 
pixel area (SPA). SPA is not estimated here. See Thenkabail et al. (2007b) for the methods for calculating SPAs; % calculated 
based on Class 1; Class 2 and 3 are minor/very minor cropland fragments.

b	Approximately 2.3 billion hectares (Class 1–9) of cropland is estimated. But this is FPA. Actual area is SPA. SPA is not 
estimated here. See Thenkabail et al. (2007b) for the methods for calculating SPAs; % calculated based on Class 1–9; Classes 
10, 11, and 12 are minor cropland fragments; All 4 means, all 4 studies agreed.

c	 Approximately 2.3 billion hectares (Class 1–4) of cropland is estimated. But this is FPA. Actual area is SPA. SPA is not 
estimated here. See Thenkabail et al. (2007b) for the methods for calculating SPAs; % calculated based on Class 1–4; Class 
5 is very minor cropland fragments.
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Figure 6.12  (a) An aggregated three class global cropland extent map at nominal 1 km based on four major studies: Thenkabail et al. (2009a, 
2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). Class 1 is total cropland extent; total cropland extent is 2.3 billion hectares 
(FPAs). Class 2 and Class 3 have ONLY minor fractions of croplands. Refer to Table 6.7a for cropland statistics of this map. (b) A disaggregated 
twelve class global cropland extent map derived at nominal 1-km based on four major studies: Thenkabail et al. (2009a, 2011), Pittman et al. (2010), 
Yu et al. (2013), and Friedl et al. (2010). Classes 1–9 are cropland classes that are dominated by irrigated and rain-fed agriculture. Classes 10–12 have 
ONLY minor or very minor fractions of croplands. Refer to Table 6.7b for cropland statistics of this map.� (continued )
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protocol based on decision tree algorithm (Wardlow and Egbert, 
2008). Irrigated versus rain-fed croplands will be distinguished 
using spectral libraries (Thenkabail et al., 2007b) and ideal spec-
tral data banks (Thenkabail et al., 2007a, 2009a). Similar classes 
will be grouped by matching class spectra with ideal spectra based 
on SMTs (SMTs; Thenkabail et al., 2007a). Details such as crop 
types are crucial for determining crop water use, crop productiv-
ity, and water productivity, leading to providing crucial informa-
tion needed for food security studies. However, the high spatial 
resolution must be fused with high temporal resolution data in 
order to obtain time-series spectra that are crucial for monitoring 
crop growth dynamics and cropping intensity (e.g., single crop, 

double crop, and continuous year round crop). Numerous other 
methods and approaches exist. But, the ultimate goal using mul-
tisensor remote sensing is to produce croplands products such as

	 1.	 Cropland extent\area
	 2.	 Crop types (initially focused on eight crops that occupy 

70% of global croplands)
	 3.	 Irrigated versus rain-fed croplands
	 4.	 Cropping intensities\phenology (single, double, triple, and 

continuous cropping)
	 5.	 Cropped area computation
	 6.	 Cropland change over space and time
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Figure 6.12 (continued )  (c) A disaggregated five class global cropland extent map derived at nominal 1-km based on four major studies: 
Thenkabail et al. (2009a, 2011), Pittman et al. (2010), Yu et al. (2013), and Friedl et al. (2010). Classes 1–5 are cropland classes, that are dominated 
by irrigated and rain-fed agriculture. However, Class 4 and Class 5 have ONLY minor or very minor fractions of croplands. Refer to Table 6.7c 
for cropland statistics of this map. Note: Irrigation major: areas irrigated by large reservoirs created by large and medium dams, barrages, and 
even large ground water pumping. Irrigation minor: areas irrigated by small reservoirs, irrigation tanks, open wells, and other minor irrigation. 
However, it is very hard to draw a strict boundary between major and minor irrigations and in places, there can be significant mixing. Major irri-
gated areas such as the Ganges basin, California’s central valley, Nile basin, etc., are clearly distinguishable as major irrigation, and in other areas 
major and minor irrigation may be intermixed.

© 2016 Taylor & Francis Group, LLC

  



153
G

lobal Food
 Secu

rity Su
pport A

n
alysis D

ata at N
om

in
al 1 k

m
 (G

FSA
D

1k
m

)

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

December 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

Note: areas in gray color are other land use / land cover

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

October 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

Note: areas in gray color are other land use/land cover

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

November 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

Note: areas in gray color are other land use / land cover

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W 60°W 0° 60°E 120°E 180°E
180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W 60°W 0° 60°E 120°E 180°E
180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W 60°W 0° 60°E 120°E 180°E

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

January 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W
Note: areas in gray color are other land use/land cover

60°W 0° 60°E 120°E 180°E

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

February 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W
Note: areas in gray color are other land use/land cover

60°W 0° 60°E 120°E 180°E

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

March 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W
Note: areas in gray color are other land use/land cover

60°W 0° 60°E 120°E 180°E

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

September 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W
Note: areas in gray color are other land use/land cover

60°W 0° 60°E 120°E 180°E

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

August 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W
Note: areas in gray color are other land use/land cover

60°W 0° 60°E 120°E 180°E

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

April 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W
Note: areas in gray color are other land use/land cover

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

July 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

Note: areas in gray color are other land use/land cover

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

June 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

Note: areas in gray color are other land use/land cover

60°W 0° 60°E 120°E 180°E

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W 60°W 0° 60°E 120°E 180°E
180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W 60°W 0° 60°E 120°E 180°E

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

–1.0–0.10
NDVI

3,300 1,650 0 3,300
km

N

S

EW

May 2000

Rainfed areas

>0.10–0.20
>0.20–0.30
>0.30–0.40
>0.40–0.50
>0.50–0.60
>0.60–0.70
>0.70–0.80
>0.80–1.0
Country boundaries

Note: areas in gray color are other land use/land cover

180°W 120°W 60°W 0° 60°E 120°E 180°E

180°W 120°W 60°W 0° 60°E 120°E 180°E

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

60
°N

30
°N

0°
30

°S
60

°S

Class 3
Class 6

60°W 0° 60°E 120°E 180°E

60
°N

30
°N

0°
30

°S
60

°S

180°E120°E60°E0°60°W120°W180°W

60
°S

30
°S

0°
30

°N
60

°N

180°W 120°W

Class 7
Class 1

Class 2

Legend

08. Minor fractions of mixed crops: wheat,
      maize, rice, barley and soybeans 
Countries

Note: areas in gray color are non-croplands Global Irrigated and Rainfed Croplands @ nominal 1 km (Source: �enkabail et al., 2012)

01. Irrigated: wheat and rice dominant

N

S

EW

1,6503,300 0 3,300
 km

1
0.8
0.6
0.4
0.2

0
J M A

Date
N

N
D

V
I

1
0.8
0.6
0.4
0.2

0
J M A

Date
N

N
D

V
I

1
0.8
0.6
0.4
0.2

0
J M A

Date
N

N
D

V
I

1
0.8
0.6
0.4
0.2

0
D M J J

Date
S

N
D

V
I

1
0.8
0.6
0.4
0.2

0
D M J J

Date
S

N
D

V
I

02. Irrigated mixed crops 1: wheat, rice,
      barley and soybeans
03. Irrigated mixed crops 2: corn, wheat,
      rice, cotton and orchards
04. Rainfed: wheat, rice, soybeans,
      sugarcane, corn and cassava
05. Rainfed: wheat and barley dominant
06. Rainfed: corn and soybeans dominant
07. Rainfed mixed crops 1: wheat,
      corn, rice, barley and soybeans

Figure 6.13  Center image of global cropland (irrigated and rainfed) areas @ 1 km for year 2000 produced by overlying the remote sensing derived product of the International Water 
Management Institute (IWMI; Thenkabail et al., 2012, 2011, 2009a,b; http://www.iwmigiam.org) over five dominant crops (wheat, rice, maize, barley, and soybeans) of the world produced by 
Ramankutty et al. (2008). The five crops constitute about 60% of all global cropland areas. The IWMI remote sensing product is derived using remotely sensed data fusion (e.g., NOAA AVHRR, 
SPOT VGT, and JERS SAR), secondary data (e.g., elevation, temperature, and precipitation), and in situ data. Total area of croplands is 1.53 billion hectares, of which 399 million hectares is 
total area available for irrigation (without considering cropping intensity) and 467 million hectares is annualized irrigated areas (considering cropping intensity). Surrounding NDVI images 
of irrigated areas: From January to December irrigated area NDVI dynamics is produced using NOAA AVHRR NDVI. The irrigated areas were determined by Thenkabail et al. (2011, 2009a,b).
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Figure 6.14  Global agricultural dynamics over two decades illustrated here for some of the most significant agricultural areas of the World. Once we establish GCAD2010 and GCAD1990 
at nominal 30 m resolution for the entire world, we will use AVHRR-MODIS monthly MVC NDVI time-series from 1982 to 2017 to provide a continuous time history of global irrigated and 
rain-fed croplands, establish their spatial and temporal changes, and highlight the hot spots of change. The GCAD2010, GCAD1990, and GCAD four decade’s data will be made available on 
USGS global cropland data portal (currently under construction): http://powellcenter.usgs.gov/current_projects.php#GlobalCroplandsAbstract. Further, the need to map accurately specific 
cropland characteristics such as crop types and watering methods (e.g., irrigated versus rain-fed) is crucial in food security analysis. For example, the importance of irrigation to global food 
security is highlighted in a recent study by Siebert and Döll (2010) who show that without irrigation, there would be a decrease in production of various foods including dates (60%), rice (39%), 
cotton (38%), citrus (32%), and sugarcane (31%) from their current levels. Globally, without irrigation, cereal production would decrease by a massive 43%, with overall cereal production, from 
irrigated and rain-fed croplands, decreasing by 20%.
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6.12 C onclusions

This chapter provides an overview of the importance of global 
cropland products in food security analysis. It is obvious that 
only remote sensing from Earth-observing (EO) satellites pro-
vides consistent, repeated, high-quality data for characterizing 
and mapping key cropland parameters for global food security 
analysis. Importance of definitions and class naming conventions 
in cropland mapping has been reiterated. Typical EO systems 
and their spectral, spatial, temporal, and radiometric character-
istics useful for cropland mapping have been highlighted. The 
chapter provides a review of various cropland mapping methods 

used at global, regional, and local levels. Some of the remote sens-
ing methods for global cropland mapping have been illustrated. 
The current state-of-the-art provides four-key global cropland 
products (-e.g., Figure 6.12) derived from remote sensing, based 
on the work conducted by four major studies (Thenkabail et al. 
(2009a, 2011, Pittman et al. 2010, Yu et al. 2013, and Friedl et al. 
2010). These studies were conducted using: (1) time-series of mul-
tisensor data and secondary data, (2) 250 m MODIS time-series 
data, (3) 30 m Landsat data, and (4) a MODIS 500 m time-series 
derived cropland classes from a land use\land cover product 
has been used. These four studies help synthesized, at nominal 
1 km, to obtain a consensus cropland mask of the world (global 
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cropland extent version 1.0 or GCE V1.0). It was demonstrated 
from these products that the uncertainty in location of croplands 
in any one given product is quite high and no single product 
maps croplands particularly well. Therefore, a synthesis identi-
fies where some or all of these products agree and where they 
disagree. This provides a starting point for the next level of more 
detailed cropland mapping at 250 and 30 m (see ongoing efforts 
at: http://geography.wr.usgs.gov/science/croplands/ and https://
www.croplands.org/). The five key cropland products identified 
to be derived from remote sensing are: (1) cropland extent\areas, 
(2) cropping intensities, (3) watering method (irrigated versus 
rain-fed), (4) crop type, and (5) cropland change over time and 
space. From these primary products, one can derive crop produc-
tivity and water productivity. Such products have great impor-
tance and relevance in global food security analysis.

Authors recommend the use of composite global cropland 
map (see Figure 6.12c; Table 6.7c) that provides clear consensus 
view on of four major cropland studies on global

•	 Cropland extent location
•	 Cropland watering method (irrigation versus rain-fed)

The nominal 1 km product (Figure 6.12c and Table 6.7c) does 
not show where the crop types are or even where the crop domi-
nance occur. However, cropping intensity can be generated 
using multitemporal remote sensing for every pixel over these 
cropland areas.
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Acronyms and Definitions

AI	 Aphid index
B	 Blue wave band
CCCI	 Canopy chlorophyll content index
CIred edge	 Red-edge chlorophyll index
COA	 Certificates of authorization
CWSI	 Crop water stress index
DHT	 Double Hough transformation
DSSI	 Damage sensitive spectral index
FAA	 Federal Aviation Administration
FLDA	 Fisher linear discriminant analysis
Fm	 Maximal fluorescence
FNIR	 Far–near infrared
Fo	 Minimal fluorescence level
Fv	 Variable fluorescence
G	 Green wave band
GIS	 Geographic information system
GNDVI	 Green normalized difference vegetative index
GPS	 Global positioning system
HSI	 Hue, saturation, and intensity
LAI	 Leaf area index
MRESAVI	 Modified RESAVI
MTCI	 MERIS terrestrial chlorophyll index

MZ	 Management zone
NDRE	 Normalized difference red edge
NDVI	 Normalized difference vegetative index
NIR	 Near infrared
NNI	 Nitrogen nutrition index
OMNBR	 Optimal multiple narrow band reflectance index
OSAVI	 Optimized soil-adjusted vegetation index
PRI	 Photochemical reflectance index
PSII	 Photosystem II
R	 Red wave band
REDVI	 Red-edge difference vegetation index
REIP	 Red-edge inflation point
RERDVI	� Red-edge renormalized difference vegetation index
RERVI	 Red-edge ratio vegetation index
RESAVI	 Red edge soil-adjusted vegetation index
RVI	 Ratio vegetation index
SAVI	 Soil-adjusted vegetation index
SWIR	 Shortwave infrared
TCARI	 Transformed chlorophyll absorption reflection index
TIR	 Thermal infrared
UAV	 Unmanned aerial vehicle
UV	 Ultraviolet
VIS	 Visible
VRT	 Variable rate technology
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7.1 I ntroduction

The world population is increasing rapidly, and by 2050, it is 
estimated that there will be nearly nine billion people to feed 
(Cohen, 2003). Agricultural production to feed this large popu-
lation will be severely constrained by a lack of additional arable 
land combined with a diminishing supply of water and increas-
ing pressure to protect the quality of water resources beyond the 
edge of agricultural fields. These constraints mean that it will 
be increasingly imperative to prevent losses in crop productiv-
ity due to water stress, nutrient deficiencies, weeds, insects, and 
crop diseases. These losses in productivity often occur at specific 
locations within fields and at critical growth stages. They are 
not typically uniform in severity across locations within a field. 
Thus, farmers must take measures to identify where crop stress 
occurs in a timely fashion, they must identify what is causing 
crop stress, and they must try to use management practices that 
overcome crop stress at specific locations and times.

This chapter provides an overview of remote sensing tech-
niques used in precision farming to efficiently identify locations 
affected by crop stress. Crop stresses discussed include water 
stress, nutrient deficiencies, insect damage, disease infestations, 
and weed pressure. Crop stresses are typically identified by 
professional scouts who walk through fields looking for char-
acteristic symptoms on crop leaves and stems. Remote sensing 
offers the potential to improve the efficiency of locating areas of 
crop stress and identifying which type of stress is present. For 
each stress, the key wavelengths and spectral indices that can 
be used to identify crop stress are reviewed. The relative advan-
tages and disadvantages of satellite, airplane, unmanned aerial 
vehicles (UAVs), and proximal sensing platforms are discussed. 
The chapter concludes by identifying key knowledge gaps that 
must be overcome in order to accelerate the adoption of remote 
sensing in precision agriculture.

7.2  Precision Farming

Precision farming is one of the top 10 revolutions in agriculture 
(Crookston, 2006), ranking below conservation tillage, fertilizer 
and herbicide management, and improved crop genetics. It can 
be generally defined as doing the right management practices 
at the right location, in the right rate, and at the right time. 
Management practices commonly used in precision farming 
include variable rate fertilizer (Diacono et al., 2013) or pesticide 
application, variable rate seeding or tillage, and variable rate 
irrigation. Precision farming offers several benefits, including 
improved efficiency of farm management inputs, increases in 
crop productivity or quality, and reduced transport of fertilizers 
and pesticides beyond the edge of field (Mulla et al., 1996).

Precision farming is also known as precision agriculture or 
site-specific crop management. Precision farming as it is prac-
ticed today had its beginnings in the mid-1980s with two con-
trasting philosophies, namely, farming by soil (Larson and 
Robert, 1991) versus grid soil sampling for delineation of man-
agement zones (MZs) (Bhatti et al., 1991; Mulla, 1991, 1993).

Precision farming aims to improve site-specific agricultural 
decision-making through collection and analysis of data, for-
mulation of site-specific management recommendations, and 
implementation of management practices to correct the factors 
that limit crop growth, productivity, and quality (Mulla and 
Schepers, 1997).

Precision farming has always relied on technology for data 
collection and analysis at specific locations and times across 
agricultural fields. The earliest technology was geographic infor-
mation system (GIS), followed by variable rate spreaders, yield 
monitors, global positioning system (GPS), and remote sensing. 
As technology has improved, the scale at which management 
actions are implemented has become finer spatially and tem-
porally. Ultimately, technology will lead to the ability to man-
age individual plants within an agricultural field in real time 
(Freeman et al., 2007; Shanahan et al., 2008).

Adoption rates of technology in precision agriculture vary 
widely (Whipker and Akridge, 2006). GPS (including autosteer) 
and yield monitors are widely used. Variable rate spreaders are 
moderately popular. Remote sensing has not yet been widely 
adopted for use in precision agriculture (Moran et  al., 1997; 
Mulla, 2013). The main reasons include the difficulty in inter-
preting spectral signatures, the slow processing time for data, 
the high expense, and the need to collect confirmatory data 
from ground surveys in order to diagnose causative factors for 
anomalous spectral reflectance data. Clearly, there is a signifi-
cant scope for improving the interpretation and utility of remote 
sensing data for precision agriculture.

Remote sensing in precision farming started with Landsat 
Thematic Mapper (TM) imagery for improved mapping of soil 
fertility patterns across complex agricultural landscapes (Bhatti 
et al., 1991). Proximal sensing of soil organic matter content or 
weeds was also developed for early application in precision farm-
ing, and this approach now includes detection of crop nutrient 
deficiencies. Commercial satellite imagery was first provided to 
agricultural users at the beginning of the twenty-first century 
with IKONOS and QuickBird. Spatial and spectral resolution 
and return frequencies of satellite remote sensing platforms 
have improved rapidly since then with the advent of RapidEye, 
GeoEye, and WorldView imagery. Satellite imagery is typically 
unavailable on days with significant cloud cover.

Interest in remote sensing from airplanes and UAVs has 
recently been very intense (Berni et  al., 2009; Zhang and 
Kovacs, 2012; Huang et  al., 2013). One of the most active 
emerging areas of research in precision agriculture uses cam-
eras mounted on UAVs. The UAVs are relatively inexpensive, 
can be deployed rapidly at low altitudes when crop stress is 
starting to appear, and have the flexibility to be flown during 
windy or partially cloudy conditions. Their limitations include 
a ban on their use for commercial purposes; difficulty in 
obtaining certificates of authorization (COA) from the Federal 
Aviation Administration (FAA); inability to carry heavy cam-
eras, mounts, and GPS units; and short battery life. UAVs also 
have other advantages and disadvantages, which are described 
more fully in Section 7.12.
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Several companies offer precision farming services that rely 
on remote sensing. These include companies that are based pri-
marily on satellite imagery, including DigitalGlobe, Satellite 
Imaging Corp., Geosys SST/GeoVantage, and Winfield Solutions. 
Companies that offer equipment for proximal sensing of crop 
nutrient deficiencies include Trimble’s GreenSeeker (Solie 
et al., 1996), AgLeader’s OptRx (Holland et al., 2012), Topcon’s 
CropSpec (Reusch et  al., 2010), and Yara’s N-sensor (Link and 
Reusch, 2006). Trimble also offers equipment for proximal sens-
ing of weeds (WeedSeeker; Hanks and Beck, 1998). Numerous 
companies offer aerial remote sensing services with panchro-
matic imagery, broadband multispectral imagery or hyperspec-
tral imagery. One example is InTime Corp., which operates a fleet 
of airplanes that collect remote sensing imagery for cotton, veg-
etable, rice, and tree crops. This imagery is used for crop scouting 
and prescription maps for variable rate growth regulator applica-
tions on cotton and variable rate herbicide, insecticide, or fertil-
izer applications.

Commercial applications of remote sensing for precision 
farming have not always been successful. John Deere’s Agri-
Services division partnered with GeoVantage in 2006 to provide 
the OptiGro precision remote sensing service to farmers. This 
service proved to be unprofitable for John Deere, and they sold it 
to GeoVantage in 2008.

7.3  Management Zones

Conventional agriculture involves uniform management of 
fields. In contrast, precision agriculture involves customized 
management in areas that are much smaller than fields (e.g., 
a 1 ha farm can be divided into 10,000 pixels of 1 m2 and one 
can monitor each of these 10,000 pixels or any combination of 
them as a unique MZ as described in the following text). MZs 
(Mulla, 1991, 1993) are used in precision farming to divide field 
regions that differ in their requirements for fertilizer, pesticide, 
irrigation, seed, or tillage. MZs are relatively homogeneous units 
within the field that differ from one another in their response to 
fertilizer, irrigation, or pesticides. They can be delineated based 
on differences in crop yield, soil type, topography, or soil proper-
ties (fertility, moisture content, pH, organic matter, etc.). Remote 
sensing has been used to delineate MZs based on variations in 
soil organic matter content (Mulla, 1997; Fleming et al., 2004; 
Christy, 2008). Boydell and McBratney (2002) used 11 years of 
Landsat TM imagery for a cotton field to identify MZs based on 
yield stability.

7.4 I rrigation Management

Water stress is one of the major causes for loss of crop produc-
tivity (Moran et al., 2004). Irrigation is widely used to overcome 
crop water stress but, when applied uniformly, can lead to draw-
down of water supply and environmental pollution. In precision 
irrigation, also known as variable rate irrigation (Sadler et  al., 
2005), sprinkler heads deliver water at rates that are varied using 
either microprocessors (Stark et al., 1993) or solenoids connected 

to manifolds (Omary et al., 1997). Nozzle spray rates are varied 
depending on spatial patterns in soil moisture (Hedley and Yule, 
2009), crop stress (Bastiaanssen and Bos, 1999), or soil or land-
scape patterns, including rock outcroppings (Sadler et al., 2005). 
Variable rate irrigation uses water more efficiently than uniform 
irrigation, leading to better water conservation and improved 
environmental quality, without affecting crop yield.

Remote sensing can be used in variable rate irrigation applica-
tions to detect crop water stress through thermal infrared (TIR) 
(Moran et al., 2004; Rud et al., 2014) or microwave (Vereecken 
et al., 2012) sensing. TIR sensing can be used to measure canopy 
temperature and crop water stress, and this measurement, when 
combined with reflectance measurements in the red and near-
infrared (NIR) regions, can be used to construct reflectance 
index-temperature space graphs that lead to identification of 
field locations where nutrient and/or water stress occurs (Lamb 
et  al., 2014). TIR sensing can also be used to infer crop water 
stress by measuring a crop water stress index (CWSI) that is pro-
portional to the difference between canopy and air temperatures 
(Moran et al., 2004) but also depends on the atmospheric vapor 
pressure deficit. CWSI values are estimated relative to the can-
opy and air temperatures for a nonstressed (well-watered) crop. 
This method works well for full crop canopies in close proximity 
to a well-watered section of the crop. Meron et al. (2010) devel-
oped a simplified approach for estimating CWSI that involves 
TIR measurements of canopy temperature relative to the tem-
perature of a nearby artificial reference surface consisting of a 
wet, white fabric covering polystyrene floating in a container of 
water. Care must be taken to segment thermal images in fields 
with partial canopy cover in order to eliminate errors due to 
high soil temperatures. Meron et al. (2010) and Rud et al. (2014) 
showed that TIR measurements of CWSI based on the artificial 
reference surface approach could be used to develop maps show-
ing spatial patterns in crop water stress with an 82% accuracy 
relative to leaf water potential measurements. These maps were 
useful for guiding the application of variable rates of irrigation.

7.5 C rop Scouting

Crop scouting is used for timely detection of crop stressors that 
pose an economic risk to production (Linker et al., 1999; Fishel 
et al., 2001; Mueller and Pope, 2009). If detected at an early stage, 
management actions can be taken to control crop water stress 
and nutrient deficiencies, kill weeds or insects, and eradicate 
crop diseases. Crop scouting traditionally involves having a 
trained professional walk in a predetermined pattern through 
an agricultural field in order to conduct a limited and some-
what random sampling to detect and identify crop stress. This 
approach is time-consuming and labor intensive, and it does not 
guarantee that the sampling strategy covered the right spatial 
locations or occurred at the right time. Remote sensing offers 
the potential for improved crop scouting, with better spatial and 
temporal coverage than would be possible with a trained profes-
sional walking through fields. While remote sensing can accu-
rately identify locations where crop stress is occurring, remote 
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sensing alone is often unable to distinguish between crop stress 
caused by nutrient deficiencies, weed or insect pressure, or crop 
diseases. This inability has slowed the adoption of remote sens-
ing in precision farming.

7.6 � Wavelengths and Band Ratios 
of Interest in Precision Farming

Remote sensing in precision farming has focused on reflectance 
in the visible (VIS) and NIR, emission of radiation in the TIR, 
and fluorescence in the VIS spectrum. Remote sensing of soil 
is responsive to spatial patterns in soil moisture and organic 
matter content, as well as soil carbonate and iron oxide content. 
Remote sensing of crop canopies in the VIS spectrum responds 
to plant pigments such as chlorophyll a and b, anthocyanins, 
and carotenoids (Pinter et al., 2003; Blackburn, 2007; Hatfield 
et al., 2008). Plant pigments absorb radiation in narrow wave-
length bands centered around 430 nm (blue or B) and 650 nm 
(red or R) for chlorophyll a and 450  nm (B) and 650  nm (R) 
for chlorophyll b. Wavelengths with low absorption character-
istics conversely have high reflectance, particularly in the green 
(550 nm) wavelength. Remote sensing of crops in the NIR spec-
trum (particularly at 780, 800, and 880 nm) responds to crop 
canopy biomass and leaf area index (LAI), leaf orientation, 
and leaf size and geometry. Plant pigments and crop canopy 
architecture in turn respond to many crop stresses, including 
water stress (Bastiaanssen et  al., 2000), nutrient deficiencies 
(Samborski et al., 2009), crop diseases (West et al., 2003), and 
infestations of insects (Seelan et al., 2003) or weeds (Lamb and 
Brown, 2001; Thorp and Tian, 2004). As a result, remote sensing 
has often proved useful at indirectly detecting crop stresses for 
applications in precision farming.

In contrast to broadband multispectral reflectance imag-
ery collected with older satellite platforms such as Landsat, 
QuickBird, and IKONOS, recent attention in remote sensing has 
turned to analysis of narrow bands (10 nm wide) collected using 
hyperspectral imagery (Miao et  al., 2009; Thenkabail et  al., 
2010; Yao et al., 2010). The hyperspectral data cube can be used 
to represent crop reflectance over large areas at each of these 
narrow bands (Figure 7.1; Nigon et  al., 2014), illustrating the 
large amount of spatial and spectral information collected with 
hyperspectral imaging. In theory, hyperspectral imaging offers 
the capability of sensing a wide variety of soil and crop char-
acteristics simultaneously, including moisture status, organic 
matter, nutrients, chlorophyll, carotenoids, cellulose, LAI, and 
crop biomass (Haboudane et al., 2002, 2004; Goel et al., 2003). 
Thenkabail et al. (2000) showed that hyperspectral data can be 
used to construct three general categories of predictive spectral 
indices, including (1) optimal multiple narrowband reflectance 
indices (OMNBR), (2) narrowband normalized difference veg-
etative indices (NDVIs), and (3) soil-adjusted vegetation indi-
ces (SAVIs). Only two to four narrow bands were needed to 
describe plant characteristics with OMNBR. The greatest infor-
mation about plant characteristics in OMNBR includes the lon-
ger red wavelengths (650–700  nm), shorter green wavelengths 

(500–550 nm), red edge (720 nm), and two NIR (900–940 and 
982  nm) spectral bands. The information in these bands is 
only available in narrow increments of 10–20 nm and is easily 
obscured in broad multispectral bands that are available with 
older satellite imaging systems. The best combination of two 
narrow bands in NDVI-like indices was centered in the red 
(682 nm) and NIR (920 nm) wavelengths but varied depending 
on the type of crop (corn, soybean, cotton, or potato) as well as 
the plant characteristic of interest (LAI, biomass, etc.). Analysis 
of hyperspectral imagery can potentially involve advanced 
chemometric methods that are not possible with broadband 
multispectral imagery, including (1) lambda–lambda plots, (2) 
spectral derivatives, (3) discriminant analysis, and (4) partial 
least squares analysis (Jain et al., 2007; Alchanatis and Cohen, 
2010, Li et al., 2014b, Yuan et al., 2014).

The sharp contrast in reflectance behavior between the red 
and NIR portions of the spectrum is the motivation for devel-
opment of spectral indices that are based on ratios of reflec-
tance values in the VIS and NIR regions (Sripada et al., 2008). 
Commonly used spectral reflectance indices (Table 7.1) include 
NDVI (NDVI = (NIR − red)/(NIR + red)), green NDVI, and 
ratio vegetation index (RVI = NIR/R). These indices, along 
with indices that are based on reflectance in the red-edge spec-
trum region (700–740  nm), have been found to be very sensi-
tive to crop canopy chlorophyll and nitrogen status due to the 
rapid change in leaf reflectance caused by the strong absorption 
by pigments in the red spectrum and leaf scattering in the NIR 
spectrum (Hatfield et al., 2008; Nguy-Robertson et al., 2012).

Figure 7.1  Hyperspectral data cube for an irrigated Minnesota 
potato field showing the spatial and spectral resolution available with 
hyperspectral imaging. The circular slices in front represent a combina-
tion of reflectance values at red, green, and blue wavelengths, whereas 
the cubical slices in the back represent narrrowband reflectance across 
a broad range of VIS and NIR wavelengths.

© 2016 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19322-10&iName=master.img-000.jpg&w=237&h=234


165Precision Farming

Several red-edge-based vegetation indices such as trans-
formed chlorophyll absorption reflection index (TCARI) have 
been identified from hyperspectral imagery (Haboudane et al., 
2002) for estimating crop nitrogen status (Table 7.2). For exam-
ple, red-edge inflation point (REIP; Guyot et  al., 1988) uses a 
red band (670 nm), two red-edge bands (700 and 740 nm), and 
an NIR band (780  nm). It accurately estimated nitrogen sup-
ply to the plant, plant nitrogen concentration and uptake, and 
the nitrogen nutrition index (NNI) and was not affected sig-
nificantly by interfering factors (e.g., zenith angle of the sun, 
cloud cover, and soil color) (Heege et  al., 2008; Mistele and 
Schmidhalter, 2008). The canopy chlorophyll content index 
(CCCI) is an integrated index based on the theory of 2D pla-
nar domain illustrated by Clarke et al. (2001) using three bands 
(red, red-edge, and NIR). It uses NDVI as a surrogate for ground 
cover to separate soil signal from plant signal and the normal-
ized difference red-edge (NDRE) index as a measure of canopy 
nitrogen status (Fitzgerald et  al., 2010). It is not significantly 
affected by ground cover (Fitzgerald et  al., 2010) and worked 
well for estimating plant nitrogen status in the early growing 

season of maize (Li et al., 2014a). Other red-edge indices include 
red-edge chlorophyll index (CIred edge) (Gitelson et al., 2005), 
red-edge ratio index (Erdle et  al., 2011), DATT index (Datt, 
1999), medium-resolution imaging spectrometer terrestrial 
chlorophyll index (MTCI) (Shiratsuchi et  al., 2011), red-edge 
soil-adjusted vegetation index (RESAVI), modified RESAVI 
(MRESAVI), red-edge difference vegetation index (REDVI), and 
red-edge renormalized difference vegetation index (RERDVI) 
(Cao et al., 2013).

The ultraviolet (UV), violet, and blue spectral regions have 
also been found to be important for estimating plant nitrogen 
concentration (Li et  al., 2010). Wang et  al. (2012) developed a 
new three-band vegetation index using NIR, red-edge, and blue 
bands [(R924 − R703 + 2 × R423)/(R924 + R703 – 2 × R423)], which 
was found to be closely related to wheat and rice leaf nitrogen 
concentration. Far NIR (FNIR) and shortwave infrared (SWIR) 
bands were found to be important for estimating plant aboveg-
round biomass (Thenkabail et al., 2004; Gnyp et al., 2014). These 
bands are currently missing from the commercial active canopy 
sensors commonly used in precision farming.

Table 7.1  Multispectral Broadband Vegetation Indices or Commercial Sensor Midpoint Wavelengths Available 
for Use in Precision Agriculture

Index Definition References 

GNDVI (NIR − G)/(NIR + G) Gitelson et al. (1996)
MSAVI2 0.5 × [2 × (NIR + 1) − SQRT((2 × NIR + 1)2 – 8 × (NIR −(R))] Qi et al. (1994)
NDVI (NIR − R)/(NIR + R) Rouse et al. (1973)
OSAVI (NIR − R)/(NIR + R + 0.16) Rondeaux et al. (1996)
REIP R/(NIR + R + G) Sripada et al. (2005)
RVI NIR/R Jordan (1969)
SAVI 1.5 × [(NIR − R)/(NIR + R + 0.5)] Huete (1988)
Crop Circle ACS 430 R670, R730, R780 Holland et al. (2012)
CropSpec R730, R805 Reusch et al. (2010)
GreenSeeker R650, R770 Solie et al. (1996)
Yara N sensor ALS R730, R760, R900, R970 Link and Reusch (2006)

G refers to green reflectance, NIR to near infrared, and R to red reflectance. For commercial sensors, Rx refers to the center 
wavelength x of the reflectance band used by the sensor.

Table 7.2  Hyperspectral Narrowband Vegetation Indices Available for Use in Precision Agriculture

Index Definition References 

Aphid index (AI) (R576 − R908)/(R756 − R716) Mirik et al. (2007)
CIred edge (R753/R709) − 1 Gitelson et al. (2005)
DATT index (R850 − R710)/(R850 − R680) Datt (1999)
Damage sensitive spectral index (DSSI) (R576 – R868 – R508 – R540)/[(R716 − R868) + (R508 − R540)] Mirik et al. (2007)
Leafhopper index (LHI) (R761 − R691)/(R550 − R715) Prabhakar et al. (2011)
MTCI (R754 − R709)/(R709 − R681) Dash and Curran (2004)
NDRE (R790 − R720)/(R790 + R720) Barnes et al. (2000)
REIP 700 + 40 × {[(R667 − R782)/2 − R702]/(R738 + R702)} Guyot et al. (1988)
Red edge ratio index (R760/R730) Erdle et al. (2011)
PK index (R1645 − R1715)/(R1645 − R1715) Pimstein et al. (2011)
PRI (R531 − R570)/(R531 + R570) Gamon et al. (1992)
S index (R1260 − R660)/(R1260 + R660) Mahajan et al. (2014)
TCARI 3 × [(R700 − R670) − 0.2 × (R700 − R550)(R700/R670)] Haboudane et al. (2002)

R refers to reflectance at the wavelength (nm) in subscript. NIR refers to near-infrared reflectance.
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The commonly used NDVI can easily become saturated at 
moderate to high canopy coverage conditions (Figure 7.2; Nigon 
et al., 2014). One reason is due to the normalization effect embed-
ded in the calculation formula of this index (Nguy-Robertson 
et al., 2012; Gnyp et al., 2014), and another reason is due to the 
different transmittance of red and NIR radiation through the 
crop canopy leaves. The saturation effect of NDVI can be par-
tially addressed by using RVI or wavelengths having similar 
penetration into the canopy (Van Niel and McVicar, 2004; Gnyp 
et al., 2014; Li et al., 2014a).

It should be noted that the sensitive spectral reflectance bands 
for precision farming change at different crop growth stages in 
response to crop growth and development (Li et al., 2010; Gnyp 
et al., 2014). Different vegetation indices are needed for different 
crops, with different crop growth parameters at different growth 
stages (Hatfield and Prueger, 2010).

Fluorescence of leaf chlorophyll is an emerging research area 
in precision farming (Tremblay et al., 2012). When leaves that 
have been in the dark are exposed to UV or blue light, chlo-
rophyll a in photosystem II (PSII) is excited to the first singlet 
state (Sayed, 2003), and upon decay to the ground energy state, 
these molecules are capable of fluorescence. Leaf fluorescence is 
affected by many factors including the wavelength and inten-
sity of incident light, temperature, canopy structure, and leaf 

chlorophyll content, which may be affected by crop stresses 
from water, nitrogen, and salinity (Sayed, 2003; Tremblay et al., 
2012). On first exposure to light, quinine acceptors in PSII are 
maximally oxidized (Baker and Rosenqvist, 2004), leading to a 
minimal fluorescence level (Fo). After further exposure to light, 
maximal fluorescence (Fm) may be attained, indicating that all 
electron acceptors are reduced (Baker and Rosenqvist, 2004). 
Interpretation of plant stress levels is often based on combina-
tions or ratios of these two parameters (Sayed, 2003; Baker and 
Rosenqvist, 2004; Tremblay et  al., 2012). Variable fluorescence 
(Fv) is defined as Fm − Fo, and Fv/Fm represents the photochemi-
cal efficiency of PSII (Tremblay et al., 2012). High values of Fo 
indicate plant stress (Tremblay et al., 2012), whereas low values 
of Fv/Fm indicate nitrogen stress (Baker and Rosenqvist, 2004). 
Diagnosis of specific types of crop stress may be facilitated by 
combining fluorescence spectroscopy with hyperspectral or 
multispectral imaging (Moshou et al., 2012).

7.7 N utrient Deficiencies

Crop nutrient deficiencies are a major cause of crop stress and 
reductions in crop yield or quality. Nutrient deficiencies may 
be caused by macronutrients such as nitrogen, phosphorus, 
or potassium, or by micronutrients such as sulfur, calcium, 
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Figure 7.2  Hyperspectral estimates of (a) NDVI values and (b) TCARI-OSAVI values for small plots in a Minnesota potato field with two crop 
varieties receiving a wide range of nitrogen fertilizer application rates and timings. NDVI values exhibit a small range of values due to saturation. 
In contrast, TCARI-OSAVI values exhibit a large range of values and are better suited for identifying differences in nitrogen stress for each variety.
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magnesium, or zinc. Nutrient deficiencies often cause changes 
in leaf pigment concentrations, particularly for chlorophyll 
a and b. Changes in chlorophyll a or b content can be detected 
using remote sensing in the green (550  nm) and red-edge 
(710 nm) wavelengths. Nutrient deficiencies from either macro- 
or micronutrients cause spectral reflectance of crop leaves 
to increase in the green portion of the spectrum. Reflectance 
spectra of deficient leaves alone are insufficient in many cases to 
determine which nutrient is responsible for the deficiency and 
what rate or formulation of fertilizer is needed to correct the 
deficiency. Crop deficiencies also cause changes in crop biomass 
that can be detected using NIR reflectance.

Crop scout professionals have learned to distinguish and 
identify nutrient deficiencies based on coloration, pattern, loca-
tion, and timing of the deficiency. Several examples for corn 
illustrate the approach used by crop scouts (Mueller and Pope, 
2009). Nitrogen deficiency in corn appears as a yellowing of leaf 
color, starting with lower leaves. Deficiencies first appear at leaf 
tips and progress toward the base of the leaf in a v-shaped pat-
tern. Phosphorus deficiency appears as red to purple leaf tips in 
the older leaves of young corn plants that appear to have stunted 
growth. Newly emerged leaves do not show phosphorus deficien-
cies, and the distinctive coloration associated with phosphorus 
deficiencies disappears when the crop grows to a meter or more 
in height. Potassium deficiency appears in corn as a yellowing 
along the edges of leaves at growth stage V6. It is often associated 
with conditions that lead to poor rooting depth. Remote sens-
ing offers the potential to identify characteristic colors, patterns, 
and locations on a plant affected by nutrient deficiencies if the 
spatial resolution of imagery is on the order of a few centimeters.

Nutrient deficiencies that are detected and diagnosed in a 
timely fashion can be corrected using variable rate technology 
(VRT). VRT involves applying the right rate of fertilizer, at the 
right blend, in the right location, and at the right time. There 
is a long history of VRT in precision farming, with a primary 
focus on correcting nutrient deficiencies caused by phospho-
rus or nitrogen. In the earliest application of remote sensing for 
precision farming, Landsat TM images were used along with 
auxiliary data from soil sampling to develop maps showing spa-
tial variability in phosphorus fertilizer recommendations for a 
wheat farm in Washington State (Bhatti et  al., 1991). Landsat 
imagery was used to estimate spatial patterns in soil organic 
matter content, which were indirectly correlated with spatial 
patterns in soil phosphorus.

Proximal sensing of crops is currently the primary tool used to 
detect nutrient deficiencies for variable rate application of fertil-
izer. This is based on research that showed nitrogen deficiencies 
could be detected using spectral reflectance in the green, red, red 
edge, and NIR portions of the spectrum. Commercial sensors 
used in precision farming to detect crop nitrogen deficiencies 
(Figure 7.3; Table 7.1) are mainly active crop canopy sensors with 
their own light sources to avoid the influence of different envi-
ronmental light conditions, including the GreenSeeker, Crop 
Circle, CropSpec, and Yara N-sensor (Barker and Sawyer, 2010; 
Kitchen et  al., 2010; Shaver et  al., 2011). GreenSeeker operates 

in the red (650  nm) and NIR (770  nm). Crop Circle ACS 210 
operates in the green (590 nm) and NIR (880 nm), while Crop 
Circle ACS 430 has red (670 nm), red edge (730 nm), and NIR 
(780  nm) bands. Crop Circle ACS 470 sensor also has three 
bands but is user-configurable with a choice of six spectral bands 
covering blue (450 nm), green (550 nm), red (650, 670 nm), red 
edge (730  nm), and NIR (>760  nm) regions (Cao et  al., 2013). 
CropSpec operates in the red edge (730 nm) and NIR (805 nm). 
Yara’s traditional N-sensor operates at 730 (red) and 760 (NIR) 
nm. A newer version of the Yara N sensor allows the operator to 
select four reflectance bands between 730 and 970 nm.

One limitation of the GreenSeeker, Yara N, CropSpec, 
and Crop Circle sensors is that they cannot directly estimate 
the amount of N fertilizer needed to overcome crop N stress 
(Samborski et  al., 2009). Instead, sensor readings have to be 
compared to readings in reference strips receiving sufficient 
N fertilizer (Blackmer and Schepers, 1995; Raun et  al., 2002; 
Sripada et al., 2008; Kitchen et al., 2010). These comparisons are 
the basis for N fertilizer response functions that relate sensor 
readings to the amount of N fertilizer needed to overcome crop 
N stress (Scharf et al., 2011). Clay et al. (2012) have shown that 
for wheat, when both water and nitrogen stress occur simultane-
ously, N fertilizer recommendations based on NDVI values are 
more accurate when reference strips have both sufficient nitro-
gen and insufficient moisture (water stress) in comparison with 
reference strips with both sufficient nitrogen and sufficient mois-
ture (no water stress). Kitchen et al. (2010) found that use of Crop 
Circle sensors was able to accurately identify N stress in corn 
50% of the time in 22 field studies conducted over 4 years across 
a wide range of soil types in Missouri.

Phosphorus deficiencies typically appear as changes in reflec-
tance in the NIR and blue portions of the spectrum. There has 
been little research on remote sensing methods to distinguish 
nitrogen, phosphorus, and potassium deficiencies in crops 
(Pimstein et al., 2011; Mahajan et al., 2014). Spectral signatures 

Figure 7.3  Active crop canopy sensors commonly used in precision 
farming in the United States. (GreenSeeker, left; Crop Circle ACS 430, 
middle; Crop Circle ACS 470, right.)
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for nitrogen, phosphorus, and potassium deficiency show 
responses at different wavelengths (Pimstein et al., 2011). NDVI 
values (such as those estimated using GreenSeeker technology) 
are often not able to distinguish between N and P deficiencies 
(Grove and Navarro, 2013). To distinguish nitrogen, phospho-
rus, and potassium deficiencies in wheat, Pimstein et al. (2011) 
proposed new spectral indices that require collecting reflectance 
data in the SWIR region (1450, 1645, and 1715 nm). These new 
indices were able to predict P or K deficiency with an accuracy 
ranging from 78% to 80%, but accuracy levels decreased as vari-
ability in crop biomass increased. Mahajan et  al. (2014) found 
that distinguishing between sulfur and nitrogen deficiency 
in wheat required the collection of SWIR data. They proposed 
a sulfur deficiency index that involves an NDVI-like ratio of 
reflectances at 1260 and 660 nm (Mahajan et al., 2014). The per-
formance of the sulfur index was nominally better than other 
standard vegetative indices, including NDVI and SAVI.

In order to distinguish between different types of nutrient defi-
ciencies, remote sensing must rely on more than changes in reflec-
tance at key wavelengths. A diagnosis with remote sensing must 
also be able to detect where on the plant (upper vs. lower leaves, 
leaf tips or edges, etc.) symptoms of deficiency occur and in what 
pattern. These patterns change over time, and early detection is 
important. High-resolution imagery at the scale of centimeter-size 
pixels is needed for early detection; otherwise it will be difficult to 
identify whether or not symptoms of deficiency are in upper or 
lower leaves, at leaf tips or basal regions, or along the edges or in 
interveinal regions of the leaf. For deficiencies that tend to occur 
in young plants, remote sensing must be able to compensate for 
reflectance from bare soil; hence, spectral indices such as SAVI 
(Huete, 1988), modified SAVI (MSAVI; Qi et al., 1994), or opti-
mized SAVI (OSAVI; Rondeaux et al., 1996) may be useful.

7.8 I nsect Detection

Insects cause crop damage by sucking plant sap, eating plant tis-
sue, or damaging crop roots. Examples include European corn 
borer and Russian wheat aphid. These damages usually result 
in decreased crop biomass and deformed or stripped leaves. 
Because decreased biomass also occurs in response to other 
crop stressors, identifying insect damage via remote sensing has 
proved challenging.

Insect growth and development is more strongly linked 
with temperature and growing degree days than crop phenol-
ogy (Hicks and Naeve, 1998; MacRae, 1998). Insects can first 
appear in a variety of locations, including along edges of fields, 
on undersides of leaves, or in the soil. It is difficult to detect 
insects in soil or on the undersides of leaves with remote sensing. 
Remote sensing often detects crop damage caused by insects, 
rather than the insects themselves. Harmful insects should be 
detected and identified before they can cause significant dam-
age to crops. Proper identification is important because control 
methods vary by insect species.

Remote sensing is not widely used in precision farming for 
detecting insect infestations. Franke and Menz (2007) used 

hyperspectral imaging from an airplane in Iowa corn plots 
inoculated with European corn borer. Spectral indices were 
largely ineffective at differentiating inoculated plots from con-
trol plots during the first generation of insect growth. NDVI was 
consistently able to identify inoculated plots during the second 
generation of corn borer growth. These results show that it is 
difficult to use remote sensing for early detection of European 
corn borer. Mirik et  al. (2007) used a handheld hyperspectral 
radiometer to measure reflectance in the VIS and NIR wave-
lengths for Texas, Colorado, and Oklahoma winter wheat plots 
with and without significant Russian wheat aphid infestations. 
Their results showed that aphid damage resulted in changes in 
biomass that reduced NIR reflectance in infested plants relative 
to undamaged plants. They also showed increased reflectance in 
the green portion of the spectrum due to changes in chlorophyll 
content of leaves for infested plants relative to uninfested plants. 
They proposed using an aphid index (AI) and a damage sensi-
tive spectral index (DSSI) to detect Russian wheat aphid damage 
(Table 7.2). AI is estimated based on (R576 – R908)/(R756 – R716), 
where R is reflectance and the subscript denotes the wavelength 
(nm) of interest. DSSI is more complicated and is estimated using 
(R716 – R868 – R508 – R540)/[(R716 – R868) + (R508 – R540)]. Because the 
field of view for the handheld spectrometer was narrow, there 
was little mixing of pixels from infested and uninfested leaves, 
something that would be a significant impediment if reflectance 
measurements were obtained using satellites. Aphid damage 
was identified in four fields at different times of the year with an 
accuracy ranging from 46% to 80% using the AI.

Prabhakar et al. (2011) used hyperspectral imaging to detect 
leafhopper damage in cotton. They found that leafhopper dam-
age was associated with decreases in the content of chlorophyll 
a and b pigments in leaves. The best spectral indices for identi-
fying leafhopper damage were based on changes in leaf reflec-
tance in the VIS (376, 496, and 691 nm) and NIR (761, 1124, and 
1457 nm) portions of the spectrum. A leafhopper index defined 
as (R761 – R691)/(R550 – R715) could explain from 46% to 82% of the 
variability in leafhopper damage across three fields. A number of 
other spectral indices also performed relatively well, including 
NDVI, OSAVI, AI, and DSSI (Table 7.2).

7.9  Disease Detection

Diseases are caused by infestations of virus, fungi, or bacteria. 
They can affect any part of the plant, including leaves, stalks, 
roots, or grain. Damage to leaves often occurs as lesions or pus-
tules that may lead to white, tan, brown, or orange leaf colors 
(Mueller and Pope, 2009). Lesions can occur in shapes as varied as 
spots, rectangles, or strips that vary in size and area. Each disease 
has a specific location where infection tends to occur and each 
is associated with different shapes and colors of infected areas. 
Infected plants may eventually become stunted and have chlo-
rotic or necrotic leaves (Mirik et al., 2011). Early detection of dis-
ease is essential to limit economic damage (Sankaran et al., 2010).

Spectral characteristics of crops are often affected by disease, 
as described by West et  al. (2003). Disease propagules often 
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influence reflectance in the VIS spectrum. Necrotic or chlorotic 
damage affects chlorophyll content and reflectance in the green 
and red-edge regions. Senescence affects reflectance in the red 
to NIR region. Stunting and reduced leaf area influences NIR 
reflectance. Impacts of disease on photosynthesis affect fluores-
cence in the spectral region between 450–550 and 690–740 nm 
(West et al., 2003). Crop disease also affects transpiration rates 
and water contents of leaves; these effects can be detected in the 
shortwave and TIR regions.

Remote sensing is not widely used to detect crop disease in 
precision farming; however, research has shown that remote 
sensing has the potential to be used for such purposes (Table 7.2). 
Remote sensing has been used to detect fungal and viral infec-
tions in soybean (Das et  al., 2013) and wheat (Muhammed, 
2005; Huang et al., 2007; Mewes et al., 2011; Mirik et al., 2011). 
Yellow rust infections of wheat in China were detected with 
a 91%–97% accuracy over 2  years using aerial hyperspectral 
remote sensing and a photochemical reflectance index (PRI) 
(Huang et al., 2007). Values of PRI were estimated using reflec-
tance values at 531 and 570 nm. Fluorescence at 550 and 690 nm 
was also useful for distinguishing wheat leaves infected with 
yellow rust from uninfected leaves (Bravo et al., 2004). Wheat 
infected with septoria leaf blotch in France was accurately 
distinguished from uninfected wheat using a combination of 
NDVI and TIR measurements (Nicolas, 2004). Infestations of 
powdery mildew and leaf rust on wheat in Germany were dif-
ficult to detect at early stages of infection with QuickBird-like 
NDVI values (Franke and Menz, 2007), with an accuracy of 
only 57%. This is because at early stages of infection, reflectance 
in the red portion of the spectrum is affected, but NIR reflec-
tance is not (Lorenzen and Jensen, 1989). At more advanced 
stages of infection, plant canopy structure and biomass are 
affected, causing changes in NIR reflectance that result in large 
decreases in NDVI values and higher accuracy (89%) in detect-
ing infection.

Yuan et al. (2014) used hyperspectral imaging to simultane-
ously detect and distinguish damage to wheat leaves caused by 
yellow rust and powdery mildew diseases and Russian wheat 
aphids. Reflectance in leaves damaged by disease and insect 
generally increased relative to undamaged leaves at wavelengths 
between 500 and 690 nm. Distinguishing between disease and 
insect damage required analysis of reflectance in the NIR por-
tion of the spectrum between 750 and 1300 nm. Powdery mildew 
and aphid damage caused reflectance in this region to decrease, 
whereas reflectance in this region increased for yellow rust 
damage. Partial least squares regression of reflectance in these 
regions, along with spectral derivative parameters and con-
ventional spectral indices such as AI (Table 7.3), could explain 
73% of the variability in intensity of wheat damage by the three 
stressors studied. Distinguishing damage from yellow rust ver-
sus powdery mildew versus aphids with hyperspectral imaging 
and Fisher linear discriminant analysis was more challenging, 
however, especially at low intensities of infestation. Further 
work is needed to extend the research of Yuan et  al. (2014) to 
entire crop canopies.

7.10  Weed Detection

Weeds compete with crops for light, water, and nutrients. Above 
critical weed density thresholds, crop yields and quality will 
decline substantially. In most fields, weed infestations are not 
uniform; rather, weeds tend to occur in patches or clusters, leav-
ing up to 80% of the field free of weeds (Wiles et al., 1992; Lamb 
and Brown, 2001). Because of this, there has been quite a bit of 
interest in precision farming (variable rate herbicide applica-
tion) to control weeds that occur in patches while avoiding her-
bicide application in areas without weeds (Stafford and Miller, 
1993; Mulla et al., 1996; Hanks and Beck, 1998; Khakural et al., 
1999). Variable rate herbicide application is especially of interest 
in Europe, where genetically modified crops (such as Roundup 
Ready soybean) are not allowed.

Weeds can be identified using remote sensing based on their 
spectral signatures, leaf shape, and organization of the weedy 
plant. Detecting and identifying weeds in a bare soil that is crop-
free is easier than detecting and identifying weeds in an actively 
growing crop (Thorp and Tian, 2004; López-Granados, 2011). 
Detecting weeds that occur in large, dense clusters is easier with 
aerial remote sensing than identifying small, isolated weeds.

Remote sensing with satellites or airplanes is adequate for 
detecting weeds that occur in large, dense clusters within a crop 
or in bare crop-free soil (Lamb and Brown, 2001). Ground-based 
proximal sensing is more suited than aerial remote sensing to 
detect and identify small, isolated weeds in a growing crop (Thorp 

Table 7.3  Spectral Indices or Commercial Sensors Available 
for Diagnosis of Nutrient Deficiencies, Crop Disease, and Insect 
or Weed Infestations in Precision Agriculture

Index N, P, or K Disease Insects Weeds 

Aphid index (AI) X
CIred edge X
DATT index X
Damage sensitive 

spectral index (DSSI)
X

Fluorescence X X
Leafhopper index (LHI) X
MERIS TCI X
NDRE X
NDVI X X X X
REIP X
Red edge ratio index X
RVI X X
PK index X
PRI X
SAVI (or related) X X X
S index X
TCARI X
Crop Circle ACS 430 X
CropSpec X
GreenSeeker X
Yara N sensor X
WeedSeeker X
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and Tian, 2004). Proximal sensing has been used for real-time 
monitoring and spraying of weeds from a field herbicide appli-
cator (López-Granados, 2011). A commercial example of this 
technology is WeedSeeker (Hanks and Beck, 1998), which uses 
gallium arsenide photoelectric emitters to detect weeds grow-
ing in bare soil or in a crop canopy (Sui et al., 2008). This tech-
nology is best suited to detecting weeds at intermediate growth 
stages that are growing between crop rows. It is not well suited to 
detecting recently emerged weeds (Thorp and Tian, 2004).

Zwiggelaar (1998) reviewed remote sensing methods for dis-
tinguishing weeds from soils or crops. Remote sensing is only 
useful if weeds have a spectral signature that is uniquely different 
from surrounding bare soil or crops and if the spatial resolution 
of images is fine enough to detect individual weeds or patches 
of weeds (Lamb and Brown, 2001). Distinguishing weeds from 
soil is often based on graphing reflectance in the red portion of 
the spectrum versus reflectance in the NIR portion of the spec-
trum. A graph of these two reflectance bands for bare soil gives 
the soil line (Wiegand et al., 1991). For fields with mixtures of 
bare soil and weeds, the presence of weeds increases with verti-
cal distance above the soil line along the NIR axis. Graphs of red 
versus NIR reflectance are commonly referred to as tasseled cap 
transformations. Band ratios have also been used to distinguish 
weeds from bare soil. The most common approach for detection 
of weeds in bare soil is to use the NDVI ratio (Table 7.3). This 
ratio has the advantage of canceling out effects of shadows pro-
duced by weeds. Reflectance from bare soil can also be dimin-
ished through use of SAVI (OSAVI, MSAVI, etc).

Spectral reflectance patterns of weeds and crops are in gen-
eral very similar when bare soil is absent (Zwiggelaar, 1998; 
Lamb and Brown, 2001). When bare soil is present, reflectance 
values at two wavelengths (e.g., 758 and 658 nm) can be used 
along with discriminant analysis to distinguish crops from 
weeds from soil (Borregaard et al., 2000). RVI (= NIR/R) and 
NDVI have also often been used to discriminate between weeds 
and crops (Table 7.3), especially when crops occur in system-
atic rows and weeds occur as patches between rows. Detection 
of weeds at early growth stages is very challenging (López-
Granados, 2011), especially if they occur in recently germinated 
crops with similar physiology (e.g., grassy weeds in cereal crops 
or broad leaf weeds in dicotyledonous crops). Detection is easier 
at later growth stages, when spectral differences between weeds 
and crops are greatest (López-Granados, 2011). Accuracies at 
discriminating weeds from bare soil range from 75% to 92%, 
while accuracies in distinguishing one weed species from 
another often range between 61% and 88% (Thorp and Tian, 
2004; López-Granados, 2011).

7.11 � Machine Vision for Weed 
Discrimination

Discrimination between weeds and crops requires high spa-
tial resolution of imagery (Zwiggelaar, 1998). Remote sensing 
images with a spatial resolution of tens of meters will not be suf-
ficient for discrimination of weeds and crops. Images at a spatial 

resolution of tens of centimeters to a meter are needed to distin-
guish plants from weeds (Lamb and Brown, 2001; Rasmussen 
et al., 2013). However, even spectral indices at this fine scale of 
resolution are often by themselves not sufficient because crops 
and weeds often have similar reflectance signatures. Crops and 
weeds are more easily distinguished based on differences in their 
canopy or leaf shapes, heights, and structures. These features can 
be described and distinguished from one another using machine 
vision analysis of color images or video imagery (Gée et al., 2008; 
Burgos-Artizzu et al., 2011).

Discrimination of one weed species from another is more 
challenging than discriminating weeds from crops. Gibson 
et al. (2004) used supervised classification of weeds in soybean 
based on aerial remote sensing in the yellow, green, red, and NIR 
bands. While weedy areas could be distinguished from soybeans 
or bare soil with accuracies of greater than 90%, distinguishing 
giant foxtail from velvetleaf had accuracy levels ranging from 
41% to 83%.

Machine vision is commonly used for precision farming appli-
cations of discriminating weeds from bare soil or crops (Thorp 
and Tian, 2004). There are two basic steps in discriminating 
weeds (Gée et al., 2008; Burgos-Artizzu et al., 2011). The first is 
distinguishing regions with vegetation from regions with bare 
soil (segmentation). The second is distinguishing weeds from 
crops (discrimination). As an example of this two-step process, 
Gée et al. (2008) used a red–green–blue color image in various 
row crops to estimate an excess green index (Gée et al., 2008), 
which was then reclassified into black (soil) and white (vegeta-
tion) components. The reclassified image was then subjected to 
a double Hough transformation (DHT) to identify the position 
of the linear crop rows. Blobs of white (vegetation) that were off-
set from rows were assumed to be weeds. Burgos-Artizzu et al. 
(2011) use real-time analysis of video imagery to perform these 
same two steps and were able to accurately identify 85% of the 
weeds in a field of maize.

Examples of machine vision for precision weed management 
are numerous. The University of Tokyo developed an autono-
mous vehicle for mechanical weeding and variable rate applica-
tion of chemicals (Torii, 2000). This vehicle is guided along crop 
rows based on a hue, saturation, and intensity transformation. 
Tillet et al. (2008) used real-time machine vision in conjunction 
with a mechanical weeder to reduce weed populations in cab-
bage by 62%–87%. Blasco et al. (2002) used machine vision with a 
robotic weeder that produced an electrical discharge of 15,000 V. 
These studies both show that it is possible to use precision farm-
ing techniques to avoid using herbicides to control weeds.

7.12  Remote Sensing Platforms

Remote sensing imagery for precision farming can be obtained 
using satellites, airplanes, UAVs, ground robots, or agricultural 
machinery (Moran et al., 1997; Zhang and Kovacs, 2012; Mulla, 
2013). Remote sensing imagery from satellites has improved 
in spatial resolution, spectral resolution, and the frequency of 
return visits since the launch of Landsat in the 1970s. Spatial 
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resolution has improved from 30 m with Landsat 4 to 1.24 m 
with WorldView-3 for multispectral satellite imagery (Tables 7.4 
and 7.5). Spectral resolution (number of bands) has improved 
from four broad bands in the blue, green, red, and NIR regions 
to multiple narrowband imagery in the purple, blue, green, yel-
low, red, red edge, and NIR wavelengths. Return frequencies 
have improved from several weeks to a day or 2. Despite these 
improvements, satellite imagery in the VIS and NIR regions still 
suffers from an inability to penetrate cloud cover. Furthermore, 
there are continuing issues with satellite providers who are 
unable to reliably provide agricultural imagery at desired time 
intervals.

Aerial remote sensing imagery offers excellent capabilities for 
precision farming applications. Spatial resolution is typically a 
meter or better, and spectral resolution ranges from broadband 
blue, green, red, and NIR to hyperspectral imaging (e.g., with 
the AISA Eagle camera; Table 7.5). Aerial imaging can typically 
be obtained when and where it is needed with high reliability. 
Cloud cover is a continuing challenge for remote sensing from 
airplanes. Even though airplanes can fly below cloud cover, 
shadows from clouds cause difficulties in interpreting imagery.

Remote sensing imagery obtained by proximal sensing from 
agricultural equipment is very popular in precision farming. 
Examples include on-the-go sensing from fertilizer spreaders 
for variable rate application of nitrogen fertilizer and on-the-
go sensing from herbicide sprayers for variable rate application 
of herbicides. Sensors used for proximal sensing are typically 

limited to two or three narrow bands of reflectance, thereby lim-
iting the number of spectral indices that can be used to diagnose 
causes of stress. This is particularly limiting in mature crops 
with LAI values greater than three for sensors that calculate 
NDVI values. The NDVI values are less sensitive to spatial varia-
tions in chlorophyll content of leaves in mature crop canopies 
than at earlier growth stages.

Researchers are beginning to explore the use of UAVs for 
acquisition of remote sensing imagery (Figure 7.4). UAVs typi-
cally include fixed-wing aircraft or helicopters that fly at alti-
tudes of roughly 100 m (Zhang and Kovacs, 2012). Because 
of the low altitude, many images are typically acquired, and 
these must be tiled or mosaicked together to produce a con-
tinuous image of the field or farm of interest (Gómez-Candón 
et  al., 2014). Fixed-wing aircraft generally have longer flight 
time (greater power supply) and payload capacity than heli-
copters. Aircraft have faster flight speeds than helicopters, 
and this may result in blurring of images due to the low alti-
tude. Helicopter UAVs have the advantages of flexibility and 
less space restriction by allowing vertical takeoff and the abil-
ity to land vertically, hover, and fly forward, backward, and 
laterally as compared with fixed-wing UAVs, allowing them 
to inspect isolated small fields closer to obstructions, which 
may be difficult for fixed-wing UAVs (Huang et  al., 2013). 
Helicopters are generally more stable than aircraft, resulting 
in fewer problems with variations in viewing angle from one 
image to another. Remote sensing imagery from UAVs has 

Table 7.4  Characteristics of Data Gathered from Satellite Sensors of Different Eras Suitable for Precision Farming

Satellite/Sensor Spatial Resolution (m) Spectral Bands (Number of Bands) Data Points or Pixels per Hectare 

MODIS-Terra 250–1000 m 36 0.16, 0.01
Terra EOS ASTER 15, 30, 90 m (VIS, SWIR, TIR) 4, 6, 5 44.4, 11.1, 1.26
Landsat-7 TM 15 m (P), 30 m (M) 7 44.4, 11.1
ALI 10 m (P), 30 m (M) 1, 9 100, 11.1
Hyperion 30 220 (400–2500 nm) 11.1
IRS-1C LISS 5 m (P), 23.5 m (M) 3 400, 18.1
IRS-1D LISS 5 m (P), 23.5 m (M) 3 400, 18.1
SPOT-1,2,3,4 HRV 10 m (P), 20 m (P) 4 100, 25
Landsat-4,5 TM 30 m (M) 7 11.1
Landsat-1,2,3 MSS 56 × 79 4 2.26

M, multispectral; P, panchromatic; VIS, visible; SWIR, shortwave infrared; TIR, thermal infrared.

Table 7.5  Characteristics of Data Gathered from Very-High-Spatial-Resolution Satellites/Sensors Suitable for Precision Farming

Satellite/Sensor Spatial Resolution (m) Spectral Resolution (Number of Bands) Data Points or Pixels per Hectares 

IKONOS 2 0.82 m (P), 4 m (M) 4 14,872, 625
QuickBird 0.61 m (P), 4 m (M) 4 26,874, 625
EROS A 1.82 m (P) 1 3,020
RapidEye 5 (M) 4 + red-edge 400
GeoEye-1 1.65 (M) 4 3,673
WorldView-3 1.24 (M), 3.7 (SWIR) 8 (M), 8 (SWIR) 6,504, 730
AISA Eagle 1 (H) 63 10,000
Tetracam 

Mini-MCA6
0.066 (M) 5 + red-edge 2,295,684

M, multispectral; P, panchromatic; H, hyperspectral.
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very high spatial resolution, typically on the order of 7–50 cm 
(Table 7.5; Tetracam Mini-MCA6). This allows individual 
plants to be studied. However, it also requires special care in 
correcting geometric distortion. Cameras used on UAVs range 
from inexpensive digital cameras that provide panchromatic 
images to expensive multispectral cameras that provide nar-
rowband reflectance in the blue, yellow, green, red, red edge, 
and NIR regions of the spectrum (Table 7.5; Tetracam Mini-
MCA6). Promising results have been obtained using UAV-
based remote sensing for estimating crop LAI, biomass, plant 
height, nitrogen status, water stress, weed infestation, yield, 
and grain protein content (Berni et al., 2009; Swain et al., 2010; 
Samseemoung et al., 2012; Bendig et al., 2013). It is expected to 
become a major remote sensing platform for precision farming 
in the future.

7.13  Knowledge Gaps

Remote sensing applications in precision farming have increased 
dramatically over the last 25 years (Mulla, 2013). This increased 
adoption is associated with investments in precision farming 
research, coupled with improvements in the spatial and spec-
tral resolution and return frequency of aerial remote sensing 
imagery, and the development of proximal sensors. Aerial and 
proximal remote sensing are primarily used for variable rate 
application of irrigation water and nitrogen fertilizer or for 
detection of weeds. Remote sensing is not widely used for detec-
tion of crop stresses by insects or plant diseases and is rarely 
used for detection of nutrient deficiencies other than nitrogen.

There is a pressing need for broader use of proximal and 
remote sensing in precision farming. Current applications of 
remote sensing are rarely able to simultaneously identify loca-
tions of a field afflicted with crop stress and distinguish between 
stresses caused by water, nutrients, weeds, insects, and dis-
ease. Furthermore, remote sensing is rarely able to distinguish 
between stresses caused by different types of nutrients, differ-
ent types of diseases, or different types of insects. The main rea-
son for this failure is that remote sensing applications typically 
rely only on spectral signatures at a few important wavelengths 
(green, red, red edge, and NIR) or combinations of these wave-
lengths where different types of crop stress have similar influ-
ences on chlorophyll content of leaves and adverse effects on 
crop biomass or canopy structure (Table 7.3). Distinguishing 
between stresses caused by water, nutrients, weeds, insects, and 
disease will require fusion of remote sensing information (e.g., 
hyperspectral and fluorescence spectroscopy) that are sensitive 
to these influences and effects, combined with machine vision to 
identify the locations on a plant (stems or leaves, leaf tips or leaf 
edges, and upper leaves or lower leaves), colors of stress (yellow, 
purple, red, brown, white, etc.), and the shapes associated with 
stresses (e.g., monocotyledonous vs. dicotyledonous weeds, 
spots vs. stripes).

Further development of remote sensing applications in preci-
sion farming will require multidisciplinary efforts by experts in 
crop water, nutrient, weed, insect, and disease stresses working 
collaboratively with experts in remote sensing and engineering. 
At present, these types of multidisciplinary team efforts are rare. 
Further development of remote sensing applications in precision 

(a) (b)

(c) (d)

Figure 7.4  Different types of UAVs used in precision farming: (a) fixed-wing aircraft, (b) helicopter, (c) quadrocopter, and (d) octocopter.
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farming will require use of high-resolution (centimeter scale) 
aerial imagery at key wavelengths to identify locations affected by 
crop stress, coupled with proximal sensing and machine vision 
to differentiate between different types of crop stress in order to 
diagnose the problem. Platforms to collect remote sensing imag-
ery must be capable of deployment at intervals of at least every 
week during the growth of the crop, and these platforms must 
be capable of distinguishing between stresses caused by water, 
nutrients, weeds, diseases, and insects. UAVs and proximal sen-
sors offer significant potential to address these capabilities, and 
further research with these platforms and sensors is encouraged.

7.14 C onclusions

Precision farming is one of the top 10 revolutions in agricul-
ture (Crookston, 2006). It can be generally defined as doing the 
right management practices at the right location, in the right 
rate, and at the right time. Precision farming offers several ben-
efits, including improved efficiency of farm management inputs, 
increases in crop productivity or quality, and reduced transport 
of fertilizers and pesticides beyond the edge of field.

Losses in crop productivity often occur nonuniformly at specific 
locations within fields and at critical growth stages. Crop stress 
must be detected in a timely fashion, the type of stress causing 
it must be identified, and management practices must be imple-
mented at the right locations and times to overcome crop stress.

Research applications of remote sensing in precision farm-
ing are numerous and include techniques for detecting water 
stress, nitrogen stress, weed infestations, fungal disease, and 
insect damage. Remote sensing has shown the ability to identify 
locations experiencing stress, with accuracies ranging from 50% 
to 80% for nutrient stress, 46% to 82% for insect damage, 57% 
to 97% for crop disease, and 75% to 92% for weeds. Accuracy 
depends on the growth stage of crop, the level of crop stress, the 
spectral index used for assessment of stress, and the spatial and 
spectral resolution of remote sensing.

Significant advances have been made in identifying key 
wavelengths and spectral indices at which these stresses influ-
ence the reflectance or fluorescence properties of plant pig-
ments and crop canopy architecture. However, little research 
has been conducted on detecting locations affected by crop 
stress and simultaneously distinguishing between different 
types of crop stress. A basic problem is that remote sensing does 
not typically respond directly to water, nutrient, weed, insect, 
or disease stresses; rather it responds indirectly to the changes 
in chlorophyll or crop canopy architecture caused by these crop 
stresses. For this reason, remote sensing has not yet been widely 
adopted by farmers for routine use in precision agriculture. The 
main reasons include the difficulty in interpreting spectral sig-
natures, the slow processing time for data, the high expense, 
and the need to collect confirmatory data from ground surveys 
in order to diagnose causative factors for anomalous spectral 
reflectance data. Clearly, there is a significant scope for improv-
ing the interpretation and utility of remote sensing data for pre-
cision agriculture.

Researchers have focused significant effort on identifying 
key wavelengths at which areas with crop stress can be distin-
guished from areas without crop stress. These wavelengths, and 
spectral indices based on them, typically occur in the green, red, 
red edge, and NIR bands. Significant progress has been made 
in identifying spectral indices that respond to changes in leaf 
pigmentation or canopy biomass and architecture, or indices 
that are capable of eliminating interference from shadows and 
soil background effects. As the spatial resolution of remote sens-
ing imagery used in precision farming has improved (from 30 m 
to submeter resolution), techniques for discriminating crops, 
soils, and weeds have also improved. As spectral bandwidth has 
decreased (from broadband blue, green, red, and NIR to narrow-
band hyperspectral and fluorescence spectroscopy), research-
ers have discovered that crop stress is more easily detected 
with narrow bands (10–20  nm wide) rather than broad bands 
(50–100 nm wide) at these key wavelengths. Narrowband hyper-
spectral imagery is amenable to image analysis with advanced 
chemometric techniques that allow for better diagnosis of crop 
stress, including lambda–lambda plots, derivative analysis, and 
partial least squares analysis.

Less progress has been made in the use of remote sensing cou-
pled with computer vision for differentiating between specific 
types of crop stress based on the location within the plant where 
stress occurs and the shape or color of the stressor. Advances in 
computer vision are needed that required collaborative research 
by multidisciplinary teams of agronomists, engineers, and 
remote sensing experts working with high-resolution hyper-
spectral and video imagery that is capable of viewing individual 
plants. High-resolution imagery is increasingly possible because 
of improvements in camera technology and proximal sensors 
deployed on UAVs or ground vehicles that collect imagery at 
short distances from the growing crop.
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Acronyms and Definitions
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ALOS PALSAR	� Advanced Land Observation Satellite Phased 
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ASAR	 Advanced Synthetic Aperture Radar
ASTER	� Advanced Spaceborne Thermal Emission 
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AVIRIS	� Airborne Visible/Infrared Imaging 
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CAI	 Cellulose absorption index
CCD	 Coherent change detection
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NIR	 Near infrared
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Microondas; Argentine Microwaves 
Observation Satellite
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STI	 Simple tillage index
STIR	 Soil Tillage Intensity Rating
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TanDEM-X	� TerraSAR-X add-on for Digital Elevation 

Measurement
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8.1 I ntroduction

Tillage prepares the seedbed by mechanical disturbance to 
loosen and smooth the soil surface, often mixing topsoil with 
surface organic debris to aerate soil, assist in weed suppression, 
control insects and pests, and, in midlatitudes, promote spring-
time warming and drying. Tillage has been practiced, in varied 
forms, throughout the world since antiquity. During the 1700s 
and 1800s, innovations in designs of plowshares greatly increased 
tillage effectiveness by increasing depth of the disturbed soil and 
by turning the surface soil to more completely mix surface crop 
residue (also referred to as plant litter, senescent vegetation, or 
nonphotosynthetic vegetation [NPV]) with disturbed soil.

For millennia, mechanical disturbance of the soil was accom-
plished using hand tools and animal power. By the mid-nineteenth 
century, steam-powered tractors (later replaced by internal com-
bustion engines) greatly increased tillage efficiency and speed and 
expanded tillage into a wider range of slopes, topography, and 
ecosystems. Notable impacts of mechanization are the expansion 
of tillage into formerly uncultivated environments, especially prai-
ries and steppes of several continents that have since become some 
of the most productive agricultural systems, but also some of the 
most susceptible to drought and erosion. Mechanization also led 
to further innovations in designs of specialized tillage implements 
and to increases in tillage operations, which often created the con-
text for soil and water erosion.

Detrimental impacts of tillage include increased wind and 
water erosion; increased soil compaction, especially in the con-
text of mechanization; decreased soil organic matter; reduced 
water infiltration; and increased amounts of nutrients reach-
ing streams and rivers. By the 1940s, increased awareness of 
detrimental aspects of tillage (Faulkner 1943), combined with 
availability of herbicides, led to alternative practices to mini-
mize adverse aspects of tillage. Such practices include increased 
use of tillage instruments that minimize soil disturbance and 
leave crop residue on the soil surface.

Recognized environmental benefits of conservation tillage sys-
tems include reduced soil erosion from wind and water, carbon 
emission reductions, and improvements of air, soil, and water 
quality (Wander and Drinkwater 2000). Long-term adoption of 
conservation tillage practices can increase soil organic matter 
content and, hence, can potentially sequester atmospheric car-
bon into soils (Lal 2004). Conservation tillage practices increase 
soil water infiltration, improve nutrient cycling, and, in general, 
improve water quality because of improved retention of soil 
nutrients (Karlen et  al. 1994). Soil quality is improved because 

accumulation of surface organic matter increases aggregate stabil-
ity and higher levels of crop residues provide shelter and food for 
wildlife. As for economic perspective, conservation tillage prac-
tices decrease labor and fuel costs because of reduced tillage oper-
ations and reduced fertilizer requirements as a result of improved 
soil quality (West and Marland 2002). Conservation tillage, espe-
cially no-till, requires fewer field operations and reduces the num-
ber of field days needed to plant a crop. As a result, it reduces the 
risk of delayed planting due to unfavorable weather conditions 
and also provides possibilities to practice double-cropping.

As alternative tillage practices gained acceptance and were 
implemented, conservationists needed objective data to gauge the 
extent and benefits of their use. The Soil Tillage Intensity Rating 
(STIR), developed by USDA-Natural Resource Conservation 
Services (NRCS), provides a physically based evaluation of tillage 
systems across the spectrum from true no-till to conventional 
plow systems (USDA-NRCS 2014). STIR requires information 
on (1) each tillage implement used, (2) the operating speed of 
the implement, (3) the depth of tillage, and (4) the fraction of 
the total soil surface disturbed by the tillage implement. STIR 
provides robust evaluations of complex tillage systems and crop 
rotations for conservation planning. However, STIR is impracti-
cal for surveys over many fields and large regions.

Tillage intensity can also be characterized by the fraction of the 
soil surface covered by crop residue. The Conservation Technology 
Information Center (CTIC) defined the following categories of till-
age based on the crop residue cover on the soil surface shortly after 
planting: conventional tillage has <15% residue cover, reduced till-
age has 15%–30% residue cover, and conservation tillage has >30% 
residue cover (CTIC 2014). This less robust definition of tillage 
intensity has a few caveats that must be considered, for example, 
fields where crop residues were harvested for feed or biofuel may 
have low crop residue cover without soil-disturbing tillage.

Over time, varied efforts to collect information on tillage 
intensity have included visual assessment, field measurements, 
agricultural censuses, and remote-sensing techniques. Such 
information is required by a number of agroecosystem models 
and is important for assessing the impacts of tillage practices on 
soil erosion, soil carbon sequestration, and water quality. Field 
measurements and agricultural surveys to acquire tillage infor-
mation are time-consuming and difficult. Moreover, it is unre-
alistic to survey every single field using these methods over large 
regions and over time. Therefore, it is of great interest to develop 
techniques that can routinely and systematically map tillage 
practices. Synoptic remote-sensing imagery offers opportuni-
ties to provide spatial–temporal information on tillage practices 
efficiently at low costs. The first investigation on the potential of 
using remote-sensing imagery to map crop residues can be traced 
back to Gausman et al. (1975). Thereafter, both aerial and satel-
lite imagery were tested to differentiate different tillage practices 
and estimate crop residue cover. For instance, Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) data were found to be 
useful for crop residue cover estimation (Daughtry et al. 2005).

Although aerial imagery, properly timed and collected at suit-
able resolutions, offers the capability to assess soil tillage status, 
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the broadscale surveys require the areal coverage, revisit capabili-
ties, and spectral channels that are, as a practical matter, available 
only through satellite observation systems. Here we discuss the 
two main classes of satellite systems with the potential for rou-
tine broadscale tillage assessment: (1) optical remote sensing (vis-
ible, near-infrared [NIR], and midinfrared imaging sensors) and 
(2) microwave remote sensing (synthetic aperture radar [SAR]).

8.2 � Field Assessment of Crop 
Residue Cover

Methods appropriate for assessing crop residue cover in fields can 
be grouped into intercept and photographic techniques (Morrison 
et al. 1993). Intercept methods use a system of grid points, cross-
hairs, or points along a line where the presence or absence of resi-
due is determined. The standard technique used by USDA-NRCS 
is the line–point transect method where a 15–30 m line with 100 
evenly spaced markers along the line is stretched diagonally across 
the crop rows in the field and markers intersecting crop residue 
are counted. Accuracy of the line–point transect method depends 
on the length of the line, the number of points per line, and the 
skill of the observer. At least 500 points must be observed to deter-
mine corn residue cover to within 15% of the mean (Laflen et al. 
1981). Significant modifications to the line–point transect method 
include the use of measuring tapes, meter sticks, and wheels with 
pointers (Corak et  al. 1993; Morrison et  al. 1993). However, the 
line–point transect is impractical for monitoring crop residue 
cover in many fields over broad areas in a timely manner.

For the photographic method, a color or color infrared digital 
camera is used to take multiple vertical photographs within a sam-
pling area where residue conditions appear visually homogeneous. 
A grid or crosshairs is superimposed on the digital images and 
the points intersecting residue are counted. Software programs, 
such as SamplePoint, can randomly select sample points within 
each image for the user to identify and can tabulate the propor-
tion of each class (Booth et al. 2006). Alternatively, the image may 
be classified into soil and residue classes using objective image 
analysis procedures. Classification errors occur when the spectral 
differences between soil and residues classes are not sufficiently 
large for discrimination. Shortly after harvest, crop residues are 
often much brighter than soils, but as the residues decompose, the 
residues may be brighter or darker than the soil. The best time to 
acquire information of tillage practices in the field is shortly after 
sowing and before crop emergence, which is also the optimal time 
window to acquire images to map tillage practices.

The CTIC, established at Purdue University in 1983 as clear-
inghouse for tillage and conservation information, has conducted 
field surveys to assess tillage status in the United States (http://
www.ctic.purdue.edu). For the CTIC surveys, trained observ-
ers visually assessed tillage status in fields at regular intervals 
along selected routes through participating counties. The survey 
provided county-level estimates of overall tillage practices. The 
roadside assessment task is subject to various degrees of error 
and uncertainty because it mainly relies on visual interpretation. 

The  quality of the data has also varied from time to time and 
from county to county due to a variety of reasons, such as unfa-
vorable weather conditions at the time of survey and inconsistent 
levels of experience among the observers. Finally, some counties 
have stopped acquiring tillage data after the national survey pro-
gram was discontinued in 2004 (CTIC 2014).

Limited soil tillage information is available for other coun-
tries. Canada conducts tillage inventory as part of its 5-year 
census of agriculture. Tillage practices are reported by province 
in three categories: (1) tillage incorporating most of the crop 
residue into the soil, (2) tillage retaining most of the crop resi-
due on the surface, and (3) no-till seeding or zero-till seeding. 
Thus, it is difficult and impractical to evaluate tillage practices 
over time, and by nation, because of wide variations in field data 
collection, survey responses, and agricultural censuses (Zheng 
et al. 2014). The tillage categories defined by Canada are less pre-
cise than the CTIC definitions. Definitions of tillage categories 
may slightly differ from one country to another and even differ 
from organization to organization. To evaluate tillage practices 
for a particular field using visual assessment or remote-sens-
ing methodologies, we have to link the ground surface status 
observed from the ground, air, or space to types of tillage prac-
tices. Although soil texture and smoothness can be one of the 
indicators for different tillage status, the amount of crop resi-
dues left on the ground after planting are often considered as the 
most reliable indicator. Here, we list types of tillage practices 
and their expected crop residue cover according to CTIC and 
NRCS’s definitions in Table 8.1. Globally, a systematic monitor-
ing of soil tillage is needed to manage the finite soil resources as 
demand for food, feed, fiber, and fuel intensifies.

8.3 � Monitoring with Optical 
Remote Sensing

Optical remote-sensing imagery is valuable for monitoring bio-
physical properties of various objects on the Earth. Crop residue, 
although spectrally similar to soils, has a unique absorption fea-
ture near 2100 nm. The absorption depth becomes deeper as the 
amount of crop residue increases. Thus, optical remote-sensing 
imagery provides a better capability for estimating crop residue 

Table 8.1  Tillage Types and Their Corresponding Crop Residue Cover

Tillage Category Tillage Types Description
Crop Residue 

Cover (%) 

Conservation No-till/
strip-till

Minimal soil 
disturbance (<25%)

>30 (likely 
>70)

Ridge till Residue left on the 
surface between 
ridges

>30

Mulch till 100% Soil surface 
disturbance

>30

Nonconservation Reduced till 15%–30% 15–30
Conventional 

till or 
intensive till

<15% <15
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cover than does radar data. This section firstly describes spectral 
properties of soils, green vegetation, and NPV, following with 
Section 8.3.2 on tillage spectral indices based on spectral dif-
ferences among soils, green vegetations, and NPV. Section 8.3.3 
reviews tillage assessment using different remote-sensing plat-
forms, followed by Section 8.3.4, which discusses current chal-
lenges and future possibilities.

8.3.1 � Spectral Properties of Soils, 
Green Vegetation, and 
Nonphotosynthetic Vegetation

Soil tillage intensity is defined by the proportion of the soil sur-
face covered by crop residue shortly after planting. Green veg-
etation may also be present in the field as the planted crop or as 
weeds. This section focuses on the spectral properties of soils, 
green vegetation, and crop residues.

8.3.1.1  Spectral Properties of Soils

Soil reflectance typically increases monotonically with increas-
ing wavelength (Figure 8.1). Major contributors to the reflec-
tance spectra of soils include moisture content, iron oxide 
content, organic matter content, particle-size distribution, min-
eralogy, and soil structure (Baumgardner et al. 1986; Ben-Dor 
2002). Stoner and Baumgardner (1981) measured the spectral 
reflectance of 485 soil samples representing 10 soil taxonomic 

orders and identified 5 distinct soil reflectance curve forms. Soil 
organic matter content and iron oxide content were the primary 
factors determining shape of the reflectance spectra.

In general, soil reflectance decreases as soil moisture con-
tent, organic matter content, and iron oxide content increase. 
Spectral reflectance is strongly correlated with soil organic mat-
ter among soils from the same parent materials (Henderson 
et al. 1992). Reflectance spectra of soils may also have absorp-
tion features near 2210 nm that are associated with Al-OH in 
phyllosilicate clays (Figures 8.1 and 8.2) (Serbin et  al. 2009b). 
However, mineral absorption features evident in the reflectance 
spectra of dry soils are often obscured by the strong absorption 
of water in the reflectance spectra of wet soils (Stoner et al. 1980; 
Daughtry et al. 2004).

Soil tillage roughens the soil surface and often decreases 
soil reflectance, but the effect is short-lived and soil reflectance 
increases as the soil surface is smoothed by precipitation or addi-
tional tillage operations (Irons et al. 1989). As water wets the soil 
surface and fills pore spaces, soil reflectance decreases.

8.3.1.2  Spectral Properties of Green Vegetation

Reflectance of solar radiation from a dense canopy of actively 
growing green plants is characterized by three distinct regions: 
visible, NIR, and shortwave infrared (SWIR) (Figure 8.1). In 
the visible wavelength region (400–700  nm), chlorophyll and 
other leaf pigments strongly absorb blue and red wavelengths, 
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Figure 8.1  Spectra of a soil, corn residue, and live corn canopy for the visible through SWIR and relative spectral response (RSR) for ASTER 
and Landsat OLI bands. Note that reflectance values vary from sample to sample. (Adapted from Daughtry, C.S.T. et al., Agron. J., 97(3), 864, 2005, 
doi: 10.2134/agronj2003.0291.)
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which largely determines the reflectance and transmittance 
spectra (Thomas and Gausman 1977). In the NIR wavelength 
region (700–1200 nm), there is very little absorption, and spec-
tral reflectance and transmittance are largely determined by leaf 
mesophyll structure and cell wall–air interfaces (Slaton et  al. 
2001). Reflectance and transmittance in the SWIR wavelength 
region (1200–2500  nm) are affected primarily by the amount 
of water in the leaves (Hunt 1989; Yilmaz et al. 2008). Thus, a 
distinguishing spectral characteristic of green vegetation is the 
steplike transition from low reflectance and low transmittance 
in the visible region to high reflectance and transmittance in 
the NIR (Figure 8.1). Soils and NPV lack this spectral feature. 
Spectral vegetation indices that exploit this fundamental spec-
tral feature are particularly sensitive to green vegetation, for 
example, the normalized difference vegetation index (NDVI) 
(Rouse et al. 1973; Asrar et al. 1989).

8.3.1.3 � Spectral Properties of Nonphotosynthetic 
Vegetation

NPV broadly refers to any senesced vegetation and includes 
crop residues, which are the portions of a cultivated crop 
remaining in the field after harvest. Initially, crop residues may 
completely cover the soil surface, but when the soil is tilled or 
the crop residues are harvested for feed or biofuel, crop residue 
cover decreases. Crop residues on the soil surface decrease soil 
erosion, increase soil organic matter, and improve soil quality 
(Lal et al. 1998). Quantification of crop residue cover is required 
to assess the effectiveness and extent of conservation tillage 
practices.

The reflectance spectra of both soils and crop residues lack 
the unique spectral signature of green vegetation (Figure 8.1). 
Crop residues and soils are spectrally similar and differ only in 
amplitude in the 400–1100 nm wavelength region, which makes 
quantification of crop residue cover by spectral reflectance chal-
lenging (Streck et al. 2002). Crop residues may be brighter than 
the soil shortly after harvest, but as residues weather and decom-
pose, they may become either brighter or darker than the soil 
(Nagler et al. 2000; Daughtry et al. 2010). Residue water content 
also has impacts on its spectral properties. The presence of water 
in crop residues decreases reflectance across all wavelengths 
(Daughtry 2001). Thus, assessing crop residue cover with broad-
band multispectral data can be challenging and may require 
extensive local calibration data.

An alternative approach for discriminating crop residues 
from soils is based on detecting absorption features in the 
2100–2350 nm wavelength regions that are associated with cel-
lulose and lignin in crop residues (Workman and Weyer 2008). 
High residue water content can obscure the absorption feature 
at 2100  nm (Daughtry 2001). Increases in soil moisture con-
tent also decrease our ability to separate crop residue from soils 
(Daughtry 2001). Thus, it becomes more difficult to discrimi-
nate crop residue from soils as residue and soil water content 
increases. As illustrated in Figure 8.2, these absorption features 
are not shared by common soil minerals but are obscured by the 
strong absorption of water often present in soils, crop residues, 
and green vegetation, which can significantly attenuate the cel-
lulose and lignin absorption features (Daughtry and Hunt 2008; 
Serbin et al. 2009a).

8.3.2 � Spectral Indices for Assessing 
Crop Residue Cover

Spectral vegetation indices designed for assessing green vegeta-
tion, such as NDVI, cannot distinguish soil and crop residues. 
Numerous tillage or residue indices use various combinations of 
visible, NIR, and shortwave multispectral bands to discriminate 
crop residues from soils. The index best suited for crop residue 
cover estimation from single scenes is the cellulose absorption 
index (CAI), which specifically targets this feature. It has the 
distinct advantage that crop residues always have CAI > 0, live 
vegetation ≈ 0, and soils ≤ 0 (Figure 8.3). The CAI is defined as 
the relative intensity of the absorption feature at 2100 nm, which 
is attributed to an O–H stretching and C–O bending combina-
tion in cellulose and other carbohydrates in crop residues. CAI 
is measured using three relatively narrow (10–30  nm spectral 
resolution depending on the sensors) spectral bands—two on 
the shoulders and one near the center of the absorption feature 
at 2100 nm (Nagler et al. 2000) (Table 8.2). CAI is effective in dis-
criminating crop residues from soils for dry to moderately moist 
mixtures of crop residues and soils but less effective for mixtures 
of wet crop residues and soils (Daugthtry 2001).

Additional spectral indices that also target the cellulose 
and lignin absorption features of crop residues have used the 
relatively narrow (30–90  nm) SWIR bands of the Advanced 
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Remote Sens. Lett., 4(6), 552, 2013, doi: 10.1080/2150704x.2013.76747p.)

© 2016 Taylor & Francis Group, LLC

  



184 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER) on the NASA Terra satellite, that is, the lignin cellulose 
absorption (LCA) and the shortwave infrared normalized differ-
ence residue index (SINDRI) (Daughtry et al. 2005; Serbin et al. 
2009c). For two-band normalized difference indices (NDIs), the 
ASTER-based SINDRI performs well and targets a decrease in 
reflectance associated with cellulose and lignin features between 
ASTER SWIR bands 6 and 7 (Serbin et  al. 2009c; Table  8.2). 
However, SINDRI is sensitive to green vegetation (Figures  8.2 
and 8.3) and certain soil minerals (Figure 8.4), which also 

experience reflectance decreases between these bands, such 
that it may not work well for a limited number of soils or where 
emerged crops may be present (Serbin et al. 2013).

While Landsat Thematic Mapper (TM)/Enhanced Thematic 
Mapper (ETM) bands 5 and 7 and Landsat 8 Operational Land 
Imager (OLI) bands 6 and 7 are too wide and not properly placed 
to capture the cellulose absorption feature at 2100 nm, they can be 
used for tillage estimation via normalized difference tillage index 
(NDTI) (van Deventer et al. 1997; Table 8.2). In addition to NDTI, 
NDI (McNairn and Protz 1993) and simple tillage index (STI) 
(van Deventer et al. 1997) are Landsat-based tillage indices. Serbin 
et  al. (2009a) showed that NDTI performed the best of several 
Landsat-based tillage indices but underperformed in comparison 
to CAI and the ASTER-based LCA. Furthermore, NDTI was found 
to lack adequate contrast for a number of soils with high content 
of kaolinite or smectite and had a much stronger signal for live 
vegetation than either crop residues or soil minerals (Figure 8.3). 
In Figure 8.3, the median values of NDTI for crop residues are 
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Figure 8.3  Spectral index values for surface soils, crop residues, 
and live corn canopy. (Adapted from Serbin, G. et  al., Soil Sci. Soc. 
Am. J., 73(5), 1545, 2009a, doi: 10.2136/sssaj2008.0311; Serbin, G. et al., 
Remote Sens. Lett., 4(6), 552, 2013, doi: 10.1080/2150704x.2013.767479.)

Table 8.2  Selected Tillage Indices and Their Calculation

Sensor 
Tillage 
Indices Formula Description References 

Landsat TM and ETM+ NDTI (B5 − B7)/(B5 + B7) B5, B7: Landsat bands 5 and 7. Van Deventer et al. (1997)
AVIRIS
Hyperion

CAI 100 × [0.5(R 2030 + 
R2210) − R2100]

R2030 and R2210 are the reflectances of the shoulders at 2030 
and 2210 nm; R2100 is at the center of the absorption.

Daughtry et al. (2005)
Daughtry et al. (2006)

ASTER LCA
SINDRI

100(2 × B6 − B5 − B8)
(B6 – B7)/(B6 + B7)

B5, B6, B7, B8: ASTER shortwave infrared bands 5, 6, 7, 
and 8.

Daughtry et al. (2005)
Serbin et al. (2009a)
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Figure 8.4  (a) Spectra of Gibbsite HS423.3B (Clark et al. 2007), a 
gibbsitic Ultisol (Brown et al. 2006), and corn residue with convolved 
spectral band values. (b) Relative spectral response functions (RSR) 
for 11-nm wide bands centered at 2030, 2100, and 2210 nm (CAI), 
and ASTER bands 6 and 7 (SINDRI). (Adapted from Serbin, G. et al., 
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consistently higher than the median values of surface soils. 
However, discrimination of some combinations of soils and 
crop residues may be difficult without adequate quantities of 
local data for calibration and validation. For example, the NDTI 
values of most crop residues may not differ significantly from 
NDTI values of soils with high content of kaolinite or smectite 
(Serbin et  al. 2009a). As the fraction of green vegetation in a 
scene increases, NDTI also increases, which alters the estima-
tion of crop residue cover. One approach is to exclude pixels 
with green vegetation using an NDVI threshold (Thoma et al. 
2004; Daughtry et al. 2005). Another robust approach to reduce 
effects of soil and green vegetation on estimates of crop residue 
cover is to identify the minimum NDTI (minNDTI) values from 
multitemporal NDTI data, because the minNDTI values were 
found to be well correlated with crop residue cover (Zheng et al. 
2012, 2013a). This method was found to be similar in accuracy 

to single collects using SINDRI or CAI (Figure 8.5) (Zheng et al. 
2013a). However, as we can see in Figure 8.5 that minNDTI 
results in higher root mean squared errors (RMSE), NDTI is 
more subject to the negative influences of soil moisture and soil 
organic carbon than SINDRI and CAI (Zheng et al. 2013a).

8.3.3 �T illage Assessment Using 
Airborne and Satellite Imagery

Until recently, most assessments of crop residue cover and till-
age intensity were snapshots of conditions using single dates 
of multispectral imagery. For example, various spectral indi-
ces using Landsat TM bands 5 and 7 successfully differentiated 
conventional tillage from conservation tillage using logistic 
regression (van Deventer et al. 1997; Gowda et al. 2001). Other 
classification methods (e.g., minimum distance, Mahalanobis 
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distance, maximum likelihood, spectral angle mapping, and 
cosine of the angle concept) and data mining approaches (e.g., 
random forest classifier and support vector machine) have been 
examined for identifying two broad tillage categories (South 
et  al. 2004; Bricklemyer et  al. 2006; Watts et  al. 2008; Sudheer 
et al. 2010; Samui et al. 2012). These studies demonstrated the 
capability of Landsat TM imagery to discriminate between two 
broad tillage categories (i.e., conventional and conservation till-
age) (van Deventer et al. 1997; Gowda et al. 2001) but fell short of 
achieving the reliability and consistency required for operational 
applications. Based on previous studies, it remains unclear which 
classification approach performs the best in classifying tillage 
categories. Research also has been conducted to test the feasibil-
ity of estimating crop residue cover using Landsat data (McNairn 
and Protz 1993; Thoma et al. 2004; Daughtry et al. 2006). These 
studies used single-date multispectral images and yielded mixed 
results. The inconsistent results of these studies may be related to 
the spectral resolution of Landsat TM data, different image pre-
processing strategies to correct for atmospheric transmittance, 
spatial and temporal variations in soils, and green vegetation.

Tillage indices developed using hyperspectral and advanced 
multispectral (e.g., ASTER) data have provided consistent 
assessments of crop residue cover across years and study sites 
(Table 8.3; Figure 8.5). These tillage indices (e.g., CAI, SINDRI) 
detect absorption features associated with cellulose and lignin 
and are robust for discriminating crop residues from soils and 
green vegetation. However, the sensor systems with the appro-
priate spectral bands have very limited spatial and temporal 
coverage, which limits their usefulness for monitoring crop 
residue cover and tillage intensity over large areas. Finally, the 
SWIR bands of ASTER needed to characterize residue cover 
are no longer available due to detector failure in April 2008 
(NASA/JPL 2008). Spaceborne multispectral imagery, however, 

is favorable due to its ability to provide extended repetitive 
coverage of the Earth. Landsat TM/ETM+ imagery, thus, is 
extremely attractive for monitoring tillage practices and crop 
residue cover over large areas because it is freely available and 
provides a long-term synoptic view of the Earth with a 16-day 
revisit frequency.

Timing of image acquisition is very important for monitor-
ing agricultural resources because agricultural land surfaces 
change rapidly as growers prepare soils for planting and as 
crops emerge from soils, mature, and are harvested. It is well 
recognized that soil and residue status change rapidly during 
the planting season and vary in space and time (McNairn et al. 
2001; Watts et al. 2008), but tillage and crop residue mapping 
have been long treated as a one-time mapping effort using 
only one image at a time, until Watts et  al. (2011) incorpo-
rated temporal dimensions into tillage mapping. Zheng et  al. 
(2012) emphasized the need to consider varied timings of till-
age and planting in tillage mapping and significantly improved 
mapping accuracy using multitemporal Landsat imagery 
(Table 8.3). Minimum NDTI values were extracted from a time-
series Landsat image that included images from 1 to 2 months 
before expected planting date to 1–2 months after planting date 
(Zheng et al. 2012). The method was designated as minNDTI 
and forms an effective way to minimize confounding effects of 
green vegetation (Zheng et  al. 2012). Figure 8.6 shows a till-
age map and its corresponding NDTI values of Champaign 
County, Illinois. The left image in Figure 8.6 is the minNDTI 
values extracted from a time-series NDTI image. Agricultural 
fields managed with conservation tillage are relatively brighter 
because higher levels of crop residue cover result in higher 
NDTI values. The multitemporal approach requires the use 
of surface reflectance Landsat data products, which are avail-
able from EarthExplorer (http://earthexplorer.usgs.gov/) and 

Table 8.3  Summary of Studies in Crop Residue Estimation Using Remote-Sensing Imagery

Sensor na Image Dates Indices or Methods R2 References 

Landsat TM 266 4/18/1990 NDI 0.74 McNairn and Protz (1993)
Landsat ETM+ 468 03/28/2000 NDI 0.38 Thoma et al. (2004)

06/03/2001 STI 0.47
11/10/2001 NDTI 0.48

Landsat TM 54 06/12/2004 NDI 0.14 Daughtry et al. (2006)
NDTI 0.11

SPOT Varied Varied Spectral unmixing 0.58–0.78 Pacheco and McNairn (2010)
Landsat TM 39 05/28/2008 0.69
Hyperion 54 05/03/2004 CAI 0.85 Daughtry et al. (2006)
Landsat TMb Varied Varied NDTI 0.004–0.64 Serbin et al. (2009c)
ASTERc Varied Varied LCA 0.39–0.86

SINDRI 0.61–0.87
Airborne hyperspectral data Varied Varied CAI 0.72–0.89
Landsat TM and ETM+ 31 Multitemporal minNDTI 0.89 Zheng et al. (2012)
Landsat TM and ETM+ Varied Multitemporal minNDTI 0.66–0.89 Zheng et al. (2013a)

a	n denotes number of samples.
b	Data were simulated using ASTER data when Landsat TM imagery was unavailable.
c	 Data were simulated using airborne hyperspectral data when ASTER imagery was unavailable.
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USGS EROS Science Processing Architecture (ESPA) ordering 
interface (https://espa.cr.usgs.gov). The minNDTI approach 
was also applied to six additional datasets collected in differ-
ent regions of the United States and the technique was com-
parable to CAI and SINDRI in achieving similar classification 
accuracy of three tillage categories (Zheng et al. 2013a). Zheng 
et  al. (2013a) reported 68%–86% overall accuracies for three 
tillage categories—a significant improvement compared to 
42%–56% accuracies reported by Thoma et al. (2004). However, 
the minNDTI approach cannot address the effects of surface 
soil variability as its performance was degraded when applied 
to a larger geographical area. Nevertheless, a multitemporal 
approach has shown a substantial potential to track changes 
of tillage practices over time and space using freely available 
Landsat and Landsat-like data (Watts et al. 2011; Zheng et al. 
2012, 2013a).

8.3.4  Summary

8.3.4.1 C hallenges

The primary challenges for operational tillage mapping using 
optical remote-sensing imagery include the following: (1) Revisit 
rates of moderate-spatial-resolution imagery are not frequent 
enough to capture the rapid changes in agricultural land sur-
faces during planting season, (2) there is limited spatial cover-
age of satellite hyperspectral imagery, (3) there are confounding 
effects of soil background and green vegetation, and (4) there is a 
lack of transferability of locally developed models.

Landsat is currently the best satellite system to provide the 
capabilities for long-term and broadscale tillage assessment. 
Although the minNDTI technique showed promises in till-
age mapping at large scales, the 8-day revisit rate of combined 
Landsat 8 OLI and 7 ETM+ cannot guarantee adequate numbers 
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Figure 8.6  2006 Tillage map of Champaign County (left), Illinois, and its corresponding minNDTI values (right) extracted from a time-series 
NDTI image. Agricultural fields with brighter tones indicate higher levels of crop residue cover, which corresponds to the conservation tillage 
category.
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of cloud-free observations to capture the recently tilled surface. 
In tropical regions or other areas that have persistent cloud cover, 
one may be lucky to obtain two or three cloud-free images per 
year. The data gap issues of Landsat 7 ETM+ imagery also pre-
vent rapid application of the minNDTI technique because addi-
tional image preprocessing skills are required to fill the missing 
data. Zheng et al. (2013b) have presented an easy way to fill the 
missing data for broadscale tillage mapping using the multiscale 
segmentation method. Landsat images with partial cloud cover 
can be incorporated into the time series; however, estimation 
of tillage status for the cloud-contaminated pixels could be less 
accurate, and a quality assessment map should be provided to 
inform users about locations of cloud and cloud shadow pixels 
(Zheng et al. 2014).

The spatial and temporal adaptive reflectance fusion model 
(STARFM) (Gao et  al. 2006), which produces cloud-free syn-
thetic Landsat images with 30 m spatial resolution at Moderate 
Imaging Spectroradiometer (MODIS) temporal frequency, could 
be an alternative option to enhance temporal resolution for till-
age mapping. The enhanced STARFM (Zhu et al. 2010), future 
improvement of data fusion techniques, and the higher quality of 
Landsat 8 and the European Space Agency (ESA) Sentinel-2 data 
could open possibilities to provide data optimized in both tem-
poral and spatial resolutions for tillage assessment. However, the 
potential to incorporate data fusion techniques into minNDTI 
technique to improve our ability to map tillage practices cur-
rently remains unknown and required for future investigation 
(Zheng et al. 2014).

Locally developed empirical models often show degraded 
performance when applied to the same location over time or to 
a broader region. Variations in weather, soil, and terrain con-
ditions across landscape are the main reasons for the degraded 
performance when a model is extrapolated to new situations. 
Zheng et  al. (2013a) reported superior performance of local 
models than a universal model and highlighted negative impacts 
of local variation in terrain, moisture, and soil color upon crop 
residue estimation. Thus, estimation of crop residue cover with 
broadband multispectral may require extensive local calibration 
data. Alternatively, the effects of soil variation can be reduced or 
minimized using local soil-adjusted tillage indices (Biard and 
Baret 1997) or the spectral unmixing approach (Pacheco and 
McNairn 2010). The spectral unmixing approach has the poten-
tial to map crop residue cover over large geographic regions as 
the approach is insensitive to variations in soil and residue when 
end-members are retrieved directly from the image (Pacheco 
and McNairn 2010). However, future work is required to exam-
ine how well the unmixing approach performs in the presence 
of green vegetation.

Much of the research to apply remote sensing to tillage assess-
ment has been developed in the context of midlatitude agri-
culture, characterized by distinct seasonal cycles, large field 
sizes, common use of monoculture, or reduced crop diversity, 
over large regions. In other regions of the world, or in irrigated 
regions, there may be a much larger range of crops, with a vari-
ety of planting and harvesting dates, not synchronized with 

each other, and smaller field sizes—in such situations, the tillage 
assessment task requires different strategies than may be effec-
tive in midlatitude regions.

8.3.4.2  Future Capabilities

At the time of this writing, due to the limited availability of 
hyperspectral data, the minNDTI approach is probably the most 
effective method to map tillage practices at broadscale using 
optical remote-sensing imagery. The minNDTI can be applied 
to Landsat 7 ETM+ and Landsat 8 OLI, which together provides 
an 8-day observation cycle. The OLI imagery has potential to 
enhance our ability to accurately estimate crop residue cover 
with its narrower spectral bands and 12-bit dynamic range, as 
indicated by Galloza et al. (2013), who found that the Advanced 
Land Imager (ALI) has better capability to discriminate crop 
residues from soils than Landsat TM data.

The upcoming launch of ESA Sentinel-2 satellite will provide 
enhanced Landsat-type data with <5-day revisit time. Sentinel-2 
is particularly useful for monitoring the rapid changes of agricul-
tural lands. Operational tillage assessment is likely to involve mul-
tisensor multidate image fusion and could be implemented using 
Landsat and Sentinel-2 data together. The planned hyperspectral 
satellite missions, including ESA Environmental Mapping and 
Analysis Program (EnMAP) and NASA Hyperspectral Infrared 
Imager (HyspIRI), will also make contribution to large-scale till-
age assessment. These hyperspectral data can be used to calcu-
late CAI. Fusion of hyperspectral and multispectral images could 
estimate crop residue cover at the multispectral spatial extent 
with improved accuracy (Galloza et al. 2013). The WorldView-3 
satellite launched in August 2014 includes SWIR bands equiva-
lent to ASTER SWIR sensor (DigitalGlobe, 2014), which can be 
used to derive SINDRI for crop residue estimation. The very high 
spatial resolution (3.7 m) of WorldView-3 SWIR data will permit 
fine-scale assessment of crop residue cover, soil texture, and soil 
roughness.

8.4  Monitoring with SAR

8.4.1 I ntroduction

SARs are considered active remote-sensing sensors as they gener-
ate pulses of energy that are propagated toward a target. SARs then 
record the energy scattered by the target, back toward the radar 
antenna. The strength (intensity) of the received or backscattered 
signal is measured as sigma naught (σ0), expressed in decibels 
(dB). Since these sensors provide their own source of energy, 
SARs are able to collect data day or night. SARs generate energy 
at microwave frequencies (0.2–300 GHz), with Earth-observing 
SAR satellites typically operating at X-band (2.40–3.75  cm; 
8.0–12.5 GHz), C-band (3.75–7.5 cm; 4.0–8.0 GHz), and L-band 
(15–30 cm; 1.0–2.0 GHz) (Lewis and Henderson 1998) (Table 8.4). 
These lower frequencies are unaffected by the presence of cloud 
and haze. Given this context and the sensitivity of microwaves to 
soil conditions, SARs are an important data source for mapping 
and monitoring tillage and residue.
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8.4.2 C ritical Variables for Tillage Assessment

The interaction of microwaves with a target and the characteris-
tics of the scatter that results from this interaction are a function 
of the condition of the target as well as the SAR sensor speci-
fications. SAR response is driven by the dielectric permittivity, 
roughness, and structural properties of the target. In the context 
of tillage monitoring, SARs are sensitive to small-scale rough-
ness and large macrostructures produced by farming imple-
ments, as well as volumetric soil moisture. In addition to their 
spatial resolution, SARs are characterized by their frequency, 
incidence angle, and polarization—configurations that also 
affect the target interaction.

8.4.2.1  Sensitivity of SAR to Soil Characteristics

8.4.2.1.1  Surface Roughness
Random and periodic roughness determines the angular scat-
tering pattern with diffuse scattering increasing as roughness 
increases. For agricultural fields, roughness is created by land 
management activities (principally tillage and seedbed prepara-
tion) modified over time by water and wind erosion. Roughness 
is defined by two parameters: the root mean square (RMS) 
variance and surface correlation length (l). RMS describes the 
surface’s random vertical statistical variability relative to a ref-
erence surface; while correlation length is an autocorrelation 
function that measures the statistical independence of surface 
heights at two points (Ulaby et al. 1986). For very smooth sur-
faces, as expected from no-till fields, the random roughness 
(RMS) is small and the height of every point is correlated with 

the height of every other point (hence l is large). In this case, 
most microwave energy is forward scattered and backscatter is 
low. Inversely randomly rough surfaces, created by tillage, result 
in more diffuse scattering with a greater proportion of the inci-
dent energy scattered back to the sensor. These surfaces have 
higher RMS, short correlation lengths, and higher backscatter.

8.4.2.1.2  Dielectric Permittivity
The intensity of backscatter from soils is largely determined 
by the soil permittivity (dielectric constant), while the angu-
lar pattern of microwave scattering is governed by the surface 
roughness. The permittivity ε is a frequency-dependent com-
plex quantity [ε( f ) = ε′( f )−jε″( f )], where the real component ε′ 
describes the polarizability of a material when an electric field is 
applied and the imaginary component ε″ energy losses (Hasted 
1973). Dielectric losses are due to relaxation ′′εref  and direct cur-
rent electrical conductivity σ in S/m: ε″( f ) = ′′εref( f ) + σ/2πfε0, 
where ε0 is the permittivity of free space (8.854·10–12 F/m). On 
agricultural fields (without vegetation cover), scattering occurs 
at the air/soil boundary as a dielectric discontinuity exists at 
this interface. The majority of dry soils have ε′ of 3–8, and bulk 
soil permittivity increases with water content. This is due to the 
much greater, albeit frequency-dependent, permittivity of water, 
which at 1.4 GHz ranges from 84.1 – j10.7 at 5°C to 74.5 – j4.1 
at 35°C, 69.0 – j32.1 ~ 71.4 – j14.6 at 5.3 GHz, and 49.2 – j39.7 ~ 
65.1 – j23.7 at 9.6 GHz for pure water where s = 0 S/m for pure 
water where σ = 0 S/m. Increases in either part of the permittiv-
ity will increase soil reflectivity. Electromagnetic wavelength is 
an inverse function of ε′; thus the wavelength becomes shorter 

Table 8.4  Selected Civilian Spaceborne Radar Sensors

Frequency 
(in GHz) Sensor Polarizationa 

Incidence 
Angle (°) Resolution (m) Swath (km) Dates of Operation 

X 8.600 COSMO-SkyMed 1
COSMO-SkyMed 2
COSMO-SkyMed 3
COSMO-SkyMed 4

SP, DP
SP, DP
SP, DP
SP, DP

25–50 1–100 10–200 2007–
2007–
2008–
2010–

8.650 TerraSAR-X SP, DP, QP 15–60 0.25–40 4–270 2007–
8.650 TanDEM-X SP, DP, QP 15–60 0.25–40 4–270 2010–

C 5.300 RADARSAT-1 SP (HH) 10–60 8–100 45–500 1995–2013
5.300 ERS-2 SP (VV) 20–26 30 100 1995–2011
5.331 Envisat ASAR SP, DP 15–45 10–1000 5–405 2002–2012
5.350 RISAT-1 SP, DP, QP, CP 12–55 1–50 25–223 2012–
5.405 RADARSAT-2 SP, DP, QP 10–60 3–100 18–500 2007–
5.405 RADARSAT Constellation SP, DP, QP, CP 10–60 1–500 5–500 2018
5.405 Sentinel 1A SP, DP 20–45 5–40 80–400 2014–

Sentinel 1B SP, DP 20–45 5–40 80–400 2016
L 1.200 ALOS/PALSAR-1 SP, DP, QP 8–60 10–100 20–350 2006–2011

1.200 ALOS/PALSAR-2 SP, DP, QP, CP 8–60 1–100 25–490 2014–
1.260 SMAP SP, VV/HH/HVb 40 1–3 (km) 1000 2015–
1.275 SAOCOM 1A SP, DP, QP, CP 17–51 10–100 20–350 2015

SAOCOM 1B 2016

a	In the polarization column, SP = single polarization, DP = dual polarization, QP = quadrature polarization, and CP = compact 
polarization.

b	SMAP has now been launched. Thus this should say “SMAP acquires radar imagery simultaneously in VV, HH, and HV.
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within the soil as it becomes wetter. As backscatter intensity 
is a function of permittivity, a strong linear relationship exists 
between soil moisture and backscatter. The depth of sensitivity 
within the soil volume is dependent upon three parameters: the 
SAR configuration, soil moisture, and bulk soil ε″. Penetration 
depth is an inverse function of bulk soil permittivity and, thus, 
soil moisture and conductivity. Consequently, SARs respond to 
moisture over deeper volumes as soils dry. Regardless, sensitiv-
ity is still near surface with this depth approximately equivalent 
to the microwave wavelength (Boisvert et al. 1995).

8.4.2.1.3  Residue
If vegetation (green or senesced vegetation or postharvest resi-
due) is present, SAR response will be affected if water is present 
in the vegetation. Residue is considered “dead” vegetation, and 
thus its effect on backscatter is often assumed insignificant, effec-
tively transparent to the incident microwaves. This assumption 
has proven invalid in circumstances where residue retains water. 
The impact of residue on backscatter varies depending upon the 
volume of water held, a function of the amount and type of resi-
due (McNairn et al. 2001). Jackson and O’Neill (1991) reported 
that residue can retain significant moisture with McNairn et al. 
(2001) measuring up to 60% and 40%–50% moisture in corn and 
barley residue, respectively, following rain events.

8.4.2.1.4  Row Direction
Land management practices (planting, harvesting, and tillage) 
can create row effects and row direction relative to the radar look 
direction impacts SAR response. When row direction is perpen-
dicular to the look direction, SAR response is stronger when 
compared to a look direction parallel to rows (Beaudoin et al. 
1990; McNairn et al. 1996). Producers follow a rectangular pat-
tern operating parallel to the long and short axes of fields. This 
practice creates a “bow-tie” effect visible on SAR imagery where, 
within a single field, backscatter is significantly higher for the 
axis of the field oriented perpendicular to the sensor.

8.4.2.2 I mpact of SAR Configuration

SAR sensors are defined by three configurations—frequency 
(GHz, or cm, if characterized as free-space wavelength), inci-
dence angle (degrees), and polarization. These configurations 
affect how microwaves interact with the target in terms of 
backscatter intensity and scattering characteristics. SAR con-
figurations can be selected to maximize sensitivity to the tar-
get property of interest (soil moisture, surface roughness, or 
residue). Alternatively, as these properties are confounded in the 
microwave signal, multiple configurations can be used together 
to resolve individual contributions.

8.4.2.2.1  Frequency
As well as affecting penetration depth, SAR frequency deter-
mines sensitivity to surface roughness. Thus, surface roughness 
must be considered relative to frequency. Surfaces are defined 
as rough or smooth according to the Rayleigh criterion. Surfaces 
are smooth if h < λ/25 sinτ and rough if h > λ/4.4 sinτ where 

h is the RMS, λ is the wavelength, and τ is the depression angle 
(Sabins 1986). Assuming flat terrain, τ is the complement of the 
incidence angle (θ = 90−τ). In practice, this means that a field 
will appear rougher (higher backscatter) at shorter wavelengths 
(i.e., X-band) than at longer wavelengths (i.e., L-band). With 
this strong dependency, the choice of wavelength is especially 
important when monitoring tillage. Short-wavelength (high-
frequency) SARs will see many fields as rough and thus may not 
differentiate among tillage classes at the upper ranges of rough-
ness. Several studies (Pacheco et  al. 2010; Aubert et  al. 2011; 
Panciera et al. 2013) reported that X-band data from TerraSAR-X 
were not well suited for roughness mapping when RMS was 
high. Panciera et al. (2013) found that TerraSAR-X backscatter 
was sensitive to roughness (RMS), which fell between 0.5 and 
1.5 cm, but that the signal saturated beyond 2 cm. Conversely, 
large-wavelength (low-frequency) SARs may view even tilled 
fields as smooth. Nevertheless, numerous studies have reported 
sensitivity of C- and L-band responses to roughness and residue 
(McNairn et al. 2001, 2002; Baghdadi et al. 2008). Baghdadi et al. 
(2008) compared three frequencies (X-, C-, and L-band) demon-
strating that sensitivity to roughness increased with wavelength.

8.4.2.2.2  Incidence Angle
Regardless of the target, backscatter decreases with increas-
ing incidence angle, which is defined as the angle between the 
radar beam and a line perpendicular to the surface. The rate of 
decrease is target dependent, with backscatter decreasing with 
angle at a higher rate when soils are smooth. This differential rate 
of decrease can be used to separate smooth from rough fields, if 
fields are imaged at contrasting incidence angles (McNairn et al. 
1996). As simultaneous multiangle data are typically unavail-
able from spaceborne SARs, a simpler approach is to select an 
incidence angle that maximizes sensitivity to surface roughness. 
Steeper (smaller) angles minimize roughness contributions to 
backscatter and are thus more suited to estimate soil moisture, 
while shallower (larger) angles maximize roughness effects on 
backscatter (McNairn et  al. 1996). Similarly, larger angles are 
more sensitive to residue as soil moisture contributions are mini-
mized, and more microwave interaction occurs with residue at 
these angles (McNairn et al. 2001). Although these larger angles 
are more suited to roughness and residue applications, contribu-
tions from soil moisture are not completely eliminated. Aubert 
et  al. (2011) noted that the range in X-HH backscatter due to 
surface roughness increased as incidence angle increased, with 
backscatter varying 3.5 and 1.9 dB at angles of 50° and 25°, respec-
tively. Baghdadi et al. (2008) reported a slightly larger range in 
X-band backscatter (5.5 dB at 50°–52° and 4 dB at 26°–28°).

8.4.2.2.3  Polarization
Polarization is defined by the orientation of the electric field 
vectors of the transmitted and received electromagnetic wave. 
Polarization should be considered relative to the target structure 
and response interpreted according to the characteristics of scat-
tering from the target, including the sources of scattering and 
the randomness of the scatter. Scattering is categorized as single 
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bounce (surface), multiple (volume), or double bounce. Targets 
usually produce more than one type of scattering although typi-
cally one source dominates. For smooth soils devoid of residue, 
surface single-bounce scattering dominates. Rough soils result 
in multiple scattering of microwaves. Residue (depending on the 
amount and water content) also causes multiple scattering and, 
if residue is vertically oriented, double-bounce events may also 
contribute.

Most SAR sensors transmit and receive microwaves in 
the horizontal (H) and/or vertical (V) linear polarizations 
(Table  8.4). Early satellites transmitted and received micro-
waves in a single linear polarization (European Remote Sensing 
[ERS]-1 and 2 [VV], Japanese Earth Resources Satellite [JERS]-1 
[HH], and RADARSAT-1 [HH]). Next-generation sensors (i.e., 
Advanced Synthetic Aperture Radar [Envisat ASAR]) transmit-
ted and/or received in both linear polarizations, which permit-
ted acquisition of like (HH and/or VV) and cross (HV or VH) 
polarizations. When targets are physically oriented parallel to 
the polarization of the incident wave, greater microwave inter-
action occurs. This is most obvious for targets like crops where 
their vertical structure aligns well with vertical transmitted 
waves. Consequently, a VV configuration provides more infor-
mation on crops than HH. For soils without residue, horizontal 
or vertical orientation is absent and thus HH and VV backscat-
ter is correlated. A linear cross polarization response (HV or 
VH) results when the transmitted wave (i.e., H) is repolarized 
to its orthogonal polarization (i.e., V). Repolarization of H to 
V (or V to H) occurs as a result of multiple scattering (at least 
two bounces), and thus a target must be able to cause more than 
a single scatter event to elicit an HV or VH response. Smooth 
soils, devoid of structure, are dominated by single-bounce for-
ward scattering and produce very low cross-polarized back-
scatter. For soils with random roughness or residue (assuming 
moisture in the residue), incident waves experience multiple 
scattering and higher cross polarization response is observed. 
McNairn et al. (2001) reported that, of all the linear polariza-
tions, the cross polarization was most sensitive to the amount of 
residue. The cross polarization has the advantage of being insen-
sitive to planting, harvesting, or tillage row direction (McNairn 
and Brisco 2004). This is important considering that Brisco et al. 
(1991) established that row direction from tillage significantly 
impacted like-polarized backscatter.

8.4.2.2.4  Polarimetry
Some satellites (i.e., ALOS PALSAR, RADARSAT-2, and 
TerraSAR-X) are polarimetric capable. Polarimetric sensors cap-
ture the complete characterization of the scattering field mean-
ing that they record all four mutually coherent channels (HH, 
VV, HV, and VH), with phase information between orthogonal 
polarizations retained and processed. Any linear, elliptical, or 
circular polarization can be synthesized from polarimetric 
data. Circular polarizations are described by their handedness 
(direction of rotation) relative to the observer. Right-handed 
circular waves (R) rotate clockwise (relative to observer), while 
left-handed waves (L) rotate counterclockwise. The application 

of circular polarizations for agriculture has received limited 
attention although for soils, circular and linear backscatter is 
highly correlated (Sokol et  al. 2004). As with linear polariza-
tions, multiple scattering must occur to change the handedness 
of the transmitted circular polarization. Roughness or residue 
can cause two or more bounces, changing the handedness and 
resulting in a higher circular copolarization (RR or LL) response 
(recall rotation is defined relative to the observer). Indeed, 
de  Matthaeis et  al. (1992) observed high circular cross-polar-
ized backscatter (LR) returns for surfaces with dominant sur-
face scattering. Circular copolarized (RR) backscatter increases 
when the mechanisms producing volume scattering dominate 
(McNairn et al. 2002).

Polarimetric data can be processed to extract additional 
parameters, which characterize scattering and thus tillage and 
residue conditions. SARs transmit completely polarized waves 
but with multiple scattering, microwaves become completely 
or partially depolarized. The degree of depolarization (or pro-
portion of unpolarized energy) is indicative of the randomness 
of scattering within the target. Smooth soils create little depo-
larization (Evans and Smith 1991). The degree of depolariza-
tion increases with roughness and residue cover as the phase 
becomes unpredictable from point to point within the target. 
The degree of depolarization can be measured by pedestal height 
with height increasing as roughness increases or in the presence 
of residue (van Zyl 1989; de Matthaeis et al. 1991; McNairn et al. 
2002; Adams et  al. 2013a). Adams et  al. (2013a) also reported 
that the dynamic range of the degree of polarization (ΔPOL) 
was sensitive to roughness and residue. ΔPOL is the difference 
between the maximum and minimum degree of polarization 
and reflects the heterogeneity of scattering mechanisms within 
the target (Touzi et al. 1992).

Absolute phase (φ) of a scattered wave is a function of dis-
tance from the target and carries no target scattering informa-
tion (Langman and Inggs 1994). However, the difference in the 
phase between two orthogonal polarizations (i.e., H and V) is 
of interest for tillage monitoring. Shifts in the phase (charac-
terized by the copolarized phase difference [PPD] [φVV − φHH]) 
occur due to double-bounce or multiple scattering. For smooth 
soils with minimal contributions from multiple scattering, HH 
and VV are in phase and mean PPD is close to zero (Evans et al. 
1988). A vertical structure can cause a double bounce and here 
PPD values approach 180° (de Matthaeis et al. 1991). Large phase 
differences are typically associated with cropped fields although 
high PPD values have been observed for standing senesced crops 
(McNairn et al. 2002). Ulaby et al. (1987) reported that plowed 
and disked fields, as well as those with corn and soybean residue, 
had a mean PPD close to zero. However, the standard deviation 
of the phase difference among the disked, plowed, residue and 
standing crops was very different. These results were confirmed 
by McNairn et  al. (2002) where multiple scattering in residue 
caused a highly varying PPD with a noise-like distribution for 
these fields. The copolarized complex correlation coefficient 
(ρHH–VV) measures the decorrelation of the phase and some sen-
sitivity to residue has also been reported (Adams et al. 2013a).
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Methods that decompose the SAR signal have drawn consider-
able interest with the Cloude–Pottier (Cloude and Pottier 1997) 
and Freeman–Durden (Freeman and Durden 1998) decomposi-
tions showing sensitivity to tillage and residue. Cloude–Pottier 
decomposes the signal into a set of eigenvectors (which character-
ize the scattering mechanism) and eigenvalues (which estimate the 
intensity of each mechanism) (Alberga et al. 2008). From the eigen-
values, entropy (H) and anisotropy (A) are calculated. H measures 
the degree of randomness of the scattering (from 0 to 1); values 
near zero are characteristic of single scatter targets (i.e., smooth 
soils). Rough soils and those with residue have larger contribu-
tions from multiple scattering. This increase in randomness of 
scattering is measured as an increase in H. Anisotropy estimates 
the relative importance of the dominant scattering mechanism 
and the contribution from secondary and tertiary scattering 
mechanisms. Zero A identifies two mechanisms of approximately 
equal proportions, while values approaching 1 indicate that the 
second mechanism dominates the third (Lee and Pottier 2009). 
The Cloude–Pottier decomposition also calculates the average 
alpha (α) angle (0°–90°), which identifies the dominant scattering 
source (Alberga et al. 2008). Smooth soils with single-bounce scat-
tering have angles close to 0°, volume scatterers close to 45°, and 
double bounce nearing 90°. Adams et al. (2013a) reported that H 
and α were significantly correlated with roughness and percent 
crop residue. The Freeman–Durden decomposition separates the 
total power of every SAR resolution cell into contributions from 
three scattering mechanisms—volume (multiple), double-bounce, 
and single-bounce (surface) scattering. Adams et al. (2013b) dem-
onstrated that H, α, and the Freeman–Durden multiple scatter-
ing could statistically separate fields with different harvesting, 
tillage, and residue conditions, particularly at higher incidence 
angles (49°). In addition, the best separability was found between 
unharvested or fields not tilled and conventionally tilled fields; 
fields under conservation tillage were confused with other tillage 
classes (Adams et al. 2013b).

8.4.3  Methods

8.4.3.1 C hange Detection and Classification

Change detection identifies and measures differences between 
two (or more) images, indicated by a change in SAR response 
or in derived surface properties (roughness, residue). Several 
SAR metrics can be used to capture change and include (1) 
incoherent SAR backscatter (HH, VV, HV, and VH), (2) degree 
of polarization, (3) copolarized phase parameters, (4) decom-
position parameters, and (5) coherent change. When change 
is measured directly from SAR response, consideration must 
be given to the confounding effects of target parameters, SAR 
configuration, and sensor calibration. To isolate change in SAR 
response due to roughness (or residue), soil moisture must not 
vary and thus the period between acquisitions should be mini-
mized. Since frequency, incidence angle, and polarization affect 
target interaction, images must have the exact same SAR con-
figuration. For spaceborne SARs, this means using exact repeat 
orbits. Constellations of satellites (such as the planned Canadian 

RADARSAT Constellation) will be of interest for change detec-
tion since repeat acquisitions in the same SAR configuration will 
be possible within a short period of time. Finally, SARs must be 
well calibrated; scene to scene calibration of spaceborne sensors 
is typically well below 1 dB. If changes in derived properties 
(roughness, residue) are used, errors in methods or model per-
formance will be carried forward in the change detection pro-
cess. Whatever metric is adopted, interpretation of the change 
is required. This means that a threshold must be determined, 
above which change is considered significant. In addition, 
change must be linked to information meaningful for tillage 
monitoring (type of implement used, tillage or residue class, 
change in residue amount).

McNairn et  al. (1998) applied a simple change detection 
approach to a pair of RADARSAT-1 (HH) images acquired 
one  week apart. The incidence angle difference between the 
Standard Mode 2 and 3 images was limited to 6° and was con-
sidered of secondary importance. In the one week separating 
the first from second acquisition, C-HH backscatter remained 
stable (average difference of 0.7 dB) for fields not tilled. No rain 
fell during the week, and the small difference was attributed to 
the 6° difference in angles. For fields that were tilled, the aver-
age change (increase) in backscatter was 5.6 dB. This technique 
(Figure 8.7) enabled the identification of broad conservation 
tillage classes (no-till, intermediate, and tilled) and flagged 
fields where harvesting and tillage had occurred. Hadria et al. 
(2008) combined SAR (Envisat ASAR) and optical data to clas-
sify broad categories of tillage. The authors used a combination 
of image thresholding and decision tree classification. Envisat 
ASAR was especially helpful at differentiating smooth surfaces 
(no-till) from other rougher (tilled) surfaces.

Coherent change detection (CCD) exploits the coherence 
between two polarimetric complex images acquired at different 
times but in the same imaging geometry (Milisavljević et al. 2010). 
A pixel-by-pixel correlation of the coherence between the images 
reveals changes in the target; if no change has taken place, the 
pixels remain correlated. This technique requires that the target 
is coherent, allowing changes in coherence from image to image 
to be measured. Random phase characterizes most distributed 
natural targets like forests and crops. These targets typically have 
low coherence and are not ideal candidates for this method. As 
well, external effects like wind can cause these targets to tempo-
rally decorrelate. Polarimetric interferometric (PolInSAR) may 
be useful in optimizing coherence for detecting change in dis-
tributed targets like crops (Li et al. 2014). Although CCD for till-
age change detection has not been explored, this approach may 
be capable of observing changes from tillage activities.

8.4.3.2  Semiempirical and Physical Models

Physical scattering models estimate backscatter using the soil’s 
physical properties and sensor configurations. Soil properties 
include the dielectric constant, RMS, and correlation length. 
The small perturbation and Kirchhoff models (geometrical 
optics and physical optics models) are two common physical 
models. However, these models are not suited to targets with 
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multiple sources of scattering and large ranges of roughness, as 
expected from agricultural fields. The Integral Equation Model 
(IEM) (Fung et al. 1992) integrates these two models and is bet-
ter adapted for targets with surface and multiple scattering and 
with roughness ranging from smooth to rough.

The goodness of fit between backscatter predicted by the 
IEM and that observed by SARs has varied depending on the 
roughness, frequency, and incidence angle. Speculation has been 
that in many cases, the error in IEM-simulated backscatter is 
due to inaccurate representation of the correlation length (l), a 
parameter difficult to adequately measure in the field (Merzouki 
et al. 2010). As a solution, Baghdadi et al. (2004) proposed a cali-
brated version of the IEM, introducing an optimum correlation 
length (lopt). The optimum correlation length is derived from a 
set of equations that relates correlation length (l) to RMS, as a 
function of polarization and incidence angle (Baghdadi et  al. 
2006). Simulated backscatter from the calibrated IEM has more 
closely matched backscatter from the C-band SAR backscatter 
(Merzouki et  al. 2010). Figure 8.8a is an example of a surface 
roughness (RMS height [hRMS]) map derived from this study 
(Merzouki et al. 2010). Rahman et al. (2008) also derived surface 
roughness over sparsely vegetated fields using Envisat ASAR 
and the IEM in a multiangle approach. The image-derived 
RMS (2.19 cm) overestimated the field-derived RMS (0.79 cm) 

(Figure 8.8b). The subsurface rock fragments may have caused 
multiple bounce interactions, thus increasing response and gen-
erating a larger radar-perceived roughness (Rahman et al. 2008).

Inversion of the IEM or calibrated IEM is difficult due to the 
complexity of the model. As well, multiple unknowns in the 
IEM (dielectric constant, RMS, and l) and the calibrated IEM 
(dielectric constant and RMS) require multiple sources of SAR 
information. In this case, a lookup table (LUT) approach can 
be used to estimate roughness or dielectric from SAR response 
(Merzouki et  al. 2011). Forward runs of the model are used 
to create the LUTs with incremental steps in dielectric, RMS, 
l, and incidence angle and their modeled backscatter (in HH 
and VV). Direct search functions are used to find the LUT 
entry that minimizes the difference between the measured 
(from SAR sensor) and modeled (from IEM) backscatter. This 
LUT entry provides the model estimate of soil dielectric and 
surface roughness. With multiple unknowns, multiple SAR 
configurations are needed to solve the IEM (three unknowns) 
or calibrated IEM (two unknowns). Typically, SAR data 
acquired at two polarizations (i.e., HH and VV) are used with 
the calibrated IEM. With a third unknown (l), an additional 
source of backscatter is needed to implement the original 
IEM. One approach is to use SAR data acquired at two polar-
izations (HH and VV) and two contrasting incidence angles.
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Figure 8.7  Detection of tillage and harvesting activities using RADARSAT-1 over an agricultural site in Canada (Altona, Manitoba). Standard 
beam mode images were collected on October 10 (a) and October 17 (b) in 1996. A difference image (c) and a change detection product (d) were 
produced from the backscatter. (Adapted from McNairn, H. et al., Can. J. Remote Sens., 24, 28, 1998.)
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The Oh (Oh et al. 1992; Oh 2004) and Dubois (Dubois et al. 
1995) models are semiempirical models created from the collec-
tion of large experimental datasets and subsequently empirically 
relating soil dielectric (directly or via the Fresnel reflectivity), 
RMS, the wavelength (through the wave number), and the inci-
dence angle to SAR backscatter. Oh modeled backscatter from 
all three linear polarizations (HH, VV, and HV) and for three 
frequencies (X, C, and L). In contrast, the Dubois model uses 
only the copolarized backscatter (HH and VV) and was devel-
oped using data collected only at L-band. As with the IEM, the 
Oh model can be inverted using a LUT. The Dubois model is 
easily inverted by solving the model’s two backscatter equations. 
Because these models were created with experimental data, 
application of these models to target conditions or SAR config-
urations beyond those of the experimental data used to create 
them may yield uncertain results. Indeed, Merzouki et al. (2010) 
found that these models tended to overestimate backscatter 
when modeled backscatter was compared to that measured by 
RADARSAT-2, which would lead to an overestimation of RMS. 
The Oh model resulted in larger errors between modeled and 
measured backscatter on smoother fields (<2  cm). Conversely, 
errors were greater on rougher fields (>1.5 cm) for the Dubois 
model.

Hajnsek et  al. (2003) developed a model to invert surface 
roughness by coupling a Bragg scattering term and a rough-
ness variable derived from the scattering entropy, anisotropy 
and alpha angle. This model was validated against airborne 
polarimetric L-band (E-SAR) data and yielded low RMSE (19%). 
Figure 8.9 shows a roughness map created using this approach.

8.4.4 � Linking Radar Products 
to Tillage Information

SAR sensors can provide information on roughness (RMS) and 
residue, as well as changes in these conditions. However, to be 
meaningful, roughness and residue must be linked to informa-
tion of interest such as tillage implement or tillage class. This 

linkage is required for applications such as watershed man-
agement, soil erosion risk assessment or estimation of carbon 
sequestration. Establishing this linkage is not a simple task given 
the complexity and dynamics of tillage activities. Producers use 
a combination of tillage implements and tillage occurs peri-
odically and at a range of soil depths and directions. Tillage-
induced roughness also varies depending upon soil texture and 
moisture and is modified over time by erosion events. Winter 
crops and weeds present on fields also complicate tillage map-
ping. How to link SAR-derived products and tillage informa-
tion will vary depending on the approach used to create these 
products. For example, if models are used to estimate roughness 
(RMS), an association between RMS and tillage operation could 
be established. Such an approach was proposed by Jackson et al. 
(1997). However, the roughness (RMS) created by each tillage 
implement, and sequences of tillage applications, is likely to vary 
field to field due to soil conditions, erosion, and characteristics 
of the implement itself. Consequently, a much larger database of 
roughness responses to tillage is required, and these data must 
be acquired over regions with varying tillage systems. For exam-
ple, Pacheco et  al. (2010) found that in eastern Canada, some 
conservation tilled fields (chiseled plowed) had greater rough-
ness (RMS) than conventional tilled fields (moldboard plowed). 
As well, RMS varied greatly within the chisel class, creating con-
fusion when attempting to use backscatter to identify classes. 
Classifications or change detection approaches typically identify 
broad tillage classes (untilled, conservation, and conventional). 
While these classes may be useful for some mapping applica-
tions (identifying adoption of no-till for carbon sequestration), 
they may not be adequate for others (erosion modeling).

8.4.5  Summary

Given the dynamics of tillage activities during the preseeding and 
postharvest seasons, SAR sensors can be a valuable data source 
for time-critical applications (McNairn et al. 1998). With longer 
wavelengths, SAR data acquisition is unaffected by atmospheric 
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Figure 8.8  Surface roughness maps derived from radar images and the IEM over two agricultural sites: an area within the Red River Watershed 
in Southern Manitoba in Canada (a) and Walnut Gulch Experimental Watershed in Arizona in the United States (b). The surface roughness 
map for the Red River Watershed is expressed in hRMS in centimeters. (Adapted from Merzouki et al. 2010.) The Walnut Gulch Experimental 
Watershed surface roughness map is defined by the hRMS variation of the surface at centimeter scale. The solid line represents the boundary of the 
Watershed. (Adapted from Rahman, M.M., et al., Remote Sens. Environ., 112(2), 391, 2008, doi:10.1016/j.rse.2006.10.026.)

© 2016 Taylor & Francis Group, LLC

  



195Remote Sensing of Tillage Status

conditions such as cloud cover and haze. The  number of SAR 
satellites in orbit continues to increase and the engineering 
behind these satellites has led to a greater diversity in SAR con-
figurations. This means that users now have choices in incidence 
angle and polarization and, in some cases, access to polarimetric 
data (Table 8.4). Research has demonstrated that success in this 
application will be best achieved when data can be accessed at 
more than one frequency and polarization. The choice of inci-
dence angle and polarization is clear with researchers agreeing 
that shallower angles and cross polarizations are best for rough-
ness and residue mapping. The availability of polarimetric-
capable sensors is relatively recent, and thus more research is 
needed to develop methods to exploit these complex data. The 
primary challenge is the coupling of roughness, soil moisture, 
and residue in the SAR response. This coupling complicates 
the extraction of tillage information from the signal but can 
be accomplished by exploiting SAR data acquired at multiple 
configurations (frequency, angle, or polarization). Planned, and 
recently launched, satellites include the C-band RADARSAT 
Constellation (Canada), C-band Sentinel-1A and B (ESA), and 
L-band SAOCOM-1A and B (Comisión Nacional de Actividades 
Espaciales (CONAE)) (Table 8.4). These satellites will provide 
frequent data at a range of angles and polarizations and promise 
to provide an important source of data for monitoring tillage.

8.5  Review and Outlook

This chapter has summarized recent progress to advance appli-
cations of remote-sensing technologies to broadscale assessment 
of tillage status. Nonetheless, important challenges remain. 
Here we recap some of the key elements of current research to 
apply remote-sensing technologies to broadscale, site-specific 
tillage assessment and then highlight some of the principal chal-
lenges this effort faces as further research progresses (see also 
Zheng et al. 2014).

Optical remote sensing and SAR data provide different capa-
bilities for tillage assessment. Whereas optical remote-sensing 
imagery provides the spectral basis for detection of crop residues 
on soil surface, SAR data provide information on soil physical 
properties, such as roughness and texture, which can reveal the 
nature of tillage practices. With the presence of green vegetation, 
both SAR and optical remote-sensing data have difficulties to dis-
criminate different tillage categories. Remotely sensed imagery 
sensitive to radiation near 2100 nm cellulose absorption bands 
provides the best opportunity to estimate crop residue cover and 
to map tillage practices. In this context, the best three tillage 
indices are CAI, SINDRI, and NDTI. Because current satellite 
hyperspectral systems cannot provide systematic spatial cover-
age, at present, multispectral imagery now forms the preferred 
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Figure 8.9  Estimated surface roughness, ranging from 0 to 1, over two study sites in Germany: Elbe-Auen (a) and Weiherbach (b). Areas in 
black represent data gaps. (Adapted from Hajnsek, I. et al., IEEE Trans. Geosci. Remote Sens., 41(4), 727, 2003, doi: 10.1109/tgrs.2003.810702.)
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candidate for a broadscale tillage assessment. Multitemporal 
imagery is required to provide accurate assessment on tillage 
practices for regions with diverse crop calendars—a range of 
dates for soil preparation and planting schedules. The upcom-
ing launch of several new satellite systems with optical sensors 
will offer solid opportunities to enhance our ability to monitor 
rapid changes of agricultural lands, providing timely, and low-
cost, information for monitoring site-specific tillage assessment.

8.5.1 C hallenges—Optical Systems

As noted previously, optical systems provide capabilities for 
monitoring tillage in a systematic manner. Yet they are subject 
to disruptive influences of soil moisture variations and uneven 
terrain. Possible solutions include (1) development of terrain and 
soil data layers that can guide interpretations of image data in 
such areas and (2) development of specialized indices or other 
strategies to detect or adjust for spectral variations caused by 
these effects. Further, although current systems can provide 
revisit intervals adequate in key agricultural regions, these capa-
bilities may not be adequate in other regions, where higher cloud 
cover may require more frequent revisit capabilities to acquire 
cloud-free coverage necessary for the temporal sequences 
required for the minNDTI strategy.

From evaluation of the SINDRI and CAI tillage indices, we 
know that carefully, and narrowly, defined spectral channels are 
effective in tillage assessment. However, it seems unlikely that 
future satellite systems are likely to incur the costs of designing 
and operating new bands to support a single application mis-
sion. As a result, future opportunities for optical tillage assess-
ment seem likely to be based on the NDTI model (which relies 
upon broadly defined spectral channels, but ones that support 
a range of application missions), relying upon the sequential 
imagery to apply strategies, such as the minNDTI.

8.5.2 C hallenges—SAR Systems

Although specific strategies for application of SAR for monitor-
ing tillage status are still under development, it has great potential 
for systematic tillage assessment, in part because of its ability to 
acquire data in the presence of cloud cover and the potential to 
extract a suit of terrain measurements as part of a tillage assess-
ment mission. As reported here, current research has been suc-
cessful in applying radar fundamentals to the tillage assessment 
task, although the multiplicity of system variables that interact 
with each other and with the landscape offers challenges in isolat-
ing tillage information. The SAR tillage effort has yet to scale cur-
rent findings to examine larger regions, allowing identification of 
unexpected effects of local terrain, interactions between agricul-
tural practices, and the geometries of varied SAR satellite systems.

8.5.3 C hallenges—Sequential Observations

Monitoring tillage status by remote sensing by its nature requires 
broadscale observation of very large regions. Within such broad 

regions, weather, terrain, and local practices vary, necessarily 
dispersing tillage and planting data operations over intervals of 
several weeks. Because the tillage event is ephemeral, soon con-
cealed by the foliage of the emerging crop, it must be assessed as 
it occurs, not at a later date. As a result, a single snapshot satel-
lite image can capture only a partial record of a region’s tillage 
pattern. This effect is significant regardless of the sensor system 
or tillage assessment strategy—sequential imagery of the entire 
planting season is necessary to observe the correct tillage sta-
tus of a landscape. Otherwise, the inventory will record only a 
portion of the tillage operations within the area. In this context, 
both SAR and optical satellite systems are challenged to pro-
vide reliable coverage in the sense that current revisit intervals 
of optical systems are subject to disruption by cloud cover, and 
current SAR systems are challenged to simultaneously provide 
the spatial detail, broadscale coverage, and revisit intervals nec-
essary to observe the full planting season.

8.5.4 C hallenges—Global Tillage Monitoring

Current research to apply remote sensing to tillage assessment 
has been developed largely in midlatitudes, in regions charac-
terized by large fields, simple crop calendars that apply for very 
large areas, limited numbers of crops, known crop rotation 
sequences, and availability of supporting data. These conditions 
may apply in many of the other major grain-producing regions 
(e.g., Brazil, China, Argentina, Ukraine, and Mexico), where 
current tillage assessment strategies may transfer. Many of the 
world’s other agricultural regions present much different condi-
tions that do not favor their direct transfer. For irrigated crops, 
there may be several planting cycles. Many tropical regions are 
characterized by smaller fields and complicated crop calendars, 
so investigators may require mastery of detailed knowledge of 
a diversity of cropping systems and irrigation practices, which 
may all vary within short distances. Such agricultural systems 
may exhibit levels of spatial and temporal variability that will 
greatly complicate applications of remote-sensing strategies that 
have been successful in the context of midlatitude agricultural 
systems.

8.5.5 C hallenges—Field and Validation Data

Further advances in tillage assessment will require develop-
ment of additional strategies for collection of field data for 
preparation of assessment model and for valuation of survey 
findings. Field data collection campaigns following established 
and co-coordinated protocols have a role in broadscale survey, 
especially when it is feasible to mobilize a network or experi-
enced volunteers to support campaigns. However, such efforts 
inevitably encounter logistical problems, especially when unfa-
vorable weather creates uncertainties or prevents acquisition 
of viable imagery. Work to investigate alternative strategies, 
including the feasibility of using commercial satellite imagery to 
collect tillage observations to support model development and 
validation of project findings, deserves attention.
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Acronyms and Definitions

ASD		  Analytical spectral devices
AISA		�  Airborne imaging spectrometer for applications
AVIRIS		�  Airborne visible/infrared imaging spectrom-

eter sensor
CHRIS PROBA	� Compact High Resolution Imaging Spectro

meter Project for On-Board Autonomy, 
Belgian Satellite

DHVIs		�  Derivative hyperspectral vegetation indices 
(DHVIs)

DNs		  Digital numbers
EnMAP		�  Environmental Mapping and Analysis 

Program, Genrman’s hyperspectral satellite 
mission

EO-1		  Earth Observing-1 satellite of NASA

GnyLi		�  A hyperspectral vegetation index involving 
5 hyperspectral narrow bands developed by 
Martin Gnyp Leon, Fei Li, and Georg Bareth 
et al.

HICO		�  Hyperspectral Imager for Coastal Oceans 
sensor, NASA’s Hyperspectral Imager for the 
Coastal Ocean (HREP-HICO)

HBSIs		  Hyperspectral biomass and structural indices
HNBs		  Hyperspectral narrow bands
HVIs		  Hyperspectral vegetation indices (HVIs)
HyspIRI		�  Hyperspectral infrared imager, next-genera-

tion hyperspectral sensor by NASA
MBHVI		�  Multiple band hyperspectral vegetation indices
MNF		  Minimum noise fraction
NASA		�  National Atmospheric and Space 

Administration
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OHNBs		  Optimum hyperspectral narrow bands
OMI		�  Ozone Monitoring Instrument onboard Aura 

satellite
PCA		  Principal component analysis
PRISMA		 �Hyperspectral Precursor and Application 

Mission or PRecursore IperSpettrale della 
Missione Applicativa of Italy

SCIAMACHY	� Scanning Imaging Absorption spectroMeter 
for Atmospheric CartograpHY, hyperspec-
tral sensor onboard European Space Agencies 
(ESA’s) ENVISAT

SMA		  Spectral mixture analysis
SMT		  Spectral matching techniques
SVM		  Support vector machines
TBHVIs		  Two-band hyperspectral vegetation indices
VNIR		  Visible and nearinfrared (VNIR)
WSA		  Whole spectral analysis

9.1 I ntroduction

Remote sensing data are considered hyperspectral when the 
data are gathered from numerous wavebands, contiguously 
over an entire range of the spectrum (e.g., 400–2500 nm). Goetz 
(1992) defines hyperspectral remote sensing as “The acquisition 
of images in hundreds of registered, contiguous spectral bands 
such that for each picture element of an image it is possible 
to derive a complete reflectance spectrum.” However, Jensen 
(2004) defines hyperspectral remote sensing as “The simulta-
neous acquisition of images in many relatively narrow, con-
tiguous and/or non contiguous spectral bands throughout the 
ultraviolet, visible, and infrared portions of the electromagnetic 
spectrum.”

Overall, the three key factors in considering data to be hyper-
spectral are the following:

	 1.	 Contiguity in data collection: Data are collected contigu-
ously over a spectral range (e.g., wavebands spread across 
400–2500 nm).

	 2.	 Number of wavebands: The number of wavebands by itself 
does not make the data hyperspectral. For example, if 
there are numerous narrowbands in 400–700  nm wave-
lengths, but have only a few broadbands in 701–2500 nm, 
the data cannot be considered hyperspectral. However, 
even relatively broad bands of width, say, for example, 
30  nm bandwidths spread equally across 400–2500  nm, 
for a total of ~70 bands, are considered hyperspectral due 
to contiguity.

	 3.	 Bandwidths: Often, hyperspectral data are collected in 
very narrow bandwidths of ~1 to ~10  nm, contiguously 
over the entire spectral range (e.g., 400–2500 nm). Such 
narrow bandwidths are required to get hyperspectral sig-
natures. But one can have a combination of narrowbands 
and broadbands spread across the spectrum and meet the 
criterion for hyperspectral remote sensing.

In summary

Remote sensing data are called hyperspectral when the 
data are collected contiguously over a spectral range, pref-
erably in narrow bandwidths and in reasonably high num-
ber of bands.

Such a definition will meet many requirements and expec-
tations of hyperspectral data.

Hyperspectral remote sensing is also referred to as imag-
ing spectroscopy since data for each pixel are acquired in 
numerous contiguous wavebands resulting in (1) 3d image 
cube and (2) hyperspectral signatures. The various forms 
and characteristics of hyperspectral data (imaging spec-
troscopy) are illustrated in Figures 9.1 through 9.7. The dis-
tinction between hyperspectral and multispectral is based 
on the narrowness and contiguous nature of the measure-
ments, not the “number of bands” (Qi et al., 2012).

The overarching goal of this chapter is to provide an intro-
duction to hyperspectral remote sensing, its characteristics, data 
mining approaches, and methods of analysis for terrestrial appli-
cation. First, hyperspectral sensors from various platforms are 
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Figure 9.1  Tree spectra. Analytical Spectral Devices (ASD) FieldSpec 
JR spectroradiometer. Hyperspectral shape-based unmixing to improve 
intra- and interclass variabilities for forest and agro-ecosystem monitor-
ing. A detail of a 30-by-30 m image pixel of the virtual forest consisting 
of two species with a different structure, with 10% of the trees removed 
to include gaps in the canopy (a). An example of a virtual tree for the 
two species, used to build up the forest, is shown in (b), while the spec-
tral variability of the two species and the soil is given as well (c). (From 
Tits, L. et al., ISPRS J. Photogramm. Remote Sens., 74, 163, 2012.)
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noted. Second, data mining to overcome data redundancy is enu-
merated. Third, concept of Hughes’s phenomenon and the need to 
overcome it are highlighted. Fourth, hyperspectral data analysis 
methods are presented and discussed. Methods section includes 
approaches to optimal band selection, deriving hyperspectral 
vegetation indices (HVIs) and various classification methods.

9.2  Hyperspectral Sensors

Hyperspectral data (or imaging spectroscopy) are gathered 
from various sensors. These are briefly discussed in the follow-
ing text.

9.2.1  Spectroradiometers

The most common and widely used over last 50 years is hand-held 
or platform-mounted spectroradiometers. Typically, spectro-
radiometers gather hyperspectral data ~1 nm wide narrowbands 
over the entire spectral range (e.g., 400–13,500 nm). For example, 
Figure 9.1 illustrates the hyperspectral data gathered for Beech 
versus Poplar forests (Thomas, 2012; Tits et al., 2012; Zhang, 2012; 
Tanner, 2013) based on FieldSpec Pro FR spectroradiometer man-
ufactured by Analytical Spectral Devices (ASD). Data are acquired 
over 400–2,500 nm at every 1 nm bandwidth. Gathering spectra at 
any given location involved optimizing the integration time (typi-
cally set at 17 ms), providing foreoptic information, recording dark 
current, collecting white reference reflectance, and then obtaining 
target reflectance at set field of view such as 18° (Thenkabail et al., 
2004a). Data are either in radiance (W m−2 sr−1 µm−1) or reflec-
tance factor as shown in Figure 9.1 or in percentage.

9.2.2  Airborne Hyperspectral Remote Sensing

Airborne hyperspectral remote sensing platform is the next 
most common hyperspectral data, which has a history of over 
30  years. The most common is the airborne visible/infrared 

imaging spectrometer (AVIRIS) by NASA’s Jet Propulsion 
Laboratory (JPL). As an imaging spectrometer, AVIRIS gath-
ers data in 614-pixel swath, in 224 bands, over 400–2500  nm 
wavelength. The data can be constituted as image cube 
(e.g.,  Figure  9.2; [Guo et  al., 2013]). Figure 9.2 shows hyper-
spectral imaging data gathered by AVIRIS over an agricultural 
area. The hyperspectral signatures of tilled versus untilled lands 
of corn and soybean farms as well as few other crops are illus-
trated by Guo et al. 2013 (Figure 9.2). Spectral reflectivity of no-
till corn fields is highest in the red (around 680 nm). In contrast, 
grass/pasture and woods are highest around 680 nm, and reflec-
tivity is highest for these land covers in the near-infrared (NIR; 
760–900 nm). The healthy grass/pasture and woods also absorb 
heavily around 960–970 nm range. There are many other unique 
features that can even be observed qualitatively by someone 
trained in imaging spectroscopy.

Another frequently used airborne hyperspectral imager is the 
Australian HyMap. It has 126 wavebands over 400–2500  nm. 
The data captured by HyMap are illustrated in Figure 9.3 
(Andrew and Ustin, 2008). Typical characteristics of healthy 
vegetation for certain species is obvious as described earlier 
for wavelengths centered in red and NIR. In contrast, the soil 
and the litter have comparable spectra, with litter having higher 
reflectivity than soil in NIR and SWIR bands. Water absorbs 
heavily in NIR and SWIR, and hence the reflectivities are very 
low or zero (Figure 9.3).

9.2.3  Spaceborne Hyperspectral Data

In the year 2000, NASA launched the first civilian space-
borne hyperspectral imager called Hyperion onboard Earth 
Observing-1 (EO-1) satellite. Hyperion gathers data in 242 bands 
spread across 400–2500  nm. Each band is 10  nm wide. Of the 
original 242 Hyperion bands, 196 are unique and calibrated: 
bands 8 (427.55  nm) to 57 (925.85  nm) from the visible and 
near-infrared (VNIR) sensors, and bands 79 (932.72 nm) to 224 
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Figure 9.2  Corn-till. AVIRIS Indian Pines data set: (a) 3D hyperspectral cube and (b) the scaled reflectance plot. (From Guo, X. et al., ISPRS 
J. Photogramm. Remote Sens., 83, 50, 2013.)
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Figure 9.3  Reflectance spectra derived from HyMap imagery of the dominant species at (a) Rush Ranch, (b) Jepson Prairie, and (c) Consumes 
River Preserve. These spectra were used as training end members for the mixture-tuned matched filtering (MTMF). (From Andrew, M.E. and 
Ustin, S.L., Remote Sens. Environ., 112, 4301, 2008.)
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(2395.53 nm) from the SWIR sensors (Thenkabail et al., 2004b). 
The redundant and uncalibrated bands are in the spectral range: 
357–417, 936–1068, and 852–923 nm. The 196 bands are further 
reduced to 157 bands after dropping bands in atmospheric win-
dows: 1306–1437, 1790–1992, and 2365–2396 nm ranges, which 
show high noise level (Thenkabail et al., 2004b).

From year 2000 to 2014, Hyperion has acquired ~64,000 
images spread across the world (Figure 9.4) that are now freely 
available from the U.S. Geological Survey’s (USGS) EarthExplorer 
and Glovis portals. Each image is 7.5 km by 185 km with a pixel 
resolution of 30 m. The data cubes composed from these images 
allow us to derive hyperspectral signature banks of various land 
cover or cropland themes (e.g., Figure 9.4). Figure 9.5a illustrates 
two Hyperion images acquired over California as well as a num-
ber of hyperspectral signatures of major crops gathered using 
ASD field spectroradiometer.

9.2.4  Unmanned Aerial Vehicles

Hyperspectral sensors are increasingly carried onboard unmanned 
aerial vehicles (UAVs; Colomina and Molina, 2014). The UAVs are 
fast evolving as widely used remote sensing platform. A wide array 
of UAVs (e.g., Figure 9.5b) are currently used to carry hyperspec-
tral sensors as well as many different types of sensors.

9.2.5  Multispectral versus Hyperspectral

Whereas multispectral broadband data-acquired from sensors 
such as the Landsat ETM+ only offer few possibilities, in contrast 
Hyperion offers many possibilities for visualizations and quantifi-
cation of terrestrial earth features (e.g., Figure 9.6). In Figure 9.6, 
depiction of different false color composites (FCCs) of Hyperion 
(e.g., RGB: 843, 680, 547 nm; or RGB: 680, 547, 486 nm, and so on) 
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Figure 9.4  EO-1 Hyperion is the first spaceborne civilian hyperspectral sensor that was launched in year 2000 and has so far acquired ~64,000 images 
of the world (see the area covered by Hyperion images marked in red on global image). Each image is 7.5 km by 185 km, has 242 bands over 400–2500 nm. 
A single such image data cube is shown in the center with spectral signatures derived from the Hyperion sensor shown for few land cover themes. Typical 
ASD spectroradiometer gathered hyperspectral data of crops are shown in photos. The gaps in ASD hyperspectral data are in areas of atmospheric win-
dows where data is too noisy and hence deleted. (Plotted using Data available from http://earthexplorer.usgs.gov/; http://eo1.gsfc.nasa.gov/.)
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Figure 9.5  Hyperspectral spectral signatures of some of the major crops of California. The depicted spectral signatures are representative of the particular crops measured using ASD spec-
troradiometer. Two Hyperion images (each of 7.5 km-by-185 km) are also illustrated. (a) Microdrone MD4–1000 flying over the experimental crop. (From Torres-Sánchez, J. et al., Comput. 
Electron. Agric., 103, 104, 2014.)� (Continued)
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(b)

Figure 9.5 (Continued)  Hyperspectral spectral signatures of some of the major crops of California. The depicted spectral signatures are representative of the particular crops measured 
using ASD spectroradiometer. Two Hyperion images (each of 7.5 km-by-185 km) are also illustrated. (a) Microdrone MD4–1000 flying over the experimental crop.
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and comparison with FCC of Landsat ETM+ bands 4, 3, 2 clearly 
demonstrate, even by visual observation, the many possibilities that 
exist with Hyperion. For example, a seven-band Landsat will pro-
vide 21 unique indices (7 × 7 = 49 indices − 7 indices on the diago-
nal of the matrix divided by 2 since the values above and below 
the matrix are transpose of each other). In contrast, 157-band clean 
Hyperion data (after reduced from original 242 bands by eliminat-
ing bands in atmospheric windows and uncalibrated bands) allow 
for 12,246 unique indices (157 × 157 = 24,640 indices—157 indices 
on the diagonal of the matrix divided by 2 since the values above 
and below the matrix are the transpose of each other).

9.2.6 � Hyperspectral Data: 3D Data 
Cube Visualization and Spectral 
Data Characterization

One quick way to visualize the hyperspectral data is to cre-
ate 3D cubes as illustrated by an EO-1 Hyperion data in Figure 
9.7. The 3D cube basically is a data layer stack of 242 bands over 

400–2500 nm. Looking through this stack, when there is same 
color along the bands 1–242, it indicates less diversity in data. The 
spectral regions with significant diversity are in different color 
(e.g., red versus cyan in Figure 9.7). Hyperion digital numbers 
(DNs) are 16-bit radiances and are stored as 16-bit signed integer, 
which are then converted to radiances using a scaling factor pro-
vided in the header file, then to at-sensor reflectance, and finally 
to ground reflectance (see Thenkabail et  al., 2004b). So, a click 
on any pixel will give reflectances in 242 bands, which is then 
plotted as hyperspectral signature (e.g., Figure 9.6) and analyzed 
quantitatively.

9.2.7 � Past, Present, and Near-Future 
Spaceborne Hyperspectral Sensors

Hyperspectral sensors are of increasing interest to the remote 
sensing community given its their natural inherent advan-
tages over multispectral sensors (Qi et  al., 2012; Thenkabail 
et al., 2012a). As a result, we are seeing a number of spaceborne 

Figure 9.6  Hyperion images displayed in a number of different combinations of false color composites (FCCs) (e.g., wavebands centered at 
843, 680, 547 nm, which are NIR, red, green as RGB FCC) and compared with classic RGB 4, 3, 2 (NIR, red, green) FCC combination of Landsat 
ETM+ data on top left. Unlike multispectral data, hyperspectral data offer numerous different opportunities to depict, quantify, and study the 
Planet Earth.
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hyperspectral imagers for Ocean, Atmosphere, and Land (Table 
9.1). These include (Table 9.1) NASA’s Hyperion, HyspIRI, OMI, 
HICO, German’s EnMap, Italy’s PRISMA, ESA’s SCIAMACHY, 
and CHRIS PROBA (Miura and Yoshioka, 2012; Ortenberg, 
2012; Qi et al., 2012). There are also current initiatives from pri-
vate industry in the commercial sector, like that from Boeing to 
launch hyperspectral sensors. The spatial, spectral, radiometric, 
and temporal characteristics of some of the key ocean, atmo-
spheric, and land observation spaceborne hyperspectral data are 
provided in Table 9.1.

9.2.8  Data Normalization Hyperspectral Data

We illustrate the hyperspectral data normalization taking the case 
of Hyperion data. The DNs of the Hyperion level 1 products are 
16-bit radiances and are stored as 16-bit signed integers. The DNs 
were converted to radiances (W m−2 sr−1 µm−1) using an appropri-
ate scaling (e.g., for a Hyperion image dated March 21, 2002, fac-
tor: 40 for visible and VNIR, and 80 for SWIR). However, users 
should check the header file of the image they work with to deter-
mine the exact scaling factor for their image.
Radiance (W m−2 sr−1 µm−1) for VNIR bands = DN/40
Radiance (W m−2 sr−1 µm−1) for SWIR bands = DN/80
Radiance to at-sensor top of atmosphere reflectance is then cal-
culated using

	 Reflectance (%) = n
π

θ
λ

λ

L d

ESUN cos S

2

where,
TOA reflectance (at-satellite exoatmospheric reflectance)
Lλ is the radiance (W m−2 sr−1 µm−1)
d is the earth-to-sun distance in astronomic units at the 

acquisition date (see Markham and Barker, 1987)
ESUNλ is the irradiance (W m−2 sr−1  µm−1) or solar flux 

(Neckel and Labs, 1984)
θs is the solar Zenith angle

Note: θs is solar Zenith angle in degrees (i.e., 90° minus the sun 
elevation or sun angle when the scene was recorded as given in 
the image header file).

Atmospheric correction methods include (1) dark object sub-
traction technique (Chavez, 1988), (2) improved dark object 
subtraction technique (Chavez, 1989), (3) radiometric normal-
ization technique: Bright and dark object regression (Elvidge 
et al., 1995), and (4) 6S model (Vermote et al. 2002). Readers with 
further interest in this topic are referred to Chapters 4 through 8 
in Remotely Sensed Data Characterization, Classification, and 
Accuracies and Chander et al. (2009).

9.3 � Data Mining and Data Redundancy 
of Hyperspectral Data

Data mining is one of the critical first steps in hyperspectral 
data analysis. The primary goal of data mining is to eliminate 
redundant data and retain only the useful data. Data volumes 

are reduced through data mining methods such as feature 
selection (e.g., principal component analysis (PCA), deriva-
tive analysis, and wavelets), lambda-by-lambda correlation 
plots (Thenkabail et al., 2000), minimum noise fraction (MNF) 
(Green et  al., 1988; Boardman and Kruse, 1994), and HVIs 
(e.g., Thenkabail et  al., 2014). Data mining methods lead to 
(Thenkabail et al., 2012b) (1) reduction in data dimensionality, 
(2) reduction in data redundancy, and (3) extraction of unique 
information.

It is a well-known fact that wavebands adjacent to one 
another (e.g., 680 nm versus 690 nm or 550 nm versus 560 nm) 
are often highly correlated for a given application. In various 
research papers, Thenkabail et al. (2000, 2004a,b, 2010, 2012b, 
2014), Numata (2012), and Thenkabail and Wu (2012) showed 
that in a large stack of 242 bands in a Hyperion data, typically 
~10% of the wavebands (~20 bands) are very useful in agri-
cultural cropland or vegetation studies. It means for any one 
given application (e.g., agriculture), a large number of bands 
are likely to be redundant. So, the goal of the data mining is to 
identify and eliminate redundant bands. This will help elimi-
nate unnecessary processing of redundant data, at the same 
time retaining the optimal power of hyperspectral data. This 
process is of great importance at a time when “big data” are the 
norm of the times.

However, eliminating redundant bands needs to be done 
with considerable care and expertise. What is redundant for one 
application (e.g., agriculture; [Yao et al., 2011]) may be critical for 
another application (e.g., geology).

Data mining requires merging of different disciplines such 
as digital imagery, pattern recognition, database, artificial 
intelligence, machine learning, algorithms, and statistics. 
There are various models of data mining. The generic concept 
of data mining is illustrated in Figure 9.8 (Lausch et al., 2014). 
Figure 9.9 (Lausch et  al., 2014) shows data mining model 
applications for studies in soil clay content and soil organic 
content.

9.4 � Hughes’ Phenomenon and 
the Need for Data Mining

If the number of bands remains high, the number of observa-
tions required to train a classifier increases exponentially to 
maintain classification accuracies, which is called Hughes’s 
phenomenon (Thenkabail et al. 2012a, b). For example, 
Thenkabail et al. (2004a,b) used 20 Hyperion bands to classify 
five crop types and achieve an accuracy of 90%. Relative to 
this, the seven-band Landsat data provided only an accuracy 
of 60% in classifying the same five crops. However, the num-
ber of observation points (e.g., ground data) to train and test 
the algorithms will be exponentially higher for the Hyperion 
data relative to Landsat data because larger numbers of bands 
are involved with Hyperion. So, one needs to weigh the higher 
classification accuracies achieved using greater number of 
bands versus the resources required to gather exponentially 
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Table 9.1  Characteristics of Spaceborne Hyperspectral Sensors (Either in Orbit or Planned for Launch) for Ocean, Atmosphere, Land, and Water Applications Compared with ASD 
Spectroradiometera

Sensor, Satellitec Spatial (m) Spectral (#) 
Swath 
(km) Band Range (μm) 

Band Widths 
(μm) 

Irradiance 
(W m−Wsr−r μm−μ) 

Data Points 
(# per ha) 

Launch 
(Date) 

1. Coastal hyperspectral spaceborne imagers
a. HICO, ISS USA 90 128 42 353–1,080 5.7 See data in Neckel and Labs 

(1984). Plot it
0.81 2009–present

2. Atmosphere\ozone hyperspectral spaceborne imagers
a. �OMI, Aura USA 13,000 × 12,000 740 145 270–500 0.45–1 See data in Neckel and Labs 

(1984). Plot it
1/16,900 2004–present

b. �SCIAMACHY, 
ENVISAT ESA

30,000 × 60,000 ~2,000 960 212–2,384 0.2–1.5 See data in Neckel and Labs 
(1984). Plot it

1/180,000 2002–present

3. Land and water hyperspectral spaceborne imagers
a. �Hyperion, EO-1 

USA
30 220 (196b) 7.5 196 effective Calibrated bands 

VNIR (band 8–57) 427.55–
925.85 nm SWIR (band 
79–224) 932.72–2,395.53 nm

10 nm wide 
(approx.) for all 
196 bands

See data in Neckel and Labs 
(1984). Plot it and obtain 
values for Hyperion bands

11.1 2000–present

b. �CHRIS, PROBA 
ESA

25 19 17.5 200–1,050 1.25–11 Same as above 16 2001–present

c. �HyspIRI VSWIR 
USA

60 210 145 210 bands in 380–2,500 nm 10 nm wide 
(approx.) for all 
210 bands

See data in Neckel and Labs 
(1984). Plot it

2.77 2020+

d. �HyspIRI TIR 
USA

60 8 145 7 bands in 7,500–12,000 nm and 
1 band in 3,000–5,000 nm 
(3,980 nm center)

7 bands in 
7,500–12,000 nm

See data in Neckel and Labs 
(1984). Plot it

2.77 2020+

e. �EnMAP Germany 30 92 30 420–1,030 5–10 Same as above 11.1 2015+
108 950–2,450 10–20

f. PRISMA Italy 30 250 30 400–2,500 <10 Same as above 11.1 2014+

4. Land and Water Hand-held spectroradiometer
a. �ASD 

spectroradiometer
1,134 cm2 @ 1.2 m 

Nadir view 18° 
Field of view

2,100 bands 1 nm 
width between 400 
and 2,500 nm

N/A 2,100 effective bands 1 nm wide 
(approx.) in 
400–2,500 nm

See data in Neckel and Labs 
(1984). Plot it and obtain 
values for Hyperion bands

88,183 Last 30+ years

Sources:	Thenkabail, P.S. et al., 2012; Thenkabail, P.S. et al., Photogramm. Eng. Remote Sens., 80, 697, 2014; Qi, J. et al., Hyperspectral sensor systems and data characteristics in global change studies, Chapter 
3, in Thenkabail, P.S., Lyon, G.J., and Huete, A. 2012, Hyperspectral Remote Sensing of Vegetation, CRC Press/Taylor & Francis Group, Boca Raton, FL, London, FL, New York, 2011, pp. 69–92.

a	 Information for the table modified and adopted from Thenkabail et al., 2011, Thenkabail et al., 2014, and Qi et al., 2014.
b	Of the 242 bands, 196 are unique and calibrated. These are: (1) Band 8 (427.55 nm) to band 57 (925.85 nm) that are acquired by visible and near-infrared (VNIR) sensor; and (2) Band 79 (932.72 nm) to 

band 224 (2395.53 nm) that are acquired by short wave infrared (SWIR) sensor
c	 HICO, Hyperspectral Imager for the Coastal Ocean onboard International Space Station; OMI, Ozone Monitoring Instrument onboard AURA of NASA; SCIAMACHY, Scanning Imaging Absorption 

Spectrometer for Atmospheric CHartographY of ESA; Hyperion EO-1, hyperspectral sensor onboard; EO-1, Earth observing 1; CHRIS PROBA, Compact High Resolution Imaging Spectrometer Project for 
On Board Autonomy satellite of ESA; HyspIRI VSWIR, Hyperspectral Infrared Imager Visible to Short Wavelength InfraRed of NASA; HyspIRI TIR, Hyperspectral Infrared Imager thermal infrared of 
NASA; Environmental Mapping and Analysis Program of Germany; PRISMA, PRecursore IperSpettrale della Missione Applicativa of Italy.
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higher number of observation (e.g., ground data) required to 
train and test the algorithms. So, higher accuracy by as much 
as 30% using 20 hyperspectral narrowbands (HNBs) when 
compared with seven-band Landsat will justify the greater 
number of ground data required. However, beyond 20 bands, 
increase in accuracy per increase in wavebands becomes 
asymptotic (e.g., Thenkabail et  al., 2004a,b, 2012b). These 
studies, for example, show that when 40 Hyperion bands were 
used, the classification accuracies increased only by another 
5% (from 90% with 20 bands to 95% with 40 bands). Here 
using 20 additional Hyperion bands (from 20 to 40) cannot 
be justified since the ground observation needed to train and 
test the algorithm will also increase exponential for 40 bands 
relative to 20. So, the key aim is to balance the higher clas-
sification accuracies with an optimal number of bands such 
as 20 instead too few or too many (e.g., 7 or 40). By doing so, 
we achieve a number of goals:

	 1.	 Increased classification accuracies with optimal number 
of bands.

	 2.	 Significantly reduced data redundancies with optimal 
number of bands.

	 3.	 Overcoming Hughes’s phenomenon by using optimal 
number of bands (e.g., 20) in which observation data 
(ground data) to train and test the algorithms will be kept 
to reasonable levels.

9.5 � Methods of Hyperspectral 
Data Analysis

Hyperspectral data analysis methods are broadly grouped under 
two categories (Bajwa and Kulkarni, 2012):

	 1.	 Feature extraction methods
	 2.	 Information extraction methods

Under each of the earlier two categories, specific unsupervised 
and supervised classification approaches exist (Figure 9.10) 
(Bajwa and Kulkarni, 2012; Plaza et al., 2012). Methods of classi-
fying vegetation classes or crop types or vegetation species using 
HNBs are discussed extensively in this chapter and include unsu-
pervised classification, supervised approaches, spectral angle 
mapper (SAM), artificial neural networks, and support vector 
machines (SVMs), multivariate or partial least square regressions 
(PLSR), and discriminant analysis (Thenkabail et al., 2012a).

Fundamental philosophies of hyperspectral data analysis 
involve two approaches:

	 1.	 Optimal hyperspectral narrowbands (OHNBs) where 
only a selective number of nonredundant bands are used 
(e.g., ~20 off Hyperion OHNBs are used).

	 2.	 Whole spectral analysis (WSA) where all the bands in the 
continuum (e.g., all 242 Hyperion bands in 400–2500 nm) 
are used.
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Figure 9.8  Data mining 1. Data mining and linked open data—New perspectives for data analysis in environmental research. Data mining 
process with the data mining system (DM-S) in the phases: (1) training phase, (2) test phase, and (3) validation phase. The data mining process 
works in a comparable way in all types of data mining types like text mining or web mining (changed according to Fayyad et al., (1996) and Tanner 
(2013). (From Lausch, A. et al., Ecol. Model., 2014.)
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9.6 O ptimal Hyperspectral Narrowbands

Determining wavebands that are optimal for different studies 
requires a thorough study of these subjects. For example, the impor-
tance of the wavebands for different studies such as vegetation, geol-
ogy, and water are all different. So, determining optimal OHNBs 
requires subject knowledge and considerable experience working 
with hyperspectral data. Based on the synthesis of the extensive 
studies conducted by Thenkabail et al. (2000, 2002, 2004a,b, 2012, 
2013, 2014), the OHNBs for agriculture and vegetation studies are 
established and presented in Table 9.2. Each of these HNBs is iden-
tified for their importance in studying one or more of vegetation 
and crop biophysical and biochemical characteristics. Most of these 
bands are also very distinct from one another; so none of them are 
redundant. Using some combination of these bands will help better 
quantify the biophysical and biochemical characteristics of vegeta-
tion and agricultural crops (Alchanatis and Cohen, 2012; Pu, 2012). 
In the following sections and subsections, we will demonstrate how 
these HNBs are used in classifying, modeling, and mapping agri-
cultural croplands and other vegetation.

Table 9.2 shows that over 400–2500  nm range of the spec-
trum, there are 28 bands (e.g., ~12% of the 242 Hyperion bands 
in 400–2500 nm range) that are optimal in the study of agri-
culture and vegetation. However, the redundant bands here 
(i.e., agriculture and vegetation applications) may be very 
useful in other applications such as geology (Ben-Dor, 2012). 
For example, the critical absorption bands for studying min-
erals like biotite, kaolinite, hematite, and others are shown in 
Table 9.3. Unlike the vegetation and cropland bands, the HNBs 
required for mineralogy are quite different (Vaughan et  al., 
2011; Slonecker, 2012).

The earlier fact clearly establishes the need to determine 
OHNBs that are application specific.

9.7  Hyperspectral Vegetation Indices

One of the most common, powerful, and useful form of feature 
selection methods for hyperspectral data is based on the calcula-
tion of HVIs (Clark, 2012; Colombo et al., 2012; Galvão, 2012; 
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Figure 9.9  Data mining 2. (a, b) Data mining and linked open data—New perspectives for data analysis in environmental research. 
Airborne hyperspectral AISA-Eagle/HAWK remote sensor mounted on Piper, (c) CIR-image from hyperspectral sensors of the AISA-EAGLE/
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et al., Ecol. Model., 2014.)
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Gitelson, 2012a,b; Roberts, 2012). The HVIs achieve two impor-
tant goals of hyperspectral data analysis:

	 1.	 Compute many specific targeted HVIs to help model bio-
physical and biochemical quantities.

	 2.	 Reduce the data volume (mine the data) to eliminate all 
redundant bands for a given application.

There are several approaches to deriving HVIs. These are briefly 
presented and discussed.

9.7.1 �T wo-Band Hyperspectral 
Vegetation Indices

The two-band hyperspectral vegetation indices (TBHVIs) are 
defined as follows (Thenkabail et al., 2000):

	
TBHVI

R R

R R
ij

j i

j i

=
−( )
+( ) 	 (9.1)

where, i, j = 1 … N, with N = number of narrowbands. Hyperion 
242 bands offer the possibility of 29,161 unique indices (242 * 242 = 
58,564 − 242 = 58,322 divided by 2 resulting in C242

2 = 29,161; 
−242 because the values on the diagonal of matrix of 242 * 242 
are unity, divided by 2 because the values above the diagonal of 
the matrix and below the diagonal of matrix are transpose of one 
another). However, as defined in Section 9.2.3, only 157 of the 242 
Hyperion bands are useful after removing the wavebands in the 
atmospheric windows and those that are uncalibrated. This will 
still leave C157

2 = 12,246 unique TBHVIs.
Any one of the crop biophysical or biochemical quantity 

(e.g., biomass, leaf area index, nitrogen) is correlated with each 
one of the 12,246 TBHVIs (Stroppiana et al., 2012; Zhu et al., 
2012). This will result for each crop variable (e.g., biomass) a 

total of 12,246 unique models, each providing an R-square. 
Figure 9.11 shows the contour plot of 12,246 R-square values 
plotted for (1) rice crop wet biomass with TBHVIs (Figure 
9.11; above the diagonal) and (2) barley crop wet biomass 
with TBHVIs (Figure 9.11, below the diagonal). The areas 
with “bull’s-eye” are regions of rich information having high 
R-square values, whereas the areas in gray are redundant bands 
with low R-square values. Based on these lambda (λ1) versus 
lambda (λ2) plots (Figure 9.11), the optimal waveband centers 
(λ) and widths (Δλ) are determined (Table 9.2). Table 9.2 shows 
the optimal wavebands (λ), wavebands centers (λ), and widths 
(Δλ) based on numerous studies (Thenkabail et al., 2000, 2002, 
2004a,b, 2012, 2013, 2014), and a meta-analysis of these studies.

9.7.1.1  Refinement of Two-Band HVIs

Further refinement of each of the two-band HVIs (TBHVIs) is 
possible by computing (1) soil-adjusted versions of TBHVIs and 
(2) atmospheric corrected versions of TBHVIs. Interested read-
ers can read more on this topic at Thenkabail et al. (2000).

9.7.2 � Multi-Band Hyperspectral 
Vegetation Indices

The multi-band hyperspectral vegetation indices (MBHVIs) are 
computed as follows (Thenkabail et al., 2000; Li et al., 2012):

	
MBHVI a Ri ij j

j 1

N

=
=
∑ 	 (9.2)

where
MBHVIi is the crop variable i
R is the reflectance in bands j (j = 1 − N with N = 242 for 

Hyperion)
a is the coefficient for reflectance in band j for ith variable
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Figure 9.10  Hyperspectral data analysis methods. (From Bajwa, S. and Kulkarni, S.S., Hyperspectral data mining, Chapter 4, in Thenkabail, 
P.S., Lyon, G.J., and Huete, A., Hyperspectral Remote Sensing of Vegetation, CRC Press/Taylor & Francis Group, Boca Raton, FL/London, U.K./New 
York, 2012, pp. 93–120.)
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Table 9.2  Optimal (Nonredundant) Hyperspectral Narrowbands to Study Vegetation and Agricultural Cropsa, b, c

Waveband 
Number (#) 

Waveband 
Range (λ) 

Waveband 
Center (λ) 

Waveband 
Width (Δλ) Importance and Physical Significance of Waveband in Vegetation and Cropland Studies 

A. Ultraviolet
1 373–377 375 5 fPAR, leaf water: fraction of photosynthetically active radiation (fPAR), leaf water content

B. Blue bands
2 403–407 405 5 Nitrogen, Senescing: sensitivity to changes in leaf nitrogen reflectance changes due to pigments 

is moderate to low. Sensitive to senescing (yellow and yellow green leaves).
3 491–500 495 10 Carotenoid, Light use efficiency (LUE), Stress in vegetation: Sensitive to senescing and loss of 

chlorophyll\browning, ripening, crop yield, and soil background effects

C. Green bands
4 513–517 515 5 Pigments (Carotenoid, Chlorophyll, anthocyanins), Nitrogen, Vigor: positive change in 

reflectance per unit change in wavelength of this visible spectrum is maximum around this 
green waveband

5 530.5–531.5 531 1 Light use efficiency (LUE), Xanophyll cycle, Stress in vegetation, pest and disease: Senescing and 
loss of chlorophyll\browning, ripening, crop yield, and soil background effects

6 546–555 550 10 Chlorophyll: Total chlorophyll; Chlorophyll/carotenoid ratio, vegetation nutritional and fertility 
level; vegetation discrimination; vegetation classification

7 566–575 570 10 Pigments (Anthocyanins, Chlorophyll), Nitrogen: negative change in reflectance per unit 
change in wavelength is maximum as a result of sensitivity to vegetation vigor, pigment, and N.

D. Red bands
8 676–685 680 10 Biophysical quantities and yield: leaf area index, wet and dry biomass, plant height, grain yield, 

crop type, crop discrimination

E. Red-edge bands
9 703–707 705 5 Stress and chlorophyll: Nitrogen stress, crop stress, crop growth stage studies
10 718–722 720 5 Stress and chlorophyll: Nitrogen stress, crop stress, crop growth stage studies
11 700–740 700–740 700–740 Chlorophyll, senescing, stress, drought: first-order derivative index over 700–740 nm has 

applications in vegetation studies (e.g., blue-shift during stress and red-shift during healthy growth)

F. Near infrared (NIR) bands
12 841–860 850 20 Biophysical quantities and yield: LAI, wet and dry biomass, plant height, grain yield, crop type, 

crop discrimination, total chlorophyll
13 886–915 900 20 Biophysical quantities, Yield, Moisture index: peak NIR reflectance. Useful for computing crop 

moisture sensitivity index, NDVI; biomass, LAI, Yield.

G. Near infrared (NIR) bands
14 961–980 970 20 Plant moisture content Center of moisture sensitive “trough”; water band index, leaf water, biomass;

H. Far near infrared (FNIR) bands
15 1073–1077 1075 5 Biophysical and biochemical quantities: leaf area index, wet and dry biomass, plant height, grain 

yield, crop type, crop discrimination, total chlorophyll, anthocyanin, carotenoids
16 1178–1182 1080 5 Water absorption band
17 1243–1247 1245 5 Water sensitivity: water band index, leaf water, biomass. Reflectance peak in 1050–1300 nm

I. Early short-wave infrared (ESWIR) bands
18 1448–1532 1450 5 Vegetation classification and discrimination: ecotype classification; plant moisture sensitivity. 

Moisture absorption trough in early short wave infrared (ESWIR)
19 1516–1520 1518 5 Moisture and biomass: A point of most rapid rise in spectra with unit change in wavelength in 

SWIR. Sensitive to plant moisture.
20 1648–1652 1650 5 Heavy metal stress, Moisture sensitivity: Heavy metal stress due to reduction in Chlorophyll 

Sensitivity to plant moisture fluctuations in ESWIR. Use as an index with 1548 or 1620 or 
1690 nm.

21 1723–1727 1725 5 Lignin, biomass, starch, moisture: sensitive to lignin, biomass, starch Discriminating crops and 
vegetation.

J. Far short-wave infrared (FSWIR) bands
22 1948–1952 1950 5 Water absorption band: highest moisture absorption trough in FSWIR. Use as an index with any 

one of 2025, 2133, and 2213 nm Affected by noise at times.
23 2019–2027 2023 8 Litter (plant litter), lignin, cellulose: litter-soil differentiation: moderate to low moisture 

absorption trough in FSWIR. Use as an index with any one of 2025, 2133, and 2213 nm
(continued )
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The process of modeling involves running stepwise linear regres-
sion models (e.g., using MAXR algorithm in Statistical Analysis 
System (SAS, 2009) with any one biophysical or biochemical 
variable (e.g., biomass) as dependent variable and the numerous 
HNBs as independent variables (e.g., 157 of the 242 useful bands 
of Hyperion). In this modeling approach, we will get the best one-
band, two-band, three-band, and so on to best n-band model. The 
best one-band model is the one in which the biomass (taken as 
example) has highest R-square value with a single band out of 
the total 157 Hyperion HNBs. Then, we obtain the best two-band 
model, in which two HNBs provide a best R-square value with 
biomass. Similarly, the best three-band, best four-band, and best 
n-band (e.g., all 157 Hyperion bands) models are obtained, even 
though, theoretically, all 157 bands can be involved in providing a 
157-band biomass model that is usually meaningless due to over-
fitting of data. However, a plot of R-square values (y-axis) versus 
the number of bands (x-axis) will show us when an increase in 
R-square values with the addition of wavebands becomes asymp-
totic. Alternatively, we can also consider additional bands, when 
there is at least an increase of 0.03 or higher in R-square value 
when additional bands are added. So, the approach we can use is 
to look at one-band model and see its R-square. Then, when two-
band model increases R-square value by at least 0.03 (a threshold 
we can set), then consider the two-band model; otherwise, retain 

the one-band model as final. At some stage, we will notice that 
addition of a band does not increase R-square value by more than 
0.03. Typically, we have noticed that anywhere between 3 and 
10 HNBs explain optimal variability in most agricultural crop 
and vegetation variables. Beyond these 3–10 bands, the increase 
in R-square per increase in band is insignificant or asymptotic. 
However, which 3–10 bands within 400–2500 nm will, often, vary 
is based on the type of crop variable.

Through MBHVIs, we can establish the following:

	 1.	 How many HNBs are required to achieve an optimal 
R-square for any biophysical or biochemical quantity?

	 2.	 Which HNBs are involved in providing optimal R-square?
	 3.	 Through this process, we can determine which are important 

HNBs and which are redundant. However, the best approach 
to achieve this is by a study conducted for many crops, involv-
ing several crop variables, and based on data from multiple 
sites and years. Table 9.2 provides one such summary.

These MBHVIs take advantage of the key absorption and reflec-
tive portions of the spectrum (e.g., Figure 9.12; [Gnyp et al., 2014]). 
Taking advantage of four HNBs, two reflective (900 and 1050 nm) 
and two absorptive (955 and 1220 nm), Gnyp et al. constitute an 
MBHVI (Equation 9.1). In their paper, Gnyp et al. (2014) clearly 

Table 9.2 (continued )  Optimal (Nonredundant) Hyperspectral Narrowbands to Study Vegetation and Agricultural Cropsa, b, c

Waveband 
Number (#) 

Waveband 
Range (λ) 

Waveband 
Center (λ) 

Waveband 
Width (Δλ) Importance and Physical Significance of Waveband in Vegetation and Cropland Studies 

24 2131–2135 2133 5 Litter (plant litter), lignin, cellulose: typically highest reflectivity in FSWIR for vegetation. 
Litter- soil differentiation

25 2203–2207 2205 5 Litter, lignin, cellulose, sugar, starch, protein; Heavy metal stress: typically, second highest 
reflectivity in FSWIR for vegetation. Heavy metal stress due to reduction in Chlorophyll

26 2258–2266 2262 8 Moisture and biomass: moisture absorption trough in far short-wave infrared (FSWIR). A point 
of most rapid change in slope of spectra based on land cover, vegetation type, and vigor.

27 2293–2297 2295 5 Stress: sensitive to soil background and plant stress
28 2357–2361 2359 5 Cellulose, protein, nitrogen: sensitive to crop stress, lignin, and starch

Sources:	Modified and adopted from Thenkabail, P.S. et al., Remote Sens. Environ., 71, 158, 2000; Thenkabail, P.S. et al. (2002); Thenkabail, P.S. et al., Remote 
Sens. Environ., 90, 23, 2004a; Thenkabail, P.S. et al., Remote Sens. Environ., 91, 354, 2004b; Thenkabail et al. (2012, 2013); Thenkabail, P.S. et al., Photogramm. 
Eng. Remote Sens., 80, 697, 2014.

a	Most hyperspectral narrowbands (HNBs) that adjoin one another are highly correlated for a given application. Hence from a large number of HNBs, these 
non-redundant (optimal) bands are selected.

b	These optimal HNBs are for studying vegetation and agricultural crops. When we use some or all of these wavebands, we can attain highest possible classi-
fication accuracies in classifying vegetation categories or crop types.

c	 Wavebands selected here are based on careful evaluation of large number of studies.

Table 9.3  Subpixel Mineral Mapping of a Porphyry Copper Belt Using EO-1 Hyperion Data

Hyperion Band (#) Wavelength (nm) Feature Minerals Mineral Characteristic 

210, 217 2254, 2324 Absorption Biotite Potassic-biotitic alteration zone
205 2203 Absorption Muscovite and illite Al–OH vibration in minerals with muscovite deeper absorption than illite
201, 205 2163, 2203 Absorption Kaolinite Al–OH vibration
14, 79, 205 487, 932, 2203 Absorption Goethite
14, 53, 205 487, 884, 2203 Absorption Hematite
79211205 932, 2264, 2203 Absorption Jarosite
201 2163 Absorption Pyrophyllite Al–OH and Mg–OH
218 2335 Absorption Chlorite Al–OH and Mg–OH

Source:	 Adopted and modified from information in manuscript by Hosseinjani Zadeh, M. et al., Adv. Space Res., 53, 440, 2014.
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demonstrate the significantly higher R-square values provided 
by such a multiband HVIs when compared with other two-band 
HVIs (e.g., in Figure 9.13, GnyLi has a much higher R-square value 
relative to other indices). Interesting and maybe noteworthy that 
while the typical saturation effect (lack of sensitivity) at higher 
biomass amounts is still present, it is evidently somewhat less 
severe with GnyLi than the others (except REP but it has lower r2). 
Also, research by Thenkabail et  al. (2004a, b), Mariotto et  al. 
(2013), and Marshall and Thenkabail (2014) has demonstrated 
that anywhere between 3 and 10 HNBs involved in multiband 
HVIs explain greatest variability in modeling various biophysical 
and biochemical quantities for various agricultural crops.

However, it needs to be noted that the specific band centers 
and band widths are not as definitive as shown in Figure 9.12 or/
and Equation 9.1. This is because, with crop type and crop grow-
ing conditions, the specific reflective maxima (900 and 1050 nm) 
and reflective minima (955 and 1220 nm) shown in Figure 9.12 
and Equation 9.1 can vary. For example, the moisture absorp-
tion maxima can be at 750, 760, 770, or 780  nm (Thenkabail 
et al., 2012, 2013) or can be at 755 nm as shown in Figure 9.12 
and Equation 9.1. As a result, we performed meta-analysis of a 

number of papers to come with the recommendations of HNB 
centers and HNB widths (Table 9.2) that are optimal for use in 
HVI computations across crops and vegetation.

	
GnyLi

R R R R

R R R R
=

+
900 1050 955 1220

900 1050 955 1220

× ×
× ×

− 	 (9.3)

9.8 �The Best Hyperspectral Vegetation 
Indices and Their Categories

Based on extensive research over the last decade (Thenkabail et al., 
2000, 2002, 2004a,b, 2012, 2013, 2014), six distinct categories of 
two-band TBHVIs (Table 9.4) are considered most significant and 
important in order to study specific biophysical and biochemical 
quantities of agriculture and vegetation. Author recommends that 
in future, researchers use these HVIs, derived using HNBs, for 
their studies to quantify and model biophysical and biochemical 
quantities of various agricultural crops and vegetation of different 
types. The values of two such indices are illustrated. These are (1) 
hyperspectral biomass and structural index 1 (HBSI1; Thenkabail 
et al., 2014), derived using the Hyperion bands centered around 
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855 and 682 nm (each with 10 nm width), is applied to an agricul-
tural area to determine biomass (Figure 9.14); and (2) photochem-
ical reflectance index (PRI) for stress detection (e.g., Figure 9.15; 
Middleton et al., 2012). The importance of wavebands in comput-
ing the indices for various biophysical and biochemical is illus-
trated in Figure 9.16. Reader is encouraged to compare Figure 9.15 
with Table 9.4 and Table 9.2 for better understanding of HNBs 
(Table 9.2), HVIs (Table 9.4), and their importance (Figure 9.16) 
in studies pertaining to crops and vegetation.

9.9  Whole Spectral Analysis

A number of chapters discuss the usefulness and utility of 
using whole spectra (e.g., continuous and entire spectra over 
400–2500 nm) for analysis using such methods as PLSR, wavelet 
analysis, continuum removal, SAM, and spectral matching tech-
niques (SMTs) (Thenkabail et al., 2012).

9.9.1  Spectral Matching Techniques

SMTs (Thenkabail et al., 2007) involves the following:

	 1.	 Ideal or target spectral library creation: Collecting ideal or 
target spectra (e.g., specific crops, specific species, specific 
mineral) and creating a spectral library.

	 2.	 Class spectra collection.
	 3.	 Matching class spectra with ideal spectra to identify and 

label classes.

The principal approach in SMT is to match the shape or the 
magnitude or (preferably) both to an ideal or target spectrum 
(pure class or “end member”). Thenkabail et al. (2007) proposed 
and implemented SMT for multitemporal data illustrated later 
(Figure 9.17). The qualitative pheno-SMT approach concept 
remains the same for hyperspectral data (replace the number of 
bands of temporal data with the number of hyperspectral bands).

The quantitative SMTs consist of (Thenkabail et al., 2007) (1) 
spectral correlation similarity—a shape measure; (2) spectral 
similarity value—a shape and magnitude measure; (3) Euclidian 
distance similarity—a distance measure; and (4) modified spec-
tral angle similarity—a hyper angle measure.

9.9.2 �C ontinuum Removal through Derivative 
Hyperspectral Vegetation Indices

The derivative hyperspectral vegetation indices (DHVIs) are 
computed by integrating index over a certain wavelength 
(e.g., 600–700 nm or 700–760 nm). The equation is

	
DHVI

jn i

I

=
′( ) − ′( )∑λ ρ λ ρ λ
λ λ

( (

1∆ 	
(9.4)

where
i and j are band numbers
λ is the center of wavelength

The process of obtaining DHVI value for 600–700 nm is as follows: 
(1) DHVI1 = lambda 1 (e.g., λ1 = 600 nm) versus lambda 2 (e.g., 

Table 9.4  Hyperspectral Vegetation Indices or HVIs

Band 
Number (#) 

Hyperspectral 
Narrowband (λ1) 

Bandwidth 
(Δλ1) 

Hyperspectral 
Narrowband (λ2) 

Bandwidth 
(Δλ2) 

Hyperspectral Vegetation 
Index (HVI) 

Best Index Under Each 
Category 

1. Hyperspectral biomass and structural indices (HBSIs) (to best study biomass, LAI, plant height, and grain yield)
HBSI1 855 20 682 5 (855 − 682)/(855 + 682) HBSI: Hyperspectral biomass 

and structural indexHBSI2 910 20 682 5 (910 − 682)/(910 + 682)
HBSI3 550 5 682 5 (550 − 682)/(550 + 682)

2. Hyperspectral biochemical indices (HBCIs) (pigments like carotenoids, anthocyanins as well as Nitrogen, chlorophyll)
HBCI8 550 5 515 5 (550 − 515)/(550 + 515) HBCI: Hyperspectral 

biochemical indexHBCI9 550 5 490 5 (550 − 490)/(550 + 490)

3. Hyperspectral Red-edge indices (HREIs) (to best study plant stress, drought)
HREI14 700 − 740 40 First-order derivative integrated over red-edge. HREI: Hyperspectral red-edge 

indexHREI15 855 5 720 5 (855 − 720)/(855 + 720)

4. Hyperspectral water and moisture indices (HWMIs) (to best study plant water and moisture)
HWMI17 855 20 970 10 (855 − 970)/(855 + 970) HWMI: Hyperspectral water 

and moisture indexHWMI18 1075 5 970 10 (1075 − 970)/(1075 + 970)
HWMI19 1075 5 1180 5 (1075 − 1180)/(1075 + 1180)
HWMI20 1245 5 1180 5 (1245 − 1180)/(1245 + 1180)

5. Hyperspectral light-use efficiency index (HLEI) (to best study light use efficiency or LUE)
HLUE24 570 5 531 1 (570 − 531)/(570 + 531) HLEI: Hyperspectral light-use 

efficiency index

6. Hyperspectral lignin cellulose index (HLCI) (to best study plant lignin, cellulose, and plant residue)
HLCI25 2205 5 2025 1 (2205 − 2025)/(2205 + 2025) HLCI: Hyperspectral lignin 

cellulose index

Sources:	Modified and adopted from Thenkabail, P.S. et al., Photogramm. Eng. Remote Sens., 80, 697, 2014.
Note:	 Also see wavebands in Table 9.2 used to derive these indices.

© 2016 Taylor & Francis Group, LLC

  



220 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

λ2 = 610 nm). The difference in the reflectivity of these two bands is 
then divided by their bandwidth (ΔλI = 10 nm) and (2) DHVI2 = 
the process is repeated for lambda 1 (e.g., λ1 = 610  nm) versus 
lambda 2 (e.g., λ2 = 620 nm). The difference in reflectivity of these 
two bands is then divided by their bandwidth (ΔλI = 10 nm) and 
(3) DHVIn = so on to lambda 1 (e.g., λ1 = 690 nm) versus lambda 2 
(e.g., λ2 = 700 nm). The difference in reflectivity of these two bands 
is then divided by their bandwidth (ΔλI = 10  nm). Finally, add 
DHVI1, DHVI2, and so on to DHVIn to get single an integrated 
DHVI value over the entire 600–700 nm range.

The DHVIs can be derived over various wavelengths such as 
400–2500 nm, 500–600 nm, 600–800 nm, and any other wave-
length you find useful for the particular application. There are 
opportunities to further investigate the significance of DHVIs 
over different wavelengths for a wide array of applications.

9.10  Principal Component Analysis

Another common, powerful, and useful feature selection 
method for hyperspectral data analysis is PCA. The PCA per-
forms following functions:

	 1.	 Reduces data volumes: This happens since the PCA gen-
erates numerous principal components (PCs) (as many 
as the number of wavebands), but the first few PCs 
explain almost all the variability of data. The first PC 
(PC1) explains the highest, followed by the other. Since 
each PC is constituted based on the information from 
all the bands (e.g., PC1 = factor loading for band 1 * 
band 1 reflectivity  + ⋯ +   factor loading for band n * 
band n reflectivity), the PCs have the power of hyper-
spectral bands, but does not have all the redundancy of 
the same.

	 2.	 Provides a new single band of information (e.g., PC1, PC2), 
each of which (e.g., PC1) actually has the information 
derived from all the HNBs. These new bands of informa-
tion (e.g., PC1) can then be used to classify an area (e.g., to 
establish crop types) or used to model crop biophysical or 
biochemical quantities.

	 3.	 The power of PCs can be used to discriminate crop types, 
or land cover themes, or species (e.g., Figure 9.18).
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Figure 9.14  Spatial depiction of a hyperspectral biomass and structural index 1 (HBSI1) as applied to an agricultural area. One of the HVIs 
(HBSI1) in mapping wet biomass for a study area using Hyperion hyperspectral data. The red area in the z-scale can be stretched further to show 
better biomass variability with change in HBSI1. For example, HBSI1 0.4 = 0.53 and HBSI 0.6 = 1.16, HBSI1 0.8 = 2.56, and HBSI1 = 5.62. The 
current stretch does not adequately show these differences (as much of the higher end is in red). However, if we stretch between HBSI1 from 0.4 
to 1.0, then the biomass differences in this HBSI1 range, which is 0.53–5.62, will show up in better contrast. The relationship between HBSI1 and 
biomass is nonlinear due to saturation of indices at the higher end of the biomass. However, this saturation is much lower for hyperspectral index 
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Figure 9.15  Assessing structural effects on photochemical reflectance index (PRI) for stress detection in conifer forests. PRI512, PRI570, and 
NDVI obtained from the AHS airborne sensor from three study areas of Pinus nigra with different levels of stress: SN1, SN2, and SN3. At the bot-
tom of each image, two zoom images of a central plot, one pixel based displaying 1 × 1 and 3 × 3 resolutions and the other at object level. Note: PRI512 
is a normalized index involving a waveband centered at 512 and 531 nm, whereas PRI570 is a normalized index involving a waveband centered at 
570 and 531 nm. Airborne hyperspectral scanner (AHS) (Sensytech Inc., currently Argon St. Inc., Ann Arbor, MI) acquiring 2 m spatial resolution 
imagery in 38 bands in the 0.43–12.5 μm spectral range. (From Hernández-Clemente, R. et al., Adv. Space Res., 53, 440, 2011.)
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9.11 � Spectral Mixture Analysis 
of Hyperspectral Data

Hyperspectral data have great ability to distinguish specific objects 
based on their unique signatures. For example, wheat versus barley 
crops are distinguished based on the spectral reflectivity in two 
HNBs, each of 10 nm wide, and centered at 687 and 855 nm (e.g., 
Figure 9.19). However, often, we find multiple objects or classes 
within a pixel. In situations like that, we will need to perform spec-
tral mixture analysis (SMA) and an independent component anal-
ysis, in order to unmix the spectral signatures within each pixel.

The reference spectra for SMA are derived from “end mem-
bers” (e.g., Figure 9.20). Once all the materials in the image are 

identified, then it is possible to use linear or nonlinear spec-
tral unmixing to find out how much of each material is in each 
pixel.

The concept of unmixing hyperspectral data is illus-
trated by showing Hyperion unmixing of (1) vegetation frac-
tional cover in Figure 9.21 and (2) minerals in Figure 9.22. 
Subpixel mineral mapping of a porphyry copper belt using 
EO-1 Hyperion data in Figure 9.23 involved mineral spec-
tra extracted from Hyperion compared to convolved spectra 
from field samples and reference library spectra (Figures 9.20 
and 9.21; Hosseinjani Zadeh et  al., 2014). Extensive discus-
sions on linear and nonlinear SMAs can be found in Plaza 
et al. (2012).
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Figure 9.16  Importance of various portions of hyperspectral data in characterizing biophysical and biochemical quantities of crops and 
vegetation.

© 2016 Taylor & Francis Group, LLC

  



223Hyperspectral Remote Sensing for Terrestrial Applications

9.12  Support Vector Machines

SVMs are a machine learning supervised classification 
approach. Unlike the feature selection approach, data dimen-
sionality is not an issue here. Any number of bands can be 
used. The process involves supervised training of classes, 
based on sufficient and accurate knowledge of the class (e.g., 
ground data), where one can use all or some of the hyper-
spectral bands to train the algorithm. Once the algorithm is 
sufficiently trained, it can be run on rest of the data to gather 
the same class occurring in other areas. Figure 9.24a shows 
the classification performed using all 272 AISA hyperspectral 
bands based on SVM algorithm. In Figure 9.24b, the same 
classification is performed using only 51 of the most impor-
tant AISA hyperspectral bands. Results of the 51-band clas-
sification output (Figure 9.24b) are comparable to 272-band 
classification output (Figure 9.24a) in most areas; there is 

significant uncertainty in the northern portion of the image. 
Studies have shown that by using only 1% of training pixels per 
class, almost 90% overall classification accuracies are obtained 
using SVM methods (Bajwa and Kulkarni, 2012; Ramsey III 
and Rangoonwala, 2012).

9.13 � Random Forest and Adaboost Tree-
Based Ensemble Classification 
and Spectral Band Selection

Random forest and Adaboost are two tree-based ensemble clas-
sifiers. These classifiers serve two purposes:

	 1.	 Help select hyperspectral bands that are important as well 
as those that are redundant.

	 2.	 Classify hyperspectral data through decision tree-based 
classifiers.
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Figure 9.17  Pheno-spectral matching technique (SMTs). In SMTs, the class temporal profiles (NDVI curves) are matched with the ideal tempo-
ral profile (quantitatively based on temporal profile similarity values) in order to group and identify classes as illustrated for a rice class in this fig-
ure. Illustration of double-crop (DC) irrigation. The NDVI spectra of the four classes (C-26, C-28, C-30, and C-43) of DC irrigation are “matched” 
with ideal spectra (shaded in yellow) for the same. This is a qualitative illustration of SMTs. For quantitative methods, refer to Thenkabail et al. 2007.
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This approach has been discussed in great detail by Chan and 
Paelinckx (2008) for thorough classification of detailed eco-
topes using hyperspectral data (Figures 9.25 and 9.26). They 
gathered extensive hyperspectral data for (Figure 9.25) (1) 6 
grassland classes and (2) 10 tree classes. In terms of accuracy 
performance, random forest and Adaboost are almost the 
same, and both have outperformed a neural network classifier 
(Chan and Paelinckx, 2008). Both feature selection routines, 
the best-first search and the out-of-bag ranking index under 

random forest, are successful in identifying substantially 
smaller band subsets that attained almost the same accuracy 
as all the bands (e.g., Figure 9.24; Chan and Paelinckx, 2008). 
There are many approaches to selecting the spectral wave-
bands for obtaining best classification results. For agriculture 
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Figure 9.18  Species soybeans. View angle effects on the discrimination of soybean varieties and on the relationships between vegetation 
indices and yield using off-nadir Hyperion data. Projection of the Hyperion discriminant scores of the three soybean varieties in the (a) forward 
and (b) backscattering directions for different years. (From Galvao, L.S. et al., Crop type discrimination using hyperspectral data, Chapter 17, 
in Thenkabail, P.S., Lyon, G.J., and Huete, A., Hyperspectral Remote Sensing of Vegetation, CRC Press/Taylor & Francis Group, Boca Raton, FL/
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Figure 9.21  Unmixing qualitative assessment of Hyperion unmixing of vegetation fractional cover. Qualitative validation of the fractional 
cover estimated with Hyperion imagery. Each set of pictures and graphs corresponds to one of 12 sites visited from May 16 to 19 and August 29 to 
31, 2005. The left graphs show the reflectance spectra derived from Hyperion images for the April (green curve), July (black curve), and September 
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Figure 9.22  Mineral mapping. Subpixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Mineral spectra extracted from 
Hyperion comparing to convolved spectra from field samples and reference library spectra. (a) Biotite (Bio), (b) Muscovite (Mu), (c) Illite (Il), (d) 
Kaolinite (Kao), (e) Goethite (Goe), (f) Hem (Hem), (g) Jarosite (Ja), (h) pyrophyllite (Pyr), and (i) Chlorite (Ch). Hyp and Lib are abbreviations of 
Hyperion and Library, respectively. The red vertical lines indicate locations of diagnostic absorption features. (From Hosseinjani Zadeh, M. et al., 
Adv. Space Res., 53, 440, 2014.)
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Figure 9.23  Mineral mapping. Subpixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Thematic mineral maps using 
subpixel mixture tuned matched filtering (MTMF) method. (a) Final classification image map of alteration minerals derived from MTMF algo-
rithm. (b) Sarcheshmeh mine, (c) Sereidun, and (d) Darrehzar. Bio, Mu, Il, Kao, Goe, Hem, Ja, Pyr, and Ch indicate Biotite, Muscovite, Illite, 
Kaolinite, Goethite, Hematite, Jarosite, pyrophyllite, and Chlorite, respectively. These values indicate percentages of each mineral at the pixel. For 
instance, value of 0.25 shows that 25% of pixel contains the selected mineral. (From Hosseinjani Zadeh, M. et al., Adv. Space Res., 53, 440, 2014.)
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Figure 9.24  SVM. Detecting Sirex noctilio gray-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest, 
and support vector machine classifiers. Classification maps obtained using support vector machine (SVM) classification algorithm, all (a) and the 
51 most important (b) Airborne Imaging System for different Applications (AISA) Eagle spectral bands. The AISA image spatial resolution was 
about 2 m, and there were 272 spectral bands ranging from 393.23 to 994.09 nm (VNIR: visible near-infrared) with bandwidths between 2 and 
4 nm. (From Abdel-Rahman, E.M. et al., ISPRS J. Photogramm. Remote Sens., 88, 48, 2014.)
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Figure 9.25  Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping 
using airborne hyperspectral imagery. Mean spectrum of the (a) 6 grassland classes and (b) 10 tree classes. Notes: b, grassland, arable land; hp, 
grassland, species poor improved grassland (normally more homogenous for the whole parcel); hpgh, grassland, semi-natural grassland; hpgs, 
grassland, species rich improved grassland (between hpgh and hp); hpv, grassland, grassland with patches hp and either patches hpgs or hpgh; 
hx, grassland, grass monocultures (equal to arable land sown with grasses of one or more years); f, tree/tall_veg, deciduous forest<comma> domi-
nated by beech (Fagus sp.); gml, tree/tall_veg, plantation of deciduous tree species other than beech, oak, alder, and poplar; kj, tree/tall_veg, tall 
tree orchard; kl, tree/tall_veg, low tree orchard; lh, tree/tall_veg, poplar plantation; p, tree/tall_veg, conifer plantation; q, tree/tall_veg, deciduous 
forest<comma> dominated by oak trees (Quercus sp.); sp, tree/tall_veg sc, scrubs of clearings and scrubs on abandoned land; sp, tree/tall_veg, 
thorn ticket; v, tree/tall_veg,Woodland of alluvial soil<comma> fens and bogs (mostly dominated by alder, Alnus sp.). (From Chan, J.C.-W. and 
Paelinckx, D., Remote Sens. Environ., 112, 2999, 2008.)

© 2016 Taylor & Francis Group, LLC

  



230 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

and vegetation studies, one could use various combination of 
band selection (e.g., Table 9.5) depending on the number of 
bands one decided to use, classification accuracies desired, 
and the need to overcome Hughes’s phenomenon.

9.14 C onclusions

This chapter provides an overview of hyperspectral remote 
sensing for terrestrial applications. First, the chapter defines 
hyperspectral remote sensing or imaging spectroscopy. Second, 
characteristics of hyperspectral data acquired from three 

distinct platforms are discussed: (1) ground-based or handheld 
or truck-mounted spectroradiometers, (2) airborne, and (3) 
spaceborne. Third, the needs for data mining to eliminate redun-
dant bands are discussed. Various data mining methods are 
presented. Fourth, the importance of understanding Hughes’s 
phenomenon and approaches to overcome the same are high-
lighted. Fifth, methods of hyperspectral analysis are presented 
and discussed. These methods include feature extraction meth-
ods and information extraction methods. OHNBs best suited 
for agricultural and vegetation studies are determined from 
meta-analysis. HVIs, two-band and multi-band versions, best 
suited for agricultural and vegetation studies are also deter-
mined from meta-analysis. The WSA was performed through 
SMTs and continuum removal derivative HVIs. Hyperspectral 
image classification for land cover and species types was per-
formed using such methods like SMA, SVMs, and tree-based 
ensemble classifiers such as random forest and Adaboost.
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Eionet	� European Environment Information and 
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EM	 Electromagnetic
ENVISAT	 Environmental Satellite
EOS	 Earth Observing System
ERS-2	 European Remote Sensing (satellite)
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MSI	 Moisture Stress Index
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MWIR	 Mid-wave Infrared
NASA	 National Aeronautics and Space Administration
NDBR	 Normalized difference burn ratio
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NDVI	 Normalized Difference Vegetation Index
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NIR	 Near infrared (0.7–1.0 µm)
NLCD	 National Land Cover Database
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NPP	 Net primary productivity
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PSNnet	� Moderate Resolution Imaging Spectroradiometer 

net photosynthesis product
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Development
RUE	 Rain use efficiency
SAVI	 Soil Adjusted Vegetation Index
SDGs	 Sustainable development goals
SSI	 Soil Stability Index
SST	 Sea Surface Temperature
SOVEUR	� Mapping of Soil and Terrain Vulnerability in 

Central and Eastern Europe
SPOT	 Satellite Pour l’Observation de la Terre (French)
SWIR	 Shortwave infrared (1.1–2.4 µm)
SWIR2.2	 Shortwave infrared (2.08–2.35 µm)
Tg	 teragrams
TIROS-N	� Television Infrared Observation Satellite-Next 

Generation
TIRS	 Thermal Infrared Sensor
TM	 Thematic Mapper (Landsat)
TNDVI	� Transformed Normalized Difference Vegetation 

Index
TVI	 Transformed Vegetation Index
UMD	 University of Maryland
UNCCD	� United Nations Convention to Combat 

Desertification
UNEP	 United Nations Environment Program
USFWS	 United States Fish and Wildlife Service
USGS	 United States Geological Survey
VASClimO	� Variability Analyses of Surface Climate 

Observations
VGT	 VEGETATION sensor onboard SPOT satellite
VI	 Vegetation Index
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VIIRS	 Visible Infrared Imaging Radiometer Suite
W	 Watts
WHR	 Wildlife Habitat Relationship

10.1 I ntroduction

The term “rangeland” is rather nebulous, and there is no single 
definition of rangeland that is universally accepted by land man-
agers, scientists, or international bodies (Lund, 2007; Reeves and 
Mitchell, 2011). Dozens and possibly hundreds (Lund, 2007) of 
definitions and ideologies exist because various stakeholders 
often have unique objectives requiring different information. For 
the purpose of describing the role of remote sensing in a global 
context, it is, however, necessary to provide definitions to orient 
the reader. The Food and Agricultural Organization (FAO) of 
the United Nations convened a conference in 2002 and again in 
2013 to begin addressing the issue of harmonizing definitions of 
forest-related activities. Based on this concept, here rangelands are 
considered lands usually dominated by nonforest vegetation. The 
Society for Range Management defines rangelands as (SRM, 1998)

Land on which the indigenous vegetation (climax or natu-
ral potential) is predominantly grasses, grass-like plants, 
forbs, or shrubs and is managed as a natural ecosystem. 
If plants are introduced, they are managed similarly. 
Rangelands include natural grasslands, savannas, shrub-
lands, many deserts, tundra, alpine communities, marshes, 
and wet meadows.

Rangelands occupy a wide diversity of habitats and are found 
on every continent except Antarctica. Excluding Antarctica 
and barren lands, rangelands occupy 52% of the Earth’s sur-
face based on the land cover analysis presented in Figure 10.1. 

Figure 10.1 is based on the 2005 Moderate Resolution Imaging 
Spectroradiometer (MODIS) Collection 4.5, 1  km2 land cover 
(the University of Maryland [UMD] classification), and suggested 
rangeland classes for this dataset are closed shrubland, open 
shrubland, woody savanna, savanna, and grassland. Using these 
classes, Russia, Australia, and Canada are the top three countries 
with the most rangelands (Table  10.1) representing 18%, 10%, 
and 8% of the global extent, respectively. The large areal extent of 
rangelands, high cost of field data collection, and quest for soci-
etal well-being have, for decades, provided rich opportunity for 
remote sensing to aid in answering pressing questions.

10.2 � History and Evolution 
of Global Remote Sensing

The application of digital remote sensing to rangelands is as long 
as the history of digital remote sensing itself. Before the launch of 
the Earth Resources Technology Satellite (ERTS)—later renamed 
Landsat—scientists were evaluating the use of multispectral aerial 
imagery to map soils and range vegetation (Yost and Wenderoth, 
1969). During the late 1960s, the promise of ERTS, designed to 
drastically improve our ability to update maps and study Earth 
resources, particularly in developing countries, was eagerly antic-
ipated by a number of government agencies (Carter, 1969). With 
the ERTS launch on July 23, 1972, a flurry of research activity 
aimed at the application of this new data source to map Earth 
resources began. Practitioners who pioneered the use of satellite-
based digital remote sensing found the new data source a signifi-
cant value for rangeland assessments (e.g., Rouse et al., 1973, 1974; 
Bauer, 1976). This early work established many of the basic tech-
niques still in use today to assess and monitor global rangelands. 
The following subsections discuss the evolution of remote-sens-
ing data, methods, and approaches in various decades.
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Figure 10.1  Global distribution of land cover types (MODIS MOD12Q1, 2005; University of Maryland Classification), considered rangelands 
for this chapter.
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10.2.1  Beginning of Landsat MSS Era, 1970s

In this first decade of satellite-based digital remote sensing, 
rangeland scientists quickly assessed the capabilities of this 
new tool across the globe (Rouse et al., 1973; Graetz et al., 1976). 
Work by Rouse et  al. (1973), in what would later become the 
Normalized Difference Vegetation Index (NDVI) (Rouse et al., 
1974), applied multitemporal ERTS (Landsat 1) at 79 m2 spatial 
resolution data to the grasslands of the central Great Plains of the 
United States and documented that the normalized ratio of the 
multispectral scanner (MSS) near-infrared (NIR) (band 7) and 
red band (band 5) was sensitive to vegetation dry biomass, per-
cent green, and moisture content (Figure 10.2). They also deter-
mined that within uniform grasslands, field-based estimates of 
moisture content and percent green cover accounted for 99% of 
the variation in their “Transformed Vegetation Index” (TVI). 
The TVI was later renamed to the Transformed Normalized 
Difference Vegetation Index (TNDVI) (Deering et al., 1975) and 
is calculated as the square root of the NDVI plus an arbitrary 
constant (0.5 in their case). This transformation of the NDVI 
was done to avoid negative values.

The NDVI is, to date, one of the most widely used vegeta-
tion index on a global basis. Figure 10.2 shows the graphic pub-
lished by Rouse et  al. (1973) identifying the tight relationship 
between field-derived green biomass and the TVI. The signifi-
cance of Figure 10.2 is the demonstration of potential to track 
vegetation growth across time, thus documenting the ability for 
remote-sensing instruments to monitor vegetation dynamics 
and the importance of systematic and uninterrupted collection 
of remotely sensed imagery.

Another significant development during this first decade 
of satellite-based remote sensing was the “tasseled cap trans-
formation” (Kauth and Thomas, 1976). The tasseled cap (or 
“Kauth–Thomas transformation” to some) employed principal 
component analysis to understand the covariate nature of the 
four MSS spectral bands and extract from those data the pri-
mary ground features, or components, influencing the spec-
tral signature. The tasseled cap and its eventual successor—the 
brightness, greenness, wetness transform (Crist and Cicone, 
1984) applied to the Landsat Thematic Mapper (TM) sensor—
has been a widely used tool for many land resource applica-
tions (Hacker, 1980; Graetz et  al., 1986; Todd et  al., 1998). 
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Figure 10.2  ERTS-1 TVI values versus green biomass. (Original from Rouse, J.W. et al., Monitoring vegetation systems in the Great Plains with 
ERTS, in Proceedings of the Third ERTS Symposium, Washington, DC, 1973, pp. 309–317.)

Table 10.1  Global Area of Rangeland Vegetation Types Estimated Using MODIS Land Cover Data (Mod12Q1) for the Top 12 Countries 
with the Most Rangeland.

Country Area (km2) CSL Grassland OSL Savanna Woody Savanna Rangeland Area Rangeland Proportion (%) 

Russia 16,851,940 5,461 795,938 8,174,738 170,456 1,223,381 10,369,974 62
Australia 7,706,142 13,543 182,983 4,690,912 505,136 620,265 6,012,839 78
Canada 9,904,700 1,187 271,855 3,901,991 54,738 509,117 4,738,888 48
United States 9,450,720 78,929 1,777,542 2,077,055 95,380 673,199 4,702,105 50
China 9,338,902 42,548 1,745,760 1,002,771 73,717 399,032 3,263,828 35
Brazil 8,507,128 15,879 278,859 136,105 1,852,468 541,479 2,824,790 33
Kazakhstan 2,715,976 512 1,793,967 171,930 1,859 14,538 1,982,806 73
Argentina 2,781,013 88,877 363,509 1,094,845 121,035 94,377 1,762,643 63
Mexico 1,962,939 64,011 217,212 556,928 85,889 194,310 1,118,350 57
Sudan 2,490,409 8,210 278,848 205,781 404,276 163,169 1,060,284 43

CSL is closed shrubland, OSL is open shrubland, and rangeland proportion is the rangeland area column divided by the area column multiplied by 100.
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The NDVI and the tasseled cap provided the ability to convert 
reflectance values collected across multiple spectral bands into 
biophysically focused data layers, thus giving range managers 
and ecologists a tool by which to directly assess and monitor 
vegetation growth.

10.2.2  Multiple Sensor Era, 1980s

With the development of the NDVI and the launch of the 
Television Infrared Observation Satellite-Next Generation 
(TIROS-N) satellite carrying the Advanced Very High Reso
lution Radiometer (AVHRR) in October of 1978, remote-sensing 
practitioners now had the means to monitor temporal vegetation 
dynamics across very large areas (Tucker, 1979). The 1 km2 reso-
lution of the AVHRR was ideal for continental-scale monitoring, 
which was not possible with Landsat images given the comput-
ing power and data storage capacities of that era. Further, a 1-day 
global repeat cycle provided the ability to track phenological 
changes in vegetation growth within and between years—a fea-
ture also not possible with the 18- and 16-day repeat cycles of the 
Landsat platforms. Gray and McCrary (1981) showed the utility 
of the AVHRR for vegetation mapping and noted that vegeta-
tion indices derived from this sensor could be related to plant 
growth stress due to water deficits. This relationship, coupled 
with the high temporal repeat interval of the TIROS-N, led to 
the use of the NDVI to monitor the impact of drought on grass-
lands across the Sahel region of Africa (Tucker et al., 1983) and 
by direct inference predict the impact of drought to local human 
populations (Prince and Tucker, 1986).

The application of the NDVI to semiarid landscapes was some-
what problematic due to generally low vegetation canopy cover 
in these environments and the fact that background soil bright-
ness tended to influence the resulting NDVI values (Elvidge and 
Lyon, 1985). The soil-adjusted vegetation index (SAVI) (Huete, 
1988) was developed as a simple modification to the NDVI to 
account for the influence of soil on the reflectance properties of 
green vegetation. The SAVI has been used widely within semi-
arid environments where vegetation cover is low. The 1980s also 
saw great strides in satellite-based terrestrial remote sensing 
with the launch of Landsat 4 in July of 1982 and Landsat 5 in 
March of 1985, as well as the launch of the French Satellite Pour 
l’Observation de la Terre (SPOT) in 1986. Each platform carried 
sensors with slightly different capabilities, but each focused their 
spectral resolution on the red and NIR portions of the electro-
magnetic spectrum, save one. The Landsat TM was a significant 
improvement over its predecessor, the MSS. Not only were the 
spatial and radiometric resolutions improved, but also the TM 
supported two additional spectral bands calibrated to the short-
wave infrared portion of the electromagnetic (EM) spectrum. 
This significant addition provided the ability to monitor leaf 
moisture (Tucker, 1980, Hunt and Rock, 1989) as well as identify 
and map recent wildfires (Chuvieco and Congalton, 1988, Key 
and Benson, 1999a,b).

While the work with AVHRR in Africa expanded and 
new sensors were becoming readily available, researchers in 

Australia were evaluating the applicability of Landsat images 
to monitoring and assessment of rangelands. Work by Dean 
Graetz, now retired from the Commonwealth Scientific and 
Industrial Organisation (CSIRO) of Australia, was instrumen-
tal in fostering use of satellite remote sensing to monitor range-
lands (Graetz et al., 1983, 1986, 1988; Pech et al., 1986; Graetz, 
1987). This work, coupled with other CSIRO scientists such 
as Geoff Pickup (Pickup and Nelson, 1984; Pickup and Foran, 
1987; Pickup and Chewings, 1988), firmly established Australia 
as a leader in the use of remote sensing for rangeland monitor-
ing and assessment.

Researchers in Australia had similar problems applying digi-
tal imagery to semiarid rangelands as did the United States and 
Africa teams. The difficulty in applying imagery collected by 
the Landsat sensors to rangeland assessment is documented by 
Tueller et al. (1978) and McGraw and Tueller (1983), who found 
that the spectral differences among semiarid range plant com-
munities were so small that they approached the noise level of 
the imagery. Even with these limitations, Robinove et al. (1981) 
and Frank (1984) developed methodologies for using albedo to 
measure soil erosion on rangelands. Pickup and Nelson (1984) 
developed the soil stability index (SSI) by using the ratio of the 
MSS green band divided by the NIR, plotted against the ratio of 
the red divided by the NIR. This comparison between the two 
ratios provided a quantitative measure of soil stability. Further, 
a temporal sequence of SSI images could be used as a moni-
toring tool to identify changes in landscape state (Pickup and 
Chewings, 1988). As research progressed in the use of imagery 
on rangelands through the 1980s, the US civilian remote-sensing 
program began a transition to private sector management of the 
Landsat program. Issues of data cost and data licensing arose 
placing financial and legal limitations on research and data shar-
ing. Still, research and application continued into the 1990s with 
an increased demand by federal land managers for landscape-
level information.

10.2.3  Advanced Multisensor Era, 1990s

In 1989 and throughout the 1990s, the US Fish and Wildlife 
Service (USFWS) and the US Geological Survey (USGS) 
embarked on a number of large-scale land cover mapping efforts 
across the United States. The Gap Analysis Program initiated 
by the USFWS and later absorbed into the USGS was designed 
as a spatial database to identify landscapes of high biological 
diversity and evaluate their management status (Scott et  al., 
1993). The Gap Analysis was built around the linkage between 
wildlife habitat relationship (WHR) models and a detailed land 
cover map. This linkage allowed the WHR database to be spa-
tially visualized by relating habitat parameters to land cover. 
The significance of this effort to remote sensing is that at the 
time, no one had attempted to map vegetation across landscapes 
requiring multiple frames of radiometrically normalized satel-
lite imagery. The first digitally produced land cover map derived 
from a statistical classification of a 14-image mosaic of radio-
metrically normalized Landsat TM imagery was completed 
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for the state of Utah in 1995 by Utah State University (Homer 
et al., 1997). Programs like the Gap Analysis, coupled with the 
advent of the publicly available Internet in 1991, provided the 
impetus for a new brand of remote sensing centering on large 
data and improved data access and product delivery. During the 
late 1980s, the National Aeronautics and Space Administration 
(NASA) was envisioning the need to provide rapid data access to 
users. At the time, image acquisition and delivery to the end user 
required a minimum of a few weeks. There was a need for time 
critical imagery by users and to meet that demand; NASA set a 
goal of data delivery to within 24 h of acquisition. Even with the 
advent of data transfer through the Internet, a 24-h lag between 
acquisition and delivery is a relatively new phenomenon of the 
mid-2000s.

10.2.4 N ew Millennium Era, 2000s

In this era, noteworthy changes to the remote-sensing commu-
nity, including dramatic improvements in data availability, spa-
tial and spectral resolution, and temporal frequency (Figure 10.3), 
were made. Commonly used high-spatial-resolution sensors 
launched during this time including IKONOS, QuickBird, 
GeoEye-1, and WorldView-2 exhibit spatial resolutions in the 
multispectral domain of 4, 2.4, 1.65, and 2 m2, respectively.

These sensors have enabled improvements in species discrim-
ination (e.g., Everitt et al., 2008; Mansour et al., 2012) and stand-
level attributes such as canopy cover (e.g., Sant et al., 2014). Use of 
QuickBird for identifying giant reed (Arundo donax) improved 
both user’s and producer’s accuracy by an average of 12% over 
use of SPOT 5 alone (Everitt et al., 2008). Similarly, Sant et al. 
(2014) used IKONOS imagery to quantify percent vegetation 
cover and explained 5% more variation than using Landsat 
(r2 of 0.79 versus 0.84) alone. Hyperspectral data emanating 
from this era also enable greater discrimination of many bio-
physical features than multispectral sensors alone especially in 
the realm of invasive species mapping. Parker and Hunt (2004) 
distinguished leafy spurge with the Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) data with overall accuracy of 
95%, while Oldeland et al. (2010) detected bush encroachment by 
Acacia spp. (r2 = 0.53). These improved capabilities emanate not 
only from improved sensor characteristics in the 2000s, but also 
greatly improved data availability.

In 1999, the launch of Landsat 7, coupled with new sensors 
from a host of other countries as well as commercial, high-spatial-
resolution sensors, ushered a new era of global assessment and 
monitoring of natural and human landscapes. With  the end of 
private sector management of the Landsat program in 1999, imag-
ery was again placed in the public domain, and costs for Landsat 
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Figure 10.3  History of digital remote sensing sensors used in research and monitoring of rangelands since the advent of the technology in the 
early 1970’s.  Specific research milestones and policy changes are also noted.
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imagery were reduced to $600 per scene (previously set at $4400 
per scene) for Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 
imagery and $450 per scene for Landsat 5 TM. This reduction in 
cost, coupled with the free exchange of data between collabora-
tors, boosted research and application of satellite remote sensing. 
Further, the replacement of the AVHRR as the primary global sen-
sor with the much-advanced MODIS with 36 spectral bands span-
ning the 405–14,384 nm range provided the ability for scientists to 
model, map, and monitor not only land cover but also net primary 
productivity (NPP) among other metrics. The now 15-year history 
of the MODIS sensor aboard two platforms (Terra and Aqua) has 
provided an unprecedented source of global land cover dynamics 
data freely available to land managers and scientists. In 2008, the 
USGS made all Landsat data accessed through the Internet free 
of charge. With this policy change, scene requests at the USGS 
Earth Resources Observation and Science Center jumped from 
53 images per day to about 5800 images per day. This increase 
in data demand and delivery has arguably resulted in research 
in the 2000s centered on the copious use of imagery across mul-
tiple temporal and landscape scales. Commercial satellites such 
as the IKONOS, launched in 1999, QuickBird in 2001, and the 
WorldView and GeoEye satellites launched between 2007 and 
2009 has provided on-demand access to high spatial resolution 
(submeter to a few meters) that allows data integration between a 
wide array of platforms and spatial scales (Sant et al., 2014).

10.3  State of the Art

Millions of people depend on rangelands for their livelihood. 
This dependence raises numerous concerns about the health, 
maintenance, and management of rangelands from local to 
global perspectives. Discerning and describing how rangelands 
are changing at multiple spatial and temporal scales requires the 
integration of sensors that possess specific characteristics. The 
current suite of government-sponsored and commercial sensors 
suitable for regional to global analysis span the spatial range of 
submeter to 1 km2, a temporal range of daily to bimonthly (tem-
poral resolution is inversely proportional to spatial resolution), 
and all have the capacity to image landscapes in the visible and 
NIR (Figure 10.4). The most commonly used sensors for global 
applications, however, have spatial resolutions of between 250 
and 1000 m2 (e.g., MODIS, AVHRR, and Visible Infrared Imaging 
Radiometer Suite [VIIRS]) and exhibit high temporal frequency, 
numerous spectral bands, but relatively low spatial resolution. 
Sensors best suited for regional to local applications (e.g., Landsat, 
SPOT, WorldView, and GeoEye) have higher spatial resolutions 
(submeter to 30 m2) and lower temporal repeat cycles.

The present role of remote sensing for characterizing five 
globally significant phenomena are discussed hereafter, includ-
ing land degradation, fire, food security, land cover, and veg-
etation response to global change (Table 10.2). These factors 
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Table 10.2  Four Most Common Sensors for Regional and Global Applications, Their Characteristics, and Example Applications

Satellite (Sensors) 

Characteristics (a Is Spatial 
Resolution, b Is Launch Date, c Is 

Swath Width, and d Is Revisit Time) Rangeland Application Examples References 

Landsat (5, 7, 8) (Thematic 
Mapper, Enhanced 
Thematic Mapper Plus 
[ETM+], Optical Land 
Imager [OLI])

(a) 15 (panchromatic), 30 
(multispectral), 100 (thermal), 
(b) 1999 (ETM+) and 2013 (OLI), 
(c) 185 km × 170 km, and (d) 
16 days

Fire (often dNBR, NBR, LWCI)
Burn severity (dNBR, RdNBR, tasseled cap 

brightness)
Key and Benson (2006), Miller 

and Thode (2007), and Loboda 
et al. (2013)

Burned area mapping (Eidenshenk et al., 2007) Eidenshink et al. (2007)
Fuel moisture (variety of indices such as 

NDVI, NDII, and LWCI)
Chuvieco et al. (2002)

Vegetation attributes
Land cover (varied methods) Gong et al. (2013), Fry et al. 

(2011), and Rollins (2009)
Leaf area index (LAI)/Fraction of 

Photosynthetically Active Radiation (fPAR) 
absorbed by vegetation (radiative transfer 
and vegetation indices)

Shen et al. (2014)

Net primary production (NPP) (multisensor 
fusion and process modeling)

Li et al. (2012)

Degradation (change detection and residual 
trend analysis)

Jabbar and Zhou (2013)

SPOT (VEGETATION) (a) 1000, (b) 1998, (c) 2250 km, and 
(d) 1–2 days

Fire
Burned area mapping dNBR (NDVI, NDWI) Silva et al. (2005) and Tansey 

et al. (2004)
Fuel moisture (primarily NDVI, NDWI) Verbesselt et al. (2007)

Vegetation attributes
Land cover (GLC2000) Bartholomé and Belward (2005)
NPP/abundance (NDVI, process modeling) Telesca and Lasaponara (2006), 

Geerken et al. (2005), and Jarlan 
et al. (2008)

Degradation (trend analysis) Fang and Ping (2010)
Aqua and Terra (Moderate 

Resolution Imaging 
Spectroradiometer)

(a) 250 (red, NIR), 500 
(multispectral), 1000 
(multispectral); (b) 2000 (Terra), 
2002 (Aqua); (c) 2230 km; and 
(d) 1–2 days

Fire (often dNBR, NBR, LWCI)
Active fire detection (thermal anomalies and 

fire radiative potential)
Giglio et al. (2003, 2009)

Burned area evaluation (SWIR VI and change 
detection)

Roy et al. (2008)

Burn severity (time-integrated dNBR) Veraverbeke et al. (2011)
Fuel moisture (empirical relations and 

radiative transfer modeling; many vegetation 
indices [GVMI,NDWI, MSI, etc.])

Yebra et al. (2008) and Sow et al. 
(2013)

Vegetation attributes
Land cover (varied methods) Friedl et al. (2010)
LAI/fPAR absorbed by vegetation (radiative 

transfer modeling)
Myneni et al. (2002) and Wenze 

et al. (2006)
NPP (process modeling) Running et al. (2004), Reeves 

et al. (2006), Zhao et al. (2011)
Degradation (rain use efficiency, local NPP 

scaling, trend and condition analysis)
Bai et al. (2008), Prince et al. 

(2009), and Reeves and Bagget 
(2014)

Livestock Early Warning System (time series 
analysis of NDVI, and biomass)

Angerer (2012) and Yu et al. (2011)

(continued )
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are not mutually exclusive and often exhibit significant inter-
action. Using remote sensing at global scales provides insight 
to what may be anticipated in the future and indicates regions 
where ecological thresholds have been crossed, beyond which 
decreased goods and services from rangelands can be expected.

10.3.1  Rangeland Degradation

Land and soil degradation are accelerating, and drought is 
escalating worldwide. At the UN Conference on Sustainable 
Development (Rio+20), world leaders acknowledged that deserti-
fication, land degradation, and drought (DLDD) are challenges 
of a global dimension affecting the sustainable development of 
all countries, especially developing countries. Drylands are often 
identified and classified according to the aridity index (AI), which 
is defined as P/PET where P is the annual precipitation and PET is 
the potential evapotranspiration. Drylands yield AI values ≤0.65. 
Despite decades of research, standards to measure progression of 
land degradation (e.g., global mapping and monitoring systems) 
remain elusive, but remote sensing plays a significant role.

10.3.1.1 � Soil and Land Degradation and 
Desertification: What Is the Difference?

Land degradation and desertification have been sometimes 
used synonymously. Land degradation refers to any reduction 
or loss in the biological or economic productive capacity of the 
land (UNCCD, 1994) caused by human activities, exacerbated 
by natural processes, and often magnified by the impacts of cli-
mate change and biodiversity loss. In contrast, desertification 
only occurs in drylands and is considered as the last stage of land 
degradation (Safriel, 2009).

10.3.1.2 � Role of Remote Sensing for Monitoring 
Rangeland Degradation

Much research conducted over the last decade has been on 
remotely sensed biophysical indicators of land degradation 
processes (e.g., soil salinization, soil erosion, waterlogging, and 
flooding), without integration of socioeconomic indicators 
(Metternicht and Zinck 2003, 2009; Allbed and Kumar 2013). 
Studies from the 1970s onward have related soil erosion sever-
ity to variations in spectral response. Good reviews of spectrally 
based mapping of land degradation are found in Metternicht 
and Zinck (2003), Bai et al. (2008), Marini and Talbi (2009), and 
Shoshanya et al. (2013). Moreover, research work from the 1990s 
and 2000s (Metternicht. 1996; Vlek et  al. 2010; Le et  al., 2012; 
Shoshanya et al., 2013) reports the benefits of a synergistic use 
of satellite- and/or airborne remote sensing with ground-based 
observations to provide consistent, repeatable, cost-effective 
information for land degradation studies at regional and global 
scales. Hereafter follows a brief description of some of the most 
frequent applications of remote sensing applied in “global or sub-
global assessments” of land degradation. These remotely sensed 
products include biomass and vegetation health modeling via 
NDVI and NPP, rain use efficiency (RUE), and local NPP scaling.

10.3.1.3 � Biomass and Vegetation Health Modeling 
as an Indicator of Degradation

The biomass produced by soil and other natural resources can 
be a proxy for land health (Nkonya et  al., 2013). In this vein, 
Bai et al. (2008) framed land degradation in the context of the 
Land Degradation Assessment in Drylands (LADA) program as 
long-term loss of ecosystem function and productivity and used 
trends in 8 km2 NDVI from the Global Inventory Modeling and 

Table 10.2 (continued )  Four Most Common Sensors for Regional and Global Applications, Their Characteristics, and Example Applications

Satellite (Sensors) 

Characteristics (a Is Spatial 
Resolution, b Is Launch Date, c Is 

Swath Width, and d Is Revisit Time) Rangeland Application Examples References 

National Oceanic and 
Atmospheric 
Administration 
(Advanced Very High 
Resolution Radiometer)

(a) 1000 m, (b) NOAA-15 (1998), 
NOAA-16 (2000), NOAA-18 
(2005), NOAA-19 (2009) satellite 
series (1980 to present). The 
approximate scene size is 
2400 km × 6400 km

Fire
Active fire detection (thermal anomalies 

and NDVI)
Pu et al. (2004), Flasse and 

Ceccato (1996), and Dwyer et al. 
(2000)

Burned area evaluation (multitemporal 
multithreshold  approach)

Barbosa et al. (1999)

Fuel moisture (NDVI) Paltridge and Barber (1988) 
and  Eidenshink et al. (2007)

Vegetation attributes
Land cover (unsupervised and supervised time 

series analysis)
Loveland et al. (2000) and 

Hansen et al. (2000)
LAI/fPAR absorbed by vegetation (radiative 

transfer modeling, feedforward neural 
network)

Myneni et al., (2002), Ganguly 
(2008), and Zhu and 
Southworth (2013)

NPP (time-integrated NDVI) An et al. (2013)
Degradation (NDVI and rainfall use efficiency) Wessels et al. (2004) and Bai et al. 

(2008)

Many sensors that may have use for evaluating rangeland are not included. Svoray et al. (2013) provide a larger number of example applications in rangeland 
environments, but this table focuses largely on globally applicable sensors and global applications.
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Mapping Studies (GIMMS) as a “proxy indicator” of changes in 
NPP. Figure 10.5 represents changes in NPP from 1981 to 2003 
resulting from fusion of GIMMS NDVI and MODIS 1  km2 
NPP (Bai et  al., 2008). The NDVI is related to variables such 
as leaf area index (LAI) (Myneni et  al., 1997), the fraction of 
photosynthetically active radiation (fPAR) absorbed by vegeta-
tion, and NPP. This explains why many NPP estimates derived 
from remote-sensing approaches are based on LAI, and fPAR 
commonly from the AVHRR onboard the National Oceanic 
and Atmospheric Administration (NOAA) satellite, and the 
MODIS on the Terra and Aqua satellites (Ito, 2011). One caveat 
to remotely sensed estimates of NPP for degradation analyses 
is the need for comparison with ground-measured biophysical 
parameters such as NPP, LAI, or soil erosion (or salinization) for 
accuracy assessment (Bai et al., 2008; Le et al., 2012).

10.3.1.4  Rain Use Efficiency

RUE (ratio of NPP to rainfall) can be used to distinguish between 
the relatively low NPP of drylands associated with inherent 
moisture deficit and the additional decline in primary produc-
tion due to land degradation (Le Houérou, 1984; Le Houérou 
et al., 1988; Pickup, 1996). In the context of the LADA project, 
Bai et  al. (2008) estimated RUE from the ratio of the annual 
sum of NDVI (derived from MODIS and NOAA AVHRR) to 
annual rainfall and used it to identify and isolate areas where 
declining productivity was a function of drought (Figure 10.6). 

Figure 10.6 was produced using the same GIMMS NDVI data 
as Figure 10.5 in concert with Variability Analyses of Surface 
Climate Observations (VASClimO)-gridded precipitation data 
at 0.5° resolution. This recalibration process was thought to yield 
a proxy index for land degradation, assuming that a decline in 
vegetation for any other reason than rainfall (and temperature) 
differences would be an expression of some form of degradation.

Statistical analysis showed 2% of the land area exhibited a 
negative trend at the 99% confidence level, 5% at the 95% confi-
dence level, and 7.5% at the 90% confidence level (Bai et al., 2008). 
A  drawback of this mapping approach is that an area of land 
degradation much smaller than 8 km2 (pixel size of the GIMMS 
AVHRR) must be severe to significantly change the signal from 
a much larger surrounding area. In addition, the application of 
RUE to identify degraded landscapes has been somewhat con-
troversial and misinterpreted as an indicator of degradation 
(Prince et al., 2007) since the RUE is highly variable (Fensholt 
and Rasmussen, 2011). In addition, errors in gridded precipita-
tion data can add significant uncertainty, and noise to a deg-
radation analysis suggesting analyses based solely on remotely 
sensed data may be beneficial (Reeves and Baggett, 2014).

10.3.1.5  Local NPP Scaling

Prince (2002) developed the local net primary productiv-
ity scaling (LNS) approach. Though the LNS approach can be 
applied to data of any resolution, derived from a host of sensors 
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yielding visible and infrared bandpasses, AVHRR and Terra 
MODIS are commonly used. The LNS approach compares sea-
sonally summed NDVI (ΣNDVI) of a single pixel to that of high-
est pixel value (or, commonly, the 90th percentile) observed in 
homogeneous biophysical land units (e.g., similar soils, climate, 
and landforms). The highest ΣNDVI value is assumed as a proxy 
for the potential aboveground NPP (ANPP) for each unit, and 
the other ΣNDVI values are rescaled accordingly. Prince et  al. 
(2009) applied the LNS approach at national scales in Zimbabwe 
using MODIS 250 m2 NDVI and concluded that 17.6 Tg C year−1 
were lost due to degradation. Similarly, Wessels et al. (2007) used 
1 km2 time-integrated NDVI in northeastern South Africa. More 
recently, Fava et  al. (2012) used annual summations of MODIS 
250 m2 NDVI resolution in an LNS study for assessing pasture 
conditions in the Mediterranean resulting in a mean agreement 
of 65% with field-based classes of degradation. In a variant of the 
LNS approach, Reeves and Baggett (2014) used the mean 250 m2 
MODIS NDVI response of like-kind sites compared with reference 
conditions using a time series analysis to identify degradation on 
the northern and southern Great Plains, United States. With this 
approach, 11.5% of the region was estimated to be degraded.

10.3.1.6 � Global Assessment of Land Degradation: 
The Evolution of Remote Sensing Use

The use of remote-sensing data in global programs of land deg-
radation assessment is related to the history of the global assess-
ment of human-induced soil degradation (GLASOD), the global 

LADA (LADA-Global Assessment of Land Degradation and 
Improvement [GLADA]), and the Global Land Degradation 
Information System (GLADIS) programs, funded by the global 
organizations such as United Nations Environment Program 
(UNEP), the UN FAO, and the Global Environmental Facility 
(GEF). Table 10.3 summarizes the objectives, methods, and 
main outputs derived from these programs, including the use of 
remote-sensing technologies in their implementation.

The GLASOD, an expert-opinion-based study (Table 10.3), and 
Oldeman et  al. (1991) had two follow-up assessments, namely, 
the regional assessments of soil degradation status in South and 
Southeast Asia (Assessment of the Status of Human-induced Soil 
Degradation in South and Southeast Asia [ASSOD]) and Central 
and Eastern Europe (Soil and Terrain Vulnerability in Central and 
Eastern Europe [SOVEUR]) and the global LADA project, 
under UNEP/FAO. The LADA had the objectives of developing 
and testing effective methodological frameworks land degrada-
tion assessment, at global, national, and subnational scales. The 
global component of LADA (i.e., GLADA) provided a baseline 
assessment of global trends in land degradation using a range 
of indicators collected by processing satellite data and existing 
global databases (NPP, RUE, AI, rainfall variability, and erosion 
risk) as described in Bai et al. (2008). The GLADA was imple-
mented between 2006 and 2009, based on 22 years (1981–2003) 
of fortnightly NDVI data collection and processing (Table 10.3). 
The project developed and validated a harmonized set of meth-
odologies for the assessment of land use, land degradation, and 
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land management practices at global, national, subnational, and 
local levels (Ponce-Hernandez and Koohafkan, 2004).

The GLADIS was developed by FAO, UNEP, and the GEF 
using preexisting data and newly developed global databases 
to inform decision makers on all aspects of land  degradation. 
The GLADIS developed a global land use system (LUS) classi-
fication and mapping using a set of pressures and threat indica-
tors at the global level, allowing access to information at country, 
LUS, and pixel (5 arc-minute resolution) levels. It accounts for 
socioeconomic factors of land degradation, using a variety of 
ancillary data to this end. Lastly, Zika and Erb (2009) produced a 
global estimate of NPP losses caused by human-induced dryland 
degradation using existing datasets from GLASOD and other 
sources. Table 10.3 shows an evolution in the use of remote-
sensing technology from the first global assessments (GLASOD), 
expert based, with no use of remote-sensing imagery, to the latest 
LADA-GLADIS, heavily reliant on remote-sensing derived data 
coupled with an ecosystem approach. The GLASOD estimated 
that 20% of drylands (“excluding” hyperarid areas) was affected 
by soil degradation. A study commissioned by the Millennium 
Assessment based on regional datasets (“including” hyperarid 
drylands) derived from literature reviews, erosion models, field 
assessments, and remote sensing found lower levels of land deg-
radation in drylands, to be around 11% (although coverage was 
not complete) (Lepers et al., 2005). The LADA project reported 
that over the period of 1981–2005, 23.5% of the global land area 
was being degraded. On the other hand, Zika and Erb (2009) 
report that approximately 2% of the global terrestrial NPP is lost 
each year due to dryland degradation, or between 4% and 10% 
of the potential NPP in drylands. Figure 10.7 is a compilation of 
the global extent of drylands and human-induced dryland deg-
radation, produced for the fifth Global Environment Outlook 

(GEO-5) based on research of Zika and Erb (2009) who express 
dryland degradation in croplands and grasslands as a function 
of NPP losses.

The three dryland area zones (top of the figure) are derived 
on basis of the AI. Only dryland areas (arid, semiarid, and dry 
subhumid), characterized by an AI between 0.05 and 0.65, are 
considered. Degradation is assessed by calculating the differ-
ence of the potential NPP (NPP0) and current NPP (NPPact). NPP 
losses due to human-induced degradation amount to 965 Tg C 
year−1, giving evidence that about 4%–10% of the potential pro-
duction in drylands is lost every year due to human-induced soil 
degradation. The largest losses are occurring in the Sahelian and 
Chinese arid and semiarid regions, followed by the Iranian and 
Middle Eastern drylands and to a lesser extent the Australian and 
Southern African regions (UNEP, 2012) (Table 10.4) (Figure 10.5).

A loss of NPP in the range of 20%–30% means reductions of 
potential productivity in that range; in most pixels of Figure 10.7, 
productivity losses range between 0% and 5% of their NPP0. The 
results presented in Figures 10.5 and 10.7 illustrate the scope and 
patterns of degradation but must only be considered as rough 
estimates (Zika and Erb, 2009). Major uncertainties related to the 
results arise from three assumptions: (a) estimates of degradation 
extent, (b) assumptions on NPP losses due to degradation pro-
cesses, and (c) potential NPP as a proxy for production potential.

In recognition of the scope of degradation globally, the UN 
Conference on Sustainable Development (Rio+20) prompted the 
international community to develop universal sustainable devel-
opment goals providing a timely opportunity to respond to the 
threat of soil and land degradation (Koch et al., 2013). Despite 
over 30 years of applied research in this area, however, the need 
to provide a baseline and method from which to measure degra-
dation still remains (Gilbert, 2011).

Table 10.3  Cursory Comparison between Major Global Rangeland Degradation Efforts

Program Objective Methodology—Remote Sensing Usage 

Global assessment of human-
induced soil degradation 
(GLASOD) (UNEP) 
(1987–1990)

Produce a world map of human-induced “soil 
degradation,” on the basis of incomplete 
knowledge, in the shortest possible time

No remote sensing; expert-based approach; distinguishes “types” 
of soil degradation, based on perceptions; it is “not a measure” of 
land degradation

Land Degradation Assessment 
in Drylands (LADA)-
GLADA—global project, under 
UNEP/FAO (2006–2009)

Assess (quantitative, qualitative, and 
georeferenced) land degradation at global, 
national, and subnational levels to identify status, 
driving forces and impacts and trends of land 
degradation in drylands; identify “hot” 
(degradation) and “bright” (improvement) spots

The global LADA was based on 22 years (1981–2003) of fortnightly 
NDVI data, derived from GIMMS and MODIS-related NPP 
(MOD 17) Method

Identify degrading areas (negative trend in sum of NDVI)
Eliminate false alarms of productivity decline by masking out 

urban areas, areas with a positive correlation between rainfall 
and NDVI and a positive NDVI-RUE

Produce RUE-adjusted NDVI map
Calculate NDVI trends for remaining areas

LADA-Global Land Degradation 
Information System (GLADIS) 
FAO-UNEP-GEF (2006–2010)

Focus on land degradation as a process resulting 
from pressures on a given status of the ecosystem 
resources

Remote sensing is used for biomass status and trends, based on a 
correction factor to the GLADA-RUE-adjusted NDVI, to present 
trends in NDVI (1981–2006) translated in greenness losses and 
gains distinguished by climatic and human-induced 
(e.g., deforestation from FAO-FRA dataset) causes. Outputs are a 
series of global maps on the “status and trends” of the main 
ecosystem services considered and radar graphs

Sources:	 Oldeman (1996); Bai, Z.G. et al., Soil Use Manage., 24, 223, 2008; Nachtergaele et al., (2010).
Prepared by Metternicht, G. 
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For regional refinements to degradation analyses, radar 
satellite-based aboveground biomass estimations by Carreiras 
et  al. (2012), or regional vegetation cover (Dong et  al., 2014), 
could aid degradation analyses since cloud issues faced by LADA-
GLADA and GLADIS could be mitigated. Additionally, Blanco 
et al. (2014) propose ecological site classification of semiarid range-
lands enabling more refined spatial units across which remote 
sensing can be conducted. Finally, engaging citizens in knowledge 
production (including field verification of remotely sensed derived 
information), as fostered by current global (UNEPLive, Future 
Earth, Group on Earth Observations Biodiversity Observation 
Network) and subglobal initiatives (Eionet of the European 
Environmental Agency), could address the significant lack of 
ground truthing of previous global land degradation studies.

10.3.2  Fire in Global Rangeland Ecosystems

The extremely wide range of rangeland environments makes it 
virtually impossible to develop generalized statements about 
global fire regimes. However, the general composition of fuel 
and fuel characteristics defines some specifics of fire occur-
rence common for these ecosystems. Vegetation of rangelands 

Table 10.4  Estimates of NPP Losses due to Dryland Degradation, 
Regional Breakdown

Region 

Degraded 
Drylanda NPP Lossb 

1000 km2 % Tg C year−1 %

Central Asia and Russian 
Federation

1,432 19.5 250 26

Eastern and Southeastern Europe 391 55.5 73 8
Eastern Asia 1,887 45.3 50 5
Latin America and the Caribbean 1,206 18.8 98 10
Northern Africa and Western Asia 1,207 33.8 70 7
Northern America 607 11.3 51 5
Oceania and Australia 866 13.2 24 2
Southeastern Asia 45 40.4 10 1
Southern Asia 1,437 30.9 106 11
Sub-Saharan Africa 2,597 22.8 215 22
Western Europe 128 24.7 18 2
Total 11,802 23.2 965 100

Source:	 Zika, M.E. and Erb, K.H., Ecol. Econ., 69, 310, 2009.
a	Percentage of dryland area.
b	Estimated NPP losses associated with dryland degradation (see Zika and 

Erb (2009) for more detail).

Dryland areas
Dry sub-humid
Semi-arid
Arid

Dryland degradation
Loss of net primary

 productivity
0%

5%–10%
10%–20%
20%–30%
30%–40%
40%–50%
50%–70%
More than 70%

1%–5%

Figure 10.7  Global extent of drylands and human-induced dryland degradation. (From UNEP, 2012. Redrawn from Zika, M.E. and Erb, K.H., 
Ecol. Econom., 69, 310, 2009; We thank UNEP and the GEO-5 process for use of the figure.)
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is characterized by fast growth and slow decomposition rates 
(Vogl, 1979) leading to considerable buildup of surface litter. The 
majority of fuels in these ecosystems, with the possible exception 
of chaparral systems, are flash and fine fuels (<0.25 in diameter), 
which dry out rapidly (i.e., 1-h time lag fuels) and burn read-
ily (National Wildfire Coordinating Group, 2012). Therefore, it 
is not unusual for these ecosystems to transition from low-fire 
danger state to extreme-fire danger state over a comparatively 
short period. Contiguity and loading of fuel in these ecosystems 
is highly variable both spatially and temporally: interannual 
variation in fuel loading often exceeds 110% (Ludwig, 1987). 
While fire is currently a common and widespread disturbance 
agent globally in rangelands, its prominence is expected to rise 
under projected climate change. Past and ongoing satellite mon-
itoring and mapping of rangeland fire extent provide a much 
needed baseline for assessment of potential future change in fire 
occurrence and its impact on ecosystem functioning.

10.3.2.1  Satellite Monitoring of Ongoing Burning

The hotspot detections from the nighttime top of atmosphere 
radiance data from the Along-Track Scanning Radiometer 
(ATSR-2) and Advanced ATSR (AATSR) were used to build the 
first World Fire Atlas (Jenkins et al., 1997). Neither of the source 
instruments was designed to support fire detection specifically, 
and therefore, the algorithms were based on suboptimal ranges 
of electromagnetic radiation (at brightness temperature [BT] 
centered on 3.7 and 11.8 µm) using a suite of simple thresholds 
(Arino et al., 2012). The MODIS was, however, designed with a 
specific goal to enhance fire-mapping capabilities (Kaufman 
et al., 1998). MODIS collects daily global observations from Terra 
~11:30 a.m. and 11:30 p.m. and Aqua at ~1:30 a.m. and 1:30 p.m. 
equatorial crossing time. In addition, several “fire” channels were 
included in the instrument to support fire monitoring: two 4 µm 
channels (channel 21 with 500 K saturation level and channel 22 
with 331 K saturation level) and 11 µm channel (channel 31 with 
400 K saturation level) at 1 km2 nominal resolution (Giglio et al., 
2003). The flexibility of switching the high- and low-saturation 
4 µm channels in the contextual active fire detection algorithm is 
particularly important for tropical savanna environments.

The MODIS active fire product is the first product to include 
fire characterization metrics in addition to the binary “fire/no 
fire” masks. Fire radiative power (FRP), expressed in watts (W) 
is an instantaneous measurement of power released by ongoing 
burning during the satellite overpass (Kaufman et al., 1996a,b) 
and are estimated using an empirical relationship established in 
Kaufman et al. (1998). FRP is directly related to the intensity of 
biomass burning and, when integrated overtime to fire radia-
tive energy (FRE) expressed in joules (J), is linearly related to 
biomass consumption (Wooster et al., 2005).

10.3.2.2  Satellite Estimates of Burned Area

Unlike active fire detection, which is primarily based on BT in 
mid- and long-infrared spectrum, burned area estimates are 
most frequently based on changes in surface reflectance due 
to burning observable within the visible (0.4–0.6  µm), NIR 

(0.7–1.0 µm), and shortwave infrared (SWIR 1.1–2.4 µm) spec-
trum. The relatively short wavelength of radiation in this range 
determines that burned area mapping relies on clear-surface 
observations and is strongly limited by considerable aerosol con-
tamination from smoke during the burning process and high 
cloud cover in high northern latitudes.

The first multiyear global burned area products were devel-
oped from data acquired by VEGETATION (VGT) (onboard 
SPOT), ATSR-2 (onboard ERS-2), Medium Resolution Imaging 
Spectrometer (MERIS), and AATSR (onboard Environmental 
Satellite [ENVISAT]) instruments (Plummer et al., 2006) within 
the GLOBCARBON initiative. The suite of fire products devel-
oped from the MODIS 500 m2 data includes two global burned 
area algorithms. The MCD45 algorithm (Roy et  al., 2008) is 
based on detection of rapid changes in surface reflectance within 
a MODIS 500 m2 pixel (Figure 10.8).

The MCD64 algorithm (Giglio et al., 2009) relies on detection 
of persistent changes in vegetation state and subsequent attribu-
tion of the change to burning by comparison to active fire occur-
rence within a specified spatiotemporal window. A detailed study 
in Central Asia (Loboda et  al., 2012) has shown that MODIS-
based products deliver spatially accurate estimates of burned 
area in Central Asia. However, MCD45 on average underesti-
mates the total amount of burned area by ~30%, whereas MCD64 
estimates are considerably closer to Landsat-based assessments 
(~18% underestimation). The independent accuracy assessment 
results within drylands of Central Asia are similar to those in 
North America (Giglio et al., 2009). This makes MODIS-based 
products appear to deliver a reasonable estimate of fire impact 
on grasslands and shrublands of the world.

10.3.2.3 � Remote-Sensing Methods for Fire 
Impact Characterization

The large footprint of savanna fires, remote locations of tundra 
fires, and overall short longevity of scars of grass- and shrub-
dominated fires make remote sensing the only viable source of 
data for consistent global postfire characterization of burned 
area. While a healthy debate about what constitutes burn sever-
ity and how much the ecological definition ranges across ecosys-
tems is still ongoing in the fire science community (French et al., 
2008), the Monitoring Trends in Burn Severity (MTBS) program 
established the baseline definition. This includes the assumption 
that this parameter can be mapped from remotely sensed data 
and is ultimately based on a combination of “visible changes in 
living and nonliving biomass, fire byproducts (scorch, char, and 
ash), and soil exposure” among other components (Eidenshink 
et al., 2007). The same ranges of electromagnetic spectrum (visi-
ble–NIR–SWIR), therefore, constitute the basis for the strongest 
differentiation between soil, vegetation, char, and ash compo-
nents characterizing burn severity as those used most com-
monly for burned area mapping. It is not surprising that the first 
widely applied index for mapping and quantifying burn sever-
ity is based on the normalized difference of NIR and SWIR in 
2.2  µm range (SWIR2.2) originally developed by Lopez-Garcia 
and Caselles (1991) for burned area mapping. The Normalized 
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Difference Burn index (NDBR), as it was subsequently named by 
Key and Benson (1999a,b), is calculated as follows:

	
NBR

NIR SWIR

NIR SWIR
= −

+
.

.

2 2

2 2

where
NIR refers to the TM band 4 (0.76–0.90 μm)
SWIR2.2 refers to band 7 (2.08–2.35 μm)

Key and Benson (1999a,b) aimed to capture the fire-induced 
changes to the proportions of soil, char, ash, and vegeta-
tion through differencing the preburn and postburn NDBR 
measurement within a fire perimeter. This approach (differ-
enced normalized burn ratio [dNBR], calculated as dNBR = 
NBRpre-burn – NBRpost-burn) has become the most widely applied 

metric of burn severity across all ecosystems in the United 
States (Eidenshink et al., 2007).

Compared to forest cover, where the original assessment of 
dNBR were closely related to field measurements of burn sever-
ity expressed through a composite burn index (CBI) (Key and 
Benson, 2006, Allen and Sorbel, 2008), these grass- and shrub-
dominated ecosystems have a low amount of aboveground 
biomass and are spatially highly heterogeneous. Thus, the mag-
nitude of change between preburn and postburn surface condi-
tions is considerably more muted and uneven. To account for 
the initial lower fuel loading in these ecosystems, an adjustment 
to dNBR, named relativized dNBR (RdNBR), was developed by 
Miller and Thode (2007). This index is calculated as follows:
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dNBR

NBRpre-burn

=
1100

15°W 0° 15°E 30°E 45°E 60°E

15°W 0°

N
E

S
W

15°E 30°E 45°E

0 550 1100
km

60°E

30°S

15°S

15°N

30°N

0°

30°S

15°S

15°N

30°N

0° Not rangeland
No fire detected
in rangeland

1–80

Julian day
of fire detection

80–163
163–225
225–294
>294

Figure 10.8  Example of the MCD45 MODIS product for depicting approximate date of fire in rangelands globally. (Prepared by Matt Reeves. 
MCD45 MODIS data for 2013.)
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Although RdNBR versus CBI assessments show that RdNBR is 
more robust in assessing burn severity compared to dNBR in 
grass- and shrub-dominated ecosystems (Miller and Thode, 
2007; Loboda et al., 2013), it does not overcome a major limita-
tion of spectral signature change due to fire in NIR/SWIR spec-
tral space within these ecosystems.

It is likely that the success rate of any one spectral index in 
mapping and quantifying burn severity depends strongly on the 
specific proportions of grass, woody biomass, exposed soil, geo-
graphic location (as related to frequency of observation allow-
ing for a wider range of mapping days and different sun-sensor 
geometries), moisture status during image acquisition, and the 
timing of mapping.

10.3.3 � Food Security: Role of Remote 
Sensing in Forage Assessment

On rangelands, quantifying the amount of forage available to 
livestock on a near real-time basis using traditional methods (e.g., 
clipping vegetation along transects) can be costly, time consum-
ing, and logistically challenging. A lack of information for mak-
ing livestock management decisions at critical times could lead to 
loss of livestock due to lack of forage, or lead to vegetation over-
use, which, in turn, could result in rangeland degradation (Weber 
et al., 2000). Therefore, having an objective means of setting stock-
ing rates on rangelands based on productivity will allow range-
land managers to better adapt to changing weather conditions.

Because of the large areal cover that remote-sensing prod-
ucts provide, in addition to the greater temporal frequencies 

of collection compared to traditional field sampling over large 
areas, the use of remote-sensing imagery is attractive for assess-
ing vegetation production on rangelands. Multiple satellite plat-
forms exist that are useful for rangeland forage assessments and 
early warning systems. Two approaches have generally been used 
for assessing rangeland forage conditions using remote-sensing 
imagery. These include (1) empirical approaches that estimate 
the forage biomass or quality based on a statistical relationship 
between the spectral bands (or some combination of bands) in 
the imagery and field-collected vegetation data and (2) process 
models that use remote-sensing data as inputs for predicting 
vegetation biomass or quality.

10.3.3.1 E mpirical Approaches

Empirical approaches for assessing rangeland forage condi-
tions using remote-sensing products generally involve the use 
of a statistical relationship between the remote-sensing spectral 
response or product variable and data collected from field mea-
surements (Dungan, 1998). Using the empirical approach exam-
ple in Figure 10.9, a MODIS 250 m2 maximum value composite 
and NDVI value of 7500 correspond to approximately 3414 kg 
ha−1 of annual production, after accounting for unavailability 
(ϕ = 0.15) and suggested utilization (υ = 0.5) results in stocking 
rate of 5.3 animal unit month’s (AUM) ha−1.

In a similar manner, Tucker et al. (1983) used both a linear and 
logarithmic regression between the ground-collected biomass 
data in the Sahel region and AVHRR NDVI to predict biomass 
on a regional scale. Al-Bakri and Taylor (2003) used a linear 
regression approach to predict shrub biomass production for 
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rangelands in Jordan using 7.6 km2 AVHRR NDVI. Both these 
studies reported accounting for >60% of the variation in herba-
ceous biomass with AVHRR NDVI alone using linear regres-
sion against biomass. In the Xilingol steppe of Inner Mongolia, 
Kawamura et al. (2005) used 500 m2 MODIS enhanced vegeta-
tion index (EVI) to predict live biomass and total biomass of 
livestock forage with linear regression models, which accounted 
for 80% of the variation in live biomass and 77% of the varia-
tion in total biomass. In the Tibetan Autonomous Prefecture of 
Golog, Qinghai, China, Yu et  al. (2011) used the 250 m2 reso-
lution MODIS NDVI to estimate aboveground green biomass 
using regression relationships between the NDVI and field-
collected biomass data (r2 of 0.51) from sites across the region.

As with forage biomass, empirical approaches can be used 
for forage quality assessments generally involving examining 
statistical relationships between forage quality variables such as 
crude protein or energy and spectral information from remote-
sensing imagery. For example, Thoma et al. (2002) used simple 
linear regression with AVHRR NDVI as the independent vari-
able to predict forage quality and quantity on rangelands in 
Montana, United States. Their analysis indicated reasonable 
relationships between NDVI and live biomass (r2 = 0.68) and 
nitrogen in standing biomass (r2 = 0.66). Similarly, Kawamura 
et  al. (2005) used regression relationships between field-
collected data and MODIS EVI to predict live and dead bio-
mass and crude protein in standing biomass. They found good 
predictability between standing live biomass and total biomass 
(live + dead) (r2 = 0.77–0.80), but correlations with crude pro-
tein were poor (r2 = 0.11).

Remote-sensing imagery provides a dense and exhaustive 
dataset that can serve as a secondary variable for geostatistical 
interpolation given that a correlation exists (both direct and 
spatial) between the primary and secondary variable (Dungan, 
1998). Use of MODIS NDVI in the cokriging analysis of forage 
crude protein provides reasonable during the dry season (r2 = 
0.69) but less so during the wet season (r2 = 0.51) (Awuma et al., 
2007) likely because the amount of unpalatable shrub cover 
increased the greenness signal in the NDVI in some of the sam-
pling areas that did not contribute to the available forage.

10.3.3.2  Process Models Using Remote-Sensing Inputs

One problem that has been noted for regression models that 
use remote-sensing variables is that they violate the regression 
assumption of no autocorrelation in the predictor variable(s) 
(Dungan, 1998; Foody, 2003). Since most remote-sensing data 
are inherently autocorrelated, violation of this assumption may 
reduce the effectiveness of the regression model (Dungan, 1998). 
One way of overcoming the autocorrelation problems is to use 
process models that are driven by remotely sensed input vari-
ables on a pixel-by-pixel basis. Reeves et al. (2001) describe such 
an approach for predicting rangeland biomass using remote-
sensing products from the MODIS system and a light use effi-
ciency model for plant growth. Hunt and Miyake (2006) used a 
similar light use efficiency model approach for estimating stock-
ing rates for livestock at 1 km2 resolution in Wyoming, United 

States (Figure 10.9). Using the approach of Hunt and Miyake 
(2006), the stocking rate is estimated as gross primary produc-
tion (GPP) (1 − χ)(1 − η)(1 − ϕ) υ (AUM/273 kg month−1). From 
Hunt and Miyake (2006), the parameters for grasslands are 
approximately χ = 0.48, η = 0.79, ϕ = 0.15, and υ = 0.5 where χ is 
autotrophic respiration, η is belowground carbon allocation, ϕ 
is carbon allocation to nonpalatable stems and other vegetation, 
and υ is an estimated accepted level of utilization. Therefore, a 
monthly GPP of 11,000 kg ha−1 month−1 is about 1.7 AUM’s ha−1, 
but this is just one method of using process models parameter-
ized with remote-sensing inputs.

An example of a process-based modeling approach for forage 
quantity assessment at the regional level is the Livestock Early 
Warning Systems (LEWS) in East Africa (Stuth et  al., 2003a, 
2005) and Mongolia (Angerer, 2012) (Figure 10.10).

Figure 10.10 presents results of the LEWS applied in 
Mongolia in 2013. Note the significant decline of forage in 
southwestern Mongolia in 2013. The LEWS was developed 
to provide near real-time estimates of forage biomass and 
deviation from average conditions (anomalies) to provide 
pastoralists, policy makers, and other stakeholders with 
information on emerging forage conditions to improve risk 
management decision making. The LEWS combines MODIS 
250 m2 NDVI, field data collection from a series of monitoring 
sites, simulation model outputs, and statistical forecasting, to 
produce regional maps of current and forecast forage condi-
tions and anomalies. The system uses the Phytomass Growth 
Simulation model (PHYGROW) (Stuth et al., 2003b), param-
eterized with the MODIS 250 m2 NDVI, as the primary tool 
for estimating available forage. Model verification indicates 
the model performs well in estimating forage biomass (Stuth 
et  al., 2005). For example, model verification across moni-
toring sites in Mongolia indicated a good correspondence 
between the PHYGROW predicted biomass and observed 
field data (r2 = 0.76) with forage biomass ranging from 3 
to 1230 kg ha−1. PHYGROW had a tendency to underestimate 
forage biomass across sites by 14% with an overall mean bias 
error of −18 kg ha−1 (Angerer, 2008).

10.3.4 � Rangeland Vegetation Response 
to Global Change: The Role 
of Remote Sensing

Monitoring global change is an increasingly important endeavor 
(Running et  al., 1999) since ecosystem goods and services, 
essential to human survival, are directly linked to the health of 
the biosphere (Fox et al., 2009). The Earth is a dynamic system 
with many interacting components that are complex and highly 
variable in space and time. Though change has always been pres-
ent, human activities have influenced rates and extent of change 
beyond historical ranges (Vitousek, 1992; Levitus et  al., 2000; 
Foley et  al., 2005). Global change involves terrestrial, aquatic, 
oceanic, and atmospheric systems and cycles and is not limited 
to climate change alone (Beatriz and Valladares, 2008). Other 
factors such as invasive species, habitat change, overexploitation, 
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and pollution are equally or even more important to the Earth’s 
future (Millennium Ecosystem Assessment, 2005). Thus, the 
goal of global monitoring is aimed at characterizing “human 
habitability” through evaluation of vegetation that provides 
food, fiber, and fuel (Running et  al., 1999) to a rapidly grow-
ing population. In the burgeoning field of global change moni-
toring, satellite remote sensing is increasingly more important. 
Only remote sensing offers a truly synoptic perspective of our 
surroundings and is therefore a critical tool for describing the 
type, rate, and extent of change unfolding across the globe. This 
is especially true for rangeland ecosystems that experienced 
losses of about 700 million ha by 1983 due to agriculture. In the 
United States alone, an estimated 75 million ha of former range-
lands have been converted to agricultural land use since Euro-
American settlement (Reeves and Mitchell, 2011) (Figure 10.11). 
The impacts of global change, such as climate impacts and 
land conversion, are often quantified through evaluation of 

vegetation cover and NPP in the context of the global carbon 
budget (Running et al., 1999).

10.3.4.1  Vegetation Productivity

Given the lack of field-referenced data available for determining 
productivity for rangelands globally, ecosystem modeling, remote 
sensing (Hunt and Miyake, 2006; Fensholt et al., 2006; Reeves et al., 
2006), or a combination of both (Jinguo et al., 2006; Wylie et al., 
2007; Xiao et al., 2008) can be used to estimate spatial and tem-
poral trends across large areas. Many studies have evaluated the 
growth, total production, and health of rangeland vegetation, but 
two general approaches are normally applied that are very similar 
to the procedures outlined in the food security section. The first 
approach involves directly sensing, via radiometric measurement, 
the amount of growth that has occurred over a given time period.

Direct quantification of biomass across rangeland vegetation 
types requires a set of spatially explicit field samples describing 
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Figure 10.11  Panel (a) represents the estimated distribution of agricultural land use globally derived from MODIS MOD12Q1, 2006; University 
of Maryland Classification. Also shown is the hypothesized pre-Euro-American extent of rangeland (From Reeves, M.C. and Mitchell, J.E., 
Rangeland Ecol. Manage., 64, 1, 2011.) as is shown in Panel (b), while Panel (c) demonstrates areas of former rangeland now in agricultural produc-
tion (estimated using the Biophysical Settings data product from the Landfire Project; Rollins, 2009).
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the amount of peak biomass or annual production. Once field 
data are collected and properly scaled, statistical models can 
be developed to describe the relationship between NDVI and 
biomass (Figure 10.12) that can, in turn, be used to monitor the 
response of vegetation through time. If peak biomass is esti-
mates are sought, the annual maximum NDVI value should 
work reasonably well, but if annual production estimates are 
desired, a time integration of NDVI is usually employed (e.g., 
Paruelo et al., 1997).

Though NDVI has been widely used for monitoring global 
vegetation conditions, it exhibits well-known saturation char-
acteristics at relatively higher levels of biomass. The EVI can be 
used, with some success to overcome the saturation limitations 
inherent in NDVI. The saturation component of the NDVI sig-
nal, however, does not render it less useful for most applications. 
The reason for this is that across the range of productivity levels 
expected in most rangeland environments, the response is linear 
(Skidmore and Ferwerda, 2008).

The second approach for monitoring growth, total produc-
tion, and health of vegetation involves use of remote sens-
ing for quantifying canopy parameters, such as LAI, and 
fPAR, which, in turn, become part of a vegetation model-
ing system (Figure  10.12). Such a system is exemplified by 
the MODIS NPP algorithm (MOD17), which provides gross 
and NPP products at 1  km2 resolution for the entire globe. 

This approach is more sophisticated than direct sensing of 
biomass but enables carbon accounting for the global extent 
of rangelands. The modeling approach also requires a good 
deal more information including biome specific physiologi-
cal parameters (Running et al., 2004). In addition, since this 
type of modeling approach requires meteorological and land 
cover information, it is directly informed by land cover/land 
use changes associated with global change. The NPP of range-
land vegetation from 2000 to 2012 is depicted in Figure 10.13, 
which demonstrates the type of ecosystem analysis possible 
with the MODIS NPP product.

Figure 10.13 was created using a time series analysis 
from 2000 to 2012 of the MODIS-derived annual NPP and 
Collection 4.5 land cover products. From this analysis, signifi-
cant overlap and similarities between the savanna and woody 
savanna land cover classes are evident. These similarities sug-
gest similar biophysical and bioclimatic conditions are present 
in these two classes or confusion exists between the classes. 
The close relationship between woody savanna and savanna 
could also be related to spatial commingling of the two types, 
which could be alleviated using higher-resolution imagery. 
Multisensor fusion between MODIS (high temporal resolu-
tion) and Landsat (e.g., ETM+—high spatial resolution) can be 
used to explore why woody savannas and savannas are per-
forming very similarly.
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Roy et  al. (2008) used MODIS 500 m2 bidirectional reflec-
tance distribution function spectral model parameters and the 
sun-sensor geometry to estimate ETM surface reflectance to fill 
temporal gaps between suitable ETM+ overpasses. This process 
resulted in prediction errors in the NIR dataspace of about 12% 
overall. Directly incorporating effects from changing climate, 
land cover, and associated vegetation responses simultaneously 
enables improved analysis of global change effects on rangeland 

environments. One major goal of satellite remote sensing is 
observation of vegetation over large areas and for long periods 
of time. The appropriate length of observation depends on the 
behavior of the phenomena to be studied. Developing long-term 
observations requires much effort to ensure continuity across 
new sensors with varying bandpasses and associated target-
atmospheric effects, drifts in calibration, and filter degradation 
(Huete et al., 2002).
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10.3.4.2 �E xtending Remote Sensing Time Series 
Using Cross-Sensor Calibration

Recent ecological research has shown that declines in dryland 
productivity (often estimated measured using trends in NDVI 
and/or NPP), and increases in soil loss are due to the syner-
gistic effects of extreme climatic events and land management 
practices. In particular, livestock grazing and El Niño and La 
Niña events have 3- to 7-year return intervals (Holmgren and 
Scheffer, 2001; Holmgren et al., 2006; Washington-Allen et al., 
2006) indicating that 10–20 years of continuous data is required 
to replicate, monitor, and assess the influence of land use prac-
tices and these extreme events (Washington-Allen et al., 2006).

Sensors have finite life spans, and developing long-term obser-
vations often requires using multiple sources of data to develop 
a continuous, compatible dataset. The extension of time series is 
challenging due to drifts in calibration, filter degradation, and 
band locations (Miura et al., 2006). These characteristics create 
errors and uncertainties that vary with the landscape and sen-
sors being evaluated. As examples, red and NIR spectral chan-
nels from AVHRR are relatively broad occupying the spectral 
space between 580–680 and 730–1000 nm, respectively. In con-
trast, MODIS provides more narrow bands in the red and NIR 
space at 620–670 and 841–876  nm, respectively. The broader 
AVHRR red channel incorporates a portion of the green reflec-
tance region (500–600  nm) (Figure 10.4) inevitably yielding a 
different spectral response of vegetation than MODIS.

The approaches for extending a satellite data time series via 
sensor (or product) cross-calibration involve remote-sensing data 
fusion that accounts for multisensory, multitemporal, multireso-
lution, and multifrequency image data from operational satel-
lites (Pohl and Van Gederen, 1998; Zhang et al., 2010). Extension 
of satellite data records to produce time series of NDVI or NPP 
data typically involve

	 1.	 Development of equations to simulate the spectral 
responses of individual channels (e.g., Suits et al., 1988)

	 2.	 Development of calibration equations to simulate the veg-
etation indices derived from other sensors (e.g., Steven 
et al., 2003; Tucker et al., 2005)

	 3.	 Cross-calibration of NDVI (e.g., from AVHRR) and NPP 
data products (e.g., from the MODIS sensor) to back cast 
the NPP record

These techniques have been explored in a good number of stud-
ies and indicate suitable relations between sensors, but results are 
often inconclusive (Fensholt et al., 2009). Suits et al. (1988) deter-
mined that multiple regression analysis compared to principle 
component analysis was the best approach for spectral response 
substitution between Landsat and AVHRR sensors. Steven et al. 
(2003) found that vegetation indices from Landsat, SPOT, AVHRR, 
and MODIS were strongly linearly related, which allowed them to 
develop a table of conversion coefficients that allowed simulation 
of NDVI and SAVI across these sensors within a 1%–2% mar-
gin of error. With the exception of AVHRR, which was designed 
for other purposes, most high temporal resolution sensors have 

similar sensitivity to green vegetation. In addition, vegetation 
indices from many global platforms can be calibrated to within 
approximately ±0.02 units if surface reflectance (as  opposed 
to top of atmosphere) is used (Steven et al., 2003). Fensholt and 
Proud (2012) compared the GIMMS 3g 8  km2 NDVI archive 
with MODIS 1 km2 NDVI and showed that global trends exhibit 
similar tendencies but significant local and regional differences 
were present, especially in more xeric environments. A compre-
hensive analysis of four long-term AVHRR-based NDVI datasets 
with MODIS and SPOT NDVI datasets for the common period 
(from 2001 to 2008) clearly demonstrated lower correlations in 
more xeric regions such as the southwest and Great Basin of the 
United States (Scheftic et al., 2014). Similarly, Gallo et al. (2005) 
reported that 90% of the variation between 1  km2 MODIS and 
AVHRR NDVI can be explained by a simple linear relationship, 
while Miura et al. (2006) developed translation equations to emu-
late MODIS NDVI from AVHRR resulting in an r2 of 0.97. Despite 
these successes, trend analyses from AVHRR can differ strongly 
from those estimated with MODIS and SPOT-VGT (Steven et al., 
2003) and lead to spurious conclusions. Unlike MODIS, AVHRR 
does not provide additional necessary channels permitting analy-
sis of atmospheric composition for suitable atmospheric correc-
tion (Yin et al., 2012). Therefore, cross-sensor calibration must be 
carefully planned and should leverage the strengths of previous 
efforts. Most efforts aimed for extending time series to improve 
trend analyses involve spectral calibration, either of individual 
band passes or indices. For monitoring global change and eco-
system performance, however, it is useful to quantify NPP trends 
given its link with the global carbon cycle and paramount impor-
tance to maintaining goods and services. Bai et al. (2008, 2009) 
developed a 23-year time series of global NPP data from 1982 to 
2003 using the overlap period (2000–2003) between 1 km2 MODIS 
NPP and the mean annual sum of 8 km2 AVHRR GIMMS, for 
LADA program of FAO. Next, linear regression was applied 
to 4-year mean, global, annual sum of NDVI from the GIMMS 
dataset and MODIS NPP to generate a single empirical equation 
between these two datasets. The resulting equation was then used 
to produce an 8 km2 NPP time series from 1982 to 2003. Wessels 
(2009) critiqued the approach of Bai et al. (2008) arguing that spa-
tial variability was reduced and unaccounted for by using a single 
mean equation rather than a pixel-by-pixel approach. As a result, 
the following case study used a pixel-wise regression approach 
for establishing relationships between 8 km2 GIMMS NDVI and 
1 km2 MODIS NPP. The goal of this case study was to produce a 
continuous, compatible dataset describing annual NPP from 1982 
to 2009 using both 8  km2 AVHRR GIMMS from Tucker et  al. 
(2005) and 1 km2 MODIS net photosynthesis. A more recent ver-
sion of GIMMS AVHRR NDVI (GIMMS 3g) data is available from 
1981 to 2011 at 1/12th° spatial resolution.

10.3.4.2.1  Case Study
The strategy suggested by Steven et al. (2003) and Wessels (2009) 
was followed for calibrating 8 km2 pixel resolution GIMMS annual 
ΣNDVI from 1982 to 2006 to MODIS NPP data aggregated from 1 
to 8 km2 using the 2000 to 2006 overlap period between these two 
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time series. Collection 5 annual estimates of MODIS NPP from 
2000 to 2006 and GIMMS ΣNDVI time series were subset to the 
rangeland portion of the contiguous United States and classified 
according to varying levels of aridity using AI (Figure 10.14). The 
AI of drylands (AI ≤ 0.65) is partitioned into four classes includ-
ing the hyperarid, arid, semiarid, and dry subhumid classes.

10.3.4.2.1.1  Application and Validation of Linear Regression 
Approach  The Taiga Earth Trend Modeler from IDRISI was 
used to conduct a simple linear regression on a pixel-by-pixel 
basis between the two time series using the years 2000, 2002, 
2004, and 2006. This was done so that a holdout dataset could be 
retained for comparing predicted and observed NPP. Across all 
pixels in the rangeland domain, the mean NDVI was 0.03 and 
mean NPP was 281.6 g C m−2 year−1. The mean equation across 
all pixels was

	 Y = 0.03 * X + (−31.7)

where
X is the annual GIMMS ΣNDVI
Y is the predicted 8 km2 MODIS NPP and r2 = 0.41 (Figure 10.15)

Panels A, B, and C in Figure 10.15 represent the estimated slope, 
intercept, and r2 of a linear regression for each pixel in the study 
area between GIMMS NDVI and MODIS NPP for the years 2000, 
2002, 2004, and 2006. Predicted MODIS NPP was subsequently 

compared to the observed MODIS NPP (Table 10.5). Figure 10.16 
indicates a strong relationship between monthly integrated 
8 km2 GIMMS NDVI and monthly integrated 1 km2 MODIS net 
photosynthesis (PSNnet) over the domain of coterminous US 
rangelands.

The net photosynthesis is a major component of the annual NPP 
product. To derive the final model to extend the NPP time series, 
the pixel-level regressions developed were applied to the annual 
GIMMS ΣNDVI from 1982 to 1999. To these data, the MODIS 
NPP time series from 2000 to 2009 were added, thus extending 
the final time series from 1982 to 2009.

Using the final time series, temporal and spatial variations in 
NPP response can be quantified. The mean NPP for each class 
from 1982 to 2009 was 95 ± 28 for hyperarid, 115 ± 47 for arid, 
218 ± 114 for semiarid, and 370 ± 117 (g C m−2 year−1) for the dry 
subhumid class. In addition, the temporal trend (not accounting 
for temporal autocorrelation) of NPP within each AI class was as 
follows: hyperarid (r2 = 0.08, p = 0.08), arid (r2 = 0.01, p = 0.37), 
semiarid (r2 = 0.25, p = 0.004), and dry subhumid (r2 = 0.22, 
p = 0.006) (Figure 10.17).

Using this approach, significant carbon gains were detected 
for both semiarid and arid systems. In addition, the positive 
response in arid and semiarid systems agrees with conclusions 
by Reeves and Baggett (2014) that significant increasing trends 
have been observed from 2000 to 2012 across much of the US 
rangeland domain, owed mostly to increased precipitation. 
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Table 10.5  Comparison of Predicted and Observed Values across the Extent of Rangelands 
in the Coterminous U.S. (g C m2 year−1)

 g C m2 year−1 

Year Minimum Median Mean SD 

2001 16.5 179 211 123
0.1 186 220 137

2003 15.3 189 218 131
2.4 184 217 131

2005 19.8 236 126 126
0.1 210 157 157

Bold numbers are predicted values based on the pixel level regression equations depicted in Figure 10.16.
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The results portrayed in Figure 10.17 demonstrate improved 
chances for successfully interpreting vegetation response to 
global change through increasing the time series of satellite 
observation.

10.3.5  Remote Sensing of Global Land Cover

Global land cover data are essential to most global change 
research objectives, including the assessment of current global 
environmental conditions and the simulation of future environ-
mental scenarios that ultimately lead to public policy develop-
ment. In addition, land cover data are applied in national- and 
subcontinental-scale operational environmental and land man-
agement applications (e.g., weather forecasting, fire danger 
assessments, resource development planning, and the establish-
ment of air quality standards). Land cover characteristics are 
integral to many Earth system processes (Hansen et al., 2000), 

in addition to providing information for carbon exchange and 
general circulation models. A common and important applica-
tion of global land cover information is inference of biophysical 
parameters, such as LAI and fPAR, which influence global-scale 
climate and ecosystem process models. Use of these models and 
monitoring the state of the Earth’s rangelands is needed for 
global change research, especially given the influence of grow-
ing anthropogenic disturbances (Lambin et al., 2001; Jung et al., 
2006; Xie et al., 2008).

One of the remote-sensing community’s grand challenges 
is to provide globally consistent but locally relevant land cover 
information (Estes et al., 1999). Evaluations of remote-sensing-
based global land cover datasets have shown general agreement 
of patterns and total area of different land covers at the global 
level but have more limited agreement in spatial patterns at 
local to regional levels (McCullum et al., 2006) (Figure 10.18). 
Figure  10.18 demonstrates the difficulty in deriving rangeland 
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area estimates using data from AVHRR (DeFries et al., 1998) and 
the MODIS Mod12Q1 (2005).

Both datasets have global coverage at 1  km2 resolution but 
have different legends and classification techniques. Global map-
ping presents special challenges since the geographic variability 
of both land cover and remote-sensing inputs add complexity 
that can lead to inconsistent results. The evolution of global land 
cover datasets over the past 30 years has attempted to meet the 
grand challenge while adhering to general remote-sensing land 
cover–mapping standards dealing with accuracy, consistency, 
and repeatability.

The earliest contemporary efforts to provide global land cover 
data did not rely on remote-sensing inputs but instead was based 
on the developer’s expertise and the quality of information from 
best available sources (Matthews, 1983; Olson, 1983; Wilson and 
Henderson-Sellers, 1985). These maps were coarse (i.e., 1° × 1°) 
in resolution but thematically detailed. Global land cover map-
ping based on remote sensing advanced rapidly in the 1990s when 
NOAA polar-orbiting data from the AHVRR were compiled into 
global coverage. Initially, 4 km2 AVHRR Global Area Coverage 
Pathfinder data aggregated to 1° × 1° (DeFries and Townshend, 
1994) and later to 8 km2 resolution (DeFries et al., 1998) were inputs 
to the first remote-sensing–based global land cover products.

The International Geosphere-Biosphere Programme (IGBP) 
served as the catalyst for a worldwide effort led by the USGS 
to generate a 1992–1993 set of 1  km2 resolution AVHRR 
global 11-day maximum NDVI composites (Eidenshink and 
Faundeen, 1994). Also under IGBP auspices, these data were 
used to produce the first 1  km2 resolution global land cover 
dataset using the 17-class International Geosphere-Biosphere 
Programme Global Land Cover Classification (IGBP DISCover) 
legend (Loveland et  al., 2000) (Figure 10.18). Hansen et  al. 
(2000) followed with the completion of a 1 km2, 12-class land 
cover dataset (UMD land cover map). These two maps served as 
the foundation for future global-mapping initiatives since their 
development experiences and map strength and weaknesses 
provided valuable lessons for the next generation of maps.

The NASA Earth Observing System’s ambitious global land 
product program based on multiresolution MODIS data estab-
lished a new state of the art in global land cover mapping. 
MODIS global land cover based on 500 m resolution imagery 
and the 17-class IGBP DISCover legend started in the 2001 and 
since then has been updated annually (Friedl et al., 2002). This 
ongoing activity represents the only sustained global land cover 
initiative. In the 2000s, European global land cover projects 
contributed significantly to advancing global land cover under-
standing. The Global Land Cover 2000 (GLC2000) project used 
SPOT vegetation instrument data to produce a 22-class 1 km2 
resolution land cover dataset (Bartholomé and Belward, 2005). 
In a follow-on effort, the European Space Agency sponsored 
a follow-on project, GlobCover, that used ENVISAT MERIS 
imagery to generate the highest-resolution (300 m) global land 
dataset ever. The MERIS-based map contained 22 land cover 
classes based on the United Nations-sponsored international 
standard—land cover classification system (LCCS).

The most recent global land cover dataset is the unprece-
dented China-led Fine Resolution Observation and Monitoring 
of Global Land Cover (FROM-GLC) dataset that is based on 
Landsat 5 and 7 TM/ETM+ and other high-resolution Earth 
observation data spanning the first decade of the twenty-first 
century (Gong et al., 2013). The FROM-GLC dataset with 29 land 
cover classes establishes new standards for high-resolution land 
cover mapping and monitoring.

In addition to the thematic land cover mapping efforts 
described earlier (Table 10.6), global “continuous fields” prod-
ucts provide quantitative estimates of the percent tree cover 
within each grid cell. DeFries et al. (1999) developed global per-
cent tree cover data using 1 km2 AVHRR imagery, and Hansen 
et al. (2003) created similar products using MODIS.

10.3.5.1 �C omparative Investigations 
of Global Land Cover Datasets

With a relatively large number of global land cover datasets 
available, users face a challenge in understanding which one 
is best suited for their application. The differences in spatial 
resolution, temporal properties, land cover legend, and qual-
ity complicate the selection. Land cover legend and quality 
are particularly significant factors. Accuracy assessments that 
provide insights into data quality are available for some of the 
global products. For example, both the IGBP DISCover and 
GLC2000 datasets were evaluated using an independent accu-
racy assessment. DISCover accuracy was measured at 66.9% 
(Scepan, 1999). Mayaux et al. (2006) determined that the overall 
GLC2000 product accuracy was 68.6%. The MODIS land cover 
dataset accuracy was assessed based on a comparison with 
training data, with the results showing 78.3% agreement (Friedl 
et  al., 2002). The more recent GlobCover land cover dataset’s 
(Table 10.6) independent accuracy was measured to be 73.0%. 
Finally, the China-led fine-resolution global land cover prod-
uct was determined to have an overall accuracy of 71.5% (Gong 
et al., 2013). Accuracy assessments were not produced for UMD 
global land cover datasets.

The overall accuracies mask the significant variations in per 
class accuracies (e.g., Scepan, 1999 estimates that the DISCover 
individual class accuracies varied from 40% to 110%). The class 
accuracy variations, as well as variations in land cover legends 
and class definitions, make cover-specific applications prob-
lematic. As a response to this problem, a number of global data-
set comparison studies have been undertaken, which focus on 
determining dataset strengths and weaknesses. Some have used 
independent datasets to look at regions or continents, such as 
Tchuenté et al.’s (2011) evaluation of GLC2000, GlobCover, and 
MODIS land cover for Africa and Frey and Smith’s (2007) evalu-
ation of IGBP DISCover and MODIS land cover over western 
Siberia. Other comparisons have looked at agreement between 
datasets across the globe. For example, Hansen and Reed (2000) 
compared UMD and IGBP DISCover products; Giri et al. (2005) 
compared MODIS and GLC2000; McCullum et al. (2006) com-
pared IGBP, UMD, GLC2000, and MODIS products; and Fritz 
and See (2007) compared MODIS, GLC2000, and GlobCover. 
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McCullum et  al. (2006) concluded that while there is general 
agreement at the global level in total area and general land cover 
patterns; there is limited agreement when looking at specific 
spatial distributions.

Perhaps the most definitive effort to understand the differ-
ence in global datasets comes from Herold et al. (2008). In this 
study, the IGBP DISCover, UMD, GLC2000, and MODIS land 
cover datasets were harmonized by crosswalking the different 
land cover classes to a common classification standard—the UN 
LCCS (Di Gregorio, 2005). Thirteen classes were defined, and the 
original accuracy assessment samples associated with the various 
products were used to determine per class and overall accuracy 
for each harmonized product. Cover types with large homoge-
neous extents, such as barren, cultivated, and managed, shrub-
lands, and snow and ice, are more consistently represented in 
global products than smaller, discontinuous classes. All products 
show a limited ability to consistently represent mixed classes.

As the quality and resolution of remotely sensed data used for 
global land cover mapping improves, the logical expectation is 
that overall and individual class accuracies will also improve. 
Fritz et al. (2011) emphasize the continued uncertainty in global 
land cover products, especially in land cover classes associated 
with agriculture and some forest groups. They suggest that 
increased use of in situ data is the key to improving global land 
cover datasets.

10.4 � Future Pathways of Global Sensing 
in Rangeland Environments

Remote sensing has created unprecedented capacity to study 
the Earth by providing repeated measurements of biological 
phenomena at global scales. Since the first regional applica-
tions of NDVI (one of the earliest regional applications found 
is Rouse et  al., 1973) (Section 10.2), the study of the global 

Table 10.6  Summary of Characteristics of the Major Remote Sensing Global Land Cover Datasets

Database Source Vintage Resolution 
Land Cover Content 

(Suggested Rangeland Classes) Strengths Weaknesses 

Global AVHRR 
NDVI land cover 
(De Fries and 
Townshend, 
1994)

AVHRR 1987 1.0°2 latitude 11 (3) land cover classes—
based on simple biosphere 
model

First remote-sensing-
based depiction of 
global land cover

Coarse resolution, 
applications 
limited to global 
circulation model 
applications.

Global AVHRR 
land cover (De 
Fries et al., 1998)

AVHRR Global 
Area Coverage 
Pathfinder

1987 8 km2 14 (5) land cover classes—
based on the simple 
biosphere model

Improved spatial 
resolution provided 
more realistic view 
of global land cover

Land cover classes 
were general and 
specific to one 
application 
requirement

IGBP DISCover 
(Loveland et al., 
2000)

AVHRR local 
area coverage

1992–1993 1 km2 17 (5) IGBP DISCover land 
cover classes and other land 
cover legends

Highest-resolution 
global land cover to 
date, validated based 
on statistical design

Variable image 
quality contributed 
to unevenness of 
land cover 
accuracy

UMD global land 
cover (Hansen 
et al., 2000)

AVHRR local 
area coverage

1992–1993 1 km2 12 (5) land cover classes Based on an 
automated analysis 
strategy

Not validated, 
affected by variable 
image quality

MODIS global 
land cover (Friedl 
et al., 2002)

MODIS 2001–present, 
produced 
annually

500 m2 17 (5) IGBP DISCover land 
cover

Uses highest-quality 
remotely sensed 
inputs available, 
based on rigorous 
automated methods

Unknown accuracy 
due to the lack of a 
design-based map 
validation

GLC2000 
(Bartholome and 
Belward, 2005)

SPOT 4 
VEGETATION

2000 1 km2 22 (5) land cover classes Based on 
standardized land 
cover legend, 
validated results

Affected by variable 
image quality

GlobCover (Arino 
et al., 2007)

ENVISAT 
MERIS

2005–2006 300 m2 22 (4) land cover classes, UN 
Land Cover Classification 
System

Based on 
standardized land 
cover legend, 
validated results, 
and highest-
resolution imagery 
to date

Regional variability 
in image quality 
increased 
uncertainty of 
results in some 
parts of the world

Fine resolution 
global land 
cover (Gong 
et al., 2013)

Landsat 5 and 7 Nominally 
2005–2006

30 m2 29 (6) land cover classes Highest-resolution 
dataset ever 
produced

Limited temporal 
inputs resulted in 
regional 
inconsistencies
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rangeland situation has benefitted greatly from advancements 
made in a relatively short period of time. Though future uses 
of remote-sensing data will be used in unexpected ways, obvi-
ous areas of enhancement and progress are anticipated. These 
future pathways can be expressed in distinct areas including 
data availability, processing improvement, and biophysical 
product improvement.

The design and intended application of spaceborne sensors 
will continue to evolve, and a wider variety of satellite sys-
tems including radar and lidar could be quite beneficial in the 
future. If the past provides a glimpse into the future, new sensors 
with improved capabilities will be developed, but it is unclear, 
however, whether improved spatial, spectral, and temporal 
resolution of satellite remote sensing will provide the greatest 
advancements in the evaluations of rangelands on a global scale. 
The ability to extract surface features and quantify biophysical 
properties will still be limited by the same factors presently hin-
dering remote sensing of rangelands. Characteristics such as soil 
background, leaf anatomy and physiology, and relatively low bio-
mass conspire to hinder remote sensing of rangelands. Very little 
can be done to change these situations, and as a result, future 
pathways should include a focus on data continuity, increased 
data availability, better computer processing systems, and global 
campaigns for collecting field-referenced data.

Remote-sensing data continuity is important to monitoring 
global rangelands, and loss of this critical aspect will signifi-
cantly weaken our ability to understand what the biosphere is 
indicating. The need for continuity is recognized in the Land 
Remote Sensing Policy Act of 1992, which states

The continuous collection and utilization of land remote 
sensing data from space are of major benefit in studying and 
understanding human impacts on the global environment, 
in managing the Earth’s resources, in carrying out national 
security functions, and in planning and conducting many 
other activities of scientific, economic, and social importance.

Since the first civilian spaceborne missions (e.g., Landsat 1), the 
global monitoring community and government agencies have 
been reasonably successful in providing the needed continuity. 
The Landsat program is a good example of the flow and con-
tinuity with incremental improvements with each successive 
launch generally maintaining a 30 m2 resolution benchmark. 
If archive data from Landsat 4 (deployed in 1982) are included, 
32 years of 30 m2 spatial resolution from the TM sensor in visible 
and NIR (at the minimum) are available. Landsat 8, launched 
on February 11, 2013, is the most recent addition to the suite of 
Landsat satellite launches and provides an example of main-
taining continuity with previous missions while improving 
capability. Landsat 8 contains the Operational Land Imager 
(OLI) and the Thermal Infrared Sensor (TIRS), which provide 
global coverage at varying resolutions. The OLI provides two 
new spectral bands for detecting cirrus clouds and the other 
for coastal zone observations. Now that the entire archive of 
Landsat data has been made freely and publically available, 
usage has increased exponentially. The unprecedented data 
availability has and will continue to lead to new algorithmic 
and ecological discoveries.

Increased data usage may signal greater interest in remote 
sensing but certainly tracks the increased microprocessor speed 
over the last decade (Figure 10.19). As processing speed and 
memory have increased so has the level of algorithmic sophis-
tication and spatial domain for analysis. Indeed, the global 
remote-sensing community is poised for improved character-
ization capabilities, due to new data policies and concurrent 
advances in computing (Hansen and Loveland, 2011).

Even a decade ago, it would have been unthinkable to regu-
larly process and store a global time series of satellite imagery 
with a pixel resolution of less than about 250 m2. Although it is 
certainly possible to monitor rangelands globally at 30 m2, it will 
be a monumental task. Each TM path/row contains 0.534 GB in 
the seven multispectral and thermal channels and approximately 
0.234 GB for the panchromatic band. Since roughly 16,396 
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Figure 10.19  Microprocessor speed and MODIS data usage (microprocessor speed data courtesy of https://www.raptureready.com/accessed 
April 1, 2014; MODIS usage data courtesy of B. Ramachandran NASA Earth Observing System, LP DAAC.)
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scenes are required for global coverage (including oceans), that 
is an estimated 12.3 TB of data for a single 16-day period. The 
repeat frequency or revisit cycle is 16 days (~22 periods per year), 
so the total amount of data since 1999 is near 4208 TB. Based 
on an online storage price of $0.08 per month per GB (https://
cloud.google.com/products/cloud-storage/), the storage cost is 
tantamount to roughly 4 million dollars per year. While this 
represents a significant amount of data and resources, a grow-
ing number of global applications at 30 m2 spatial resolution can 
be expected. Indeed, this past year has seen the production of a 
Landsat-based global database of tree cover at 30 m2 resolution 
(Sexton et al., 2013), and work is underway to develop long-term 
(Landsat period of record) land cover dynamics on a global scale 
(Sexton et al., 2013).

Presently, numerous efforts aimed at global remote sensing 
of rangelands are based on MODIS sensors aboard the Terra 
and Aqua satellites. Since 2006, the number of scenes annu-
ally distributed from MODIS data from both Aqua and Terra 
has increased by 7.6 million per year (about 181 TB year−1) 
(Figure 10.19). This use is a testament to the breadth of vetted sci-
ence data products offered globally. Continuity between MODIS 
and future global Earth-observing satellites is provided by the 
Suomi National Polar-orbiting Partnership (NPoP) satellite. 
Suomi NPoP was launched in 2011 with five key instruments, 
but the instrument with greatest application, to rangelands glob-
ally, and similarity with the AVHRR and MODIS predecessors 
is the VIIRS. The VIIRS instrument observes the Earth and 

atmosphere at 22 visible and infrared wavelengths (Table 10.7). 
Suomi NPP is the bridge between the current NASA research 
Earth-observing satellites and future NOAA missions, specifi-
cally the Joint Polar Satellite System (JPSS) (Lee et al., 2006). The 
JPSS is a joint program between NOAA, NASA, and the Defense 
Weather Satellite System, tasked with developing the next-gen-
eration requirements for environmental research, weather fore-
casting, and climate monitoring (npp.gsfc.nasa.gov/viirs.html). 
The JPSS provides operational continuity of satellite-based 
observations and products through a series of advanced space-
craft of which Suomi NPoP is a member. The next two satellites 
to be launched include JPSS 1 and JPSS 2, both of which will con-
tain, among others, the VIIRS instrument. The JPSS 1 platform 
is scheduled to be launched in 2017, while JPSS 2 is scheduled for 
launch in 2021.

The continuity of land remote-sensing instruments is well 
established and provides a critical component to researchers 
involved with global change research in rangeland environ-
ments. Most future global issues will emulate present concerns. 
In other words, the problems, or area of focus, today (e.g., vege-
tation trends, land degradation, and fire processes) will continue 
and perhaps intensify in the future.

Regardless of the increasingly important roles remote sens-
ing will play, georeferenced field data will play an equally criti-
cal aspect of biospheric monitoring (Baccini et al., 2007). Fritz 
and See (2011) suggest that increased use of in situ data is the 
key to improving global datasets. The collection, maintenance, 

Table 10.7  Spectral Channels and Suggested Usefulness

Band No. Driving EDR(s) Spectral Range (µm)  

Horiz. Sample Interval (km) 
(Track × Scan) 

Nadir End of Scan 

Reflective bands VisNIR M1 Ocean color aerosol 0.402–0.422 0.742 × 0.259 1.60 × 1.58
M2 Ocean color aerosol 0.436–0.454 0.742 × 0.259 1.60 × 1.58
M3 Ocean color aerosol 0.478–0.498 0.742 × 0.259 1.60 × 1.58
M4 Ocean color aerosol 0.545–0.565 0.742 × 0.259 1.60 × 1.58
I1 Imagery EDR 0.600–0.680 0.371 × 0.387 0.80 × 0.789
M5 Ocean color aerosol 0.662–0.682 0.742 × 0.259 1.60 × 1.58
M6 Atmospheric correction 0.739–0.754 0.742 × 0.776 1.60 × 1.58
I2 NDVI 0.846–0.885 0.371 × 0.387 0.80 × 0.789
M7 Ocean color aerosol 0.846–0.885 0.742 × 0.259 1.60 × 1.58

S/WMIR M8 Cloud particle size 1.230–1.250 0.742 × 0.776 1.60 × 1.58
M9 Cirrus/cloud cover 1.371–1.386 0.742 × 0.776 1.60 × 1.58
I3 Binary snow map 1.580–1.640 0.371 × 0.387 0.80 × 0.789
M10 Snow fraction 1.580–1.640 0.742 × 0.776 1.60 × 1.58
M11 Clouds 2.225–2.275 0.742 × 0.776 1.60 × 1.58

Emissive Bands I4 Imagery clouds 3.550–3.930 0.371 × 0.387 0.80 × 0.789
M12 SST 3.660–3.840 0.742 × 0.776 1.60 × 1.58
M13 SST fires 3.973–4.128 0.742 × 0.259 1.60 × 1.58

LWIR M14 Cloud top properties 8.400–8.700 0.742 × 0.776 1.60 × 1.58
M15 SST 10.263–11.263 0.742 × 0.776 1.60 × 1.58
I5 Cloud imagery 10.500–12.400 0.371 × 0.387 0.80 × 0.789
M16 SST 11.538–12.488 0.742 × 0.776 1.60 × 1.58

The LWIR are long-wave infrared bands while the S/MWIR are short- to mid-wave infrared bands.
Source:	  Adapted from Schueler et al. (2003).
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analysis, and distribution of georeferenced field data, however, 
are a time-consuming and resource-intensive exercise, espe-
cially over regional or global domains. In this vein, the citizen 
scientist is an underutilized concept that can be cheaply and 
effectively employed to globally collect biospheric observations. 
Citizen science can be defined as

the systematic collection and analysis of data; development 
of technology; testing of natural phenomena; and the dis-
semination of these activities by researchers on a primarily 
avocational basis.

OpenScience (2011)

These open networks promote interactions between scien-
tists, society, and policymakers leading to decision making by 
scientific research conducted by amateur or nonprofessional 
scientists (Socientize, 2013). Advancements in communication 
and technology are credited with aiding the growth of citizen 
scientists (Silverton, 2009). Collectively, citizen science efforts 
from around the globe could possibly provide powerful venues 
for validating and calibrating future remote-sensing efforts.

10.5 C onclusions

Rangelands are found extensively throughout the world cover-
ing about 50% of the global land mass. The remoteness, harsh 
conditions, and high interannual variation in productivity make 
remote sensing the most cost-effective and efficacious tool for 
evaluating the status and health of rangelands globally. Global 
remote sensing has unique constraints from a remote-sensing 
perspective and spatial resolution is often sacrificed in place of 
temporal resolution. A broad suite of sensors possessing vari-
ous spectral channels, revisit times, and spatial resolutions are 
available for regional to global rangeland applications. However, 
most global applications, especially those sponsored for national 
or international applications (e.g., LADA, IGBP), use AVHRR, 
SPOT-VGT, MODIS, and to a lesser degree TM. Additionally, 
a large number of biophysical phenomena can be investigated 
with the myriad of sensors, but as discussed in this chapter, we 
focused on the globally relevant issues of degradation, fire, land 
cover, food security, and global change. In this chapter, we dem-
onstrate sensors, data, algorithms, strengths, and limitations of 
various methods to address these globally significant issues.

Though estimates vary, the proportion of degraded rangelands 
is around 23% globally (Table 10.4). The use and interpretation of 
RUE for evaluating degradation patterns is controversial (Prince 
et  al., 2007), but alternative techniques are subject to similar 
issues and assumptions. Thus, when considering degradation, 
especially in a global context, a model ensemble approach (e.g., 
combine local NPP scaling, rainfall use efficiency, and NPP 
trend analysis) may be most useful to indicate trends and iden-
tify where action is needed to lessen detrimental effects on goods 
and services.

Most global land cover efforts have limited thematic resolu-
tion of rangeland classes (average number of rangeland classes 

is 4.75; Table 10.6). However, computational resources and 
algorithmic complexity is sufficient to produce higher spa-
tial and thematic resolution land cover maps as inaugurated 
by studies such as Gong et al. (2013) and Hansen et al. (2013). 
Land cover and land use will continue to evolve in response to 
broadscale disturbance and global change. As a result, moni-
toring global change and extent and severity of fire has been 
the focus of many algorithms, national programs, and sensors. 
As an example, the MODIS sensor aboard both the Terra and 
Aqua platforms was designed with fire monitoring in mind 
with channels 21, 22, 31, and 33. Burn severity evaluation is a 
relatively new capability since the AVHRR and SPOT-VGT 
sensors lack the spectral channels necessary for contemporary 
algorithms. Likewise, the advent of the MODIS—derived NPP 
product (Running et al., 2004)—has spawned numerous stud-
ies aimed at evaluating NPP patterns globally. In this chap-
ter, we demonstrate rather unchanged NPP trajectories in the 
rangeland domain but also identify cases where higher spatial 
and thematic resolution products are needed to further under-
stand patterns. Despite these relatively unchanged temporal 
trajectories globally, drought and degradation are detrimental 
on a regional basis and regularly threaten the security of food 
derived from rangelands. The LEWS, driven by MODIS-derived 
250 m2 NDVI, is a useful program to provide guidance local 
governments and international aid organizations. As world 
population continues to grow, it is likely that the programs like 
LEWS will become increasingly important. These issues empha-
size the critical importance of mission and spectral continuity. 
The recent launch of Landsat 8 and Suomi NPoP is a critical 
stepping stone to future efforts, but compared to their predeces-
sors, they possess a distinctive lack of present use, given their 
recent recentness.
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Acronyms and Definitions

ACRIS	� Australian Collaborative Rangelands Information 
System

ASTER	� Advanced spaceborne thermal emission and reflec-
tion radiometer on NASA Terra

ATREM	 Atmospheric removal program
AVHRR	 Advanced very-high-resolution radiometer
AVIRIS	� Airborne visible infrared imaging spectrometer, 

NASA JPL hyperspectral sensor
AWiFS	 Advanced wide-field sensor, on India’s ResourceSat
DOY	 Day of year
ENVI	� Environment for Visualizing Images, Exelis Visual 

Information Solutions (Boulder, CO)
EOS	 End of growing season
ETM+	 Enhanced thematic mapper plus sensor on Landsat 7
EVI	 Enhanced vegetation index
fPAR	� Fraction of absorbed photosynthetically active radi-

ation calculated from spectral vegetation indices
GIS	 Geographic Information System
HSR	 High spatial resolution

Hysp	 Hyperspectral (high spectral resolution)
HyspIRI	� Hyperspectral infrared imager, mission planned by 

NASA
ISODATA	� Iterative self-organizing data analysis technique 

algorithm
LiDAR	 Light detection and ranging
LOS	 Length of growing season
LRR	 Land resource region
LRU	 Land resource unit
LSA	 Light sport aircraft
MERIS	 Medium-resolution imaging spectrometer
MLRA	 Major land resource area
MNF	 Minimum noise fraction
MODIS	� Moderate-resolution imaging spectroradiometer 

on NASA Terra and Aqua satellites
MTMF	 Mixture tuned matched filter
MVC	 Maximum value composite
NASA	� National Aeronautics and Space Administration, 

United States
NASS	� National Agricultural Statistics Service, United 

States Department of Agriculture
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NDVI	 Normalized difference vegetation index
NIR	 Near infrared (0.725–1.2 μm wavelength)
NOAA	� National Oceanic and Atmospheric Administration, 

United States
NRC	 National Research Council, United States
NRCS	� National Resource Conservation Service, United 

States Department of Agriculture
OLI	 Operational Land Imager, sensor on Landsat 8
PC	 Principal components
PFT	 Plant functional type
PROSAIL	� Combined PROSPECT and Scattering by Arbitrarily 

Inclined Leaves models
RSAC	� Remote Sensing Applications Center, USDA Forest 

Service
SAM	 Spectral angle mapper
SAVI	 Soil adjusted vegetation index
SCM	 Spectral correlation measure
SID	 Spectral information divergence
SOS	 Start of growing season
SVM	 Support vector machine
SWIR	 Shortwave infrared (1.2–2.5 μm wavelength)
TM	 Thematic mapper, sensor on Landsat’s 4 and 5
UAS	� Unmanned aircraft systems, also known as drones 

or unmanned aerial vehicles
USDA	 United States Department of Agriculture
USGS	 United States Geological Survey
VIIRS	 Visible infrared imaging radiometer Suite

11.1 I ntroduction

Rangelands are a type of land cover dominated by grasses, grass-
like plants, broadleaf herbaceous plants (forbs), shrubs, and iso-
lated trees, usually in which large herbivores evolved as part of 
the ecosystem. In many rangelands, the large herbivores were 
replaced by livestock, and thus, livestock grazing represents a 
major land use for production of food and fiber. Sustainability 
is maintained by species diversity (Hooper et al., 2005; Tilman 
et al., 2006, 2012; Zavaleta et al., 2010; Reich et al., 2012), and 
reduction of biodiversity is expected to be one of the major con-
sequences of global climatic change (Soussanna and Lüscher, 
2007; Janetos et al., 2008; McKeon et al., 2009; Pereira et al., 2010, 
2012; Belgacem and Louhaichi, 2013; Joyce et  al., 2013; Polley 
et  al., 2013). Along with climatic change, invasions of nonna-
tive species are threatening rangeland sustainability by decreas-
ing native species diversity (Ricciardi, 2007; Bradley et al., 2009; 
Lavergne et al., 2010; Ziska et al., 2011).

Rangelands cover large sparsely populated areas; thus, remote 
sensing is becoming much more important for rangeland moni-
toring, whether the objectives are sustainable livestock forag-
ing or maintenance of other ecosystem goods and services with 
climatic change. Different stakeholders at the national, state/
province, and landscape scales have different needs, which may 
require remotely sensed data at different spatial, temporal, or 
spectral resolutions. Reeves et  al. (Chapter 10) examined the 

relationship between rangeland productivity and climate, which 
highlights some of the direct mechanisms on how rangelands 
may respond to increased atmospheric CO2, global warming, 
and changes in precipitation regimes. Methods and techniques 
of rangeland characterization using remote sensing are covered 
by Kumar et al. (Chapter 12).

Monitoring the biodiversity of rangelands is critical for main-
taining sustainability; therefore, one of the major challenges 
for remote sensing is how to use imagery to estimate biodiver-
sity (Ludwig et al., 2004; Gillespie et al., 2008; John et al., 2008; 
Huang and Asner, 2009; Ward and Kutt, 2009). Diversity of plant 
functional types (PFTs) may be a good indicator of biodiversity, 
and determining the diversity of PFTs by remote sensing may 
be easier than determining plant species richness (Ustin and 
Gamon, 2010). However, land-cover and land-use maps based 
on global-scale PFTs (Running et al., 1995; Friedl et al., 2010) do 
not provide sufficient information for conserving and managing 
rangelands.

This chapter examines data types and methods for remote 
sensing of biodiversity at different resolutions: spectral, tempo-
ral, and spatial. Medium-resolution sensors, such as the Landsat 
8 Operational Land Imager (OLI), generally have resolutions on 
the order of 10–60 m, 10–20 days, and 4–10 bands for spatial, 
temporal, and spectral resolutions, respectively. High spectral 
resolution (hyperspectral) sensors generally have 100 or more 
contiguous bands, which are used to determine a reflectance 
spectrum of the land surface. High temporal resolution is usu-
ally provided by satellites, such as the moderate-resolution 
imaging spectroradiometer (MODIS), that have a broad swath 
(>400 km) in order to cover the Earth frequently. Commercial 
vendors provide satellite data with panchromatic bands of about 
0.5 m and multispectral bands of about 2–3 m spatial resolution, 
but for this chapter, high spatial resolution (HSR) data have pixel 
sizes of 10 cm or less, and are acquired by aircraft- or ground-
based imaging.

To be useful for rangeland managers, remote sensing data 
must be able to estimate biodiversity at a landscape scale, and 
the information must be compatible with rangeland manage-
ment systems based on ecological sites, rangeland state-and-
transition models, and rangeland health. With over 40  years 
of data acquired from the Landsat satellites, and extensive pro-
grams of research, Landsat imagery has not been used routinely 
to provide information necessary to affect managers’ decisions 
on which land areas are used for a given purpose at a given time. 
Remote sensing data providers and analysts must adapt to the 
needs of rangeland managers, and the needs are increasingly 
being driven by issues of sustainability, based on maintaining 
biodiversity. Therefore, we briefly describe rangeland man-
agement concepts and then describe remote sensing data and 
methods related to rangeland biodiversity. From this perspec-
tive, we conclude that HSR data acquired from aircraft provide 
the necessary data and will have the highest impact on man-
agement decisions. However, HSR data have their own unique 
challenges.
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11.2 � Biodiversity and Rangeland 
Management

A plant community is a set of interacting species co-occurring 
at a given site, with dominant species identified by mass and 
typical longevity of an individual. Management of U.S. range-
lands was built on Clements’ (1916) theory of plant succession 
where the dominant plant species changed over time to a set 
of species in equilibrium with climate, which is defined as the 
climax plant community (Brown, 2010). These communities 
were assumed to have the highest sustainable productivity 
and greatest resistance to invasive species. Overgrazing was 
assumed to reverse the plant community to an earlier stage of 
succession (Sampson, 1919). For monitoring and management, 
rangeland sites were defined by assuming the climax plant 
community was the dominant plant community at the onset 
of European immigration and settlement into the Western 
United States.

However, it was recognized that with natural disturbances such 
as fire, drought, and grazing, plant succession was much more 
dynamic and variable. Furthermore, after severe overgrazing and 
soil erosion, it was unlikely that the climax community could re-
establish itself without costly interventions. In response to the 
deficiencies of Clementsian succession, two ideas emerged in 
parallel (Briske et al., 2005): state-and-transition models (Brown, 
1994, 2010) and rangeland health (NRC, 1994). To better guide 
range management based on these two ideas, the concept of 
rangeland sites was replaced with the concept of ecological sites 

in which the various plant communities are in a dynamic equilib-
rium determined by the natural disturbance regime.

11.2.1 �E cological Sites and 
State-and-Transition Models

An ecological site is a conceptual division of the landscape, 
defined as a distinctive kind of land based on recurring 
soil, landform, geological, and climate characteristics that 
differs from other kinds of land in its ability to produce dis-
tinctive kinds and amounts of vegetation and in its ability 
to respond similarly to management actions and natural 
disturbances (Caudle et al., 2013).

In the United States, the top levels of a hierarchical classification 
system based on soil, landform, geology, and climate are the land 
resource region (LRR) and major land resource area (MLRA), 
defined by the USDA NRCS (2006). Subdividing MLRAs based 
on finer scale differences in climate, geomorphology, and soils, 
the next level down in the hierarchy is the land resource unit 
(LRU), LLRs, MLRAs, LRUs, and ecological sites are provisional 
and may be revised with more information (Moseley et al., 2010; 
Caudle et  al., 2013). In an MLRA or LRU, ecological sites are 
identified by a reference state (State 1) and reference plant com-
munity (Community Phase 1.1), based on the dominant vegeta-
tion thought to be present at the time of European immigration 
and settlement (Figure 11.1). Ecological sites are divided into 
a series of alternative states (states 2, 3,… to some number N), 
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Figure 11.1  State-and-transition model for an ecological site in the USA. Outer boxes (solid lines) represent stable ecological states (A, B,…, N) 
within which changes in community phases (dashed lines) result from natural disturbances and succession (arrows). State 1 is the reference state 
and community phase 1 represents the historic climax plant community. Other community phases represent the range of natural variation and 
may be identified by dominant plant species. Transitions from one state to another stable state occur when a threshold is crossed (bold arrows), 
which is usually irreversible without intensive inputs.
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which recognize new sets of stable communities that become self 
perpetuating (Figure 11.1). Land areas in most alternative states 
are not barren wastes; with appropriate management, these areas 
may be used sustainably by preventing further degradation.

The definition of an ecological site raises an important draw-
back for remote sensing—the reference plant community is usu-
ally inferred from a wide variety of sources, and mapped using 
geographic information data. An ecological site is not defined by 
the plant community that is currently occupying it; therefore, 
remotely sensed land cover, at any resolution, cannot be used to 
define an ecological site. Whereas ecological sites are not defined 
by the plant communities, ecological states may be mapped 
using characteristic plant communities determined from high-
resolution aerial photographs (Steele et al., 2012).

Within an ecological state (e.g., Reference State 1, Figure 
11.1), various plant community phases result from natural dis-
turbances (including grazing by livestock) and subsequent plant 
succession leads back to the reference community phase (Figure 
11.1). Together, all of the community phases in Reference State 1 
represent the natural range of variation found over time (Caudle 
et al., 2013). Land areas in Community Phases 1.2, 1.3, and 1.4 
are not considered degraded simply, because the plant commu-
nity is not in Phase 1.1, even though there may be fewer species 
and less biomass. Change detection must distinguish between 
changes within a state compared to a change of state. For exam-
ple, there is less foliar mass in grasslands either after a drought 
(a frequent occurrence within the range of natural variability) 
or after severe overgrazing by livestock (which frequently entails 
a state change; Stafford Smith et al., 2007). Detecting a change 
using remote sensing is not evidence that a state change has 
occurred (Bastin et al., 2012; Bradley, 2013). State-and-transition 
models are provisional hypotheses that describe the ecological 
processes leading to transitions (T1.A and T1.B, Figure 11.1) 
from one state to another (Caudle et al., 2013).

For example, invasion of downy brome (Bromus tectorum L.) 
into Great Basin sagebrush ecosystems increased the frequency 
of fire, which enhanced the dominance of downy brome in a 
feedback loop (Balch et al., 2013).

Thresholds are the conceptual boundaries dividing alterna-
tive states, which are crossed during transitions (Briske et al., 
2005, 2006; Bestelmeyer, 2006). Ecological resilience describes 
how much disturbance an ecological site can withstand with-
out crossing a threshold into an alternative state; operationally, 
resilience may be defined as multiple species having the same 
ecological function (Elmqvist et  al., 2003; Folke et  al., 2004; 
Allen et al., 2005; Briske et al., 2008).

For most stakeholders, the goal for monitoring rangelands 
is to determine if an ecological site is in the process of transi-
tioning to alternative state. These transitions are not distributed 
evenly over an area or over time, so monitoring plant commu-
nities requires a larger and longer perspective (Bestelmeyer 
et al., 2011; Williamson et al., 2012). Determining the amount 
of species diversity, or at least an array of PFTs, is a primary 
objective for developing science-based, cost-effective tools for 
rangeland monitoring based on remote sensing.

11.2.2 � Biodiversity Metrics for Managing 
Australian Rangelands

Rangelands, including tropical savannas, woodlands, shrub-
lands, and grasslands, make up 75% of Australia, with 55% 
of these rangelands being grazed by livestock. The Australian 
Collaborative Rangelands Information System (ACRIS) was set 
up in 2002 to support the Commonwealth and state govern-
ments in better managing the rangelands (Bastin et al., 2009; 
Eyre et al., 2011a; Oliver et al., 2014). In Australia, each state 
has its own regulations and methods of assessing and manag-
ing rangelands, and ACRIS is the overarching body that sup-
ports this by collating and synthesizing the monitoring data 
and making these data available to interested parties. This 
information assists Natural Resource Management organiza-
tions, state governments, and the Commonwealth in planning 
and reporting obligations, and evaluating the effectiveness of 
investments.

For determining the health, condition, and biodiversity of 
rangelands, extensive surveys on a repeated basis are essential. 
Surveys of species presence and abundance are time consuming 
and expensive if undertaken at broad scales. For rapid monitor-
ing, three states developed multimetrics for biodiversity to help 
in the assessment of site conditions:

	 1.	 BioCondition (in Queensland)
	 2.	 Habitat Hectares (in Victoria)
	 3.	 BioMetric (in New South Wales)

BioCondition is a vegetation and biodiversity assessment frame-
work developed by the Queensland Department of Resource 
Management to provide onsite guidance to beginners and docu-
ment the assessment process for future revision and comparison 
(Eyre et al., 2011b). Various surrogates are used to represent the 
health and condition of the environment being assessed. The 
BioCondition Assessment Tool uses cameras on mobile devices 
to take visual evidence of flora and uses an interactive means 
to identify the flora. Keeping a visual record and associating 
this with a description can be used by experts at a later stage for 
validation purposes. Repeated measurements and comparisons 
of the BioCondition index provide a measure of how well a ter-
restrial ecosystem is functioning and this can then be linked to 
biodiversity values. It should be noted that BioCondition is more 
geared to be used at the local or property scale.

In Victoria, the Department of Sustainability and Environment 
has developed the Habitat Hectares method for estimating the 
quality of an area of vegetation (Parkes et al., 2003). It is mainly 
geared toward native vegetation and includes site-based mea-
sures of quality and quantity of vegetation and condition within 
the landscape context. Habitat Hectares provides a step-by-step 
approach to habitat and landscape assessment in the field and 
includes useful tips for ensuring consistency of application. 
Vegetation condition is determined by utilizing variables such 
as presence and amounts of weeds, amounts of log and leaf 
litter, cover and diversity of understory, and canopy cover and 
presence of older trees. Repeat measurements and comparisons 
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against predetermined benchmarks allow for the calculation of 
native vegetation losses and gains.

BioMetric is a terrestrial biodiversity assessment tool used 
in New South Wales (Gibbons et  al., 2008, 2009). It is mainly 
applicable for assessment at the paddock or property scale and 
assesses losses of biodiversity from proposed activities, gains 
in biodiversity from proposed offsets, or gains in biodiversity 
as a result of management actions. In BioMetric, the vegetation 
is assessed against benchmarks, which are quantitative mea-
sures of the range of variability in the condition compared to 
pre-European settlement. Vegetation condition benchmarks are 
available by vegetation class, and BioMetric compares the cur-
rent or predicted future condition against this benchmark to 
denote scores that are then converted to a metric.

Currently, no satellite or aircraft data products are used 
to determine BioCondition, Habitat Hectares, or BioMetric, 
although research is being conducted in this area. To conclude, 
monitoring rangeland biodiversity is the basis of management in 
Australia, so the question is how biodiversity could be measured 
more efficiently and accurately by remote sensing.

11.2.3 � Assessing Rangeland Health 
by Remote Sensing

Rangeland health is the degree to which soils and vegetation 
are maintained, which would sustain the kinds and amounts of 
vegetation that would typically occur for that site (NRC, 1994; 

Pyke et  al., 2002). A series of 17 qualitative indicators (with 
2 optional indicators, Table 11.1) are intended to help people 
with some training to determine rangeland health on the 
ground in a consistent manner. An overall rating of rangeland 
health is determined by a preponderance of evidence (Pellant 
et al., 2005).

Multiple indicators of rangeland health (Table 11.1) are related 
to the ecological processes leading to transitions between alter-
native states at an ecological site (Caudle et al., 2013). These indi-
cators may show that a site is either at risk for a transition or has 
crossed the threshold to an alternative state (Figure 11.1) when 
monitored on the ground (Herrick et al., 2005a,b). Probably, not 
all indicators need to be determined (MacKinnon et al., 2011); 
the three most important in Table 11.1 are

	 1.	 Bare ground cover (Indicator 4)
	 2.	 Vegetation composition (Indicator 12)
	 3.	 Presence of invasive species (Indicator 16)

Gaps of bare ground may be the single most important indicator 
for rangeland health (Booth and Tueller, 2003).

Table 11.1 (third column) lists the potential data sources for 
15 of the 19 indicators. The data resolution, which provides the 
information about an ecological process, is given instead of the 
sensor name, because the spectral, temporal, and spatial reso-
lutions overlap among different sensors. For detecting gaps of 
bare ground (Indicator 4), HSR provides direct measurements 
of cover, whereas hyperspectral (Hysp) and medium-resolution 

Table 11.1  Indicators of Rangeland Health

Rangeland Health Indicator Assessment Potential Data Type 

  1. Rills in soil Active soil erosion by water HSR
  2. Water flow patterns Water infiltration/runoff HSR
  3. Pedestals/terracettes Active soil erosion by wind or water
  4. Bare ground cover/gap sizes Potential soil erosion by wind or water HSR, Hysp, medium resolution
  5. Gullies Active soil erosion by water HSR, LiDAR
  6. Wind-scoured/deposition areas Active soil erosion by wind HSR
  7. Litter movement Soil erosion by wind or water HSR
  8. Soil surface resistance to erosion Soil quality
  9. Soil surface loss/degradation Soil quality
10. Community composition and distribution Water infiltration/runoff HSR
11. Compaction layer Water infiltration/runoff
12. Vegetation composition/functional groups Biogeochemical cycles HSR, Hysp
13. Plant mortality/decadence Population dynamics HSR
14. Litter amount Soil quality Hysp
15. Net primary production/green leaves Biogeochemical cycles fPAR
16. Invasive plants Population dynamics and biogeochemical cycles HSR, Hysp, fPAR
17. Perennial plant reproduction Population dynamics HSR
18. Biological crusts on soil (optional) Soil quality Hysp
19. Vertical vegetation structure (optional) Animal communities HSR, LiDAR

Source:	 Pellant, M. et al., Interpreting indicators of rangeland health, Version 4, 122pp., Technical Reference 1734-6, United States Department of Interior, 
Bureau of Land Management, Denver, CO, 2005.

HSR, high spatial resolution; Hysp, high spectral resolution (hyperspectral); LiDAR, light detection and ranging; fPAR, high temporal resolution estimating 
the fraction of absorbed photosynthetically active radiation.

By examining several qualitative indicators to establish a “preponderance of evidence,” an overall assessment of soil and site stability, hydrologic function, and 
biotic integrity may be made. In the third column, we suggest the potential remote sensing methods suitable for monitoring the indicator.
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data could be used either for direct estimates using spectral 
unmixing or indirect estimates using spectral indices.

Image classification for vegetation composition (Indicator 12) 
is one of the primary applications and research areas in remote 
sensing (Lu and Weng, 2007; Franklin, 2010). In general, the 
two methods for classification are supervised and unsupervised 
(Kumar et al., 2015 [Chapter 12]). Supervised classification uses 
known areas on the ground to create rules (training) for assign-
ing a pixel to a specific category. Unsupervised classification 
groups similar pixels, which are assigned to different catego-
ries afterward. Independent areas on the ground are then used 
for assessing the accuracy of the classification (Congalton and 
Green, 2008; Stehman and Foody, 2009; Olofsson et al., 2013). 
Based on the PROSAIL model (Jacquemoud et  al., 2009), the 
major interacting variables affecting spectral reflectance from a 
plant canopy are the following: (1) leaf area index; (2) plant struc-
ture and leaf angle distribution; (3) soil background reflectance; 
(4) positions of the sun, target, and sensor; and (5) leaf spectral 
reflectance and transmittance. A plant community or functional 
type will have similar structural and spectral properties, and to 
the extent, they have constant leaf area index and plant density 
on similar landscapes, the community, or functional type will 
comprise a single class on an image.

Remote sensing of invasive species (Indicator 16) is based 
on some detectable difference between the invasive and native 
species (Hunt et al., 2003; Underwood et al., 2003; Asner, 2004; 
Madden, 2004; Franklin, 2010; He et al., 2011; Pu, 2012; Bradley, 
2013), either spectrally (Section 11.4.2), temporally (Section 
11.5.3), or spatially (Section 11.6.3). Most invasive plant species 
need to be detected at the initial stages of infestation for control, 
perhaps limiting the usefulness of medium-resolution and high 
temporal resolution sensors. In the Western United States alone, 
there are more than 300 species of invasive weeds. According to 
DiTomaso (2000), the five most problematic are

	 1.	 Downy brome (B. tectorum also called cheatgrass)
	 2.	 Yellow starthistle (Centaurea solstitialis L.)
	 3.	 Spotted knapweed (Centaurea stoebe L., the synonym 

Centaurea maculosa is more common in the literature)
	 4.	 Diffuse knapweed (Centaurea diffusa Lam.)
	 5.	 Leafy spurge (Euphorbia esula L.)

Added to this list is tamarisk (Tamarix spp., also called saltce-
dar), a shrub spreading along rivers and streams in the Western 
United States (Nagler et al., 2011).

11.2.4  Remote Sensing for Animal Biodiversity

The use of remote sensing to estimate animal diversity is increas-
ing. Leyequien et  al. (2007) listed five variables that relate to 
animal needs for food and shelter (Table 11.2). Habitat suitabil-
ity uses land-cover class determined with medium-resolution 
satellite data, particularly bird species (Gottschalk et  al., 2005). 
Productivity and phenology (Variables 2 and 3, Table 11.2) are 
important variables that are determined from high temporal res-
olution data, which are related to animal biodiversity (Pettorelli 

et  al., 2011). Correlations between animal species diversity and 
plant production were established before satellite data were avail-
able (Gaston, 2000), although the underlying causes for the cor-
relations are being debated. Habitat structure (Variable 4, Table 
11.2) combines several attributes in a given area: variation in the 
amount of bare soil and vegetation, variation in the occurrence of 
PFTs, and variation of shadows related to the vertical structure of 
vegetation. Estimates of image heterogeneity are strongly related 
to habitat structure and biodiversity (Section 11.3.2). Vertical hab-
itat structure is measured directly at HSR using either light detec-
tion and ranging (LiDAR) or stereo-HSR. Forage quality (Variable 
5, Table 11.2) depends on the protein and fiber consumed by her-
bivores, and may be detectable with hyperspectral remote sens-
ing (Section 11.4.2) or with commercial satellite sensors that have 
bands at the red edge of the chlorophyll absorption spectrum.

11.3 � Medium-Resolution 
Remote Sensing

The Landsat series of satellites are the archetype of medium-res-
olution remote sensing and have provided data globally for over 
40 years. Landsat’s 4 and 5 carried the thematic mapper (TM) sen-
sor (Figure 11.2), Landsat 7 carries the enhanced thematic map-
per plus (ETM+), and the recently launched Landsat 8 carries the 
operational land imager (OLI) with two new bands (Figure 11.2).

Red and near-infrared (NIR) spectral indices have been a 
standard method in analysis of multispectral data, since the 
Landsat 1 was launched to enhance differences between soil and 
vegetation (Figure 11.2) and to reduce effects of atmospheric 
transmittance and solar irradiance from either time of year or 
topography. The spectral indices used most frequently in remote 
sensing are the normalized difference vegetation index (NDVI; 
Rouse et  al., 1974; Tucker, 1979), the soil adjusted vegetation 
index (SAVI; Huete, 1988), and the enhanced vegetation index 
(EVI; Huete et al., 2002).

Seasonal and annual precipitation totals in rangelands have 
high variability, so drought is relatively frequent. Vegetation 
index differences among images acquired on the same day of 
the year for different years may be from: (1) drought, (2) recent 
grazing, (3) fire, or (4) a state change of the ecological site. Long-
term monitoring is the only way to distinguish among these 
possibilities to account for the natural range of variation at a 

Table 11.2  Variables for the Remote Sensing of Animal 
Biodiversity

Variable Potential Data Type 

1. Habitat suitability Medium resolution
2. Photosynthetic productivity fPAR
3. Multitemporal patterns fPAR
4. Habitat structure Medium resolution, LiDAR, HSR
5. Forage quality Hysp

Abbreviations are as defined in Table 11.1.
Source:	 Leyequien, et al., International Journal of Applied Earth Observation 

and Geoinformation, 9, 1, 2007.
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single ecological site (Washington-Allen et  al., 2006; Bastin 
et al., 2014). Comparisons of vegetation indices for a specific area 
in relation to the average for all areas of that ecological site will 
highlight areas that have changed or are in the process of chang-
ing to another ecological state (Maynard et al., 2007; Williamson 
et al., 2012).

Wildlife and livestock grazing patterns in rangelands are 
not random; they selectively graze areas with high forage qual-
ity (Ramoelo et  al., 2012; Zengeya et  al., 2013). There are sev-
eral management changes that affect livestock grazing patterns 
at the landscape scale, such as fences and locations for water 
(Washington-Allen et al., 2004; Bastin et al., 2012). In contrast, 
wildlife feed in areas with sufficient cover from predators. In 
the future, determining the nonrandom grazing patterns at 
a landscape scale may be important information to manage 
biodiversity.

11.3.1  Spectral Unmixing

There is a large spectral difference between vegetation and soils, 
primarily at red and NIR wavelengths (Figure 11.2). Differences 
in the short-wave infrared region are small if the vegetation and 
soil are either dry or moist, and are large if the leaves are moist 
and the soils are dry (Figure 11.2). Linear spectral mixture mod-
els are generally thought of as a method for analyzing hyper-
spectral data (Roberts et al., 1993); however, Adams et al. (1986) 
developed this method using multispectral data. There are sev-
eral important assumptions for linear spectral unmixing:

	 1.	 The fractional covers are nonnegative and sum to one
	 2.	 No multiple scattering among the spectral components 

(endmembers)
	 3.	 All of the spectral components are known

Distinct patches of vegetation, litter, and bare soil meet these 
assumptions; whereas within a patch of vegetation, multiple 
scattering between individual plants and soil creates nonlinear 
mixing.

The simplest case of a linear spectral mixture model has two 
spectral components (S1 and S2):

	 Sλ = f S1 + (1 ‒ f) S2	 (11.1)

where
Sλ is the sensor measurement
f is the percentage of the first component
(1 ‒ f) is the percentage of the second component

If the two components are vegetation and soils (Figure 11.2), 
Equation 11.1 may be rearranged and solved for f:

	
f

S S

S S
=

−( )
−( )

 2

1 2

λ 	 (11.2)

Thus, the percentage of bare soil may be calculated directly from 
the sensor data, and an indicator of rangeland health becomes 
unambiguously measured.

From Equation 11.2, vegetation indices based on NIR and 
red wavebands are nonlinearly related to the fractional cover of 
vegetation and soil (Jiang et  al., 2006; Montandon and Small, 
2008). Empirical relationships between fractional cover and veg-
etation indices have problems, because there is a large amount 
of variability in soil spectra, particularly in rangelands where 
plant cover is low. Equation 11.2 is also used to normalize NDVI 
for a site (Sλ) based on maximum NDVI for the year (S1) and 
minimum NDVI for the year (S2), where f is called the vegetation 
condition index (Kogan et al., 2003).

Equation 11.1 may be extended to include other spectral com-
ponents such as plant litter, other nonphotosynthetic vegetation, 
and crop residue (Kuemmerle et al., 2006; de Asis and Omasa, 
2007; Numata et  al., 2007; Davidson et  al., 2008; Guerschman 
et al., 2009). In some areas, broad-band spectral indices may be 
used to calculate plant litter cover based on statistical regressions 
(McNairn and Protz, 1993; van Deventer et  al., 1997; Marsett 
et  al., 2006). However, it is often difficult to distinguish bare 
soil from plant litter with medium-resolution data, particularly 
when the soil and litter are moist (Daughtry and Hunt, 2008).

11.3.2  Habitat Heterogeneity and Structure

In general, landscapes with a large diversity of cover types and 
vertical structure also have a high amount of species diversity 
(Fuhlendorf and Engle, 2001; Tews et al., 2004; Gillespie et al., 
2008). Image texture is a general term for the amount of het-
erogeneity in gray-scale values surrounding a pixel, and there 
are different statistical formulae (randomness, variance, skew-
ness, entropy, correlation, and more) used for calculating texture 
(Haralick et al., 1973; Franklin and Wulder, 2002; Wood et al., 
2012). It is recognized that heterogeneity is a function of scale 
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are the wavebands for the Landsats 4 and 5 thematic mapper and along 
the top are the wavebands for the Landsat 8 operational line imager. The 
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(Haralick et al., 1973; Franklin and Wulder, 2002), so image tex-
ture needs to be evaluated with both medium-resolution data 
and higher-resolution commercial satellite data (Johansen and 
Phinn, 2006).

Plant species richness is strongly related to remotely sensed 
texture for different regions (Gould, 2000; Dobrowski et  al., 
2008). Commercial satellite sensors such as DigitalGlobe’s 
WorldView-2 have a panchromatic band with about 0.5-m pixel 
resolution and multispectral bands with about 2-m pixel resolu-
tion. Plant species richness can be determined with these data 
using various methods of analysis (Hall et  al., 2012; Mansour 
and Mutanga, 2012; Adelabu et al., 2013; Dalmayne et al., 2013; 
Müllerová et al., 2013). When pixels are smaller than image fea-
tures, object-based classification creates clusters from adjacent 
pixels based on spectral information and texture (Yu et al., 2006; 
Dobrowski et al., 2008; Blaschke, 2010).

Remotely sensed image texture may have more informa-
tion when flow direction of water and other resource flows are 
included. Ludwig et  al. (2000, 2002) developed a spatial index 
(leakiness) to examine the connections among patches of bare 
soil, which is related to water flow patterns and the potential to 
lose soil and nutrients. Later, Ludwig et al. (2006, 2007), using 
ideas based on spectral unmixing, extended the leakiness index 
to landscapes using Landsat thematic mapper data.

Habitat suitability for a given bird species is usually known, 
so land-cover data from medium-resolution satellites have been 
used to predict species distribution (Gottshalk et  al., 2005). 
Small-scale disturbances create mosaics of different vegeta-
tion types and the resulting heterogeneity was associated with 
greater species richness (Fuhlendorf et al., 2006). Image texture 
is sensitive to small variations of both vertical structure and veg-
etation mosaics for the determination of bird species richness 
in a variety of habitats (St. Louis et al., 2006, 2009; Bellis et al., 
2008; Culbert et al., 2012; Wood et al., 2013).

11.3.3  Assessment of Medium Resolution

During most of the operational life of Landsats 4 and 5, the data 
were licensed commercially and thus had limited availability for 
rangeland management. The economic value per area of range-
land is low, but the total value is high because of the large areas 
of rangelands on Earth. The U.S. Geological Survey has made 
the entire archive of Landsat data available free of charge (http://
landsat.usgs.gov), and analysis of this long-term archive will 
provide important insights into the patterns and processes of 
ecological states (Washington-Allen et al., 2006; Hernandez and 
Ramsey, 2013; Bastin et al., 2014).

We included the new commercial satellites (IKONOS, GeoEye, 
and WorldView) with pixel sizes between 2 and 5 m for the mul-
tispectral bands in this section, because the commercial sensors 
will be analyzed in large part with the same techniques that are 
currently used to analyze medium-resolution data. Specifically, 
commercial satellite data will be used to estimate vegetation 
biomass using spectral vegetation indices, classify habitat suit-
ability from land cover, and estimate vegetation structure with 

image texture. Some commercial satellite sensors include a band 
at the red edge of the chlorophyll absorption spectrum, which 
provides better information on forage quality compared to cur-
rent medium-resolution sensors. But the main disadvantage of 
commercial satellites is that these are pointed to specific areas, 
thereby missing adjacent areas on that satellite orbit.

11.4  High Spectral Resolution

Acquisition and analysis of high spectral resolution data, prop-
erly called imaging spectrometer data, but ubiquitously called 
hyperspectral remote sensing, obtains radiance data in numer-
ous, narrow, contiguous bands over a target (Green et al., 1998). 
With atmospheric correction, the reflectance spectrum of the 
target is calculated (Gao et al., 1993). From the reflectance spec-
trum, the identity of the target is determined based on chemical 
composition.

Linear spectral unmixing may be able to distinguish one 
spectral component (endmembers) more than the number of 
bands (Equation 11.1), if the components are known. However, 
the reflectances at one waveband are highly correlated with 
those nearby, so the effective number of spectral components is 
much less than the number of bands (Thorp et al., 2013). Usually, 
the number of spectral components is not known, or there is 
multiple, nonlinear scattering among them, which increases the 
complexity of the spectral unmixing.

Spectral matching compares a pixel’s spectrum with some 
reference spectrum acquired from: a spectral library, field-
acquired spectra, or the image itself. The advantage of spectral 
matching is that the total number of component spectra in the 
mixture does not need to be known. It must be decided a priori 
the amount of similarity for a match; a typical value for a match 
is 5.7° or 0.1 rad. The common spectral matching algorithms 
are: the spectral angle mapper (SAM; Kruse et al., 1993), mix-
ture tuned matched filter (MTMF; Boardman and Kruse, 2011), 
spectral information divergence (SID; Chang, 2000), spectral 
correlation measure (SCM; van der Meer, 2006), and Tetracorder 
(Clark et al., 2003).

SAM calculates a vector angle (Θ) between a reference spec-
trum R = (Rλ1, Rλ2,…, Rλn) and a target spectrum T = (Tλ1, 
Tλ2,…, Tλn), where λ1 to λn are the spectral wavelengths:

	

Θ =










⋅

arccos
( )

( )

R T

R T

• 	 (11.3)

where
||R|| and ||T|| are vector normalizations
R·T is the vector dot product

The spectral angle between the leaf and soil spectra in Figure 11.2 
is 28° or 0.49 rad. A major advantage (or disadvantage in some 
instances) of SAM is that differences in brightness are removed 
by the vector normalization, so large values of Θ are from spec-
tral differences only.
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11.4.1  Spectral Separability of Plant Species

The challenge using SAM and other spectral matching algo-
rithms is determining the threshold value for determining a 
match, so that there are not large numbers of false positives and 
false negatives. A large threshold value will increase the number 
of false negatives and a small threshold value will increase the 
number of false positives. The value also depends on the vari-
ability of the target and reference spectra; therefore, how vari-
able are the spectra from different species? To minimize the 
variation within a species, 10 leaves were acquired from four 
species growing in a common garden. Spectral reflectances were 
measured using a field portable spectrometer collecting light 
from an integrating sphere (Hunt et al., 2004).

The median spectral angles within a species were less than 
the median angles compared to the other species (Figure 11.3). 
The largest separations of spectral angles between within-spe-
cies and among-species were for Tripsacum dactyloides (L.) and 
Sorghastrum nutans (L.) Nash. Using the default angle for clas-
sification (5.7° or 0.1 rad), only five leaves of three species were 
not spectrally similar to others.

These results were expected based on previous results (Carter 
et  al., 2005; Clark et  al., 2005; Irisarri et  al., 2009; Cho et  al., 
2010; Martin et  al., 2011). Furthermore, the PROSPECT leaf 
optics model (Jacquemoud et al., 1996, 2009; Feret et al., 2008) 
accurately predicts leaf reflectance and transmittance with 
only four parameters: the chlorophyll content, the liquid water 
content, the dry matter content, and a leaf structure parameter 

equivalent to the number of parallel plates reflecting and trans-
mitting radiation. Therefore, there may not be sufficient degrees 
of freedom to differentiate species using SAM or other meth-
ods (Mansour et  al., 2012). Spectral absorption of radiation is 
based on the types and amounts of chemical bonds (Shenk et al., 
2008), so while there may be unique organic compounds in dif-
ferent plant species, there will be few differences in the types and 
amounts of the chemical bonds. Differences in leaf structure are 
also highly variable and depend on the conditions during leaf 
development. Leaf water and chlorophyll contents are affected 
by current environmental conditions; so much of the variation 
in leaf reflectance spectra is not related to species.

11.4.2  Plant Chemical Composition

High spectral resolution data have potential for determining for-
age quality (Variable 5, Table 11.2), which is important for esti-
mating animal biodiversity and livestock distribution (Leyequien 
et al., 2007; Skidmore et al., 2010; Knox et al., 2011). Near-infrared 
(NIR) spectroscopy is a standard laboratory method for analysis 
of dried plant materials for protein and fiber contents (Shenk 
et al., 2008), and hyperspectral sensors provide coverage of the 
same wavelength regions. One problem is determination of for-
age quality when the vegetation has high water content, because 
the spectral absorption of water dominates the shortwave infra-
red (SWIR) reflectance spectrum (Ramoelo et  al., 2011; Ustin 
et  al., 2012). As the spectral absorption coefficients for liquid 
water are reasonably well known (Ustin et  al., 2012), it is pos-
sible to remove the spectral features caused by water to estimate 
proteins and dry matter (Ramoelo et al., 2011; Wang et al., 2011b). 
Extensive studies with field spectrometers show strong potential 
for determination of forage quality (Starks et  al., 2004; Knox 
et al., 2011), but the algorithms require extensive calibration and 
may not be appropriate for other species at other locations.

The areal cover of bare soil and litter are important indicators 
of rangeland health (Indicators 4 and 14, respectively, Table 11.1) 
and are readily detectable using high spectral resolution data 
(Figure 11.1). Cellulose and lignin are synthesized by plants and 
these substances are not found in soil, so narrow-band indices 
emphasizing spectral features in the SWIR are linearly related 
to the cover of litter over bare soil (Daughtry, 2001; Nagler et al., 
2003; Serbin et al., 2009, 2013). SWIR absorption features of bare 
soil (Figure 11.1) exposed from erosion are also detectable by the 
advanced spaceborne thermal emission and reflection radiom-
eter (ASTER) on NASA’s Terra satellite (Vrieling et al., 2007; Gill 
and Phinn, 2008; Serbin et al., 2009).

Biological soil crusts (Indicator 18, Table 11.1) are mixtures of 
cyanobacteria, fungi, and bacteria that form on the soil surface 
in arid and semiarid ecosystems. Chlorophyll a in the cyanobac-
teria creates a small absorption feature at 680  nm wavelength 
distinct from soil (Karnieli et al., 2003; Weber et al., 2008; Ustin 
et al., 2009). The problem is that the chlorophyll-a feature is also 
found in algae, lichens, moss, and plants; reflectances in the 
SWIR allow the separation of biological soil crusts from small 
amounts of plants and plant-like classes (Ustin et al., 2009).
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Figure 11.3  Spectral angles from leaf spectral reflectances (400–
2400 nm) for four grass species: T. dactyloides (trda, gamagrass); 
Andropogon gerardii (ange, big bluestem); S. nutans (sonu, yellow Indian 
grass); and Panicum virgatum (pavi, switch grass). The mean spectrum 
was calculated for each species and used as a reference spectrum. 
Θ (Equation 11.3) was calculated for each leaf of the same species (e.g., 
trda-trda) and each leaf of the other three species (e.g., trda-others).  The 
center line is the median, the boxes show the range of the 25th to 75th 
percentiles, the error bars show the range of the 10th to 90th percentiles, 
and outliers are shown as single points.
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11.4.3  Detection of Invasive Plant Species

Whereas leaves of most rangeland species may not have much 
spectral diversity, distinctive leaves and flowers of invasive 
plants may result in characteristic spectral signatures that may 
be detected with high spectral resolution data (Table 11.3). Leafy 
spurge is a noxious invasive weed infesting large areas of the 
U.S. Great Plains. It is clonal, forming dense stands of geneti-
cally identical aboveground shoots spreading from a single root 
system. Flowers are clustered at or near the top of the shoot 
(umbels), and the flower cover is frequently over 20% in a single 
clone (Hunt et al., 2007). The flower bracts’ yellow-green color 
is from a small amount of chlorophyll and a large ratio of carot-
enoids to chlorophylls (Hunt et  al., 2004). When leafy spurge 

is found, one management option is the release of insects that 
specifically feed on the roots (larvae) and shoots (adult) for bio-
logical control (Anderson et al., 2003; Lym, 2005; Samuel et al., 
2008; Lesica and Hanna, 2009).

Hyperspectral sensors are successful in detecting leafy spurge 
based on the yellow-green bracts (O’Neill et  al., 2000; Parker 
Williams and Hunt, 2002, 2004; Dudek et al., 2004; Glenn et al., 
2005; Lawrence et al., 2006). Furthermore, medium-resolution 
satellite sensors generally were not very successful (Hunt and 
Parker Williams, 2006; Mladinich et al., 2006; Stitt et al., 2006; 
Hunt et  al., 2007). The flower bracts of leafy spurge are read-
ily detectable with aerial photography and videography (Everitt 
et al., 1995; Anderson et al., 1996).

Table 11.3  Invasive Plant Species in Rangelands Identified with High Spectral Resolution Data

Study Species Methods 

O’Neill et al. (2000), Parker Williams and Hunt 
(2002, 2004), Dudek et al. (2004), Glenn et al. 
(2005), Hunt et al. (2007), Lawrence et al. 
(2006), Mitchell and Glenn (2009)

Leafy spurge (E. esula L.) MNF, MTMF, SAM, supervised 
classification

Lass et al. (2002) Spotted knapweed (C. stoebe L., C. maculosa is a commonly 
used synonym)

SAM

Underwood et al. (2003, 2007) Ice plant (Carpobrotus edulis [L. N. E. Br.]), Jubata grass/
Pampas grass (Cortaderia jubata [Lemoine ex Carrière] 
Stapf), Blue gum (Eucalyptus globulus Labill.)

MNF, continuum removal, spectral 
indices, supervised classification

Anderson et al. (2005) Tamarisk (Tamarix chinensis Lour.; Tamarix gallica L.; and 
Tamarix ramosissima Ledeb.)

PC, spectral indices

Lass et al. (2005) Yellow starthistle (C. solstitialis L.) and Babysbreath 
(Gypsophila paniculata L.)

SAM

Mundt et al. (2005) Hoary cress (Cardaria draba L.) MNF, MTMF, SAM
Andrew and Ustin (2006, 2008) Perennial pepperweed (Lepidium latifolium L.) MNF, MTMF
Ge et al. (2006, 2007) Yellow starthistle Spectral indices, SAM
Miao et al. (2006, 2007) Yellow starthistle Band selection, feature extraction
Mirik et al. (2006, 2013) Musk thistle (Carduus nutans L.) Regression, SVM
Narumalani et al. (2006, 2009) Tamerisk, Musk thistle, Canada thistle (Cirsium arvense L.), 

Reed canary grass (Phalaris arundinacea L.), Russian olive 
(Elaeagnus angustifolia L.)

ISODATA, MNF, SAM

Cheng et al. (2007) Kudzu (Pueraria montana [Lour.] Merr.) MNF, MTMF, SAM
Hamada et al. (2007) Tamarisk MNF, spectral indices, MTMF, stepwise 

discriminant analysis, hierarchical 
clustering, root sum squared differential 
area

Hestir et al. (2008) Perennial pepperweed, Water hyacinth (Eichhornia crassipes 
[Mart.] Solms), Brazilian waterweed (Egeria densa Planch.)

MNF, band indices, spectral mixture 
analysis, SAM, continuum removal

Noujdina and Ustin (2008) Downy brome (B. tectorum L.) MNF, MTMF
Pu (2008), Pu et al. (2008) Tamarisk PC, spectral indices
Wang et al. (2008) Sericea lespedeza (Lespedeza cuneata [Dum. Cours.] G. Don) ISODATA, spectral derivatives
Carter et al. (2009) Tamarisk MNF, supervised classification
Yang et al. (2009), Yang and Everitt (2010a,b) Ashe juniper (Juniperus ashei J. Buchholz), Broom snakeweed 

(G. sarothrae [Pursh.] Britt. and Rusby), water hyacinth
MNF, SAM, supervised classification

Wang et al. (2010a), Bentivegna et al. (2012) Cut-leaved teasel (Dipsacus laciniatus L.) SAM, supervised classification, SID
Fletcher et al. (2011), Yang et al. (2013) Tamarisk SVM
Miao et al. (2011) Tamarisk MNF, PC, supervised classification, SAM
Olsson and Morisette (2014) Buffelgrass (Pennisetum ciliare [L.] Link) MNF, MTMF, random forest

MNF, minimum noise fraction; MTMF, mixture tuned matched filtering; SAM, spectral angle mapper; ISODATA, interactive self-organizing data analysis 
technique algorithm; PC, principal components; and SVM, support vector machine.
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Parker Williams and Hunt (2002, 2004) analyzed two air-
borne visible infrared imaging spectrometer (AVIRIS) scenes 
acquired on July 6, 1999, over Devils Tower National Monument 
and surrounding areas in Crook County, Wyoming. Two sets of 
plots were acquired: one with the cover of leafy spurge estimated 
(N = 66) and one with a simple classification of presence or 
absence (N = 146). Two scenes were atmospherically corrected to 
land-surface reflectance using the ATREM version 3.1 program 
(Gao et al., 1993) and processed using the “Spectral Hourglass” 
approach (Boardman and Kruse, 2011). Dimensionality was 
reduced using the minimum noise fraction (MNF) in the envi-
ronment for visualizing images (ENVI version 3.2, Research 
Systems Inc.), and spectral signatures for leafy spurge were 
picked from the AVIRIS images using the pixel purity index and 
n-dimensional visualizer (Boardman and Kruse, 2011).

MTMF (Boardman and Kruse, 2011) was used to identify pix-
els with possible leafy spurge. The MTMF score was related to 
leafy spurge cover with an R2 of 0.66 (Parker Williams and Hunt, 
2002), and the classification accuracy was 87% (Parker Williams 
and Hunt, 2004). However, accuracies of leafy spurge detection 
with MTMF appear to be dependent on the number of other 
spectral signatures in a scene (Dudek et al., 2004; Glenn et al., 
2005; Mitchell and Glenn, 2009). Using the data from Parker 
Williams and Hunt (2002, 2004), 11 AVIRIS scenes were com-
bined into a single image for analysis; the overall classification 
accuracy using MTMF was no better than chance (Hunt et al., 
2007). The type of spectral mixing needs to be considered, dif-
ferences in plant density may change the amount of nonlinear 
mixing (Mitchell and Glenn, 2009).

There were many studies using high spectral resolution data 
to detect invasive species; two species commonly studied were 
tamarisk and yellow starthistle (Table 11.3). The detection of 
these invasive species may seem to be at odds with Figure 11.3 
and related studies. In Table 11.3, the reflectance spectra of inva-
sive species were in context with native species, soils, and subtle 
variations in spatial arrangement, leaf area index, or leaf angle 
distribution. The leaf spectra in Figure 11.3 were isolated from 
any context. Successful use of hyperspectral data for detection of 
invasive species was based on knowing the invasive was present 
and having areas for training of supervised classification algo-
rithms (Underwood et al., 2007).

11.4.4  Assessment of High Spectral Resolution

There are only two indicators of rangeland health (Table 11.1) 
and one variable for animal biodiversity (Table 11.2) for which 
the preferred method of remote sensing is high spectral resolu-
tion. The large spectral difference between vegetation and soils 
allows accurate assessments of relative cover; so one of the three 
most important indicators is reliably determined with hyper-
spectral sensors. Compared to other methods, the suitability 
of hyperspectral remote sensing for rangeland monitoring 
depends on detection of the other two critical indicators: inva-
sive species and composition of PFTs. The extensive discussion 
in Section 11.4.3 shows that more research is required, perhaps 

using simulated hyperspectral infrared imager (HyspIRI) 
mission data produced with high-altitude AVIRIS imagery 
(http://hyspiri.jpl.nasa.gov; last checked June 12, 2014).

Compared to other sensors, it is more expensive to acquire 
an airborne hyperspectral sensor, and it takes more time and 
expertise to analyze hyperspectral imagery, so mapping the 
distribution of an invasive species over a landscape may not be 
cost effective. Geospatial species-distribution models classify 
suitable habitat over larger areas based on combinations of cli-
mate, vegetation, soils, topography, and other variables within a 
geographic information system. There are too many combina-
tions of factors to establish field plots for complete model testing. 
Classified hyperspectral imagery for small areas should be used 
to test species geospatial niche models, and then the geospatial 
models should be used to classify suitable habitat over larger 
areas (Underwood et al., 2004; Andrew and Ustin, 2009; Hunt 
et al., 2010).

Global biodiversity is one of the important science questions 
for the NASA HyspIRI mission (Roberts et al., 2012). The total 
number of species in a small area (alpha diversity) and the total 
number of species in a large area (gamma diversity) are more 
encompassing assessments of biodiversity. Alpha and gamma 
diversities are interrelated by beta diversity, which is a measure 
of the proportion of shared species between two points along an 
environmental gradient. Rocchini et al. (2010a,b) hypothesized 
spectral diversity is an important method for estimating beta 
diversity. If this hypothesis is validated, then high spectral reso-
lution data will become invaluable for estimating biodiversity, 
even though invasive species or PFTs may not be detected.

11.5  High Temporal Resolution

Repeated satellite acquisitions reveal seasonal patterns and 
growth of vegetation; however, cloud cover may obscure vegeta-
tion during critical time periods of active plant growth. High 
temporal resolution data acquire data every few days, which are 
composited to form weekly to monthly cloud-free time series. 
Even in rangelands, “where the skies are not cloudy all day” 
(Higley and Kelly, 1873), medium-resolution imagery is fre-
quently unusable because of cloud occurrence during the onset 
of the plant growing season. Meteorological satellites, such as 
NOAA’s advanced very-high resolution radiometer (AVHRR) 
and NASA’s MODIS, use the change in NDVI over the year to 
determine phenology and the fraction of absorbed photosynthet-
ically active radiation (fPAR). Gross and net primary production 
are calculated from the total absorbed photosynthetically active 
radiation and light use efficiency (Hunt et al., 2003; Reeves et al. 
[Chapter 10]; Kumar et al. [Chapter 12]). Productivity is an indi-
cator of rangeland health (Indicator 15, Table 11.1) and a variable 
for predicting animal biodiversity (Variable 2, Table 11.2).

Over a small region, interannual variation in phenology is 
related to climatic variability (Reed et al., 1994; Schwartz et al., 
2002), whereas consistent spatial variation in phenology is 
related to PFT (Loveland et al., 1991; Kremer and Running, 1993; 
Peters et al., 1997; Aragón and Oesterheld, 2008; Gu et al., 2010). 
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Grasses (Poaceae) have two functional types based on photosyn-
thetic pathway: cool-season grasses with C3 photosynthesis, and 
warm-season grasses with C4 photosynthesis. Physiologically, C3 
photosynthesis is greater at cool temperatures and C4 photosyn-
thesis is higher at warm temperatures, but temperature affects 
many different processes, not just photosynthesis (Sage and 
Kubien, 2007). With global climatic change, warmer tempera-
ture may favor C4 grasses, whereas elevated atmospheric CO2 
may promote C3 plants (Morgan et al., 2007). Therefore, C3/C4 
relative abundance is a complex response of climate change, 
and will affect ecosystem biogeochemical cycles at regional and 
global scales.

Temperate grasslands in North America, South America, 
Australia, Africa, and Asia have mixtures of C3 and C4 grasses 
with the ratio depending on the amount of rainfall during the 
warm and cool seasons (Winslow et al., 2003). Determining the 
ratios of C3 and C4 grasses is a challenge, because the reflectance 
spectra may not be separable (Adjorlolo et al., 2012a,b). High tem-
poral resolution AVHRR or medium-resolution imaging spec-
trometer (MERIS) data was used to separate C3 and C4 grasses 
(Goodin and Henebry, 1997; Tieszen et  al., 1997; Ricotta et  al., 
2003; Foody and Dash, 2007, 2010). Medium-resolution imag-
ery acquired two or three times per year also showed differences 
based on temperature (Davidson and Csillag, 2001; Peterson 
et al., 2002; Guo et al., 2003). High temporal resolution data may 
add more information by subdividing both C3 and C4 functional 
types into tall and short functional types (Wang et al., 2013).

11.5.1  Phenology Metrics

The first step for determining phenological metrics from high 
temporal resolution data is applying a low-pass filter to the time 
series of NDVI to remove the effects of subpixel clouds, atmo-
spheric conditions, and view angles. Several smoothing algo-
rithms have been used: a nonlinear median filter (Reed et  al., 
1994), an upper-envelope three-point filter (Gu et al., 2006), and 
a second-order polynomial filter (Savitzky and Golay, 1964).

Most studies define a series of metrics from the smoothed 
NDVI time series (Table 11.4). These metrics may be determined 
by a sequence of logical statements; tools have been developed 

to automate calculation of the various metrics: fitting the NDVI 
time series into piecewise logistic functions (Zhang et al., 2003), 
fitting the time series using a quadratic function (de Beurs and 
Henebry, 2004), and in the open-source TIMESAT program 
(Jönsson and Eklundh, 2004). In rangelands, these mathemati-
cal approaches may produce errors, because grasses often have 
prolonged growing season and asymmetric trajectories (de 
Beurs and Henebry, 2010). For this reason, some studies directly 
use the polynomial-smoothed time series to extract phenologi-
cal metrics directly (Wang et al., 2010b, 2011a, 2013).

11.5.2  Grass Functional Types

Dividing the U.S. Great Plains at 100° West Longitude, east 
of this meridian is primarily subhumid tallgrass prairie with 
500–750 mm of annual precipitation (Figure 11.4a). West of this 
meridian are the southern shortgrass steppe and the northern 
mixed-grass prairie (Figure 11.4a), which get about 250–500 mm 
of precipitation annually. Precipitation strongly controls grass-
land productivity resulting in the designations, tallgrass and 
shortgrass. The latitudinal C3/C4 variations and longitudinal 
tall/short differences are combined into tallgrass C3, tallgrass C4, 
shortgrass C3, and shortgrass C4. The latter three PFTs correspond 
to naturally occurring ecological regions; however, tallgrass C3 
may be the result of seeding cool-season species (e.g., tall fescue) 
into pastures for higher forage production (Wang et al., 2013).

Grassland areas were determined from the USGS National 
Land-Cover Database (Homer et al., 2004); the grassland areas 
were not divided into functional types. Time series of the 500-m, 
8-day Terra MODIS surface reflectance products (MOD09A1) 
for the years 2000–2009 show phenological variations of C3 and 
C4 grasses (Figure 11.5). Tallgrass C3 and C4 have higher NDVI 
values than shortgrass C3 and C4. Summer dormancy and fall 
growth for tallgrass C3 was seen in some years as a second NDVI 
peak in the autumn (Figure 11.5), but this phenological feature 
was much less important than an earlier start of growing season 
(SOS), later end of growing season (EOS), and therefore longer 
length of growing season (LOS). Shortgrass C3 have much ear-
lier SOS than shortgrass C4, and both have shorter LOS than the 
tallgrass PFTs (Figure 11.5).

The four grass PFTs in the U.S. Great Plains were mapped over 
the 10-year period (2000–2009) with a decision tree approach 
(Figure 11.4b). Because of interannual variability in temperature 
and precipitation, a given pixel would be classified as one PFT 
for some years and would be classified as another PFT for other 
years. For example, during drought, tallgrass C3 and shortgrass 
C3 SOS may be delayed and EOS may be earlier, so that the phe-
nological features become similar to those of tallgrass C4 and 
shortgrass C4, respectively.

Therefore, delineation of grass C3/C4 PFTs is problematic 
using data from only a single year. A long time series of data 
were required for reliable separation (Winslow et  al., 2003; 
Wang et  al., 2013). The final classification in Figure 11.4b dis-
plays the distributions where one PFT was selected for at least 
6 of the 10 years (Wang et al., 2013). The four PFTs followed the 

Table 11.4  Common Phenology Metrics for Determining PFTs

Metric Definition 

Start of season (SOS) Before Peak NDVI, DOY 
when NDVI > threshold

End of season (EOS) After peak NDVI, DOY 
when NDVI < threshold

Length of season (LOS) EOS − SOS
Peak NDVI Maximum NDVI in time 

series
Peak date DOY of Peak NDVI
Cumulative NDVI (Σ − NDVI) Sum NDVI when SOS 

< NDVI < EOS

These metrics have to be determined with a complete time series of NDVI.
DOY, Day of the Year.
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longitudinal transition of ecological regions based on precipita-
tion. However, latitudinal trends caused by temperature were not 
present, because east of 100° West, tallgrass C3 areas were south 
of tallgrass C4 areas. Splitting grasses into tallgrass and short-
grass highlighted the occurrence of a new ecological region; the 
areas classified as tallgrass C3 are located in areas generally con-
sidered to be pastures (Wang et al., 2013). Because more of the 
variation in temporal profiles was now explained, the resulting 
classification had somewhat increased accuracy.

11.5.3 I nvasive Plant Species

Few invasive species are detected from the large pixels of 
high temporal resolution data (e.g., AVHRR and MODIS). 
One species is downy brome in the Western United States; 
Bradley and Mustard (2005, 2006) showed that the temporal 
variation between downy brome and co-occurring species was 
large enough to classify downy brome invasion using AVHRR. 
Singh and Glenn (2009) and Clinton et  al. (2010) replicated 
this study using a time series of Landsat and MODIS data, 
respectively.
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Figure 11.4  (a) Ecological regions of the tallgrass prairie, shortgrass steppe, and northern mixed-grass prairie. (b) Distributions of four grass 
functional types in the U.S. Great Plains: tallgrass C3, tallgrass C4, shortgrass C3, and shortgrass C3. Tallgrass C3 is not a naturally occurring eco-
logical region in the U.S. Great Plains and may be the result of seeding C3 species into pastures. Interannual variability of precipitation and tem-
perature affect the NDVI time series, so overall assignment of a pixel to one of the four grassland functional types was determined when a single 
functional type was the classification result in 6 of the 10 years.
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Figure 11.5  Examples of NDVI time series of the four grass func-
tional types: tallgrass C3, tallgrass C4, shortgrass C3, and shortgrass 
C3. The NDVI values of pure pixels are extracted from the 46 MODIS 
scenes acquired in 2007.
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Two other species that may be detected using high temporal 
resolution data are broom snakeweed (Gutierrezia sarothrae 
[Pursh] Britton and Rusby; Peters et  al., 1992) and Lehmann 
lovegrass (Eragrostis lehmanniana Nees; Huang and Geiger, 
2008; Huang et al., 2009). Broom snakeweed is a C3 shrub sur-
rounded by C4 grasses, so it was detected based on its earlier 
SOS. Lehmann lovegrass is a C4 grass that crowds out native C4 
grasses; during senescence, it produces a litter layer that is dense, 
bright, and yellow, which is detectable even with large pixel sizes 
(Huang and Geiger, 2008; Huang et al., 2009).

Two important questions about invasive species are 
addressed using ecological niche or habitat suitability mod-
els: (1) what areas on Earth may be susceptible to an invasive 
species, and (2) how will the areas expand or contract with 
anthropogenic global warming (Peterson, 2003; Thuiller et al., 
2005; Andrew and Ustin, 2009; Stohlgren et al., 2010). MODIS 
vegetation index data are important for predicting the poten-
tial distribution of tamarisk (Morisette et al., 2006) and purple 
loosestrife (Lythrum salicaria L.; Anderson et  al., 2006). In 
these studies, time series of NDVI are used as a surrogate for 
meteorological data, because even with 1-km pixel size, the 
data are much more densely distributed compared to available 
weather station data.

11.5.4 � Assessment of High 
Temporal Resolution

The specifications for NASA MODIS and the recently launched 
Suomi National Polar-orbiting Partnership Visible Infrared 
Imaging Radiometer Suite (VIIRS) were developed in part 
based on the long history of AVHRR for global remote sensing 
of interannual climatic variability. Most land-cover classifica-
tions using AVHRR data were designed to be used by global 
ecosystem models, so fewer PFTs were defined. Because of 
limited computing power, there were limitations placed on the 
spatial resolution in order to provide high-quality data at high 
temporal resolution (Townshend and Justice, 1988). Therefore, 
variations in phenology related to taxonomy, PFTs, and other 
considerations at smaller scales were rarely explored because of 
the large pixel sizes.

Two satellite systems have broad swaths and high temporal 
resolution with much smaller pixel sizes: (1) the Indian Space 
Research Organization’s advanced wide field sensor (AWiFS) 
and (2) the international Disaster Monitoring Constellation 
(Wang et al., 2010c). However, data from these two sensors are 
only available from commercial venders and are not freely avail-
able from public archives (Goward et al., 2012).

With more powerful computers available, trade-offs between 
high temporal resolution and HSR are no longer required. For 
example, the U.S. Department of Agriculture (USDA) National 
Agricultural Statistics Service (NASS) previously used AWiFS 
data (56–70 m pixels) and currently uses Deimos-1 data (22 m 
pixels) to produce annual cropland data layers for the USA 
(Boryan et al., 2011). The potential of high temporal resolution 

data for monitoring rangeland biodiversity is simply not known. 
Making AWiFS, Deimos, and similar multispectral sensor data 
available worldwide is an important investment for monitoring 
global biodiversity (Wang et al., 2010c).

11.6  High Spatial Resolution

While ground and aerial photographs have been used for natu-
ral resource management since the last century (Cooper, 1924), 
advances in digital sensors and computer processing have made 
HSR the newest dimension in remote sensing. The term “HSR” 
is subjective, changes with time, and can mean pixel sizes from 
0.25 mm to 2 m with the current state of the art. Smaller pixel 
sizes must be acquired from aircraft flying at lower altitudes, 
usually resulting in smaller areas covered per image (<1 ha 
compared to 27,000 ha for WorldView-2 data). HSR images are 
also referred to as “very-large scale” in reference to the map 
scale (e.g., 1:500 compared to 1:24,000 for a 7.5′ × 7.5′ topo-
graphic map).

HSR imagery is useful in most aspects of rangeland resource 
management including assessments of ground cover, ripar-
ian condition, wildlife habitat, woodlands, and other resource 
concerns. One of the characteristics of HSR images is very 
high pixel-to-pixel variability, but each pixel is spectrally pure 
(Figure 11.6). With larger pixel sizes, each pixel is a heteroge-
neous mixture of different spectral components (Figure 11.6). 
At the scale of 1 m, spectral unmixing or spectral indices are 
required to measure the amount of bare ground, so the advan-
tages of HSR satellite data compared to medium-resolution 
satellite data are not clear. On the other hand, at the scale of 
0.4-mm HSR aircraft data, the established techniques of remote 
sensing are inadequate and new techniques are being devel-
oped and tested. Alternatively, established techniques of visual 
photointerpretation can often be updated for use with digital 
imagery. As shown by Figure 11.6, the resolution of HSR data 
needs to be from 0.25 to 10 mm in order to visually interpret 
the data effectively.

11.6.1  Ground Imaging

Most ground assessments continue to be interpretations and 
judgments based on monitoring a limited number of nonran-
domly selected sites. It simply has not been practical to do oth-
erwise. However, ground and aerial digital photography are 
replacing or augmenting time-consuming field methods, and are 
increasing the objectivity of rangeland monitoring (Booth et al., 
2008; Moffet, 2009; Sadler et  al., 2010; Booth and Cox, 2011). 
Digital photography and subsequent photo interpretation can 
increase sampling rates over traditional field sampling methods 
(Luscier et al., 2006; Cagney et al., 2011). Reduced monitoring 
time and associated labor costs can increase monitoring preci-
sion by allowing increased sample numbers.

Methods for obtaining nonaerial, nadir-looking digital 
images include a free-hand method (Cagney et  al., 2011) and 
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the use of staffs, tripods, stands (Booth et al., 2004; Booth and 
Cox, 2011), booms, and gantries (Louhaichi et al., 2010), vehicle 
mounts and other aids to reduce camera motion. Furthermore, 
these tools allow for a range of camera positions above ground 
level and a range of image resolutions. For a permanent record, 
the digital images are archived at much lower cost compared 
to film negatives or prints. Even where sampling will be done 
primarily from aircraft, acquisition of ground images is an 
important part of monitoring, since it provides the opportu-
nity to capture nadir images with less motion blur than can be 
obtained from the air.

11.6.2  Aerial Imaging

Some image users require boundary-to-boundary coverage, 
and HSR mosaics may be made from airborne data at consid-
erable expense. However, many users do not require mosaics, 
and can manage effectively at lower cost by capturing single-
image samples that are systematically distributed across water-
sheds, allotments, and other landscape-scale management units 
(Figure 11.7). Geographic Information Systems (GIS) should be 
used to draft sampling plans that define intended locations for 
ground or aerial image acquisition to acquire a statistically ade-
quate sample that represents the natural range of variation in the 
areas monitored (Blumenthal et al., 2007; Booth and Cox, 2008).

Platforms used for HSR aerial-image acquisition include 
manned conventional and light sport airplanes (LSAs), manned 

and unmanned helicopters, and unmanned fixed-wing air-
craft (Booth and Cox, 2011). Surprisingly, contracting for a 
piloted LSA was the least expensive, because fewer personnel 
were required to be on site for safety. Furthermore, only LSAs 
and helicopters were able to fly slow enough to avoid excessive 
motion blur with image resolutions of 1-mm resolution or less 
(Figure 11.8). Contract costs for manned helicopters are usu-
ally more expensive than for LSAs, but helicopters (manned or 
unmanned) can fly during windy conditions when LSAs can-
not safely operate. To mitigate risk, LSAs need to be equipped 
with rocket-deployed, whole-plane parachutes in the event of 
mechanical failure. Frequently in windy areas, flights are made 
early in the day before strong winds and atmospheric turbu-
lence develop. A potential problem with early morning flights 
is the presence of shadows that may affect estimates of bare 
ground cover.

Manned helicopters and LSAs can carry multiple cameras 
allowing for nested, simultaneously acquired, multiresolu-
tion images: for example, 1-, 10-, and 20-mm pixel sizes. This 
capability allowed users to acquire wide fields of view and high 
resolution, a capability that proved important for the study of 
fire intervals in shrub ecosystems (Moffet, 2009), and moni-
toring invasive species (Blumenthal et  al., 2007, 2012; Booth 
et al., 2010).

Aerial surveys acquired imagery with 1-mm pixels that over-
came the need to depend on subjective selection of “represen-
tative” study areas. Summarizing, aerial surveys acquiring 
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Figure 11.6  Effect of spatial resolution (also called ground sample distance) on pixel color and visual interpretation. The top left panel shows a 
100 × 100-m area of rangeland in southeast Idaho at 1-m resolution to illustrate the heterogeneity of the imaged area. The middle row shows a 1 × 
1-m patch of rangeland in all panels with the lowest spatial resolution on the left (1-m pixel size) and highest resolution on the right (0.4-mm pixel 
size). The top right panel shows an enlargement of the 0.4-mm resolution image; the red dot in the center (shown by the blue arrow) is one 0.4-mm 
pixel situated on a sagebrush leaf. The lower row shows pixel color change from increasing resolution from 1 m to 0.4 mm. (Figure adapted from 
Weber, K.T. et al., Rangeland Ecol. Manag., 66, 82, 2013, used with permission.)
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Figure 11.7  Flight plan in Wyoming’s Red Desert (center: 43.37°N, 108.40°W) showing 1457 image acquisition points that were 200 m apart 
along east–west flight lines spaced 1600 m apart. Three images were collected at each acquisition point: (1) an area of 3 × 4 m with 0.9-mm pixels; 
(2) an area of 24 × 36 m, with 7-mm pixels; and (3) an area of 48 × 72 m with 14-mm pixels.

30 cm

Figure 11.8  Portion of a 3 × 4-m aerial image (0.9-mm pixel size) acquired from a LSA traveling 84 km/h at an altitude of 103 m above ground 
level in the Red Desert of central Wyoming. The main image shows bare soil, litter, shadow, grasses, sagebrush (Artemisia tridentata Nutt.), and 
yellow rabbitbrush (Chrysothamnus viscidiflorus [Hook.] Nutt.), while the circular inset (circled area on main image enlarged twofold) shows 
goldenweed (Stenotus acaulis [Nutt.] Nutt.).

© 2016 Taylor & Francis Group, LLC

  



293Remote Sensing of Rangeland Biodiversity

multiresolution imagery that includes 1-mm pixel data have 
repeatedly demonstrated

	 1.	 Lower cost than extensive conventional ground sampling 
for areas greater than about 200 ha

	 2.	 Practical acquisition of large sample numbers
	 3.	 Reduced sample-collection time
	 4.	 Collection of many samples within short phenological 

windows
	 5.	 Creation of permanent records that may be examined any 

time in the future
	 6.	 Capability of capturing submeter details for detecting 

ecologically important changes

Measurement of bare ground from 1-mm pixel images is just one 
example of the different indicators of rangeland health that may 
be monitored.

11.6.3  Visual Analysis

For measuring ground cover, image resolution should be at least 
1-mm resolution (Booth and Cox, 2009). Attempts to accurately 
measure ground-cover from 10-, 20-, and 50-mm resolution 
imagery were unsuccessful (Booth and Cox, 2009; Duniway 
et al., 2012; Weber et al., 2013). Figure 11.8 shows that 1-mm res-
olution images are essential to capturing the detail needed for 
identifying species. Current methods for analysis of this type of 
imagery include visual-analysis-facilitating software programs 
(Booth et al., 2006a,b). These programs are accurate when used 

with appropriate image resolutions (you cannot measure what 
you cannot see), and by people with adequate field experience.

SamplePoint is free software (available online at www.
SamplePoint.org; last accessed May 30, 2014) that facilitates 
point sampling of digital images. Because the sample point 
is always a single pixel of the image (Figure 11.9a), where the 
spatial resolution is equal or less than 1  mm, the analysis has 
a potential accuracy of 92%. To use the program, images are 
loaded from a computer directory, and a database is created to 
store the data entered. The number and pattern of sample points 
(grid or random) are determined by the user (Figure 11.9b). The 
predetermined classes are associated with buttons along the bot-
tom of the image. SamplePoint automatically moves from point 
to point when the class information is entered by clicking one of 
the buttons. The software allows image magnification (zoom), 
and it will support up to three monitors, each of which displays 
the image with different levels of magnification.

Images need not be orthorectified or georeferenced for use 
in SamplePoint. Thus, users with no GIS experience can use the 
software effectively. This is an important point, because other 
point-sampling tools like Image Interpreter Tool (Duniway 
et al., 2012) and Digital Mylar (Clark et al., 2004; RSAC, 2014) 
do require georeferenced imagery. That adds a workflow step 
that makes the software more difficult and time-consuming to 
use for those who have GIS experience, and virtually impossible 
for those who do not. The cited tools function very well with 
orthoimagery, as intended. Nevertheless, for ground- or aerial-
based photo plot monitoring, a georeferenced image prerequisite 

(a) (b)

Figure 11.9  SamplePoint analysis of a ground photograph in Wyoming’s Red Desert associated with aerial images (Figure 11.8) collected using 
the flight plan in Figure 11.7. Classification is performed on a single pixel within a 9-pixel array framed by the red crosshair by clicking one of the 
user-defined buttons along the bottom of the screen (a). The same sampling point is shown zoomed out (b) to show the context of the point that 
is hitting bare ground in between spiny phlox (Phlox hoodii Richardson) and sagebrush (A. tridentata Nutt.). Note the systematic grid sampling 
pattern of the classification crosshairs.
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restricts usage of these tools because (1) it is impractical to geo-
reference hundreds of disconnected plot-based images and (2) 
commercial submeter orthoimagery is too expensive to acquire 
frequently. To illustrate, over the last 6 years, the Bureau of Land 
Management contracted only one submeter orthoimage col-
lection in the state of Wyoming: 30-cm resolution at $18/km2. 
Collection of the 2–3-cm orthoimagery that Duniway et  al. 
(2012) reported as yielding reliable estimates for many cover 
types will cost substantially more than $18/km2, limiting usage 
among agencies where even contracting for 30-cm orthoimag-
ery is usually cost-prohibitive. As internal collection capabilities 
improve, cost may become less of a factor.

First-time users of 1-mm resolution imagery are often surprised 
at the number of species they can identify in an image. This leads 
to an initial presumption that they can use SamplePoint to mea-
sure cover by species. While this may be true for appropriately 
spaced woody species, measuring cover by PFT (grasses, grass-
like plants, and forbs) is usually more practical except where and 
when plant species are distinctive. SamplePoint does not correct 
for user biases that may occur due to personal interpretations of 
protocol (e.g., what is litter), or correct for conditions such as age 
that can influence color perception. In fact, the variation among 
SamplePoint users was found to be about equal with that of users 
of the line-point intercept (Moffet, 2009). Additionally, multiple 
people used SamplePoint to analyze the same set of images show-
ing there are user biases in class selection. When biases are found, 
the image data set can be re-analyzed. Thus, data verifiability and 
the capability to significantly increase sampling are key advan-
tages of using SamplePoint with image-based monitoring.

Two other programs are also freely available at http://www.
SamplePoint.org, SampleFreq and ImageMeasurement. SampleFreq 
functions similarly to SamplePoint, but it facilitates nested fre-
quency sampling. ImageMeasurement is used to measure areas 
and lengths from nadir imagery of known scale. Originally, this 
program was used to measure stream and channel widths with 
other ecological indicators for riparian areas. ImageMeasurement 
is unique among similar programs by incorporating exact image 
resolution for every image in a multi-image data set.

11.6.4  Unmanned Aircraft Systems

Unmanned aircraft systems (UAS) may also be effective plat-
forms for remote sensing (Hardin and Jackson, 2005; Rango 
et al., 2006, 2009; Hardin and Hardin, 2010). Some of the first 
UAS that were used in agricultural and natural resource man-
agement were made from radio-control model aircraft (Tomlins 
and Lee, 1983; Quilter and Anderson, 2000, 2001). Now, there 
are many types of advanced civilian UAS, from high-altitude 
long-endurance to low-altitude short-endurance aircraft (Watts 
et al., 2012), so few generalizations may be made about current 
UAS flight capabilities. LSAs may fly in steady wind condi-
tions of 32 km/h when there are no wind gusts. Two particular 
UAS (UX5 and Gatewing X100, Trimble Navigation Limited, 
Westminster, CO) are claimed to be able to fly in 65 km/h winds 
(Trimble Navigation, 2013), because the automatic pilot updates 

aircraft controls at 100 Hz (Southard, 2013). The ability of UAS 
to fly in moderate to high winds may facilitate timely collection 
of aerial data for biodiversity.

Like manned aircraft, UAS may be configured with 
medium-resolution, high spectral resolution, or HSR sensors. 
Furthermore, LiDAR, thermal infrared, radar, and other sensors 
are available for UAS platforms. Most of the research uses small 
low-flying UAS with digital cameras to measure ground cover 
(Hardin et  al., 2007; Laliberte et  al., 2007, 2010; Breckenridge 
and Dakins, 2011; Breckenridge et al., 2011). Hardin et al. (2007) 
using small UAS to detect squarrose knapweed found that over-
all detection accuracy was low but the rate of false positives was 
miniscule. Breckenridge et  al. (2011) also attempted to deter-
mine presence and sex of sage grouse (Centrocercus uropha-
sianus) using decoys to represent grouse during spring mating 
season. At a height of 73 m, 100% of the male and 80% of the 
female decoys could be detected by a skilled observer, whereas at 
305 m height, 90% of the male and only 10% of the female decoys 
could be detected by the skilled observer.

With small UAS and digital cameras, it is easy to acquire 
many more images than would be possible to analyze using aids 
such as SamplePoint; so automated processing or preprocessing 
is required. Many people using these systems have backgrounds 
in image processing, in which the typical workflow would be 
production of orthorectified image mosaics. Two general meth-
ods used in orthorectification are the scale invariant feature 
transform (Lowe, 2004) and structure from motion (Turner 
et  al., 2012; Westoby et  al., 2012). Classification of land-cover 
types from these image mosaics is not very accurate when using 
methods developed for multispectral satellite data, because the 
spectral properties of a small pixel have little connection with its 
cover type (Figure 11.6). Instead, the spatial relationships among 
pixels are used in an object-based classification (Luscier et al., 
2006; Laliberte et al., 2007, 2010; Laliberte and Rango, 2011).

11.6.5  Assessment of High Spatial Resolution

Remote sensing with HSR sensors can be used for monitoring 
numerous indicators of rangeland health (Table 11.1) in order 
to get a preponderance of evidence for evaluation. Aircraft are 
necessary for HSR data acquisition; image analysis currently 
requires human inputs. The typical image-processing work-
flow for aerial photography is to georectify and orthorectify the 
large number of photographs to produce a single image with 
boundary-to-boundary coverage. We suggest that this time-
consuming effort is not necessary for rangeland monitoring. 
By assuming each photograph is one plot in a statistical sample, 
accurate conclusions may be determined regarding the land 
area as a whole. Furthermore, from the geographic coordinates 
of each photograph, the plot-scale results may be combined for 
landscape-scale information by kriging or cokriging.

Unsupervised or supervised classification of remote sensed 
imagery requires areas of a known category for training, which 
is a problem for early detection of invasive species. Computer-
facilitated interpretation of HSR data may be used to detect plant 
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species new to an area, because photographs from other areas 
would be used as examples. Furthermore, with low-cost data stor-
age, HSR acquisitions may be archived for re-examination.

Most of the airborne HSR data used for method development 
were acquired using a manned light sport aircraft (Booth and 
Cox, 2009, 2011), and the costs for LSA remote sensing were 
less than other methods. The decade-long LSA effort included 
a strong emphasis on safety, and there were no incidents during 
the thousands of LSA flight-hours. Even though the availability 
of high-quality components has made UAS much more reliable 
than a few years ago, there will be flight and control failures. 
The expanse of rangelands is large, so the number of flight hours 
required for monitoring will be large; using either LSA or UAS 
as low-altitude platforms should facilitate the acquisition of HSR 
imagery for rangeland monitoring.

11.7 C onclusions

Rangeland state-and-transition models account for differences 
in plant communities occurring at an ecological site, and these 
models are being adopted in different countries for rangeland 
management. Based on the natural range of variation, recently, 
disturbed ecological sites in the reference state may have lower 
diversity and biomass compared to an alternative state. Therefore, 
after accounting for interannual variation in precipitation, 
detecting lower biomass with spectral vegetation indices is not 
necessarily equal to detecting rangeland degradation. Instead, 
degraded rangelands crossed a transition into an alternative eco-
logical state such that the area will not recover over time to its for-
mer diversity, biomass, and structure. Operational monitoring of 
rangelands by remote sensing needs to be based on the informa-
tion required for management in order to prevent degradation.

As discussed in this chapter, there are many examples show-
ing how sensors with different combinations of high spectral 
resolution, high temporal resolution, and HSR may be used to 
measure biodiversity, usually by detecting various indicators of 
rangeland health. We attempted to make the best possible case 
for rangeland monitoring with each data type. At the current 
time, we conclude that facilitated image interpretation of HSR 
data is the best method for rangeland monitoring for manage-
ment based on state-and-transition models. This conclusion is 
based on one narrowly focused objective, providing informa-
tion required for modifying management practices in order to 
protect rangeland diversity and prevent rangeland degradation. 
Other objectives, such as estimating biomass forage production, 
require other sources of remotely sensed data.

Medium-resolution satellite data have been available for 
decades, and the only rangeland health indicator that may be 
reliably estimated is the amount of bare ground (Table 11.1). 
Transitions to alternative states may be recognized afterward, 
but perhaps too late to prevent further degradation. High tem-
poral resolution data from operational meteorological satellites 
are necessary for monitoring vegetation phenology, functional 
types, and effects of drought. Phenology using higher spatial 
resolution data from satellites currently in orbit is an extremely 

important new source of information, and there should be an 
international effort to archive these data for worldwide avail-
ability. Multiple years worth of data need to have been acquired 
and available in order to account for interannual variability in 
temperature and precipitation.

High spectral resolution data may be used to detect and 
measure bare soil, many different invasive species, and most 
PFTs, the three most important indicators of rangeland health 
(MacKinnon et al., 2011). Combined hyperspectral sensors and 
LiDAR in aircraft (Asner et al., 2007; Asner and Martin, 2009; 
Kampe et al., 2010) are promising, because it is much easier to 
identify pure spectral components. Airborne sensors have pixel 
sizes from 5 to 30 m, so image texture would help to identify 
areas of spatial heterogeneity for animal habitat. Finally, litter 
cover, biological crusts, and forage quality may be determined 
by chemical composition.

Hyperspectral remote sensing does well when either the ana-
lyst has some prior information on where the target is located 
(such as invasive species) or the spectral signature is invariant 
(cellulose and lignin for litter cover). Soil minerals have spectral 
signatures, whereas soil types are classified based on pedogene-
sis. Plant species do not have signatures in the way that soil min-
erals and biological compounds do, but this conclusion is being 
re-evaluated using more advanced airborne sensors (Asner and 
Martin, 2009, 2011; Asner et  al., 2011). Furthermore, Rocchini 
et al. (2010a,b) hypothesized spectral diversity per se is impor-
tant for estimating biodiversity, which is parallel to the claim that 
spatial diversity from image texture is important for estimating 
biodiversity. Object-based classification combines both spectral 
and spatial diversity and may become an effective method.

Rangeland monitoring with HSR data provides information 
directly relevant for management based on rangeland health, to 
avoid transitions to more degraded states. There may be a large 
difference between the scales at which information is useful com-
pared to the scales at which the data is acquired to produce the 
information. The scale for information required by rangeland 
managers is the landscape, but acquisition of HSR data may be the 
most cost-effective method of obtaining the required information.

Disclaimer

Mention of product names is for information only, does not 
imply government endorsement, and other products may be 
equally suitable.
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AVHRR	 Advanced very high resolution radiometer
AVIRIS	 Airborne visible infrared imaging spectrometer
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FBFM	 Fire behavior fuel models
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GIS	 Geographic Information Systems
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GS	 Gramm–Schmidt
GVI	 Green vegetation index
HSI	 Hue saturation intensity
HMM	 Hidden Markov model
LAI	 Leaf area index
LiDAR	 Light detection and ranging
LSWI	 Land surface water index
MAE	 Mean absolute error
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MESMA	 Multiple endmember spectral mixture analysis
MDM	 Minimum distance to mean
MLC	 Maximum likelihood classification
MODIS	 Moderate resolution imaging spectroradiometer
NAIP	 National Agricultural Imagery Project
NDSVI	� Normalized difference soil-adjusted vegetation 

index
NDVI	 Normalized difference vegetation index
NDWI	 Normalized difference water index
NIR	 Near-infrared
NPP	 Net primary productivity
PAR	 Photosynthetically active radiation
PCA	 Principal component analysis
PCC	 Pearson’s correlation coefficients
PG	 Gross photosynthesis
PRSIM	� Parameter-elevation regressions on independent 

slopes model
PVI	 Perpendicular vegetation index
RED	 Red reflected radiant flux
RF	 Random forest
RMSE	 Root mean square error
RVI	 Ratio vegetation index
SAC	 Spectral angle classifier
SAVI	 Soil-adjusted vegetation index
SMA	 Spectral mixture analysis
SMU	 Soil map units
sNDVI	 Scaled normalized difference vegetation index
SPOT	 Satellite Pour l’Observation de la Terre
SSAC	 Supervised spectral angle classifier
SSURGO	 Soil Survey Geographic Database
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USAC	 Unsupervised spectral angle classifiers
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12.1 I ntroduction

While there are many definitions of rangeland, the central 
theme of all these is that it is land on which the dominating veg-
etation is mainly grasses, grass-like plants, forbs, shrubs, and 
isolated trees. Rangelands include shrublands, natural grass-
lands, woodlands, savannahs, tundra, and many desert regions. 
A distinguishing factor of rangelands from pasture lands is that 
they grow primarily native vegetation, rather than plants estab-
lished by humans. Rangelands are also managed mainly through 
extensive practices such as managed livestock grazing and pre-
scribed fire rather than more intensive agricultural practices and 

the use of fertilizers. Rangelands worldwide are known to pro-
vide a wide range of desirable goods and services, including but 
not limited to livestock forage, wildlife habitat, wood products, 
mineral resources, water, and recreation space. Large popula-
tions depend on rangelands for their livelihoods, hence effective 
monitoring and management is crucial for sustainable produc-
tion, health, and biodiversity of these systems.

Effective monitoring of rangelands has proven logistically 
and statistically difficult using field-based monitoring methods 
alone due to the sheer size, range, and complexity of rangelands. 
Mapping and monitoring of rangelands, especially those in a 
disturbed state or under rapid change, requires data that are 
extensive, accurate, timely, and with regular repeat coverage. 
All this makes remote sensing an ideal platform for rangeland 
monitoring as recent developments in sensor capabilities means 
we have repeat coverage from multiple satellites, spectral resolu-
tions sufficient to distinguish many rangeland vegetation species 
and communities, spatial resolutions allowing monitoring and 
management at micro-scales and costs that are a small fraction 
of a few decades ago. Remote sensing data are more easily avail-
able and the systems cover almost the entire world, and certainly 
all the regions where rangelands occur.

There is a plethora of literature available that describe vari-
ous uses of remote sensing data for rangeland monitoring, 
ranging from mapping species distribution, biomass, degrada-
tion, woody cover, net primary production, biodiversity, change 
detection, fuel loads, fire extents and frequency, invasive species 
encroachment, livestock foraging, etc. New methods of image 
classification and interpretation are regularly published, as well 
as novel techniques of incorporating satellite data with ancillary 
data to better understand rangeland dynamics. Some of these 
applications have been discussed in the previous two chap-
ters, with Reeves et al. (Chapter 10) looking at the relationship 
between rangeland productivity and climate, food security, fire, 
and rangeland degradation, and Hunt et al. (Chapter 11) explor-
ing rangeland biodiversity using different spectral, spatial, and 
temporal satellite data.

The focus of this chapter is to present and discuss methods and 
approaches used in the mapping and monitoring of rangelands. 
We do this by presenting characterization, mapping, and moni-
toring of rangelands in specific applications such as (1) phenol-
ogy and productivity studies; (2) fuel analysis; (3)  biodiversity 
and gap analysis; (4) vegetation continuous fields; and (5) change 
detection analysis. We summarize some oft-used traditional 
means of mapping and monitoring rangelands but concentrate 
on newer developments in this field.

12.2 � Rangeland Monitoring Methods 
Using Vegetation Indices

12.2.1  Rangeland Phenology

Rangeland phenology for vegetation types (shrublands, grass-
lands, steppes, deserts, and woodlands) is affected by envi-
ronmental drivers (temperature, precipitation, and sunshine) 
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and factors such as topography (elevation, slope, and aspect), 
edaphic conditions (variations in soil type, texture, and nutri-
ents), and latitude. Rangeland vegetation growth is the result 
of overall influence of all environmental drivers and factors 
and their interaction, and responds more rapidly to the envi-
ronmental variations as compared to other kinds of vegetation 
(Reed et al., 1994). Since rangelands are mainly located in dry 
areas characterized by low and variable annual rainfall (Grice 
and Hodgkinson, 2002; Tussie, 2004), precipitation regime has 
a much more significant influence on rangeland vegetation 
among all the environmental drivers and factors (Reed et  al., 
1994). They usually respond to precipitation in a pulsed way 
where their phenology is dependent on discrete rainfall events 
in terms of productivity, density, and abundance (Rauzi and 
Dobrenz, 1970). Temperature has also been observed to have 
direct influence on phenological phases and a large number of 
studies have been conducted to determine the effects of tem-
perature on the phonological timings of plants (Badeck et al., 
2004; Sparks et al., 2000). Livestock grazing is another notable 
factor that influences rangeland phenology and has impact 
on rangeland vegetation (Desalew et  al., 2010). The grazing-
induced vegetation change is dependent on the type of livestock 
and the composition of vegetation types and hence an impor-
tant consideration in monitoring or predicting rangeland plant 
phenology.

The advent of remote sensing technology induced great 
changes in vegetation phenology studies by providing tem-
poral data at regular intervals. Time series data have been 
used to predict phenophase in terms of onsets and offsets of 
the vegetation growing season as well as budburst, flower-
ing, or leaf color–changing dates. A simple way to predict the 
onset and/or offset of the growing season is to analyze the 
time series of vegetation indices (VIs). There have been many 
methods to determine the onset/offset dates, including thresh-
olds, maximum rate of change, or a certain percentage of the 
greatest VI increase. For example, Rigge et  al. (2013) evalu-
ated the productivity and phenology of western South Dakota 
mixed-grass prairie in the period from 2000 to 2008 using the 
normalized difference vegetation index (NDVI) derived from 
moderate resolution imaging spectroradiometer (MODIS) 
data. They used growing season NDVI images on a weekly 
basis to produce time-integrated NDVI, a proxy of total 
annual biomass production, and also integrated seasonally to 
represent annual production by cool and warm season species 
(C3 and C4, respectively). Heumann et al. (2007) studied phe-
nological change in the Sahel and Soudan, Africa, from 1982 
to 2005. They used TIMESAT software to estimate phenologi-
cal parameters from the advanced very high resolution radi-
ometer (AVHRR) NDVI data set and have found significant 
positive trends for the length of the growing and end of the 
growing season for the Soudan and Guinean regions. Kumar 
et al. (2002) showed that soil type has a significant impact on 
the early season growth variation of annual vegetation on 
sandy and clay soils, a fact that is utilized in the movement 
patterns of graziers in the Sahel.

12.2.2 � Vegetation Indices in Rangeland 
Monitoring

12.2.2.1  What to Measure?

To be effective estimators of biomass, leaf area index (LAI), or 
percentage cover, spectral indices must be able to differentiate 
vegetation features from soil features (Todd et al., 1998). For such 
differentiation, it is a requirement that the soils and vegetation 
have different reflectance patterns and the spectral index should 
be sensitive enough to detect the differences. Green vegetation 
has characteristically low reflectance in the visible portion of the 
spectrum (lowest in red portion of the spectrum) with a sharp 
increase in reflectance in the near-infrared portion (Figure 12.1). 
Most of the commonly used VIs exploit this expected difference 
in near-infrared and red reflectance for vegetation discrimina-
tion and in separating them from nonvegetated areas. For exam-
ple, the NDVI, computed as NDVI  =  NIR  − Red/NIR  +  Red, 
has been used in a wide range of practical remote sensing 
applications (e.g., Tucker et  al., 1985). The NDVI values range 
between −1 and +1, with dense vegetation having a high NDVI 
while soil values are low but positive, and water is negative due to 
its strong absorption of NIR. Tucker (1979) tested various com-
binations of the red, NIR, and green bands to predict biomass, 
water and chlorophyll content of grass plots. A strong correla-
tion was observed between NDVI values and chlorophyll content 
and crop characteristics such as green biomass and leaf water 
content. Sellers (1985) used a canopy radiative transfer model 
to show that NDVI is near-linearly related to area-averaged net 
carbon assimilation and plant transpiration, even at different 
values of fractional vegetation cover (fc) and LAI over an area 
of interest.

The TM Tasseled Cap green vegetation index (GVI) is a lin-
ear combination of the six reflecting wavebands of Landsat TM 
(Crist, 1983). The GVI coefficients with the highest values are 
for the red (negatively loaded) and the near-infrared (positively 
loaded) wavebands.
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Figure 12.1  Idealized representation of spectral reflectance curves 
for green and dead vegetation, and light and dark soils.
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12.2.2.2  Soil Reflectance Variation

As compared to vegetation, soil reflectance patterns are usu-
ally quite different and generally increase linearly with increas-
ing wavelength: from visible to near-infrared to mid-infrared 
(Figure 12.1). Unlike vegetation, soil usually has high reflec-
tance in the visible wavelengths and low reflectance in the 
near-infrared wavelengths. Figure 12.1 illustrates the contrast 
in reflectance patterns between dark (low reflecting) and light 
(high reflecting) soils. The difference between reflectance of soil 
and vegetation, in case of high-reflecting soils, can be small in 
the near-infrared wavelengths.

Soil reflectance properties vary considerably with soil type, 
texture, moisture content, organic matter content, color, and 
the presence of iron oxide (Hoffer, 1978). Low-reflecting soils 
are usually dark, high in organic matter or moisture, containing 
iron oxides, and/or coarse textured. Dry soils show high reflec-
tance values in visible, near-infrared, and mid-infrared regions 
of the spectrum. In contrast, wet soils show low-reflectance 
values for these regions (Bowers and Hanks, 1965; Hoffer and 
Johannes, 1969).

12.2.2.3  Soil Background Impacts on Spectral Indices

In rangelands and semiarid regions, background soil effects lead 
to soil–vegetation spectral mixing, a major concern in vegetation 
identification from spectral indices using remote sensing data. 
Soil, plant, and shadow reflectance components mix interactively 
to produce composite reflectance (Richardson and Wiegand, 
1990). The knowledge on soil reflectance variations for different 
soil types and conditions and their interaction with vegetation 
reflectance is essential to differentiate the soil and vegetation 
reflectance patterns. This helps in assessing the potential effec-
tiveness of remote sensing techniques to map spatial distribution 
of plant species or communities and estimate biomass.

Generally, the values of ratio-based indices, such as the nor-
malized vegetation index, tend to increase with dark or low-
reflecting soil backgrounds (Elvidge and Lyon, 1985; Huete 
et al., 1985; Todd and Hoffer, 1998). However, a few studies have 
shown that the Tasseled Cap GVI decreases with low-reflecting 
soil backgrounds (Huete et al., 1985; Huete and Jackson, 1987). 
The influence of soil type and moisture content on vegetation 
index was found less for Landsat TM derived GVI as compared 
to NDVI when estimating percentage green vegetation cover, 
based on a two component soil and vegetation model (Todd and 
Hoffer, 1998). Where soil effects on NDVI are a problem, alter-
native VIs such as the soil-adjusted vegetation index (SAVI) (e.g., 
Huete, 1988) or the scaled difference vegetation index (Jiang 
et al., 2006) can be used.

12.2.2.4  Vegetation Reflectance Variation

The relationship between biomass and spectral indices can also 
be affected by vegetation condition, distribution, and struc-
ture (Todd et al., 1998). The loss in chlorophyll content due to 
drying of vegetation alters spectral reflectance characteristics 
in the visible and infrared regions. This phenomenon is a very 

common occurrence in semiarid rangelands such as the short-
grass steppe (Todd et al., 1998). In case of drying vegetation, the 
reflectances in both the visible and in the mid-infrared regions 
of the spectrum increase significantly. The reflectance patterns 
of dead or dry plant material are more similar to soil than to 
healthy green vegetation (Hoffer, 1978). Both dry vegetation and 
most soils have high reflectance in the visible and mid-infrared 
regions (Hoffer and Johannsen, 1969) and hence the spectral 
similarities introduce difficulties in remote sensing applications 
in rangelands.

For a given region, if dry or senescent biomass forms a signifi-
cant portion of total vegetation present, the spectral distinction 
between vegetation and soil background is altered (Todd et al., 
1998). For bright soil, spectral bands such as Red or indices such 
as Tasseled Cap brightness index, which are responsive to scene 
brightness, should help in vegetation discrimination in the pres-
ence of dry and/or senescent vegetation that appear less bright 
than the soil background.

Graetz et al. (1988) found that the RED index, which responds 
to surface brightness, estimated vegetation cover on high-
reflecting soils more accurately than VIs because dry vegetation 
was less bright than the soil background.

The grazing pattern and intensity also change the relative pro-
portions of the standing dead and green biomass (Sims and Singh, 
1978) and cover characteristics (Milchunas et al., 1989) of plant 
communities within the rangelands. With increasing grazing 
intensity, the amount of standing dead plant material as well as 
litter decreases; however, in the absence of grazing, there will be 
considerable amount of both green and dry vegetation present. 
The presence of dead and/or drying plant material causes spec-
tral confusion between this dead/drying plant material and the 
soil background and hence creates difficulties in estimating bio-
mass using remote sensing techniques. Therefore, comparisons 
between grazed and ungrazed sites can provide insights into the 
impacts of senescence on biomass detection. In addition, graz-
ing intensity varies considerably with topography (Milchunas 
et al., 1989), therefore information on the effectiveness of various 
remote sensing indices in detecting biomass under different graz-
ing intensities could be useful in developing models across land-
scapes with heterogeneous grazing patterns. The field methods 
used to sample vegetation may also affect possible relationships 
between remote sensing indices and biomass.

12.2.2.5 O verview of VIs

VIs combine reflectance measurements from different portions 
of the electromagnetic spectrum to provide information about 
vegetation cover on the ground (Campbell, 1996). Healthy green 
vegetation has distinctive reflectance in the visible and near-
infrared regions of the spectrum. In the visible region, and in 
particular red wavelengths, plant pigments strongly absorb the 
energy for photosynthesis, whereas in the near-infrared region 
the energy is strongly reflected by the internal leaf structures. 
This strong contrast between red and near-infrared reflectance 
has formed the basis of many different VIs. When applied to 
multispectral remote sensing images, these indices involve 
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numeric combinations of the sensor bands that record land sur-
face reflectance at various wavelengths.

One of the most promising applications of satellite data is 
the estimation of net primary productivity over time and space. 
The use of satellite-derived VIs has been useful for estimating 
net productivity (Cihlar et al., 1991). VIs are not a direct mea-
sure of biomass or primary productivity, but establish empirical 
relationships with a range of vegetation/climatological param-
eters (Weiser et al., 1986) such as (1) fraction of absorbed pho-
tosynthetically active radiation (FAPAR), (2) LAI, and (3) net 
primary productivity (NPP). They are simple to understand and 
their implementation is fast as most of them use spectral band 
values in a mathematical formulation (e.g., ratio, difference, 
etc.) While maintaining sensitivity to vegetation temporal 
characteristics and seasonality, most of these indices reduce 
sensitivity to topographic effects, soil background, view/sun 
angle and atmosphere to some extent. While many VIs have 

been developed over the years, Table 12.1 lists a few of these and 
provides references for further investigation.

12.2.2.6  VIs as Proxies for Other Canopy Attributes

12.2.2.6.1  VIs and LAI
The LAI is an estimate of the total leaf area per unit area (Glenn 
et  al., 2008). LAI links VIs to photosynthesis through the 
absorbed photosynthetically active radiation (PAR) (Tucker and 
Sellers, 1986). When light travels through a series of leaves, the 
transmission and therefore reflectance in near infrared of the 
electromagnetic radiation decreases (Hofer, 1978). On the other 
hand, the uppermost leaf layers of a green vegetation canopy 
strongly absorb the red portion of the spectrum and therefore 
reduce their transmittance to successive leaf layers. The relation 
between LAI and VIs varies among vegetation types (Peterson 
et al., 1987). In the case of saturated LAI, the ability to estimate 

Table 12.1  Vegetation Indices Commonly Used in Rangeland Studies

Vegetation Index Formula 

1. SR—simple ratio
SR NIR

R

=










ρ
ρ

2. EVI—environmental vegetation index (Birth and 
McVey, 1968) EVI IR

R

=










ρ
ρ

3. NDVI—normalized difference vegetation index
(Rouse et al., 1974) NDVI IR R

IR R

=
+











ρ −ρ
ρ ρ

4. PVI—perpendicular vegetation index 
(Richardson and Wiegand, 1977) PVI R R IR IRsoil veg soil veg= −( ) + −( )







ρ ρ ρ ρ

2 2

5. SAVI—soil-adjusted vegetation index (Huete, 
1988) SAVI = L

L

IR R

IR R

1+( ) ( )
+ +( )













ρ − ρ
ρ ρ

L is a correction factor whose values range from 0 (high vegetation cover) to 1 (low 
vegetation).

6. TSAVI—transformed SAVI (Baret et al., 1989)
TSAVI =

a* a* b

a* a*b

R IR

R IR

ρ − ρ −
ρ ρ −
( )
+( )













7. Kauth–Thomas transformation (Tasseled cap, 
K–T) (Kauth and Thomas, 1976)

GVI = −0′2728(TM1) − 0′2174(TM2) − 0′5508(TM3) + 0′722(TM4) + 0′0733(TM5) 
− 0′1648(TM7)

8. GNDVI—green NDVI (Gitelson et al., 1996)
NDVIg

NIR green

NIR green

=
( )

+( )












ρ −ρ

ρ ρ

9. GEMI—normalized difference vegetation index 
(Pinty and Verstraete, 1992) GEMI .

.R

R

= ( ) ( )
( )













η − η
ρ −

−ρ
1 0 25

0 125

1

10. EVI—enhanced vegetation index (MODIS) 
Huete et al., 2002) EVI G

+C * C * L
NIR red

NIR red blue

=
+











ρ −ρ
ρ ρ − ρ1 2

L is the canopy background adjustment that addresses nonlinear, differential NIR and red 
radiant transfer through a canopy, and C1, C2 are the coefficients of the aerosol resistance 
term, which uses the blue band to correct for aerosol influences in the red band.

11. II—infrared index (Hardisky et al., 1983)
II

TM4 TM5

TM4 TM5
=

−( )
+( )













12. MSI—moisture stress index (Rock et al., 1985)
MSI

TM5

TM4
=




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biomass using VIs is constrained; however, in rangelands, such 
as the shortgrass steppe, LAI saturation is improbable.

LAI is derived mathematically and has no direct relation-
ship to fPAR or processes that depend on fPAR (Monteith and 
Unsworth, 1990). LAI is related to light interception by a canopy 
(Ri) by

	 Ri Rs[1 exp( k LAI)]= − −

where k is a factor that accounts for leaf angles and other fac-
tors that affect absorption of Rs within a canopy (Monteith and 
Unsworth, 1990). Vertical leaved (erectophiles) plants typically 
absorb less light per unit leaf area than plants with relatively 
horizontal leaves (planophiles). Within a stand, the coefficient 
k also varies with respect to plant arrangements. Single-stand 
plants receive light from all sides of their canopy as compared 
to dense stands of plants that receive light from the top of the 
canopy. The fraction of light absorbed by the canopy (fPAR) 
depends not only on Ri but also on the spectral properties of the 
leaves. The reflective surfaces present in some leaves reduce the 
heat gain while other surfaces absorb nearly all of the incident 
radiation between the visible bands (400 and 700 nm). Therefore, 
a correlation can easily be established between LAI and NDVI 
for single-plant species grown under uniform conditions (Asrar 
et al., 1985). However, the same is not the case with mixed cano-
pies, often the case in remote sensing data, in which a single pixel 
contains several landscape units.

12.2.2.6.2  VIs and Fractional Cover (fc)
Models use fractional vegetation cover to divide the landscape 
into areas of vegetation and bare soil (Anderson, 1997; Glenn 
et al., 2007; Kustas and Norman, 1996; Timmerman et al., 2007). 
Different methods are used in these models to estimate carbon 
and moisture fluxes from vegetation and bare soil and the fraction 
of the landscape that is vegetated (Glenn et al., 2008). Typically, a 
landscape unit is partitioned into bare soil and vegetation through 
the use of VIs. For example, NDVI values derived from satellite 
images and ranging from −1 to +1 are rescaled between 0 and 1 to 
represent bare soil at values near 0% and 100% vegetation cover 
at values near to 1 to get fc for a given pixel or area of interest 
in the scene. Depending on the models used, the scaling is done 
linearly or in a nonlinear way to represent the vegetation type of 
interest. Some models require both LAI and fc often estimated by 
VIs (Anderson, 1997). In a few cases, ground-based information 
relating to vegetation species and canopy characteristics are also 
included to improve the estimates. Sometimes, average leaf angles 
for a particular type of landscape are used to predict both fc and 
LAI from VIs (Anderson, 1997).

For partially vegetated scenes with LAI in the range of 1–3, 
Carlson and Ripley (1997) found VIs to be much more closely 
related to fc than to LAI in case of clumped vegetation, and the 
relationships between NDVI and fc to be nonlinear. They showed 
that, for partially vegetated scenes of uniform vegetation type, 
VIs were a good measure of fc. Other studies on a variety of land-
scape types have also reported strong linear (Ormsby et al., 1987) 

or nonlinear (Li et al., 2005) relationships between VIs and fc. 
However, at 100% cover, different plant species may have dif-
ferent VIs due to differences in chlorophyll content and canopy 
structure, and thus create a potential practical problem in using 
VIs to estimate fc over mixed scenes. Amiri and Shariff (2010), 
in their study of vegetation cover assessment in semiarid range-
lands of Iran, used 26 different VIs to determine suitable indices 
for vegetation cover and production assessment, and found a sig-
nificant relationship between NDVI derived from ASTER data 
with the vegetation cover. In another study, Ajorlo and Abdullah 
(2007) examined four VIs (NDVI, SAVI, perpendicular veg-
etation index [PVI]), and ratio vegetation index [RVI]) to assess 
rangeland degradation in semiarid parts of the Qazvin province, 
Iran. The results showed that NDVI was a more powerful index 
for assessing the rangeland degradation as compared to other 
indices. Jianlong et al. (1998) used NDVI and RVI in grassland 
study and found good correlation between fresh herbage yields 
and RVI and NDVI (P < 0.01) in four grassland types with cor-
relation coefficient (r) > 0.679. Fresh herbage yields correlated 
better with RVI than with NDVI for lowland meadow, hill desert 
steppe, and mountain meadow, but not for plains desert steppe. 
Guo et al. (2005) monitored grassland health with remote sens-
ing approaches and assessed the effectiveness of remote sensing 
in grassland monitoring. They found that it was challenging to 
use remotely sensed data in mixed grasslands because the large 
proportion of dead material complicated analysis for indices that 
were not developed for heterogeneous landscapes, especially in 
conservation areas. They investigated the relationship between 
remote sensing data and grassland biophysical measurement, 
including aboveground biomass and plant moisture content, in 
the native mixed prairie ecosystem with its high litter compo-
nent. Their results indicated that the NDVI was not suitable for 
biomass estimation although a moderate relationship was found 
between NDVI and plant moisture content. Compared to NDVI, 
LAI provided promising results on both biomass and plant mois-
ture content estimation. John et al. (2008) evaluated the utility 
of MODIS-based productivity (GPP and EVI) and surface water 
content (NDSVI and LSWI) in predicting species richness in the 
semiarid region of Inner Mongolia, China. They found that these 
metrics correlated well with plant species richness and could be 
used in biome- and life form–specific models.

Although different VIs are used in assessing the rangeland 
degradation, there are still challenges facing the classification 
of vegetation species in degraded areas where the reflectance is 
strongly affected by the soil background as a result of relatively 
sparse vegetation and atmospheric conditions.

12.2.3 �C ase Study: Rangeland Phenology 
and Productivity in the Northern 
Mixed-Grass Prairie, North America

12.2.3.1 I ntroduction

Rangelands across the northern plains of North America are 
predominantly mixed-grass prairie communities and can 
be dominated by either C3 (cool season) or C4 (warm season) 
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grass  species. These mixed-grass communities exhibit different 
growth dynamics or phenological patterns that can be detected 
from satellite remote sensing (Rigge et  al., 2013; Tieszen et  al., 
1997). Although remote sensing cannot detect traditional pheno-
logical events such as budding and flowering in individual plants 
(Tieszen et al., 1997; White et al., 2009), it can detect important 
landscape-level phenological measures such as the onset of the 
growing season, the end of the growing season, rate of green-up, 
and peak vegetation vigor based on satellite image time series 
over a growing season (Kovalskyy and Henebry, 2012; Reed et al., 
1994; Tao et al., 2008; van Leeuwen et al., 2010). In this case study, 
conducted in the Bad River watershed in western South Dakota, 
USA, the spatial and temporal dynamics of rangelands as mea-
sured by remote sensing indicators or “phenological metrics” 
varied related to climate, management, and plant photosynthetic 
pathway (Rigge et al., 2013).

Land management, livestock grazing, invasive species, and 
prolonged droughts have the potential to change rangeland plant 
community structure and therefore contribute to altered phe-
nological patterns (Foody and Dash, 2007; Tieszen et al., 1997). 
These factors also have the potential to modify ecosystem goods 
and services (Bradley and Mustard, 2008). One benefit in moni-
toring rangelands is to detect and mitigate any damaging trends 
caused by land management (Paruelo and Lauenroth, 1998).

Biomass production in rangelands by C3 and C4 plants dis-
plays significantly different phenological timing that is detect-
able utilizing satellite remote sensing. Information on rangeland 
phenological dynamics has been applied to assessing rangeland 
health monitoring due to inferences that can be made about 
community composition and presence of invasive species (Boyte 
et al., 2014; Reed et al., 1994; Rigge et al., 2013; Tateishi and Ebata, 
2004). For example, rangeland plant communities dominated by 
either C3 or C4 species can be identified through their unique 
and asynchronous phenological time series signals (Foody and 
Dash, 2007). Grasses with C3 pathways are most active during 
the cooler spring and fall seasons, while many C4 grasses are 
adapted to the hot and dry summer months (Foody and Dash, 
2007; Tieszen et al., 1997; Wang et al., 2010). State and transi-
tion models indicate that cool season (C3) grasses tend to domi-
nate historic plant climax communities in many ecological sites 
(ES) of the northern mixed prairie, while shortgrass (C4) species 
generally increase under disturbance such as heavy, continuous, 
season-long grazing (U.S. Department of Agriculture, 2008). 
Furthermore, phenological differences are useful for identifying 
vegetation types. For example, in western South Dakota, ripar-
ian vegetation tends to be dominated by C4 species while upland 
vegetation communities consist primarily of C3 plants. In late 
summer, this difference allows for the detection of a clear ripar-
ian vegetation signal (Kamp et al., 2013).

In the northern mixed-grass prairie, the majority of C3 pro-
duction occurs in spring and fall, and most C4 production occurs 
in summer, although there is both spatial and temporal overlap 
in production (Ode et al., 1980). For example, both C3 and C4 
plants actively produce biomass in mid- to late June with no clear 
separation between the timing of their production (Ode et al., 

1980; USDA 2008). In midsummer (July 1–August 31), produc-
tion is typically dominated by C4 grasses in the study area and 
was therefore used to define the warm season period (Ode et al., 
1980; Wang et al., 2010; White, 1983).

12.2.3.2  Methods

12.2.3.2.1  Study Site
The Bad River watershed of western South Dakota (~lat 45°N, 
long 101°W) is dominated by the Clayey ecological site descrip-
tion in the Major Land Resource Area classification (U.S. 
Department of Agriculture, 2008). The topography of this 
region is generally typified by long, smooth slopes, with steeper 
slopes along well-defined waterways. Bedrock throughout the 
watershed is Pierre Shale, resulting in soils with a high clay 
content and low permeability. The climate is semiarid, receiv-
ing an average of 398  mm precipitation annually over the 
2000–2008 period of which 80% occurred during the growing 
season of April to September. Annual precipitation is highly 
variable, with drought and insufficient moisture common. The 
daily mean temperature ranges from 32°C in July to –14°C in 
January, with a yearly mean of 8°C (Smart et al., 2007). Analysis 
was constrained to pixels classified in the National Land Cover 
Database 2006 as herbaceous cover (Fry et al., 2011).

The study area vegetation is mixed-grass rangeland domi-
nated by C3 grasses including western wheatgrass (Pascopyrum 
smithii Rybd.) and green needlegrass (Stipa viridula Trin. & 
Rupr.; Smart et al., 2007). Shortgrasses (C4) include buffalograss 
(Bouteloua dactyloides Nutt.) and blue grama (Bouteloua gracilis 
H.B.K.). Midgrasses are typically C4 species such as little blue-
stem (Schizachyrium scoparium [Michx.] Nash) and sideoats 
grama (Bouteloua curtipendula [Michx.] Torr.). Little forb and 
succulent cover exists (Sims and Singh, 1978; USDA, 2008).

12.2.3.2.2  Input Data
MODIS satellite time series data provided an ideal balance 
between spatial resolution and temporal repeat, and are there-
fore well-suited for phenology studies across relatively large 
regions. This study is based on 9 years (2000–2008) of eMODIS 
weekly composite Terra MODIS imagery at 250 m resolution 
(Jenkerson, 2010). NDVI values were calculated and rescaled to 
a range of 0–200 to simplify calculations by eliminating negative 
values. Hereafter, rescaled NDVI will be referred to as sNDVI 
(scaled NDVI).

Annual variability in rangeland phenology and productivity 
as shown in MODIS sNDVI time series plots (Figure 12.2a) is 
fairly common (Tieszen et al., 1997), where complex herbaceous 
communities respond to highly variable inter- and intraannual 
precipitation (Lauenroth and Sala, 1992; Smart et al., 2007).

12.2.3.2.3  Phenological Analysis
Several measures calculated on a pixel by pixel basis were utilized 
in this study to describe the phenology of rangeland communi-
ties (Table 12.2). The start of the season was calculated for each 
pixel as the first point in time each year when sNDVI reached 
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20% of the total growing season sNDVI amplitude of that year 
(vanLeeuwen et  al., 2010). The total growing season ampli-
tude was calculated as the difference between the peak sNDVI 
value (during the April 1–October 31 growing season) and the 
minimum sNDVI value during this period. Similarly, the end 
of the season was the time at which the sNDVI value dropped 
below 20% of the total growing season sNDVI amplitude. 
This  approach better approximated the total seasonal biomass 

production than simply averaging NDVI across the entire grow-
ing season. TIN served as a proxy for growing season total bio-
mass production. Because TIN is influenced by the magnitude 
and duration of mNDVI values, the saturation effects that occur 
at larger LAI values (Huete et al., 2002) are minimized. The TIN 
of the spring cool season (start of season to June 30) was also 
used in this study (Figure 12.2b).
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Figure 12.2  (a) Phenological profiles for Bad River watershed, South Dakota, USA. from 2000 to 2008 where years are colored according to 
growing season precipitation (shown on the secondary vertical axis). Colors range from red (for dryer growing seasons to blue (for relatively wet-
ter growing seasons). The left third of the graph shows the spring cool season (CS), the middle shows the warm season (WS), and the right thirds 
shows the fall CS. (b) Illustration of idealized phenological profile and main phenological indicators used in the study. The entire gridded area 
corresponds to the growing season time integrated NDVI (TIN) and the blue gridded area corresponds to the spring CS integrated NDVI. (Based 
on Figures 1 and 3 in Rigge, M. et al., Rangel. Ecol. Manage., 66, 579, 2013.)

Table 12.2  Phenological Measures Calculated from Input MODIS Time Series Profiles

Remote Sensing Phenological Metric Description/Notes 

1. SOS—start of season Time of first occurrence of sNDVI ≥20% of growing season amplitude (within a calendar year)
2. EOS—end of season Time of last occurrence of sNDVI ≥20% growing season amplitude (within a calendar year)
3. AMP—amplitude Difference between the growing season minimum sNDVI and the growing season peak NDVI
4. sNDVIpeak Value of peak growing season NDVI
5. sNDVImin Value of minimum growing season NDVI
6. Baseline Values of ≤20% of growing season amplitude (within a calendar year) that are eliminated
7. TINGS Summation of sNDVI from April 1–October 1 where sNDVI is ≥20% of growing season amplitude
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Since phenological profiles can reveal community species 
composition and vegetation communities (Reed et  al., 1996; 
Tateishi and Ebata, 2004) and phenology can strongly influence 
biomass production (Smart et al., 2007), we combined geospa-
tial data on cool season grasses and TIN to create a watershed-
level vegetation map (Figure 12.3). The per-pixel 2000–2008 
average TIN was grouped into three classes: (1) within one stan-
dard deviation of the study area mean, (2) below one standard 
deviation of the mean, and (3) above one standard deviation of 
the mean. A similar approach was used to group the 2000–2008 
average cool season percentages into three classes. The TIN and 
cool season percentage classes were integrated to form nine 
vegetation classes, representing the average of the 2000–2008 
conditions.

Table 12.3 provides vegetation class numbers, generally 
indicative of the plant community state, with higher numbers 
closely approaching the western wheatgrass/green needlegrass 
community (historic climax plant community of the Clayey 

ecological site) and lower numbers generally indicative of the 
blue grama/buffalograss plant community (Smart et  al., 2007; 
U.S. Department of Agriculture, 2008). Classes marked with “+” 
indicated TIN or CS% over one standard deviation higher than 
the study area average, “N” indicated TIN or CS% within one 
standard deviation of the average, and “−” indicated TIN or CS% 
below one standard deviation of the average.

Spatial patterns of vegetation classes are useful for describ-
ing topographic, edaphic, and land management influences on 
plant communities (Figure 12.3). For example, areas with both 
low cool season percentage and low TIN (class 1) were likely 
dominated by buffalograss and blue grama, both low-producing 
C4 species. This community was reported to result from strong 
grazing pressure (Smart et  al., 2007; U.S. Department of 
Agriculture, 2008) in the Clayey ecological site, but might stem 
from lower than normal warm season moisture in Pierre Shale/
badland outcrops.

12.2.3.2.4  Validation Methods
Validation is a critical, yet challenging, component of pheno-
logical studies based on remote sensing. Methods were per-
formed based on field plot data and carbon flux tower data. 
The field plot data were collected for two distinct plant com-
munities (mixed-grass and midgrass-dominated) in fields that 
were retained under long-term grazing management practices 
(Dunn et al., 2010). Field-measured vegetation data estimated 
species composition by weight in late June (peak cool sea-
son biomass) and early August (peak warm season biomass). 
A nonrandom sampling scheme consisted of 14 plots per field 
represented local variation in soil type, slope, and aspect. The 
remotely sensed yearly average TIN and cool season percentage 

Table 12.3  Bad River Watershed Rangeland Vegetation Classes

Vegetation Class TIN CS% Area (%) Mean TIN Mean CS% 

1 − − 4.7 268.2 74.5
2 N − 8.8 329.0 74.7
3 + − 19.1 389.4 73.7
4 − N 10.2 279.2 80.3
5 N N 12.8 327.3 80.0
6 + N 10.3 376.7 79.8
7 − + 18.1 270.1 85.7
8 N + 11.5 325.0 85.0
9 + + 4.5 370.7 84.7
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Figure 12.3  Nine vegetation classes derived from growing season time-integrated NDVI (TIN) and average cool season percentage (CS%) 
in the Bad River watershed, South Dakota, USA, shaded grey in the inset map. Light gray areas denote nonrangeland vegetation types that were 
excluded from this analysis. The Cottonwood Range and Livestock Research Station (CRLRS) is located in the southwest. (Based on Figure 6 in 
Rigge, M. et al., Rangel. Ecol. Manage., 66, 579, 2013).
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for each field were regressed against the corresponding field-
measured average biomass production and cool season per-
centage data. The comparison of remotely sensed growing 
season TIN and phenology to field vegetation data collected 
at the Cottonwood Range and Livestock Research Station 
(CRLRS) in the Bad River watershed suggested that the remote 
observations were successful in describing actual conditions 
(Rigge et al., 2013). Field-measured cool season biomass pro-
duction and cool season TIN were greater on the midgrass-
dominated pastures than the mixed-grass pastures, following 
the expected pattern (Sims and Singh, 1978; Smart et al., 2007). 
Overall, the relationship between field-measured annual bio-
mass production and TIN by pasture was strong (R2  = 0.69, 
P < 0.01, n = 24).

A carbon flux tower located on a mixed-grass plant com-
munity pasture at the CRLRS was used for validation at that 
site. Thirty-minute flux tower quality-controlled ecosystem 
data for 2007 and 2008 were modeled using nonlinear light 
response curves driven by PAR, soil temperature, and vapor 
pressure deficit to partition carbon fluxes associated with PAR 
(i.e., gross primary productivity) from those associated with 
total ecosystem respiration (Gilmanov et al., 2010). Gross pho-
tosynthesis (PG) data were calculated as the sum of day CO2 
flux and respiration minus the rate of change in atmospheric 
CO2 storage below the tower. Phenological metrics from 
the flux tower data were generated using the same methods 
employed for MODIS data, making the results generated from 
both data sets more directly comparable. Flux tower PG data 
were strongly related to sNDVI values (R2 = 0.67, P < 0.01) at 
the overlapping pixel. Similarly, the accumulation of TIN and 
PG throughout both growing seasons were related (R2 > 0.90 
in both years).

12.2.3.3 C onclusions

Information on the timing and magnitude of biomass produc-
tion can be a useful tool for assessment of rangeland health. 
Species diversity and variable weather across the northern 
mixed-grass prairie make modeling native rangelands problem-
atic. However, the MODIS-based phenological indicators were 
successful in capturing important characteristics of plant com-
munity phenology and productivity. The results of this study clar-
ify the spatial and temporal dynamics (inter- and intraannual) of 
phenology and biomass production in response to precipitation 
in this region.

This approach could be useful to land managers in adjusting 
the stocking rate and season of grazing to (1) maximize range-
land productivity and profitability (Dunn et  al., 2010) and (2) 
achieve conservation objectives, through improving under-
standing of management impacts to rangeland phenology and 
production. Maps such as these might also be useful to identify 
areas where land degradation may be occurring or is likely to 
occur if current management practices are continued. Further, if 
the phenological metrics of a patch (e.g., pasture) of land is dra-
matically different than the surrounding landscape or contrasts 

with the general landscape gradient, it can be presumed that 
land management practices on that parcel, not climate, soils, or 
topography, are primarily responsible. These specific parcels can 
then be the focus of best management practices, field examina-
tion, and data collection.

12.2.4  Rangeland Fuel Load Assessment

Knowledge of the spatial distribution of fuels is critical when 
characterizing susceptibility of landscapes to wildfire and for 
estimating expected fire behavior (Arroyo et  al., 2008). In the 
simplest terms, the susceptibility of a rangeland landscape to 
wildfire is a function of expected fire weather, topography, 
probability of ignition, juxtaposition of the landscape, and 
fuelbed characteristics. Many rangelands are dominated by 
small diameter fuel components, which respond very quickly 
to environmental conditions such as heating, relative humidity, 
and precipitation (Cheney and Sullivan, 1997). In addition, the 
high surface area to volume ratio, high packing ratios and small 
sizes make rangeland fuels characteristically prone to ignition 
and very high rates of spread. For example, under extreme fire 
weather conditions, grassland fires can exceed 28 km h−1 making 
rangeland fires unpredictable. The temporal and spatial variabil-
ity of fuels add to this uncertainty.

Productivity of rangeland varies much more on an interan-
nual, proportional basis than that of forests (Briggs and Knapp, 
1995; Le Houerou and Hoste, 1977; Teague et al., 2008; Zhang 
et  al., 2010). As a result, the fuelbed properties associated fire 
behavior characteristics and potential risk can change commen-
surately. In addition, rangelands are the most extensive kind of 
land cover, occupying nearly 33% of ice-free land globally (Ellis 
and Ramankutty, 2008). In the coterminous United States alone, 
there is an estimated 268 million ha that often occur across large, 
open, remote expanses prone to high and gusty winds. The high 
variability and large areas inherent in rangeland systems suggest 
that regular monitoring is needed for properly addressing the 
fire danger situation.

Regular monitoring of fuels is needed for both strategic 
(Kaloudis et al., 2005) and tactical purposes (Reeves et al., 2009). 
Strategic assessment involves planning and resource allocation 
modeling. In contrast, tactical uses of wildland fuel data involve 
specific fire behavior projections and assessment for determin-
ing things such as arrival time, risks to resources, and suppres-
sion tactics.

A complete evaluation of wildland fuels requires account-
ing for all fuelbed characteristics including such components 
as fuelbed depth, vegetation structure and species composi-
tion, litter, fuel moisture, fuel quantity of various size classes 
(Anderson, 1982; Ottmar et al., 2007; Sandberg et al., 2001; Scott 
and Burgan, 2005). The diameters of the fuel particles can be 
classified based on their time lag. Larger diameter fuels have 
longer time lags because they respond more slowly to changes 
in environmental conditions. The time lag categories most often 
used for fire behavior and danger assessment include 1, 10, 
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100, and 1000 h corresponding to diameter ranges of 0–0.635, 
0.635–2.54, 2.54–7.62, and 7.62–20.32  cm, respectively. These 
fuelbed components are most strongly influenced by the kinds 
and amounts of vegetation. The pressing need for timely infor-
mation, dynamic nature of rangeland vegetation and fuels, and 
paucity of plot data suggest that remote sensing can play a sig-
nificant role in the evaluation of rangeland fuels.

Remote sensing has long been used to evaluate vegetation 
conditions at spatial scales and spatial resolutions varying 
from plot level evaluation (Blumenthal et  al., 2007) to global 
assessment at 8  km2. Mere vegetation classification, however, 
is generally not sufficient for quantifying fuel conditions. As 
a result, many approaches have been derived for using remote 
sensing to evaluate wildland fuels (Arroyo et al., 2008; Reeves 
et al., 2009; Riaño et al., 2002, 2003, 2007; Rollins, 2009; van 
Wagtendonk and Root, 2003). Most methods for quantifying 
fuels across the landscape involve a combination of remote 
sensing techniques (e.g., spectral analysis for species compo-
sition, structure and production; LiDAR for vegetation struc-
ture) and modeling or expert systems (Keane and Reeves, 2011; 
Reeves et al., 2009). Use of satellite remote sensing for captur-
ing temporal dynamics of fuelbed properties is usually most 
successful for characterizing the herbaceous biomass response. 
These biomass estimates can subsequently be converted to fuel 
loadings (1-h time lag category). With woody vegetation, the 
situation is more complicated and quantifying fuels can be 
accomplished by first determining vegetation structure (height 
and cover) (e.g., Chopping et al., 2006; Riaño et al., 2007; Rollins 
et al., 2009; Vierling et al., 2012). Yet another method is to first 
determine stand structure (stand cover and height) and species 
composition and then using allometric relationships to esti-
mate individual fuel components (Means et al., 1996). Once the 
appropriate fuelbed attributes have been estimated, it is often 
necessary to invoke expert systems to crosswalk stand level fuel 
attributes into a fuel model depending on the intended use of 
the data. This is a critical step because describing all fuel char-
acteristics in an area is exceedingly difficult given the extreme 
spatial and temporal variation of fuelbed components (Arroyo 
et al., 2008; Keane, 2013). As a result, description of fuel prop-
erties relevant to fire behavior or effects is normally based on 
classification schemes, which summarize large groups of fuel 
characteristics. These classes are expressed as “an identifiable 
association of fuel elements of distinctive species, form, size 
arrangement, and continuity that will exhibit characteristic 
fire behavior under defined burning conditions” (Merrill and 
Alexander, 1987).

Commonly used fuel classification systems include surface 
fire behavior fuel models (Anderson, 1982; Scott and Burgan, 
2005) and fuel loading models (Lutes et  al., 2009). The reason 
for this is that most fire behavior or fire affects processors such 
as Farsite (Finney, 2005), FlamMap (Finney, 2005), Behave 
(Andrews and Bevins, 2003), and Promethius (Tymstra et  al., 
2010) require stylized fuel models or standardized classifications 
of fuel components. In the United States, many decision support 

systems and tactical evaluations utilize FarSite and Flammap 
that generally require stylized fuel models from either Anderson 
(1982) or Scott and Burgan (2005). Prometheus, on the other 
hand, is widely used in Canada and components of it have been 
used in the United States, Spain, Portugal, Sweden, Argentina, 
Mexico, Fiji, Indonesia, and Malaysia (http://www.nrcan.gc.ca/
forests/fires/14470) to estimate fire spread and uses fuel models 
from the Canadian Forest Fire Danger Rating System (CFFDRS) 
(FCRDG, 1992; Wotton, 2009).

12.2.5 �C ase Study: Using Remote Sensing 
to Aid Rangeland Fuel Analysis

This case study focuses on the rangelands of the coterminous 
United States where, in places, annual aboveground range-
land production can vary by more than 150% in extreme years. 
Prominent fire decision support systems in the United States 
presently require the surface fire behavior fuel models (FBFM) 
(Anderson, 1982; Scott and Burgan, 2005). As a result, here we 
present a case study using remote sensing to interannually quan-
tify 1-h time lag fuels for informing mapping processes designed 
to predict surface FBFM’s for all coterminous United States 
(Figure 12.4).

The fine fuels of rangelands are driven primarily by grasses 
and forbs. Capturing these interannual fuel dynamics requires 
a relatively high repeat cycle and reasonably good spatial resolu-
tion, both of which are inherent in the 250 m2 16-day composite 
MODIS NDVI from the MODIS. From the 23 periods in each 
year from 2000 to 2012, the annual maximum NDVI was chosen 
to correlate with ground observations of aboveground produc-
tivity. Since spatially explicit, consistent, comprehensive ground 
data do not exist, production estimates from the Soil Survey 
Geographic database (SSURGO; http://www.nrcs.usda.gov/wps/
portal/nrcs/detail/soils/survey/?cid = nrcs142p2_053627) were 
used as a surrogate for plot-based ground data. For each soil type 
in the SSURGO database, the expected annual production based 
on normal (mean), drought (low), and above average (high) grow-
ing conditions is available. Thus, for each soil site, represented as 
a soil map unit (SMU), there are three data points representing 
expected annual production. Annual maximum NDVI, gridded 
annual precipitation from the PRISM project, and the biophysi-
cal settings (BPS) data layer were used to develop a model for 
predicting annual production and, ultimately, 1-h time lag fuels 
through time. For precipitation, the maximum, minimum, and 
mean annual total precipitation from 2000 to 2012 was selected 
to correspond with the high, mean, and low productivity for each 
BPS type. Likewise, the maximum, minimum, and mean annual 
maximum from 2000 to 2012 was also selected to correspond 
with the rangeland productivity from the SSURGO soil types. 
For each BPS type, the range of annual production, range of 
annual precipitation, and annual maximum NDVI was spatially 
averaged. For example, average mean annual maximum NDVI, 
annual summation of precipitation and rangeland productiv-
ity were averaged for all  shortgrass prairie BPS. The  annual 
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productivity model resulted in a simple combination of these 
predictors and their interactions as

	AnnualProduction = �(Yint) + (Precipannsum*0.141) 
+ (NDVIannmax*3.0056) + BPS 
+ (Precipannsum*BPS* − 0.1138) 
− (NDVIannmax*BPS*−1.2961)

where
AnnualProduction is the estimated annual production of 

rangeland biomass
Precipannsum is the annual sum of precipitation for a BPS unit
NDVIannmax is the average annual maximum NDVI

This model resulted in an R2 value of 0.94, a bias estimate of 1.43, 
and a mean absolute error (MAE) of 164 kg ha−1.

This relationship between NDVI, precipitation, and site-spe-
cific (BPS) coefficients enabled estimates of rangeland annual 
production from 2000 to 2012.

After quantifying annual production, estimates of standing 
dead residue (“holdover”), which add considerably to the total 
fuel load on a rangeland site, were estimated. This was accom-
plished using a simple decay function represented in Figure 12.4. 
As a result, for a given year, the total 1-h fuel load can be described 
as function of the following form f (annual  production  + 

holdovert−1  + holdovert−2, holdovert−3). These fine fuel loads 
were combined with estimates of 10 and 100 h time lag fuels of 
the woody components (e.g., shrubs) of each stand. This was 
accomplished by combining the cover, height, and species com-
position from the LANDFIRE project, and quantifying woody 
biomass and 10 and 100 h time lag fuels using allometric equa-
tions from Means et al. (1996) (Figure 12.4). Once the full suite 
of fuel characteristics were known, surface FBFM’s from the Scott 
and Burgan (2005) suite were estimated for average fuel condi-
tions and then modulated through time based on the interannual 
change in 1-h time lag fuel loads (Figure 12.5). Figure 12.5 dem-
onstrates how remote sensing is used with climate and site char-
acteristics to estimate 1-h time lag fuels every year. In addition in 
Figure 12.5, the amount of deviation (as a percent of the 12 year 
average) in 2000, 2005, and 2011 are shown for the southwestern 
Ecological Province (Bailey and Hogg, 1986). Finally, the result-
ing change in the distribution of surface FBFM’s can be seen in 
panel C for all 3 years presented. Note the large increase in 1-h 
time lag fuels in 2005 in the southwestern ecoregion. This cor-
responds to a large increase in rainfall and a strong NDVI signal 
resulting in very high biomass and subsequent changes to surface 
FBFM’s suggesting much greater flame lengths and spread rates 
(the GR1 is reduced and GR2 is substantially increased). As an 
example, under the identical environmental parameters with an 

Remote sensing of non-forest fuels

Annual precipitation,
site characteristics

Annual herbaceous
production

Holdover (standing dead)
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1-h timelag fuel
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Total fuel load and
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Figure 12.4  Fuel flowchart.
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open wind speed of 24 km h−1, a GR2 surface FBFM results in a 
spread rate of 9 times greater than a GR1.

This brief case study demonstrates a method for using high 
temporal resolution satellite remote sensing for quantifying 
fuels in rangeland landscapes. The important characteristics 
of a sensor for characterizing fine fuels across large landscapes 
in a timely manner suggest satellites with relatively high repeat 
frequencies and appropriate spectral channels for modeling 
changes in aboveground biomass. Application of the methods 
outlined here are limited to regions where sufficient numbers of 
spatially explicit measures (or estimates as in the present work) 
of biomass or fuels are available.

12.3 � Rangeland Vegetation 
Characterization

12.3.1 � Rangeland Biodiversity 
and Gap Analysis

Rangeland biological diversity (biodiversity) refers to the variety 
and variability among living organisms and the environments 
in which they occur and is recognized at species, ecosystem, 
and landscape level. The goal of biodiversity conservation is to 
reverse the processes of biotic impoverishment at each of these 
levels of organization. Gap analysis provides a quick overview of 
the distribution and conservation status of several components 
of biodiversity (Scott et al., 1993). Gap analysis is the process by 
which the distribution of species and vegetation types are com-
pared with the distribution of different land management and 
land ownership classifications. It seeks to identify gaps (vegeta-
tion types and species that are not represented in the network 
of biodiversity management) that may be filled through estab-
lishment of changes in land management practices (Scott et al., 
1993). The goal here is to ensure that all ecosystems and areas 
rich in species diversity are represented adequately in biodiver-
sity management areas. Gap analysis uses vegetation types and 
vertebrates as indicators of biodiversity. Maps of existing vegeta-
tion are prepared from satellite imagery and other sources and 
entered into a geographic information system (GIS). Because 
the mapping is carried on a regional scale, the smallest area 
identified on vegetation maps is generally 100 ha. Vegetation 
maps are verified through field checks and aerial photographs. 
Predicted species distributions are based on existing range maps 
and other distributional data, combined with information on 
the habitat of each species. Distribution maps for individual 
species are overlaid in the GIS to produce maps of species rich-
ness. An additional GIS layer of land ownership and manage-
ment status allows identification of gaps in the representation of 
vegetation types and centers of species richness in biodiversity 
management areas through a comparison of the vegetation and 
species richness maps with ownership and management status 
maps. Gap analysis is a powerful and efficient first step toward 
setting land management priorities. It provides focus, direction, 
and accountability for conservation efforts. Areas identified as 

important through gap analysis can then be examined more 
closely for their biological qualities and management needs 
(Scott et al., 1993).

12.3.2 �C ase Study: Vegetation Continuous 
Fields with Regression Trees

12.3.2.1 I ntroduction

The sagebrush ecosystem is an important and distinguish-
ing natural system of the U.S. Intermountain West. However, 
an estimated 40% of its pre-European settlement distribution 
has been reduced due to conversion to agriculture, urban/sub-
urban growth, energy development, invasion by exotic plants, 
and encroachment by woodlands among others (Wisdom et al., 
2005). The sagebrush ecosystem is an example of many other 
globally distributed natural systems that have been impacted 
by similar disturbances. Monitoring land-cover change, across 
vast landscapes, in an efficient manner is touted by many to be a 
significant strength of digital remote sensing. The holistic view 
of remotely sensed data allows us to evaluate landscapes in their 
entirety. Traditional, field-based, monitoring systems are limited 
to specific locations whose characteristics are then extrapolated 
across the entire landscape. The number of field-based samples 
required to characterize landscapes with statistical certainty is 
often cost prohibitive and in some cases impossible to acquire 
due to access restrictions. The temporally systematic, landscape-
level monitoring that remote sensing offers coupled with mod-
ern statistical modeling approaches can provide land managers 
with much of the information necessary for effective planning 
and management.

Traditional image interpretation techniques that convert 
digital remote sensing data into discrete land-cover maps have 
been used to monitor landscapes (Jin et  al., 2013; Vogelmann 
et al., 2012). These techniques rely on the ability to accurately 
classify and map vegetation types at multiple time intervals to 
determine how change has occurred at the vegetation commu-
nity level. A limitation of this technique is the assumption that 
adjacent vegetation community types have discrete boundar-
ies (sharp ecotones) and that variation within the community 
is typically ignored. The reality is that sharp ecotones between 
community types, while they exist, are typically not the norm. 
Further, the spatial variation of vegetation cover within a 
mapped community type is often an important diagnostic of 
community condition. In traditional classification of imagery, 
this information is lost.

This case study describes the use of digital remote sensing data 
coupled with field-based measurements and advanced statistical 
modeling techniques to map vegetation continuous fields (VCF) 
in the sagebrush ecosystem. VCF is a relatively new concept that 
attempts to model percent canopy cover of specific vegetation 
types using remotely sensed imagery as its primary input. This 
technique has been used to estimate canopy cover of woody and 
herbaceous vegetation, as well as bare ground, on a global basis 
(Defries et al., 2000; Hansen et al., 2003b; Sexton et al., 2013). 
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A  series of VCFs consist of several continuous response sur-
faces (one for each cover type) in which every pixel value cor-
responds to a percent canopy cover estimate predicted through a 
regression model. The VCF offers an advantage over traditional 
discrete classifications because areas of heterogeneity within 
vegetation community types are better represented (Hansen 
et al., 2002).

The objectives of the case study were to (1) test the effective-
ness of a regression tree algorithm (random forest [RF]) to model 
estimates of percent cover and (2) develop a series of VCF models 
for shrubs, woodland, herbaceous vegetation, and bare ground 
for a semiarid shrub-steppe landscape.

12.3.2.2  Methods

12.3.2.2.1  Study Area
Our research was conducted in the northwest corner of Box Elder 
County, Utah (114°2′31. 2′–112°43′40. 8′ west longitude and 
41°6′27. 36′–41°59′59. 64′ north latitude) depicted in Figures 12.6 
and 12.7. The area covers 1,742,860 ha, with approximately 60% 
of the county occupied by the Great Salt Lake and barren playa 
bottoms. Of the remaining area, salt desert scrub occupies about 
one-fifth of the area while big sagebrush shrubland and steppe 
covers nearly the same amount (19%). Pinyon-juniper ecosystems 
are an important part of the landscape making up 12% of the area. 
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Figure 12.6  Utah image mosaic of 2013 Landsat 8 OLI imagery with Box Elder County highlighted in red.
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The remainder consists of greasewood flats, montane sagebrush 
steppe, xeric mixed sagebrush shrubland, and invasive annual 
grasslands (Program, 2004). The elevation ranges from 1278 m in 
the lowlands close to the Great Salt Lake to 3027 m at the peak of 
the Raft River range. The mean elevation is 1520 m.

12.3.2.2.2  Field Data
Field-based estimates of percent canopy cover for shrubs, trees, 
herbaceous (grasses and forbs) vegetation, and bare ground were 
used to develop the VCF models. These data were prepared as 
geo-referenced field points and obtained from different sources: 
(1) 482 points collected by the South West Regional GAP 
(SWREGAP) project during 2001 (Lowry et al., 2007), (2) points 
collected by The Nature Conservancy (TNC) for the Northwest 
Utah Landscape modeling project in 2007 (Conservancy, 2009), 
and (3) field points that we collected during a field season in 
2007. In total, 135 field observations were available for the year 
2007. A fourth data set was available from the Utah Division of 
Wildlife Resources (UDWR) (Resources, 2010). Figure 12.8 con-
tains the spatial distribution of the different data sets across the 
study area.

With the exception of the UDWR data set, which are perma-
nent sample plots and follow a standardized and quantitative 
data gathering method, the rest of the field points were visually 
assessed (qualitative assessment) in terms of percent canopy 
cover for shrubs, trees, herbaceous vegetation, and bare ground 
on an area that resembled a 3 × 3 Landsat TM pixel (approxi-
mately 90 × 90 m). Cover estimates were taken independently 
at four cardinal directions from the center of the plot in the 
NE, SE, SW, and NW directions. These estimates were aver-
aged to represent the entire plot. The percent cover estimates 

were recorded using 5% increments for each life form and bare 
ground (i.e., 0%, 5%, 10%, etc.). The sum of the percent cover for 
shrubs, herbaceous vegetation, trees, and bare ground totaled 
100% at each point. The sampling scheme consisted of locat-
ing sites along an elevation range that included Wyoming big 
sagebrush (Artemisia tridentata ssp. wyomingensis), basin big 
sagebrush (Artemisia tridentata ssp. tridentata), and mountain 
big sagebrush (Artemisia tridentata ssp. vaseyana) communities.

12.3.2.2.3  Explanatory Variables: Remote Sensing and Topography
Remotely sensed images and topographic data sets were used 
as explanatory variables for this modeling. With regard to the 
remotely sensed data, scenes from the Thematic mapper (TM) 
sensor of the Landsat 5 satellite, Path 39 Row 31 were obtained. 
Due to the underlying differences in phenology that most vegeta-
tion types exhibit in semiarid landscapes (Bradley and Mustard, 
2008), imagery from multiple dates during the summer months 
of 2001 were acquired. Within year seasonal imagery allowed 
us to capture major phenological variations that occur during 
the growing season. Landsat TM imagery collection was concen-
trated during late spring, midsummer and early fall. An effort to 
obtain only imagery with the best quality (i.e., minimum cloud 
cover) was made. Three images were selected for this study. 
These were collected on April 28, July 01, and October 05, 2001.

Where necessary, imagery was rectified and resampled to 
a common map projection UTM Zone 12 WGS 1984. Stan
dardization of the imagery was performed by converting the raw 
digital numbers to exo-atmospheric reflectance values using an 
image-based atmospheric correction procedure (Chavez, 1996) 
with the most up-to-date calibration coefficients for the Landsat 
TM sensor (Chander et al., 2009).
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Figure 12.7  Landsat 8 OLI image mosaic (2013) of Box Elder County, Utah.
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The SAVI was computed for each date. SAVI may be calcu-
lated as follows:

	
SAVI

NIR RED

NIR RED L
L= −

+ +
+

( )
* ( )1 	 (12.1)

where
NIR is the near-infrared reflected radiant flux
RED is red reflected radiant flux
L is adjustment factor (typically a value of 0.5 is used).

SAVI has been reported to work well in semiarid ecosystems 
because it minimizes soil background effects that are known 
to affect other indices such as the NDVI (Huete, 1988; Jensen, 
2007). It has been widely reported that a vegetation index such 
as SAVI may be used to follow the phenological trajectory or sea-
sonal and interannual change in vegetation growth and activity 
(Jensen 2007).

A new variable was created from the multi-temporal SAVI 
and named as NDSAVI or the normalized difference SAVI. The 
NDSAVI takes advantage of the contrast between the spring and 
the summer SAVI and may be used to improve our understanding 
of the phenological dynamics of grasses on the landscape. Higher 
values in the NDSAVI would correspond with higher greenness 
during the early spring relative to summer whereas low values 
of NDSAVI would relate to areas that become green later in the 

growing season. This new variable conveys a multi-temporal sig-
nature of greenness variation that may be used to discriminate 
among different land-cover types and particularly focus on non-
native grasses such as cheatgrass that follows this phenological 
pattern. Within this environment, this index allows us to identify 
areas where cheatgrass, a common and significant invasive annual 
grass, is a major component of the plant community.

NDSAVI was estimated as follows:

	

SAVIspr SAVIsum

SAVIspr SAVIsum

−
+

	 (12.2)

The Normalized Difference Water Index NDWI (Gao, 1996) was 
also calculated for each image. NDWI takes advantage of the con-
trast found between the near and middle infrared bands to pro-
vide information about water content. Forest disturbances have 
been successfully detected using the NDWI (Jin and Sader, 2005), 
and thus it was appropriate to test its performance in our regres-
sion models. The brightness, greenness, and wetness (BGW) 
transformation (Crist and Kauth, 1986) was also derived for each 
image. This transformation has been used extensively to monitor 
condition and changes in soil brightness, vegetation, and mois-
ture content respectively (Jensen, 2007; Lowry et al., 2007).

In addition to the remotely sensed information (Landsat 
TM spectral bands, SAVI, NDWI, and BGW), derivatives 
from a 30 m digital elevation model (DEM) including slope, 
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Figure 12.8  Distribution of field observations to model multitemporal CVF.
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aspect, and landform were obtained. Two transformations of 
aspect, namely southness and westness indices (Chang et al., 
2004) and a modification to the original topographic relative 
moisture index TRMI (Parker, 1982) were generated. An exist-
ing land-cover map from the SWRGAP project (Lowry et al., 
2007) was included as an explanatory variable. The inclusion 
of this type of ancillary information has been shown to greatly 
improve classification and regression modeling in rangelands 
(Peterson, 2005).

12.3.2.2.4  Regression with Random Forests
12.3.2.2.4.1  Background
Random Forests (RF) is a relatively new statistical method that 
emerged from the machine learning literature, and is based on 
the same philosophy as CARTs. In RF, multiple bootstrapped 
regression trees without pruning are created. In a typical boot-
strap sample, approximately 63% of the original observations 
occur at least once (Cutler et al., 2007). The data that are not used 
in the training set are termed “out-of-bag” observations and are 
customarily used to provide estimates of errors (Prasad et  al., 
2006). Out-of-bag samples are also used to calculate variable 
importance (Cutler et al., 2007). In RF, each tree is grown with 
a randomized subset of predictors, which equal the square root 
of the number of variables. In general, 500–2000 trees are grown 
and averaging aggregates the results. The method is very effec-
tive in reducing variance and error in multi-dimensional data 
sets. One of the strengths of RF is that because it grows a large 
number of trees, the method tends not to over-fit the data, and 
because the selection of predictors is random, the bias can be 
kept low (Prasad et al., 2006). More comprehensive descriptions 
of the method may be found in Cutler et al. (2007), Lawler et al. 
(2006), Prasad et al. (2006), and Sutton (2005). The application of 
RF was done in two phases. First, the best subset of variables to 
model each response variable: shrubs, trees, herbaceous vegeta-
tion, and bare ground were identified. Second, the best subset of 
variables identified for each response variable was used to model 
the VCF for that variable.

12.3.2.2.4.2  Variable Importance and Parsimony
The underlying principle that the phenological pattern of a given 
vegetation type should dictate which remotely sensed data sets 
to use (Bradley and Mustard, 2008) was followed. For example, 
it is sensible to use only one scene (midsummer for instance) to 
model bare ground percent cover due to its relatively constant 
spectral response throughout the year. On the other hand, it 
makes sense to utilize two to three images (i.e., midsummer and 
early fall) to model herbaceous vegetation due to its conspicu-
ous phenological signature which peaks during the summer and 
then significantly decreases during the fall.

In order to develop a simple yet effective model the concept of 
variable importance (Cutler et al., 2007) was used. This is based 
on the mean decrease in accuracy concept, and is assessed based 
on how much poorer the predictions would be if the data for that 
predictor were permuted arbitrarily. This provides a measure of 
the impact that a specific variable has in decreasing the precision 

of prediction. This is a somewhat subjective approach to choos-
ing the most important variables since thresholds of decreasing 
precision tend to be arbitrary. Once the most important variables 
are chosen, the correlation coefficients between each variable are 
evaluated and further used to eliminate highly correlated vari-
ables (choosing the variable that makes most ecological/spectral 
sense) to arrive at a parsimonious set of predictor variables.

12.3.2.2.5  Regression
The R package RandomForest (Liaw and Wiener, 2002) was used 
to develop regression trees to calculate the VCF. Regressions were 
run separately for each of the four response variables (i.e., shrubs, 
trees, etc.) using the selected subset of variables determined to be 
most important. The R package YaImpute (Crookston and Finley, 
2008) was used to extract the model for each VCF run, and then 
applied a predict function to generate a continuous geospatial 
response surface for the entire study area.

12.3.2.3  Validation and Comparison Metrics

For independent validation purposes, 20% of the field obser-
vations were withheld during model development. Pearson’s 
correlation coefficients were calculated for each of the VCF 
predictions using this withheld set of data and two metrics 
were further calculated: MAE and root mean square error 
(RMSE). MAE is the average absolute difference of the pre-
dicted value from the field-observed estimate, while RMSE is 
the square root of the mean squared error (Prasad et al., 2006; 
Walton, 2008).

12.3.2.4  Results and Discussion

Table 12.4 contains the Pearson’s Correlation Coefficients (PCC), 
MAE, and root mean square error (RMSE). A global average of 
the PCC was 0.65. Our highest PCC was for herbaceous cover at 
0.77 and the lowest was for trees at 0.52. Figures 12.9 and 12.10 
illustrate samples of the VCF spatial layers generated using RF.

The use of regression trees to depict sub-pixel heterogeneity 
has been widely reported in the literature. In rangeland envi-
ronments, work has been conducted to model woody vegetation 
cover (Danaher et  al., 2004), bare ground cover (Weber et  al., 
2009), and shrub cover and encroachment (Laliberte et  al., 
2004). With the exception of the MODIS global continuous veg-
etation maps (Hansen et  al., 2003a), the examples above dealt 
with only one response variable. In this work there were four 
response variables. Since a pixel is in essence an integrated 

Table 12.4  Validation Metrics between MRTS and RF

VCF Pearson’s Correlation MAEa RMSEb 

Shrubs 0.72 7.81 10.00
Trees 0.52 12.56 16.69
Herbaceous 0.77 9.39 12.02
Bare ground 0.62 8.15 11.05
Average 0.65

a	Mean absolute error.
b	Root mean square error.
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multi-dimensional spectral response of vegetation, bare ground 
and other features, it makes sense to attempt to decompose that 
response to understand the land-cover dynamics of a given pixel 
in relation to the surrounding landscape.

With regards to the ease of understanding, RF has been fre-
quently described as a “black box” (Prasad et al., 2006) because 
the individual trees cannot be examined separately due to the 
sheer number of trees that may be generated. This can limit the 
ability of an analyst to understand the underlying dynamics of 
the resulting model. Random Forests does provide metrics to aid 
in interpretation. One metric is variable importance, which can 
be used to compare relative importance among predictor vari-
ables. Such a feature is not available in other regression tree tools 
and therefore the importance of variables must be determined 
with a careful data mining process.

12.3.2.5 I mplications

The development of a multi-temporal collection of VCF may be 
used to update information about the status or condition of a 
particular ecological site as well as characterizing the states and 
transitions for that site. For instance, a specific spatial unit of an 
ecological site may be characterized in terms of its occupancy 
by shrubs, grasses, trees, and bare ground using modeled VCF. 
Knowledge about the relative dominance of these life forms 

in a particular unit may shed light about its current condition 
relative to a reference condition. The VCF process may provide 
knowledge about usage of the ground by major life forms and 
bare ground and in this way pinpoint areas that are diverging 
from a desired condition.

12.4 � Rangeland Change 
Detection Analysis

12.4.1  Rangeland indicators

Numerous landscape metrics have been developed to charac-
terize the patterns and configurations of different land-cover 
types in a landscape. Categorical maps generated from remote 
sensing data can then be used for landscape characterization to 
better understand spatial arrangements between different cover 
classes, particularly forest fragments (Read and Lam, 2002). 
These spatial arrangements are expressed numerically in the 
form of landscape indices or pattern metrics and have been used 
in many studies to assess land-cover change and its impact, eco-
system health, or as variables for models that support environ-
mental assessment and planning efforts (e.g., Botequilha Leitão 
and Ahern, 2002; Fuller, 2001; Gergel, 2005; Griffith et al., 2000; 
Liu and Cameron, 2001).
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Figure 12.9  Percent canopy cover of shrubs as modeled using random forests.
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More than 100 pattern metrics can be computed using free-
ware such as FRAGSTAT (McGarigal and Marks, 1995), Patch 
Metrics (Rempel et  al., 1999), and others (Crews-Meyer, 2002; 
Cumming and Vervier, 2002; Stanfield et  al., 2002). However, 
many pattern metrics are highly correlated (Cain et  al., 1997; 
Riitters et al., 1995). Efforts have been made to identify a mini-
mum set of pattern metrics that describe landscape patterns 
adequately. Multivariate data analysis using principal compo-
nent analysis (PCA) and factor analysis (FA) are the most com-
monly used methods to reduce pattern metrics data (Griffith 
et  al., 2000; Honnay et  al., 2003; McAlpine and Eyre, 2002; 
Stanfield et al., 2002). These methods identify a small number of 
components, which are then interpreted in terms of their domi-
nant characteristics and underlying causes (Griffith et al., 2000). 
Multivariate data analysis requires large datasets and several 
landscape units to be statistically consistent (e.g., Cumming and 
Vervier, 2002; Schmitz et al., 2003). A few empirical landscape 
studies apply pattern analysis to only one landscape (e.g., Griffith 
et al., 2000) and are useful because they tackle problems at rele-
vant scales, but the validity of making statistical inferences with 
such an approach is seriously compromised (Li and Wu, 2004). 
Gustafson (1998) overcame this by generating artificial land-
scapes (called neutral models), but the technique was difficult 

to relate to pattern metrics in real landscapes (Li and Wu, 2004). 
Therefore, the behavior of pattern metrics in real landscapes 
over time needs further investigation (Griffith et  al., 2003). 
Irrespective of the landscape unit used, pattern metrics require 
rigorous validation in order to be interpreted and applied with 
confidence (McAlpine and Eyre, 2002).

12.4.2 � Pattern Metrics to Measure 
Landscape Attributes

12.4.2.1  Area

Area distribution pattern metrics include basic attributes of the 
landscape such as the number of patches (NP) and the total area 
(CA) of all class patches, expressed in hectares. Mean patch size 
(AREA_MN in ha) is an intuitive index for measuring aggrega-
tion and is particularly suitable for categorical maps (He et al., 
2000). Other measures are the standard deviation of the mean 
patch size (AREA_SD in ha) and the coefficient of variation 
(AREA_CV in%), determined by Equation 12.3:

	
AREA_CV

AREA_SD

AREA_MN
= *100 	 (12.3)
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Figure 12.10  Percent canopy cover of bare ground as modeled using random forests.
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AREA_CV indicates patch area distribution by determin-
ing the difference among patches within one landscape class. 
Lower values indicate a more uniform class distribution 
(Batistella et  al., 2003; McAlpine and Eyre, 2002), that is if a 
landscape class is dominated by big patches both AREA_SD 
and AREA_CV values are large. All of these pattern metrics 
assign equal weights to each patch. For measuring landscape 
resistance to fragmentation, large forest patches are most 
important (Batistella et  al., 2003); therefore, metrics such as 
largest patch index (LPI) are useful. LPI is equal to the percent 
of the total landscape made up by the largest patch (McAlpine 
and Eyre, 2002).

12.4.2.2 E dge

Total edge (TE) refers to the length of edge that exists at the 
interface between land classes (McGarigal and Marks, 1995) 
while mean patch edge (MPE) indicates the amount of edge per 
patch (Equation 12.4).

	
MPE

TE

NP
= 	 (12.4)

12.4.2.3  Patch Shape Complexity

Mean perimeter–area ratio (PAR_MN) is a simple index of patch 
shape complexity, computed as the mean ratio between patch 
perimeter and area; it describes the amount of edge per unit area 
of landscape unit (such as forest) (McGarigal and Marks, 1995). 
Since the simple ratio is usually affected by patch size, a modi-
fied perimeter–area ratio called landscape index (LSI), implied 
as shape of landscape, is computed using Equation 12.5:

	
LSI

Perimeter

area*
=

( )2√ π
	 (12.5)

Higher LSI values indicate higher complexity (McAlpine and 
Eyre, 2002). Because LSI is influenced both by shape complexity 
and number of patches (NP), preference is sometimes given to 
the mean shape index (SHAPE_MN) or the area-weighted mean 
shape index (SHAPE_AM), which weights larger patches more 
heavily than smaller patches (Batistella et al., 2003).

Fractal dimension (FRAC) has equally been used to describe 
patch shape complexity across a range of spatial scales (patch 
sizes). This overcomes one of the major limitations of the 
perimeter–area ratio as a measure of shape complexity. The value 
of FRAC ranges between 1 and 2 and is computed as

	
FRAC

log P

log A
= 2 	 (12.6)

where
P is the perimeter
A is the area of the patch

Fractal dimension approaches 1 for shapes with very simple 
perimeters such as squares, and approaches 2 for shapes with 
highly complex perimeters (Read and Lam, 2002). Mean patch 
fractal dimension (FRAC_MN) and the area-weighted mean 
patch fractal dimension (FRAC_AW) are derived measures of 
shape complexity, interpreted similarly to FRAC with the addi-
tion of an individual patch area weighting applied to each patch in 
the case of FRAC_AW (McGarigal and Marks, 1995).

12.4.2.4 I nterior-to-Edge (Core Area)

Core area (CA) represents the area of patch greater than a speci-
fied depth-of-edge distance from the perimeter. It is determined 
by defining a vanishing distance as the distance from a patch 
boundary inward, to a point where edge effects are eliminated 
(Baskent and Jordan, 1995). The higher the ratio between the 
CA and the total area, the lesser the degree of fragmentation 
(Batistella et al., 2003; Tang et al., 2005). The vanishing distance 
is arbitrarily set. The number of CAs (NCA) is the number of 
distinct CAs contained within a patch boundary. Total core area 
(TCA) is the same as CA except that CA is aggregated (summed) 
over all patches, approaching CA as patch shapes are simplified. 
CA distribution in the landscape is measured using the param-
eters mean CA per patch (ha) (CORE_MN), patch CA standard 
deviation (CORE_SD) and patch CA coefficient of variation 
(CORE_CV).

12.4.2.5 I solation

The distance of patch to its nearest neighbor measures the degree 
of isolation of that patch. Averaging this distance for all individ-
ual land-cover classes or patches in a landscape gives the mean 
nearest neighbor distance (ENN_MN). Mean proximity index 
(PROX_MN) is also computed (Equation 12.7) and is a measure 
of isolation and fragmentation:

	
PROX_MN

N

i

N

j

m
ij

ij=∑
∑ ∑

′ a

h 	 (12.7)

where
aij is the area of patch ij in the neighborhood of patch i
hij the distance between patch i and patch ij
N is the number of patches
m′ is the number of patches in the neighborhood of patch i

This index allows comparison among landscapes of any size, 
as long as the search buffer around each patch is the same 
(Gustafson and Parker, 1992).

12.4.2.6 C ontagion/Interspersion

Contagion (CONTAG) provides an effective summary of over-
all clumpiness of categorical data where lower values indicate 
fragmentation of larger patches into smaller patches, that is, 
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the patch types are maximally disaggregated and interspersed 
(equal proportions of all pairwise adjacencies) (Equation 12.8):
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where
Pi is the proportion of the landscape occupied by path type 

(class) i
gik is the number of adjacencies (joins) between pixels of patch 

types (classes) i and k based on the double-count method
m is the number of patch types (classes) present in the land-

scape, including the landscape border if present

Aggregation index (AI) is calculated from an adjacency 
matrix at the class level, AI equals 0 when the patch types are 
maximally disaggregated. SPLIT and MESH are two subdivision 
metrics computed as isolation measures (McGarigal and Marks, 
1995). The interspersion and juxtaposition index (IJI), a configu-
ration metric, is a measure of relative interspersion of each class 
at class level and each patch at landscape level (Crews-Meyer, 
2002; McAlpine and Eyre, 2002). IJI approaches 100 when all 
patch types are equally adjacent to all other patch types, and 
as the distribution of class types depart from evenness, the IJI 
approaches 0 (Equation 12.9):
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where
eik is the total length (m) of edge in the landscape between 

patch types (classes) i and k
E is the total length (m) of edge in the landscape, excluding 

background
m is the number of patch types (classes) present in the land-

scape, including the landscape border, if present

12.4.2.7  Spatial Heterogeneity

Spatial diversity representing the extent to which all patches 
are equally adjacent to each other, number of different land-
cover classes, and interspersion metrics determine the spatial 
arrangements of land-cover classes (Trani and Giles, 1999). 
Patch richness (PR) is a simple metric equal to the number 
of different patch types present within the landscape bound-
ary. Shannon’s diversity index (SHDI) assesses the diversity 
of patches, and the extent to which one or a few patch types 
dominate the landscape (McAlpine and Eyre, 2002). SHDI 
starts at zero and increases without limit and is more sensitive 

to the number of patch types than evenness. SHDI is given by 
Equation 12.10 (Read and Lam, 2002):
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where
Pi is the proportion of landscape occupied by patch type 

(class) i
m is the number of patch types (classes) present in the land-

scape, excluding the landscape border, if present

The Shannon’s evenness index (SHEI) is expressed such that an 
even distribution of area among patch types results in maxi-
mum evenness (Equation 12.11):
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SHEI varies between 0 and 1, and the highest value is reached 
when the distribution among patch types is perfectly even 
(Wickham and Rhtters, 1995). The modified Simpson’s diversity 
(MSIDI) is similar to the SHEI (Equation 12.12):
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where Pi is the proportion of the landscape occupied by patch 
type (class) i. Diversity metrics represent landscape compo-
sition in terms of the relative proportions of each patch types 
(evenness), together with the number of patch types (richness). 
Detailed information on these indices and their computation 
can be found in McGarigal and Marks (1995).

Ludwig et al. (2004) monitored ecological indicators of range-
land functional integrity and their relation to biodiversity at local 
to regional scales. Functional integrity is the intactness of soil 
and native vegetation patterns and the processes that maintain 
these patterns. The integrity of these patterns and processes has 
been modified by clearing, grazing, and fire. Intuitively, biodi-
versity should be strongly related to functional integrity. Ludwig 
et al. (2004), based on published work on Australian rangelands, 
identified several indicators of landscape functional integrity 
at finer patch and hillslope scales. These indicators, based on 
the quantity and quality of vegetation patches and inter patch 
zones, are related to biodiversity. These vegetation-cover and 
bare-soil patches can be measured using remote sensing data 
at various resolutions depending on specific rangeland areas. 
Bastin and James (2000) used Landsat MSS for prevailing dry 
periods before the major rainfall events and about 6 weeks after 
them when vegetation growth had peaked for the assessment of 
biodiversity condition in a rangelands in central Australia. They 
computed contagion and interspersion scores for land systems 
and vegetation types. The contagion and interspersion values, 
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as indices of the spatial arrangement of patches in the landscape, 
indicated the extent to which both water development and land 
degradation associated with pastoralism had fragmented habi-
tat types. Nondegraded and water-remote patches of pastorally 
more productive land systems or vegetation types were more 
dispersed and more fragmented relative to their original state, 
than for patches of pastorally less productive land systems or 
vegetation types.

12.4.2.8  Resilience

Ecological resilience is defined as the degree, manner, and pace 
of the restoration of vegetation attributes after a disturbance 
(Westman, 1985). Ecological resilience and its characteristics 
have been quantified statistically in ecosystem simulations 
(O’Neill, 1976; Westman and O’Leary, 1986), plant community 
field studies (Westman and O’Leary, 1986), and regional anal-
yses of land degradation (Wessels et  al., 2004, 2007). O’Neill 
(1976) simulated energy flow through a three-compartment 
(autotrophs, heterotrophs, and detrivores) model for six differ-
ent biomes to test their ability to recover from a 10% reduction 
in plant biomass over a 25-year period. A recovery index, that is, 
a measure of the amount of deviation from a reference equilib-
rium value or initial state after a disturbance (a measure of mal-
leability), was computed for each year over the 25-year period. 
The mean malleability of each biome for this period was inter-
preted to indicate which biomes were least and most resistant 
to disturbance (O’Neill, 1976). Westman and O’Leary (1986) 
developed four measures of ecological resilience: elasticity, that 
is, the rate of recovery from a disturbance; amplitude, that is, the 
threshold beyond which recovery to a previous reference state 
no longer occurs; damping, that is, the extent and duration of 
an ecosystem parameter following disturbance, and malleabil-
ity. These were used to estimate the responses of various plant 
functional types within a coastal sage scrub plant community 
at 5–6 years after fire using field data and for 200 years after fire 
using a simulation model. Wessels et  al. (2004, 2007) used an 
interannual time series of AVHRR- and MODIS-derived NDVI 
(or ANPP) from 1985 to 2005 to examine the resilience of a land-
scape in northeastern South Africa that had been subject to both 
overpopulation and apparent overgrazing by the forced settle-
ment of pastoralists into “homelands” during the apartheid era 
from 1910 to 1994. A spatially aggregated approach was used in 
which the mean annual ∑NDVI for the period of 1985–2005 was 
compared between nondegraded benchmark areas and degraded 
areas within the homelands as

	

RDI or PD
Non-degraded NDVI-degraded NDVI

Non-degraded NDVI
= ∑ ∑

∑
×1000 	

(12.13)

where RDI is the relative degradation index or the percent differ-
ence (PD) between the mean NDVIs of nondegraded and degraded 
sites (Wessels et  al., 2004, 2007). Wessels et  al.  (2004,  2007) 

found  that these paired sites were significantly different from 
each other and that degraded sites had significantly lower mean 
annual NDVI than did nondegraded sites. Also, there was no 
indication of recovery (malleability) of degraded sites toward 
the mean conditions of nondegraded sites from the end of 
the apartheid era in 1994–2005 (Wessels et  al., 2004, 2007). 
This provided evidence in support of the hypothesis that the 
observed migrations of former rural homeland populations to 
jobs in major urban centers, such as Johannesburg and Durban, 
were due in part to environmental degradation of the home-
lands. However, at the coarse resolution of MODIS (0.25 km2) 
and AVHRR (1 km2), it was observed that finer-scale phenom-
ena at the community and species levels were masked or aver-
aged out (Wessels et  al., 2007). A number of scaling studies 
in drylands suggest characteristic length scales for vegetation 
and bare soil patches of approximately 1–100 m; these scales 
are probably not amenable to analysis using spatially coarse-
resolution sensors such as MODIS or AVHRR (Hudak and 
Wessman, 1998; Rietkerk et al., 2004). To account for this dis-
parity, Wessels et  al. (2007) suggested a staged remote sens-
ing approach to monitoring at regional and national scales in 
which both coarse-resolution sensors such as MODIS are used 
in conjunction with relatively finer-resolution data sets such 
as Landsat.

12.4.3 C hange Detection Methods

It is important to monitor and understand change in rangelands 
so that effective action can be taken to maintain ecological, eco-
nomic, and social values. Both seasonal conditions and graz-
ing management play a role in vegetation dynamics on pastoral 
areas. For example, Sinha et al. (2012a) determined the effect of 
seasonal spectral variability on vegetation and land-cover clas-
sification of Landsat TM by comparing accuracies in different 
seasons in a mid-latitudinal (29°30′–31°0′S) region with sum-
mer and winter rainfall, a broad altitudinal range, a temperate to 
subtropical climate and diverse land uses (e.g., summer and win-
ter crops, and nature conservation). By comparing the observed 
changes with those expected under the prevailing seasonal con-
ditions and by investigating the response of species known to be 
adversely or positively affected by livestock grazing, it was possi-
ble to conclude that at least some of the positive changes observed 
could be attributed to the type of grazing management, rather 
than seasonal conditions alone. In a similar study, Sinha et al. 
(2012b) used three-date composite land-cover maps through a 
process called referential refinement and aggregation for under-
standing the level of land exploitation (extensive vs. intensive) 
activities carried out in the region. Landscape-scale monitoring 
is important for providing regional to national-scale intelligence 
on habitat quality and trends in threats to or drivers of biodi-
versity, with data obtained using systematic ground-based and 
remote methods. Landscape-scale monitoring is typically based 
on remotely obtained or extrapolated data that can be mapped, 
and use temporal scales appropriate to the indicator (Ludwig 
et al., 2007). The advantage of landscape-scale monitoring is that 
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it is often relatively cheap to undertake over space and time and 
provides a broader context for national reporting.

There are a variety of opinions and suggestions about the 
selection of the most effective and appropriate techniques for 
change detection studies (Lu et al., 2004). Therefore, it is difficult 
to specify which change detection algorithm will suit a specific 
problem. A review of different change detection techniques used 
in previous research would be of great help in selecting meth-
ods to aid in producing good quality change detection results. 
For any change detection project, the following conditions must 
be satisfied (Lu et  al., 2004): (1) accurate and precise registra-
tion between multitemporal images; (2) precise radiometric and 
atmospheric normalization between multitemporal images; (3) 
similar phenological or seasonal conditions between multitem-
poral images; and (4) selection of the same spatial and spectral 
resolution images if possible.

The aim of change detection studies is to compare the spatial 
representation of two points in time by controlling all variance 
caused by differences in variables that are not of interest and to 
measure changes caused by differences in the variables of inter-
est (Green et al., 1994). Since there are many change detection 
techniques that can be used in one study, the selection of the 
most suitable method for a given project is not easy since differ-
ent approaches, with the same environmental conditions, pro-
duce different results (Coppin et al., 2004).

12.4.3.1 C lassification-Based Change Detection

Broadly, image classification is a process of drawing meaningful 
information by differentiation and extraction of different classes 
or types (e.g., land-use types, vegetation species) from remote 
sensing data through a number of image processing procedures 
including image preprocessing. Image is classified either using 
traditional methods or improved or modified techniques.

The classification group of change detection techniques 
includes supervised and unsupervised classification followed 
by postclassification comparison of results of change/no-change 
identification. The aim of these methods is to produce high-
quality, accurate classification results from remote sensing data 
through the use of adequate numbers of accurate training sam-
ple data, to produce accurate change results after comparison. 
However, the selection of sufficient numbers of high-quality 
training samples to truly represent each land-use/land-cover 
class is laborious and time consuming and requires a thorough 
knowledge of the study area in order to obtain high-quality clas-
sification results. The situation is more difficult in the classifica-
tion of historical data when there is no or insufficient ground or 
area information, making accurate classification a challenge and 
often leading to unsatisfactory change detection results (Lu et al., 
2004). The change detection results are often represented in the 
form of matrix showing land-use/land-cover dynamics of pixel 
changes from one class to another, providing a detailed descrip-
tion of changes over a specified period of time and minimizing 
the effect of atmospheric and environment difference between 
the multidate images. A detailed review of quality assessment of 
different image classification algorithms for land-cover mapping 

and accuracy assessment has been summarized by Smits et al. 
(1999). These techniques have been used by many researches 
in different types of land-cover change detection analysis with 
good results (e.g., Li and Zhou, 2009; Petit and Lambin, 2002; 
Wang et al., 2009; Xiuwan, 2002).

Among traditional methods of classifying remote sensing data, 
unsupervised and supervised techniques are the most commonly 
used algorithms. ISODATA clustering and K-means methods 
are mainly used in unsupervised techniques while the maxi-
mum likelihood classification (MLC) and minimum distance to 
mean (MDM) are commonly applied techniques in supervised 
methods since the beginning of digital image feature extrac-
tion using statistical software. Unsupervised approaches, such as 
ISODATA clustering and K-means algorithms, are easy to apply 
for thematic mapping of land-cover or vegetation classification 
using statistical software packages (Langley et al., 2001) based on 
iterative learning of remote sensing data defined by the user. In 
this classification approach, an arbitrary initial cluster vector is 
assigned first, based on which each pixel is classified as closest to 
that cluster value. Finally, based on all the pixels present in one 
cluster, the new cluster mean vector is calculated and the process 
is repeated until the gap between the iterations becomes smaller 
than the threshold value (Xie et al., 2008). This method does not 
require any prior knowledge of the area or theme being studied 
(Cihlar, 2000) and classifies the image based on natural grouping 
or spectrally homogenous thematic classes using spectral values 
of each pixel. The analyst then assigns the spectral classes into 
thematic information classes of interest (Jensen, 2005). It has 
the benefit of automatically converting the raw image data into 
useful information so long as higher accuracy is achieved (Tso 
and Olsen, 2005). However, since each pixel is treated as spatially 
independent, a traditional unsupervised classification based on 
spectral data alone results in poor accuracy. To overcome this, 
Tso and Olsen (2005) introduced hidden Markov model (HMM) 
as a fundamental framework to incorporate both the spectral 
and contextual information for unsupervised classification and 
achieved higher classification accuracies.

In supervised classification, a prior knowledge about some 
cover types are obtained in advance through a combination of 
field work, aerial photo interpretation, existing maps, and other 
sources. Based on this, the analyst attempts to locate specific 
sites (class representation) for these cover classes in remote sens-
ing data. These sites are called training sites and used to train 
the classification algorithm based on spectral characteristics of 
each site to classify the rest of the image. Statistical parameters 
such as mean, standard deviation, covariance matrices, correla-
tion matrices, etc., are computed for each training site, based 
on these statistics, every pixel is then evaluated and assigned to 
a class of which it has the highest likelihood of being a mem-
ber of (Jensen, 2005). Various supervised classification algo-
rithms such as parallelepiped (PAR), minimum distance (MID), 
nearest neighborhood (NN), and maximum likelihood (MLC) 
may be used to assign an unknown pixel to one of the possible 
classes; therefore the choice of a particular classifier or decision 
rule depends on the nature of input data and desired output 
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(Jensen, 2005). MLC is considered to be classic and most widely 
used supervised classification technique, applied by many 
researchers in different studies for satellite image classification 
(Abdulaziz et al., 2009; Kamusoko and Aniya, 2009; Laba et al., 
1997; Langford and Bell, 1997; Munoz-Villers and Blanco, 2008; 
Rogan et  al., 2002; Xiuwan, 2002). In rangeland studies, Wu 
et  al. (2008) evaluated the potential of multispectral Landsat 
images (MSS and TM) and applied MLC to classify vegeta-
tion cover in the degraded land of MuUs sandy land in China. 
Torahi (2012), in monitoring rangeland dynamics between 1990 
and 2006, used MLC for classifying TM and ASTER data and 
generated detailed rangeland maps and also separated grazing 
intensity levels in rangelands.

However, in complex areas, the assumption of MLC that data 
follow Gaussian distribution is not always applicable, resulting 
in less satisfactory results. Bruin and Gorte (2000) and Strahler 
(1980) demonstrated the effective use of modified prior prob-
abilities into MLC to improve image classification. In addition 
to MLC alone, there are studies conducted by researchers using 
a combination of other supervised classification algorithms, for 
example, Miller et  al. (1998) applied parallelepiped technique 
to classify water, open land, clouds and cloud shadows, assum-
ing them as discrete classes in spectral space, while other forest 
classes were classified using MLC in land-cover change study 
in Northern Forest of New England. Xiuwan (2002) compared 
several classification methods such as PAR, MID, Mahalanobis 
distance (MAD), MLC, ISODATA, and a method combining an 
unsupervised algorithm and training data (CUT) to develop a 
new classification method and suitable change detection tech-
nique for analysis of land-cover change and its regional impacts 
on sustainable development in Korea. Im et  al. (2008) used 
nearest-neighborhood classification techniques for land-use 
and land-cover classification and compared the accuracy with 
other techniques. Munyati et  al. (2011) used the hybrid image 
classification approach to monitor savanna rangeland deteriora-
tion in Mokopane, South Africa. For classification, initial clus-
tering was undertaken by unsupervised classification using the 
ISODATA algorithm. On the resulting cluster image, the field 
data sites were then located and the spectral signature clusters 
were assigned names. The named spectral signatures were then 
used for a final supervised classification.

12.4.3.1.1  Improved/Modified Classifiers
Depending upon different geographic conditions and other fac-
tors, there is a possibility that same ground covers or vegeta-
tion types show different spectral response or different covers 
show similar spectral response on remote sensing imagery due 
to spectral mixing, therefore an accurate classification result is 
very difficult to obtain from traditional supervised or unsuper-
vised classification techniques. Hence, there is always a need for 
improvement in the classification methods for better classifica-
tion results. Some of the new methods have been based on tradi-
tional supervised or unsupervised approaches through a process 
of combination, extension or as an expansion to provide better 
classification results from remote sensing data (e.g., Pal, 2008). 

Sohn and Rebello (2002) developed the new spectral angle clas-
sifier (SAC), a combination of supervised spectral angle classi-
fier (SSAC) and unsupervised spectral angle classifiers (USAC), 
based on the fact that the spectra of same types of surface objects 
are approximately linearly scaled variations of one another due 
to atmospheric and topographic effects. SAC allows the spectral 
angle to be used as a metric for measuring angular distances in 
feature space for classification and clustering of multispectral 
satellite data and was successfully applied in biotic and land-
cover classification (Sohn and Qi, 2005). Collado et  al. (2002) 
found use of spectral mixture analysis (SMA) to be valuable 
in monitoring desertification processes in the crop-rangeland 
boundary of Argentina. Savanna rangeland degradation in 
Namibia was classified by Vogel and Strohbach (2009), who used 
Landsat TM and ETM+ data. The decision tree classifier was also 
used. Their results showed that savanna degradation could be 
classified into the following six classes: vegetation densification, 
vegetation decrease, complete vegetation loss, long-term vegeta-
tion patterns, the recovery of vegetation on formerly bare soils, 
and no change with an overall accuracy of 73.4%, with class pair 
accuracies ranging from 80% to 100% for producer and user 
accuracies. Okin et al. (2001) assessed the utility of AVIRIS sat-
ellite imagery for accurately discriminating among vegetation 
types in the Mojave Desert, USA. Multiple endmember spectral 
mixture analysis (MESMA) and SMA were performed to esti-
mate the proportion of each ground pixels area that fitted with 
different cover types. They concluded that AVIRIS showed low 
potential for classifying vegetation types, with an overall accu-
racy of only 30% due to low vegetation cover. This is a common 
problem in rangelands, where the overall classification accura-
cies are generally lower than for forest or well vegetated areas.

James et  al. (2003) suggested that ecological condition of 
rangelands is a major factor in their environmental quality, 
their overall performance as watersheds and in wildlife and 
livestock production. They pointed out that to maintain the 
quality of rangelands, they must be monitored over time and 
space and also must take into account topography, climate, 
soils, plant communities, and animal population. Several stud-
ies have shown that extensive field knowledge and support 
data improves classification accuracy, for example, Wang et al. 
(2009) used stratified classification approaches based on seg-
mentation of an image into focused area and categories based 
on existing GIS land-cover data in order to improve classifica-
tion accuracy. Franklin and Wilson (1992) developed a three-
stage classifier that incorporated a quadtree-based segmentation 
operator, a Gaussian minimum-distance to mean test and final 
test involving ancillary geomorphometric data and a spectral 
curve measure and attained significant increase in classifica-
tion accuracy in less time and with minimum field training data 
as compared to MLC. Jianlong et  al. (1998) used green herb-
age yield data, environment, and remote sensing data recorded 
in different grassland types in Fukang County, Xinjiang, 
from 1991 to 1996. They explored the methods of processing 
images, analyzing information, and linking of remote sensing 
data with ground grassland data. Tagestad and Downs (2007) 
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studied landscape measures of rangeland condition using tex-
ture methods, highlighting the apparent roughness in the visible 
surface due to drastic changes in brightness between adjacent 
pixels. The texture model reduces the color signal in the image 
and maximizes the texture signal. The field-measured shrub 
canopy cover in each plot was compared to the corresponding 
texture ratio values for pixels representing that plot to develop 
a simple linear regression relationship between shrub canopy 
cover and image texture. Franklin et al. (2001) used spatial co-
occurrence texture measures and MLC to generate higher forest 
species composition classification accuracies in New Brunswick 
forest stand than the use of spectral patterns alone. Gong and 
Howarth (1992) developed and evaluated a contextual method 
of land-use classification using SPOT data involving two steps: 
gray-level vector reduction and frequency-based classification 
and found that the frequency-based classification method was 
comparatively fast, efficient, and could improve land-use classi-
fication accuracies over MLC and was effective in identification 
of spatially heterogeneous land-use classes. Pin ẽiro et al. (2006) 
estimated seasonal variation in aboveground production and 
radiation-use efficiency of temperate rangelands using remote 
sensing. They evaluated, at a seasonal scale, the relationship 
between ANPP and the NDVI and estimated the seasonal varia-
tions in the coefficient of conversion of absorbed radiation into 
aboveground biomass and also identified the environmental 
controls on such temporal changes. Their results indicated that 
NDVI produced good, direct estimates of ANPP only if NDVI, 
PAR, and aboveground biomass were correlated throughout the 
seasons and hence suggested seasonal variations of aboveground 
biomass associated with temperature and precipitation to be 
taken into account to generate seasonal ANPP estimates with 
acceptable accuracy.

Fuzzy methods in the classification of remote sensing images 
have become popular because of their ability to deal with situ-
ations where the geographical boundary is inherently fuzzy or 
heterogeneous due to the presence of mixed pixels and tradi-
tional methods of classification are often incapable of perform-
ing satisfactorily (Zang and Foody, 1998). For example, Zhang 
and Foody (1998) investigated the fuzzy approach for the clas-
sification of sub-urban land cover from remote sensing imagery 
and reported to have advantages over both conventional hard 
method and partially fuzzy approach. Other similar applica-
tions have been by Okeke and Karnieli (2006) for vegetation 
change study, and Sha et al. (2008) for grassland classification. 
Discriminating and mapping vegetation degradation at Fowlers 
Gap Arid Zone Research Station in Western New South Wales, 
Australia, Lewis (2000) used random forest method to classify 
perennial vegetation, chenopod shrubs and trees using hyper-
spectral imaging (CASI). An area of less than 25% was discrimi-
nated and mapped. Lewis (2000) concluded that high-spectral 
resolution imagery had potential for the discrimination of veg-
etation cover in arid regions.

Recently, decision tree (DT) classifiers have been used for 
land cover and vegetation classification from remote sensing 
data based on the concept of splitting a complex decision into 

several simpler decisions that may be easier to interpret. DT is 
based on multistage or hierarchal decision scheme or a tree-like 
structure composed of a root node (containing all data), a set of 
internal nodes (splits) and a set of terminal nodes (leaves) and 
processes from top to bottom by moving down the tree where 
each node of the decision tree structure makes a binary decision 
that separates either one class or some of the classes from the 
remaining classes (Chen and Rao, 2008; Xu et al., 2005). DT is 
relatively simple, explicit, computationally fast, makes no statis-
tical assumptions and can handle data on different measurement 
scales (Friedl and Brodley, 1997; Pal and Mather, 2003). Chen 
and Rao (2008) determined the rate and status of grassland 
degradation and soil salinization based on DT and field inves-
tigation with overall classification accuracy of more than 85%. 
Xu et al. (2005) employed a decision tree regression approach 
to determine class proportions within a pixel so as to produce 
a soft classification and the accuracy achieved by DT regres-
sion was found to be significantly higher as compared to MLC 
applied in soft mode and supervised version of fuzzy-c-soft clas-
sification, especially when data contained a large proportion of 
mixed pixels.

Pal and Mather (2003) assessed the utility of DT classifier for 
land-cover classification using multispectral and hyperspectral 
data and compared the performance of univariate and multi-
variate DT with that of ANN and MLC. They concluded that 
DT performance was always affected by training data size, uni-
variate DT was more systematic than multivariate DT for com-
mon training and test data sets and, in the case of univariate 
DT, a minimum of 300 training pixels per class were needed 
to the achieve most suitable classification accuracy. They fur-
ther concluded that DT classifiers were not recommended for 
high-dimensional data sets. Friedl and Brodley (1997) tested 
univariate DT, multivariate DT, and a hybrid DT on three dif-
ferent remote sensing data sets and compared the classification 
results from each DT algorithm with those of MLC and linear 
discriminant function classifier, and reported that DT, hybrid 
DT in particular, consistently outperformed MLC and lin-
ear function discriminant classifier in regard to classification 
accuracy. Rogan et  al. (2002) compared MKT, MSMA, MLC, 
and DT to accurately identify changes in vegetation cover in 
south California and showed that DT classification approach 
outperformed MLC by nearly 10% regardless of enhancement 
technique used and using DT classification, MSMA change frac-
tions outperformed MKT change features by nearly 5%. Borak 
and Strahler (1999) developed a tree-based model for land-cover 
identification from satellite data for a semiarid region in Cochise 
County, Arizona, and compared the results with other classifi-
ers such as fuzzy ARTMAP, MLC, and reported that DT could 
reduce a high-dimension data set to a manageable set of inputs 
that retained most of the information of the original database. 
However, fuzzy ARTMAP achieved the highest accuracy in 
comparison to MLC or DT classifier. Muchoney et  al. (2000) 
compared the classification results obtained from MODIS data 
for vegetation and land-cover mapping using DT, Gaussian 
ART, and Fuzzy ART ANN algorithms in Central America and 
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attained high accuracies from DT (88%), Gaussian ART (83%), 
and Fuzzy ART NN (79%).

Jarman et  al. (2011) studied rangeland conditions in the 
regions of Kvemo Kartli and Samtskhe-Javakheti in southern 
Georgia, USA, using remote sensing data. They used (NDVI) as 
the indicator of condition and used object-based image analy-
sis. The Landsat scenes and ancillary data sets were collated 
within eCognition following a two tiered (multilevel) hierarchi-
cal approach. The first level brought together the nonrangeland 
data sets and the second level classified the rangeland area into 
relative states of rangeland condition (good, moderate, poor). 
A rule-based classification was undertaken within eCognition to 
map the classes. Laliberte et al. (2011) applied IHS transforma-
tion on remote sensing data followed by object-based segmenta-
tion and classification for structure and species-level rangeland 
mapping. They developed specific rules to define threshold for 
broader classes and nearest-neighborhood classification for finer 
species-level classification. They reported that classification 
accuracies were highly dependent on the level of detail, number 
of classes, size of area, and specific mapping objectives.

12.4.3.2 I mage Differencing and Image Ratioing

The algebraic technique of change detection analysis is based on 
the selection of a threshold to determine the changed areas (Lu 
et al., 2004). In this group of change detection techniques, many 
researchers have applied image differencing and image ratio-
ing with different combinations of spectral bands as their first 
choice for identifying change, and derived satisfactory results. 
Conclusions and recommendations vary about whether image 
differencing and regression, vegetation index differencing or 
image ratioing is the best change detection technique. Since each 
method has been applied to different areas, with different data 
sets and under different environmental conditions, the deci-
sion on the selection of a suitable method is not an easy task 
(Coppin et  al., 2004). For example, Sinha and Kumar (2013a) 
tested 11 different binary change detection methods and com-
pared their capability in detecting land-cover change/no-change 
information in different seasons using multidate TM data. They 
proposed a relatively new approach for optimal threshold value 
determination for separation of change/no-change areas and 
found improved results with this as compared to traditional 
thresholding (Sinha and Kumar, 2013b).

12.4.3.2.1  Transformation
Various linear data transformation techniques such as PCA, 
Tasselled Cap (TC), Gramm–Schmidt (GS), and chi-square trans-
formations have been applied to multitemporal remote sensing 
data to identify changes in various land-use/land-cover classes. 
In PCA, only two bands of the multidate image are used as input 
instead of all bands (Mas, 1999; Richards, 1986), and hence 
reducing the data volume and redundancy between bands. After 
transformation using two bands, the derived components contain 
information about change and no-change areas as the first and 
second components, respectively, based on information common 
or unique in the two input bands (Chavez and Kwarteng, 1989). 

PCA is based on three steps: calculation of a variance–covariance 
matrix, computation of eigenvectors, and linear transformation of 
data sets (Richards, 1986). Two types of PCA, such as standard-
ized PCA (uses correlation matrix) and nonstandardized PCA 
(uses covariance matrix), have been used for change detection 
(Singh and Harrison, 1985). PCA has certain disadvantages in not 
providing detailed change matrices and difficulty in interpreta-
tion, identification, and labeling of changed areas.

TC transformation is carried out by assigning tasselled cap 
coefficients to spectral bands of two dates, a positive coefficient 
to the first date and a negative coefficient to the second date, 
as explained by Crist and Cicone (1984). This is followed by 
Gramm–Schmidt transformation to make the derived vectors 
orthogonal to each other. The three transformed images thus 
obtained contain information about differences in greenness, 
brightness, and wetness, with highest classification accuracy 
in the greenness change image. Maynard et al. (2007) classified 
Landsat 7 ETM+ to identify spectrally anomalous locations on 
satellite data and their correlation with corresponding ground 
locations for rangeland evaluation. Their classification was car-
ried out using TC brightness, greenness, and wetness compo-
nents stratified by ecological site descriptions. PCA and TC have 
been the most used approaches for detecting change/no-change 
information. An additional advantage of TC transformation is 
that the TC coefficients are scene independent compared to PCA 
coefficients, which are scene dependent.

12.4.4 �C ase Study: Spectral-Spatial 
Characteristics of Selected 
Ecological Sites

12.4.4.1 I ntroduction

ES characterize land of specific biophysical and plant com-
munity properties. Spatially distinct land areas of the same 
ecological site respond similarly to management actions and 
natural disturbances (U.S. Department of Agriculture, NRCS, 
2012). Therefore, the identification and mapping of ES across 
large landscapes can be an important tool for rangeland man-
agers. ES, as they are applied by the United States Department 
of Agriculture Natural Resources Conservation Service (NRCS), 
are defined on the basis of soils, geomorphology, hydrology, 
and the plant species composition that occur on those soils. The 
NRCS spatially ties ESs to soil components mapped within SMU 
contained in their spatial digital soil surveys.

Bestelmeyer et al. (2009) formulated an approach to identify 
ESs from Landsat (or similar platforms) interpreted into land-
cover maps to identify vegetation distribution. These mapped 
vegetation areas are used to infer possible ES. In addition to 
this effort, Maynard et  al. (2007) found that there was a high 
correlation between field measures of productivity and exposed 
soil when compared to the tasseled cap brightness component 
extracted from Landsat TM imagery. Differences in brightness 
have been shown to discriminate between deciduous shrubs (or 
harvested forest stands) and closed canopy forests (Dymond 
et al., 2002).
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Gamon et al. (1995) discussed the usefulness of the NDVI as 
an indicator of photosynthetic activity as well as canopy struc-
ture and plant nitrogen content. Jensen (2000) showed that 
NDVI was sensitive to canopy variations including soil visible 
through canopy openings. While the sensitivity to soil back-
ground has typically been seen as a disadvantage of NDVI for 
vegetation assessment, it could prove useful for studying ESs 
because areas of the same ES may have a similar amount and 
type of bare soil. The NDVI values within a polygon, such as an 
SMU, and the variation in the NDVI within that polygon has 
also been used to distinguish between cover types (Pickup and 
Foran, 1987).

Accurately classifying and identifying the spatial extent of 
ESs on a landscape level is a time-consuming process involv-
ing extensive field work to characterize soils. While remotely 
sensed data cannot yet be used to obtain detailed data about 
soils, it can be used to identify the unique vegetation compo-
nents of ESs. Being able to accurately identify the vegetation 
component of ESs should provide a means by which soil field 
sample locations can be identified more efficiently. Based on 
past research, the use of satellite-derived NDVI and brightness, 
coupled with biophysical geospatial data (elevation, slope, and 
aspect), should allow areas of the same ES vegetation compo-
nents to be mapped.

12.4.4.2  Methods

12.4.4.2.1  Study Area
This research was conducted in Rich County, Utah, USA 
(Figure 12.11), located in the northeastern corner of the state 
(long 111°30′38.5″–long 111°2′42.2″ west and lat 42°0′0″–lat 
42°08′24.3″ north). The western portion of the study area is 
characterized by high elevations with vegetation consisting of 
aspen forests, subalpine conifer forests, and scattered mountain 
sagebrush steppe. Moving east, elevation decreases, and the 
mountain sagebrush steppe becomes dominant. Central and 
eastern Rich County is made up of relatively lower elevations 
with vegetation consisting of basin big sagebrush steppe and 
shrubland, subalpine grasslands, and agriculture (Figure 12.12). 
The average elevation is 2093 m. The highest point is Bridger 
Peak at 2821 m and the lowest point is about 1800 m. The cli-
mate is variable and is affected by the changing topography of 
the county.

12.4.4.2.2  Biophysical Geospatial Data Sets
A series of Landsat 5 TM images (Path 38/Row 31) for each year 
between 1984 and 2011 with Julian date as close to 207 (July 26th) 
as possible (given acceptable cloud cover) were collected from the 
U.S. Geological Survey Global Visualization Viewer (GLOVIS). 
The Julian date of 207 was chosen by averaging the date for each 
year that displayed the greatest variance in NDVI between differ-
ent land-cover types. The dates were obtained by examining line 
graphs of mean NDVI values collected by the MODIS of ever-
green forests, shrubs, and deciduous forests. Figure 12.13 is an 
example of one of these graphs from 2009.

Of the 28  years’ images, 18 were within 20  days of 207, 
5  more were within 30  days of 207, and 3 more were within 
40 days of 207. The cloud-free scene closest to Julian date 207 
from 1987 had a Julian date of 153 and was 54 days off. The year 
2001 was the only year that an image was not available due to 
cloud cover.

Raw pixel values were converted to reflectance using an image-
based atmospheric correction (Chavez, 1996) using appropriate 
calibration coefficients for Landsat 5 TM (Chander et al., 2009). 
The NDVI was calculated for each image (Rouse et al., 1974) and 
for each NDVI product we calculated the spatial standard devia-
tion of the NDVI using a 5 × 5 pixel focal window. The bright-
ness component for each year was calculated using the published 
transformation coefficients for Landsat 5 TM (Crist and Cicone, 
1984). Images from every year were utilized, based on literature 
indicating that longer time series of remotely sensed data were 
necessary to adequately characterize different ecological states 
due to inherent year-to-year variance (Hernandez, 2011).

A 30 m DEM produced by the USGS National Elevation 
Dataset program was used to extract slope and aspect. Elevation, 
slope, and aspect have been shown to drive microclimatic 
variation and therefore the spatial distribution and patterns of 
vegetation (Jin et al., 2008).

12.4.4.2.3  Ecological Sites
To test the process, land-cover types representing five ESs were 
selected. These were Wyoming big sagebrush (Artemisia tri-
dentata ssp. wyomingensis) steppe, mountain big sagebrush 
(Artemisia tridentata ssp. vaseyana), Utah juniper (Juniperus 
osteosperma), Douglas-fir (Pseudotsuga menziesii), and aspen 
(Populus tremuloides). With the exception of Utah juniper, these 
vegetation components were selected because of their prevalence 
in the county. Wyoming big sagebrush accounts for much of the 
foothill vegetation in the study area, and aspen is prevalent in 
the mountainous section, with Douglas-fir, and mountain big 
sagebrush as secondary and tertiary types. Utah juniper is not 
prevalent within the study area; however, it is an important veg-
etation component due to its potential to encroach into sage-
brush steppe communities (Miller and Rose, 1999). Together, 
these vegetation components represent approximately 71% of 
the county by area.

Twenty polygons were digitized for each of the five ESs using 
2009 National Agricultural Imagery Project (NAIP) 1 m reso-
lution aerial orthoimagery. In total, 100 polygons were created 
(20 for each ES vegetation component).

Polygons were intersected with the topographic data layers, 
yearly NDVI imagery, and yearly brightness component images. 
For each polygon, the mean values of topographic and bright-
ness variables were extracted along with the mean and standard 
deviation of each NDVI image for each year. From these data, 
a 28-year mean of the average brightness as well as the mean 
of the average NDVI and the mean NDVI standard deviation 
(sdNDVI) were produced. This was done to minimize the effects 
of interannual climate variability and clouds and provide long-
term average values for each polygon of each land-cover type. 
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Interannual climate variability has been shown to affect plant 
species productivity (Arain et  al., 2002; Goulden et  al., 1996) 
and ecological processes (Westerling and Swetnam, 2003). The 
resulting data matrix was therefore composed of the ES vegeta-
tion component name followed by three columns for the DEM 
derivatives, and three columns for the NDVI, sdNDVI, and 
brightness.

12.4.4.3  Results

Figure 12.14 shows the 28-year mean of the average NDVI 
value for each polygon plotted against the 28-year mean of the 
sdNDVI for each polygon showing that the five ESs occupied 

unique NDVI mean and spatial variance “niches.” Some over-
lap occurred between Wyoming big sagebrush and Utah juniper 
and between Douglas-fir and aspen ESs. Figure 12.15 shows the 
same data points with 28-year mean of the average NDVI value 
plotted against the 28-year mean of the average brightness. The 
brightness component was able to cleanly separate Aspen poly-
gons from the Douglas-fir polygons. However, brightness pro-
vided little separation between Utah juniper and Wyoming big 
sagebrush.

Each polygon was plotted against elevation and slope 
(Figure  12.16) and also against elevation and the cosine of 
aspect (Figure 12.17). Topographic variables alone were able 
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Figure 12.11  Utah natural color mosaic from the Landsat 8 Operational Land Imager (OLI) showing Rich County outlined in red.
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to somewhat separate vegetation components along an eleva-
tion gradient (as expected). Slope seemed to be a good variable 
to separate Utah Juniper from Wyoming big sagebrush and 
Douglas-fir from Aspen. Aspect was not useful for distinguish-
ing between any vegetation types.

The Wyoming big sagebrush polygons collectively had low 
NDVI and low spatial variation in NDVI. Utah juniper sites had 
similarly low-average NDVI, but due to high contrast between 
green juniper trees and a relatively larger amount of bare ground, 
these sites had higher spatial variation in NDVI. Mountain big 
sagebrush had higher average NDVI values. This was expected 
since mountain big sagebrush occurs at higher elevations that 
receive more precipitation than either Wyoming big sagebrush 
or Utah juniper and therefore is associated with higher plant 
production. Aspen polygons tended to have higher NDVI values 

compared to Douglas-fir polygons with both ESs having a simi-
lar, relatively large distribution of spatial variance. Where the 
aspen sites are concerned, there was a slight but distinct trend of 
decreasing composite mean NDVI with increasing mean stan-
dard deviation (sdNDVI). Indeed considering the four aspen 
sites with the highest sdNDVI, three sites consisted of lower 
aspen canopy cover and the site with the highest sdNDVI con-
tained a mix of immature aspen trees and shrubs. The remaining 
16 aspen sites were all similar in canopy cover.

12.4.4.4  Discussion

This case study has shown that using variables derived from 
remotely sensed images as well as biophysical geospatial 
data, selected ESs can be discriminated on a per-pixel basis. 
Prediction of the spatial distribution of ESs on a pixel basis 
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Figure 12.12  Rich County, Utah, natural color image from Landsat 8 OLI.
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has been suggested as the next step in remote sensing appli-
cations to rangeland conservation (Hernandez, 2011). This 
research has shown that selected ESs can be somewhat cleanly 
discriminated by utilizing spectral (NDVI and brightness) 
and spectral-spatial (sdNDVI) variables and therefore could 

be mapped by utilizing remotely sensed imagery. This is, of 
course, not surprising since the remote sensing community has 
clearly shown the ability to map land cover. What is important 
here is that by identifying the spatio/temporal spectral nature 
of selected land-cover types, land-cover change can be tracked. 
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ES are used by the USDA-NRCS as a benchmark condition to 
develop state and transition models (Bestelmeyer et al., 2009; 
Briske et al., 2005). ES linked to SMU provide a means to com-
pare current land-cover condition to historic conditions (as 
defined by the ES). By establishing the spectral nature of ESs, 

the spectral/spatial signature of soil map polygons can be com-
pared with an expected ES for that polygon. Deviations from 
the expected response could indicate type and directionality of 
change, thus providing managers with a powerful land man-
agement tool.

12.5 C onclusion

Rangelands are dynamic environments that probably exhibit 
change more frequently and profoundly than many other 
systems. Land management, livestock grazing, invasive spe-
cies, prolonged droughts and fire have the potential to alter 
rangeland community structure at both the micro and macro 
levels. Vegetation communities can be dominated by either C3 
or C4 grass species or have permanent shrublands; thus, pro-
ductivity is very phenology dependent. Biomass production in 
rangelands by C3 and C4 plants displays significantly different 
phenological timing that is detectable using satellite remote 
sensing. The phenological differences are also useful for iden-
tifying vegetation types. Such information about rangeland 
productivity, vegetation species, and timing are useful for 
rangeland managers in adjusting stocking rate, broad-scale 
movement of stock, land degradation monitoring, and long-
term trends in the health and condition of the systems. This 
chapter has highlighted numerous methods of achieving these 
by using remotely sensed imagery.

Accurately classifying and identifying the spatial extent of 
ES on a landscape scale is a laborious task involving extensive 
fieldwork to characterize soils. Case studies presented in this 
chapter show that variables extracted from remote sensing 
images, together with biophysical geospatial data, can be used to 
discriminate ES on a per-pixel basis with a relatively high degree 
of confidence. ES are widely used as a benchmark condition 
to develop state and transition models and provide a means to 
compare current land-cover condition with historic conditions, 
thus indicating type and directionality of change and helping in 
rangeland management.

Monitoring of fuel in rangelands is also important and this 
chapter has provided examples of how high temporal resolution 
satellite remote sensing can be used for quantifying fuel loads 
in rangeland landscapes. We have also summarized a range of 
change detection techniques relevant to rangeland monitor-
ing and discussed, through a case study, the effectiveness of a 
regression tree algorithm (random forest) in modeling estimates 
of percent cover and developing VCF for a range of vegetation 
communities in a rangeland environment.

Remote sensing has undergone major transformations since 
its mainstream application began about 50  years ago. Spatial 
resolutions of images have shrunk from a few kilometers range 
to the submeter range, spectral resolutions have moved to the 
hyperspectral domain and temporal resolutions enable images 
to be available almost on a daily basis. In conjunction with this 
development, image classification techniques have made major 
progress and continue to be developed. New techniques include 
neural networks, random forest and object-based classifications, 
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and research cited earlier show that they have led to a marked 
increase in classification accuracies. All these developments 
have greatly enhanced our ability to map and monitor range-
lands to a degree not possible in the past and no doubt will 
continue to be improved into the future as new techniques and 
sensor capabilities become mainstream. This chapter has cov-
ered some of these developments and highlighted the impor-
tance and usefulness of remote sensing for rangeland mapping 
and monitoring.
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Acronyms and Definitions

AVHRR	 Advanced very-high-resolution radiometer
CDL	 Cropland data layer
LSP	 Land surface phenology
MODIS	 Moderate-Resolution Imaging Spectroradiometer

13.1 I ntroduction

Phenology is the scientific study of periodic biological phe-
nomena in relation to climate conditions and habitat factors. 
Phenology varies by species and is influenced by many factors, 
such as soil temperature, solar illumination, day length, and soil 
moisture. Land surface phenology (LSP) is the study of the spa-
tiotemporal patterns in the vegetated land surface as observed 
by satellite sensors. Agriculture and food production are linked 
inextricably to the seasonal effects of rainfall and temperature 
changes. LSP can be used to estimate agriculturally important 
changes in the start, length, and strength of the growing season, 
which controls how much food is produced in rainfed agri-
cultural systems (Bolton and Friedl 2013; Koetse and Rietveld 
2009). Since the supply of food in many countries is strongly 
affected by how much food is grown locally, understanding LSP 
is a critical part of assessing food availability.

Food security is defined as the ability of all people to acquire 
enough culturally relevant food for an active and healthy life 
(FAO 2012). Roughly 850 million people, most of them live in 
the developing world, suffer from undernourishment, an out-
come of food insecurity (FAO 2012). To help explain the reasons 

underlying undernourishment, food security is commonly 
examined by focusing on four underlying pillars:

•	 Availability—the availability of sufficient quantities of 
food of appropriate quality, supplied through domestic 
production or imports (including food aid).

•	 Access—access by individuals to adequate resources for 
acquiring appropriate foods for a nutritious diet.

•	 Utilization—utilization of food through adequate diet, 
clean water, sanitation, and health care to reach a state of 
nutritional well-being where all physiological needs are 
met.

•	 Stability—to be food secure, a population, household, or 
individual must have access to adequate food at all times. 
They should not risk losing access to food as a consequence 
of sudden shocks or cyclical events (FAO 2008; Godfray 
et al. 2010; Schmidhuber and Tubiello 2007).

Vegetative variability, as measured with LSP, can impact each 
of these elements. Extreme events can affect food produc-
tion directly (Vrieling et  al. 2011), affect distribution of food 
and thus the price of food in regions where supply is low and 
demand is high (de Beurs and Brown 2013), affect utilization 
through increased spread of disease (Myers and Patz 2009), and 
impact stability through extreme events that reduce the abil-
ity of farmers to predict weather conditions from 1 year to the 
next. Farming is becoming even more risky because of heat 
stress, lack of water, pests, and diseases that interact with ongo-
ing pressures on natural resources. The lack of predictability in 
the start and length of the growing season affects the ability of 

13
Global Land Surface Phenology 

and Implications for Food Security

Acronyms and Definitions..................................................................................................................353
13.1	 Introduction..............................................................................................................................353
13.2	 Characterizing Land Surface Phenology............................................................................. 354
13.3	 Agriculture and Phenology Metrics......................................................................................357
13.4	 Food Security and Phenology.................................................................................................357
13.5	 Approaches to Measuring Food Insecurity......................................................................... 358
13.6	 Use of LSP in Food Security Assessment in Niger............................................................. 358
13.7	 Using LSP to Contextualize the Relationship between Maize Price and Health in Kenya.... 360
13.8	 Discussion................................................................................................................................. 360
13.9	 Conclusions.............................................................................................................................. 360
References..............................................................................................................................................361

Molly E. Brown
University of Maryland

Kirsten M. de Beurs
University of Oklahoma

Kathryn Grace
University of Utah

© 2016 Taylor & Francis Group, LLC



354 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

farmers to invest in appropriate fertilizer levels or improved, 
high-yielding varieties (Zaal et al. 2004).

We can use LSP models to better predict interannual vari-
ability of food production. LSP models rely on remote sens-
ing observations of vegetation, such as datasets derived from 
the advanced very-high-resolution radiometer (AVHRR) and 
the newer Moderate-Resolution Imaging Spectroradiometer 
(MODIS) sensors on Aqua and Terra satellites. Vegetation and 
rainfall data can assess variables such as the start of season (SOS), 
growing season length, and overall growing season productivity 
(Brown and de Beurs 2008; de Beurs and Henebry 2004, 2010). 
These metrics are common inputs to crop models that estimate 
the impact of weather on agricultural area and yield (Bolton and 
Friedl 2013; Funk and Budde 2009). LSP metrics have a strong 
relationship with regional food production, particularly those 
with sufficiently long records to capture local variability. This 
chapter will focus on reviewing how LSP analysis is done, how 
it can be used to monitor agriculture and food production, and 
the links between these observations and food security (FCPN 
2007; Zaal et al. 2004).

13.2 �C haracterizing Land 
Surface Phenology

The international biological program defined phenology as “the 
study of the timing of recurrent biological events, the causes 
of their timing with regard to biotic and abiotic forces, and 
the interrelation among phases of the same or different species 
(Lieth 1974).” The importance of phenological observations to 
understanding the impact of global environmental change has 
been increasingly recognized (Mu et al. 2013). The impact of the 
weather on plant phenology can serve as a biological indicator of 
the impacts of climate change on terrestrial ecosystems, includ-
ing agroecosystems that support the production of food (Bradley 
et al. 2011; Schwartz 1992).

The vigor and development of vegetation depends on available 
moisture and nutrients for plant development. The health of crops 
can be studied by looking at their phenological characteristics 
including germination, leaf emergence, and start of senescence 
(Vrieling et al. 2011). LSP is defined as the spatiotemporal devel-
opment of the vegetated land source as observed by synoptic 
satellite sensors (de Beurs and Henebry 2004). Datasets from 
satellite remote sensing of vegetation can approximate phenologi-
cal stages and thus characterize the general vegetation behavior 
(Justice et al. 1985; Reed et al. 1994). A derived metric of particu-
lar interest is the seasonally cumulated vegetation index as it is 
related to net primary productivity (Awaya et al. 2004).

Phenology models produce annual metrics that describe the 
growing season, including the SOS, length of season, maximum 
normalized difference vegetation index (maxNDVI) value, and 
cumulated NDVI over the season (cumNDVI) (Figure 13.1) 
(Brown et al. 2010; de Beurs and Henebry 2010). Satellite remote 
sensing can be used to study the spatiotemporal development of 
the vegetated land surface. When using LSP in assessing food 

production, the measurement needs to be focused on the agricul-
turally productive areas of the land surface, including row crops, 
pasture, and gardens to maximize the representativeness of the 
satellite-derived assessment of the SOS (White et al. 2009).

In the context of food security, LSP is used to provide a remote 
estimate of the timing of the start of the agricultural growing 
season. The SOS metric is a critical parameter for food security 
assessment and is monitored remotely by many food secu-
rity and agriculture organizations (Brown 2008). Staple cereal 
crops in semiarid agricultural zones such as millet and sorghum 
are often photoperiod sensitive, and thus a sowing delay can 
translate into a reduction in yield (Brown and de Beurs 2008; 
Buerkert et al. 2001). Changes in the SOS also may reduce the 
overall length of the growing season, further reducing the yields 
obtained in marginal semiarid agroecosystems.

Figure 13.2 provides the growing season length for West Africa 
for the years 2009 (average), 2011 (very dry), and 2012 (relatively 
wet after a dry winter). The growing season length is calculated 
with the threshold percentage method (White et al. 1997) based 
on MODIS bidirectional reflectance function adjusted reflec-
tance–derived NDVI data (MCD43C4) at the global climate 
modeling grid (0.05°). The maps show a north–south gradient 
in the length of the growing season with much shorter growing 
seasons further north. In addition, 2011 reveals much shorter 
growing seasons, especially compared to 2012. As an example, we 
calculated the average length of the growing season for the agri-
cultural regions (cropland percentage according to the MODIS 
land cover classification > 0) in Mali. We found that the average 
growing season length ranged from 101 days in the driest year of 
2011 to 125 days in 2012. The year 2009 had an average growing 
season length of 110 days. Figure 13.3 also reveals that the length 
of the growing season was very short in 2011, more than 48% of 
the cropped pixels had a growing season of less than 100 days and 
the median growing season length was 101 days. The short grow-
ing seasons in 2001 resulted in failure of most harvests in Mali and 
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Figure 13.1  Start of season, length of season, end of season, 
maximum NDVI, and cumulative NDVI for a sample curve. (From 
Brown, M.E. et al., Remote Sens. Environ., 114, 2286, 2010.)
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other countries in West Africa. In comparison, the growing sea-
son for 2012 was much longer. Only 16.5% of the pixels showed a 
growing season with fewer than 100 days and the median growing 
season was 123 days. Unfortunately, there was civil unrest in Mali 
in 2012, which still resulted in reduced food insecurity.

White et  al. (2009) explored the methodology that is used 
to estimate phenology metrics with remote sensing data. They 
found that care must be taken with the modeling approach used 
and matching the method to the region where the agricultural 
assessment is done. In the context of food security, tropical 
semiarid regions dominate the countries where food security is 
monitored (Figure 13.4); thus, the quadratic and multiple-model 
fit approaches are necessary to correctly assess variations in phe-
nology relevant to agriculture (White et al. 2009).

Henebry and de Beurs (2013) provide a basic overview of 
LSP and the different satellite sensors that are used in studying 
LSP going back to Landsat 1 in 1972. Indeed, one of the very 
first LSP studies was performed based on 80 m spatial resolu-
tion Landsat data. However, most LSP studies have used obser-
vations from the AVHRR, which has provided time series of 
observations starting in 1982. The AVHRRs have truly been the 
workhorse platform for the study of LSP (Henebry and de Beurs 
2013, and citations within). Since the launch of the MODIS sen-
sors on the Terra and Aqua satellites in 2000 and 2002, MODIS 
data are also regularly applied in LSP studies as a result of their 
increased spatial resolution and general accuracy as compared 
with AVHRR data. While there has been a tremendous increase 
in the number of published studies that use the term LSP, few 
of these studies specifically use higher-spatial-resolution (30 m) 
Landsat data (Fisher et  al. 2006; Fisher and Mustard 2007). 
However, some recent efforts have focused on the use of fused 
data products (e.g., fused data based on MODIS and Landsat) 
for LSP studies as well as web-enabled Landsat data (Kovalskyy 
et al. 2012).

While White et al. (2009) compared a host of different LSP meth-
ods for one dataset (AVHRR) to determine which method resulted 
in data closest to a variety of field observations, we are aware of 
just one study that compares LSP metrics based on different datas-
ets (Brown et al. 2008). This study applied one methodology, qua-
dratic regression models to AVHRR, SPOT Vegetation, and several 
MODIS products to determine the start of the growing season. 
They then compare the results with fields’ observed SOS. The results 
showed that 8 km MODIS data at 8-day temporal resolution resulted 
in SOS measurements closest to field observations. It is important 
to note that the field observations were specifically designed for 
large-scale satellite validation and thus were better matched with 
8 km data as opposed to data at finer spatial resolutions.
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Figure 13.3  Histogram of the length of the growing season for 2011 
and 2012 for the cropped areas in Mali.
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13.3  Agriculture and Phenology Metrics

LSP metrics have been used to better connect observed vari-
ability in the weather to impacts on food production. Based 
on agronomic research on the development and response of 
different cereal varieties to moisture and temperature stress at 
various stages of development, LSP assessment can provide a 
quantitative link between remote sensing observations and yield 
outcomes (Nafziger 2009).

Funk and Budde (2009) used phenology to adjust the SOS across 
multiple years to increase the reliability of vegetation-derived met-
rics to assess yield. They noted that Rasmussen (1992) found that 
early season vegetation data bore no significant relationship to 
millet yields in Burkina Faso (r2 = 0.1), while values from 30 days 
after the midseason maxima until the end of season explained 93% 
of the variation in yields (Funk and Budde 2009; Rasmussen 1992). 
They found that when removing nonagriculture regions and nor-
malizing the SOS across multiple years, they were able to predict 
90% of the variability in yields from 2001 to 2008. This period 
included the significant change in management of agriculture in 
the area, which caused a massive decline in productivity outside of 
weather-induced changes (Funk and Budde 2009).

Bolton and Friedl (2013) used the Funk and Budde (2009) 
method to derive yield estimates from three different vegetation 
products and phenology estimates using 500 m MODIS. Their 
results showed that remotely sensed information related to crop 
phenology is useful for agricultural monitoring. The best times 
to predict crop yields were 65–75 days after green-up for maize 
and 80  days after green-up for soybeans (Bolton and Friedl 
2013). For relatively homogenous pixels, the timing of maize and 
soybeans SOS derived from satellite data appeared to be both 
detectable and separable (Bolton and Friedl 2013). However, 
because MODIS acquires data at relatively coarse spatial resolu-
tion (250 m), most pixels will include mixtures of crops. Thus, 
separation of crops based on satellite-derived phenological 
information is likely to be challenging in many areas (Ozdogan 
2010). Thus, most LSP information is used as a measure of mois-
ture availability instead of crop type.

Most satellite-derived agricultural yield estimates using phe-
nology data require a base map of land cover and land use that 
is used to distinguish land in cultivation from nonagricultural 
land cover. Bolton and Friedl (2013) tested two data sources for 
this purpose: (1) the MODIS land cover type product, which 
provides a 500 m spatial resolution representation of land cover, 
and (2) the cropland data layer (CDL) created by the USDA, 
which provides a much higher-resolution representation but is 
only available for the United States. They found that in regions 
with high-intensity, industrial agriculture such as in the United 
States, the MODIS land cover and the CDL were equally effec-
tive. In regions with small field size, this will not be the case, 
however, and the ability of the remote sensing data to identify 
farm management and moisture-related differences in yield in 
small fields will be severely limited.

Jain et al. (2013) focused on evaluating the impact of high-
resolution satellite data to estimate cropping intensity, or the 

number of crops planted annually, in regions with small fields. 
Subsistence agricultural systems are often characterized by 
small, irregular fields, and these areas often are poorly char-
acterized by methods based on coarse resolution due to the 
mixing of natural and cropped vegetation in the same pixel 
(Rasmussen 1992). Using a multiscalar method where 30 m 
resolution Landsat data are combined with 250 m daily MODIS 
imagery, Jain et al. (2013) show that using a hierarchical train-
ing method that uses the high-resolution spatial information 
together with the lower spatial but higher temporal information 
from MODIS allows for an accurate mapping of crop inten-
sity over these small fragmented agricultural systems (Jain 
et al. 2013). Other authors have also shown that merging high-
resolution imagery with lower-resolution imagery in quantita-
tive fusion approaches can improve the results of agricultural 
assessment (Jin et al. 2010).

Outside of smallholder agricultural regions in the tropics, 
there is significant food insecurity in the lesser-developed 
regions of central and eastern Asia. Land abandonment result-
ing in reduced agricultural production, large changes in eco-
nomic and governmental institutions, and a crumbling physical 
infrastructure has resulted in increased vulnerability to mois-
ture conditions.

de Beurs and Henebry (2004) used LSP measurements at 
8 km spatial resolution to demonstrate the effect of the collapse 
of the Soviet Union on agriculture in Kazakhstan. de Beurs and 
Ioffe (2014) used LSP measurements to determine the number 
of times agricultural fields were cropped over a 10-year period 
in European Russia, which is an indicator of potential future 
cropland abandonment. Prishchepov et  al. (2012) found the 
highest land abandonment was found in Latvia, where 42% of its 
agricultural land was abandoned from 1990 to 2000, followed by 
Russia (31%), Lithuania (28%), Poland (14%), and Belarus (13%) 
(Prishchepov et al. 2012). When abandoned areas are reforested 
or native grasslands are restored, water quality improves and 
carbon can be sequestered, but unless economic growth in other 
sectors occurs, food security of the area could suffer (Gellrich 
and Zimmermann 2007).

13.4  Food Security and Phenology

Seasonality in food production, where food is produced in one 
primary growing season, is a common characteristic across 
many climates. The impact of seasonality in food availability 
can translate to seasonality in food prices and food security in 
poor and food-insecure countries with insufficient storage and 
poorly functioning markets (Alderman et al. 1997; Chen 1991; 
Crews and Silva 1998; Haddad et  al. 1997; Handa and Mlay 
2006; Hillbruner and Egan 2008). As Devereux (2012, p. 111) 
states, “not only does seasonality generate short-term hunger 
and seasonal food crises, it is also responsible for various ‘pov-
erty ratchets’ that can have irreversible long-term consequences 
for household well-being and for productive capacity in rural 
areas.” Coping strategies that have been developed in response 
to regular reductions in availability and affordability of food 
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involve transfers of assets from poorer households to richer ones 
at less than full value (Cekan 1992; Devereux 2012).

Understanding the impact of local declines in food produc-
tion due to the weather relies on understanding the livelihood 
approach of the people living in the area affected. Livelihood 
is defined as “the capabilities, assets (including both material 
and social resources) and activities required for a means of liv-
ing” (Chambers and Conway 1991). LSP analysis can be used to 
determine when agricultural production is likely to fall below 
the needs for farmers in the region. Its relevance to food security 
depends on the ability of a community to access food if a pro-
duction decline occurs.

Access to food requires that all individuals have the income 
sufficient to purchase food that is personally and culturally 
acceptable (Sen 1981). The concept of access focuses on the abil-
ity of households to maintain food consumption in the face of a 
wide variety of shocks that increase the gap between available 
income and entitlements and the amount of food that can be 
purchased with that income at a particular time and place.

Shocks to food security can come from many sources. 
Droughts can greatly reduce the supply of food, increasing the 
local food prices (Brown et  al. 2012). Personal shocks, such 
as death of a member of the family, poor health, and loss of 
employment, can reduce household income and access to food 
(Gazdar and Mallah 2013). Economic shocks, such as inflation, 
changes in government policies, changes in public safety nets, 
and international commodity prices, can reduce the ability 
of households to attain enough food, despite the fact that the 
amount of food they produce or their household income has 
not changed (Brown 2014). Issues of access are described most 
clearly in social science concepts of individual and household 
well-being, which capture stress and coping strategies at a vari-
ety of scales (Barrett 2010).

13.5 � Approaches to Measuring 
Food Insecurity

There are two comprehensive approaches to measuring food 
insecurity. One approach involves measurement of the anthro-
pometrics such as body weight, height, and age of representa-
tive samples of the population (e.g., demographic and health 
surveys) (Brown et al. 2014). The other involves measurements 
of aggregate household and/or individual consumption of food 
per day of representative samples of the population (e.g., the 
World Bank’s living standard measurement surveys). However, 
both these methods require extensive surveys of large num-
bers of people and households. This data collection strategy is 
costly in terms of time and money, and as a result, these sur-
veys are rarely conducted more than a few times in a decade for 
a given country. Additionally, a nontrivial limitation of using 
anthropometry in assessing child nutritional status is the lack of 
specificity. In other words, changes in body measurements are 
sensitive to many unobserved factors including intake of essen-
tial nutrients, infection, altitude, stress, and genetic background 
(Barrett 2010).

Thus, for measuring and monitoring food security, many 
organizations use food prices in both urban and rural areas as a 
proxy for food access, since large, rapid increases in food prices 
can result in widespread reduction in food consumption, result-
ing from widespread declines in food availability and thus food 
supply in a market (Brown et al. 2009). Many rural dwellers buy 
food and sell food so they are sensitive to price changes in nearby 
markets (Brown 2014). Food prices are collected across small 
towns, in regional capitals, and in the capital city on a monthly 
basis for this use. Because food prices can be influenced by a 
number of international and domestic policies or events that are 
unrelated to local production (Brown 2014), the links between 
phenology assessment and food security outcomes can quickly 
become complex. Including LSP assessments with food prices 
at multiple scales of analysis can help to identify potential “hot 
spots” of food insecurity.

13.6 � Use of LSP in Food Security 
Assessment in Niger

The use of LSP data can be important in food security assess-
ment, particularly in poor agropastoral regions that are remote 
and frequently food insecure as illustrated here for Niger. Niger 
consistently ranks in the bottom five poorest countries in the 
world for gross domestic product per capita (World Bank 2013). 
Over half of its 13 million residents are engaged in the agri-
culture sector, despite the country being semiarid with a short 
annual growing season and that only 12% of its land is arable 
(CIA 2012).

In 2013, Ouallam, a region north of Niamey in the Department 
of Tillaberi, and other agropastoral areas of Niger had 1.2 mil-
lion people that had difficulty getting enough to eat with the 
high price of cereal and limited livelihood strategies (Famine 
Early Warning Systems Network [FEWS NET] 2013a). Niger’s 
Ouallam Department in the Tillaberi Region has an economy 
that is based mainly on agriculture (harvests of winter millet, 
sorghum, cowpeas, groundnuts, and peas) and on raising cattle, 
sheep, and goats. Annual rainfall in this area ranges from 400 
to 600  mm. Local crop production normally covers over 40% 
of household food needs and accounts for 18% of the income 
of very poor and poor households. Migration and sales of bush 
products (wood and straw) are also important sources of cash 
income for local households. The types of foods normally con-
sumed by households in this area are furnished by on-farm pro-
duction or purchased with income from livestock sales, farm 
labor, and sales of wood and straw (Senahoun et al. 2011). Most 
household spending is on cereal purchases by poor and cereal-
short households and on school fees for their children’s educa-
tion. An average to high local demand is helping to generate 
normal to above-normal levels of income from the farm activi-
ties (FEWS NET 2013b).

The Ouallam Department of Niger experienced a delay in the 
start of its growing season, restricting the total length of the sea-
son and resulting in a production deficit of 68,000 metric tons 
(FEWS NET 2013b). Although the 2012 cropping season was 
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above average, the poor and very poor households, who make up 
61% of the population of the region, depleted their food stocks 
from the previous year before the start of the 2013 growing sea-
son and thus are vulnerable to food insecurity due to the low 
productivity (FEWS NET 2013b).

Given this situation, food security analysts were looking at 
the remote sensing data products available to determine the 
likely impact of the reported late start of the growing season. 
Here, we will show the remotely sensed vegetation data that the 

FEWS NET uses operationally to identify and quantify the likely 
impact of variations in the SOS. FEWS NET uses the eMODIS 
data product derived from daily MODIS reflectance data and 
recomposited into 10-day observations for ease of comparison 
with rainfall and other datasets (Jenkerson et al. 2010; Ji et al. 
2010). Figure 13.5 shows the Ouallam Region on an NDVI 
anomaly image calculated from a 10-year mean (from 2001 to 
2010) used by FEW NET in its Early Warning Explorer tool 
for the first 10 days of July. Figure 13.5a and b shows the time 
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Figure 13.5  Comparison of Niger’s Ouallam Department in Tillaberi Region’s MODIS NDVI: (a) actual NDVI from 2012 and 2013, along with 
the short-term mean and (b) NDVI anomaly from 2012 and 2013 using the short-term mean.
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series of the NDVI as it compared to the previous season and 
the anomaly of the NDVI. Although the anomaly image showed 
very little impact of the late start, the time series does show the 
late start and then a subsequent robust response to significant 
rains in August.

The late start in July 2013 resulted in below average yields, 
despite the later robust response to rainfall in August. A shorter 
growing season due to a late start has long been recognized as 
a risk factor for crop development (Brown and de Beurs 2008). 
Because crops in the Sahel are often photoperiod sensitive, a late 
start cannot be made up later in the season and typically trans-
lates into a yield reduction (Buerkert et al. 2001). Thus, the food 
security analysts using the information from vegetation were 
able to quantitatively link the late start to identifying regions 
that were more likely to experience food insecurity as a result in 
yield declines.

13.7 � Using LSP to Contextualize the 
Relationship between Maize 
Price and Health in Kenya

Kenya’s malnutrition rate has remained high despite a number 
of improvements in other socioeconomic and health indicators 
(KNBS 2010). Additionally, Kenya faces important shifts in cli-
mate and weather patterns that may be linked to food insecurity 
(Grace et al. 2013). Recent research has sought to examine the 
effect of price changes (a measure of food access) on household-
level food insecurity outcomes, specifically the birth weight 
of babies (Grace et  al. 2014). A key component of this type of 
approach to food insecurity and food access is food availability.

Kenya has no annually updated measures of local, household-
relevant food production. Instead, to measure local production, 
the authors calculated the maximum NDVI in a small area 
(10  km radius) around each community with household-level 
health data. Given the long time series of available MODIS NDVI 
data, the authors were able to match births to the relevant grow-
ing season’s NDVI. Using the MODIS NDVI value as a proxy for 
local production, the authors identified the importance of local 
prices on infant birth weights (Grace et al. 2014). The results fur-
ther suggested that price impacts were dependent on NDVI. In 
general, when NDVI was high and food prices were low, relative 
to the areas under study, households were less likely to experi-
ence food insecurity, but when MODIS NDVI was low and prices 
were low, the likelihood of food insecurity increased. The results 
suggest that food prices alone cannot predict a household’s risk 
for food insecurity; rather, the combination of local production 
and food prices should be evaluated (Brown 2014).

Because the majority of impoverished, food-insecure countries 
are not able to collect and disseminate fine-resolution estimates 
of food production, the potential for NDVI and other measures 
of LSP to support analyses similar to the Kenya analyses just 
described is high and very relevant. Ultimately, the use of this 
type of data can provide an improved understanding of commu-
nity- and household-level response to food price volatility.

13.8  Discussion

Improving scientific understanding of LSP through the use of 
remotely sensed data and climate models is necessary for antici-
pating areas of potential food shortage. LSP models can be com-
bined with data on food prices, health outcomes, and household 
economics at micro- and macrolevels to more fully examine 
the links between the physical environment and the people 
who are most likely impacted by weather changes. This chapter 
highlighted the work that has been done by physical scientists 
to advance LSP modeling using remote sensing and climate 
models. We also highlighted the impacts of food insecurity and 
undernutrition on human health outcomes. Interdisciplinary 
research that includes LSP and human health is an important 
next step in applying the physical science to relevant issues 
related to development and health.

There are some drawbacks to phenology as a measure of the 
progress of the growing season. Most LSP models are most 
effective when most of the growing season has happened, as 
the curve-fitting algorithms do best when the beginning, mid-
dle, and end of the season are present. When only the start is 
known, estimating the yield impacts from the beginning of the 
season is very challenging due to uncertainties in the model. 
Thus, although LSP tools derived from remote sensing of veg-
etation are quite effective as a retrospective analysis, continued 
reliance on rainfall-based estimation of the start and peak of 
the season through crop models is likely for famine early warn-
ing organizations interested in the current month’s growing 
conditions.

Another challenge to LSP and other new metrics of remote 
sensing such as soil moisture from new sensors such as soil 
moisture active passive and evapotranspiration derived from 
satellite-derived temperature is the challenge of communicating 
the value of such new tools to the widespread and diverse food 
security and humanitarian communities (Brown and Brickley 
2012). FEWS NET, for example, is comprised of a central office, 
four organizations that are experts on remote sensing and 
biophysical modeling, and 23 offices in food-insecure countries. 
This makes the organization extremely susceptible to center–
periphery problems where new ways of looking at drought 
and its impact on crop yield move only extremely slowly from 
the research centers, located mostly in the United States or 
Europe, to where food security analysis is actually conducted, 
in the food-insecure countries themselves. Thus, although LSP 
analysis could be extremely helpful to identify and respond to 
food insecurity, moving the analysis approach from research to 
the operational context will take a lot of investment and effort 
(Brown and Brickley 2012).

13.9 C onclusions

LSP is the study of the changes in start, peak, and end of the 
growing season on the land surface as observed by satellite 
sensors. LSP can be used to estimate agriculturally important 
weather-related impacts on food production, distribution, and 
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cost that may result in changes in food security in vulnerable 
communities. Food security assessment uses satellite remote 
sensing to determine how agriculture is changing, the impact of 
weather on food production, and how these changes affect food 
availability and access. Research to improve our understanding 
of environmental and weather drivers of production can provide 
new and valuable information for the food security community.
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MSS	 Multispectral Scanner
MVC	 Maximum-Value Compositing
NDFI	� Normalized Difference Fraction Index (unitless, 

range −1 to 1)
NDMI	 Normalized Difference Moisture Index
NPV	� Non-Photosynthetic Vegetation (unitless fraction, 

range 0–1)
NDVI	 Normalized Difference Vegetation Index
NIR	 Near-Infrared
SMA	 Spectral Mixture Analysis
STARFM	� Spatial and Temporal Adaptive Reflectance Fusion 

Model
REDD+	� Reducing Emissions from Deforestation and 

Degradation, conservation of forest carbon stocks, 
sustainable management of forests, or enhancement 
of forest carbon stocks in developing countries

SO-C	 Soil organic carbon in Mg C ha−1

SPOT	 Satellite Pour l’Observation de la Terre
SWIR	 Shortwave Infrared
TM	 Thematic Mapper
UNFCCC	� United Nations Framework Convention on 

Climate Change
WiFS	 Wide Field Sensor

14.1 I ntroduction

Tropical forests abound with regional and local endemic species 
and house at least half of the species on earth, while covering 
less than 7% of its land (Gentry, 1988; Wilson, 1988; as cited in 
Skole and Tucker, 1993). Their clearing, burning, draining, and 
harvesting can make slopes dangerously unstable, degrade water 
resources, change local climate, or release to the atmosphere the 
organic carbon (C) that they store in their biomass and soils as 
greenhouse gases (GHGs). These forest disturbances accounted 
for 19% or more of annual human-caused emissions of CO2 to 
the atmosphere from the years 2000 to 2010, and that level is 
more than the global transportation sector, which accounted 
for 14% of these emissions. Forest regrowth from disturbances 
removes about half of the CO2 emissions coming from the for-
est disturbances (Houghton, 2013; IPCC 2014). Another GHG of 
concern when considering tropical forests is N2O released from 
forest fires.

Tropical forests (including subtropical forests) occur where 
hard frosts are absent at sea level (Holdridge, 1967), which 
means low latitudes, and where the dominant plants are trees, 
including palm trees, tall woody bamboos, and tree ferns. They 
include former agricultural or other lands that are now under-
going forest succession (Faber-Langendoen et  al., 2012). They 
receive from <1000  mm year−1 of precipitation to more than 
10 times that much as rainfall or fog condensation. Whether dry 
or humid, tropical forests have far more species diversity than 
temperate or boreal forests, and their role in earth’s atmospheric 
GHG budgets is large.

Multispectral satellite imagery, that is, remotely sensed 
imagery with discrete bands ranging from visible to shortwave 

infrared (SWIR) wavelengths, is the timeliest and most acces-
sible remotely sensed data for monitoring these forests. Given 
this relevance, we summarize here how multispectral imagery 
can help characterize tropical forest attributes of widespread 
interest, particularly attributes that are relevant to GHG emis-
sion inventories and other forest C accounting: forest type, age, 
structure, and disturbance type or intensity; the storage, degra-
dation, and accumulation of C in aboveground live tree biomass 
(AGLB, in Mg dry weight ha−1); the feedbacks between tropical 
forest degradation and climate; and cloud screening and gap fill-
ing in imagery. In this chapter, the term biomass without further 
specification is referring to AGLB.

14.2  Multispectral Imagery and REDD+

14.2.1 � Greenhouse Gas Inventories 
and Forest Carbon Offsets

Multispectral satellite imagery can provide crucial data to 
inventories of forest GHG sinks and sources. Inventories of 
GHGs that have forest components include national invento-
ries for negotiations related to the United Nations Framework 
Convention on Climate Change (UNFCCC). The UNFCCC 
now includes a vision of compensating countries for reduc-
ing greenhouse gas emissions to the atmosphere from defor-
estation, degradation, sustainable management of forests, or 
conservation or enhancement of forest C stocks in developing 
countries (known as REDD+). Inventories of GHG emissions 
for the UNFCCC Clean Development Mechanism (CDM) may 
also include forests, and there are other forest carbon offset 
programs.

Programs like REDD+ could help moderate earth’s climate. 
They could also help conserve tropical forests and raise local 
incomes, as long as countries make these latter goals a priority 
in REDD+ planning. Compensation in REDD+ is for organic 
carbon (C) stored in forest AGLB, dead wood, belowground live 
biomass, soil organic matter, or litter, as long as the stored C is 
“produced” by avoided GHG emissions, such as avoided defores-
tation or avoided degradation of forest C stores.

In forest C offsets, avoided emissions are estimated as 
the difference between net GHG emissions that would have 
occurred without implementing change (the baseline case or 
business-as-usual scenario) and actual net emissions that are 
reduced from what they would have been without the manage-
ment change (the project case). Logging, burning, and frag-
mentation are examples of disturbances that degrade forest C 
stores. Replacing conventional logging with reduced impact 
logging reduces associated C emissions and is an example of 
avoided C emissions. For subnational projects such as those 
developed under voluntary carbon markets or the CDM, leak-
age must also be subtracted. Leakage refers net emissions that 
a carbon offset project displaces from its location to elsewhere. 
Examples are deforestation or removals of roundwood or fuel-
wood in a forest not far from the forest where such activities 
have ceased for forest C credits.
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Many countries and organizations have officially proposed 
that forest C stored by enrichment planting, or by forest growth 
or regrowth on lands that were not forest before 1990, should 
also be explicitly eligible for REDD+ compensation (Parker 
et al., 2009). These latter activities, afforestation and reforesta-
tion, already dominate forest projects developed under the CDM.

14.2.2  Roles of Multispectral Imagery

The United Nations Intergovernmental Panel on Climate 
Change (IPCC) provides guidelines for GHG emission invento-
ries, including for forest land (IPCC, 2006). Expanded methods 
based on these guidelines include those from the Verified Carbon 
Standard program (http://www.v-c-s.org/methodologies/redd-
methodology-framework-redd-mf-v15, Avoided Deforestation 
Partners, 2015; Pearson et al., 2011). Summaries of these guide-
lines for communities seeking to certify carbon credits for volun-
tary carbon markets are also available (e.g., Vickers et al., 2012). 
For each stratum of each land use considered, changes in C stocks 
are estimated on an annual basis as the net of changes in the C 
pools as follows (in Mg C year−1) (Equation 14.1, IPCC, 2006):

	ΔCLU = ΔCAB-C + ΔCBB-C + ΔCDW-C + ΔCLI-C + ΔCSO-C + ΔCHW-C	
(14.1)

where
ΔCLU is the carbon stock changes for a land-use stratum, for 

example, a forest stratum, in Mg C year−1

ΔCSUBSCRIPT represents carbon stock changes for a given pool
Subscripts denote the following carbon pools in units of Mg 

C year−1:
AB-C is the aboveground live biomass carbon
BG-C is the belowground biomass carbon
DW-C is the dead wood carbon
LI-C is the litter carbon
SO-C is the soil organic carbon
HW-C is the harvested wood carbon

For forest GHG inventories for REDD+ and other programs, 
multispectral satellite imagery can be used to estimate some of 
the key variables for Equation 14.1:

	 1.	 Areas of forest strata (e.g., forest types, disturbance/degra-
dation classes, or management)

	 2.	 Baseline and ongoing rates of change in the areas of forest 
strata

	 3.	 The AGLB and rates of C accumulation in young forests
	 4.	 Point estimates of forest C pools in AGLB with fine-

resolution imagery to supplement ground plot data
	 5.	 Potentially, forest AGLB if shown to be accurate for a 

given landscape
	 6.	 Potentially, GHG emission factors for forest disturbances 

if spectral indices of disturbance intensity can be cali-
brated to correlate well with associated GHG emissions 
and remaining C pools

Monitoring forest extent over large scales is also crucial to this 
forest C accounting, and multispectral satellite imagery is the 
best data for this purpose, but this topic is covered in other chap-
ters of this book (Chapters 15, 17 through 19). Other chapters also 
cover multispectral image fusion with radar to map forest AGLB 
(e.g., Saatchi et al., 2011) or estimation of tropical forest biomass 
with airborne lidar (e.g., Asner et al., 2012). Multi-angular image 
data can also improve forest age mapping (Braswell et al., 2003).

When using the “stock-difference” method (IPCC, 2006) to 
quantify the parameters in Equation 14.1, the total C pool for 
each time period is estimated by multiplying the spatial density 
of C by the area (in hectares) of the forest stratum. The change in 
the C pool is estimated as the difference in C pools between two 
time periods divided by the elapsed time in years (IPCC, 2006). 
In addition, in Equation 14.1, belowground biomass is usually 
estimated as a fraction of aboveground biomass with default val-
ues by ecological zone, region, or country. Also, when the type of 
land use is forest, litter can often be ignored.

The average spatial density of carbon in live biomass, in 
Mg C ha−1, is estimated from the average spatial density of the 
dry weight of live biomass (in Mg ha−1) multiplied by the C frac-
tion of dry weight biomass. Typically, this C fraction is about 
50% of dry weight mass. IPCC (2006) has published default val-
ues for average C fraction of dry weight wood biomass by ecolog-
ical zone. Dry weight is estimated with equations that relate the 
size of the trees growing in a forest to their dry weight, mainly 
as gauged by tree stem diameter and height. Then, the estimated 
dry weights of all trees in a known area are summed. Species-
specific or regional equations are sometimes available.

14.3 �C haracteristics of 
Multispectral Image Types

Multispectral satellite imagery is available at spatial resolutions 
ranging from high (<5 m) to medium (5–100 m), to coarse (>100 m) 
(e.g., Table 14.1). The data usually include reflective bands cover-
ing the visible (blue, green, and red) and near-infrared (NIR) 
wavelengths of the electromagnetic spectrum. Several other 
sensors include SWIR bands (e.g., Landsat Thematic Mapper 
[TM] and subsequent Landsat sensors); the sensors aboard the 
fourth and fifth missions of Satellite Pour l’Observation de la 
Terre (SPOT 4 high-resolution visible and infrared [HRVIR], 
SPOT 5 high-resolution geometric [HRG], and the SPOT 4 and 
5 Vegetation instruments); the Moderate Resolution Imaging 
Spectroradiometer (MODIS), the Advanced Wide Field Sensor 
(AWiFS), and the Infrared Multispectral Scanner Camera aboard 
the China–Brazil Earth Resources Satellite series [CBERS].

Satellite launches in the years 1998–1999 greatly increased 
the amount of imagery available for monitoring tropical for-
ests. These launches brought (1) the first public source of high-
spatial-resolution imagery (IKONOS, with <5-m pixels); (2) the 
first medium-resolution imagery (5–100 m pixels) with some 
degree of consistent global data collection (Landsat 7); (3) the 
first medium-resolution imagery with fine-resolution panchro-
matic bands of 10 m (SPOT 4 and Landsat 7, respectively); and 
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Table 14.1  Multispectral Satellite Imagery Most Commonly Used to Characterize Tropical Forests

SatelliteRepeat/Revisita Cycle, 
Scene Size/Swath Width 
Quantization Band Wavelength (µm) 

Distributed Spatial 
Resolution (m) Approximate Active Dates 

High resolution (<5 m)
IKONOS Panchromatic 0.45–0.90 1 September 24, 1999 to present
3- to 5-day revisit 1-Blue 0.445–0.516 4
11 × 11 km scenes 2-Green 0.506–0.595 4
11 bits 3-Red 0.632–0.698 4

4-Near-infrared 0.757–0.853 4
QuickBird Panchromatic 0.45–0.90 0.6 October 18, 2001 to present
2- to 6-day revisit 1-Blue 0.45–0.52 2.4
18 × 18 km Scenes 2-Green 0.52–0.60
11 bits 3-Red 0.63–0.69

4-Near-infrared 0.76–0.90

Medium resolution (5–100 m) with high-resolution panchromatic
SPOT 4 HRVIR; SPOT 5 HRG Panchromatic 0.51–0.73 2.5 SPOT 4: March 24, 1998 to July 2013
2–3 days Revisit Panchromatic 0.51–0.73 5 SPOT 5: May 04, 2002 to present
60 × 60 km Green 0.50–0.59 10
8 bits Red 0.61–0.68 10

Near-infrared 0.78–0.89 10
Shortwave infrared 1.58–1.75 20

SPOT 1, 2, 3 HRV Panchromatic 0.51–0.73 10 SPOT 1: February 22, 1986 to September 1990
1- to 3-day revisit Green 0.50–0.59 20 SPOT 2: January 22, 1990 to July 16, 2009—
60 km × 60 km Red 0.61–0.68 20 SPOT 3: September 26, 1993 to November 14, 1996
8 bits Near-infrared 0.78–0.89 20

Medium resolution (5–100 m)
Landsat MSS 1,2,3 (4,5) 4 (1)-Blue–green 0.5–0.6 60b Landsat 1: July 23, 1972 to January 06, 1978
16 days repeat 5 (2)-red 0.6–0.7 60b Landsat 2: January 22, 1975 to February 25, 1982
170 ×  185 km 6 (3)-Near-infrared 0.7–0.8 60b Landsat 3: March 05, 1978 to March 31, 1983
4 bits 7 (4)-Near-infrared 0.8–1.1 60b

Landsat 4 TM, 5 TM, 7 ETM+ 1-Blue 0.45–0.52 30 Landsat 4: July 17, 1982 to December 14, 1993
16 days Repeat 2-Green 0.52–0.60 30 Landsat 5: March 1, 1984 to January 2013
170 ×  183 km 3-Red 0.63–0.69 30 Landsat 7: April 15, 1999
8 bits 4-Near-infrared 0.76–0.90 30

5-Shortwave infrared 1.55–1.75 30
6-Thermal (2 ETM+ bands) 10.40–12.50 L4,5 120c (30)

L7 60c (30)
7-Shortwave infrared 2.08–2.35 30
8-Panchromatic (L7 only) 0.52–0.90 15

EO-1 ALI MS-1’-Coastal aerosol 0.433–0.453 30 November 21, 2000 to present
16-day repeat MS-1-Blue 0.45–0.515 30
37 × 42 km MS-2-Green 0.525–0.605 30
12 bits MS-3-Red 0.63–0.69 30

MS-4-Near-infrared 0.775–0.805 30
MS-4’-Near-infrared 0.845–0.89 30
MS-5’-Shortwave infrared 1.2–1.3 30
MS-5 1.55–1.75 30
MS-7 2.08–2.35 30
Panchromatic 0.48–0.69 10

(continued )
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(4)  the  first coarse-resolution imagery (>100 m pixels) distrib-
uted with higher-level preprocessing like atmospheric correc-
tion and cloud-minimized compositing (MODIS and SPOT 
Vegetation). Before IKONOS, remotely sensed reference data 
had to come from air photos that in many places were costly to 
obtain and outdated.

The next big advances in tropical forest monitoring with satel-
lite imagery came in 2005–2008, when (1) Google, Inc. and the 
producers of high-resolution imagery such as QuickBird and 
IKONOS made high-resolution data viewable on Google Earth 
for many sites, making reference data free and accessible for sub-
sets of project areas; and (2) the Brazilian National Institute for 
Space Research (INPE) and the United States Geological Survey 
(USGS) began to freely distribute Landsat and other imagery 
with medium spatial resolution, making long, dense time series 
of medium-resolution imagery available over large areas.

Other sources of multispectral imagery for monitoring 
tropical forests over large areas that are not shown in Table 
14.1, mainly to highlight them here, include the Japan–U.S. 
Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) (aboard Terra). In addition to 15 m VNIR 

bands, it has several SWIR and thermal bands with 30–90 m 
spatial resolution. Data for Brazil and China and nearby areas 
are also available from CBERS. The series of CBERS satel-
lites, 1, 2, and 2B, collected panchromatic to SWIR images 
with medium spatial resolution (20–80 m, 113–120 km swath 
width), and red and NIR images with coarse spatial resolution 
(260 m, 890 km swath width) from 1999 to 2010, and missions 
to collect with medium-resolution multispectral imagery with 
a 5-day revisit cycle are scheduled. In the Indian Resources 
Satellite (IRS) series, the Wide Field Sensor (WiFS) has a 
740 km swath width, 188 m spatial resolution, and red and NIR 
bands. More recently, the IRS-P6 satellite carries the AWiFS 
instrument. AWiFS has 60 m pixels for green through SWIR 
bands, a 740 km swath width, a 5-day revisit cycle, and a SWIR 
band, combining advantages of imagery with medium and 
coarse spatial resolutions. The later of the IRS series sensors 
include data from Linear Imaging Self-Scanner (LISS) with 
multispectral imagery with a 23.5 m spatial resolution. Ground 
stations receiving data from CBERS and the IRS satellite series 
have not covered all of the tropics. Fortunately, that situation 
should gradually change.

Table 14.1 (continued )  Multispectral Satellite Imagery Most Commonly Used to Characterize Tropical Forests

SatelliteRepeat/Revisita Cycle, 
Scene Size/Swath Width 
Quantization Band Wavelength (µm) 

Distributed Spatial 
Resolution (m) Approximate Active Dates 

Landsat 8 1-Coastal aerosol 0.433–0.453 30 February 11, 2013—
16-day repeat 2-Blue 0.450–0.515 30
170 × 183 km 3-Green 0.525–0.600 30
12 bits 4-Red 0.630–0.680 30

5-Near-infrared 0.845–0.885 30
6-SWIR 1 1.560–1.660 30
7-SWIR 2 2.100–2.300 30
8-Panchromatic 0.500–0.680 15
9-Cirrus 1.360–1.390 30
10-Thermal infrared 1 10.60–11.19 100c (30)
11-Thermal infrared 2 11.50–12.51 100c (30)

Coarse resolution (>100 m)
Terra/Aqua MODISd (7 of 36 

bands are shown)
1 0.620–0.670 250 Terra (EOS AM): August 12, 1999 to present

1-day revisit 2 0.841–0.876 250 Aqua (EOS PM): May 04, 2002 to present
2330 km Swath Width 3 0.459–0.479 500
12 bits 4 0.545–0.565 500

5 1.230–1.250 500
6 1.628–1.652 500
7 2.105–2.155 500

SPOT 4,5 Vegetation 1, 2d 0-Blue 0.43–0.47 1150 Aboard SPOT 4: March 24, 1998 to July 2013
1-day revisit 2-Red 0.61–0.68 1150 Aboard SPOT 5: May 04, 2002 to present
2250 km Swath Width 3-Near-infrared 0.78–0.89 1150
10 bits SWIR-Shortwave infrared 1.58–1.75 1150

a	Revisit cycles change with latitude.
b	The original MSS pixel size of 79 × 57 m is now resampled to 60 m.
c	 Thermal infrared Landsat bands are now resampled to 30 m.
d	For coarse-resolution sensors, resolution given is at nadir.
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14.4 � Preprocessing Imagery 
to Address Clouds

14.4.1 C loud Screening

We begin with cloud and cloud shadow screening, as this step is 
crucial in the image processing chain for characterizing tropi-
cal forests. Clouds and their shadows obscure the ground and 
contaminate temporal trends in reflectance. Automated systems 
for processing large archives of satellite imagery are becoming 
more common for natural resource applications and must screen 
clouds. Clouds are composed of condensed water vapor that form 
water droplets and scatter visible to NIR light, reducing direct 
illumination on the surface below and forming a cloud shadow. 
In multispectral satellite imagery, clouds are characterized by 
a high albedo (Choi and Bindschadler, 2004), while their shad-
ows have lower reflectance than surrounding pixels. The easiest 
solution to cloud contamination is to restrict analyses to cloud-
free imagery, which may include only dry season imagery for 
tropical and coastal environments due to frequent cloud cover. 
Alternatively, methods to screen cloud- and shadow-contami-
nated pixels can increase the number of observations available 
(Figure 14.1). Increasing the number of available observations 
in a time series may also improve the detection of land surface 
change and reflectance trends.

Manual and semiautomated approaches to cloud screening are 
undesirable for processing large numbers of images due to the 
time-consuming nature of the work, which may depend not only 
on analyst experience but also on image contrast. Several auto-
mated approaches have been developed, but separating cloud 

and shadow from the land surface is not necessarily straightfor-
ward given the diversity of land surfaces coupled with large vari-
ations in cloud and shadow optical properties (Zhu et al., 2012a; 
Zhu et al., 2012b; Goodwin et al., 2013; Lyapustin et al., 2008). 
A summary of current approaches to cloud and shadow screen-
ing for Landsat TM/ETM+, SPOT, and MODIS sensors follows.

14.4.1.1  Landsat TM Imagery

The Landsat TM/ETM+ archives of countries with receiving 
stations now contain up to three decades of imagery (1984 to 
present) with varying levels of cloud and cloud shadow. The U.S. 
Geological Survey is working with other countries to consoli-
date these archives through consistent processing and distribu-
tion through its website (landsat.usgs.gov). Image preprocessing 
by the Landsat program has included the Automatic Cloud 
Cover Assessment (ACCA) algorithms for both Landsat-5 TM 
and Landsat-7 ETM+ missions, which use optical and thermal 
(ETM+ only) bands to identify clouds (Irish, 2006). It is designed 
for reporting the percentage of cloud cover over scenes rather 
than producing per-pixel masks. Further modifications have also 
been tested for application to Landsat 8 imagery (Scaramuzza 
et al., 2012), which includes a new cirrus band (1.360–1.390 µm) 
that is sensitive to aerosol loadings and should improve cloud 
detection. ACCA is designed to limit the impacts of cloud and 
scene variability on thresholding. The ETM+ ACCA incorpo-
rates two passes: one to conservatively estimate “certain” cloud 
at the pixel level with a series of spectral and thermal tests. The 
result is then used to derive scene-based thermal thresholds for 
the second pass. The error in scene-averaged cloud amount was 
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Figure 14.1  Illustration of cloud distribution spatially and temporally over tropical forests of north Queensland: (a) Landsat image (RGB: 542, 
Path/Row: 96/71, and date July 02, 2007) and (b) percentage of observations classified as cloud between 1986 and 2012 (n = 445). Note: High cloud 
fractions were not included in calculations.

© 2016 Taylor & Francis Group, LLC

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b19322-20&iName=master.img-001.jpg&w=211&h=208


373Characterizing Tropical Forests with Multispectral Imagery

estimated to be around 5% (Irish et al., 2006). Scaramuzza et al. 
(2012) validated the per-pixel classification of the ETM+ ACCA 
(pass 1) and found a 79.9% agreement between reference and 
ACCA at the pixel scale. Using a subset of the same reference set, 
Oreopoulos et al. (2011) evaluated both per-pixel ACCA masks 
and a cloud detection algorithm modified from the MODIS Luo–
Trishchenko–Khlopenkov algorithm (Luo et  al., 2008). Both 
ACCA and the modified LTK showed greater than 90% agree-
ment with the reference, although like ACCA, the LTK had lim-
ited ability to detect thin cirrus clouds. Furthermore, ACCA has 
been used as the starting point for further cloud masking (Choi 
and Bindshadler, 2004; Roy et al., 2010; Scaramuzza et al., 2012).

Earlier studies have shown that several approaches work well 
for classifying clouds and cloud shadows over particular path/
rows. One approach is image differencing based on image pairs 
(Wang, 1999), while other studies have empirically defined 
thresholds for cloud brightness and coldness in one or more 
spectral/thermal bands, for example, Landsat TM Bands 1 and 
6 (Martinuzzi et al., 2007); Bands 3 and 6 (Huang et al., 2010); 
Bands 1, 3, 4, and 5 (Oreopoulos et al., 2011); and Bands 1, 4, 5, 
and 6 (Helmer et al., 2012). The application of these methods to a 
range of path/rows around the globe, however, remains untested 
and may encounter issues due to spectral similarities among the 
wide range of combinations of land surfaces and cloud/cloud 
shadows.

The automated method that Huang et  al. (2010) developed 
to allow forest change detection in cloud-contaminated imag-
ery considers brightness and temperature thresholds for clouds 
that are self-calibrated against forest pixels. It requires a digital 
elevation model to normalize top of atmosphere brightness tem-
perature values and helps to project cloud shadow on the land 
surface. Published validation data for this method are currently 
limited to four U.S. images with forest and would benefit from 
further calibration/validation.

Two additional automated approaches have recently been pub-
lished: Fmask (Function of mask) (Zhu and Woodcock, 2012) 
and a time series approach by Goodwin et  al. (2013) (Figure 
14.2). Fmask integrates existing algorithms and metrics with 
optical and thermal bands to separate contaminated pixels from 
land surface pixels. Fmask also considers contextual information 
for mapping potential cloud shadow using a flood-fill operation 
applied to the NIR band. Cloud shadows are then identified by 
linking clouds with their shadow with solar/sensor geometry 
and cloud height inferred from the thermal Landsat TM Band 6. 
The results were validated with a global dataset and were a sig-
nificant improvement to ACCA, with Fmask achieving overall, 
user’s, and producer’s accuracies of 96%, 89%, and 92%, respec-
tively compared to 85%, 92%, and 72%, respectively for ACCA.

The time series method uses temporal change to detect cloud 
and cloud shadow (Goodwin et al., 2013). It smoothes pixel time 
series of land surface reflectance using minimum and median 
filters and then locates outliers with multi-temporal image dif-
ferencing. Seeded region grow is applied to the difference layer 
using a watershed region grow algorithm to map clusters of 
change pixels, with clumps smaller than 5 pixels removed to 

minimize classification speckle. This has the effect of increas-
ing the cloud/shadow detection rate while restricting com-
mission errors; smaller magnitudes of change associated with 
cloud/cloud shadows are mapped only if they are in the neigh-
borhood of larger changes. Morphological dilation operations 
were applied to map a larger spatial extent of the cloud and 
cloud shadow, while shadows were translated along the image 
plane in the reverse solar azimuth direction to assess the overlap 
with clouds and confirm the object is a shadow. A comparison 
with Fmask showed that the time series method could screen 
more cloud and cloud shadow than Fmask across Queensland, 
Australia (cloud and cloud shadow producer’s accuracies were 
8% and 12% higher, respectively).

Several trade-offs exist between these two automated 
approaches to cloud and shadow screening. The time series 
method might detect more cloud and cloud shadow, yet Fmask 
is more computationally efficient and practical for individual 
images. At present, the time series method is processed using 
entire time series for each Landsat path/row. For operational 
systems processing many images, the computational overhead 
of the time series approach could be worthwhile as it can detect 
more cloud/shadow contamination. Locations with few cloud-
free observations per year and high land-use change are also less 
desirable for a time series method. In the absence of an atmo-
spheric aerosol correction, pixels contaminated by smoke and 
haze are more likely to be classified as cloud by the time series 
method. Neither the Fmask nor the time series method nor 
previous attempts adequately map high level, semitransparent 
cirrus cloud (Figure 14.2d–f). New methods for Landsat 8 will 
likely detect more cloud with the new band sensitive to cirrus 
clouds. Both Fmask and the time series methods are highly con-
figurable allowing calibration for a localized region or a wider 
application. Fmask has been calibrated using a global reference 
set, while the time series approach was calibrated and tested 
mainly for northeastern Australian conditions.

Although both methods have high accuracy, further improve-
ments could be made particularly to screening cloud shadow. 
Removing the dependency of a link between cloud and shadow 
would be a considerable advancement as clouds are often 
missed or under/overmapped, causing the shadow test to fail. 
Furthermore, adding thermal information to the time series 
method has the potential to remove commission errors where 
bright surfaces such as exposed soil are falsely classified as cloud. 
Both methods use a series of rules to classify cloud and shadow 
and have the flexibility to add new algorithms and criteria to 
improve the detection of contaminated pixels.

14.4.1.2  SPOT Imagery

The spatial and spectral characteristics of SPOT (Satellite Pour 
l’Observation de la Terre) have similarities to Landsat imagery, 
with the first satellite launched in 1986 (SPOT 1), and similar 
methods for screening cloud and cloud shadows should be use-
ful. The main exception is that SPOT lacks a thermal band, 
which has been useful in discriminating clouds (e.g., ACCA). 
However, only a limited number of studies have been published 
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on screening cloud and cloud shadow from SPOT data. SPOT is 
a commercially operated sensor, and unlike Landsat TM/ETM+ 
and MODIS, scenes are typically purchased/tasked with limited 
cloud cover or would otherwise prove cost prohibitive for many 
vegetation applications. The New South Wales government of 
Australia, for example, acquired 1850 images between 2004 and 
2012, of which only 313 contain cloud with the maximum cloud 
cover values <10% (Fisher, 2014).

Le Hégarat-Mascle and André (2009) used a Markov random 
field framework that assumes that clouds are connected objects, 
solar/sensor geometry is known, and shadow has a similar shape 
to its corresponding cloud (excluding the influence of topogra-
phy). Potential cloud pixels were identified using a relationship 
between green and SWIR bands; shadows were located using 
cloud shape, orientation of shadow relative to cloud and SWIR 
band reflectance, removing objects not part of a cloud–shadow 
pair. The method was applied to 39 SPOT 4 HRVIR images over 
West Africa with encouraging results. However, when applying 
this method, Fisher (2014) found commission errors as bright 

surfaces were frequently matched to dark surfaces that were not 
cloud contaminated. They suggest first masking vegetation and 
water bodies, then locating marker pixels for clouds and shad-
ows in the green–SWIR space and NIR bands, respectively, then 
growing objects with the watershed transform. Sensor/solar 
geometry and object size are also used to match clouds with 
their shadows.

14.4.1.3  MODIS Imagery

MODIS has a standard cloud product, in contrast to SPOT or 
until recently Landsat, which includes information on whether a 
pixel is clear from cloud/shadow contamination. The cloud mask 
is based on several per-pixel spectral tests and is produced at 
250 m and 1 km spatial resolutions (Strabala, 2005). A validation 
with active ground-based lidar/radar sensors showed an 85% 
agreement with the MODIS cloud mask (Ackerman et al., 2008).

Recent research has found that time series information 
can improve cloud detection in MODIS imagery (Lyapustin 
et  al., 2008; Hilker et  al., 2012). The cloud-screening method 
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Figure 14.2  Examples of Fmask and time series approaches to cloud and cloud shadow screening: (a) Landsat TM image, (b) TS classification, 
(c) Fmask classification, (d) Landsat TM image, (e) TS classification, and (f) Fmask classification, (a–c) well-detected cumulus cloud and cloud 
shadow (RGB: 542, Path/Row: 97/71, and date October 10, 1998) and (d–f) a complex example where both methods miss sections of cirrus cloud 
(RGB: 542, Path/Row: 98/72, and date April 04, 2001).
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in multi-angle implementation of atmospheric correction, for 
example, uses a dynamic clear-sky reference image and cova-
riance calculations, in addition to spectral and thermal tests, 
to locate clouds over land (Lyapustin et al., 2008). In a tropical 
Amazonian environment, Hilker et al., 2012 demonstrated that 
this method was better at detecting clouds and increasing the 
number of usable pixels than the standard product (MYD09GA), 
which translated into more accurate patterns in NDVI.

14.4.2  Filling Cloud and Scan-Line Gaps

Cloud and cloud shadow screening removes contaminated 
pixels from analyses but leaves missing data in the imagery 
and derived products. The scan-line correction error affect-
ing Landsat 7 post-2003 also leaves gaps approximating 20% of 
affected images (USGS, 2003). Data gaps in maps are aestheti-
cally unappealing, and the derivation of statistics is more dif-
ficult. As a result, approaches have been developed to fill data 
gaps including temporal compositing and fusing imagery from 
two different sensors.

A range of temporal compositing algorithms have been devel-
oped to minimize cloud contamination and noise (Dennison 
et al., 2007; Flood, 2013). Compositing involves analyzing band/
metric values across a date range with an algorithm deciding 
the pixel value most likely to be cloud/noise free. The choice 
of algorithm may vary depending on the application and land-
cover type. Compositing algorithms have generally been applied 
to high-temporal-frequency data such as MODIS and AVHRR; 
however, methods for compositing imagery with a lower tem-
poral resolution have also been developed. For example, the 
MOD 13 products use the maximum-value compositing algo-
rithm with NDVI as the metric in 16-day and monthly compos-
ites of MODIS imagery (Strabala, 2005). Landsat has similarly 
been composited using a parametric weighting scheme (Griffiths 
et al., 2013). The result is an image that ideally is free from noise 
or cloud that can be used as a product itself or the corresponding 
pixels used to infill data gaps.

The fusion or blending of MODIS and Landsat offers another 
approach to predict image pixel values within data gaps. These 
methods integrate medium-spatial-resolution Landsat with 
temporal trends in reflectance (e.g., seasonality) captured by 
the higher temporal frequency of MODIS. Roy et  al. (2008) 
integrated the MODIS bidirectional reflectance distribution 
function (BRDF)/albedo product and Landsat data to model 
Landsat reflectance. They found that infrared bands were more 
accurately predicted than visible wavelengths, probably in 
response to greater atmospheric effects at shorter wavelengths. 
The spatial and temporal adaptive reflectance fusion model 
(STARFM) requires a MODIS–Landsat image pair captured on 
the same day plus a MODIS image on the prediction date and 
applies spatial weighting to account for reflectance outliers (Gao 
et  al., 2006). Further algorithm development has produced an 
enhanced STARFM (ESTARFM) method that was found to 
improve predictions in heterogeneous landscapes (Zhu et  al., 
2010). However, there are known limitations with blending 

or fusing Landsat and MODIS imagery. Solutions involving 
MODIS will work only post-2000 when imagery was first cap-
tured and potentially 2002 onward where stable BRDF predic-
tions are needed (Roy et  al., 2008). Furthermore, Emelyanova 
et al. (2013) found that land-cover type and temporal and spatial 
variances impact the fusion of MODIS and Landsat as well as the 
choice of algorithm. Where the temporal variance of MODIS is 
considerably less than the spatial variance of Landsat, blending 
may not improve predictions.

Gap filling using Landsat imagery alone has also been per-
formed. Helmer and Ruefenacht (2005) developed a method for 
predicting Landsat values using two Landsat images for change 
detection. This method develops a relationship between uncon-
taminated pixels in an image pair with regression tree models, 
and it then applies these models to predict the values in areas 
with missing data in the target image. Additional images are 
used in the same way to predict pixels in remaining cloud gaps. 
Langner et al. (2014) segment such pairwise predictive models 
according to forest type. Approaches using geostatistics have 
also been developed. Pringle et al. (2009) use an image before 
and after the target image in geostatistical interpolation to pre-
dict values in Landsat 7 SLC-off imagery. Based on their results, 
they recommend images captured within weeks, rather than 
months, of each other to limit temporal variance in a tropical 
savanna environment. Zhu et  al. (2012a) also use geostatistics 
with encouraging results to predict missing Landsat 7 SLC-off 
data based on the Geostatistical Neighborhood Similar Pixel 
Interpolator.

A potential limitation with gap filling is the introduction of 
image noise or artifacts. This is because of differences in veg-
etation phenology, illumination, and atmospheric effects as gap-
filled imagery contains data from multiple dates and/or sensors. 
These effects can be minimized by atmospheric and illumina-
tion corrections as well as methods that seek to balance the 
distribution of pixel values such as histogram matching, linear 
regression, or regression trees (Helmer and Ruefenacht, 2007).

14.5 � Forest Biomass, Degradation, 
and Regrowth Rates from 
Multispectral Imagery

Studies have used multispectral imagery to map or estimate 
some key inputs to the variables in Equation 14.1 (Section 14.2.2) 
for forests: forest AGLB (in Mg dry weight ha−1), rates of C accu-
mulation in reforesting lands (in Mg dry weight ha−1 year−1), and 
area or intensity of forest degradation or disturbance (in ha). 
In addition, multispectral imagery is the most common satel-
lite imagery for mapping tropical forest types, which we discuss 
in Section 14.6, and AGLB estimates are often more precise and 
accurate if stratified by forest type.

In this section, we first review work that uses the spectral and 
textural information in multispectral imagery of high spatial 
resolution to estimate tropical forest AGLB. We then discuss 
how the spectral information inherent to multiyear image time 
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series has high sensitivity to the height, AGLB, and age of forests 
that have established since about 10 years before the start of an 
image sequence (so as early as 10 years before 1972 for Landsat 
data), which we refer to here as young forests, allowing estimates 
of biomass and C accumulation rates in reforested lands. Next, 
we discuss how multispectral imagery from a single epoch of 
medium- to coarse-spatial-resolution imagery has limited sensi-
tivity to tropical forest age or biomass. Section 14.5.3 focuses on 
detecting tropical forest degradation at pixel and subpixel scales.

14.5.1 �T ropical Forest Biomass from High-
Resolution Multispectral Imagery

When considering forest structure mapping, multispectral 
imagery of high spatial resolution, with pixels ≤5 m, is distinct 
from imagery with medium spatial resolution because the spa-
tial patterns of dominant and codominant tree crowns are vis-
ible. The possibility of detecting tree crown size suggests a way 
to estimate AGLB by allometry between stem diameters, used 
to estimate AGLB, and crown size (Asner et al., 2002; Couteron 
et  al., 2005; Palace et  al., 2008). Automated crown delineation 
in these images is more accurate than manual means, but both 
methods overestimate the area of large crowns and underesti-
mate the frequency of understory and codominant trees (Asner 
et al., 2002; Palace et al., 2008), such that biomass estimates from 
crown delineation alone require adjustments.

A new technique, however, predicts the biomass of high-
biomass tropical forests with stand-level spatial patterns of tree 
crowns in images with ~1 m or finer pixels. The new method first 
applies two-dimensional Fourier transforms to subsets (samples) 
of high-resolution panchromatic images, from which it produces 
a dataset with a row for each sample of imagery and columns 
that bin the outputs from the transform so that the columns in 
each row together form a proxy for the distribution of crown 
sizes discerned or “apparent” in each image sample. Principal 
components transformation of this matrix yields axes that serve 
as predictors in regression models of stand structural param-
eters, like basal area, AGLB, or “apparent” dominant crown size 
(calculated by inversion) (Couteron et  al., 2005; Barbier et  al., 
2010; Ploton et al., 2011). Ploton et al. (2011) predicted forest bio-
mass ranging from ~100 to over 600 Mg ha−1 in Western Ghats, 
India, with IKONOS image extracts downloaded from Google 
Earth Pro (0.6–0.7 m resolution). Their model explained 75% of 
the variability in forest biomass. They estimated that the rela-
tive uncertainty in AGLB estimates that was due to the remote 
sensing technique, of <15%, was similar to uncertainties asso-
ciated with estimating forest AGLB with lidar. With this new 
technique, AGLB estimates from high-resolution imagery on 
Google Earth could supplement ground- or lidar-based surveys. 
The resulting increase in the number and density of AGLB esti-
mates for forests should better characterize the landscape-scale 
spatial variability in AGLB and increase the precision of forest 
C-pool estimates.

Related to the earlier work on AGLB are studies that have 
characterized how gradients in the spatial patterns of tropical 

forest canopies correspond with climate. These gradients are 
apparent in high-resolution imagery, and future changes in these 
patterns could reflect and help monitor effects of global climate 
change (Malhi and Román-Cuesta, 2008; Palace et  al., 2008; 
Barbier et al., 2010). Barbier et al. (2010), for example, showed 
how dominant crown size and canopy size heterogeneity change 
with climate and substrate across Amazonia.

14.5.2 � Biomass, Age, and Rates of Biomass 
Accumulation in Forest Regrowth

With a long time series of medium-resolution multispectral 
images such as Landsat, key variables for GHG inventories (and 
forest C accounting for REDD+) can be mapped and estimated 
for young tropical forests, including area, age, height, AGLB, 
and rates of biomass accumulation. Where an image time series 
spans the age range of young forests, its spectral data can pre-
cisely estimate age, which is needed to estimate biomass accu-
mulation rates and can also help estimate the height or AGLB 
of these forests. Helmer et al. (2009) estimated a landscape-level 
rate of AGLB accumulation in Amazonian secondary forest by 
regressing forest biomass estimates from the Geoscience Laser 
Altimeter System (Figure 14.3) against remotely sensed forest 
age (R-square = 0.60). The estimated landscape-level biomass 
accumulation rate of 8.4 Mg ha−1 year−1 agreed well with ground-
based studies. Forest age was mapped with an algorithm that 
automatically processed a time series of Landsat MSS and TM 
imagery (1975–2003) with self-calibrated thresholds that detect 
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Figure 14.3  The average age of secondary forest pixels, as estimated 
from automatic processing of a time series of Landsat MSS, TM, and 
ETM+ imagery, in the 150 m window surrounding GLAS waveform 
centers explained 60% of the variance in GLAS-estimated canopy 
height and biomass (aboveground live biomass, AGLB, in Mg ha−1 year−1 
dry weight). The standard error of the slope and intercept are 1.4 and 
13.2, respectively, for 26 observations.
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when secondary forests established on previously cleared land. 
The technique mapped the extent of old-growth forest and age of 
secondary forest with an overall accuracy of 88%. With the time 
series, tropical secondary forest >28 years old was accurately dis-
tinguished from old-growth forest, even though it was spectrally 
indistinct in the most recent Landsat scenes. This older second-
ary forest clearly stored less C than the old-growth forest, being 
shorter and having much smaller average canopy diameters than 
nearby old growth.

Forest height and AGLB are strongly related, and the height 
or AGLB of young forests can be mapped with long time series 
of Landsat images in tropical (Helmer et al., 2010) and temper-
ate (Li et al., 2011; Plugmacher et al., 2012; Ahmed et al., 2014) 
regions. With a regression tree model based on the spectral data 
from all of the images in a time series of cloud-gap-filled Landsat 
imagery (1984–2005 with 1- to 5-year intervals), Helmer et al. 
(2010) mapped the height (RMSE = 0.9 m, R-square = 0.84, range 
0.6–7 m) and foliage height profiles of tropical semievergreen 
forest (Figure 14.4). In contrast with mapping the height of old 
forests, local-scale spatial variability in young forest structure 
was mapped, because within-patch differences in disturbance 
intensity and type, and subsequent forest recovery rate, were 
reflected in the spectral data from the multiyear image stack. 
This study also mapped forest disturbance type, age, and wet-
land forest type, with an overall accuracy of 88%, with a deci-
sion tree model of the entire time series of cloud-minimized 

composite images to better understand avian habitat. As a result, 
the classification distinguished different agents of forest distur-
bance, including classes of cleared forests and forests affected by 
escaped fire, and allowed estimation of rates of forest regrowth. 
Forest age, vertical structure, and disturbance type explained 
differences in woody species composition, including abundance 
of forage species for an endangered Neotropical migrant bird, 
Kirtland’s warbler Dendroica kirtlandii.

14.5.3 � Limitations to Mapping Forest 
Biomass or Age with One 
Multispectral Image Epoch

14.5.3.1 �T ropical Forest Biomass with 
One Image Epoch

Forest biomass mapping with multispectral imagery empirically 
predicts the AGLB of forested pixels with models that relate for-
est AGLB or height, from ground plots or lidar, to spectral bands, 
spectral indices, or spectral texture variables. It remains a chal-
lenge (Song, 2013). Forest AGLB is usually estimated in units of 
Mg dry weight ha−1 (see Section 14.2). As more data on stand 
species composition and species-specific wood densities become 
available, maps of C storage in forest biomass, as in Asner et al. 
(2013) and Michard et al. (2014), rather than forest biomass itself, 
may become more common.
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epoch
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�lled scenes produced for

eight epochs

Foliage height
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Figure 14.4  Tropical dry forest height and foliage height profiles were mapped from a time series of gap-filled Landsat and ALI imagery on the 
island of Eleuthera, The Bahamas, substituting time for vertical canopy space. The time series was also used to map forest disturbance type and age.

© 2016 Taylor & Francis Group, LLC

  



378 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Medium- to coarse-spatial-resolution imagery from one epoch 
is not that sensitive to small changes in the AGLB or C storage 
in aboveground biomass of dense tropical forests. (By epoch, we 
mean imagery from one date, one gap-filled or composite image 
composed of imagery from one to several years, or multiseason 
imagery from 1 year.) This limited sensitivity appears in biomass 
mapping models as high per pixel uncertainty that can manifest 
itself in several ways:

	 1.	 Mapping models may explain a minority of variance in 
reference data (i.e., regressions of predicted vs. observed 
values have low coefficients of determination or R-squared 
values of less than 0.50) (e.g., Oza et al., 1996 for volume 
of Indian deciduous forest; Steininger, 2000 for Bolivian 
sites; Wijaya et al., 2010 in Indonesia).

	 2.	 Mapping models may both underestimate AGLB at high-
biomass sites and overestimate AGLB where biomass is 
low (e.g., Baccini et al., 2008 for tropical Africa; Blackard 
et  al., 2008 for the United States including Puerto Rico; 
Wijaya et al., 2010).

	 3.	 Spectral responses to AGLB may saturate at relatively 
low levels of around 175 Mg C ha−1. For example, studies 
indicate that stand-level multispectral responses saturate 
at 150–170 Mg ha−1 for study sites in Brazilian Amazonia 
(Steininger, 2000; Lu, 2005), ~180 Mg C ha−1 in Panama 
(Asner et  al., 2013), and 175 Mg ha−1 across Uganda 
(Avitabile et al., 2012). These saturation levels may be half 
or less of the biomass of the most structurally complex or 
old-growth tropical forests in humid lowlands. In many 
landscapes, the relationship between multispectral data 
and tropical forest AGLB may saturate at even lower levels.

	 4.	 Continental- to global-scale mapping models may not 
capture gradients in AGLB and C pools that stem from 
differences in forest allometry and average wood density 
(Mitchard et al. (2014).

Despite per-pixel uncertainties, estimates of the total forest bio-
mass may be accurate when pixels are summed over large areas 
that have a wide range of AGLB. This result could happen when 
the average biomass of pixels covering a large area approaches the 
mean of the ground or lidar data used to estimate the mapping 
model. Estimates of total forest AGLB across tropical landscapes 
can also be accurate if the landscapes has few forest patches with 
AGLB exceeds the levels where spectral response becomes satu-
rated (e.g., Avitabile et al. 2012).

Texture variables from SPOT 5 imagery may improve map-
ping models of AGLB, because SPOT 5 imagery has finer spa-
tial resolutions of 10–20 m compared with many other image 
sources with medium spatial resolution (Table 14.1), but results 
may still have relative errors of around 20% (Castillo-Santiago 
et al., 2010). Exceptions may include Asian bamboo forests (Xu 
et al., 2011) or low-biomass tropical forests.

Mapping models of tropical forest AGLB or height that rely on 
multispectral imagery benefit from added predictors. Example pre-
dictors that may improve models include topography, forest type, 

climate, soils, geology, or indicators of disturbance like tree canopy 
cover (Helmer and Lefsky, 2006; Saatchi et al., 2007; Blackard et al., 
2008; Asner et al., 2009a; Lefsky, 2010; Wijaya et al., 2010). After 
including these predictors in mapping models, the variability in 
the biomass mapped for undisturbed forests may reflect more of 
the variability in AGLB that stems from regional- to landscape-
scale environmental gradients in attributes like rainfall and 
human-caused disturbance. Maps of these spatial patterns may be 
useful, but they may not reveal much local-scale AGLB variation.

14.5.3.2 T ropical Forest Age with One Image Epoch

As with AGLB, multispectral imagery from a single image epoch 
has limited sensitivity to increasing forest age. Many studies 
show that spectral indices that contrast the mid-infrared bands 
with the near-infrared or visible bands are the most sensitive 
indices to tropical forest age, height, and AGLB (e.g., Boyd et al., 
1996; Helmer et  al., 2000; Steininger, 2000; Thenkabail et  al., 
2003; Helmer et  al., 2010). For example, with Landsat TM or 
ETM+ data, these indices include the NIR/SWIR ratio, the tas-
seled cap wetness index (Crist and Cicone, 1984; Huang et al., 
2002), the wetness brightness difference index (WBDI) (Helmer 
et  al., 2009), and the normalized difference moisture index 
(NDMI) (also referred to as the normalized difference structure 
index and the normalized difference infrared index). The WBDI 
and NDMI are calculated as

	 WBDI = TC Wetness – TC Brightness	 (14.2)

	
NDMI

NIR SWIR

NIR  SWIR
b4 b5

b4 b5

= −
+( )

( ) 	 (14.3)

However, lowland humid tropical forests recovering from pre-
vious clearing may become spectrally indistinct from mature 
forests within 15–20 years (Boyd et al., 1996; Steininger, 2000), 
though slower-growing tropical forests, like montane or dry for-
ests, can remain spectrally distinct longer (Helmer et al., 2000; 
Viera et  al., 2003). Only a handful of forest age classes can be 
reliably distinguished in single-date multispectral imagery. Age 
differences are blurred by differences in disturbance type and 
intensity that affect regrowth rates and related spectral responses 
during forest succession (Foody and Hill, 1996; Nelson et  al., 
2000; Thenkabail et al., 2004; Arroyo-Mora et al., 2005), although 
age explains more variability in rates of forest regrowth than 
does disturbance type (Helmer et al., 2010; Omeja et al., 2012).

Recently logged forest has less biomass than old-growth forest, 
but it may become spectrally indistinct from mature forest within 
a year or two (Asner et al., 2004a), which is another case in which 
the forest canopy recovers faster than forest AGLB. In a study in 
Sabah, Malaysia, conventional logging reduced forest biomass by 
67%, but reduced impact logging reduced it by 44% (Pinard and 
Putz, 1996). In moist forests of Amazonia, AGLB decreased by 
only 11%–15% after reduced impact logging (Miller et al., 2011).

The youngest regenerating forest patches in landscapes usually 
do not dominate pixels as large as those of coarse-spatial-resolution 
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imagery like MODIS. The outcome is that maps from such coarse 
resolution imagery have high error rates for secondary tropical 
forest. When modeling pixel fractional cover of one or more young 
forest classes vs. nonforest vs. old forest with MODIS, for example, 
secondary forest is modeled with the most bias and the least pre-
cision (Braswell et al., 2003; Tottrup et al,. 2007). In Amazonia, 
the model R-square values for the fraction of secondary forest 
cover were 0.35 for MODIS data alone and 0.61 for MODIS plus 
MISR data. At the spatial resolution of 1.1 km, corresponding to 
most of the MISR bands, resulting maps overestimated secondary 
forest area by 26%. Converting fractional secondary forest cover 
to discrete classes underestimated secondary forest area by 43% 
(Braswell et al., 2003). Similarly, Carreiras et al. (2006) concluded 
that the errors for decision tree classification of secondary forest 
with SPOT 4 Vegetation across Amazonia were unacceptably high.

14.5.4 � Detecting Tropical Forest Degradation 
with Multispectral Imagery

Tropical forests suffer anthropogenic pressures that perturb 
their structure and ecological functioning (Vitousek 1994). 
Human activities that disturb them range from plant collec-
tion and human habitation to total deforestation. Many of 
these forest disturbances can occur at fine spatial scales of less 
than five to tens of meters, including forest fire (Aragão and 
Shimabukuro, 2010), recent logging (de Wasseige and Defourny, 
2004; Asner et al., 2005; Sist and Ferreira, 2007), road networks 
(Laporte et  al., 2007; Laurance et  al., 2009), mining (Peterson 
and Heemskerk, 2001), and expanding agricultural frontiers 
(Dubreuil et al., 2012). These human impacts appear like small 
isolated objects within an ocean of greenness (Souza et al., 2003). 
They appear as points (logging gaps), lines (roads, trails), both 
points and lines (logging decks plus skid trails), and with min-
ing areas, both bare soil and pooled water are present.

Although these disturbances can be small, medium-resolution 
remote sensing techniques can detect and quantify them within 
homogeneous forest cover (Gond et al., 2004). Compared with 
fine-scale imagery, images with pixels of 5–30 m have lower or 
no cost while more frequently covering larger areas of tropical 
forest. Consequently, medium-resolution imagery constitutes 
an excellent tool for assessing logging activities in tropical for-
ests across large scales (Asner et al., 2005). Much work to detect 
finely scaled disturbances of tropical forests uses pixel-level 
spectra (Section 14.5.3.1). Other work models subpixel spectra 
to derive continuous variables for monitoring fine-scale dis-
turbances, focusing on the degradation of forest C storage for 
REDD+ programs and ecosystem models (Section 14.5.3.2).

14.5.4.1 � Detecting Fine-Scale Forest 
Degradation at the Pixel Level

Detecting small canopy gaps and skid trails that have been 
open for less than 6  months is possible in French Guiana 
with SPOT 5 HRG images (Gond and Guitet, 2009). The 
technique developed is based on the local contrast between 

a photosynthetically active surface (the forest) and one with 
no or little photosynthetic activity (the gap itself). Using the 
three main channels dedicated to vegetation identification (red 
[0.61–0.68 µm], near-infrared [0.79–0.89 µm] and SWIR [1.58–
1.75 µm] wavelengths), the contrast between forests and gap is 
increased enough to be accurately depicted. The detection of 
an undisturbed forest pixel is made by multiple thresholds on 
the different reflectances. The advantage of standard remotely 
sensed data like SPOT 4/5 or Landsat 5/7/8 is the possibil-
ity to detect the focused object automatically (Pithon et  al., 
2013). The automatic processing makes the system operational 
for tropical forest management and depends only on image 
availability.

14.5.4.1.1  Road and Trail Detection
Road and trail detection is also a challenge for tropical forest 
management. Opening, active, and abandoned road and trail 
networks are a permanent landmark of tropical forest open-
ness and degradation (Laurance et al., 2009). Documenting this 
dynamic is possible with the 30  years of medium-resolution 
radiometer archives (Landsat and SPOT). In 2007, Laporte 
et  al. (2007) photo-interpreted Landsat imagery to map the 
road and trail network across the forests of Central Africa to 
show which forest areas are endangered by logging activity. 
When displaying red, NIR, and SWIR channels in red, green, 
and blue, active roads and trails are “brown”; abandoned roads 
and trails are “green,” and intact tropical forests are “dark 
green” (de et al., 2004). To automatically process the archives 
for large areas, Bourbier et  al. (2013) proposed a method for 
using Landsat archive to allow tropical forest managers to 
visualize the road and trail network dynamism at local (con-
cession) or national scales.

14.5.4.1.2  Mining Detection
Detecting mining activity is slightly different. In general, 
detecting legal mining is not a real challenge because bare sur-
faces are prominent and easily mapped. When mining is illegal 
in tropical forests, however, the bare surface is much smaller 
and difficult to detect (Almeida-Filho and Shimabukuro, 2002). 
The additional difficulty comes from the mobility of the ille-
gal miners. A recent abandoned mining site is detectable, but 
the miners have left. Detecting active mining sites where min-
ers are illegally working is most critical to managers. To map 
active mining sites in French Guiana, an automatic system 
using SPOT 5 imagery from a local reception station has been 
operational since 2008 (Gond et al., unpublished). The system 
is based on detecting turbid waters resulting from debris wash-
ing. Again, the object “turbid water” sharply contrasts with its 
environment, as with tropical forest vs. bare soil. Using red, 
NIR, and SWIR channels, turbid water is detected by multiple 
thresholds on reflectances. So far, the operational system has 
processed over 1230 SPOT 5 images to ensure regular coverage 
in space and time of illegal mining activity in French Guiana 
(Joubert et al., 2012).
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14.5.4.2 � Detecting Forest Degradation at the Subpixel 
Level with Spectral Mixture Analysis

Forest degradation in the context of REDD+ can be defined as 
a persistent reduction in carbon stocks or canopy cover caused 
by sustained or high-impact disturbance. As a result, forest 
degradation is often expressed as a complex, three-dimensional 
change in forest structure related to the introduction of areas 
of bare soil, piles of dead vegetation created by the residues and 
collateral damage of removed trees and other plants, and areas 
with standing dead or damaged tree trunks associated with 
partial tree fall. Burned forests also leave surface fire scars, 
indicated by patches of charred vegetation and bare ground 
(Cochrane et al., 1999; Alencar et al., 2011). Much of tropical 
forest degradation occurring around the world is driven by 
selective logging and fires that escape into forests from neigh-
boring clearings. At the multispectral sensor resolution of 
Landsat, SPOT, and MODIS, it is expected that forest degrada-
tion will be expressed in varying combinations of green veg-
etation (GV), soil, non-photosynthetic vegetation (NPV), and 
shade within image pixels.

Spectral mixture analysis (SMA) models can be used to 
decompose the mixture of GV, NPV, soil, and shade reflec-
tances into component fractions known as endmembers 
(Adams et  al., 1995). The SMA has been extensively used 
throughout the world’s tropical forests to detect and map for-
est degradation (Asner et  al., 2009a). For example, subpixel 
fractional cover of soils derived from the SMA was used to 
detect and map logging infrastructure including log land-
ings and logging roads (Souza and Barreto, 2000), while the 
NPV fraction improved the detection of burned forests and of 
logging damage areas (Cochrane and Souza, 1998; Cochrane 
et al., 1999). GV and shade enhance the detection of canopy 
gaps created by tree fall (Asner et al., 2004b) and forest fires 
(Morton et al., 2011).

SMA models usually assume that the image spectra are 
formed by a linear combination of n pure spectra, or endmem-
bers (Adams et al., 1995), such that

	
R F Rb i i b b

i

n

= +
=
∑ , ε

1
	

(14.4)

for

	
F  1i

i

n

=
=
∑

1

	 (14.5)

where
Rb is the reflectance in band b
Ri,b is the reflectance for endmember i, in band b
Fi is the fraction of endmember i
εb is the residual error for each band

The SMA model error is estimated for each image pixel by com-
puting the RMS error, given by
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As mentioned, in the case of degraded forests, the expected end-
members are GV, NPV, soil, and shade fractions. Including a 
cloud endmember is also possible, which improves the detec-
tion and masking of clouds when mapping forest degradation 
over large areas with long time series of imagery in the Amazon 
region (Souza et al., 2013). To calibrate the model, the endmem-
bers can be obtained directly from the images (Small, 2004) or 
from reflectance spectra acquired in the field with a handheld 
spectrometer (Roberts et  al., 2002). The advantage of obtain-
ing endmembers directly from images is that spatial and radio-
metric calibration between field and sensor observations is not 
required. The SMA can be automated to make this technique 
useful for mapping and monitoring large tropical forest regions. 
A Monte Carlo unmixing technique using reference endmember 
bundles was proposed for that purpose (Bateson et al., 2000), as 
well as generic endmember spectral libraries (Souza et al., 2013).

14.5.4.3 �I nterpreting and Combining Subpixel 
Endmember Fractions and Derived Indices

The SMA fractions can be combined into indices to further 
accentuate areas of forest degradation. For example, the normal-
ized difference fraction index (NDFI) was developed to enhance 
the detection of forest degradation by combining the detection 
capability of individual fractions (Souza et al., 2005). The NDFI 
values range from −1 to 1. For intact forests, NDFI values are 
expected to be high (i.e., about 1) due to the combination of high 
GVshade (i.e., high GV and canopy shade) and low NPV and soil 
values. As forest becomes degraded, the NPV and soil fractions 
are expected to increase, lowering NDFI values relative to intact 
forest. Bare soil areas will produce NDFI value of −1 because of 
the absence of GV.

Another approach to SMA allows for uncertainty in the end-
member reflectance spectra used for decomposing each pixel 
into constituent cover types. Referred to as endmember bundles 
(Bateson et al., 2000), SMA with spectral endmember variabil-
ity provides a means to estimate GV, NPV, soil, and shade frac-
tions with quantified uncertainty in each image pixel. Using a 
Monte Carlo approach, Asner and Heidebrecht (2002) developed 
automated SMA procedures that have subsequently been used 
to map forest degradation due to logging or understory fire in a 
wide variety of tropical regions (e.g., Alencar et al., 2011; Carlson 
et al., 2012; Allnutt et al., 2013; Bryan et al., 2013).

Several mapping algorithms based on spatial and contextual 
classifiers, decision trees, and change detection have also been 
applied to SMA results to better map forest degradation using 
Landsat, SPOT, and MODIS imagery. These techniques are 
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discussed elsewhere (Asner et  al., 2009b; Souza and Siqueira, 
2013). Additionally, large area mapping and estimates of forest 
degradation in the Amazon region have also been conducted 
using these techniques (Asner et al., 2005; Souza et al., 2013).

14.6 � Mapping Tropical Forest Types 
with Multispectral Imagery

14.6.1 � Forest Types as Strata for REDD+ 
and Other C Accounting

Maps of forest type are critical to tropical forest management, 
including for REDD+ and other GHG inventories. When esti-
mating tropical forest AGLB and other C stores with existing 
inventory ground plots or lidar data, the estimates are gener-
ally stratified by forest type (Asner, 2009; Helmer et  al., 2009; 
Salimon et al., 2011). When designing forest inventories or lidar 
surveys, stratifying sample locations by forest type improves the 
efficiency of the sample design (Wertz-Kanounnikoff, 2008), 
including stratification with types defined by disturbance his-
tory (Salk et al., 2013). Stratification by topography or geology 
may also be important (Ferry et al., 2010; Laumonier et al., 2010) 
if forest type does not inherently account for related variability 
in AGLB. An informative review and synthesis of lidar sample 
design as it relates to forest parameter estimation over large for-
est areas is available in Wulder et al. (2012). Another important 
role of forest-type maps based on multispectral satellite imag-
ery is that they are often used to account for the distributions of 
species and habitats when planning representative reserve sys-
tems. For this reason, forest-type maps are also useful to identify 
where deforestation or wood harvesting is “leaking” to forests 
that are critical to conserve, but that store less C than forest areas 
being targeted in REDD+ or carbon offset projects.

Most satellite image–based maps of tropical forest types map 
classes of forest formations. Vegetation formations are defined 
by growth form and physiognomy. At the simplest level, forest 
formations may distinguish among closed, open, and wetland 
forests. More detailed formations may distinguish among forests 
with different leaf forms or phenology (e.g., deciduous vs. ever-
green, broad-leaved vs. needle-leaved, or descriptors that imply a 
suite of physiognomic characteristics, such as “dry,” “montane,” 
or “cloud” forests). More detailed than forest formations are forest 
associations, which distinguish among tree species assemblages. 
For example, in Figure 14.5, which we discuss in Section 14.6.4, 
the upper-level headings for forests are forest formations. The 
subheadings under each forest formation are forest associations.

14.6.2 � High-Resolution Multispectral Imagery 
for Mapping Finely Scaled Habitats

High-resolution imagery makes excellent reference data for 
calibrating classification and mapping models based on imagery 
with coarser spatial resolution, but using it as the primary basis 

for mapping forest types has several disadvantages. In high-
resolution imagery, the within-stand spectral variability of forest 
types can be large, varying within tree crowns, for example, such 
that digital classifications at the pixel scale cannot distinguish 
many forest types. Also these images cover relatively small areas, 
making them inefficient for mapping forest types over large 
areas (Nagendra and Rocchini, 2008). Existing archives of high-
resolution imagery also lack SWIR bands, which are important 
in vegetation mapping. Because Landsat ETM+ data have SWIR 
bands, for example, Thenkabail et  al. (2003) found that three 
floristic tropical forest classes were more distinct in ETM+ data 
than in IKONOS imagery. Worldview 3, however, will have eight 
SWIR bands collected at a spatial resolution of 3.7 m.

Yet satellite imagery with high spatial resolution can aid 
in mapping finely scaled habitats or habitat characteristics. 
Example habitats are edges or linear features: riparian areas 
(Nagendra and Rocchini, 2008), roadsides or other corridors, 
or strands of vegetation types along coastlines. Habitats with 
high mechanical, chemical, or moisture stress can also be finely 
scaled. Example stresses are fast-draining substrates where 
microtopography strongly affects vegetation, like substrates of 
limestone (Martinuzzi et al., 2008) or sand, or substrates that are 
also semi-toxic like serpentines. High winds, or drier climate as 
in savanna ecotones, also lead to finely scale habitats.

Savanna ecosystems, for example, range in tree cover from 
grassland to forest, which is why we mention them here. Tree 
cover may change over meters, and high-resolution imagery 
may be most effective for habitat mapping. Boggs (2010) applied 
object-oriented classification to 4 m multispectral IKONOS 
imagery to map tree cover patterns in Mozambique savanna.

In Namibia, tree clusters and grass patches are distinguish-
able with object-oriented or pixel-level classifications of pan-
sharpened QuickBird imagery (0.6 m pixels). In contrast, 10 m 
multispectral SPOT-5 pixels, though pan-sharpened to 2.5 m, 
required object-oriented classification (Gibbes et al., 2010).

Object-oriented classification of medium-resolution imagery 
can indeed sometimes substitute for high-resolution imagery when 
it can discern finer-scale features of interest that are missed with 
pixel-level classifications. In Jamaica, Newman et al. (2011) found 
that object-oriented classification of medium-resolution imagery 
led to better characterization of roads and forest fragmentation 
metrics than pixel-level classification did. Object-oriented clas-
sification of ASTER data can map savanna habitats in northwest 
Australia, and it was also more accurate than pixel-level classifi-
cation (Whiteside et al., 2011). Longer-wave infrared bands were 
resampled to the 15 m resolution of the visible and NIR bands.

14.6.3 � Remote Tree Species Identification 
and Forest-Type Mapping

Many tropical tree species can be identified by photo interpre-
tation of high-resolution satellite imagery or air photos. With 
tree crowns in tropical forest often reaching >10 m in diameter, 
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Figure 14.5  Forest associations and land cover were mapped with the gap-filled Landsat ETM+ imagery, centered around the year 2007, plus 
synthetic multiseason imagery developed from three gap-filled TM images from the 1980s that were from the mid to late dry season including 
from severe drought.
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subcrown features are visible. In subtropical to warm-temperate 
forests of east central Queensland, Australia, Tickle et al. (2006) 
correctly identified dominant tree species in most of 150 air 
photo plots with stereo color air photos of scale 1:4000 (~2 m 
resolution). With these data, they categorized the air photo plots 
into five genus groups.

In moist forests of Panama, Garzón-López et al. (2013) found 
that visual analysis of high-resolution color air photos (0.13 m 
pixels) can reveal spatial distributions of some tropical forest 
canopy trees. Of 50 common canopy species on a 50 ha plot, 
22% had crowns that were distinct in the photos. Of four species 
tested, interpreters found 40% of the stems that were recorded in 
field surveys; the resulting maps accurately showed spatial pat-
terns of the species. Sánchez-Azofeifa et al. (2011) concluded that 
2.4 m multispectral QuickBird imagery can reveal the spatial 
distribution and clusters of a species that is conspicuous when 
flowering, though immature or nonflowering individuals are 
often missed.

In French Guiana, Trichon and Julien (2006) found that 12 
of the 15 most common canopy species or species groups were 
identifiable, with an accuracy of 87%, in color air photos with 
scale 1:3700. In the photos, 20%–25% of trees with dbh ≥10 cm, 
and all trees with dbh ≥20  cm, were visible. For 10 taxa from 
old-growth Ecuadorian Amazon forest representing a range 
of crown structures, González-Orozco et  al. (2010) found that 
photo interpretation of large-scale air photos with a dichoto-
mous key correctly identified individuals at a rate of >70% for 
three of the taxa and >50% for two of them.

That photo interpreters can identify many of the dominant 
species in tropical forest canopies in high-resolution imagery 
suggests that, given field-based knowledge of the composition 
and distribution of tree floristic classes (i.e., tree species asso-
ciations), which are defined by dominant tree species, floris-
tic types of tropical forest can be identified in high-resolution 
multispectral imagery. Consequently, reference data from 
photo-interpreting high-resolution multispectral imagery can 
supplement field data as a source of training and validation data 
for mapping tropical tree communities with satellite imagery 
(Helmer et al., 2012).

14.6.4 � Mapping Tropical Forest Types with 
Medium-Resolution Imagery

In mapping tropical forest types with multispectral imagery, 
spectral similarity among forest classes is a major challenge. 
Disturbance, differences in topographic illumination, artifacts 
from filling cloud and other data gaps or from scene mosaicing, 
all increase class signature variability and consequently increase 
signature overlap among classes. Secondary forest in a humid 
montane zone, for example, may be spectrally similar to shade 
coffee or old-growth forest on highly illuminated slopes. When 
on a shaded slope, that same secondary montane forest is spec-
trally similar to old-growth forest in a less productive zone at 
higher altitudes (Helmer et al., 2000). Yet digital classifications 
of multispectral imagery can map many different forest types 

with some additions: (1) ancillary geographic data, (2) multisea-
son or multiyear imagery or derived phenology, and (3) pixels 
for training classification models that represent the variability 
in environmental and image conditions.

Digital maps of environmental data like topography, climate, 
or geology help distinguish spectrally similar forest types. With 
Landsat TM/ETM+, linear discriminant function classifications 
have incorporated ancillary data via post-classification rules 
based on topography to map eucalyptus forest types (Skidmore, 
1989); adding topographic bands to spectral bands to map land-
cover and forest physiognomic types (Elomnuh and Shrestha 
2000; Helmer et al., 2002; Gottlicher et al., 2009) or distinguish 
among tree floristic classes (Foody and Cutler, 2003; Salovaara 
et  al., 2005); and classifying imagery by geoclimatic zone 
(Helmer et  al., 2002). Image smoothing or segmentation can 
improve these classifications by reducing within-class spectral 
variation (Tottrup, 2004; Thessler et al., 2008).

Tree associations or other floristic classes can be separable with 
multispectral imagery within an ecological zone, particularly if 
topographic bands are included. With TM/ETM+ and 18–127 
plots, studies have separated three to nine floristic classes within 
lowland evergreen forest in central Africa, Amazonia, Borneo, 
or Costa Rica (Foody and Cutler, 2003; Thenkabail et al., 2003; 
Salovaara et al., 2005; Thessler et al., 2008; Sesnie et al., 2010). 
Chust et al. (2006) mapped nine floristic subclasses with ETM+ 
data, elevation, and geographic position over a broad environ-
ment across central Panama. With Landsat TM data, Wittmann 
et  al. (2002) mapped three structural classes of Amazonian 
várzea forests that corresponded to four associations: early suc-
cessional low várzea, late secondary and climax low várzea (two 
associations), and climax high várzea. These studies use spectral 
data from a single image date and consider only forest; cloudy 
areas were mapped as such.

When mapping many classes, machine learning classifica-
tions more effectively incorporate ancillary environmental 
data including date bands for gap-filled images. They also 
do not assume that class spectral distributions are para-
metric, and they typically outperform linear classifications. 
Combining ancillary data and machine learning classifica-
tion permits classifications that distinguish many forest and 
land-cover types, even with noisy, cloud-gap-filled imagery. 
Examples with TM/ETM+ include decision tree classifications 
of one or two seasons of cloud-gap-filled Landsat plus ancillary 
data to map tropical forest physiognomic types and land cover 
(Kennaway and Helmer, 2007; Helmer et al., 2008; Kennaway 
et al., 2008). Sesnie et al. (2008) mapped land cover, agriculture 
type, floristic classes of lowland old-growth forest and three 
higher-elevation classes based on a map of life zones (sensu 
Holdridge, 1967) with a relatively cloud-free image for each 
of two scenes. To map tree floristic classes of lowland through 
montane tropical forest types and land cover in Trinidad and 
Tobago, Helmer et  al. (2012) applied decision tree classifica-
tion to recent cloud-gap-filled Landsat imagery stacked with 
decades-old, gap-filled synthetic multiseason imagery from 
droughts (Figure 14.5).
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Mapping many physiognomic or floristic classes of tropical 
forest as in the earlier studies requires (1) thousands of training 
and testing pixels representing the environmental and spectral 
ranges of each class, including the range of pixel dates where 
gap-filled imagery was used (Helmer and Ruefenacht, 2007); (2) 
a band that represents the date of the source image for each pixel 
in the composite image (a date band); and (3) a machine learn-
ing classification model. The extensive training data needed 
are rarely available from field plots. But analysts can learn to 
identify many physiognomic and floristic classes in remotely 
sensed imagery given field-based knowledge of general distribu-
tions, particularly given free viewing of high-resolution imagery 
online and Landsat image archives, allowing almost unlimited 
reference data collection.

Helmer et al. (2012) found that all mono- and bidominant tree 
floristic classes and many other tree communities in Trinidad 
and Tobago could be distinguished in reference imagery from 
nearby associations by (1) unique canopy structure in high-
resolution imagery or (2) distinct or unique phenology on specific 
dates of either high- or medium-resolution reference imagery. 
For example, distinct canopy structure at high resolution dis-
tinguished Mora excelsa forests, littoral associations (frequent 
palms in one; prostrate stems in the other); Pterocarpus offici-
nalis swamps, palm swamps, mangroves, and stands of bamboo 
(Bambusa vulgaris), abandoned coconut (Cocos nucifera), teak 
(Tectona grandis), pine (Pinus caribaea), and Brazilian rubber 
(Hevea brasiliensis). Phenology, including characteristics like 
flowering, deciduousness, leaf flushes, or inundation, helped 
to distinguish seven forest associations in high-resolution ref-
erence imagery and four associations in phenologically unique 
Landsat reference scenes. With this knowledge and reference 
imagery, thousands of training data pixels could be collected.

Including multiseason imagery in classification models of 
coarse-resolution imagery also improves spectral distinction 
among tropical forest types (Bohlman et  al., 1998, Tottrup, 
2004). What is exciting is that we can now think beyond mul-
tiseason imagery to multiyear imagery that captures climate or 
weather extremes or disturbance history. Helmer et al. (2012) 
found that adding bands from cloud-gap-filled TM imag-
ery from a severe drought that occurred 20 years earlier than 
the most recent imagery used in the stack of data for classi-
fication contributed to the largest increases in accuracy when 
mapping forest associations in Trinidad. Mapping accuracy of 
seasonal associations benefited the most. Accuracy improved 
by 14%–21% for deciduous, 7%–36% for semievergreen, and 
3%–11% for seasonal evergreen associations, and by 5%–8% 
for secondary forest and woody agriculture. Multiyear mul-
tispectral imagery that displays different flood stages helps 
distinguish between upland and periodically flooded tropical 
forests (Helmer et al., 2009) and among tropical forested wet-
land types (and can reflect differences in secondary forest spe-
cies composition by mapping disturbance type as mentioned) 
(Helmer et  al., 2010). In Amazonia, de Carvalho et  al. (2013) 
determined the life cycle length of native bamboo patches with 
multiyear TM/ETM+ data.

14.6.5 � Species Richness and Multispectral 
Imagery

The tree species richness of tropical forests increases with some 
of the same variables that influence forest reflectance in multi-
spectral satellite imagery. Richness increases with forest height 
(among lowland forests with strong edaphic differences), soil 
fertility (after accounting for rainfall), canopy turnover, and 
time since catastrophic disturbance; richness decreases with 
dry season length, latitude, and altitude (Givnish, 1999). We 
know from forest ground plots that tree species richness also 
increases with secondary forest age (Whittmann et  al., 2002; 
Chazdon et  al., 2007; Helmer et  al., 2008). Consequently, over 
gradients that span from dry to humid, multispectral bands 
and indices related to vegetation greenness, structure, or distur-
bance may correlate with species richness. And in fact studies 
have documented such relationships with single-date Landsat 
TM or ETM+ imagery (Foody and Cutler, 2006; Nagendra et al., 
2010; Hernández-Stefanoni et al., 2011). Single-date multispec-
tral data are unlikely, however, to be sensitive to differences in 
species richness along short environmental gradients such as 
among humid evergreen tropical forests. Moreover, an impor-
tant consideration in biodiversity conservation is that species 
richness alone does not define conservation value: representa-
tion across as many native ecosystems and species as possible is 
just as important if not more so. Many less productive tropical 
forest types with less tree species richness, like cloud forests, or 
forests on harsh or drying soils like those on ultramafic or lime-
stone substrates or ombrotrophic sands, have the most endemic 
species richness.

14.6.6 �T ropical Forest-Type Mapping 
at Coarse Spatial Scale

In tropical regions extending over large areas, multiseason data 
from monthly, annual, or multiyear composites of imagery with 
coarse spatial resolution have supported large-area mapping of 
tropical forest formations with even linear classification meth-
ods (Joshi et  al., 2006; Gond et  al., 2011, 2013; Pennec et  al., 
2011; Verheggen et  al., 2012). For example, Gond et  al. (2011) 
mapped five classes of forest canopy openness across French 
Guiana with an unsupervised classification of an annual com-
posite image of SPOT 4 Vegetation data. Across Central Africa, 
Gond et al. (2013) mapped 14 forest formations with 1 year of 
8- and 16-day MODIS image composites. The forest formations 
were based on leaf phenology and canopy openness. With 1 year 
of NDVI composite images from the Indian Resource Satellite 
(IRS 1C) WiFS across India, Joshi et al. (2006) mapped 14 for-
est formations. The formations were labeled by phenology and 
climatic class (e.g., Tropical dry deciduous forest, Tropical moist 
deciduous forest, and so on). Verheggen et  al. (2012) applied 
unsupervised classification to seasonal and annual composites 
of MEdium-Resolution Imaging Spectrometer (MERIS) and 
SPOT 4 Vegetation data for the Congo basin, producing a map 
with six forest classes that were based on leaf phenology, canopy 
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openness, and elevation class. Producers’ and users’ accuracies 
for forest classes in the latter two studies were mostly between 
80% and 100%.

Combining ancillary data, monthly image composites of 
imagery with coarse spatial resolution but high temporal resolu-
tion, and decision tree classification has permitted forest classi-
fications at subcontinental to global scales or has distinguished 
many more forest formations. Decision tree classification of 
monthly composites of imagery with coarse spatial resolution, 
and mosaics of such composites, is also used to map tropical for-
ests over large areas. Examples of such large-area maps based 
on MODIS image composites are of tropical forest ecoregion 
(Muchoney et  al., 2000), biome (Friedl et  al., 2002), or forest 
formation (Carreiras et al., 2006). With decision tree classifica-
tion of dry season MODIS image composites, Portillo-Quintero 
and Sánchez-Azofeifa (2010) mapped the extent of two classes 
of tropical dry forests (Tropical dry forest and Forests in tropi-
cal grasslands, savannas, and shrublands), for the mainland 
Neotropics plus the Greater Antilles. Overall accuracy was 82%. 
The importance of this latter work is that global land-cover maps 
often misclassify dry tropical forests as some other land cover.

14.6.7 �T ropical Forest-Type Mapping 
and Image Spatial Resolution

Without question, multiseason data greatly improve the number 
of different physiognomic or floristic classes of tropical forest that 
can be mapped with multispectral satellite imagery. Monthly 
image composites or derived phenology metrics, as are possible 
with coarse-resolution imagery, are optimal. Joshi et  al. (2006) 
qualitatively compared their WiFS-based map of forest types 
across India with a forest map of the country based on LISS data, 
which has a pixel resolution of 23.5 m but a 24-day repeat cycle. 
They concluded that the 5-day revisit cycle of WiFS, which allowed 
them to incorporate 12 monthly image composites, yielded better 
information on forest types and other vegetation and land-cover 
classes, even though WiFS has a spatial resolution of 188 m.

However, tropical forest types can change greatly over small 
areas, and spatial resolutions coarser than 100–200 m are too 
coarse to distinguish important differences in forest types in 
many places. In tropical islands, for example, forest floristic and 
physiognomic types that are critical to distinguish for conserva-
tion planning would be poorly delineated. Medium-resolution 
imagery with a shorter revisit cycle would greatly improve 
prospects for mapping tropical forest types with multispectral 
imagery. This could be more easily accomplished, for example, 
if AWiFS data, with its 56 m spatial resolution and 5-day revisit 
cycle, were available for all of the tropics, or if the Landsat pro-
gram had a constellation of at least four satellites.

In addition, past disturbances affect forest physiognomy 
and species composition, and some forest classes may become 
spectrally distinct only during periodic drought and flooding. 
Consequently, forest-type mapping can also benefit when older 
satellite imagery or long image time series are incorporated into 
forest-type mapping, as in Helmer et al. (2010, 2012).

Finally, to distinguish tropical forest types on small moun-
tains, small islands, along coastlines, rivers, and other linear 
features, or in other finely scaled landscapes, high-resolution 
imagery will be needed.

14.7 � Monitoring Effects of Global 
Change on Tropical Forests

14.7.1 � Progress in Monitoring Tropical Forests 
at Subcontinental to Global Scales

Tropical forest mapping with coarse-resolution imagery in 
optical remote sensing is very constrained by cloud cover. 
Helpfully, its high temporal frequency of acquisition balances 
the handicaps of cloud-contaminated pixels (McCallum et al., 
2006). Historical long time series from NOAA-AVHRR paved 
the way for this research (Tucker et al., 1985; Townshend et al., 
1991). Indeed, the spectral capacities from visible to SWIR of 
these sensors motivated many applications and technological 
developments. The identification of tropical forest patterns 
has improved over time (Holben, 1986; Mayaux et  al., 1998; 
DeFries et  al., 2000) and benefits from a large panel of veg-
etation indices for evaluating photosynthetic activity (Rouse 
et al., 1974; Huete, 1988; Pinty and Verstraete, 1992; Qi et al., 
1994; Gao, 1996).

At the end of the 1990s, the experiences gained from these 
applications led to new sensors adapted to land surface 
observation, including SPOT Vegetation (March 1998) and 
TERRA-MODIS (December 1999) (Friedl et  al., 2010). Spatial 
resolutions were improved from 1.1  km (NOAA-AVHRR) to 
1.0  km (Vegetation), 0.3 (MERIS), and 0.5/0.25  km (MODIS). 
Geo-location was improved. Specific spectral bands dedicated 
to vegetation were implemented. New sensor technology was 
developed such as the push-broom system on Vegetation, which 
avoids large swath distortions. After 15  years of feedback, we 
may now measure the added value of these sensors.

Research to characterize tropical forests at subcontinental to 
global scales has become more accurate and precise (Mayaux 
et al., 2004; Vancutsem et al., 2009) by taking phenology into 
account (Xiao et  al., 2006; Myneni et  al., 2007; Doughty and 
Goulden, 2008; Park, 2009; Brando et  al., 2010). Repetitive 
observation and long temporal archives make possible land-
surface observation on 8-, 10-, or 16-day time periods and 
allow phenology studies to take advantage of both high spectral 
quality and high observation frequency (Verheggen et al., 2012 
for MERIS and Vegetation; Gond et  al., 2013 for MODIS). In 
addition, there are more forest attributes being characterized, 
including forest edges (to delimit forest patches and more accu-
rately estimate forest areas) (Verheggen et  al., 2012; Mayaux 
et al., 2013), aboveground biomass (Malhi et al., 2006; Saatchi 
et al., 2007; Baccini et al., 2008), deforestation and forest deg-
radation (Achard et  al., 2002; Duveiller et  al., 2008; Hansen 
et al., 2008; Baccini et al., 2012; Desclée et al., 2013), and climate 
change impacts (Phillips et al., 2009; Lewis et al., 2011; Samanta 
et al., 2011).
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Sensor capabilities and computer capacities now allow the 
production of global-scale land-cover maps (Bartholomé and 
Belward, 2005, for Vegetation; Friedl et al., 2002; Hansen et al., 
2008, for MODIS), which have greatly improved our knowl-
edge of land surface cover in comparison with previous views 
obtained from NOAA-AVHRR (DeFries and Townshend, 1994; 
Loveland and Belward, 1997).

Tropical forest characterizations with multispectral imagery 
have now begun to address a real challenge: that of monitoring 
and understanding climate change impacts on the biosphere 
(Gibson et al., 2011). Tropical forests are particularly threatened 
by global temperature increases and the possibility of modi-
fied rainfall regimes (Zelazowski et  al., 2011). These changes 
will influence vegetation spatial distribution (Parmesan and 
Yohe, 2003), forest functioning (Nemani et al., 2003), and car-
bon storage capacity (Stephens et al., 2007), which may in turn 
affect climate. In this context, monitoring tropical forests with 
coarse-resolution satellite imagery is of prime importance to 
understanding biological processes and managing forest resil-
ience. Zhao and Running (2010), for example, showed that 
large-scale droughts have decreased net primary productivity 
in the Southern Hemisphere, including tropical Asia and South 
America. As we discuss later, however, some critical remote sens-
ing problems still need to be addressed before we can effectively 
monitor some important effects of droughts on tropical forests.

14.7.2 � Feedbacks between Tropical Forest 
Disturbance and Drought

Multispectral imagery can help characterize the positive feed-
back among tropical forest disturbance, fire, and climate. First, 
tropical forest clearing dries nearby forest, and multispectral 
imagery can detect forest clearing. In Amazonia, for example, 
Briant et al. (2010) delineated forest boundaries with MODIS 
multispectral bands and found that as the forest becomes more 
fragmented, drops in MODIS-based indices related to canopy 
moisture extend further into intact forest, and that the old for-
est in more fragmented landscapes has lower canopy moisture 
to begin with. Second, forest cover data also reveal that forests 
desiccated by fragmentation and other disturbance are more 
susceptible to fire. Armenteras et  al. (2013) used forest frag-
mentation indices from forest cover maps, along with active 
fire data from MODIS, which uses MODIS thermal bands, to 
show that forest fires increase in extent and frequency with 
fragmentation. Logging also increases forest vulnerability to 
fire (Uhl and Buschbacher, 1985; Woods, 1989), and as outlined 
earlier, logging can be detected with medium-resolution mul-
tispectral imagery.

A third aspect of the disturbance–fire–climate feedback is that 
drought magnifies the association between disturbance and fire 
(Siegert et al., 2001; Alencar et al., 2006). In Amazonia, fire scars 
mapped with Landsat occurred mostly within 1 km of clearings 
during normal dry seasons but extended to 4 km from clearings 
during drought years (Alencar et al., 2006). Some of these stud-
ies relied on Landsat imagery to quantify forest fragmentation, 

because of its finer spatial resolution, or radar imagery to map 
fire scars, to avoid clouds.

Amazonian droughts are likely to become more common 
and severe with climate change. During droughts, reduced for-
est growth and increased tree mortality cause intact forests to 
shift from a net sink to a net source of CO2 to the atmosphere 
(Lewis et al., 2011). However, monitoring drought effects that 
are spectrally subtle, like increased tree mortality or changes 
in phenology, remains a challenge because of residual cloud 
and aerosol contamination in coarse-resolution multispec-
tral imagery. For example, studies have found that vegetation 
greenness may increase, decrease, or show no change during 
drought. The increases could stem from decreased cloud cover, 
leaf flushes related to increased sunlight, decreased canopy 
shadow from increased mortality of the tallest trees, or all three 
of these factors, and despite observation frequency, cloud and 
smoke contamination in pixels still obscures trends in vegeta-
tion greenness (Anderson et al., 2010, Asner and Alencar, 2010, 
Samanta et al., 2010; Morton et al., 2014). Asner et al. (2004c) 
suggest that metrics from hyperspectral imagery may be bet-
ter suited to resolve drought effects on tropical forests because 
they are sensitive to canopy leaf water content and light-use effi-
ciency. A challenge, then, is to develop a system that, despite 
cloud and smoke contamination, integrates these different sen-
sors to continuously monitor the feedback between forest frag-
mentation, logging, fire, and climate.

14.8  Summary and Conclusions

Across spatial scales, increased image access, and data usability 
are the main factors driving an explosion of progress in char-
acterizing tropical forests with multispectral satellite imagery. 
The menu of preprocessed image products of the second gen-
eration of high-frequency earth observation satellite sensors, 
MODIS and SPOT Vegetation, along with their improved spatial 
and spectral resolution, led to a wider group of users applying 
multispectral imagery across larger areas and in more diverse 
ways. Products like cloud-screened composites of earth surface 
reflectance, vegetation indices, quality flags, fire flags, and land 
cover have enabled efforts to map tropical forest productivity, 
type, phenology, moisture status, and biomass, and to study the 
effects of climate change on tropical forests, particularly feed-
back among drought, fire, and deforestation.

At the scale of medium-resolution imagery, free access to 
Landsat, and in some cases free access to SPOT imagery, has 
spawned many new applications that rely on dozens, hundreds, 
or thousands of scenes, including scenes with scan-line gaps or 
scenes previously considered too cloudy to bother with. Cloud- 
and gap-filled Landsat imagery and image time series are now 
used to automatically detect forest clearing, partial disturbance, 
or regrowth; quantify degradation of tropical forest C storage; 
map the age, structure, biomass, height, and disturbance type 
of secondary tropical forests; automatically and more pre-
cisely mask clouds and cloud shadows in imagery; and create 
detailed maps of forest types in these often cloudy landscapes. 
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Characterizing tropical forest phenology at medium resolu-
tion will now be possible for many places, which will be easier 
given recent additions to Landsat image preprocessing. Many of 
these automated applications build on the experiences gained 
from the high-frequency, coarse-spatial-resolution imagery, and 
all of them are relevant to REDD+ monitoring, reporting, and 
verification.

At fine spatial scales, free viewing and low-cost printing of 
georeferenced high-resolution imagery via online tools like 
Google Earth and Bing supplement field data for training and 
testing the earlier products that are based on medium- and 
coarse-resolution imagery. In addition, scientists have used 
image products from Google Earth to estimate tropical forest 
biomass directly. New commercial sensors that produce multi-
spectral satellite imagery with spatial resolutions ≤0.5 m should 
also allow more disturbance types and tropical tree communi-
ties to be remotely identifiable.

Acknowledgments

Thanks to John Armston and Ariel Lugo for their invaluable 
comments on this text. This research was conducted in coop-
eration with the University of Puerto Rico and the USDA Forest 
Service Rocky Mountain Research Station.

References

Achard, F., Eva, H. D., Stibig, H.-J., Mayaux, P., Gallego, J., 
Richards, T., and Malingreau, J.-P. 2002. Determination of 
deforestation rates of the world’s humid tropical forests. 
Science, 297, 999–1002.

Ackerman, S., Holz, R., Frey, R., Eloranta, E., Maddux, B., and 
McGill, M. 2008. Cloud detection with MODIS. Part II: 
Validation. Journal of Atmospheric and Oceanic Technology, 
25, 1073–1086.

Adams, J. B., Sabol, D. E., Kapos, V., Almeida Filho, R., Roberts, 
D. A., Smith, M. O., and Gillespie, A. R. 1995. Classification 
of multispectral images based on fractions of endmembers: 
Application to land-cover change in the Brazilian Amazon. 
Remote Sensing of Environment, 52, 137–154.

Ahmed, O. S., Franklin, S. E., and Wulder, M. A. 2014. 
Interpretation of forest disturbance using a time series of 
Landsat imagery and canopy structure from airborne lidar. 
Canadian Journal of Remote Sensing, 39, 521–542.

Alencar, A., Nepstad, D., and Diaz, M. C. V. 2006. Forest under-
story fire in the Brazilian Amazon in ENSO and non-ENSO 
years: Area burned and committed carbon emissions. Earth 
Interactions, 10, 1–17.

Alencar, A., Asner, G. P., Knapp, D., and Zarin, D. 2011. Temporal 
variability of forest fires in eastern Amazonia. Ecological 
Applications, 21, 2397–2412.

Allnutt, T. F., Asner, G. P., Golden, C. D., and Powell, G. V. 2013. 
Mapping recent deforestation and forest disturbance in 
northeastern Madagascar. Tropical Conservation Science, 6, 
1–15.

Almeida-Filho, R. and Shimabukuro, Y. E. 2002. Digital pro-
cessing of a Landsat-TM time series for mapping and 
monitoring degraded areas caused by independent gold 
miners, Roraima State, Brazilian Amazon. Remote Sensing 
of Environment, 79, 42–50.

Anderson, L. O., Malhi, Y., Aragão, L. E., Ladle, R., Arai, E., 
Barbier, N., and Phillips, O. 2010. Remote sensing detection 
of droughts in Amazonian forest canopies. New Phytologist, 
187, 733–750.

Aragão, L. E. and Shimabukuro, Y. E. 2010. The incidence of fire 
in Amazonian forests with implications for REDD. Science, 
328, 1275–1278.

Armenteras, D., González, T. M., and Retana, J. 2013. Forest frag-
mentation and edge influence on fire occurrence and inten-
sity under different management types in Amazon forests. 
Biological Conservation, 159, 73–79.

Arroyo‐Mora, J. P., Sánchez‐Azofeifa, G. A., Kalacska, M. E., 
Rivard, B., Calvo‐Alvarado, J. C., and Janzen, D. H. 2005. 
Secondary forest detection in a Neotropical dry forest 
landscape using Landsat 7 ETM+ and IKONOS Imagery1. 
Biotropica, 37, 497–507.

Asner, G. P. and Heidebrecht, K. B. 2002. Spectral unmixing 
of vegetation, soil and dry carbon cover in arid regions: 
Comparing multispectral and hyperspectral observations. 
International Journal of Remote Sensing, 23, 3939–3958.

Asner, G. P., Palace, M., Keller, M., Pereira, R., Silva, J. N., and 
Zweede, J. C. 2002. Estimating canopy structure in an 
Amazon forest from laser range finder and IKONOS satel-
lite observations 1. Biotropica, 34, 483–492.

Asner, G. P., Keller, M., Pereira, R., Zweede, J. C., and Silva, J. N. 
2004a. Canopy damage and recovery after selective log-
ging in Amazonia: Field and satellite studies. Ecological 
Applications, 14, 280–298.

Asner, G. P., Keller, M., and Silva, J. N. 2004b. Spatial and tem-
poral dynamics of forest canopy gaps following selective 
logging in the eastern Amazon. Global Change Biology, 10, 
765–783.

Asner, G. P., Nepstad, D., Cardinot, G., and Ray, D. 2004c. Drought 
stress and carbon uptake in an Amazon forest measured 
with spaceborne imaging spectroscopy. Proceedings of the 
National Academy of Sciences of the United States of America, 
101, 6039–6044.

Asner, G. P., Knapp, D. E., Broadbent, E. N., Oliveira, P. J., 
Keller,  M., and Silva, J. N. 2005. Selective logging in the 
Brazilian Amazon. Science, 310, 480–482.

Asner, G. P. 2009. Tropical forest carbon assessment: Integrating 
satellite and airborne mapping approaches. Environmental 
Research Letters, 4, 034009.

Asner, G. P., Knapp, D. E., Balaji, A., and Páez-Acosta, G. 2009a. 
Automated mapping of tropical deforestation and forest 
degradation: CLASlite. Journal of Applied Remote Sensing, 3, 
033543.

Asner, G. P., Rudel, T. K., Aide, T. M., Defries, R., and Emerson, 
R. 2009b. A contemporary assessment of change in humid 
tropical forests. Conservation Biology, 23, 1386–1395.

© 2016 Taylor & Francis Group, LLC

  



388 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Asner, G. P. and Alencar, A. 2010. Drought impacts on the 
Amazon forest: The remote sensing perspective. New 
Phytologist, 187, 569–578.

Asner, G. P., Mascaro, J., Muller-Landau, H. C., Vieilledent, G., 
Vaudry, R., Rasamoelina, M., Hall, J. S. et al. 2012. A uni-
versal airborne LiDAR approach for tropical forest carbon 
mapping. Oecologia, 168, 1147–1160.

Asner, G. P., Mascaro, J., Anderson, C., Knapp, D. E., Martin, 
R. E., Kennedy-Bowdoin, T., van Breugel, M. et  al. 2013. 
High-fidelity national carbon mapping for resource man-
agement and REDD+. Carbon Balance and Management, 
8, 1–14.

Avitabile, V., Baccini, A., Friedl, M. A., and Schmullius, C. 2012. 
Capabilities and limitations of Landsat and land cover data 
for aboveground woody biomass estimation of Uganda. 
Remote Sensing of Environment, 117, 366–380.

Avoided Deforestation Partners. 2015. VCS Methodology 
VM0007 REDD+ Methodology Framework (REDD-MF) 
Version 1.5, Sectoral Scope 14. 42 pp. http://www.v-c-s.org/
methodologies/redd-methodology-framework-redd-mf-v15

Baccini, A., Laporte, N., Goetz, S., Sun, M., and Dong, H. 2008. 
A  first map of tropical Africa’s above-ground biomass 
derived from satellite imagery. Environmental Research 
Letters, 3, 045011.

Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun, M., Sulla-
Menashe, D., Hackler, J. et  al. 2012. Estimated carbon 
dioxide emissions from tropical deforestation improved by 
carbon-density maps. Nature Climate Change, 2, 182–185.

Barbier, N., Couteron, P., Proisy, C., Malhi, Y., and Gastellu‐
Etchegorry, J. P. 2010. The variation of apparent crown size 
and canopy heterogeneity across lowland Amazonian for-
ests. Global Ecology and Biogeography, 19, 72–84.

Bartholomé, E. and Belward, A. 2005. GLC2000: A new approach 
to global land cover mapping from Earth observation data. 
International Journal of Remote Sensing, 26, 1959–1977.

Bateson, C. A., Asner, G. P., and Wessman, C. A. 2000. Endmember 
bundles: A new approach to incorporating endmember 
variability into spectral mixture analysis. IEEE Transactions 
on Geoscience and Remote Sensing, 38, 1083–1094.

Blackard, J., Finco, M., Helmer, E., Holden, G., Hoppus, M., Jacobs, 
D., Lister, A. et al. 2008. Mapping US forest biomass using 
nationwide forest inventory data and moderate resolution 
information. Remote Sensing of Environment, 112, 1658–1677.

Boggs, G. 2010. Assessment of SPOT 5 and QuickBird remotely 
sensed imagery for mapping tree cover in savannas. 
International Journal of Applied Earth Observation and 
Geoinformation, 12, 217–224.

Bohlman, S. A., Adams, J. B., Smith, M. O., and Peterson, D. L. 
1998. Seasonal foliage changes in the eastern Amazon basin 
detected from Landsat Thematic Mapper satellite images. 
Biotropica, 30, 13–19.

Bourbier, L., Cornu, G., Pennec, A., Brognoli, C., and Gond, V. 
2013. Large-scale estimation of forest canopy opening 
using remote sensing in Central Africa. Bios et Forets des 
Tropiques, 315, 3–9.

Boyd, D. S., Foody, G. M., Curran, P., Lucas, R., and Honzak, M. 
1996. An assessment of radiance in Landsat TM middle and 
thermal infrared wavebands for the detection of tropical 
forest regeneration. International Journal of Remote Sensing, 
17, 249–261.

Brando, P. M., Goetz, S. J., Baccini, A., Nepstad, D. C., Beck, P. S., 
and Christman, M. C. 2010. Seasonal and interannual vari-
ability of climate and vegetation indices across the Amazon. 
Proceedings of the National Academy of Sciences, 107, 
14685–14690.

Braswell, B., Hagen, S., Frolking, S., and Salas, W. 2003. A mul-
tivariable approach for mapping sub-pixel land cover dis-
tributions using MISR and MODIS: Application in the 
Brazilian Amazon region. Remote Sensing of Environment, 
87, 243–256.

Briant, G., Gond, V., and Laurance, S. G. 2010. Habitat fragmen-
tation and the desiccation of forest canopies: A case study 
from eastern Amazonia. Biological Conservation, 143, 
2763–2769.

Bryan, J. E., Shearman, P. L., Asner, G. P., Knapp, D. E., Aoro, G., 
and Lokes, B. 2013. Extreme differences in forest degrada-
tion in Borneo: Comparing practices in Sarawak, Sabah, 
and Brunei. PloS One, 8, e69679.

Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., 
Soares-Filho, B. S., Asner, G. P., Trigg, S. N. et  al. 2012. 
Committed carbon emissions, deforestation, and commu-
nity land conversion from oil palm plantation expansion 
in West Kalimantan, Indonesia. Proceedings of the National 
Academy of Sciences of the United States of America, 109, 
7559–7564.

Carreiras, J., Pereira, J., Campagnolo, M. L., and Shimabukuro, 
Y. E. 2006. Assessing the extent of agriculture/pasture and 
secondary succession forest in the Brazilian Legal Amazon 
using SPOT VEGETATION data. Remote Sensing of 
Environment, 101, 283–298.

Castillo-Santiago, M. A., Ricker, M., and de Jong, B. H. 2010. 
Estimation of tropical forest structure from SPOT-5 satel-
lite images. International Journal of Remote Sensing, 31, 
2767–2782.

Chazdon, R. L., Letcher, S. G., Van Breugel, M., Martínez-Ramos, 
M., Bongers, F., and Finegan, B. 2007. Rates of change in 
tree communities of secondary Neotropical forests follow-
ing major disturbances. Philosophical Transactions of the 
Royal Society B: Biological Sciences, 362, 273–289.

Choi, H. and Bindschadler, R. 2004. Cloud detection in Landsat 
imagery of ice sheets using shadow matching technique 
and automatic normalized difference snow index threshold 
value decision. Remote Sensing of Environment, 91, 237–242.

Chust, G., Chave, J., Condit, R., Aguilar, S., Lao, S., and Pérez, R. 
2006. Determinants and spatial modeling of tree β-diversity 
in a tropical forest landscape in Panama. Journal of 
Vegetation Science, 17, 83–92.

Cochrane, M. and Souza Jr, C. 1998. Linear mixture model 
classification of burned forests in the eastern Amazon. 
International Journal of Remote Sensing, 19, 3433–3440.

© 2016 Taylor & Francis Group, LLC

  

http://www.v-c-s.org/


389Characterizing Tropical Forests with Multispectral Imagery

Cochrane, M. A., Alencar, A., Schulze, M. D., Souza, C. M., 
Nepstad, D. C., Lefebvre, P., and Davidson, E. A. 1999. 
Positive feedbacks in the fire dynamic of closed canopy 
tropical forests. Science, 284, 1832–1835.

Couteron, P., Pelissier, R., Nicolini, E. A., and Paget, D. 2005. 
Predicting tropical forest stand structure parameters from 
Fourier transform of very high‐resolution remotely sensed 
canopy images. Journal of Applied Ecology, 42, 1121–1128.

Crist, E. P. and Cicone, R. C. 1984. A physically-based transfor-
mation of Thematic Mapper data—The TM Tasseled Cap. 
IEEE Transactions on Geoscience and Remote Sensing, 22, 
256–263.

de Carvalho, A. L., Nelson, B. W., Bianchini, M. C., Plagnol, D., 
Kuplich, T. M., and Daly, D. C. 2013. Bamboo-dominated 
forests of the southwest Amazon: Detection, spatial extent, 
life cycle length and flowering waves. PLoS One, 8, e54852.

de Wasseige, C. and Defourny, P. 2004. Remote sensing of selec-
tive logging impact for tropical forest management. Forest 
Ecology and Management, 188, 161–173.

DeFries, R. and Townshend, J. 1994. NDVI-derived land cover 
classifications at a global scale. International Journal of 
Remote Sensing, 15, 3567–3586.

DeFries, R., Hansen, M., Townshend, J., Janetos, A., and Loveland, 
T. 2000. A new global 1‐km dataset of percentage tree cover 
derived from remote sensing. Global Change Biology, 6, 
247–254.

Dennison, P. E., Roberts, D. A., and Peterson, S. H. 2007. Spectral 
shape-based temporal compositing algorithms for MODIS 
surface reflectance data. Remote Sensing of Environment, 
109, 510–522.

Desclee, B., Simonetti, D., Mayaux, P., and Achard, F. 2013. 
Multi-sensor monitoring system for forest cover change 
assessment in Central Africa. IEEE Journal on Selected 
Topics in Applied Earth Observations and Remote Sensing, 
6, 110–120.

Doughty, C. E. and Goulden, M. L. 2008. Seasonal patterns of 
tropical forest leaf area index and CO2 exchange. Journal of 
Geophysical Research: Biogeosciences (2005–2012), 113, G1.

Dubreuil, V., Debortoli, N., Funatsu, B., Nédélec, V., and Durieux, 
L. 2012. Impact of land-cover change in the Southern 
Amazonia climate: A case study for the region of Alta 
Floresta, Mato Grosso, Brazil. Environmental Monitoring 
and Assessment, 184, 877–891.

Duveiller, G., Defourny, P., Desclée, B., and Mayaux, P. 2008. 
Deforestation in Central Africa: Estimates at regional, 
national and landscape levels by advanced processing of 
systematically-distributed Landsat extracts. Remote Sensing 
of Environment, 112, 1969–1981.

Elumnoh, A. and Shrestha, R. P. 2000. Application of DEM data 
to Landsat image classification: Evaluation in a tropical wet-
dry landscape of Thailand. Photogrammetric Engineering 
and Remote Sensing, 66, 297–304.

Emelyanova, I. V., McVicar, T. R., Van Niel, T. G., Li, L. T., and 
van Dijk, A. I. 2013. Assessing the accuracy of blending 
Landsat–MODIS surface reflectances in two landscapes with 

contrasting spatial and temporal dynamics: A framework 
for algorithm selection. Remote Sensing of Environment, 
133, 193–209.

Faber-Langendoen, D., Keeler-Wolf, T., Meidinger, D., Josse, C., 
Weakley, A., Tart, D., Navarro, G. et al. 2012. Classification 
and Description of World Formation Types: Hierarchy 
Revisions Working Group, Federal Geographic Data 
Committee, FGDC Secretariat, US Geological Survey. 
Reston, VA, and NatureServe, Arlington, VA.

Ferry, B., Morneau, F., Bontemps, J. D., Blanc, L., and Freycon, V. 
2010. Higher treefall rates on slopes and waterlogged soils 
result in lower stand biomass and productivity in a tropical 
rain forest. Journal of Ecology, 98, 106–116.

Fisher, A. 2014. Cloud and cloud-shadow detection in SPOT5 
HRG satellite imagery with automated morphological fea-
ture extraction. Remote Sensing, 6, 776–800.

Flood, N. 2013. Seasonal composite Landsat TM/ETM+ images 
using the Medoid (a Multi-Dimensional Median). Remote 
Sensing, 5, 6481–6500.

Foody, G. M. and Hill, R. 1996. Classification of tropical for-
est classes from Landsat TM data. International Journal of 
Remote Sensing, 17, 2353–2367.

Foody, G. M., Palubinskas, G., Lucas, R. M., Curran, P. J., and 
Honzak, M. 1996. Identifying terrestrial carbon sinks: 
Classification of successional stages in regenerating 
tropical forest from Landsat TM data. Remote Sensing of 
Environment, 55, 205–216.

Foody, G. M. and Cutler, M. E. 2003. Tree biodiversity in protected 
and logged Bornean tropical rain forests and its measure-
ment by satellite remote sensing. Journal of Biogeography, 
30, 1053–1066.

Foody, G. M. and  Cutler, M. E. 2006. Mapping the species richness 
and composition of tropical forests from remotely sensed 
data with neural networks. Ecological Modelling, 195, 37–42.

Friedl, M. A., McIver, D. K., Hodges, J. C., Zhang, X., Muchoney, 
D., Strahler, A. H., Woodcock, C. E. et al. 2002. Global land 
cover mapping from MODIS: Algorithms and early results. 
Remote Sensing of Environment, 83, 287–302.

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., 
Ramankutty, N., Sibley, A., and Huang, X. 2010. MODIS 
Collection 5 global land cover: Algorithm refinements 
and characterization of new datasets. Remote Sensing of 
Environment, 114, 168–182.

Gao, B.-C. 1996. NDWI—A normalized difference water index 
for remote sensing of vegetation liquid water from space. 
Remote Sensing of Environment, 58, 257–266.

Gao, F., Masek, J. G., Schwaller, M., and Hall, F. 2006. On the 
blending of the Landsat and MODIS surface reflectance: 
Predicting daily Landsat. IEEE Transactions on Geoscience 
and Remote Sensing, 44, 2207–2208.

Garzon-Lopez, C. X., Bohlman, S. A., Olff, H., and Jansen, P. A. 
2013. Mapping tropical forest trees using High-resolution 
aerial digital photographs. Biotropica, 45, 308–316.

Gentry, A. H. 1988. Tree species richness of upper Amazonian forests. 
Proceedings of the National Academy of Sciences, 85, 156–159.

© 2016 Taylor & Francis Group, LLC

  



390 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Gibbes, C., Adhikari, S., Rostant, L., Southworth, J., and Qiu, Y. 
2010. Application of object based classification and high 
resolution satellite imagery for savanna ecosystem analysis. 
Remote Sensing, 2, 2748–2772.

Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, 
J., Peres, C. A. et al. 2011. Primary forests are irreplaceable for 
sustaining tropical biodiversity. Nature, 478, 378–381.

Givnish, T. J. 1999. On the causes of gradients in tropical tree 
diversity. Journal of Ecology, 87, 193–210.

Gond, V., Bartholomé, E., Ouattara, F., Nonguierma, A., and 
Bado, L. 2004. Surveillance et cartographie des plans d’eau 
et des zones humides et inondables en régions arides 
avec l’instrument VEGETATION embarqué sur SPOT-4. 
International Journal of Remote Sensing, 25, 987–1004.

Gond, V. and Guitet, S. 2009. Elaboration d’un diagnostic post-
exploitation par télédétection spatiale pour la gestion des 
forêts de Guyane. Bois et Forêts des Tropiques, 299, 5–13.

Gond, V., Freycon, V., Molino, J.-F., Brunaux, O., Ingrassia, F., 
Joubert, P., Pekel, J.-F. et al. 2011. Broad-scale spatial pattern 
of forest landscape types in the Guiana Shield. International 
Journal of Applied Earth Observation and Geoinformation, 
13, 357–367.

Gond, V., Fayolle, A., Pennec, A., Cornu, G., Mayaux, P., 
Camberlin, P., Doumenge, C. et al. 2013. Vegetation struc-
ture and greenness in Central Africa from Modis multi-
temporal data. Philosophical Transactions of the Royal 
Society B: Biological Sciences, 368, 1625.

González‐Orozco, C. E., Mulligan, M., Trichon, V., and Jarvis, A. 
2010. Taxonomic identification of Amazonian tree crowns 
from aerial photography. Applied Vegetation Science, 13, 
510–519.

Goodwin, N. R., Collett, L. J., Denham, R. J., Flood, N., and 
Tindall, D. 2013. Cloud and cloud shadow screening across 
Queensland, Australia: An automated method for Landsat 
TM/ETM+ time series. Remote Sensing of Environment, 
134, 50–65.

Göttlicher, D., Obregón, A., Homeier, J., Rollenbeck, R., Nauss, T., 
and Bendix, J. 2009. Land-cover classification in the Andes 
of southern Ecuador using Landsat ETM+ data as a basis for 
SVAT modelling. International Journal of Remote Sensing, 
30, 1867–1886.

Griffiths, P., Kuemmerle, T., Baumann, M., Radeloff, V. C., 
Abrudan, I. V., Lieskovsky, J., Munteanu, C. et  al. 2013. 
Forest disturbances, forest recovery, and changes in forest 
types across the Carpathian ecoregion from 1985 to 2010 
based on Landsat image composites. Remote Sensing of 
Environment, 151, 72–88.

Hansen, M. C., Roy, D. P., Lindquist, E., Adusei, B., Justice, C. O., 
and Altstatt, A. 2008. A method for integrating MODIS and 
Landsat data for systematic monitoring of forest cover and 
change in the Congo Basin. Remote Sensing of Environment, 
112, 2495–2513.

Helmer, E. and Ruefenacht, B. 2005. Cloud-free satellite image 
mosaics with regression trees and histogram matching. 
Photogrammetric Engineering and Remote Sensing, 71, 1079.

Helmer, E. and Lefsky, M. 2006. Forest canopy heights in Amazon 
River basin forests as estimated with the Geoscience Laser 
Altimeter System (GLAS), in Monitoring Science and 
Technology Symposium: Unifying Knowledge for Sustainability 
in the Western Hemisphere, September 21–25, 2004, C. 
Aguirre-Bravo, Pellicane, P. J., Burns, D. P., and Draggan, 
S. (eds.) Denver, CO: Proceedings RMRS-P-37CD/Ogden, 
UT: U.S. Department of Agriculture, Forest Service, Rocky 
Mountain Research Station, CD-ROM, pp. 802–808.

Helmer, E. and Ruefenacht, B. 2007. A comparison of radio-
metric normalization methods when filling cloud gaps in 
Landsat imagery. Canadian Journal of Remote Sensing, 33, 
325–340.

Helmer, E., Ruzycki, T. S., Wunderle, J. M., Vogesser, S., 
Ruefenacht, B., Kwit, C., Brandeis, T. J. et al. 2010. Mapping 
tropical dry forest height, foliage height profiles and dis-
turbance type and age with a time series of cloud-cleared 
Landsat and ALI image mosaics to characterize avian habi-
tat. Remote Sensing of Environment, 114, 2457–2473.

Helmer, E. H., Brown, S., and Cohen, W. 2000. Mapping mon-
tane tropical forest successional stage and land use with 
multi-date Landsat imagery. International Journal of Remote 
Sensing, 21, 2163–2183.

Helmer, E. H., Ramos, O., López, T. del. M., Quiñones, M., and 
Diaz, W. 2002. Mapping forest type and land cover of Puerto 
Rico, a component of the Caribbean biodiversity hotspot. 
Caribbean Journal of Science, 38, 165–183.

Helmer, E. H., Kennaway, T. A., Pedreros, D. H., Clark, M. L., 
Marcano-Vega, H., Tieszen, L. L., Ruzycki, T. R. et al. 2008. 
Land cover and forest formation distributions for St. Kitts, 
Nevis, St. Eustatius, Grenada and Barbados from deci-
sion tree classification of cloud-cleared satellite imagery. 
Caribbean Journal of Science, 44, 175–198.

Helmer, E. H., Lefsky, M. A., and Roberts, D. A. 2009. Biomass 
accumulation rates of Amazonian secondary forest and 
biomass of old-growth forests from Landsat time series and 
the Geoscience Laser Altimeter System. Journal of Applied 
Remote Sensing, 3, 033505.

Helmer, E. H., Ruzycki, T. S., Benner, J., Voggesser, S. M., Scobie, 
B. P., Park, C., Fanning, D. W. et al. 2012. Detailed maps of 
tropical forest types are within reach: Forest tree commu-
nities for Trinidad and Tobago mapped with multiseason 
Landsat and multiseason fine-resolution imagery. Forest 
Ecology and Management, 279, 147–166.

Hernández-Stefanoni, J. L., Alberto Gallardo-Cruz, J., Meave, 
J. A., and Dupuy, J. M. 2011. Combining geostatistical mod-
els and remotely sensed data to improve tropical tree rich-
ness mapping. Ecological Indicators, 11, 1046–1056.

Hilker, T., Lyapustin, A. I., Tucker, C. J., Sellers, P. J., Hall, F. G., 
and Wang, Y. 2012. Remote sensing of tropical ecosystems: 
Atmospheric correction and cloud masking matter. Remote 
Sensing of Environment, 127, 370–384.

Holben, B. N. 1986. Characteristics of maximum-value composite 
images from temporal AVHRR data. International Journal 
of Remote Sensing, 7, 1417–1434.

© 2016 Taylor & Francis Group, LLC

  



391Characterizing Tropical Forests with Multispectral Imagery

Holdridge, L. R. 1967. Life Zone Ecology. San José, CA: Tropical 
Science Center.

Houghton, R. A. 2013. The emissions of carbon from deforesta-
tion and degradation in the tropics: Past trends and future 
potential. Carbon Management, 4, 539–546.

Huang, C., Wylie, B., Homer, C., Yang, L., and Zylstra, G. 2002. 
Derivation of a Tasseled Cap transformation based on 
Landsat 7 at-satellite reflectance. International Journal of 
Remote Sensing, 23, 1741–1748.

Huang, C., Thomas, N., Goward, S. N., Masek, J. G., Zhu, Z., 
Townshend, J. R., and Vogelmann, J. E. 2010. Automated 
masking of cloud and cloud shadow for forest change analy-
sis using Landsat images. International Journal of Remote 
Sensing, 31, 5449–5464.

Huete, A. R. 1988. A soil-adjusted vegetation index (SAVI). 
Remote Sensing of Environment, 25, 295–309.

Intergovernmental Panel on Climate Change (IPCC). 2006. 
IPCC Guidelines for National Greenhouse Gas Inventories 
Volume 4: Agriculture, Forestry and Other Land Use. 
Chapter 2, Generic methodologies applicable to multiple 
land-use categories. Institute for Global Environmental 
Strategies, Hayama Japan. http://www.ipcc-nggip.iges.or.jp/
public/2006gl/vol4.html.

IPCC. 2014. Climate Change 2014: Mitigation of Climate Change, 
Contribution of Working Group III to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change, 
O. Edenhofer, Pichs-Madruga, R., Sokona, Y., Farahani, E., 
Kadner, S., Seyboth, K., Adler, A. et al. (eds.). Cambridge, 
U.K./New York: Cambridge University Press.

Irish, R. R., Barker, J. L., Goward, S. N., and Arvidson, T. 2006. 
Characterization of the Landsat-7 ETM+ automated cloud-
cover assessment (ACCA) algorithm. Photogrammetric 
Engineering and Remote Sensing, 72, 1179.

Joshi, P. K. K., Roy, P. S., Singh, S., Agrawal, S., and Yadav, D. 2006. 
Vegetation cover mapping in India using multi-temporal 
IRS Wide Field Sensor (WiFS) data. Remote Sensing of 
Environment, 103, 190–202.

Joubert, P., Bourgeois, U., Linarés, S., Gond, V., Verger, G., Allo, S., 
and Coppel, A. 2012. L’observatoire de l’activité minière, 
un outil adapté à la surveillance de l’environnement, in 
XV° symposium de la Société Savante Latino-Américaine 
de Télédétection et des Systèmes d’Informations Spatiales 
(SELPER). Cayenne, France.

Kennaway, T. and Helmer, E. 2007. The forest types and ages 
cleared for land development in Puerto Rico. GIScience & 
Remote Sensing, 44, 356–382.

Kennaway, T. A., Helmer, E. H., Lefsky, M. A., Brandeis, T. A., 
and Sherrill, K. R. 2008. Mapping land cover and estimating 
forest structure using satellite imagery and coarse resolu-
tion lidar in the Virgin Islands. Journal of Applied Remote 
Sensing, 2, 033521.

Langner, A., Hirata, Y., Saito, H., Sokh, H., Leng, C., Pak, C., and 
Raši, R. 2014. Spectral normalization of SPOT 4 data to 
adjust for changing leaf phenology within seasonal forests 
in Cambodia. Remote Sensing of Environment, 143, 122–130.

Laporte, N. T., Stabach, J. A., Grosch, R., Lin, T. S., and Goetz, S. 
J. 2007. Expansion of industrial logging in Central Africa. 
Science, 316, 1451–1451.

Laumonier, Y., Edin, A., Kanninen, M., and Munandar, A. W. 2010. 
Landscape-scale variation in the structure and biomass 
of the hill dipterocarp forest of Sumatra: Implications for 
carbon stock assessments. Forest Ecology and Management, 
259, 505–513.

Laurance, W. F., Goosem, M., and Laurance, S. G. 2009. Impacts 
of roads and linear clearings on tropical forests. Trends in 
Ecology & Evolution, 24, 659–669.

Le Hégarat-Mascle, S. and André, C. 2009. Use of Markov random 
fields for automatic cloud/shadow detection on high resolu-
tion optical images. ISPRS Journal of Photogrammetry and 
Remote Sensing, 64, 351–366.

Lefsky, M. A. 2010. A global forest canopy height map from the 
moderate resolution imaging spectroradiometer and the 
geoscience laser altimeter system. Geophysical Research 
Letters, 37, 15.

Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M., 
and Nepstad, D. 2011. The 2010 amazon drought. Science, 
331, 554–554.

Li, A., Huang, C., Sun, G., Shi, H., Toney, C., Zhu, Z., Rollins, 
M. G. et  al. 2011. Modeling the height of young forests 
regenerating from recent disturbances in Mississippi using 
Landsat and ICESat data. Remote Sensing of Environment, 
115, 1837–1849.

Loveland, T. and Belward, A. 1997. The IGBP-DIS global 1km 
land cover data set, DISCover: First results. International 
Journal of Remote Sensing, 18, 3289–3295.

Lu, D. 2005. Aboveground biomass estimation using Landsat 
TM data in the Brazilian Amazon. International Journal of 
Remote Sensing, 26, 2509–2525.

Luo, Y., Trishchenko, A. P., and Khlopenkov, K. V. 2008. 
Developing clear-sky, cloud and cloud shadow mask for pro-
ducing clear-sky composites at 250-meter spatial resolution 
for the seven MODIS land bands over Canada and North 
America. Remote Sensing of Environment, 112, 4167–4185.

Lyapustin, A., Wang, Y., and Frey, R. 2008. An automatic cloud 
mask algorithm based on time series of MODIS measure-
ments. Journal of Geophysical Research: Atmospheres (1984–
2012), 113, D16.

Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., 
Cochrane, T., Meir, P. et al. 2006. The regional variation of 
aboveground live biomass in old‐growth Amazonian for-
ests. Global Change Biology, 12, 1107–1138.

Malhi, Y. and Román-Cuesta, R. M. 2008. Analysis of lacunar-
ity and scales of spatial homogeneity in IKONOS images 
of Amazonian tropical forest canopies. Remote Sensing of 
Environment, 112, 2074–2087.

Martinuzzi, S., Gould, W. A., and González, O. M. R. 2007. Creating 
cloud-free Landsat ETM+ data sets in tropical landscapes: 
Cloud and cloud-shadow removal. F. S. US Department of 
Agriculture (ed.), San Juan, PR: International Institute of 
Tropical Forestry.

© 2016 Taylor & Francis Group, LLC

  

http://www.ipcc-nggip.iges.or.jp/


392 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Martinuzzi, S., Gould, W. A., Ramos González, O. M., Martínez 
Robles, A., Calle Maldonado, P., Pérez-Buitrago, N., and 
Fumero Caban, J. J. 2008. Mapping tropical dry forest 
habitats integrating Landsat NDVI, Ikonos imagery, and 
topographic information in the Caribbean Island of Mona. 
Revista de Biologia Tropical, 56, 625–639.

Mayaux, P., Achard, F., and Malingreau, J.-P. 1998. Global tropi-
cal forest area measurements derived from coarse resolu-
tion satellite imagery: A comparison with other approaches. 
Environmental Conservation, 25, 37–52.

Mayaux, P., Bartholomé, E., Fritz, S., and Belward, A. 2004. A 
new land‐cover map of Africa for the year 2000. Journal of 
Biogeography, 31, 861–877.

Mayaux, P., Pekel, J.-F., Desclée, B., Donnay, F., Lupi, A., Achard, 
F., Clerici, M. et  al. 2013. State and evolution of the 
African rainforests between 1990 and 2010. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 368, 
1625.

McCallum, I., Obersteiner, M., Nilsson, S., and Shvidenko, A. 
2006. A spatial comparison of four satellite derived 1  km 
global land cover datasets. International Journal of Applied 
Earth Observation and Geoinformation, 8, 246–255.

Miller, S. D., Goulden, M. L., Hutyra, L. R., Keller, M., Saleska, 
S. R., Wofsy, S. C., Figueira, A. M. S. et al. 2011. Reduced 
impact logging minimally alters tropical rainforest car-
bon and energy exchange. Proceedings of the National 
Academy of Sciences of the United States of America, 108, 
19431–19435.

Mitchard, E. T. A., Feldpausch, T. R., Brienen, R. J. W., Lopez-
Gonzalez, G., Monteagudo, A., Baker, T. R., Lewis, S. L. 
et  al. 2014. Markedly divergent estimates of Amazon for-
est carbon density from ground plots and satellites. Global 
Ecology and Biogeography, 23, 935–946.

Morton, D. C., DeFries, R. S., Nagol, J., Souza Jr., C. M., Kasischke, 
E. S., Hurtt, G. C., and Dubayah, R. 2011. Mapping canopy 
damage from understory fires in Amazon forests using 
annual time series of Landsat and MODIS data. Remote 
Sensing of Environment, 115, 1706–1720.

Morton, D. C., Nagol, J., Carabajal, C. C., Rosette, J., Palace, M., 
Cook, B. D., Vermote, E. F. et  al. 2014. Amazon forests 
maintain consistent canopy structure and greenness during 
the dry season. Nature, 506, 221–224.

Muchoney, D., Borak, J., Chi, H., Friedl, M., Gopal, S., Hodges, 
J., Morrow, N., and Strahler, A. 2000. Application of the 
MODIS global supervised classification model to vegetation 
and land cover mapping of Central America. International 
Journal of Remote Sensing, 21, 1115–1138.

Myneni, R. B., Yang, W., Nemani, R. R., Huete, A. R., Dickinson, 
R. E., Knyazikhin, Y., Didan, K. et al. 2007. Large seasonal 
swings in leaf area of Amazon rainforests. Proceedings of 
the National Academy of Sciences of the United States of 
America, 104, 4820–4823.

Nagendra, H. and Rocchini, D. 2008. High resolution satellite 
imagery for tropical biodiversity studies: The devil is in the 
detail. Biodiversity and Conservation, 17, 3431–3442.

Nagendra, H., Rocchini, D., Ghate, R., Sharma, B., and Pareeth, S. 
2010. Assessing plant diversity in a dry tropical forest: 
Comparing the utility of Landsat and IKONOS satellite 
images. Remote Sensing, 2, 478–496.

Nelson, R. F., Kimes, D. S., Salas, W. A., and Routhier, M. 2000. 
Secondary forest age and tropical forest biomass estimation 
using Thematic Mapper imagery: Single-year tropical for-
est age classes, a surrogate for standing biomass, cannot be 
reliably identified using single-date tm imagery. Bioscience, 
50, 419–431.

Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, 
S. C., Tucker, C. J., Myneni, R. B. et al. 2003. Climate-driven 
increases in global terrestrial net primary production from 
1982 to 1999. Science, 300, 1560–1563.

Newman, M. E., McLaren, K. P., and Wilson, B. S. 2011. Comparing 
the effects of classification techniques on landscape-level 
assessments: Pixel-based versus object-based classification. 
International Journal of Remote Sensing, 32, 4055–4073.

Omeja, P. A., Obua, J., Rwetsiba, A., and Chapman, C. A. 2012. 
Biomass accumulation in tropical lands with different distur-
bance histories: Contrasts within one landscape and across 
regions. Forest Ecology and Management, 269, 293–300.

Oreopoulos, L., Wilson, M. J., and Várnai, T. 2011. Implementation 
on Landsat data of a simple cloud-mask algorithm devel-
oped for MODIS land bands. IEEE Geoscience and Remote 
Sensing Letters, 8, 597–601.

Oza, M., Srivastava, V., and Devaiah, P. 1996. Estimating tree vol-
ume in tropical dry deciduous forest from Landsat TM data. 
Geocarto International, 11, 33–39.

Palace, M., Keller, M., Asner, G. P., Hagen, S., and Braswell, B. 
2008. Amazon forest structure from IKONOS satellite data 
and the automated characterization of forest canopy prop-
erties. Biotropica, 40, 141–150.

Park, S. 2009. Synchronicity between satellite-measured leaf phenol-
ogy and rainfall regimes in tropical forests. Photogrammetric 
Engineering and Remote Sensing, 75, 1231–1237.

Parker, C., Mitchell, A., Trivedi, M., Mardas, N., and Sosis, K. 2009. 
The little REDD+ book. Global Canopy Foundation, 132, 139 p.

Parmesan, C. and Yohe, G. 2003. A globally coherent fingerprint 
of climate change impacts across natural systems. Nature, 
421, 37–42.

Pearson, T. R. H., Brown, S., and Walker, S. 2011. Guidance 
Document: Avoided Deforestation Partners VCS REDD 
Methodology Modules. Published by Climate Focus, LLP.

Pennec, A., Gond, V., and Sabatier, D. 2011. Tropical forest phe-
nology in French Guiana from MODIS time series. Remote 
Sensing Letters, 2, 337–345.

Peterson, G. D. and Heemskerk, M. 2001. Deforestation and 
forest regeneration following small-scale gold mining 
in the Amazon: The case of Suriname. Environmental 
Conservation, 28, 117–126.

Pflugmacher, D., Cohen, W. B., and E Kennedy, R. 2012. Using 
Landsat-derived disturbance history (1972–2010) to predict 
current forest structure. Remote Sensing of Environment, 
122, 146–165.

© 2016 Taylor & Francis Group, LLC

  



393Characterizing Tropical Forests with Multispectral Imagery

Phillips, O. L., Aragão, L. E., Lewis, S. L., Fisher, J. B., Lloyd, J., 
López-González, G., Malhi, Y. et al. 2009. Drought sensitiv-
ity of the Amazon rainforest. Science, 323, 1344–1347.

Pinard, M. A. and Putz, F. E. 1996. Retaining forest biomass by 
reducing logging damage. Biotropica, 28(3), 278–295.

Pinty, B. and Verstraete, M. 1992. GEMI: A non-linear index to 
monitor global vegetation from satellites. Vegetatio, 101, 
15–20.

Pithon, S., Jubelin, G., Guitet, S., and Gond, V. 2013. A statisti-
cal method for detecting logging-related canopy gaps 
using high-resolution optical remote sensing. International 
Journal of Remote Sensing, 34, 700–711.

Ploton, P., Pélissier, R., Proisy, C., Flavenot, T., Barbier, N., Rai, 
S. N., and Couteron, P. 2011. Assessing aboveground tropi-
cal forest biomass using Google Earth canopy images. 
Ecological Applications, 22, 993–1003.

Portillo-Quintero, C. A. and Sánchez-Azofeifa, G. A. 2010. Extent 
and conservation of tropical dry forests in the Americas. 
Biological Conservation, 143, 144–155.

Pringle, M., Schmidt, M., and Muir, J. 2009. Geostatistical inter-
polation of SLC-off Landsat ETM+ images. ISPRS Journal of 
Photogrammetry and Remote Sensing, 64, 654–664.

Qi, J., Chehbouni, A., Huete, A., Kerr, Y., and Sorooshian, S. 1994. 
A modified soil adjusted vegetation index. Remote Sensing 
of Environment, 48, 119–126.

Roberts, D., Numata, I., Holmes, K., Batista, G., Krug, T., 
Monteiro, A., Powell, B. et al. 2002. Large area mapping of 
land-cover change in Rondônia using multitemporal spec-
tral mixture analysis and decision tree classifiers. Journal of 
Geophysical Research, 107, 8073.

Rouse, J., Haas, R., Schell, J., Deering, D., and Harlan, J. 1974. 
Monitoring the Vernal Advancement and Retrogradation 
(Greenwave Effect) of Natural Vegetation. College Station, 
TX: Texas A & M University, Remote Sensing Center.

Roy, D. P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., and 
Lindquist, E. 2008. Multi-temporal MODIS-Landsat data 
fusion for relative radiometric normalization, gap fill-
ing, and prediction of Landsat data. Remote Sensing of 
Environment, 112, 3112–3130.

Roy, D. P., Ju, J., Kline, K., Scaramuzza, P. L., Kovalskyy, V., Hansen, 
M., Loveland, T. R. et  al. 2010. Web-enabled Landsat Data 
(WELD): Landsat ETM+ composited mosaics of the contermi-
nous United States. Remote Sensing of Environment, 114, 35–49.

Saatchi, S., Houghton, R., Dos Santos Alvala, R., Soares, J., and 
Yu, Y. 2007. Distribution of aboveground live biomass in the 
Amazon basin. Global Change Biology, 13, 816–837.

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T., 
Salas, W., Zutta, B. R. et  al. 2011. Benchmark map of for-
est carbon stocks in tropical regions across three continents. 
Proceedings of the National Academy of Sciences of the United 
States of America, 108, 9899–9904.

Salimon, C. I., Putz, F. E., Menezes-Filho, L., Anderson, A., 
Silveira, M., Brown, I. F., and Oliveira, L. 2011. Estimating 
state-wide biomass carbon stocks for a REDD plan in Acre, 
Brazil. Forest Ecology and Management, 262, 555–560.

Salk, C. F., Chazdon, R., and Andersson, K. 2013. Detecting 
landscape-level changes in tree biomass and biodiversity: 
Methodological constraints and challenges of plot-based 
approaches. Canadian Journal of Forest Research, 43, 799–808.

Salovaara, K. J., Thessler, S., Malik, R. N., and Tuomisto, H. 2005. 
Classification of Amazonian primary rain forest vegetation 
using Landsat ETM+ satellite imagery. Remote Sensing of 
Environment, 97, 39–51.

Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., 
Knyazikhin, Y., Nemani, R. R. et al. 2010. Amazon forests 
did not green‐up during the 2005 drought. Geophysical 
Research Letters, 37, 5.

Sánchez-Azofeifa, A., Rivard, B., Wright, J., Feng, J.-L., Li, P., 
Chong, M. M., and Bohlman, S. A. 2011. Estimation of 
the distribution of Tabebuia guayacan (Bignoniaceae) 
using high-resolution remote sensing imagery. Sensors, 11, 
3831–3851.

Scaramuzza, P. L., Bouchard, M. A., and Dwyer, J. L. 2012. 
Development of the Landsat data continuity mission 
cloud-cover assessment algorithms. IEEE Transactions on 
Geoscience and Remote Sensing, 50, 1140–1154.

Sesnie, S. E., Gessler, P. E., Finegan, B., and Thessler, S. 2008. 
Integrating Landsat TM and SRTM-DEM derived variables 
with decision trees for habitat classification and change 
detection in complex neotropical environments. Remote 
Sensing of Environment, 112, 2145–2159.

Sesnie, S. E., Finegan, B., Gessler, P. E., Thessler, S., Bendana, Z. R., 
and Smith, A. M. 2010. The multispectral separability of 
Costa Rican rainforest types with support vector machines 
and Random Forest decision trees. International Journal of 
Remote Sensing, 31, 2885–2909.

Siegert, F., Ruecker, G., Hinrichs, A., and Hoffmann, A. 2001. 
Increased damage from fires in logged forests during 
droughts caused by El Nino. Nature, 414, 437–440.

Sist, P. and Ferreira, F. N. 2007. Sustainability of reduced-
impact logging in the Eastern Amazon. Forest Ecology and 
Management, 243, 199–209.

Skidmore, A. K. 1989. An expert system classifies eucalypt for-
est types using thematic mapper data and a digital terrain 
model. Photogrammetric Engineering and Remote Sensing, 
55, 1449–1464.

Skole, D. and Tucker, C. 1993. Tropical deforestation and habitat 
fragmentation in the Amazon: Satellite data from 1978 to 
1988. Science, 260, 1905–1910.

Small, C. 2004. The Landsat ETM+ spectral mixing space. Remote 
Sensing of Environment, 93, 1–17.

Song, C. 2013. Optical remote sensing of forest leaf area index and 
biomass. Progress in Physical Geography, 37, 98–113.

Souza Jr., C. and Barreto, P. 2000. An alternative approach for detect-
ing and monitoring selectively logged forests in the Amazon. 
International Journal of Remote Sensing, 21, 173–179.

Souza Jr., C., Firestone, L., Silva, L. M., and Roberts, D. 2003. 
Mapping forest degradation in the Eastern Amazon from 
SPOT 4 through spectral mixture models. Remote Sensing 
of Environment, 87, 494–506.

© 2016 Taylor & Francis Group, LLC

  



394 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Souza Jr., C. M., Roberts, D. A., and Cochrane, M. A. 2005. 
Combining spectral and spatial information to map can-
opy damage from selective logging and forest fires. Remote 
Sensing of Environment, 98, 329–343.

Souza Jr., C. M., Siqueira, J. V., Sales, M. H., Fonseca, A. V., 
Ribeiro, J. G., Numata, I., Cochrane, M. A. et  al. 2013. 
Ten-year Landsat classification of deforestation and forest 
degradation in the Brazilian Amazon. Remote Sensing, 5, 
5493–5513.

Souza Jr., C. M. and Siqueira, J. V. N. 2013. ImgTools: a software 
for optical remotely sensed data analysis. pp. 1571–1578 in 
Anais XVI Simpósio Brasileiro de Sensoriamento Remoto. 
Foz do Iguaçu, PR: Instituto Nacional de Pesquisas Espaciais 
(INPE).

Steininger, M. 2000. Satellite estimation of tropical secondary 
forest above-ground biomass: Data from Brazil and Bolivia. 
International Journal of Remote Sensing, 21, 1139–1157.

Stephens, B. B., Gurney, K. R., Tans, P. P., Sweeney, C., Peters, W., 
Bruhwiler, L., Ciais, P. et al. 2007. Weak northern and strong 
tropical land carbon uptake from vertical profiles of atmo-
spheric CO2. Science, 316, 1732–1735.

Strabala, K. I. 2005. MODIS cloud mask user’s guide. Madison, 
Wisconsin: Cooperative Institute for Meteorological 
Satellite Studies, University of Wisconsin, Madison, 32 pp.

Thenkabail, P. S., Hall, J., Lin, T., Ashton, M. S., Harris, D., and 
Enclona, E. A. 2003. Detecting floristic structure and 
pattern across topographic and moisture gradients in a 
mixed species Central African forest using IKONOS and 
Landsat-7 ETM+ images. International Journal of Applied 
Earth Observation and Geoinformation, 4, 255–270.

Thenkabail, P. S., Enclona, E. A., Ashton, M. S., Legg, C., and De 
Dieu, M. J. 2004. Hyperion, IKONOS, ALI, and ETM+ sen-
sors in the study of African rainforests. Remote Sensing of 
Environment, 90, 23–43.

Thessler, S., Sesnie, S., Ramos Bendaña, Z. S., Ruokolainen, K., 
Tomppo, E., and Finegan, B. 2008. Using k-nn and dis-
criminant analyses to classify rain forest types in a Landsat 
TM image over northern Costa Rica. Remote Sensing of 
Environment, 112, 2485–2494.

Tickle, P., Lee, A., Lucas, R. M., Austin, J., and Witte, C. 2006. 
Quantifying Australian forest floristics and structure using 
small footprint LiDAR and large scale aerial photography. 
Forest Ecology and Management, 223, 379–394.

Tottrup, C. 2004. Improving tropical forest mapping using multi-
date Landsat TM data and pre-classification image smooth-
ing. International Journal of Remote Sensing, 25, 717–730.

Tottrup, C., Rasmussen, M., Samek, J., and Skole, D. 2007. 
Towards a generic approach for characterizing and map-
ping tropical secondary forests in the highlands of mainland 
Southeast Asia. International Journal of Remote Sensing, 28, 
1263–1284.

Townshend, J., Justice, C., Li, W., Gurney, C., and McManus, J. 
1991. Global land cover classification by remote sensing: 
Present capabilities and future possibilities. Remote Sensing 
of Environment, 35, 243–255.

Trichon, V. and Julien, M.-P. 2006. Tree species identification 
on large-scale aerial photographs in a tropical rain forest, 
French Guiana-application for management and conserva-
tion. Forest Ecology and Management, 225, 51–61.

Tucker, C. J., Goff, T., and Townshend, J. 1985. African land-cover 
classification using satellite data. Science, 227, 369–375.

Uhl, C. and Buschbacher, R. 1985. A disturbing synergism between 
cattle ranch burning practices and selective tree harvesting 
in the eastern Amazon. Biotropica, 17(4), 265–268.

USGS. 2003. Preliminary Assessment of Landsat 7 ETM+ Data 
Following Scan Line Corrector Malfunction USGS. Sioux 
Falls, SD: United States Geological Survey.

Vancutsem, C., Pekel, J.-F., Evrard, C., Malaisse, F., and Defourny, P. 
2009. Mapping and characterizing the vegetation types 
of the Democratic Republic of Congo using SPOT 
VEGETATION time series. International Journal of Applied 
Earth Observation and Geoinformation, 11, 62–76.

Verhegghen, A., Mayaux, P., De Wasseige, C., and Defourny, P. 
2012. Mapping Congo Basin vegetation types from 300 m 
and 1  km multi-sensor time series for carbon stocks and 
forest areas estimation. Biogeosciences, 9, 5061–5079.

Vickers, B., Trines, E., and Pohnan, E. 2012. Community guide-
lines for accessing forestry voluntare carbon markets. 
Bangkok: Regional office for Asia and the Pacific, Food and 
Agriculture Organization of the United Nations, 196 pp.

Vieira, I. C. G., de Almeida, A. S., Davidson, E. A., Stone, T. A., 
Reis de Carvalho, C. J., and Guerrero, J. B. 2003. Classifying 
successional forests using Landsat spectral properties and 
ecological characteristics in eastern Amazonia. Remote 
Sensing of Environment, 87, 470–481.

Vitousek, P. M. 1994. Beyond global warming: Ecology and global 
change. Ecology, 75, 1861–1876.

Wang, B. 1999. Automated detection and removal of clouds 
and their shadows from Landstat TM images. IEICE 
Transactions on Information and Systems, 82, 453–460.

Wertz-Kanounnikoff, S. 2008. Monitoring Forest Emissions, A 
Review of Methods. Bogor, Indonesia: CIFOR.

Whiteside, T. G., Boggs, G. S., and Maier, S. W. 2011. Comparing 
object-based and pixel-based classifications for mapping 
savannas. International Journal of Applied Earth Observation 
and Geoinformation, 13, 884–893.

Wijaya, A., Liesenberg, V., and Gloaguen, R. 2010. Retrieval 
of forest attributes in complex successional forests of 
Central Indonesia: Modeling and estimation of bitempo-
ral data. Forest Ecology and Management, 259, 2315–2326.

Wilson, E. O. 1988. The current state of biological diversity, 
in Biodiversity, E. O. Wilson and Peters, F. M. (eds.) 
Washington, DC: National Academy Press, pp. 3–18.

Wittmann, F., Anhuf, D., and Funk, W. J. 2002. Tree species dis-
tribution and community structure of central Amazonian 
várzea forests by remote-sensing techniques. Journal of 
Tropical Ecology, 18, 805–820.

Woods, P. 1989. Effects of logging, drought, and fire on structure 
and composition of tropical forests in Sabah, Malaysia. 
Biotropica, 21(4), 290–298.

© 2016 Taylor & Francis Group, LLC

  



395Characterizing Tropical Forests with Multispectral Imagery

Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. 
O., Coops, N. C., Hilker, T. et al. 2012. Lidar sampling for 
large-area forest characterization: A review. Remote Sensing 
of Environment, 121, 196–209.

Xiao, X., Hagen, S., Zhang, Q., Keller, M., and Moore III, B. 2006. 
Detecting leaf phenology of seasonally moist tropical for-
ests in South America with multi-temporal MODIS images. 
Remote Sensing of Environment, 103, 465–473.

Xu, X., Du, H., Zhou, G., Ge, H., Shi, Y., Zhou, Y., Fan, W. et al. 
2011. Estimation of aboveground carbon stock of Moso 
bamboo (Phyllostachys heterocycla var. pubescens) for-
est with a Landsat Thematic Mapper image. International 
Journal of Remote Sensing, 32, 1431–1448.

Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S., and Fisher, J. B. 2011. 
Changes in the potential distribution of humid tropical forests on 
a warmer planet. Philosophical Transactions of the Royal Society A: 
Mathematical, Physical and Engineering Sciences, 369, 137–160.

Zhao, M. and Running, S. W. 2010. Drought-induced reduction 
in global terrestrial net primary production from 2000 
through 2009. Science, 329, 940–943.

Zhu, X., Chen, J., Gao, F., Chen, X., and Masek, J. G. 2010. An 
enhanced spatial and temporal adaptive reflectance fusion 
model for complex heterogeneous regions. Remote Sensing 
of Environment, 114, 2610–2623.

Zhu, X., Gao, F., Liu, D., and Chen, J. 2012a. A modified neighbor-
hood similar pixel interpolator approach for removing thick 
clouds in Landsat images. IEEE Geoscience and Remote 
Sensing Letters, 9, 521–525.

Zhu, Z. and Woodcock, C. E. 2012b. Object-based cloud and 
cloud shadow detection in Landsat imagery. Remote Sensing 
of Environment, 118, 83–94.

Zhu, Z., Woodcock, C. E., and Olofsson, P. 2012. Continuous 
monitoring of forest disturbance using all available Landsat 
imagery. Remote Sensing of Environment, 122, 75–91.

© 2016 Taylor & Francis Group, LLC

  



397

15
Remote Sensing of Forests 

from Lidar and Radar

Juha Hyyppä
Finnish Geospatial Research 
Institute and Centre of Excellence 
in Laser Scanning Research

Mika Karjalainen
Finnish Geospatial Research 
Institute and Centre of Excellence 
in Laser Scanning Research

Xinlian Liang
Finnish Geospatial Research 
Institute and Centre of Excellence 
in Laser Scanning Research

Anttoni Jaakkola
Finnish Geospatial Research 
Institute and Centre of Excellence 
in Laser Scanning Research

Xiaowei Yu
Finnish Geospatial Research 
Institute and Centre of Excellence 
in Laser Scanning Research

Michael Wulder
Pacific Forestry Center
Natural Resources Canada

Markus Hollaus
Vienna University of Technology

Joanne C. White
Pacific Forestry Center
Natural Resources Canada

Mikko Vastaranta
University of Helsinki and 
Centre of Excellence in 
Laser Scanning Research

Kirsi Karila
Finnish Geospatial Research 
Institute and Centre of Excellence 
in Laser Scanning Research

© 2016 Taylor & Francis Group, LLC



398 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Acronyms and Definitions

2.5D	 2.5-Dimensional model
3D	 Three dimensional
ALS	 Airborne laser scanning/scanner
CHM	 Canopy height model
dbh	 Diameter at breast height
DEM	 Digital elevation model
DSM	 Digital surface model
DTM	 Digital terrain model
GLAS	 Geoscience Laser Altimeter System
ICESat	 NASA’s Ice, Cloud and Land Elevation Satellite
InSAR	 SAR interferometry
ITD	 Individual tree detection
LIDAR	 Light Detection and Ranging
LS	 Laser scanning/scanner
MLS	 Mobile laser scanning/scanner
MSN	 Most similar neighbor
nDSM	� Normalized digital surface model, canopy height 

model
NDVI	 Normalized difference vegetation index
NFI	 National Forest Inventory
NN	 Nearest Neighbor
RF	 Random Forest
RMSE	 Root mean squared error
SAR	 Synthetic Aperture radar
SWFI	 Standwise field inventory
TLS	 Terrestrial laser scanning/scanner

15.1 I ntroduction

This chapter is about collecting three-dimensional (3D) infor-
mation from lidar and radar and turning that information into 
valuable forest informatics. For the first time, we present that 
the processing of all these data, whether lidar or radar, should go 
into the same pipeline.

Today, it can be seen that many of the future remote sensing 
processes for forestry will be based on point cloud processing 
or on elevation models (3D techniques). These required forestry 
data can be provided not only by both the lidar and the radar 
but also by photogrammetry. For example, analogous to photo-
grammetric spatial intersection, a stereo pair of SAR images with 
different off-nadir angles can be used to calculate the 3D coor-
dinates for corresponding points on the image pair producing 
point clouds from radar imagery. Also, in SAR interferometry 
(InSAR), pixel-by-pixel phase difference between two complex 
SAR images acquired from slightly different perspectives can be 
converted into elevation differences of the terrain/object. Thus, 
both lidar and radar can provide data that can be processed in a 
similar way either using original points or using surface models 
in a raster form. From the point clouds, you can calculate digital 
terrain model (DTM), digital surface model (DSM), and canopy 
height model, normalized digital surface model (CHM/nDSM). 
The idea is to provide surface model (DSM) and subtract the 
ground elevation (DTM) from it in order to get a canopy height. 
Intensity, coherence (in interferometry SAR) and texture can be 
used to improve the estimates in 3D-based inventory.
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In general, there is high synergy between lidar and radar since 
they are based on the same measuring principle even though 
they are using different frequencies/wavelengths.

	 1.	 Laser intensity calibration has stemmed from the corre-
sponding work with radar backscatter coefficient determi-
nation. In the late 1980s, Finnish and Swedish researchers 
were developing early versions of scanning lidar/radars, and 
already at that time, the radar return versus time was auto-
matically corrected in the hardware (Hallikainen et al. 1993).

	 2.	 The lidar-derived terrain model is the basic informa-
tion needed in future radar-based forest inventories (FIs). 
In  future, radar-based FI processing will be mainly done 
using laser scanning (LS) point cloud processing techniques. 
In large-area FI in near future, satellite-based radar can cover 
large areas with relatively high repetition rate, and LS can 
provide important field reference for satellite data calibration.

	 3.	 Both lidar and radar are active remote sensing techniques. 
The major advantages of active remote sensing systems 
include better penetration of atmosphere; coverage can 
be obtained at user-specified times, even at night, since 
it produces its own illumination to the target; images/
echoes can be produced from different types of polarized 
energy; systems may operate simultaneously in several 
wavelengths/frequencies, and, thus, have multiwave-
length/frequency potential.

There are many chapters and books that complement this chapter. 
Starting from the past literature, the reader is referred to know 
basics of, for example, lidar/LS from, for example, Hyyppä et al. 
(2008), radar from Henderson and Lewis (1998), and Jensen (2000). 
Forestry applications and processing based on active sensors are 
also covered in Hyyppä et al. (2008) on using LS data in forestry 
applications and related algorithms; Holopainen et al. (2014) on 
the estimation of forest stock and yield with lidar; Nelson (2013) 
on how did we get there and an early history of forestry lidar; 
Koch (2010) on the status and future using new LS, synthetic 
aperture radar (SAR), and hyperspectral remote sensing data for 
forest biomass assessment; and Mallet and Bretar (2009) on full-
waveform topographic lidar. In this handbook, there are many 
complementary chapters, for example, those dealing with lidar 
processing, tropical rainforests, remote sensing of tree height, ter-
restrial carbon modeling, and global biomass modeling.

We see that radar and lidar are currently changing the way how 
operative FI is performed. Remote sensing of forest from lidar and 
radar is the future of FI at local, regional, or country level. Currently, 
airborne lidar is operationally applied in the Nordic countries when 
carrying out standwise FIs. We believe, terrestrial and mobile lidar 
or LS will be used in collecting detailed field data. Radar data seem 
to be promising for large-area monitoring applications. Therefore, 
we planned the content of the chapter in the following way:

•	 Section 2: Conventional practices to acquire forest 
resource information.

•	 Section 3: Basics of lidar and radar.

•	 Section 4: Obtaining 3D data from lidar and radar for 
forestry.

•	 Section 5: Common processing chain for lidar and radar 
into useful forest informatics.

•	 Section 6: Finally, we go into new areas, applications, and 
large-area FI, which lidar and radar techniques are mak-
ing possible in the near future.

In this chapter, we aim to demonstrate that lidar and radar point 
clouds are in future processed in a very similar processing chain, 
which has been originally developed for airborne lidar for stand-
level FI in boreal forest area. Additional, we will show large num-
ber of future techniques, which will further challenge current 
operative inventory systems—currently not based on these data.

15.2 �C onventional Practices 
for Acquisition of Forest 
Resource Information

According to data from the Global Forest Resources Assessment 
(FRA 2010), the total global forest area is slightly over 4 billion 
hectares (31% of the total land surface). The five most forest-rich 
countries are the Russian Federation, Brazil, Canada, the United 
States, and China. In terms of the ratio of forest cover to total 
land area, Finland (73% of the land area), Japan, and Sweden 
(both 69% of the land area) are the world’s most extensively for-
ested countries among the industrialized and temperate coun-
tries (Table 15.1). Forest monitoring via remote sensing plays a 
crucial role in the assessment, planning, field data collection, 
image processing, analysis, and modeling for sustainable forest 

Table 15.1  Forest Area and Coverage in Selected Developed Countries

Country 

Forest Area Land Area Country Area 

Million ha
Percentage 

of Land Area Million ha Million ha

Russian Federation 809.1 49 1638.1 1709.8
Brazil 519.5 62 832.5 851.5
Canada 310.1 34 909.4 998.5
United States 304.0 33 916.2 963.2
China 206.9 22 942.5 960.0
Australia 149.3 19 768.2 774.1
Sweden 28.2 69 41.0 45.0
Japan 25.0 69 36.5 37.8
Finland 22.2 73 30.4 33.8
Spain 18.2 36 49.9 50.5
France 16.0 29 55.0 55.2
Germany 11.1 32 34.9 35.7
Norway 10.1 33 30.4 32.4
Italy 9.1 31 29.4 30.1
United Kingdom 2.9 12 24.3 24.4
World 4,033.1 31 13,010.5 13,434.2

Source:	 FRA, Global forest resources assessment 2010 Available at http://
www.fao.org/forestry/fra/fra2010/en/, 2010.
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management (SFM). Geographic information system (GIS) is 
widely employed to manage forest information obtained with 
remote sensing on a stand polygon basis. The addition of stems 
by species to each stand polygon could become an important 
tool for practical forest management operations, such as precise 
thinning, selective cutting, and harvesting.

15.2.1  Forest Inventory

FI is carried out to support decision-making by the forest owner. 
Forest resource information is, thus, needed for large-scale 
strategic planning, operative forest management, and prehar-
vest planning (Table 15.2). National forest inventories (NFIs) 
are examples of inventories undertaken for large-scale strate-
gic planning for gathering information about nationwide forest 
resources, such as growing stock volume, forest cover, growth 
and yield, biomass, carbon balance, and large-scale wood pro-
curement potential. In NFIs, it is important to have unbiased 
estimates and to obtain information also from small strata. The 
most conventional strategy for NFI is to use sampling and mea-
sure sampling plots at the field. Thus, NFIs does not provide 
mapping information that is required for operative forest man-
agement and preharvest planning. In many countries, infor-
mation for these purposes has been collected using standwise 
field inventories (SWFIs). There are many different methods 
with varying accuracy to carry out SWFI. In general, visual 
interpretation of aerial images is combined with field sampling 
and some rapid measurements. For example, in Finland and 
Sweden, stands are delineated from aerial photographs, and 
then every stand is visited by a forester. At the stand, basal area 
is measured using relascope (angle-count method) from vari-
ous locations. Then, basal-area-weighted mean tree diameter 
and height are measured by caliper and clinometer. Finally, 
inventory attributes are generalized to stand. Forest manage-
ment operations are determined using calculated inventory 
attributes combined with ocular assessments at the site.

During the last 100 years, FI has transferred from the deter-
mination of the volume of logs, trees, and stands, and a calcula-
tion of the increment and yield toward more into multiple uses 
of forests (wildlife, recreation, and watershed management). 

Currently, multiple use of forest is increasingly considered as 
different ecosystem services, and from an operational forestry 
standpoint, the information required to support “multiple 
use” can also satisfy characterization of “ecosystems services.” 
However, a major focus of forest assessment is still in obtain-
ing accurate information on the volume and growth of trees in 
forest plots, stands, and large areas. The forest bound carbon is 
also an important issue globally. One of the biggest challenges 
currently in FI research is how to measure and monitor forest 
biomass and its changes effectively and accurately. Radar and 
lidar provide tools for that.

15.2.2  Forest Measurements

An FI could be, in principle, based on measuring every tree in a 
given area, but this is usually not realistic in forestry. As such, the 
acquisition of forest resource information is typically based on 
sampling. The most common sample units are a tree and a plot. 
To obtain usable information-related forest resources, various 
attributes have to be measured at the tree level. Individual tree 
measures are summed at the plot level, and then plots are used 
to obtain forest resource information representative of any given 
area, such as a stand, a woodlot, a county, or a country. Due to this 
hierarchy, it is highly important to measure individual tree attri-
butes accurately. It should also be pointed out that some tree attri-
butes are modeled instead of measured, for example, stem volume 
is usually modeled based on diameter at breast height (dbh) and 
height of the tree (h), noting that measurements made at a tree or 
plot level are often selected by some sampling criteria. Table 15.3 
summarizes the main tree attributes from the point of view of for-
est mensuration. Upper diameter is typically taken from the height 
of 6 m. Height of the crown base is the height from the ground to 
the lowest green branch or to the lowest complete living whorl of 
branches. Basal area is the cross-sectional area defined by the dbh.

Some of them can be directly measured or calculated from 
these direct measurements, while others need to be predicted 

Table 15.3  Attributes of Trees to Be Measured

Attribute Unit 
Typically Expected 

Accuracy for Measurementa 

Height m 0.5–2 m
Diameter at breast 

height (dbh)
mm 5–10 mm

Upper diameter 
(e.g., at height 6 m)

mm 5–10 mm

Height of crown base m 0.2–0.4 m
Species
Age years 5 years
Location m 0.5–2 m
Basal area m2 See diameter accuracy
Volume m3 10%–20%
Biomass kg/m3 10%–20%
Growth mm 

(increment borer)
1 mm

a	Depends strongly on the use of the data.

Table 15.2  Aims and Methods to Collect Forest Resource Information

Aim Method 
Provides 

a Map Description 

Large-scale 
strategic 
planning

National forest 
inventory (NFI)

No Nationwide statistics are 
calculated based on 
systematic sample of field 
plots. Field plots are 
measured tree by tree.

Operational 
forest 
management

Standwise field 
inventory 
(SWFI)

Yes Several field plots are 
measured from every stand. 
Sample trees are measured 
from plots.

Preharvest 
planning

SWFI with 
additional 
measurements

Yes SWFI information is 
double-checked by 
measuring additional plots.
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through statistical or physical modeling. Traditionally, the fol-
lowing individual tree attributes such as

•	 Height (and height growth)
•	 Diameters at different height along the stem (and diam-

eter growth)
•	 Crown diameter
•	 Tree species

are measured or determined in the field. Diameter is convenient 
to measure and is one of the directly measurable dimensions 
from which tree cross-sectional area, surface area, and volume 
can be computed. Various instruments and methods have been 
developed for measuring the tree dimension in the field (Husch 
et al. 1982; Päivinen et al. 1992; Clark et al. 2000; Gill et al. 2000; 
Korhonen et al. 2006), such as the following:

•	 Caliper, diameter tape, and optical devices for diameter 
measurements

•	 Level rod, pole, and hypsometers for tree height 
measurements

•	 Increment borer for diameter growth measurements

The method used in obtaining the measurements is largely deter-
mined by the accuracy required. Past growth of diameter can 
be obtained from increment borings or cross-section cut. For 
some species, past height growth may be determined by mea-
suring internodal lengths. Sometimes, it is even necessary to fell 
the tree to obtain more accurate measurements, for example, to 
measure the stem volume accurately requires destructive sam-
pling of a tree. Accordingly, direct and indirect methods have 
been developed for the estimation of such forest attributes. 
Practically speaking, tree volume is estimated from dbh and pos-
sibly together with height and upper diameter for each tree spe-
cies. The models for stem volume, especially based on diameter 
information, exist for many commercially important tree species. 
For example, in Finland, there are volume models v for main tree 
species based on different inputs (diameter d, height h, diameter 
at the height of 6 m, d6):

•	 v = f(d)
•	 v = f(d,h)
•	 v = f(d,h,d6)

The most accurate and nondestructive way to determine the 
stem volume of the tree is to use stem curve, that is, the stem 
diameter as a function of the tree height. Relascope is often used 
to measure basal area of the sample plots if dbhs of all the trees 
within the plot are not measured.

15.3 � General Features of LS/Lidar 
and Radar

Active microwave imagery is obtained using instruments and 
principles that are different from those acquired in the visible, 
near-, mid-, and thermal infrared portions of the spectrum 

using passive remote sensing techniques. Therefore, it is neces-
sary to understand the basics of the active microwave systems, 
such as lidar and radars.

The LS is a surveying technique used for mapping topography, 
vegetation, urban areas, ice, infrastructure, and other targets 
of interest. The LS is many times referred to as lidar because 
of the central role of the lidar in the system. Also LS is more 
commonly used in Europe whereas lidar in the United States. 
The basic principle of lidar is to use a laser beam to illuminate 
an object and a photodiode to register the backscatter radiation 
and to measure the range. More precisely, airborne laser scan-
ning (ALS) is a method based on light detection and ranging 
measurements from an aircraft, where the precise position and 
orientation of the sensor is known, and therefore the position 
(x, y, and z) of the reflecting objects can be determined. In addi-
tion to ALS, there is an increasing interest in terrestrial laser 
scanning (TLS), where the laser scanner is mounted on a tripod 
or even on a moving platform, that is, mobile laser scanning 
(MLS). The output of the laser scanner is then a georeferenced 
point cloud of lidar measurements, including the intensity and 
possibly waveform information of the returned light. A typical 
ALS system consists of (1) a laser ranging unit (i.e., lidar), (2) an 
opto-mechanical scanner, (3) a position and orientation unit, 
and (4) a control, processing, and storage unit. The laser rang-
ing unit can be subdivided into a transmitter, a receiver, and 
the optics for both units. These components also apply to other 
types of LS systems, such as MLS. The receiver optics collects 
the backscattered light and focuses it onto the detector convert-
ing the photons to electrical impulses. The opto-mechanical 
scanning unit is responsible for the deflection of the transmit-
ted laser beams across the flight track. The type of the applied 
deflection unit (e.g., oscillating mirror/zigzag scanning, rotating 
mirror/line scanning, push broom/fiber scanning, and Palmer/
conical scanning) defines the scan pattern on the ground. A 
differential Global Navigation Satellite System (GNSS) receiver 
provides the position of the laser ranging unit. Its orientation is 
determined by the pitch, roll, and heading of the aircraft, which 
are measured by an inertial navigation/measurement system 
(Hyyppä et al. 2008).

Radar is a similar object-detection system using radio waves 
to determine the range, altitude, direction, or speed of objects. 
In remote sensing, especially the backscatter strength is used to 
object recognition/classification. The transmitted energy illumi-
nates an area on the ground. The radar cross section of the object is 
defined as the ratio of the backscattered power versus isotropically 
reflecting object. The radar backscatter coefficient is defined as 
the radar cross section divided by the illuminated area. The radar 
backscatter coefficient is used to classify targets. With radar oper-
ating wavelengths, surface roughness, moisture, and biomass and 
vegetation structure are major parameters affecting the backscat-
ter. In addition to backscatter, range (e.g., Hallikainen et al. 1993), 
polarization response, stereoscopy, various incidence angles, and 
interferometry have been applied for remote sensing of forests.

Table 15.4 gives a short comparison of lidar and radar in 
remote sensing of forests.
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15.4 O btaining 3D Data from Forestry

The focus in this chapter is on techniques capable to provide 
2.5D/3D (2.5D stands for 3D surface models) data for FI pro-
cessing to be depicted in Section 15.5. Short state of the art of the 
lidar/radar techniques providing 3D data covers

•	 Space-borne lidar
•	 Space-borne SAR
•	 InSAR
•	 SAR radargrammetry
•	 ALS
•	 TLS
•	 MLS

SAR tomography is not covered, since it is still far from prac-
tical usability. Since there are many forest attributes to be 
measured, more focus is on biomass and stem volume, to 
which all attributes basically correlate. In Section 15.5, there 

is additional discussion to measure each attribute separately. 
Table 15.5 gives main characteristics of each of these systems 
at the general level.

15.4.1  Space-Borne Lidar

The Geoscience Laser Altimeter System (GLAS) on board 
NASA’s Ice, Cloud and Land Elevation Satellite (ICESat) was the 
first space-borne lidar mission providing lidar data at a global 
scale (Zwally et al. 2002; Schutz et al. 2005). ICESat/GLAS was 
launched in January 2003 and acquired lidar waveform data 
until October 2009. Several studies also demonstrated the poten-
tial of GLAS data to characterize forest structure (e.g., Lefsky 
et al. 2005, 2007; Rosette et al. 2008; Sun et al. 2008; Ballhorn 
et al. 2011). Space-borne lidar to provide systematic and widely 
dispersed measures of vegetation characteristics is required 
for robust global biomass estimates, among other information 
needs (Wulder et al. 2013b).

Table 15.4  Comparison of Lidar and Radar in Remote Sensing of Forests

Characteristics Lidar Radar 

Cloud penetration capacity No. Yes.
Coverage can be obtained at user-specified 

times, even at night
Yes. Yes.

May penetrate vegetation, sand, and surface 
layers of snow

No. Yes.

Penetration to forests Using canopy gaps and small beams. May penetrate through leaves and needles.
Images can be produced from different 

types of polarized energy (HH, HV, 
VH, VH)

Yes, but not applied. Usually applied.

May operate simultaneously in several 
wavelengths (frequencies) and thus has 
multifrequency potential

Yes, applied currently in bathymetry and 
hyperspectral lidars.

Yes, common approach.

Can produce overlapping images suitable 
for stereoscopic viewing and 
radargrammetry

Not applied. Yes.

Supports interferometric Not applied. Yes.
Applied wavelengths Typical wavelengths are between 500 and 

1550 nm.
The abbreviations associated with the radar frequencies and 

wavelengths include (K: 18–26.5 GHz, 1,67–1,19 cm; X: 
8–12.5 GHz, 3.8–2.4 cm; C: 4–8 GHz, 7.5–3.9 cm; S: 2–4 GHz, 
15–7.5 cm; L: 1–2 GHz, 30–15 cm; P: 0.3 –1 GHz, 100–30 cm).

Speckle Since backscatter is not strongly used, the 
effect of speckle is not well studied. 
However, the speckle effect is smaller in 
magnitude as with radars.

Strong speckle effect with microwave wavelengths, to remove 
the speckle, the image is usually processed using several looks; 
thus, an averaging process takes place.

Foreshortening, layover, and shadowing Do not exist with lidar data, since point 
clouds always preferred before 
backscatter information.

Geometric distortions exist in all radar imagery when 
backscatter is the main data output.

Object roughness Most of the object are considered as rough 
with lidar wavelengths.

Incidence angle affects strongly to the radar backscatter with 
non-rough surfaces.

Biomass measurements Typically based on point cloud metrics 
data.

Previously based on backscatter data. Radar backscatter 
increases approximately linearly with increasing biomass until 
it saturates at a biomass level that depends on the radar 
frequency. The lower the frequency, the better the penetration.

Soil moisture Affects intensity. L-band radar penetrates to a maximal depth of approximately 
10 cm. Shorter wavelengths penetrate to only 1–3 cm. 
Multi-temporal radar data can be used to measure soil 
moisture variation.
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15.4.2  Space-Borne Synthetic Aperture Radar

In the past decades, remarkable amount of research using SAR 
data has been conducted in the field of FI concentrating usually 
on stand- or plot-level mean stock volume and/or above-ground 
biomass (AGB) estimation (e.g., Le Toan et al. 1992; Fransson and 
Israelsson 1999; Wagner et al. 2003; Rauste 2005; Tokola et al. 
2007; Holopainen et al. 2010; Solberg et al. 2010). Results have 
been promising, but merely not accurate enough for operative 
FIs. Recently, SAR satellite images have rapidly improved thanks 
to the latest very-high-resolution SAR satellites (TerraSAR-X/
TanDEM-X, COSMO-SkyMed, and Radarsat-2) (Krieger et  al. 
2007; Torres et  al. 2012). Therefore, improvements in the field 
of SAR-based forest mapping are anticipated as well. In general, 
SAR images contain the following information at the pixel level: 

(1) radar backscattering intensity, (2) phase of the backscattered 
signal, and (3) range to target pixel.

	 1.	 Radar intensity corresponds to the strength of the back-
scattered signal compared to the strength of the trans-
mitted signal, and it is a function of the SAR system 
parameters (such as the wavelength and the polarization 
of the used electromagnetic radiation) and target param-
eters (such as the target area roughness compared to the 
used radar wavelength and dielectric properties).

	 2.	 The phase information in the single-channel SAR data is 
quasi-random and, therefore, useless for target interpre-
tation. However, phase information is an essential part 
of multipolarized data analysis (SAR polarimetry) and 
InSAR.

Table 15.5  Example Characteristics of the 3D Remote Sensing Systems

Space-borne Lidar
Potential Global biomass with remarkably better accuracy than with today’s techniques
Possible beam size Few tens of meters, ranging accuracy of 1–3 m (for canopy height)
Challenges To obtain high power from space, lifetime of the system
System providers Currently, NASA with former ICESat, with GEDIa recently (2014) funded to place a lidar on the International Space Station

Space-borne SAR
Resolution Resolution up to 1 m from space, typically to 10 km–by–10 km imagery
Frequency C- or X-band
Revisit time Few days
Interferometry Repeat-pass interferometry/single-pass interferometry
Feasible Large-area inventories
Characteristics Ranging accuracy of 3–5 m (for canopy height), cost of the data is typically high compared to data quality
System providers DLR (TerraSAR X), ASI (Cosmo), ESA (Sentinel-1), NASDA

Airborne laser scanning
Point density Point density 0.5–40 pts/m2

Elevation accuracy 5–30 cm
Planimetric accuracy 20–80 cm
Operating range Few hundred meters to several kilometers
Feasible Cost effective for areas larger than 50 km2

Characteristics Homogenous point clouds
System providers Optech, Leica, Riegl

Mobile laser scanning
Point density Point density in the range of 100 to several thousand pts/m2

Accuracy Point accuracy of few centimeters (egg) when collected with good GNSS coverage
Operating range Applicable range of few tens of  meters
Feasible Collecting large data sets for road environment
Characteristics Relatively high variation (density) in the range data
System providers StreetMapper, Optech, Riegl, Trimble, Nokia Here, Topcon, IGI, MDL

Terrestrial laser scanning
Point density Point density in the range of 10,000 pts/m2 at the 10 m
Accuracy Distance accuracy of few mm to 1–2 cm
Operating range Applicable range of few tens of meters

Operational scanning range from one to several hundred meters
Feasible Feasible for small areas less than few tens of meters distance
Characteristics Processing time challenging: image processing techniques applied; small variation in data, e.g., distance variation low, thus surface 

normal can be calculated
System providers Faro, Leica, Riegl, Topcon, Trimble, Zoller & Fröhlich

a	http://www.nasa.gov/press/2014/july/nasa-selects-instruments-to-track-climate-impact-on-vegetation/#.VAXwT_ldX1Z.

© 2016 Taylor & Francis Group, LLC

  

http://www.nasa.gov/


404 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

	 3.	 The range measurement is based on the time-of-flight 
information of the radar pulse and has typically neglected 
in biomass estimation tasks.

The use of intensity and backscattering coefficient information in 
forest resources mapping has been widely studied over the past 
few decades. In general, the longer radar wavelengths (L-band or 
for airborne sensors also P- and VHF-band) are more suitable for 
stem volume estimation than the shorter wavelengths of C-band 
or X-band (Le Toan et al. 1992; Fransson 1999). The reason for 
this is that the interaction between radar waves and forest struc-
tures in the L-band and P-band occurs on the trunks of trees. On 
the other hand, in the X-band and C-band, the scattering takes 
place at the top of the forest canopy, on branches and foliage, 
contributing apparently less to the information related to stem 
volume. Even though the relationship between radar intensity 
and stem volume has been well studied, there still remain prac-
tical challenges to be overcome due to topography and seasonal 
variations in weather. Rauste (2005) was able to obtain a corre-
lation coefficient of 0.85 between stem volume and radiometri-
cally normalized L-band JERS-1 data in Finland. However, the 
L-band intensity appears to saturate at some level of stem volume. 
Typically, stem volume levels beyond 100–200 m3/ha cannot be 
observed (Fransson and Israelsson 1999; Rauste 2005) due to sat-
uration. In addition to saturation at higher biomass levels, there 
are other issues, such as speckle and mixture of surface rough-
ness, moisture, and biomass affecting the output of the radar.

The radar pulse illuminates a given surface area that consists 
of several scattering points. Thus, the returned echo comprises a 
coherent combination of individual echoes from a large number 
of points (see Elachi 1987). The result is a single vector represent-
ing the amplitude V and phase f (I–V2) of the total echo, which 
is a vector sum of the individual echoes. This variation is called 
fading or speckle. Thus, an image of a homogeneous surface with 
constant reflectivity will result in intensity variation from one 
resolution element to the next. Speckle gives images recorded 
with radar a grainy texture.

The radar cross section is defined as the equivalent of a per-
fectly reflecting area that reflects isotropically (spherically). 
The backscatter coefficient is defined as the radar cross section 
divided by the area illuminated. The radar backscatter coef-
ficient is mainly used to classify target characteristics. Surface 
roughness, moisture, and biomass and vegetation structure are 
major environmental parameters within the resolution cell that 
are responsible for backscattering the incident energy. Surface 
roughness is the terrain property that strongly influences the 
strength of the radar backscatter. Co-polarization backscatter 
toward the sensor results from single reflections from canopy 
components such as the leaves, stems, branches, and trunk, and 
these returns are generally very strong (called canopy surface 
scattering). If the energy is scattered multiple times within a dis-
tributed volume such as a stand of pine trees, this is often called 
volume scattering. Radar backscatter increases approximately 
linearly. With higher biomass levels, it is hard to separate soil 
moisture and vegetation backscatter contributions.

The phase information can be used to calculate 2D interfero-
metric coherence maps and this way to deriving stem volume 
and other forest parameters (e.g., Askne et  al. 2003; Wagner 
et al. 2003; Santoro et al. 2007). However, the coherence signal 
appears to saturate at some point of the biomass hampering the 
estimation of high biomass values. Even though this is a very 
promising technology as demonstrated with the ERS-1 and 
ERS-2 SAR tandem mission, it is not supported by the currently 
operational SAR satellite missions. Moreover, promising results 
have been achieved by combining the methods of interferometry 
and polarimetry, that is, PolInSAR (Papathanassiou and Cloude 
2001) or SAR tomography (Reigber 2002). However, the meth-
ods of PolInSAR and SAR tomography are still under scientific 
research, and appropriate SAR satellite data have not been avail-
able before TanDEM-X satellite. Also several data fusion studies 
of SAR and lidar data (scanning or profiling) in forest mapping 
have been performed (e.g., Hyde et al. 2007; Nelson et al. 2007; 
Goodenough et al. 2008; Sun et al. 2008; Kellndorfer et al. 2010; 
Banskota et al. 2011). Overview of using ALS, SAR, and hyper-
spectral remote sensing data for AGB assessment can be found 
in Koch (2010). The estimation of AGB solely on the basis of SAR 
backscatter intensity has proven to be challenging (e.g., Fransson 
and Israelsson 1999; Rauste 2005; Holopainen et al. 2010).

The most promising approach to determine forest biomass 
by radar imaging from space is likely to be via canopy height 
information (i.e., 3D techniques) similarly to LS. Recent studies 
have shown that elevation information extracted from SAR has 
potential in the estimation of forest canopy height even close to 
ALS data (e.g., Solberg et al. 2010; Perko et al. 2011; Karjalainen 
et al. 2012). Basically, there are two approaches to extract eleva-
tion information from the SAR images: (1) InSAR (Massonnet 
and Feigl 1998; Rosen et  al. 2000) and (2) radargrammetry 
(Leberl 1979; Toutin and Gray 2000).

15.4.2.1  SAR Interferometry

InSAR is a technique in which the pixel-by-pixel phase differ-
ence between two complex SAR images acquired from slightly 
different perspectives can be converted into elevation differ-
ences of the terrain (Massonnet and Feigl 1998; Rosen et  al. 
2000). When the X- or C-band of the radar is considered, the 
scattering takes place near the top of the forest canopy (Le Toan 
et al. 1992). Therefore, if the elevation of the ground surface is 
known (e.g., a DTM is available), then the X- or C-band’s inter-
ferometric height compared to the ground surface elevation is 
related to the forest canopy height and accordingly to the stem 
volume. For forestry applications, simultaneous acquisition 
of the SAR data used for interferometry is especially advanta-
geous. An example of the use of interferometric data for forest 
canopy height estimation has been provided by Kellndorfer et al. 
(2004), who used the C-band’s interferometric heights from the 
shuttle radar topography mission (SRTM) to estimate the for-
est canopy height. Similar results using the SRTM X-band data 
were presented by Solberg et al. (2010), who also estimated the 
AGB based on SRTM elevation values. The tandem-X mission 
(TDM), launched in 2010, consists of two satellites flying in 
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close formation enabling bistatic acquisition of X-band SAR 
data. Recent studies (Askne et al. 2013; Solberg et al. 2013) have 
demonstrated the use of TDM data retrieval of forest biomass of 
boreal forests.

15.4.2.2  SAR Radargrammetry

SAR radargrammetry is an alternative way to InSAR to extract 
elevation data from radar data. This is based on stereoscopic 
measurement of SAR images. Analogous to photogrammetric 
spatial intersection, a stereo pair of SAR images with different 
off-nadir angles can be used to calculate the 3D coordinates for 
corresponding points on the image pair. However, contrary to 
interferometry, radargrammetry is based on the intensity and 
range values of SAR data and not on the phase information. The 
foundations for the stereo-viewing capabilities of radar images 
were recognized already in the 1960s (see, e.g., La Prade 1963). An 
example of research looking into the mathematical foundations 
for calculating 3D coordinates and their expected accuracies is 
the work by Leberl (1979). When the trajectory of a SAR antenna 
(position and velocity as functions of time) is known accurately 
enough in relation to the object coordinate system and when a 
point target can be clearly identified on two SAR images with dif-
ferent off-nadir angles, the 3D coordinates of the point target can 
be calculated based on the range information. Typically, the so-
called range-Doppler equation system is used as a sensor model, 
which describes accurately enough the propagation of electro-
magnetic radiation from the SAR image pixel to the point target 
and vice versa (Leberl 1979). The Canadian satellite, Radarsat-1, 
was one of the first SAR satellites to provide images with variable 
off-nadir angles suitable for radargrammetric processing (Toutin 
and Gray 2000). The ERS-1 and ERS-2 satellites of the European 
Space Agency have also provided suitable stereo pairs, but with 
limited stereo overlap areas (Li et  al. 2006). However, only a 
few studies related to the extraction of forest information from 
radargrammetry have been published, for example, by Chen 
et al. (2007). Recent studies by Perko et al. (2011) and Karjalainen 
et al. (2012) have revealed the potential of radargrammetric 3D 
data in forest biomass estimation and change detection.

15.4.3  Airborne Laser Scanning, Airborne Lidar

ALS is a method based on lidar measurements from an aircraft, 
where the precise position and orientation of the sensor is known, 
and therefore the point cloud (x, y, z) of the reflecting objects 
can be determined. The first studies of ALS for forestry purposes 
included standwise mean height and volume estimation (e.g., 
Næsset 1997a,b), individual-tree-based height determination 
and volume estimation (e.g., Hyyppä and Inkinen 1999; Hyyppä 
et al. 2001a), tree-species classification (e.g., Hyyppä et al. 2001; 
Brandtberg et al. 2003; Holmgren and Persson 2004), and mea-
surement of forest growth and detection of harvested trees (e.g., 
Hyyppä et al. 2003; Yu et al. 2004, 2006). Today, ALS is becom-
ing a standard technique in the mapping and monitoring of for-
est resources. By using ALS-based inventory, 5%–20% error in 
main forest stand attributes at stand level has been obtained. For 

overviews on using ALS in FI, see Hyyppä et al. (2008). ALS is a 
promising technique also for efficient and accurate AGB retrieval 
because of its capability of direct measurement of vegetation 3D 
structure. AGB correlates strongly with canopy height. Popescu 
et al. (2003), Popescu (2007), van Aardt et al. (2008), and Zhao 
et al. (2009) showed that AGB can be estimated similarly to other 
forest attributes by means of ALS metrics. The leaf area index 
(LAI) has also been used as a predictor of AGB (Koch 2010). 
Interaction of ALS pulse and forest canopy has also been studied 
using ALS intensity (Korpela et al. 2010).

15.4.4 T errestrial Laser Scanning

TLS, also known as ground-based lidar, has been shown to be a 
promising technique for forest field inventories at tree and plot 
levels. The major advantage of using TLS in forest field inven-
tories lies in its capacity to document the forest in detail. The 
first commercial TLS system was built by Cyra Technologies 
(acquired by Leica in 2001) in 1998, and the first papers related to 
plot-level tree attribute estimation were reported in early 2000s. 
Currently, TLS has shown to be feasible for collecting basic tree 
attributes at tree and plot levels, such as dbh and tree position 
(Maas et al. 2008; Brolly and Kiraly 2009; Murphy et al. 2010; 
Lovell et  al. 2011; Liang et  al. 2012a). By reconstructing tree 
stem, it is possible to derive high-quality stem volume and bio-
mass estimates comparable in accuracy with the best national 
allometric models (Liang et al. 2014a). TLS data also permit time 
series analyses because the entire plot can be documented con-
secutively over time (Liang et al. 2012b). It is expected that TLS 
will be operationally used in plot-level FIs as soon as the appro-
priate software becomes available, best practices become known, 
and general knowledge of these findings is more widely spread.

15.4.5  Mobile Laser Scanning

MLS is based on lidar measurements from a moving platform, 
where the precise position and orientation of the sensor is 
known using a navigation system, similar to ALS, and therefore 
the position of the reflecting objects can be determined either 
from pulse travel time or from phase information. An MLS sys-
tem consists of one or several laser scanners. Navigation system 
consists of various sensors for positioning and determining the 
rotation angles of the system, while GNSS and inertial measure-
ment unit being the most important parts of the system. Also 
other mapping sensors, such as cameras, thermal imagers, and 
spectrometers, can be incorporated into the MLS systems. In 
principle, MLS is similar to ALS, whereas the platform is not air-
craft. The application of MLS in forestry is being recently stud-
ied (Lin et al. 2010; Holopainen et al. 2013; Liang et al. 2014c). 
In the near future, MLS can be seen as a practical means to pro-
duce tree maps or inventories in urban forest environments, but 
in future possibly also in boreal forests and managed forests. 
However, MLS is still far from a widely used practical applica-
tion in forestry, but the situation may change due to the rapid 
development of automatic MLS and TLS data processing.
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15.5 � Processing 3D Data into 
Forest Information

It is anticipated that many of the future remote sensing processes 
for forestry will be based on 3D point cloud or elevation data 
processing, especially those based on lidar and radar. This is 
perhaps the first time that lidar-based point cloud processing is 
proposed as an optimal solution also for radar data.

From the 3D data, you can calculate DTM, DSM, and CHM/
nDSM. Today, most 3D techniques require a good DTM, which 
typically comes from LS, since radar data with available fre-
quency bands do not provide penetration into ground floor due 
to too large footprint size and no ranging capacity of the applied 
radars. In optical wavelength, the penetration of signal through 
vegetation is lower, but since lidar is based on narrow beams 
finding canopy gaps, the terrain model can be calculated accu-
rately from the lidar data. Lower microwave wavelength pen-
etrates the vegetation layer better, but then also the penetration 
into the ground increases based on dielectric properties of the 
ground. From that point of view, lidar data are optimal for topo-
graphic mapping. The idea is to provide surface model (DSM) 
and subtract the ground elevation (DTM) from it in order to get 
a canopy height. Intensity, coherence (in interferometry SAR), 
and texture can be used to improve the estimates in 3D-based 
inventory techniques as well as other lidar metrics.

We see that there are two kinds of processing needed: forest 
attribute estimation based on single-time point cloud and use of 
bi-temporal point clouds for change detection (see Figure 15.1). 
Additionally, direct measurement of individual tree attributes is 
the third kind of data processing methodology used, but it can 
be combined with the first two approaches.

Single-point cloud processing for forest attribute data collec-
tion includes the following steps. DTM is obtained from ALS 
data or known beforehand (for SAR). CHM is calculated to get 
tree heights and tree height metrics. Features (point cloud met-
rics) are calculated from the data, and nonparametric estima-
tion is applied. Nonparametric estimation requires field plots, 
which are used for the teaching of the classifier. In addition to 

the point cloud metrics, other features, such as individual tree 
information, texture, waveform lidar features, image processing 
applied to, for example, DSMs, image-based features (including 
NDVI), and other channel information and ratios, can be added 
to improve the prediction. Tree species are predicted also in this 
phase, and therefore, the system should include features capable 
to discriminate species. The optimum output, requested by for-
est companies, of the process is species-specific height distribu-
tion of the trees.

The process includes

	 1.	 DTM generation
	 2.	 DSM and CHM generation
	 3.	 Derivation of point cloud metric
	 4.	 Prediction of forest attributes using nonparametric 

estimation

Typical process for change detection is to subtract two DSMs 
from bi-temporal data after they have been shown to match with 
elevation. After thresholding, which are used to see real changes, 
and after filtering/smoothing, segmentation of the changes, 
areas can be delineated. The changes can then be compared with 
the real change of the reference. Prediction of the change can 
also be done using nonparametric estimation.

Direct measurement of individual tree attributes can be based 
on the detection of individual trees, measurement of the tree 
heights, diameters, and stem curves directly from the point 
cloud data.

In the following, these three types of processing are further 
discussed.

15.5.1  DTM Processing

Removal of low points is an important preprocessing part of 
DTM and is usually done before ground classification. Low 
points seem to come below the ground surface, and their ori-
gin in forested area may be multiple reflections from trees or the 
ringing effect (too high return signal entering the receiver). Low 
points exist also with airborne 3D radar data (Hyyppä  1993). 
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data (trees
and plots)

Non-parametric
model for stand

attributes

Stand delineation

Stand-
based

estimates

Point cloud and
image-based

features

CHM (raster or
point cloud)

DSM
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Laser/photogram
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(a)
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Stand-based
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Change
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metric/SAR-

based point cloud
from time 2
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Figure 15.1  (a) Forest attribute estimation based on single-time point cloud and (b) use of bi-temporal point clouds for change detection.
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Forested areas may also include buildings, and multiple reflec-
tions from windows and ground can cause low points. A single 
or group of points may cause an anomaly in the correct ground 
surface if it is not removed from the point cloud in the first 
step. A point can be defined as being low if all of its neighbor-
ing points in a search window are more than a predefined value 
higher than the point. One or several low-point removal filtering 
processes should be done before the DTM filtering (classification 
of DTM points).

The second step in DTM calculation is the initial DTM point 
cloud selection. This step is needed to detect building regions. 
For example, by selecting the lowest points with an 80 m- 
by-80 m window will remove all buildings less than 80 m in 
size. This step can also be done by data pyramids. The first and 
second steps are not always used, but the user should be careful 
in such cases.

For the final ground point classification, there are several 
DTM filtering techniques developed. Mathematic morphol-
ogy is one applied technology. Using operators such as erosion, 
dilation, closing, and opening can produce DTM and DSM. 
Vosselman (2000) applied a maximum admissible height differ-
ence function for a defined distance. Points within the maxi-
mum height difference function were included as ground points. 
Progressive densification strategy starts with step 2 (initial DTM 
point cloud selection) and then iteratively increase the amount of 
accepted terrain points. Axelsson (2000) developed a progressive 
TIN densification method, which is implemented into TerraScan 
software. In TerraScan, laser point clouds are first classified 
to separate ground points from all other points. The program 
selects local low points on the ground and makes an initial tri-
angulated model. New laser points are then added to the model 
iteratively, and the actual ground surface is then described more 
and more precisely. Maximum building size, iteration angle, and 
distance parameters determine which points are accepted. Kraus 
and Pfeifer (1998) developed a DTM algorithm for which laser 
points between terrain points and non-terrain points were dis-
tinguished using an iterative prediction of the DTM and weights 
attached to each laser point, depending on the vertical distance 
between the expected DTM level and the corresponding laser 
point. The method officially goes to category surface-based fil-
tering, in which the starting point is that all given points belong 
to the terrain class and then iteratively remove the points that 
do not fit to surface model. In the beginning, the method did 
not use initial DTM, but in order to overcome the limitation in 
large building areas and in order to speed up the process, initial 
DTM and data pyramids are applied in hierarchical framework. 
The method is implemented in SCOP++ (Kraus and Otepka 
2005). Additionally, the filtering can be based on segments, that 
is, segment-based filtering. Either object- or feature-based seg-
mentation can be done, and then filtering is performed to each 
segment separately. Additionally, waveform and intensity can be 
used to assist in ground filtering.

A comparison of the filtering techniques used for DTM 
extraction can be found in a report on International Society 
for Photogrammetry and Remote Sensing (ISPRS) comparison 

of filters (Sithole and Vosselman 2004). Selection of the filter-
ing strategy is not a simple process. In practice, the amount of 
interactive work determines the final quality of the product, but 
in FI, fully automated DTM calculation is preferred. Examples 
of commercial software that include DTM generation are 
REALM, TerraScan, and SCOP++. DTM quality indicators can 
also be directly calculated from the point cloud and waveform 
data. Such indicators include, for example, point density, point 
spacing, terrain slope, echo width, and estimate of the AGB esti-
mated with lidar data.

15.5.2 � DSM Processing and Canopy 
Height Model

Ideally, the first echoes over a forest region come from the sur-
face model of the canopy, whereas the last echoes from the ter-
rain model. The most frequently used method for the creation 
of a DSM is, therefore, to take the highest echo within a given 
neighborhood and interpolate the missing heights. Following 
the creation of the digital terrain (or elevation) model (DTM 
or digital elevation model (DEM)), a CHM can be calculated 
by subtracting the height of the ground from the DSM and pre-
sented in a raster or TIN height data format.

Airborne lidar measurements tend to underestimate tree 
height (Nelson et  al. 1988; Hyyppä and Inkinen 1999; Lefsky 
et al. 2002; Rönnholm et al. 2004), and the same happens with 
3D radars (Hyyppä 1993). The first echo return comes more 
often from the shoulder of the tree instead of the tree top. 
Although a laser pulse hits the top, the tree top may not be wide 
enough to reflect a recordable return signal. On the other hand, 
dense undervegetation causes overestimation in the DTM. For 
these reasons, the CHM is typically underestimated. Other fac-
tors affecting tree height measurement accuracy are scanning 
parameters, such as flying height, pulse density, pulse footprint, 
applied modeling algorithms, and scanner properties (e.g., sen-
sitivity, field of view, zenith scan angle, and beam divergence), 
and structure and density of the tree crown (Holmgren 2003; 
Hopkinson et al. 2006). With deciduous forests, seasonal aspects 
have to be recognized.

15.5.3  Point Cloud Metrics

The prediction of stand variables is typically based mainly on 
point height metrics calculated from the ALS data. Nelson 
et al. (1988) divided features related to the height and density, 
which is the foundation of the area-based technology. Features 
such as percentiles calculated from a normalized point height 
distribution, mean point height, densities of the relative heights 
or percentiles, standard deviation, and coefficient of variation 
are generally used (Hyyppä and Hyyppä 1999; Næsset 2002). 
The percentiles are down to the top heights calculated from the 
vertical distribution of the point heights, that is, the percentile 
describes the height at which a certain number of cumulative 
point heights occur. Density-related features are calculated from 
the proportion of vegetation hits compared with all hits. A hit 
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is seen as a vegetation hit from trees or bushes if it has been 
reflected from over some threshold limit above ground level. All 
the features are calculated separately for every echo type. The 
reason for this is that the sampling between echo types is some-
what different (Korpela et al. 2010). Table 15.6 gives a list of typi-
cal point height metrics used.

15.5.4 � Approaches for Obtaining Forest 
Data from Point Clouds

Approaches aimed at obtaining forest and forestry data from 
point cloud data have been divided into two groups: (1) area-
based approaches (ABAs) and (2) individual/single-tree detec-
tion approaches (ITDs).

ABA prediction of forest variables is based on the statistical 
dependency between the variables measured in the field and the 
predictor features derived from the ALS data. The sample unit in 
the ABA is most often a grid cell, the size of which depends on the 
size of the field-measured training plot. Stand-level FI results are 
aggregated by summing and weighting the grid-level predictions 
inside the stand. When using ITD techniques, individual trees 
are detected, and tree-level variables, such as height and volume, 
are measured or predicted from the ALS data, that is, the basic 
unit is an individual tree. Then, the stand-level FI results are 
aggregated by summing up the treewise data. The ABA does not 
make use of the neighborhood data of laser returns. On the other 
hand, ABAs are based on the height and density data acquired 

by the ALS, which are highly correlated with the forest variables. 
Currently, the ABA is operationally applied in the Nordic coun-
tries when carrying out standwise FIs. Some 3 million hectare 
of Finnish forests is inventoried every year by applying ABA. 
White et al. (2013a) report on best practices for using the ABA in 
a forest management context.

ABA is based on accurate training plot–level data, which 
should represent the whole population and cover the variations 
in it as much as possible. The efficient selection of the training 
plot locations requires pre-knowledge of the inventory area. The 
statistical relation between the predictors and dependent vari-
ables to be defined is modeled using training data. The depen-
dent variables are then predicted for all (other) grid cells without 
training data typically using nonparametric estimation tech-
niques. If stand-level variables are needed, they are calculated 
by weighting the grid-level predictions inside the stand to the 
known stand delineation map.

One of the first tests with ABA in Finland was Suvanto et al. 
(2005). Regression models were developed using laser height 
metrics for diameter, height, stem number, basal area, and stem 
volume of 472 reference plots. The predicted accuracies were 
9.5%, 5.3%, 18.1%, 8.3%, and 9.8%, respectively, at stand level. 
Current forest management planning inventories in Scandinavia 
require species-specific information for growth projections and 
simulated bucking. Tree species composition has also a major 
effect on forest value. Maltamo et al. (2006) added predictor fea-
tures from aerial photographs and existing stand registers to ALS 

Table 15.6  Typical Point Height Metrics Used in Forest Attribute Derivation

No. Feature Explanation 

Point Height Metrics
1 meanH Mean canopy height calculated as the arithmetic mean of the heights from the point cloud
2 stdH Standard deviations of heights from the point cloud
3 P Penetration calculated as a proportion of ground returns to total returns
4 COV Coefficient of variation
5 H10 10th percentile of canopy height distribution
6 H20 20th percentile of canopy height distribution
7 H30 30th percentile of canopy height distribution
8 H40 40th percentile of canopy height distribution
9 H50 50th percentile of canopy height distribution

10 H60 60th percentile of canopy height distribution
11 H70 70th percentile of canopy height distribution
12 H80 80th percentile of canopy height distribution
13 H90 90th percentile of canopy height distribution
14 maxH Maximum height
15 D10 10th canopy cover percentile computed as the proportion of returns below 10% of the total height
16 D20 20th canopy cover percentile computed as the proportion of returns below 20% of the total height
17 D30 30th canopy cover percentile computed as the proportion of returns below 30% of the total height
18 D40 40th canopy cover percentile computed as the proportion of returns below 40% of the total height
19 D50 50th canopy cover percentile computed as the proportion of returns below 50% of the total height
20 D60 60th canopy cover percentile computed as the proportion of returns below 60% of the total height
21 D70 70th canopy cover percentile computed as the proportion of returns below 70% of the total height
22 D80 80th canopy cover percentile computed as the proportion of returns below 80% of the total height
23 D90 90th canopy cover percentile computed as the proportion of returns below 90% of the total height
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height metrics resulting in plot-level volume estimation accuracy 
from 13% to 16% depending on the predictors used. Similarly, 
Packalen and Maltamo (2007) used the k-MSN method to impute 
species-specific stand variables using ALS metrics and aerial pho-
tographs to the same data set as in Suvanto et al. (2005), and the 
species-specific volume estimates at the stand level were 62.3%, 
28.1%, and 32.6% for deciduous Scots pine (Pinus sylvestris L.) 
and Norway spruce (Piceaabies L.), to were 62.3%, 28.1%, and 
32.6% for deciduous, Scots pine (Pinus sylvestris L.) and Norway 
spruce (Piceaabies L.). Thus, there are limitations with current 
technology, and especially species-specific tree size (height and 
diameter) distribution information is needed. One possible way 
is to use more detailed data and use ITD-type processing.

In addition to NN and k-MSN methods, random forest (RF) 
classifier has also been applied in ABA (Yu et al. 2011). The RF 
is a nonparametric regression method in which the prediction 
is obtained by aggregating regression trees, each constructed 
using a different random sample of the training data and choos-
ing splits of the trees from among the subsets of the available 
features, randomly chosen at each node. The samples that are not 
used in training are called “out-of-bag” observations. They can 
be used to estimate the feature’s importance by randomly per-
mutating out-of-bag data across one feature at a time and then 
estimating the increment in error due to this permutation. The 
greater the increment, the more important the feature.

Similar ABA approach can also be used to process point clouds 
provided by radar imagery. According to the first results obtained, 
the use of stereo SAR data in the prediction of plot-level forest 
variables is promising. Karjalainen et al. (2012) obtained a rela-
tive error (RMSE%) of 34.0% for stem volume prediction. For the 
other forest variables, that is, the mean basal area, mean diameter 
at breast height, and mean forest canopy height, the accuracies 
were 29.0%, 19.7%, and 14.0%, respectively, using RF as nonpara-
metric estimation technique. Typically, such a high level of pre-
diction accuracy cannot be obtained using satellite-borne remote 
sensing at the plot-level data in the boreal forest zone.

Since there are limitations in the ABA and user’s need to get 
better species-specific tree size distribution data, individual 
tree approaches have been developed. The basic idea is to derive 
more detailed information of standing trees that are then used 
in the prediction of the forest attributes. Thus, area-based pre-
diction can be done also using individual tree-based features, as 
originally proposed in Hyyppä (1999). That was demonstrated 
in Hyyppä et al. (2012) in which both individual tree-based and 
point height metrics were used as the inputs for the RF classi-
fier. Individual tree-based features improved the ABA’s accuracy 
significantly since they had very high correlation, for example, 
with the reference stem volume. When calculating the impor-
tance of the features, most of the individual tree-based features 
were among the best features confirming that individual tree-
based features are applicable in ABA or stand-level inventory 
in general. When estimating plot-level mean height, the best 
laser-derived feature was the mean height derived by using the 
individual tree technique. When estimating dbh, the best laser-
derived features were (1) mean canopy height, (2) penetration 

to the ground, (3) mean tree height (derived from the extracted 
individual trees), and (4) mid percentiles. For the estimation of 
stem volume, the best laser-derived feature was the stem volume 
derived from extracted individual trees, followed by the basal 
area derived from extracted individual trees. It is possible to eas-
ily derive further laser point height metrics and individual tree-
based features.

15.5.5 T ree Locating with ALS

Most of the current approaches for tree detection are based on 
finding trees from the CHM, which is calculated as a maximum 
of canopy height values within each raster cell. Thus, the CHM 
corresponds to the maximum canopy height of the first pulse 
data. Recently, other approaches have been proposed (Hyyppä 
et al. 2012) utilizing the canopy penetration capability of the last 
pulse returns with overlapping trees and correcting past infor-
mation in this area (Hyyppä et  al. 2008). When trees overlap, 
the surface model corresponding to the first pulse stays high, 
whereas with last pulse, even a small gap results in a drop in ele-
vation, that is, the trees can be more readily discriminated. The 
first pulse works, when the whole laser beam penetrates the gap 
between the crowns, so that the drop is detectable after filtering. 
With last pulse, the drop in elevation is substantially larger, and 
the drop can be detected even with overlapping trees since the 
last pulse is more sensitive to lower canopy levels. The methodol-
ogy and the applied automatic accuracy assessment are further 
demonstrated in Figure 15.2, which shows two raster models. 
The Fmax surface (first pulse surface) model corresponds to 
the commonly accepted way of finding trees. When comparing 
Lmin (last pulse surface) and Fmax models, it seems to be easier 
to discriminate trees from Lmin rather than from Fmax, even 
though visual processing of laser data in the forest is inferior to 
the best automated techniques.

Figure 15.3 depicts the percentage of correctly matched trees 
using four different raster models for tree location. The use of 
last pulse data gave a higher degree of discrimination between 
the trees than the use of first pulse data. The use of the raster 
corresponding to the minimum of last returns resulted in the 
highest discrimination between trees. An improvement of 6% 
in ITD is better than that obtained by increasing the pulse den-
sity from two to eight pulses per m2 reported in Kaartinen and 
Hyyppä (2008). The improvement in tree detection increased 
when the density of the forest stand decreases. With the dbh 
class 5–10 cm, the last pulse resulted in 10% better detection of 
trees. The results confirm that there is also substantial informa-
tion for tree detection in last pulse data. Currently, in raster-
based processing, this information has been largely neglected. 
The obtained results would even suggest the use of last pulse data 
for detection, but we assume that a hybrid model utilizing both 
the first and last pulse data should be developed, even when pro-
cessing is done at raster level. The advantages of first pulse data 
obviously include the lower number of commission errors and 
the high quality of tree separation when the crowns are not over-
lapping, whereas the advantage of last pulse is in the separation 
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of trees whose crowns overlap. A hybrid model, utilizing the 
advantages of both pulse types should be developed.

15.5.6 I ndividual Tree Height Derivation

In order to test the individual tree extraction methods using 
the same remote sensing data sets, the European Spatial 
Data Research Organization (EuroSDR) and the ISPRS ini-
tiated the Tree Extraction Project in 2005 to evaluate the 
quality, accuracy, and feasibility of automated tree extrac-
tion methods based on high-density laser scanner data and 
digital aerial images. The project was hosted by the Finnish 

Geodetic Institute (FGI). Twelve partners from the United 
States, Canada, Norway, Sweden, Finland, Germany, Austria, 
Switzerland, Italy, Poland, and Taiwan participated in the 
test included in the Tree Extraction Project. The partners 
were requested to extract trees using the given test data sets. 
Another objective of the study was to find out how the pulse 
density impacts on individual tree extraction. The results were 
published in the project final report (Kaartinen and Hyyppä 
2008) and in Kaartinen et al. (2012).

Tree height quality analysis showed that the variability of point 
density was negligible when compared to variability between 
the methods (Figure 15.4). With the best models, an RMSE of 
60–80 cm was obtained for tree height. High-quality tree height 
estimates were obtained when using the models FOI, Metla, Texas, 
and FGI_VWS on the trees these methods had been detected. The 
results with the best automated models were significantly better 
than those attained when using the manual process. Both under-
estimation of tree height and standard deviation were decreased 
in general as the point density increased. The overestimation pro-
duced by the Model Norway in regard to tree height was due to the 
correction applied to the tree height in the preprocessing phase. 
The methods capable of finding more trees in the lower classes are 
obviously suffering; the uncertainty regarding the heights of the 
extracted tree in the lower levels is greater.

The measurement of tree height using TLS at the plot level 
has not been thoroughly studied because the visibility of tree-
tops with TLS techniques can be questioned. However, there 
are past results with TLS showing that tree height is typically 
underestimated and that the magnitude of estimation error is 
typically of several meters. In Huang et al. (2011), a −0.26 m 
bias and a 0.76 m RMSE were reported for one plot (212 stems/
ha, sparse stand) using the multi-scan approach. In Brolly and 
Kiraly (2009), a −0.27 m bias with a 1.82 m RMSE and a −2.37 m 
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bias with a 3.25 m RMSE were reported for one more dense plot 
(753 stems/ha) using the single-scan approach. In Hopkinson 
et  al. (2004), an approximate 1.5 m underestimation of tree 
heights was reported for two medium-density plots (465 and 
661 stems/ha) using the multi-scan approach. Maas et  al. 
(2008) depicted a −0.64 m bias and a 4.55 m RMSE for nine 
trees locating on four plots (212–410 stems/ha) using the sin-
gle- and multi-scan approaches. Fleck et al. (2011) concluded a 
2.41 m RMSE for 45 selected trees on one plot (392 stems/ha) 
using multi-scan data. The observation of tree tops from the 
TLS data is possible on sparse sample plots using many scans, 
as reported in Huang et al. (2011) and Fleck et al. (2011), but not 
in dense sample plots. Tree tops are most likely shadowed by 
other parts of the crown in the point cloud, but the use of well-
visible trees in sparse plots could be actually used to calibrate 
ALS-based tree heights. In the ISPRS/EuroSDR Tree extraction 
test (Kaartinen and Hyyppä 2008), TLS was able to collect tree 
height information with the level of 10 cm, but very-high-den-
sity scanning was made (both as point cloud density and in the 
number of scans applied).

One of the advantages of using MLS for plot-level invento-
ries lies in the fact that MLS can see many of the invisible tree 
tops for TLS. Since MLS platform moves all the time during the 
data acquisition, the gaps to tree tops are more likely visible with 
MLS than with TLS. This preliminary conclusion still requires 
detailed scientific studies to be confirmed.

15.5.7  Diameter Derivation

Since diameter cannot be directly measured from ALS, TLS, and 
MLS have been studied to provide accurate diameters at tree and 
plot levels. This kind of field data collection could also be used as 
a substitute for field-measured plot-level data in the ABA predic-
tion of forest attributes.

The most popular processing method today for locating trees 
and determining diameter is to cut a slice of data from the origi-
nal point cloud and to identify and model tree stems from this 
layer by point clustering or circle finding (Simonse et al. 2003; 
Aschoff and Spiecker 2004; Thies et al. 2004; Watt and Donoghue 
2005; Maas et al. 2008; Brolly and Kiraly 2009; Tansey et al. 2009; 
Huang et  al. 2011). This assumes that all trees present a clear 
stem at the same height at which the slice goes through the point 
cloud. This assumption is typically not valid in most mixed for-
ests having branches at different heights, and nearby branches 
may be overlapped in the layer. A study of a mixed deciduous 
stand showed difficulties even in the manual stem detection in 
a TLS data layer (Hopkinson et al. 2004). Results from studies 
of different types of forests are highly variable, indicating the 
need for more research on these topics. In Liang et al. (2012b), 
the dbh estimation results are reported at the tree level from 
five plots having bias of 0.16 cm and the RMSE of 1.29 cm. In 
Lindberg (2012), the bias and RMSE of tree-level dbh estimates 
from six plots were 0.16 cm and 3.8 cm, respectively. Table 15.7 
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Table 15.7  Summary of the Plotwise dbh Estimation from the Single-Scan Methods

Plot Result 

Number Size Density (stems/ha) Bias dbh (cm) RMSE dbh (cm)

Maas et al. (2008) 3 15 m radius 212–410 −0.67 to 1.58 1.80 to 3.25
Brolly and Kiraly (2009)a 1 30 m radius 753 −1.6 to 0.5 3.4 to 7.0
Liang and Hyyppä (2013) 5 10 m radius 605–1210 −0.18 to 0.76 0.74 to 2.41

a	Three detection methods were discussed.

© 2016 Taylor & Francis Group, LLC

  



412 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

summarizes the accuracy of the plotwise dbh measurements 
using the single-scan approach. In practice, single-scan, multi-
scan, and multi-single-scan techniques can be applied each hav-
ing their own pros and cons.

In Liang et  al. (2014c), an MLS system was tested, and its 
implications for FIs were discussed. The stem mapping accuracy 
was 87.5%; the root mean square errors of the dbh estimates and 
the location were 2.36 cm and 0.28 m, respectively. These results 
indicate that the MLS system has the potential to accurately map 
large forest plots, and further research on mapping accuracy and 
cost–benefit analyses is needed.

15.5.8  Stem Curve Derivation

The tree stem curve, or stem taper, depicts the tapering of the 
stem as a function of the height. The tree stem curve holds a sig-
nificant position in forestry, as it is the key input needed in the 
harvest operation and used in various ecological studies. If the 
most important part of the stem curve can be determined, it is 
also possible to derive biomass and stem volume estimates from 
the trees without knowledge of conventional allometric models 
relating, for example, diameter and height information to vol-
ume and biomass. From that point of view, it is surprising that 
the noninvasive measurement of stem curves using TLS has not 
been intensively studied.

Pioneering work of TLS for stem curve includes nine pine 
trees studied in Henning and Radtke (2006), a spruce tree in 
Maas et al. (2008), and two trees, one pine and one spruce, in 
Liang et al. (2011). The RMSE of the stem curve measurements 
was 4.7 cm in Maas et al. (2008) utilizing single-scan data. In 
Liang et  al. (2011), the RMSE of the stem curve estimation of 
the pine tree was 1.3 and 1.8 cm with the multi- and single-scan 
data, respectively, and the RMSE of the curve measurement 
of the spruce tree was 0.6 cm and 0.6 cm using the multi- and 
single-scan data, respectively.

The first detailed study on the plot-level automatic measure-
ment of the stem curves of different species and different growth 
stages using TLS was reported in 2014 (Liang et al. 2014a). From 
9 sample plots, 28 trees, 16 pines and 12 spruces, were selected. 
The plots were scanned utilizing the multi-scan approach. The 
trees were felled, and the stem curves were manually measured 
in the field. For comparison, the stem curve was also manually 
measured from the point cloud data. The stem curves were auto-
matically measured with a mean bias of 0.15 cm and mean RMSE 
of 1.13 cm at the tree level. The highest diameters measured were 
between 50.6% and 74.5% of the total tree height, with a mean 
of 65.8% for pine trees and 61.0% for spruce trees. These results 
showed that TLS data and automated processing have the capa-
bility of accurately measuring stem curves of different species 
and different growth stages. Surprisingly, the automated pro-
cessing gave clearly more diameter measurements at the upper 
part of the stems than with manual measurements from the 
same data. The difficulty of the manual measurement from point 
cloud data is that the stem edges are difficult to locate when the 
stem is partly blocked in the data by other branches.

15.6  Future Challenges

Remote sensing is today changing rapidly forestry inventory. 
For 100 years, FI was carried out by foresters; today, this task is 
strongly moving toward the direction which FIs are performed 
by remote sensing experts and forestry experts capable to han-
dle remote sensing, 3D data, point cloud and image processing. 
In the following, we try to anticipate the cases where lidar and 
radar remote sensing steps more deeply into forestry practices.

15.6.1 C oncept and Utility of the Lidar Plots

Ground-plot-like measures from airborne scanning lidar in 
many ways resemble field measures and are termed lidar plots. 
Ground plots remain invaluable for robust forest characteriza-
tions, enabling consistent and reliable measurement of attri-
butes to support FI, mapping, monitoring, modeling, and 
science. National inventories in many jurisdictions are primar-
ily based upon careful and systematic measurement of ground 
plots (Kangas and Maltamo 2006). Furthermore, applications 
that use remotely sensed data to produce forest attribute maps 
often require ground plot data for building models and validat-
ing outcomes. In many jurisdictions, ground plots remain costly 
to install and, as a result, are often limited in number and extent. 
For example, remote locations are difficult to access, such as 
some northern regions of Canada, further precluding the estab-
lishment of ground plots. Another example is locations with 
noncommercial forests that do not have the requisite economic 
drivers for maintaining up-to-date plot or inventory data sets. 
This dearth of ground measurements precludes the development 
of robust large-area FI, mapping, and monitoring applications. 
As an alternative, Wulder et al. (2012a) have proposed the con-
cept of the lidar plot. Airborne scanning lidar data have been 
shown to offer attribute characterizations (especially height-
related attributes) that are similar and in some cases better than 
ground measurements (Næsset 2007; Hyyppä et al. 2008).

The concept of the lidar plot is comparable to that of a ground 
plot with a fixed area. Lidar plots are an area-based summary 
of a lidar point cloud, whereby descriptive statistics or metrics 
are generated from the point cloud (e.g., percentiles, mean, and 
standard deviation), and these are used, with a sample of colo-
cated ground measurements, to model FI attributes of interest 
such as mean height, dominant height, basal area, volume, and 
biomass (Næsset 2002). Thus, although the lidar plot concept 
requires some amount of traditional ground plots, it enables 
efficient propagation of the ground plot information over large 
areas, via airborne measurements. The stability of the empirical 
relationships between metrics and inventory attributes across 
many different forest types and structures can be attributed to 
the nature of the lidar data itself: in essence, the lidar metrics 
represent a detailed measurement of all surfaces within a canopy 
(foliage, branches, and stems). The lidar point clouds are gener-
alized on a grid as well as vertically, creating a voxel of informa-
tion that can be simplified. This voxel-based generalization can 
be implemented in freely available software (such as LASTools 
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and FUSION) that provides unique metrics that in turn are used 
for model development. Thus, even when lidar data are collected 
at a lower hit density (i.e., 1 hit/m2) (Jakubowski et al. 2013), or 
when the vertical structure of the forest is complex (i.e., com-
posed of multiple canopy strata, with a significant understory 
component) (Vastaranta et al. 2013), meaningful relationships to 
plot-level forest attributes may still be generated.

Lidar plots are typically square in shape, and their size is 
determined in concert with the size of the aforementioned 
ground plots used for model development. Typical plots sizes 
are 400 m2 or 20 m-by-20 m (White et al. 2013a), and the plots 
must be large enough to contain sufficient lidar hits, to have a 
more uniform hit density (Næsset 2002), and to enable reason-
able attribute estimates (McGaughey 2013). The full swath of the 
lidar transect (depending on instrument scan angle) may be tes-
sellated into these fixed-area plots, followed by the generation of 
metrics and estimation of inventory attributes. Figure 15.5 pro-
vides a schematic of the lidar plot concept.

Note that opportunistically located ground plots (measured 
for lidar plot attribute modeling) and lidar transects can be used 
to improve large-area mapping and monitoring (e.g., Chen et al. 
2012a; Magnussen and Wulder 2012; Mora et al. 2013) but may 
not be appropriate for statistically driven designs for large-area 
FIs (Wulder et  al. 2012a). Chen et  al. (2012a) used samples of 
lidar plots generated from a national collection of lidar tran-
sects (Wulder et  al. 2012b) as calibration and validation data 
to support geometric-optical modeling of mean, dominant, 
and Lorey’s height using Landsat imagery. Estimates of vertical 
forest structure are critical for FI and reporting. Heights were 

modeled over the area of a single Landsat scene (185  km-by-
185  km) at a 25 m resolution with average estimation errors 
(RMSE) of 4.9, 4.1, and 4.7 m for mean height, dominant height, 
and Lorey’s height respectively. In this study, the lidar plot data 
were useful for model development, identification of spectral 
endmembers required for the geometric-optical model, and 
parameterization of the model’s tree variables. Using a different 
modeling approach and different lidar transects in combination 
with higher resolution optical imagery (QuickBird), Chen et al. 
(2012b) obtained an average error (RMSE) of 3.3 m in the esti-
mation of plot-level mean heights. Mora et al. (2013a) used data 
from lidar plots (Wulder et al. 2012b) with samples of very high 
spatial resolution (VHSR; <1 m) imagery to achieve estimation 
errors (RMSE) of 2.3 m for mean stand height.

Obviously, there is promise in the use of lidar plot data to 
enable modeling of forest structural attributes across large areas. 
What is emerging from the literature is that only modest gains in 
error reduction are possible when using lidar plots with increas-
ingly higher resolution optical imagery (Mora et  al. 2013b). 
These modest gains in accuracy are offset by the increased level 
of effort and cost associated with using the higher-resolution 
imagery. Landsat data are free and readily accessible; with each 
scene covering a markedly larger area (185 km-by-185 km) rela-
tive to what is typical for VHSR data (e.g., 10  km-by-10  km). 
Thus, synergies between lidar plots and Landsat data offer par-
ticular advantages for nations such as Canada, with more that 
600 million ha of forested ecosystems that require monitoring 
and reporting information to be collected in a systematic and 
transparent manner. Lidar plots have demonstrated a unique 
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Figure 15.5  Schematic of the lidar plot concept.
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and valuable role in supporting large-area mapping, monitor-
ing, and modeling for boreal forest ecosystems. The utility has 
been demonstrated for science- and management-related infor-
mation needs across broad range of applications. Further tran-
sect installation and application over different forest ecosystems 
(such as tropical) and addressing different management or sci-
ence questions remain to be undertaken.

15.6.2 �I mproving Large-Area Mapping 
of Forest Attributes Using 
Country-Wide Laser Scanning

ALS/lidar-based FI is now operational/commercial in Scandinavia, 
Baltic countries, Spain, Switzerland, the United States, Canada, 
Australia, and New Zealand. An increasing number of coun-
tries are applying ALS for national/statewide elevation modeling 
(e.g., The Netherlands, Switzerland, Finland, Sweden, Austria, 
Germany, and the United States).

Both in Finland and Sweden, the countrywide lidar data are 
applied into NFI concept by SLU in Sweden and by remote sens-
ing companies in Finland. The national data consist of 0.5–1.0 
return/m2 and has a maximum scan angle of 20°. The chal-
lenges when adopting this technology to national context are the 
following:

•	 The scannings have been made during different seasons.
•	 The scannings have been made with different laser 

scanners.
•	 There is incidence angle effect in returns when applying.
•	 The scannings have been made in different years.

In Sweden, there exist about 30,000 National Forestry Inventory 
(NFI) plots that can be used to train ALS data sets. Half of Sweden 
is productive forest land. In Finland, NFI is done by Finnish 
Forest Research Institute, but their sample plots are not available 
for industry who is implementing new NFI based on countrywide 
ALS data. Due to the earlier-mentioned challenges, and due to the 
fact that NFI aims at low systematic error at large area level, there 
are limitations where the new NFI developments go. In Finland, 
the need to have improved NFI stems from industry wanting to 
know more accurately where the wood resources are.

15.6.3 �N ational Forest Inventory Based 
on Multitemporal ALS Data

For integrating ALS data into operational FIs and thus for 
monitoring applications, a regular basis of data acquisition is 
imperative. Mainly due to economic reasons, one of the most 
important open questions in the community is, therefore, if 
ALS data will be available in a regular basis in the future. In 
order to minimize the costs of ALS data for an individual user 
or per km2, several approaches have been tested during the last 
years. This includes on the one hand the increased technical 
capabilities of ALS sensors leading to higher pulse repetition 
frequencies, increased flying heights, and swath widths result-
ing in lower flying costs. On the other hand, there is also a trend 

of ALS campaigns financed by a pool of different users. One 
of these later examples can be observed at the federal district 
of Vorarlberg in Austria where after 6  years, a complete ALS 
reacquisition took place in 2011 for the entire area (~3300 km2). 
Multi-epoch ALS allows also new methods for analyzing the 
development of the forest (e.g., change detection) (e.g., Hyyppä 
et  al. 2003; Yu et  al. 2004, 2006; Næsset and Nelson 2007; 
Hopkinson et al. 2008).

For large area, multi-epoch ALS data acquisition normally 
varies in terms of ALS sensor on various platforms, acquisition 
times, and flying properties (e.g., flying height, scan angles). 
These facts increase the requirements on the applied algorithms 
for assessing forest parameters.

In general, it is important that for the calculation of the topo-
graphic models (i.e., DTM, DSM) and ALS metrics from multi-
epoch ALS data, comparable methods will be applied. Therefore, 
it is strongly recommended that the original 3D ALS point 
clouds are used as input for current and future analyses.

For the study area Vorarlberg, the DSM was calculated based 
on a land cover–dependent approach (Hollaus et al. 2010), which 
is robust against varying point densities, acquisition times, and 
tree species. This approach uses the strengths of different algo-
rithms for generating the final DSM by using surface roughness 
information to combine two DSMs, which are calculated based 
on (1) the highest echo within a raster cell and (2) moving least 
squares interpolation with a plane as functional model (i.e., a 
tilted regression plane is fitted through the k-nearest neighbors).

One of the most important error sources are originating 
from an insufficient geocoding. The experiences in Austria 
have shown that height differences of stable objects (e.g., roof 
planes, streets) between the multi-epoch surface models (i.e., 
DTMs, DSMs) originating from errors in the georeferencing 
of the individual ALS data sets have to be minimized to ensure 
that the height differences can be connected to changes of tree 
heights and consequently to growing stock or biomass changes. 
To minimize these height differences, least square matching of 
the DSMs from both acquisition times was applied successfully, 
whereas a 3D shift was sufficient. It could be demonstrated that 
for streets, roofs, and bare soils, the mean height differences of 
0.17 m could be reduced to 0.07 m (Hollaus et al. 2013).

For analyzing multi-epoch ALS data, the height differences 
are the most important measure for forest monitoring applica-
tions. Apart from the described minimization of height differ-
ences from stable objects, one can use one reference DTM due to 
the assumption that the DTM changes within the forest will be 
negligible. For the study area in Austria, the DTM derived from 
the second ALS data set characterized with higher point density 
compared to the first one was used as reference for detecting for-
est height changes and biomass changes respectively.

For the district-wide growing stock/biomass estimation, 
the rasterized nDSM (= DSM-DTM) was used as input for the 
semiempirical regression model from Hollaus et al. (2009). This 
method assumes a linear relationship between the growing 
stock and the ALS-derived canopy volume, stratified according 
to four canopy height classes to account for height-dependent 
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differences in canopy structure. Each data set was calibrated 
with the corresponding FI data, and the derived growing stock 
maps were compared. Finally, the changes of the growing stock 
maps are detected, whereas the changes are split into exploita-
tion and forest growth. To consider small differences in tree 
crown representation within each different ALS data set, mor-
phologic operations (i.e., open/close) and a minimum mapping 
area of 10 m2 are applied. Finally, the growing stock change map 
can be limited to the determined forest area, for example, fulfill-
ing the criterions of the Austrian forest definition (Eysn et  al. 
2012).

The validation of the growing stock change has shown high 
agreement between the changes calculated from the sample 
plot–based FI data (+43.0 m3/ha) and those derived from the 
ALS-derived growing stock change map (42.5 m3/ha) and shows 
the high potential of ALS data for integrating them into opera-
tional FIs.

15.6.4 �I mproving Large-Area Mapping 
of Forest Attributes Using 
Radargrammetry and Interferometry

Recent experiences with ALS (Næsset 2002; Hyyppä et al. 2008; 
Vastaranta 2012; Vastaranta et  al. 2012) and digital stereo-
photogrammetry (Nurminen et  al. 2013; White et  al. 2013a; 
Vastaranta et al. 2014) have shown that precise forest biomass 
estimations can be achieved using these airborne techniques. 
The foundation of the high biomass estimation accuracy is 
their ability to measure the forest canopy height and density. 
On the other hand, majority of satellite data-based forest map-
ping techniques, until now, have used only the intensity infor-
mation (reflectance values or SAR backscattering coefficient), 
that is, 2D information, in estimating forest biomass. Even 
though in some experiments a good agreement with 2D infor-
mation and forest biomass has been obtained, the way forward 
in satellite-based forest mapping appears to be the use of 3D 
techniques. This chapter enlightens the recent advances in 3D 
techniques related to large-area forest resources mapping and 
SAR satellite data. In the future, these techniques can be used 
in generating forest attribute maps from ground plots mea-
sured for NFIs.

In the past years, commercial SAR satellite data have under-
gone remarkable progress in terms of spatial resolution, geoloca-
tion accuracy, and data availability—mainly thanks to the X-band 
SAR satellite systems of TerraSAR-X, TanDEM-X, and COSMO-
SkyMed. Consequently, there has been a growing interest of using 
aforementioned satellites for 3D forest mapping also. In principle, 
there are two main techniques to extract 3D/elevation data from 
satellite SAR images: (1) InSAR and (2) radargrammetry.

InSAR is based on the phase differences of two or more SAR 
data acquisitions with an appropriate geometric baseline. When 
the temporal baseline of data acquisitions is close to zero, InSAR 
data are particularly good for the creation of DEMs, even in 
the forested areas. In the case of intensity information, X-band 
is typically considered useless for forest resources mapping 

(Holopainen et  al. 2010). But in the case of X-band-derived 
DSMs, extracted elevation values are known to be close to the 
top of the forest canopy. Therefore, if an accurate DTM exists, 
derived by other means, it is straightforward to create CHMs 
that contain forest biomass-related information. The earliest 
work in 3D techniques was carried out with NASA/DLR SRTM 
data. The capability to map forest resources from SRTM DSMs 
was demonstrated, for example, by Kellndorfer et al. (2004) and 
Solberg et al. (2010). The SRTM mission lasted only 11 days, and 
it had limited global coverage; therefore, suitable data for InSAR 
techniques were not available before the TDM by the DLR. The 
TDM consists of two identical SAR satellites flying in a forma-
tion to create InSAR data with temporal baseline virtually close 
to zero. TanDEM-X data are very interesting from the forest 
resources mapping point of view. First scientific results have 
already been published (Askne et al. 2013; Solberg et al. 2013), 
and there is ongoing EU project Advanced_SAR in this field 
(Figure 15.6).

Radargrammetry is an alternative approach to extract 
elevation data from SAR data. Compared to InSAR, radar-
grammetry  does not use phase information, but stereoscopic 
measurement similar to photogrammetric forward intersec-
tion. The main advantages of the radargrammetry method 
compared to InSAR are that (1) elevation values derived using 
radargrammetry are absolute values, that is, measured coor-
dinates are directly in the 3D ground coordinate system; (2) 
more versatile SAR data sources can be used, and there is no 
restriction of simultaneous image acquisition as in the InSAR 
case. On the other hand, the main disadvantage of radargram-
metry is that elevation models typically contain no-data values 
and possibly some gross errors, in areas where automatic image 
matching fails. Nevertheless, DSMs created using X-band 
radargrammetry are similar to X-band InSAR DSMs. The use 
of radargrammetric 3D models in forest resources mapping is 
a fairly new concept, and earliest studies were carried out using 
Radarsat data by Chen et  al. (2007). Thanks to TerraSAR-X 
SAR data more detailed radargrammetric surface models can 
be produced compared to earlier SAR satellite systems (Perko 
et al. 2011). Recently, the use of TerraSAR-X radargrammetric 
DSMs in forest biomass mapping has been successfully dem-
onstrated in Finland and Norway (Karjalainen et  al. 2012; 
Vastaranta et  al. 2012; Solberg et  al. 2014; Vastaranta et  al. 
2014) (Figure 15.7).

Based on the recent scientific studies in 3D SAR techniques 
and forest resources mapping, there appears to be potential 
in these techniques for deriving detailed forest attribute maps 
over large areas with good temporal resolution. Even though 
ALS and aerial stereo-photogrammetry provide more accurate 
estimates for forest attributes compared to 3D SAR techniques, 
there might be a demand for SAR data especially for large-area 
mapping and especially in the monitoring of changes in the for-
est structure. The advantage of 3D SAR techniques compared 
to 2D estimation techniques is that the data derived using 3D 
techniques can be easily integrated to existing forest attribute 
inventory processes (see Section 15.5).
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15.6.5 �E xplanatory Power of 3D Remote 
Sensing Techniques in Forest 
Attribute Estimation

The currently applied techniques in GMES/Copernicus are 
based on 2D techniques that are not able to provide reliable 
information related to biomass and wood volume. Scientific 
papers have shown that canopy height information derived from 
remote sensing data is the best feature for retrieval of stem vol-
ume and basal areas (Hyyppä and Hyyppä 1999; Hyyppä et al. 
2000)—and also to AGB, which is highly correlated with stand-
ing volume. In Hyyppä et  al. (2000), the accuracy of different 
satellite data for FI was studied, providing insights into the 
explanatory power and information content of several remote 
sensing data sources on the retrieval of stem volume, basal area, 
and mean tree height. The results showed relatively low accuracy 
of all 2D techniques, such as Finnish NFI data (based on Landsat 
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Figure 15.6  Forest canopy height model (CHM) extracted from TanDEM-X InSAR data and digital terrain model from ALS. (Original data © 
DLR, 2013 and NLS, processed by Kirsi Karila/FGI.)

Figure 15.7  Radargrammetric elevation model in Southern 
Finland. (Original data © DLR, processed by Mika Karjalainen/FGI.)
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TM data), SAR intensity images, for forest attribute retrieval. 
Superior performance of LS giving the CHM over all optical 2D 
techniques was demonstrated in Hyyppä and Hyyppä (1999). 
By using single laser-based predictor, namely, mean tree height, 
provided 13.5% error in standwise stem volume estimation, 
whereas by using imaging spectrometer, a corresponding error 
of 27% was obtained using six predictors in the model.

Currently, FGI and Helsinki University are repeating the work 
of Hyyppä et al. (2000) from the 3D perspective: major source for 
3D forest data will be compared in terms of accuracy. Also syn-
ergies between the data sets are studied. One of the instruments 
in the comparison is a new profiling ranging radar Tomoradar 
of the FGI, which is equivalent to Hallikainen et al. (1993). That 
can be used to calibrate the penetration of space-borne SAR to 
forests and for comparison with ALS full-waveform technolo-
gies (Figure 15.8).

15.6.6  Biomass Mission

Biomass is ESA Explorer 7 satellite aiming to take measure-
ments of forest biomass to assess terrestrial carbon stocks 
and fluxes. The satellite employs a P-band synthetic aperture 

polarimetric radar operating at 435 MHz. Maps of forest bio-
mass and canopy height are aimed to obtain at a resolution 
of 200 m. The mission will also have an experimental tomo-
graphic phase to provide 3D views of forests. The original 
launch is scheduled for 2020. Sun-synchronous orbit at an alti-
tude of 660 km is planned. Mission life of 5 years is expected, 
and the tomographic phase is 3  months. Fully polarimetric 
P-band response is obtained.

Currently, the use of Biomass in European and North 
American forests is not straightforward. Data collection in these 
areas is perhaps impossible because of conflicting frequency 
transmissions by U.S. military radars. The frequencies between 
420 and 450  MHz are used for ballistic missile warning and 
space surveillance network.

How does P-band response differ from those more common 
L-, C-, and X-band missions? For example, the shorter wave-
lengths at X-band are attenuated by surface scattering at the top 
of the canopy by foliage and small branches, and in boreal for-
ests, the ground response is obtained only from canopy gaps. 
The C-band response is caused by surface scattering at the top of 
the canopy as well as some volume scattering from the canopy. 
A small fraction of the energy reaches the ground in addition 
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Figure 15.8  Comparison and synergies of 3D remote sensing techniques for forestry.
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to energy coming from the canopy gaps. In boreal forest zone, 
the amount of canopy caps is substantial. L-band microwave 
energy penetrates farther into the canopy, where volume scat-
tering among the leaves, stems, branches, and trunk causes also 
depolarization. Large number of pulses may reach the ground, 
where surface scattering from the soil-vegetation boundary layer 
may take place. P-band SAR would afford the greatest penetra-
tion through the vegetation, and the signal mainly reflects from 
larger stems and the soil surface (Jensen 2000). Hence, the dif-
ference of the X- and P-band-derived elevation model correlates 
with canopy height, but it is not that accurate as that obtainable 
from X-band and LS DTM. Advantage of the Biomass mission 
includes that P-band backscatter correlates with biomass, and 
the saturation level is much higher than with C- and X-bands. 
Use of X-, C-, L-, and lidar DTM results in better canopy probing 
that ever in all forest regions.

15.6.7 �C rowdsourcing in Forest 
Inventory: National Forest 
Inventories by Commons

The mapping task has been for centuries performed by state 
organization, and the mapping has been, therefore, extremely 
centralized. This work has been done by trained staff typically 
having background in the field of surveying. Since early 2000, 
it has been possible to map the surrounding by ordinary, non-
skilled citizens having GNSS receivers, cameras, and smart-
phones. The collection of geospatial user-created information 
is today called by many different terms such as crowdsourc-
ing, collaboratively contributed geographic information, web-
based public participation GIS, collaborative mapping, web 
mapping 2.0, neogeography, WikiMapping, and volunteered 
geographic information. More commonly, crowdsourcing is 
understood as geospatial data collection of voluntary citizens 
who are untrained in the disciplines of geography, cartography, 
or related fields. Short review of crowdsourcing can be found in 
Heipke (2010) and Fritz et al. (2009).

In the field of forestry, crowdsourcing has been used to assess 
the condition of city trees. For example, PhillyTreeMap is a web-
based application that allows citizen to input tree information of 
city forests; today, over 144,000 Philadelphian trees are stored in 
the database.

Field reference data are conventionally collected at the sample 
plot level by means of manual measurements, which are both 
labor intensive and time consuming. Because of the high costs 
and laboriousness, the number of tree attributes collected is 
limited. In practice, some of the most important tree attributes 
are even not measured or sampled. Automated and more cost-
effective techniques are needed to provide plotwise field inventory 
data. Recently, TLS has been shown to be a promising solution 
for forest-related studies. There is huge lack of open data in the 
field of plot-level or tree-level data to calibrate the ALS estimates. 
Today’s challenge is the creation of large-area forest resource 
maps with small costs and as high accuracy as possible for vari-
ous purposes. Since plotwise field data do not openly exist, and 

TLS processing at country level produces significant costs, alter-
native solution are also developed. Use of crowdsourcing to get 
field reference for large-area FI has not seriously studied earlier.

In Hyyppä et  al. (2014), a new, low-cost inventory schema 
based on open-access ALS data, individual-tree-based feature 
extraction, and crowdsourcing as field data collection technique 
was presented. It demonstrated the advantage of using locally 
collected field data in improving the quality of the estimates 
(RMSE) using crowdsourcing and 3D game engine to interac-
tively calibrate ALS tree maps and locate persons for field sur-
veys. The crowdsourcing concept was based on ITD techniques, 
where individual trees are detected, and tree-level variables, such 
as height and volume, are measured or predicted from the ALS 
data, that is, the basic unit is an individual tree. Advantage of 
the ITD approach over ABA in crowdsourcing concept includes 
that smaller amount of reference trees is needed compared to 
that in ABA to get reasonable accuracy, and it is easier of the 
landowners to measure physically well-established parameters, 
that is, diameter of the tree (cm) instead of basal area (m2/ha). 
The disadvantage of the ITD concept, in which suppressed trees 
are not found, can be overcome by the use of crowdsourcing 
measuring diameters for the missing trees. Thus, there is syn-
ergy with the use of ITD and crowdsourcing. The proposed 
crowdsourcing concept of Hyyppä et al. (2014) was the follow-
ing. There are ¾  million forest owners alone in Finland (14% 
of the population), many of them visit their forests regularly or 
live close to their forests, and, thus, personal technologies that 
could be used to collect objectively non-biased reference infor-
mation could be applicable to collect necessary field data for 
ALS inventories. For example, if 0.1% of the forest owners in 
Finland would measure 20 trees of their own forests that would 
lead to 15,000 of measured trees, which may result on accurate, 
non-biased countrywide biomass/volume map of unique accu-
racy. Research has shown that random error of the estimates can 
be easily solved by having several hundreds of reference plots, 
but in Hyyppä et al. (2014), local reference individual tree data 
were used to calibrate ALS data into non-biased estimates. Since 
GNSS accuracy in forest is not enough for plot- or individual 
tree-level inventory, a GNSS-assisted, 3D game engine–based 
approach was developed. First, the GPS location provided by 
the mobile phone was applied, and then the user uses the CHM 
generated with ALS data to visually locate themselves. The out-
put of the CHM is visualized in the 3D game engine working in 
smartphone, and user can select the tree groups or individual 
trees from CHM to which they like to give field reference. If the 
CHM and ITD process indicated one tree that corresponds to 
several trees in the field, the landowner records all trees and 
their attributes, especially the diameter breast heights and tree 
species. For suitable plots, he preferably records correspond-
ing information of all trees. Also, if there are omissions in the 
ITD process that are not part of the any tree group is recorded. 
Consequently, the landowner finds and locates trees with the 
help of the CHM and 3D game engine interface, and measures 
diameters of trees or stem curve of the tree close to ground with 
the tape. This information is used as local field data together 
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with existing plot- and tree-level data. ITD approach is applied. 
Nonparametric RF classifier is applied to the link between the 
field reference and ALS features.

15.6.8 �T oward Personal Laser 
Scanning in Forestry

Personal laser scanning (PLS) is an emerging technology, 
Hyyppä et al. (2013). The idea first appeared as a backpack-type 
MLS system, where the scanning and positioning systems were 
on the operator’s back rather than on a vehicle platform. The first 
system prototype weighted about 30 kg (Kukko et al. 2012). The 
weight and size of the system limited its usability, for example, in 
open area for geomorphological terrain modeling (Wang et al. 
2013). Last 5  years have witnessed rapid progresses in sensor 
miniaturization. A new system has been developed and built at 
the FGI in 2013, with new scanner and multi-constellation navi-
gation systems. The new system weights approximately 10 kg.

The main advantage of PLS lies in its easy movement in vari-
ous terrain conditions and the fast data collection. By providing 
professional quality scanning and navigation systems, the col-
lected data can document objects in detail and high precision. 
PLS has the potential to improve the mapping efficiency com-
pared with conventional field measurement and compensate the 
limitations of other LS techniques, for example, the TLS is not 
easy to transfer from site to site, and the MLS has to be utilized 
in areas where the terrain conditions are easy for the vehicle 
movement. These characters are very attractive for forest map-
ping and ecosystem services.

In Liang et  al. (2014b), a professional-quality PLS for col-
lecting tree attributes was demonstrated for the first time. The 
applied 10 kg FGI system consists of a multi-constellation navi-
gation system and an ultra-high-speed phase-shift laser scanner 
mounted on a rigid baseplate as for a single sensor block. In the 
data acquisition, the system was tilted by 20° to record the verti-
cal breaklines of tree stems. The forest area utilized in this pilot 
test of PLS system was 0.2 ha in size. The tree stem detection 
accuracy was 82.6%; the root mean square errors of the estima-
tions of the tree diameter at breast height and the tree location 
were 5.06 cm and 0.38 m, respectively. The results showed the 
first potential of the PLS system in mapping large forest plots. 
Further research on mapping accuracy and cost–benefit analy-
ses is needed. In addition to collecting tree- and plot-level data 
for FI, other possible applications in forest ecosystem services 
include the use of the system in the mapping of canopy gaps, 
LAI measurements from large areas, documentation and visual-
ization of forest routes feasible for recreation, hiking, berry, and 
mushroom picking, and for harvester operations.

15.6.9 �T oward Mobile-Phone-Embedded 
Laser Scanning

In Jaakkola et al. (2014), we demonstrated the feasibility of using 
the Microsoft Kinect depth sensor for tree stem measurements 
and reconstruction for the purpose of FI. Field reference data in 

FI are conventionally collected at tree and sample plot. A Kinect 
sensor capable of capturing several million data points per sec-
ond from distances up to 4 m is a powerful new tool, and this 
chapter provides the first example of how it can be used in for-
estry. The Kinect depth sensor measures the distance to objects 
in the surrounding environment by transmitting near-infrared 
light and using structured light for point cloud generation. In 
the present research, about 100 reference stem diameter mea-
surements were made with tape and caliper. Color (i.e., RGB) 
and range images acquired by a Kinect system were processed 
and used to extract tree diameter measurements for the refer-
ence tree stems. Kinect-derived tree diameters agreed with the 
caliper measurements to 2.50 cm (RMSE) and 10% (RMSE%) 
and with tape measurements to 1.90  cm and 7.3%. The stem 
curve from the ground to the diameter breast height agreed 
with a bias of 0.7 cm and random error of 0.8 cm with respect to 
the reference trunk. As a highly portable and inexpensive sys-
tem, Kinect provides an easy way to collect tree stem diameter 
and stem curve information vital to FI. We see Kinect or similar 
inexpensive instruments (e.g., less than 100€) as a competing 
technology to TLS and conventional fieldwork using calipers. 
Measurements made using Kinect could also be acquired using 
a crowdsourcing approach as a complement to National ALS-
based FI. However, further work to automate data processing 
of Kinect depth sensor data is needed. Google, among others, 
is already developing Kinect-type sensor to mobile phones 
(Google 2014).

15.6.10 T oward UAV-Based Laser Scanning

Gordon Petrie made his review (2013) in Geoinformatics about 
UAV and LS, and he summarized it by saying “Until now, air-
borne laser scanners from the mainstream system suppliers have 
not been operated from lightweight UAVs on a commercial basis, 
mainly due to the size and weight of the scanner systems and 
the limited payload of these very lightweight aircraft. However, 
currently, considerable efforts are being made to develop laser 
scanners that are suitable for use on these aircraft. These are 
utilizing the technologies that are already being employed in 
mobile mapping systems, terrestrial (ground-based) laser scan-
ning and autonomous (driverless) vehicles.” General review of 
very small UAV technology for photogrammetry and remote 
sensing can be found from Colomina and Molina (2014), but in 
the field of mini-UAV LS, the reference of Petrie (2013) is recom-
mended reading.

Mini-UAV-based ALS data collection has been possible 
since Jaakkola et al. (2010). Mini-UAVs (<20 kg) have been pre-
viously used for mapping purposes using, for example, aerial 
images. Zhao et al. (2006) depicted a remote-controlled heli-
copter supplied with navigation sensors, namely, GPS, and a 
laser range finder. In Jaakkola et al. (2010), the first mini-UAV 
(FGI Sensei) including the laser scanner, intensity recording, 
spectrometer, thermal camera, and conventional digital cam-
era was depicted. Laser scanners in the Sensei included an Ibeo 
Lux and a Sick LMS151 profile lasers. The Ibeo Lux measures 
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points (and echo width) from four different layers simultane-
ously and is theoretically able to measure up to 38,000 points/s. 
Sick LMS151 is also able to measure two returning signals and 
the intensity from each laser pulse. The optical sensors were 
CCD camera (AVT Pike F-421C having a 2048 × 2048 pixel), 
Specim V10H spectrometer (spatial res. of 0.067° and a spec-
tral res. of 8.5 nm) at 397–1086 nm, and thermal camera of Flir 
Photon 320 with a 324 × 256 pixel resolution and a 50° × 38° 
field of view.

It should be pointed out that this kind of system would be 
feasible for integrating several mapping concepts using simul-
taneous measurements done with a single system. Thus, for 
research purposes, in addition to point cloud data giving the 
geometry of the objects, simultaneously taken image data 
including overlapping images, intensity of laser backscatter, 
spectrometer, and thermal camera would provide even bet-
ter data source for new algorithms and concept development, 
especially when recorded in a multitemporal way. That is an 
area where mini-UAV-based LS is extremely feasible; the use 
of conventional ALS results in high costs of data and lack of 
frequently enough collected data.

Mini-UAV LS is also feasible for small-area surveys, for exam-
ple, collecting airborne data from areas of several hectares. In 
future, corridor-type applications done by UAV LS can provide 
cost-effective solution and new markets (BBC 2014).

Mini-UAVs taking images are already in operation, for exam-
ple, in part of North America. They are especially useful when 
highly detailed imagery is required over a relatively small area, 
and in applications such as pre- and post-harvest surveys, com-
pliance monitoring, habitat surveys, establishment, and regen-
eration surveys. Mini-UAVs are helpful in fire management 
by monitoring in-progress fires, mapping green-tree retention 
post-fire, and identifying hotspots with an infrared camera 
(Launchbury 2014).

15.6.11 � Precision Forestry, the Future 
of Forest Inventory

Currently, the FI is about 2–3B€ annual market, which is 
mainly based on fieldwork. Inventory is increasingly shifting 
into using ALS, as has already occurred in many countries, 
Scandinavia, Austria, and Canada leading this development. 
Boreal and mountainous forests are easier to be measured due 
to smaller biodiversity (smaller number of species) and more 
sparse forest structure. The ALS part can also move to the use 
of 3D techniques of space-borne imagery or photogramme-
try (beyond the scope of this chapter). There is also a need to 
get tree-level information, in which Japan is one of the lead-
ing countries to show example. Japan has a long history of 
approximately 10 million hectares of conifer plantations under 
SFM. Timber has been used in important cultural heritage 
sites since the Asuka and Nara Periods (AD 607–793), includ-
ing in the oldest existing wooden buildings, castles, temples, 

and shrines, and forms an important part of the history of 
the Japanese Imperial Family, which is one of the longest 
in  the  world. Traditional Japanese culture is based on wood 
and the country’s rich natural heritage. The forest survey sys-
tem in Japan has been taking aerial photographs and record-
ing airborne data every 5  years since 1947. High-resolution 
optical images and GIS are widely used for practical forestry. 
However, forest officers use only remote sensing data overlaid 
with GIS forest polygons and assess boundaries, forest condi-
tion, cutting area, and damage area by image interpretation, 
because the forest resource information extracted from image 
analysis alone is insufficient. Today, forest officers and land-
owners require more precise information at the individual tree 
level on the amount of plantation resource harvested for tim-
ber, biomass, and clean energy (Katoh and Gougeon 2012). At 
present, the coverage of ALS is expanding. Further application 
of the ALS approach is needed to estimate the number of large 
trees of each species available for use in traditional wooden 
buildings (Figure 15.9).

Detailed and up-to-date information is a necessity for imple-
menting sustainable forest resource management practices. To 
acquire this information, forest companies and governmental 
organizations are using point cloud–based, forest-inventory 
methodologies.

When applying the ideas of precision forestry concept, we 
can reach several economic and ecological benefits (Holopainen 
et al. 2010):

	 1.	 Better integration of forest planning and forest operation 
planning—with the accurate information from forests, 
the operation planning can be done with FI data-saving 
expenses.

	 2.	 Measurement of the quality of wood. The amount and size 
of branches measured with TLS and hopefully with MLS 
on a logging machine allow more detailed wood qual-
ity measurements. Also, the valuable information on the 
length of non-branched stem can be determined.

	 3.	 When FI data are more accurate and updated, the stor-
ages of forest industry can optimally move from real stor-
ages to forests. Wood acquisition can be planned in higher 
detail not possible before.

	 4.	 When FI gives accurate data to forest operation planning, 
the bucking of trees can be predicted and performed in a 
more optimal way significantly affecting the economy of 
the forest owners.

	 5.	 Precision forestry allows easily certification of wood ori-
gin, since the location of every stem can be recorded and 
stored to maps.

	 6.	 The value of forest can be more reliably determined.
	 7.	 The logistics chain from forests to value-added end-

products can be planned in higher detail.

Laser scanners and radar have the potential of revolutionized 
measurement of vegetation canopy structure.
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15.7  Summary

In this chapter, we presented some highlights of 3D informa-
tion collection and processing from lidar and radar and turning 
that information into valuable forest informatics. We really see 
that the processing of 3D data will be more and more based on 
similar tools that are currently available in the lidar community. 
Some of the most exciting developments anticipated are sum-
marized as follows:

The concept of the lidar plot is comparable to that of a ground 
plot with a fixed area. Lidar plots are an area-based summary of 
a lidar point cloud, whereby descriptive statistics or metrics are 

generated from the point cloud (e.g., percentiles, mean, and stan-
dard deviation), and these are used, with a sample of colocated 
ground measurements, to model FI attributes of interest such as 
mean height, dominant height, basal area, volume, and biomass.

Both in Finland and in Sweden, the countrywide lidar data 
are applied into NFI concept. The national data consist of 0.5–
1.0 return/m2 and have a maximum scan angle of 20°. The chal-
lenges of adopting this technology to national context are that 
the scans have been made during different seasons, the scans 
have been made with different laser scanners, there is incidence 
angle effect in returns when applying, and the scannings have 
been made in different years.

	

Figure 15.9  Increased need for ALS at the individual tree level in SFM. Left: Akasawa Forest Reserve, old-growth cypress (Chamaecyparis 
obtusa) forest over 350 years under SFM for construction timber for Ise Jingu Shrine in Nagano, Japan. Center: Cutting ceremony for replacing 
the timber in Ise Jingu Shrine; note use of the traditional axe. Right: Ise Jingu Shinto Shrine in Mie, Japan, which uses 10,000 large cypress in 14 
wooden buildings, and the timber of which has been replaced every 20 years since AD 690.
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For large-area multi-epoch lidar data acquisition, normally 
different lidar sensor on various platforms, acquisition times, 
and flying properties (e.g., flying height, scan angles) are used. 
These facts increase the requirements on the applied algorithms 
for assessing forest parameters. Therefore, it is strongly recom-
mended that the original 3D lidar point clouds are used as input 
for current and future analyses.

Based on the recent scientific studies in 3D SAR techniques and 
forest resources mapping, there appears to be potential in these 
techniques for deriving detailed forest attribute maps over large 
areas with good temporal resolution. Even though ALS and aerial 
stereo-photogrammetry provide more accurate estimates for for-
est attributes compared to 3D SAR techniques, there might be a 
demand for 3D SAR data especially for large-area mapping and 
especially in the monitoring of changes in the forest structure. 
The advantage of 3D SAR techniques compared to 2D estimation 
techniques is that the data derived using 3D techniques can be 
easily integrated to existing forest attribute inventory processes.

Biomass is ESA Explorer 7 satellite aiming to take measure-
ments of forest biomass to assess terrestrial carbon stocks and 
fluxes. The satellite employs a P-band synthetic aperture polari-
metric radar operating at 435 MHz. Maps of forest biomass and 
canopy height are aimed to obtain at a resolution of 200 m.

Low-cost inventory schema based on open-access ALS data, 
individual-tree-based feature extraction, and crowdsourcing as 
field data collection technique can be performed using locally 
collected field data in improving the quality of the estimates 
(RMSE) using crowdsourcing and 3D game engine to interac-
tively calibrate ALS tree maps and locate persons for field sur-
veys. The use of Microsoft Kinect depth-type sensor for tree stem 
measurements and reconstruction is also feasible.

In addition to these new, exciting developments presented, 
there are too many new areas, which should have been dis-
cussed, such as future space-borne lidar, TomoSAR, UAV-based 
low-cost SAR, and lidar as well as future airborne SAR devel-
opment. Also full-waveform lidar is of high possibilities. In the 
previous chapter, we favored techniques with high potential to 
practical forestry with shorter time frame.
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Acronyms and Definitions

ACD	 Aboveground carbon density
AIS	 Airborne imaging spectrometer
ALI	 Advanced Land Imager
Amax	 Maximum rate of photosynthesis
APAR	 Absorbed photosynthetically active radiation
ATLAS	 Advanced Topographic Laser Altimeter System
AVIRIS	 Airborne visible/infrared imaging spectrometer
CAO	 Carnegie Airborne Observatory
CASI	 Compact Airborne Spectrographic Imager
CHRIS	 Compact High-Resolution Imaging Spectrometer
DASF	 Directional area scattering factor
EnMAP	 Environmental Mapping and Analysis Program
EO-1	 Earth Observing-1 (Hyperion)
ESA	 European Space Agency
ETM+	 Enhanced Thematic Mapper Plus
ETR	 Electron transport rate
EWT	 Equivalent water thickness
GLAS	 Geoscience Laser Altimeter System
HSI	 Hyperspectral imaging
HyspIRI	 Hyperspectral and Infrared Imager
ICESat	 Ice, Cloud, and land Elevation Satellite

Jmax	 Maximum electric transport rate
LAD	 Leaf angle distribution
LAI	 Leaf area index
LiDAR	 Light detection and ranging
LMA	 Leaf mass per area
LUE	 Light use efficiency
LVIS	 Land, Vegetation, and Ice Sensor
MCH	 Mean canopy profile height
N	 Nitrogen
NCALM	 National Center for Airborne Laser Mapping
NDVI	 Normalized difference vegetation index
NEON	 National Ecological Observatory Network 
NIR	 Near infrared
NPP	 Net primary productivity 
NPQ	 Nonphotochemical quenching
NPV	 Nonphotosynthetic vegetation
NSF	 National Science Foundation
PAR	 Photosynthetically active radiation
PLSR	 Partial least squares regression
PRI	 Photochemical Reflectance Index
SIF	 Solar-induced fluorescence
SLA	 Specific leaf area
SNR	 Signal-to-noise ratio
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SWIR	 Shortwave infrared
UAV	 Unmanned aerial vehicle
Vcmax	 Maximum rate of carboxylation
VNIR	 Visible to near infrared
VSWIR	 Visible to shortwave infrared

16.1 I ntroduction

Forests store about three-quarters of all carbon stocks in vegeta-
tion in the terrestrial biosphere and harbor an array of organisms 
that comprise most of this carbon (IPCC 2000). The distribution 
of carbon and biodiversity in forests is spatially and temporally 
heterogeneous. The complex, 3D arrangement of plant species 
and their tissues has always challenged field-based studies of 
forests. Remote sensing has long endeavored to address these 
challenges by mapping the cover, structure, composition, and 
functional attributes of forests, and new approaches are con-
tinually being developed to increase the breadth and accuracy of 
remote measurements.

Over the past few decades, two technologies—hyperspectral 
imaging (HSI) and light detection and ranging (LiDAR)—have 
rapidly advanced from use in testbed-type research to appli-
cations ranging from ecology to land management. HSI, also 
known as imaging spectroscopy, involves the measurement of 
reflected solar radiance in narrow, contiguous spectral bands 
that form a spectrum for each image pixel. LiDAR uses emit-
ted laser pulses in a scanning pattern to determine the distance 
between objects such as canopy foliage and ground surfaces. 
Individually, HSI and LiDAR are advancing the study of forests 
at landscape to global scales, uncovering new spatial and tem-
poral patterns of forest biophysical and biochemical properties, 
as well as physiological processes. When combined, HSI and 
LiDAR can provide ecological detail at spatial scales unachiev-
able in the field. This chapter discusses HSI and LiDAR data 
sources, techniques, applications, and challenges in the context 
of forest ecological research.

16.2  HSI and LiDAR Data

16.2.1  HSI Data Sources

The availability of HSI for ecological applications is growing 
as the utility of these data has increasingly been recognized. 
HSI can be collected either with airborne sensors that have 
a limited spatial coverage but high-spatial resolution or with 
spaceborne sensors capable of capturing data globally, but 
generally with coarser spatial resolution. There are an expand-
ing number of government, private, and commercial airborne 
HSI sensors. In addition, one spaceborne HSI sensor—Earth 
Observing-1 (EO-1) Hyperion—has been in operation as a 
technology demonstration since November 2000. Other orbital 
sensors are in the planning or development stages in hopes of 
further extending the spatial coverage of available imaging 
spectroscopy (Table 16.1).

Airborne HSI sensors have been operating since the 1980s. 
An early system was NASA’s airborne imaging spectrometer 
(AIS), followed later by the airborne visible/infrared imaging 
spectrometer (AVIRIS), which is still in operation and provides 
data to NASA-supported investigators. Newer instruments 
including the Carnegie Airborne Observatory (CAO) visible-
to-shortwave-infrared (VSWIR) imaging spectrometer provide 
increased spectral resolution and performance (e.g., signal-to-
noise ratio [SNR]) over previous technology (Table 16.1). The 
U.S. National Science Foundation’s (NSF) National Ecological 
Observatory Network (NEON) has created three copies of the 
CAO VSWIR, which will provide annual collection of HSI data 
for each of its core research sites across the United States.

Beyond government and privately funded instruments for 
research, a number of HSI sensors have been built for com-
mercial applications. For example, the Compact Airborne 
Spectrographic Imager (CASI, CASI-2, CASI-1500) and HyMap 
provide high-performance visible-to-near-infrared (VNIR) 
(365–1052  nm) and VSWIR (440–2500  nm) measurements, 
respectively (Table 16.1).

Table 16.1  Examples of Current and Planned Airborne and Spaceborne HSI

Sensor 
Spectral 

Range (nm) 
Spectral 
Bands 

Spectral 
Resolution (nm) 

Spatial 
Resolution (m) Reference 

Airborne
AVIRIS 400–2450 224 10 2.0+ Green et al. (1998)
AVIS-2 400–900 64 9 2.0+ Oppelt and Mauser (2007)
CAO VSWIR 380–2510 428 5 0.5+ Asner et al. (2012)
HYDICE 400–2500 206 8–15 1.0+ Basedow et al. (1995)
NEON VSWIR 380–2510 428 5 0.5+ www.neoninc.org
AISA 380–2500 275 3.5–12 1+ www.specim.fi
CASI 365–1052 288 2–10 0.25+ www.itres.com
HyMap 440–2500 100–200 10–20 2.0+ Cocks et al. (1998)

Spaceborne
EO-1 Hyperion 400–2500 220 10 30 Folkman et al. (2001)
Proba-1 CHRIS 415–1050 18–62 1.3–12 18, 36 Barnsley et al. (2004)
EnMAP (planned) 420–2450 98–130 6.5–10 30 Stuffler et al. (2007)
HyspIRI (planned) 380–2500 210 10 60 hyspiri.jpl.nasa.gov
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In comparison to airborne systems, there are fewer space-
borne sensors collecting hyperspectral data (Table 16.1). NASA’s 
EO-1 Hyperion has far exceeded its intended 1-year life span, 
performing for over a decade (Riebeek 2010). Thenkabail et al. 
(2004) showed that Hyperion data, when compared to data from 
even the most advanced broadband sensors (Enhanced Thematic 
Mapper Plus [ETM+], IKONOS, and Advanced Land Imager 
[ALI]) in orbit at that time, yielded models that explained 36%–
83% more of the variability in rainforest biomass and produced 
land use/land cover classifications with 45%–52% higher accura-
cies. The European Space Agency (ESA) also has a hyperspec-
tral sensor (Compact High-Resolution Imaging Spectrometer 
[CHRIS]) on board the Proba-1 satellite, which observes in the 
visible and near-infrared (NIR) portion of the spectrum, though 
at higher spatial resolutions than Hyperion it is only able to 
record in 18 bands in this range (Barnsley et al. 2004). In addi-
tion, Germany is planning the launch of a hyperspectral sen-
sor Environmental Mapping and Analysis Program (EnMAP) 
in 2017, and NASA is planning a mission called Hyperspectral 
and Infrared Imager (HyspIRI) for sometime near the year 2020. 
The addition of these spaceborne sensors will greatly contribute 
to the spatial and temporal coverage of hyperspectral data for 
forest research.

16.2.2  LiDAR Data Sources

LiDAR data sources are both numerous and variable, a reflection 
of the demand for airborne LiDAR in a wide variety of scien-
tific and engineering applications. Recent and upcoming space-
borne LiDAR systems, described in this section, offer new data 
for forest monitoring. While the amount of LiDAR data being 
collected is increasing, there is a great deal of variability in the 
quality, type (discrete return vs. waveform), and spatial resolu-
tion of the resulting data.

LiDAR datasets for the United States are publicly available 
from a variety of sources. The National Center for Airborne 
Laser Mapping (NCALM; www.ncalm.cive.uh.edu) uses com-
mercially sourced LiDAR sensors to collect high-resolution 
data (>2 laser spots m−2) for NSF-funded projects or for other 
select projects. These data are currently made available to the 
public within 2 years of collection through the NSF-supported 
OpenTopography program (www.opentopography.org), which 
provides a platform to access these data, along with other 
LiDAR datasets contributed by researchers. NASA’s Land, 
Vegetation, and Ice Sensor (LVIS), which has been operating in 
North America since the late 1990s, provides waveform data at 
coarser resolution of 10–25 m diameter laser spots in support of 
NASA studies (Blair et al. 1999). In addition, due to the increas-
ing availability of commercial LiDAR acquisition services, 
many state and local governments have commissioned datasets. 
In the United States, the National Oceanic and Atmospheric 
Administration provides an inventory of these data (http://
www.csc.noaa.gov/inventory/). There are no standard character-
istics of these datasets, as they all vary with sensor parameters, 
elevation of data collection, and the density of returns collected. 

These heterogeneous data collection conditions hinder general 
assessments of the quality of these data.

In addition to airborne LiDAR data, NASA’s Geoscience Laser 
Altimeter System (GLAS) Instrument, on board the Ice, Cloud, 
and land Elevation Satellite (ICESat), was the first spaceborne 
LiDAR instrument (Abshire et al. 2005). GLAS collected wave-
form data with 70 m spot diameter and 170 m spot intervals. 
The GLAS instrument was in operation from 2003 to 2009, 
and the data are publically available (icesat.gsfc.nasa.gov). The 
ICESat-2 is expected to launch in 2016, carrying the Advanced 
Topographic Laser Altimeter System (ATLAS).

16.2.3  Data Quality

The vast majority of HSI and LiDAR instruments have been 
deployed on aircraft, so the geographic coverage, ground sam-
pling distance (spatial resolution and/or laser spot spacing), 
flying altitudes, and atmospheric conditions have varied enor-
mously, making comparisons of instrument performances 
difficult to achieve. Nonetheless, comparative use of these 
instruments often reveals that sensor performance is paramount 
to achieving quality estimates of vegetation biophysical and bio-
chemical properties.

Three sensor qualities have proven particularly important 
in the effort to achieve high-fidelity data output. These include 
detector uniformity, instrument stability, and SNR performance 
of the measurement (Green 1998). From the HSI perspective, 
each of these metrics of quality is important. Uniformity refers 
to the detailed way in which spectra are collected in the cross 
track and spectral directions on the instrument detector. Many 
HSI instruments fail to meet the often-cited 95%–98% absolute 
uniformity standard. One of the most insidious errors in uni-
formity occurs in the spectral direction. Most area-array HSI 
sensors fail to keep the spectral measurement aligned “down 
spectrum” from the VNIR (e.g., 400–1100 nm) and throughout 
the shortwave infrared (SWIR) (e.g., 1100–2500  nm), leading 
to a mismatch in different parts of the spectrum projected onto 
the Earth’s surface. Another HSI performance issue is stability, 
which refers to the repeatability of the measurement across the 
imaging detector and/or over time. Much of the stability issue 
rests in the performance of the electronics and temperature 
stabilization subsystems. Finally, SNR is a quality that reports 
the strength and accuracy of the measurement signal relative to 
noise generated by the electronics and optics. SNR varies widely 
from instrument to instrument and also with environmental 
conditions such as temperature and humidity. Readers should be 
cautious when reviewing potential sources of HSI data, as pro-
viders may report SNR on either a bright target (e.g., white refer-
ence) or with enlarged camera apertures and/or inappropriately 
long integration times (equivalent to shutter speed). This will 
greatly inflate reported SNR values. For vegetation applications, 
SNR performances should be reported on dark targets in the 
5%–8% reflectance range, typical for plants in the visible spec-
trum (350–700 nm), and with integration times that are appro-
priate for airborne or spaceborne ground speeds (usually 10 ms).
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LiDAR measurements also have SNR, uniformity, and sta-
bility challenges. The shape, noisiness, and strength of the 
outbound laser pulses largely affect LiDAR SNR. Commercial 
LiDARs come in a wide range of SNR performance levels. For 
forest science, strong pulse strength (e.g., high-wattage laser 
diodes) is necessary to overcome absorption by the vegetation 
canopy. In addition, uniformity tends to be overlooked by scien-
tists prior to data source selection; it is highly advisable to select 
LiDAR instruments that deliver a uniform scan pattern across 
the swath of the data set. Without strict control over this fac-
tor, the user will end up with high data density in the middle of 
the scan and low-data density at the edges of the scan. Finally, 
stability is a key issue with LiDAR instrumentation. Many com-
mercial LiDARs exhibit instability as they change temperature, 
pressure, and humidity, resulting in variability in the quality 
of the laser data throughout the course of a mapping flight or 
research campaign.

16.3  HSI Remote Sensing of Forests

Forests, as fundamental components of the Earth’s biosphere, 
have been a major focus of study from the beginning of HSI data 
collection. HSI provides a quantitative measure of the sunlight 
reflected from the forest canopy and the properties therein. The 
extended range and high-fidelity narrowband resolution of HSI 

offers enhanced capability for mapping forest biochemical and 
biophysical constituents along with physiological processes that 
contribute to the shape of the reflectance spectrum (Table 16.2). 
HSI data are used in a number of ways to assess leaf and can-
opy properties, namely, semiempirical methods utilizing nar-
rowband spectral indices, regression modeling, and radiative 
transfer model inversion. As the HSI data quality improves, so 
do the results derived from these methods. Most recently, HSI 
combined with improved analytical methods has dramatically 
advanced species mapping and land cover classification.

16.3.1  Biophysical Properties

HSI data can uncover biophysical properties of ecological sig-
nificance at both the leaf and canopy scales. Properties related 
to forest composition and leaf area index (LAI) are perhaps best 
retrieved from HSI data, whereas some properties like canopy-
gap distribution and leaf angle distribution (LAD) are more 
readily determined from LiDAR. LAI (leaf area per unit ground 
area, m2 m−2) is one of the most important canopy properties 
because it is directly related to productivity and water use, but 
variation in LAI can also indicate stress resistance and competi-
tion for light (see Waring 1983; Asner et al. 2004a). Field data and 
models show that LAI and LAD are primary controls on canopy 
reflectance in dense vegetation (Gong et al. 1992; Asner 1998). 

Table 16.2  Forest Biochemical and Physiological Properties Estimated from HSI, along with a Summary of Example Methods 
(Spectral Indices), Relevant Spectral Bands, Maturity, and References

Vegetation 
Property Estimation Method(s) Relevant Bands (nm) Maturity Level Example References 

Foliar 
nitrogen

Normalized difference nitrogen 
index; band depth analysis; PLSR; 
RT model inversion

1510, 1680; 
400–2500

✓✓ Kokaly  (2001), Serrano et al. (2002), Smith et al. (2003), 
Asner and Vitousek (2005), and Dahlin et al. (2013)

LUE PRI 531, 570 ✓✓ Gamon et al. (1992, 1997), Gamon and Surfus (1999), 
Stylinksi et al. (2000), Guo and Trotter (2004), Hilker 
et al. (2008), Filella et al. (2009), Garbulsky et al. 
(2011), and Ripullone et al. (2011)

Foliar 
carotenoids

Various narrowband spectral 
indices

510, 550, 700; 445, 
680, 800

✓✓ Gitelson et al. (2002) and Peñuelas et al. (1995)

Foliar 
anthocyanin

Various narrowband spectral 
indices

400–700 ✓ Gamon and Surfus (1999), Gitelson et al. (2001, 2006), 
and Van den Berg and Perkins (2005)

APAR Simple ratio, NDVI 400–700 ✓✓✓ Jordan  (1969) and Rouse et al. (1974)
LAI Various narrowband spectral 

indices; RT model inversion
700–1300 ✓✓✓ Rouse et al. (1974), Huete (1988), Gao et al. (1995), 

Rondeaux et al. (1996), Haboudane et al. (2002), 
Gitelson (2004), and Lim et al. (2004)

LMA PLSR 400–2500 ✓ Asner et al. (2011)
Foliar 

chlorophylls
Various narrowband spectral 

indices; RT model inversion
550, 670, 700; 

800–1300; 690–725
✓✓✓ Kim  (1994), Daughtry et al. (2000), Zarco-Tejada et al. 

(2001), Gitelson et al. (2006), and Zhang et al. (2008)
Foliar water Various narrowband spectral 

indices
820, 1600; 860, 1240; 

900, 970
✓✓ Hunt and Rock (1989), Peñuelas et al. (1997), and 

Dahlin et al. (2013)
Canopy water EWT; RT model inversion 800–2500 ✓✓✓ Hunt and Rock (1989), Gao and Goetz (1990), Gao  

(1996), Peñuelas et al. (1997), and Roberts et al. (2004)
Foliar lignin 

and cellulose
Cellulose absorption index; 

normalized difference lignin index
2015, 2106, 2195; 

1680, 1754
✓✓ Daughtry  (2001) and Serrano et al. (2002)

Foliar carbon PLSR 1500–2500 ✓ Dahlin et al. (2013)

Note:	 Maturity is a metric of relative accuracy as depicted in the literature, with one checkmark indicating low maturity and three checkmarks indicating high 
maturity. RT, radiative transfer; PLSR, partial least squares regression.
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While LAI is detectable from broadband sensors, studies show 
that HSI data and analysis methods optimized for HSI are more 
accurate (e.g., Spanner et al. 1994; Gong et al. 1995). Lee et al. 
(2004) examined four structurally different land cover types 
and showed that HSI red-edge and SWIR bands produced the 
best estimates of LAI. Equivalent water thickness (EWT, mm) 
produces better estimates of LAI than do pigment-based indi-
ces such as the normalized difference vegetation index (NDVI) 
(Roberts et al. 1998), with LAI values (up to nine) that far exceed 
the sensitivity range of NDVI and other indices (Roberts et al. 
2004). Water indices derived from HSI have also been used to 
quantify loss of LAI from pest-related defoliation and other fac-
tors (e.g., White et al. 2007).

At the leaf level, leaf mass per area (LMA, g m−2 and its recipro-
cal; specific leaf area [SLA], m2 g−1) is a key foliar property that is 
highly correlated with light harvesting and potential plant produc-
tivity (Niinemets 1999; Westoby et al. 2002). LMA can be defined 
for foliage throughout the canopy or in any given canopy layer, 
depending upon the ecological question. While there is enormous 
range in LMA within a given plant functional type and among 
coexisting species, LMA is broadly correlated with temperature 
and precipitation at the global level (Wright et al. 2004). Higher 
temperatures, drier conditions, and higher irradiance are associ-
ated with higher values of LMA. Leaves with higher LMA are built 
for defense and longer life spans, creating higher resource use 
efficiency per nutrient acquired (Poorter et al. 2009). Conversely, 
lower LMA values are found in fast-growing species, often with 
higher nutrient concentrations and photosynthetic rates (Wright 
et  al. 2004). In addition, there is a strong degree of taxonomic 
organization to LMA within forest communities (Asner et  al. 
2014). Because LMA is a function of leaf thickness and is cor-
related with total carbon and nitrogen, it is uniquely detectable 
in HSI data and has been estimated from inversion of radiative 
transfer models such as the PROSPECT model (Jacquemoud et al. 
2009), chemometric analytical methods (Asner et al. 2011), and 
HSI-optimized SWIR indices (le Maire et al. 2008). The results 
from these studies conform to field measurements.

16.3.2  Biochemical Properties

The foremost motivation for biochemical detection is to better 
assess the spatiotemporal status and trends of forest canopy func-
tioning, especially those related to fluxes of water, carbon, and 
nutrients. The list of plant biochemicals that have been identified 
and quantified using HSI data is extensive (Table 16.2) and has 
received several detailed reviews (Blackburn 2007; Kokaly et al. 
2009; Ustin et al. 2009; Homolová et al. 2013). Many studies have 
found strong correlations between remotely sensed foliar nitro-
gen content and photosynthetic capacity or net primary produc-
tion (Kokaly et al. 2009; Townsend et al. 2013), despite the small 
fraction of biomass comprised nitrogen. Most of these studies 
have been based on partial least squares regression (PLSR) anal-
ysis (Ollinger et al. 2002; Smith et al. 2002; Martin et al. 2008) of 
the full spectrum or spectral matching and continuum removal 
techniques (Kokaly 2001). Feilhauer et al. (2011) and Homolová 

et al. (2013) show that multiple wavelengths throughout the 400–
2500 nm range have enabled nitrogen detection, indicating that 
nitrogen-related spectral features may vary by site, species, or 
phenological state.

Vegetation indices (Zarco-Tejada et al. 1999, 2001), semiem-
pirical indices (e.g., Gitelson et  al. 2003, 2006), and radiative 
transfer models (Zarco-Tejada et al. 2001, 2004; Féret et al. 2008, 
2011) have been used to characterize growth-related foliar chem-
icals (e.g., nitrogen and chlorophyll pigments), yet other studies 
demonstrate that remote sensing of canopy structure also aids 
quantitative retrieval of biochemical properties (e.g., Zhang 
et al. 2008; Hernández-Clemente et al. 2012; Knyazikhin et al. 
2013a,b,c; Ollinger et al. 2013; Townsend et al. 2013) (Figure 16.1). 
Asner and Warner (2003) conclude that quantitative informa-
tion on gap fraction and tree structure is needed to validate or 
constrain remote sensing models to accurately estimate chem-
istry and energy exchange. Possible ways to account for struc-
ture in the retrieval of foliar chemistry include canopy radiative 
transfer models, LiDAR, and other methods that account for 
intra- and intercanopy gaps, self-shading, and stand structure 
(see Section 16.5.1). Many proposed methods remain untested, 
including the directional area scattering factor (DASF), which 
is a function based on three wavelength invariant parameters: 
canopy interceptance, probability of recollision, and directional 
gap density (Lewis and Disney 2007; Schull et  al. 2007, 2011; 
Knyazikhin et al. 2013a). Still other researchers have argued that 
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Figure 16.1  (a) LAI image of a black spruce forest (53.2% coni-
fer, 16.1% deciduous species, and 21.1% grass) near Sudbury, Ontario, 
Canada. The image is derived based on a relationship between the 
simple ratio (near infrared/R) and LAI (r2 = 0.88). (b). Chlorophyll 
a + b content distribution per unit ground area. The image combines 
the retrieved leaf chlorophyll a + b content for the three cover types 
(r2 = 0.47) times the LAI. The chlorophyll data were analyzed using the 
4-Scale geometrical–optical model to characterize the effect of struc-
ture on above canopy reflectance and inversion of the PROSPECT leaf 
model to estimate pigment concentration. Data from 72-band Compact 
Airborne Spectrographic Imager (HSI) averaged from 2 m pixel resolu-
tion to 20 m. (Reprinted from Zhang, Y. et al., Remote Sens. Environ., 
112, 3234, 2008.)
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the canopy architecture of a species is an integrated component 
of its strategy for resource capture and therefore should covary 
with chemistry (Ollinger et al. 2013; Townsend et al. 2013).

Foliar and canopy water content has also received a signifi-
cant amount of attention due to its relationship with transpira-
tion and plant water stress (Ustin et al. 2012; Hunt et al. 2013). 
The water absorption signal has a large effect on plant spectra, 
from small absorptions in the NIR at 970 and 1240 nm, acces-
sible through HSI data, to a large broad absorption across the 
entire SWIR (1300–2500 nm). Gao and Goetz (1995) developed 
one of the first narrowband indices for the quantification of 
EWT of vegetation. The values derived for EWT from AVIRIS 
data were tested against field data from the Harvard Forest, 
Massachusetts. HSI also offers the unique ability to differentiate 
between different phases of water (atmospheric water vapor and 
the moisture content of vegetation), for which the absorption 
maxima are offset by about 40–50  nm (Gao and Geotz 1990). 
This ability to quantify atmospheric water aids in the statisti-
cal modeling of the atmosphere such that water vapor signals 
can be removed, permitting proper estimation of the underlying 
liquid water stored in vegetation (Green et  al. 1989). Recently, 
Cheng et al. (2013b) showed that it is possible to monitor small 
diurnal changes in water content from optimized indices and 
wavelet analysis that provide information on plant water status 
and whether root uptake can support full transpiration demand.

Nonpigment materials in the forest canopy range from foliar 
carbon constituents, such as lignin and cellulose, to dead leaves, 
stems, or remaining reproductive structures of flowers and 
fruits. The detection and quantification of these materials, some-
times referred to as dry matter or nonphotosynthetic vegetation 
(NPV), is often used as an indicator of canopy stress and may be 

important for quantifying the contribution of plant litter to for-
est carbon pools. Particularly after foliage has lost pigments and 
water, the cellulose–lignin absorptions become easily detectable 
with HSI data through narrowband methods such as the cel-
lulose absorption index (Daughtry 2001; Daughtry et al. 2005), 
spectral mixture analysis (Asner and Lobell 2000; Roberts et al. 
2003a), chemometric approaches like PLSR (Asner et al. 2011), 
or radiative transfer models (Riaño et  al. 2004; Jacquemoud 
et al. 2009). Kokaly et al. (2007, 2009) used continuum removal 
combined with a spectral library to reveal a 2–3 nm shift in the 
cellulose–lignin absorption feature when the concentration of 
lignin increases, demonstrating the utility of HSI in quantify-
ing subtle variations in canopy carbon. Numerous examples of 
forest NPV quantification also exist in the HSI literature (e.g., 
Ustin and Trabucco 2000; Roberts et al. 2004; Guerschman et al. 
2009). Dry matter signatures in the HSI spectrum have been 
used to assess whether canopies were subjected to insect defolia-
tion, drought stress (White et al. 2007; Fassnacht et al. 2014), or 
root pathogen damage (Santos et al. 2010).

HSI data have significant potential for mapping forest 
composition at species and community levels, based largely 
on their biochemical attributes (Figure 16.2). Many examples 
have been published using various analytical approaches with 
airborne HSI images (e.g., Martin et al. 1998; Clark et al. 2005; 
Bunting and Lucas 2006; Bunting et al. 2010), EO-1 Hyperion 
satellite data (Townsend and Foster 2002), time series of 
Hyperion data (Kalacska et  al. 2007; Somers and Asner 
2013), and combinations of airborne HSI imagers and LiDAR 
(Dalponte et  al. 2007; Jones et  al. 2010; Colgan et  al. 2012a; 
Naidoo et  al. 2012; Baldeck et  al. 2014). In recent years, the 
ability to map species and detailed land cover has significantly 

Aleurites moluccana
Mangifera indica L.
Psidium cattleianum

Cananga orodata
Melochia umbellata
Psidium guajava

Cecropia peltata
Metrosideros polymorpha
Syzygium jambos

Eucalyptus robusta
Persea americana
Zingiber zerumbet

Cocos nucifera
Pandanus tectorius
Trema orientalis

Flindersia brayleyana
Pithecellobium saman

(a) (b)

Figure 16.2  (a) A false color composite image of Nanawale Forest Reserve, Hawaii Island (R = 646 nm; G = 560.7 nm; B = 447 nm), with colored 
polygons showing locations of species data from a field survey. (b) Classification of 17 canopy species based on regularized discriminant analysis 
(n = 50 samples/species) using CAO VNIR imaging spectrometer data. (Reprinted from Féret, J.-B. and Asner, G.P., Remote Sens. Environ., 115, 
2415, 2013.)
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improved (Asner 2013). It is likely that this is a consequence 
of improved instrument performance, especially for high-
fidelity HSI data and for the adoption of a wide variety of new 
analytical methods including radiative transfer models, seg-
mentation and object delineation, and numerous statistical 
methods such as ensemble classifiers, discriminate analysis, 
support vector machines, and combined approaches. No one 
method has yet been shown to work universally across global 
land cover types with complex environment and terrain inter-
actions. However, several general conclusions can be inferred 
from these and other studies: (1) the addition of SWIR bands 
along with VNIR bands often significantly increases the accu-
racy of mapping forest species; (2) species mapping is further 
enhanced if HSI data encompass multidate periods that cap-
ture phenological patterns, as is consistent with improve-
ments reported for multidate multispectral data (e.g., Wolter 
et al. 2008); and (3) combining information on tree structure 
from LiDAR, such as canopy height, diameter, and volume, 
with HSI data improves results (Féret and Asner 2013).

16.3.3 C anopy Physiology

Imaging spectroscopy can be used to characterize three key 
physiological processes responsible for carbon uptake in for-
ests: photochemistry, nonphotochemical quenching (NPQ), 
and fluorescence. Solar radiation, and photosynthetically active 
radiation (PAR; 400–700 nm) in particular, supplies the energy 
that drives carbon uptake in forests. The first process, photo-
chemistry, refers directly to the process by which the enzyme 
ribulose-1,5 bisphosphate carboxylase–oxygenase (RuBisCO) 
catalyzes RuBP to fix carbon from carbon dioxide. Within the 
Calvin cycle of C3 plants (which includes trees), photochemis-
try is driven by the energy supplied from light harvesting by 
pigment complexes. The second process, NPQ, relates directly 
to plant interactions with light. Plants downregulate photo-
synthesis through a range of processes related to pigment con-
centrations to either make use of light energy or dissipate it 
(Demmig-Adams and Adams 2006). Photochemistry and NPQ 
processes can be characterized through estimation of pigment 
concentrations or through inference based on changes in leaf 
pigment pools associated with plant responses to excess light 
or stresses that prevent them from fully utilizing ambient light 
energy (Demmig-Adams and Adams 1996). Finally, all plants 
dissipate light energy through solar-induced fluorescence (SIF), 
which only occurs as a consequence of photosynthesis and has 
been found to scale directly to rates of photosynthetic activity 
(Baker 2008).

Quantifying foliar nitrogen, the key element in RuBisCO 
and a trait whose concentration within proteins in foliage 
scales directly with photosynthetic capacity (Field and Mooney 
1986; Evans 1989; Reich et  al. 1997), provides a measure of 
the functioning of forest canopies (as described earlier). This 
functioning includes the capacity for carbon uptake, but photo-
synthetic downregulation limits carbon uptake under adverse 
environmental conditions. The most widely used models of 

photosynthesis employ the Farquhar model (Farquhar et  al. 
1980; Farquhar and von Caemmerer 1982), in which the poten-
tial photosynthetic performance of a leaf is characterized using 
two parameters: the maximum rate of carboxylation (Vcmax) 
governed by RuBisCO activity and the maximum electron 
transport rate (ETR) (Jmax is the maximum rate of ETR; Farquar 
and von Caemmerer 1982). Together, these limit the maximum 
rate of photosynthesis (Amax). Vcmax is strongly related to N con-
centration and LMA, that is, the investment by a plant in light 
harvesting relative to construction and maintenance (Poorter 
et al. 2009). ETR and Jmax are more closely related to the pro-
cesses set in motion by light harvesting in PSI and PSII (PS = 
photosystem), necessary for the synthesis of adenosine triphos-
phate (ATP) to drive cellular reactions. Because the Calvin 
cycle depends on ATP availability to sustain the regeneration 
of RuBP (which in turn permits carboxylation), photosynthetic 
capacity is limited by Jmax. Therefore, the optical properties 
of foliage related to light harvesting may also facilitate map-
ping Jmax from HSI. It should be noted that all photosynthetic 
parameters of vegetation are sensitive to temperature and 
moisture, so any remotely sensed estimate of such parameters 
will be specific to the ambient conditions at the time of mea-
surement (Serbin et al. 2012). HSI has also been used as part of 
multisensor approaches to characterize net ecosystem photo-
synthesis (e.g., Rahman et al. 2001; Asner et al. 2004a; Thomas 
et al. 2006, 2009).

Doughty et  al. (2011) successfully related leaf-level spec-
troscopic measurements to Amax but had less success with the 
other parameters. Variations in Vcmax and Jmax related to tem-
perature were measured in cultivated aspen and cottonwood 
leaves and accurately predicted similar relationships in plan-
tation trees (Serbin et al. 2012). The ability to map Vcmax and 
Jmax from imaging spectroscopy is most likely a consequence 
of the ability to infer these properties from traits that are 
directly detectable based on known or hypothesized absorp-
tion features (e.g., N, LMA, and water; see Kattge et al. 2009 
and Cho et al. 2010) and the coordination of these traits with 
canopy structure (Ollinger et  al. 2013). These studies show 
promise for developing remote sensing methods to map the 
properties used by modelers to characterize forest physiologi-
cal function.

Efforts to map parameters directly associated with photo-
chemistry are an area of continuing development in imaging 
spectroscopy. The discipline of physiological remote sensing 
using HSI has its roots in efforts to characterize NPQ and how 
NPQ relates to photosynthetic rates and capacity. This work 
stems from the development of the Photochemical Reflectance 
Index (PRI) (Gamon et al. 1992; Peñuelas et al. 1995). While typi-
cally associated with the de-epoxidation of xanthophylls for pho-
tosynthetic downregulation during NPQ (Bilger and Björkman 
1990; Demmig-Adams and Adams 1996), the PRI more gen-
erally correlates with total pigment pools and their variation 
with environmental context (Gamon and Bond 2013). As such, 
the PRI has been shown to be an indicator of photosynthetic 
rates and light use efficiency (LUE) (Gamon and Surfus 1999). 
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Accounting  for  species composition, environmental variabil-
ity, and seasonal responses, the PRI is often correlated with the 
carotenoid to chlorophyll ratio (r2 = 0.50–0.80), a property linked 
to photosynthesis and light harvesting (Garbulsky et  al. 2011) 
(Figure 16.3). In addition, Stylinksi et  al. (2000) also showed 
close relationships between the PRI and xanthophyll cycle pig-
ments and modeled electron transport capacity (Jmax) in leaves of 
pubescent oak (Quercus pubescens). Kefauver et al. (2013) showed 

strong relationships between PRI and physiological damage to 
forests by ozone. A limitation of the PRI has been its species-level 
sensitivity, that is, relationships between the PRI and photosyn-
thesis are species dependent (Guo and Trotter 2004; Filella et al. 
2009; Ripullone et al. 2011). However, Hilker et al. (2008) have 
shown that PRI data may facilitate retrieval of plant photosyn-
thetic efficiency independent of species composition.

The key physiological processes responsible for productiv-
ity of forests can also be addressed by remote sensing through 
the estimation of light absorption by canopies and its pre-
sumed linkage to light harvesting and use in photosynthesis. 
Under nonstressed conditions, net primary production is lin-
early related to the absorbed photosynthetically active radia-
tion (APAR; Montieth 1977). This relationship is modulated 
by LUE. Traditionally, APAR has been successfully calculated 
from vegetation indices derived from spectral sensors of many 
varieties (e.g., Field et  al. 1995; Sellers et  al. 1996). The detec-
tion of forest LUE using PRI, and thus potential carbon uptake, 
has been demonstrated in numerous systems including boreal 
(Nichol et al. 2000) and conifer forests (Middleton et al. 2009; 
Atherton et al. 2013), but the utilization of remotely estimated 
APAR by the canopy for photosynthesis remains a more difficult 
task. The most common approach to assessing LUE using HSI 
has been through narrowband indices such as the PRI, which 
uses the reflectance at 570 and 531 nm (i.e., Gamon et al. 1997), 
but future developments in retrieving the Farquhar parameters 
(Vcmax, Jmax) and SIF are likely to provide more robust estimates 
of key drivers of physiological processes. Ultimately, linkages 
across methods, for example, estimating LUE using derivations 
biochemistry (%N) and LAI, may provide a hybrid approach to 
best map factors important to net primary productivity (NPP) 
(Green et al. 2003).

Chlorophyll fluorescence provides another means of esti-
mating photosynthetic performance and LUE from HSI data 
(Meroni et al. 2009). Numerous studies since the early 2000s 
have demonstrated the capacity of measurements of SIF to 
accurately characterize seasonal patterns of carbon uptake 
(Guanter et al. 2007; Frankenburg et al. 2011; Joiner et al. 2011). 
Under natural conditions, fluorescence and photosynthesis 
are positively correlated. Energy absorbed in the photosys-
tems is reradiated at longer wavelengths than those absorbed, 
adding a subtle signal to reflected solar radiation, most nota-
bly with peaks around 685 and 740  nm. Measurements of 
SIF require narrowband data at specific wavelengths in the 
NIR in which the vegetation fluorescence signal in retrieved 
reflectance (about 2%) can be distinguished from NIR albedo 
(>40%) (Berry et al. 2013). Most efforts to date have focused on 
retrievals of SIF in narrow wavebands (preferably <0.3 nm) ± 
20 nm around the solar Fraunhofer lines (wavelengths where 
there is no incoming solar energy, ~739  nm) or O2-A band 
at 760  nm. Generally correlated with the PRI (Zarco-Tejada 
et  al. 2009; Cheng et  al. 2013a), fluorescence has also been 
measured at field sites differing in soil salinity and estimated 

(b)(a)

(c) (d)

0.1

–0.08(f )(e)
5 km

Figure 16.3  Midsummer PRI images derived from 2009 AVIRIS 
of (a) oak/pine forests in Baraboo/Devil’s Lake, Wisconsin; (b) 
oak and tulip poplar forests in Fernow Experimental Forest, West 
Virginia; (c) northern hardwood and conifer forests in Flambeau 
River State Forest, Wisconsin; (d) xeric oak forests in Green Ridge 
State Forest, Maryland; (e) northern hardwood and subboreal coni-
fers in Ottawa National Forest, Michigan; and (f) hemlock, white 
pine, and deciduous hardwoods in the Porcupine Mountains, 
Michigan. Lower values indicate areas of greater vegetation stress. 
These images illustrate significant variability in forest physiological 
status across landscapes.
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spatially from airborne HSI data using the PRI index (531 and 
570  nm) (Naumann et  al. 2008). Zarco-Tejada et  al. (2009) 
estimated fluorescence from infilling of the O2-A bands at 
757.5 and 760.5  nm measured in 1  nm wavelength bands, 
which minimized confounding effects from variance in chlo-
rophyll and LAI. More recently, Zarco-Tejada et  al. (2013) 
used narrowband spectral indices and fluorescence infilling 
at 750, 762, and 780 nm, revealing that seasonal spectroscopic 
trends tracked changes in carbon fluxes. HSI observations 
continue to pave additional avenues to insight on plant physi-
ological processes.

16.4  LiDAR Remote Sensing of Forests

Whereas HSI provides estimates of the chemical, physiologi-
cal, and plant compositional properties of forests, LiDAR 
probes the structural and architectural traits of vegetation as 
well as the terrain below the canopy (Table 16.3). A large num-
ber of synthesis papers have been written on the use of LiDAR 
for studies of ecosystem structure (e.g., Dubayah and Drake 
2000; Lefsky et al. 2002; Lim et al. 2003; Vierling et al. 2008; 
Wulder et  al. 2012), including in other chapters of this book 
(e.g., Chapter 17). Here, we only briefly highlight the various 
uses of LiDAR in the context of forest structure, architecture, 
and biomass; the reader should also read Chapter 17 for fur-
ther details.

16.4.1 C anopy Structure and Biomass

The height of a forest canopy is a fundamental characteristic 
that both discrete and waveform LiDAR sensors are capable 
of describing (Figure 16.4). Even discrete-return datasets that 
contain only the first and last return from the laser pulse will 
allow for the calculation of this parameter, after a ground ele-
vation model has been generated from LiDAR data (Lim et al. 
2003). While canopy height alone does not provide extensive 
information on forest structure, it is a parameter related to tree 
diameters (Feldpausch et  al. 2012), and thus to aboveground 
biomass.

LiDAR can also be used to determine the vertical profile 
of canopy tissues including foliar and some woody structures 
(Figure 16.5). Waveform LiDAR instruments collect the full 
shape of the returning laser pulse, allowing for detailed infor-
mation on the structure of the canopy (Blair and Hofton 1999; 
Dubayah and Drake 2000; Ni-Meister et  al. 2001). If detailed 
canopy structure is of interest, but only discrete-return LiDAR 
data are available, it is possible to use these data to generate a 
pseudowaveform. This method aggregates discrete returns into 
bins over spatial extents that incorporate multiple laser spots in 
order to gain an aggregated understanding of the vertical veg-
etation profile in the absence of waveform data for each laser 
pulse (Muss et al. 2011). Vertical profiles are indicative of canopy 
density, vertical distribution, and the presence of undergrowth, 
all of which can provide information on the 3D structure and 
habitat of forests (Parker 1995; Lefsky et  al. 1999; Clark and 
Clark 2000; Weishampel et  al. 2000; Drake et  al. 2002; Asner 
et al. 2008; Vierling et al. 2008).

One of the most widespread uses for LiDAR-derived can-
opy information is in the estimation of aboveground biomass, 
also known as aboveground carbon density (ACD). Such 
approaches have been applied in numerous studies of conifer, 
broadleaf temperate, and tropical forest ecosystems (Nelson 
1988; Lefsky et  al. 1999, 2002, 2005; Popescu et  al. 2003; 
Næsset and Gobakken 2008; van Aardt et al. 2008; Asner et al. 
2012c; Wulder et  al. 2012). The mean canopy profile height 
(MCH) has been used as the canopy structural metric, which 
relates the LiDAR vertical structure data to ACD (Lefsky et al. 
2002; Asner et  al. 2009). However, recent studies have indi-
cated that variations in sensor characteristics and settings can 
cause significant differences in the MCH metric between data 
acquisitions (Næsset 2009), strongly indicating that top-of-
canopy height is a more reliable method for estimating ACD of 
tropical forests (Asner and Mascaro 2014). The use of LiDAR 
data to produce estimates of ACD that closely match plot-level 
estimates allows for the mapping and monitoring of aboveg-
round carbon stocks at landscape scales and, with the fur-
ther development of spaceborne LiDAR, potentially regional/
biome scales.

Table 16.3  Forest Structural Properties Estimated from LiDAR, along with an Estimate of Scientific Maturity and Example References

Vegetation Property Maturity Level Example References 

Total canopy height ✓✓✓ Dubayah and Drake (2000), Ni-Meister et al. (2001), Drake et al. (2002), and Lim et al. (2003)
Mean canopy profile height ✓✓✓ Lefsky et al. (1999, 2002, 2005)
Aboveground biomass ✓✓ Nelson  (1988), Lefsky et al. (1999, 2002, 2005), Popescu et al. (2003), Næsset and Gobakken (2008), van Aardt 

et al. (2008), Asner et al. (2012c), and Wulder et al. (2012)
Leaf area density ✓ Sun and Ranson (2000), Lovell et al. (2003), Riaño et al. (2004), Morsdorf et al. (2006), Richardson et al. 

(2009), Soldberg et al. (2009), and Vaughn et al. (2013)
Understory presence ✓✓ Zimble et al. (2003) and Asner et al. (2008)

Note:	 Maturity is a metric of relative accuracy as depicted in the literature, with one checkmark indicating low maturity and three checkmarks indicating high 
maturity.
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16.4.2  Light Penetration

Canopy gaps, or openings in forest canopies, influence popu-
lation dynamics of forest trees by affecting forest structure, 
regeneration dynamics, and species composition (Brokaw 1985; 
Denslow 1987). Canopy gaps occur at scales ranging from sin-
gle branches to multiple treefalls and result from disturbances 
caused by natural tree life cycles (Asner 2013), human processes 
such as logging (e.g., Nepstad et  al. 1999; Asner et  al. 2004b; 
Curran et al. 2004), and environmental factors such large-scale 
blowdowns (Chambers et  al. 2013). Recently, airborne LiDAR 
data from a number of tropical forests have enabled the measure-
ment of millions of canopy gaps over large spatial scales, both as 
single measurements and with repeat collections, improving the 
understanding of static and dynamics gaps, respectively (e.g., 
Magnussen et al. 2002; Kellner et al. 2009; Udayalakshmi et al. 
2011; Armston et al. 2013).

Static canopy-gap size-frequency distributions (known as λ) 
are strikingly similar across a wide range of tropical forest 
types on differing geologic substrates and within differing dis-
turbance regimes. This collective evidence suggests consistent 
turnover rates and similar mechanisms of gap formation across 
tropical forests (Kellner and Asner 2009; Asner et al. 2013, 2014). 
Deviations from this stable range of observed λ values poten-
tially provide another metric for detecting and mapping distur-
bance. In a recent study, repeat LiDAR collections permitted the 
quantification of positive height changes in a forest canopy in 

Hawaii and illustrated how size and the proximity to other cano-
pies influenced the outcome of competition for space within this 
forest (Kellner and Asner 2014).

16.5 I ntegrating HSI and LiDAR

In recent years, HSI and LiDAR observations have been inte-
grated using two approaches. One method involves the acquisi-
tion of HSI and LiDAR data from separate platforms, such as 
from different aircraft, followed by modeling and analysis steps 
to fuse the resulting datasets (e.g., Mundt et al. 2006; Anderson 
et al. 2008; Jones et al. 2010). This is currently the most common 
approach, and following acquisition, the data must be digitally 
coaligned using techniques such as image pixel–based coreg-
istration. These efforts usually yield an integrated data “cube” 
with an average misalignment of one pixel or so, although the 
scanning and/or array patterns of the HSI and LiDAR data may 
yield much higher coalignment errors.

Full waveform
lidar

Discrete return
lidar

Figure 16.4  Illustration of waveform and discrete-return measure-
ments of a tree. While both provide information on the vertical struc-
ture of canopies, discrete-return sampling records the returning laser 
pulse at specified peaks (e.g., first and last pulse) of the return wave, 
whereas waveform sampling collects the full shape of the returning 
pulse. (Reprinted from Lim, K. et al., Prog. Phys. Geogr., 27, 88, 2003).
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Figure 16.5  LiDAR cross-sectional views of four mature tropical 
forests in the Peruvian Amazon, Panamanian Neotropics, southeastern 
Madagascar, and Hawaii depict 3D forest structure along a 100 m long × 
20 m wide transect. Right-hand panels show mean and spatial variance of 
LiDAR vertical canopy profiles for all returns in a 1 km2 area centered on 
each cross section. Vertical canopy profiles are generally consistent across 
the four study sites, yet the Hawaiian forest contains the most pronounced 
groundcover, understory, and canopy layers. (Reprinted from Asner, G.P. 
et al., Oecologia, 168, 1147, 2012b).
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A second, rapidly growing approach to HSI and LiDAR data 
integration involves the comounting of instruments on the same 
platform, whether on board aircraft or an unmanned aerial vehi-
cle (UAV) (Asner et al. 2007). Integration steps range from colo-
cating the instruments on the same mounting plate on board 
the aircraft or UAV, to precise time registration of each mea-
surement, to final data fusion using ray tracing models for each 
instrument (Asner et al. 2012a). Each of these steps is key to pro-
ducing a highly integrated dataset, reducing coalignment issues 
such that the data can be treated as one information vector per 
unit ground sample (e.g., one pixel). The onboard and postflight 
fusion of HSI and LiDAR data developed and deployed by the 
CAO (http://cao.carnegiescience.edu) has been replicated and is 
currently being used by the U.S. NEON’s Airborne Operational 
Platform program (http://www.neoninc.org/science/aop).

16.5.1  Benefits of Data Fusion

The benefits of HSI and LiDAR data fusion include increased 
data dimensionality, constraints on the interpretation of one 
portion of the dataset using another portion, and filtering of 
data to specific observation conditions or specifications. The 
dimensionality of, or degrees of freedom within, a fused dataset 
increases with the integration of complementary or orthogonal 
observations such as chemical or physiological metrics from HSI 
and structural or architectural measures from LiDAR. A highly 
demonstrative example can be taken from two integrated HSI–
LiDAR datasets collected with the CAO Airborne Taxonomic 
Mapping System (Figure 16.6). One dataset was collected over 
a portion of Stanford University in 2011, and the other taken 
over a remote Amazonian rainforest in the same year. In the 
Stanford case, the LiDAR data alone contain about 25 degrees 
of freedom for a 200 ha area comprised buildings with varying 
architecture, vegetation ranging from grasses to trees, roads and 
pathways, and other built surfaces. Here, degrees of freedom are 
quantitatively assessed using principal component analysis, so 
each degree is orthogonal to or unique from the others (Asner 
et al. 2012a). A 72-band VNIR image of the same Stanford scene, 
taken from the same aircraft, contains about 50 degrees of free-
dom. Combined, the VNIR HSI and LiDAR provide about 100 
degrees of freedom. A VSWIR imaging spectrometer on board 
the same aircraft provides about 260 degrees of freedom in 
the Stanford case. In conjunction, the LiDAR and VNIR and 
VSWIR HSI offer more than 330 orthogonally aligned sources 
of information. In the Amazon forest case, data fusion yields 
similar increases in data dimensionality, more than doubling 
the information content by sensor fusion over that which can be 
achieved by any one sensor.

A second powerful use of combined HSI and LiDAR data 
involves constraint of interpretation and/or filtering of one 
data stream relative to the other. Looking down upon a forest 
canopy, one observes strong variation in bright and dark por-
tions of the canopy, as well as gaps and spectrally inconsistent 

observation conditions (Figure 16.7). As a result, reflectance 
analysis of forests is often an underdetermined problem involv-
ing variation in 3D architecture, leaf layering (LAI), and foliar 
biochemical constituents. This variation in illumination con-
ditions occurs between pixels in high-resolution HSI data and 
within pixels in lower resolution HSI data. One of many pos-
sible ways to constrain observation conditions for improved 
HSI-based analysis of forest canopy traits is to use the LiDAR 
(Asner and Martin 2008; Dalponte et  al. 2008; Colgan et  al. 
2012b). For example, LiDAR maps of top-of-canopy structure 
can be used to precisely model sun and viewing geometry on 
the canopy surface in each pixel. Combined with simple filter-
ing of the HSI data based on the NDVI or other narrowband 
indices, an HSI image can be partitioned into regions most 
suitable for a particular type of analysis. Biochemical analy-
ses are particularly sensitive to this filtering process, and much 
higher performances in biochemical retrievals can be achieved 
based on combined HSI–LiDAR filtering (Asner and Martin 
2008). Still other approaches to integrate HSI and LiDAR data 
have yet to be explored, such as in the full 3D analysis and 
modeling of canopy structural and functional traits. These 
approaches will become more common with the rise of inte-
grated data fusion systems.
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Figure 16.6  Integration of HSI and LiDAR sensor hardware, and 
data streams, provides a uniquely powerful way to greatly increase the 
inherent dimensionality of the data collected over forested areas and 
other ecosystems. For two sample 200 ha areas (Stanford University 
and a lowland Amazonian forest), individual LiDAR and HSI sensors 
provide highly dimensional data as assessed with principal components 
analysis. The dimensionality of the data increased when data are ana-
lyzed simultaneously. Here, VNIR is a visible-to-near infrared HSI and 
VSWIR is a visible-to-shortwave infrared HSI. All sensors combined 
are referred to as the Airborne Taxonomic Mapping Systems on board 
the CAO. (Reprinted from Asner, G.P., Remote Sens. Environ., 124, 454, 
2012a).
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Figure 16.7  Prescreening of (a) HSI data using fused (b) LiDAR data. This can be accomplished in various ways, and an example is shown here. 
(c) A minimum NDVI threshold of 0.8 ensures sufficient foliar cover in the analysis. (d) Combining LiDAR and solar-viewing geometry, a filtering 
mask is generated to remove pixels in shade or of ground and water surfaces. (e) The resulting suitability image provides an indication of pixels that 
can be used for biophysical, biochemical, and/or physiological analysis.
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16.6 C onclusions

HSI and LiDAR mapping provides independent and highly 
complementary data on forest canopies and whole ecosystems. 
Here, we summarized sources of HSI and LiDAR data, their gen-
eral uses in determining forest structural and functional prop-
erties, and the potential value of collecting and analyzing HSI 
and LiDAR together via hardware integration and data fusion. 
Much of the science of HSI and LiDAR analysis of forests will 
remain in the airborne domain until orbital instrumentation 
is deployed and made available to the scientific research and 
application communities. In light of the myriad studies found 
throughout the remote sensing, forest science, and conservation 
research literature, it is clear that the time is right for a rapid 
expansion of HSI and LiDAR data collection and sharing efforts 
worldwide.
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Acronyms and Definitions

AGB	 Aboveground biomass
ALS	 Airborne laser scanning
CHM	 Canopy Height Model (= DSM-DTM)
DBH	 Diameter at breast height
DP	 Digital photogrammetry
DSM	 Digital surface model
DTM	 Digital terrain model
GLAS	 Geoscience Laser Altimeter System
GVM	 Global vegetation models
IDW	 Inverse distance weighted
InSAR	 Interferometric synthetic aperture radar
LiDAR	 Light Detection And Ranging
LM	 Local maxima
NEP	 Net productivity
NFI	 National Forest Inventory
NIR	 Near infrared
POLinSAR	� Technique based on the synergy between SAR 

interferometry and SAR polarimetry
R2	 Determination coefficient
R2

adj	 Adjusted determination coefficient
Reco	 Total ecosystem respiration

REDD	� Reducing emissions from deforestation and forest 
degradation

RMSE	 Root-mean-square error
SAR	 Synthetic Aperture Radar
SLICER	� Scanning Lidar Imager of Canopies by Echo Recover
SRTM	� Shuttle Radar Topography Mission, by exten-

sion refers to the resulting digital elevation model 
(DEM) based on SRTM data

TIN	 Triangular irregular network
UAV	 Unmanned aerial vehicles
UNFCCC	� United Nations Framework Convention on 

Climate Change
UV	 Ultraviolet

17.1 I ntroduction

Forests cover 30% of continental surfaces and play a key role in 
climate change regulation, in raw material and renewable energy 
supply, and in biodiversity conservation. Successfully maintain-
ing all the functions of forest ecosystems through their sustain-
able management is thus crucial for the future of mankind. 
However, developing appropriate policies and management 
practices requires an in-depth knowledge on forest ecosystems 
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within a fast-evolving context, as well as appropriate models to 
forecast how the way they will respond to management practices 
and global change. 

Remote-sensing data supported by ground observations are con-
sidered as key to obtaining quantitative and timely information on 
forest ecosystems at a variety of scales in space and time, thereby 
allowing effective monitoring (DeFries et  al., 2007; Fuller, 2006; 
Kleinn, 2002; Simonett, 1969), enhanced ecosystem modeling 
(Cabello et al., 2012; le Maire et al., 2011; Marsden et al., 2013; Wang 
et al., 2010), and appropriate management of forest resources (Le 
Goff et al., 2010; Liu and Han, 2009; Thürig and Kaufmann, 2010).

In addition to forest composition, that is, abundance and dis-
tribution of species, forest structure is a key descriptor of forest 
ecosystems (Wynne, 2006) that can, to some extent, be retrieved 
from remote-sensing data. Structure refers to the 3D arrange-
ment and characteristics of vegetation compartments, including 
trunks, branches, twigs, and leaves. A given structure is both 
a result and a driver of ecosystem functions (Shugart et  al., 
2010). Forest structure is also directly related to the main bio-
geochemical (water, nutrient, and carbon) cycles (determining 
stocks and driving fluxes). It can affect local abiotic factors and 
is also essential in providing habitats, therefore possibly impact-
ing biodiversity (Couteron et al., 2005). Accurate measurements 
of forest structure based on remote-sensing data would thus 
represent a major step toward an in-depth knowledge on forest 
ecosystems. Several remote-sensing technologies can provide 
high valuable information for sustainable forest managements. 
Some of them are particularly promising to provide information 
on forest structure. The aim of this book chapter is to present 
two remote-sensing approaches: airborne laser scanning (ALS) 
and digital photogrammetry (DP) that have both proved their 
efficiency for characterizing forest structure based on vegeta-
tion height measurements, either at the individual tree level or 
at the stand level. The first section explains why the knowledge 
of height structure is of major importance for both forest man-
agement and ecosystem modeling. In this section, our focus on 
the two aforementioned optical remote-sensing approaches as 
promising solutions to extend height measurements in space 
and time is also justified. In the second section, the concepts and 
history of both technologies are briefly described, and the result-
ing 3D data are compared in the framework of forest applica-
tions. Sections 17.3 and 17.4 detail how forest height structures 
can be measured from these 3D data at the tree and stand level, 
respectively. After a brief conclusion, the last section presents 
some promising prospects offered by the possibility to monitor 
changes in vegetation height using ALS or DP 3D data. In this 
last section, we will also discuss some issues related to space-
borne systems. These systems offer the opportunity to overcome 
coverage limitations encountered with systems operated from 
air platforms, thus enabling to extend forest ecosystems moni-
toring at global scale. Existing spaceborne imaging systems can 
be used from now to provide DP 3D data from space. For Light 
Detection and Ranging (LiDAR), ICESat experiment (2003–
2009) has demonstrated the possibility to derive global height 
(Simard et  al., 2011) and biomass maps (Baccini et  al., 2012; 

Saatchi et  al., 2011) by combining LiDAR sampling measure-
ments with other satellite data and global products. However, 
a mission embedding a LiDAR system primarily designed for 
vegetation monitoring has yet to be developed.

17.2  Why Measure Tree Heights?

17.2.1  Determinants of Heights

Height growth, also called primary tree growth, is a complex 
process that combines the production of the internodes by the 
apical bud and their elongation. Every year, one or several growth 
units can be produced. Apical growth is one of the three main 
processes that govern tree architecture along with branching and 
reiteration (Barthelemy and Caraglio, 2007; Guédon et al., 2007). 
Tree height growth and tree architecture result from an equi-
librium between endogenous features (cells arrangements, cell 
properties) and exogenous factors (competition for light, water, 
and nutrients). Growth phase patterns and drivers (e.g., climate, 
between tree competition, forest management) can be disen-
tangled using statistical models (e.g., Markov chains (Chaubert-
Pereira et al., 2009), nonlinear models (Saint-André et al., 2008), 
or process-based models such as MAESPA, a model of forest 
canopy radiation absorption, photosynthesis and water balance 
combining the MAESTRA (Multi-Array Evaporation Stand 
Tree Radiation A) and SPA (Soil-Plant-Atmosphere) ecosystem 
models (Duursma and Medlyn, 2012)). In natural forest ecosys-
tems, stand height structure is mainly dependent on the tree spe-
cies and their traits (e.g., shade tolerant, light demander, among 
others), while it is greatly determined by forester strategies in 
managed forests leading to stand structures such as even-aged 
high forest with either a single or mixed species, coppices, cop-
pices with standards, or selection forests. The secondary growth, 
which results from the cambium activity, increases tree size and 
biomass. Primary growth and secondary growth are correlated, 
and the proportions between height and diameter, or between 
biomass and height and diameter, follow rules that are the same 
for all trees of a given species growing under the same conditions 
(climate, forest management). These allometries are widely used 
to calculate volume and biomass at tree and plot scale (Picard 
et al., 2012b), and the research domain is very active (Henry et al., 
2013). Tree height at a given time is then integrating all previous 
growth phases and can be used as indicator of the current forest 
status, for example, biomass or carbon stocks, or future growth.

17.2.2 �I mportance of Tree Height Distribution 
for Forest Management and Ecology

Among forest attributes, tree height plays a central role in forest 
inventories, where it is critical for calculating volumes, siting 
quality indexes, and assessing needs for silvicultural treat-
ments (Bontemps and Bouriaud, 2014; Pardé, 1956). An evoca-
tive example is given by thinning operations in young stands, 
which are normally planned based on threshold crossings in 
canopy height. In more mature stands, height indicators such 
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as top, dominant, or Lorey’s heights are frequently used for vol-
ume or growth estimations. This underlines the importance of 
height indicators for forest managers.

Regarding ecological modeling, growth and yield models are 
mainly based on height growth. These models generally apply 
to even-aged forests that are characterized by a relative tree-
population homogeneity: same age (or age range in case of nat-
ural regeneration) and a dominant tree species. The growth of 
these populations has been widely studied (De Perthuis, 1788 in 
Batho and Garcia, 2006), which gave rise to following generic 
principles (Assmann, 1970; Dhôte, 1991; García, 2011; Pretzsch, 
2009; Skovsgaard and Vanclay, 2008). It is customary to distin-
guish the population as a whole, then the tree in the stand. This 
distinction is useful to separate the different factors involved 
in tree growth into three main components: (1) site fertility in 
a broad sense, including the ability of the soil to feed the trees 
(nutrients and water availability) and the climate characteristics 
of the area, (2) the overall pressure within the population that 
is appreciated by different indices of density, and finally, (3) the 
social status of each individual tree, which will define its ability 
to mobilize resources in its immediate environment.

For these three components, height is of primary importance 
since dominant height is widely used to define site fertility (or 
site index, for which preliminary principles were given by De 
Perthuis in 1788 (Batho and Garcia, 2006) and concepts formal-
ized by Eichhorn (1904) and later discussed by Assmann (1970), 
and more recently by Bontemps and Bouriaud (2014)). It can 
also be used to define some stand density/global pressure indica-
tors (ex Hart–Becking factor), even if to a less significant extent 
than stand density or density indicators based on tree diameters. 
Finally, height can be used to define the social status of the trees, 
for example, tree height related to the stand dominant height.

Owing to the importance of forest in climate mitigation, 
through its capacity to accumulate carbon, improved knowledge 
of carbon stocks and fluxes in forest ecosystems is needed to bet-
ter understand carbon cycle and to develop improved climate 
models. This knowledge is also needed for carbon accounting. 
After the Kyoto Protocol, the Cancún Agreements provide strong 
backing for a reducing emissions from deforestation and forest 
degradation mechanism under the United Nations Framework 
Convention on Climate Change whereby developed countries 
would provide positive benefits to developing ones for reducing 
deforestation, forest degradation, enhancement of forest carbon 
stocks, and forest conservation. However, in order to implement 
these mechanisms, forest services in most countries must make 
more accurate assessment of the forest carbon stocks and carbon 
stock changes. Changes in forest carbon stocks through time are 
best appraised by a combination of remote sensing and field-
based measurement where height is an essential variable. Most 
of the current methods used to assess carbon emissions from 
deforestation and forest degradation are indeed based on the 
measurement of changes in surface area of the main forest types 
and on the assessment of a mean biomass value for each type (De 
Sy et al., 2012; ESA, 2008). Therefore, improving accuracy of both 
surface areas of forest types and biomass estimations would lead 

to improved carbon flux predictions. For biomass estimation, a 
consensus exists stating that, for a biomass map with a 1 ha reso-
lution, estimation accuracy should not exceed 20 t·ha−1 or 20% of 
field estimations without exceeding 50 t·ha−1 (Hall et al., 2011b; 
Le Toan et al., 2011; Zolkos et al., 2013). However, reaching such 
accuracy all over the world is highly challenging (Angelsen, 
2008; Chave et al., 2003; Pelletier et al., 2011).

Another approach to study carbon stocks and fluxes relies on 
the use of forest ecosystems functioning models. Up to now, two 
kinds of model have coexisted (Bellassen et al., 2011). The first 
one consists of models adapted to stand scale, like growth mod-
els previously discussed, which are process-based models that 
can include information on silvicultural practices. Provided 
an important local calibration is performed, these models can 
output reliable simulations of local carbon stock evolutions. The 
second type consists of global vegetation models (GVMs), which 
can provide carbon stocks and fluxes at regional scales but with 
lower accuracy levels. There are two main causes for inaccuracy. 
The first one lies in pedoclimatic data, which are required to 
drive the models but are too coarse to reflect local variations. 
The second cause for inaccuracy is the nonintegration of man-
agement impacts, which hampers a reliable modeling of age-
dependent variables like biomass (Bellassen et  al., 2011). This 
is why GVMs are currently evolving to better manage intracell 
variability within coarse grid models and to take into account 
management impacts. ORCHIDEE-FM, coupling a forest man-
agement module (FM) to the Organising Carbon and Hydrology 
in Dynamic Ecosystems (ORCHIDEE) model (Bellassen et al., 
2010) and the second version of the Ecosystem Demography 
model (Medvigy and Moorcroft, 2012; Medvigy et  al., 2009) 
are examples of this new model generation that can assimilate 
height or biomass information from National Forest Inventory 
(NFI) field plots or remote-sensing data. This assimilation led 
to significant improvement in aboveground biomass dynamic 
characterization and productivity assessment (Antonarakis 
et al., 2011; Bellassen et al., 2011), for example, a decrease in error 
rate of 30% and 50% for total ecosystem respiration and net pro-
ductivity, respectively, in the study by Bellassen et al. (2011).

Therefore, whatever the approach used and due to its tie 
link with biomass, vegetation height is an essential parameter 
to develop scientific knowledge on carbon cycle and to address 
carbon-accounting issues.

Another main aspect of forest structure is its major role in 
ecology (Jaskierniak, 2011; Vepakomma et  al., 2008). Stand 
structure affects microclimate, habitat quality, and therefore 
biodiversity potential. In particular, the gradient in gap sizes is 
known to influence many parts of biodiversity. Gaps are either 
part of the natural forest cycle, or result from silvicultural treat-
ments, or are caused by accidental disturbances such as fire, 
storm, or plant health problems. They have a short-term impact 
on biodiversity through different mechanisms. The most obvi-
ous one is an increased irradiance that can benefit heliophi-
lous species and also has an impact on the microclimate in the 
patch, with a higher temperature variance in gaps than in for-
ests. Through the removal of trees, gaps also release some soil 
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resources, such as water and nutrients, which can positively 
impact vascular plant development, for example. Soil distur-
bances associated with gaps (e.g., pits and mounds) were also 
found to impact biodiversity. Bouget (2005) reported that the 
gap effect was on the whole favorable to biodiversity, with the 
notable exception of shade-preferring groups. And, while small 
gaps generally have a weaker effect on biodiversity (see Bouget, 
2005), surprisingly, benefits were observed for forest vascular 
plants, for which small openings might be very positive (Duguid 
and Ashton, 2013). Gaps not only have an effect in the area they 
cover as some species shun closed forests in the vicinity of the 
gaps. These species are generally called forest-interior species 
and have particularly been found among birds (Germaine et al., 
1997). For all the reasons, biodiversity indicators were shown to 
be strongly correlated to the 3D spatial patterns of vegetation 
(Williams et al., 1994) and wildlife richness to be related to the 
3D features of the canopy (Magnussen et  al., 2012). Temporal 
effects have also been reported. Through the succession that 
occurs after gap formation, gap impacts can evolve and even be 
reversed. For vascular plants in particular, silvicultures based 
on large cuttings have been found to have an adverse effect on 
floristic biodiversity, which occurs decades after gap formation 
(Duguid and Ashton, 2013). This may be why some authors pro-
mote the imitation of the natural disturbance regimes, espe-
cially the natural gap dynamics, in managed stands (Angelstam, 
1998; Næsset, 2002b).

17.2.3 � Limitations of Field Measurements 
and How Remote Sensing Can Help 
Meet Information Requirements

From the previous subsections, we can see how important it is to 
measure tree heights and to monitor the dynamic of both can-
opy height and gaps at several scales in time and space in order 
to improve both forest ecosystem modeling and to contribute to 
their sustainable management.

Total height of a tree is either defined as “the distance between 
the top and the base of the tree, measured along a perpendicu-
lar, dropped from the top” (van Laar and Akça, 2007) or as the 
stem length. Several methods are used to measure tree height in 
the field (Larjavaara and Muller-Landau, 2013; Williams et al., 
1994). Graduated poles can be used, but without climbing the 
tree, their use is limited to relative small trees (Larjavaara and 
Muller-Landau, 2013), usually under 15 m. For bigger trees, 
height measurements are usually derived from angle and dis-
tance measurements (Figure 17.1). Angles are measured using 
a clinometer. Distances are measured with either a measuring 
tape, an ultrasonic measuring system, or a laser range finder 
(Larjavaara and Muller-Landau, 2013). With the latter, which 
can be used to measure the distance between the operator and 
the tree top, the sine method can be applied (Figure 17.1). This 
method is very effective in dense forests as it can be used to carry 
out measurements from a distance close from the trunk, even 
by shooting directly up the tree, whereas the tangent method is 
highly inaccurate in these situations.

Mean absolute errors were found to be in the order of 1 m in 
temperate forests (e.g., from 0.90 to 1.3 m, according to the mea-
surement method used in Williams et al., 1994) and higher for 
tall trees. For example, in the study by Williams et al. (1994), for 
one of the two classes with the tallest trees, that is, trees higher 
than 24 m, errors ranged from 1.6.5 to 3.45 m according to the 
measurement method used. Measurements are more difficult 
to achieve and more error prone for broad-leaved trees than for 
coniferous species, especially during the leaf-on period, and 
also for leaning trees. In a moist tropical semideciduous forest 
and during the leaf-on period, which can be considered among 
one of the most complex measurement conditions, the residual 
mean-squared error was found to be on average between 5.05 and 
6.85 m, using sine and tangent methods, respectively (Larjavaara 
and Muller-Landau, 2013). Part of the error can be attributed to 
a bias, and errors depend not only on the measurement method 
and the stand characteristics but also on the surveyor’s expertise 
(Kitahara et al., 2010; Larjavaara and Muller-Landau, 2013).

Within the inventory process, height is certainly among the 
most costly data to collect. This is why different height indica-
tors have been developed to minimize the measurement effort 
(Van Laar and Akça, 2007). Such estimators rely on the relation-
ship between tree size and stand density and depend on other 
indicators used to assess the biophysical characteristics of the 
stand (Vanclay, 2009). For example, when using the quadratic 
mean diameter, which is favored over the arithmetic-mean 
diameter due to its higher correlation with stand volume and 
biomass, surveyors will only measure and average the heights 

Telescope pole
B

α

βD

C

A

Clinometer + Range finder

Figure 17.1  Height measurement of a vertical tree using a gradu-
ated pole (left side of the figure) or a hypsometer measuring angles and 
distances (right side of the figure). If distance AD is measured, using, 
for example, an ultrasonic system, tree height can be retrieve using the 
tangent method (Htree = BD + DC = AD·tgα + AD·tgβ); if distance AB 
and AC are measured, using, for example, a laser system, sine method 
can be used (Htree = BD + DC = AB·sinα + AC·sinβ). To account for slope 
or leaning trees, several variants depending on the measurement system 
and the targeted accuracy (e.g., DC is sometimes approximated from 
the height of the surveyor) were developed based on this basic principle.
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of a sample of trees whose diameters at breast height (DBH) 
are closest to the plot quadratic mean diameter. In even-aged 
stands, the dominant height or top height is most commonly 
used. It can be defined as the arithmetic mean of the 100 largest 
trees per hectare. It is favored over mean height when assessing 
site quality and modeling growth because it is less affected by 
stand density and silvicultural practices (Tran-Ha et al., 2011). 
However, dominant height definitions may vary among users 
(Jaskierniak, 2011), and more importantly, this measurement 
can be biased as it depends upon the sampling area (García, 
1998). Another measured height indicator is Lorey’s mean 
height. Here, the contribution of each tree to the stand height 
is weighted by its basal area. Lorey’s mean height is thus cal-
culated by multiplying the tree height (h) by the tree basal area 
(g) and by dividing the sum of these weighted heights by the 
total stand basal area. Lorey’s mean height is less impacted than 
the aforementioned height indicators by both the mortality and 
harvesting of smaller trees, and is also well correlated with stand 
volume (Tran-Ha et al., 2011).

Field measurements are essential but remain labor intensive 
and costly, and their scope must therefore be limited in space 
and time. Therefore, a technology accounting for extensive 
areas and for tree heights at individual or stand scale, as well as 
providing gap measurements at regular time scale and at lower 
costs, would represent a real quantum leap in the development 
of forest ecosystem modeling. It would also help managers who 
are calling out for more precise inventories with fine spatial and 
temporal resolutions in order to deal with the growing societal 
and economic pressure exerted on forests.

The potential of remote-sensing-based technologies to extend 
forest structure measurements in space and time is widely 
acknowledge (see, e.g., De Leeuw et al., 2010; De Sy et al., 2012; 
DeFries et al., 2007; Ostendorf, 2011; Wang et al., 2010). Table 17.1 
summarizes forest information that can be derived from main 
remote-sensing data types. Forest information was classified 
into three main categories: forest maps, forest structural and 
biophysical properties, and information on forest changes. The 
remote-sensing technologies that can be used to characterize 
forest structure can be identified from Table 17.1 along with the 
level of data availability.

Forest structure can be indirectly assessed by analyzing, for 
example, texture in very-high-resolution imagery (Couteron 
et al., 2005; Proisy et al., 2007). But several remote-sensing tech-
niques, based on LiDAR, optical imagery, or radar technologies, 
allow direct measurements of the forest 3D structure.

The utility of LiDAR, which is an active optical remote-
sensing technology, has been widely demonstrated with respect 
to forest structure measurements and biomass estimation 
(Hyyppä et  al., 2008; Lim et  al., 2003; Naesset, 2007; Wulder 
et al., 2012). LiDAR remains efficient in closed-canopy tropical 
areas supporting high-biomass forests greater than 200 t·ha−1 
(Kellner et al., 2009; Lefsky et al., 2005), where optical vegeta-
tion indices and volumetric radar measurements typically satu-
rate (Castro et al., 2003). Photogrammetry has long been used for 
forest applications, particularly forest inventories, since accurate 

3D measurements were render possible thanks to analytic ste-
reoplotters and comparators that became commonly available 
from the mid-1970s (Vastaranta et  al., 2013). This technology 
has been neglected for many years, probably partly due to the 
great potential of LiDAR to measure the 3D structure of vegeta-
tion and the fast development of ALS systems, systems combin-
ing a LiDAR with a scanning device. But photogrammetry has 
recently received renewed interest for forest applications thanks 
to developments in DP that enables automatic reconstruction of 
3D canopy models based on very-high-resolution optical images. 
Using small wavelength polarimetric radar systems (e.g., band × 
(~2.5 to 3.75 cm) radar), accurate digital surface models (DSMs) 
of the top of the canopy can also be produced using interferom-
etry, also referred as the POLinSAR technique. Indeed, the sig-
nal barely penetrates the vegetation at these wavelengths and is 
then mainly backscattered by the elements of the upper canopy 
(Soja and Ulander, 2013). Polarimetric radar tomography applied 
to data acquired with large-wavelength systems with a signal 
that penetrates deeper into the vegetation, for example, band P 
(>1 m), has also been used recently to decompose the signal into 
a few vertical strata producing low-resolution vertical signal pro-
files in forests (Ho Tong Minh et al., 2014).

However, unlike for radar, the high technological readiness 
of ALS systems and of both airborne and spaceborne optical 
imagery systems, as well as the great versatility of the produced 
data, means that both these technologies are particularly suited 
to providing information for operational applications or for 
research in the field of ecosystem modeling. Indeed, the high 
availability of data has favored the development of processing 
approaches, some of which are currently used on an opera-
tional level.

17.3 �T wo Promising Optical Remote-
Sensing Techniques for Tree 
Height Measurements: LiDAR 
and Digital Photogrammetry

17.3.1  LiDAR

17.3.1.1  Principle and Brief History

LiDAR is an active remote-sensing technology based on emis-
sion reception of a laser beam. Several kinds of LiDAR systems 
exist, differential absorption LiDAR, Doppler, and range finder, 
but most of the systems dedicated to continental surface obser-
vation belongs to the range finder class. They assess the distance 
between the sensor and a target, by measuring the round-trip 
time for a short laser pulse (in general, near infrared [NIR] or 
green wavelengths) to travel between the sensor and a target. By 
combining these range measurements with information on both 
sensor position and attitude, obtained thanks to a differential 
GPS and an inertial measurement unit onboard the platform, 
the position of the target on the Earth’s surface can be accurately 
computed. For semitransmitting mediums, such as forests, the 
incident pulse might be partly backscattered by the top of the 
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Table 17.1  Overview of the Main Remote-Sensing Data and of Their Use for Forest Ecosystem Monitoring

Remote Sensing Data

2D Imagery

Mutlispectral optical imagery
Reflected radiations measured for several discrete wavebands 

in the spectral range 400–3000 nm
Luminance and reflectance can be computed from 

measurements [1, 2, 3]

Hyperspectral optical imagery
Reflected radiations measured for many narrow 
wavebands in the spectral range 400–3000 nm
Higher spectral resolution and lower geometric 
resolution than for multispectral imagery [6, 7]

Synthetic Aperture Radar (SAR)
Backscattered microwave radiation at wavelengths 

between 1 cm and few meters
Retrodiffusion coefficient can be computed from 

measurements Several polarizations available 
(HH, HV, VH, VV) [1, 2, 8]

Very high resolution data 
Analogous (airborne):

Scale: ~1:5,000 to <1:80,000 Digital: 
resolution: sub-metric to few 

meters

High to low resolution data
Resolution: tens of meters 
to few hundreds of meters

High resolution
Resolution: 1–30 m, depending 

on flight height and system

Low resolution
Resolution: 
250–1200 m Airborne Cloud penetration capability

Spaceborne
Cloud

penetration 
capability

Data Availability (From a Technological 
Perspective) 

Airborne and spaceborne 
(IKONOS, QuickBird, Pléiade, 
WorldView, SPOT…)

High but expensive
Restricted by cloud cover
Operational

High (Landsat, Aster, 
RapidEye, IRS, 
MODIS…)

Restricted by cloud 
cover

Several free sources

Low (few experimental 
airborne systems)

Restricted by cloud cover

Low Spaceborne 
(Hyperion)
Restricted by cloud 
cover

Low (few commercial systems) High

Scale and Coverage From local to national scale 
Mapping scale greater than 
1:50,000

From regional to global 
scale according to 
spatial resolution

From local to national scale From regional to 
global scale 
according to 
system

Local to regional Regional to 
global

Forest Maps Forest/Non forest *** *** *** *** *** Using multitemporal datasets
Coniferous/Deciduous/Mixed *** *** *** *** ** Using polarization information

Additional Information on Forest 
Types

** Structural information by 
texture analysis [4]

* Information on species 
by time series analysis

*** Higher species 
classification accuracy than 
with multispectral data (e.g., 
+27% ==> 88% final 
accuracy) [7]

* Hampered by the 
coarse resolution

** Using multifrequency/
multipolarization data

Tree Level * Generalization and computing 
issues [5]

— ** If sufficient resolution 
Technically difficult

— —

Forest Structural and Biophysical 
Properties  

Cover Rate (%) ** * *** * ** Using multifrequency/
multipolarization data

Density (nb of Trees/ha) * — ** If sufficient resolution * —
Height (m) * — * * *
Basal Area (m2) * — * * ** Using polarization information
LAI/PAI (m2  m−2) * Saturation at low to medium 

LAI level
* ** Using appropriate 

vegetation indices, i.e., based 
on a spectral band sensitive 
to vegetation water content

** Using appropriate 
vegetation indices

** [9, 10]

Wood Volume (m3 ha−1) AGB (Mg ha−1) * Saturation at low biomass level * ** Using appropriate 
vegetation indices

** Using appropriate 
vegetation indices

** Using polarization information 
Saturation for AGB > 200 t·ha−1 (for 
L or P band, lower saturation levels 
for X and C bands) [8, 11, 12]

Forest Change Monitoring Land Cover Change (km2) *** ** *** ** ***
Aforestation/Refosrestation/

Deforestation (km2)
*** ** *** ** **

Degradation — — ** * If sufficient 
resolution

**

Disaster (km2) *** For fire** For storm and 
phystosanitary problems

** *** ** *

Growth — — — — —
Gap Dynamics ** * Depends on Resolution 

/gap size
** Depends on data 

availability
* —

(Continued )
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Table 17.1 (continued )  Overview of the Main Remote-Sensing Data and of Their Use for Forest Ecosystem Monitoring
Remote Sensing Data

2.5D imagery Digital Surface or Terrain Model 3D information

Digital photogrammetry
Surface geometry retrieved from two or multi point of view images 
[13, 14, 15, 16, 17]

Radar interferometry
Difference in the phase information between two SAR images 

provides an ambiguous measurement of the relative terrain 
altitude due to the periodic nature of the signal. 

After the phase unwrapping step, aiming at solving the ambiguity, 
an accurate DSM is obtained. [14, 19, 20]

Radar tomography
Raw vegetation profiles (several tens of centimers from 

airborne data to several meters expected from BIOMASS 
mission) are computed using multiple-baseline images

Long wavelengths sensitive to the whole vegetation layer 
must be used (P and L bands) [20, 22, 23]

Lidar
Part of the 3D information can be used to provide—DSM, 

DTM and CHM
Additional information on vegetation vertical structure 

[30, 31, 32]

Very High resolution DSMAccuracy: 
3 cm to 14 m Acquisition parameters 
affecting elevation accuracy: flying 
height, image resolution, B/H ratio
Aerial photographs or VHR imagers 
(<4 m)

High to Low resolution DSM 
with depointing imagers

Accuracy: 5–40 m

Airborne (e.g., commercial 
intermap products)
Z accuracy: 0.5 m

Spaceborne X, C, or L bands 
(e.g., ERS, J-ERS, ENVISAT, 

ALOS, TerraSAR, 
TanDEM-X, SRTM)

Z accuracy: better than 2 m up 
to 15 m (for SRTM) Airborne

Airborne commercial systems 
(ALS) [33, 34, 35]

Spaceborne
ICESat not optimized 
for forest applications

Airborne and spaceborne 
High but expensive
Restricted by cloud cover
Operational

High Available globally (e.g., 
from ASTER) but with low 
accuracy for global products

Low No cloud cover 
restriction

High No cloud cover restriction
No P band InSAR data yet 

available from space; but one 
panned mission: the ESA 
BIOMASS mission

Low High but expensive No current spaceborn 
system

ICESat 2003–2009
ICESat 2 planned to 

be launched in 2017

From local to regional or national Regional to global Local to regional Regional (high accurate z data) 
to global (medium accurate z 
data)

Local to regional Local to regional or national 
non wall to wall acquisitions 
can be used

Global non wall to 
wall coverage

*** Using image spectral information 
when available

** Using image spectral 
information when available

** Using the associated 
amplitude images

** Using the associated amplitude images ** Based on vegetation height *

*** Using image spectral information 
when available

** Using image spectral 
information when available

** Using the associated 
amplitude images

** Using the associated amplitude images — —

** Direct: using the associated 
imagesIndirect: information on 
topographic environment can help to 
identify species

* Indirect: information on 
topographic environment can 
help to identify species

** Using the associated 
amplitude images

** Using the associated amplitude images ** information on forest 
structure

** Information on 
forest structure

* Map quality depends 
on other RS data 
used for structural 
information 
extrapolation

** Improved results when using both 
DSM and images

— — — ** Generalization and 
computing issues

—

** Using image spectral information 
when available

* Using external DTM or 
associated images

** Using the associated 
amplitude images

** Using the associated amplitude images *** ** ICESat2 more 
suitable but still 
limitations for dense 
covers (results from 
signal modeling) 
[25, 26]

** Using image spectral information 
when available

— — — ** *

*** for dominant strata and using 
external DTM

Highly accurate DSM 
possible (few cm )

** Using external DTM Height 
information quality depends 
on elevation accuracy

** Using external DTM 
Modeled surface depends 
on the used frequency ==> 
Direct or indirect height 
assessment

** Raw vertical profiles *** for dominant strata
** for understorey

** ICESat2 more 
suitable but still 
limitations for dense 
covers results from 
signal modeling) 
[25,26,27]

** Using external DTM
Highly accurate DSM possible 

(few cm)

* Using external DTM ** Using the associated 
amplitude images

** Using the associated amplitude images ** —

— — ** Using the associated 
amplitude images

** Using the associated amplitude images *** *** Using ICESat data 
[28]

(continued )
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Table 17.1 (continued )  Overview of the Main Remote-Sensing Data and of Their Use for Forest Ecosystem Monitoring
Remote Sensing Data

2.5D imagery Digital Surface or Terrain Model 3D Information

Digital photogrammetry
Surface geometry retrieved from two or multi point of view images [13, 14, 
15, 16, 17]

Radar interferometry
Difference in the phase information between two SAR images 

provides an ambiguous measurement of the relative terrain 
altitude due to the periodic nature of the signal.

After the phase unwrapping step, aiming at solving the ambiguity, 
an accurate DSM is obtained. [14, 19, 20]

Radar tomography
Raw vegetation profiles (several tens of centimers from 

airborne data to several meters expected from BIOMASS 
mission) are computed using multiple-baseline images

Long wavelengths sensitive to the whole vegetation layer 
must be used (P and L bands) [20, 22, 23]

Lidar
Part of the 3D information can be used to provide—DSM, 

DTM and CHM
Additional information on vegetation vertical structure 

[30, 31, 32]

Very High resolution DSMAccuracy: 
3 cm to 14 m Acquisition parameters 
affecting elevation accuracy: flying 
height, image resolution, B/H ratio
Aerial photographs or VHR imagers 
(<4 m)

High to Low resolution DSM 
with depointing imagers

Accuracy: 5–40 m

Airborne (e.g., commercial 
intermap products)
Z accuracy: 0.5 m

Spaceborne X, C, or L bands 
(e.g., ERS, J-ERS, ENVISAT, 

ALOS, TerraSAR, 
TanDEM-X, SRTM)

Z accuracy: better than 2 m up 
to 15 m (for SRTM) Airborne

Airborne commercial systems 
(ALS) [33, 34, 35]

Spaceborne
ICESat not optimized 
for forest applications

** ** Using external DTM Height 
information quality depends 
on elevation accuracy

** Using polarization 
information and height 
information saturation for 
AGB > 300 t·ha−1 ( P band) 
[20, 21]

** Using vertical profiles *** ** Biomass maps with 
high discrepancies 
at the local level [29]

*** Using image spectral information 
when available

** Using image spectral 
information when available

*** Using the associated 
amplitude images

*** Using the associated amplitude images — —

*** Using image spectral information 
when available

** Using image spectral 
information when available

** Using the associated 
amplitude images and 
height information from 
interferometry

** Using the associated amplitude images and height 
information from interferometry

** Based on vegetation height —

— — ** Using the associated 
amplitude images, height 
and biomass information 
from interferometry

** Using the associated amplitude images, height and 
biomass information from tomography

** The most promising 
technology but yet little 
studied topic, e.g., [24]

—

*** Using image spectral information 
when available

** Using image spectral 
information or external DTM

** ** * Through changes in 
structure Kind of disaster 
difficult to identify

—

** ** [18] — — *** Depends on data 
availability (expensive)

—

** * — — *** Depends on data 
availability (expensive)

—

Remote-sensing technology capabilities are evaluated through the quality level of forest information or parameters derived from each data source. Capabilities are classified into four classes: * contribution but poor product quality, ** average product quality, *** good product 
quality, and —limited contribution to no technical capabilities or no relevant published study identified. Change monitoring capability is a consequence of land cover–type discrimination capability. The operationally effective level results from a combination of data availability, 
scale coverage, and information quality level. The potential synergy between technologies or between remote-sensing data and ancillary information is not presented in this table

References quoted in the table: [1] Boyd and Danson (2005); [2] De Sy et al. (2012); [3] Turner at al. (2003); [4] Couteron et al. (2005); [5] Ke and Quackenbush (2011); [6] Buckingham and Staenz (2008); [7] Goodenough et al. 2004); [8] Kasischke et al. (1997); [9] Li et al. 
(2009); [10] Manninen et al. (2005); [11] Castro et al. (2003); [12] Mitchard et al. (2009); [13] Baltasavia (1999c); [14] Gao (2007); [15] Korpela (2004); [16] Naesset (2002a); [17] St-Onge et al. (2004); [18] Véga and St-Onge (2008); [19] Ferretti et al. (2007); [20] Le Toan et al. 
(2011); [21] Garestier et al. (2009); [22] Ho Tong Minh et al. (2014); [23] Tebaldini and Rocca (2012); [24] Weishampel et al. (2012); [25] Durrieu and Nelson (2013); [26] Rosette et al. (2013); [27] Bolton et al. (2013); [28] Luo et al. (2013); [29] Mitchard et al. (2013); [30] Lim 
et al. (2003); [31] Wulder et al. (2012); [32] Zolkos et al. (2013); [33] Naesset (2007); [34] Evans et al. (2009); [35] Holmgren et al. (2003).
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canopy, the understory vegetation, and the ground. The back-
scattered signal (waveform) thus embeds information on the 3D 
structure of vegetation covers. It is collected by a telescope and 
recorded using photodiodes (Figure 17.2).

The idea of measuring distance using light can be traced 
back to the late 1930s, that is, before the development of lasers. 
Barthélémy (1946) reported the development, in 1938, of a device 
that could be used to measure cloud height using high-power 
flashes of light produced by a spark gap and lasting no more than 
a few microseconds. In favorable situations, cloud heights up to 
7000 m could be measured with this system (Barthélémy, 1946).

Attempts to build the first operational laser (light amplifica-
tion by stimulated emission of radiation) started in the late 1950s 
and were successful in 1960 (Nelson, 2013).

In his paper tracing the history of the use of LiDAR in for-
est applications, Nelson (2013) reported that range finder lasers 
were initially used over continental surface for topographic 
purposes thanks to their ability to penetrate forest canopies. 
Tree measurements became the primary objective rather than 
just a source of noise in 1976 (Nelson, 2013). The development 
of digital recording devices and the development of positioning 
and scanning systems were key steps leading to the current sys-
tems, which can be classified depending on (Baltsavias, 1999b; 
Dubayah and Drake, 2001; Wulder et al., 2007) (1) whether they 

fully digitize the return signal (full-waveform systems) or they 
record multiple echoes (multiecho systems), that is, the range of 
a finite number of returns, ranging from 1 (first or last) up to 
8 returns for current commercial airborne systems, (2) whether 
they are small footprint (typically in the order of one to a few 
decimeters) or large footprint systems (tens of meters), and (3) 
their sampling rate and scanning pattern. Another major fea-
ture of LiDAR systems is the laser wavelength. Excluding x-ray 
and free-electron lasers, lasers exist in a wide spectrum, that is, 
50–30,000 nm (Baltsavias, 1999c). However, most of the range 
finder LiDAR developed for the Earth surface studies operate 
in the NIR domain (900, 1040–1060, or 1550 nm) (Balstsavias, 
1999c). NIR is particularly well fitted because of high atmo-
spheric transmission in this spectral range (Baltsavias, 1999a) 
and because most targets at the Earth’s surface, except water, 
have a high reflectivity in the NIR. In particular, their reflec-
tivity is higher than in visible wavelengths. In addition, higher 
powers are allowed with NIR wavelengths than with visible 
ones while respecting eye safety. This is especially the case for 
1550 nm lasers that stay eye safe at higher power than 1064 nm 
ones. Signal-to-noise ratio is thus increased by using NIR laser. 
NIR LiDAR instruments are also currently capable of signifi-
cantly higher pulse rates than green LiDAR (Faux et al., 2009). 
The latter are mainly used for bathymetry due to the capacity 

Echo detection
Amplitude

First return


ird return

Last return

Second return

(c)

Waveform digitization
Amplitude

(b)

Regular
signal

sampling

Amplitude
Lidar signal

Time/Distance
(a)

Returned waveform

Emitted pulse

Figure 17.2  Principle of LiDAR measurement: photons are backscattered toward the sensor every time the laser beam is partially or totally 
intercepted by an obstacle. The resulting signal is a waveform (a) that is either digitized at high frequency, for example, every 1 ns, with full-
waveform systems (b) or processed in real time by multiecho systems that only record a few returns (c). Depending on the system used, time infor-
mation might be complemented with additional information such as signal intensity and echo width.
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of green wavelength to penetrate into the water. However, after 
ICESat, which acquired data in the NIR wavelength from 2003 
to 2009, ICESat2, the second space LiDAR mission dedicated 
to Earth surface monitoring and scheduled for launch in 2017, 
will use a green laser. ICESat2 includes among its secondary 
scientific objectives measurement of vegetation canopy height. 
The choice to use a low-energy high-frequency, that is, photon 
counting, instrument constrained the choice of the wavelength. 
Indeed, this technology is not mature enough and not yet space 
qualified in the NIR wavelength. Airborne UV (Allouis et  al., 
2011) and dual wavelength LiDAR (Hancock et al., 2012) have 
also been successfully used for forest applications. The later sys-
tems were found well suited for separating the vegetation from 
the ground in complex topography (Hancock et al., 2012) as well 
as improving land cover classification (Wang et al., 2014).

The fast development of airborne LiDAR systems (most of 
which being multiecho sensors) (Figure 17.2) has been driven by 
commercial opportunities presented by environmental issues. 
Advances in LiDAR technology (e.g., increased pulse rates, 
increased number of echo digitization or full-waveform record-
ing, scanning device) and advances in data geolocation have 
rapidly turned LiDAR into a fully functional and operational 
technology with a steady increase in availability of ALS systems 
operated by data providers. Full-waveform LiDAR systems were 
first designed as experimental systems (e.g., Laser Vegetation 
Imaging Sensor) and developed by NASA as an improved ver-
sion of a former experimental system called Scanning Lidar 
Imager of Canopies by Echo Recover, developed in 1994 (Blair 
et  al., 1999; Harding et  al., 2001). Geoscience Laser Altimeter 
System, on ICESat, an ice-centric designed mission that col-
lected data from 2003 to late 2009, was the first spaceborne 
LiDAR system to measure terrestrial surfaces (Zwally et  al., 
2002). However, the first commercial full-waveform airborne 
LiDAR system only became available in 2004 (LiteMapper-5600 
LiDAR system based on the Riegl LMS-Q560 laser scanner) 
(Hug et al., 2004).

17.3.1.2 � Measuring Vegetation Height 
from 3D ALS Data

The increasing use of ALS data for forest applications dem-
onstrates the suitability of ALS technology for forest survey 
(Wulder et al., 2007) (see also Table 17.1). However, the assess-
ment of forest parameters derived from ALS data is faced with a 
number of issues related to both the horizontal and vertical sam-
pling characteristics of the measurements and to the nature of 
the interactions between the signal and the vegetation. The main 
factors that influence vegetation height accuracy at the footprint, 
tree, and stand levels are reported in Table 17.2.

By modifying the point distributional properties, the acquisi-
tion setup, which includes the laser instrument characteristics 
(wavelength, energy, pulse frequency, beam divergence, scan-
ning pattern) and the flight parameters (flying altitude and speed, 
overlap of flight lines), was found to impact the quality of height 
estimates (Hopkinson, 2007; Næsset, 2009b). Additionally, 
because the laser signal interacts with vegetation components on 

its path to the ground, both the structure and the optical proper-
ties of the vegetation also influence the vertical sampling of the 
vegetation layer (Disney et al., 2010). Consequently, the quality 
of the information on tree height distribution derived from ALS 
data depends on the capacity of the data to describe the top of 
the canopy and the underlying ground, but also on vegetation 
layering.

When a laser pulse interacts with a tree apex, the total tree 
height is accurate on condition that the amount of vegetation 
material in a narrow elevation range is sufficient to backscatter, 
in a very short laps of time, more energy than required to trigger 
a return (see, e.g., Wagner et al., 2006 for the theoretical back-
ground). According to the nature of the target, that is, its shape, 
leaf density, and reflectance properties, canopy height is under-
estimated to varying degrees (Disney et al., 2006; Nelson, 1997). 
Disney et al. (2010) using a simulation approach reported under-
estimations of canopy height of approximately 4% and 16% for 
broad leaves and conifers, respectively.

Also, point positions, and hence height estimates, may depend 
on the analog detection method used to identify an echo in the 
backscattered waveform (Disney et al., 2010; Wagner et al., 2004).

The impacts of the ALS system and flight setting on 
height retrieval have been investigated in numerous studies. 
Increasing the flight altitude leads to an increase in the foot-
print size at the Earth surface level and a simultaneous reduc-
tion in the pulse energy per unit area. Therefore, the emitted 
pulse has to penetrate deeper within the canopy before suf-
ficient energy is backscattered to trigger a return, thus lead-
ing to higher underestimations of canopy height (Hopkinson, 
2007; Lovell et  al., 2005; Persson et  al., 2002). For instance, 
Anderson et  al. (2006b) reported mean errors of −0.76 m 
(±0.43 m) and −1.12 m (±0.56) with footprint sizes of 0.33 m 
and 0.8 m, respectively. However, the increase in footprint size 
that occurs with higher flight altitude increases the probability 
of sampling tree tops (Hirata, 2004; Hopkinson, 2007; Næsset, 
2009b). Hirata (2004) showed that when increasing the foot-
print size from 0.3 to 1.2 m by increasing flying altitude from 
300 to 1,200 m, a canopy height increase of 0.9 m was obtained 
for a mountainous stand of Japanese cedar (Cryptomeria 
japonica L.f.).

Another important factor is the point density (Nelson, 
1997; Reutebuch et al., 2003; Véga et al., 2012). Point density is 
closely linked to flight altitude and speed, pulse and scan fre-
quencies, as well as scan angle. It also depends on the overlap 
between flight lines. Because the likelihood of sampling tree 
apices increases with point density, lower densities were found 
to generate higher height underestimations (Disney et al., 2010). 
However, Hopkinson (2007) stressed that it remains difficult 
to distinguish the impact of each component. When working 
at tree level, height is directly assessed using tree top elevation 
(see Section 17.5), and some authors recommend a point den-
sity above 5 pts·m−2 to maximize both tree crown detection and 
the probability of sampling tree apices (Falkowski et al., 2009; 
Hirata, 2004). On the contrary, assessments of height at plot 
level, which are mainly performed using models and no longer 
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by direct measurements (see Section 17.4), were found to be 
unaffected by point density (Jakubowski et al., 2013; Lim et al. 
2008; Treitz et al., 2012) (Table 17.2).

Besides flight parameters, and because vegetation height 
is typically computed by subtracting a digital terrain model 
(DTM) from the elevation of either the nonground points 
or the DSM of the outer canopy layer, the quality of vegeta-
tion height estimates is closely correlated with DTM quality. 
Thanks to the ability of a light signal to penetrate through 
vegetation openings, ALS acquisitions can sample the ground. 
Dedicated algorithms have been developed to classified 
points into ground and nonground categories and to produce 
a DTM (Kraus and Pfeifer, 1998; Meng et  al., 2010; Sithole 
and Vosselman, 2004). Overall, ground elevation errors in 

LiDAR DTMs are usually less than 30  cm under forest cov-
ers (Chauve et al., 2008; Chen, 2010; Hodgson and Bresnahan, 
2004; Reutebuch et al., 2003). But significant variations were 
found depending on both vegetation structure and density, 
which impacts the way the ground is sampled (Hodgson and 
Bresnahan, 2004). Lower sampling densities result in coarser 
terrain modeling. Ackermann (1999) reported penetration 
rates around 20%–40% for coniferous and deciduous forest 
types in Europe, but this rate can be locally inferior to a few 
percent, that is, 2% or 3%, in very dense tropical forests. Under 
a conifer forest, Reutebuch et al. (2003) reported mean DTM 
errors of 0.22 m (±0.24 m SD) with errors increasing with can-
opy densities and ranging from 0.16 m (±0.23 m) within clear-
cuts to 0.31  m (±0.29 m) within uncut areas. In their study, 

Table 17.2  Main Factors Influencing Accuracy of Vegetation Height Measurements from LiDAR Data at Three Level of Analysis: Individual 
Footprint (Pulse), Tree, and Stand Levels

Level of 
Analysis Factors Influencing Height Accuracy Comments References (Nonexhaustive) 

Footprint Signal triggering method in multi-echo 
systems or echo detection method in 
fullwave from data

Impacts both number and position of detected points Disney et al. (2010), Holmgren 
et al. (2003), Wagner et al. (2004, 
2006)

Vegetation structure and spectral 
properties

Height underestimation ranges from ~4% to 7% and is more 
important within conifers

Emitted energy The higher the energy, the lower the time for triggering a 
return

Footprint size Underestimation increases with footprint size due to a 
decrease in irradiance (power/unit area)

But the probability to sample a tree apex increases with 
footprint size

Scan angle No significant impact on measurements for angle <10°
Individual 

tree
Pulse density (function of ALS system 

and flight parameters)
The probability to sample a tree apex increases with pulse 

density
The minimum required density depends on crown size: 2–10 

pulses m−2 for mature stands and saplings
Tree structure and terrain are better characterized when 

density increases

Hirata (2004), Kaartinen et al.
(2012), Véga et al. (2014), Véga 
and Durrieu (2011)

Scan angle Impact of scan angle on point distribution is greater for 
elongated crowns, for example, conifer crowns

Flight line overlapping reduces occlusions thus improving 
both crown shape and height descriptors

Vegetation structure and composition Quality of height estimates depends on crown shape and 
radiometric properties

Tree detection algorithms perform better in homogenous 
stands

Dominated trees are more difficult to detect and measure
Topography Accuracy of height assessment decreases with slope

Height of slanting trees might be biased
Crown structure can be destorted by slope normalization

Plot/stand Pulse density (function of ALS system 
and flight parameters)

Scan angle

Height parameters estimated through models; results are less 
sensitive to pulse density than for tree level analysis

Scan angles <15° off-nadir to be preferred

Disney et al. (2010), Evans et al. 
(2009), Hodgson and Bresnahan 
(2004), Hopkinson (2007), 
Næsset (2009b), Véga et al. (2014)

Vegetation structure and composition Accuracy is higher in simple structure (e.g., even age single 
layer stands)

Accuracy is higher in coniferous stands
Local calibration is required.

Topography DTM quality impact the accuracy of height parameters

© 2016 Taylor & Francis Group, LLC

  



460 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Clark et  al. (2004) obtained the highest root-mean-square 
error (RMSE) (1.95 m) within dense, multilayered evergreen 
canopy in old-growth forests, for which ground elevation was 
overestimated. In addition, Leckie et  al. (2003) noticed that 
variation of the ground surface at the base of the tree could 
easily reach ±50 cm. For these authors, the local microtopog-
raphy, which is hard to model, partly explained the observed 
1.3 m (±1.0 SD) tree height underestimation.

Slope can also affect the quality of DTM under vegeta-
tion, and elevation errors were found to increase with slope 
(Hodgson and Bresnahan, 2004; Hodgson et  al., 2005). For 
example, under a multilayered tropical forest, Clark et  al. 
(2004) reported a 0.67 m elevation RMSE increase within 
steep slopes. This can be explained by the fact that point 
classification algorithms, which are used to identify ground 
points before producing the DTM, are mainly based on geo-
metric properties. Due to more similar geometric character-
istic between ground and low-vegetation point clouds in the 
presence of slope, they perform less efficiently. The difficulties 
involved in classifying ground points in relief and forested 
environments led to the development of many algorithms (see 
Meng et al. (2010) for a recent review). Among the several clas-
sification algorithms, the triangular irregular network iterative 
approach (Axelsson, 2000) is still one of the most robust, and 
it produces good results in a wide range of environments (Véga 
et al., 2012). Methods developed to process full-waveform data 
acquired by some recent commercial small footprint systems 
led to improved geometric information (more echoes extracted 
and higher target localization accuracy) and also provide addi-
tional features such as echo intensity and width that are linked 
to target properties (Chauve et al., 2009; Reitberger et al., 2006; 
Wagner et al., 2004). Despite the difficulty involved in decor-
relating the influence of geometric and radiometric character-
istics of the targets on these features (Ducic et al., 2006), they 
proved to be very useful in some studies (Chehata et al., 2009) 
when attempting to improve ground point classification when 
used in addition to echo locations.

DTM errors in sloping areas clearly impact height assess-
ments. Over a complex terrain in a mountainous area, Véga 
and Durrieu (2011) found that tree height errors increased 
as a function of slope. Heights were underestimated for low 
slopes (i.e., below 25%), while an overestimation trend was 
found for steeper slopes (i.e., above 25%). However, errors 
in height were not attributed solely to DTM inaccuracy but 
were also due to the way heights are derived from ALS data 
(Véga and Durrieu, 2011). Indeed, when a tree top is identi-
fied, height is assessed as the difference between the tree top 
elevation and the ground elevation and does not always rep-
resent the actual tree height. When trees slant, the crown and 
its associated local maxima (LM) move toward the slope and 
thus lead to an overestimated height (Figure 17.3). Overall, 
ALS was found to underestimate vegetation height with a 
magnitude of underestimation that varied depending on the 
sensor used, the flight parameters, and the characteristics of 
the vegetation (Table 17.2).

17.3.2 �T hree-Dimensional Modeling of the 
Canopy by Digital Photogrammetry

17.3.2.1  Principle and Brief History

Since the post–World War I period, large-scale aerial photo-
graphs have been extensively used in both forest inventory and 
monitoring (Spurr, 1960) for many purposes: locating forest 
areas, mapping forest types, inventorying forest conditions, 
assessing wood production, monitoring damage due to insects, 
diseases, and fires, etc. Information on stand structure and com-
position has been intensively used as the basis of stratification 
to improve the efficiency of field data collection and the accu-
racy of results in multistage sampling–designed forest inventory 
(Korpela, 2004). Stereophotogrammetry, introduced during 
the same period (Andrews, 1936), was used to assess qualita-
tive and quantitative forest stand structural characteristics and 
was further developed in the 1940s (Korpela, 2004). The stereo-
photogrammetry process is analogous to our own perception of 
depth with normal binocular vision. It is based upon the prin-
ciple of parallax, which is the apparent displacement of a sta-
tionary object due to changes in the observer position (White 
et al., 2013). It thus requires two images, which were taken from 
two different viewpoints, and the 3D measurements are deduced 
from the analysis of the parallaxes that change according to the 
distance between the objects and the sensor (Figure 17.4).

Stereoscopes and parallax bars have been long used as low-
cost viewing and measurement instruments (Korpela, 2004). 
Analytic stereoplotters and comparators, which have been 
commonly available since the mid-1970s, enable accurate 3D 
measurements. The emergence of DP dates back to the 1990s 

Field
height

Lidar
height

LM

Height
di�erence

Figure 17.3  Error in tree height measurement associated with ter-
rain slope. (Adapted from Véga, C. and Durrieu, S., Int. J. Appl. Earth 
Observ. Geoinformat., 13(4), 646, 2011.)
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(Maltamo et al., 2009) and was made possible by the develop-
ment in computer technology that provided significant comput-
ing power required by 3D image analysis algorithms (Morgan 
and Gergel, 2013). DP has benefited from the research works 
conducted in the graphic, vision, and photogrammetry commu-
nities (Remondino and El-hakim, 2006).

To retrieve the three dimensions of surfaces from airborne or 
spaceborne images, one must fully characterize the geometry of 
the acquisition system in order to trace the geometric path of the 
sunrays, from the target to its images, reflected by the observed 
target. The workflow consists in solving the internal orientation, 
which defines the geometry of the imaging system, and the exte-
rior orientation, which gives the position and orientation of the 
sensor at the acquisition time and is often divided into two steps, 
that is, solving the relative and absolute orientations (Heipke, 
1997). Relative orientation is generally solved using coplanarity 
condition and requires matching points between images to gen-
erate tie points and absolute orientation is solved by using con-
trol points in which coordinates are known in both the image 
and mapping reference frames. Once the orientation of the pho-
togrammetric model is known, parallax differences can be used 
to compute the elevation for each pixel of one image, provided 
a conjugate point can be identified in another image. This latter 
stage is also referred as dense matching. Point matching, also 
known as the correspondence problem, is thus crucial in the 
photogrammetric workflow. And many algorithms have been 
developed to solve it, including surface-based or object-based 
approaches (Barnard and Fischler, 1982; Brown et al., 2003) or a 
combination of both (Baltsavias et al., 2008; Lisein et al., 2013).

With the current state-of-the-art computers and computa-
tional methods, DP does indeed offer several advantages. The 
complex calculation process named aerial triangulation can 
be used to process image blocks and not only stereo pairs, thus 

leading to a reduced number of ground control points required 
to process an area covered by several images. Furthermore, a 
multiray matching strategy, made possible by multiview acqui-
sitions, can significantly improve results of both the aerotrian-
gulation and the object reconstruction steps (Thurgood et  al., 
2004).

The development of DP was also favored by the emergence 
of novel large-format digital aerial cameras producing sig-
nificantly improved image quality as they combine very high 
spatial-resolution and high radiometric sensitivity, for example, 
radiometric information coded on more than 8 bits (Leberl et al., 
2010). The sensors thus overcame some issues linked to the com-
plex interdependency between the radiometric range and the 
pixel size encountered in analog film imagery, that is, grain noise 
(Leberl et al., 2010). Image texture is also enhanced, which is an 
important advantage for image-matching algorithms (White 
et al., 2013). The processing workflow is also simplified by the 
elimination of some tricky and time-consuming tasks such 
as the scanning of analog photographs. State-of-the-art digi-
tal aerial cameras, for example, Z/I Imaging Digital Mapping 
Camera (DMC) series from Intergraph, airborne digital sensor 
series from Leica, or UltraCam series from Microsoft (formerly 
Vexcel), can capture large-format multispectral images typically 
in the red, green, blue, and NIR wavebands (Petrie and Walker, 
2007). Some may also have the capability to record simultane-
ously very large-format panchromatic images (Z/I Imaging 
DMC [Hinz and Heier, 2000] and UltraCam [http://www.micro-
soft.com/en-us/ultracam/]).

Digital images can nowadays be acquired with increased 
within and between flight-line overlaps. While traditional 
acquisition mainly used around 60% and 20% overlap within 
and between flight lines, respectively, state-of-the-art technol-
ogy currently allows for up to 90% and 60% overlap with an 
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Figure 17.4  Principle of stereoscopic measurement, with O1 and O2, the centers of the photographs; H: height of the camera above the ground 
level; h: height of the tree; P: absolute parallax of the tree base; and D: parallax difference of the tree top with reference to the base plane (D1–D2). 
Tree height (h) is computed as the ratio (H–D)/(P–D).
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add-on cost only linked to the additional airtime when between 
flight-line overlap is increased (Leberl et  al., 2010; Thurgood 
et al., 2004).

The more recently developed algorithms can also be used to 
process data acquired by nonmetric cameras, thereby extend-
ing the processing capacity beyond standard photogrammet-
ric geometry and products. Data acquired with low-cost light 
acquisition systems, like consumer-grade cameras embedded on 
unmanned aerial vehicles (UAV), can now be processed. These 
cameras have high distortion levels and low geometric stabil-
ity. Therefore, images that are also characterized by high rota-
tional and angular variations between successive images and 
significant perspective distortions (Lisein et  al., 2013) cannot 
be processed using conventional photogrammetric software. To 
address such image constraints, new solutions have been devel-
oped. For example, Lisein et al. (2013) used Multi Image Matches 
for Auto Correlation Methods (MICMAC), an open-source soft-
ware, combining photogrammetric approach and newly devel-
oped computer vision algorithms referred to as Structure from 
Motion to retrieve canopy structure from very-high-resolution 
images acquired using an UAV.

The combined and recent developments in sensor technology, 
positioning systems (triangulation), and processing algorithms 
offer numerous benefits including reduced occlusion, higher 
level of automation, limited manual editing, and increased 
geometry accuracy (Leberl et al., 2010).

17.3.2.2 � Measuring Tree Height Using Digital 
Photogrammetry and Resulting 3D Models

Even if some authors consider that image-based methods are 
now better at creating 3D points cloud than ALS survey (Leberl 
et al., 2010), height information retrieval remains challenging in 
forest environment, and several issues must be addressed.

First, a major drawback of photogrammetry is its inability 
to provide ground elevation under dense forests, thus prevent-
ing vegetation height assessment. Second, only the trees whose 
crowns are at least partially in direct sunlight are detectable on 
aerial photographs. And despite progress in sensor technology, 
suppressed or small shaded trees are still undetectable (Korpela, 
2004). Finally, image matching in forest environment remains 
challenging and an error-prone task due to occlusion, repetitive 
texture, multilayered objects, or moving objects, that is, change 
in position of tree tops in windy conditions (Lisein et al., 2013).

With visual or semiautomatic stereo interpretation, the accu-
racy of tree height measurement has been widely studied (Gong 
et al., 2002; Korpela, 2004). Accuracy depends on factors related 
to both images, for example, scale and quality, and targets, for 
example, crown geometry, radiometric properties, stand struc-
ture and topography, and leaf-on versus leaf-off conditions. 
Some authors announced 10 cm accuracy rates (Gagnon et al., 
1993) and others mean absolute errors of 1.8 m (Gong et  al., 
2002). Korpela (2004), who compiled results from several stud-
ies, reported that heights are underestimated due to the inabil-
ity to measure the very highest top shoots, and this bias tends 
to increase as photograph scale decreases. With DP, the whole 

canopy surface can be automatically reconstructed as a 3D point 
cloud or a DSM.

But tree height measurement accuracy is also highly depen-
dent on tree base elevation assessment capacities. Ground eleva-
tion has been measured within open areas in the neighborhood 
of the trees (Gong et al., 2002) or, in closed canopies, on targets 
positioned on the ground (Kovats, 1997). It was then assimilated 
to the tree base elevation. More conveniently, a range of DTMs 
has been used in combination with photogrammetric measure-
ments or DSMs to derive forest parameters at the tree or stand 
level. DTMs extracted from field surveys (Fujita et al., 2003) or 
from a triangulation of manual photogrammetric measurement 
in open areas (Næsset, 2002a) were sometimes used. However, 
such solutions are limited to small areas. St-Onge et al. (2004) 
first tested the coregistration of a photogrammetric model with 
an ALS DTM to estimate individual tree height based on man-
ual measurements. Using scanned photographs with a 11.3 cm 
pixel size, they reported an average underestimation in height 
of 0.59  m in a white cedar (Thuja occidentalis) stand. Korpela 
(2004) developed a semiautomatic, single-scale template-
matching approach to position tree tops on stereo images and 
then to estimate tree height and crown size using an ALS DTM. 
The spatial registration of both photo-derived DSM and ALS-
derived DTM proved to be a critical step toward canopy height 
estimation (St-Onge et al., 2004), and various approaches have 
been proposed to coregister these models (Huang et  al., 2009; 
Lisein et al., 2013; St-Onge et al., 2008).

Despite the potential of DP to accurately measure elevations, 
most of the image-matching algorithms, originally developed 
for DTM extraction, proved incapable of consistently generating 
accurate DSMs over forested areas. St-Onge et al. (2008) reported 
that, when using precise ALS DTMs, photo-ALS Canopy Height 
Model (CHM = DSM-DTM) could reconstruct general height 
patterns but was unable to provide details about both individual 
tree crowns and small gaps. Similarly, using images at a 1:15,000 
scale digitized at 2,000 dpi and processed using an automatic 
image-matching algorithm (Match-T), Naesset (2002a) reported 
significant underestimation of mean plot height. The author also 
indicated that the algorithm was not flexible enough to recon-
struct abrupt changes in elevation such as those that character-
ize canopies. Occlusions, due to the shape of the trees and to the 
complex 3D structure of the forest canopy, hinder image match-
ing (Lisein et al., 2013). Compared to single stereo models, image 
block approaches allowing multiview processing were found to 
improve 3D canopy modeling and tree height estimation due 
to the reduction of occluded areas (Hirschmugl et  al., 2007; 
Magnani et  al., 2000). The quality of the results also depends 
on the parameters defining the matching strategy (Figure 17.5). 
For example, Lisein et  al. (2013) who tested several matching 
strategies explained that some omitted isolated trees and that 
those that were optimized for deciduous canopy reconstruction 
did not performed very well when used for coniferous crown 
reconstruction.

Due to the high sensitivity of the canopy model quality to the 
matching strategy, and whose optimization depends on the cover 
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type, the production of accurate CHM over large areas is a tricky 
task. To tackle this problem, Baltsavias et  al. (2008) proposed 
a complex method combining both area- and feature-based 
matching, the self-tuning of matching parameters, the genera-
tion of redundant matches, an automatic blunder detection, and 
a coarse to fine hierarchical matching strategy. The method was 
able to achieve better results than when using an ALS dataset for 
canopy height assessment, thus suggesting that methods devel-
oped for processing ALS CHM could also be efficient to process 
high-quality photo-ALS CHM over forests.

17.3.3 �C omparison of ALS and 
Photogrammetric Products

Few studies have compared photogrammetric and ALS products 
(Baltsavias, 1999c; Leberl et al., 2010; White et al., 2013). As a 
complement to Table 17.1, Table 17.3 compares main strengths 
and limitations of both photogrammetric and ALS technologies 
and derived products.

For acquisition purposes, imagery is considered to be the 
most advantageous (Table 17.3). Imaging systems, which have 
a greater field of view, can be operated at both a higher flying 
speed and altitude than ALS systems for which flight height is 
dependent on available laser power. As a result, survey plan-
ning is easier and less costly with an imager (White et al., 2013). 
For example, assuming an equal flying altitude and speed, and 
an equal sidelap, the same area is covered in about one-third of 
the time with an imager, considering a typical 75° field of view, 
than with an ALS with a 30° scan angle (Baltsavias, 1999c). 
Comparing typical acquisitions under optimal flying height and 
speed, Leberl et al. (2010) found that the flying time would be 
13 times longer with an ALS system when compared to a digi-
tal camera system to obtain comparable point clouds and eleva-
tion results. In addition, imaging continuously benefits from the 
development of satellite stereo imagery. Despite a lower geomet-
ric resolution leading to a decrease in CHM quality (St-Onge 
et al., 2008), satellite solutions can be used to cover very large 
areas at low cost (Neigh et al., 2014) and is a viable alternative to 

ALS for small-scale forest monitoring when high-quality DTMs 
already exist. Besides these considerations, another advantage of 
ALS is that, as an active sensor, it can be operated at any time of 
the day while the quality of aerial photographs is highly influ-
enced by solar illumination. Indeed, as shadows hamper image 
matching, flying hours must be carefully chosen to minimize 
shadowing in the forest canopy (White et al., 2013).

As regards the production of georeferenced point clouds, 
a 3D point cloud can be obtained more quickly when using 
ALS systems as coordinates can be, under ideal conditions, 
automatically computed (Baltsavias, 1999c). However, as DP 
workflows become both increasingly efficient and automated, 
this advantage is gradually diminishing (White et  al., 2013). 
Baltsavias (1999c) gives detailed information on the compara-
tive geometric quality of point clouds generated from photo-
grammetry and ALS. At the same flying height, the geometric 
resolution of a laser measurement, given by the footprint size 
and depending on the laser beam divergence, typically 1 mrad, 
is coarser than the pixel resolution obtained by a digital cam-
era (e.g., with a 15 µm pixel). Concerning relative planimetric/
altimetric accuracies, planimetry is typically 1/3 more accu-
rate than elevation with photogrammetry, while it is 2–6 times 
less accurate with ALS data. These higher planimetric errors 
will also significantly influence elevation accuracy on sloped 
terrain (Baltsavias, 1999c). Comparing the accuracy values 
for identical flying height in the 400–1000 m range, shared 
by both technologies, the photogrammetric accuracy is, on 
average, slightly better than with ALS. However, in practice, 
airborne LiDAR and imagers are not operated in the same con-
ditions, thus making it difficult to compare their real perfor-
mance levels.

Height point clouds, obtained by subtracting ground eleva-
tion from the elevation of ALS and photo-derived 3D points, 
were also compared in term of height distribution, by comparing 
percentiles on 400 m2 forest plots (Lisein et al., 2013; Vastaranta 
et  al., 2013). Low correlations between lower height percen-
tile values of both point clouds (Lisein et al., 2013; Vastaranta 
et  al., 2013) may be explained by the presence of ALS points 

(a) (b) (c)

Figure 17.5  Illustration of the impact of changes in matching strategy on forest DSM using the MICMAC software. (a) Orthorectified image of 
the area. The two DSMs (b and c) were both computed using a 0.28 m spatial resolution and a 9 × 9 pixels correlation window. The regularization 
coefficients (RS) and the correlation thresholds (CT) were different: RS = 0.010 and CT = 0.2 for (b) and RS = 0.005 and CT = 0.0 for (c). Changes in 
matching parameters impact crown shape (red area) and gap shape (yellow area) that were better reconstructed with the first set of parameters (b).
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Table 17.3  Comparative Summary of Main Strengths and Limitations of Both ALS and DP Technologies and of Resulting 3D Point Clouds and Forest Products 
(Baltsavias, 1999c; Leberl et al., 2010; Lisein et al., 2013; St-Onge et al., 2008; Vastaranta et al., 2013; White et al., 2013)

Best Rated  ALS DP 

Data 
acquisition

System lifetime DP Determined by the number of pulses that can be emitted by the laser; 
equivalent to ∼10,000 operating hours.

Rapid deterioration may occur with a drastic decrease in output power.

Decades for robust aerial cameras.

Mission 
planning

DP Flight height limited by eye safety (min height) and laser power (max 
height); typically 500–1000 m.

Higher flight height possible (up to 4000 m) but with reduced pulse 
frequency to avoid signal mixture between successive backscattered 
signals.

Typical scan angle: 20°–40°
→ mission planning difficult in mountainous areas.

Flight height: from 500 to 3500 m according to plane type (up to 12 km with 
high-altitude aircraft).

Typical effective FOV: 75°
→ Large areas covered with less flight lines and flying time up to 13 times 

shorter compared to ALS.
→ Multiview stereo and optimized B/H might provide higher-quality forest 

canopy reconstruction.
Flying 

conditions
ALS Few illumination constraints (LiDAR can be operated day and night, 

winter and summer).
System can be operated in both leaf-on and leaf-off conditions.

Acquisitions constrained by solar illumination (impacts radiometric quality), 
and view angles due to sensitivity of image matching to occlusions and 
shadows.

Leaf-on conditions only to provide forest height products.

Data 
processing

Production of 
geolocated

3D point clouds

ALS -3D coordinates automatically computed by combining information 
recorded by the LiDAR, the IMU, and the DGPS → reduced 
processing time.

With increased efficiency and automation level of DP workflows, advantages of 
ALS have gradually diminished.

Final quality of geolocation is less dependent on DGPS and IMU 
measurements quality than for ALS.

Product 
quality

3D products ALS Planimetry 2–6 times less accurate than altimetry.
Sampling pattern and pulse density depend on flight parameters.
Information on both the vegetation surface and the ground, allowing 

to extract a DTM and to further assess vegetation height and 
structure.

Planimetry 1/3 more accurate than altimetry.
Sampling: in theory regular (once to twice the image resolution); in practice 

depends on image-matching results.
At a given cost, higher point density achievable than with ALS.
Information only for object surfaces visible in at least two images.

Forest height 
products

ALS Height products accuracy depends on sensor specifications, flight 
parameters, resulting point density.

Small gaps and tree tops better described than on DP products.

External DTM needed to provide vegetation height.
Height products accuracy depends on image scale, B/H, image quality 

(radiometry and texture), shadow patterns, image-matching algorithm, 
number of images used during matching, external DTM quality.

Accuracy of both ALS and DP height products is a function of vegetation type and structure. In both cases, it is higher within coniferous and even-aged 
stands. In-depth evaluations of forest height products are still required for accuracy comparisons.

Forest 
inventory and 
monitoring

ALS and 
DP

ALS is the leading technology for acquiring DTMs over forested areas. 
But the potential of ALS for updating forest information limited due 
to cost considerations.

Higher potential than DP for the assessment of biophysical parameters 
linked to structural parameters.

Large-area wall-to-wall coverage at low cost.
Multiple use of data: stand delineation, species identification, monitoring of 

deforestation and disasters.
Large archive datasets exist in some countries for retrospective mapping.

ALS and DP are complementary for forest mapping and inventory → necessity to optimize alternated acquisitions under cost constraints.
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within the canopy when DP CHM only describes the top of the 
canopy. However, the very high correlations observed for higher 
percentiles, for example, Vastaranta et al. (2013) reported mean 
differences below 0.2 m for the 70th height percentile values and 
beyond for 500 circular plots, reveal that most of the points in 
the ALS dataset were located at the same level as photo-derived 
points. They mainly describe the outer canopy shape, and there 
is very little information remaining to describe both the under-
story and the ground due to occlusion effects.

When further assessing heights at tree level or assessing dom-
inant heights at plot level using height distribution metrics (see 
Section 17.4.2), estimation accuracy was found to be slightly bet-
ter with ALS data compared to photo-derived data (Lisein et al., 
2013; Vastaranta et  al., 2013; White et  al., 2013). For instance, 
Lisein et al. (2013) obtained an adjusted R2 and a RMSE (%) of 
0.94 and 3.7% and, respectively, 0.91 and 4.7% for height esti-
mation at tree level and a R2 and RMSE (%) of 0.86 and 7.4% 
and 0.82 and 8.4% for dominant height estimation at stand level 
(Lisein et al., 2013). Vastaranta (2013) also found a lower RMSE 
(%) for mean height prediction at plot level with ALS data (7.8%) 
compared to photo-derived products (11.2%). However, White 
et al. (2013) also pointed out that there is no rigorous compari-
son of the relative accuracy of canopy heights derived from ALS 
and image-based point clouds over a range of forest types and 
terrain complexities.

The product that is common to both ALS and DP technologies 
is the 3D model of the Earth surface. Focusing on the structure 
of the outer canopy surface approximated by computing a raster 
CHM, several studies reported that tree crowns were wider and 
less defined in photo-derived CHM (Barbier et al., 2010; Lisein 
et  al., 2013; Vastaranta et  al., 2013). Moreover, small gaps and 
tree tops as well as fine-scale peaks and gaps in the outer canopy 
were not perfectly modeled on the photo-derived CHM that tend 
to behave as a smoothed version of ALS CHM (Lisein et al., 2013; 
St-Onge et al., 2008).

The ability of ALS to provide information on subcanopy 
forest structure as well as on ground topography, even below 
closed canopies, means this technology is very suitable for for-
est inventory. Despite its sensitivity to solar illumination, opti-
cal imagery can provide consistent spectral information that 
can be used to report, for example, on species composition and 
to assist forest inventory in a way that cannot be done by ALS 
(Baltsavias, 1999c).

Finally, due to their respective advantages and to their equiv-
alent potential for top vegetation height measurements, ALS and 
photogrammetry are more complementary than mutually exclu-
sive, and the issue should be to how best optimize alternated 
acquisitions under cost constraints. For example, Vastaranta 
et  al. (2013) suggest that, for forest mapping and monitor-
ing purpose, ALS data could be acquired every 10 or 20 years, 
depending on forest and management considerations, and digi-
tal stereo imagery could be used to update forest information in 
the intervening period. However, for an initial inventory, both 
ALS and imagery, but not necessarily stereo imagery in this case, 
are acknowledged to be very useful.

17.4 � Assessing Height Characteristics 
at Stand Level

Early LiDAR studies showed an underestimation bias when 
measuring tree height from LiDAR data, which is due to sev-
eral factors (see Section 17.3.1.2). Models based on empirical 
relationships between LiDAR data and forest attributes mea-
sured in the field at plot level (Figure 17.6) were thus used to 
correct this bias and produce stand level estimations and maps 
of stand height characteristics. These approaches, which have 
been extended to predict other stand characteristics, are widely 
used in forest applications and are often referred as area-based 
approaches.

17.4.1 � General Presentation of Area-Based 
Approaches

The development of models at plot level is usually achieved in 
two or three stages. The first two stages, which are first the estab-
lishment of a predictive model to assess a forest parameter from 
3D data, and then its application to the area covered by the 3D 
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Figure 17.6  Maximum LiDAR height (H100) is compared to 
the height of the tallest tree measured in the field for 93 forest plots. 
Regardless of the stand type (here coniferous [39 plots] and deciduous 
[twice 27 plots]) and of acquisition conditions (leaf-on and leaf-off for 
the deciduous stand), maximum height was underestimated by LiDAR 
by at least 1 m on average (biases ranging from 1 to 1.6 m). The conifer-
ous stands are pine plantations and trees have a relative flat crown com-
pared to other coniferous species. In addition, LiDAR datasets used for 
the comparison of maximum heights have point densities high enough 
to limit the probability to miss tree tops (8, 20, and 18 pulses m−2 for 
coniferous, deciduous leaf-on, and deciduous leaf-off, respectively, and 
with a footprint size of about 27 cm in all cases).
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dataset, are described in many studies (e.g., White et al., 2013; 
Wulder et  al., 2012). When wall-to-wall 3D data are available, 
these stages lead directly to maps. When only 3D measurements 
samples are available, local forest parameter assessments have to 
be further extrapolated, as part of a third stage, to produce maps 
over large areas using other remote-sensing data, for example, 
optical or radar imageries and other map products available at 
national or global scale (e.g., SRTM, vegetation maps). The two 
first stages are briefly presented in the succeeding text and are 
illustrated in Figure 17.7 for 3D ALS point clouds. However, the 
principle remains the same when using either DP point clouds 
or raster CHM. It can also be extended to large footprint LiDAR 
data processing, even if in this case the metrics used are different 
from derived from point clouds.

First, a model is developed at plot level to infer forest param-
eters from metrics derived from either ALS or photogrammetric 
3D data (Figure 17.7a through c). The model is calibrated and 
validated using reference plots measured in the field for which 
stand characteristics such as dominant height, Lorey’s height, 
basal area, volume, and aerial biomass are inferred from the 
field measurements (Figure 17.7a). This step requires allometric 
equations to assess some biophysical parameters, for example, 
volume and biomass, from structural characteristics such as 
DBH and height.

For each plot, the corresponding 3D ALS data subset is 
clipped, and several metrics are derived from either the sub-
point clouds or the CHM (Figure 17.7b). Next, using a subset 
of the available plots as a training set or a cross-validation pro-
cedure (e.g., leave-one out), a model is built that predicts stand 
characteristics measured in the field from the most explanative 
3D metrics. Multiple approaches can be used to establish the 
model. They might be parametric or nonparametric and include 
maximum likelihood, discriminant analysis, nearest neighbors, 

random forests, and various forms of regressions (McRoberts 
et  al., 2010). The selection of the most explanatory variables 
either is made based on a preliminary statistical analysis or is 
part of the model construction, for example, when stepwise 
regression approaches or random forests analysis are used. The 
model is then validated using either the set of remaining refer-
ence ground plots or the plots that were left aside at each repeti-
tion when applying a bootstrap approach. This latter approach 
is to be favored especially when the total number of reference 
plots is limited.

Once built, the model can be extrapolated to the whole area 
covered by the ALS 3D dataset. To achieve this, the area is first 
subdivided into grid cells, the size of which are similar to the size 
of the reference ground plots (Figure 17.7d), the explanative 3D 
metrics are then computed for each cell, and the model is used to 
predict the value of the forest parameter at the cell level for the 
whole area (Figure 17.7e).

If 3D data do not encompass the whole area, a third stage 
is required to obtain a map. This consists in building another 
model that in turn uses the forest parameters assessed using 
the 3D dataset and links them to new variables extracted from 
another ancillary dataset that covers the whole area and that 
is usually made up of optical images. Once built, the model is 
applied to assess the parameter of interest on the areas that were 
not covered by the 3D data. Nearest neighbors techniques have 
been widely used to predict continuous variables based on satel-
lite image data (McRoberts et  al., 2010). Other nonparametric 
approaches, like random forests or neural networks, or paramet-
ric approaches based on regression analysis can also be used to 
achieve this aim (McRoberts et al., 2010).

In Section 17.4.2, we will focus on the first step, that is, 
the construction of the model linking 3D metrics to forest 
parameters.

Stand-level inventory

ALS point cloud

Grid cells

Clipped ALS point clouds
+ Lidar metrics computation

Stand-level estimates max

min

(a)

(b)

(d)

(e)

(c)

Wall-to-wall metrics

Predictive  modeling:
Prediction = f (Lidar metrics)

Inventory attribute map
max

min

Figure 17.7  Principle and main steps of area based approaches used to predict forest parameters from 3D data. (a) Field inventory at plot level; 
(b) extraction of subpoint clouds for all the inventoried plots; (c) establishment of a predictive model linking forest characteristics to 3D ALS data 
characteristics and validation of the model; (d) segmentation of the whole area into grid cells with a size similar to the one of the inventory plots; 
(e) computation of the explanative ALS metrics for each grid cell and application of the model, cell by cell, to obtain a map of forest parameters.
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17.4.2  Area-Based Model Implementation

The objective of this section is threefold. First, it aims to illus-
trate and compare two families of approaches that can be used 
to build a model to predict stand height characteristics derived 
from 3D ALS data. Second, it seeks to compare ALS and DP 
products to assess stand height characteristics through the com-
parison of results obtained with a model using only the informa-
tion from the top of the canopy to the models using the whole 
3D ALS information. This comparison should illustrate on the 
added value of having information from the understory, even if 
it is attenuated by occlusion effects. Third, it presents some issues 
regarding model accuracy. To achieve the two first objectives, 
two sites with contrasted stand types were chosen in order to 
compare the behavior of the three model types by considering 
several key elements involved in the model construction process. 
All the models were tested to predict both dominant and Lorey’s 
heights. The first site is a coniferous forest located in the Landes 
region in the southwest of France (44.40°N, 0.50°W). The site 
is dominated by monospecific stands of maritime pine (Pinus 
pinaster) in even-aged plantations. The second site is a decidu-
ous forest located in northeastern France (48.53°N, 5.37°E). The 
site is comprised multilayered broad-leaved stands, dominated 
by European beech (Fagus sylvatica), hornbeams (Carpinus 
betulus), and sycamore maple (Acer pseudoplatanus). ALS data 
were collected over the coniferous and deciduous study sites 
with a point density of 10 pts m−2 and 30 pts m−2, respectively. 
Field data were collected on 39 15-m radius circular plots within 
the 2  months that followed the ALS survey for the coniferous 
site and on 42 circular plots within the year prior to the ALS 
survey for the broad-leaved forest. Lorey’s height (HL) and domi-
nant height (Hdom) were estimated from field measurements for 
each field plot. HL was computed as the mean height weighted by 
basal area. Hdom was computed as the mean height of the six larg-
est trees according to their DBH. HL and Hdom were estimated 
at stand level from ALS metrics using two different approaches 
that are keeping with the general methodology for area-based 
approaches described in the previous subsection.

On one hand, we applied a practical process to predict HL and 
Hdom from ALS data proposed by Næsset (2002b). This approach 
is typical and widely used to build predictive models of stand 
characteristics from ALS data. Numerous metrics were derived 
from the height distributions of first or last LiDAR returns: 
maximum values (Hmaxf, Hmaxl), mean values (Hmeanf, Hmeanl), 
coefficients of variation (Hcvf, Hcvl), percentiles of the distri-
butions (H0f, H10f,…,H90f and H0l,…,H90l), and canopy densi-
ties (d0f, d10f,…,d90f and d0l,…,d90l) computed as proportions of 
ALS hits above a given percentile of the distribution. Stepwise 
regression was performed in order to select the most explanative 
LALS metrics that would remain in the final models. No met-
ric with a partial Fisher statistic greater than 0.05 was selected 
(Næsset, 2002b). A linear relationship among log-transformed 
variables was applied. Log transformation of stand attributes 
and ALS metrics was used to accommodate nonlinearity. HL and 
Hdom were estimated following this methodology for both sites. 

We used adjusted R2 (Radj
2 ) to account for the number of LALS 

metrics in the final models. RMSE were also calculated to assess 
the accuracy of the predictions. This approach is referred to 
hereafter as the point distribution approach.

On the other hand, we proposed to use a conceptual model 
to predict HL and Hdom from only four ALS metrics. This model 
skips the step aiming at selecting the best metrics among a 
large set of potential ALS metrics. Metrics have been defined to 
characterize the natural variability of stand structures. In area-
based approaches, individual tree heights are not determined. 
Instead, an average canopy height (μCH) is easily measured from 
the 3D LiDAR point cloud and is an important predictive vari-
able (Lefsky et al., 2002). Thereby, μCH metric was chosen as the 
first variable and calculated by averaging first return elevations. 
An indicator of tree height heterogeneity at plot level should be 
used in addition to μCH. We used the variance in canopy height 
(σCH

2 ) to characterize tree height heterogeneity as suggested by 
Magnussen et al. (2012). These two first variables were calculated 
without taking into account returns that were below a 2 m height 
threshold, so as to describe the part of the plots that was actually 
covered by trees. However, the fact that tree attributes measured 
in the field are related to the whole plot area means that the rate 
of open areas in each plot must also be evaluated. Gap fraction 
(P) has been calculated from ALS data as the ratio between the 
number of first returns below a specified height threshold and the 
total number of first returns. When calculated in this way, P is 
related to the penetration of light through the canopy but was 
found to be well correlated with fractional cover (Hopkinson and 
Chasmer, 2009). P was thus the third selected metric. The met-
rics defined earlier only refer to the structural properties of the 
top of the canopy and can be calculated for either ALS or photo-
derived point clouds. To take advantage of the capacity of LiDAR 
to penetrate into the vegetation and provide information on the 
vertical crown size and on overtopped trees, we defined an addi-
tional metric Hcrown, as the mean of the crown heights. Crown 
heights were estimated for each 1 m × 1 m areas included in the 
plot based on the vertical distribution of ALS points. HL and 
Hdom were estimated using the four metrics in a log-transformed 
model. This approach is referred as the mechanistic model.

A third type of model was built in a way similar to the mecha-
nistic model but using only the three metrics that can be com-
puted when using photo-derived point clouds or raster CHMs, 
that is, μCH, σCH

2 , and P. This last approach is referred to as the top 
of canopy mechanistic model.

HL and Hdom have been predicted using the three approaches. 
A summary of the results is displayed in Table 17.4.

The three approaches satisfactorily estimated height attributes 
in the coniferous forest. Models provided high Radj

2 , all equal to 
0.99 despite a higher number of variables for the mechanistic 
model, and low RMSE. Only one metric remained in the final 
point distribution model, H90f and Hmaxl, for HL and Hdom, respec-
tively. RMSE was slightly reduced using the mechanistic model, 
that is, −0.16 m for both HL and Hdom when compared to the point 
distribution model. The majority of forest studies have focused 
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on conifer forests characterized by a quite simple structure (Lim 
et al., 2003). In such stand types, both stand homogeneity and the 
absence of understory may explain the very good and similar per-
formances obtained with the three approaches. A single metric 
describing the top of the canopy (e.g., H90f or Hmaxl) is sufficient 
to summarize stand height characteristics. Results were differ-
ent for the more complex deciduous forest. The first approach 
provided HL and Hdom predictions with an Radj

2  of 0.89 and 0.95, 
respectively. Three metrics have been selected to predict HL, while 
two metrics have been selected to predict Hdom. The mechanistic 
model provided more accurate estimates with an Radj

2  of 0.97 and 
RMSEs reduced by 0.86 and 0.4 m compared to the point distri-
bution model for HL and Hdom, respectively. A more significant 
improvement was observed for the prediction of HL, which is a 
parameter that takes into account overtopped trees and not only 
the tallest ones. Figure 17.8 illustrates the improvement obtained 
using the mechanistic model by showing the observed values of 
HL against the ones predicted by the three models for the decidu-
ous forest. Applying the mechanistic model across diverse forest 
area types only required a calibration of the parameters as both 
the metrics and the model shape were kept from one area to the 
other one. From these examples, we can see that the mechanistic 
model proved robust and more efficient than the point distribu-
tion model, which is currently the most widely used approach.

Except when considering dominant heights, for which the 
top of canopy information is sufficient, this example also under-
lines the value of the information coming from the understory 
to improve Lorey’s height assessments. First, in the point dis-
tribution model, one of the selected variables was H60l, which is 
a parameter that is decorrelated from the variability in height 
of the canopy surface as seen in Section 17.3.3. Second, when 
comparing the mechanistic and the top of canopy mechanistic 
models, the latter performed slightly less well, with a similar Radj

2  
(0.96 against 0.97) despite using one fewer parameter than the 
complete mechanistic model and obtained a slightly increased 
RMSE (+0.11 m).

Even if not as widely used as point distribution approaches, a 
mechanistic approach appeared to provide a viable alternative 
solution regarding both robustness and accuracy in order to 
develop models predicting stand height characteristics from 3D 
data metrics. Furthermore, even if they performed slightly less 
well, the models using only the top of canopy information might 
provide interesting results in a range of stand types, including 
quite complex ones such as multilayered broad-leaved stands. 
However, their performance is likely to be lower if the area or the 
strata on which they are calibrated and applied is characterized 
by changes in stand structure. In that particular case, a more 
complete mechanistic model that partly includes the diversity 

Table 17.4  Goodness-of-Fit Statistics for HL and Hdom Predictions Using the Point Distribution, the Mechanistic Model, 
and the Top of Canopy Mechanistic Models

Approach Predicted Attribute  

Coniferous Forest Deciduous Forest 

ALS Metrics Radj
2 RMSE (m) ALS Metrics Radj

2 RMSE (m)

Point distribution model HL H90f 0.99 0.84 H100f, H60l, d90f 0.89 1.97
Hdom Hmaxl 0.99 0.88 Hmaxf, H80l 0.95 1.53

Mechanistic model HL μCH, σCH
2 , P, Hcrown 0.99 0.68 μCH, σCH

2 , P, Hcrown 0.97 1.11

Hdom μCH, σCH
2 , P, Hcrown 0.99 0.72 μCH, σCH

2 , P, Hcrown 0.97 1.08

Top of canopy 
mechanistic model

HL μCH, σCH
2 , P 0.99 0.68 μCH, σCH

2 , P 0.96 1.22

Hdom μCH, σCH
2 , P 0.99 0.73 μCH, σCH

2 , P 0.97 1.18

Predicted HL
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Figure 17.8  Observed values of HL against predicted values for the deciduous forest dataset using (a) the point distribution model, (b) the 
mechanistic model, and (c) the mechanistic top of canopy model.
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of structures thanks to an additional parameter, such as Hcrown 
used in our example, is expected to be more robust.

To better cope with the impact of stand characteristics on 
ALS metrics, a preliminary stratification of forest stands is rec-
ommended and would be expected to improve ALS-derived pre-
dictions (Næsset, 2002b). Aerial images or very-high-resolution 
imagery from space (submeter to few meters resolution) can be 
used to that aim (see Table 17.1). Height distributions derived 
from ALS could also give some precious information for stratifi-
cation purposes. But the fact that some metrics derived from 3D 
data are influenced by acquisitions characteristics (such as laser 
footprint, ALS sensors, or pulse repetition frequency; see Section 
17.3.1.2) also hampers the development of generic models. In gen-
eral, field calibration plots associated to each new ALS acquisi-
tion are required (Gobakken and Næsset, 2008; Næsset, 2009a; 
Thomas et  al., 2006). Trying to identify metrics that are least 
impacted by the changes in acquisition characteristics would rep-
resent an additional step required to provide more robust mod-
els. Apart from both stand and acquisition characteristics, other 
factors such as plot size and coregistration precision were shown 
to influence models’ quality and their derived maps (e.g., Frazer 
et al., 2011; Maltamo et al., 2009; Strunk et al., 2012). For example, 
using large plots reduces the probability of edge effects, which may 
occur when parts of the crowns belonging to trees located outside 
but close enough to the boundary of a plot are included in the ALS 
or DP 3D data subsets corresponding to the plot or, conversely, 
when part of the crowns of trees located inside a plot are excluded 
when using the plot area to extract the plot-related 3D data subset.

It is also important to bear in mind that LiDAR sees all the 
vegetation within the plot, irrespective of tree social status, while 
in calibration plots, several trees can be ignored since field mea-
surements may start only at a given minimum diameter. On the 
contrary, photogrammetric point clouds see only the dominant 
stratum, while part of the overtopped trees is measured in the 
field (Table 17.3). Field measurement protocols, designed either 
for NFI or for the purpose of a specific study, can be different 
from one study to another. Sampling designs can vary, not only 
in terms of sampling scheme and density but also in terms of 
plot design (e.g., fixed area, concentric plots with various diam-
eters, fixed number of trees, threshold defining the limit size for 
measurable trees). Furthermore, tree measurements can also 
change, for example, measurement of DBH only or both diam-
eters and heights or alternatively all diameters but heights for 
only a subsample of trees. All these elements are likely to change 
the field reference estimations and therefore also change the 
models. Therefore, reflexions and efforts made to harmonize for-
est inventory procedures (Ferretti, 2010; McRoberts et al., 2009) 
are likely to increase the generalization level of the models and 
should contribute to a more widespread use of remote-sensing 
data in forest applications.

When a model is developed, errors propagate through the 
entire process. Five main sources of error should be considered 
in area-based approaches. First, the field measurement errors; 
they may range from several decimeters to a few meters for height 
measurements (see Section 17.2.3). Second, for some parameters 

that cannot be directly measured in the field, such as biomass, 
another source of error resides in the allometric equations avail-
able to estimate the parameters from field measurements. But, 
unless heights are assessed in the field from DBH measurements, 
this error will not affect height predictions. A third source of error 
is the geolocation inaccuracy of both field plots and 3D datasets. 
A fourth one is the sampling error that is often neglected and 
mainly linked to the sampling design and the extent of sampling 
effort. If the whole population is inadequately sampled, the sam-
pling error might be significant. Finally, the models produced 
using metrics derived from point clouds or CHMs have their own 
inherent uncertainty. All these sources of error will combine and 
impact on the quality of the model results.

In the previous part of this section, we focused on models 
developed to predict the structural and biophysical characteris-
tics of stands. The use of LiDAR in landscape ecology and biodi-
versity studies is a more recent field of research. However, metrics 
extracted from LiDAR data or elevation models have already 
been proposed for the characterization of landscape patterns 
and structure at several scale (Mücke and Hollaus, 2010; Uuemaa 
et  al., 2009). In addition, the relationships between metrics 
describing the 3D distribution of the vegetation and the presence 
or abundance of a given species, or the assemblage of species, 
have been investigated in several studies. For example, Nelson 
et al. (2005) used LiDAR data to identify forested sites that might 
support populations of Delmarva fox squirrels, while Müller and 
Brandl (2009) and Müller et al. (2014) predicted arthropod diver-
sity and assemblages (Müller et  al., 2014; Müller and Brandl, 
2009). Bird species abundance and assemblages have also been 
at the core of several studies (Goetz et al., 2007; Lesak et al., 2011; 
Müller et al., 2010; Zellweger et al., 2013). All the aforementioned 
studies deal with fauna biodiversity. And despite the existence of 
relationships between floristic biodiversity and forests structure 
(Zilliox and Gosselin, 2013), only a few attempts have been made 
to study these relationships using either ALS or photo-derived 
3D data (Simonson et al., 2012). Modeling the link between bio-
diversity and environmental conditions remains challenging. 
Indeed, biodiversity is driven by many processes and taking 
into account vegetation or landscape structural characteristics 
exclusively is not sufficient. The ecological context, with regard 
to abiotic variables, is also of great importance when attempting 
to explain biodiversity indicators. While several studies do not 
take into account the ecological context, complementing LiDAR 
metrics with abiotic variables was shown to improve the predic-
tive power of models (see Zellweger et al., 2014). Furthermore, 
to tackle the complexity of ecological modeling, multiple regres-
sions, which are widely used to predict forest biophysical param-
eters, are no longer the most appropriate approach. They were 
sometimes replaced by statistical approaches that are more 
suited to the modeling of various parametric distributions and 
deal with discrete variables while allowing the utilization of non-
parametric functions for variable weighting. To this aim, gener-
alized additive models (Goetz et  al., 2007), boosted regression 
trees (Zellweger et  al., 2013), or Bayesian models (Zilliox and 
Gosselin, 2013) have been occasionally used.
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17.4.3 � Model Extrapolation and Inferences 
for Large-Area Inventories

For a number of operational inventory applications, many 
authors (see, e.g., Næsset, 2002b; Naesset, 2007) have demon-
strated how wall-to-wall ALS coverage could efficiently be used 
to improve the accuracy and spatial resolution of field surveys. 
In Scandinavian countries, LiDAR-derived forest inventories 
have been made since 1995 (Næsset, 2004). Statistical inferences, 
sampling design, and statistical properties of LiDAR-derived 
estimations have only recently received more attention because 
of the often complex structure of LiDAR surveys (Ben-Arie 
et al., 2009; Li et al., 2012; Morsdorf et al., 2004; Véga et al., 2014).

Some studies rely directly on existing NFI plots (e.g., in 
Maltamo et  al., 2009), whereas in other studies, specific field 
campaigns have to be carried out. Sampling design associated 
with LiDAR surveys is frequently established based on a model-
based design (Smits et  al., 2012), as opposed to design-based 
sampling, where systematic or random locations of field cali-
bration plots are being performed (Henry et al., 2013; Naesset, 
2007). This aspect is important since model-based estimators are 
not design unbiased and may reveal potential bias depending on 
model correctness (Picard et al., 2012a).

Wall-to-wall ALS coverages over extended areas of forests 
have become more frequent. However, such coverage efforts are 
still complex and costly to undertake and generate a consider-
able amount of data to be processed (Uuemaa et al., 2009; Wulder 
et al., 2012; Zellweger et al., 2013). Furthermore, some systems, 
such as early LiDAR systems, for example, the Portable Airborne 
Laser System (PALS), a profiling system (Nelson et al., 2003), or 
spaceborne systems cannot provide full coverage. ICESat, the first 
LiDAR mission aimed at measuring terrestrial surfaces, acquired 
data from 2003 to 2009 and was a profiling system. Due to tech-
nological limitations, future space LiDAR missions are likely to 
embed, at best, multibeam systems. Designed to either reduce 
survey costs or process data acquired by multibeam or profiling 
systems, some methods using LiDAR measurement samples were 
developed to perform extensive forest inventories. These meth-
ods also incorporate remote-sensing sources other than LiDAR 
into existing large-area sample-based forest inventory frame-
works (Müller et al., 2010, 2014; Müller and Brandl, 2009; Nelson 
et al., 2005; Wulder et al., 2012). These approaches still require 
local calibration of models to link remote-sensing data to forest 
parameters (Goetz et al., 2007; Zellweger et al., 2014). It is worth 
noting that all applications do not require map production, and 
part of the required information can be obtained by analyzing 
sets of characteristics assessed on samples. Using simulation, Ene 
et al. (2013) demonstrated that ALS data enhanced forest inven-
tory results and that ALS-aided surveys can be a cost-efficient 
alternative to traditional field inventories. The latter also pro-
vided more accurate results if sampling intensity was optimized 
(i.e., by optimizing the distance between regular flight lines cov-
ering only part of the NFI plots) (Ene et al., 2013).

When models are extrapolated, two points are worth recall-
ing. First, it is important to check if the predictions have been 

made within the calibration domain. For example, models 
developed for even-aged stands, or for one specific species, 
could yield erroneous predictions in multilayer stands or in 
stands composed of mixed species. Model robustness therefore 
represents a major issue and should be evaluated across several 
stand types. It is therefore crucial to be able to characterize the 
stand types consistently with the calibration domains of the 
models. However, further difficulties may arise when predic-
tions must be made in edge areas covering several stand types. 
In some countries, edges between stand types or between for-
est and nonforest areas can represent a significant share of the 
NFI plots. In France, for instance, at least 20% of NFI plots are 
located on an edge. Therefore, forest heterogeneity must not be 
underestimated when building, validating, and extrapolating 
models. Finally, when maps are considered as an operational 
outcome of the models, one must remember, as McRoberts 
et al. (2010) explain, “the utility of maps is greatly increased 
when they form an appropriate basis for inferring values of 
maps parameters describing the populations represented by 
the maps.” Inference means being able to calculate estimates 
of the mean of the population parameter and of its variance 
in order to be able to define a 1-α confidence interval for this 
parameter (McRoberts et al., 2010). Both extrapolation of for-
est structural or biophysical parameters and inference issues 
are at the core of active research work, and to get a better grasp 
of these topics, the authors recommend readers to refer to the 
following papers: Ben-Arie et  al. (2009), Ene et  al. (2013), Li 
et al. (2012), McRoberts (2010), and McRoberts et al. (2010).

17.5 � Approaches for Individual 
Tree Height Assessment

Unlike area-based approaches that are poorly sensitive to 
point density (see Section 17.3.1.2), methods for individual tree 
height assessment require several height measurements per tree 
crowns, hence at least a few points/m2, and the optimal point 
density is likely to change according to the stand type and age. 
Whereas 2 pts·m−2 was found to be sufficient in mature stands, 
at least 10 pts·m−2 might be required for saplings (Kaartinen 
et  al., 2012). Early methods used for detecting and character-
izing individual trees from ALS data were based on techniques 
developed to process very-high-resolution optical images 
(Leckie et  al., 2005). To locate individual trees, brightness or 
color gradients were used in optical imagery (Leckie et  al., 
2005; Wulder et al., 2000), while ALS CHM-based methods can 
make use of the geometrical properties of the CHMs, includ-
ing height, slope, and curvature (Bongers, 2001) for the same 
purpose. Now that accurate photo-DSMs can be produced with 
DP, raster-based tree detection approaches can be applied either 
to ALS-derived or photo-derived CHMs. These approaches are 
described in Section 17.5.1. Section 17.5.2 presents more recent 
approaches that directly use 3D point clouds, to improve both 
tree crown characterization and overtopped tree detection. 
Finally, Section 17.5.3 presents hybrid approaches based on 
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algorithms that either use both point clouds and raster infor-
mation or exploit the complementarity between structural and 
radiometric information.

17.5.1  Raster-Based Approaches

Standard methods for extracting individual trees from a CHM 
are based on three steps, which are CHM modeling and opti-
mization, detection of tree apices using LM, and development 
of crown segments around each tree apex (Persson et al., 2002; 
Popescu et al., 2002; Solberg et al., 2006). When solely focusing 
on tree height assessment, this last step is not always required in 
the processing workflow.

17.5.1.1 C HM Modeling and Optimization

The efficiency of raster-based approaches is intimately linked 
to the quality of the CHM derived from the point clouds. Grid 
cell size is the first critical parameter. Various studies reported 
that the optimal size should be of the same order of magni-
tude as the original point spacing (Vepakomma et  al., 2008). 
Besides pixel size, the point to grid transformation has been 
widely investigated. Two main approaches are commonly used 
to compute the initial CHM, from either the first returns or the 
points classified as nonground points. A common method con-
sists of assigning the maximum Z-value of the points of each 
grid cell and estimating a value for the empty cells. This can be 
achieved, for example, by averaging the values of the connected 
filled cells (Brandtberg et  al., 2003; Hyyppä et  al., 2001) or by 
using an inverse distance weighted (IDW) method applied to 

a given number of neighboring points among those belonging 
to the canopy surface (Véga and Durrieu, 2011; Vepakomma 
et al., 2008). Alternative methods involve interpolating a value 
at the center of each grid cell from the Z-values of the neigh-
boring points using kriging (Popescu and Wynne, 2004), IDW 
(Vepakomma et al., 2008), active contour (Persson et al., 2002), 
or minimum curvature (Solberg et al., 2006) algorithms. When 
the task is measuring trees, exact interpolation methods might 
be favored (Kato et al., 2009), but overall, simple interpolation 
techniques like IDW were found to be sufficiently accurate 
(Anderson et al., 2006a; Vepakomma et al., 2008). To enhance 
both tree top detection and crown segmentation algorithms, dif-
ferent procedures can be used to improve the surface described 
by the CHM prior to further processing. These include point 
cloud thinning, hole filling, as well as CHM filtering. Thinning 
procedures are implemented upstream from CHM generation to 
filter out points within the canopy. For example, an initial outer 
canopy surface can be defined, for example, by using an active 
contour algorithm to trace the outer part of the crowns (Persson 
et al., 2002), and points that are too far below this surface are 
discarded (Persson et al., 2002; Solberg et al., 2006). Hole-filling 
algorithms are applied once an initial CHM has been calculated 
and is aimed at removing irregularities within the canopy sur-
face partly due to crown porosity. Ben-Arie et al. (2009) intro-
duced a 6-step semiautomated pit-filling algorithm based on a 
Laplacian edge detector to remove pits while preserving edges. 
Véga and Durrieu (2011) developed an iterative method based on 
4–8 connectivity kernels to automatically detect and recalculate 
local minima (Figure 17.9).

(d)(c)
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Other returns
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Initial surface
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Hole-filled
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Figure 17.9  CHM modeling and optimization: from the point cloud (a) to the CHM (b). (c) and (d), respectively, represent an initial CHM 
(0.5 m resolution) and its hole-filled version over a coniferous forest (Draix, France).
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In general, the workflows include a last smoothing step 
to reduce commission errors induced by noise within the 
CHM prior to tree parameter extraction. Gaussian filtering is 
commonly used (Hyyppä et  al., 2001; Morsdorf et  al., 2004; 
Persson et  al., 2002; Solberg et  al., 2006). But median filter-
ing was also used as it can preserve the original values in the 
CHM (Popescu et al., 2003). A single smoothing filter can be 
applied (Popescu et al., 2003) with smoothing intensity, which 
may be driven by local vegetation height (Koch et al., 2006). 
Nevertheless, iterative Gaussian filtering is the most widely 
used approach (Hyyppä et  al., 2001; Maltamo et  al., 2004; 
Solberg et  al., 2006). In some studies, the results obtained 
at several filtering levels were combined as optimal filtering 
intensity level depends on crown size (Persson et  al., 2002; 
Véga and Durrieu, 2011).

17.5.1.2  Detecting Tree Apices

Tree tops are usually considered as LM in the smoothed CHM. 
An LM can be defined as a pixel containing the highest value in 
a given neighboring defined by a kernel.

Along with the impact of CHM quality, the efficiency of tree 
top detection using LM identification mainly depends on the 
optimization of both kernel size and shape. As explained in 
various studies, the selection of either an overly small or overly 
large kernel might lead to commission (i.e., false detection) or 
omission errors, respectively (Figure 17.10) (Popescu et al., 2002; 
Reitberger et  al., 2009). In addition, while a single kernel size 
might be sufficient to process CHM acquired over forest planta-
tions with homogenous crowns, approaches using variable ker-
nel sizes had to be developed to improve tree top detection over 
complex forest structures. Popescu et al. (2002) fixed the win-
dow size according to the relationship between tree height and 
crown diameter they established from field measurements. The 
method was further improved by introducing a circular window 
and by using specific relationships for both conifer and hard-
wood stands (Popescu and Wynne, 2004) (Figure 17.10). Chen 
et al. (2006) extended the concept of window size dependence on 
tree height by using a nonlinear power model linking window 
size to tree height and by then estimating a prediction interval 
for the optimal window size around the value predicted by the 

model. This helped to reduce the omissions of trees with crowns 
smaller than those predicted by the model.

Many other approaches have been proposed to identify trees, 
such as the second derivative of blob signature (Brandtberg et al., 
2003), a multiple morphological opening method to tackle the 
problem of heterogeneity in crown dimensions (Hu et al., 2014), 
marked point process models optimized using a multiple births 
and deaths approach (Zhou et al., 2010), or h-minima transform 
using distance-transformed images (Chen et al., 2006). The lat-
ter was found to be particularly suited for the detection of trees 
with flat or aggregated crowns.

17.5.1.3  Measuring Tree Crowns

Several methods have also been put forward to reconstructing 
crown segments and subsequently estimate tree characteristics, 
such as tree height, crown diameter or area, or crown base height. 
Most common methods include region-growing approaches 
(Hyyppä et  al., 2001; Persson et  al., 2002), watershed analysis 
(Chen et al., 2006; Kwak et al., 2007; Mei and Durrieu, 2004), 
morphological analysis (Wang and Glenn, 2008), valley follow-
ing approach (Leckie et al., 2003), fitting functions (Popescu and 
Wynne, 2004), ellipse fitting (Véga and Durrieu, 2011), wavelet 
analysis (Falkowski et al., 2006), or a combination of methods as 
in Koch et al. (2006) or Hu et al. (2014).

Unlike approaches such as region-growing or watershed 
approaches, some can be implemented without a tree top detec-
tion step, such as the valley following approach (Leckie et  al., 
2003) or the spatial wavelet analysis proposed by Falkowsky et al. 
(2006). In few cases, tree top identification and tree delineation 
are interdependent. For example, in Véga and Durrieu (2011), the 
initial tree top set evolves as crown contours are identified and 
refined in a multiscale iterative process. Several methods, most 
of the region-growing or watershed approaches, tend to produce 
irregularly shaped crown segments and thus necessitate a shape 
control process step. Sets of rules have been developed to qualify 
and constrain the segmentation process based on either height 
values, areas, distance from the gravity center, or shapes (Hu et al., 
2014; Hyyppä et al., 2001; Koch et al., 2006; Solberg et al., 2006; 
Weinacker et al., 2004). Other methods directly model tree crowns 
using circular or elliptic shapes (Popescu et  al., 2003; Véga and 

(a) (b) (c)

Figure 17.10  Tree top detection in a coniferous area using either a fixed 20 pixel kernel (a) or variable window sizes from using a generic model 
(b) or a model derived for conifers (c). (From Popescu, S.C. et al., Comput. Electron. Agric., 37, 71, 2002.)
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Durrieu, 2011). Here, results might be improved by allowing the 
tree top to be different from the center of symmetry of the shape 
used by the model. This is, for example, the case for the approach 
proposed by Véga and Durrieu (2011) where LM were used to esti-
mate crown radius in various directions and crown elliptic shapes 
were further adjusted while only using the set of the radius end-
points that were assumed to characterize the crown edge.

Kaartinen et al. (2012) compared several individual tree detec-
tion approaches on a given study area and for 3 ALS datasets of 
different point densities (2, 4, and 8 pts m−2). The comparison was 
made with regard to the number of correctly detected trees, that 
is, number of correct matches with field reference, commissions, 
and omissions. The results were analyzed according to both 
height classes and tree status. For well-detected trees, tree loca-
tion accuracy and the accuracy of the assessment of both height 
and crown dimensions were analyzed. The percentage of detected 
trees ranged from 25% to 102%. Surprisingly, several automated 
methods performed better, even in the case of codominant or 
suppressed trees, than manual detection that identified 70% of 
the trees (Kaartinen et al., 2012). This point deserves particular 
attention because, unlike in many other fields, manual detection 
cannot be used as a reliable reference to assess the performance 
of automatic tree detection approaches derived from imagery 
or ALS data (Kaartinen et al., 2012). As expected, higher com-
mission errors were mainly found for the smallest trees. Tree 
detection was not significantly improved by the increase in point 
density from 2 to 8 pts m−2. On the contrary, height assessment 
accuracy was improved with an increase in point density, even if 
the impact of point density on result accuracy was of less impor-
tance compared to the impact of the choice of the tree detection 
approach. While 75% of the raster-based approached showed 
an RMSE below 2 m, the best models provided RMSEs ranging 
from 60 to 80 cm (Kaartinen et al., 2012). In an operational con-
text, the authors emphasized the efficiency of quite simple meth-
ods based on LM finding, which achieved a tree detection rate 
of over 70%, a percentage of matched trees of 60% and of 95% 
when considering only dominant trees, a commission error of 
18%, and an RMSE for height estimates around 80 cm.

17.5.2  Point-Based Approaches

In addition to raster-based approaches, point-based approaches 
have been developed in order to fully take advantage of the 3D 
information of ALS point clouds and were expected to detect not 
only dominant but also overtopped trees. If there is no theoreti-
cal reason to not apply point-based approaches to photo-derived 
point clouds, the utility is limited as these point clouds mainly 
describe canopy surface, like CHMs. Morsdorf et  al. (2004) 
introduced a voxel-based approach with k-means clustering to 
detect individual trees and modeled crowns using a paraboloid 
model. However, as the k-means seeds were based on CHM LM, 
the method suffers from the same limitations as raster-based 
approaches. Ferraz et  al. (2012) proposed another clustering 
approach based on a mean-shift algorithm that does not require 
seed points. The method is used to identify several vegetation 

layers and then define an adaptive kernel bandwidth param-
eter optimized for each layer. The method gave very promis-
ing results and could detect 98.6% of the dominant trees and 
approximately 13% of the suppressed ones within stands domi-
nated by eucalyptus and pines. However, the authors stressed 
that a more sophisticated approach would be required to process 
more complex forest structures (Ferraz et al., 2010). The normal-
ized cut segmentation introduced by Reitberger et al. (2009) is 
also not dependent on seed identification. Tested in a mixed 
mountain forest, the method was used to detect 77%, 32%, and 
18% of the trees in the dominant, intermediate, and lower can-
opy layer, respectively. Li et al. (2012) proposed a distance-based 
algorithm to sequentially detect trees. The method assumes rela-
tive spacing between trees and overcomes the issue of finding 
LM by using “global maxima,” defined during the segmentation 
process as the highest point not yet associated with a crown. The 
method was not evaluated in hardwood forests but achieved 86% 
global detection rate in a mixed conifer forest with a 94% cor-
rect detection rate (Li et al., 2012). Recently, Véga et al. (2014) 
proposed a multiscale dynamic segmentation approach. As in 
Li et al. (2012), the algorithm is based on global maxima. Each 
point is considered as a new tree apex or assigned to an exist-
ing crown. In the latter case, the algorithm allocates the point 
to the tree segment, that is, the projection of a given crown in 
the 2D plane, which is the least changed by the inclusion of this 
new point considering the change in the surface area of the con-
vex hull of each candidate segment. With this approach, 82% of 
the trees were correctly detected on average when considering 
three different forest types (Figure 17.11) (Véga et al., 2014). In 
the comparative analysis performed by Kaartinen et al. (2012), 
only one point-based approach was selected to be compared to 
raster-based approaches. As expected, it enabled better detec-
tion of underlayered vegetation than that offered by the raster-
based approaches.

17.5.3  Hybrid Approaches

In addition to pure 3D point cloud approaches, other approaches 
combining raster and point clouds data recently emerged and 
have proven effective at improving individual tree extraction 
performance. Using a high-density dataset, Reitberger et  al. 

(a) (b)

Figure 17.11  Example of point-based segmentation over a broad-
leaved forest (566 stem ha−1) (a) and a pine plantation (206 stem ha−1) (b).
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(2009) obtained improved results by combining their point-
based approach with a watershed segmentation of the CHM 
and a stem detection applied to the point cloud (86%, 32%, 
and 17% of correct detection for the dominant, intermedi-
ate, and lower canopy layer, respectively, instead of 77%, 32%, 
and 18% [see Section 17.5.2]). Hu et al. (2014) first segmented a 
CHM using a multiscale morphological opening approach and 
flagged uncertain shapes based on shape and height informa-
tion. Points within the flagged segments were then reprocessed 
by multi-Gaussian fitting applied to point distribution. The 
number of fitted Gaussian functions corresponds to the num-
ber of trees inside a segment. Splitting and merging operations 
were then applied to refine the segmentation and derive the final 
crowns (Hu et  al., 2014). In order to tackle issues involved in 
CHM-based crown extraction, Wang and Glenn (2008) adopted 
a voxel structure to generate 2D horizontal projection images 
of the point cloud. For each horizontal layer, a hierarchical 
morphological algorithm is used to generate crown segments. 
Tree crowns were then reconstructed using a preorder forest 
transversal approach to connect the 2D crown segments of the 
successive layers. The method was able to identify both canopy 
and overtopped trees but was found to be highly sensitive to the 
parameters (Wang and Glenn, 2008).

Other studies aimed at exploiting the complementarities 
between structural information provided by canopy models 
and radiometric information contained in optical images. This 
helped to improve individual tree detection and subsequent height 

measurement accuracy. Popescu and Wynne (2004) used opti-
cal data to identify and locate forest types that were then used to 
adapt the segmentation parameters of their adaptive window size 
algorithm, thus leading to improved results. Leckie et al. (2003) 
applied a valley following approach to both multispectral images 
and ALS CHM in order to extract and characterize individual 
trees. They reported that crown segmentation was more efficient 
in dense forests when using spectral images (80%–90% detection) 
as poor crown outlines were obtained using the ALS CHM. On 
the contrary, better results were obtained by processing the CHM 
within open areas where sunlit ground vegetation can cause false 
detections within images. These results show that combining ALS 
data with multispectral data might improve crown segmentation, 
which also holds true for tree top detection (Smits et  al., 2012). 
Suárez et  al. (2005) applied an object-based segmentation using 
both spectral and height data to identify individual trees imple-
mented in ©eCognition software by Definiens. Tested on 345 trees, 
results showed that ALS underpredicted individual tree heights by 
7%–8%. The author also claimed that an ALS and imagery com-
bination could be used to work with lower ALS point densities, 
thus reducing costs. But, as reported by Kaartinen et  al. (2012), 
methods developed to process ALS data alone are more mature 
and several approaches based on raster CHM gave better results 
than hybrid approaches.

A qualitative comparison of the three types of approaches, 
namely, raster-based, point-based, and hybrid approaches, is 
provided in Table 17.5.

Table 17.5  Summary of Main Strengths and Limitations of Raster-Based, Point-Based, and Hybrid Approaches Developed for Tree Detection 
and Tree Height Assessment

Approach Advantages Limitations 

Raster based •	 Computational efficiency.
•	 Well established methods.
•	 Widely available image processing tools can be used.
•	 Several methods perform better than manual detection.
•	 Simple methods can achieve tree detection rates >95% for dominated 

trees, >70% for all trees.
•	 RMSE ranging from 0.6 to 0.8 m for height assessment with the 

best-performing methods.

•	 High sensitivity to point density.
•	 Point to raster interpolation can impact height estimation.
•	 CHM smoothing impacts detection of Local Maxima LM 

and crown boundaries.
•	 Approaches based on LM identification are not well 

adapted to “flat” crowns.
•	 Crown segments: quality is a function of the method and 

the chosen parameters (e.g., region growing, watershed, 
model fitting).

•	 Detection rates highly dependent on the method (from 
25% to 102%).

•	 Dominated trees cannot be detected.
•	 Crown parameters such as crown-based height cannot be 

assessed.
Point based •	 No need for height interpolation nor for a smoothing step of a raster 

CHM.
•	 Improved description of crown shape and attributes; extraction of 

additional tree parameters such as crown base height.
•	 More adapted to identify small and dominated trees → detection rates 

>77% considering all trees even in complex stands.

•	 Sensitive to both pulse sampling pattern and point density.
•	 Lower computational efficiency.
•	 Tree detection and crown segmentation are impacted by 

the point clustering approach used.
•	 Might be sensitive to sampling patterns.

Hybrid •	 Improved efficiency by combining advantages of both raster-based and 
point-based approaches → optimization of computational efficiency by 
processing raster data and improvement of results by using additional 
information on understory provided by 3D point clouds.

•	 When radiometric information is used in addition to 3D point clouds, 
results are enhanced due to information complementarity (e.g., 9% 
increase in detection rate of dominant trees in Reitberger et al. (2009)).

•	 Lower computational efficiency compared to pure 
raster-based approaches.

•	 Might be affected by the limitations of each source of 
information depending on the processing workflow.
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Compared to area-based approaches, the first major drawback 
of individual tree approaches is practical in nature. The latter 
require higher point densities and thus induce an increase in data 
acquisition costs and in processing time. A second disadvantage 
is their inconsistent behavior depending on the type of forest on 
which they are applied. Currently, their performance is insuf-
ficient to extract understory trees, whatever the individual tree 
approach method used. However, the main advantage of individ-
ual tree approaches over area-based ones is that they might 1 day 
provide height distributions in spite of synthetic height indica-
tors. Such distributions would enable improved predictions of 
other forest parameters such as timber volume or overground 
biomass (Kaartinen et al., 2012). This is why there is still a lot of 
commitment to developing powerful and operational approaches 
in this research field despite the significant challenges involved.

17.6 C onclusion and Perspectives

Tree height and vegetation height distribution are structural 
characteristics of major importance when attempting to under-
stand and monitor biological and ecological processes at tree, 
stand, and landscape scales.

Tree height plays a central role in forest inventories, and height 
growth is a main driver for growth and yield models. Forest 
structure features, and in particular gaps, also play a major role 
in forest ecology because of their influence on microclimate and 
habitat quality and thus on biodiversity potential.

Accurate measurement of tree heights and careful monitoring 
of the dynamics of both canopy height and gaps at several scales 
in space and time are known to be crucial to improve both for-
est ecosystem monitoring and modeling and thus contribute to 
their sustainable management. But, as field evaluations of tree 
height and forest structure are labor intensive and costly, they 
cannot fully meet data requirements. In this chapter, we focused 
on two remote-sensing technologies, ALS and DP, which are 
deemed to be mature enough to provide practical and accurate 
measurements of 3D forest structure. Developing their use to 
measure and monitor tree height and vegetation structure at 
several scales, and at regular time scales, is expected to repre-
sent a major breakthrough regarding the development of forest 
ecosystem modeling and to provide precious information to help 
managers dealing with the increasing societal and economic 
pressures weighing on forests.

Each technology, although hampered by some major draw-
backs, possesses major assets. Today, LiDAR is probably the 
most promising and mature technology capable of providing 
direct measurements of 3D forest structure from airborne sys-
tems. Despite continuous system improvements, data acquisition 
remains costly, however, which partly explains the development 
of inventory methods based on samples of ALS measurements 
(Ene et al., 2013; Wulder et al., 2012). Furthermore, there is no 
ongoing or planned spaceborne LiDAR mission having vegeta-
tion monitoring as its primary objective. The first ICESat mission 
was designed for ice monitoring. ICESat2, which is planned to be 
launched by NASA in 2017, will be the second LiDAR mission 

dedicated to Earth surface monitoring. Also primarily designed 
to characterize and monitor polar ice, vegetation height and bio-
mass measurements are one of its secondary scientific objectives. 
However, data simulations have demonstrated that, with its cur-
rent design, ICESat2 will not adequately replace the recently 
shelved DESDynI vegetation LiDAR mission (Hall et al., 2011a). 
Part of the scientific community working in the field of remote 
sensing applied to forest is pushing for the development of an 
international vegetation LiDAR mission, and several projects of 
space missions have been submitted and are under evaluation by 
CNES, JAXA, and NASA, the French, Japanese and American 
space agencies, respectively (Durrieu et  al., 2013; Durrieu and 
Nelson, 2013; Kobayashi et al., 2013).

Due to recent developments in DP that have provided 
improved canopy surface reconstruction, this technology has 
recently benefited from renewed interest for forest applications. 
Unlike with LiDAR, information is limited to the top of the can-
opy. However, data access offers several advantages over LiDAR. 
First, due to the relatively long history of both airborne photogra-
phy and photogrammetry, large databases of aerial photographs, 
dating back over 60  years and even beyond, exist in several 
countries (Véga and St-Onge, 2008). This enables researchers 
to study forest structure monitoring for long-past time periods. 
Second, regarding current acquisitions, imagery is considered 
to offer more advantages than ALS due to easier survey plan-
ning and lower costs. Furthermore, the radiometric information 
provided by imagers is complementary to 3D information and 
is of high value for forest-type characterization. Finally, digital 
imagers have long been deemed fit for space applications and 
several spaceborne systems today provide very-high-resolution 
multispectral stereoscopic images from which accurate DSM 
can be obtained (e.g., Aguilar et al., 2014). Overall, due to their 
respective advantages and to similar potential for top vegetation 
height measurements, ALS and photogrammetry are more com-
plementary than mutually exclusive, and the objective should 
be to optimize alternated acquisitions under cost constraints. 
In particular, combining satellite stereo imagery and ALS DTM 
may allow the monitoring of vegetation height over large areas at 
a lower cost than with airborne-based solutions.

Concerning methodological issues, producing accurate sur-
face model in forest environments based on DP remains chal-
lenging, and despite considerable improvements made over the 
last years, further efforts are needed to develop methods that can 
be used to process different forest types with increased self-tun-
ing functionalities in order to provide user-friendly and pow-
erful tools to foresters. Currently, the methods used to retrieve 
information on vegetation heights from either ALS or photo-
derived 3D data can be classified within two families: area-
based approaches that assess height characteristics at stand level 
and approaches for individual tree height assessment. A major 
advantage of the latter is their capacity to provide height distri-
butions instead of the synthetic height indicators provided by 
area-based approaches. Such distributions could help improve 
predictions of other forest parameters such as timber volume or 
aboveground biomass. However, developing efficient approaches 
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remains very challenging due to the difficulties involved in 
accurately segmenting trees, in particular those belonging to 
the understory. In addition, these approaches require high-
density point clouds, which increase both acquisition and data 
management costs as well as processing time. Therefore, despite 
their interesting features, their operational value is limited. On 
the contrary, area-based approaches are very efficient and have 
already been incorporated in NFI in several countries. One way 
to make the most of both approaches could be the develop-
ment of methods aimed at assessing height distributions, in a 
way similar to the attempts to model stem diameter distribution 
(Gobakken and Næsset, 2004; Thomas et al., 2008).

Finally, another major perspective concerns 3D data time 
series analysis used to monitor changes in forest structural 
characteristics. As the development of ALS is quite recent com-
pared to airborne photography, DP should be used once long 
time series are needed. Time series analysis raises specific meth-
odological issues such as data calibration or the management 
of data with different qualities within change detection and 
characterization processes. Monitoring changes in forest struc-
ture over time can provide key information on forest growth 
and disturbances, as well as on forest functioning through the 
estimation of biomass changes or carbon fluxes. Forest mod-
elers and foresters also need accurate information on height 
changes to develop models of forest dynamics, estimate annual 
allowable cuts based on prediction of future yields, or monitor 
fluctuations of forest carbon stocks under changing climatic 
and disturbance regime (see, e.g., Coops and Waring, 2001). 
Véga and St-Onge (2009) demonstrated the potential of height 
growth monitoring to assess forest site productivity (Figure 
17.12). In addition to canopy growth, times series of elevation 
models also provide insights into disturbances regime such as 
gaps and gap dynamics (e.g., Tanaka and Nakashizuka, 1997; 
Vepakomma and Fortin, 2010). While recent studies have 
focused on the analysis of structural forest changes and gap 

dynamics, little attention has been paid to the potential of such 
information to characterize biodiversity. Indeed, regarding the 
role of canopy gaps in diversity richness, recent knowledge has 
mostly been acquired using synchronic approaches. Less work 
has been devoted to monitoring biodiversity according to gap 
characteristics or linking past gap dynamics to present-day bio-
diversity. Yet, this issue warrants further investigation, as this 
dynamic approach is linked to theoretical constructs about dis-
turbance theory and their forestry counterparts (McCarthy and 
Burgman, 1995) and, as an integral part of forest biodiversity, 
could be linked to disturbance dynamics. Documenting gap 
dynamics could therefore lead to the identification of interesting 
biodiversity indicators. This type of indicator could also become 
an interesting feature of forest management and therefore rep-
resent a good candidate for the role of sustainable management 
indicator of forest biodiversity and provide useful information 
to identify sustainable management practices. Indeed, it has 
been shown that structurally complex canopy enhanced both 
biodiversity and productivity (Ishii et  al., 2004), and natural 
disturbance emulation has been proposed as a general approach 
for ecologically sustainable forests (see, e.g., Kuuluvainen and 
Grenfell, 2012). To reach these economic and ecological goals 
will require increased vegetation height monitoring in order to 
develop and implement silvicultural prescriptions that aim at 
maintaining forest ecosystem functions and biodiversity (Ishii 
et al., 2004). And, thanks to their potential for measuring veg-
etation height characteristics, both optical remote-sensing tech-
nologies presented in this chapter are likely to play a major role 
in reaching these goals.
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Acronyms and Definitions

ASAR 		  Advanced Synthetic Aperture Radar 
ASTER		�  Advanced Spaceborne Thermal Emission and 

Reflection Radiometer
AVHRR 		 Advanced Very High Resolution Radiometer
CORINE		� Coordination of Information on the 

Environment
COSMO-SkyMed	� Constellation of small Satellites for the 

Mediterranean basin Observation
DMSP		  Defense Meteorological Satellite Program
ENVI		  Environment for Visualizing Images
ENVISAT	 Environmental Satellite
EOS		  Earth Observing System
ESA		  European Space Agency
ETM+		  Landsat Enhanced Thematic Mapper Plus
GAP		  National Gap Analysis Program
GIS		  Geographic Information System 
GLAS		  Geoscience Laser Altimeter System
GPM		  Global Precipitation Measurement
ICESat		  Ice Cloud and land Elevation Satellite
LAI		  Leaf Area Index
JERS		  Japanese Earth Resources Satellite
MERIS		  Medium Resolution Imaging Spectrometer
MODIS		�  Moderate Resolution Imaging 

Spectroradiometer

NASA		�  National Aeronautics and Space Administration 
NDVI		  Normalized Difference Vegetation Index 
NOAA		�  National Oceanic and Atmospheric 

Administration 
OLI		  Landsat Operational Land Imager
QSCAT		  NASA’s Quick Scatterometer
RADARSAT	 Radar Satellite
SAR-Lupe	 Synthetic Aperture Radar-Lupe
SPOT		  Satellite Pour l’Observation de la Terre
SRTM		  Shuttle Radar Topography Mission
TerraSAR-X	 Terra Synthetic Aperture Radar X-band
TIRS		  Landsat Thermal Infrared Sensor
TM		  Landsat Thematic Mapper
TMI		�  TRMM (Tropical Rainfall Measuring 

Mission) Microwave Imager
TRMM		  Tropical Rainfall Measuring Mission
UAVs		  Unmanned Aerial Vehicles

18.1 I ntroduction

The Earth is undergoing an accelerated rate of native ecosys-
tem conversion and degradation (Nepstad et  al. 1999; Myers 
et al. 2000; Achard et al. 2002), and there is increased interest 
in measuring, modeling, and monitoring biodiversity using 
remote sensing from spaceborne sensors (Nagendra 2001; Kerr 
and Ostrovsky 2003; Turner et  al. 2003; Secades et  al. 2014). 
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Biodiversity can be defined as the variation of life forms (genetic, 
species) within a given ecosystem, region, or the entire Earth. 
Terrestrial biodiversity, rare and threatened species, tends to 
be highest near the equator and generally decreases toward 
the poles because of decreases in temperature and precipita-
tion (Orme et al. 2005; Figure 18.1). However, the distribution 
of biodiversity is complex and based on a number of environ-
mental and anthropogenic factors over different spatial scales 
(Whittaker et al. 2001; Field et al. 2009; Jenkins et al. 2013).

Remote sensing has considerable potential as a source of 
information on biodiversity at a site, landscape, continental, and 
global spatial scales (Nagendra 2001; Turner et  al. 2003). The 
main attractions of remote sensing as a source of information 
on biodiversity are that it offers an inexpensive means of deriv-
ing complete spatial coverage of environmental information for 
large areas in a consistent manner that may be updated regu-
larly (Duro et al. 2007; Gillespie et al. 2008). There has been an 
increase in studies and reviews of biodiversity and remote sens-
ing taking advantage of advances in sensor technology or focus-
ing on broad patterns of variables related to biodiversity (Kerr 
et al. 2001; Turner et al. 2003; Rocchini 2007a; Pfeifer et al. 2012).

These advances in remote sensing are generally divided into 
measuring, modeling, and monitoring biodiversity (Nagendra 
2001; Turner et  al. 2003; Duro et  al. 2007). Measuring uses 
spaceborne sensors to identify either species or individuals, such 
as the identification of tree species and density, or land cover 
types associated with species assemblages (such as redwood for-
est) (Gillespie et al. 2008). Modeling uses spaceborne sensors to 
create probability models of species distributions and the dis-
tributions of biodiversity and associated metrics such as species 
richness. Monitoring is the use of time series spaceborne data of 

measured or modeled biodiversity to study dynamics over time, 
and this has significant applications for endangered species and 
ecosystem conservation.

This chapter reviews recent advances in remote sensing that 
can be used to study biodiversity from space. In particular, this 
chapter examines ways to measure, model, and monitor biodi-
versity patterns and processes using spaceborne imagery. First, 
we examine satellites currently being used to measure biodiver-
sity from space. Second, we examine advances in modeling pat-
terns of species and biodiversity. Third, we examine monitoring 
applications of remote sensing for the conservation of biodiver-
sity. Finally, we identify spaceborne sensors that can be used to 
study biodiversity from space.

18.2  Measuring Biodiversity from Space

18.2.1 � Mapping Vegetation Types 
and Invasive Species

There is an increasing desire to identify and map vegetation 
types associated with biodiversity and native and nonnative 
species within landscapes from high-resolution spaceborne sen-
sors that have been launched in recent years (Turner et al. 2003; 
Goodwin et  al. 2005; He et  al. 2011). High-spatial-resolution 
imagery has been used to accurately identify some plant species 
and plant assemblages (Martin et al. 1998; Haara and Haarala 
2002; Carleer and Wolff 2004; Foody et al. 2005). Much prog-
ress has been made in identifying single species of plants, such 
as nonnative invasive species, that are of particular interest in 
natural resource management (He et  al. 2011). QuickBird was 
used to map the invasive nonnative giant reed (Arundo donax) 
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Figure 18.1  Total species richness, rare species richness, and threatened species richness for birds, mammals, and amphibians at a global spa-
tial scale. (From Orme, C.D.L. et al., Nature, 436, 1016, 2005.)
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in southern Texas with 86%–100% accuracy (Everitt et  al. 
2006). The spaceborne hyperspectral sensor Hyperion has 
shown potential for identifying the occurrence of select inva-
sive species in southeastern United States like Chinese tallow 
(Triadica sebifera) to within 78% accuracy due to distinct leaf 
phenology (Ramsey et al. 2005). There has also been significant 
progress in identifying tree canopies within forest ecosystems. 
For instance, high-resolution data have been used to identify 
nonnative invasive species (Fuller 2005; He et al. 2011), native 
trees (Goodenough et al. 2002; Christian and Krishnayya 2009; 
Figure 18.2), and mangrove species and mangrove ecosystems at 
a global spatial scale (Dahdouh-Guebas et al. 2004; Wang et al. 
2004; Giri et al. 2011; Heumann 2011).

18.2.2  Mapping Individual Trees

High-spatial-resolution imagery (GeoEye, QuickBird, IKONOS, 
WorldView) from space has also allowed researchers to address 
questions that previously were impractical to study from space 
or on the ground. It is now possible, for instance, for studies to 
be undertaken at the scale of individual tree crowns over large 
areas (Hurtt et al. 2003; Clark et al., 2004a). Such data have been 
used to quantify tree mortality in a tropical rainforest (Clark 
et  al. 2004b) and so may contribute usefully to contentious 
debates on the issue. Moreover, it may sometimes be possible to 
achieve high levels of accuracy for some species from satellite 
as well as airborne sensor data (Carleer and Wolff 2004). There 
is great potential to manually or digitally identify tree species 
and canopy attributes from high-resolution imagery. High-
resolution imagery is collected primarily from commercial 

satellites that are still expensive to acquire ($1000–$4000 for 
a 10 km2). While the increased pricing of such imagery has put 
it out of the reach of many ecologists, especially those located 
in developing countries where the need is perhaps greatest, 
such cost has decreased with the competition and an increasing 
number of archived images in the visible spectrum are readily 
available on Google Earth. Indeed, it is possible to identify spe-
cies from moderate to high degree of accuracies within many 
landscapes and forests already, and the accuracies will only 
increase with increased resolutions (spatial, spectral, and tem-
poral) in the near future.

18.2.3  Mapping Animals from Space

The identification of animals from space is currently difficult 
because most of the Earth’s species are smaller than the largest 
pixel of current public access satellites (0.5 m) and revisit times 
are too infrequent for meaningful comparisons. However, high-
resolution spaceborne imagery has been used to map large spe-
cies. Indeed, some groups like whales can be monitored from 
space with high-resolution WorldView 2 imagery at a 50 cm pixel 
resolution in the panchromatic (Fretwell et al. 2014; Figure 18.3), 
and spaceborne remote sensing has been used to survey and 
discover large colonies of animals like penguin colonies in 
Antarctica (Schwaller et al. 2013). However, most remote-sensing 
studies on monitoring fauna have focused on mapping vegetation 
types or habitat associated with endangered fauna. For instance, 
giant panda habitat has been monitored over time in China (Jian 
et al. 2011). Potential great progress in monitoring animals from 
remote sensing will take off when unmanned aerial vehicles 
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Figure 18.2  Classification of tree composition in temperate forests using Landsat ETM+, Hyperion (EO-1), and ALI. (From Goodenough, D.G. 
et al., Proc. Int. Geosci. Remote Sens. Symp., 2, 882, 2002.)
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492 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

(UAVs) start gathering data from a wide array of sensors. UAVs, 
technology wise, are already quite mature and have been used to 
monitor elephants in Africa (Schiffman 2014). However, UAVs 
have several limitations, especially with regard to covering large 
areas, potential costs, and security concerns.

18.2.4  Mapping Species Assemblages

The production of thematic maps of species assemblages is one 
of the most common applications of spaceborne remote sens-
ing (Foody 2002). In particular, plant species assemblages 
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Figure 18.3  Selection of 20 comparable false color image chips (bands 1-8-5) from WorldView 2 imagery of whales found along the coast of 
Argentina. (From Fretwell, P.T. et al., PLoS One, 9(2), e88655, 2014.)
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or ecosystem distributional patterns within the landscapes, 
regions, and continents have important applications to natu-
ral resource management. In countries with strong and well-
funded institutions dedicated to natural resource management, 
such as the U.S. National Park Service, there is a need to update 
and standardize landscape dynamic protocols related to veg-
etation, land cover, and unique resource management needs 
by region using remote sensing (Fancy et  al. 2009). Natural 
resource agencies in the tropics, where some of the largest 
decreed protected areas exist (Brooks et al. 2006), do not always 
have access to the remote-sensing technology or trained indi-
viduals to develop and maintain a landscape dynamics change 
database (Laurance et  al. 2012). Numerous large-area, multi-
image-based, multiple-sensor land cover mapping programs 
exist that have resulted in robust and repeatable large-area land 
cover classifications (Franklin and Wulder 2002; Durio et  al. 
2007; Gillespie et al. 2008). Franklin and Wulder (2002) under-
took an excellent review of large-scale land cover classifications, 
such as GlobCover, CORINE, and GAP, which generally seek to 
attain 85% accuracy across all mapping classes using a variety 
of passive sensors (TM, SPOT, AVHRR, MODIS, ENVI) and to 
a lesser extent active sensors (RADARSAT, JERS). These land 
cover classifications provide measurements on the distribution 
of species assemblages and ecosystems. Recently, there have 
been a number of advances in methods that can improve the 
resolution and accuracy of land cover classification. Increased 
integration of radar data may significantly improve classifica-
tion accuracy (Saatchi et al. 2001; Boyd and Danson 2005; Li and 
Chen 2005; Huang et al. 2010).

18.3  Modeling Biodiversity from Space

There are a number of spaceborne metrics that are associated 
with species and ecosystem distributions that can be used to cre-
ate probability maps of the distribution of biodiversity (Rocchini 
et al. 2013) (Table 18.1).

18.3.1  Species Distribution Modeling

Species distribution modeling, also known as ecological niche 
modeling or spatial modeling, has been growing at a striking rate 
in the last 20 years (Guisan and Thuiller 2005), providing both 
estimates of species distributions over space and estimates of bias 
in the models (Swanson et  al. 2012). Species distribution mod-
els are based on the presence, absence, or abundance data from 
museum vouchers or field surveys and environmental predictors 
to create probability models of species distributions within land-
scapes, regions, and continents (Guisan and Thuiller 2005). Most 
environmental predictors used in these species distribution mod-
els have been based on geographic information system (GIS) data 
over different scales (Figure 18.4). There has been an increase in 
the incorporation of spaceborne remote-sensing data on climate, 
topography, and land cover that has a great potential to improve 
the models of species over different spatial scales (Turner et al. 
2003). Remote-sensing data on precipitation at 0.1° from NOAA 

satellites (Pearson et  al. 2007) and 1000 m from the Tropical 
Rainfall Measuring Mission (Saatchi et al. 2008) have been used 
in conjunction with ground-based measurements. This may be 
superior to traditional GIS estimates of precipitation based on 
interpolation among widely dispersed climate stations in isolated 
regions. Topography data have also been a fundamental compo-
nent of species distribution models (Pearson and Dawson 2003; 
Elith et  al. 2006). Topography data are usually collected from 
digitized elevation maps, but 90 and 30 m elevation and topog-
raphy data are available at a near global extent due to the Shuttle 
Radar Topography Mission (SRTM) and ASTER. These data are 
increasingly being used in species distribution models (Chaves 
et al. 2007; Buermann et al. 2008; Saatchi et al. 2008) (Figure 18.5).

18.3.2  Land Cover and Diversity

Land cover classifications collected from spaceborne sensors 
have long been used to link species distributions with vegeta-
tion types and associated habitat preference (Nagendra 2001; 
Gottschalk et al. 2005; Leyequien et al. 2007). The greatest accu-
racy was found with nonmobile species such as plants (Pearson 
et al. 2004). However, vegetation maps as a surrogate for habitat 
preference have provided insights into the distributions of birds 

Table 18.1  Remote-Sensing Variables Used for Modeling 
Biodiversity from Space

Remote-Sensing 
Variable 

Satellite 
(Sensor) 

Pixel 
Size (m) Reference 

Climate
Rainfall TRMM 2, 775 Saatchi et al. (2008)
Rainfall GPM 250–500 http://pmm.nasa.gov/

GPM
Temperature MODIS 1000 Albright et al. (2011)

Topography
Elevation and 

topography
SRTM 30, 90 Elith et al. (2006)

Elevation and 
topography

ASTER 30 http://asterweb.jpl.nasa.
gov/gdem.asp

Land cover
Vegetation 

type
Landsat TM, 

MSS
30, 80 Gottschalk et al. (2005)

NDVI SPOT, Landsat 20, 30 Leyequien et al. (2007)
LAI AVHRR, 

MODIS
1000 Saatchi et al. (2008)

Heterogeneity SPOT, Landsat 20, 30 Rocchini et al. (2010)
Vegetation 

structure
QSCAT 1000 Saatchi et al. (2008)

Forest cover/
change

Landsat, 
MODIS

30, 1000 Hansen et al. (2002, 
2013)

Old growth GLAS 1000 Saatchi et al. (2011)
Fire MODIS 1000 http://modis-fire.umd.

edu/
Burned areas MODIS 500 http://modis-fire.umd.

edu/
Energy use DMSP 1100 http://ngdc.noaa.gov/

eog/
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(Peterson et al. 2006), herpetofauna (Raxworthy et al. 2003), and 
insects (Luoto et al. 2002a).

There have been a number of advances in modeling or pre-
dicting species richness, alpha diversity, and beta diversity using 
multisensors that examine relationships over different temporal 
and spatial scales with increasingly sophisticated methods to 
improve accuracy. The simplest measure of biodiversity is spe-
cies richness or the number of species per unit area (i.e., trees per 
hectare, reptiles per km2). The term diversity is more complex 
and technically refers to a combination of species richness and 
weighted abundance or evenness data and is generally quantified 
as an index (Simpson index, Shannon index, or Fisher’s alpha). 
These indices are used to define alpha diversity, which is the spe-
cies diversity in one area, community, or ecosystem. Beta diversity 
refers to the amount of turnover in species composition from one 
site to another or identifies taxa unique to each area, community, 
or ecosystem. Beta diversity is more closely related to changes in 
species similarity or turnover with space. Typically, studies have 
focused on assessments of species richness with limited attention 
to other aspects such as species abundance and composition that 
are difficult to detect from spaceborne sensors (Foody and Cutler 

2003; Schmidtlein and Sassin 2004). Information on species rich-
ness or diversity may be extracted from remotely sensed data in 
a variety of ways such as land cover classifications, measures of 
productivity, and measures of heterogeneity (Nagendra 2001; 
Kerr and Ostrovsky 2003; Leyequien et al. 2007).

Many studies have related species richness or diversity to 
information on the land cover mosaic derived from satellite 
imagery (Nagendra and Gadgil 1999a,b; Gould 2000; Griffiths 
et al. 2000; Kerr et al. 2001; Oindo et al. 2003; Gottschalk et al. 
2005; Leyequien et al. 2007; Gillespie et al. 2008). Through rela-
tionships with land cover and habitat suitability, it is possible to 
assess the diversity of species and assess impacts associated with 
changes in the habitat mosaic such as fragmentation based on 
landscape metrics (i.e., area and connectivity) (Kerr et al. 2001; 
Luoto et al. 2002b, 2004; Cohen and Goward 2004; Fuller et al. 
2007; Lassau and Hochuli 2007).

18.3.3  Spectral Indices and Diversity

Most attention has focused on the use of the popular normal-
ized difference vegetation index (NDVI) from passive sensors 
because it is easy to calculate using the red and near-infrared 
bands common to almost all passive spaceborne sensors (Oindo 
and Skidmore 2002; Seto et al. 2004; Gillespie 2005; Lassau and 
Hochuli 2007; Pettorelli 2013). NDVI has been associated with 
primary productivity and has been hypothesized to quantify spe-
cies richness and diversity based on the species–energy theory 
(Currie 1991; Evans et al. 2005). There have been an increasing 
number of studies and reviews that have found significant asso-
ciations between NDVI and diversity (Nagendra 2001; Kerr and 
Ostrovsky 2003; Leyequien et al. 2007). For plants, many stud-
ies have reported significant positive correlations between plant 
species richness or diversity from plot or region data and NDVI 
in both temperate (Fairbanks and McGwire 2004; Levin et  al. 
2007; Rocchini 2007b) and tropical ecosystems (Bawa et al. 2002; 
Feeley et al. 2005; Gillespie 2005; Cayuela et al. 2006). NDVI can 
explain between 30% and 87% of the variation in species rich-
ness or diversity within a vegetation type, landscape, or region. 
Results for terrestrial fauna are more complicated given the 
mobility of faunal species and because NDVI does not directly 
quantify animal species but species habitats (Leyequien et  al. 
2007). Similar relationships between NDVI and diversity have 
been noted for animal taxa such as birds and butterflies within 
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Figure 18.5  Tree alpha diversity in South America from Maxent pre-
dictions made from remote sensing data and inventory plots (n = 633). 
(From Saatchi, S. et al., Remote Sens. Environ., 112(5), 2000, 2008.)
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landscapes (Seto et  al. 2004; Goetz et  al. 2007) and regions 
(Hulbert and Haskell 2003; Foody 2004b; Ding et al. 2006; Bino 
et  al. 2008). Over the last decade, the NDVI has also proven 
extremely useful in predicting guild distributions, abundance, 
and life history traits in space and time (Hurlbert and Haskell 
2003; Pettorelli et al. 2011). However, NDVI does not always have 
a positive relationship with animal species richness and there is 
no consensus as to which scale results in the greatest accuracy.

Heterogeneity in land cover types, spectral indices, and spec-
tral variability derived from satellite imagery has also been 
correlated with species richness (Gould 2000; Rocchini 2007b; 
Rocchini et al. 2010). This is largely based on the hypothesis that 
heterogeneity in land cover, spectral indices, or spectral variabil-
ity within an area or landscape is an indicator of habitat hetero-
geneity, which allows more species to coexist and hence greater 
species richness (Simpson 1949; Palmer et al. 2002; Carlson et al. 
2007; Rocchini et  al. 2007, 2010). The variation in land cover 
types within an area has been associated with species richness 
for a number of taxa (Gould 2000; Kerr et al. 2001; Leyequien 
et  al. 2007). Variation in spectral indices has been shown to 
be positively associated with species richness and diversity for 
a number of taxa in different regions (Gould 2000; Oindo and 
Skidmore 2002; Fairbanks and McGwire 2004; Levin et al. 2007).

18.3.4  Multiple Sensors and Diversity

Recently, there has been a move toward the use of multiple 
remote-sensing sensors over different time periods and increas-
ingly sophisticated approaches to modeling diversity over differ-
ent spatial scales. There are an increasing number of diversity 
studies that are undertaken using multiple passive sensors (i.e., 
Landsat, ASTER, QuickBird) (Levin et al. 2007; Rocchini 2007b) 
or examine relationships with diversity over different time peri-
ods (Fairbanks and McGwire 2004; Foody 2005; Levin et  al. 
2007; Leyequien et al. 2007). These studies are important in the 
assessment of individual sensors and the effects of seasonality. 
There has also been an increasing interest in the combination 
of passive and active sensors to improve species diversity mod-
els (Gillespie et al. 2008). Active spaceborne sensors can provide 
data on the vegetation structure that has been associated with 
diversity, especially avian diversity, across a number of spatial 
scales (Imhoff et al. 1997, Bergen et al. 2007; Goetz et al. 2007, 
Leyequien et al. 2007). Hyperspectral sensors can collect highly 
detailed information on spectral signatures of species, which has 
allowed for high-resolution mapping of canopy diversity (Carlson 
et al. 2007; Asner 2008; Christian and Krishnayya 2009).

18.4  Monitoring Biodiversity from Space

It is well established that biodiversity is greatly threatened by 
human activity (Myers et al. 2000; Gaston 2005). In particular, 
land cover changes such as those linked to human-induced habi-
tat loss, fragmentation, and degradation represent the largest cur-
rent threat to biodiversity (Chapin et al. 2000; Menon et al. 2001; 
Gaston 2005; Gillespie et al. 2008). Remote sensing can be used 

to derive metrics on fragmentation, often in the form of land-
scape pattern and connectivity indices calculated from a the-
matic map produced with an image classification analysis (Foody 
2001; Gillespie 2005; Lung and Schaab 2006; Kupfer 2012). These 
metrics can be monitored over time (Table 18.2). Remote sens-
ing may be used to monitor a habitat of interest with a one-class 
classification approach adopted to focus effort and resources on 
the class of interest (Foody et al. 2006; Sanchez-Hernandez et al. 
2007). This can also reduce problems associated with not satisfy-
ing the assumptions of an exhaustively defined set of classes that 
is commonly made in a standard classification analysis (Sanchez-
Azofelfa et  al. 2003; Foody 2004a). For instance, Hansen et  al. 
(2013) mapped the spatial extent of all forests at a global spatial 
scale to 30 m pixel resolution using Landsat imagery (Figure 18.6).

Table 18.2  Spaceborne Sensors Commonly Used in Monitoring 
Biodiversity

Source (Sensor) Monitoring Use Strengths Limitations 

High resolution
Google 

Earth
Validation, 

communication
High resolution, 

free
Temporal 

gaps, no IR
QuickBird, 

IKONOS
Area, 

degradation
High resolution Cost, coverage

WorldView 3 Area, degradation Multiband Cost, coverage

Moderate resolution
Landsat 

(TM, 
ETM+)

Land cover, 
fragmentation

Long time 
series, free

Clouds

Landsat 
(OLI, TIRS)

Temperature, 
water quality

High resolution Since 2013

EOS 
(ASTER)

Land cover, 
fragmentation

High spectral 
resolution

On-demand 
system

SPOT Land cover, 
fragmentation

Spectral and 
spatial 
resolution

Cost

EOS 
(Hyperion)

Ecosystem 
chemistry

Spectral 
resolution

Signal to noise 
ratio

Low resolution
NOAA 

(AVHRR)
Vegetation 

indices, thermal
Time series 

from 1980s
1.1 km pixels

EOS 
(MODIS)

Vegetation indices, 
thermal, fire

Time series 
from 2001

Underutilized

ESA 
(MERIS)

Vegetation 
indices, land 
cover

Highest global 
land cover map

Not for change 
detection

Active sensors
SRTM Elevation Bench of canopy 

height 2001
One off

QSCAT Canopy structure 
and moisture

Canopy 
moisture
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18.4.1  Remote Sensing of Protected Areas

Protected areas are one of the best ways to conserve biodiversity. 
Remote sensing has had a major role to play in helping to monitor 
changes in and around protected areas (Gross et al. 2013; Secades 
et al. 2014). Remote sensing offers a repeatable, systematic, and 
spatially exhaustive source of information on key variables such 
as productivity, disturbance, and land cover that impact biodi-
versity (Duro et al. 2007; Wright et al. 2007; Gillespie et al. 2008). 
The provision of data for monitoring large areas is especially 
attractive in remote and often inaccessible regions (Cayuela et al. 
2006; Conchedda et al. 2011). Remote sensing is also often a cost-
effective data source (Luoto et al. 2004) and enables rapid bio-
diversity assessments (Foody 2003; Lassau and Hochuli 2007).

The spatial coverage provided by remote sensing offers the 
potential to monitor the effectiveness of protected areas, allow-
ing comparisons of changes inside and outside of reserves to be 
evaluated (Southworth et al. 2006; Wright et al. 2007). For exam-
ple, even relatively severely logged forest outside of a reserve may 
represent a significant resource for biodiversity conservation 
(Cannon et al. 1998; Tang et al. 2010; Figure 18.7). Thus, actions 
inside and outside of the protected areas are important, sup-
porting the view that biodiversity conservation activities should 
be undertaken at the level or scale of the landscape (Nagendra 
et al. 2013). This activity may benefit from remote sensing as its 
synoptic overview provides information on the entire landscape. 
Indeed, Crabtree et al. (2009) provide a modeling and spatiotem-
poral framework for monitoring environmental change using 
net primary productivity as an ecosystem health indicator.

Remote sensing may be a useful component to general biodiver-
sity assessments, especially in providing data at appropriate spatial 

and temporal scales. For example, the biodiversity intactness index 
was proposed recently as a general indicator of the overall state of 
biodiversity to aid monitoring and decision-making (Scholes and 
Biggs 2005). Although there are concerns for its use, notably with 
the impacts of land degradation, remote sensing may be an impor-
tant source of data for its derivation (Rouget et al. 2006).

18.5 � Spaceborne Sensors and Biodiversity

There has been a dramatic increase in Earth observation satellites 
and sensors over the last decade, which have been used to mea-
sure, model, and monitor biodiversity from space (Table 18.3).

18.5.1  Spectral Sensors and Biodiversity

Passive sensors, which record reflected (visible and infrared 
wavelengths) and emitted energy (thermal wavelengths), are 
most frequently used in biodiversity studies. The highest-spatial-
resolution data come from commercial satellites, such as GeoEye, 
WorldView, QuickBird, and IKONOS series, which contain vis-
ible and infrared bands used in species and species assemblage 
mapping. The NASA Landsat series is the most widely used sen-
sor for biodiversity studies due to the ease in which the data can 
be obtained, long time series, and low cost (Leimgruber et  al. 
2005). The Landsat series has been used extensively in land 
cover classifications, diversity models, and conservation stud-
ies. The recently launched Landsat 8 satellite will be useful for 
continuing this time series and biodiversity-related research. 
Other satellites and sensors such as IRS, SPOT, and ASTER are 
also used; however, on-demand systems or expensive imagery 

Forest loss 2000–2012
Forest gain 2000–2012
Both loss and gain
Forest extent

N

Figure 18.6  Forest cover and forest cover change from 2000 to 2012 in Banda Aceh, Indonesia. (From Hansen, M.C. et al., Science, 342, 850, 2013.)
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general results in research that cannot be scaled up to all regions 
of the globe. The MODIS sensors on EOS satellites have provided 
extremely useful data for sites, landscape, regional, continental, 
and global studies of land cover classification and diversity mod-
els. These sensors also provide data on temperature, cloud cover, 
and fire that have been incorporated into biodiversity studies.

18.5.2  Radar Sensors and Biodiversity

Radar is the most common active spaceborne sensor used in bio-
diversity studies. Radar sensors send and receive a microwave 
pulse in different wavelengths (i.e., X-, C-, L-bands) to create an 
image based on radar backscatter, or interferometric radar can 
be used to provide high-resolution data on elevation and topog-
raphy. Unlike passive sensors, radar can penetrate cloud cover, 
providing imagery both day and night regardless of weather 
conditions. The SRTM provides 30–90 m resolution data on 
elevation and topography that have been used in species and 
diversity models. Recent 30 m resolution elevation and topog-
raphy models have also been created using ASTER’s multiangle 
capability. Radar backscatter from QSCAT and RADARSAT-1 
has been used in land cover classification and diversity models.

18.5.3  Lidar Sensors and Biodiversity

Data from the Geoscience Laser Altimeter System (GLAS) 
aboard the Ice Cloud and land Elevation Satellite (ICESat) offer 
an unprecedented opportunity for studying biodiversity. The 
GLAS was the sole instrument on ICESat that had three lasers 
that emit infrared and visible laser pulses at 1064 and 532 nm 
wavelengths. The satellite was a profiling sensor with a polar 
orbit and the tracks have large spatial gaps at low latitudes. 
GLAS lidar has been used to measure forest structure and ter-
rain in temperate and tropical forests (Pang et  al. 2008; Sun 
et  al. 2008; Saatchi et  al. 2011). Although GLAS is no longer 
producing new data, the next generation of spaceborne lidar 
(ICESat 2) should improve the spatial resolution and point 
density necessary to study fine-scale processes associated with 
biodiversity.

18.5.4 I deal Biodiversity Satellite and Sensor

The ideal biodiversity satellite should include both a high-
resolution spectral sensor and a high-resolution lidar sensor. 
Ideally, 0.5 m pixel resolution is needed for the spectral sensors 
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Figure 18.7  Landsat landcover and time series of landcover change within and around a protected area in China and North Korea. (From Tang, 
L. et al., Biol. Conserv., 143, 1295, 2010.)
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and it should capture the visible, infrared, and thermal bands. 
The actual wavelengths should correspond to those of Landsat 8 
with two bands in the blue wavelength to study water, infrared 
bands similar to WorldView 3 to study plant species and vegeta-
tion, and two bands in the thermal to identify large animals and 
disturbance like fire. The lidar sensors should have a one meter 
footprint because this clearly improved estimates of vegetation 
height and subcanopy topography, both of which are important 
for modeling and monitoring vegetation structure, species dis-
tribution models, and estimates of species richness and biomass. 
Combining full coverage of the recently launched WorldView 
3 and soon to be launched ICESat 2 may come closest to the 
ideal combination of satellites and sensors needed to monitor 
biodiversity.

18.6 C onclusions

Spaceborne imagery has made significant contributions to mea-
suring, modeling, and monitoring biodiversity patterns and 
processes from space. Future research should focus on incorpo-
rating recent and new spaceborne sensors; more extensive inte-
gration of available field, GIS, and passive and active imagery 
that can be used across spatial scales; and the collection and 
dissemination of high-quality field data (Gillespie et  al. 2008; 
Morueta-Holme et  al. 2013). The recent developments in sat-
ellite and sensor technology will further improve our abilities 
to measure and model patterns of biodiversity from space. The 
increase in high-resolution spectral satellites will make it pos-
sible to acquire data at enhanced spatial (0.5 m), spectral (visible, 
infrared, thermal), and radiometric resolutions (11 bit) that can 
be used to map individual species. Indeed, Google Earth has led 
the way by providing high-resolution airborne and spaceborne 
imagery (Loarie et al. 2008). Current radar satellites may be ideal 
for studying species distributions and diversity patterns, espe-
cially in regions with high cloud cover like the tropics. There are 
multiple satellites (SAR-Lupe, COSMO-SkyMed, TerraSAR-X) 
that provide elevation and radar backscatter data to 1 m pixel 
resolution (Gillespie et  al. 2007). This will provide valuable 
multidimensional datasets (vegetation structure, biomass, land 
cover classifications) that should result in a richer characteriza-
tion of the environment than conventional passive image data-
sets (Gillespie et al. 2008). Remote-sensing scientists interested 
in biodiversity have taken and can take advantage of the differ-
ent satellite datasets that integrate climate, topography, spectral, 
lidar, and radar data over a landscape, regional, continental, 
and global spatial scale. This has increased our understanding 
of biodiversity, and remote sensing is a useful tool for measur-
ing, modeling, and monitoring biodiversity in near real time and 
across multispatial scales.
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Acronyms and Definitions

ALOS	 Advanced Land Observing Satellite 
AVHRR	 Advanced very high resolution radiometer
BIO_SOS	� Biodiversity multisource monitoring system 

[project acronym]
BS	 Biodiversity surrogates
CBD	 Convention on biological diversity
CHRIS	� Compact High Resolution Imaging Spectrometer
CoP	 Conference of the parties
DG	 Directorate-General
DN	 Digital number
DPSIR	� Driving forces, pressure, state, impact and 

response
EC	 European Commission
EEA	 European Environmental Agency
EMS	 Electromagnetic spectrum

EO	 Earth observation
EODHaM	 Earth observation data for habitat monitoring
ES	 Ecosystem services
ESA	 European Space Agency
ETC	 European Topic Centre
EU	 European Union
EUNIS	 European Nature Information System
FAO	 Food and Agricultural Organization
GEO	 Group on Earth Observations
GEOSS	 GEO system of systems
GHC	 General habitat categories
GMES	� Global monitoring for environment and security
HR	 High resolution
IPBES	� Intergovernmental Panel on Biodiversity and 

Ecosystem Services
IR	 Infrared
LC	 Land cover
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LCCS	 Land Cover Classification System
LiDAR	 Light detection and ranging
MAES	� Mapping and assessment of ecosystems and 

their services
MERIS	 Medium resolution imaging spectrometer
MIR	 Mid-infrared 
MODIS	 Moderate resolution imaging spectroradiometer
MS.MONINA	� Multiscale service for monitoring NATURA 

2000 habitats of European community interest 
[project acronym]

NIR	 Near-infrared
nm	 Nanometer
NOAA	� National Oceanic and Atmospheric 

Administration 
OBIA	 Object-based image analysis
PALSAR	� Phased Array type L-band Synthetic Aperture 

Radar
QA4EO	� Quality assurance framework for Earth 

observation
QI	 Quality indices
R&D	 Research and development
Radar	 Radio detection and ranging
SAR	 Synthetic aperture radar
SBA	 Societal benefit area
SME	 Small and medium enterprises
SVM	 Support vector machine
SWIR	 Shortwave infrared
UAV	 Unmanned aerial vehicle
UGV	 Unmanned ground vehicles
UN	 United Nations
VHR(I)	 Very high resolution (image)
VIS	 Visible light

19.1 �I ntroduction: The 
Policy Framework

19.1.1  Monitoring Global Change

“Global change”—a short formula for a multitude of anticipated 
shifts in societal and environmental domains due to global 
drivers—calls for spatial monitoring and modeling techniques 
to better understand the implications and potential dynamics 
of such changes (Lang et  al. 2013a). International initiatives, 
programs, and visions envisage unified systems based on qual-
ity standards for data, products, and services to establish opti-
mized observation capacity to globally monitor land surfaces 
and oceans, climate, and atmosphere, as well as social systems 
such as public health, human security, and energy consump-
tion. The global initiative Group on Earth Observations (GEO*) 
distinguishes nine societal benefit areas of civilian observations 
systems, among which biodiversity and ecosystems are two. 
The term Earth observation (EO) comprises all observation 

*	 GEO Secretariat, GEO-Group on Earth observations, www.earthobserva-
tions.org/.

systems that use sensor technologies to capture various kinds 
of physical parameters. This includes space- or airborne mea-
surement devices (sensors mounted on satellites, aircrafts, or 
unmanned aerial vehicles), as well as mobile ground devices 
(e.g., unmanned ground vehicles), and fixed measurement 
instruments (e.g., ground sensors, buoys, terrestrial laser scan-
ners). All these observation systems taken together form a GEO 
System of Systems, the GEOSS, which is being implemented 
over a period of 2005 until 2015 (GEO 2005). More specifically, 
the GEO biodiversity observation network,† for example, evalu-
ates the adequacy of existing biodiversity observation systems 
to support the Convention on Biological Diversity (CBD) 2020 
targets. A list of essential biodiversity variables (Pereira et  al. 
2013) has been established that should be monitored worldwide 
in order to follow up the state of biodiversity adequately. Many of 
these global indicators are relying on remotely sensed imagery.

This GEOSS implementation plan adheres to certain quality 
criteria, to be assessed by quality indices with respect to data 
provision, data preprocessing, and the information supplied. 
According to the quality assurance framework for Earth obser-
vation (QA4EO), it needs to be ensured that GEOSS is “imple-
mented in a harmonious and consistent manner throughout all 
EO communities to the benefit of all stakeholders” (GEO 2010). 
The QA4EO highlights the role of the user, who should be the 
“driver for any specific quality requirements” and assess “if any 
supplied information […] is fit for purpose.”

In the context of this chapter, we mainly refer to satellite-
borne EO techniques, whose general assets as compared to con-
ventional terrestrial field mapping are summarized in Table 19.1.

The growing need for the civilian use of satellite remote sens-
ing and other EO technologies has born the European program 
Copernicus,‡ formerly known as global monitoring for the envi-
ronment and security (GMES), as a conjoint initiative between 
the European Commission (EC) and the European Space Agency 
(ESA). Copernicus is considered the European contribution 
to GEO fostering the provision of geospatial information and 
monitoring services in six principal domains, that is, land, water, 
atmosphere, climate change, emergency response, and human 
security. It builds on European space infrastructure and the tech-
nological capability to turn data into information services. The 
new Sentinel family of EO satellites, developed by ESA, will pro-
vide global coverage with radar and optical data ranging from 
10 to 20 m and 60 m “spatial resolution” (in the visible [VIS] 
and near-infrared [NIR] to shortwave infrared [SWIR] spectral 
range). Additional data from satellites of the so-called contribut-
ing missions will increase both the variety of available data types 
and the temporal coverage with remotely sensed data. But next to 
the provision of frequently updated satellite data, we also require 
the adequate means for an intelligent usage of such data and an 
efficient analysis of them (Lang 2008). The Copernicus initiative 

†	 Group on Earth Observation (various contributors), GEO BON - GEO 
Biodiversity Observation Network, http://www.earthobservations.org/
geobon.shtml.

‡	 FDC/SpaceTec Partners, Copernicus, www.copernicus.eu/
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has opened new fields of activity to industry (including small and 
medium enterprises) and research organizations. The financing 
of so-called core services and GMES initial operations as funda-
mental information services in all Copernicus domains has led 
(and will continue to do so) to the stimulation of downstream 
services in new emerging areas. A key prerequisite for the cre-
ation of versatile application domains and related business cases 
is the provision of the EO data at no cost. The Sentinel program 
has been designed in such a way that satellite data will be distrib-
uted for free and with no limitation for whatsoever (civilian) use.

Biodiversity and habitat monitoring make up such an emerg-
ing area. Biodiversity, the variety of life forms, has become a key 
word for shaping and bundling political will. And biodiversity, 
if thought of as the information content of life, requires adequate 
technology to be observable. Satellite EO has started to become a 
ubiquitous means, to observe the success of policy implementa-
tion (Lang et al. 2013a).

The two collaborative projects MS.MONINA* (Multiscale 
Service for Monitoring Natura 2000 Habitats of Community 
Interest) and BIO_SOS† (Biodiversity Multi-Source Monitoring 

*	 University of Salzburg, Department for Geoinformatics Z_GIS 2013,  
Multi-scale service for monitoring Natura 2000 habitats of European 
Community Interest, www.ms-monina.eu.

†	 ISSIA CNR 2013, BIO_SOS Homepage, www.biosos.eu.

System: from Space to Species), both started 2010, have explored 
EO data combined with data from ground surveys (Blonda et al. 
2012b, Lang et  al. 2014). The idea is to set up EO-based (pre-) 
operational yet economically priced solutions to provide timely 
information on pressures and impacts, to establish spatial priority 
for conservation, and to evaluate its effectiveness. MS.MONINA 
developed advanced data-driven EO-based analysis and model-
ing tools, specifically tailored to user requirements on all levels 
of policy implementation. Three (sub-)services were designed, 
the so-called European Union (EU), state, and site level service, 
addressing agencies on EU level (e.g., European Topic Centre 
[ETC] Biodiversity, European Environmental Agency [EEA], 
and Directorate-General for the environment [DG Env]) provid-
ing independent information, national and federal agencies in 
reporting on the entire territory by utilizing an information layer 
concept, and local management authorities by advanced map-
ping methods for status assessment and change maps. BIO_SOS 
provides cost-effective knowledge-driven EO-based analysis and 
modeling tools for meeting regulation obligations and for the 
definition (and effectiveness assessment) of related management 
strategies and actions. The project developed a preoperational 
open-source processing system that combines multiseasonal EO 
satellite data and in situ measurements on the basis of prior expert 
rules to map land cover (LC) and habitats, their changes, and 
modifications over time and quantify anthropogenic pressures. 
Expert rules include prior spectral, spatial, and temporal features 
characterizing LC classes and habitat classes. The system is cost-
effective for mapping large or not accessible areas as in-field ref-
erence data are not required for training the system but only for 
validating the output products (e.g., LC and habitat maps).

In this chapter, we distillate the projects’ technical outcomes and 
scientific achievements as reported to the EC and also described in 
a special issue on Earth observation for habitat mapping and biodi-
versity monitoring, edited by S. Lang and others in 2014. We high-
light the great potential of EO data and the achievements of recent 
technologies but also their challenges and limitations, in support 
of biodiversity and ecosystem monitoring. In Europe, nature con-
servation rests upon a strong yet ambitious policy framework with 
legally binding directives. Also in other parts of the world, the 
environmental legislation follows ambitious goals that often have 
to compete with other societal premises such as growth, produc-
tion, and expansion. Thus, geospatial information products are 
required at all levels of implementation. With recent advances in 
EO data availability and the forthcoming of capable analysis tools, 
we enter a new dimension of satellite-based information services. 
Recent achievements are showcased and challenges are discussed, 
using spearheading examples from inside and outside Europe.

19.1.2  Biodiversity and Related Policies

Biodiversity—our “natural capital and life insurance” (European 
Commission 2011)—is on decline (Isbell 2010, Trochet and 
Schmeller 2013). This is expected to directly influence the integ-
rity of ecosystem functioning and stability, and thus, ultimately 
to human well-being (Naeem et al. 2009). In 1992, the United 

Table 19.1  How General Strengths of Satellite EO-Based Mapping 
Translates to Habitat Delineation and Characterization

Wide area coverage •	 Depending on the spatial resolution, area extents 
per scene range from a few to several hundreds of 
square kilometers.

•	 Within the instantaneous view field of a shot, 
similar atmospheric and illumination conditions 
apply, so that image statistics are homogenous 
over a scene and variations within the image can 
be, by and large, related to changing habitat types 
or conditions.

Multiscale option •	 The technical trade-off between spatial resolution 
(grain) and area covered (extent) allows for 
purpose-driven usage.

•	 Habitat mapping implies a multiscale option, 
assuming fine-scaled observations are required 
for limited areas (“hot spot”) only, and otherwise 
national or continental investigations cope with 
lesser detail.

From a distance, no 
direct contact

•	 A bird’s eye view and the lack of physical contact 
with the object of interest takes the complex 
structure of natural habitats, terrain 
inaccessibility, or disturbance of protected areas.

Multitemporal/
multiseasonal 
coverage

•	 A (semi-) permanent installation of space 
infrastructure enables a repetitive, standardized 
observation pattern within a given timeframe, 
whether over several years or seasons.

•	 Repetitive observation under standardized 
conditions is a crucial prerequisite for monitoring 
activities prescribed in national and international 
environmental policies.
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Nations joined forces in the CBD, to halt or at least lower the 
accelerated loss of biodiversity. Next to the challenging nature 
of this aim as a key global challenge, it remains demanding to 
monitor and evaluate its success, which requires a concerted, 
effective use of the latest technology (Lang et  al. 2014). As by 
the end of 2010 (the International Year of Biodiversity) the global 
society became aware that the ambitious goal of “halting bio-
diversity” has not been reached, the importance of observation 
techniques became even more important (see Figure 19.1).

The integrity of species and ecosystems is a global phenomenon 
with continental, regional, and ultimately local implications. This 
makes biodiversity a “glocalized” phenomenon (Lang et al. 2014). 
Geographically, this manifests in a hierarchy of scales, from biomes, 
over (systems of) ecosystems down to communities, populations, 
and species. Observing and monitoring aspects of biodiversity, at 
any level and scale, can be approximated by analyzing the composi-
tion, variability, and changes of tangible entities (i.e., habitats) and 
their spatial patterns (Bock et al. 2005). Remote-sensing information 
complements data obtained through standardized, in situ surveys 
related to very local aspects of biodiversity, by representing inte-
grated higher level characteristics such as those of ecological neigh-
borhoods (Addicot et al. 1987), defined by the upper (extent, object/
scene size) and lower (grain, spatial resolution) limits of data infor-
mation content and perception (Wiens 1989). The matching of vari-
ous resolution levels of satellite sensor families (see  Section 19.1.2) 
with the organizational levels of biological systems and organism 
perception is one aspect—the correspondence with spatial and tem-
poral domains of environmental policies another. Satellite EO has 
started to become a “democratic tool” to observe what is happening 
on the different levels of the political framework (Lang et al. 2014).

The EU responded to the recognition that the biodiversity tar-
get 2010 would not be met, despite some major successes and the 

adoption of a global strategic plan for biodiversity 2011–2020 at the 
tenth conference of the parties (CoP10) to the CBD, with the EU 
biodiversity strategy to 2020.* The EU biodiversity strategy comple-
ments the (general) EU strategy 2020, the EU’s growth strategy for 
the coming decade where six main targets are established: employ-
ment, R&D and innovation, climate change and energy, education 
and poverty, and social exclusion. The strategy’s main target is to 
halt biodiversity loss and the degradation of ecosystem services 
(ES) in the EU by 2020. To meet this target several subtargets and 
actions are framed. Projects such as MS.MONINA and BIO_SOS† 
will help to comply with the actions under target 1 “to fully imple-
ment the Birds and Habitats Directives.” Additionally, the two 
projects may support action 5 (“mapping and assessment of ecosys-
tems and their services”) and action 6a (“set priorities for ecosys-
tem restoration”) and 6b (“Development of a Green Infrastructure 
Strategy 2012”) (see Figure 19.2) of the strategy’s target 2.

19.1.3  Mapping the State of Ecosystems

A key action of the EU biodiversity strategy is the Mapping and 
Assessment of Ecosystems and their Services in Europe (Maes et al. 
2013). Action 5, which aims to improve knowledge on ecosystems 
and their services, entails EU member states (MS) to map and 
assess the state of ecosystems and their services in their national 
territory by 2014, to quantify the economic value of such services, 

*	 Our life insurance, our natural capital: an EU biodiversity strategy to 
2020—COM(2011) 244 final—http://ec.europa.eu/environment/nature/
biodiversity/comm2006/pdf/2020/1_EN_ACT_part1_v7%5B1%5D.pdf.

†	 See White Paper “Copernicus Biodiversity Monitoring Services” available 
at http://www.biosos.eu/publ/White_Paper_Biodiversity_Monitoring_
BIOSOS_MSMONINA.pdf.

Natural systems that support economies, lives and livelihoods across the planet
are at risk of rapid degradation and collapse. Natural habitats in most parts of

the world are shrinking, plant and animal populations face constant threat
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Figure 19.1  In the year 2010, the United Nations celebrated the International Year of Biodiversity. In that year, the international community 
realized that the 1992 target to “halt the loss of biodiversity” has not been reached and more restrictive and better observable measures need to be 
taken. (From SavingSpecies, Inc., Saving species, www.savingspecies.org.)
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and to promote the integration of these values into accounting 
and reporting systems at EU and national level by 2020.

The supply of ecosystem services (ES) relates to functions 
and characteristics of biodiversity aspects including genes, 
species, and habitats. Next to the collection of biological 
data such as functional traits of plants, the mapping focuses 
mainly on ecosystem structure and habitat data. Ideally, all 
ecosystem types that act as functional units in delivering ser-
vices should be mapped and evaluated separately. Due to the 
complexity of the matter, there is no common approach as 
yet to directly map the “total ecosystem service” for a certain 
area as cumulative effect of the (sub-)services. Strategies from 
vulnerability or sensitivity mapping that likewise integrate a 
larger set of indicators using the geon approach (cf. Lang et al., 
“Remotely Sensed Data Characterization, Classification, 
and Accuracies,” Chapter 22) exist and could be adapted. 
The  main challenges with mapping ES are the lack of cov-
erage and resolution in the available habitat maps, a general 
shortage in time and efforts required, and most importantly 
the need for coherence and standardization.

Thus, in the two projects which are considered downstream 
to the Copernicus land monitoring service, we followed the 
EU biodiversity 2010 baseline approach for ecosystem map-
ping. This implies that LC classes as monitored in Copernicus 
are translated into habitats and ecosystem types, in the most 
meaningful way possible to represent broadscale ecosystems, 
and combined with ecosystem-relevant information. This 
translation is based on detailed expert analysis of relationships 
between LC classes (as derived from the Food and Agricultural 
Organization [FAO] Land Cover Classification System [LCCS] 
taxonomy; see Section 19.3.1) and habitat classification systems 

(i.e., European Nature Information System [EUNIS]) to ensure 
consistency between these approaches (Tomaselli et al. 2013). 
Harmonization of the assessment activities of the EU member 
states is an important ongoing activity but must leave some 
degrees of freedom to reflect the specific ecological, social, and 
historical context of each MS. Accordingly, MS are encour-
aged to use a more detailed habitat typology if available, with 
the only restriction that the more detailed classes are linkable 
to the EU-level typology. Habitat maps produced at the local 
scales usually include detailed data on the associated biodi-
versity that enable links to ES. Mapping programs have incor-
porated qualitative descriptors of the mapped habitats under 
various names (ecosystem state, ecosystem health, ecological 
integrity, naturalness, vegetation condition, degradation level, 
etc.). Action 5 of the biodiversity strategy emphasizes the “need 
to map […] the state of ecosystems and not simply to map the 
ecosystems” (see Figures 19.3 and 19.4). In order for maps of 
habitat conservation status to become a useful input to poli-
cies at transnational level, the classification schemes used to 
evaluate the degradation levels, the habitat categories, and the 
methods used to assess them should be harmonized (Ichter 
et al. 2014).

19.1.4 E U Habitats Directive

The EU Habitats Directive (short HabDir, Council Directive 
92/43/EEC), essential part of the European endeavor toward 
the CBD (Trochet and Schmeller 2013), is an ambitious legal 
instrument to safeguard biodiversity and set aside a net-
work of protected areas (Gruber et al. 2012), called NATURA 
2000, currently in completion (Evans 2012). HabDir entails 

Halting the loss of biodiversity
and the degradation of ecosystem services in the EU

by 2020 and restoring them in so far as feasible [shortened]

EU headline target

Target 1 Target 2

Target 3 Target 4 Target 5 Target 6
Combat
invasive

alien
species

Help avert
global

biodiversity
loss

Ensure the
sustainable use

of fisheries
resources

Increase the
contribution of
agriculture and

forestry to
maintaining and

enhancing
biodiversity

Maintain and
restore

ecosystems and
their services

Fully implement
the Birds and

Habitats directive

Action 1: Complete
the Natura 2000

network and ensure
good management

Action 4: Improve
and streamline
monitoring and

reporting

Action 5: Improve
knowledge of

ecosystems and
their services

Action 6: Set
priorities to restore

and use of green
infrastructure

Action 7: Ensure no
net loss of

biodiversity and
ecosystem services

Figure 19.2  General and specific objectives of the EU biodiversity strategy 2020 as a strategic policy framework to MS.MONINA and BIO_
SOS. (From MS.MONINA user requirement dossier, modified.)
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Figure 19.3  From imagery via habitat categories to habitat quality assessment.

Figure 19.4  Habitats are the physical and mappable expression of ecosystems. Satellite Earth observation enables to map and monitor a variety 
of aspects on habitat distribution, quality, and change in different spatial and temporal scales. (From Lang, S. et al., Int. J. Appl. Earth Obs. Geoinf., 
(Special Issue), Elsevier, 2014.)
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standardized and frequent (every 6 years) standardized moni-
toring and frequent ... and reporting activities with specific 
responsibilities on all political levels of implementation: (1) the 
local management authorities for the monitoring of individual 
protected sites, (2) the EU MS for reporting on the status of the 
network of protected sites and habitats distribution over the 
entire territory, and (3) the EU for aggregating this informa-
tion and the reporting toward the CBD (Figure 19.7; Section 
19.3). Updated geospatial information products are required at 
all three levels, not only to upscale lower level information but 
also to provide additional independent information on each 
level. In this framework, EO data and related techniques offer 
objective yet economically priced solution to (1) provide timely 
information on pressures and impacts, (2) establish spatial 
priority for conservation, and (3) collect long-term multiscale 
baseline information for evaluating the effectiveness of conser-
vation strategies.

19.2  Satellite Sensor Capabilities

Earlier, we have claimed that habitats, as natural systemic areal fea-
tures, are mappable through satellite remote sensing. With recent 
advances in EO imagery, we enter a new dimension in habitat and 
biodiversity mapping. Still, challenges are ahead in terms of data 
integration, advanced preprocessing and calibration, automated 
information extraction, ground verification, and product valida-
tion, as well as semantic interoperability and exchange (Lang et al. 
2014). In the following sections, we take a closer look at the specific 
requirements habitat mapping poses toward satellite imagery; in 
other words, what can be achieved in terms of habitat categoriza-
tion and change qualification. In this section, we shall first look at 
the capabilities space-based observation technology has developed 
in recent years to support such demand. Note that the demand 
view and the supply view are not distinct realms; in fact, there is 
interaction and interdependencies among them, (ideally) a mutu-
ally fertilizing process that research and development activities, as 
the projects mentioned earlier, try to catalyze and stimulate.

The key technical characteristics of satellite technology play-
ing a considerable role in habitat mapping are the following:

	 1.	 Spatial resolution: Habitats are areal features with a cer-
tain extent ranging from a few square meters to hundreds 
of square kilometers. In order to find a commensurate 
scale of observation, a range of sensor families are at dis-
posal, whereby very-high-resolution (VHR) and high-
resolution (HR) sensors play the most important roles, 
while lower-resolution sensors are more used for differ-
entiating large ecosystems, biomes, etc., on continental 
scale. Spatial resolution is also a key factor in character-
izing within-habitat conditions, such as structure or com-
position, whereby the resolution needs to be significantly 
smaller than the extent of the habitat of concern. The 
number of quantization levels (radiometric resolution) 
matches spatial resolution. There is no need for having a 
lot of neighboring pixels with all the same digital number. 

There are, for example, 256 levels (8  bits) for Landsat 8 
(30/15 m resolution) and 2048 (11 bits) for WorldView-2 
(2/0.5 m resolution).

	 2.	 Spectral resolution: The main feature to be looked at when 
categorizing and delineating habitats is plant composi-
tion. The latter can only be characterized in a satisfying 
manner, if spectral resolution suffices. The differentia-
tion of vegetation types and plant species require specific 
wavelengths, such as the so-called red edge, or, by and 
large, the infrared bands. Multi- and hyperspectral data 
provide the raster of wavelength that can be used for plant 
species discrimination. When spectral resolution is not 
adequate for vegetation discrimination, multitemporal 
(seasonal) data can be used.

	 3.	 Revisiting time: The revisiting time of nonflexible sensor 
units is bound to the orbiting time of the satellite. This is 
about 16 days for Landsat. Rotating and side-looking sensors 
increase the revisiting time. Another factor of repeatability 
can be gained through constellations. These are several, 
identical satellites that orbit in a given sequence, so to cover 
each spot on Earth in multiples as compared to a standard 
revisiting time. Multitemporal, in particular multisea-
sonal, observations are critical to many, if not most, habitat 
assessments.

According to Corbane et al. (2014), an obstacle is that, despite 
the tremendous progress in the applications of remote sensing 
to habitat mapping, many data types discussed here (hyperspec-
tral, Light detection and ranging [LiDAR], and Radar) might 
currently be beyond the practical capabilities of the commu-
nity of practice (Rannow et al. 2014). Furthermore, the costs for 
imagery and other geospatial data products are still fairly high, 
while with an overall trend to decline due to market competi-
tion. The trend is supported by recent release of free very-high-
resolution imagery (VHRI) (e.g., USGS released Orbview-3 data 
in January 2012) or the upcoming ESA Sentinel series of satel-
lites (Berger et al. 2012). The availability of free geospatial data 
(e.g., the open street map initiative and open-source image pro-
cessing and Geographic Information System (GIS) software and 
tools [e.g., Orfeo Toolbox, Quantum GIS, Geographic Resources 
Analysis Support System, R]) is also contributing to the democ-
ratization of remote sensing and to the decline in the costs of 
the image processing packages. Still, a challenge for ecologists 
and conservation biologists is the technical expertise required to 
handle imagery and other data products (Turner et al. 2003) and 
thus not recognizing the full potential provided by such datasets 
and related techniques.

19.2.1 � Spatial Resolution: What 
Detail Can Be Mapped?

Satellite-based EO systems are categorized according to their 
spatial resolution, while the grouping schema is relative to the 
highest technical resolution and thereby subject to change. 
Over the last years, the term “very high resolution” has been 
used for images with a resolution (i.e., pixel size) around or 
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smaller than 1 m. We speak of HR images at resolution lev-
els of up to 5 m (see Figure 19.5 and Table 19.2). The highest 
resolution operationally available is around 0.5 m increasing to 
0.3 m with the launch of latest generation VHR satellites, such 
as WorldView-3.

With habitats being areal features with a certain extent, 
there is a wide range of scales, from a few square meters, like 
specific springs or lichen patches, to several square kilometers 
in the case of the savannah. While the average size of habitats 
clearly depends on the hierarchical level of habitat categoriza-
tion (broad habitat categories vs. more specific ones; see below), 
there are great differences within one scale domain as well. 
The extent of habitats considered internally homogenous (i.e., 
residing on the same hierarchical level of organization from an 
ecological point of view) varies depending on the physical con-
ditions and the species living there. Therefore, it is important 
to discriminate individual plants such as single trees or dis-
tinct features such as shrubs in a specific habitat composition. 
Table 19.2 provides an overview on the suitability of different 
sensor groups for distinguishing within broad, physiognomic 
habitat types.

With highest resolution available, pan-sharpening routines 
are frequently used to optimize both spatial and spectral res-
olutions. Still, the fidelity of the pixel information can be too 
high as well. Aiming, for example, at the extraction of sunlit tree 
crowns, a resolution of 1–2 m may just be the right resolution 
to tackle this (Strasser and Lang 2014b). In other words, sensor 
resolution needs to be commensurate to the observed features, 
from both directions so to say, not too coarse and not too fine. 
LiDAR systems, which are described in more detail in the fol-
lowing text, are capable to represent the physical attributes of 
vegetation canopy structure that are highly correlated with the 
basic plant community measurements of interest to ecologists 
(Mücher et al. 2014).

19.2.2 � Spectral Resolution: Plant and 
Plant Feature Discrimination

19.2.2.1  Sun-Source Systems: Optical Sensors

Plant species respond characteristically to light emitted by the 
sun or an artificial energy source, with specific reflection behav-
ior in the electromagnetic spectrum (EMS). Ideally, remotely 
sensed data of adequate spectral and spatial resolution can be 
used to distinguish different species, but to identify the appro-
priate sensor and the appropriate spectral bands can be chal-
lenging. Sensors can be grouped into passive and active sensors, 
depending on the source of energy involved. Passive sensors 
record the reflectance of sunlight on surfaces, while the spectral 
resolution corresponds to the number of bands that a sensor is 
able to acquire from a distinct part of the EMS. Panchromatic 
sensors, as the name indicates, cover a broad range of the EMS, 
usually including the VIS and the NIR ranges. Multispectral sen-
sors are sensitive to certain, well-defined portions of the EMS, 
which are categorized according to their relative and absolute 
position, such as VIS light (400–700  nm), NIR (750–900  nm), 
mid-infrared (MIR, 1.55–1.75 μm).

Multispectral sensors have been used since several 
decades collecting data fairly broad wavebands (typically 4 to 
recently  8). Multispectral data recorded by spaceborne sen-
sors (e.g., Landsat 7, ASTER, IKONOS, SPOT-5, WorldView-2, 
QuickBird  2, RapidEye) are useful for LC assessments from 
local to regional scale (depending on the spatial resolution). 
Such data are being used to assess habitat conditions for 
monitoring purposes (Förster et al. 2008, Franke et al. 2012, 
Spanhove et  al. 2012). Advanced studies investigate spectral 
characteristics of specific sensors for such tasks and address the 
suitability of multispectral data for an assessment of detailed 
floristic variation used (Nagendra and Rocchini 2008) in mul-
tispectral sensors. This helps assess the floristic composition 

1 2

Figure 19.5  How WorldView-2 data (left, red outlines indicate boundaries of designated protected areas) translate into habitat classes in a 
semiautomated image classification process (here EUNIS-3 categories).
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Table 19.2  Sensor’s Suitability for the Characterization of Natural Habitats Based on Corbane et al. (2014) and Ichter et al. (2014).

Low Spatial 
Resolution and High 
Temporal Resolutiona 

Medium to High Spatial/Temporal 
Resolutionb Very High Spatial Resolutionc Hyperspectrald Laser Scanning (LiDAR)e

Active Microwave 
Sensors (e.g., SAR)

Forests
±
Deciduous/coniferous/

mixed forest, 
evergreen/deciduous, 
dense/fragmented

+
Broad types, dominant species using 

multitemporal imagery

++
Tree species classification, 

differentiation of structure and age 
classes, multitemporal.

++ ±
Assessment of forest 

parameters (stand density, 
height, crown width, crown 
length) species distributions

±
Often complementary 

to the information 
provided by 
multispectral imaging

Grasslands
− ++

(multiseasonal imagery): Distinction 
between marshy grasslands 
(Molinia- or Juncus-dominated), 
unimproved (Festuca-dominated), 
semi-improved and improved

+
(multiseasonal imagery): Grassland 

types with different levels of 
agricultural improvement, levels of 
mowing intensity.

++
Detection of floristic gradients, 

determination of homogenous 
cover types

± +
Distinction between 

natural grasslands and 
improved pastures, 
mowing intensity via 
swath detection

Heathlands
− ++

(multiseasonal imagery): Distinction 
between heath types (e.g., Genista, 
Erica), four heath types, including 
ancillary data

++
Seasonal phenological variation can 

discriminate evergreen Calluna 
vulgaris from deciduous Vaccinium 
myrtillus.

++
Distinction between dry and wet 

heathland, heathland types 
(Calluna, Molinia Deschampsia, 
Erica, etc.) and heather age classes

±
Only if types differ in 

structure or density

−

Wetlandsf

− +
Seasonal imagery: mapping extent of 

seasonally submerged wetlands and 
some vegetation species, freshwater 
swamp vegetation, functional 
wetland types

+
Detection of riparian vegetation 

species, shallow, submerged 
vegetation.

++
Distinction between aquatic 

macrophyte species (Typha, 
Phragmites, Scirpus)

±
Surface and terrain models 

used to better understand 
characteristics of wetland 
vegetation species

−

Modified and various remote-sensing techniques (sensors and resolution) are compared for distinguishing between broad physiognomic habitat types. The degree of sensor suitability is indicated as follows: 
− = unsuitable, −/+ = partly suitable, + = suitable, ++ = recommended. See detailed references in Corbane et al. (2014).

a	e.g., NOAA-AVHRR, MODIS.
b	e.g., Landsat, IRS, SPOT
c	 e.g., IKONOS, QuickBird, GeoEye, WorldView-2, Pléiades.
d	For example, HyMap, CASI, Hyperion.
e	 To be combined with multispectral/hyperspectral imagery.
f	 Wetlands are not a physiognomic type per se but are various physiognomic types that have adapted to the continuous or temporary presence of water.
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within a certain natural habitat (mainly grassland and wet 
heath and floodplain meadows). Tree species differentia-
tion has been accomplished using 8-band WorldView-2 data 
for forest management in general (Immitzer et al. 2012) and 
riparian forest assessment in particular (Strasser and Lang 
2014b). Table 19.3 shows a palette of WorldView-2 scenes as 
used for fine-scaled habitat delineation in MS.MONINA. The 
recently launched WorldView-3 sensor will provide data with 
30 cm maximum spatial resolution.

Narrow spectral bands record in the range of 400–2500 nm. 
Some sensors cover only parts of this range (e.g., CHRIS/
PROBA focuses on VIS/NIR). Due to the large number of 
wavebands, digital image processing can discriminate bio-
chemical and structural properties of vegetation (Underwood 
et  al. 2003). They demonstrate the potential of hyperspectral 
data to extract information regarding plant properties (such as 
leaf pigment, water content, and chemical composition), and 
thus discriminating tree species in landscapes, and identify-
ing different species. Recent applications of Hyperion hyper-
spectral imagery include forest biodiversity (Peng et al. 2003), 
grasslands (Psomas et al. 2011), and invasive species monitor-
ing (Walsh et al. 2008).

19.2.2.2  Active Systems: Radar and LiDAR

Active sensors send an electromagnetic signal and record 
the travel time of the sent signal and its reflection by a given 
surface. Active sensors are differentiated by wavelength into 
microwave (Radar) and laser scanning (LiDAR) systems. 
Active systems are increasingly used for vegetation mapping, 
with a number of new satellites (e.g., TerraSAR-X). Gillespie 
(2005) discusses opportunities for landscape monitoring at 
finer spatial resolution. The returned signal supplies informa-
tion about the height and structure of vegetation, especially of 
woody vegetation, with these relating to forest condition and 
disturbance regimes (Huang et al. 2013). In particular, X-band 
radar backscattering has been recommended to differentiate 
plant species on the basis of canopy architecture (Bouman and 
van Kasteren 1990). Schuster et  al. (2011) proved that distin-
guishing different grassland swath types for NATURA 2000 
monitoring is possible with the TerraSAR-X sensor. The ALOS 
PALSAR and RADARSAT-2 SAR have shown great potential 
for mapping wildlife habitat, particularly when combined with 
optical remote sensing through data fusion (Wang et al. 2009). 
Moreover, there are recent advances to monitor different shru-
bland, grassland, and forest habitats with COSMO SkyMed (Ali 
et al. 2013). While still as a research application, the ability to 
penetrate the canopies makes microwave instruments a poten-
tial tool for measuring biomass and determining vegetation 
structure.

LiDAR provides highly accurate information on the 3D 
vegetation structure, derived from pulse characteristics, over 
a limited area (Puech et al. 2012). For example, data from the 
airborne laser vegetation imaging sensor enable the mapping 
of subcanopy topography and canopy heights to within 1 m. 

More general, LiDAR is used for the extraction of information 
on forest structure (vertical information), for example, canopy 
and tree height, biomass, and volume. According to Turner 
et  al. (2003), the recording of numerous LiDAR return sig-
nals (pulses) enables to estimate vegetation density at different 
heights throughout the canopy and enables 3D profiles of veg-
etation structure. Besides airborne LiDAR with the limitations 
of large data volumes, footprint size, and high costs, space-
borne laser technology has been launched by Ice, Cloud, and 
Land Elevation Satellite/Geoscience Laser Altimeter System, 
the first laser-ranging instrument for continuous global obser-
vations. While LiDAR provides structural attributes of vegeta-
tion, little can be derived on the actual species composition 
suggesting that laser scanning is more a complementary tech-
nology (Mücher et  al. 2014). In general, optical and LiDAR 
data acquired simultaneously increase the differentiation of 
vegetation species. It has also been demonstrated that species 
distribution models can be improved through airborne LiDAR 
quantifying vegetation structure within a landscape (Goetz 
et al. 2007).

19.2.3  Revisiting Time: Phenology

A major asset, and often critical, in using satellite remote sens-
ing for habitat monitoring is that data can be acquired on a 
regular and repetitive basis, therefore allowing consistent com-
parisons between image scenes. The frequency of observation 
by optical spaceborne sensors ranges from several times daily 
(for coarse spatial resolution sensors, e.g., NOAA-AVHRR, 
MODIS, and MERIS) to every 16–18  days (e.g., Landsat) 
although cloud cover, haze, and smoke often limit the number 
of usable scenes. The new generation of ESA Copernicus satel-
lites with a revisit time of 5  days is expected to be launched 
around 2015. With a 5-day revisit capacity, the two Sentinel-2 
satellites will acquire intra-annual data, thereby allowing the 
temporal variations in reflectance to be exploited for mapping 
and monitoring natural habitats. The changes in the seasonal-
ity (i.e., phenology) of plants are significant for the differen-
tiation into classes. So far, this information has been widely 
neglected due to limited access of spatial HR imagery with 
a high temporal domain (Förster et  al. 2012). To include an 
increasing number of intra-annual images increases the classi-
fication accuracy until a certain threshold is reached (Schuster 
et  al. 2015). Images taken over two phenological stages help 
in discriminating species and habitat classification (Lucas 
et  al. 2011), although some studies conclude that monotem-
poral data suffice when the SWIR is included (Feilhauer et al. 
2013). Moreover, it is possible to analyze the optimal season for 
acquiring a dataset (Schmidt et al. 2014). Multiannual coverage 
also helps assessing changes in habitat (such as loss, degrada-
tion, and fragmentation) through change detection approaches 
(see Section 19.4). Monitoring experts appreciate this, because 
it directs field work on these areas, possibly yielding a signifi-
cant increase in cost efficiency (Vanden Borre et al. 2011).
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Table 19.3  Details (Location, Country, Date, Band Combination) and Subsets in Equal Size (2.5 × 2.2 km) and Scale (Original: 1:10,000) of WorldView-2 Satellite Scenes Used 
for Test and Service Cases in MS.MONINA

Axios delta, Greece [7-6-3] Salzach riparian forest, Austria [7-6-3] Danube riparian forest, National park, Austria [7-6-5]

Rieserferner nature park/Italy [7-6-3] Lagoons of Palavas/France [7-6-3] Doeberitz heathland/Germany [7-6-3]
(Continued)
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Table 19.3 (Continued)  Details (Location, Country, Date, Band Combination) and Subsets in Equal Size (2.5 × 2.2 km) and Scale (Original: 1:10,000) of WorldView-2 Satellite 
Scenes Used for Test and Service Cases in MS.MONINA

Larzac foothills, France [7-5-3] Bierbza National park, Poland [7-6-2] Murnau mire, Germany [7-3-2]

Sierra Nevada National park, Spain [7-5-3] Eider Treene Sorge lowlands, Germany [7-5-3] Kalmthoutse heathland, Belgium [7-3-4]
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19.2.4  Advanced Image Analysis Techniques

The advancement of imaging technology is a crucial but not 
the only ingredient to cope with the challenges of habitat map-
ping. As important as high-quality, high-suitable imagery is 
the utilization of appropriate image analysis techniques (Lang 
et  al. 2014). Figure 19.6 illustrates the importance of analy-
sis steps that follow the actual provision of imagery. Various 
information types can be extracted from imagery, ranging 

from biophysical parameters including vegetation indices 
(Adamczyk and Osberger 2014) and structural parameters 
(Mairota et al. 2014) to ultimately nominal LC, or more spe-
cifically, habitat categories (Adamo et  al. 2014) (see Section 
19.3 and Figure 19.3). Beyond that, existing or image-derived 
habitat delineations can be combined with the parameters in 
order to assess habitat quality, for example, Riedler et al. (2014) 
(see Section 19.4 and Figure 19.3). Kuenzer et al. (2014) provide 
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a detailed overview of existing sensor types and related vegeta-
tion indices being useful for biodiversity mapping.

Reproducibility, objectivity, transferability, and the increased 
possibility for quantification have been reported as the 
main advantages of mapping approaches based on EO data. 
Semiautomated classification methodologies for EO data pro-
vide a more objective, that is, reproducible and transparent out-
come as compared to visual interpretation (Lang and Langanke 
2006). Over the last years, great advantages have been reported 
in the use of remote-sensing technology for the mapping and the 
assessment of habitats in Europe: for an overview, see Vanden 
Borre et al. (2011). This likewise applies to different broad habitat 
types (forests, grasslands, wetlands, etc.) and different scales of 
observations as fine as subhabitat level (Lucas et al. 2011, Strasser 
and Lang 2014b). Object models can be stored and explicitly 
called for semiautomated mapping routines (Lucas et al. 2014) 
or advanced habitat or biotope class models (Tiede et al. 2010).

One strategy to tackle this variability is the use of object-based 
image analysis (OBIA) (Lang 2008). This is typically done through 
the combination of spectral behavior and spatial variability, either 
from the details available through high-spatial-resolution imagery 
(Johansen et al. 2007, Strasser and Lang 2014b) or through the inclu-
sion of data from active sensors such as LiDAR (Mücher et al. 2014). 
Object-based class modeling allows for mapping complex, hierar-
chical habitat systems, such as forest habitats. Forest composition 
including intermixture of nonnative tree species was modeled in a 
six-level hierarchical representation in a riparian seminatural forest 
by Strasser and Lang (2014b). VHRI from WorldView-2 provided 
the required spatial and spectral details for a multiscale image seg-
mentation and rule-based composition. An image object hierarchy 
was established to delineate forest stands, stands of homogenous 
tree species and single trees represented by sunlit tree crowns.

19.3 �EO -Based Biodiversity 
and Habitat Mapping

According to Turner et  al. (2003), there are two general 
approaches to remotely sensed biodiversity: (1) direct mapping 
of individual organisms, species assemblages, or ecological 
communities using airborne or satellite sensors and (2) indi-
rect sensing of biodiversity-related aspects using environmental 
parameters as proxies. Many species are confined in their distri-
bution to specific habitats such as woodland, grassland, or sea 
grass beds that can be directly identified with remote-sensing 
data. Habitats (see Figure 19.3) as the spatial expression of eco-
systems do have a certain extent to be mapped and observed; 
they function as living space for specific species (both animals 
and plants) and bear a certain constancy in the 4D space–time 
physical world.

19.3.1  Land Cover, Habitats, and Indicators

First, we would like to distinguish between LC and habi-
tats, two concepts that frequently cause confusion in the 
remote-sensing literature (Lang et  al. 2013a). According to 

EUROSTAT,*  LC  “corresponds to a physical description of 
space, the observed (bio) physical cover of the earth’s surface. 
It is that which overlays or currently covers the ground.” LC 
classes representing biophysical categories, such as grassland, 
woodland, and water bodies, are usually derived from multi-
spectral remote-sensing data by multivariate clustering meth-
ods in the feature space. LC data are used at different scales 
(local, regional, and global) as input variables for biosphere–
atmosphere models and terrestrial ecosystem models and 
respective change assessments as well as proxies of biodiver-
sity distribution (Grillo and Venora 2011). The FAO-LCCS (Di 
Gregorio and Jansen 2005), as universally applicable classifica-
tion system, enables a comparison of LC classes regardless of 
data source, economic sector, or country.

A habitat instead is a “three-dimensional spatial entity that 
comprises at least one interface between air, water and ground 
spaces. It includes both the physical environment and the com-
munities of plants and animals that occupy it. It is a fractal entity 
in that its definition depends on the scale at which it is consid-
ered” (Blondel 1979). Habitats are often distinguished into two 
(or more) stages of naturalness (hemeroby) according to the level 
of human alteration: “Natural habitats” are considered as the land 
and water areas where the ecosystem’s biological communities 
are formed largely by native plant and animal species and human 
activity has not essentially modified the area’s primary ecological 
functions (EEA). “Seminatural” habitats are considered as man-
aged or altered by humans but still “natural” in terms of species 
diversity and species interrelation complexity (i.e., diversity).

In general, a perfect correspondence of conventional biotope 
types and spectrally derived vegetation cover is limited (yet 
from today’s point of view, not impossible), due to the practice 
of manually delineating biotope types from aerial photos and 
field surveys (Weiers et al. 2004). The EUNIS† habitat classifica-
tion scheme is a hierarchical scheme with six hierarchical levels 
(Davies et al. 2004). Alternative classification systems such as the 
general habitat categories (GHC) (Bunce et al. 2008) or the ter-
restrial ecosystem mapping system (Johansen et al. 2007), using 
vegetation attributes such as height and leaf phenology, have 
been proposed in order to more successfully employ EO data in 
the classification of habitats. A comprehensive mapping system 
starting from LC classes expressed in FAO-LCCS taxonomy, 
translated to GHC (Tomaselli et al. 2013), and finally addressing 
habitat classes according to HabDir has been proposed by Lucas 
et  al. (2014). Such systems require robust and reliable remote 
sensing–based methods from the start. In this context, Corbane 
et al. (2014) reviewed the ability of remote sensing to physiog-
nomically distinguish between habitat types at different scales. 
They report about advances in the use of remote-sensing tech-
nology for the mapping and the assessment of habitats in Europe 
(Vanden Borre et al. 2011). This applies to different broad habitat 

*	 European Commission, Europa–eurostat– RAMON, http://ec.europa.eu/
eurostat/ramon/nomenclatures.

†	 European Environment Agency, EUNIS–Welcome to EUNIS Database, 
http://eunis.eea.europa.eu/.
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types (forests, grasslands, wetlands, etc.) and different scales of 
observations as fine as subhabitat level. Mapping of broad habi-
tats types using remote sensing is a common practice from the 
perspective of LC mapping and is generally done at a relatively 
coarse scale of analysis (Wulder et al. 2004).

19.3.2 � Distinguishing Between and 
Within Broad Habitat Categories

Mapping broad habitats types using remote sensing converges 
with LC mapping done at a relatively coarse scale of analy-
sis (Wulder et  al. 2004). Global LC mapping has been accom-
plished using the MODIS satellite, at 500 m resolution (Friedl 
et al. 2010), while country and regional level LC classifications 
have been accomplished using medium-resolution sensors such 
as Landsat or SPOT (Fuller et al. 1994, Tiede et al. 2010). More 
detailed LC boundaries can be obtained using a higher spatial 

resolution, multitemporal coverage (Förster et  al. 2010) or by 
including ancillary data (Tiede et al. 2010) or active sensors. In 
the following, we will discuss how vegetation categories can be 
distinguished within several broad physiognomic types: for-
est, grassland, heathland, and wetland (Corbane et  al. 2014). 
Generally, satellite-based habitat mapping can be supported, 
in terms of plausibility and reliability, through advanced GIS 
modeling techniques to derive probabilities for the presence of 
habitats in different biogeographical regions (Förster et al. 2005) 
and potential habitat ranges under specific assumptions or even 
changing conditions. The advantages of a high spectral, tempo-
ral, or spatial resolution as well as active sensors are summarized 
and referenced in Table 19.4.

19.3.2.1  Forest Habitats

Low-spatial-resolution data allow rough differentiation of the 
main forest cover types (deciduous, coniferous, mixed) (Corbane 
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et  al. 2014). The number of differentiated forest classes can be 
improved when ancillary data, such as terrain (Woodcock et al. 
1994), additional geodata (Förster and Kleinschmit 2014), or time 
series, are used. More detailed analyses can be performed using 
high-spatial-resolution sensors including image texture analysis, 
which is indicative for tree species and age classes at the canopy 
level (Johansen et al. 2007, Immitzer et al. 2012). The use of a time 
series with high-spatial-resolution data helps distinguish between 
individual trees, through the use of phenological characteristics 
such as leaf development and senescence (Key et al. 2001).

The use of hyperspectral imagery allows for an even greater 
level of detail (Corbane et al. 2014), enabling the distinction of 
tree types based on reflectance in response to pigment, nutri-
ent, and structural differences between species (Asner et  al. 
2008a). Still, within-class variability of VHRI (through features 
such as branches, shadow, and undergrowth) and the between-
class spectral mixing of low-resolution imagery (Nagendra and 
Rocchini 2008) need to be taken into account. Spectral unmix-
ing is possible for lower-resolution sensors but is limited by the 

respective sensitivity of the sensor. Forest habitat categories 
that differ by their understory vegetation, such as Stellario-
Carpinetum and Galio-Carpinetum, which are both oak-
hornbeam forest types, can be approached by using additional 
geodata, such as soil data.

19.3.2.2  Grassland Habitats

In contrast to forests, grassland species are detectable pri-
marily as assemblages and may occur in complex mixtures 
within habitats (Corbane et  al. 2014). Thus, direct remote-
sensing approaches are generally limited to the detection of 
relatively homogenous grassland habitat types, while indi-
rect approaches were found to be successful, such as those 
that use environmental gradients (Fuller et al. 1994) or usage 
intensity for mowed seminatural grasslands (Schuster et al. 
2011, Buck et  al. 2014) (see Figure 19.8). Moderate spatial 
resolution sensors such as Landsat Thematic Mapper (TM) 
and Landsat-7 Enhanced Thematic Mapper (ETM+) were 
used by Lucas et al. (2007) for the classification of grasslands 

Table 19.4  Influence of Increasing Resolution and the Utilization of Active Sensors on the Possible Detection and Differentiation 
within Different Habitat Categories

Habitat 
Type 

Influence of Increasing Resolution 

Use of Active Sensors Spatial Spectral Temporal

Temperate 
forest

Allows for object-based 
classification of tree crowns 
(Immitzer et al. 2012)

Reduces spectral overlap of tree 
species with similar spectral 
characteristics (Dalponte et al. 
2012).

Enables phenological information 
(leaf unfolding, coloring, leaf 
fall) (Wolter et al. 1995).

Improve accuracy via 
incorporation of canopy height, 
canopy architecture, and forest 
structure (Ghosh et al. 2014)

Tropical 
forest

Reduce the number of mixed 
pixels between tree species 
(Nagendra and Rocchini 
2008)

Allows for species identification 
using unique biochemical 
signatures (Asner et al. 2008b).

Allows an spectral endmember 
analysis and a detection of tree 
types (Somers and Asner 2014).

Incorporate forest structural 
properties to mask nontree gaps 
(Asner et al. 2008a)

Riparian 
forest

Allows for object-based 
classification of tree types 
(Strasser and Lang 2014a, 
Suchenwirth et al. 2012)

Allows the estimation of different 
levels of biomass and 
subsequent distinction of 
different types of riparian forest 
(Filippi et al. 2014).

Possible detection of changes of 
crown extend and derived health 
status (Gaertner et al. 2014).

Improve accuracy by means of 
the structural properties as 
additional information (Akay 
et al. 2012)

Grasslands Allows for object-based 
classification of homogenous 
grassland patches (Corbane 
et al. 2013)

Allows for the detection of 
floristic gradients (Schmidtlein 
and Sassin 2004).

Increased accuracy if images are 
timed to differentiate warm/cool 
season grasses (Price et al. 2002).

Incorporate information on 
grassland management 
practices, such as mowing 
intensity (Schuster et al. 2011)

Heathland Allows for the use of object 
shape complexity in 
differentiating successional 
stages (Mac Arthur and 
Malthus 2008)

Allows for the discrimination of 
heather age classes (Thoonen 
et al. 2013).

Multiseasonal imagery allows for 
distinguishing evergreen and 
deciduous heath species (Mac 
Arthur and Malthus 2008).

Can be used to separate shrubs 
from trees and grassland 
(Hellesen and Matikainen 2013)

Coastal 
wetlands

Reduced spectral mixing in 
heterogeneous species 
patches (Belluco et al. 2006)

Accuracy is marginally increased, 
feature selection is necessary 
(Belluco et al. 2006); spectral 
libraries may improve 
classification in properly 
calibrated images (Schmidt and 
Skidmore 2003).

Allows for the incorporation of 
seasonal differences in 
vegetation communities 
(Gilmore et al. 2008).

Can be used to separate 
vegetation height of plant 
communities (Prisloe et al. 
2006)

Inland 
wetlands

Allows for the distinguishing 
of small vegetation patches 
(Everitt et al. 2004)

Hyperspectral imagery has 
consistently higher accuracy 
than multispectral (Jollineau 
and Howarth 2008).

Wetland types may be 
differentiated by seasonal water 
regimes and differences in 
growing season (Davranche 
et al. 2010).

Can be used to separate 
vegetation structure to the 
genus level (Zlinszky et al. 2012)
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allowing only for a broad level of class distinction with 
respect to grassland improvement levels. Higher-spatial-
resolution imagery, using an object-based approach with 
ancillary data such as elevation and soil type, has proven 
successful in differentiating between a few dominant grass-
land species (Laliberte et al. 2007), although other grassland 
habitats are more difficult to distinguish (Corbane et  al. 
2013). For relatively homogeneous grasslands, the use of a 
spectral-temporal library (instead of training areas) with 
multitemporal HR data has been shown to accurately dif-
ferentiate grassland types; still, object-based classification 
methods have been shown to perform better for more het-
erogeneous grassland types (Förster et al. 2012).

Hyperspectral imagery has been applied to determine 
f loristic gradients, proven to be more useful in habitat iden-
tification than single species classifications (Schmidtlein 
and Sassin 2004). Given this, the necessity of hyperspectral 
imagery has been debated, as recent research has shown that 
the spectrum from VIS to SWIR is the most significant for 
detecting wet and dry grassland f loristic gradients (Feilhauer 
et al. 2013).

19.3.2.3  Heathland Habitats

Generally, heathland habitats are characterized by a mixture 
of ericaceous dwarf shrub species (e.g., Calluna vulgaris), 
grassland species, and open soil. Since all three components 
can be reliably spectrally distinguished, these habitats are 
rather straightforward to detect and to monitor (Corbane 
et al. 2014). Wet and dry heathland types are more difficult to 
distinguish with limited spectral separability on moderate-
resolution imagery (Diaz Varela et  al. 2008). Object-based 
image analysis has successfully been applied to high-spatial-
resolution imagery in identifying dominant heather areas, 
based on indicator species (Förster et al. 2008) or structural 
parameters (Langanke et  al. 2007). Similarly, more detailed 
approaches have been done using hyperspectral imagery, 
where kernel-based reclassification was used to transform the 
resultant LC classes into heathland habitats (Thoonen et al. 
2013). Few specific studies used active sensors in detecting 
heathland habitats, for example, using LiDAR (Hellesen and 
Matikainen 2013) data for vertical differentiation of shrub 
and grassland forms and using HR multichannel SAR data 
(Bargiel 2013).

19.3.2.4  Wetland Habitats

Wetland vegetation is characterized by high spatial and spec-
tral variability, and is influenced by soil moisture, atmospheric 
moisture, and the respective hydrological properties of the 
wetland type (Corbane et al. 2014). This makes traditional veg-
etation mapping approaches based on the MIR-to-NIR range 
difficult, due to the relatively higher absorption of this wave-
length by water (Adam et  al. 2009). Nevertheless, medium-
resolution imagery such as Landsat has been used to classify 
broad wetland habitat types (Mac Alister and Mahaxy 2009). 
Additionally, the use of ancillary data such as soil type, com-
bined with multispectral imagery, can be used to help dif-
ferentiate spectrally similar classes (Bock 2003). In terms of 
mapping dominant species, high-spatial-resolution imagery 
was successful (Everitt et al. 2004), including submerged veg-
etation types (Dogan et al. 2009). WorldView-2 data were used 
by Keramitsoglou et al. (2014) to perform kernel-based classi-
fication of river delta vegetation and habitats in Greece. These 
habitats form a rich yet fine-scaled mosaic of brackish lagoons, 
saline soils, extensive mudflat, saltwater and freshwater, sand 
dunes, and also rich vegetation. Mapping remnants of these 
delta habitats, which are exposed to anthropogenic, mainly 
agricultural pressure, have proven to be successful to be trans-
ferred between similar delta situations.

LiDAR has been used alone to perform genus-level wetland, 
as well as in combination with VHRI for object-based classifica-
tion. Using hyperspectral imagery, Schmidt and Skidmore (2003) 
indicated that it is possible to distinguish between 27 types of 
salt marsh vegetation using spectral signatures. It remains chal-
lenging to distinguish between submerged vegetation types, due 
to factors such as water turbidity, depth, and bottom reflectance 
(Jollineau and Howarth 2008).
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19.4 �O bserving Quality, 
Pressures, and Changes

As the Millennium Ecosystem Assessment stated in 2005,* the 
Earth’s ecosystems have been altered rapidly by human pres-
sure in a short timeframe, of about half a century. In addition 
to directly reducing existing habitat through land use (LU) 
conversions, the human impact highly affects the quality of the 
remaining habitats (Mairota et al. 2014). Indicators derived from 
remotely sensed data (for an overview, see, e.g., Strand et  al. 
2007) can help assess and monitor habitat state and conditions. 
This section describes means and methods how habitat quality 
can be assessed, pressures on habitat characterized, and changes 
quantified.

19.4.1  Measuring Habitat Quality

Even more challenging than detecting species and delineat-
ing habitat is to obtain robust information about the quality 
and conservation status of habitat types using remote-sensing 
data. Biodiversity surrogates (BS) include parameters such as 
species presence, abundance, probability of site occupancy, 
aggregate measures such as species richness, diversity, or car-
rying capacity and can be used to observe the degradation of 
habitat quality characteristics related to resource availability 
(e.g., nutrients, refugia), phytomass, vegetation structure, and 
microclimate (Mairota et al. 2014). Habitat quality, according 
to Lindenmayer et al. (2002), is inherently taxon-specific and 
scale-dependent with respect to extent and grain, sensu Kotliar 
and Wiens (1990). Since it can be prohibitively expensive to 
obtain fine-grained habitat quality data at large spatial extents 
through field surveys alone, remote sensing is used to estimate 
environmental heterogeneity at differing grains across dif-
fering spatial extents (Mairota et al. 2014) and relate it to the 
variation in species diversity and distribution (Nagendra et al. 
2014). VHR data are of particular power (Nagendra et al. 2013) 
as they enable multiple scale levels to be extracted from one 
single image (Strasser and Lang 2014b). BS exhibit different 
relevance to taka and functional groups with varying spectral 
and textural diversity measurements at different spatial scales 
and can be predicted with reasonable accuracy using habitat 
modeling (based on remotely sensed measures of environmen-
tal attributes (Mairota et al. 2014).

Approaches to infer habitat quality from remote-sensing 
data are abundant (Townsend et al. 2009, Rocchini et al. 2010, 
Costanza et al. 2011). In addition, spatial analysis techniques 
can be applied in order to quantitatively assess and com-
pare structural indicators related to the actual state (Riedler 
et al. 2014, Vaz et al.) and conditions of habitats. Related to 
this is the inf luence of the complexity of landscape struc-
ture (Corbane et  al. 2014). Overall, mapping becomes more 

*	 Millenium Ecosystem Assessment 2005, Millenium Ecosystem Assessment, 
http://www.millenniumassessment.org/

challenging when landscapes are more heterogeneous and 
fine-grained, and the variation between habitats is more 
continuous (Diaz Varela et al. 2008). Also, the complexity of 
landscape structure differs between protected areas and their 
surroundings, and thus different approaches to mapping 
need to be considered. As landscapes become more hetero-
geneous and the numbers of potential habitat types increase, 
modeling approaches of the relationship between species dis-
tribution patterns and remotely sensed data gain importance 
(Schmidtlein and Sassin 2004).

National quality parameters for monitoring the conser-
vation status according to HabDir are defined by differ-
ent European states, such as Austria (Ellmauer 2005) and 
Germany (Balzer et al. 2008), as well as Belgium, France, and 
Denmark. In most cases, the conservation status is assessed 
by habitat structures (e.g., horizontal and vertical variation, 
age structure), presence of typical species (mostly f lora) in 
the habitat, abiotic factors (e.g., f looding), and pressures or 
disturbances of the habitat type (e.g., eutrophication indica-
tors, invasive species). Indicators are usually framed for broad 
habitat types, as discussed earlier. Within forest habitats, 
many indicators, such as “percentage of characteristic tree 
species,” can be derived by means of remote sensing (Corbane 
et al. 2014). Others (e.g., habitat trees, very old and degraded 
living microhabitat-bearing trees with hollows for nesting) 
remain tricky and require very detailed vertical represen-
tations by means of LiDAR data. This also applies to other 
broad habitat types: Heathlands have been studied exten-
sively in this respect (Delalieux et  al. 2012, Spanhove et  al. 
2012) including degradation stages in bog areas (Langanke 
et al. 2007). For grasslands, recent advances have been made 
in monitoring grassland use intensity (Schuster et  al. 2011) 
and shrub encroachment (Lang and Langanke 2006). In addi-
tion, negative quality criteria can be used, as is the share of 
invasive species. Many such neophyte species can be detected 
on remotely sensed imagery based on spectral, phonologi-
cal, or structural characteristics. This can be supported by 
modeling potential distribution and susceptibility of specific 
areas of invasion.

Few approaches exist (as yet), where several indicators are 
integrated in a quantitative and spatially explicit way in order 
to receive an aggregated view on habitat quality. Riedler et al. 
(2014) propose such a strategy for habitat quality assessment 
in riparian forests. They use a composite indicator (RFI_S) for 
integrated assessment of habitat quality on patch level and the 
identification of hot spots where management action may be 
focused. RFI_S is composed of seven indicators (derived from 
VHRI and LiDAR data) addressing four important attributes 
of riparian forest quality: (1) tree species composition, (2) ver-
tical forest structure, (3) horizontal forest structure, and (4) 
water regime. For the aggregation of the RFI_S, expert-based 
and statistical weighting were applied. Measures of improve-
ment or conservation can be specifically designed through the 
decomposition of the overall indicator into its underlying com-
ponents (see Figure 19.9).
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19.4.2 I dentifying Pressures and Changes

Both loss of habitat and decline of habitat quality can be 
linked to anthropogenic pressures, which affect the provi-
sioning of essential ES (Nagendra et al. 2014) for human well-
being. International bodies such as the Intergovernmental 
Panel on Biodiversity and Ecosystem Services* (IPBES) have 
stressed the need to assess human pressures on biodiver-
sity and ES across all scales. Even protected areas, through 
direct or indirect anthropogenic impact, continue to experi-
ence anthropogenic pressure; thus for effective management 
response, spatial knowledge of the type and location of pres-
sure is required (Nagendra et al. 2013).

EO data and associated techniques, coupled with landscape 
pattern analysis and habitat modeling as well as BS estimates, 
can provide critical information on changes in state and con-
dition of habitats, which in turn can be used to infer evidence 
of pressures. Nagendra et al. (2014) propose a unified approach 
to facilitate the provision of value-added products from EO 
sources for biodiversity conservation purposes. The proposed 
approach builds on the “driving forces, pressure, state, impact 
and response” framework (EEA 1995) and is based on the 

*	 IPBES, 2015, Intergovernmental Panel on Biodiversity and Ecosystem 
Services, http://www.ipbes.net/.

definition of four broad categories of changes in state, which can 
be mapped and monitored through EO analyses.

Within the BIO_SOS Earth observation data for habitat moni-
toring (EODHaM) system (Lucas et al. 2014), six types of change 
assessments with respect to LC/habitat classes or geometry are 
distinguished, namely, changes in (1) LCCS classes (or GHCs), 
(2) specific LCCS component codes, (3) the number of extracted 
objects belonging to the same category, (4) object size and geom-
etry (splitting or merging), (5) EO-derived measurements (e.g., 
LiDAR-derived height or vegetation indices), and (6) calculated 
landscape indicators useful for subsequent biodiversity indica-
tors quantification, for example, species distribution in Ficetola 
et al. (2014).

In the following,† we highlight some specific types of pres-
sure and/or change indicators with respect to broad habi-
tat categories, which often have a dual function in terms of 
their actual species hosting function and any form of natural 
resource for anthropogenic use. Among the most generic indi-
cators are habitat extent and habitat fragmentation. Habitat 
can change in area due to a multitude of driving forces that 
can each pose different pressures and threats (Nagendra et al. 
2014). Changing habitat areas may pinpoint to expanding 
or shrinking areas of competing LC types like agricultural, 
industrial, and urban land or might reveal the impact of pol-
lution, climate change, or catastrophes. Forest habitats, for 
example, degrade as a result of forest plantation that affects 
their species composition, or artificial fires, a loss of carbon 
stock and biomass by (over) exploitation, and a decrease of 
old growth forest. Species composition of grasslands and 
their layered structures are inf luenced by human manage-
ment regime (cutting, grazing, burning) and intensity (fertil-
ization, management frequency) inf luencing stages of growth 
and regrowth. Pressures on grasslands most often relate to 
agricultural practices with potential impact on biodiversity, 
especially through the use of fertilization, irrigation, and pes-
ticides, with associated threats related to water, air, and soil 
pollution, drainage. The presence of shrubs and trees might 
indicate a decrease or even a total abandonment of traditional 
management practices like hay making or grazing, including 
active afforestation. Changing indicator values through time 
may reveal recurrent burning practices, the loss of habitat for 
species that depend on open grassland on the one hand or 
grasslands with interspersed trees on the other hand, or even 
climate change affecting high-elevation grasslands. The pres-
ence of open water implies a multitude of potential pressures 
to biodiversity present in wetland or riverine habitats. Areas 
with open water can be subject to the extraction of sand, 
gravel, clay, or other minerals, destructing the habitat of spe-
cies that entirely or partly rely on open water. The use of open 
water as a source of gravitational energy or drinking water 

†	 Taken from MS.MONINA Deliverable 5.6 “Framework for identifying 
threats and pressures on sensitive sites, from remote sensing derived 
(change) indicators in the site surroundings,” available at www.ms-
monina.eu.
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Figure 19.9  Composite indicator for riparian forest habitat quality 
assessment. (From Riedler, B. et al., Int. J. Appl. Earth Obs. Geoinf., 2014.)
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production can be a threat too, especially when subjected to 
a management that impedes the development of habitats for 
particular species (e.g., by recurrent cleaning of basins and 
water bodies, large and irregular water table f luctuations). 
The same applies to water bodies used for transport or rec-
reation or marine and freshwater aquaculture. Fishing and 
harvesting of aquatic resources can be detrimental too when 
applied in a nonsustainable way. Nonnative aquatic species 
grown for food by aquaculture can invade neighboring water 
bodies and even entire catchments when they escape from 
nurseries. In areas with a high human population density, 
pollution of open water by all kinds of activities may be ubiq-
uitous, as are changes in the hydrological conditions of the 
open water or the neighboring areas (e.g., by dredging).

Habitat fragmentation can be evaluated by structural indices 
(Jaeger 2000) depending on scale and level of spatial explicit-
ness. Fragmentation indices not only consider the absolute 
shrinking of habitat area but also, and with particular emphasis, 
the decrease or even loss of functional connectivity. Not only 
the dynamic of such indices provides information on one habitat 
type, but also usually habitat fragmentation is coupled with an 
interplay of changing LU patterns with mutual influence.

19.5 �T oward a Biodiversity 
Monitoring Service

Remote sensing has long been used as a tool for environmental 
monitoring, especially for vegetation. But while at the global and 
continental scales, applications using broad LC/habitat catego-
ries have been quite successful, success has been harder to achieve 
at detailed local scales. Indeed, applications in detailed vegeta-
tion mapping and monitoring are often demanding in terms of 
data (requiring both high spectral and high spatial resolution), 
placing them at the forefront of technological development, with 
many new approaches still being in a research phase to tackle the 
widely divergent user needs. In contrast to global mapping ini-
tiatives, which have received wide attention and critical evalua-
tions (Bartholome and Belward 2005), local mapping exercises 
rarely receive any evaluation and validation other than by the 
user for which they were intended. Hence, it remains unknown 
whether the chosen method was most appropriate for the situa-
tion and problem at hand and whether the method would yield 
comparable results in a different setting (i.e., the robustness of 
the method). This impairs the wider application of such meth-
ods and adoption by other users with similar problems and their 
further development toward operationality.

The two European projects, MS.MONINA and BIO_SOS, 
have addressed these needs, by exploring the potential of EO data 
in combination with data from ground surveys for supporting 
management options and reporting of obligations.* The projects 

*	 See White Paper on “Copernicus Biodiversity Monitoring Services” avail-
able at http://www.biosos.eu/publ/White_Paper_Biodiversity_Monitoring_
BIOSOS_MSMONINA.pdf.

have prepared the ground for establishing services to support a 
successful implementation of European environmental legisla-
tion on all levels. Services, developed in a preoperational mode, 
underlay four suitability criteria as identified by Vanden Borre 
et al. (2011): (1) multiscale, that is, addressing multiple scales on 
all levels of implementation; (2) versatile, with algorithms tai-
lored to the habitat type of interest and different image types; (3) 
user-friendly, allowing integration of the products into existing 
workflows; and (4) cost-efficient, providing reliable and repro-
ducible products at an affordable cost, compared to traditional 
field methods.

Three MS.MONINA (sub-)services were designed, ref lect-
ing the different levels of operation, that is, EU, state, and 
site (see Figure 19.10). This requires a concordant multiuser 
approach. Each of the service development is tailored to the 
user and technical requirements that are specific for each 
level of implementation. User requirements surveys col-
lected all details on existing workf lows, data usages, and the 
responsibilities imposed by HabDir. Based on these require-
ments, the testing, comparison, and integration of state-
of-the-art methodologies are performed. Demonstrators, 
accompanied by a full-f ledged user validation exercise, com-
plete the service evolution plan and the final scoping toward 
market. MS.MONINA thereby addresses (1) agencies on EU 
level, that is, ETC biodiversity, the EEA, and DG environ-
ment; (2) national and federal agencies in their reporting on 
sensitive sites and habitats within biogeographical regions 
on the entire territory; (3) local management authorities by 
advanced mapping methods for status assessment and change 
maps of sensitive sites; and (4) all three groups by provid-
ing transferable and interoperable monitoring results for an 
improved information f low between all levels.

Within BIO_SOS, a preoperational knowledge-driven open-
source three-stage processing system was developed capable of 
combining multiseasonal EO data (HR and VHR) and in situ 
data (including ancillary information and in  situ measure-
ments) and for subsequent translation of LC to habitat maps. 
This system, named EO data for habitat monitoring (Lucas 
et al. 2014), is based on expert knowledge elicited from bota-
nists, ecologists, remote-sensing experts, and management 
authorities in order to monitor large and not accessible areas 
without any ground reference data. Ontologies are used to 
formally represent the expert knowledge (Arvor et  al. 2013). 
The FAO-LCCS and the GHC taxonomies, from which HabDir 
Annex I habitats can be defined, were used for describing LC/
LU and habitat categories (Tomaselli et al. 2013) and for sub-
sequent translation to habitats. In addition, BIO_SOS focused 
on the development of a modeling framework for (1) filling the 
gap between LC/LU and habitat domains (Blonda et al. 2012a) 
by coupling FAO-LCCS taxonomy with GHCs and EUNIS 
classification schemes and providing a reliable cost-effective 
knowledge-driven long-term biodiversity monitoring scheme 
of protected areas and their surrounds (Tomaselli et al. 2013, 
Adamo et al. 2014, Kosmidou et al. 2014, Lucas et al. 2014); (2) 
analyzing appropriate spatial and temporal scales of EO data 
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sources for pressure assessment in the context of existing refer-
ence frameworks for pressure assessment and trend extraction 
(Lang et al. 2014); and (3) handling uncertainty in habitat map-
ping (Petrou et al. 2014).

Public access web platforms integrate and showcase what is 
offered by MS.MONINA and BIO_SOS. These mainly include 
an online service portfolio with specific details on the ser-
vices to be offered and further information on the respective 
service cases. Web-GIS and Open Geospatial Consortium-
conform metadata geoportals, including an external quality 
evaluation module (fitness for use and fitness to purpose), 
contain all geospatial information (see Figure 19.11). A tool 
repository allows for searching, both thematically and spa-
tially, the available data within the consortium, which are 
needed by the methodological components and algorithms 
utilized by the partners for the respective image analysis and 
geospatial analysis tasks.
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FPAR		�  Fraction of Absorbed Photosynthetically 
Active Radiation

GO		  Geometric Optical
GORT		  Geometric Optical Radiative Transfer
GLAS		  Geospatial Laser Altimeter System
GEMI		  Global Environmental Monitoring Index
GIMMS		�  Global Inventory Monitoring and Modeling 

System
GVI		  Global Vegetation Index
GV		  Green Vegetation
GPP		  Gross Primary Productivity
HRVIR		  High-Resolution Visible Infrared
kNN		  k-Nearest Neighbor Imputation
LSP		  Land Surface Phenology
LAI		  Leaf Area Index
LUE		  Light Use Efficiency
MIR		  Middle Infrared
MODIS		�  Moderate-Resolution Imaging Spectroradiometer
MNDVI		  Modified NDVI
MSR		  Modified Simple Ratio
MISR		  Multiangle Imaging Spectroradiometer
MSS		  Multispectral Scanner Sensors
NBAR		  Nadir BRDF-Adjusted Reflectance
NASAEOS	 NASA Earth Observing System
NOAA		�  National Oceanic and Atmospheric 

Administration
NIR		  Near-infrared
NEE		  Net Ecosystem Exchange
NPP		  Net Primary Production
NAOMI		  New AstroSat Optical Modular Instrument
NLI		  Nonlinear Index
NPV		  Nonphotosynthetic Vegetation
NDMI		  Normalized Difference Moisture Index
NDVI		  Normalized Difference Vegetation Index
OLI		  Operational Land Imager
PNW		  Pacific Northwest
PRI		  Photochemical Reflectance index
POES		�  Polar-orbiting Operational Environmental 

Satellites
RF		  Random Forest
RSR		  Reduced SR
RDVI		  Renormalized Difference Vegetation Index
RBV		  Return Beam Vidicon
RMSE		  Root Mean Squared Error
SPOT		  Satellite Pourl’Observation de la Terre
SWIR		  Shortwave-infrared
SR		  Simple ratio
SARVI		�  Soil and Atmosphere-resistant Vegetation Index
SARVI2		�  Soil and Atmosphere-resistant Vegetation 

Index 2
SAVI		  Soil-adjusted Vegetation Index
SAVI1		  Soil-adjusted Vegetation Index 1
SOS		  Start of Season
Suomi NPP	 Suomi National Polar-orbiting Partnership
TOPS		�  Terrestrial Observation and Prediction System

TM		  Thematic Mapper
TIRS		  Thermal Infrared Sensors
NDVI3g		 Third-generation GIMMS NDVI
TRAC		�  Tracing Radiation and Architecture of 

Canopies
LandTrendr	 Trends in Disturbance and Recovery
VI		  Vegetation Index
VIIRS		  Visible Infrared Imaging Radiometer Suite
WDVI		  Weighted Difference Vegetation Index

20.1 I ntroduction

Vegetation is the primary producer in the terrestrial ecosystem. 
Vegetation absorbs the energy of electromagnetic radiation from 
the Sun and converts it to the energy that consumers in the eco-
system can use. As a result, vegetation is the foundation for nearly 
all the goods and services that terrestrial ecosystems provide to 
humanity. The advent of optical remote sensing revolutionized 
our ability to map the characteristics of vegetation wall-to-wall 
in space and to do so repeatedly, in a cost-efficient manner. Many 
of these vegetation parameters serve as key inputs to ecological 
models aiming to understand terrestrial ecosystem functions, at 
regional to global scales. This chapter summarizes the progress 
made in characterizing vegetation structure and its ecological 
functions with optical remote sensing. We first provide a brief 
review of the development of optical sensors designed primar-
ily for vegetation monitoring. Second, we synthesize the progress 
made in mapping the physical structure of vegetation with opti-
cal sensors, including vegetation cover, vegetation successional 
stages, biomass, leaf area index (LAI), and its spatial organiza-
tion, that is, leaf clumping. Third, we review the achievements 
made in understanding vegetation function with optical remote 
sensing, particularly vegetation primary productivity and related 
ecologically important functions. Primary production pro-
vides the energy that drives all subsequent ecosystem processes. 
Optical remote sensing has made it possible to estimate the pri-
mary productivity of vegetation over the entire Earth land surface 
(Running et al. 1994; Zhao et al. 2005).

20.2 � Brief History of Key Optical 
Sensors for Vegetation Mapping

Optical remote sensing is a technique that detects the proper-
ties of the Earth’s surface from space, using sensors that capture 
reflected radiation spanning the visible, near-infrared (NIR), 
and shortwave-infrared (SWIR) wavelengths (~0.4–2.5  µm) 
(Richards 2013). Different materials absorb and reflect light 
differently at various wavelengths. Thus, targets can be dis-
tinguished by their unique spectral reflectance signatures. 
Compared to water and bare soil, healthy vegetation generally 
absorbs more blue and red light in the visible spectrum for pho-
tosynthesis but reflects more NIR light (0.7–1.1 µm) to prevent 
tissue damage (Jones and Vaughan 2010). This unique spectral 
signature of vegetation is the key to monitoring vegetation struc-
ture and function with optical sensors. Since the first man-made 
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satellite (Sputnik 1) was launched in 1957, the development of 
artificial satellites, which provide the platform for optical sen-
sors, has significantly enhanced the collection of remotely sensed 
data and offers an efficient platform to obtain vegetation infor-
mation over large areas (Campbell 2002). Here, we briefly review 
the history of major optical sensors for the remote sensing of 
vegetation launched since the first International Symposium 
on Remote Sensing of Environment held at the University of 
Michigan in 1962. These programs for optical remote sensing, 
which follow in order of spatial resolution in this chapter, include 
National Oceanic and Atmospheric Administration (NOAA)/
Advanced Very-High-Resolution Radiometer (AVHRR), 
Moderate-Resolution Imaging Spectroradiometer (MODIS)/
Multiangle Imaging Spectroradiometer (MISR), Suomi National 
Polar-orbiting Partnership (Suomi NPP), Landsat, Satellite Pour 
l’Observation de la Terre (SPOT), and a series of commercial 
high-resolution satellites since 1999 (Figure 20.1).

20.2.1 NO AA/AVHRR Program

The AVHRR is a multichannel radiometer carried on the U.S. 
NOAA family of polar-orbiting operational environmental satel-
lites (POES) (Table 20.1; http://www.ospo.noaa.gov/Operations/
POES/index.html). The AVHRR sensor is active on two POES 
satellites in opposite orbits (ascending and descending), ensur-
ing that every place on Earth can be observed every 6 h. The first 
AVHRR carried sensors in four spectral channels on TIROS-N 
(launched in October 1978). This was subsequently improved to 
a five-channel sensor (AVHRR2) that was initially carried on 
NOAA-7 (launched in June 1981). The latest sensor is AVHRR3, 
with six channels, first carried on NOAA-15 (launched May 1998). 
All AVHRR sensors have the same spatial resolution of 1.09 km at 

nadir (Table  20.2). The primary purpose of AVHRR is to moni-
tor clouds and to measure the thermal emission of the Earth. 
However, the first two bands of AVHRR are sensitive to visible/
NIR radiation, which can be used to detect changes of terrestrial 
vegetation (Tucker et al. 1985, 2005; Gutman and Ignatov 1998). 
Based on NOAA/AVHRR, several long-term global vegetation 
index (GVI) datasets have been established, including NOAA/
NASA Pathfinder normalized difference vegetation index (NDVI) 
(1981–2000) (http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.
GES-DAAC/.PAL/.vegetation/.pal_ndvi.html), Global Inventory 
Monitoring and Modeling System (GIMMS) NDVI (1981–2011) 
(http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html), and NOAA’s 
GVI data (1981–2014) (http://www.ospo.noaa.gov/Products/land/
gvi/NDVI.html).
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Figure 20.1  History of major optical sensors for remote sensing of vegetation reviewed in this chapter. The red line and font indicate the commis-
sion date and related satellite, respectively. CHRS is the abbreviation of commercial high-resolution satellite. The two hemisphere images in lower left 
corner show the global vegetation growth in terms of normalized difference vegetation index derived from the Visible Infrared Imaging Radiometer 
Suite, instrument aboard the Suomi NPP satellite. (From http://www.nasa.gov/mission_pages/NPP/news/vegetation.html#.Ut3_LRAo7IU.)

Table 20.1  Summary of NOAA/POES Satellite Family

Satellite Launch Date Decommission Date Sensor 

TIROS-N Oct. 13, 1978 Jan. 30, 1980 AVHRR1
NOAA-6 Jun. 27, 1979 Nov. 16, 1986 AVHRR1
NOAA-7 Jun. 23, 1981 Jun. 07, 1986 AVHRR2
NOAA-8 Mar. 28, 1983 Oct. 31, 1985 AVHRR1
NOAA-9 Dec. 12, 1984 May 11, 1994 AVHRR2
NOAA-10 Sep. 17, 1986 Sep. 17, 1991 AVHRR1
NOAA-11 Sep. 24, 1988 Sep. 13, 1994 AVHRR2
NOAA-12 May 13, 1991 Dec. 15, 1994 AVHRR2
NOAA-14 Dec. 30, 1994 May 23, 2007 AVHRR2
NOAA-15 May 13, 1998 Present AVHRR3
NOAA-16 Sep. 21, 2000 Present AVHRR3
NOAA-17 Jun. 24, 2002 Apr. 10, 2013 AVHRR3
NOAA-18 May 20, 2005 Present AVHRR3
NOAA-19 Feb. 06, 2009 Present AVHRR3
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20.2.2  MODIS and MISR

As the centerpiece of NASA’s Earth Science Enterprise, the Earth 
Observing System consists of a coordinated series of polar-orbiting 
satellites for continuous observations of the Earth’s land, atmo-
sphere, and ocean that offers us a detailed understanding of the 
biosphere and the dynamics of global change (Justice et al. 2002; 
Xiong and Barnes 2006). The Terra and Aqua satellites, launched 
in December 1999 and May 2002, respectively, are two flagships of 
the Earth Observing System. The MODIS is a key scientific instru-
ment operating on both the Terra and Aqua satellites and is consid-
ered to be a major advance over the spectral, spatial, and temporal 
characteristics of previous sensors (Xiong and Barnes 2006). It has 
36 discrete spectral bands ranging from visible through thermal 
emission bands (wavelengths from 0.4 to 14.4 µm) and 3 ground 
spatial resolutions (250 m for bands 1 and 2, 500 m for bands 
3–7 and 1 km for bands 8–36) (Table 20.3). With complimentary 
morning (local time 10:30 AM for Terra) and afternoon (local time 
1:30 PM for Aqua) observations, the Terra and Aqua sensors can 
image the entire Earth within 2 days with a swath of 2330 km. The 
MODIS Characterization Support Team from NASA (http://mcst.
gsfc.nasa.gov/) is responsible for converting instrument responses 
(digital numbers) to the primary calibrated products (radiance 
and reflectance) (Xiong and Barnes 2006), from which over 50 
geophysical science products have been developed by the MODIS 
Science Team (https://lpdaac.usgs.gov/products/modis_prod-
ucts_table). The MODIS Ecosystem Products include vegetation 
index (VI) (Huete et al. 2002), LAI (Myneni et al. 2002), vegeta-
tion continuous fields (Hansen et al. 2003), gross and net primary 
productivity (GPP and NPP, respectively) (Zhao and Running 
2010), and global evapotranspiration (Mu et al. 2011), among oth-
ers. These products offer unprecedented perspectives of ecosystem 
structure and function of the biosphere.

The MISR is another innovative sensor on board the Terra sat-
ellite (http://www-misr.jpl.nasa.gov/). It is designed to measure 
the reflected solar radiation of the Earth’s system from nine dis-
crete viewing angles and four visible/NIR spectral bands (Diner 
et  al. 1998). The MISR instrument has nine digital cameras, 
with one pointing toward nadir and others pointing at forward 
and backward view angles of 26.1°, 45.6°, 60.0°, and 70.5°. For 
each direction, the cameras record reflected radiation in four 
spectral bands (blue, green, red, and NIR). During each orbit, 
MISR obtains a swath of imagery that is 360 km wide by about 
20,000 km long with spatial resolutions of 250 m at nadir and 

Table 20.2  Spectral Specifications of NOAA/AVHRR Sensors

Channel 
Number 

Ground 
Resolution 

(km) 
Spectral 

Range (µm) AVHRR1 AVHRR2 AVHRR3 

1 1.09 0.58–0.68 √ √ √
2 1.09 0.725–1.00 √ √ √
3A 1.09 1.58–1.64 √
3B 1.09 3.55–3.93 √ √ √
4 1.09 10.30–11.30 √ √ √
5 1.09 11.50–12.50 √ √

Table 20.3  Spectral and Spatial Resolutions of MODIS Sensors 
On Board Terra/Aqua

Channel 
Number 

Spectral 
Range (µm) Usage 

Ground 
Resolution (m) 

1 0.620–0.670 Land cover transformation, 
vegetation chlorophyll

250

2 0.841–0.876 Cloud amount, vegetation 
land cover transformation

250

3 0.459–0.479 Soil/vegetation differences 500
4 0.545–0.565 GV 500
5 1.230–1.250 Leaf/canopy differences 500
6 1.628–1.652 Snow/cloud differences 500
7 2.105–2.155 Cloud properties, land 

properties
500

8 0.405–0.420 Chlorophyll 1000
9 0.438–0.448 Chlorophyll 1000

10 0.483–0.493 Chlorophyll 1000
11 0.526–0.536 Chlorophyll 1000
12 0.546–0.556 Sediments 1000
13h 0.662–0.672 Atmosphere, sediments 1000
13l 0.662–0.672 Atmosphere, sediments 1000
14h 0.673–0.683 ChF 1000
14l 0.673–0.683 ChF 1000
15 0.743–0.753 Aerosol properties 1000
16 0.862–0.877 Aerosol properties, 

atmospheric properties
1000

17 0.890–0.920 Atmospheric properties, 
cloud properties

1000

18 0.931–0.941 Atmospheric properties, 
cloud properties

1000

19 0.915–0.965 Atmospheric properties, 
cloud properties

1000

20 3.660–3.840 Sea surface temperature 1000
21 3.929–3.989 Forest fires and volcanoes 1000
22 3.929–3.989 Cloud temperature, surface 

temperature
1000

23 4.020–4.080 Cloud temperature, surface 
temperature

1000

24 4.433–4.498 Cloud fraction, troposphere 
temperature

1000

25 4.482–4.549 Cloud fraction, troposphere 
temperature

1000

26 1.360–1.390 Cloud fraction (thin cirrus), 
troposphere temperature

1000

27 6.535–6.895 Midtroposphere humidity 1000
28 7.175–7.475 Upper troposphere humidity 1000
29 8.400–8.700 Surface temperature 1000
30 9.580–9.880 Total ozone 1000
31 10.78–11.28 Cloud and surface temperature, 

forest fires and volcanoes
1000

32 11.77–12.27 Cloud height, forest fires and 
volcanoes, surface 
temperature

1000

33 13.19–13.49 Cloud fraction, cloud height 1000
34 13.49–13.79 Cloud fraction, cloud height 1000
35 13.79–14.09 Cloud fraction, cloud height 1000
36 14.09–14.39 Cloud fraction, cloud height 1000
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275 m at other angles. The multiangle viewing strategy of MISR 
provides a unique opportunity to characterize the structure 
and dynamics of the atmosphere and land surface (Diner et al. 
1998). Among other applications, Terra/MISR has been used to 
retrieve aerosol distribution (Martonchik et al. 2002), measure 
cloud height (Davies and Molloy 2012), estimate LAI (Hu et al. 
2003), extract canopy structure (Chen et al. 2005b), and improve 
the classification of land cover (Liesenberg et al. 2007).

20.2.3  Suomi NPP/VIIRS

The Suomi NPP, as a major component of NOAA’s Joint Polar-
Orbiting Satellite System, was designed to provide continuity 
with NASA’s EOS (Justice et al. 2013). The satellite was launched 
on October 28, 2011, and was named after Verner E. Suomi, a 
meteorologist at the University of Wisconsin–Madison who 
is widely recognized as “the father of satellite meteorology” 
(http://www.nasa.gov/mission_pages/NPP/news/suomi.html). 
The Visible Infrared Imaging Radiometer Suite (VIIRS) is a key 
scanning radiometer on board Suomi NPP, which signifies a 
new era of moderate-resolution imaging capabilities following 
the legacy of AVHRR and MODIS (Cao et  al. 2013). VIIRS is 
designed to collect imagery of radiometric measurements for 
the Earth in wavelengths ranging from 0.4 to 12.5 μm (Oudrari 
et al. 2012). It has 22 spectral bands, including 5 imagery bands 
(I bands) with 375 m spatial resolution, 1 day–night band (DNB) 
with 750 m spatial resolution, and 16 moderate-resolution bands 
(M bands) with 750 m spatial resolution (Table 20.4). VIIRS has 

a large ground swath of about 3040 km and provides daily cov-
erage of the entire globe. After about 2 years of calibration and 
validation, the VIIRS data have achieved provisional maturity 
(Cao et al. 2013) and are now being used to produce more than 
20 land and cryosphere products by NOAA and NASA (Justice 
et al. 2013), including VI (Vargas et al. 2013), active fire (Csiszar 
et  al. 2014), surface albedo (Wang et  al. 2013), and nighttime 
light distribution (Miller et al. 2012).

20.2.4  Landsat Program

The U.S. Landsat program (http://landsat.usgs.gov) has been col-
lecting images of the Earth’s land surface for over four decades, 
providing the longest continuous archive of the Earth’s surface 
conditions (Markham and Helder 2012). The first Landsat sat-
ellite, originally named “Earth Resources Technology Satellite,” 
was launched in 1972. To date, eight Landsat satellites have 
been launched. All but Landsat 6 successfully reached orbit 
(Table 20.5). The most recent Landsat satellite, the eighth in 
the series, was launched in February 2013. The Return Beam 
Vidicon (RBV), a television camera carried on board Landsat 
1 through 3, obtained visible and NIR photographic images, 
while the Multispectral Scanner (MSS) sensors, which was 
carried on board Landsat 1 through 5, acquired digital images 
around the globe nearly continuously from July 1972 to October 
1992. Compared with MSS, RBV was rarely used scientifically 
but considered only for engineering evaluation purposes. It was 
replaced by the Thematic Mapper (TM) sensor on board Landsat 
4 and 5 satellites, which consisted of seven spectral bands with 
a 16-day repeat cycle and a spatial resolution of 30 m (the ther-
mal infrared band 6 was collected at 120 m spatial resolution). 
By the time of its decommission in November, 2011. Landsat 5 
had orbited the Earth for 28  years—an extraordinary success 
for NASA—far exceeding its original 3-year design life (https://
landsat.usgs.gov/Landsat5Tribute.php).

On Landsat 7, the TM sensor was replaced by the Enhanced 
Thematic Mapper Plus (ETM+), which included the addition of a 
panchromatic band 8 at 15 m spatial resolution (Table 20.6) that 
can be used to sharpen the other bands. However, the Scan Line 

Table 20.4  Spectral and Spatial Resolutions of Suomi NPP/VIIRS

Channel 
Number Spectral Range (µm) Description 

Ground 
Resolution (m) 

I1 0.6–0.68 Visible/reflective 375
I2 0.85–0.88 NIR 375
I3 1.58–1.64 SWIR 375
I4 3.55–3.93 Medium-wave IR 375
I5 10.5–12.4 Long-wave IR 375
DNB 0.5–0.9 Visible/reflective 750
M1 0.402–0.422 Visible/reflective 750
M2 0.436–0.454 750
M3 0.478–0.488 750
M4 0.545–0.565 750
M5 0.662–0.682 750
M6 0.739–0.754 NIR 750
M7 0.846–0.885 750
M8 1.23–1.25 SWIR 750
M9 1.371–1.386 750
M10 1.58–1.64 750
M11 2.23–2.28 750
M12 3.61–3.79 Medium-wave IR 750
M13 3.97–4.13 750
M14 8.4–8.7 Long-wave IR 750
M15 10.26–11.26 750
M16 11.54–12.49 750

Table 20.5  Landsat Satellites Launched

Satellite 
Launch 

Date 
Decommission 

Date 

Orbit 
Height 
(km) 

Revisit 
Time 

(Days) Sensors 

Landsat 1 Jul. 1972 Jan. 1978 917 18 RBV/MSS
Landsat 2 Jan. 1975 Feb. 1982 917 18 RBV/MSS
Landsat 3 Mar. 1978 Mar. 1983 917 18 RBV/MSS
Landsat 4 Jul. 1982 Dec. 1993 705 16 MSS/TM
Landsat 5 Mar. 1984 Dec. 2012 705 16 MSS/TM
Landsat 6 Oct. 1993 Failed — — —
Landsat 7 Apr. 1999 Present 705 16 ETM+
Landsat 8 Feb. 2013 Present 705 16 OLI/TIRS

RBV, return beam vidicon; MSS, multispectral scanner; TM, thematic 
mapper; ETM+, enhanced thematic mapper plus; OLI, operational land 
imager; TIRS, thermal infrared sensor.
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Corrector on the satellite failed in May of 2003, causing a perma-
nent loss of about 25% of data toward the scanning edges in all 
subsequent Landsat 7 images. Fortunately, the successful launch 
of Landsat 8 in 2013 ensured the continuity of Landsat data. The 
Operational Land Imager (OLI) sensors on board Landsat 8 include 
refined versions of the seven TM and ETM+ heritage bands, along 
with two new bands: a deep blue band for coastal/aerosol studies 
and a SWIR band for cirrus cloud detection (Table 20.6). Landsat 8 
Thermal Infrared Sensors (TIRS) are composed of two thermal 
bands with a spatial resolution of 100 m (Table 20.6). Both OLI 
and TIRS sensors provide improved signal-to-noise radiometric 

performance quantized over a 12-bit dynamic range compared 
with the 8-bit instruments for TM and ETM+ sensors.

Conceived in the 1960s, the Landsat program has kept improv-
ing its imaging capability and quality while ensuring continu-
ity over the full instrument record (Loveland and Dwyer 2012). 
To date, it has provided the longest and most geographically com-
prehensive record of the Earth’s surface. Thanks to a data policy 
change in 2008, all new and archived Landsat images have been 
made freely available to the public by the U.S. Geological Survey 
(Woodcock et al. 2008), which has spurred a dramatic increase in 
scientific applications using Landsat imagery (Wulder et al. 2012).

20.2.5  SPOT Program

The SPOT program is a joint Earth observing satellite family 
initiated by France in partnership with Belgium and Sweden 
(http://www.vgt.vito.be/). Since 1986, six SPOT satellites have 
been successfully launched (Table 20.7). Currently, SPOT 5 and 6 
are operational. The High-Resolution Visible (HRV) sensor with 
one panchromatic (10 m spatial resolution) and three multispec-
tral bands (20 m spatial resolution; green, red, NIR) were car-
ried on board SPOT 1 through 3 (Table 20.8). They have a scene 
size of 60 × 60 km2 and a revisit interval of 1–4 days, depending 
on the latitude. SPOT 4 featured the High-Resolution Visible 
Infrared (HRVIR) instrument, which was similar to the HRV 
but with the addition of a SWIR band and a narrower panchro-
matic band (Table 20.8). SPOT 5 carries the High-Resolution 
Geometrical sensor (derived from HRVIR), offering a finer reso-
lution of 2.5–5 m in panchromatic mode and 10 m in multispec-
tral mode (20 m for SWIR) (Table 20.8). SPOT 6 was launched 
in September 2012, carrying the New AstroSat Optical Modular 
Instrument (NAOMI). NAOMI is capable of imaging the Earth 
with a resolution of 1.5 m panchromatic and 6 m multispectral 
(blue, green, red, NIR) with daily revisit capability, providing 
the finest level of spatial detail in the history of the SPOT fam-
ily of satellites (Table 20.8). It is worth noting that the vegeta-
tion sensor was carried on board SPOT 4 and 5 (launched in 
1998 and 2002, respectively). SPOT/vegetation was designed to 
provide daily coverage of the entire globe with a spatial resolu-
tion of 1.15 km. Unlike many other commercial high-resolution 

Table 20.7  Summary of SPOT Satellite Family

Satellite 
Launch 

Date 
Decommission 

Date 

Orbit 
Height 
(km) 

Revisit 
Time 
(Day) Sensors 

SPOT 1 Feb. 1986 Dec. 1990 832 1–4 HRV
SPOT 2 Jan. 1990 July 2009 832 1–4 HRV
SPOT 3 Sep. 1993 Nov. 1997 832 1–4 HRV
SPOT 4 Mar. 1998 July 2013 832 1–4 Vegetation/

HRVIR
SPOT 5 May 2002 Present 832 1–4 Vegetation/

HGR
SPOT 6 Sep. 2012 Present 694 1–4 NAOMI

HRV, high-resolution visible; HRVIR, high-resolution visible infrared; 
NAOMI, new AstroSat optical modular instrument.

Table 20.6  Spectral and Spatial Resolutions of Landsat Sensors

Sensor 
Channel 
Number Spectral Range (µm) Description 

Ground 
Resolution 

(m) 

RBVa 1 4.75–5.75 Blue 80
2 5.80–6.80 Orange–red 80
3 6.90–8.30 Red–NIR 80

MSS 4 0.5–0.6 Green 57 × 79
5 0.6–0.7 Red 57 × 79
6 0.7–0.8 NIR 57 × 79
7 0.8–1.1 NIR 57 × 79
8b 10.4–12.6 Thermal 57 × 79

TM 1 0.45–0.52 Blue 30
2 0.52–0.60 Green 30
3 0.63–0.69 Red 30
4 0.76–0.90 NIR 30
5 1.55–1.75 SWIR 30
6 10.40–12.50 Thermal 120
7 2.09–2.35 SWIR 30

ETM+ 1 0.45- 0.52 Blue 30
2 0.52–0.60 Green 30
3 0.63–0.69 Red 30
4 0.77–0.90 NIR 30
5 1.55–1.75 SWIR 30
6 10.40–12.50 Thermal 60
7 2.08–1.35 SWIR 30
8 0.52–0.90 Pan 15

OLI 1 0.43–0.45 Deep blue 30
2 0.45–0.51 Blue 30
3 0.53–0.59 Green 30
4 0.64–0.67 Red 30
5 0.85–0.88 NIR 30
6 1.57–1.65 SWIR1 30
7 2.11–2.29 SWIR2 30
8 0.50–0.68 Panchromatic 15
9 1.36–1.38 Cirrus clouds 30

TIRS 10 10.60–11.19 Thermal 100
11 11.50–12.51 Thermal 100

Note:	 See Table 20.5 for sensor abbreviations.
NIR, near infrared; SWIR, shortwave infrared; pan, panchromatic.
a	Landsat 3 had two RBV cameras with 40 m ground resolution.
b	Only Landsat 3 had this thermal channel.
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images, some SPOT/vegetation products are publicly available. 
The 10-day 1  km global NDVI, for example, is available from 
May 1998 to the present (http://www.vgt.vito.be/) and has been 
valuable for studying agriculture, deforestation, and other veg-
etation changes on a broad scale (Kamthonkiat et al. 2005; Liu 
et al. 2010).

20.2.6 �C ommercial High-Resolution 
Satellite Era

IKONOS, which was launched in 1999, is the first high-resolution 
commercial Earth observation satellite that collects imagery at 
submeter (0.82 m for panchromatic band) spatial resolution. This 
marked the start of a new era of high-resolution Earth obser-
vation by commercial satellites, which may revolutionize the 
future of the entire photogrammetric and remote sensing com-
munity (Dial et al. 2003). After IKONOS, a series of commercial 
civilian satellites with optical sensors were launched to produce 
panchromatic images with spatial resolutions ranging from less 
than ½ to 3 m and multispectral images with spatial resolution 
ranging from 2 to 10 m (Table 20.9). The finer resolution pan-
chromatic bands can be used to sharpen the coarser-resolution 
multispectral bands, increasing the spatial detail of multispec-
tral images (Zhang and Mishra 2012). Based on the previously 
launched satellites IKONOS and OrbView-3, the U.S. commercial 

company GeoEye, Inc. (merged with DigitalGlobe since January 
2013) launched by far the finest-spatial-resolution civilian Earth 
observation satellite (GeoEye-1) in September 2008. GeoEye-1 
provides 0.41 m panchromatic and 1.65 m multispectral (blue, 
green, red, NIR) imagery and features a revisit time of less 
than 3 days with a swath of 22.2 km. Based on QuickBird and 
WorldView-1, the U.S. company DigitalGlobe, Inc. launched 
the first high-resolution commercial satellite with eight multi-
spectral imaging bands in October 2009. This satellite, known as 
WorldView-2, is capable of collecting panchromatic imagery at 
0.46 m spatial resolution and multispectral (coastal, blue, green, 
yellow, red, red edge, NIR1 and NIR2) imagery at 1.84 m spatial 
resolution with an average revisit time of 1.1 days. Compared to 
the four standard multispectral bands (blue, green, red, NIR), 
the additional bands increase the spectral information used for 
vegetation analysis at high spatial resolutions. Depending on 
budget and usage purposes, other high-resolution commercial 
satellite images that can be employed include France’s Pleiades-
1A/B (0.5 m pan, 2 m multispectral), Korea’s KOMPSAT-2 (1 m 
pan, 4 m multispectral), China–Taiwan’s FORMOSAT-2 (2 m 
pan, 4 m multispectral), and Japan’s Advanced Land Observing 
Satellite (ALOS) (2.5 m pan, 10 m multispectral), among others.

20.2.7 � Future Direction of Optical 
Remote Sensing

Optical sensors are poised to acquire increasingly high-quality 
data across a wide range of spatial, temporal, and spectral reso-
lutions. For instance, the U.S. DigitalGlobe, Inc. is planning to 
launch its next superspectral, high-resolution commercial satel-
lite named WorldView-3 in 2014. Operating at an expected alti-
tude of 617 km, WorldView-3 will provide 0.31 m panchromatic 
resolution, 1.24 m multispectral resolution, and 3.7 m SWIR 
resolution of the Earth with an average revisit time of less than 
1 day (http://www.digitalglobe.com). Meanwhile, the European 
Space Agency (ESA) is carrying out one of the most ambitious 
Earth observation program to date, called Copernicus. To sat-
isfy the operational needs of Copernicus, up to 30 Sentinel satel-
lites with various sensors will be developed (http://www.esa.int/
ESA). The first Sentinel satellite (S1) had been successfully put in 
orbit in April 2014. Undoubtedly, integrating multiple sources of 
optical remote sensing will offer a valuable opportunity for the 
scientific community to investigate and understand the struc-
tures and functions of terrestrial ecosystems at different spatial 
and temporal resolutions (Weng 2011; Richards 2013).

20.3 �O ptical Remote Sensing 
of Vegetation Structure

Optical remotely sensed signals originate from the photons 
in the solar spectrum after interactions with the land surface. 
Remote sensing signals over vegetated areas are determined by 
the abundance and spatial organization of vegetation (Li and 
Strahler 1985; Asrar et  al. 1992). Therefore, information about 
vegetation structure can be derived from optical remotely sensed 

Table 20.8  Spectral and Spatial Resolutions of Optical Sensors 
On Board SPOT Satellites

Sensor Mode Description 
Spectral 

Range (µm) 

Ground 
Resolution 

(m) 

HRV Multispectral Green 0.50–0.59 20
Red 0.61–0.68 20
NIR 0.78–0.89 20

Panchromatic Pan 0.50–0.73 10
HRVIR Multispectral Green 0.50–0.59 20

Red 0.61–0.68 20
NIR 0.79–0.89 20
MIR 1.58–1.75 20

Panchromatic Pan 0.61–0.68 10
HGR Multispectral Green 0.50–0.59 10

Red 0.61–0.68 10
NIR 0.79–0.89 10
SWIR 1.58–1.75 20

Panchromatic Pan 0.51–0.73 5/2.5
NAOMI Multispectral Blue 0.45–0.53 6

Green 0.53–0.59 6
Red 0.63–0.70 6
NIR 0.76–0.89 6

Panchromatic Pan 0.45–0.75 1.5
Vegetation Multispectral Blue 0.43–0.47 1150

Red 0.61–0.68 1150
NIR 0.78–0.89 1150
SWIR 1.58–1.75 1150

Note:	 Sensor abbreviations seen in Table 20.7.
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data. In this section, we review the capabilities of optical remote 
sensing in deriving information about vegetation cover, forest 
successional stage, LAI, and biomass, all of which are essential 
biophysical information to understand terrestrial ecosystem 
functions.

20.3.1  Vegetation Cover

Vegetation cover is perhaps the simplest measure of vegetation 
structure that can be derived from remote sensing. The most 
common approach for mapping vegetation cover from remotely 
sensed imagery is to assign a single class to each pixel. Vegetation 
cover can then be estimated as the percentage of pixels classified 
as vegetation. This approach makes an implicit assumption that 

each pixel represents a homogenous cover type. This assump-
tion may be a reasonable one when the pixel size is significantly 
smaller than the average vegetation patch size. However, this 
assumption is rarely valid for coarse-resolution remotely sensed 
imagery because coarse-resolution pixels are generally com-
prised a mixture of several cover types. Assuming homogeneous 
land cover composition at the pixel level can lead to substantial 
errors in estimates of areal abundance (Foody and Cox 1994; 
Moody and Woodcock 1994).

More accurate estimation of vegetation cover from remotely 
sensed imagery is usually based on subpixel land cover compo-
sition, that is, the fraction of a pixel that is covered by vegeta-
tion. The fractional vegetation cover (fc) concept, introduced by 
Deardorff (1978), is a key component of the current generation 

Table 20.9  Major Commercial High-Resolution Satellites Since 1999

Satellite 
Year 

Launched Country 
Pan Band (µm)/Ground 

Resolution (m) 
Multispectral Bandsb Ground 

Resolution (m) 
Swath 
(km) 

Revisit Time 
(Day) 

IKONOS 1999 United States (0.45–0.90)
0.82

(Blue, green, red, NIR)
4

11.3 × 11.3 3–4

QuickBird 2001 United States (0.405–1.053)
0.61

(Blue, green, red, NIR)
2.44

16.5 × 16.5 1–3.5

OrbView-3 2003 United States (0.45–0.90)
1

(Blue, green, red, NIR)
4

8 × 8 1–3

FORMOSAT-2 2004 China–Taiwan (0.45–0.90)
2

(Blue, green, red, NIR)
4

24 × 24 1

CartoSat-1 2005 India (0.5–0.85)
2.5

— 25 × 25 5

ALOS 2005 Japan (0.52–0.77)
2.5

(Blue, green, red, NIR)
10

70 × 70 2

EROS-B 2006 Israel (0.5–0.9)
0.7

— 7 × 7 5–6

KOMPSAT-2 2006 Korean (0.50–0.90)
1

(Blue, green, red, NIR)
4

15 × 15 1–3

WorldView-1 2007 United States (0.40–0.90)
0.46a

— 17.7 × 17.7 1–5

GeoEye-1 2008 United States (0.45–0.90)
0.41a

(Blue, green, red, NIR)
1.65

22.2 × 22.2 1–3

RapidEye 2008 German — (Blue, green, red, NIR)
5

77 × 77 1

WorldView-2 2009 United States (0.45–0.80)
0.46a

(Coastal, blue, green, yellow, 
red, red edge, NIR1 and 
NIR2)c

1.85

16.4 × 16.4 1–5

Pleiades-1A 2011 France (0.48–0.83)
0.5

(Blue, green, red, NIR)
2

20 × 20 1

SPOT6 2012 France (0.450–0.745)
1.5

(Blue, green, red, NIR)
5

60 × 60 1–3

ZY-3 2012 China (0.50–0.80)
2.1–3.5

(Blue, green, red, NIR)
6

52 × 52 3–5

Pleiades-1B 2012 France (0.48–0.83)
0.5

(Blue, green, red, NIR)
2

20 × 20 1

GF-1 2013 China (0.45–0.90)
2

(Blue, green, red, NIR)
8

60 × 60 4

a	Due to U.S. Government Licensing, the imagery will be made available commercially at ground resolution of 0.5 m.
b	Different satellites may have slightly different spectral ranges for each of their multispectral bands.
c	 The spectral ranges for WorldView-2 are 0.40–45 µm (coastal), 0.45–0.51 µm (blue), 0.51–0.58 µm (green), 0.585–0.625 µm (yellow), 

0.63–0.69 µm (red), 0.705–0.745 µm (red edge), 0.77–0.895 µm (NIR1), and 0.86–1.04 µm (NIR2), respectively.
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of climate models (Zeng et al. 2000). Many methods have been 
proposed to derive fc from remotely sensed imagery.

20.3.1.1  Regression

A common approach to estimate vegetation fraction cover 
or percent tree cover is to develop an empirical relationship 
between ground-based measurements with remotely sensed 
signals, such as spectral VIs (e.g., NDVI, enhanced VI [EVI]) 
or suites of other remotely sensed measurements. A variety of 
model types have been used for this purpose, including ordinary 
least squares regression (Jiapaer et al. 2011), generalized linear 
models (Schwarz and Zimmermann 2005), stepwise multiple 
regression (Cohen et  al. 2001), reduced major axis regression 
(Hayes et  al. 2008), and a variety of machine learning meth-
ods such as decision trees and neural networks (NNs) (Colditz 
et al. 2011; Verrelst et al. 2012). At the global scale, the MODIS 
Vegetation Continuous Fields product (MOD44B) estimates 
subpixel percentages of tree cover, nontree vegetation cover, and 
bare ground at 250 m spatial resolution using regression trees 
and a large suite of metrics calculated from MODIS reflectance 
data. The algorithm estimates a mean vegetation cover for each 
node in the regression tree and then uses a linear model fit to the 
independent variable to fine-tune the tree cover estimation for 
each node (Hansen et al. 2002, 2003, 2005).

20.3.1.2  Fuzzy Classification

In a typical application of supervised classification of remotely 
sensed imagery, a single land cover/land use class is assigned to 
each pixel based on its spectral similarity to training classes (so-
called “hard” classifiers). Some of these classifiers can also be 
modified to predict gradients of class membership—“fuzzy” or 
“soft” classifications—that provide a relative measure of the sim-
ilarity of the pixel spectral signature to the class signature. The 
posterior probabilities from maximum likelihood classifiers, for 
example, have been used to estimate subpixel land cover frac-
tions, though with limited success (Bastin 1997). Artificial NNs, 
frequently used in hard classifications, have also been used for 
deriving subpixel membership functions (Foody 1996; Atkinson 
et al. 1997).

Some classifiers, such as the fuzzy c-means algorithm, are 
specifically designed to provide fuzzy membership functions 
(Foody and Cox 1994). In these approaches, each pixel gener-
ally receives a membership value (ranging from 0 to 1) for each 
class, with the membership values summing to 1. Relatively 
pure pixels are likely to receive large membership values for a 
single class, while mixed pixels are more likely to receive inter-
mediate values for multiple classes. The relationship between 
fuzzy membership values and subpixel land cover fractions can 
be further improved through a simple regression model based 
on reference data (Foody and Cox 1994). Fractional land cover 
obtained using these fuzzy classifiers generally compares favor-
ably with other methods and provides considerable improve-
ment in areal estimates of forest cover over those obtained from 
hard classifications (Foody and Cox 1994; Atkinson et al. 1997; 
Bastin 1997).

20.3.1.3 � Mixture Models with Spectral 
Vegetation Indices

Simple two-class mixture models typically assume that pixels in 
the natural environment are composed of vegetation and soil back-
ground. The radiance received at the satellite sensor is therefore 
assumed to be a mixture of the spectral signatures of vegetation and 
soil, weighted by their respective fractions. Gutman and Ignatov 
(1998) proposed a simple linear mixture model based on NDVI to 
estimate the proportions of vegetation and soil within a pixel:

	
fc

NDVI NDVI

NDVI NDVI
s

v s

= −
−

	 (20.1)

where
NDVI is the VI for a given pixel
NDVIv and NDVIs are the VIs corresponding to pixels com-

pletely covered with dense vegetation and soil, respectively

Other studies have suggested that multiple scattering in vegeta-
tion canopies can result in nonlinear relationships between fc 
and NDVI and have therefore proposed similar alternative mod-
els (Carlson and Ripley 1997):

	
fc

NDVI NDVI

NDVI NDVI
s

v s

= −
−











2

	 (20.2)

Equation 20.1 has been applied for global scale estimation of 
fc (Zeng et  al. 2000), with NDVI derived from the maximum 
12-month NDVI of each pixel in AVHRR imagery, NDVIv com-
puted separately for each vegetated land cover class in the IGBP 
database based on NDVI histograms, and a globally uniform 
NDVIs of 0.05 (corresponding to the fifth percentile of the NDVI 
histogram for the barren or sparsely vegetated category). Results 
from this model were comparable with, but systematically less 
than, fc calculated from a more complex global linear mixture 
model (DeFries et al. 1999, 2000).

20.3.1.4  Spectral Mixture Analysis

The procedure described in the previous section is a special case 
of a more general technique called spectral mixture analysis 
(SMA). The generalized formulation of SMA techniques can be 
represented in matrix notation as

	 x = Mf + e,	 (20.3)

where
x is a column vector of the observed reflectance (with one ele-

ment per spectral band)
M is a matrix of spectral endmembers (with each column 

representing the spectral signature of pure pixels for each 
endmember)

f is a column vector of subpixel proportions for each 
endmember

e is a column vector of error residuals
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Once x and M are known, Equation 20.3 can be inverted and 
solved for the unknown f using a variety of techniques (includ-
ing ordinary least squares), typically with the constraint that the 
sum of elements in f equals unity and each element takes a value 
within (0,1) (Somers et al. 2011).

The major challenge in the use of SMA is the selection of appro-
priate endmembers and their spectral signatures. Endmembers 
can be derived either directly from remotely sensed imagery 
(image endmembers) (e.g., DeFries et  al. 1999; Song 2004) or 
from field or laboratory measurements (e.g., Adams et al. 1995; 
Roberts et  al. 1998). The number of endmembers that can be 
used is limited by the dimensionality of the remotely sensed 
image data. In the case of Landsat imagery, for example, SMA 
techniques are generally limited to 3–4 endmembers. In many 
complex landscapes, 3–5 endmembers may be insufficient to 
represent the spectral and spatial variability within an image. 
A  variety of techniques exist to account for endmember vari-
ability (reviewed in Somers et al. 2011), including the multiple 
endmember SMA technique (Roberts et  al. 1998), in which 
endmember models are selected separately for each pixel in the 
image from a large library of spectral endmembers to construct 
numerous candidate models, from which the “best” candidate 
model is selected for each pixel to perform SMA. Somers et al. 
(2011) suggest that these types of iterative endmember selec-
tion approaches can provide a more effective representation of 
endmember variability than simple SMA approaches (in which 
endmember signatures are assumed constant across the entire 
image). Song (2005) developed the Bayesian spectral mixture 
analysis (BSMA) to account for endmember signature variation 
when estimating fc in a pixel. The endmember spectral signa-
ture in BSMA is represented by a probability mass function 
instead of a constant. Deng and Wu (2013) further developed 
an algorithm that adaptively generates endmember spectral 
signatures over space to account for endmember spectral sig-
nature variations.

20.3.2  Forest Successional Stages

Forest succession can be defined as the change in the 3D archi-
tecture and species composition of forest communities through 
time (Pickett et al. 2013). Successional stage serves as a useful 
proxy for forest age, as well as competition-mediated demo-
graphic and structural development (Peet and Christensen 
1988). Successional processes have a profound impact on the 
provision of ecological goods and services including produc-
tivity (Gower et  al. 1996), nutrient cycling (Law et  al. 2001), 
and biodiversity (Denslow 1980). Though succession is a con-
tinuous process, most models characterize succession as a 
four-stage process including (1) stand initiation/establishment, 
(2) stem exclusion/thinning, (3) understory reinitiation/tran-
sition, and (4) old growth/steady state (Peet and Christensen 
1987; Oliver and Larson 1996). Remote sensing technologies, 
including physical and empirical-based models, offer an effi-
cient method for monitoring forest succession over large spa-
tial extents.

20.3.2.1  Physical-Based Models

Physical-based models simulate vegetation canopy reflectance 
based on the physical principles of interaction among incoming 
solar radiation and canopy structural elements. Forward models 
like the Li–Strahler model (Li and Strahler 1985) have proven 
useful for understanding the relationship between vegetation 
structure and canopy reflectance. The Li–Strahler model is a 
geometric–optical model that simulates canopy reflectance as 
viewed by the sensor based on the weighted average of individual 
scene components within a pixel created by the Sun–tree crown 
geometry. This model can be inverted to estimate key canopy 
structure parameters that manifest successional stage, including 
mean crown size and canopy cover (Franklin and Strahler 1988; 
Wu and Strahler 1994).  Li et al. (1995) improved the Li-Strahler 
model by representing tree crowns in the Geometric Optical 
(GO) model as ellipsoids rather than cones and incorporating 
multiple scattering of photons with a turbid medium Radiative 
Transfer (RT) model to become the GORT model.

Song et  al. (2002) coupled the GORT model with a forest 
succession model ZELIG (Urban 1990), which simulates stand 
growth and development, to understand how forest succession 
changes in the spectral/temporal domain. Using this hybrid 
model to simulate Landsat TM reflectance of stand succession 
from open conditions to young, mature, and old-growth stages, 
they found forest succession produces highly nonlinear tempo-
ral trajectories in the tasseled cap brightness/greenness space. 
The nonlinear spectral/temporal trajectory pattern produced by 
the GORT–ZELIG simulation compared well with that derived 
from a time series of Landsat TM images and stand age informa-
tion from Forest Inventory and Analysis (FIA) stand data col-
lected by the U.S. Forest Service (Song et al. 2007).

20.3.2.2 E mpirical-Based Approaches

Empirical-based approaches to the remote sensing of forest suc-
cession include (1) indirect space-for-time substitutions using 
single or multidate imagery and (2) direct monitoring of succes-
sional change using multitemporal change detection and time 
series analysis. While the former is more effective at distinguish-
ing successional stands over large landscapes, the latter is better 
adapted to capture ongoing successional change in individual 
stands. Numerous studies show both approaches to produce 
robust results, though factors of uncertainty remain, such as 
atmospheric and ground conditions as well as the confounding 
effects of topography, Sun and view angles, and phenology (Song 
and Woodcock 2003).

20.3.2.2.1  Space-for-Time Substitution
Given that the short historical record of remotely sensed imag-
ery is often insufficient to capture temporal processes of forest 
succession that could stretch over centuries, space-for-time sub-
stitution uses stands in different successional stages at different 
locations in space to construct a proxy successional trajectory for 
a single stand through time. This approach is particularly useful 
for distinguishing mature and old-growth forests. For example, 
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Fiorella and Ripple found most raw Landsat TM bands to be 
inversely correlated with forest age in Pacific Northwest (PNW), 
with mean TM spectral values tending to be lower for old-
growth stands compared with those for mature stands (Fiorella 
and Ripple 1993a,b). Jakubauskas (1996) found a nonlinear trend 
in TM spectral reflectance from early to late successional forests 
in Wyoming resulting from the combined effects of overstory 
canopy development, increasing canopy shadow, and under-
story conditions. Spectral indices have likewise proven effec-
tive at distinguishing successional stages. For instance, TM 4/5 
ratio (Fiorella and Ripple 1993a) and Tasseled Cap wetness have 
been used to distinguish successional stage in the conifer forests 
of the PNW (Cohen and Spies 1992; Fiorella and Ripple 1993b; 
Cohen et al. 1995), while the NDVI/ETM+ band 5 ratio success-
fully distinguished four successional stages of tropical second-
ary forests in Brazil (Vieira 2003).

Sabol et al. (2002) mapped structural development and stand 
age in Washington, United States, using an SMA approach con-
sisting of four spectral endmembers: green vegetation (GV), 
nonphotosynthetic vegetation (NPV), soil, and shade (topo-
graphic shading and canopy shadows). They found successional 
stage to follow a nonlinear trajectory, characterized by high NPV 
from slash after clear-cut, to high GV during canopy closure, 
and finally to higher shade fractions as forests mature and gaps 
develop. Other techniques using the space-for-time substitution 
approach include those utilizing spatial predictors. Cohen et al. 
(1990) identified crown-gap patterning characteristic of different 
successional stages in Douglas-fir forests by interpreting semi-
variograms of DN values at different spatial resolutions. They 
found a pronounced periodicity for the more spatially clumped 
old-growth crowns compared with the more texturally homo-
geneous early successional stands. Cohen and Spies (1992) com-
pared spatial versus spectral variables to predict stand structural 
attributes in Douglas-fir forests, finding the most robust results 
using textural measures from a 10 m panchromatic SPOT HRV 
image.

Liu et al. (2008) demonstrated the advantages of multitempo-
ral versus single-date Landsat TM images to distinguish succes-
sional groups in the PNW, a result corroborated by others (Song 
et  al. 2007). Multitemporal Landsat imagery has been used to 
evaluate tropical secondary forest regrowth in Brazil (Steininger 
1996) and distinguish secondary forests from agricultural lands 
and old-growth forests in southern Costa Rica (Helmer et  al. 
2000). Jiang et al. (2004) used a dense stack of Landsat ETM+ 
images for successional classification in the PNW, achieving 
high accuracy for late-seral forests. Bergen and Dronova (2007) 
used multitemporal Landsat ETM+ data to demonstrate the 
relationship between ecological land units and the successional 
pathways of hardwood forests in northern Michigan.

20.3.2.2.2  �Multitemporal Change Detection 
and Time Series Analysis

Multitemporal imagery can be used to capture successional 
processes by assessing change at the stand/pixel level between 
two or more dates. While this approach circumvents errors 

from spatial extrapolation in the space-for-time substitution 
approach, observation of successional development is limited 
by the temporal extent of the satellite record. In addition, the 
success of time series analysis in monitoring subtle successional 
change over time ultimately hinges on the successful calibra-
tion of the image series (Song and Woodcock 2003; Schroeder 
et al. 2006).

In a classic paper on the subject, Hall et al. (1991) used Landsat 
MSS images from 1973 and 1983 to infer transition rates in eco-
logical states associated with forest succession in the boreal for-
ests of Minnesota, United States. McDonald et al. (2007) used 
change vector analysis to validate the prediction of successional 
models (e.g., Oosting 1942) that predict the transition from 
pine to hardwood forests in North Carolina using a Landsat 
time series from 1986 and 2000. Brandt et al. (2012) employed 
MSS and TM/ETM+ images from 1974 and 2009 to distinguish 
successional pathways differentially affected by anthropogenic 
pressure in Yunnan, China.

Provided forest stands were initiated within the satellite record 
for the area in question, one approach to infer the approximate 
age for primary (Lawrence and Ripple 1999) and secondary for-
est (Cohen et al. 2002; Lucas et al. 2002; Schroeder et al. 2007) is 
to estimate time since the last stand-replacing disturbance. More 
recently, a number of time series methods have been developed 
to automate forest disturbance and recovery monitoring in early 
successional forests by exploiting the relatively long and grow-
ing archive available from the Landsat and Landsat-like family 
of sensors. The central premise of this approach is that changes 
in vegetation cover such as disturbance and early successional 
regrowth leave a distinct temporal signal in spectral space that 
can be identified to derive metrics such as disturbance date and 
intensity, as well as regeneration rate (Healey et al. 2005; Kennedy 
et al. 2007). Prominent examples of such automated approaches 
include the vegetation change tracker (Huang et  al. 2010), the 
Landsat-based detection of Trends in Disturbance and Recovery 
(LandTrendr) algorithm (Kennedy et  al. 2010), and TimeSync 
(Cohen et al. 2010), a software tool used to aid in image interpre-
tation and validation of time series products. LandTrendr was 
used to predict current forest structure attributes based on dis-
turbance history, with Landsat-derived predictors performing 
comparably with, and in some cases better than, LiDAR-based 
models (Pflugmacher et al. 2012). More recently, forest distur-
bance detection algorithms have employed multisensor fusion to 
provide near real-time vegetation change monitoring (Zhu et al. 
2012b; Xin et al. 2013).

20.3.3 � Leaf Area Index and Clumping Index

Since a leaf surface is a substrate on which major physical and 
biological processes of plants occur, LAI is arguably the most 
important vegetation structural parameter and is indispensable 
for all process-based models for estimating terrestrial fluxes of 
energy, water, carbon, and other masses. It is therefore of inter-
est not only to the remote sensing community that produces LAI 
maps but also to ecological, hydrological, and meteorological 
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communities that use LAI products for various modeling pur-
poses (Sellers et al. 1997; Dai et al. 2003; Chen et al. 2005a).

20.3.3.1 � Definitions and Ground 
Measurement Techniques

LAI is defined as one-half the total (all-sided) leaf area per unit 
ground surface area (Chen and Black 1992; see also review 
by Jonckheere et  al. 2004). It is often indirectly measured 
using optical instruments that acquire transmitted radiation 
through a plant canopy, from which the canopy gap fraction 
is derived. The canopy gap fraction, P(θ), at zenith angle θ, is 
related to the plant area index, denoted as Lt, which includes 
both green leaves and nongreen materials such as stems and 
branches that intercept radiation. This relation is given by the 
following equation:

	 P e G Ltθ − θ Ω θ( ) = ( )) /cos 	 (20.4)

where
G(θ) is the projection coefficient, which is determined by the 

leaf angular distribution (Monsi and Saeki 1953; Campbell 
1990)

Ω is the clumping index, which is related to the leaf spatial 
distribution pattern (Nilson 1971)

If P(θ) is measured at one angle and G(θ) and Ω are known, Lt 
can be inversely calculated using Equation 20.4. However, both 
G(θ) and Ω are generally unknown; therefore, different optical 
instruments have been developed to measure these unknown 
parameters.

The Li-Cor LAI 2000 Plant Canopy Analyzer is an optical 
instrument developed to address the issue of unknown G(θ) due 
to nonspherical leaf angle distribution. It measures the diffuse 
radiation transmission simultaneously in five concentric rings 
covering the zenith angle range from 0° to 75°, that is, P(θ) at five 
angles. These measurements are used to calculate the LAI based 
on Miller’s theorem (Miller 1967):
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θ θ θ

/

ln cos sin 	 (20.5)

The original Miller’s equation was developed for canopies with 
random leaf spatial distributions, that is, Ω = 1, and allows the 
calculation of LAI without the knowledge of G(θ) when P(θ) 
is measured over the full zenith angle range and its azimuthal 
variation is ignored. LAI and G(θ) can also be derived simul-
taneously using multiple angle measurements (Norman and 
Campbell 1989). For spatially nonrandom canopies, Miller’s 
theorem actually calculates the effective LAI (Chen et al. 1991), 
expressed as

	 L Le =Ω 	 (20.6)

Equation 20.5 can be discretized to calculate Le using the P(θ) 
measurements at five zenith angles by LAI-2000. Le calculated 
this way includes all green and nongreen materials above the 
instrument. With measured Le, the following equation is pro-
posed to calculate LAI (Chen 1996a):

	
L

Le=
( )1−α

Ω
	 (20.7)

where α is the woody-to-total area ratio. The total area includes 
both green leaves and nongreen materials such as stems, 
branches, and attachments (e.g., moss) on branches. The α value 
is generally in the range of 0.05–0.3 depending mostly on forest 
age (Chen et al. 2006).

There are also optical techniques for indirect measurement 
of the clumping index (Chen and Cihlar 1995). These tech-
niques are based on the canopy gap size distribution theory 
of Miller and Norman (1971). An optical instrument named 
Tracing Radiation and Architecture of Canopies (TRAC, Chen 
and Cihlar 1995) was developed to measure the canopy gap 
size distribution using the solar beam as the probe. In conifer 
canopies, the gaps between needles within a shoot (a basic col-
lection of needles around the smallest twig) are obscured due 
to the penumbra effect, and the clumping index derived from 
TRAC measurements represents the clumping effects at scales 
larger than the shoot (treated as the foliage element), denoted as 
ΩE. According to a random gap size distribution curve based on 
Miller and Norman’s theory, large gaps caused by the nonran-
dom foliage element distribution, that is, those caused by tree 
crowns and branches, are identified and removed to reconstruct 
a random gap size distribution. With this gap removal tech-
nique, ΩE. is calculated from the following equation (Chen and 
Cihlar 1995; Leblanc 2002):
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where
Fm(0,θ) is the total canopy gap fraction at zenith angle, that is, 

the accumulated gap fraction from the largest to smallest 
gaps

Fmr(0,θ) is the total canopy gap fraction after removing large 
gaps resulting from the nonrandom foliage element distri-
bution due to canopy structures such as tree crowns and 
branches

Clumping within individual shoots depends on the density 
of needles on a shoot. This level of foliage clumping was rec-
ognized and estimated in various ways by Oker-Blom (1986), 
Gower and Norman (1991), Stenberg et  al. (1994), Fassnacht 
et al. (1994), etc. Based on a theoretical development by Chen 
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(1996a), this clumping is quantified using the needle-to-shoot 
area ratio (γE) as follows:

	
γE

n

s

A

A
= 	 (20.9)

where
An is half the total needle area (including all sides) in a shoot
As is half the shoot area (for a shoot that can be approximated 

by an ellipsoid, the total shoot area is the ellipsoid surface 
area, not the projected elliptical area)

To obtain γE, shoots need to be sampled from trees of different 
sizes at different heights, and An and As need to be measured 
using laboratory equipment (Chen et  al. 1997; Kucharik et  al. 
1999). For broadleaf forests, the individual leaves are the foliage 
elements, and therefore γE = 1.

The total clumping of a stand can therefore be written as

	
Ω Ω

γ
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	 (20.10)

and the final equation for deriving LAI from indirect measure-
ments is
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Different instruments can be used to measure the different vari-
ables in this equation in order to determine LAI.

20.3.3.2  LAI Retrieval Using Remote Sensing Data

Plant leaves intercept solar radiation and selectively absorb part of 
it for conversion into stored chemical energy by photosynthesis. 
The unabsorbed radiation is either reflected by the leaf surface or 
transmitted through the leaves. Healthy plant leaves have distinct 
reflectance and transmittance spectra relative to soil and other 
nonliving materials. Optical remote sensing makes use of the 
contrast between leaf and soil spectral characteristics for retriev-
ing LAI of vegetation. However, vegetation stands have complex 
3D canopy architecture, such as tree crowns, branches and shoots 
in forests, plantation rows in crops, and foliage clumps in shrubs. 
Remote sensing signals acquired over vegetated area are influ-
enced not only by the amount of leaf area in the canopy but also 
by the canopy architecture. Seasonal variations of the vegetation 
background, such as moss/grass cover and snow cover on the forest 
floor, also greatly influence the total reflectance from a vegetated 
surface. It has therefore been a challenge to produce consistent 
and accurate LAI products using satellite measurements. Many 
remote sensing algorithms have been developed to retrieve LAI 
with full or partial consideration of the aforementioned factors 
influencing remote sensing measurements from vegetation. These 
algorithms are described in the following sections.

20.3.3.2.1  LAI Algorithms Based on Spectral Vegetation Indices
Reflectance spectra of healthy leaves show distinct low values 
in the red (620–750  nm) wavelengths and high values in NIR 

(800–1300 nm) wavelengths, and therefore many VIs have been 
developed using remote sensing measurements in red and NIR 
bands for estimating LAI and other vegetation parameters 
(Table  20.10). Liquid water in aboveground living biomass 
absorbs MIR (1300–2500  nm) radiation, lowering the reflec-
tance in the MIR band. Since foliage biomass interacts most with 
solar radiation, the MIR reflectance is expected to correlate well 
with LAI, and some two-band and three-band VIs utilizing the 
additional information from MIR have been developed for LAI 
retrieval (Table 20.10).

Not all two-band and three-band VIs are well correlated to 
LAI. The significance level of the correlation of two-band VIs 
with LAI varies greatly even though they are constructed using 
the same two-band reflectance data because these two data are 
combined in different ways, under different assumptions. An 
ideal VI for LAI retrieval should preferably have the following 
properties: (1) it is more or less linearly related to LAI, and (2) it 
can minimize the impacts of both random and systematic biases 
that remote sensing errors have on its value. A linear relation-
ship between a VI and LAI is preferred because it is insensitive 
to the surface heterogeneity within a pixel and induces less error 
in spatial scaling (Chen 1999). No VIs have so far been found to 
be linearly related to LAI for all plant functional types. However, 
some are more linearly related to LAI than others. SR, for exam-
ple, is more linearly related to LAI than NDVI and SAVI (Chen 
and Cihlar 1996; Chen et al. 2002). Ideally, VIs would vary with 
LAI only, or the effects of surface variations other than LAI 
can be considered by adjusting coefficients or constants in the 
algorithm. Measured reflectance in different spectral bands is 
affected by environmental noise, such as subpixel clouds and 
their shadows, which are not identified in image processing, 
mixtures of nonvegetative surface features (small  water bod-
ies, rock, etc.), fog, smoke, etc. This unwanted noise frequently 
exists in remote sensing imagery and can dramatically alter the 
values of VIs. However, the impacts of these types of noise on 
the reflectances in different spectral bands are often correlated. 
For example, subpixel clouds would cause red and NIR reflec-
tance to increase simultaneously, while cloud shadows would 
decrease them in about the same proportion. The same is true 
for other aforementioned types of noise. Variations in solar and 
view angle also cause variations of reflectance in various spec-
tral bands in the same direction and in about the same propor-
tions. VIs that are based on ratios of these two bands, such as 
NDVI and SR, can greatly reduce the impacts of various sources 
of noise. However, some VIs with sophisticated manipulations 
of two-band data, such as GEMI, may amplify noise. VIs that 
cannot be expressed as a function of the ratio of these two-band 
reflectances, such as SAVI, NLI, and RDVI, will retain the noise. 
MSR, for example, is developed with the same purpose as RDVI 
to increase its linearity with LAI, but it is better correlated to LAI 
than RDVI because it can be expressed as a function of the ratio 
of NIR and red reflectances, while RDVI cannot. The ability of a 
VI to minimize unwanted measurement noise is of paramount 
importance in LAI retrieval because noise in the reflectance 
measurements can come from many sources and is unavoidable.

© 2016 Taylor & Francis Group, LLC

  



546 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

Three-band VIs have been developed for various purposes. 
ARVI and SARVI modify NDVI and SAVI, respectively, with 
the reflectance in the blue band to reduce the atmospheric 
effect. They are useful when there are insufficient simultaneous 
atmospheric data to conduct atmospheric correction. MNDVI 

and RSR introduce a multiplier to NDVI and SR, respectively, 
based on the reflectance in a MIR band (1600–1800 or 2100–
2300 nm). RSR has several advantages over SR for LAI retrieval 
(Brown et al. 2000): (1) it is more significantly correlated with 
LAI for different forest types because it is more sensitive to 

Table 20.10  Vegetation Indices Useful for LAI Retrieval

Vegetation Index Definition References 

Normalized difference vegetation index (NDVI) NDVI
n r

n r

=
( )

+( )
ρ −ρ
ρ ρ

Rouse et al. (1974)

Simple ratio (SR) SR n

r

=
ρ
ρ

Jordan (1969)

Modified simple ratio (MSR) MSR
n r

n r

=
( )
( ) +
ρ ρ −

ρ ρ

/

/

1

1
Chen (1996b)

Renormalized difference vegetation index (RDVI) RDVI n r

n r

=
+

ρ −ρ
ρ ρ

Roujean and Breon (1995)

Weighted difference vegetation index (WDVI) WDVI = ρn−α⋅ρr

where

α
ρ
ρ

= n soil

r soil

,

,

Clever (1989)

Soil-adjusted vegetation index (SAVI) SAVI
L

L

n r

n r

=
( ) +( )

+ +( )
ρ −ρ
ρ ρ

1

L = 0.5

Huete (1988)

Soil-adjusted vegetation index 1 (SAVI1) SAVI
L

L

n r

n r

1
1

=
( ) +( )

+ +( )
ρ −ρ
ρ ρ

L = 1−2.12⋅NDVI⋅WDVI

Qi et al. (1994)

Global environmental monitoring index (GEMI) GEMI
r

r

=
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Pinty and Verstrate (1992)

Nonlinear index (NLI) NLI
n r

n r

=
( )

+( )
ρ −ρ

ρ ρ

2

2
Goel and Qin (1994)

Atmospherically resistant vegetation index (ARVI) ARVI
n rb

n rb

=
( )

+( )
ρ −ρ
ρ ρ

ρrb = ρr−γ(ρb−ρr)

Kaufman and Tanre (1992)

Soil and atmosphere-resistant vegetation index 
(SARVI)

SARVI
L

L

n rb

n rb

=
( ) +( )

+ +( )
ρ −ρ
ρ ρ

1

L = 0.5

Huete and Liu (1994)

Soil and atmosphere-resistant vegetation index 2 
(SARVI2)

SARVI
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n r b

2
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Huete and Liu (1994)

Modified NDVI (MNDVI) MNDVI
n r

n r

s smin

smax smin

=
( )

+( )










ρ −ρ
ρ ρ

−
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1 Nemani et al. (1993)

Reduced SR (RSR) RSR n

r

s smin

smax smin

=










ρ
ρ

−
ρ −ρ
ρ −ρ

1 Brown et al. (2000)

Note:	 See also Chen (1996b).
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LAI variation; (2) the differences in the LAI–RSR relationship 
among different forest types are greatly reduced from those in 
the LAI–SR relationship, and therefore RSR is particularly use-
ful for mixed cover types; and (3) the influence of the variable 
background optical properties is much smaller on RSR than on 
SR because MIR reflectance is highly sensitive to the greenness 
of the background due to the strong absorption of MIR radiation 
by grass, moss, and understorey. These advantages of RSR over 
SR for forest LAI retrieval are confirmed by several independent 
studies (Eklundh et al. 2003; Stenberg et al. 2004; Wang et al. 
2004; Chen et al. 2005c; Tian et al. 2007; Heiskanen et al. 2011). 
However, RSR is sensitive to soil and vegetation wetness and 
can increase greatly immediately after rainfall or irrigation, and 
therefore it is only suitable for forests in LAI retrieval algorithms 
(Deng et al. 2006).

20.3.3.2.2  LAI Algorithms Based on Radiative Transfer Models
The relationships between LAI and reflectances in individual 
spectral bands can be simulated using plant canopy radiative 
transfer models, and LAI algorithms can be developed based 
on these modeled relationships. Models are useful alternatives 
to empirical relationships established through correlating VIs or 
reflectances with LAI measurements because the empirical data 
are often limited in spatial and temporal coverage and are often 
location specific. These empirical relationships are also depen-
dent on the quality of ground LAI data, the spectral response 
functions of remote sensing sensors, the angle of measurements, 
atmospheric effects, etc. The quality of LAI data can be influ-
enced by the method of LAI measurements, the definition of 
LAI, and the measurement protocol. Some reported LAI values 
are actually the effective LAI without considering the clumping 
effect, and some optical measurements do not include the cor-
rection for nongreen materials (see Equation 20.11). Radiative 
transfer models can theoretically avoid these shortcomings of 
empirical data, but they need to be calibrated with ground data. 
In the calibration process, misconceptions and errors in empiri-
cal data can also bias the model outcome. For example, some 
destructive LAI values used for model validation are incorrectly 
based on the projected area rather than half the total leaf area.

There have been many LAI algorithms developed using 
radiative transfer models (Table 20.11) for regional and global 
LAI retrieval. These algorithms are characterized by the radia-
tive transfer modeling method, the ways to consider foliage 
clumping and background optical properties, and the ways to 
combine the individual bands. A radiative transfer model, how-
ever sophisticated, is an abstract representation of the complex 
reality, and therefore the modeled relationship between LAI 
and remote sensing data depends not only on the aforemen-
tioned factors but also on how radiative transfer is simulated, 
such as the ways to consider multiple scattering in the canopy, 
the assumed leaf angle distributions, and the treatments of dif-
fuse sky radiation. As radiative transfer methods are diverse, 
it is expected that the simulated relationships between remote 
sensing data and LAI are quite different among the existing 
model-based global LAI algorithms. There is a need to calibrate 
radiative transfer models and LAI algorithms against an accu-
rate ground and remote sensing dataset covering the diverse 
plant structural types around the globe. The radiation transfer 
model intercomparison efforts (Pinty et  al. 2004; Widlowski 
et al. 2007) have laid a foundation for further activities to sat-
isfy this need.

20.3.4  Biomass

Biomass is the accumulated net primary production (NPP) in 
living plants, including both the above- and belowground com-
ponents. Because of litterfall and mortality, biomass is always 
less than the sum of annual NPP over the plant’s lifetime. It 
is relatively straightforward to measure the biomass for peren-
nials, but measuring biomass for forests in the real world is 
extremely laborious. Due to the fact that the majority of the 
terrestrial biomass is stored in forest ecosystems (Dixon et al. 
1994), measuring forest ecosystem biomass has become a major 
task in global carbon budget studies. In fact, measuring forest 
biomass defines the state of the art of biomass measurement. 
Since clearing an extensive area just for measuring biomass 
would represent an undue disturbance to the ecosystem, mea-
suring forest biomass in the real world usually involves several 

Table 20.11  Global LAI Products and Their Main Characteristics

CYCLOPES ECOCLIMAP GLOBCARBON MODIS 

Algorithm development 1D turbid media radiative 
transfer model.

Empirical LAI–NDVI 
relationships.

Geometric–optical model. Lookup tables produced using 
a 3D radiative transfer model.

Clumping consideration No clumping is considered 
except consideration of the 
differences among cover 
types at the landscape level.

Clumping within shoot and 
canopy is considered but 
clumping at the landscape 
level is not considered.

Clumping is fully 
considered based on 
TRAC-measured 
cover-type specific values.

Clumping is considered 
through a parameter related 
to the 3D canopy structure.

Background optical property Assigned constant values. Assigned constant values. Assigned constant values. Assigned constant values.
Seasonal smoothing No. No. Yes. No.
References Baret et al. (2007). Masson et al. (2003). Deng et al. (2006). Knyazikhin et al. (1998), Yang 

et al. (2006).

Source:	 Modified after Garrigues, S. et al., J. Geophys. Res. Biogeosci., 113, G02028, 2008, doi:10.1029/2007JG000635.
They include Carbon Cycle and Change in Land Observational Products from an Ensemble of Satellites (CYCLOPES), ECOCLIMAP, Global Biophysical 

Products for Terrestrial Carbon Studies (GLOBCARBON), and Moderate-Resolution Imaging Spectroradiometer (MODIS).
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steps. First, a species-specific allometric relationship is estab-
lished between biomass and some easy-to-measure structural 
parameter(s) (typically diameter at breast height and/or occa-
sionally height). This step involves destructive sampling of a 
number of individuals for each species and is quite expensive. 
However, these allometric relationships can be reused once they 
are developed. Such relationships have been documented for 
the majority of tree species in North America (Grier and Logan 
1977; Gholz et  al. 1979; Ter-Mikaelian and Korzukhin 1997; 
Jenkins et al. 2003; Smith et al. 2003). Second, a series of sample 
plots are made in a region either systematically or randomly 
(Zhang and Song 2006). Each individual tree species within a 
sample plot is tallied, and its biomass is calculated using the 
allometric equations developed. The total biomass for a plot is 
calculated as the sum of biomass for all individuals. Lastly, the 
total biomass of a geographic region is estimated based on these 
sampling plots.

Depending on the rate of growth and length of time accu-
mulating NPP, biomass density is strongly dependent on 
vegetation successional stage (Song and Woodcock 2002; 
Pregitzer and Euskirchen 2004). Therefore, an accurate esti-
mation of biomass over a geographic region requires a large 
number of sampling plots, which are often not practical to 
make. Optical remote sensing offers a significant advantage 
over the traditional fieldwork approach in mapping biomass 
over large areas, as remote sensing–based approaches provide 
wall-to-wall coverage in space and are much more cost-effec-
tive. Numerous approaches using optical remotely sensed data 
have been developed in the literature and can be summarized 
into a few categories: (1) nearest neighbor imputation, (2) 
regression, (3) machine learning algorithms, and (4) biophysi-
cal approaches.

20.3.4.1  k-Nearest Neighbor Imputation

k-Nearest neighbor imputation (kNN) takes advantage of spa-
tial autocorrelation of biomass in space. The approach estimates 
the biomass for a particular location or pixels in a remotely 
sensed image from the spatial interpolation of biomass in k 
nearby sampling plots based on distance weighted average 
(Fazakas and Olsson 1999; Franco-Lopez et al. 2001). Using the 
field plots from the Swedish National Forest Inventory, Tomppo 
et al. (2002) used the kNN approach to produce a biomass map 
with Landsat imagery, then rescaled the biomass map to match 
that of IRS-1C WiFS imagery, and produced biomass maps over 
large areas using nonlinear multiple regression. For kNN to be 
effective, a large number of sampling plots are needed in order 
to represent the spatial pattern and the whole range of biomass 
variation in space. The approach was used to develop national 
biomass maps for Sweden and Finland since 1990 using the 
national forest inventory sampling plots (Tomppo et al. 2008). 
Recently, kNN was used with various imputation approaches 
and remotely sensed data from multiple sensors (Latifi and 
Koch 2012) and achieved encouraging results for mapping 
biomass.

20.3.4.2  Regression

Estimating biomass via regression with remotely sensed imag-
ery involves two steps. The first step is the development of an 
empirical regression model between biomass measured on the 
ground and remotely sensed data, which can be surface reflec-
tance or a transformation of surface reflectance, such as spectral 
VIs. Once a robust regression model is established, the second 
step is to apply the model to the rest of the valid pixels in the 
image. Many successful applications of this approach have 
been reported in the literature (Anderson et al. 1993; Roy and 
Ravan 1996; Fazakas and Olsson 1999; Steininger 2000; Tomppo 
et al. 2002; Heiskanen 2006; Muukkonen and Heiskanen 2007). 
Careful examination found that these successful applications 
were conducted in areas with low biomass density.

Although significant challenges have been encountered using 
relatively high-spatial-resolution optical imagery to estimate 
biomass, some success has been achieved using coarse-resolution 
imagery over large areas. Myneni et al. (2001) and Dong et al. 
(2003) developed an empirical relationship between cumulative 
NDVI over the growing season from AVHRR over the forested 
areas and the woody biomass derived from forest inventory for 
six countries (Canada, Finland, Norway, Russia, Sweden, and 
the United States) in 1981–1999 and found a large carbon sink 
in Eurasian boreal and North American temperate forests. 
Similarly, Piao et  al. (2005) used the GIMMS NDVI (Tucker 
et al. 2001) and China’s forest inventory data to estimate aboveg-
round forest biomass via a nonlinear regression model. The 
model predicted the aboveground biomass well for the majority 
of the provinces except for a few outliers, which might be due to 
errors from the inventory data. Zhang and Kondragunta (2006) 
used MODIS LAI, land cover types, and vegetation continuous 
fields to estimate the aboveground biomass for the conterminous 
United States with a RMSE of 12 t/ha at the state level compared 
with estimates from U.S. Forest Service FIA data. Le Maire et al. 
(2011) successfully (R2 ≈ 0.9) estimated the forest biomass for 
young eucalyptus plantations using MODIS time series NDVI 
images and simple bioclimatic variables. It is counterintuitive 
that spectral VIs at high spatial resolution performed more 
poorly in predicting biomass at the plot level than those at coarse 
spatial resolution that estimate biomass at the continental scale. 
However, these empirical models provide little insight on the 
biophysical basis for the strong performance in estimating bio-
mass using coarse-spatial-resolution remotely sensed data over 
large areas.

20.3.4.3  Machine Learning Algorithms

Machine learning algorithms have several advantages over 
conventional regression approaches in mapping biomass from 
remotely sensed data. First, the algorithms do not require nor-
mally distributed data. Second, the algorithms do not require 
the input data layers to be independent from each other. Data 
layers from multispectral remotely sensed imagery are often 
correlated. Third, machine learning algorithms are capable of 
handling nonlinear relationships between biomass and remotely 
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sensed signals. In a Bornean tropical rainforest, Foody et  al. 
(2001) found that artificial NNs using the reflectance of the six 
optical bands from Landsat TM sensors mapped biomass bet-
ter than a regression approach using spectral VIs only or the 
kNN imputation. Foody et al. (2003) further confirmed that NN 
outperformed the conventional regression approach in map-
ping biomass in three tropical forest sites in Brazil, Malaysia, 
and Thailand. Powell et al. (2010) compared reduced major axis 
regression, kNN, and random forest (RF) algorithms in mapping 
aboveground biomass in Arizona and Minnesota, United States, 
using biomass derived from FIA plots and Landsat imagery, 
and they found all three approaches predict biomass at the pixel 
level with RMSE well above 50% of the mean biomass. Mutanga 
et  al. (2012) compared RF and multiple regression to estimate 
biomass for a densely vegetated wetland using narrowband VIs 
computed from WorldView-2 imagery and found that RF per-
formed better in biomass estimation with RMSE of 0.441 kg/m2 
(12.9% of observed mean biomass). Because it is easy to use data 
layers from multiple sources with machine learning algorithms, 
they proved to be effective in integrating remotely sensed data 
from multiple sensors for mapping aboveground biomass, par-
ticularly combining multispectral and LiDAR data. Latifi and 
Koch (2012) compared kNN imputation with RF to map aboveg-
round biomass using data from airborne scanning LiDAR data 
and color infrared optical imagery and found that RF produced 
more accurate results.

In addition to high-resolution imagery, machine learning 
algorithms have also been used to map biomass with low-reso-
lution imagery, particularly data from MODIS. Combining sur-
face reflectance of the first seven MODIS bands with climate and 
topographic data, Baccini et al. (2004) mapped aboveground for-
est biomass for 18 National Forests in California using tree-based 
regression with reasonable accuracy, but the approach tends to 
underestimate biomass for stands with high biomass density 
(>250 t/ha). Houghton et  al. (2007) used RF to map aboveg-
round forest biomass for the Russian Federation using MODIS 
Nadir BRDF-Adjusted Reflectance (NBAR) and forest inventory 
data. They produced biomass estimates comparable with previ-
ous independent estimates. Blackard et  al. (2008) mapped the 
aboveground biomass of the conterminous United States, Alaska, 
and Puerto Rico, with multiple sources of data, including MODIS 
imagery, FIA plots, climatic and topographic variables, and other 
ancillary data. They first divided the conterminous United States 
into 65 ecological zones and separated the FIA plots into forest 
and nonforest categories. A separate regression tree model was 
developed for each ecological zone, Alaska and Puerto Rico. 
The models tended to overestimate areas with low biomass and 
underestimate areas with high biomass. Baccini et  al. (2008) 
developed a regression tree model for aboveground biomass 
using seven-band 1 × 1  km MODIS NBAR data and biomass 
data derived from NFI for Congo, Cameroon, and Uganda. The 
model was then applied to the entire tropical Africa. The RMSE 
was 50.5 t/ha for a biomass range up to 454 t/ha. The estimated 
aboveground biomass was also highly correlated (R2 = 0.90) with 
height metrics from ICESat Geospatial Laser Altimeter System 

(GLAS). However, the predicted biomass had a positive bias for 
low biomass and negative bias for high biomass.

A promising recent development in mapping biomass with 
optical imagery is to combine it with remotely sensed data from 
LiDAR and/or Radar sensors and produce improved biomass 
maps. Andersen et  al. (2011) integrated Landsat imagery with 
airborne LiDAR and dual-polarization synthetic aperture radar 
from ALOS Phased Array L-band Synthetic Aperture Radar 
(PALSAR) to map forest biomass in the interior Alaska. The 
ICESat GLAS data were successfully used to map biomass with 
Landsat (Helmer et al. 2009; Duncanson et al. 2010) and MODIS 
(Nelson et al. 2009; Baccini et al. 2012) imagery.

20.3.4.4  Biophysical Approaches

Biophysical approaches rely on the physical principles that gov-
ern the relationship between vegetation structure and remotely 
sensed signals. One of the earliest attempts to estimate standing 
total biomass via optical remote sensing was by Wu and Strahler 
(1994). The physical principle is the geometric–optical theory 
for remotely sensed imagery over vegetated landscapes (Li and 
Strahler 1985). They inverted the remotely sensed data from 
Landsat TM sensors for tree density and mean tree crown size on 
a stand basis with a GO model and then used allometry to esti-
mate total standing biomass. However, Wu and Strahler (1994) 
only tested the model with a limited number of stands. More 
comprehensive studies by Woodcock et  al. (1994, 1997) found 
that the Li–Strahler model could be used to estimate tree cover 
effectively, but separation of tree size and stem count was poor. 
Hall et al. (1995) proved that remotely sensed spectral signals over 
black spruce forests can be calculated as a linear mixture of sun-
lit crown, sunlit background, and shadow. Based on the geomet-
ric–optical theory, they derived these fractions from stand-level 
reflectance obtained at nadir by the helicopter-mounted Modular 
Multiband Radiometer and found that the fraction of shadows 
was highly correlated to aboveground biomass. Hall et al. (1996) 
and Peddle et al. (1999) further confirmed the usefulness of frac-
tion of shadows in estimating aboveground biomass. Peddle et al. 
(1999) found that the fraction of canopy shadows performed 20% 
better than numerous VIs for estimating aboveground biomass. 
More recently, Soenen et  al. (2010) demonstrated promising 
results using a geometric–optical canopy reflectance model to 
estimate tree crown size and stem density and further estimate 
aboveground biomass with SPOT imagery. Chopping et al. (2008, 
2011) developed a similar approach based on the simple geomet-
ric–optical model to estimate biomass by taking bidirectional 
reflectance functions from MODIS and MISR. The approach 
produced biomass estimation that is comparable with indepen-
dent data in a low-biomass region, but the approach is computa-
tionally intensive and requires some detailed canopy structural 
parameters that may not be available as a priori knowledge. 
Hall et al. (2006) developed the BioSTRUCT algorithm to map 
aboveground biomass and volume in two steps: (1) estimate can-
opy height and crown closure with Landsat ETM+ imagery and 
(2) estimate aboveground biomass and stand volume using can-
opy height and crown closure based on allometric relationships.
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20.3.5  Uncertainties, Errors, and Accuracy

Despite the many successes of optical remote sensing in extract-
ing information about vegetation structure, there are varying 
degrees of uncertainty associated with them. Even for the most 
simple vegetation estimate, vegetation cover, there is about 10% 
uncertainty (Hansen et al. 2002; Hayes et  al. 2008). Given the 
same vegetation cover, ecological functions could differ tremen-
dously depending on its successional stages (Law et al. 2001). For 
example, Liu et al. (2008) found that using Landsat imagery, for-
est succession in the PNW can only be reliably separated into 
three broad successional stages (young, mature, and old growth).

LAI is perhaps the most sought-after measure of vegetation 
structure due to the important role it plays in energy and matter 
exchange between the land surface and the atmosphere. Several 
factors prevent accurate estimation of LAI with optical remote 
sensing. First, remote sensing signals saturate in high LAI (Baret 
and Guyot 1991; Turner et al. 1999). Second, remnant cloud con-
tamination remains a problem. Lastly, LAI cannot be derived 
from remotely sensed data analytically. It is an ill-posed math-
ematical problem because there are too many other factors influ-
encing the remotely sensed signal in addition to LAI (Gobron 
et al. 1997; Eklundh et al. 2001). As a result, significant uncer-
tainties remain in most of the current LAI products (Song 2013). 
Numerous studies found that current MODIS LAI products tend 
to overestimate LAI (Cohen et al. 2003, 2006; Wang et al. 2004; 
Aragao et al. 2005; Pisek and Chen 2007; Sprintsin et al. 2009).

Numerous studies have found that remotely sensed signals 
saturate in high-biomass-density areas and spectral VIs poorly 
predict biomass for forests (Sader et  al. 1989; Hall et  al. 1995; 
Peddle et al. 1999). Steininger (2000) found that Landsat TM sur-
face reflectance correlates well with stand structure only when 
biomass is under 150 t/ha and age is under 15 years in Brazil, 
and even this is not the case for another study site in Bolivia. 
Nelson et al. (2000) found a single Landsat TM imagery could 
not be used to reliably differentiate tropical forest age classes. Lu 
(2005) found that the spectral signals from Landsat TM imagery 
can only be used to estimate aboveground biomass for forests 
with simple structure. Although optical remote sensing has been 
used to produce numerous key vegetation structure parameters 
wall-to-wall, improving the accuracy of the estimation remains 
the major challenge in the foreseeable future.

20.4 �O ptical Remote Sensing 
of Vegetation Functions

Vegetation plays a key role in the terrestrial ecosystem that pro-
vides vital goods and services upon which the welfare of the 
humanity depends, such goods as food, fiber, and medicine, 
and services as soil and water conservation and preservation 
of biodiversity (Dobson et  al. 1997; Salim and Ullsten 1999). 
Photosynthesis is the entry point of inorganic materials, for 
example, CO2, water, and nutrients, into organic forms, such 
as carbohydrates. The product of photosynthesis provides the 

matter and energy that drive all subsequence ecosystem processes. 
Therefore, vegetation primary production is at the core of almost 
all terrestrial ecosystem goods and services. In this section, we 
review remote sensing of vegetation functions that are tied to 
plant photosynthesis, including its seasonal cycles (phenology), 
the amount of energy used in photosynthesis (fraction of absorbed 
photosynthetically active radiation [FPAR]), the abundance of 
photosynthesis apparatus (chlorophyll concentration), and the 
efficiency of converting the absorbed photosynthetically active 
radiation (PAR) to carbohydrate (light use efficiency [LUE]).

20.4.1  Vegetation Phenology

Vegetation phenology is the natural rhythm of plant life cycle 
events, and the timing of these events is largely dependent on 
climate signals (Körner and Basler 2010). In many temperate 
forests, winter dormancy must be broken by extended exposure 
to cold temperatures, and after this chilling requirement has 
been met, increases in temperature and photoperiod can trigger 
leaf emergence in spring (Archibold 1995; Zhang et  al. 2007). 
Leaf expansion and shoot growth in some arid and seasonally 
moist ecosystems can be triggered by the start of the rainy sea-
son, while soil moisture depletion may trigger senescence and 
leaf abscission, though low temperatures may also limit photo-
synthesis in cooler deserts (Archibold 1995; Jolly and Running 
2004; Jolly et al. 2005).

Optical remote sensing offers unprecedented opportunities 
to observe the synoptic patterns of the timing of plant life cycle 
events, known as land surface phenology (LSP) (Gonsamo et al. 
2012b). While the seasonal patterns of LSP variability are related 
to plant biological traits, LSP derived from spaceborne optical 
sensors is distinct from the traditional definition of plant phe-
nology, which aims to understand the timing of recurring bio-
logical events, the causes of their timing with regard to biotic and 
abiotic forces, and the interrelation among phases of the same or 
different species (Lieth 1974). LSP has strong effects and feed-
backs both on climate (Keeling et al. 1996; Peñuelas et al. 2009) 
and on terrestrial ecosystem functions. The carbon balance of 
terrestrial ecosystems is highly sensitive to climatic changes in 
early and late growing seasons (Piao et al. 2007, 2008; Richardson 
et  al. 2010; Wu et  al. 2012a,b). Vegetation phenology has been 
known to be a key and first element in ecosystem response to cli-
mate change (Menzel et al. 2006), as well as a major determinant 
of species distributions (Chuine and Beaubien 2001).

Therefore, changes in LSP events have the potential to 
broadly impact global carbon fixation, nitrogen cycles, evapo-
transpiration and ecosystem respiration (Morisette et al. 2009; 
Richardson et  al. 2010), surface meteorology (Schwartz 1992; 
Bonan 2008a,b; Richardson et  al. 2013), interspecific interac-
tions both among plants and between plants and insects, veg-
etation community structure, and success of invasive species 
(Willis et al. 2008, 2010; Wolkovich and Cleland 2011; Cleland 
et  al. 2012; Fridley 2012), crop production, frost damage, pol-
lination (Brown and De Beurs 2008), and spreading of diseases 
(Morisette et al. 2009).
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The 4th Assessment Report (“AR4,” Parry et al. 2007) of the 
Intergovernmental Panel on Climate Change—which found that 
spring onset has been advancing at a rate of between 2.3 and 
5.2  days per decade since the 1970s—emphatically concluded 
that phenology “is perhaps the simplest process in which to 
track changes in the ecology of species in response to climate 
change” (Rosenzweig et al. 2007). The spatially integrated nature 
of LSP—as derived from optical satellite observations of land 
surface reflectance and their combination in the form of VIs that 
are associated with the biophysical and biochemical properties 
of vegetation—has thus received much attention due to its role as 
a surrogate in detecting the impact of climate change.

20.4.1.1 � Vegetation Index for Land 
Surface Phenology Study

Remote sensing LSP studies use data gathered by satellite sen-
sors that measure wavelengths of visible light as absorbed by leaf 
pigments, NIR light as reflected by leaf internal structure, and 
SWIR light as absorbed by leaf in vivo water content. As a plant 
canopy changes from early spring growth to late-season matu-
rity and senescence, these reflectance and absorptance proper-
ties also change. VIs rather than land surface reflectance are 
especially useful for continental- to global-scale LSP monitoring 
because it can compensate for changing illumination conditions, 
surface slope, and viewing angle. Although there are several VIs, 
the following four are common:

	
NDVI

NIR RED

NIR RED
= −

+
	 (20.12)

	
NDMI

NIR SWIR

NIR SWIR
= −

+
	 (20.13)

PI

if NDVI or NDMI

NDVI NDMI NDVI NDMI NDVI NDMI

if

=

<

+ − = −

0 0

0

2 2

,

( )( )

, PPI <








 0

�

(20.14)

	
EVI

G NIR RED

NIR C RED C BLUE L
= × −

+ × − × +
( )

1 2
	 (20.15)

where
the BLU.E, RED, NIR, and SWIR are surface reflectances in 

blue, red, NIR, and SWIR spectral bands, respectively
L is a canopy background adjustment that addresses nonlin-

ear, differential NIR and red radiant transfer through a 
canopy

C1 and C2 are the coefficients of the aerosol resistance term, 
which uses the blue band to correct for aerosol influences 
in the red band

G is a gain factor that limits the EVI value to the −1 to +1 
range

One of the most widely used VIs is the NDVI. NDVI values 
range from −1.0 to +1.0. Areas of barren rock, sand, water, ice, 
and snow usually show very low NDVI values (<0.1), sparse veg-
etation such as shrubs and grasslands or senescing crops may 
result in moderate NDVI values, and high NDVI values (>0.6) 
correspond to dense vegetation such as that found in temper-
ate and tropical forests or crops in their peak growth stage. 
Numerous studies have shown that NDVI is closely correlated 
with LAI and fraction of PAR absorbed by vegetation canopy. 
The NOAA AVHRR archive of NDVI data (Tucker et al. 2005) 
is generated in the framework of the GIMMS project by careful 
assembly from different AVHRR sensors, accounting for various 
deleterious effects, such as calibration loss, orbital drift, and vol-
canic eruptions. The AVHRR archive is the longest time series 
for LSP studies, and the results from the analysis of AVHRR-
based NDVI revealed significant changes in spring phenology 
of vegetation during the 1980s and 1990s (Myneni et al. 1997; 
Eastman et  al. 2013). The latest version of the GIMMS NDVI 
dataset spans the period from July 1981 to December 2011 and 
is termed NDVI3g (third-generation GIMMS NDVI) from 
AVHRR sensors (Zhu et al. 2013).

To help discriminate the seasonal dynamics of vegetation 
phenology from background phenomena such as accumulation 
and melting of snow, alternative VIs such as normalized differ-
ence moisture index (NDMI) have been used (Delbart et al. 2005; 
Gonsamo et  al. 2012a). NDMI is comparable with normalized 
difference infrared index and normalized difference water index 
(NDWI). NDMI first decreases with snowmelt and then increases 
during vegetation greening. NDWI is related to the quantity of 
water per unit area in the canopy and soil and therefore increases 
during leaf development and increase in soil moisture content. 
NDMI time series show that greening-up may start before or 
after complete snowmelt. If snow did not totally melt before leaf 
appearance, NDMI first decreases and then increases, display-
ing a trough at its minimum. If snowmelt is complete before leaf 
appearance, then NDMI remains stable during a period that may 
last between a few days and a few weeks before increasing. If 
greening-up occurs during snowmelt, the NDMI decrease due to 
snowmelt may mask the NDMI increase due to greening-up, and 
NDMI may start increasing later than the actual onset of green-
ing-up. If snowmelt and greening-up overlap during a long period, 
NDMI variations with snowmelt and greening-up compensate for 
each other, making the NDWI increase start later than the actual 
onset of greening-up. NDWI time series is sensitive to water inter-
cepted by leaves and to abrupt increases in soil moisture.

VIs are not intrinsic physical quantities, and several attempts 
have been made to remove the confounding effect of brightness 
(mainly soil) and wetness (mainly from land surface moisture) 
from greenness that responds to the development of photo-
synthetic biomass. For example, NDMI alone cannot capture 
LSP, since it responds to land surface moisture from both the 
landscape and vegetation components. NDVI is also affected 
significantly by both soil moisture and brightness. Therefore, 
both NDVI and NDMI respond not only to the development 
of photosynthetic biomass (greenness) but also to soil exposure 
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(brightness) and snow, soil, and land surface moisture (wetness), 
suggesting that NDVI or NDMI alone cannot remove the con-
founding effect of brightness and wetness on an LSP time series. 
NDVI and NDMI exhibit opposing trends with increasing bright-
ness and wetness and similar trends with increasing greenness. 
Given these premises, the phenology index (PI) was constructed 
(Gonsamo et al. 2012a) by combining the merits of NDVI and 
NDMI (Figure  20.2). PI takes the difference of squared green-
ness and wetness to remove the soil and snow cover dynamics 
from key vegetation LSP cycles. The following rationale explains 
the formulation of PI: (1) NIR reflectance is less than red reflec-
tance for ice, snow, and water resulting in NDVI < 0 for which PI 
becomes 0; (2) NIR reflectance is less than SWIR for soil and for 
NPV resulting in NDMI < 0 and NDVI > 0 for which PI becomes 
0; (3) if NDMI > NDVI, the GV or land surface is covered by 
snow for which PI becomes 0; (4) the use of PI instead of NDVI 
or NDMI masks out the time series of permanently nonvegetated 
landscape for which NDVI or NDMI may result in a spurious 
time series due to moisture variations resembling vegetation LSP; 
and (5) the product of the sum and the difference of NDVI and 
NDMI gives a pronounced and smooth curve, removes the effect 
of wetness from the greenness, and avoids the local solution if 

we simply consider the use of NDVI once the aforementioned 
criteria (1, 2, 3, and 4) are met, which may particularly occur in 
boreal forests due to intermittent loading and unloading of snow. 
PI is actually the squared greenness minus squared wetness in 
the growing season and follows the seasonal dynamics of gross 
(GPP) and net (NPP) primary productivity better than NDVI or 
NDMI (Gonsamo et al. 2012a,b).

The EVI is developed for use with the MODIS Land Cover 
Dynamics product (informally called the MODIS Global 
Vegetation Phenology product). The EVI is a modified NDVI 
with a soil adjustment factor (L), gain factor (G), and two coef-
ficients (C1 and C2), which describe the use of the blue band in 
correction of the red band for atmospheric aerosol scattering. 
The coefficients, G, C1, C2, and L, are empirically determined as 
2.5, 6.0, 7.5, and 1.0, respectively. This algorithm has improved 
sensitivity to high-biomass regions and improved vegetation 
monitoring through a decoupling of the canopy background sig-
nal and a reduction in atmospheric influences (Huete et al. 2002). 
While NDVI is chlorophyll sensitive, the EVI is more responsive 
to canopy structural variations, including LAI, canopy type, 
plant physiognomy, and canopy architecture. EVI is used as a 
standard VI for LSP study for the NASA MODIS project and has 
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Figure 20.2  Start, end, and length of growing season for circumpolar North America (>45°) derived from SPOT VGT sensors using the PI for 
year 1999. (a) Start of season; (b) end of season; (c) length of season.
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shown not to saturate at high photosynthetic biomass vegetation 
areas, a great improvement compared to NDVI.

20.4.1.2 � Land Surface Phenology Metrics 
Derivation and Validation

LSP studies pay more attention to critical annual events, such as 
start of season (SOS), end of season (EOS), and length of season. 
Earlier studies that used AVHRR NDVI time series focused on 
a phenologically important threshold value from multitemporal 
NDVI time series, in which values can be global (like 0.3 NDVI) 
or locally driven (midvalues of max and min NDVI; White et al. 
1997). Since there is no fixed threshold value for SOS and EOS 
that can be applicable globally, recent LSP studies have focused 
on curve geometry fitting to extract important dates (e.g., Zhang 
et al. 2003; Delbart et al. 2005; Gonsamo et al. 2012a,b). Most of 
these methods involve one or several forms of logistic functions 
to fit sinusoid models. Jönsson and Eklundh (2004) developed 
open source LSP extraction software (TIMESAT), which includes 
double logistic and asymmetric Gaussian functions. These meth-
ods to retrieve SOS and EOS estimates from time series of remote 
sensing data are well summarized in White et al. (2009).

Traditional validation is usually carried out by comparing 
remote sensing SOS and EOS with specific life cycle events such 
as budbreak, flowering, or leaf senescence using in  situ obser-
vations of individual plants or species by network volunteer 
observations (e.g., PlantWatch Canada Network, USA National 
Phenology Network) or experts at intensive study sites (e.g., 
Harvard Forest). Given the lack of in situ data that are compa-
rable with LSP in spatial coverage and landscape representa-
tiveness, currently more attention is given to synoptic sensors 
that have comparable footprints with remote sensing pixels. 
One of these includes the increasing availability of networks of 
web cameras (Richardson et  al. 2009) that match LSP valida-
tion from remote sensing footprints rather than the traditional 
individual plant phenology networks. However, much work is 
needed to derive a robust method to extract SOS and EOS from 
near-surface remote sensing obtained from networked webcams 
that record repeat LSP in association with the existing eddy 
covariance flux towers (e.g., the PhenoCam program). Another 
more objective validation method is the use of GPP estimated 
based on eddy covariance flux tower measurements (Gonsamo 
et  al. 2012a,b). Several LSP metrics are developed from GPP 
using curve geometry fitting (Gonsamo et al. 2013), which can 
be used to validate one or more LSP estimates from remote 
sensing. The temporal dynamics of GPP as a true photosynthe-
sis phenology provides an objective measures of SOS and EOS. 
There are also evolving developments in LSP reference measures, 
such as ground-based spectral and photosynthetic radiation 
measurements (Richardson et al. 2012), which are expected to 
help extract the subtle LSP interannual and spatial variability 
across plant functional types. Remote sensing LSP measures, 
compared to individual plant or plant organ phenology cycles, 
integrate the collective effects of atmospheric, environmental, 
and edaphic conditions as well as interspecific responses to the 
changing climate.

20.4.2 � Fraction of Absorbed Photosynthetically 
Active Radiation

FPAR is defined as the fraction of incoming PAR (400–700 nm) 
absorbed by vegetation. It is a key input variable to models that 
estimate terrestrial ecosystem primary production based on 
LUE theory driven by remotely sensed data (Potter et al. 1993; 
Running et al. 1994; Landsberg and Waring 1997). As a result, 
FPAR has become a much sought-after biophysical product from 
remote sensing.

20.4.2.1 E stimating FPAR with Empirical Models

FPAR depends on various leaf optical properties (e.g., clumping, 
leaf angle distribution, and spatial heterogeneity) and is nonlin-
early correlated with LAI (e.g., Asrar et al. 1984). FPAR has been 
empirically related to several VIs from remote sensing data, 
such as SR, NDVI, greenness, and perpendicular VI (PVI) since 
the 1980s (Table 20.12). These indices are estimated from vari-
ous combinations of remotely sensed data from different spec-
tral bands. The SR–FPAR relationship developed in the earlier 
research was usually done for crops in field using spectroradi-
ometers and was often used to estimate crop production. Kumar 
and Monteith (1981) developed a linear relationship between SR 
and FPAR for various crops, and the relationship was further 
examined by Steven et al. (1983). Asrar et al. (1984) provided the 
theoretical basis for the NDVI–FPAR relationship, which was 
further validated with field measurements.

Many studies have found that the intercept (b) of this linear 
NDVI–FPAR relationship is not zero for nonblack background, 
but slightly negative (Table 20.13; Figure 20.3). These relations 
are often dependent on vegetation phenological phases, such as 
greening-up and senescence (e.g., Hatfield et al. 1984; Wiegand 
et  al. 1991). The slope values (a) in the NDVI–FPAR relations 
range from 0.95 to 1.386 except for senescence periods. NDVI 
seems to provide more consistent linear relations with FPAR than 
SR across different biomes and sensors (Figure 20.3). Although 
both NDVI and FPAR are not scale invariant, the NDVI–FPAR 
relationship has been proven to be scale invariant due to its lin-
earity (Myneni and Williams 1994; Friedl et  al. 1995; Myneni 
et al. 1995). For this reason, FPAR was often incorporated as a 
key scaling measure when fusing multitemporal remote sensing 
datasets at different scales (Hwang et al. 2011).

20.4.2.2 E stimating FPAR with Biophysical Models

Since a study by Asrar et al. (1984), the NDVI -FPAR relation 
has been explored for different sensors (Landsat MSS or TM, 
SPOT, AVHRR, etc.) and biome types at different scales. This 
linear relationship between FPAR and VI has also been repro-
duced with several radiative transfer models (Sellers 1985, 1987; 
Asrar et al. 1992; Myneni and Williams 1994; Knyazikhin et al. 
1998). These studies usually found that the NDVI–FPAR rela-
tionship is mostly linear regardless of vegetation spatial hetero-
geneity and leaf optical properties. However, this relationship 
is sensitive to soil background reflectance. Knyazikhin et  al. 
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(1998) mathematically proved the NDVI–FPAR proportionality 
(FPAR = a·NDVI) if background soil is ideally black.

One of the best known models estimating FPAR is perhaps 
the MODIS/FPAR algorithm, which simulates bidirectional 
reflectance factor using a 3D canopy radiative transfer model 

by biome types (Myneni et al. 2002; Ganguly et al. 2008b). This 
algorithm assumes biome-specific canopy structure (e.g., leaf 
orientation distribution; Knyzikhin et al. 1998) and leaf/soil opti-
cal properties (Myneni et al. 2002). The algorithm also assumes 
spectral invariance in canopy transmittance and absorptance 
at a reference wavelength to those in other wavelengths, which 
also provides the theoretical basis of the linear NDVI–FPAR 
relationship (Knyazikhin et al. 1998). In this algorithm, FPAR is 
calculated by integrating the weighted spectral absorptance over 
the PAR spectral region (Knyazikhin et al. 1998; Ganguly et al. 
2008b). The algorithm was also successfully applied to retrieve 
FPAR values from AVHRR and Landsat imagery with different 
spatial and spectral resolutions (Ganguly et al. 2008a, 2012).

20.4.3  Leaf Chlorophyll Content

Leaf pigments such as chlorophyll a and b play a crucial role in 
plant photosynthesis through the conversion of solar radiation 
into stored chemical energy, via a series of electron transfers 
that occur on the thylakoid membranes in chloroplasts. As the 
amount of solar radiation absorbed by a leaf is primarily a func-
tion of the foliar photosynthetic pigments, low concentrations 
of chlorophyll can limit photosynthetic potential and primary 
production (Richardson et  al. 2002). With a large propor-
tion of nitrogen contained within chlorophyll molecules, leaf 

Table 20.12  Empirical Models for the Fraction of Absorbed PAR with Spectral Vegetation Indices

Index FPAR Model Notes References 

SR 0.34SR − 0.63 Various crops Kumar and Monteith (1981)
SR 0.369ln(SR) − 0.0353 Field spectrophotometer/sugar beet Steven et al. (1983)
SR 0.0026SR2 + 0.102SR − 0.006 Landsat/corn Gallo et al. (1985)
SR 0.0294SR + 0.3669 SPOT/wheat Steinmetz et al. (1990)
SR Not specified Modeling study Sellers (1987)
NDVI 1.253NDVI − 0.109 Landsat/spring wheat Asrar et al. (1984)
NDVI 1.200NDVI − 0.184 (growing)

0.257NDVI + 0.684 (senescence)
Landsat/wheat Hatfield et al. (1984)

NDVI 2.9NDVI2 − 2.2NDVI + 0.6 (growing) Landsat/corn Gallo et al. (1985)
NDVI 1.00NDVI − 0.2 Landsat/coniferous Peterson et al. (1987)
NDVI 1.23NDVI − 0.06 Wheat Baret and Olioso (1989)
NDVI 1.33NDVI − 0.31 Modeling study Baret and Olioso (1989)
NDVI 1.240NDVI − 0.228 Modeling study Baret et al. (1989)
NDVI 0.229exp(1.95NDVI) − 0.344 (growing)

1.653NDVI − 0.450 (senescence)
SPOT/cotton and corn Wiegand et al. (1991)

NDVI 1.222NDVI − 0.191a Modeling study Asrar et al. (1992)
NDVI 1.254NDVI − 0.205 Field spectroradiometer/corn and soybean Daughtry et al. (1992)
NDVI 1.075NDVI − 0.08 Modeling study Goward and Huemmrich (1992)
NDVI 1.386NDVI − 0.125 Cereal crop/modeling study Begue (1993)
NDVI 1.164NDVI − 0.143 Modeling study Myneni and Williams (1994)
NDVI 1.21NDVI − 0.04 AVHRR/mixed forests Goward et al. (1994)
NDVI 0.95NDVI − 0.02 Landsat/modeling study Friedl et al. (1995)
Greenness Not specified Landsat/corn Daughtry et al. (1983)
PVI 0.036PVI − 0.015 (growing)

0.037PVI + 0.114 (senescence)
SPOT and videography/cotton and corn Wiegand et al. (1991)

SR, simple ratio; NDVI, normalized difference vegetation index, greenness; PVI, perpendicular vegetation index.
a	 Intercept was converted to a negative value based on a scatterplot (Figure 11 in Asrar et al. 1992).

Table 20.13  Application of Empirical Models for the Fraction 
of PAR with the Spectral Vegetation Indices into Global Production 
Efficiency or Process-Based Biogeochemical Models

FPAR Model References 

min((SR − SRmin)/(SRmax − SRmin), 
0.95)a

CASA Potter et al. (1993)

{(SR − SRmin)/(SRmax − SRmin)}
(FPARmax − FPARmin)

SiB2 Sellers et al. (1994)

1.25NDVI − 0.025 TURC Ruimy et al. (1994)
0.11SR − 0.12 TURC Ruimy et al. (1994)
1.67NDVI − 0.08 3-PGS Coops et al. (1998)
1.67NDVI − 0.08 Glo-PEM2 Goetz et al. (1999)
1.21NDVI − 0.04 3-PGS Coops (1999)
NDVI Biome-BGC Running et al. (2004)
1.24NDVI − 0.168 EC-LUE Rahman et al. (2004)
0.279SR − 0.294 NASA-CASA Potter et al. (2003)
EVI VPM Xiao et al. (2004)

a	SRmax and SRmin are biome-type dependent.
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chlorophyll is intrinsically linked to carbon and nitrogen cycles. 
Further, its role in photosynthesis and NPP is important within 
regional and global carbon models. Decreases in foliar chloro-
phyll can indicate plant disturbance and stress, for example, 
from disease, limited water availability, extreme temperature, or 
pests, and thus act as a bioindicator of plant physiological con-
dition. The importance of chlorophyll to a range of ecological 
processes has led to a considerable body of research dedicated to 
deriving chlorophyll content from leaf and canopy reflectance, 
from laboratory- and field-based studies to airborne and satellite 
platforms.

Leaf reflectance is controlled by a range of biochemical and 
physical variables, including chlorophyll, nitrogen, carotenoids, 
anthocyanins, water, and internal leaf structure, with chlo-
rophyll dominating in the visible wavelengths (400–700  nm). 
Chlorophyll absorbs strongly in red and blue spectral regions, 
with maximum absorbance in red wavelengths between 660 
and 680  nm and maximum reflectance in green wavelengths 
(~560  nm) within the visible spectrum. Overlapping absorp-
tion from the presence of carotenoids in blue wavelengths often 

prevents this region from being useful in chlorophyll estima-
tion (Sims and Gamon 2002). Research has also identified that 
the absorption feature in red wavelengths readily saturates at 
relatively low chlorophyll contents, leading to a reduced sensi-
tivity to higher chlorophyll content. This has led to the use of 
“off-center” wavelengths, with reflectance in wavelengths along 
the red-edge region (690–750 nm) showing greater sensitivity to 
subtler changes in chlorophyll content (Curran et al. 1990). This 
improved sensitivity along the red edge is caused by the increas-
ing chlorophyll content that causes a broadening of the absorp-
tion feature centered around 680 nm, shifting the position of the 
red edge to longer wavelengths. While the relationship between 
leaf reflectance and chlorophyll content is reasonably well estab-
lished, particularly for broadleaf species, reflectance sampled 
from remote platforms is also governed by additional canopy 
contributions. These include leaf architecture, LAI, clumping, 
tree density, and nonphotosynthetic canopy elements, along 
with solar/viewing geometry, ground cover, and understory veg-
etation, making the relationship between leaf chlorophyll and 
canopy reflectance complex.
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Figure 20.3  Graphical representations of the relations (a) between NDVI and fraction of absorbed photosynthetically active radiation (FPAR) 
and (b) between simple ratio (or perpendicular vegetation index) and FPAR.
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20.4.3.1 � Laboratory Extraction of Leaf 
Chlorophyll Content

Many studies calibrate or validate chlorophyll estimates derived 
from handheld chlorophyll meters and remotely sensed plat-
forms using laboratory-derived in  vitro chlorophyll content. 
Chlorophyll content is determined by extraction from leaf 
samples and subsequent spectrophotometric measurements and 
expressed by weight or, in most cases, by area. A range of organic 
solvents are typically used to extract chlorophylls and carot-
enoids from plant tissues, including acetone, methanol, etha-
nol, dimethyl sulfoxide (DMSO), and N,N-dimethylformamide 
(DMF), which range in optimal extraction time and perfor-
mance. In a comprehensive study, Minocha et  al. (2009) com-
pared the efficiencies of acetone, ethanol, DMSO, and DMF for 
chlorophyll and carotenoid extraction for 11 species, finding 
that extraction efficiencies of ethanol and DMF were compara-
ble for analyzing chlorophyll concentrations. DMF was the most 
efficient solvent for the extraction of carotenoids; however, the 
toxicity of DMF requires care when using this solvent.

20.4.3.2 � Measuring Leaf Chlorophyll 
Content with SPAD Meter

For rapid, nondestructive leaf chlorophyll measurements taken 
in the field, a handheld chlorophyll SPAD meter, developed by 
Minolta corporation, Ltd., is often used, particularly in agricul-
tural applications. The current model (SPAD-502) measures leaf 
transmittance through a leaf clamped within the meter at two 
wavelengths 650 and 940 nm. The 650 nm is selected to coincide 
with the chlorophyll maximum absorbance feature, and 940 nm 
is used as a reference to compensate for factors such as leaf mois-
ture content and internal structure (Zhu et al. 2012a). The mea-
sured SPAD unit value is converted to chlorophyll content using 
a calibration equation. However, relatively few studies perform 
their own calibrations with in vitro chlorophyll content, which 
are likely to vary according to plant species, leaf thickness, and 
leaf age. Uddling et al. (2007) tested the relationships between 
chlorophyll content and SPAD values for birch, wheat, and 
potato. For all three species, the relationships were nonlinear, 
although for birch and wheat, it was strong (~R2 = 0.9), while 
the potato relationship was weaker (~R2 = 0.5). It may therefore 
be appropriate to develop species-specific calibrations for robust 
chlorophyll estimation, with consideration for leaf developmen-
tal stage.

20.4.3.3 �E stimating Leaf Chlorophyll Content 
with Spectral Vegetation Indices

Empirical spectral VIs are perhaps the most popular and 
straightforward means of retrieving chlorophyll content from 
remotely sensed data. There has been a wealth of research 
devoted to deriving statistical relationships between VIs and 
biochemical constituents, in order to retrieve chlorophyll con-
tent. Spectral indices are usually formulated using ratios of 
wavelengths that are sensitive to a particular leaf pigment 
to spectral regions where scattering is mainly driven by leaf 

internal structure or canopy structure (i.e., the NIR). Indices 
including “off-center” wavelengths (690–740  nm) have been 
shown to be strong indicators of chlorophyll content (Croft et al. 
2014) compared to indices containing chlorophyll absorption 
wavelengths (660–680 nm) due to ready saturation even at low 
chlorophyll content (Daughtry et  al. 2000). Many VIs used in 
chlorophyll studies are focused along the red edge, including the 
MERIS Terrestrial Chlorophyll Index (Dash and Curran 2004). 
Recent research has focused on improving the generality and 
applicability of spectral indices through testing and modifica-
tion over a range of species and physiological conditions, using 
empirical and simulated data. However, many indices have been 
developed and tested using a few closely related species, at the 
leaf scale and under controlled laboratory conditions. At the leaf 
level, surface scattering, internal structural characteristics, and 
leaf water content affect the relationship between VI and chlo-
rophyll content estimation. Scaling up to a branch or canopy, 
other factors such as LAI, solar/viewing geometry, and canopy 
architecture also affect the VI. Background contributions have 
also been shown to perturb the relationship between chlorophyll 
and VIs, particularly in sparse or clumped canopies, with low 
LAI values (Croft et al. 2013). However, these confounding influ-
ences are less of a concern in closed broadleaf canopies, which 
essentially behave as a “big leaf” (Gamon et al. 2010).

20.4.3.4 �E stimating Leaf Chlorophyll Content 
with Radiative Transfer Models

Physically based modeling approaches use radiative transfer 
models to account for variations in canopy architecture, image 
acquisition conditions, and background vegetation that may 
vary in space and time. As radiative transfer models are under-
pinned by physical laws governing the interaction of radiation at 
the canopy surface and within the canopy, they provide a direct 
physical relationship between canopy reflectance and canopy 
biophysical properties. The most recognized approach for mod-
eling leaf chlorophyll content from remotely sensed data in this 
manner is through the coupling of a canopy radiative trans-
fer model and a leaf optical model, to firstly retrieve leaf-level 
reflectance and then derive leaf biochemical constituents from 
the modeled leaf reflectance (Croft et al. 2013). Several canopy 
models have been used for this purpose, with the most popu-
lar including Scattering by Arbitrarily Inclined Leaves (SAIL) 
(Verhoef 1984), Discrete Anisotropic Radiative Transfer (DART) 
(Gastellu-Etchegorry et al. 2004), 4-SCALE (Chen and Leblanc 
1997), GeoSAIL (Huemmrich 2001), and FLIGHT (North 1996). 
The models range from turbid medium models (SAIL), hybrid 
geometric–optical and radiative transfer models (4-SCALE, 
GeoSAIL, DART) in which the turbid media are constrained 
into a geometric form (i.e., a leaf, shoot, branch, and/or crown), 
and ray-tracing techniques (FLIGHT). At the leaf level, the 
PROSPECT model (Jacquemoud and Baret 1990) has had wide-
spread validation across a wide range of vegetation species and 
functional types. In the inverse mode, PROSPECT models chlo-
rophyll and carotenoids from leaf reflectance, along with dry 
matter, a structural parameter, and equivalent water thickness. 
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The smaller number of input parameters compared to other 
leaf-level models, such as LIBERTY (Dawson et al. 1998), means 
that it is readily inverted. A range of different techniques have 
been employed to invert the leaf and canopy radiative transfer 
models, including iterative numerical optimization methods, 
artificial NNs, vector machine regression, and lookup tables. 
However, the “ill-posed” problem means that different combi-
nations of the same structural and image acquisition parameters 
can result in the same canopy reflectance, indicating that some 
a priori scene information is required to constrain the inversion 
(Kimes et al. 2000).

20.4.4  Light Use Efficiency

20.4.4.1  Biophysical Basis of Light Use Efficiency

Light provides the necessary energy for plant photosynthesis. 
LUE measures carbohydrate produced by plants absorbing a unit 
amount of PAR. Monteith (1972, 1977) initially proposed the the-
ory in estimating crop production. Kumar and Monteith (1981) 
first applied the LUE theory to estimate crop growth with remote 
sensing. They successfully estimated crop growth with a con-
stant LUE. This triggered tremendous interest in estimating LUE 
for different plant communities. Prince (1991) and Ruimy et al. 
(1994) reviewed LUE values published in the literature and found 
it varied greatly. In addition to the inherent difference in LUE 
among different plant communities, numerous external factors 
also contributed to the apparent variation in LUE values reported 
in the literature (Prince 1991; Gower et al. 1999), including

•	 Realized LUE versus maximum LUE
•	 LUE based on aboveground growth versus total plant 

growth
•	 LUE based on PAR absorbed versus intercepted
•	 LUE based on PAR versus total global radiation
•	 LUE based on NPP versus GPP
•	 LUE based on PAR absorbed by GV versus total foliage

In order to reduce confusion, Prince (1991), Gower et al. (1999), 
and Song et al. (2013) advocated that LUE should be based on 
absorbed PAR by total foliage in plant canopies, treating the 
proportion of NPV component as an inherent part of the plant 
communities.

Use of light for photosynthesis by a single leaf can be char-
acterized by the photosynthesis–light (P–L) response curve 
(Figure 20.4). The net photosynthesis rate and PAR density is a 
straight line only when PAR is low. After reaching the light satu-
ration point, the net photosynthesis rate is nonlinearly related 
to photon flux density. Therefore, leaves in a plant canopy may 
have very different LUE at any given time of day because leaves 
could have very different PAR density due to mutual shading 
and variation in leaf orientation. Plant production of a given 
plant community is the sum of photosynthesis from all leaves, 
and the LUE of such production varies with time of day due to 
changes in incident solar radiation angle and cloudiness. Song 
et al. (2013) showed that the shorter the time span, the bigger the 

variation of LUE based on simulations with a Farquhar photo-
synthesis model coupled with a sophisticated canopy radiation 
transfer model (Song et al. 2009). It takes about a month for LUE 
to converge to a stable value (Figure 20.5). Despite the highly 
nonlinear relationship between net photosynthesis rate and 
PAR density at the instantaneous time scale, the combination 
of mutual shading of leaves, variation of leaf orientation, and 
change in solar angle tends to linearize the relationship between 
absorbed PAR and plant growth over time (Sellers 1985). It is 
important to note that the LUE estimated by Monteith (1972, 
1977) was done over a whole growing season. Goetz and Prince 
(1999) argued based on plant functional convergence hypothesis 
(Field 1991) that LUE should converge to a narrow range for GPP 
among a wide range of plant functional types.

Incident radiation arrives at the top of plant canopies as direct 
and diffuse radiation. Their relative composition is a function of 
Sun angle, cloudiness of the atmosphere, and the characteristics 
of canopy structure (Ni et al. 1997), thus varying with location 
and canopy structure. Because diffuse radiation can penetrate 
plant canopies deeper than direct light, plants have a higher LUE 
for diffuse light. Therefore, LUE should converge to different val-
ues for different vegetation biomes, a conclusion that is now gen-
erally accepted (Ruimy et al. 1994; Turner et al. 2003; Running 
et al. 2004). Due to landscape heterogeneity in vegetation biome 
composition, the biome-dependent LUE creates spatial variation 
in LUE at the pixel level, particularly with coarse-spatial-resolu-
tion imagery, such as that from MODIS (Turner et al. 2002), mak-
ing direct mapping of LUE from remotely sensed data attractive.

20.4.4.2  Remote Sensing LUE

PAR absorbed by leaf pigments has three pathways within the 
chloroplast: photochemical quenching (i.e., used for photosyn-
thesis), nonradiative quenching, and photoprotection through 
which excess energy is dissipated through the xanthophyll cycle 
and chlorophyll fluorescence (ChF) through which radiation is 
emitted at longer wavelength than the absorbed light (Coops 
et  al. 2010). Energy directed toward nonradiative quench-
ing and ChF reduces LUE in photosynthesis (Meroni et  al. 
2009; Coops et  al. 2010). Remote sensing of LUE is based on 
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Figure 20.4  Photosynthesis–light response curve.
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the detection of energy that is not used in the photochemical 
quenching.

One such approach was initially developed by Gamon et al. 
(1992) based on their discovery that leaf reflectance at 531 nm 
is related to the xanthophyll cycle (Gamon et al. 1990). When 
absorbed PAR exceeds photosynthetic capacity, the excess light 
is dissipated through deepoxidation of violaxanthin to zeaxan-
thin via the intermediate antheraxanthin pigment. The process 
is reversed when there is insufficient supply of energy (Demmig-
Adams 1990). Because zeaxanthin and antheraxanthin have 
higher absorption coefficients for radiation near 531  nm than 
violaxanthin, leaf reflectance at 531 nm changes with the xan-
thophyll cycle. Gamon et al. (1992) developed the photochemical 
reflectance index (PRI) to measure the leaf reflectance changes 
at 531 nm

	
PRI

R R

R R
= −

+
531 570

531 570

	 (20.16)

where R531 and R570 are leaf reflectances at 531 and 570  nm, 
respectively. Here, R570 is used as reference reflectance as leaf 
reflectance changes little at 570 nm with the xanthophyll cycle. 
Numerous studies confirm that PRI is highly correlated with 
photosynthetic radiation use efficiency (Peñuelas et  al. 1995; 
Gamon and Surfus 1999; Nichol et al. 2000). Great interest has 
been generated to map LUE remotely with PRI, particularly 
with remotely sensed data from MODIS since band 11 is cen-
tered at 531 nm. However, MODIS does not have a band centered 
at 570 nm that can be used as the reference band. Drolet et al. 
(2005) used bands 11 and 13 to calculate PRI and found that PRI 
from backscatter images (i.e., near hotspot view) is significantly 
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Figure 20.5  Light use efficiency at half hourly (a), daily (b), and cumulative (c) temporal scale based on simulation from Song et al. (2009).
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correlated with LUE estimated from flux tower measurements. 
Drolet et  al. (2008) further demonstrated that PRI calculated 
with band 14 as the reference band also had a strong relationship 
with 90 min LUE for a boreal forest in Saskatchewan, Canada. 
Garbulsky et al. (2008) found that band 12 can also be used as 
the reference band for characterizing the relationship between 
PRI and LUE over a Mediterranean forest.

Testing PRI from MODIS with flux tower measurements offers 
insight on the potential of mapping LUE in space. However, the 
PRI–LUE relationship can be compromised by the mismatch in 
scale between the footprint of a flux tower and the corresponding 
MODIS pixel. Hall et al. (2008) and Hilker et al. (2008, 2010) con-
ducted a series of fieldwork studies that measure PRI on a flux tower 
with a spectroradiometer in two forests, with one on Vancouver 
Island, British Columbia, in a Douglas-fir stand and the other in a 
mature Aspen stand in central Saskatchewan. They found that the 
downregulation of photosynthesis at the forest scale governs the 
relationship between PRI and LUE. They also found a stronger rela-
tionship between PRI and LUE for sunlit canopies than shaded can-
opies, providing evidence to explain why only PRI from backscatter 
MODIS imagery correlated with LUE (Drolet et al. 2005). Hall et al. 
(2011) proposed a satellite mission, PHOTOSYNSAT, a multiangle 
along-track satellite to map LUE based on their findings that (1) the 
first derivative of PRI with respect to the fraction of shadows in the 
sensor field of view is proportional to LUE and (2) PRI response is 
independent of vegetation structure and optical properties.

Another approach to estimating LUE remotely is through 
detecting the energy dissipated in ChF at wavelengths ranging 
from 650 to 800 nm (Meroni et al. 2009). Remote sensing of ChF 
is based on three Fraunhofer lines where incident solar radiation 
is low due to absorption by hydrogen in the solar atmosphere 
(656.4  nm) and oxygen in the Earth’s atmosphere (760.5 and 
787.5 nm) (Meroni et al. 2009; Guanter et al. 2010; Liu and Cheng 
2010). The ESA’s FLuorescence EXplorer (FLEX) mission is aimed 
at measuring solar-induced ChF in the Fraunhofer lines created 
by oxygen (Guanter et al. 2010; Mohammed et al. 2012). The fea-
sibility has been demonstrated on the ground with high-spectral-
resolution spectroradiometers and fluorometers (Damm et  al. 
2010; Liu and Cheng 2010; Liu et al. 2013) and in the air and space 
(Guanter et al. 2007; Zarco-Tejada et al. 2009, 2013; Frankenberg 
et al. 2011). Due to the weak ChF signal, it is mandatory for FLEX 
to be successful that the remotely sensed data be collected with 
high spectral resolution and data have to be corrected with a pre-
cise modeling of atmospheric effect in the visible and NIR spectra 
(Grace et al. 2007; Malenovsky et al. 2009; Guanter et al. 2010).

20.4.5 � Gross Primary Productivity/
Net Primary Productivity

GPP measures the net carbohydrate produced during photo-
synthesis after dark respiration over a unit area in a given time. 
NPP is the balance of GPP after plant autotrophic respiration. 
Both GPP and NPP are key carbon fluxes between the terres-
trial ecosystem and the atmosphere in the global carbon cycle. 
However, current eddy covariance technology cannot measure 

GPP directly, but only measures net ecosystem exchange (NEE), 
that is, the net difference between GPP and ecosystem respira-
tion, which includes both autotrophic and heterotrophic respira-
tions. Estimation of GPP is accomplished by resorting to models 
to estimate autotrophic respiration during the daytime. Through 
careful fieldwork, NPP can be estimated as the total organic mat-
ter produced on an annual basis (Clark et al. 2001a,b). However, 
remote sensing is the only viable option to provide wall-to-wall 
estimation of primary production.

20.4.5.1 � Remote Sensing of Primary 
Production Based on LUE

Optical remote sensing of terrestrial ecosystem primary produc-
tion is predominantly based on the LUE theory (Monteith 1972, 
1977) because of its sound biophysical basis and simplicity. The 
general form of LUE models for primary productivity is

	 P f IPAR f Emax APAR= × × × ( )ε 	 (20.17)

where P is the primary productivity. The maximum LUE, εmax, 
is the conversion factor of Absorbed Photosynthetically Active 
Radiation (APAR) to NPP or GPP under optimal conditions. 
APAR is generated as the product of the fraction of APAR (fAPAR) 
and incident PAR. The environmental scalar function, f(E), pro-
duces a scalar that is between 0 and 1 to reduce the maximum 
LUE to actual LUE due to environmental stress.

The product of a LUE model can either be NPP or GPP, as 
listed in Table 20.14. For models with their initial product being 
GPP, autotrophic respiration is usually simulated to produce 
NPP, such as the Biome-BGC model that produces the MODIS 
NPP and GPP products (Zhao et al. 2005).

20.4.5.2 � Remote Sensing of Primary 
Production without LUE

Estimating terrestrial ecosystem primary production does not 
always rely on LUE. Numerous process-based models, which 
use remotely sensed land surface biophysical parameter prod-
ucts as key model inputs, but are not based on LUE theory, have 
been developed. The most commonly used land surface bio-
physical parameter is perhaps LAI. Running et  al. (1989) con-
ducted a pioneering study that integrated remote sensing with 
ecosystem models to estimate GPP. They used LAI derived from 
AVHRR NDVI as an input to the Forest-BGC model (Running 
and Coughlan 1988) and estimated both GPP and transpiration 
over a 28 × 55  km mountainous region. Nemani et  al. (1993) 
derived an improved LAI product from Landsat TM imagery by 
correcting the background effects on NDVI using a midinfrared 
reflectance. The subsequent LAI product was used as an input to 
the RHESSys model (Band et al. 1993) to estimate evapotrans-
piration and GPP at the watershed scale. Liu et al. (1997) devel-
oped the BEPS model, which estimates NPP using LAI derived 
from the 10-day composite AVHRR NDVI. Nemani et al. (2009) 
developed the Terrestrial Observation and Prediction System 
(TOPS) model to estimate GPP and ET fluxes using the MODIS 
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Table 20.14  Typical LUE Models for Terrestrial Ecosystem Primary Productivity

Environmental Scalars 

Model Productivity Measure LUE (εmax)(gC/MJ)
Temperature (T), Vapor Pressure Deficit (D), 

and Soil Water (θ) References

Kumar and Monteith NPP 1.3 N/A Kumar and Monteith (1981)
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McMurtrie et al. (1990)

Ruimy et al. NPP 0.37–2.07 (biome 
dependent)

N/A Ruimy et al. (1994)

GLO-PEM GPP εmax = 55.2a f(Tmin) = 0, when Tmin < 0,
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(Continued)
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LAI product as an input. More advanced use of optical remote 
sensing for primary production estimation takes advantage of 
multiangular remote sensing to derive more complex canopy 
biophysical parameters (e.g., the foliage clumping index) that 
can be integrated into process-based photosynthesis models 
to provide more detailed partitioning of solar radiation into 
sunlit and shaded leaves, potentially improving NPP and GPP 
estimates over the “big-leaf” models based on LAI (Chen et al. 
2003, 2012). These types of models closely couple carbon and 
water fluxes through stomatal conductance, often by linking the 
Farquhar photosynthesis (Farquhar et  al. 1980) and Penman–
Monteith (Monteith 1965) evapotranspiration models.

20.4.6  Uncertainties, Errors, and Accuracy

The functional products of vegetation derived from remote 
sensing directly, such as phenology and LUE, or indirectly, 
such as GPP and NPP, are theoretically invalidatable because 
we never have perfect reference data. The remotely sensed phe-
nology parameters, such as the start and the end of growing 

season, can only be derived through statistical analysis of image 
time series, typically on a spectral VI (Zhang et al. 2003). LSP is 
an outcome of synaptic phenomena for all vegetation within the 
entire pixel, which is usually quite large for the sake of frequent 
repeat coverage (Myneni et  al. 1997; Tucker et  al. 2005; Zhu 
et  al. 2013). The synoptic seasonal timing over a sizable area 
cannot be accurately recorded on the ground as each individual 
plant may have a different phenology. Although there are now 
cameras mounted on flux towers, which provide a much better 
record of the actual synoptic phenology (Richardson et al. 2007), 
it is nearly impossible to have a perfect spatial match between 
the area of the camera field of view and the satellite pixel. In 
addition, the direct derivation of evergreen forest phenology, 
which demonstrates little seasonal greenness change, remains 
a challenge using remotely sensed imagery (Dannenberg 2013).

Similarly, the validation of GPP/NPP estimates from remote 
sensing over a large area is impossible because no reliable refer-
ence data are available. On the site basis, carbon fluxes from eddy 
covariance flux towers are frequently used for model evaluations 
(Xiao et al. 2004a,b; Yuan et al. 2007, 2014). However, flux towers 

Table 20.14 (Continued)  Typical LUE Models for Terrestrial Ecosystem Primary Productivity

Environmental Scalars 

Model Productivity Measure LUE (εmax)(gC/MJ)
Temperature (T), Vapor Pressure Deficit (D), 

and Soil Water (θ) References

TOPS (diagnostic 
version)

GPP Same with MOD17 Same with MOD17 for Tmin and VPD

f

LWP LWP
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Nemani et al. (2009)
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θ

β
( ) =
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1
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Same with MOD17 for Tmin and VPD
f(T) of VPM model used in the old version

Yuan et al. (2007, 2010)

α, quantum yield (moles CO2 mole PPFD−1).
α0, αw, and αd, the slope between NDVI and Ts, and the wet and dry edge slopes (°C NDVI−1).
β, Bowen ratio (= H/LE).
θ, calculated soil saturation (%).
θmax and θmin, soil saturation of root zone at field capacity (−0.004 MPa) and permanent wilting point (−1.5 MPa) (%).
c and d, texture-specific parameters for the water stress scalar of 3-PGS model.
Ta, Ts, and Tmin, air, surface, and daily min temperature (°C).
T1 and T2, biome-specific parameters for the Tmin scalar.
T3 and T4, min and max temperature for photosynthetic activity in VPM model.
Topt, optimal temperature for photosynthetic activity (°C) (25 for EC-LUE model, monthly average air temperature when NDVI reaches its maximum in 

NASA-CASA model.
VPD or D, vapor pressure deficit (kPa).
D1 and D2, biome-specific parameters for the VPD scalar.
LWP, predawn leaf water potential (MPa), calculated from θ and soil textural parameters.
LWP1 and LWP2, biome-specific parameters for the LWP scalar (min spring LWP and stomatal closure LWP) (MPa).
AET and PET, actual and potential evapotranspiration.
LE and H, latent and sensible heat.
LSWI, land surface water index.
LSWImax, max LSWI within the plant growing season for individual pixels.
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do not directly measure GPP/NPP, but NEE that is the net differ-
ence between the carbon absorbed by plant photosynthesis and 
that released by ecosystem respiration. Ecosystem respiration 
has to be subtracted from NEE in order to get GPP. Currently, 
there is no direct measurement for daily ecosystem respiration 
when photosynthesis happens, though it can be modeled based 
on the ecosystem respiration rate at night (Reichstein et al. 2005; 
Lasslop et al. 2010), adding uncertainty to the flux tower–derived 
GPP for model evaluation (Schaefer et al. 2012). An alternative 
approach for model evaluation is comparing independent esti-
mates, such as that from atmospheric inverse modeling and that 
from ground inventory and analysis (Pacala et  al. 2001; Piao 
et al. 2009). Although this does not validate any model outputs 
in the strict sense, it does provide more credibility to the model 
output. Much research and new technologies are needed in this 
regard in the future.

20.5  Future Directions

Optical remote sensing will continue to play a critical role in 
monitoring the spatial temporal dynamics of vegetation in the 
foreseeable future, and it will continue to provide key land sur-
face biophysical parameter data layers to models at regional to 
global scales that aim to simulate and project the changes of 
terrestrial ecosystem functions in the future due to global envi-
ronmental changes. Recently launched remote sensing missions, 
such as the Landsat 8 and Suomi NPP satellites by the United 
States and the SPOT 6 by France, will continue to provide pivotal 
optical remotely sensed data in the immediate future. Planning 
of remote sensing missions in the United States is guided by the 
Decadal Survey generated by the National Research Council of 
the National Academy of Sciences (NRC 2007). The planned mis-
sion, HyspIRI, combines a hyperspectral visible SWIR imaging 
spectrometer with a multispectral thermal infrared spectrometer 
to map vegetation composition and its health. The ESA’s Sentinel 
mission, Sentinel-2, will continue to provide optical remotely 
sensed imagery globally as an enhanced continuity of SPOT and 
Landsat-type data. At the same time, high-spatial-resolution 
optical remotely sensed data will continue to boom in the private 
market. Therefore, both the quality and the quantity of optical 
remotely sensed data will increase in the foreseeable future.

In addition to remotely sensed data in the optical domain, 
Radar and LiDAR remote sensing missions will increase in the 
future at the same time. The abundance of remotely sensed data 
from multiple sensors will lead to synergistic use of remotely 
sensed data from different sensors to extract vegetation informa-
tion, particularly by fusing information from LiDAR, Radar, and 
optical sensors (Lefsky et al. 2005; Gao et al. 2006; Nelson et al. 
2009; Gray and Song 2012). Although empirical approaches will 
continue to be critical to understand the relationship between 
remotely sensed data and vegetation structure at local to regional 
scales, more physically based approaches that are applicable 
globally will continue to advance, providing increasingly higher 
quality vegetation information that will enable improved under-
standing of the roles vegetation plays in the terrestrial ecosystem.
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Acronyms and Definitions

ALI	 Advanced Land Imager
ASTER	� Advanced Spaceborne Thermal Emission 

and Reflection Radiometer
AutoMCU	 Automated Monte Carlo Unmixing
AVHRR	� Advanced Very High Resolution 

Radiometer
AVHRR NDVI3g	� Third-generation GIMMS NDVI from 

AVHRR sensors
B	� Brightness band derived from the Tasseled 
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BG	 Bare ground
Br	 Rescaled brightness band
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G	� Greenness band derived from the Tasseled 

Cap transformation
GIMMS	� Global Inventory Modeling and Mapping 

Studies
GIS	 Geographic information systems

GPS	 Global Positioning System
Gr	 Rescaled greenness band
LAI	 Leaf area index
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Landsat OLI-TIRS	� Landsat Operational Land Imager–

Thermal Infrared Sensor
Landsat TM	 Landsat Thematic Mapper
LandTrendr	� Landsat-based Detection of Trends in 

Disturbance and Recovery
LCMMP	� California Land Cover Mapping and 

Monitoring Program
LST	 Land surface temperature
MaFoMP	 Massachusetts Forest Monitoring Program
MGDI	 MODIS Global Disturbance Index
MODIS	� Moderate-Resolution Imaging Spectro​

radiometer
MTBS	 Monitoring Trends in Burn Severity
NDVI	 Normalized difference vegetation index
NDWI	 Normalized difference wetness index
NPV	 Nonphotosynthetic vegetation
NRCS	 Natural Resources Conservation Service
PAR	 Photosynthetically active radiation
SPOT	 Satellite Pour l’Observation de la Terre
STAARCH	� Spatial Temporal Adaptive Algorithm for 

mapping Reflectance Change
STARFM	� Spatial and Temporal Adaptive Reflectance 

Fusion Model
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UN-REDD	� United Nations Programme on Reducing 
Emissions from Deforestation and Forest 
Degradation

USDS-FS	� United States Department of Agriculture 
Forest Service

USGS	 United States Geological Survey
USGS-LCCP	� United States Geological Survey Land 

Cover Characterization Program
VCT	 Vegetation change tracker
W	� Wetness band derived from the Tasseled 

Cap transformation
WELD	 Web-Enabled Landsat Data
Wr	 Rescaled wetness band

21.1 I ntroduction

The purpose of this chapter is to explore the current trends in 
land cover change detection and to identify those trends that are 
potentially transformative to our understanding of land change, 
as well as identify knowledge/information gaps that should 
require attention in the future. The current level of understanding 
of the scale and pace of land cover change is inadequate (Frey and 
Smith 2007; Turner et al. 2007; Hansen et al. 2013). However, it is 
understood that land cover change is an undisputed component 
of global environmental change (Kennedy et al. 2014). Land cover 
changes and their impacts range widely from regional tempera-
ture warming to land degradation and biodiversity loss and from 
diminished food production to the spread of infectious diseases 
(Vitousek et  al. 1997; Farrow and Winograd 2001). Land cover 
change, manifested as either land cover modification or conver-
sion, can occur at all spatial scales, and changes at local scales can 
have cumulative impacts at broader scales (Stow 1995).

The long-standing challenge facing scientists and policy mak-
ers are the paucity of comprehensive data, at local, regional, and 
national levels, on the types and rates of land cover changes, and 
even less systematic evidence on the causes/drivers and conse-
quences of those changes (Walker 1998). Such data can be gen-
erated through a dual approach: (1) based on direct or indirect 
observations, for the regions and time periods for which data exist 
(Franklin 2002), and (2) based on projections by models (Lambin 
et al. 1999). A key element for the successful implementation of 
this dual approach is the monitoring of land cover on a system-
atic, operational basis (Strahler et al. 1996; Lunetta and Elvidge 
1998; Townshend and Justice 2002; Wulder and Coops 2014).

In data-rich locations, such as the United States, federal 
resource inventory programs, such as the U.S. Forest Service 
Forest Inventory and Analysis (FIA) program (Gillespie et  al. 
1999) and the Natural Resources Conservation Service (NCRS 
2000), have provided valuable statistical information on land 
cover dynamics for over 35 years. These agencies provide plot-
level information for remote sensing land cover mapping proj-
ects (Franklin et  al. 2000). However, there is also a need for 
spatially explicit, thematically comprehensive data products 
that can be provided by remotely sensed data (Loveland et  al. 
2002). For example, the U.S. Geological Survey’s Land Cover 

Characterization Program (USGS-LCCP) is designed to docu-
ment the rates, causes, and consequences of land cover change 
from 1973 to present, using Landsat North American Landscape 
Characterization (NALC) data (Soulard et al. 2014). The pro-
gram area spans 84 ecoregions of the conterminous United 
States. Another example of comprehensive large-area land cover 
assessment is the Canadian Forest Service Earth Observation 
for Sustainable Development of Forests (EOSD) program (http://
www.nrcan.gc.ca/), which monitors Canada’s forest cover with 
Landsat imagery (Wood et al. 2002). Additionally, the European 
Coordination of Information on the Environment (CORINE) 
program (http://land.copernicus.eu/pan-european/corine-land-
cover) maps land cover and land use (LCLU) (44  categories) 
using a variety of medium-resolution satellite data from 1990 
to present.

In data-poor locations, data derived from remote sensing 
are often the only source of information available for land 
cover monitoring (Lambin et  al. 1999). This situation places 
added pressure on remote sensing practitioners to produce 
accurate change maps using replicable methods, which can-
not be verified using the traditional suite of map accuracy 
tools (Rogan and Chen 2004; Dorais and Cardille 2011). 
The inclusion of land cover change in international agree-
ments such as the Kyoto Protocol under the United Nations 
Framework Convention on Climate Change (UNFCC), as well 
as the growing popularity of the United Nations Programme 
on Reducing Emissions from Deforestation and Forest 
Degradation (UN-REDD and REDD+), makes it essential to 
advance initiatives to monitor land cover change effectively 
(DeFries and Townsend 1999). Increased Landsat data avail-
ability (Wulder and Coops 2014) and the growing trend in 
automated mapping and change detection algorithms will 
likely open up the current data bottleneck such that develop-
ing countries can create more precise estimates of land change 
(Zhu and Woodcock 2014).

In addition to the technical advantages of remotely sensed 
data, the reduced data cost, increased accessibility and avail-
ability, and increased understanding of the information derived 
from these data have facilitated the launch of large-area remote 
sensing–based monitoring programs/initiatives (Loveland et al. 
2002; Eidenshink et  al. 2007), as well as global-scale medium 
spatial resolution change map data sets (Hansen et  al. 2013). 
Therefore, these data, in concert with enabling technologies such 
as global positioning systems (GPSs) and geographic informa-
tion systems (GISs), can form the information base upon which 
sound and cost-effective monitoring decisions can be made 
(Lunetta 1998).

While a large body of work has accumulated regarding land 
cover change monitoring using remotely sensed data (e.g., see 
reviews by Nelson 1983; Singh 1989; Hobbs 1990; Mouat et al. 
1993; Stow 1995; Coppin and Bauer 1996; Macleod and Congalton 
1998; Ridd and Liu 1998; Mas 1999; Civco et al. 2002; Coppin 
et al. 2002, 2004; Gong and Xu 2003; Wulder and Franklin 2006), 
little guidance exists for addressing large-area change mapping, 
especially in an operational context (Dobson and Bright 1994; 
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Loveland et  al. 2002). Thus, in light of the exciting potential 
for future operational land cover monitoring programs, and in 
acknowledgement of the large amount of new, disparate meth-
ods currently employed in change detection studies in the litera-
ture, this chapter presents a review of the key requirements and 
chief challenges of land cover change monitoring.

A general classification of the spatial resolution of remote 
sensing platforms produces three categories (Rogan and Chen 
2004): (1) coarse resolution (≥250 m) (e.g., Advanced Very 
High Resolution Radiometer [AVHRR]); (2) medium resolution 
(<250 m but ≥20 m) (e.g., Landsat Multispectral Scanner [MSS]); 
and (3) fine resolution (<20 m) (e.g., WorldView-2).

21.2 � Land Cover Change Detection and 
Monitoring: Theory and Practice

Figure 21.1 presents a conceptual scheme of a forest environment 
and demonstrates that land cover change can result in alterations 
(increase or decrease) in the abundance, composition, and condi-
tion of remote sensing scene elements over various spatial and tem-
poral resolutions (Stow et al. 1990). Conversion is shown in Figure 
21.1b. In contrast, modification (Figure 21.1c and d) involves 
maintenance of the existing cover type in the face of changes to its 
scene elements (i.e., change in abundance and condition).

Detection and monitoring land cover change across large 
areas are two of the most important tasks that remote sensing 

data and technology can accomplish (Woodcock et  al. 2001). 
Land cover change detection, one of the most common uses of 
remotely sensed data, is possible when changes in the surface 
phenomena of interest result in detectable changes in radi-
ance, emittance (Lunetta and Elvidge 1998), Light Detection 
and Ranging (LIDAR) return values (Wulder et  al. 2007), or 
microwave backscatter values (Rignot and Vanzyl 1993; Grover 
et al. 1999), which implicitly involves spatial patterns of change 
(Crews-Meyer 2002).

Khorram et  al. (1999) explored the spatial context of land 
cover change and stated that spatial entities either (1) become 
a different category; (2) expand, shrink, or change shape; (3) 
shift position; or (4) fragment or coalesce. These concepts are 
well understood by remote sensing practitioners, and especially 
the resource management community, worldwide, but less so by 
ecology, sociology, and vulnerability communities.

However, in the last 10  years, a number of important devel-
opments have occurred that have helped improve the adoption 
of land change information by scientific communities that had 
not done so previously. Land change science (Turner et al. 2007) 
has emerged as an interdisciplinary field that seeks to under-
stand LCLU dynamics as a coupled human–environment sys-
tem. This burgeoning theoretical field claims Earth observation 
data as a crucial component and so has effectively exposed land 
cover mapping and monitoring practices to a broad audience of 
anthropologists, economists, and sociologists. Another impor-
tant development is the opening of the Landsat archive in 2008 

(a) (b)

(c)

30 m

30 m

(d)

Figure 21.1  Conceptual scheme representing land-cover changes from Time 1 (represented by (a)) to Time 2 (represented by (b), (c), and/or 
(d)): (b) change in composition; (c) change in abundance; and (d) change in condition, of vegetation cover, which influence the spectral quantity 
and quality of solar reflected radiation received by a Landsat sensor (30 m pixel).
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(Wulder et al. 2012). The availability of dense time series of mod-
erate spatial resolution Landsat imagery (since 1972 to present) 
has already had significant impacts on the ecology community 
(Kennedy et al. 2014) as temporal sequences and trajectories of 
importance to ecological conservation are now mostly matched 
by Landsat time stacks. Overall, therefore, we can expect to see, in 
the near future, remotely sensed data being used to test or verify 
theories in a much broader array of disciplines than ever before.

Most terrestrial surfaces are comprised complex configura-
tions of land cover attributes (Turner et al. 1999). These range 
from being mainly natural to those that are largely human dom-
inated (Turner and Dale 1991). Land cover change is viewed in 
terms of modifications in component attributes within either 
natural or human-dominated land cover or conversions from 
natural to human-dominated land cover (Lambin et  al. 1999). 
Despite the recognized importance of land cover modifications 
(e.g., wind or insect damage), and in contrast to conversions (i.e., 
forest loss due to agriculture gain), they are not as well docu-
mented at operational scales (Lambin et al. 2001). This is partly 
due to the fact that modifications occur at many different spa-
tial scales and are often too subtle and cryptic to be mapped 
with a high level of confidence (Ekstrand 1990; Gong and Xu 
2003). Therefore, land cover modification analysis requires that 
a greater level of detail be accommodated in remote sensing 
analysis.

Macleod and Congalton (1998) listed four aspects of change 
detection that are important when monitoring land cover 
using remote sensing data: (1) detecting changes that have 
occurred (Fung 1990; Lunetta et  al. 2002), (2) identifying 
the nature of the change (Hayes and Sader 2001; Seto et  al. 
2002), (3) measuring the areal extent of the change (Stow et al. 
1990; Rogan et al. 2003), and (4) assessing the spatial pattern 
of the change (Crews-Meyer 2002; Read 2003). Therefore, 
change monitoring initiatives/programs (i.e., both current 
and planned) should try to accommodate these four factors, in 
addition to appreciating the magnitude, duration, and rate of 
changes that can occur (Rogan and Chen 2004). Additionally, 
the burgeoning operational monitoring paradigm represents a 
shift away from the paradigm of the ubiquitous two-date end-
to-end change detection approach (i.e., only two dates used 
in analysis), due to their greater temporal scope (Kasischke 
et al. 2004).

21.3 �T rends in Land Cover Change 
Detection and Monitoring

21.3.1  Historical Trends: Eight Epochs

The history of land cover change mapping and monitoring 
has witnessed five distinct periods, determined by the evolu-
tion of remote sensor technology, and research needs, related 
to resource management mandates and various scientific 
research interests:

	 1.	 Early case studies (late 1970s) were exploratory and pri-
marily focused on urban change detection (Todd 1977).

	 2.	 Research then shifted to case study applications (early 
mid-1980s) in natural environments, based on the needs 
of resource management agencies and the burgeoning 
interest in carbon sequestration (Singh 1989).

	 3.	 Successful applications and experience (mid–late 1990s) 
led to more widespread applications of remote sensing 
over large areas and using a wide variety of methods 
(Lambin and Strahler 1994).

	 4.	 Improved sensor technology facilitated the increased 
interest in less-researched fields, such as urban applica-
tions of remote sensing, the cryosphere, and coastal-ocean 
research (mid-1990s–present) (Rashed et  al. 2001), and 
the new approach adopted by the Moderate-Resolution 
Imaging Spectroradiometer (MODIS) science team to 
provide image information products such as global land 
cover (Friedl et al. 2011). Large-area, high spatial resolu-
tion remote sensing became possible in 1994, when the 
U.S. government allowed civil commercial companies to 
market high spatial resolution satellite remote sensing 
data (i.e., 1 and 4 m spatial resolution) (Glackin 1998).

	 5.	 Today, a 40-year archive of Landsat imagery, a 22-year 
archive of AVHRR Global Inventory Modeling and 
Mapping Studies (GIMMS) normalized difference veg-
etation index (NDVI) data, and a 15-year archive of 
MODIS imagery and information products, coupled 
with an explosion in image time series research and 
increased automation, have made operational regional–
global-scale land change monitoring a reality (Wulder 
and Coops 2014). Table 21.1 presents a comparison of 
AVHRR, MODIS, and Landsat data in terms of spatial 

Table 21.1  Comparison of AVHRR, MODIS, and Landsat in Terms of Spatial and Temporal Resolution

Sensor/Program
Temporal 
Lineage

Temporal 
Resolution

Geographic 
Coverage Spatial Resolution Information Content Information

AVHRR-GIMMS 1982–2012 Biweekly 
composites

Global 1/12° (8 km at the equator) NDVI http://glcf.umd.edu/
data/gimms/

MODIS 1999–present Daily and 8-day 
composites

Global 250, 500, 1000 m Multispectral/biophysical 
products

http://modis.gsfc.
nasa.gov/

Landsat 1972–present 16 days Regional 30 m Global Land Survey 
global coverage: 1970, 
1990, 2000, 2005, 2010

Multispectral http://landsat.gsfc.
nasa.gov/

http://landsat.usgs.
gov/science_GLS.php
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and temporal resolution. Clearly, the high temporal cov-
erage AVHRR and MODIS data are optimal for regional–
global analysis, but they can only provide this coverage 
at coarse spatial resolution. On the other hand, Landsat 
data are provided at much finer spatial scales (30 m) but 
are mostly limited to local–regional coverage. However, 
the Global Land Survey initiative provides global Landsat 
coverage for five dates between the early 1970s and 2010. 
Spatial resolution is a key-limiting factor in the abil-
ity of remote sensing imagery to resolve land cover and 
land cover change classes. This is because spatial scale 
exerts a strong influence on the ability to extract infor-
mation from remotely sensed data sets and requires care-
ful specification and analysis. As a result, the question 
of which remotely sensed data are appropriate for spe-
cific land cover change monitoring applications remains 
an open one. Obviously, the resolvability of land cover 
change increases with higher spatial resolution. However, 
high spatial resolution imagery is not typically needed 
to accurately detect general land cover changes (the goal 
of large-area monitoring studies) in most environments 
(Franklin and Wulder 2002). Studying a variety of envi-
ronments, Townshend and Justice (1988) reported that 
spatial resolutions coarser than about 200 m undermined 
the reliable detection of land cover changes. Pax-Lenney 
and Woodcock (1997) examined the impact of coarsening 
the spatial resolution on the accuracy of areal estimates 
of agricultural fields in Egypt (30–120–240–480–960 m). 
Most of the coarse-resolution estimates were within 10% 
of the original 30 m estimates. Therefore, medium spatial 
resolution data remain the optimal choice for most land 
cover change studies, but more research over time will 
challenge this assertion in the interest of global-scale esti-
mation and cost reduction, using coarse spatial resolution 
data, relative to the particular application.

21.3.2 C ause of Land Cover Change

A brief survey of the number of new remote sensing journals 
shows that 24 journals have been launched since 2007 (an increase 
of 60% in a 7-year time span). The remarkable proliferation of 
new journals likely reflects the growing user community and 
wealth of new remote sensing applications, enabled by a growing 
time series of free data and also the increased availability of open 
source software packages (e.g., Quantum GIS). Today, techniques 
to perform change detection have become numerous as a result of 
increasing versatility in manipulating digital data and growing 
computing power (Rogan and Chen 2004). The sheer number of 
published articles and the importance to resource management 
indicate both the degree to which remote sensing is used and the 
proliferation of methods employed. One dimension of this pro-
liferation is progress in developing new and improved ways of 
detecting change, while another dimension is the wide variety of 
kinds of changes being monitored (Table 21.2). Table 21.2 presents 

the dominant causes of multitemporal land cover change in 
natural and human-dominated environments and their tempo-
ral and physical characteristics. Each change event can result in 
very different magnitude (i.e., small–large), duration (i.e., days to 
decades), and temporal rates (i.e., slow–fast) (Aldrich 1975; Gong 
and Xu 2003). Understanding the magnitude, duration, and rate 
of land cover disturbances has severe implications for the success 
of a land cover monitoring study because it permits researchers 
to determine the most appropriate sensor, derived data set, fre-
quency of acquisition, level of image processing, and reproducible 
map legend.

It is important to note that not all land change disturbances 
are equally important in change detection studies, and not all 
disturbances may be detected as confidently as others (Gong 
and Xu 2003). For example, land changes of lesser concern to 
forest managers include those related to interannual variability 
and growth variation caused by climate variability, whereas, 
to global change modelers, the last type of change is of chief 
concern (Turner et al. 1999). A key issue in change detection is 
understanding how the types of change affect land cover and 
also how they interact with one another. For example, pheno-
logical vegetation change, which varies temporally across scales 
ranging from years to decades, often interacts with more tem-
porally discrete changes, such as burn scar vegetation depletion 
and postfire regeneration (Rogan et al. 2002).

21.4 � Land Cover Change 
Detection Approaches

21.4.1 � Monotemporal Change Detection: 
Products for Real Time and 
Specific Disturbance Types

Numerous land change applications, using only a single image 
date (i.e., monotemporal change detection) (Coppin and Bauer 
1996, p. 217), which focus on a specific change event, have suc-
cessfully detected a variety of land cover disturbances. These 
disturbances include water stress (Running and Donner 1987; 
Running and Pierce 1990), wildfires (Patterson and Yool 1998; 
Rogan and Franklin 2001), forest thinning (Nilson et al. 2001), 
forest pest damage (Leckie et  al. 1988; Vogelmann and Rock 
1988; Joria and Ahearn 1991; Franklin et al. 1994), forest mortal-
ity (Ekstrand 1990), and the effects of pollution on vegetation 
vigor (Pitblado and Amiro 1982; Toutoubalina and Rees 1999).

Monotemporal applications are an effective application of 
“swapping time for space.” Applications of remotely sensed data 
for disturbance-specific monitoring have considerable advan-
tages, including savings in processing time and reduced costs 
(Patterson and Yool 1998). Further, end users may require a 
quick  look at a particular disturbance for rapid response in the 
case of mudslide, wildfire, or flood events. A good example of this 
is the U.S. Forest Service rapid-response wildfire detection proj-
ect that relies on MODIS active fire detection data (USFS 2004). 
However, monotemporal approaches rely heavily on assumptions 
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about the initial state of land cover in the particular study area 
(Ekstrand 1994). Indeed, an important factor in the success of 
these studies is that prechange information (e.g., predisturbance 
spectral information) and stand and landscape characteristics 
(e.g., stratification of mixed vegetation canopies, stand-based 
analysis, slope, and aspect) are controlled to minimize confusion 
between change and unchanged land cover types (Ekstrand 1990). 
This implies that prechange, or predisturbance spectral, and/or 
land cover information are needed to robustly resolve monotem-
poral disturbances using remotely sensed data (Franklin 2001). 
For monotemporal (rapid response) applications, coarse spatial 
resolution data acquired by sensors such as AVHRR, Satellite 
Pour l’Observation de la Terre (SPOT) Vegetation, and MODIS 
data are appropriate. Image preprocessing requirements are 
minimal, but a spectral transformation (e.g., vegetation index) 
would be useful to separate the disturbance signal (e.g., wildfire 
or flooding) from the undisturbed background and facilitate 
simple spectral change thresholding, if required.

Recent advances in real-time disaster response management 
provide an informative application of monotemporal change 
detection. The International Charter on Space and Major 
Disasters (http://www.disasterscharter.org) was founded in 1999, 
after the catastrophic Hurricane Mitch struck Central America. 
The Charter aims at providing a unified system of space data 

acquisition and delivery to locations affected by natural disasters 
and receives imagery contributions from a group of 15 interna-
tional participating Earth observation agencies. Additionally, 
the United Nations Platform for Space-based Information for 
Disaster Management and Emergency Response (UN-SPIDER 
program) was established in 2006 to serve as a gateway to space 
information for disaster management support (http://www.un-
spider.org/). These two disaster response programs rely on high 
spatial resolution data to achieve their goals.

While high spatial resolution sensors cannot conveniently 
or cost effectively provide wall-to-wall coverage for large-area 
change mapping applications due to data cost and volume, they 
are invaluable as a source of ground reference information for 
medium- and coarse-resolution products/applications and for 
operational monitoring studies over small spatial extents (Stow 
et al. 2002). Technological advances in sensor design allow aerial 
photographic precision and quality in these satellite-based data 
and permit the investigation of thematic information at the 
highest order in both natural and urban/suburban landscapes. 
Though promising, change detection using high spatial reso-
lution data requires further research and development (Rogan 
and Chen 2004). Data costs, compared to free Landsat data, for 
example, are very high. Other issues include the impact of off-
nadir view angles on change detection and the increasing need 

Table 21.2  Causes of Land Cover Change and Their Magnitude, Duration, and Rate

Cause Magnitude Duration Rate References

Phenology Small–medium Days–months Medium Goodin et al. (2002), Jakubauskas et al. (2002), Zhang et al (2003)
Regeneration Small–medium Days–decades Slow Fiorella and Ripple (1993), Lawrence and Ripple (2000)
Drought Small–medium Months–years Slow Peters et al. (1993), Jacobberger-Jellison (1994)
Flooding Medium–large Days–weeks Medium–fast Blasco et al. (1992), Michener and Houhoulis (1997), Rogan et al. (2001), 

Zhan et al. (2002)
Wildfire Small–large Days–weeks Fast Patterson and Yool (1998), Rogan and Yool (2000)
Disease Small–large Days–years Slow–medium Wilson et al. (2002), Kelly and Meentemeyer (2002)
Insect attack Small–large Days–years Slow–fast Muchoney and Haack (1994), Chalifoux et al. (1998), Radeloff et al. (1999)
Ice storm Small–large Years Medium–fast Dupigny-Giroux et al. (2002), Millward and Kraft (2004), Olthoff et al. 

(2004)
Mortality Medium–large Days–years Slow–fast Collins and Woodcock (1996), Allen and Kupfer (2000)
Water/nitrogen stress Small–medium Days–years Slow–fast Running and Donner (1987), Penuelas et al. (1994)
Pollution Small–large Years Slow Ekstrand (1994), Rock et al. (1988), Rees and Williams (1997), Diem (2002), 

Tommervik et al. (2003)
Thinning Medium–large Days Fast Olsson (1995), Nilson et al. (2001), Peddle et al. (2003a)
Clear-cutting Large Days Fast Hayes and Sader (2001)
Replanting Small–medium Days–decades Fast Coppin and Bauer (1996), Levien et al. (1999)
Mining Large Days–decades Medium Cadac (1998)
Grazing Small–medium Days–decades Slow–medium Rees et al. (2003)
Wind throw Large Days Medium–fast Mukai and Hasegawa (2000), Kundu et al. (2001), Lindemann and Baker 

(2002)
Erosion Small–medium Days–weeks Fast Dwivedi et al. (1997), Hong and Iisaka (1987), Michalek et al. (1993), Rosin 

and Hervas (2002)
Environmental quality Small–large Months–years Slow Fung and Siu (2000)
Fragmentation Small–large Days Fast Wickham et al. (1999), Millington et al. (2003)
Conversion Large Years–decades Slow–medium Jha and Unni (1994), Loveland et al. (2002)
Desertification Small Years–decades Slow Robinove et al. (1981), Pilon et al. (1988)

Source:	 After Gong and Xu (2003).
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for object-based mapping (Stow et al. 2004). Further, geometric 
distortion is a vexing problem for most airborne data sets (see 
Franklin and Wulder 2002).

21.4.2 � Bitemporal Change Detection: Map 
Comparison and Disturbance Analysis

In the vast majority of land cover change studies, imagery from 
one date is compared to another date. Within this paradigm of 
analyzing images as endpoints, there has been a tremendous 
variety of methods developed and used. This proclivity of bitem-
poral studies has been caused by several factors: (1) There are 
fewer data to analyze, (2) studies have been conducted to satisfy 
burgeoning short-term resource management needs, (3) various 
researchers have needed a straightforward scenario in order to 
compare and evaluate a variety of change detection techniques 
to find an optimal method, (4) most studies have been conducted 
in regions of limited spatial extent and landscape heterogene-
ity, and (5) these studies have focused on a single disturbance 
event (e.g., flooding, fire, logging, or pest infestation) in environ-
mentally (e.g., tropical forests) or politically (e.g., municipalities) 
important regions. Thus, while bitemporal change detection will 
continue to serve its purpose for a long time to come, its effi-
ciency and consistency over large, heterogeneous areas has yet to 
be fully examined (Rogan et al. 2003). However, the potential for 
moderate spatial resolution analysis in land change monitoring 
is enormous (Zhu and Woodcock 2013).

21.4.2.1  Bitemporal Change Detection Methods

The selection of an appropriate change detection technique 
depends on the information requirements, data availability and 
quality, time and cost constraints, analysis skill, and experi-
ence (Johnson and Kasischke 1998). Table 21.3 presents a sum-
mary of a variety of land cover change detection methods and 
their advantages and disadvantages for operational monitor-
ing. Twelve change detection methods are compared according 
to their status in terms of operational use, as well as their rela-
tive strengths and weaknesses. The chief division between the 
12 methods occurs between postclassification comparison (i.e., 
categorical change) and the suite of existing continuous change 
detection techniques (e.g., image differencing).

The choice of either categorical or continuous comparison 
must be based on an understanding of the spectral and spatial 
impact of a given land cover disturbance or range of distur-
bances. If land cover attributes are expected to change category 
(e.g., forest to urban), then postclassification comparison is suit-
able, if not optimal. However, in many ecosystems, complete 
land cover conversion rarely occurs over short time intervals 
(i.e., 3–5 years). In effect, modification in condition and abun-
dance is more common than conversion (Coppin and Bauer 
1994; Rogan et al. 2002). Therefore, this makes continuous com-
parison a more suitable choice of change detection approach for 
monitoring land cover modifications, especially over relatively 
short time intervals (i.e., 2–5 years). When longer time periods 
are considered (e.g., 5–10  years), then categorical comparison 

may be more suitable, as actual land cover conversion may be 
more likely to occur. In situations where digital data are not 
available for earlier time periods (e.g., pre-1972), categorical 
comparison is the only feasible approach (e.g., a land cover map 
of 1775 can be compared to a 1990 land cover map) (Petit and 
Lambin 2002).

21.4.2.2  Map-Updating Approaches

Another interesting trend in bitemporal change mapping is the 
use of novel map-updating approaches. Postclassification com-
parison has been implemented in hundreds of land change case 
studies, but it is problematic in many land change monitoring 
scenarios (Stow et al. 1980). Over large areas, land change map-
ping is challenging for some of the following reasons: (1) Data 
issues such as cost, platform continuity, availability of aerial 
photographs, or in situ data inhibit comprehensive spatial and 
temporal coverage and (2) cloud cover, nonstationarity in land-
scape features, and phenological variability further limit the 
usability of available imagery. In combination, these challenges 
make the task of remapping an entire landscape for a second or 
even third iteration very expensive and possibly unachievable 
at an acceptable level of map accuracy (Rogan and Chen 2004). 
Actual land change due to categorical conversions (e.g., forest to 
urban) or within-category modifications (e.g., timber harvest) 
usually occupies only a small portion of a pair of 34,000  km2 
Landsat images (e.g., less than 20%) (Rogan et al. 2003) such that 
independent remapping of a landscape for a new time period is 
not warranted as long as there are no drastic changes to a land 
monitoring protocol (e.g., new map legend, change to incompat-
ible new data sources) (Rogan and Chen 2004).

There are two main methods of map updating present in the 
remote sensing literature: (1) human-interpreted delineation of 
new changes using multitemporal data and (2) digital change 
detection of multitemporal imagery to detect a specific type of 
disturbance, such as urban sprawl, or forest damage. Feranec 
et  al. (2007) implemented a human-interpretation method of 
change detection with visually interpreted aerial photography 
to update the CORINE 44 category land cover map for 1990 
and 2000. The 2000 land cover map was created by visually and 
manually editing polygons of change in the original 1990 clas-
sification with overall accuracy above 85%. Other studies have 
used more automated methods of predating and postdating land 
cover maps to monitor forest change. Wulder et al. (2008) imple-
mented a technique to postdate a 2000 land cover map to 2003 
land cover conditions to detect forest clear-cuts using the near-
infrared band from Landsat TM/Enhanced Thematic Mapper+ 
(ETM+), SPOT-4, and Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) data. Forest clear-cuts were 
detected using an ordinal ranking method that assigns pix-
els a value based on its reflectance relative to all other pixels. 
Detected clear-cuts were integrated into the preexisting 2000 
EOSD eight-category land cover product. We expect that new 
innovative approaches to map updating will emerge in the next 
decade as remote sensing practitioners merge change mapping 
and resource inventory in a mutually beneficial process.
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Table 21.3  Summary of a Variety of Land Cover Change Detection Methods and Their Advantages and Disadvantages for Operational 
Monitoring

Change Detection Method and 
Statusa Advantages Disadvantages

Postclassification comparison (PCC) Provides detailed from–to information Only complete class changes are detected
status = I Can be used with different sensors and with different 

spatial and spectral resolutions
Heavily dependent on the accuracy of input maps and 

consistency between mapping methods
Permits the use of data with interdate phenological 

differences
Costs often prohibitive over large areas

Less sensitive to radiometric/geometric errors
Composite analysis (CA) Requires only a single classification Can require a large number of classes and a large 

calibration data set
Status = I Can be applied to both raw and enhanced data 

(e.g., vegetation indices, albedo)
Separation of spectral changes from temporal changes can 

be difficult
Makes effective use of prechange (reference) image

Image differencing (ID) Can be applied to both raw and enhanced data Requires optimization of change/no change threshold
status = I Provides detailed information on “within class change” Difference image interpretation can be difficult

Cannot differentiate spectral differences resulting from 
different original spectral values

Highly sensitive to radiometric/geometric errors
Does not provide from–to information

Image ratioing (IR) Can be applied to both raw and enhanced data Highly sensitive to radiometric/geometric errors
status = I Can mitigate atmospheric and sun angle effects Threshold optimization can be difficult, as change is 

nonlinearly represented
Change vector analysis (CVA) Can be applied to both raw and enhanced data Highly sensitive to radiometric/geometric errors
status = F Provides detailed from–to information Change-direction outputs are difficult to interpret with a 

large number of input bands
Change magnitude thresholding is subjective

Multitemporal Kauth Thomas (MKT) Results are intuitive Coefficients are sensor dependent
status = I Produces suites of change, no change, and noise features Highly sensitive to radiometric/geometric errors

Standardized coefficients permit application and 
comparison over time and space

Multitemporal spectral mixture 
analysis (MSMA)

Results are intuitive (biophysically) Sensitive to choice of end-member type
Can be used to compare fraction estimates across 

different sensors and platforms
Principal components analysis (PCA) Can be applied to both single-date, composite 

multidate, and composite ID data
Components can be difficult to interpret

status = I Reduces multispectral data sets into features 
representing change, no change, and noise

Threshold optimization can be difficult

In multitemporal analysis, standardized components 
can minimize atmospheric and sun angle differences

Statistically based, so limited in space and time
Sensitive to disproportionate amounts of variance in the 

imagery

Multivariate alteration detection 
(MAD)

Reduces multispectral data sets into features 
representing change, no change, and noise

Has not been widely used

status = E Can be used to compare information from different 
sensors

Insensitive to disproportionate amounts of variance in 
imagery

Multitemporal visualization Simple and intuitive Qualitative
status = I Permits inspection of three dates of imagery as RGB Does not provide from–to information
Knowledge-based approaches Automatic detection of change Complicated approach to develop
status = F Have not been widely used
Cross-correlation analysis (CCA) Allows for direct updating of land cover maps Has not been widely used
status = F

a	Status of the method in an operational context for land cover change monitoring: I, implemented in operational context; F, feasible in an operational context; 
E, experimental.
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21.4.3 �T emporal Trend Analysis: 
Automation and Big Data

Over the last four decades, voluminous amounts of digital data 
have been gathered from an ever growing number of satellites 
and sensors continuously monitoring the Earth, atmosphere, 
and oceans. Fortunately, the massive increase in available data 
has coincided with a rise in computing power, and since the 
widespread popularization of online mapping platforms and 
user-generated geographic information, often linked to the 
release of Google Earth™ in 2005, a broader user base for the 
“Geoweb” has developed (Elwood 2011). The most significant 
change in the practice of land cover change mapping and moni-
toring has come from this “Big Data” paradigm, also known as 
“data-intensive science” (Kelling et al. 2009).

21.4.3.1 � Hypertemporal Remote Sensing 
Data in Trend Analysis

Trend, or temporal trajectory, analysis involves the applica-
tion of data acquired on a large number of observation dates 
(i.e., hypertemporal) (inter- and intra-annual), traditionally 
using coarse spatial resolution, spectrally transformed imag-
ery (e.g., NDVI, photosynthetically active radiation, and leaf 
area index estimates derived from AVHRR and MODIS). This 
topic is reviewed thoroughly by Henebry and de Beurs (2013). 
Once assembled, temporal–spectral profiles can be useful for 
describing high-frequency land cover modifications over coarse 
spatial scales (Eastman et al. 2009). The study of land surface 
phenology has witnessed a large increase in remote sensing 
practitioners and applications as a method for studying the 
patterns of plant and animal growth cycles, due to the increase 
in freely available information/data sets. Phenological events 
are sensitive to climate variation such that phenology data pro-
vide timely baseline information for documenting trends in 
agriculture, irrigation, and forest growth rates and detecting 
the impacts of climate change on multiple scales (Henebry and 
de Beurs 2013). The increased complexity that remote sensing 
practitioners face when working with hypertemporal data sets 
is now being ameliorated through new software functional-
ity. For example, the Earth Trends Modeler is an integrated 
suite of tools within IDRISI software for the analysis of image 
time series data and allows the user to perform and analyze 
trend analysis results in both graphic and cartographic format 
(http://www.clarklabs.org/).

Information from trend analysis can provide information on 
landscape or land surface phenological variability for finer spa-
tial resolution studies so that change related to disturbances can 
be potentially separated from climate (temperature and precipi-
tation) variability (Borak et al. 2000). High temporal, coarse spa-
tial resolution imagery has also been used effectively to document 
the prevailing trends in vegetation phenology over large areas 
to guide the acquisition of medium spatial resolution imagery 
(i.e., to reduce commission errors caused by uneven intra- and 
interannual green up) (Rees et al. 2003). As such, changes inher-
ently linked to seasonality can potentially be separated from 

other land cover changes (Coppin et al. 2002). However, spatial 
resolution is often a limiting factor in these studies, especially 
when examining subtle land cover changes (Rees et al. 2003).

21.4.3.2 C hallenges of Trend Analysis

One of the most challenging aspects of trend analysis is that it 
requires a high level of image preprocessing to account for sensor 
and platform differences, sensor drift, etc. (Coppin et al. 2004). 
Trend analysis can be performed using coarse-to-medium spa-
tial resolution data, although coarse-resolution data are more 
plentiful. Substantial preprocessing is required, given the large 
volume of data and the need for a high level of geometric and 
radiometric consistency. While classification is not essential, 
the use of image transformations to reduce data volume in size 
is essential. Most large-area programs utilize categorical com-
parison approaches to detect and monitor land cover change. 
While this development is noteworthy, and expected to con-
tinue, the land change science community requires information 
on land cover modifications, which conversion-focused pro-
grams cannot efficiently or reliably provide. However, there is 
potential for improvement with increased data availability and 
accessibility and growing experience with and understanding 
of sensors and imagery in large-area scenarios (Franklin 2001; 
Rogan and Chen 2004).

21.4.3.3  Medium-Resolution Data for Trend Analysis

A very promising new development is the advancement of data 
fusion, which involves the blending of multiple colocated images 
to produce a hybrid information product that minimizes the 
limitations of each contributing data set (Walker et  al. 2012). 
A typical fusion combination merges low temporal/high spatial 
resolution data with high temporal/low spatial resolution data 
methods to extend the temporal profile of Landsat data using 
daily or 8-day MODIS reflectance data (Gao et al. 2006).

Medium spatial resolution data sources are considered opti-
mal to obtain sufficient thematic detail for large-area monitor-
ing applications. Fortunately, the last decade has witnessed the 
growth in availability of medium spatial resolution data sets such 
as the Web-Enabled Landsat Data (WELD) program (Roy et al. 
2010). Since January 2008, the USGS survey has been providing 
free terrain-corrected and radiometrically calibrated Landsat 
data via the Internet. The WELD system is being expanded to the 
global scale to provide monthly and annual Landsat 30 m infor-
mation for any terrestrial non-Antarctic location for six 3-year 
epochs spaced every 5 years from 1985 to 2010. The WELD prod-
ucts are developed specifically to provide consistent data that 
can be used to derive land cover as well as biophysical products 
for assessment of land surface dynamics (Roy et al. 2010).

21.4.4 �C omparison of Several Automated 
Change Detection Approaches

In recent years, much attention has been focused on automating 
the detection of land cover change, specifically forest disturbance, 
across broad landscapes, and using dense image time series stacks. 
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Many spectral disturbance indices (DIs) (Healey et al. 2005; Hais 
et al. 2009; Mildrexler et al. 2009) and software platforms (Asner 
et al. 2009; Hilker et al. 2009; Huang et al. 2010; Kennedy et al. 
2010) have been created to monitor forest disturbance, each with 
their own relative strengths and weaknesses (Table 21.4).

21.4.4.1  Disturbance Index

Healey et al. (2005) developed a novel combination of the Tasseled 
Cap features (brightness [B], greenness [G], and wetness [W]) to 
highlight forest disturbances over single and multidate Landsat 
image time series, known as the DI. The DI is a linear combina-
tion of the B, G, and W features where each feature is rescaled 
to one standard deviation above or below the mean forest value 
of the landscape under investigation, resulting in the equation

	 DI B G Wr r r= − +( )

where r indicates the rescaled features. The DI is most sensitive 
to stand-replacing, discrete disturbances, which create a strong, 
stable, and relatively predictable spectral signal across space and 
time. Alternatively, the DI is less robust in landscapes where 
rapid postdisturbance succession occurs, such that the distur-
bance signal is weakened by increased understory vegetation 
growth and heterogeneity.

21.4.4.2  Disturbance Index′

Hais et al. (2009) refined the DI to account for gradual distur-
bances across landscapes and forest stands exhibiting rapid suc-
cession (i.e., increased greenness) in understory vegetation. The 
disturbance index′ (DI′) equation is as follows:

	 DI W Br r′ = −

By removing the greenness band from the original DI equation, the 
DI′ showed a heightened sensitivity to both discrete (i.e., clear-cut, 

windthrow, avalanche) and gradual disturbances (i.e., defoliation, 
insect mortality) across space and time when compared to the DI, 
G, B, W, and the normalized difference wetness index (NDWI).

21.4.4.2.1  MODIS Global Disturbance Index
The MODIS Global Disturbance Index (MGDI; Mildrexler et al. 
2009) is an automated change detection algorithm, which fuses 
the MODIS Reflectance product, Land Surface Temperature 
(LST), and MODIS enhanced vegetation index (EVI) data to detect 
large-area forest disturbances at global, continental, and subcon-
tinental scales. The MGDI uses annual maximum LST compos-
ites to detect large changes in land-surface energy and links those 
changes to the EVI signal, thus detecting discrete disturbances. 
Due to the scales at which the algorithm is optimized for, distur-
bances such as wildland fire events, hurricane damage, large-scale 
windthrow, clear-cuts, and land clearing for agriculture will be 
the major landscape modifiers captured over the time series.

21.4.4.3 C LASlite

Carnegie Landsat Analysis System–Lite (CLASlite) (V 3.1) is a 
stand-alone, fully automated software package used to map for-
est cover, deforestation, and forest degradation over broad spa-
tial extents and long time series by experts and nonexperts alike 
(Asner et al. 2009). CLASlite boasts a 1 h processing time on a 
standard Windows PC for a 30 m spatial resolution image across 
10,000 km2. CLASlite enables users to input raw data from a vari-
ety of satellite platforms (Landsat 4, 5, 7, 8; ASTER; Advanced 
Land Imager [ALI]; SPOT 4, 5; MODIS) where an automation 
procedure atmospherically corrects, cloud masks, and classifies 
images across multiple dates with little user input (see Asner 
et  al. 2009 for more details). The CLASlite algorithm utilizes 
a spectral mixture procedure called Automated Monte Carlo 
Unmixing (AutoMCU) to classify forest/nonforested areas for 
one or multiple image dates. Although the spectral libraries used 
in this procedure are optimized for tropical forests (>300,000 
spectral signatures), it has also been shown to classify temperate 
forests with great success (see case study in the following text).

Table 21.4  Comparison of Seven Prominent Change Detection Algorithms according to Ease of Use, Computation Time, Data Type, 
and Functionality

Algorithms Ease of Use Computation Time Data Type Cost Available to Use
Highlights 

Deforestation
Highlights 

Degradation Source

DI 2 NA L Free Y Y N Healey et al. (2005)
DI′ 2 NA L Free Y Y Y Hais et al. (2009)
CLASlite 1 1 L,S,A,M Free Y—with permission Y Y Asner et al. (2009)
VCT 2 1 L,S,IRS Free Y Y Y Huang et al. (2010)
LandTrendr 3 3 L Free Y—requires ENVI Y Y Kennedy et al. (2010)
MGDI 1 NA M Free N Y N Mildrexler et al. (2009)
STAARCH 3 NA L,M Free Y Y Y Hilker et al. (2009)

DI, disturbance index; DI′, disturbance index prime; MGDI, MODIS Global Disturbance Index; CLASlite, Carnegie Landsat Analysis System Lite; VCT, 
Vegetation Change Tracker; LandTrendr, Landsat-based Detection of Trends in Disturbance and Recovery; STAARCH, Spatial Temporal Adaptive Algorithm 
for mapping Reflectance Change; NA, not available; L, Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+); S, Satellite 
Pour l’Observation de la Terre 4 and 5 (SPOT); A, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER); Moderate Resolution Imaging 
Spectrometer (MODIS); IRS, Indian Remote Sensing Satellite; ENVI, Exelis Visual Information Solutions.
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21.4.4.4  Vegetation Change Tracker

The vegetation change tracker (VCT) (Huang et al. 2010) is an 
automated algorithm used to delineate forest change across 12 
or more Landsat time series stacks with little to no user param-
eterization for closed or near closed forest canopies. The VCT 
algorithm will automatically create initial masks (i.e., clouds, 
cloud shadows, water) and temporally normalize for all scenes, 
calculate forest features, temporally interpolate masked land 
areas, and create a composite output image of all locations that 
experienced a disturbance for each time step. Additionally, the 
VCT algorithm calculates multiple types of change magnitude 
measures and tracks postdisturbance vegetation processes 
(i.e., succession). The VCT disturbance mapping technique 
is ideal for discrete, land-clearing events but works poorly 
for nonstand clearing events (i.e., thinning, selective logging, 
insect outbreak).

21.4.4.5  LandTrendr

The Landsat-based Detection of Trends in Disturbance and 
Recovery (LandTrendr; Kennedy et  al. 2010) is an algorithm 
that enables the user to systematically analyze a dense Landsat 
time series stack to produce robust short-term disturbance and 
long-term vegetation trend maps. Users are able to provide 
dense Landsat time series stacks into the LandTrendr, which 
are atmospherically corrected (Cos(t) algorithm), masked 
(smoke, cloud, cloud shadow, water), and temporally seg-
mented as a means to capture landscape disturbances. Output 
images and figures provide a wealth of information that quan-
tify landscape dynamics over the time series stack, allowing 
for a much more detailed assessment than bitemporal change 
methods can provide.

21.4.4.6 � Spatial Temporal Adaptive Algorithm 
for Mapping Reflectance Change

The Spatial Temporal Adaptive Algorithm for Mapping 
Reflectance Change (STAARCH; Hikler et  al. 2009) blends 
Landsat and MODIS data to enhance the temporal resolution 

of Landsat (16 days) to MODIS (8 days). The STAARCH model 
employs Healey et al.’s (2005) DI to detect landscape changes, 
where the DI calculation is completely automated. To aid in 
heterogeneous landscapes, the STAARCH model uses the min-
imum standard deviation of forest spectral values to increase 
the sensitivity of the DI to spectral forest change (i.e., distur-
bance). Additionally, this algorithm is able to create synthetic 
Landsat images for a given study area/period for each avail-
able MODIS scene used. To note, this algorithm builds upon 
and improves the performance of the Spatial and Temporal 
Adaptive Reflectance Fusion Model (STARFM) algorithm 
(Gao et al. 2006).

21.4.4.7 � Summary and Comparison of 
Automated Change Methods

To summarize the aforementioned change detection indices and 
algorithms, it is necessary to evaluate their purposes accord-
ingly (Tables 21.4 and 21.5). For high spatial and temporal reso-
lution rapid change detection, it would be most advantageous 
to employ the CLASlite or the VCT algorithm. To evaluate 
longer-term environmental landscape dynamics, where com-
putational power and time are not limiting, the LandTrendr 
would be the most appropriate algorithm of choice. The two 
DIs (DI and DI′) would be most efficiently utilized under the 
conditions where forest change detection across time would 
benefit from manual preprocessing steps to accommodate mul-
tidate disparities. Additionally, the MGDI would allow for a 
more sophisticated approximation of landscape disturbances 
across a very large area. Lastly, the STAARCH algorithm not 
only allows for a highly accurate downscaling of MODIS to 
Landsat pixel scale but also accommodates an automated DI 
calculation; therefore, this would be the algorithm of choice if 
large spatial extents combined with a need for high spatial and 
temporal resolution is necessary. It is imperative to assess each 
change detection algorithm based on their strengths, weak-
ness, and best fit for the research objectives and scales (both 
spatially and temporally).

Table 21.5  Comparison of Seven Prominent Change Detection Algorithms according to the Degree of 
Automation with respect to Atmospheric Correction, Cloud Masking, Image Calibration, and Mosaicking

Algorithms Atmospheric Correction Cloud Mask Calibration Mosaic Multiimage

DI N N Y N
DI′ N N Y N
MGDI N N Y Y
CLASlite Y—6S Y Y N
VCT Y—LEDAPS Y Y N
LandTrendr Y—Cos(t) Y Y Y
STAARCH N Y Y N

DI, disturbance index; DI′, disturbance index prime; MGDI, MODIS Global Disturbance Index; CLASlite, Carnegie 
Landsat Analysis System Lite; VCT, Vegetation Change Tracker; LandTrendr, Landsat-based Detection of Trends in 
Disturbance and Recovery; STAARCH, Spatial Temporal Adaptive Algorithm for Mapping Reflectance Change; LEDAPS, 
Landsat Ecosystem Disturbance Adaptive Processing System; Cos(t), cosine of theta.
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21.5 � Accuracy Assessment: 
Beyond Statistics

“It is extremely difficult to implement a consistent, comprehen-
sive, quantitative accuracy assessment for large-area change maps” 
(Loveland et al. 2002, p. 1094). Following the detection and classifi-
cation/mapping of land cover change, it is preferable that the accu-
racy of the change maps be assessed. This topic is reviewed in detail 
by Olofsson et al. (2014). Accuracy assessment serves as a guide to 
the map quality and to reveal uncertainty and its likely implica-
tions to the end user. Accuracy assessment for change detection 
studies is more challenging than for single-date studies (Congalton 
1991; Khorram et al. 1999). This is because change classes usually 
represent a very small portion of the change image, or thematic 
map. Additionally, when performing retrospective change detec-
tion, acquiring an adequate database of historical reference materi-
als, such as historic aerial photographs, can be very difficult, if not 
impossible (Biging et al. 1998). The provision of archived imagery 
by Google Earth provides an important component to address-
ing the more vexing concerns in land change accuracy assessment 
(Dorais and Cardille 2011). Unfortunately, the remote sensing 
community has tended to focus exclusively on the calculation of 
map accuracy/validation statistics to demonstrate the validity of a 
method or the worth of a land cover map (Rogan and Chen 2004). 
While having statistical information about map accuracy is very 
useful, it ignores many other facets of a change map that are vital 
to making sure that true change has been captured (Ghimere et al. 
2010). These important facets include estimating the potential out-
come of the mapping exercise, estimating the areal dominance of 
categories, and determining the desired shape, location, associa-
tion, and configuration of mapped categories.

Based on 10  years of experience mapping forest, wetland, 
and urban change in Massachusetts, the Massachusetts Forest 
Monitoring Program (MaFoMP) (Rogan et al. 2010) developed 
the following list of eight steps to pursue when mapping change 
over a 40-year time period using all available cloud-free Landsat 
MSS, TM, and ETM+ imagery:

Step 1—Determine optimal data needs, image processing 
steps based on scene model (Strahler at al. 1986; Phinn 
et  al. 2000), and desired map legend (e.g., Anderson 
et al. 1976).

Step 2—Determine optimal response design, support 
size, and sampling design (identify the trade-offs 
between support size and cost-logistical feasibility) 
(see Olofsson et al. 2014 for more details).

Step 3—Qualitatively estimate success of mapping proj-
ect based on previous experience and literature (e.g., 
expected outcomes—“last time we achieved 80% over-
all accuracy”).

Step 4—Estimate expected category area/dominance 
using maps from other sources or your knowledge of 
the study area (e.g., categories A and B should comprise 
over 70% of the study area, whereas categories C and D 
should comprise less than 2% of the study area).

Step 5—Estimate expected category shape, location, asso-
ciation, and configuration (e.g., categories F and G will 
fall only on the coast in long linear strips, associated 
with ocean water).

Step 6—Quantitatively estimate overall accuracy and per-
class accuracy using validation data (should be appro-
priate support and sampling design). For a general 
purpose map, all categories should be ranked equal 
in importance (thus a balance must be struck between 
omission and commission errors) such that per-class 
accuracy should be equal. For a phenomenon-specific 
map (e.g., forest loss), certain categories should be 
ranked higher in importance than others such that 
omission errors should be avoided at all allowable 
costs, whereas certain levels of commission error are 
permissible (e.g., it is more important not to miss a rare 
category than it is to falsely map it). Keep in mind that 
resubstitution accuracy (i.e., using calibration data as 
validation data) can be a reasonable first-cut measure 
of your potential mapping success (Rogan et al. 2003).

Step 7—Engage in postclassification editing/filtering 
to achieve a product that looks right. This may make 
you return to your original training data and redo the 
work, especially in heterogeneous locations.

Step 8—Evaluate the map such that the end user can 
employ it wisely for a task that you may not have 
thought of (e.g., let the map user know your decisions/
activities for Steps 1–8 earlier).

21.6 � Massachusetts Case 
Study: CLASlite

This case study explores the application of CLASlite (Asner et al. 
2009) mapping and disturbance detection software to map forest 
and forest change in Massachusetts. CLASlite can operate with a 
variety of satellite data types, including Landsat, SPOT, ASTER, 
ALI, and MODIS. Landsat TM, ETM+, and Operational Land 
Imager–Thermal Infrared Sensor (OLI-TIRS) data were acquired 
for 9 individual years spanning nearly three decades (Table 21.6) 
across eastern Massachusetts (Figure 21.2). Four Landsat tiles 
were downloaded for each respective year and georeferenced 
using image-to-image registration to an existing orthorectified 
Landsat image (http://www.landsat.org). All images were regis-
tered to an average root-mean-square error of less than one pixel.

Following the manual coregistration procedure, each scene 
was processed for each of the 9 years using CLASlite (Version 3.1; 
Asner et al., 2009). CLASlite is an automated change detection 
and mapping software optimized for tropical forests but was used 
here to test the feasibility across spatially heterogeneous temper-
ate forested landscapes such as Massachusetts. CLASlite requires 
limited user interaction in the four main processing steps (image 
calibration, fraction image creation, forest cover mapping, and 
deforestation and disturbance delineation), which is optimal for 
rapid forest cover mapping spanning multiple dates.
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First, all scenes were individually imported into CLASlite 
by specifying the required ancillary and metadata informa-
tion. During image calibration, CLASlite uses 6S radiative 
transfer code to atmospherically correct each scene and con-
vert the output images from radiance values to reflectance. 
Second, CLASlite employs a Monte Carlo (AutoMCU; Asner 
et al. 2002) spectral decomposition algorithm to partition each 
scene into proportional fractional cover types of bare ground 
(B), photosynthetic vegetation (PV), and nonphotosynthetic 
vegetation (NPV) for every pixel (Figure 21.2). During this 
stage, the user is able to specify the degree to which clouds 
and water bodies are masked out of the resulting image. Third, 
CLASlite delineates forest versus nonforest pixels based on a 
user-defined threshold based on proportional PV against B and 
NPV constituents (Figure 21.3). Finally, CLASlite evaluates the 
fractional and reflectance images to produce disturbance and 
degradation classifications for each time step. As defined by 

Asner et  al. (2009), deforestation refers to a diffuse thinning 
of the forest canopy, while degradation quantifies any spa-
tial or temporal persistence of forest disturbance. In this case 
study, CLASlite maps the location of deforestation and forest 
disturbance in eight eras: 1985–1993, 1993–1995, 1995–1999, 
1999–2002, 2002–2009, 2009–2010, 2010–2011, and 2011–2013 
(Figure 21.4).

CLASlite forest cover maps for each time period were vali-
dated using two independent approaches. The first method 
employed the 30 m resolution MaFoMP land cover maps (Rogan 
et al. 2010) for the years 1984, 1990, 2000, and 2009 to produce 
a cross tabulation matrix of quantity agreement and allocation 
agreement with the associated CLASlite forest cover images. 
This assessment determined the degree to which pixels of simi-
lar land cover type (forest or nonforest) are in agreement with 
the 30 m MaFoMP maps (MaFoMP 2011; Table 21.7). Errors of 
omission and commission were reported for each year as a per-
centage of all pixels in spatial and quantity agreement or dis-
agreement to the MaFoMP map (Table 21.8). Kappa values and 
the Cramer’s V statistic were reported for each year (Table 21.9).

Additionally, CLASlite change maps were validated using a 
randomly sampled collection of 200 classified pixels that were 
used to compare the CLASlite delineated pixel values to high 
spatial resolution Google Earth imagery (Dorais and Cardille 
2011; Google, Inc. 2014). The second assessment allowed for an 
independent evaluation of quantity and allocation pixel agree-
ment to determine the degree to which the CLASlite outputs are 
correctly classifying forest versus nonforest land cover types. 
We used available Google Earth imagery that was closest in tem-
poral proximity to the CLASlite-generated forest cover maps. 
The original fine spatial resolution data were acquired from 
DigitalGlobe (i.e., WorldView-2 data). Additionally, the defor-
estation caused by the June 2011 tornado was validated via 50 
randomly sampled points using a 2011 Google Earth image cap-
tured post tornado.

21.6.1 C LASlite Results

21.6.1.1  Forest Cover Mapping

Forest cover maps produced through an iterative threshold-
ing procedure of the AutoMCU fraction images resulted in a 
508 km2 net reduction in forest from 1985 to 2009 (Figure 21.3). 
Comparatively, the MaFoMP maps generated a 566 km2 reduc-
tion in forest from 1984 to 2009, demonstrating that CLASlite 
was within a 10% range of similar transitions over a similar time 
period. The CLASlite-generated forest cover–type maps resulted 
in an 81% kappa agreement with the MaFoMP maps and an 
average 85% accuracy when validated with randomly sampled 
Google Earth imagery.

21.6.1.2  Deforestation and Disturbance Mapping

Between 1985 and 2013, the study area exhibited a net for-
est change of 2301  km2, equating to 19.5% of the study area 
(Table  21.10). The largest total amount of forest change was 

Table 21.6  Detailed Description of Scene Date, Spatial Location, 
and Sensor Type Used

Acquisition Date

Landsat Scene
Landsat 
SensorPath Row

August 8, 1985 12 30 TM
August 8, 1985 12 31 TM
September 1, 1985 13 30 TM
September 1, 1985 13 31 TM
August 15, 1993 12 30 TM
August 15, 1993 12 31 TM
July 5, 1993 13 30 TM
July 5, 1993 13 31 TM
August 21, 1995 12 30 TM
August 21, 1995 12 31 TM
July 15, 1999 13 30 TM
July 15, 1999 13 31 TM
July 31, 1999 12 30 ETM+
July 31, 1999 12 31 ETM+
July 23, 2002 12 30 TM
July 23, 2002 12 31 TM
July 10, 2009 12 30 TM
July 10, 2009 12 31 TM
August 18, 2009 13 30 TM
August 18, 2009 13 31 TM
August 30, 2010 12 30 TM
August 30, 2010 12 31 TM
September 6, 2010 13 30 TM
September 6, 2010 13 31 TM
July 17, 2011 12 30 TM
July 17, 2011 12 31 TM
June 16, 2011 13 30 TM
July 7, 2011 13 31 TM
August 6, 2013 12 30 OLI TIRS
August 6, 2013 12 31 OLI TIRS
September 30, 2013 13 30 OLI TIRS
September 30, 2013 13 31 OLI TIRS
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observed between the interval of 1985–1993, followed by 1995–
1999 and 2002–2009, respectively (Figure 21.5), representing 
13.5% of the total area that was converted from forest to nonfor-
est (Table 21.10). A visual assessment of the deforestation and dis-
turbance results indicated that forest change was overestimated 
due to subtle variation in forest phenology, though CLASlite was 
able to detect most major land-clearing disturbances across one 
to many years.

21.6.1.3  Gardner, Massachusetts, Forest Change

The case study located in Gardner, Massachusetts (Figure 21.4), 
illustrated the rural to urban land conversion, a common trend 
throughout the study area. Forest cover was reduced by 15.2% 
from 1985 (105 km2) to 2013 (84 km2). Across all years, a system-
atic and continuous shift from forest to nonforest cover types 
is revealed (Figure 21.4). CLASlite forest cover maps for 1985 
report 105  km2, compared to the MaFoMP maps of 106  km2. 
Concomitantly, the 2009 CLASlite output reported 87  km2 of 

forested area remaining in Gardner, MA, compared to 96 km2 
in the MaFoMP product. The area differences between the 2009 
classifications were less than 4% of the total case study area of 
Gardner, Massachusetts. Similar to the eastern Massachusetts 
deforestation and disturbance mapping, the amount of area 
affected by forest change in Gardner was overestimated. The 
total forest change from 1985 to 2013 was reported as being 
33 km2 (23%), where the greatest era of change was 1985–1993, 
followed by 1995–1999 and 2002–2009.

21.6.1.4  2011 Tornado Disturbance

On June 1, 2011, a 37 km long and 0.8 km wide tornado track 
touchdowned across southcentral Massachusetts (Figure 21.6). 
Using the 2010–2011 CLASlite deforestation output, we pro-
duced a detailed rendition of the tornado disturbed areas, 
encompassing 20.3 km2 over the 60 km track (Figure 21.6). Two 
years posttornado disturbance, the 2013 forest cover image 
reported 4.8  km2 of forest succession along the disturbance 
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Figure 21.2  Study area in Central Massachusetts fraction composite image produced by CLASlite’s AutoMCU with examples of rural (Webster), 
urban (Lawrence), and coastal (Kingston) landscapes.
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edges, while 15.2 km2 was still in a disturbed state. Based on 50 
randomly sampled points, the agreement was 93% across the 
tornado track.

21.7 � Knowledge Gaps and 
Future Directions

A remote sensing renaissance has begun. Not since the launch of 
Earth Resources Technology Satellite 1 in 1972 has the remote sens-
ing community witnessed a more empowering era. Since the mid-
1990s, most of the information bottlenecks to operational-style 
remote sensing research and application have begun to be opened 
wide for effective and sustainable Earth observation science. The 
MODIS and Landsat science teams have tenaciously pushed for 
free, accurate data, and information products, that can be accessed 
by the rapidly growing global user community. At the same time, 
high spatial resolution data are available globally from a variety 
of private companies, most notably (for view only) the Google 
Earth corporation, at 1–4 m. Importantly, the fields of Landscape 

Ecology and Land Change Science have claimed remotely sensed 
data as an invaluable component of their respective scientific 
practice. International charters such as the UN-SPIDER initia-
tive rely completely on Earth observation data to draw attention 
to natural and humanitarian crises. As the content of this chapter 
highlights, the increased availability of coarse, medium, and high 
spatial resolution data and the surge in efficient automated meth-
ods place remote sensing science in a better place than it has ever 
been in 40 years. In the next 10 years, remote sensing practitioners 
can expect to see a multiplier effect with regard to remote sensing 
applications, as data, methods, and continued advocacy accumu-
late and expand to new fields and new problems. The following list 
highlights the current knowledge gaps and future directions for 
the remote sensing land change community:

	 1.	 Ironically, as more and more data become available, more 
data are needed. Referring to the Landsat program, there 
will be increasing demand for Landsat MSS data and also 
TM data that have not yet been catalogued. The collec-
tion and processing of these data from various agencies 
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Figure 21.3  Statewide automated forest cover image for 2013, with examples of rural (Webster), urban (Lawrence), and coastal (Kingston) 
landscapes. CLASlite produced cloud/water mask is delineated in black.

© 2016 Taylor & Francis Group, LLC

  



594 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

60%
40%

2013

30%

1995

70%

38%62%

2009

61%
39%

2010

1985

71%
29%

66%
34%

1999

65%
34%

2011

1993

71%
29%

35%

2002

65%

Urban center—gardner, MA

Water/cloud mask
0 1 2 4 6 8

km
Forest

Nonforest

Figure 21.4  Forest cover temporal change sequence of Gardner, MA, from 1985 to 2013.  Note, each forest cover scene has the percent propor-
tion of pixels for forest and nonforest land cover classes.
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Table 21.7  Cross Tabulation Assessment Showing Pixel Agreement for Like Years in Terms of Percent of Total Pixel

MAFOMP
C

LA
Sl

ite

Year Class

1984 1990 2000 2009

Forest Nonforest Forest Nonforest Forest Nonforest Forest Nonforest

1985 Forest 0.545 0.078 — — — — — —
Nonforest 0.121 0.256 — — — — — —

1993 Forest — — 0.520 0.090 — — — —
Nonforest — — 0.085 0.305 — — — —

2002 Forest — — — — 0.510 0.118 — —
Nonforest — — — — 0.072 0.299 — —

2009 Forest — — — — — — 0.497 0.078
Nonforest — — — — — — 0.128 0.297

Table 21.8  Kappa (a) and Cramer’s V (b) Statistics Showing the Relative Pixel Agreement Accuracy of the CLASlite Forest 
Cover Classification to MaFoMP Imagery across Four Time Steps

Kappa

MAFOMP

C
LA

Sl
ite

Year 1984 1990 2000 2009

1985 0.8183 — — —
1993 — 0.8275 — —
2002 — — 0.8179 —
2009 — — — 0.81637

Cramer’s V

MAFOMP

C
LA

Sl
ite

Year 1984 1990 2000 2009

1985 0.7839 — — —
1993 — 0.7864 — —
2002 — — 0.7966 —
2009 — — — 0.781

Table 21.9  Random Sample Pixel Percent Agreement of Forest Cover Types of the CLASlite Classification Against 
High-Resolution Google Earth Imagery
Google Earth™

C
LA

SL
ite

Year

1995 2003 2008 2010 2013

Class Forest Nonforest Forest Nonforest Forest Nonforest Forest Nonforest Forest Nonforest

1995 Forest 0.638 0.064 — — — — — — — —
Nonforest 0.037 0.25 — — — — — — — —

2002 Forest — — 0.613 0.032 — — — — — —
Nonforest — — 0.048 0.296 — — — — — —

2009 Forest — — — — 0.608 0.322 — — — —
Nonforest — — — — 0.032 0.317 — — — —

2010 Forest — — — — — — 0.585 0.032 — —
Nonforest — — — — — — 0.037 0.335 — —

2013 Forest — — — — — — — — 0.5945 0.0594
Nonforest — — — — — — — — 0.0324 0.308

Note:	 With increasing time there is a direct relationship to decreasing forest and increasing nonforest agreement.
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throughout the world will greatly extend the reach of the 
Landsat program, especially to developing countries—the 
very locations where land change scientists focus their 
research. Additionally, the cost of high spatial resolution 
data is problematic. One to four meter data are indispen-
sible for locations where in situ data are unavailable, but 

these data can currently only be purchased by govern-
ments or government-affiliated research initiatives.

	 2.	 Given the importance placed currently on land cover 
modifications by the land change science community, it is 
important to distinguish their occurrence from land cover 
conversions. This is a difficult task because both types of 

Table 21.10  Change Statistics per Era

Era Deforestation Total Deforestation (%) Disturbance Total Disturbance (%) Forest Change Total

1985–1993 565.37 4.81 318.21 2.71 883.58
1993–1995 57.1 0.49 29.42 0.25 86.52
1995–1999 250.76 2.13 168.48 1.43 419.24
1999–2002 105.49 0.90 40.57 0.35 146.05
2002–2009 215.35 1.83 119.56 1.02 334.91
2009–2010 81.14 0.69 65.39 0.56 146.54
2010–2011 82.88 0.71 82.52 0.70 165.4
2011–2013 44.97 0.38 74.01 0.63 118.97
Total 1403.06 11.94 898.15 7.65 2301.21

Forest change is the sum of disturbance and deforestation.

2011—39 days post-Tornado
(a)

(b)

Southbridge

Southbridge

2013—2 years post-Tornado

Forest
Nonforest
Urban center

Forest succession postdisturbance
Tornado disturbance track

0 2 4 8 12 16
km

Figure 21.5  Deforested tornado track as depicted by the CLASlite 2010–2011 deforestation class output (a). Two years post disturbance (b), note 
that successional infill (blue) has dominated the outer edges of the tornado track, while the interior of the tornado track (red) is still in a deforested 
state.
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change can result in similar magnitudes of reflectance in 
a change detection scenario. New methods are needed to 
ameliorate this problem, especially in developing coun-
tries where operational data availability can be scarce.

	 3.	 The remote sensing change detection community has laid 
a strong framework on the back of optical remote sensing 
imagery. While this paradigm is highly rewarding, optical 
data are limited in a variety of situations, especially con-
cerning mapping in cloud-prone and data-poor locations. 
The next decade should hopefully see an expansion in the 
availability use of large-area radar and LIDAR data collec-
tions such that landscape monitoring will be as complete 
in Cameroon as it is in the United States.

	 4.	 All land cover change detection and monitoring relies on 
the availability of accurate land cover/use information for 
every location where remotely sensed data are captured. 
Unfortunately, the process of conducting change detec-
tion for a given location is hampered by the paucity of reli-
able ground reference, wildlife habitat, agricultural land 
use, and ecological disturbance information. In the next 
decade, it is hoped that this knowledge gap will be at least 
partially filled through continued land cover/use mapping 
efforts, as well as map data sharing.
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Acronyms and Definitions

AVHRR		  Advanced very-high-resolution radiometer
AVNIR		  ALOS visible and nearinfrared
CVA		  Change vector analysis
DT-CWT	 Dual-tree complex wavelet transform
EM		  Expectation maximization
ETM+		  Enhanced Thematic Mapper Plus
HMCs		  Hidden markov chains
ICM		  Iterated conditional mode
InSAR		�  Interferometric synthetic aperture radar
K&I		  Kittler and Illingworth
LJ-EM		�  Landgrebe and Jackson expectation 

maximization
LULC		  Land use and land cover
MAP		  Maximum a posteriori
MCP		  Multiscale change profile
ML		  Maximum likelihood
MRF		  Markov random field
MSS		  Multispectral scanner

MuMGDs	� Multisensory multivariate gamma distributions
OOIA		  Object-oriented image analysis
PAMIR		  Phased array multifunctional imaging radar
PCC		  Postclassification comparison
PolInSAR	� Polarimetric interferometric synthetic aper-

ture radar
PolSAR		  Polarimetric synthetic aperture radar
RADAR		  Radio detection and ranging
SAR		  Synthetic aperture radar
SBA		  Split-based approach
SIR		  Shuttle imaging Radar
TM		  Thematic mapper

22.1 I ntroduction

Land use and land cover (LULC) mapping and monitoring are 
one of the most important application areas of remote sens-
ing. Land use refers to the human activities on land, which are 
directly related to the land (Clawson and Stewart, 1965). It usu-
ally emphasizes on the functional role of land in socioeconomic 
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activities, such as agriculture, industry, commerce, transporta-
tion, construction, and recreation. These activities are abstract 
and not always observable from remotely sensed images, and 
inference based on surrogates often has to be made to identify 
the land use. Land cover, on the other hand, implies the veg-
etation and artificial constructions covering the land surface 
(Burley, 1961). It encompasses natural features such as vegeta-
tion, urban areas, water, barren land, or others that are concrete 
and directly visible on remotely sensed images. Land cover does 
not describe the use of land, and the use of land may be dif-
ferent for lands with the same cover type. For instance, a land 
cover type of forest may be used for timber production, wildlife 
management, or recreation; it might be private land, a protected 
watershed, or a popular state park.

The importance of mapping, quantifying, and monitoring 
LULC and its change have been widely recognized in the sci-
entific community as a key element in a variety of applications, 
such as ecological monitoring, habitat assessment, wildlife man-
agement, enforcement, exposure and risk assessment, global 
change monitoring, environmental impact assessment, state and 
local planning, hazardous waste remedial action, and regulatory 
policy development (Lo, 1998). The accurate and timely infor-
mation on LULC patterns and changes has grown in importance 
in recent years with our increasing concern over the conflict 
between economic development and ecological change. The 
knowledge of the present distribution and area of different LULC 
types as well as information on their changing proportions are 
needed by planners, legislators, and governmental officials to 
determine better land use policy, to project transportation and 
utility demand, to identify future development pressure points 
and areas, and to implement effective plans for regional develop-
ment (Anderson et al., 1976).

Remote-sensing technology has been employed extensively in 
LULC investigation because of its capability to observe land sur-
face consistently and repetitively and its advantages of cost and 
time savings for large areas. A LULC classification scheme has 
been developed for use with remote-sensing data (Anderson et al., 
1976). The main characteristics of this scheme are its emphasis 
on resources rather than people and its capability to provide dif-
ferent levels of classification according to the scale and spatial 
resolution of the images. The development of such classification 
scheme has facilitated the mapping, modeling, and measure-
ment of many LULC applications. The scheme includes four clas-
sification levels in accordance with the image scale (Table 22.1). 
However, the general relationship between the classification level 
and the data source is not intended to restrict uses to particular 
scales, either in the original data source or in the final map prod-
uct. For example, Level I LULC information could be not only 
gathered by a Landsat type of satellite or high-altitude imagery 
but also interpreted from conventional large-scale aircraft imag-
ery or compiled by ground survey. Similarly, several Level II 
and III categories have been interpreted from Landsat data. The 
classification scheme for the first and second levels has been pre-
sented by Anderson et al. (1976) (Table 22.2). Levels beyond these 
two must be designed by users according to their needs.

Table 22.1  Classification Level and Corresponding Typical Data 
Characteristics

Classification Level Typical Data Characteristics 

I LANDSAT (formerly ERTS) type of data
II High-altitude data at 40,000 ft (12,400 m) or above 

(less than l:80,000 scale)
III Medium-altitude data taken between 10,000 and 40,000 

ft (3,100 and 12,400 m) (1:20,000 to 1:80,000 scale)
IV Low-altitude data taken below 10,000 ft (3,100 m) 

(more than 1:20,000 scale)

Source:	 Anderson, J.R. et  al., A Land Use and Land Cover Classification 
System for Use with Remote Sensor Data, United States Government Printing 
Office, Washington, DC, 1976.

Table 22.2  LULC Classification System for Use with Remote-
Sensing Data

Level I Level II 

1 Urban or built-up land 11 Residential
12 Commercial and services
13 Industrial
14 Transportation, communications, 

and utilities
15 Industrial and commercial complexes
16 Mixed urban or built-up land
17 Other urban or built-up land

2 Agricultural land 21 Cropland and pasture
22 Orchards, groves, vineyards, 

nurseries, and ornamental
horticultural areas

23 Confined feeding operations
24 Other agricultural land

3 Rangeland 31 Herbaceous rangeland
32 Shrub and brush rangeland
33 Mixed rangeland

4 Forest land 41 Deciduous forest land
42 Evergreen forest land
43 Mixed forest land

5 Water 51 Streams and canals
52 Lakes
53 Reservoirs
54 Bays and estuaries

6 Wetland 61 Forested wetland
62 Nonforested wetland

7 Barren land 71 Dry salt flats
72 Beaches
73 Sandy areas other than beaches
74 Bare exposed rock
75 Strip mines quarries, and gravel pits
76 Transitional areas
77 Mixed barren land

8 Tundra 81 Shrub and brush tundra
82 Herbaceous tundra
83 Bare ground tundra
84 Wet tundra
85 Mixed tundra

9 Perennial snow or ice 91 Perennial snowfields
92 Glaciers
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Optical remote-sensing images have been widely applied 
for a myriad of LULC investigation objectives. The Advanced 
Very High Resolution Radiometer (AVHRR) embarked on 
the National Oceanic Atmospheric Administration series of 
satellites has been predominantly used for global- to conti-
nental-scale LULC investigation because of its large swath 
width and twice-daily global coverage (Lambin and Ehrlich, 
1997). Compared with the AVHRR, the Moderate Resolution 
Imaging Spectroradiometer on the Terra and Aqua satellites 
has enhanced spatial, radiometric, and spectral capabilities 
and has also been widely applied to large-scale LULC map-
ping and monitoring (Lunetta et  al., 2006). However, the low 
resolution (250 m−1 km) of these sensors limits their ability 
to reveal detailed spatial distribution of LULC patterns and 
changes. Balancing the trade-offs involving spatial detail, areal 
coverage, and availability of historical data, medium-resolution 
images (10–90 m) obtained from Landsat 5 Thematic Mapper 
(TM) and Multispectral Scanner (MSS), Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+), and Advanced Spaceborne 
Thermal Emission and Reflection Radiometer are currently the 
most commonly used datasets for LULC mapping and monitor-
ing. Numerous studies have been carried out on the use of the 
visible to shortwave infrared bands of these datasets for forestry 
and agricultural land cover analysis and urban development 
monitoring (Adams et al., 1995; French et al., 2008). Recently, 
new sensors with higher spatial resolutions (0.5–6 m), such as 
SPOT 5 and 6, QuickBird, IKONOS, and WorldView 1 and 2, 
have emerged and held tremendous promise for investigating 
LULC with increased spatial detail (Chang et al., 2010; Pu and 
Landry, 2012; Wang et al., 2004).

However, optical remote sensing is limited by weather con-
ditions. Difficulties are encountered in collecting timely LULC 
information in tropical and subtropical regions that are char-
acterized by frequent cloud cover. Although some optical sen-
sors such as WorldView 2 can deliver data with high temporal 
resolution, they cannot guarantee that the images collected at 
short intervals are unaffected by clouds (DigitalGlobe, 2013). 
Furthermore, the small coverage and high cost limit routine use 
of the data obtained by these sensors to investigate LULC infor-
mation. Because of the shortage of cloud-free images, it might 
be unfeasible to collect timely LULC information using optical 
remote sensing. Being capable of transmitting and receiving its 
own electromagnetic waves with the antenna, radio detection 
and ranging (RADAR) remote sensing is nearly weather inde-
pendent and can acquire imagery day and night (Figure 22.1). 
Furthermore, the development of synthetic aperture radar 
(SAR) improves the resolution beyond the limitation of physical 
antenna aperture. Therefore, radar remote sensing has become 
an effective tool for LULC mapping and monitoring in the per-
petually cloud-covered tropical and equatorial regions of the 
world where many developing countries with the greatest need 
for LULC data are found. The timely information on LULC and 
its change is necessary for these countries to develop policies that 
will enable the maintenance of good balance between land devel-
opment and environmental protection. In addition, compared 

with conventional optical remote sensing, radar remote sensing 
provides a different way to observe the Earth. Radar backscat-
tering from terrain is mainly affected by (1) geometrical factors 
related to structural attributes of the surface and any overlying 
vegetation cover relative to the sensor parameters of wavelength 
and viewing geometry and (2) electrical factors determined by 
the relative dielectric constants of soil and vegetation at a given 
wavelength (Dobson et al., 1995). Therefore, radar can provide 
somewhat complementary information to optical data; and 
hence, classification can be significantly improved when both 
suites of sensors are used together.

22.2 � Radar System Parameters 
and Development

Imaging radar can be considered a relatively new remote-sens-
ing system in comparison to optical photography. Radar image 
tone, which represents the radar return signal strength, is gov-
erned by two sets of parameters: (1) target parameters, such as 
roughness at a variety of scales, dielectric properties, angular-
ity and orientation of the target, target spacing, signal penetra-
tion, and signal enhancement, and (2) sensor parameters. The 
primary radar system parameters influencing the intensity and 
patterns of radar returns from the observed objects are the fre-
quency, polarization, and incidence angle.

Radar frequency and wavelength are interrelated as seen in 
Equation 22.1:

	 c = f  λ	 (22.1)

where
c is the speed of light (3 × 108 ms−1)
f is the frequency
λ is the wavelength

In order to calculate λ in centimeters (cm), the value of c is given 
in terms of cm (3 × 1010 cm s−1) and the value of frequency in 
terms of hertz (Hz). Radar transmits a microwave signal toward 
the targets and detects the backscattered portion of the signal. 
Microwaves are electromagnetic waves with frequencies between 
300 MHz (0.3 GHz) and 300 GHz in the electromagnetic spec-
trum. They are included in radio waves that are electromagnetic 
waves within the frequencies 30 kHz to 300 GHz. Radar systems 
can be categorized into different bands according to the varia-
tion in frequency (Table 22.3). The definition and nomenclature 
for these bands were established by the U.S. military during 
World War II (Waite, 1976). Although other classification sys-
tems were established outside of the United States, the system 
presented in Table 22.3 is the most widely used.

Polarization is a property of waves that describes the orienta-
tion of their oscillations. For transverse waves such as many elec-
tromagnetic waves, it describes the orientation of the oscillations 
in the plane perpendicular to the wave’s direction of travel. As 
shown in Figure 22.2, propagating electromagnetic radiation has 
three vector fields that are mutually orthogonal. The direction of 
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propagation is one vector, and electric and magnetic fields make 
up the other two vector fields. Active microwave energy, as well 
as other frequencies of electromagnetic radiation, has a polar-
ized component defined by the electric field vector of the radia-
tion (Figure 22.2). Most of the radar systems are linear polarized 

systems that operate using horizontally (H) or vertically (V) polar-
ized microwave radiation. For these systems, polarization refers to 
the orientation of the radar beam relative to the Earth’s surface 
(Figure 22.3). If the electric vector field is parallel to the Earth’s 
surface, the wave would be designated horizontally polarized. If 
it is perpendicular to the Earth’s surface, the wave would be des-
ignated vertically polarized. In an active system, energy is both 
transmitted and received. Therefore, the linear polarization can 
be mixed and matched to provide the four most common linear 
polarization schemes, namely, HH, HV, VH, and VV (Figure 22.3).

Incidence angle, defined as the angle between the radar line 
of slight and the local vertical (Figure 22.4) with respect to the 
geoid, is also a major factor influencing the radar backscatter 
and the appearance of objects on the imagery, caused by fore-
shortening or radar layover. In general, reflectivity from distrib-
uted scatters decreases with increasing incidence angles (Lewis 
and Henderson, 1998). Incidence angle incorporating look angle 
and the curvature of the Earth is shown in Figure 22.4a. This 
model assumes a level terrain on constant slope angle. In con-
trast, Figure 22.4b illustrates the local incidence angle and takes 
into account the local slope angle. For example, surface rough-
ness changes as a function of the local incidence angle.

Table 22.3  Radar Bands and Frequencies

Radar Frequency Band Wavelength (cm) Frequency Range (MHz)

P 136.00–77.00 220–390
UHF 100.00–30.00 300–1,000
L 30.00–15.00 1,000–2,000
S 15.00–7.50 2,000–4,000
C 7.50–3.75 4,000–8,000
X 3.75–2.40 8,000–12,500
Ku 2.40–1.67 12,500–18,000
K 1.67–1.18 18,000–26,500
Ka 1.18–0.75 26,500–40,000
Millimeter <0.75 <40,000

Source:	 Waite, W.P., Historical development of imaging radar, in Lewis, A.J. 
(ed.), Geoscience Applications of Imaging Radar Systems, RSEMS (Remote 
Sensing of the Electro Magnetic Spectrum), Association of American 
Geographers, Omaha, pp. 1–22, 1976.
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The development of radar systems has great impact on the 
application of radar remote sensing in LULC mapping and moni-
toring. Imaging radar systems could be divided into two catego-
ries: spaceborne SAR systems and airborne SAR systems. System 
parameters for some widely used SAR systems are summarized 

in Tables 22.4 through 22.6. Airborne imaging SARs are mainly 
meant for technology development as well as application devel-
opments. Early studies on the use of radar remote sensing in 
LULC investigation were mainly based on airborne radar imag-
ery (Henderson, 1975; Ulaby et al., 1982). The first civilian SAR 
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Figure 22.2  Components of an electromagnetic wave. The plane of polarization is defined by the electric field. (From European Space Agency, 
http://earth.eo.esa.int/polsarpro/Manuals/1_What_Is_Polarization.pdf. Accessed April 9, 2015.)
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The geoscience perspective, in Lewis, A.J. and Henderson, F.M., eds., Manual of Remote Sensing Volume 2—Principles and Applications of Imaging 
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mission in space was United States’ Sea Satellite (Seasat), which 
operated from early July to mid-September in 1978. The design 
lifetime of Seasat is 2 years. Unfortunately, the spacecraft failed 
after 3 months of SAR operation due to the problem of power 
system. However, data provided by Seasat proved to be of high 
quality and immense interest to the science and application com-
munities. This interest and active research by geoscientists were 
further augmented in the late 1970s and 1980s by imagery from 
NASA’s Shuttle Imaging Radar (SIR-A and SIR-B) systems along 
with several systematic airborne SAR projects such as Canada 
Centre for Remote Sensing (CCRS) SAR-580 campaign. SIR-A 

and SIR-B extended the baseline established by Seasat in the 
dimension of incident angle (Table 22.4). Although these SAR 
systems proved to be useful for LULC investigation, they were 
only occasionally launched to collect experimental data within 
a very short period. The routine investigation of LULC infor-
mation using radar remote sensing has become practical after 
some orbital radar systems with SAR, such as ERS-1 and ERS-
2, JERS-1, and RADARSAT-1, were made available for regular 
data collection. However, these orbital SAR systems also have 
limitations because of only one single frequency available. Some 
studies indicated that the single-frequency orbital SAR systems 

Table 22.4  Spaceborne SAR Systems 1978–1994

SEASAT SIR-A SIR-B Kosmos 1870 ALMAZ ERS-1 JERS-1 SIR-C/X-SAR 

Launch date June 26, 
1978

November 12, 
1981

October 5, 
1984

July 25, 1987 March 31, 
1991

July 16, 
1991

February 11, 
1992

April 9, 1994, 
September 30, 1994

Country USA USA USA USSR USSR Europe Japan USA
Spacecraft Seasat Shuttle Shuttle Salyut Salyut ERS-1 JERS-1 Shuttle
Lifetime 3 months 2.5 days 8 days 2 years 1.5 years 9 years 6 years 10 days
Band L L L S S C L L, C; X
Frequency (GHz) 1.275 1.278 1.282 3.0 3.0 5.25 1.275 1.25, 5.3; 9.6
Polarization HH HH HH HH HH VV HH L + C: Quad/X: VV
Incident angle (degrees) 23 50 15–64 30–60 30–60 23 39 15–55
Range resolution (m) 25 40 25 30 15–30 26 18 10–30
Azimuth resolution (m) 25 40 58–17 30 15 28 18 30
Swath width (km) 100 50 10–60 20–45 20–45 100 75 15–60
Repeat cycle (days) 17, 3 Nil Nil Variable Nil 3; 35; 176 44 Nil

Table 22.5  Spaceborne SAR Systems 1994–2010

ERS-2 RADARSAT-1 ENVISAT PALSAR TerraSAR-X RADARSAT-2 TanDEM-X 

Launch date April 21, 1995 November 4, 1995 March 1, 2002 January 24, 2006 June 15, 2007 December 14, 2007 June 21, 2010
Country Europe Canada Europe Japan Germany Canada Germany
Spacecraft ERS-2 RADARSAT-1 ENVISAT ALOS TerraSAR-X RADARSAT-2 TanDEM-X
Lifetime 11 years 17 years 10 years 5 years 5 years (design) 8 years (design) 5.5 years (design)
Band C C C L X C X
Frequency (GHz) 5.3 5.3 5.3 1.27 9.65 5.4 9.65
Polarization VV HH Quad Quad Quad Quad Quad
Incident angle (degrees) 23 10–59 15–45 8–60 20–55 10–60 20–55
Range resolution (m) 26 8–100 30–1000 7–100 1–18.5 3–100 1–18.5
Azimuth resolution (m) 28 8–100 30–1000 7–100 1–18.5 3–100 1–18.5
Swath width (km) 100 50–500 5–400 20–350 10–100 18–500 10–100
Repeat cycle (days) 35 24 35 46 11 24 11

Table 22.6  Airborne SAR Systems

AIRSAR SAR580 EMISAR E-SAR PISAR STAR-1 UAVSAR 

Country USA Canada Denmark Germany Japan Canada USA
Aircraft DC-8 CV-580 Gulfstream DO-228 Gulfstream Cessna Gulfstream
Band C, L, P X, C C, L X, C, L, P X, L X L
Frequency (GHz) 5.3, 1.3, 0.44 9.3, 5.3 5.3, 1.25 9.6, 5.3, 1.3, 0.45 9.55, 1,27 9.6 1.26
Polarization Quad Quad Quad Single, quad Quad HH Quad
Incident angle 20–60 0–85 30–60 25–60 10–60 45–80 25–60
Range resolution (m) 7.5 6–20 2.4, 8 2–4 3 6, 12 0.5
Azimuth resolution (m) 2 <1 to 10 2.4, 8 2–4 3.2 6 1.5
Swath width (km) 6–20 18–63 12, 24, 48 3 4.3, 19.3, 19.6 40, 60 16
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can be confused with separating and mapping LULC classes (Li 
and Yeh, 2004). To overcome the difficulty in single-frequency 
SAR data, some researchers utilized polarimetric SAR (PolSAR) 
imagery acquired by SIR-C/X-SAR or airborne SAR systems to 
investigate LULC information (Lee et  al., 2001; Pierce et  al., 
1994). Their results showed that PolSAR measurements can 
achieve better classification results than single-polarization 
SAR. The use of PolSAR data in LULC mapping and moni-
toring has become an important research topic since PolSAR 
images have been made available through orbital PolSAR sys-
tems, such as Environmental Satellite (ENVISAT), Advanced 
Synthetic Aperture Radar (ASAR), Advanced Land Observing 
Satellite (ALOS), Phased Array type L-band Synthetic Aperture 
Radar (PALSAR), TerraSAR-X, and RADARSAT-2. In addition, 
constellations such as COnstellation of small Satellites for the 
Mediterranean basin Observation (COSMO)-SkyMed com-
posed of several satellites equipped with SAR have been avail-
able for observing the Earth (Covello et al., 2010). The increasing 
availability of multidimensional (multifrequency, multipolar-
ized, multitemporal, and multi-incidence angle) digital radar 
data permits the generation of true color radar imagery rather 
than colorized single-channel radar imagery (Figure 22.5).

22.3 � Radar System Parameter 
Consideration for LULC Mapping

As introduced previously, the primary radar system param-
eters that influence the intensity and patterns of radar returns 
from the observed objects are wavelength, polarization, and 
incidence angle. Different combinations of these parameters 
are normally selected to optimize an application. A number of 
studies have been conducted on the influence of radar frequency 
and polarization on LULC mapping. Several findings were made 
for the interaction of the target and polarized signal (Lewis and 
Henderson, 1998). When the plane of polarization of the trans-
mitted microwave radiation is parallel to the dominant plane of 
linear features, the like-polarized radar return will be stronger 
than the transmitted and received signal in the orthogonal plane. 
For example, it can be expected that VV will have a stronger 
returned signal than HH if the target, such as a wheat field, has 
a strong vertical component. The like-polarized image (HH or 
VV) will have a stronger returned signal than the cross or depo-
larized image (HV or VH). Only the part of the transmitted sig-
nal that is depolarized has the potential of being recorded in the 
cross-polarized dataset. Depolarization of the transmitted radar 
signal is primarily results of (1) quasi-specular reflection from 
corner reflectors, (2) multiple scattering from rough surfaces, 
and (3) multiple-volume scattering due to inhomogeneities.

Land cover classification was implemented using multifre-
quency (P, L, C bands) PolSAR images (Chen et al., 1996). The 
land cover classes included forest, water, bare soil, grass, and 
eight other types of crops. The radar response of crop types to 
frequency and polarization states were analyzed for classification 
based on three configurations: (1) multifrequency and single-
polarization images, (2) single-frequency and multipolarization 
images, and (3) multifrequency and multipolarization images. 
The classification results showed that using partial information, 
P-band multipolarization images and multiband HH polariza-
tion images, had better classification accuracy, while with a full 
configuration, namely, multiband and multipolarization, gave 
the best discrimination capability.

Lee et al. (2001) addressed the land use classification capabilities 
of fully PolSAR versus dual-polarization and single-polarization 
SAR for P-, L-, and C-band frequencies. A variety of polariza-
tion combinations were investigated for application to crop and 
tree age classification. They found that L band fully PolSAR data 
were best for crop classification, but P band was best for forest age 
classification, because longer wavelength electromagnetic waves 
provided higher penetration. For dual polarization classification, 
the HH and VV phase difference was important for crop classifi-
cation but less important for tree age classification. Also, for crop 
classification, the L-band complex HH and VV achieved correct 
classification rates almost as good as for full PolSAR data, and for 
forest age classification, P-band HH and HV should be used in 
the absence of fully polarimetric data. In all cases, they indicated 
that multifrequency fully PolSAR is highly desirable. Similar 
results were also found by Turkar et al. (2012) in the investigation 
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Figure 22.5  SAR data of the South Guangzhou area, China. 
(a) RADARSAT-1 single-polarization data (HH) acquired on December 
10, 2005. (b) RADARSAT-2 fully polarimetric data (Pauli RGB compo-
sition) acquired on March 21, 2009.
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of classification capabilities of fully and partially PolSAR data 
for C- and L-band frequencies. They observed that L-band fully 
PolSAR data worked better than C band for classification of vari-
ous land covers. The forest class was well classified with L-band 
PolSAR data, but it was poorly classified in C band because of 
dominant scattering from treetops.

There are also many studies on the influence of incidence angle 
on the intensity and patterns of radar returns from the observed 
objects. The results show that the choice of optimum incidence 
angle varies with applications. For example, a geological appli-
cation generally prefers images acquired with large incidence 
angles because geometric distortion is minimal and shadow-
ing provides enhancement of topographic relief. On the other 
hand, a moderate incident angle is required for accurate settle-
ment detection and urban land cover mapping. The incidence 
angles of less than 20°–23° are of minimum utility for settlement 
detection and urban analysis, and the amount of information 
and accuracy of interpretation increases on the image acquired 
at 41° but decreases on the image acquired at 51° (Henderson, 
1995; Henderson and Xia, 1997). Lichtenegger et al. (1991) found 
that SIR-A imagery was better for land use mapping than the 
Seasat imagery because of its larger incidence angle. Gauthier 
et  al. (1998) indicated that backscatter coefficients extracted 
from ERS-1 SAR data over an agricultural area were found to be 
sensitive to incidence angle. Lang et al. (2008) found that a subtle 
trend of generally decreasing backscatter with increasing inci-
dence angle increased attenuation of energy from double-bounce 

and multipath scattering and possibly increased specular reflec-
tance of the surface layer with increasing incidence angle, and 
they hypothesized that this decrease was caused by lower trans-
missivity of the crown layer. Paris (1983) has also indicated that 
higher incidence angle increases the path length of SAR signal 
through the vegetation volume, resulting in higher interaction 
with crop canopy. Ford et al. (1986) stated that as incidence angle 
increases, there is sensitivity to surface roughness and decreased 
sensitivity to topography. The incidence angle has also proven 
to be sensitive to surface roughness and soil moisture (Rahman 
et al., 2008; Srivastava et al., 2009).

Kasischke et al. (1997) have summarized the optimum SAR 
parameters for the use of imaging radar systems in several land 
surface applications (Table 22.7).

22.4 C lassification of Radar Imagery

The classification of radar images mainly involves three steps: 
image preprocessing, feature extraction and selection, and selec-
tion of a suitable classifier.

22.4.1 I mage Preprocessing

The preprocessing of radar images mainly includes radio-
metric calibration, geometric calibration, and speckle filter-
ing. Radiometric calibration is a procedure meant to correctly 
estimate the target reflectance from the measured incoming 

Table 22.7  Optimal SAR System Parameters for Monitoring Land Surface Characteristics

Application Area Radar Frequency Polarization 
Incidence 

Anglea Resolutionb Sampling Frequencyc 

Vegetation mapping Multiple frequency 
data optimal—as a 
minimum two 
frequencies (one high, 
one low) required

Multipolarization and 
polarimetric data 
desired, especially 
with single frequency 
systems

Both low 
and high 
desired

High Resolutions desirable 
for mapping smaller 
sampling units

Low for multiple channel 
systems, high for single 
channel systems

Biomass estimation L- or P-band optimal, 
as a minimum L- and 
C-band required

Cross-polarization data 
most sensitive; 
multipolarization 
data improve biomass 
algorithms

Low For small forest stands, 
fine resolution; for larger 
area studies, low 
resolution

Low can be used—sampling 
at proper phenologic stage 
and under optimum weather 
conditions important

Monitoring flooded 
forests

L- and P-band optimal, 
but some sensitivity at 
C-band if no leaves 
present and HH 
polarization used

HH polarization most 
sensitive, but VV 
polarization can be 
used

Lower 
required

Higher resolutions may be 
important for mapping 
narrow features

High sampling frequencies 
usually important

Monitoring coastal/low 
stature wetlands

X or C-band HH or VV Low High or low, depending on 
ecosystem patch size

High

Monitoring tundra 
inundation

X or C-band HH or VV Low High or low, depending on 
ecosystem patch size

High

Monitoring fire-
disturbed boreal forests

X or C-band HH or VV Low High or low, depending on 
ecosystem patch size

High

Detection of frozen/
thawed vegetation

Multiple frequencies Multiple polarizations Low or 
high

High or low, depending on 
ecosystem patch size

High

Source:	 Kasischke, E.S. et al., Remote Sens. Environ., 59, 141, 1997.
a	Low incidence angles = 20°–40°, high incidence angles = 40°–60°.
b	High resolution = 20–40 m, low resolution > 100 m.
c	 High sampling frequency = once every 2 weeks; low sampling frequency = once per year.
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radiation. Pixel values of radar images are directly related to 
the radar backscatter of the scene after radiometric calibra-
tion. Geometric calibration aims to tie the line/pixel positions 
in the image coordinates to the geographical latitude/longitude. 
Speckle is one of the main problems of radar image classification 
because a homogeneous zone on the ground still has a granular 
aspect and a statistical distribution with a large standard devia-
tion (Durand et al., 1987). Image filtering is necessary for sup-
pressing the speckle before the classification of radar images. 
Many adaptive filters for speckle reduction have been proposed, 
for example, Lee (Lee, 1981), Lee sigma (Lee, 1983), Frost (Frost 
et al., 1982), Kuan (Kuan et al., 1985), gamma maximum a pos-
teriori (MAP) (Lopes et al., 1993), refined Lee (Lee et al., 1999b), 
gamma Wilkinson Microwave Anisotropy Probe (Solbo and 
Eltoft, 2004), and improved Lee sigma (Lee et al., 2009) filters.

Despite their spatial adaptive characteristic, which tends to 
preserve the signal’s high-frequency information, filter applica-
tions often give the desired speckle reduction but also an unde-
sired degradation of the geometrical details of the investigated 
scene. The selection of suitable filter and window size is com-
monly a heuristic process, in which different filters with differ-
ent window size are applied to a specific radar image and their 
performances are compared. Some studies have been conducted 
on the comparison and selection of appropriate filters. Lee et al. 
(1999b) stated that refined Lee filter is suitable for PolSAR images 
because it effectively preserves polarimetric information and 
retains subtle details while reducing the speckle effect in homo-
geneous areas. Capstick and Harris (2001) assessed the capa-
bility of Lee, Lee sigma, local region, Frost, gamma MAP, and 
simulated annealing filters to improve classification accuracy in 
agricultural applications and found the best ones are Lee sigma, 
gamma MAP, and simulated annealing. Nyoungui et al. (2002) 
evaluated nine speckle reduction techniques based on their appli-
cability to supervised land cover classification from SAR images. 
Issues related to suppression of speckle in a uniform area, preser-
vation of edges, and texture preservation were pursued in these 
filters. The results showed that speckle suppression techniques 
based on the wavelet transform performs the best, followed by 
the modified K-nearest neighbors and Lee’s local statistic filters.

22.4.2  Feature Extraction and Selection

The primary feature used in radar image classification is the 
intensity of each pixel that represents the proportion of micro-
wave backscattered from that area on the ground. The pixel 
intensity values are often converted to a physical quantity called 
the backscattering coefficient or normalized radar cross sec-
tion measured in decibel (dB) units with values ranging from 
+5 dB for very bright objects to −40 dB for very dark surfaces. 
The backscatter radar intensity depends on a variety of factors: 
types, sizes, shapes, and orientations of the scatterers in the 
target area; moisture content of the target area; frequency and 
polarization of the radar pulses; as well as the incident angles 
of the radar beam. Therefore, in addition to tonal value of radar 
intensity images, features that can be extracted from radar 

images and have proved to be useful for LULC classification are 
mainly related to the textural, speckle, polarimetric, interfero-
metric, multifrequency, and multi-incidence angle information.

22.4.2.1 T extural Features

Most of the existing orbital radar systems are single-frequency 
types and may create confusion during the separation and map-
ping of LULC classes; this confusion stems from the limited 
information obtained by single-frequency systems (Ulaby et al., 
1986). One way to compensate for the limited information from 
single-frequency radar data is to derive more features, such as 
texture, for the classification of radar images in addition to the 
tonal information of pixels. A variety of textural features have 
been extracted from radar images and proved to be useful for 
radar image classification. Miranda et al. (1998) performed clas-
sification of JERS-1 SAR data from the rainforest-covered area 
of the Uaupes River (Brazil) using the semivariogram textural 
classifier. It was found the semivariogram textural classifier 
increased the discrimination between upland and flooded veg-
etation. Kurosu et al. (1999) studied texture statistics in multi-
temporal JERS-1 SAR single-look imagery and demonstrated a 
significant improvement in the classification accuracy achieved 
by using the textural features as additional inputs to the classi-
fier. Fukuda and Hirosawa (1999) derived a wavelet-based tex-
ture feature set and successfully applied it to multifrequency 
PolSAR images of an agricultural area. The classification results 
indicated that texture was an essential key to the classification of 
land cover in SAR images. Simard et al. (2000) investigated some 
texture measures in a study to assess the map-updating capabili-
ties of ERS-1 SAR images in urban areas. The texture measures 
included histogram measures, wavelet energy, fractal dimension, 
lacunarity, and semivariograms. The conclusion was that texture 
improved the classification accuracy, and the measures that per-
formed best were mean intensity, variance, weighted-rank fill 
ratio, and semivariogram. Rajesh et al. (2001) compared the per-
formance of textural features for characterization and classifica-
tion of SAR images based on the sensitivity of texture measures 
for grey-level transformation and multiplicative noise of different 
speckle levels. Texture features based on grey-level ran length, 
texture spectrum, power spectrum, fractal dimension, and cooc-
currence have been considered. They found that fractal, cooccur-
rence, and texture spectrum-based features performed better, 
with the maximum classification accuracy for sand texture.

22.4.2.2  Speckle Features

It is well known that the quality of SAR data is degraded by speckle 
noise, superposing the true radiometric and textural information 
of the radar image. However, Esch et al. (2011) demonstrated that 
the information on the local development of speckle can be used 
for the differentiation of basic land cover types in a high-resolu-
tion single-polarized TerraSAR-X strip map images. Combined 
with local backscatter intensity, the information on the local 
speckle behavior can be used for the implementation of a straight-
forward preclassification of single-polarized TerraSAR-X strip 
map images, showing overall accuracies of 77%–86%. The results 
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show that unsupervised speckle analysis in high-resolution SAR 
images supplies valuable information for a differentiation of the 
water, open land, woodland, and urban area.

22.4.2.3  Polarimetric Features

A distinctive characteristic of a PolSAR system is the utiliza-
tion of polarized waves. The observed polarimetric signatures 
of the electric field backscattered by the scene depend strongly 
on the scattering properties of the image objects. In compari-
son with conventional single-polarization SAR, the inclusion of 
SAR polarimetry allows for the discrimination of different types 
of scattering mechanisms that leads to a significant improve-
ment in the quality of classification results (Lee et  al., 2001). 
However, early studies on PolSAR image classification were 
often conducted on the intensity images of different polariza-
tion and their simple combination such as VH/HH and VH/
VV (Wu and Sader, 1987). Recently, some polarimetric decom-
position techniques have been introduced for the interpretation 
and classification of PolSAR images. Polarimetric decomposi-
tion techniques aim to separate a received signal by the radar as 
the combination of the scattering responses of simpler objects 
presenting an easier physical interpretation, which can be used 
to extract the corresponding target types in PolSAR images. 
Pauli decomposition is a well-known decomposition method 
commonly used for PolSAR data (Cloude and Pottier, 1996). In 
the Pauli decomposition, if the transmit and receive antennas 
coincide, the backscattering matrix elements can be arranged 
into a vector: k = = + −( , , ) / ( , , ) / .a b c S S S S Shh yy hh yy hv2 2 2  The 
polarimetric parameters from the Pauli decomposition are asso-
ciated for three elementary scattering mechanisms: a stands for 
single or odd-bounce scattering, b represents double or even-
bounce scattering, and c denotes volume scattering. As shown in 
Figure 22.5b, Pauli RGB composition image can be formed with 
intensities |a|2(blue), |b|2(red), and |c|2(green), which correspond 
to clear physical scattering mechanisms. The Pauli RGB compo-
sition image has become the standard for PolSAR image display 
and has often been used for visual interpretation.

With the three elements referred to as the Pauli components 
of the signal, the 3 × 3 coherency matrix T3 is defined as the 
expected value of kk*T (Lee and Pottier, 2009):
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where
* denotes the conjugate
| |   denotes the module

The covariance matrix C3 is a close relative of the coher-
ency matrix T3 (Lee and Pottier, 2009). They contain the 
same information, but this information comes in different 
forms. In addition to the Pauli decomposition, many other 
decomposition methods have been proposed to express the 
measured backscattering matrix as a combination of the scat-
tering responses of simpler objects or to separate coherency 
or covariance matrix as the combination of second-order 
descriptors corresponding to simpler or canonical objects 
presented as an easier physical interpretation. These widely 
used decomposition methods are the Huynen (Huynen, 
1970), Cloude (Cloude, 1985), Barnes (Barnes, 1988), Holm 
(Holm and Barnes, 1988), Krogager (Krogager, 1990), Van Zyl 
(Rignot and Vanzyl, 1993), H/A/Alpha (Cloude and Pottier, 
1997), Freeman (Freeman and Durden, 1998), Yamaguchi 
(Yamaguchi et al., 2005), and Touzi (Touzi, 2007). The RGB 
composition images that present some of these decomposi-
tions are shown in Figure 22.6.

A number of classification methods based on decompo-
sition results have been explored (Cloude and Pottier, 1997; 
Ferro-Famil et  al., 2001; Lee et  al., 1999a, 1994; Shimoni 
et  al., 2009). The results of these methods indicated that 
polarimetric decomposition significantly improved the clas-
sification accuracy of PolSAR images. Qi et  al. (2012) inte-
grated polarimetric parameters extracted using different 
polarimetric decomposition methods into the classification 
of RADARSAT-2 PolSAR image. The results showed that 
polarimetric parameters were important in identifying dif-
ferent vegetation types and distinguishing between vegeta-
tion and urban/built-up areas.

22.4.2.4 I nterferometric Features

Most SAR applications make use of the amplitude of the 
return signal and ignore the phase information. However, 
SAR interferometry uses the phase of the ref lected radiation. 
It uses two images of the same area taken from the same or 
slightly different positions and finds the difference in phase 
between them, producing an image known as an interfero-
gram. The interferogram is measured in radians of phase 
difference and is recorded as repeating fringes, which each 
represent a full 2π cycle (Figure 22.7). Coherence is the mag-
nitude of an interferogram’s pixels, divided by the product of 
the magnitudes of the original image’s pixels (Figure  22.7). 
It is usually calculated on a small window of pixels at a time, 
from the complex interferogram and images. In an inter-
ferogram, the coherence serves as a measure of the quality 
of an interferogram, indicating a tiny and invisible change 
occurred in the images or the information of the surface 
type, such as vegetation and rocks. High coherence makes 
for attractive, not-noisy interferograms, whereas low coher-
ence makes unattractive, noisy interferograms. Substantial 
improvements in radar image classification can be achieved 
by integrating interferometric information that is related to 
the structure and complexity of the observed objects into 
the classification. Askne et  al. (1997) presented a model 
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for interferometric SAR (InSAR) observations of forests. 
Such observations provide complementary information to 
the intensity observations and provide new information on 
coherence and effective interferometric tree height. This 
study showed the possibility of discriminating forested and 
nonforested areas using interferometric information. The 
phase stability of anthropogenic structures between SAR 
images has led several researchers to propose long times-
cale phase correlation, or coherence, as a good measure of 
urban extent, and thus an appropriate tool for mapping 
urban change (Grey et  al., 2003; Qi et  al., 2012). The three 
optimum complex polarimetric interferometric coherences 
(Papathanassiou and Cloude, 2001) were extracted from two 
repeat-pass RADARSAT-2 PolSAR images for LULC classifi-
cation by (Qi et al., 2012). The polarimetric interferometric 
coherences were found to be very useful in reducing the con-
fusion between urban and nonurban areas (Figure 22.7). As 
shown in Figure 22.7, there is a strong contrast between urban 
and nonurban areas in the images of polarimetric inter-
ferometric parameters. The repeat cycle of RADARSAT-2 is 

24  days, which produces a very strong temporal decorrela-
tion for nonurban areas, such as croplands and natural veg-
etation. Croplands and natural vegetation are significantly 
inf luenced by temporal decorrelation and lose coherence 
within a few days or weeks as a result of growth, movement 
of scatterers, and changing moisture conditions. In contrast, 
within urban/built-up areas, coherence remains high even 
between image pairs separated by a long time interval.

22.4.2.5  Multifrequency Information

Many studies have been conducted on LULC classification 
using airborne multifrequency SAR systems or fusing SAR 
data obtained by different orbital SAR systems with different 
frequencies (Dobson et al., 1996; Pierce et al., 1994). All these 
studies indicated that multifrequency SAR data achieves 
higher accuracy than single-frequency SAR data in the clas-
sification. Pierce et  al. (1994) performed land cover classi-
fication using SIR-C/X-SAR imagery. Using L and C bands 
alone, the single-scene classification accuracies were quite 
good, with each image better than 90%. With the addition 
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Figure 22.6  RGB composition images presenting different polarimetric decompositions. (From Qi, Z.X. et al., Remote Sens. Environ., 118, 21, 2012.)
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of X-band data, the overall accuracies improved to 98%, due 
to the enhanced ability to distinguish the major tree classes. 
Dobson et  al. (1996) combined C-band ERS- l data with 
L-band JERS-1 data for land cover classification. They found 
that the results in a classification procedure for the composite 
image were superior to that obtained from either of the two 
sensors alone.

22.4.2.6  Multiple Incidence Angle Information

Since radar backscatter from targets is affected by the incidence 
angle, observing targets with different incidence angle modes 
can provide more information to LULC classification. Cimino 
et  al. (1986) used multiple incidence angle SIR-B data to dis-
criminate various forest types by their relative brightness versus 
incidence angle signatures. The results of this study indicated 
that (1) different forest species, and structures of a single spe-
cies, may be discriminated using multiple incidence angle radar 

imagery and (2) it is essential to consider the variation in back-
scatter due to incidence angle when analyzing and comparing 
data collected varying frequencies and polarizations. Grunsky 
(2002) investigated the potential of the use of multibeam 
RADARSAT-1 radar imagery in assisting terrain mapping 
over large areas. Principal components analysis was applied to 
ascending and descending standard beam modes with incidence 
angles of 20°–27° (S1) and 45°–49° (S7). The resulting compo-
nents yielded imagery that highlights geomorphology, geologic 
structure, variation in vegetation, and an indirect measure of 
moisture in the study area.

22.4.2.7  Feature Selection

Given that many potential features could be integrated into the 
classification of radar images, feature selection presents a prob-
lem in the classification. Using all available features in classifi-
cation is improper because computation is intensive and some 
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Figure 22.7  Polarimetric interferometric parameters extracted using PolSAR interferometry techniques for LULC classification. (From Qi, 
Z.X. et al., Remote Sens. Environ., 118, 21, 2012.)
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features may degrade classification performance (Laliberte et al., 
2006). Since the recent introduction of polarimetric decomposi-
tion theorems, which have brought about abundant polarimetric 
parameters, the problems of feature selection have become more 
intractable. Therefore, the selection of suitable features is essential 
for successfully implementing radar image classification. Many 
approaches, such as principal component analysis, minimum 
noise fraction transform, discriminant analysis, decision bound-
ary feature extraction, nonparametric weighted feature extrac-
tion, wavelet transform, and spectral mixture analysis, may be 
used for feature extraction, in order to reduce the data redun-
dancy inherent in remotely sensed data or to extract specific land 
cover information. Most of these feature selection approaches 
can be found in the Weka software (Witten et al., 2011).

22.4.3  Selection of Classifiers

After the determination of features used for classification, the 
next step is to select a suitable classifier to implement the clas-
sification based on the selected features. A number of classifi-
ers have been developed for the classification of remote-sensing 
data, and each classifier has its own strengths and limitations 
(Lu and Weng, 2007). Many classifiers have been tested with 
SAR imagery, and these classifiers can be grouped as parametric 
and nonparametric classifiers.

22.4.3.1  Parametric Classifier

The parametric classifiers assume that the classification dataset 
follows a specific distribution such as Gaussian distribution and 
that the statistical parameters (e.g., mean vector and covariance 
matrix) generated from the training samples are representative. 
Maximum likelihood (ML) classifier is one of the most widely 
used parametric classifiers with radar images. Lim et al. (1989) 
introduced an ML decision rule based on the multivariate com-
plex Gaussian distribution of the elements of the coherent scat-
tering matrix. In order to reduce the effects of speckle in PolSAR 
images, data are generally processed through incoherent averag-
ing and are represented by coherency matrices. Lee et al. (1994) 
developed a Wishart classifier by introducing the ML decision 
rule based on the multivariate complex Wishart distribution 
for the polarimetric coherency matrix. A k-mean algorithm was 
applied to iteratively assign the pixels of the PolSAR image to 
one of the classes using the ML rule. Lee et al. (1999a) proposed 
an unsupervised classification by combining the decomposition 
technique with unsupervised classification based on the Wishart 
classifier. The H/A/Alpha decomposition technique was used to 
provide an initial guess of the pixel distribution into the classes 
that produces a better convergence of the unsupervised classifi-
cation algorithm. This unsupervised classification method has 
been extended to the classification of multifrequency PolSAR 
data (Ferro-Famil et al., 2001).

Other commonly used parametric classifiers include MAP, 
Bayesian, iterated conditional mode (ICM) contextual clas-
sifiers, fuzzy c-means clustering, and Markov random field 
(MRF) models. Rignot et al. (1992) implemented unsupervised 

classification of PolSAR data by applying MAP to the covari-
ance matrix. This method used both polarimetric amplitude 
and phase information, was adapted to the presence of image 
speckle, and did not require an arbitrary weighing of the differ-
ent polarimetric channels. Vanzyl and Burnette (1992) classified 
PolSAR images using a Bayesian classifier in which the classifi-
cation was done iteratively. The results showed that only a few 
iterations were necessary to improve the classification accuracy 
dramatically. A hierarchical Bayesian classifier was developed 
for the classification of short vegetation using multifrequency 
PolSAR data (Kouskoulas et  al., 2004). It was shown that this 
classifier outperformed ML classifier with Gaussian assumption. 
Freitas et al. (2008) applied the ICM classifier to the classification 
of P-band PolSAR data. The ICM classifier enabled the use of 
contextual information to improve the classification accuracy. 
Based on the complex Wishart distribution of the complex cova-
riance matrix, the fuzzy c-means clustering algorithm was used 
for unsupervised segmentation of multilook PolSAR images 
(Du and Lee, 1996). Dong et al. (2001) implemented segmenta-
tion and classification of PolSAR data using a Gaussian MRF 
model. The model performed the classification based on image 
objects, which usually consists of multipixels, providing reli-
able measurement statistics and texture characteristics. Tison 
et  al. (2004) proposed a classification method that uses math-
ematical model relying on the Fisher distribution and the log-
moment estimation for high-resolution SAR images over urban 
areas. Their contribution was the choice of an accurate model 
for high-resolution SAR images over urban areas and its use in a 
Markovian classification algorithm.

22.4.3.2 N onparametric Classifiers

Nonparametric classifiers do not assume a particular probability 
density distribution of the input data, and no statistical parame-
ters are needed to separate images. These classifiers are thus espe-
cially suitable for the incorporation of nonintensity data into the 
classification of SAR images. Among the most commonly used 
nonparametric classifiers for radar images are neural networks 
(Bruzzone et al., 2004; Hara et al., 1994; Tzeng and Chen, 1998), 
support vector machines (Hosseini et  al., 2011; Lardeux et  al., 
2009; Tan et  al., 2011), decision trees (Qi et  al., 2012; Simard 
et  al., 2000), and knowledge-based classifiers (Dobson et  al., 
1996; Pierce et al., 1994). There are several advantages of using 
nonparametric classifiers with SAR images. First, nonparamet-
ric classifiers may provide better classification accuracies than 
parametric classifiers in complex landscapes (Hosseini et  al., 
2011; Lardeux et  al., 2009). Second, nonparametric classifiers 
are easy to integrate different types of data (e.g., textural, spatial, 
polarimetric, interferometric, GIS ancillary data) into the clas-
sification of radar images because of their nonparametric nature 
(Hosseini et al., 2011; Simard et al., 2000; Tan et al., 2011). Third, 
they are easy to be used with multiple (e.g., multitemporal) 
images (Bruzzone et al., 2004; Qi et al., 2012). Furthermore, each 
of these classifiers has its own strengths. The neutral networks 
have arbitrary decision boundary capability and provide fuzzy 
output values to take into account class mixture and the degree 
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of membership of a pixel (Tzeng and Chen, 1998). The advantage 
of SVMs for data classification is their ability to be used as an 
efficient algorithm for nonlinear classification problems, partic-
ularly in the case of extracting feature vectors from fully PolSAR 
data (Hosseini et al., 2011). Decision tree algorithms are efficient 
in selecting features and implementing classification as well as 
provide clear classification rules that can be easily interpreted 
based on the physical meaning of the features used in the classi-
fication (Qi et al., 2012). This is very helpful in providing physical 
insight for the classification of radar images. Knowledge-based 
classifiers are transportable and robust because they are defined 
using theoretical understanding, as verified by empirical evi-
dence, of the knowledge of the physics involved in the sen-
sor/scene interaction (Dobson et  al., 1996; Pierce et  al., 1994). 
There are also some other nonpolarimetric classifiers, such as 
sigma-tree structured near-neighbor classifiers (Barnes and 
Burki, 2006), spectral graph partitioning (Ersahin et al., 2010), 
and subspace (Bagan et al., 2012). Readers who want to have a 
detailed description of a specific classification approach should 
refer to cited references.

22.4.3.3 O bject-Oriented Classification

Conventional classification of using remote-sensing images 
is often based on pixel-based methods. When applied to radar 
images, pixel-based methods have two disadvantages. First, 
they are prone to speckle noise and could produce false alarms. 
Second, pixel-based methods are difficult to use in the extrac-
tion of spatial and textural information that is helpful in 
improving the classification accuracy of remote-sensing images 
(Myint et al., 2011). Object-oriented image analysis (OOIA) has 
been increasingly used for the classification of remote-sensing 
data (Benz et  al., 2004). It enables the acquisition of a variety 
of textural and spatial features for improving the accuracy 
of remote-sensing classification by delineating objects from 
remote-sensing images. On the other hand, image objects are 
much easier to manipulate and utilize than pure pixels. eCogni-
tion is so far the most commonly used object-oriented classifi-
cation package (Benz et al., 2004). Object-oriented radar image 
classification has also been carried out by many studies (Li et al., 
2009; Liu et al., 2008; Qi et al., 2012). All these studies indicated 
that OOIA provides better results than pixel-based approaches 
and that textural information in PolSAR images is helpful in 
enhancing the classification accuracy. Furthermore, OOIA is 
helpful in improving the accuracy of radar image classification 
by reducing the speckle effect (Qi et al., 2012).

22.5 �C hange Detection Methods 
for Radar Imagery

Many change detection methods have been developed for the use 
of remote-sensing data (Lu et al., 2004). However, there is still a 
general lack of the use of radar remote sensing for LULC change 
detection. Indeed, studies related to radar imagery change detec-
tion are fewer and more recent than optical-based ones. Change 
detection methods for radar imagery can be divided into two 

categories: (1) unsupervised change detection methods and 
(2)  methods combining unsupervised change detection with 
postclassification comparison (PCC).

22.5.1 � Unsupervised Change 
Detection Methods

Unsupervised change detection methods for radar images are 
usually made of three steps: (1) image preprocessing, (2) com-
paring two images to generate a change magnitude map 
(e.g.,  Figure  22.8), and (3) applying threshold methods to the 
change magnitude map to separate change from no change. 
Image ratioing, statistical measure, and image differencing are 
the most widely utilized unsupervised change detection meth-
ods for radar imagery.

22.5.1.1 I mage Ratioing

Image ratioing has been widely used in change detection with 
single-channel (i.e., single frequency and single polarization) 
radar images because it can effectively reduce multiplicative 
noise in the images (Rignot and Vanzyl, 1993). The compari-
son of SAR images can be carried out according to a ratio/loga-
rithmic ratio (log-ratio) operator. An optimal threshold value 
is then applied to the ratio/log-ratio image (change magnitude 
image) to identify changes. “Trial-and-error” procedures are 
typically used to determine optimal threshold value (Dierking 
and Skriver, 2002; Singh, 1989). However, such manual opera-
tions typically turn out to be time consuming; in addition, the 
quality of their results critically depends on the visual interpre-
tation of the user. To overcome this problem, many automatic 
thresholding algorithms have been proposed for the analysis of 
ratio/log-ratio images. Bazi et  al. (2005) introduced a general-
ized Gaussian model for a log-ratio images and applied Kittler 
and Illingworth (K&I) thresholding algorithm to the log-ratio 
image to automatically detect changes. The modified K&I crite-
rion was derived under the generalized Gaussian assumption for 
modeling the distributions of changed and unchanged classes. 
This parametric model was chosen because it is capable of better 
fitting the conditional densities of classes in the log-ratio image. 
However, in this method, changes are assumed to be on one 
side of the histogram of the log-ratio image, which is not true 
for all change detection problems. In particular, changes may 
be present on both sides of the histogram of the log-ratio image. 
Therefore, the method was further improved by combining gen-
eralized Gaussian distributions with a multiple-threshold ver-
sion of K&I to detect changes on both sides of the histogram 
of log-ratio images (Bazi et al., 2006). Additionally, Moser and 
Serpico (2006) developed a K&I minimum-error thresholding 
algorithm to take into account the non-Gaussian distribution 
of the amplitude values of SAR images. This method could be 
applied to images acquired by two distinct sensors with differ-
ent bands and polarizations. Carincotte et al. (2006) calculated 
change magnitude images using log-ratio detector and used a 
fuzzy version of hidden Markov chains to classify the log-ratio 
images into change and no-change classes. This method took 
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into account the fuzzy aspect of the scene behavior and change 
detection complexity and reached a satisfactory reliability level 
in the context of SAR images.

Many advanced methods have also been developed based 
on image ratioing to address different issues in change detec-
tion with radar images. Bujor et al. (2004) developed a method 
that applies a log-cumulants to the detection of spatiotemporal 
discontinuities in multitemporal SAR images. The contrast and 

the heterogeneity information were extracted by a multitemporal 
application of the ratio of local means and by new 3D texture 
parameters based on the log-cumulants. After that, the result-
ing attributes that measure the time variability or the presence 
of spatial features were merged. An interactive fuzzy fusion 
approach was proposed to provide end users with a simple and 
easily understandable tool for tuning the change detection 
results. This change detection method could enable geophysicists 
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Figure 22.8  (a) RADARSAT-2 image acquired on March 21, 2009. (b) RADARSAT-2 image acquired on September 29, 2009. (c) Change mag-
nitude calculated using change vector analysis. (From Qi and Yeh 2013.)
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to detect regions that contain spatial features (roads, rivers, 
etc.) or temporal change (flooded areas, coastline erosion, etc.). 
Bovolo and Bruzzone (2005) developed an approach that exploits 
a wavelet-based multiscale decomposition of the log-ratio image 
(obtained by a comparison of the original multitemporal SAR 
images) aimed at achieving different scales (levels) of represen-
tation of the change signal. Each scale was characterized by a 
different trade-off between speckle reduction and preservation 
of geometrical details. For each pixel, a subset of reliable scales 
was identified on the basis of a local statistic measure applied 
to scale-dependent log-ratio images. The final change detection 
result was obtained according to an adaptive scale-driven fusion 
algorithm. This method could improve the accuracy and geo-
metric fidelity of the change detection map. Gamba et al. (2006) 
jointly used feature-based and pixel-based techniques to address 
the problem of change detection from SAR images. Image ratio-
ing was used for deriving the first rough change map at the pixel 
level, and then linear features were extracted from multiple SAR 
images and compared to confirm pixel-based changes. This 
method proved to be effective in dealing with misregistration 
errors caused by reprojection problems or difference in the sen-
sor’s viewing geometry, which are common in multitemporal 
SAR images. Bovolo and Bruzzone (2007) proposed a split-based 
approach (SBA) to automatic and unsupervised change detection 
in large-size multitemporal SAR images. The method consisted 
of three steps: (1) a split of the computed ratio image into subim-
ages, (2) an adaptive analysis of each subimage, and (3) an auto-
matic split-based threshold-selection procedure. The SBA could 
detect changes in a consistent and reliable way in images of large 
size also when the extension of the changed area is small. Thus, 
it could be suitable for defining a system for damage assessment 
in multitemporal SAR images.

Single-channel SAR images may result in poor discrimina-
tion between changed and unchanged areas because of the 
limited spectral and polarization information. Compared 
with single-channel SAR, multichannel (e.g., multipolariza-
tion and/or multifrequency) SAR presents a great potential and 
is expected to provide an increased discrimination capability 
while maintaining the insensitivity to atmospheric and Sun-
illumination conditions. Change detection methods based on 
image ratioing have also been developed for change detection 
with multichannel SAR images. Moser et  al. (2007) combined 
the Landgrebe and Jackson expectation–maximization (LJ-EM) 
algorithm with a SAR-specific version of the Fisher transform 
to iteratively compute a scalar transformation of the multichan-
nel ratio image that optimally discriminates change from no 
change. An MRF approach was also integrated into the method 
to take advantage of the contextual information, which is crucial 
to reduce the impact of speckle on the change detection results. 
This method can be used to generate change maps from multi-
channel SAR images acquired over the same geographic region 
in different polarizations or at different frequencies at differ-
ent times. However, its main drawback is that, even though a 
convergent behavior is experimentally observed, no theoretical 

proof of convergence is available yet. Moser and Serpico (2009) 
proposed an unsupervised automatic contextual change detec-
tion method for multichannel amplitude SAR images based on 
image ratioing and MRFs. Each channel of the SAR amplitude 
ratio image was considered as a separate “information source,” 
and an additional source was derived from the spatial context; 
the multisource data-fusion task was addressed together with 
the image thresholding task using an MRF-based approach. In 
order to estimate model parameters, a case-specific novel for-
mulation of LJ-EM was developed and combined with method 
of log-cumulants. This choice also overcame the convergence 
drawback of the approach proposed by Moser et  al. (2007) 
because of the robust analytical properties of EM-based estima-
tion procedures.

22.5.1.2  Statistical Measure

Inglada and Mercier (2007) developed a statistical similarity 
measure for change detection in multitemporal SAR images. 
This measure was based on the evolution of the local statistics of 
the image between two dates. The local statistics were estimated 
by using a cumulant-based series expansion, which approxi-
mated probability density functions in the neighborhood of each 
pixel in the image. The degree of evolution of the local statistics 
was measured using the Kullback–Leibler divergence. An ana-
lytical expression for this detector was given, allowing a simple 
computation that depends on the four first statistical moments 
of the pixels inside the analysis window only. This proposed 
change detector outperformed the classical mean ratio detector, 
and the fast computation of this detector allowed a multiscale 
approach in the change detection for operational use. The so-
called multiscale change profile was introduced to yield change 
information on a wide range of scales and to better characterize 
the appropriate scale.

Chatelain et al. (2008) studied a new family of distributions 
constructed from multivariate gamma distributions to model 
the statistical properties of multisensory SAR images. These 
distributions referred to as multisensory multivariate gamma 
distributions (MuMGDs) were potentially interesting for detect-
ing changes in SAR images acquired by different sensors having 
different numbers of looks. This study compared different esti-
mators for the parameters of MuMGDs. These estimators were 
based on the ML principle, the method of inference function 
for margins, and the method of moments. The estimated cor-
relation coefficient of MuMGDs showed interesting properties 
for detecting changes in radar images with different numbers 
of looks.

When working with multilook fully PolSAR data, an appro-
priate way of representing the backscattered signal consists of 
the covariance matrix. For each pixel, this is a 3 × 3 Hermitian 
positive definite matrix that follows a complex Wishart dis-
tribution. Based on this distribution, Conradsen et  al. (2003) 
proposed a test statistic for equality of two such matrices, and 
an associated asymptotic probability for obtaining a smaller 
value of the test statistic was derived and applied successfully 
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to change detection in PolSAR data. If used with HH, VV, or 
HV data only, the test statistic reduced to the well-known test 
statistic for equality of the scale parameters in two gamma dis-
tributions. The derived test statistic and the associated signifi-
cance measure could be applied as a line or edge detector in fully 
PolSAR data. The new polarimetric test statistic was much more 
sensitive to the differences than test statistics based only on the 
backscatter coefficients.

22.5.1.3 I mage Differencing

Image differencing is one of the most widely used unsupervised 
change detection methods for the use of optical remote-sensing 
images. It has also been used for change detection with single-
channel SAR images (Cihlar et al., 1992; Villasenor et al., 1993). 
The procedure of image differencing is similar to that of image 
ratioing, but the change magnitude in image differencing meth-
ods is obtained by subtracting amplitude or intensity images of 
two SAR images acquired at different times. A widely accepted 
assumption is that the distribution of pixels in the change and 
no-change areas in the difference image can be approximated as 
a mixture of Gaussian distributions (Camps-Valls et al., 2008). 
Thus, the EM algorithm is commonly used on change magni-
tude to detect changes because it finds clusters by determining 
a mixture of Gaussians that fit a given dataset (Bruzzone and 
Prieto, 2000). In addition to using radar amplitude images, Grey 
et al (2003) applied image differencing technique to SAR inter-
ferometric coherence data to map urban change.

Celik and Ma (2010) proposed an unsupervised change 
detection algorithm for satellite images by conducting proba-
bilistic Bayesian inferencing to perform unsupervised thresh-
olding over subband difference image generated at the various 
scales and directional subbands using the dual-tree com-
plex wavelet transform (DT-CWT) for representation. Aside 
from the intrascale information, the interscale information 
inherently provided by the DT-CWT was exploited to effec-
tively reduce both the false-alarm and miss-detection rates. 
Extensive simulation results showed that this algorithm con-
sistently performed quite well on both objective and subjec-
tive change detection performance evaluation—under either 
noise-free or zero-mean Gaussian (or speckle) noise interfer-
ence cases. Furthermore, the correct- and false-classification 
rates were almost invariant (insensitive) with respect to noise 
powers added to the images.

22.5.1.4 O ther Methods

Other approaches have also been proposed in the literature to 
deal with radar change detection, including multitemporal 
coherence analysis (Rignot and Vanzyl, 1993), integration of 
segmentation with multilayer perceptron and Kohonen neu-
ral networks (White, 1991), case-based reasoning (Li and Yeh, 
2004), ML approach (Lombardo and Pellizzeri, 2002), radon 
transform and Jeffrey divergence (Zheng and You, 2013), and 
graph-cut and generalized Gaussian model (Zhang et al., 2013).

22.5.2 �C ombing Unsupervised 
Change Detection and 
Postclassification Comparison

Although unsupervised change detection approaches are rela-
tively simple, straightforward, and easy to implement and inter-
pret, they cannot determine types of land cover change. PCC 
can provide information on both the changed areas and the 
type of land cover change in these areas because it performs 
change detection by comparing separate supervised classifi-
cations of images acquired at different times (Lu et  al., 2004). 
However, PCC is limited by the accuracies of the classification. 
PCC results exhibit accuracies similar to the product of the 
accuracies of each individual classification (Stow et  al., 1980). 
Most orbital SAR systems are single-frequency types, and SAR 
images suffer from serious speckle noise caused by the SAR sys-
tem’s coherent nature. When applied to SAR images, PCC may 
yield poor results because of the poor classification accuracies 
caused by the speckle noise and limited spectral information. 
Furthermore, change detection and classification of using radar 
images are often based on pixel-based methods, which are prone 
to speckle noise and difficult to use in the extraction of spatial 
and textural information.

A method that integrates change vector analysis (CVA) 
and PCC with OOIA has been developed to detect land cover 
changes from two repeat-pass PolSAR images (Qi and Yeh, 
2013). OOIA allows for land cover change detection performed 
on image objects and the incorporation of textural and spa-
tial information of the image objects. It was integrated into the 
method to suppress the speckle effect and extract textural and 
spatial information to support PolSAR image classification. In 
this method, two PolSAR images acquired over the same area 
at different times were segmented hierarchically to delineate 
land parcels (image objects) (Figure 22.9). The hierarchical 
segmentation of PolSAR images not only avoided inconsisten-
cies in the delineation of land parcels but also delineated the 
changed land parcels. As shown in Figure 22.9, the changed 
land parcels, such as land parcels a and b2, were delineated in 
the hierarchical segmentation. Afterwards, CVA was combined 
with PCC to detect land cover changes based on OOIA. Parcel-
based CVA was performed with the features extracted from 
the coherency matrices of the PolSAR images to calculate the 
change magnitude map (Figure 22.8). The EM algorithm was 
applied to the change magnitude map to identify the changed 
land parcels. PCC that was based on a parcel-based classifi-
cation approach, which integrated polarimetric decomposi-
tion, decision tree algorithms, and support vector machines, 
was then used to determine the type of land cover change for 
the changed land parcels. The combination of CVA and PCC 
detected different types of land cover change and also reduced 
the effect of the classification errors on the land cover change 
detection. The main advantage of this method is that it pro-
vides information on both the changed areas and the type of 
land cover change in these areas. Compared with conventional 
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PCC that was based on the Wishart-supervised classification, 
this change detection method significantly reduced overall 
error and false-alarm rates.

22.6 � Applications of Radar Imagery in 
LULC Mapping and Monitoring

The major applications of radar remote sensing in LULC map-
ping and monitoring include LULC classification and change 
detection, forestry inventory and mapping, crop and vegeta-
tion identification, application on urban environment, snow 
and ice mapping, application to wetlands, and shoreline change 
detection.

22.6.1 � LULC Classification and 
Change Detection

Many studies have reported that radar remotely sensed images 
can provide valuable information for timely LULC classification 
and change detection (Table 22.8). Peng et al. (2005) found that 
stereo RADARSAT-1 SAR images provided valuable data sources 
for land cover mapping, especially in mountainous areas where 
cloud cover is a problem for optical data collection and topo-
graphical data are not always available. The joint use of InSAR 
and textural features extracted from SAR images and its applica-
tion to LULC classification has been assessed by many studies. 
Strozzi et al. (2000) produced two land use maps and a forest map 
of three different areas in Europe by using ERS-1/2 SAR inter-
ferometry. The three areas represented various geomorphologi-
cal regions with different cover types. Their classification results 
showed that land use classification accuracies on the order of 
75% are possible with, in the best case, simultaneous forest and 
nonforest accuracies of around 80%–85%. Qi et al. (2012) imple-
mented land cover classification by using textural, polarimetric, 
and interferometric information extracted from RADARSAT-2 
PolSAR images. The overall accuracy of 86.64% was achieved for 
classifying land cover types including built-up areas, water, bar-
ren land, crop/natural vegetation, lawn, banana, and forests.

If single-frequency SAR systems are used, there is generally a 
considerable degree of ambiguity between different LULC types 
(Li et  al., 2012). Combining multifrequency SAR scenes has 
proved to be a valuable tool for distinguishing different LULC 
classes. Shimoni et  al. (2009) investigated the complementar-
ity and fusion of different frequencies (L and P band), PolSAR 
and polarimetric interferometric (PolInSAR) data obtained by 
Experimental airborne SAR (E-SAR) for land cover classifica-
tion. The results showed that the overall accuracy for each of the 
fused sets was better than the accuracy for the separate feature 
sets. Moreover, fused features from different SAR frequencies 
were complementary and adequate for land cover classification 
and that PolInSAR was complementary to PolSAR informa-
tion and that both were essential for producing accurate land 
cover classification. Evans and Costa (2013) used multitemporal 
L-band ALOS/PALSAR, C-band RADARSAT-2, and Envisat/
ASAR data to map ecosystems and create a lake distribution map 
of the lower Nhecolandia subregion in the Brazilian Pantanal. 
They provided the first fine spatial-resolution classification 
showing the spatial distribution of terrestrial and aquatic habi-
tats for the entire subregion of lower Nhecolandia. Holecz et al. 
(2009) generated land cover maps and changes over large areas 
by fusing single-date ALOS PALSAR fine/dual beam with mul-
titemporal Envisat ASAR mode/alternating polarization images. 
The results clearly demonstrated that the synergetic use enabled 
the reliable identification of key land cover types (in particular 
cropped areas, bare soil areas, forestry, forest clear cut, forest 
burnt areas, water bodies) and their evolution over time.

The use of multitemporal SAR data can also increase the 
number of reliably distinguishable LULC classes. Land cover 
classification was conducted by using a time series of 14 ERS-
1/2 SAR tandem image pairs (Engdahl and Hyyppa, 2003). A 
total of 14 tandem coherence images and two coherence images 
with a longer temporal baseline (36 and 246 days) were used in 
the classification. The overall accuracy for six classes, field/open 
land, dense forest, sparse forest, mixed urban, dense urban, and 
water, was found to be 90% with kappa coefficient of 0.86. Huang 
et al. (2008) found that multitemporal ERS-2 SAR imagery had 

First segmentation
Second segmentation

N

March 21, 2009 September 29, 2009

0 200 m

Figure 22.9  Hierarchical segmentation of RADARSAT-2 PolSAR images acquired at different times. (From Qi and Yeh 2013.)
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Table 22.8  Studies on the Application of Radar Imagery in LULC Classification and Change Detection

LULC Types Data Accuracy Strengths Limitations Reference 

Bare soil, natural forest, pasture, planted forest, 
sugar-cane plantations, soya plantations, urban or 
built-up areas, and water

ERS-1 SAR and 
Landsat-5 TM images

94.85% Compared with using TM data alone, combining 
TM with SAR increases the classification accuracy 
for urban, pasture and forest

Both SAR and TM 
images are needed

Kuplich 
et al. (2000)

Urban areas, water, forest, and open land ERS-1/2 InSAR data 75% Interferometric information is used in LULC 
classification

Meteorological 
condition effect

Strozzi 
et al. (2000)

Field/open land, dense forest, sparse forest, mixed 
urban, dense urban, and water

ERS-1/2 InSAR data 90% Interferometric coherence carries more land cover 
related information than the backscattered 
intensity

A large number of 
tandem pairs are 
needed

Engdahl and 
Hyyppa (2003)

Forest, glacial ice, grass, rock, sandy soil, shrub, 
snow, and water

A stereo pair of 
RADARSAT-1 images

83% Suitable for land cover mapping in mountainous 
areas

Feature extraction and 
selection needs to be 
optimized

Peng 
et al. (2005)

Upland forest, lowland forest, advanced 
successional vegetation, intermediate successional 
vegetation, initial successional vegetation, 
degraded pasture, cultivated pasture, agroforestry, 
coffee plantation, infrastructure, water, and 
non-vegetation lowland

Landsat ETM+ and 
RADARSAT-1 data

72.07% Incorporation of data fusion and textures increases 
classification accuracy by approximately 5.8%–
6.9% compared to Landsat ETM+ data

Both SAR and ETM+ 
images are needed

Lu et al. (2007)

Residential, road and dike, cotton field, paddy field, 
mixed field, orchard, forest land, river and gulf, 
canal and pond, aqua-farm ponds, tideland and 
wild land, and nonvegetated saline soil land

Multitemporal ERS-2 
SAR imagery

77.34% Multitemporal SAR imagery has great potential for 
LULC mapping or resource investigations in 
coastal zones under rapid development

The best time window 
for image acquisition 
should be considered

Huang 
et al. (2008)

Built-up areas, rural residential areas, bare land, 
paddy fields, vegetable land, orchards, forest, river, 
and fishponds

RADARSAT-1 images 75.2% SAR provides a unique opportunity for detecting 
LULC changes within short intervals (e.g., 
monthly) in tropical and sub-tropical regions

Monthly SAR images are 
needed

Li et al. (2009)

Residences, roads, forests, wheat and corn fields, 
pastures, abandoned areas, bare soil, and rivers

E-SAR L- and P-band 75.36% Fused features from different SAR frequencies are 
complementary and adequate for LULC 
classification

Results could be further 
improved by 
introducing spatial 
information into the 
fusion.

Shimoni 
et al. (2009)

Forest, succession, agro-pasture, water, wetland, 
and urban

ALOS PALSAR or 
RADARSAT-2 data

72.2% (L-band); 
54.7% (P-band)

L-band data provides much better land cover 
classification than C-band data

LULC classification with 
either L- or C-band is a 
challenge for fine LULC 
classification system

Li et al. (2012)

Built-up, water, barren land, forest, lawn, banana, 
and cropland/natural vegetation

RADARSAT-2 data 86.64% Incorporation of textural, polarimetric, and 
interferometric features into the classification

PolSAR images 
segmentation remains a 
challenge

Qi et al. (2012)

Forests, paddy fields, croplands, lotus fields, 
grasslands, golf courses, parks, settlements, and 
water

ALOS AVNIR-2 and 
PALSAR images

90.34% Combining AVNIR-2 and PALSAR data produce 
better accuracy

Both AVNIR-2 and 
PALSAR data are 
needed

Bagan 
et al. (2012)

Forest woodland, open wood savanna, open grass 
savanna, swampy grassland, agriculture, vazantes, 
fresh water lake, and brackish lake

ALOS PALSAR, 
RADARSAT-2, and 
ENVISAT ASAR data

83% Combining dual-season, C and L-band, is essential 
for providing a relatively high overall accuracy of 
land cover classification

SAR data of different 
frequencies are needed

Evans and 
Costa (2013)
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great potential for land use mapping or resource investigations 
in coastal zones under rapid development. They stated that mul-
titemporal SAR data can be regarded as the first choice for moni-
toring land uses and their dynamic changes in coastal zones that 
are often affected by heavy cloud or rainy weather.

SAR data and optical data provide complementary informa-
tion, and their combination often leads to increased classification 
accuracy. The use of Landsat MSS and Seasat SAR data was eval-
uated in discriminating suburban and regional cover in the east-
ern fringe area of the Denver, Colorado, metropolitan area (Toll, 
1985). The Seasat SAR data provided a measure of surface geom-
etry that complemented the reflective characteristics of Landsat 
MSS visible and near-infrared data. The integration of Landsat 
imagery with SAR data obtained by ERS-1, RADARSAT-1, and 
ALOS PALSAR for LULC classification have been carried out 
by many studies (Kuplich et al., 2000; Larranaga et al., 2011; Lu 
et  al., 2007). All these studies reported a significant improve-
ment achieved by the integration in LULC classification. Bagan 
et al. (2012) evaluated the potential of combined ALOS visible 
and near-infrared (AVNIR-2) with PALSAR fully PolSAR data 
for land cover classification. They confirmed that, when the 
combined optical AVNIR-2, PALSAR, and polarimetric coher-
ency matrix data were used, the classification accuracy of was 
better than that when other data combinations were used.

SAR data are also useful in the detection of LULC changes. 
Villasenor et al. (1993) found that the temporal changes between 
repeat-pass ERS-1 SAR images of the North Slope of Alaska were 
largely due to changes in soil and vegetation liquid water con-
tent induced by freeze/thaw events. This confirmed the viabil-
ity of radar backscatter intensity comparisons using repeat-pass 
images as a means of change detection. Orbital SAR data have 
proved to be a unique opportunity for detecting land use changes 
within short intervals in tropical and subtropical regions with 
cloud cover (Li et  al., 2009). By using object-oriented analysis 
with case-based reasoning, Li et al. (2009) successfully detected 
land use changes at monthly intervals by using multitemporal 
RADARSAT-1 SAR images.

22.6.2  Forestry Inventory and Mapping

Radar remote sensing can contribute to the inventory and map-
ping of forest as well as to an understanding of ecosystem pro-
cess (Table 22.9). Early research to apply imaging radar to forest 
mapping was conducted using multiple incident angle SIR-B 
data (Cimino et  al., 1986). The research found that different 
forest species might be discriminated using multiple incidence 
angle radar imagery and the variation in backscatter due to inci-
dence angle should be considered when analyzing and compar-
ing data collected at varying frequencies and polarizations. After 
the availability of some orbital radar systems, such as the ERS-
1/2, JERS-1, and RADARSAT-2, SAR images obtained by these 
systems have been widely used in forestry inventory and map-
ping. The use of ERS-1/JERS-1 SAR composites was shown to be 
very promising for forest mapping, and the textural information 

of ERS-1 and JERS-1 SAR images significantly improved the 
classification accuracies (Kurvonen and Hallikainen, 1999; 
Solaiman et al., 1999). Furthermore, interferometric coherence 
maps derived from ERS-1 and ERS-2 SAR images and from 
JERS-1 SAR images were found to be an important source of 
information for biophysical characteristics in regenerating and 
undisturbed areas of a forest (Luckman et al., 2000).

The capability of PolSAR imagery in forestry inventory and 
mapping has been investigated by using SIR-C/X-SAR, Envisat 
ASAR, ALOS PALSAR, and RADARSAT-2. SIR-C imagery was 
used in mapping land cover types and monitoring deforesta-
tion in Amazon rainforest (Saatchi et al., 1997). The SIR-C data 
delineated five classes including primary forest, secondary for-
est, pasture crops, quebrada, and disturbed forest with approxi-
mately 72% accuracy. The comparison of SIR-C data acquired 
in April (wet period) and October (dry period) indicated that 
multitemporal data could be used for monitoring deforestation. 
Chand and Badarinath (2007) analyzed the capability of Envisat 
ASAR C-band data in forest parameter retrieval and forest-type 
classification over deciduous forests. They found a significant 
correlation between SAR backscatter and biometric parameters, 
and backscatter values typically increased with increase in basal 
area, volume, stem density, and dominant height. Santoro et al. 
(2007) found that the high-coherence difference between forests 
and bare fields suggested the possibility to use the Envisat coher-
ence for forest/nonforest mapping and estimation of biophysi-
cal properties of short vegetation. The ability of PALSAR data 
in supporting forestry mapping was assessed comprehensively 
(Longepe et al., 2011; Walker et al., 2010). The assessments con-
firmed PALSAR data as an accurate source for spatially explicit 
estimates of forest cover. Liesenberg and Gloaguen (2013) evalu-
ated the backscattering intensity, polarimetric features, inter-
ferometric coherence, and texture parameters extracted from 
PALSAR imagery for forest classification. It was found that 
forest classes were characterized by low temporal backscatter-
ing intensity variability, low coherence, and high entropy and 
that overall accuracies were affected by precipitation events on 
the date and prior SAR date acquisition. Polarimetric features 
extracted from quad-polarization L band increased classifica-
tion accuracies when compared to single and dual polarization 
alone. Polychronaki et al. (2013) found that PALSAR could be 
applied for rapid burned area assessment, especially to areas 
where cloud cover and fire smoke inhibit accurate mapping of 
burned areas when optical data are used.

The usefulness of airborne NASA/Jet Propulsion Laboratory (JPL) 
Airborne Synthetic Aperture Radar (AIRSAR) multifrequency tem-
poral PolSAR data was examined for identifying forest (Ranson and 
Sun, 1994). With principal component analysis of temporal datasets 
(winter and late summer), the SAR images were classified into gen-
eral forest categories such as softwood, hardwood, regeneration, and 
clearing with better than 80% accuracy. However, classifications 
from single-date images suffered in accuracy. The winter image had 
significant confusion of softwoods and hardwoods with a strong 
tendency to overestimate hardwoods. The increased double-bounce 
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Table 22.9  Studies on the Applications of Radar Imagery in Forestry Inventory and Mapping

Purpose Data Accuracy Strengths Limitations Reference 

Forest type classification (softwood, 
hardwood, regeneration, and clearing)

AIR SAR >80% Temporal (winter and late summer) SAR images 
are suitable for forest type classification

Winter images have significant confusion 
of softwoods and hardwoods with a 
strong tendency to overestimate 
hardwoods

Ranson and Sun 
(1994)

Forest type classification (primary forest, 
secondary forest, pasture-crops, 
quebradao, and disturbed forest)

SIR-C/X-SAR 72% Multitemporal data can be used for monitoring 
deforestation

Data acquired during the wet season are 
not suitable for accurate land cover 
classification

Saatchi et al. (1997)

Forest type classification (coniferous, mixed 
forest, deciduous, and mire)

ERS-1 and JERS-1 
SAR images

66% The textural information of a multitemporal set of 
ERS-1 and JERS-1 SAR images has a higher 
information value for the forest type classification 
than the SAR image intensity

Weather and seasonal conditions have a 
significant effect on the textural 
information of SAR images

Kurvonen and 
Hallikainen (1999)

Measurements of disturbed tropical forest ERS-1 and JERS-1 
SAR images

79.2% Coherence from both ERS tandem acquisitions and 
JERS data is useful for differentiating between 
forest and nonforest and may include useful 
information both on the density of regenerating 
forest and the characteristics of mature forest

Time delay between the ground data 
campaign and ERS data acquisition may 
have influenced the result

Luckman 
et al. (2000)

Forest type classification (xylia dominated, 
teak mixed, settlements, degraded forest, 
water bodies, fallow/barren, agriculture, 
mixed forest, riverine forest); forest 
parameter (stem density, basal area, and 
dominant height) retrieval

ENVISAT ASAR 89.2% Seasonal data of ENVISAT ASAR improves the 
mapping accuracy; A reasonable correlation of 
backscatter values derived from ASAR with 
plot-level biometric parameters

SAR data due to layover and 
foreshortening effects limits the data 
utilization

Chand and 
Badarinath (2007)

Forest mapping (forest and nonforest) ALOS PALSAR 92.4% Confirming the ability of modern imaging radar in 
providing for accurate and timely wall-to-wall 
mapping and monitoring of forest cover

Fusion of multisensor and multi-temporal 
radar and optical data is expected to 
provide better results

Walker et al. (2010)

Forest mapping (natural forests and other 
land cover types)

ALOS PALSAR 86% Confirming the high potential of PALSAR sensor 
for forest monitoring at regional level

The classification accuracy will likely 
increase if multitemporal PALSAR 
acquisitions are integrated

Longepe 
et al. (2011)

Forest type classification (primary forest, 
riparian forest, advanced secondary forest, 
intermediate secondary forest, initial 
secondary forest, water, and pasture)

PALSAR and 
Landsat TM

85.5% Forest classes are characterized by low temporal 
backscattering intensity variability, low coherence 
and high entropy

Incidence angle and precipitation events 
on the date and prior data acquisition 
should be taken into account in mapping

Liesenberg and 
Gloaguen (2013)
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scattering of the radar beam from conifer stands because of lowered 
dielectric constant of frozen needles and branches was the contrib-
uting factor for the misclassifications.

22.6.3 C rop and Vegetation Identification

Research in the use of imaging radar for investigating LULC 
has also been closely related to crop and vegetation identifica-
tion (Table 22.10). Early studies indicated that radar backscatter 
was significantly affected by the effect of soil moisture, surface 
roughness, and vegetation cover (Wang et  al., 1986). Freeman 
et al. (1994) found that multifrequency, polarimetric radar back-
scatter signatures extracted from calibrated and noise-corrected 
NASA/JPL AIRSAR data were useful in classifying several dif-
ferent ground cover types in agricultural areas. JERS-1 SAR 
data were used for separating basic land cover categories such 
as savannas, forests, and flooded vegetation by Simard et  al. 
(2000). The textural information extracted from the JERS-1 
imagery was found to be particularly useful for refining flooded 
vegetation classes. McNairn et  al. (2009) compared the capa-
bility of L-band PALSAR PolSAR, C-band Envisat ASAR, and 
RADARSAT-1 SAR data for crop classification. Using all L-band 
linear polarizations, corn, soybeans, cereals, and hay pasture 
were classified to an overall accuracy of 70%, while a more 

temporally rich C-band dataset provided an accuracy of 80%. 
However, larger biomass crops were well classified using the 
PALSAR data, whereas C-band data were needed to accurately 
classify low-biomass crops. With a multifrequency dataset, an 
overall accuracy of 88.7% was reached, and many individual 
crops were classified to accuracies better than 90%. These results 
were competitive with the overall accuracy achieved using three 
Landsat images (88%).

The existing orbital SARs have only one single band. Although 
useful, when taken alone, each of these orbital SARs will encoun-
ter limitations for crop and vegetation classification because of 
signal saturation at high levels of biomass (Dobson et al., 1995). 
One possible solution is to increase the temporal information as 
compensation. Schotten et  al. (1995) assessed the capability of 
multitemporal ERS-1 SAR data in discriminating between the 
crop types for land cover inventory purposes. An overall clas-
sification accuracy of 80% was achieved for the classification of 
12 crop types. Li and Yeh (2004) demonstrated that multitem-
poral RADARSAT-1 SAR images were suitable for monitoring 
the rapid changes of cultivation systems in a subtropical region. 
Park and Chi (2008) used multitemporal RADARSAT-1 data 
with HH polarization and Envisat ASAR data with VV polariza-
tion for the classification of typical five land cover classes in an 
agricultural area. The results indicated that the use of multiple 

Table 22.10  Studies on Crop and Vegetation Identification Using Radar Imagery

Crop/Vegetation Types Data Accuracy Strengths Limitations Reference 

Surfaces, short vegetation, 
and tall vegetation

ERS-1 and JERS-1 
SAR data

90% The SARs provide information on the 
structure of the surface and the overlying 
vegetation cover that is complementary to 
the greeness information provided by NDVI

The study requires a 
sequential processor that 
classifies terrain and selects 
the appropriate class-specific 
retrieval algorithms

Dobson 
et al. (1995)

Low mangrove, urban, 
swamp, temporarily 
flooded vegetation, 
permanently, flooded 
vegetation, woody 
savanna, forest, grass 
savanna, open forest, 
and raphia

JERS-1 SAR data 84% Radar backscatter amplitude is important for 
separating basic land cover categories such 
as savannas, forests, and flooded vegetation. 
Texture is useful for refining flooded 
vegetation classes. Temporal information 
from SAR images of two different dates is 
explicitly used to identify swamps and 
temporarily flooded vegetation

A tradeoff between 
classification accuracy and 
spatial resolution must be 
reached

Simard 
et al. (2000)

Banana, grass, lotus, 
water, sugar cane, rice 
paddy, fishponds, and 
built-up areas

RADARSAT-1 SAR 
data

85% Multitemporal satellite SAR images are 
suitable for monitoring the rapid changes of 
cultivation systems in a subtropical region

Multitemporal SAR images 
are needed

Li and Yeh 
(2004)

Ambrosia dumosa, Larrea 
tridentata, encelia 
farinosa, mixed scrub, 
olneya lesota, 
parkinsonia microphylla, 
and desert pavement

Landsat TM and 
ERS-1 SAR data

88.89% Combing ERS-1 SAR imagery and Landsat 
TM imagery together increases classification 
accuracy

Both TM and SAR data are 
needed

Shupe and 
Marsh 
(2004)

Corn, soybeans, cereals, 
and hay-pasture

ALOS PALSAR and 
RADARSAT-1 
SAR data

88.70% The results reported in this study emphasize 
the value of polarimetric, as well as 
multifrequency SAR, data for crop 
classification

Access to multipolarization 
data promises to further 
advance the use of SAR for 
agricultural applications

McNairn 
et al. (2009)

Broad-leaved, fine-leaved, 
no grain (unploughed), 
grain (ploughed), winter 
grain, and spring grain

TerraSAR-X data 90% Multitemporal TerraSAR-X data are suitable 
for monitoring agricultural land use and its 
related ecosystems

The study is based on 
pixel-based MLC method

Bargiel and 
Herrmann 
(2011)
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polarization SAR data with a proper feature extraction stage 
would improve classification accuracy. Bargiel and Herrmann 
(2011) used a stack of l4 spotlight TerraSAR-X images for the 
classification of agricultural land use in two areas with different 
population density, agricultural management, as well as geologi-
cal and geomorphological conditions. Overall accuracy for all 
classes for the two areas was 61.78% and 39.25%, respectively. 
Accuracies improved notably for both regions (about 90%) when 
single vegetation classes were merged into groups of classes. 
They indicated that SAR imagery could serve as basis for moni-
toring systems for agricultural land use and its related ecosys-
tems. Yonezawa et al. (2012) used RADARSAT-2 PolSAR images 
to monitor and classify rice fields and found that multitemporal 
observation by PolSAR has great potential to be utilized for esti-
mating rice-planted areas and monitoring rice growth.

Some studies were also carried out on the classification of 
vegetation and agricultural crops by integrating SAR data and 
Landsat TM imagery (Ban, 2003; Shupe and Marsh, 2004). These 
studies showed that the synergy of SAR and Landsat TM data 
could produce much better classification accuracy than that of 
Landsat TM alone only when careful consideration is given to 
the temporal compatibility of SAR and visible and infrared data.

22.6.4  Application on Urban Environment

The urban environment is also an important area for radar 
application (Table 22.11). Cao and Jin (2007) found that urban 
terrain surfaces could be well classified by fusing Landsat ETM+ 
and ERS-2 SAR images. Liao et al. (2008) found that urban areas 
could be detected by jointly using coherence and intensity char-
acteristics of ERS-1/2 SAR imagery based on an unsupervised 
change detection approach. Ban et  al. (2010) fused QuickBird 
multispectral data and multitemporal RADARSAT-1 fine-beam 
SAR data for urban land cover mapping and found that decision 
level fusion of QuickBird classification and RADARSAT SAR 
classification was able to take advantage of the best classifica-
tions of both optical and SAR data, thus significantly improv-
ing the classification accuracies of several LULC classes. Vidal 
and Moreno (2011) applied TerraSAR-X and aerial optical data 
to the change detection of isolated housing in agricultural 
areas. They concluded that high-resolution radar images such 
as TerraSAR-X images are an excellent complement to opti-
cal high-resolution images for carrying out isolated housing 
change detection. Hu and Ban (2012) implemented urban land 
cover classification using multitemporal RADARSAT-2 ultra-
fine beam SAR data, and an accuracy of 81.8% was achieved 
for the classification. Majd et  al. (2012) assessed the potential 
of a single polarimetric radar image of high spatial resolu-
tion, acquired by the airborne Radar Aeroporte Multi-spectral 
d’Etude des Signatures (RAMSES) SAR sensor of Office national 
d’études et de recherches aérospatiales (ONERA), for the clas-
sification of urban areas. The results highlighted the potential of 
such data to discriminate urban land cover types, and the over-
all accuracy reached 84%. However, the results also showed a 
problematic confusion between roofs and trees. Multitemporal 

multi-incidence angle Envisat ASAR and Chinese HJ-1B mul-
tispectral were fused for detailed urban land cover mapping 
(Ban and Jacob, 2013). The best classification result (80%) was 
achieved using the fusion of eight-date Envisat ASAR and Huan 
Jing 1B (HJ-1B) data. Niu and Ban (2013) employed multitem-
poral RADARSAT-2 high-resolution SAR images for urban land 
cover classification. Six-date PolSAR data in both ascending and 
descending passes were acquired in a rural–urban fringe area, 
and major land cover classes included high-density residential 
areas, low-density residential areas, industrial and commercial 
areas, construction sites, parks, golf courses, forests, pasture, 
water, and two types of agricultural crops. The best classification 
result was achieved using all six-date data (kappa = 0.91), while 
very good classification results (kappa = 0.86) were achieved 
using only three-date PolSAR data. The results demonstrated 
that the combination of both the ascending and the descending 
PolSAR data with an appropriate temporal span was suitable for 
urban land cover mapping.

Airborne high-resolution SAR images have also been widely 
used in investigating urban environment. Gamba et al. (2000) 
presented a procedure for the extraction and characterization of 
building structures from the 3D terrain elevation data provided 
by interferometric InSAR measurements. Dierking and Skriver 
(2002) addressed the detection of changes in multitemporal 
polarimetric radar images acquired at C and L band by the air-
borne EMISAR system, focusing on small objects (such as build-
ings) and narrow linear features (such as roads). They found that 
the radar intensities were better suited for change detection than 
the correlation coefficient and the phase difference between the 
copolarized channels. Urban height and classification map were 
retrieved from RAMSES high-resolution InSAR images by Tison 
et al. (2007). The results obtained on real images were compared 
to ground truth and indicated a very good accuracy in spite of 
limited image resolution. Brenner and Roessing (2008) demon-
strated the potential of very-high-resolution radar imaging of 
urban areas by means of SAR and interferometric imaging. The 
corresponding data were acquired with the X-band phased array 
multifunctional imaging radar (Figure 22.10). They stated that 
high-resolution InSAR will be an important basis for upcoming 
radar-based urban analysis.

22.6.5  Snow and Ice Mapping

The ability of radar remote sensing to image through darkness 
and cloud cover is a key to its applications in snow and ice map-
ping in the temperate and polar regions, which are in darkness 
for much of the year. Albright et al. (1998) used SIR-C/X-SAR 
images to map snow and glacial ice on the rugged north slope 
of Mount Everest. SIR-C/X-SAR data were able to identify and 
map scree/talus, dry snow, dry snow-covered glacier, wet snow-
covered glacier, and rock-covered glacier, as corroborated by 
comparison with existing surface cover maps and other ancil-
lary information. Multitemporal RADARSAT-1 SAR images 
were also proved to be effective in the classification of ice types 
by Weber et al. (2003). Zakhvatkina et al. (2013) classified sea ice 
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in the Central Arctic using Envisat ASAR images and found that 
it was necessary to use textural features in addition to the back-
scattering coefficients for sea ice classification. The results of 
the classification showed that the average correspondences with 
the expert analysis amount to 85%, 83%, and 80% for multiyear 
ice, deformed first-year ice, and level first-year ice, respectively. 
Warner et al. (2013) used RADARSAT-2 data for ice detection 
during summer and found that the physical and electromagnetic 
properties of the ice surfaces were virtually identical with few 
differences in the scattering of microwave energy.

22.6.6 O ther Applications

Wang and Allen (2008) utilized ALOS PALSAR HH and JERS-1 
HH SAR data to delineate estuarine shorelines and to study 
shoreline changes of North Carolina coast, United States. The 
results supported further monitoring of shorelines in estuar-
ies using active remote sensing. Evans et  al. (2010) used mul-
titemporal C-band RADARSAT-2 and L-band ALOS/PALSAR 
data to map ecosystems and created spatial–temporal maps of 
flood dynamics in the Brazilian Pantanal. The cross-sensor, 

Table 22.11  Studies on the Applications of Radar Imagery on the Urban Environment

Purpose Data Accuracy Strengths Limitations Reference 

Urban land use classification 
(water, grass, building, road, 
and flat field)

Landsat 
ETM+ and 
ERS-2 SAR 
data

>90% Fused images from infrared 
ETM+ and microwave SAR 
images can yield better 
classification of complex terrain 
surfaces

Landsat ETM+ and 
ERS-2 SAR images 
are needed 
simultaneously

Cao and Jin 
(2007)

Urban land use classification 
(high-density built-up areas, 
low-density built-up areas, 
roads, forest, parks, golf 
courses, water and several types 
of agricultural land)

Quickbird MS 
and 
RADARSAT 
SAR images

89.50% Decision level fusion of 
RADARSAT SAR and 
Quickbird classification results 
are able to take advantage of the 
best classification of both 
optical and SAR images

The accuracies of 
commercial 
industrial areas and 
low-density 
residential areas 
remain relatively low

Ban et al. (2010)

Change detection of isolated 
housing

Aerial optical 
images and 
TerraSAR-X 
SAR data

94.83% High resolution TerraSAR-X 
images are an excellent 
complement to optical 
high-resolution images for 
carrying out isolated housing 
change detection

Optical and high 
resolution SAR 
images are needed

Vidal and 
Moreno (2011)

Urban land use classification 
(high-density built-up area, 
low-density built-up area, 
roads, airport, forest, low 
vegetation, golf course, grass/
pasture, bare fields, and water)

ENVISAT 
ASAR and 
HJ-1B data

80% Fusion of SAR and optical 
images provides complementary 
information, thus yielding 
higher classification accuracy 
than SAR or optical data alone

SAR data and optical 
data are needed 
simultaneously

Ban and Jacob 
(2013)

Urban land use classification 
(high-density residential areas, 
low-density residential areas, 
industrial and commercial 
areas, construction sites, parks, 
golf courses, forests, pasture, 
water, and two types of 
agricultural crops)

RADARSAT-2 
SAR images

90% Combination of both the 
ascending and the descending 
polarimetric SAR data with an 
appropriate temporal span is 
suitable for urban land cover 
mapping

Multitemporal 
ascending and 
descending images 
are needed

Niu and Ban 
(2013)

Extraction and characterization 
of building structures

IFSAR data Footprint error: 
1%–37%; Height 
error: −11 to 4 m

Building footprint, height and 
position, as well as its 
description with a simple 3-D 
model, are recovered from 
interferometric radar data

Building footprints 
are largely 
underestimated; 
layover/shadowing 
effects

Gamba 
et al. (2000)

Joint retrieval of urban height 
map and classification from 
high-resolution interferometric 
SAR images

RAMSES 
X-band data

Root mean square 
error is 
around 2.5 m

An original high-level processing 
chain is proposed for the 
computation of a digital surface 
model (DSM) over urban areas

The major limit of 
DSM computation 
remains the initial 
spatial and altimetric 
resolutions that need 
to be made more 
precise

Tison 
et al. (2007)

Investigating the potential of 
very high-resolution radar 
imaging of urban areas 
(subdecimeter resolution)

PAMIR 
X-band data

High-resolution interferometric 
SAR can overcome the 
immanent layover situation in 
urban areas

Coregistration 
mismatches

Brenner and 
Roessing 
(2008)
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multitemporal SAR data were found to be useful in mapping 
both land cover and flood patterns in wetland areas. The gen-
erated maps would be a valuable asset for defining habitats 
required to conserve the Pantanal biodiversity and to mitigate 
the impacts of human development in the region. Cornforth 
et al. (2013) contrasted and quantified the impacts of cyclone Sidr 
and anthropogenic degradation on mangroves using PALSAR 
imagery. This study illustrated how different threats experienced 
by mangroves could be detected and mapped using radar-based 
information, to guide management action.

22.7  Future Developments

Currently operating satellite SAR systems such as TanDEM-X, 
TerraSAR-X, RADARSAT-2, and COSMO-SkyMed open up the 
opportunity to carry out research in digital mapping of global or 
regional scale LULC using fully PolSAR data. Fully polarized SAR 
data of different frequency will become more widely available to 
both the scientific and natural resource management communi-
ties after the availability of SAR data provided by forthcoming sat-
ellite SAR missions, such as RADARSAT Constellation, Sentinel-1 
Constellation, ALOS-2 PALSAR, and Tandem-L missions. The 
RADARSAT Constellation is the evolution of the RADARSAT 
program with the objective of ensuring C-band data continuity, 
improved operational use of SAR, and improved system reliabil-
ity over the next decade (Flett et al., 2009). The mission develop-
ment has begun in 2005, with satellite launches planned for 2018. 
The three-satellite configuration will provide daily access to 95% 
of the world to users. The increase in revisit frequency introduces 
a range of applications that are based on regular collection of data 
and creation of composite images that highlight changes over 
time. Such applications are particularly useful for monitoring 
changes such as those induced by climate change, land use evolu-
tion, coastal change, urban subsidence, and even human impacts 

on local environments. As a part of the Copernicus program of 
European Space Agency, Sentinel-1 constellation consists of two 
satellites orbiting 180° apart and images the entire Earth every 
6  days (Torres et  al., 2012). The mission will benefit numerous 
services, such as Arctic sea-ice extent monitoring; routine sea-ice 
mapping; surveillance of the marine environment, including oil-
spill monitoring and ship detection for maritime security; moni-
toring land surface for motion risks; mapping for forest; water 
and soil management; and mapping to support humanitarian aid 
and crisis situations. ALOS-2 is the follow-on Japan Aerospace 
Exploration Agency (JAXA); L-SAR (L-band SAR) satellite mis-
sion of ALOS-1 approved by the Japanese government in late 2008 
(Suzuki et al., 2013). The overall objective is to provide data con-
tinuity to be used for cartography, regional observation, disaster 
monitoring, and environmental monitoring. ALOS-2 will con-
tinue the L-SAR observations of the ALOS PALSAR and will 
expand data utilization by enhancing its performance. ALOS-2 
will have a spotlight mode (1–3 m) and a high-resolution mode 
(3–10 m), while PALSAR has a 10 m resolution. The observation 
frequency of ALOS-2 will be improved by greatly expanding the 
observable range of the satellite up to about three times, through 
an improvement in observable areas (from 870 to 2320 km), as well 
as giving ALOS-2 a right-and-left looking function. Tandem-L is 
a proposal for an L-band PolSAR and InSAR mission to moni-
tor Earth’s dynamics with unprecedented accuracy and resolu-
tion (Moreira et al., 2011). A wide spectrum of scientific mission 
objectives is covered, including producing a global inventory of 
forest height and biomass, large-scale measurements of the Earth 
deformation, systematic observation of glacial motion, soil mois-
ture, and ocean surface currents. Tandem-L foresees the deploy-
ment of two spacecraft flying in close formation similarly to the 
TanDEM-X mission. The instrument will feature many techni-
cal innovations, such as the combined use of a reflector antenna 
and digital beamforming techniques on receive to achieve large 

Figure 22.10  Zoomed subset of the high-resolution SAR image obtained by PAMIR. (From Brenner, A.R. and Roessing, L., IEEE Trans. Geosci. 
Remote Sens., 46, 2971, 2008.)
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swath coverage, high sensitivity and ambiguity rejection at the 
same time. All these forthcoming SAR missions will further 
enhance the capability of radar remote sensing in LULC mapping 
and monitoring. In combination with other sensor types, radar’s 
power in extracting details will be further improved.

Radar imaging with its near-all weather, day/light capability 
will be an invaluable tool for investigating timely LULC infor-
mation in the perpetually cloud-covered tropical and equatorial 
regions of the world where many developing countries with the 
greatest need for LULC data are found. One of the important 
applications of radar remote sensing in future is the monitor-
ing of unauthorized land development, which is a growing prob-
lem in many developing countries. In China, for example, the 
rapid urbanization has caused a rapid decline in the supply of 
arable land (Seto et  al., 2000). Although the government has 
introduced a number of policies aimed at arable land preser-
vation (Lichtenberg and Ding, 2008), losses of arable land are 
still occurring because of the relentless unauthorized expansion 
of construction land, especially by local governments illegally 
leasing land and using farmland for nonagricultural construc-
tion (Wang and Scott, 2008). In addition, unauthorized land 
development has led to many environmental problems, such as 
urban sprawl, forest degradation, and soil erosion, which have 
posed a major threat to healthy urban development (Yeh and Li, 
1996). Radar remote sensing, which is independent of weather 
conditions and day light, is a promising tool for monitoring land 
developments on a regular short-term monthly basis for early 
detecting and preventing unauthorized ones.

There are still a number of significant challenges and issues 
that need to be addressed in order for radar remote sensing to 
achieve its full potential for LULC mapping and monitoring:

	 1.	 Developing backscatter models for different land cover 
types and developing computer algorithms designed spe-
cifically for analyzing multifrequency, multipolarization, 
multi-incidence angle, and multitemporal SAR data. This 
will lead to improvement in model inversion or the tech-
nique of estimation of land cover information from indi-
rect measurements.

	 2.	 Quantifying the full range of factors that result in tem-
porally varying signatures on SAR imagery, with the 
influence of rain and dew, and plant phenology being the 
principal uncertainties. For example, seasonal agricul-
tural or natural vegetation growth may cause problems in 
the detection of human-induced land development activi-
ties in particular seasons.

	 3.	 Developing techniques to account for the effects of 
topography.

	 4.	 The relative utility of polarimetric, multifrequency radar 
data versus optical data for LULC investigation has to be 
determined.

Future efforts on the aforementioned issues will further enhance 
and advance the growing importance of radar remote sensing 
in LULC mapping and monitoring at local, regional, and global 
levels in the future.
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Acronyms and Definitions

ALOS		  Advanced land observing satellite
AVHRR		  Advanced very high resolution radiometer
ETM+		  Enhanced thematic mapper plus
FAO		  Food and Agriculture Organization
FAO/JRC	� Food and Agriculture Organization/Joint 

Research Center
FRA		  Forest Resources Assessment
GLAS		  Geoscience laser altimeter system
GOSAT		  Greenhouse gases observing satellite
INPE		  National Space Agency of Brazil
IPCC		  Intergovernmental Panel on Climate Change
LULCC		  Land use and land-cover change
MODIS		  Moderate resolution imaging spectrometer
NDVI		  Normalized difference vegetation index
NOAA		�  National Oceanic and Atmospheric 

Administration
OCO		  Orbiting carbon observatory
PALSAR		� Phased array type L-band synthetic aperture 

radar
RED		  Reduced Emissions from Deforestation
REDD		�  Reduced Emissions from Deforestation and 

forest Degradation

REDD+		�  Same as REDD but with (1) conservation, (2) 
sustainable management of forests, and (3) 
enhancement of forest carbon stocks

UNFCCC	� United Nations Framework Convention on 
Climate Change

23.1 � Global Carbon Budget

In its simplest formulation, the global carbon cycle consists 
of four terms (atmosphere, land, ocean, and fossil fuels) 
(Table 23.1). The natural f luxes of carbon between land 
and atmosphere are 120–150 PgC/year (1 petagram carbon 
equals 1015 gC, or 1 billion metric ton C, or 3.67 billion met-
ric ton CO2), as a result of global photosynthesis and respi-
ration (including fire). Similar f luxes of 90–120 PgC/year 
occur between ocean and atmosphere as a result of physical, 
chemical, and biological processes. These are not the f luxes of 
the global carbon budget, however. Instead, the global carbon 
budget usually refers to the anthropogenic perturbation to 
the global carbon budget. The f luxes resulting from anthro-
pogenic perturbation are 1–2 orders of magnitude smaller 
than the natural f lows (Table 23.1).

This chapter reviews the global carbon budget and the role of 
remote sensing, past, present, and future, in helping to define it. 
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The focus is on terrestrial ecosystems; very little is written about 
the role of satellites in measuring either emissions of carbon 
from fossil fuels or uptake of carbon by the oceans. Within the 
context of terrestrial ecosystems, the emphasis is on the emis-
sions and uptake of carbon resulting from disturbance and 
recovery, particularly those disturbances caused by land use and 
land cover change (LULCC) or management.

Two broad types of explanatory mechanisms account for the 
loss and accumulation of carbon on land: (1) disturbances and 
recovery (structural mechanisms) and (2) the differential effects 
of environmental change (e.g., CO2, N deposition, climate) on 
photosynthesis and respiration (metabolic mechanisms). The 
two types are not clearly distinct, for example, a forest recovering 
from wood harvest may grow faster because of CO2 fertilization. 
Nevertheless, the distinction is useful: it is implicit or explicit 
in carbon models; the two mechanisms generally operate at dif-
ferent scales; and they are measured with different instruments. 
From a remote sensing perspective, the first mechanism, struc-
tural, involves changes in canopy structure (demography); the 
second, metabolic, may involve changes in canopy greenness.

23.1.1 �C ontemporary Carbon Budget

During the first decade of the twenty-first century, the emissions 
of carbon from combustion of fossil fuels averaged 7.8 (±0.4) PgC/
year (Table 23.1). These emissions are determined from (largely 
economic) data on the production and consumption of coal, oil, 
and gas (Andres et  al., 2012). Another 1.0 (±0.5) PgC/year was 
released to the atmosphere as a result of LULCC. That source is 
a net flux that includes both larger emissions and partially off-
setting sinks, all attributable to land management, and this is 
discussed in greater detail in Sections 23.2 and 23.3. The amount 
of carbon accumulating in the atmosphere each year is based on 

measurements, such as those by the National Oceanographic and 
Atmospheric Administration (NOAA) (Conway and Tans, 2012). 
Those accumulations averaged 4.0 (±0.1) PgC/year over the period 
2000–2009. The amount of carbon taken up by the world’s oceans 
was 2.4 (±0.5) PgC/year, determined by a number of global biogeo-
chemical ocean models (Le Quéré et al., 2013). And the amount 
of carbon accumulating in terrestrial ecosystems, not driven by 
management (i.e., LULCC), was 2.4 (±0.8) PgC/year. That sink 
is calculated by difference from the other terms in the global 
carbon budget. It makes the global carbon budget balance. It is 
commonly referred to as the residual terrestrial sink. The mecha-
nisms driving that sink are thought to include CO2 fertilization, 
N deposition, and changes in climate, but the relative contribu-
tions of these mechanisms are uncertain. Indeed, the total sink 
is greater than 2.4 PgC/year because that value represents a net 
sink, and there are undoubtedly sources as well, such as enhanced 
respiration associated with permafrost thaw (Natali et al., 2014).

Keeping track of the global carbon budget annually is cru-
cial, not only to understand how much of the carbon emitted 
to the atmosphere stays there and how much accumulates on 
land and in the ocean (Table 23.1), but because changes in 
the partitioning of emissions among these reservoirs (atmo-
sphere, land, and ocean) may provide the first indication that 
the global carbon cycle is changing, perhaps in response to cli-
matic change. In particular, the fraction of carbon emissions 
that remains airborne has been remarkably constant (~50%) 
for 50 years (despite large interannual variations). As emissions 
have approximately doubled since the 1960s, so have the sinks 
on land and ocean, so the fraction remaining airborne has 
remained the same. And those sinks have kept the atmospheric 
increase at only half of what it would have been if all of the 
emissions had remained in the atmosphere. In other words, the 
sinks have dampened global warming by about half. Whether 
those fractions will continue as the Earth warms is a question 
with both scientific and policy implications. Most of the feed-
backs known or imaginable between carbon and climate sug-
gest that a warming will lead to more carbon emissions (or less 
uptake), that is, that positive feedbacks will prevail. But there is 
surprisingly little evidence of a decline in land and ocean sinks 
yet (Ballantyne et al., 2012), although the issue is controversial 
(Canadell et al., 2007; Knorr, 2009; Le Quéré et al., 2009; Gloor 
et al., 2010; Raupach et al., 2014).

23.1.2 � History of Carbon Cycle Research

Global carbon budgets were not possible to construct until after 
1957, when Charles David Keeling (1928–2005) began continu-
ous measurement of carbon dioxide concentrations at Mauna 
Loa, Hawaii, and the South Pole. Those measurements provided 
a consistent and reliable record of carbon dioxide concentrations 
that was required to demonstrate, first of all, the rate at which 
carbon dioxide was increasing in the atmosphere.

At about the same time that Keeling began his measurements, 
a community of climate scientists began stepping up the con-
struction of global climate models that calculated the changes in 

Table 23.1  Stocks and Flows of Carbon

Carbon Stocks (PgC)
Atmosphere 850
Land 2,000

Vegetation 500
Soil 1,500

Ocean 39,000
Surface 700
Deep 38,000

Fossil fuel reserves 5,000

Natural Flows (PgC/year)
Atmosphere–oceans 90
Atmosphere–land 120

The Global Carbon Budget: Anthropogenic Perturbations (PgC/year averaged 
over 2000–2009)

Fossil fuels 7.8 (±0.4)
Land use change 1.0 (±0.5)
Atmospheric increase 4.0 (±0.1)
Oceanic uptake 2.4 (±0.5)
Residual terrestrial sink 2.4 (±0.8)
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climate expected from increased concentrations of greenhouse 
gases. The models were based on the physics of atmospheric cir-
culation and the physics of radiation. To predict the rate of warm-
ing, however, and not just the equilibrium warming expected 
from a doubling of carbon dioxide, two additional pieces of infor-
mation are required: the amount of carbon dioxide added to the 
atmosphere each year and the residence time of the greenhouse 
gas in the atmosphere. These pieces of information enable the 
prediction of how rapidly the carbon dioxide concentration in the 
atmosphere could double and thus how rapidly the Earth’s tem-
perature could increase in response to such a doubling (estimated 
at 1°C–4°C). Actually, the concentration of carbon dioxide does 
not need to double, because other greenhouse gases contribute as 
well, but their combined effects can be calculated in carbon diox-
ide equivalents. Carbon dioxide is the dominant greenhouse gas 
under human control. Over the last 100 years, it has accounted 
for more radiative forcing than all the other greenhouse gases 
combined and is expected to do so in the future.

The annual amount of carbon dioxide emitted globally from 
burning of fossil fuels is obtained from statistics on oil, coal, 
and gas production. The residence time of carbon dioxide (and 
other greenhouse gases) in the atmosphere is not as readily 
determined. The amount of carbon dioxide emitted from fos-
sil fuel burning that stays in the atmosphere (and for how long) 
can be determined from an evaluation of the global carbon bud-
get, and that evaluation has been reconstructed annually since 
about 1960, based on Keeling’s initial measurements of carbon 
dioxide at two locations, now expanded by NOAA and others 
to about 200 locations over the Earth (Conway and Tans, 2012). 
The atmosphere is well mixed, and all of the stations show nearly 
the same annual rate of growth in carbon dioxide concentration, 
but the spatial and seasonal variability in concentration is useful 
for sorting out where the emitted carbon is going (land or sea).

The problem with using the atmospheric residence time to 
project the rate of increase in concentration is that the residence 
time observed over the last decades, during which the Earth’s 
average temperature has increased by about 0.75°C, is not nec-
essarily the residence time on an Earth that may grow to be 
1°C–6°C warmer over the next decades. The processes that con-
trol the uptake of carbon dioxide by the world’s oceans and by 
terrestrial ecosystems are affected by climate (e.g., temperature 
and moisture) and by the concentration of carbon dioxide itself. 
These processes drive feedbacks in the carbon–climate system.

The observation that surface temperatures seem to have 
increased at a much slower rate since 1997 may be the result 
of a bias in the coverage of global temperature measurements. 
Correcting for the undersampling at high latitudes, where the 
increases in temperature have been the greatest, shows an aver-
age global rate of warming consistent with rate observed before 
the late 1990s (Cowtan and Way, 2014).

23.1.3 � Sources and Sinks of Carbon from Land

In the 1960s and 1970s, there were no independent estimates 
of the net annual flux of carbon between land and atmosphere, 

and the net flux was calculated by difference to make the 
global carbon budget balance. Using that approach, the net 
terrestrial uptake for the period 2000–2009 averaged 2.4 
(±0.8) PgC/year (Table 23.1). And the global carbon budget 
is balanced.

In the early 1980s, the first independent estimates of the 
terrestrial carbon flux were advanced, based on census data 
(nonspatial) concerning changes in the area of forests (Moore 
et  al., 1981; Houghton et  al., 1983). Deforestation was occur-
ring in many tropical countries, and the carbon held in the trees 
and soils of these forests was released to the atmosphere with 
deforestation.

23.1.4 � Bookkeeping Model

These early analyses developed a “bookkeeping” model, which 
used annual rates of land cover change and biome-averaged 
growth and decomposition rates per hectare to calculate annual 
changes in carbon pools as a result of management (Figure 23.1) 
(Houghton et al., 1983). For example, conversion of native vege-
tation to cultivated land causes 25%–30% of the soil organic car-
bon in the top meter to be lost (Post and Kwon, 2000; Guo and 
Gifford, 2002; Murty et al., 2002; Don et al., 2011). This tracking 
approach assigns an average carbon density to the biomass and 
soils of a small number of ecosystem types (e.g., deciduous for-
est, grassland). Considerable uncertainty arises because, even 
within the same ecosystem type, the spatial variability in carbon 
density is large, partly from variations in soils and microclimate 
and partly from past disturbances and recovery.

The approach in the early 1980s was not based on remote 
sensing. Instead, historic changes in croplands and pastures, 
aggregated at national or continental scales, were obtained 
from national and international statistics. Not being spatially 
explicit, the data did not specify the ecosystem type that was 
converted to new agricultural land. That specification required 
independent data, such as maps of natural ecosystems and their 
overlap with the distribution of croplands and pastures. Data 
on historical changes in land cover were reconstructed from a 
variety of national and international historical narratives and 
national land use statistics as well as from population data 
(Houghton, 2003).

In this highly aggregated approach, the world was divided 
into 10 major regions, and each region was assigned 2–6 natu-
ral ecosystem types (Houghton et al., 1983). Since the original 
work in 1983, analyses with nonspatial data have been refined 
over the years, including lands besides forests and changes 
in land cover besides deforestation. The calculated f lux of 
carbon has been called the deforestation f lux, but it is more 
accurately referred to as the f lux from LULCC. It includes 
increases in forest area (reforestation, afforestation) as well 
as deforestation; and it includes losses and gains of carbon 
per hectare within forests as a result of wood harvest and for-
est growth. Ideally, the net f lux would include all changes in 
terrestrial carbon brought about by management. During the 
period 2000–2009, the f lux from LULCC was a net release of 
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1.0 PgC/year (~11% of total anthropogenic carbon emissions) 
(Houghton et al., 2012).

Notice that adding another source of carbon to the global 
carbon budget leaves it unbalanced (Table 23.1). There must be 
another sink to compensate. Since the oceans and atmosphere 
are accounted for, the sink must be on land, a sink not attribut-
able to LULCC but, instead, to environmental effects. During 
the period 2000–2009, this residual terrestrial sink was 2.4 (±0.8) 
PgC/year. Again, it is determined by difference, although there 
are a number of global dynamic vegetation models that calculate 
an annual net uptake of similar magnitude in (unmanaged) ter-
restrial ecosystems (Le Quéré et al., 2013).

23.1.5 � Spatial Analyses

One of the weaknesses of national (nonspatial) data on the areas 
of cropland and pasture is that the changes through time are net 
changes in area, not gross changes. Net changes in land cover 
underestimate gross sources and sinks of carbon that result from 
simultaneous clearing for, and abandonment of, agricultural 
lands and thus may underestimate areas of secondary forests 
and their carbon sinks.

Spatially explicit approaches to historic reconstructions get 
around this weakness. They were first developed around the year 
2000. In one approach, agricultural expansion was distributed 
spatially on the basis of population density (Klein Goldewijk, 
2001). In another, past areas were derived by hind casting of 
the current distribution of agricultural lands (Ramankutty 
and Foley, 1999). The data sets of these approaches have been 
updated and extended to the preindustrial past (Pongratz et al., 
2008; Klein Goldewijk et al., 2011). The approaches must make 
assumptions, just as the nonspatial approach did, about whether 
agricultural expansion occurs at the expense of grasslands or 
forests. The distinctions are important because different loca-
tions have different carbon stocks, and the carbon flux resulting 
from LULCC depends on both rates of land cover change and 
the carbon density of the lands affected. Remote sensing–based 
information has also been combined with regional tabular sta-
tistics to reconstruct spatially explicit land cover changes cov-
ering more than the satellite era (Ramankutty and Foley, 1999; 
Klein Gooldewijk, 2001; Pongratz et al., 2008).

Two spatial data sets, along with the nonspatial data of 
Houghton (1999, 2003, and updates), have been used in most 
of the analyses of LULCC: the SAGE data set, including crop-
land areas from 1700 to 1992 (Ramankutty and Foley, 1999) 
and the HYDE data set, including both cropland and pasture 
areas (Klein Goldewijk, 2001). The difference in emissions 
estimates using these three data sets accounts for about 15% 
of the difference in flux estimates over the period 1850–1990 
(Shevliakova et al., 2009). Other recent data sets, such as the 
ones compiled by Hurtt et al. (2006) and Pongratz et al. (2008), 
are based on combinations of SAGE, HYDE, and Houghton 
data sets, including updates (Houghton, 2010; Houghton 
et al., 2012).

The results of 13 recent analyses of LULCC (spatial and non-
spatial) consistently show a net source of about 1.0 PgC/year to 
the atmosphere in recent decades (Houghton et al., 2012). Over 
the longer period, 1850–2012, the annual sources and sinks of 
carbon from anthropogenic perturbation to the global carbon 
budget are shown in Figure 23.2. The emissions from fossil fuels 
have increased steadily through time, now accounting for ~90% 
of anthropogenic emissions of carbon. But before about 1900, 
the net emissions from LULCC were higher than fossil fuel 
emissions. The emissions from LULCC have not varied much 
from ~1 PgC/year in the last decades.

Figure 23.2 suggests that for budget purposes, there are actually 
five terms in the global carbon budget. The land appears twice, 
first as net emissions from LULCC (management) and second 
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as net sinks attributable to processes other than management. 
These nonmanagement processes are believed to result from 
natural and indirect anthropogenic effects, such as the effects of 
elevated CO2 on plant growth, the effect of greater nitrogen (N) 
availability (fertilizers, N-fixation through combustion of fossil 
fuels), and the effects of a changing climate on the growth and 
respiration of vegetation and on the decay of organic matter in 
litter and soils. In other words, nature has had an effect on ter-
restrial carbon storage (and fluxes), at least as great (and in the 
opposite direction) as the effects of management.

It is important to note that both of these terrestrial fluxes are 
net fluxes. Management is responsible for carbon sinks in grow-
ing forests as well as for carbon sources from deforestation. And 
the residual terrestrial sink is composed of both increased plant 
growth and increased respiration and decay.

23.2 � LULCC, Disturbances, 
and Recovery

The terrestrial fluxes in Table 23.1 are not evenly distributed over 
the Earth; forests play a dominant role (Pan et al., 2011). The role of 
tropical forests in the global carbon cycle is nearly neutral, in part 
because field data from unmanaged forests suggest an increase car-
bon storage (Phillips et al., 2008; Gloor et al., 2012), while LULCC 
results in a loss of carbon of a similar magnitude (Houghton et al., 
2009, 2012; Le Quéré et al., 2013) (Table 23.2). The emissions of car-
bon from LULCC are, themselves, uncertain because of differing 
estimates of deforestation rates and carbon densities (Baccini et al., 
2012; Harris et al., 2012; Houghton et al., 2012).

Outside the tropics, the net carbon balance of forests is rea-
sonably well documented because analyses are based on data 
from systematic forest inventories. Nevertheless, the ques-
tion remains: how much of the observed carbon sink is attrib-
utable to recovery from a past disturbance, as opposed to an 

environmentally enhanced rate of growth (Williams et al., 2012; 
Zhang et al., 2012; Fang et al., 2014)?

Table 23.2 also shows that the residual terrestrial sink is 
roughly the same in tropical forests and in temperate zone and 
boreal forests (~1.0 PgC/year). The major difference between 
the regions is the effect of LULCC—high rates of deforestation 
(and thus emissions) in the tropics versus a small sink outside 
the tropics where regrowth is slightly greater than emissions. In 
tropical forests, the sink from environmental effects offsets the 
emissions from LULCC, for a total balance close to zero. Outside 
the tropics, both LULCC and environmental effects result in 
sinks. Overall, the global terrestrial carbon sink is in northern 
midlatitude forests.

23.2.1 � Use of Satellite Data

The use of satellite data to help determine the sources and sinks 
of carbon from disturbance and recovery is discussed here 
(Section 23.3). Section 23.4 will address the use of satellite data 
to help locate and identify other metabolic changes in terrestrial 
carbon storage.

Satellite data at moderate spatial resolution (30–100 m) have 
been used to document land cover change since the mid-1980s 
but only at local or regional scales. Recently, Landsat data have 
been used to determine global rates of forest loss and gain 
(Hansen et  al., 2013) (Figure 23.3). Furthermore, satellite data 
have recently begun to be used to document the carbon density 
of aboveground woody vegetation (Saatchi et al., 2011; Baccini 
et al., 2012).

23.2.1.1 � Rates of Change in Forest Area

A major uncertainty in estimating the net flux of carbon from 
LULCC has always been, and remains, rates of change in the 
areas of forests (deforestation and reforestation). Satellites were 
first recognized as being useful for documentation of these 
changes in 1984 (Woodwell et al., 1984). One of the earliest stud-
ies using Landsat data was of deforestation rates in Amazonia 
(Skole and Tucker, 1993).

With a time series of satellite data on land cover change, it 
is possible to estimate the changes. In general, satellite data 
alleviate the concerns of bias, inconsistency, and subjectivity 
in country reporting (Grainger, 2008). Depending on the spa-
tial and temporal resolution, satellite data can also distinguish 
between gross and net losses of forest area. However, increases 
in forest area are more difficult to define with satellite data than 

Table 23.2  Role of Forests in the Global Carbon Budget 
(PgC/year). Carbon Sinks are Negative, Sources Positive

LULCC Residual Terrestrial Sink Total 

Tropical forests 1.3 −1.2 0.1
Forests of the temperate 

and boreal zones
−0.2 −1.0 −1.2

Total 1.1 −2.2 −1.1

Source:	 Modified from Pan, Y. et al., Science, 333, 988, 2011.
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Figure 23.2  Annual sources (+) and sinks (−) of carbon in the 
global carbon budget. (From Le Quéré, C. et al., Earth Syst. Sci. Data, 
5, 165, 2013.)
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deforestation because the growth of trees is a more gradual pro-
cess. Furthermore, although satellite data are good for measur-
ing losses of forest area, identifying the types of land use that 
follow deforestation (e.g., croplands, pastures, shifting cultiva-
tion) requires repeated looks at the land. Exceptions include the 
regional studies by Morton et al. (2006) and Galford et al. (2008).

Satellite-based methods for measuring changes in forest area 
include both high-resolution sample-based methods and wall-
to-wall mapping analyses. Sample-based approaches employ 
systematic or stratified random sampling to quantify gains 
or losses of forest area at national, regional, and global scales 
(Achard et al., 2002, 2004; Hansen et al., 2008a, 2010). Systematic 
sampling provides a framework for forest area monitoring. The 
United Nations’ Food and Agriculture Organization (UN-FAO) 
forest resource assessment remote sensing survey uses samples 
at every latitude/longitude intersection to quantify biome and 
global-scale forest change dynamics from 1990 to 2005 (Food 
and Agriculture Organization and Joint Research Centre [FAO/
JRC, 2012]). Other sampling approaches stratify by intensity of 
change, thereby reducing sample intensity. Achard et al. (2002) 
provided an expert-based stratification of the tropics to quantify 
forest cover loss from 1990 to 2000 using whole Landsat image 
pairs. Hansen et al. (2008a, 2010) employed moderate resolution 
imaging spectrometer (MODIS) data as a change indicator to 
stratify biomes into regions of homogeneous change for Landsat 
sampling.

Sampling methods such as described earlier provide regional 
estimates of forest area and change with uncertainty bounds, 
but they do not provide a spatially explicit map of forest extent 
or change. Wall-to-wall mapping does. While coarse-resolution 
data sets (>4 km) have been calibrated to estimate wall-to-wall 
changes in area (DeFries et al., 2002), recent availability of mod-
erate spatial resolution data (<100 m), typically Landsat imag-
ery (30 m), allows a more finely resolved approach. Historical 

methods rely on photointerpretation of individual images to 
update forest cover on annual or multiyear bases, such as with 
the Forest Survey of India (Global Forest Survey of India, 2008) 
or the Ministry of Forestry Indonesia products (Government of 
Indonesia/World Bank, 2000). Advances in digital image pro-
cessing have led to an operational implementation of mapping 
annual forest cover loss, for example, with the Brazilian PRODES 
(INPE, 2010) and the Australian national carbon account-
ing products (Caccetta et al., 2007). These two systems rely on 
cloud-free data to provide single-image/observation updates on 
an annual basis. Persistent cloud cover has limited the deriva-
tion of products in regions such as the Congo Basin and Insular 
Southeast Asia (Ju and Roy, 2008). For such areas, Landsat data 
can be used to generate multiyear estimates of forest cover extent 
and loss (Hansen et al., 2008b; Broich et al., 2011a). For regions 
experiencing forest change at an agro-industrial scale, MODIS 
data provide a capability for integrating Landsat-scale change to 
annual time steps (Broich et al., 2011b).

In general, moderate spatial resolution imagery is limited in 
tropical forest areas by data availability. Currently, Landsat is 
the only source of data at moderate spatial resolution available 
for tropical monitoring, but to date, an uneven acquisition strat-
egy among bioclimatic regimes limits the application of generic 
biome-scale methods with Landsat. No other system has the com-
bination of (1) global acquisitions, (2) historical record, (3) free 
and accessible data, and (4) standard terrain-corrected imagery, 
along with robust radiometric calibration, which Landsat does. 
Future improvements in moderate spatial resolution monitoring 
can be obtained by increasing the frequency of data acquisition.

The primary weakness of satellite data is that they are not 
available before the satellite era (Landsat began in 1972). Long 
time series are required for estimating legacy emissions of past 
land use activity. Although maps, at varying resolutions, exist 
for many parts of the world, spatial data on LULCC became 
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Figure 23.3  Landsat images showing clearings (light blue) within a forested landscape (red) in the state of Rondonia, Brazil. Resolution: 30 m.
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available at a global level only after 1972, at best. In fact, there 
are many gaps in the coverage of the Earth’s surface before 1999 
when the first global acquisition strategy for moderate spatial 
resolution data was undertaken with the Landsat Enhanced 
Thematic Mapper Plus (EMT+) sensor (Arvidson et  al., 2001). 
The long-term plan of Landsat ETM+ data includes annual global 
acquisitions of the land surface, but cloud cover and phenological 
variability limit the ability to provide annual global updates of 
forest extent and change. The only other satellite system that can 
provide global coverage of the land surface at moderate resolu-
tion is the advanced land observing satellite (ALOS) phased array 
type L-band synthetic aperture (PALSAR) radar instrument, 
which also includes an annual acquisition strategy for the global 
land surface (Rosenqvist et al., 2007). However, large-area forest 
change mapping using radar data has not yet been implemented.

23.2.1.2 � Uncertainties

Since 1990, forest areas have been reported at 5-year intervals by 
the UN-FAO. Those estimates (FAO, 2001, 2006, 2010) have been 
used frequently by analyses calculating the carbon fluxes from 
LULCC. These FAO data rely on reporting by individual coun-
tries. They are more accurate for some countries than for others 
and are not without inconsistencies and ambiguities (Grainger, 
2008). Revisions in the reported rates of deforestation from one 
5-year forest resources assessment (FRA) to the next may be sub-
stantial due to different methods or data being used.

To estimate the uncertainty in reported rates of deforestation, 
the FAO began sampling with data from Landsat in the early 
1990s to determine the area of forest and changes in that area 
(FAO, 1996). But the satellite-based estimates are not consistent 
with the country-based estimates. The FRA 2010 (FAO, 2010), 
based on data reported by countries, reports a declining rate of 
tropical deforestation, while the FAO/JRC (2011) study, based on 
a sampling with Landsat, reports an increasing rate for the years 
2000–2005.

As mentioned earlier, the country-based estimates of defor-
estation from the FAO (2010) are different from estimates deter-
mined with Landsat data (FAO/JRC, 2011). There are at least two 
explanations, besides the explanation generally given, that data 
from satellites are more consistent and objective. First of all, 
changes in forest cover as measured from satellites include both 
natural and anthropogenic disturbances, as caused, for example, 
by wildfire and clearing for agriculture, respectively. They may 
also include clear-cut harvests. Census data for agriculture, on 
the other hand, include only the conversion of forest to cropland 
or pasture, not natural disturbances, and not harvested forests, 
which are still defined as forest. These differences in observation 
and definition raise the important issue of attribution (Section 
23.3.8): remote sensing observes all disturbances, not simply 
those attributable to agricultural conversion and forest man-
agement. Everything else being equal, estimates of disturbance 
observed by remote sensing should be higher than estimates 
based on management.

Another possible explanation is that census data may include 
the deforestation of small land parcels, much less than one 

hectare. Such small clearings may be missed even with Landsat 
data of 30 m resolution. In the Democratic Republic of Congo, 
small clearings added 35% to the rate of deforestation obtained by 
a more traditional analysis of change with Landsat (Tyukavina 
et al., 2013). Rates of degradation and associated carbon emis-
sions are even more uncertain, as they are not as easily observed 
with satellite data (Huang and Asner, 2010).

And, finally, one other approach for estimating deforestation 
rates should be mentioned: satellite detection of forest fires (van 
der Werf et al., 2010). The approach provides an estimate of forest 
loss as long as deforestation is accompanied with burning. The 
approach does not identify LULCC if fire is absent, for example, 
harvest of wood. Nor does it distinguish between intentional 
deforestation fires and escaped wildfires. The approach com-
bines estimates of burned area (Giglio et  al., 2010) with com-
plementary observations of fire occurrence (Giglio et al., 2003). 
It makes assumptions about how much fire is for clearing. At 
province or country level, clearing rates calculated this way cap-
ture up to about 80% of the variability and also 80% of the total 
clearing rates found by other approaches (Hansen et al., 2008a; 
INPE, 2010). Two advantages of the fire-counting approach are 
(1) that it allows for an estimate of interannual variability in 
LULCC emissions and (2) that the emissions of carbon monox-
ide from burning, routinely monitored by satellites, provide a 
much larger departure from background conditions than emis-
sions of CO2 (e.g., van der Werf et al., 2008).

23.2.1.3 � Biomass Density

The second type of information required for calculating the 
emissions of carbon from LULCC is the carbon density of the 
forests being deforested or harvested.

As mentioned earlier, nonspatial analyses assigned average 
carbon densities to the vegetation and soils of a small number of 
natural ecosystems found in each of the 10 major regions. Until 
recently, data on the distribution of carbon density were not ade-
quate for finer spatial detail. A study of Amazonia, for example, 
showed that none of the seven different maps of biomass den-
sity were in agreement as to the total biomass of the region or 
even where the largest and smallest densities were to be found 
(Houghton et al., 2001).

With respect to calculating carbon emissions, the spatial 
co-occurrence of both forest loss and carbon density is espe-
cially important and only available with spatially detailed data. 
Average carbon densities and average rates of forest loss over 
large regions may yield accurate estimates of carbon emissions if 
the disturbances are distributed randomly. But if disturbances, 
particularly LULCC, affect forests with carbon densities that are 
systematically different from the mean carbon density, that dif-
ference will bias emissions estimates. One way to counter that 
bias is to colocate changes in area with carbon densities—at the 
spatial resolution of disturbance.

23.2.1.4 � Spatial Analyses

Recently, new satellite techniques have been applied to estimate 
aboveground carbon densities (Goetz and Dubayah,  2011). 
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Examples of mapping aboveground carbon density over 
large regions include work with MODIS (Houghton et  al., 
2007), multiple satellite data (Saatchi et al., 2007, 2011), Radar 
(Treuhaft et  al., 2009), and LiDAR (Baccini et  al., 2012) (see 
Goetz et al., 2009 and Goetz and Dubayah, 2011, for reviews). 
While the accuracy of fine-scale satellite-based estimates may 
be lower than site-based inventory measurements (inventory 
data are generally used to calibrate satellite algorithms), the 
satellite data are far less intensive to collect, can cover a wide 
spatial area, and thus can better capture the spatial and tem-
poral variability in aboveground carbon density. By matching 
carbon density to the forests actually being deforested, this 
approach has the potential to increase the accuracy of flux 
estimates, especially in tropical areas where variability of car-
bon density is high and data availability is poor. Recently pub-
lished maps of forest biomass are in greater agreement and at 
finer spatial resolution that previous maps but differences still 
remain (Mitchard et al., 2013).

One method used to determine the carbon densities of the 
forests being deforested or those in close proximity to those 
being deforested is the approach by Baccini et al. (2012). They 
used a 500 m × 500 m grid of aboveground biomass density 
determined from MODIS data, calibrated with circa 5.5 mil-
lion geoscience laser altimeter system (GLAS) shots, which in 
turn, were calibrated with field measurements at more than 

400 locations in the tropics (Figure 23.4) (Baccini et al., 2012). 
An advantage of the approach is that the GLAS shots and field 
plots were at similar scales. A second approach might use not 
the average aboveground carbon density of a MODIS pixel but 
the sample point data from GLAS estimates to determine the 
aboveground biomass density in the vicinity of the deforesta-
tion or degradation. This approach would not assume an aver-
age aboveground carbon density, but it would miss many of the 
forests being deforested.

Neither approach yields a carbon density at the resolution of 
forest loss (30–60 m with Landsat), and thus there is still the 
potential for bias if deforestation or degradation takes place in 
forest patches systematically different from the mean density of 
500 m × 500 m cells. This mismatch in scale is one of the largest 
sources of uncertainty (bias).

It is interesting to note, however, that the relative error of the 
first approach is highest in regions with low biomass density and 
lowest in dense humid forest characterized by high biomass den-
sity (Baccini et al., 2012). This observation suggests that errors 
in biomass density will contribute relatively little to the error in 
flux estimates calculated for deforestation.

23.2.1.5 � Measurement of Changes in Carbon Density

If one can measure aboveground biomass density from satellite, 
then it should be possible to estimate changes in biomass density 

tonnes/ha

Predicted aboveground woody biomass
0 10 100 175 250 >450

Figure 23.4  Aboveground carbon density in woody vegetation throughout the tropics. Resolution: 500 m. (From Baccini, A. et al., Nat. Clim. 
Change, 2, 182, doi:10.1038/nclimate1354, 2012.)
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directly with time series data (Figure 23.5). Some of the changes 
will result from changes in forest area, as measured by the first 
approach. But some changes in biomass density may occur with-
out a change in cover type. Such gains and losses in carbon den-
sity that exceed the gains and losses from changes in forest area 
are presumably a measure of growth and degradation.

The traditional approach (changes in area, with average den-
sities assigned) estimates only those density changes related 
to outright clearing (and recovery). The second, more direct 
approach estimates changes from both clearing and any other 
factors affecting carbon density. Because the two approaches 
observe different processes, the difference defines changes in 
biomass density attributable to degradation (and growth) and/or 
environmental change (e.g., CO2, climate, N deposition).

Measuring changes in aboveground carbon density is a new 
approach, but it provides a method for estimating carbon sources 
and sinks that is more direct than identifying disturbance first, 
and then assigning a carbon density or change in carbon density 
(Houghton and Goetz, 2008). The direct measurement of change 
in density will still require models and ancillary data for full car-
bon accounting (i.e., changes in soil, slash, and wood products) 
to yield the total flux of carbon (Section 23.3.6). Furthermore, 
estimation of change, by itself, does not distinguish between 

deliberate LULCC activity and indirect anthropogenic or natu-
ral drivers (attribution), because deforestation, as discussed ear-
lier, may result from either management or natural disturbance. 
Nevertheless, estimation of change in aboveground carbon den-
sity has clear potential for improving calculations of sources and 
sinks of carbon.

Direct measurement of biomass density can provide a con-
tinuous range of biomass densities and thus might be expected 
to yield a more precise estimate of carbon change through 
time than estimates based on changes in area (Houghton and 
Goetz, 2008). But the change would have to be greater than 
the uncertainty surrounding any one measurement. Thus, 
trends in MODIS-based biomass density may be more com-
pelling than a single change between two years even if the 
years are far apart.

Whether measuring changes in forest area (and assigning 
carbon density) or measuring changes in aboveground carbon 
density directly, most pixels will probably appear unchanged 
because rates of growth in mature forests are slow relative to 
(1) the time interval of observation and (2) the error associated 
with measurement. However, one might expect two other less 
common outcomes. First, both approaches might yield a down-
ward trend in carbon density (deforestation and/or degradation) 

Loss Stable Gain

km100Above ground biomass change from 2002 to 2012

Figure 23.5  A 190 km × 215 km region northeast of the Xingu basin in Brazil, showing gains and losses of aboveground live woody biomass 
density (Mg/ha) between 2002 and 2012.
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or an upward trend (growth). In these cases, both area changes 
and density changes would be consistent, although not neces-
sarily equal.

The direct measurement of density change might be expected 
to indicate greater carbon sinks than the combined approach 
because global lands, in general, are a net carbon sink despite 
the fact that managed lands, globally, are a net source (Table 
23.1) (Le Quéré et al., 2013). To the extent the terrestrial carbon 
sink is in aboveground biomass, it should be observable; and 
the location of changes in carbon not attributable to distur-
bance and recovery would be most instructive for locating the 
residual terrestrial sink.

In sum, direct measurement of change in aboveground den-
sity has the advantage of bypassing the classification step for 
identifying type of change. But the trade-off is that, without an 
understanding of LULCC, the observed changes cannot be read-
ily attributed to cause (i.e., anthropogenic or natural, harvest or 
clearing).

23.3 � Policy Realm: Issues Inherent in 
Estimating the Flux of Carbon 
from LULCC with an Example 
Using RED, REDD, and REDD+

RED, REDD, and REDD+ are policy mechanisms proposed 
for reducing emissions of greenhouse gases under the UN 
Framework Convention on Climate Change (UNFCCC). RED 
refers to reducing emissions from deforestation. If a develop-
ing country can demonstrate that it had reduced its emissions 
of carbon from deforestation, it is eligible for carbon credits. 
The mechanism was expanded (REDD) to include a second 
“D”—forest degradation. A demonstrated reduction in emis-
sions from forest degradation would also qualify for additional 
carbon credits. REDD was subsequently expanded to REDD+, 
which adds conservation, the sustainable management of for-
ests, and the enhancement of forest carbon stocks. These three 
REDD mechanisms are more an application of carbon science 
to policy than they are a component of the global carbon bud-
get. Nevertheless, the (reduced) emissions of carbon associated 
with these mechanisms provide a context for discussing issues 
related to measuring the role of land in the global carbon bud-
get. The paragraphs in the following text discuss these issues.

RED. It is the simplest of the three mechanisms, conceptually 
and practically. But one still has to

	 1.	 Agree on a definition for deforestation
	 2.	 Assign a carbon density to the area deforested
	 3.	 Decide whether to count committed or actual emissions 

(see Section 23.3.3)

REDD. When forest degradation (the second “D”) is added 
(REDD), accounting is more difficult.

The same three requirements that apply to RED apply to REDD. 
And in addition, one must

	 4.	 Agree on a definition for degradation (What thresholds 
for changes in carbon density?)

	 5.	 Decide whether to count gross emissions or net 
emissions

REDD+. For REDD+, emissions and sinks are both counted, 
emissions from deforestation and degradation and sinks from 
the enhancement of forest carbon stocks. From the perspective 
of the atmosphere, reduced emissions are equivalent to increased 
stocks. Growth as well as degradation is counted. And in addi-
tion to deforestation and forest degradation, both reforestation 
and afforestation are also counted as they represent means for 
the enhancement of forest carbon stocks.

Nine issues are discussed briefly in the following text.

23.3.1 � Definitions

Two recent studies used different estimates of change in forest 
area to estimate very different (a factor of 3) emissions of car-
bon from tropical deforestation. Baccini et al. (2012) used FAO 
rates of deforestation; Harris et al. (2012) used Hansen’s rates of 
forest loss. As discussed earlier, the two estimates of change in 
forest area are not measures of the same process. Deforestation, 
as defined by the FAO and the Intergovernmental Panel on 
Climate Change (IPCC), is the permanent conversion of forest 
cover to another cover. Forest loss includes lands deforested, but 
it also includes temporary losses of forest cover from fires or log-
ging (not defined as deforestation by the IPCC) (see Houghton, 
2013a). The difference is important in the UNFCCC intent for 
accounting for carbon credits and debits. The intent is to reward 
carbon management, but not to reward natural effects (i.e., attri-
bution). The difference is also important in accounting for dif-
ferences among estimates of forest loss and estimates of carbon 
emissions.

23.3.2 � Assigning a Carbon Density 
to the Areas Deforested

This issue is addressed in detail in Section 23.2.1.3.

23.3.3 �C ommitted Versus Actual 
Emissions (Legacy Effects)

In the process of deforestation and forest degradation, only some 
of the carbon initially held in the forest is released to the atmo-
sphere in the year of the activity (Figure 23.6). Some of the wood 
may be removed from the forest and converted to wood products 
with average lifetimes of a year (fuelwood) to centuries (lumber 
used in buildings). And some wood may accumulate on the for-
est floor as woody debris. These pools of woody material will 
decay over decades and release carbon to the atmosphere well 
after the actual activity (legacy flux). The same legacy effects per-
tain to growing forests, only in reverse. That is, harvested forests 
that are allowed to recover will accumulate carbon for centuries, 
or until they are harvested again.
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Counting the carbon emissions from deforestation and for-
est degradation can be done in at least two ways. If the total 
change in carbon density is counted in the year of the activity, 
the emissions are referred to as committed emissions. If the 
changes in living and dead biomass, woody debris, harvested 
products, and soils are tracked through time, then the result-
ing net emissions reflect actual emissions. Committed emis-
sions are more easily computed. But they cannot be verified by 
independent measurements of carbon flux, for example, based 
on forest inventory measurements, eddy covariance measure-
ments, or inverse calculations based on variations of atmo-
spheric CO2 concentrations. They are easily calculated but not 
verifiable by independent methods. Remote sensing can help 
with measuring the sink in growing biomass, but the sources of 
carbon from dead biomass, woody debris, wood products, and 
soil are not observable from space.

Two other issues follow from these legacy effects: gross versus 
net emissions and initial conditions.

23.3.4 � Gross and Net Emissions 
of Carbon from LULCC

Gross emissions refer to the releases of carbon from living biomass, 
dead biomass, woody debris, wood products, and soils. Gross 
uptake (or sinks) of carbon refers to the accumulation of carbon in 

living and dead biomass and soils as a forest grows. Together, gross 
emissions and gross sinks yield the net flux of carbon (Figure 23.6).

Obviously, gross emissions are greater than net emissions 
except in the case of deforestation, when they are equal. Gross 
emissions may be much greater than the net emissions if the 
gross emissions and gross sinks offset each other in time, that is, 
if the emissions from decaying wood are balanced by the uptake 
of carbon in recovering forests.

With deforestation, net and gross emissions are the same 
(there is no regrowth). But with forest degradation, either net or 
gross emissions may be counted. Forest degradation is often fol-
lowed by or offset by forest regrowth, which raises the question: 
Is regrowth a part of degradation, or should only the gross emis-
sions be counted? If the emphasis is strictly on emissions, then 
using gross emissions is defensible, using estimates of either com-
mitted or actual emissions. But increasing carbon sinks on land is 
equivalent, in terms of carbon, to reducing emissions and, besides, 
offers another management opportunity. That is, an emphasis on 
reducing gross emissions may miss a larger potential for increas-
ing sinks, just as reducing withdrawals from a bank account is 
only one way to achieve a higher balance. And if reducing emis-
sions and increasing sinks are equivalent, then the emphasis shifts 
from gross to net emissions, where net emissions are defined as 
the sum of gross emissions and gross uptake. Net emissions are 
what affect the atmospheric concentrations of CO2. Again, remote 
sensing may help monitor growth of aboveground forest biomass 
but not the decay of dead wood, wood products, or soil.

23.3.5 �I nitial Conditions

Legacy effects (growing forests and accumulated pools of decay-
ing wood) have a large effect on calculated emissions and sinks. 
If one wants to know the emissions in the year 2000, for exam-
ple, the history of disturbance before 2000 is important. It deter-
mines the areas of forest recovering from disturbance as well as 
the magnitude of carbon pools decaying. Without accounting 
for that history, one misses the sinks in secondary forests and 
the sources of carbon from landfills, for example.

There are three ways to handle legacy effects. The simplest way 
(1) is to count committed emissions. That accounting ignores 
legacy effects. For actual emissions, however, one must either 
(2) reconstruct the history of LULCC and disturbance for the 
years before 2000 (in this example) or (3) determine the age 
structure of forests in 2000 and the pools of wood in products 
and woody debris. These two pools (secondary forests and decay 
pools) determine the current sources and sinks of carbon as well 
as future sources and sinks. Soils, also, may be either losing or 
gaining carbon from earlier disturbances. Remote sensing can 
help with the first and third approaches; the second (reconstruc-
tion of history) requires a historic approach.

23.3.6 � Full Carbon Accounting

Full carbon accounting refers to the changes in all pools of car-
bon, not just those in aboveground biomass. The net and gross 
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Figure 23.6  Annual fluxes of carbon from LULCC. (a) Net emis-
sions, (b) gross sources and sinks, (c) gross fluxes divided into fast (year 
of disturbance) and legacy (from previous disturbances), (d) net emis-
sions divided into those from deforestation and degradation, (e) gross 
uptake divided between growth in existing forests and growth of new 
forests, and gross emissions divided between deforestation and degra-
dation. (From Houghton, R.A. et al., Biogeosciences, 9, 5125, 2012.)
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emissions of carbon from disturbance and recovery include, 
also, the sources of carbon from burning on site; from decay of 
stumps, roots, and plant material left on site; and from decay 
of soil organic matter if the soils are cultivated (Figure 23.7). 
A full global accounting must also consider the decay of wood 
products removed from the forest. Gross rates of carbon uptake 
result from the accumulation of carbon in growing forests (veg-
etation and soils). Remote sensing may help with measuring 
changes in aboveground living biomass (either gains or losses) 
but not with the other pools.

The good news is that living biomass is estimated to account for 
75%–90% of the total net flux of carbon from LULCC (Houghton, 
2003). Soils accounted for most of the rest. Estimates of dead and 
fallen aboveground biomass density (including coarse wood debris) 
may be obtained from the literature, documented for both natu-
ral forests and changes as a result of disturbance (e.g., wood har-
vest, fire, shifting cultivation) (e.g., Harmon et al., 1990; Delaney 
et al., 1998; Chambers et al., 2000; Idol et al., 2001). Distinguishing 
among types of disturbance helps define the amount of coarse 
woody debris. For example, harvests and fires remove some wood; 
storms and insects kill trees but leave the wood. Clearing forests 
for pastures in Amazonia leaves more debris (dead biomass) than 
clearing for cultivated agriculture (Morton et al., 2008).

As a first approximation, belowground biomass can be 
estimated as a fraction of aboveground biomass (e.g., 21%; 
Houghton et  al., 2001). Alternative estimates may be obtained 

from documented relationships between forest types or climatic 
variables and belowground biomass (Cairns et al., 1997; Mokany 
et al., 2006; Cheng and Niklas, 2007).

Data on harvested wood products and wood removed from 
deforested sites may be compiled at country level from FAO pro-
duction yearbooks and FAOstat (2011). Those data can be used 
together with case studies in the literature covering different 
types of disturbance and different ecosystems to simulate har-
vests for the years before satellite data.

A significant fraction of soil organic carbon is lost with cultiva-
tion and may accumulate again if croplands are abandoned and 
forests return. Changes vary with land management and type of 
disturbance, but cultivation seems to produce a consistent change 
(a loss of 25%–30% of the upper 1 m of soil) (Post and Kwon, 2000; 
Guo and Gifford, 2002; McMurty et al., 2002; Don et al., 2011).

23.3.7 � Accuracy and Precision

In general, the errors are smallest for deforestation and commit-
ted emissions (based on aboveground biomass). These are the 
observations most directly obtained from satellites. The errors 
increase for degradation, for actual (delayed) emissions, for net 
emissions, and for pools of carbon other than aboveground bio-
mass (i.e., belowground carbon, harvested products, decay pools 
[slash, logging debris]). The errors are largest for distinguishing 
between managed and natural effects (attribution), especially 
when considering sinks.

23.3.8 � Attribution

Separating sinks that result from natural and indirect processes 
from sinks that result from management (i.e., attribution) is diffi-
cult at any scale, plot level to satellite. And how should emissions or 
sinks of carbon from natural processes be counted? For example, 
if unmanaged forests burn, should the emissions count as a car-
bon debit? It is perhaps better to change the focus from attribution 
to a focus on those management practices that lead to the greatest 
net sinks (or lowest net sources), regardless of attribution. With 
such an approach, all carbon accumulation would be counted as a 
credit; all emissions would be counted as debits. And the net flux, 
whatever the cause, defines the credit/debit. This may seem unfair 
for a country whose forests burn (because of drought), but that 
country is credited in subsequent years as those forests recover. In 
choosing the most appropriate policy, it is perhaps more impor-
tant to bear in mind the net effect on the atmosphere than the 
causes (anthropogenic or natural) of the emissions.

23.3.9 � Uncertainties

The two primary pieces of information for determining changes 
in terrestrial carbon attributable to LULCC (rates of LULCC and 
carbon density) contribute about equally to the uncertainty of 
flux estimates. Before the use of satellite data, the uncertainties 
contributed by these two variables were each about ±0.3 PgC/
year (Houghton et al., 2012). With the use of satellite data for both 
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Figure 23.7  Average annual fluxes of carbon and changes in ter-
restrial pools of carbon as a result of global LULCC. (From Houghton, 
R.A., Role of forests and impact of deforestation in the global carbon 
cycle, in F. Achard and M.C. Hansen, eds., Global Forest Monitoring 
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rates of land cover change and carbon density, these uncertainties 
should be much lower (Baccini et al., 2012; Harris et al., 2012). The 
use of satellite data has helped reduce uncertainties substantially.

Nevertheless, there are other issues that contribute to making 
the terrestrial net emissions considerably more uncertain. Some 
of these uncertainties may be reduced in the future through new 
satellite data or new analyses with satellite data.

The issues include more subtle forms of LULCC than clear-
cutting and the clearing of forests for croplands and pastures. 
They involve distinguishing among the land uses following 
forest clearing (croplands, pastures, shifting cultivation, plan-
tations, etc.). There are also issues about accounting for land 
degradation, agricultural management, and fire management. 
Satellite data may help identify some of these more subtle effects.

And there are also processes not yet well accounted for in 
analyses of global LULCC, for example, losses of carbon from 
wetlands, especially the draining and burning of peatlands in 
Southeast Asia; the sources and sinks of carbon associated with 
settled lands (urban and exurban); woody encroachment (or 
transitions between woody and herbaceous vegetation types); 
and lateral transport of carbon resulting from erosion and rede-
position (Houghton et al., 2012).

And last, but not least, is the issue of environmental effects. 
The actual fluxes of carbon from LULCC are affected by varia-
tions in temperature and moisture (including longer growing 
seasons) and long-term trends in CO2 concentrations and nitro-
gen loading. These environmental changes affect the annual 
sources and sinks from managed lands and also the magnitude 
of the residual terrestrial sink in lands not managed (next sec-
tion). Not only do the actual fluxes of carbon vary as a result 
of environmental variation, but also the estimates calculated 
by different models vary depending on the models. In particu-
lar, estimates of the flux of carbon from LULCC vary as much 
or more from the way environmental effects are modeled than 
they do from data on LULCC alone (Gasser and Ciais, 2013; 
Houghton, 2013b; Pongratz et al., 2014).

23.4 � Residual Terrestrial Sink

The residual terrestrial sink is the net flux of carbon from the sum 
of all processes not accounted for in analyses of LULCC. In the 
ideal case, where all effects of management are included in analy-
ses of LULCC, the residual flux would be the result of natural and 
indirect effects on terrestrial carbon storage. But as discussed 
in Section 23.3.9., many of the more subtle forms of manage-
ment are not included in analyses of LULCC. Furthermore, it is 
unclear whether some of the processes that affect carbon storage 
on land are the result of management or environmental change. 
Is woody encroachment the effect of grazing or fire management, 
or is it the effect of climate change or of increased CO2 in the 
atmosphere? Are the emissions from burning tropical peatlands 
the result of management or El Niño? The answer is probably 
that both management and environmental change are involved. 
And rather than debate the role of intention in these processes, 
it is more important to try to quantify the net and gross fluxes 

for each. Such an approach would yield a graph similar to Figure 
23.2 but with a greater number of smaller bands of terrestrial 
fluxes, not just the two (anthropogenic and natural) that appear 
in Figure 23.2. Each of the bands appearing now would be bro-
ken into individual processes. And as scientists estimate the net 
flux of carbon for more and more processes, the residual (unex-
plained) sink (or source) should get smaller and smaller.

The residual terrestrial sink is defined by difference. It is the 
sink required to balance the global carbon budget. But there may 
be several ways to quantify it more directly, using remote sensing. 
One way was discussed in Section 23.2.1.5. The argument there 
was that changes in aboveground biomass density observed in 
locations without LULCC might reveal areas of carbon decline 
or accumulation not caused directly by human activity.

There are at least two additional ways that satellite data might 
be used to constrain the global carbon budget. One is with 
repeated measurements of CO2 in the atmospheric column, and 
one is with measurement of canopy photosynthesis.

23.4.1 �O rbiting Carbon Observatory

Repeated measurements of CO2 in the column of air over the 
Earth’s surface should add a spatial dimension to the observed 
seasonal oscillation of CO2 concentrations, that is, low concen-
trations in late summer in the northern hemisphere after the 
growing season in which photosynthesis has exceeded respira-
tion and high concentrations in early spring after the season 
in which respiration has exceeded photosynthesis (Houghton, 
1987). With many more observations of this oscillation, one may 
be able to deduce sources and sinks of carbon over the surface of 
the Earth. With frequent enough sampling, day–night changes 
as well as seasonal changes might be documented.

The OCO-2 satellite, launched in July 2014, is designed to 
make measurements of total CO2 in air over the Earth’s surface, 
with repeat coverage every 16  days (Boesch et al., 2011; Table 
23.3). The approach for calculating the net flux for any area is 
similar to the inverse calculations based on ~200 air sampling 
stations (Conway and Tans, 2012) but with much higher tem-
poral frequency and greater spatial coverage. Greenhouse gases 
observing satellite (GOSAT) offers the same approach but with 
coarser spatial resolution.

The global coverage of these satellites means that the data can 
be used to deduce sources and sinks of carbon, not only from 

Table 23.3  Orbiting Carbon Observatory (OCO-2)

Science objective: Determine the global geographic distribution of CO2 
sources and sinks.

Measurement approach: The mission will not directly measure CO2 sources 
and sinks. Rather, it will use variations in the column-averaged CO2 mole 
fraction of air in data assimilation models to infer sources and sinks. The 
CO2 data are derived from spectrometers measuring the intensity of 
sunlight reflected from the presence of CO2 in a column of air.

Orbit: The OCO-2 will fly in a near-polar, sun-synchronous orbit, viewing 
the same location on earth once every 16 days.

Launch date: July 2014.
Reference: Boesch et al. (2011).
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land but from the ocean as well. And the terrestrial sources and 
sinks will include all mechanisms, including both management 
(LULCC) and natural effects (residual terrestrial sink). However, 
the fossil fuel contribution must be factored out, and the trans-
port or mixing of air must be accounted for.

23.4.2 � Satellite Monitoring of Vegetation 
Activity (Greenness)

Some of the most interesting continental and global measure-
ments of terrestrial metabolism are those of vegetation activ-
ity, greenness, or photosynthesis. The most common index is 
the normalized difference vegetation index (NDVI), as mea-
sured with advanced very high resolution radiometer (AVHRR) 
or MODIS. Such measurements have been correlated with the 
annual growth of CO2 in the atmosphere (Myneni et al., 1997).

A major limitation of the approach is that it cannot close the 
carbon budget; it misses respiration. Thus, the flux is a gross 
flux, calculated with algorithms to be gross primary produc-
tion or net primary production. Respiration is indeed related 

to photosynthesis, nearly balancing it in most cases. But the 
imbalance determines whether the net flux is a source or a sink. 
For example, Myneni et al. (1995) found, surprisingly, that the 
years with the greatest growth rates of CO2 coincided with the 
greenest years. The observation seems contrary to what would 
be expected if moisture limited photosynthesis. But the finding 
does not contradict that expectation. Rather, respiration is even 
more sensitive to moisture than photosynthesis, such that respi-
ration exceeds photosynthesis in moist (green) years, increasing 
the net emissions from land.

Although seasonal and interannual variations in NDVI fail 
to capture the respiratory fluxes of carbon, and thus may not 
be of direct use to carbon budgeting, they are very important 
for observing physiological responses of photosynthesis to 
variations in climate. For example, NDVI from AVHRR and 
MODIS has been used to look for year-to-year variation and 
trends in greenness (plant productivity) at high latitudes (e.g., 
Beck and Goetz, 2011) (Figure 23.8). An initial greening of tun-
dra and boreal forests over the 1980s subsequently reversed in 
many boreal forest areas to declining productivity (“browning”) 

Increasing

Arctic
Ocean

Decreasing

Figure 23.8  Circumpolar trends in photosynthetic activity as recorded by NDVI over the period 1982–2005. (Modified from Goetz, S.J. et al., 
Recent changes in Arctic vegetation: satellite observations and simulation model predictions, in G. Gutman and A. Reissell, eds., Arctic Land Cover 
and Land Use in a Changing Climate, Springer-Verlag, Amsterdam, The Netherlands, pp. 9–36, 2011, doi:10.1007/978-90-481-9118-5_2.)
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during the 1990–2000s, while tundra areas continued to sys-
tematically increase in greenness. The browning observed in 
northern forests is believed to result from an increase in summer 
droughts (high vapor pressure deficits) associated with a warm-
ing climate (Goetz et al., 2011).

Other examples of physiological responses to variations in 
moisture come from the tropics. Some analyses with satellite data 
suggested that tropical forests in Amazonia were light limited 
rather than moisture limited because productivity was apparently 
greater during the dry season (less cloudy) (Nemani et al., 2003). 
Recent work has shown, however, that the increase in dry season 
greenness was an artifact of variations in sun–sensor geometry. 
Correcting for bidirectional reflectance eliminates the seasonal 
changes in surface reflectance, suggesting that the forests of the 
region may not be light limited (Morton et al., 2014).

23.5 �C onclusions

Over the years, remote sensing has played an ever increasing role 
in helping to evaluate the global carbon budget, and that trend 
will continue. This review suggests that data from remote sens-
ing are used in at least five ways to help constrain the terrestrial 
component of the budget. The primary role of remote sensing 
before 2010 was in measuring rates of change in the areas of for-
est. Although such data were spatial, they were used nonspatially 
in bookkeeping models to calculate sources and sinks of carbon 
with empirical response curves that assigned carbon densities to 
vegetation and soil of different types of ecosystems and different 
land uses. The net emissions from LULCC defined one term in 
the global carbon budget.

When satellites were also used to measure the aboveground 
carbon density of forests, the colocation of deforestation rates 
and carbon densities enabled a more accurate assignment of car-
bon density to the forests deforested and degraded, thus yielding 
a more accurate estimate of the emissions of carbon from dis-
turbance and recovery (Baccini et al., 2012; Harris et al., 2012). 
Uncertainties remain because definitions of deforestation vary 
among analyses, because different methods are used to esti-
mate emissions, and because other components of an ecosystem 
besides its aboveground biomass density contribute to carbon 
dynamics (Houghton, 2013a).

An active area of current research focuses on a third approach: 
using satellite data to estimate changes in aboveground carbon 
density. The approach is more comprehensive than the first 
(based on identifying areas disturbed) because some changes in 
carbon density occur without a change of cover type. Because 
the direct measurement of change is more sensitive to changes 
within a cover type (forest degradation and growth), it may 
yield an estimate closer to the total net change in forest car-
bon, including changes attributable to disturbance and recov-
ery but also changes attributable to environmental change (e.g., 
enhanced or retarded growth). The magnitude and geographic 
distribution of the differences between the two approaches may 
suggest the explanatory mechanisms, including feedbacks to cli-
mate change, and where further research should focus.

Satellite data (e.g., NDVI) have been used for decades to iden-
tify and measure changes in photosynthetic activity. Although 
the data do not enable construction of a strict carbon budget, 
because respiration must be approximated, they have been vital 
in revealing physiological responses to environmental trends 
and variability, particularly drought.

Starting in 2014, the OCO will be providing data on spatial 
and temporal variations in CO2 concentrations over the Earth’s 
surface. Those data will be used, in a fifth approach, to infer the 
net sources and sinks of carbon from all processes, including 
both terrestrial ecosystems and the oceans.

This brief summary of satellites in the global carbon budget 
suggests a few observations. First, there are crosscutting themes 
that repeatedly arise in all methods employing satellite data. The 
most common themes are net versus gross fluxes, attribution, 
and full carbon accounting. A major justification for attribution 
is to separate the processes that affect carbon storage into those 
that can be managed from those that cannot. There’s a differ-
ence, of course, between understanding the sources and sinks 
of carbon and being able to manage them. In the end, whatever 
reduces emissions or increases sinks is helpful for mitigating cli-
mate change.

Second, there is a trade-off between comprehensive coverage 
(full carbon accounting of all processes) and attribution. Those 
approaches that are most comprehensive, including OCO as well 
as direct measurement of changes in terrestrial carbon density, 
yield net fluxes but do not distinguish among specific processes. 
Measures of greenness are specific to photosynthesis but do not 
account for changes in all of the other pools of carbon. Measures 
of disturbance and recovery account for a portion of the terres-
trial carbon budget but miss fluxes in undisturbed lands.

Data from satellites require some form of modeling and/or 
ancillary data to yield estimates of changes in carbon storage 
or fluxes. For example, changes in terrestrial pools of carbon 
belowground or on the surface need to be estimated or mod-
eled with data from field measurements. Data from the OCO 
will require models of atmospheric transport to infer sources 
and sinks and will need ancillary data to partition those fluxes 
into fossil fuel, terrestrial, and oceanic components. Thus, satel-
lite data and modeling must work in combination to evaluate 
some of the terms in the global carbon budget. No single satellite 
provides the data necessary to evaluate even one term.

Finally, it is important to note that satellite observations 
are of generally short-term processes, days to months. These 
observations are sensitive to metabolic and physical processes, 
but are not necessarily sufficient to predict, or even record, the 
long-term effects of climate change on land and oceanic carbon 
storage. Monitoring for the understanding of longer-term effects 
requires a commitment to long-term data acquisition and data 
continuity (Tollefson, 2013; Wunsch et al., 2013).
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F	 Farm or field
FAR	 Far infrared
Fe	 Iron
FSS	 Field spectral sensing
G	 Global (more than one country)
GAM	 Generalized additive model
GIS	 Geographic information system
GPS	 Global positioning system
GSS	 Ground spectral sensing
H	 hyperspectral sensor
Hg	 Mercury
IC	 Inorganic carbon
K	 Potassium
KED	 Kriging with external drift
LIDAR	 Light detection and ranging
L-MEB	� L-band microwave emission of the 

biosphere
LOO	 Leave-one-out
LSS	 Laboratorial spectral sensing
M	 Multispectral
MAOM	 Mineral-associated organic matter
Mg	 Magnesium
MIR	 Middle infrared (2,500–25,000 nm)
Mn	 Manganese
N	� Number of published figures used in to 

derive the range and median of R2 and the 
errors

N. cal.	 Number of calibration samples
Na	 Sodium
NDII	 Normalized difference index
NDVI	 Normalized difference vegetation index
NIR	 Near-infrared (780–2500 nm)
NPV	 Nonphotosynthetic vegetation
NSMI	 Normalized soil moisture index
OC	� Organic carbon, sometimes calculated 

from soil organic matter by multiplying 
with 0.58

P	 Phosphorous
PAWC	 Plant-available water capacity
Pb	 Lead
PLMR2	� Polarimetric L-band multibeam radiometer
PLSR-K	 PLSR with kriging interpolation
POM	 Particulate organic matter
PS	 Proximal sensing
PSR	 Penalized-spline signal regression
PV	 Photosynthetic vegetation
Pred.	� Prediction/validation using independent 

data (samples not used to calibrate the 
model)

R/N	 Regional or national
RCGb	 Index related to soil weathering
RID	 Reflexion inflexion difference
RK	 Regression-kriging
RMSEP/RMSECV	� Root mean square error of prediction and 

cross-validation

RS	 Remote sensing
RT	 Regression tree
SAR	 Synthetic aperture radar
SEP/SECV	� Standard error of prediction or 

cross-validation
Si	 Silicon
SIC	 Soil inorganic carbon
SL	 Spectral library
SM	 Soil moisture
SMA	 Spectral mixture analysis
SMAP	 Soil moisture active passive
SNR	 Signal-to-noise ratio
SOC	 Soil organic carbon
SOM	 Soil organic matter
Sr	 Strontium
SS	 Spectral sensing
SSS	� Space—Aerial and Orbital—Spectral 

Sensing
SVMR	 Support vector machine regression
SWIR	 Shortwave infrared
TC	 Total carbon
tbd	 to be demonstrated
TIR	 Thermal infrared
UV	 Ultraviolet
UV–VIS–NIR	� 250–2500 nm (the exact spectral range in 

the individual studies may deviate but will 
stay within these ranges)

V	 Vanadium
VIS	 Visible
VIS–NIR	 350–2500 nm
λ	 Wavelength in nm
ν and δ CoKriging	� Energy levels of fundamental vibration in 

microscopic interactions
γ	 Gamma

Industrial and agricultural activities are developing faster than 
the public policy on the use of soil resources. The world needs 
more information about soil for land use planning and inter-
pretative purposes. Spectral sensing (SS) has emerged as a major 
discipline in remote sensing (RS) science in the past years pro-
viding important tools to assist in soil information gathering, 
mapping, and monitoring. This chapter aims to discuss the role 
of SS (covering the visible, infrared, thermal, microwave, and 
gamma ranges of the spectrum) in soil science based on differ-
ent sensors, scales, and platforms (laboratory, field, aerial, and 
orbital). We review the state of the art and provide guidance on 
how to use SS for several purposes, for example, soil classifica-
tion and mapping, attribute quantification, soil management, 
conservation, and monitoring. Research has shown that SS 
has the capability to quantify soil attributes, such as clay, sand, 
soil organic matter (SOM), soil organic carbon (SOC), cation 
exchangeable capacity (CEC), Fe2O3, carbonates, and mineral-
ogy with reliable and repeatable results. Other soil attributes 
including pH, Ca, Mg, K, N, P, and heavy metals have also been 
evaluated with variable outcomes. Laboratory and field-based 
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measurements are more accurate than aerial or space-based 
measurements as they are conducted under more controlled 
environments that are less affected by external factors, such as 
mixing in the field-of-view, vegetation cover, stone cover, water 
content, and atmospheric conditions. Nevertheless, soil is typi-
cally evaluated from space using multispectral sensors on board 
satellites, which offer many options in terms of temporal and 
spatial coverage and resolution, and are commonly available 
free of charge. On the other hand, hyperspectral images are less 
commonly applied due to their more limited choices of temporal 
and spatial resolutions and difficulty of processing, despite their 
great potential to correlate with various soil properties. Other SS 
techniques, such as passive gamma spectroscopy, provide data 
for surface and below-surface soil inference, primarily relating 
to the clay content and types of soil minerals, while microwave 
(i.e., radar) spectroscopy is mainly used in the study of soil mois-
ture. In soil science, there are promising results and growing 
interest for visible-near-infrared (VIS-NIR) and middle infra-
red (MIR) spectroscopy as they allow quick, nondestructive, 
and cost-effective estimation of soil properties, reducing the 
need for sample preparation and the use of reagents, minimiz-
ing pollution. It has been observed that MIR spectroscopy can 
quantify properties, such as clay, clay-sized mineralogy, SOC, 
and inorganic carbon (C), more accurately than VIS-NIR. Both 
physical (descriptive interpretation of spectral information) and 
statistical (mathematical approach) methods proved to be useful 
depending on soil and environmental conditions under study. 
We observed that the most important limitation of VIS-NIR 
and MIR spectroscopy for soil classification are their inability 
to detect soil morphological properties (e.g., soil structure). In 
the case of VIS-NIR space SS, the limitation is that the radiation 
only penetrates a few centimeters into the soil surface. On the 
other hand, satellite-based VIS-NIR data can be used for delin-
eation of soil boundaries supporting soil survey and mapping. 
SS applicability is also increasing in precision agriculture (PA), 
coupled with on-the-go sensors that measure soil properties 
with high sampling density and in real time. Future advances in 
SS include (1) extraction of moisture effects from intact and field 
moist spectra, allowing a comparison with laboratory measure-
ments; (2) development of local, regional, or global soil spectral 
libraries and their appropriate use; and (3) combining multiple 
sources of sensed data for better soil inference. Country-based 
soil spectral libraries started in the early 1980s and today we 
are moving toward a global spectral library (SL) with contribu-
tion from as many as 90 countries. Soil spectral libraries, from 
global to local, will be the future of soil analysis carrying both 
spatial and hyperspectral data to derive soil information. SS has 
the advantage of providing quantitative data, and thus reducing 
the subjectivity of soil spatial information for decision making. 
SS techniques are powerful when combined with geoprocess-
ing, landscape modeling, geology, and geomorphology. The past 
and new studies on soil ground SS indicate strong information 
with a great perspective on all SS platforms, specially for exist-
ing hyperspectral aerial and orbital sensors and new ones that 
are being developed and will be launched soon (2017–2020). 

The goal of all SS techniques is to deliver spatially and spectrally 
accurate, reliable, and transferable information on soil proper-
ties. In order to achieve this, SS applications need to properly 
account for specific advantages and limitations of each sensor, 
depending on the overall aim. In summary, it is clear that SS can 
be applied in any field of interest of soil science, depending only 
on the user’s creativity.

24.1  Soils

24.1.1  Definition and Classification

Soil might be defined as the nonconsolidated part of the ter-
restrial crust or more specifically as “a continuous and three-
dimensional natural body, in constant development, formed 
by organic and mineral constituents, including solid, liquid 
and gaseous phases organized in specific structure on a certain 
pedological medium” (IUSS Working Group WRB, 2014). A soil 
body, as defined in pedology, is governed by the interaction of 
soil factors and formation processes that sculpt the soils, and is 
usually represented by basic units called pedons. As stated by 
Buol et al. (2011), soil reveals a vertical arrangement of compo-
nents that change, often gradually, as one traverses the land-
scape. Our understanding of soil is limited without the use of 
chemical, mineralogical, biological, and physical quantification 
techniques, which characterize samples. Besides, soils can be 
dismembered, sampled, and autopsied, but this analysis will help 
only if we understand what a soil is and how it functions in the 
ecosystem. Identifying the horizontal and vertical arrangements 
of soil attributes, that is, across space and at the topsoil, subsoil, 
and genetic diagnostic horizons, is essential for soil classifica-
tion. Perhaps, no single problem has plagued soil scientists more 
than the identification of the spatial boundaries of an individual 
soil on the landscape. SS may contribute in identifying horizon-
tal and vertical soil boundaries.

Due to the complex interaction that takes place in the pedoge-
netic processes, the grouping of similar pedons in soil mapping 
units, by defined boundaries, is normally based on landscape 
and soil profile descriptions. To recognize the soil as a distinct 
individual is very efficient from several points of view. First, it 
allows us to structure our knowledge in the form of individual 
groups, also known as classes. Second, it facilitates the drawing 
of thematic maps where classes are spatially delineated (Legros, 
2006). For better communication between members of the soil 
science community, various soil classification systems have been 
established, such as Soil Taxonomy (Soil Survey Staff, 2014) and 
World Reference Base for Soil Resources (IUSS Working Group 
WRB, 2014).

24.1.2  How Does Soil Form?

Soil formation starts with the weathering of the parent mate-
rial (e.g., the original rock) through physical and chemical pro-
cesses over time, where climate and organisms have a major role, 
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and all are influenced by relief (Figure 24.1). The soil-forming 
factors described here represent soil formation processes that 
occur under different time and spatial scales and with variable 
intensities. This concept can be summarized by the conceptual 
equation proposed by Jenny (1941): S = f (c, o, r, p, t); c (or cl), 
climate; o, organisms; r, relief; p, parent materials; t, time. With 
the advent of new methods and technologies for soil evaluation, 
such as global positioning systems and geographic information 
systems (GISs), it has been possible to comprehend soils from 
a different point of view. McBratney et  al. (2003) proposed a 
renewed model, known as “scorpan,” where two factors are 
added to Jenny’s equation, namely, the s factor corresponding 
to soil data available at the beginning of the mapping process, 
including soil maps, data acquired by means of remote or proxi-
mal sensing (PS), and expert pedological knowledge; and the n 
factor representing the geographic position of the soil. The col-
lection of soil-forming factors (s, c, o, r, p, a, n) represents the 
underlying landscape characteristics that have allowed the for-
mation of a particular soil class. To completely understand the 
soil, considering this conceptual soil formation process, and to 
be able to model this process and map soils, it is important to 
have different views (Figure 24.1). Thus, we can look at soil from 

five different perspectives as suggested (Figure 24.1): Perspective 
1: micro-perspective, intrinsic soil characteristics, such as min-
eralogy; Perspective 2: longitudinal vision; Perspective 3: soil 
profile or site perspective; Perspective 4: related with the soil 
surface composed by the landscape elements, such as landforms, 
slopes, and drainage patterns; Perspective 5: spatial vision and 
distribution of the soil from space. All of these points of view 
will assist users to understand and visualize the soils as a com-
plete body in which SS can greatly contribute, and we will dis-
cuss along this chapter.

24.2  Why Is Soil Important?

The world population is expected to exceed 8 billion people by 
2050 (FAO, 2013). Today we have about 867 million chronically 
undernourished people in the world. At present, more than 
1.5 billion ha (about 12%) of the globe’s land surface (13.4 bil-
lion ha) is or can be used for crop production, 28% (3.7 billion 
ha) is under forest, and 24%–35% (4.6 billion ha) comprises 
grasslands and woodland ecosystems (FAO, 2011, 2013). To 
accomplish the task of feeding almost 9 billion people, one of the 
most important strategies is closing the yield gap (Godfray et al., 
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Figure 24.1  Conceptual soil and landscape formation. Perspective 1: microperspective, intrinsic soil characteristics, such as mineralogy; 
Perspective 2: longitudinal vision; Perspective 3: soil profile or site perspective; Perspective 4: related with the soil surface composed by the land-
scape elements, such as landforms, slopes, and drainage patterns; Perspective 5: spatial vision and distribution of the soil.

© 2016 Taylor & Francis Group, LLC

  



665Spectral Sensing from Ground to Space in Soil Science

2010), which requires good land use planning for the existent 
fields and also the upcoming ones. What has been observed is 
that farmers who seek higher yields (although with higher costs) 
promote a better use of natural resources (e.g., fertilizers, water, 
and soil) and consequently are responsible for a lower impact in 
the environment. In 2006, the World Conference for Structural 
Geospatial Data Base indicated the necessity to develop soil maps, 
which are basic information for crop management planning and 
consequently has the potential to improve food production.

If on one hand we need to use soils, on the other we are 
degrading them. Mahmood (1987) calculated by 1986 that 
around 1100 km³ of sediment had been lost from soils and accu-
mulated in the world’s reservoirs, consuming almost one-fifth of 
the global soil storage capacity. Lal (2003) determined a rate of 
201.1 Pg year−1 of soil erosion. Indiscriminate use of herbicides 
and pesticides all over the world leads to soil and water pollu-
tion (Center for Food Safety, 2008; Singh and Ghoshal, 2010). 
Some herbicides, such as glyphosate and atrazine, might reduce 
enzyme activity and populations of organisms in soil (Sannino 
and Gianfreda, 2001). Microbial community structure, often 
used as an indicator in monitoring soil quality, is affected by 
various environmental and plant growth factors, such as mois-
ture, temperature, nutrient availability, and management prac-
tices (Petersen et al., 2002; Ratcliff et al., 2006).

Soils are relevant not only for food security or environmen-
tal quality, but also in climate change issues. In fact, according 
to Lang (2008), the atmospheric abundance of carbon dioxide 
(CO2) has increased by 36%, from 280 ppm in 1750 to 381 ppm 
in 2006 (Canadell et al., 2007) and in 2014 reached 398.87 ppm 
(Dlugokencky and Pieter, 2014).

Land use change contributed 158 Pg C, where the deforesta-
tion and the attendant biomass burning, and soil tillage along 
with erosion, contributed with an estimated emission of 78 ± 
12 Pg C from world soils (Lal, 1999). Soils can sequester C by 
increasing stable SOC and soil inorganic carbon (SIC) stocks 
through judicious land use and recommended management 
practices. Research has shown a clear link between SOC (stock 
and change) and the type of soil, which stresses the need for soil 
maps. Bruinsma (2009) indicates that until 2050, “Arable land 
would expand by some 70 million ha (or less then 5 percent), 
the expansion of land in developing countries than about 
120 million ha (or 12 percent) being offset by a decline of some 
50 million ha (or 8 percent) in the develop countries.” In fact, 
recent work (Spera et  al., 2014) indicates agriculture expan-
sion in one of the most important states in Brazil, that is, Mato 
Grosso. Authors observed 3.3 million ha of mechanized agricul-
ture in 2001, of which 500,000 ha had two commercial crops per 
growing season (double cropping). By 2011, Mato Grosso had 
5.8 million ha of mechanized agriculture, of which 2.9 million 
ha was double-cropped, an increase of 76%. This is a clear indi-
cation of the necessity to have strategies on land use planning to 
reach a high-quality use of soils.

Studies that address comprehension of soils, soil function, 
and soil in agriculture and society have several applications 
such as soil classification, pedological and attribute mapping, 

soil monitoring, soil conservation, experimental design, spatial 
allocation for agriculture, food improvement, local sustain-
ability, environment productivity systems, agriculture systems, 
specific plant and soil interactions, PA, irrigation systems, 
determination of land use capacity and land aptitude, and 
many others. Today, to improve agricultural productivity while 
securing future water quality (and quantity) as well with envi-
ronment quality, it is necessary to understand soil function in 
natural and agricultural ecosystems that are tied together over 
landscapes, watersheds, and larger spatial extents. Nonetheless, 
soil management occurs at the 1–100 m scale, while soil policy 
occurs at broader spatial scales (political boundaries). Hence, 
knowledge of soils that includes detailed spatial information is 
imperative to understand the impact of management and pol-
icy decisions on soils, water, and the environment at large. In 
the following sections, we show how SS can assist in all these 
aspects.

24.3 � Role of Spectral Sensing 
in Soil Science

24.3.1 C oncepts

RS has copious definitions in the literature. The most simple 
and effective one refers to the “acquisition of information about 
an object by detecting its reflected or emitted energy without 
being in direct physical contact with it” (Colwell, 1997; Jensen, 
2006). Therefore, the term RS can be applied for a radiation-
detecting sensor installed at any platform or level of acquisi-
tion, for instance, laboratory, field, aerial, or orbital (Jensen, 
2006). Recently, the expression PS was proposed for soil studies 
(Viscarra Rossel et al., 2011a). This concept focuses on detect-
ing information about an object in a short distance, primar-
ily in the field, using not only spectral sensors, but also any 
measurement device. For spectral sensor applications, the con-
cepts of PS and RS, although obvious in some contexts, can be 
confused. Generally speaking, the term “remote” means that 
the sensor is “far” from the target, while the term “proximal” 
means the sensor is “near” the target, but the specific distance 
that distinguishes one from the other (1 cm, 1 m, or 1 km) is 
not defined. In fact, the word takes in consideration arbitrary 
“distance.” Commonly (by convention or tradition), RS is 
applied mostly for orbital and aerial acquisition levels, whereas 
PS is used for laboratory and field sensors. In fact, as stated by 
Jensen (2006), all of these concepts are correct in their appro-
priate context. Thus, in this chapter, we define SS as (1) “spec-
tral”: related to the electromagnetic radiation spectrum coming 
from an object that is dependent on its characteristics and 
composition and (2) “sensing”: referring to the acquisition of 
this spectral information without directly touching the object. 
This definition removes the relativity from terms proximal and 
remote. The SS terminology can be divided into space spectral 
sensing (SSS), which includes aerial and orbital (also known as 
RS), and ground spectral sensing (GSS), divided into field spec-
tral sensing (FSS) when spectra are taken in natural conditions 
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in the field, and laboratory spectral sensing (LSS) when spec-
tra are read in the lab using benchtop instruments. GSS is also 
known as PS. Thus, by definition, SS can be applied using differ-
ent acquisition distances (scales) and sources, from ground to 
space. This is our suggestion to better discuss the chapter and 
to not have the pretension to substitute the traditional terms 
RS and PS.

24.3.2 � How Spectral Sensing Contributes 
to Soil Science? Why Is It a New 
Perspective of Science?

The usual way to study soils is by discretizing the knowledge 
into basic disciplines such as physics, microbiology, pedology, 
and chemistry. Each discipline has accepted methodologies for 
analysis, which will allow them to understand and quantify 
soil properties. The interpretation is related to the results that 
are commonly obtained from traditional soil laboratory analy-
sis involving chemical, physical, and biological assessments. 
Spectral readings are physical information that, in many cases, 
requires models to relate to soil properties. The five perspectives 
(or points of view) to look at soils indicated in Figure 24.1 can 

also be observed by an SS point of view. In fact, these perspec-
tives can be related with Figure 24.2. The microscale perspective, 
related with the soil analysis, can be related with the ground, 
laboratory, or field sensors. SS can study soils by the longitudinal 
perspective, where we can see the relief from only one perspec-
tive, along a toposequence. The soil profile is related to the obser-
vation of a single point, which can be detected by ground sensing 
on surface, inside a pit or a borehole, or a pixel from an image. 
In the case of the surface landscape perspective, the perception 
of SS corresponds to the combination of all elements of the relief 
(shape, slope, and height). Finally, the spatial perspective, which 
is the visualization of soil with its boundaries, can be detected 
from space. The pedologist combines different perspectives to 
analyze soils depending on the objective. Each one of these will 
add information about the soil.

24.3.3  History and Evolution

We can consider the beginning of SS when people saw and dis-
tinguished objects (in our case, soils) by their shape or color 
(using the eye). The NIR spectral range from 780 to 2500  nm 
was discovered by Herschel in the year 1800 (Hershel, 1800). 
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According to Stark et al. (1986), the NIR was discovered before 
the MIR region due to the instruments available at the time. But 
both spectral regions were neglected during years and started 
their studies only in the 1960s (Stark et  al., 1986). Before this 
period, SS was applied using aerial photographs. In 1826, Joseph 
Nicéphore Niépce (1765–1833) took the first photography in 
France (Gernsheim and Gersheim, 1952). In 1890, Arthur Batut 
published Aerial Photography by Kites, which shows the use of 
aerial photography for agronomy, archaeology, exploration, and 
military uses (Batut, 1890). Aerial photographs for soil survey 
and applications were determined by Buringh (1960). Later, Vink 
(1964) published a very important work, which demonstrated 
how to use the aerial photographs for a soil survey, with exam-
ples given by Goosen (1967) and afterward Hilwig et al. (1974).

In the early 1900s, Bernad Keen and William Haines built 
the first on-the-go soil sensor (Keen and Haines, 1925). Four 
decades later, Obukhov and Orlov (1964) selected the 750  nm 
spectral region to estimate SOC, and Bowers and Hanks (1965) 
published a paper about the correlation between soil reflectance, 
soil moisture, and particle size. These pioneering studies were 
followed by Hunt and Salisbury (1970) and Hunt (1982), which 
proved that water and minerals in the soil have unique spectral 
fingerprints that can be identified, quantified, and further used 
for the assessment of other soil properties. This took soil spec-
troscopy to another level, and the first scientists to systemati-
cally gather soil spectral information and publish it in the form 
of a soil spectral atlas were Stoner et  al. (1980). These works 
guided spectroscopy for decades. In fact, findings from Vink 
(1964) and Stoner and Baumbgardner (1981) took Demattê et al. 
(2001, 2004) to integrate and apply these technologies with the 
first soil mapping system using spectral information combined 
with aerial images.

The combination of different sensors and platforms for soil 
assessment started with Krinov (1947), who combined labora-
tory data, field spectrographs, and aerial spectrographs adapted 
to operate from aircraft, in the VIS–NIR region (400–910 nm) 
for soil research. In fact, maybe the most important event for 
SS happened in 1957, when the former USSR managed to keep 
the first satellite in Earth orbit (Sputnik). In the 1960s, a new 
era began for SS with new sensors onboard satellites capable of 
taking pictures of Earth (McDonald, 1997). In 1965, the United 
States (Conterminous, Alaska, and Hawaii) was mapped by the 
Corona satellite (Clark, 1999a). The first Landsat was launched 
in 1972, called Landsat-MSS (Later Landsat-1). In 1999, a new 
generation of multispectral satellite sensors were launched, 
including Landsat-7 ETM+, Terra Moderate-Resolution Imaging 
Spectroradiometer (MODIS) and Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER), CBERS 
IRS (Brazil and China), and IKONOS-2. In 2001, QuickBird was 
launched; in 2002, NASA launched the Aqua satellite carrying 
a MODIS sensor, and in 2005, Google started using data from 
satellites creating the Google Earth—a great upgrade on SS for 
humanity. Almost in parallel, important advances in hyperspec-
tral sensing occurred, starting with an airborne platform—the 
AVIRIS sensor with 224 bands (400–2500 nm)—operational in 

1989 (Vane et al., 1993), followed by the spaceborne Hyperion 
sensor with 220 bands (400–2500 nm) in the Earth-Observing 1 
satellite, launched in 2000 (USGS, 2014).

24.4 �T heory behind Soil 
Spectral Sensing

24.4.1 � Visible, Near-Infrared, Shortwave-
Infrared, and Mid-Infrared

The spectral ranges most used in soil science include the ultravio-
let (UV: 200–380 nm), visible (VIS: 350–700), near-infrared (NIR: 
700–1,000  nm), shortwave infrared (SWIR: 1,000–2,500  nm), 
and mid-infrared (MIR: 2,500–25,000  nm). The region 700–
2,500 is generally referred to as NIR, whereas the MIR region at 
2,500–25,000 can be divided into thermal infrared (TIR: 8,000–
14,000 nm) and far infrared (14,000–25,000 nm). Fundamental 
studies on soil and SS in these ranges were conducted in the 
laboratory. Spectral reflectance is extremely complex since it is 
affected by the concentration, size, and arrangement of compo-
nents occurring in soil samples. All sample constituents mix 
and interact to reach the final reflectance information, however, 
with different aspects of interactions among them (Bowers and 
Hanks, 1965). The measured soil spectra result from the combi-
nation of the intrinsic spectral behavior of different soil constit-
uents including organic materials, mineral materials, and water, 
which interact differently with the incident light (Clark, 1999b). 
The percentage of incident light that is reflected by the soil at dif-
ferent wavelengths constitutes the soil’s reflectance behavior and 
is represented by the soil’s spectral curve, or simply soil spec-
trum. Thus, soil spectra are a result of microscopic interactions 
between the atoms and molecules of the soil and the incident 
light, which penetrates the first 10–50 μm of soil. These inter-
actions generate specific absorption features at different wave-
lengths and for different soils, and are mainly affected by soil 
particle size, porosity for energy dispersion, SOM, and soil water 
(Jensen, 2006). Therefore, each soil sample has a unique spectral 
behavior and a unique spectral curve.

Microscopic interactions with light occur in mineral (silox-
ane, oxyhydroxy, silanol, aluminol, and ferrol surfaces) and 
organic (carboxyl and phenolic hydroxyl) functional groups 
of soils at the same place where other soil physical–chemical 
reactions take place as well (Alleoni et  al., 2009). Thus, these 
interactions are dependent on soil composition with respect 
to types of atomic and molecular structures, strength of bonds 
among atoms and molecules, and ionic impurities in soils, such 
as chemical elements adsorbed on colloidal particles (Hollas, 
2004). Spectral absorption features related to microscopic effects 
will appear only if enough energy is available to promote atomic 
transitions and/or molecular vibrations (Bernath, 2005). There 
are two levels of electromagnetic energy absorption that must be 
considered in soil microscopic interaction: atomic and molecu-
lar. Atomic refers to radiation required to produce changes in 
the energetic level of electrons linked to ions in the soil, causing 
electronic transitions and rearrangement of charges in atoms 
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(Sherman and Waite, 1985). Atomic interactions usually take 
place from VIS to NIR, except for metals (Cu, Fe, Mn, Cr, and Ti) 
and other elements (Si, Al, K, Ca, and OH–) whose electronic 
transitions do not produce spectral features at this range.

Light interactions at the molecular level are responsible 
for the vibrational processes of molecules with its functional 
groups (e.g., –COOH, –CHx, NHx) in the soil and usually take 
place after 1100  nm. Molecular vibrations need less energy, 
but produce more intense and defined absorption features 
(Stenberg et  al., 2010). Molecular vibrations include stretch-
ing, bending, and torsion, and are divided into fundamental 
and nonfundamental vibrations. Nonfundamental vibrations 
are considered secondary vibrations of lower intensity, such 
as propagations (or reverberations) of fundamental vibrations, 
which can be overtones or combination tones. They usually 
occur in the NIR as a result of interactions of radiation with 
molecular functional groups, for example, –COx, –POx, –CHx, 
and H2O (Viscarra Rossel et al., 2011b). Fundamental vibrations 
occur in the MIR and are usually derived from associations of 
Fe3+, Al3+, Mn2+, and Si4+ with O in soil oxides (Viscarra Rossel 
et al., 2008). The vibrational absorptions in VIS–NIR are over-
tones and combination frequencies of absorption bands that 
occur in the MIR (Figure 24.2).

Table 24.1 summarizes the most important wavebands and 
respective soil attributes. Absorption features have been com-
ing from interaction between electromagnetic energy and soil 
functional groups in colloidal surfaces. It has been observed a 
great variety of organic and inorganic functional groups, such 
as carboxyl, alkyl, methyl, phenolic, aliphatic groups, and 
others for organic ones, and, mainly, hydroxyl (–OH), silanol 
(Si]–OH), and aluminol (Al]–OH) for inorganic ones on outer 
surfaces of clay minerals (phyllosilicates) (Table 24.1). Overlaps 
of bands and positioning modifications can be observed because 
molecules of soil constituents are all mixed in a complex sys-
tem and do not behave harmoniously (Bishop et  al., 1994). 
Vis–NIR–SWIR spectral ranges have shown features related 
to electronic transition of iron from oxides (hematite) and 
hydroxides (goethite) in the VIS and NIR, and other features 
due to nonfundamental vibrations (overtones and combina-
tion tones) on molecular structures of 2:1 (vermiculite, smec-
tite, illite, and others) and 1:1 (hematite) clay mineral and Al 
oxide (gibbsite) have been identified from SWIR. Features due 
to soil organic compounds have also been identified along VIS–
NIR–SWIR spectral ranges (Table 24.1). Due to the stronger 
microscopic interaction of MIR radiation and soil organic and 
mineral particles by fundamental vibrations (Janik et al., 1998), 
a greater number of absorption features can be observed in this 
range when compared to Vis–NIR–SWIR. This amount of fea-
tures results in much more information about soil properties 
in MIR, except for iron contents that have not been identified 
in this range. Besides the 2:1 and 1:1 clay minerals, features of 
quartz (from sand particles), phosphates, carbonates, borates, 
nitrates, and a great variety of organic components have been 
identified along MIR (Table 24.1). Nonfundamental and funda-
mental absorptions from Vis–NIR–SWIR and MIR ranges were 

compiled from Oinuma and Hayashi (1965), Bowers and Hanks 
(1965), Hunt and Salisbury (1970), White (1971), van der Marel 
and Beutelspacher (1975), Stoner and Baumgardner (1981), 
Baumgardner et  al. (1985), Sherman and Waite (1985), White 
and Roth (1986), Nguyen et  al. (1991), Salisbury and D’aria 
(1992, 1994), Srasra et al. (1994), Janik et al. (1998), Fernandes 
et  al. (2004), Madejova and Komadel (2001), Viscarra Rossel 
et al. (2006, 2008), Stevens et al. (2008), Richter et al. (2009), and 
Viscarra Rossel and Behrens (2010).

24.4.2  Microwaves

Microwaves constitute the portion of the electromagnetic 
radiation (spectrum) with wavelengths ranging from 0.1 to 
100  cm (frequencies from 300  MHz to 300 GHz) and photon 
energy from 1.24 meV to 1.24 μeV. The earth’s surface emits 
low levels of microwave radiation, which is modeled by the 
Rayleigh–Jeans law for black bodies (Jensen, 2006). The radio-
metric magnitude detected by the sensors in microwave spec-
tral range is called brightness temperature and is expressed by 
TB = εT, where T is an object’s physical temperature and ε is 
the emissivity. Passive microwave radiometers detect energy 
in the spectral range between 0.15 and 0.30 cm, with frequen-
cies from 1 to 200 GHz. These sensors have poor spectral and 
spatial resolutions due to low microwave energy emitted from 
the earth. Nevertheless, there is growing interest in the mea-
surement of passive microwave radiation to monitor soil mois-
ture conditions (Liu et al., 2012; Mladenova et al., 2014). Active 
microwave systems, also known as RADAR (radio detection 
and ranging), differ from passive systems because they provide 
an energy source. This energy (incident radiation) interacts with 
the target, and the response is detected by the sensor. Because 
they provide their own energy, applications are possible dur-
ing the day and night. Moreover, differently from VIS–NIR–
MIR, microwaves can pass through clouds and plant canopy 
(depending on the spectral range), and thus can be used under 
bad weather condition (Woodhouse, 2005) and for ground and 
understory examination.

24.4.3 T hermal Infrared

Any object with temperature greater than absolute zero (0 K, 
−273.26°C, −459.69°F) emits some amount of radiant energy, 
which is generally correlated to the object’s temperature (Jensen, 
2005). Energy emissions occur in the TIR range, but remotely 
sensed data acquired aiming to quantify radiant flux are gener-
ally restricted to ranges near 8,000–9,000 nm or near 10,000–
12,000  nm, since these ranges correspond to “atmospheric 
windows,” in which water vapor (H2O), carbon dioxide (CO2), 
and ozone (O3), among other components, absorb less energy.

Assuming the imaged surface as an ideal black body, TIR 
radiance measured by the sensor would be proportional to 
the energy given by Planck’s radiation law (Richards, 2013). 
However, real surfaces are not ideal black bodies, but instead 
radiate selectively and emit a certain proportion of the energy 
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Table 24.1  Absorption Features (Band Assignments) of Soil Constituents in the Vis–NIR–SWIR (350–2500 nm) and MIR (4000–400 cm−1) 
Spectral Ranges

Spectral 
Range λ (nm) 

Functional 
Groups Soil Compounds 

Microscopic 
Interactions Interaction Modes 

Types of 
Propagation 

Visible 404 Fe3+ ion Hematite Atomic level Electronic transition
430 Goethite
444 Hematite
480 Goethite
520 Hematite
650 Goethite

Hematite
Near-infrared 751 N–H Organic compounds (amine) 4ν7 overtone

825 C–H Organic compounds (aromatic 
carbon)

2ν6 overtone

850 Fe3+ ion Hematite Atomic level Electronic transition
853 C–H Organic compounds (alkyl) 4ν8 overtone
877 4ν9 overtone
940 Fe3+ ion Goethite Atomic level Electronic transition

1000 N–H Organic compounds (amine) Molecular 
level

Nonfundamental 
vibration

3ν7 overtone

SWIR 1100 C–H Organic compounds (aromatic 
carbon)

2ν6 overtone

1135 (H–O–H) + 
(O–H)

Soil water ν1 + ν2 + ν3 
combination tone

1138 C–H Organic compounds (alkyl) 3ν8 overtone
1170 3ν9 overtone
1380 (H–O–H) + 

(O–H)
Soil water ν1 + ν3 

combination tone
1395 2(O–H) Kaolinite 2ν1a overtone
1414 2ν1b overtone

2:1 vermiculite 2ν4 overtone
Smectite 2ν4 overtone
Mica (illite) 2ν4 overtone

1449 C=O Organic compound (carboxylic acids) 4ν10 overtone

1455 (H–O–H) + 
(O–H)

Soil water
Hygroscopic water

2ν2 + ν3 

combination tone 
e overtone

1500 N–H Organic compounds (amine) 2ν7 overtone
1524 C=O Organic compounds (amide) 4ν11 overtone

1650 C–H Organic compounds (aromatic 
carbon)

2ν6 overtone

1706 C–H Organic compounds (alkyl) 2ν8 overtone
Organic compounds (aliphatics) 4ν12 overtone

1730 Organic compounds (methyl) 4ν13 overtone
1754 Organic compounds (alkyl) 2ν9 overtone
1800 Ca, Mg, Fe, Mn, 

Sr, Ba—BO3
2−

Borate 3ν5 overtone

Ca, Mg, Fe, Mn, 
Sr, Ba—CO3

2−
Carbonate

1852 C–H Organic compounds (methyl) 4ν13 overtone
1915 (H–O–H) + 

(O–H)
Soil water
Hygroscopic water

ν2 + ν3 
combination tone

1930 C=O Organic compound (carboxylic 
acids)

3ν10 overtone

1961 C–OH Organic compound (phenolic) 4ν14 overtone
(Continued)
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Table 24.1 (Continued)  Absorption Features (Band Assignments) of Soil Constituents in the Vis–NIR–SWIR (350–2500 nm) and MIR 
(4000–400 cm−1) Spectral Ranges

Spectral 
Range λ (nm) 

Functional 
Groups Soil Compounds 

Microscopic 
Interactions Interaction Modes 

Types of 
Propagation 

1980 Ca, Mg, Fe, Mn, 
Sr, Ba—BO3

2−
Borate 3ν5 overtone

Ca, Mg, Fe, Mn, 
Sr, Ba—CO3

2−
Carbonate

2033 C=O Organic compound (amide) 3ν11 overtone

2060 N–H Organic compounds (amine) ν7 + δb 
combination tone

2135 Ca, Mg, Fe, Mn, 
Sr, Ba—BO3

−2
Borate 3ν5 overtone

Ca, Mg, Fe, Mn, 
Sr, Ba—CO3

2−
Carbonate

2137 C–O Organic compound (polysaccharides) 4ν15 overtone
2160 (O–H) + 

(Al–OH)
Kaolinite ν1a + δ 

combination tone
2205 ν1b + δ 

combination tone
2:1 vermiculite
Smectite
Mica (illite)

2230 AlFe–OH Smectite ν1b + δa 
combination tone

2260 (O–H) + 
(Al–OH)

Gibbsite ν1b + δ 
combination tone

2275 C–H Organic compounds (aliphatics) 4ν12 overtone
2316 C–H Organic compounds (methyl) 3ν5 overtone

[3.(CO3
2−)] Carbonate

2307 C–H Organic compounds (methyl) 3ν13 overtone
2336 Ca, Mg, Fe, Mn, 

Sr, Ba—BO3
2−

Borate 3ν5 overtone

Ca, Mg, Fe, Mn, 
Sr, Ba—CO3

2−
Carbonate

2350 (O–H) + 
(Al–OH)

Mica (illite) ν1b + δ 
combination tone

2381 C–O Organic compounds (carbohydrate) 4ν16 overtone
2382 4ν5 overtone
2450 (O–H) + 

(Al–OH)
Mica (illite) ν1b + δ 

combination tone
2469 C–H Organic compounds (methyl) 3ν13 overtone

Spectral 
Range 

Wavenumber 
(cm−1) 

Functional 
Groups Soil Compounds 

Microscopic 
Interactions Interaction Modes 

Types of 
Propagation 

Mid-infrared 3695 (ν1a) (Al—O–H)OH Kaolinite Molecular 
level

Fundamental 
vibration

Stretching
Halloysite
Smectite
Mica (illite)

3670 Kaolinite
3653 Smectite

Mica (illite)
3620 (ν1b) Kaolinite

Halloysite
Chlorite Al-rich
Smectite
Mica (biotite)

(Continued)
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Table 24.1 (Continued)  Absorption Features (Band Assignments) of Soil Constituents in the Vis–NIR–SWIR (350–2500 nm) and MIR 
(4000–400 cm−1) Spectral Ranges

Spectral 
Range 

Wavenumber 
(cm−1) 

Functional 
Groups Soil Compounds 

Microscopic 
Interactions Interaction Modes 

Types of 
Propagation 

Mica (muscovite)
Mica (illite)

3575 (ν4) O–H Hydroxyl
3560 O–Al–OH Nontronite
3550 Mica (biotite)

Chlorite Al-rich
3529 2:1 vermiculite

Kaolinite
Gibbsite

3484 (ν1) O–H Water
3448 (ν3) PO4

3− Phosphate
O–Al–OH 2:1 vermiculite

Kaolinite
Gibbsite

3400 Halloysite
3394 (H–O–H) + 

(O–H)
2:1 vermiculite
Kaolinite

3340 Chlorite Al-rich
3330 (ν7) N–H Organic compounds (amine)
3278 (ν1) O–H Water
3330–3030 N–H Ammonium (nitrate)
3030 (ν6) C–H Organic compounds (aromatic carbon)
2930 (ν8) Organic compounds (alkyl)

Asymmetric–symmetric doublet
2924 Organic compounds (aliphatic)
2850 (ν9) Organic compounds (alkyl)

Asymmetric–symmetric doublet
2843 Organic compounds (aliphatic)
2341 CO2 (breath)
2233 (–C Ξ C–H, –C 

Ξ C–)
Organic compounds (alkyne groups) Molecular 

level
Fundamental 

vibration
Stretching

Si–O Quartz
2133 (–C Ξ C–H, –C 

Ξ C–)
Organic compounds (alkyne groups)

Si–O Quartz
1975 Si–O Quartz
1867
1790
1725 (ν10) C=O Organic compound (carboxylic 

acids)
1678 Si–O Quartz
1645 (ν2) H–O–H Water
1640 O–Al–OH Halloysite

Smectite
Nontronite
2:1 vermiculite

1640 (ν11) C=O Organic compound 
(amides—protein)

1628 O–H Kaolinite Deformation
Smectite

(Continued)
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Table 24.1 (Continued)  Absorption Features (Band Assignments) of Soil Constituents in the Vis–NIR–SWIR (350–2500 nm) and MIR 
(4000–400 cm−1) Spectral Ranges

Spectral 
Range 

Wavenumber 
(cm−1) 

Functional 
Groups Soil Compounds 

Microscopic 
Interactions Interaction Modes 

Types of 
Propagation 

Mica (illite)
2:1 vermiculite

Si–O Quartz Stretching + 
deformation

1610 (δb) N–H Organic compound (amine)
1527 Si–O Quartz

COO– Organic compound (symmetric)

N–H + C=N Organic compound (amide)

C=C Organic compound (aromatic 
carbon)

1497 (ν4) Si–O Quartz
COO– Organic compound (symmetric)

N–H + C=N Organic compound (amide)

C=C Organic compound (aromatic 
carbon)

1490–1410 C–O Carbonate
1485–1390 N–H Ammonium (nitrate)
1465 (ν12) C–H Organic compound (aliphatics)
1445 (ν13) Organic compound (methyl)
1435 Ca—CO3

2− Calcite
1415 (ν5) Ca, Mg, Fe, Mn, 

Sr, Ba—BO3
2−

Borate

Ca, Mg, Fe, Mn, 
Sr, Ba—CO3

2−
Carbonate

1362 (ν4) OH + C–O Organic compound (phenolic)
C–O CH2 and CH3 groups (methyl)
COO– and –CH Organic compound (aliphatics)
Si–O Quartz

1350 (ν13) C–H Organic compounds (methyl)
Thermal 

infrared
1275 (ν14) C–OH Organic compounds (phenolic)
1170 (ν15) C–O Organic compounds (polysaccharide)
1157 C–OH Organic compounds (aliphatic)

O–Al–OH Smectite Deformation
Mica (illite)
2:1 vermiculite

1111 Si–O–Si Kaolinite Stretching
Halloysite
Smectite
Mica (illite)
Mica (muscovite)
2:1 vermiculite
Microcline
Nontronite Deformation

O–Al–OH Gibbsite
1100–1000 P–O Phosphate
1085–1050 C–O Carbonate
1050 (ν16) C–O Organic compound (carbohydrate)
1018 (ν5) C–C Organic compound (aliphatics) Stretching

C–O Organic compounds (polysaccharide)
Organic compounds (carbohydrates)

(Continued)
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that would be emitted by a black body, at the same tempera-
ture. The ratio between real radiance and black body radiance, 
at a given temperature, is the concept of emissivity. This is an 
intrinsic property of the material, and thus, the radiant flux that 
leaves a surface in TIR spectroscopy is proportional to the mate-
rial’s emissivity and temperature (Derenne, 2003). In the case of 
soils, different factors can affect the spectral response, such as 
soil composition and moisture. Minerals such as quartz present 
absorption features in the TIR range, called reststrahlen spec-
tral features, which occur from 8,000 to 10,000 nm (Salisbury 
and D’Aria, 1992). However, an increase in SOM can reduce 

reststrahlen features, that is, increase emissivity, especially in 
soils with more than 2% of organic matter (OM; Breunig et al., 
2008). In cases of clay coatings on quartz grains and increases in 
soil water content, the reststrahlen spectral features are attenu-
ated as well (Salisbury and D’Aria, 1992).

24.4.4  Gamma Ray

Gamma ray has initiated studies in rocks, such as performed by 
Gregory and Horwood (1961), and can be better understood in 
Grasty (1979). The electromagnetic energy in the γ-ray range is 

Table 24.1 (Continued)  Absorption Features (Band Assignments) of Soil Constituents in the Vis–NIR–SWIR (350–2500 nm) and MIR 
(4000–400 cm−1) Spectral Ranges

Spectral 
Range 

Wavenumber 
(cm−1) 

Functional 
Groups Soil Compounds 

Microscopic 
Interactions Interaction Modes 

Types of 
Propagation 

Si–O–Si Kaolinite
Smectite
Mica (illite)
2:1 vermiculite

Si–O Quartz
Al–O Gibbsite

926 (δ) Al—O–H Kaolinite Deformation
((Al,Al)—O–H) Smectite

Mica (illite)
2:1 vermiculite
Gibbsite

885 (δa) AlFe–OH Smectite Stretching
875–860 C–O Carbonate
877 Ca—CO3

2− Calcite
814 Si–O Quartz

Kaolinite Deformation
((Al,Fe)—O–H) Smectite
((Al,Mg)—

O–H)
Mica (illite)
2:1 vermiculite

791 Si–O–Si Kaolinite Stretching
Mica (illite)
2:1 vermiculite

752 Kaolinite
Mica (illite)
2:1 vermiculite

Mid-infrared 750–680 C–O Carbonate
712 Ca—CO3

2− Calcite
702 Si–O–Si Kaolinite

Smectite
Mica (illite)
2:1 vermiculite

635–5000 P–O Phosphate
517 Si–O–Si Kaolinite Deformation

Smectite
Mica (illite)
2:1 vermiculite

436 Si–O Quartz
Quartz

λ, wavelength in nm; ν and δ, energy levels of fundamental vibration in microscopic interactions.
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characterized by short wavelengths (on the order of 0.01 nm or 
less), with high frequency, and high-energy photons (more than 
0.04 MeV). Ground or airborne γ-ray spectrometry uses the fact 
that γ-ray photons have discrete energies, which are characteristic 
of radioactive isotopes from which they originate (passive system). 
Consequently, it is possible to determine the source of the radia-
tion by measuring the energies of γ-ray photons (IAEA, 2003).

Radioactive isotopes of elements that emit gamma radiation 
are called radionuclides. Many naturally occurring elements 
have radionuclides, but only potassium (40K), cesium (137Cs), and 
the decay series of uranium (238U and 235U and their daughters) 
and thorium (232Th and its daughters) are abundant in the envi-
ronment and produce γ-rays of sufficient energy and intensity 
to be measured by γ-ray spectrometry (Mahmood et al., 2013).

An energy spectrum is typically measured by γ-ray spec-
trometers over the 0–3 MeV range, generally in 256 channels or 
more (Dierke and Werban, 2013). In the conventional approach, 
γ-ray measurements are used to monitor four spectral regions 
of interest, corresponding to the energy levels of K (1.460 MeV), 
U (1.765 MeV), and Th (2.614 MeV), and to the total radioactiv-
ity over the 0.4–2.81 MeV range (Viscarra Rossel et al., 2007). 
The γ-ray measurements taken by spectrometers are counts of 
the decay rate (intensity) at the specific energy. The measured 
intensity (counts per second) can be converted into the activity 
of the nuclides (Bq kg−1), into the concentrations (% for K, ppm 
for U and Th), or into the dose rate (nGy h−1) using a calibration 
method (IAEA, 2003).

The concentration of γ-ray emitting radionuclides in soils 
depends on different soil properties, which are the result of physi-
cal and chemical composition of parent rock, as well as soil gen-
esis under different climatic conditions (Dierke and Werban, 
2013). Mineralogy of source rocks, clay content, and type of clay 
minerals are properties that directly influence the radionuclide 
concentration in sediments and soils (Serra, 1984). When mea-
sured  from  the top, approximately 50% of the observed γ-rays 
originate from the top 0.10 m of dry soil, 90% from the top 0.30 m, 
and 95% from the upper 0.5 m of the profile (Taylor et al., 2002). 
Soil water content and bulk density can attenuate γ-rays. For 
example, radiation attenuation increases by approximately 1% 
for each 1% increase in volumetric water content, while a dry soil 
with a bulk density of 1.6 mg m−3 causes a decrease in the radia-
tion to half its value at each 10 cm compared to a moist soil (Cook 
et al., 1996). The radiation decrease caused by air is much smaller, 
for example, 121 m are needed to reduce the radiation to half its 
value considering a 2 MeV source; hence, detection of γ-rays is 
possible from airborne platforms (Viscarra Rossel et al., 2007).

24.5 � Strategies for Soil Evaluation 
by Spectral Sensing

Strategy is the art of applying knowledge and capabilities to 
reach a goal. In the case of SS, an effective strategy requires 
knowledge of the limitations and capabilities of the instru-
ment making measurements. The goal is detecting and iden-
tifying soil properties for the purpose of making an inference 

regarding the capability of the soil for a specific function. Thus, 
there are several strategies to use on soil evaluation based on 
SS, but each strategy is different and should depend on the 
objectives and tools available. The strategies described here are 
related to research with the missions of creating, determin-
ing, and investigating methods for mapping soil attributes. In 
fact, quantification of SOM, SOC, pH, clay, sand, and other soil 
constituents for the purpose of converting to other soil proper-
ties using pedotransfer functions and ultimately making a soil 
inference is the goal of SS, and a challenging one. Strategies may 
focus on GSS or SSS, and the spatial modeling of the soil constit-
uents can be complemented by terrain models (i.e., digital eleva-
tion models—DEMs) and other sources of information (Figure 
24.2). As we observe in Figure 24.2, there are several strategies 
to reach soil information. Strategy 1 implies on using aerial or 
orbital data. Both will get only soil surface information since the 
energy penetrates a few centimeters into the soil. Orbital infor-
mation has to be well atmospheric corrected and transformed 
into reflectance (as will be seen in subsequent sections). On the 
other hand, when an area with bare soil is properly detected, 
the spectra of the pixel can have a great relationship with a soil 
type. A case study indicated in Figure 24.2 illustrates the loca-
tion of a pixel with an arenosol and another with an ferralsol, 
reaching spectra completely different. Thus, the importance of 
this strategy is to detect boundaries and spots of a specific soil 
type (related only with the surface information) and/or a specific 
soil attribute (i.e., clay or iron content). If this strategy has the 
limitation to detect soils in depth, we can change to strategy 2. 
In this case, soil samples can be collected in field and prepared 
in laboratory in a controlled condition. As we can see in Figure 
24.2, the sample collected in the center of the same pixel (sur-
face sample) has similar spectral intensities. This is the basis of 
the importance of laboratory spectra information as a pattern to 
understand aerial or orbital data. Despite this, strategy 2 allows 
the user to collect soil samples in different depths and determine 
spectra from horizons for future evaluation. Thus, it is possible 
to make the relationship between the soil surface information 
obtained in strategy 1 with the soil surface and subsurface infor-
mation obtained in strategy 2, thus making a link between these 
two. Although the laboratory strategy has inconveniences, since 
we have to go to field and collect samples, in many cases, soil sci-
entists need the information in situ. In this case, we have strat-
egy 3, which allows the user to get soil information inside a hole 
to reach underneath information. Another method is to get the 
surface information. In this case, we can use two methods: with 
the fiber and with the contact probe. The first use the natural 
light of the sun and has as inconvenience the alteration of radia-
tion intensity and water bands. The use of the contact probe does 
not have these inconveniences, since it has its own source. On 
the other hand, we have to take more care with the contact probe 
in relation to contamination since the equipment gets into con-
tact with each sample. Still in strategy 3, to read spectra under-
surface of soils, we can use the probe inside a hole, or directly 
inside a pit. Another important approach is on-the-go sensors in 
tractors or vehicles, where sensors can be used inside the soil as 
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made by implements or sensors that measure the surface of the 
soils. Thus, Figure 24.3 demonstrates that there are several situa-
tions in which sensors can assist soil evaluation, all of them with 
advantages and limitations and can be used as the necessities of 
the user. The following sections will show works that use these 
strategies for several approaches.

24.5.1  Strategies for Soil Sampling

A key set of questions when developing an SS strategy involves 
deciding where and how to collect soil samples for the calibra-
tion of an instrument or validation of a derived map. Regardless 
of the answers to the where and how questions, it must be rec-
ognized that collecting soil samples in the field is expensive 
and time consuming. Once collected, the samples still must be 
prepared and analyzed in the laboratory, which also has costs. 
Hence, most times the key question is this: How can the num-
ber of samples reduce? To collect a minimum of representative 
samples, probably the most used type of sampling is stratified 
sampling, when landscapes are divided into homogeneous sec-
tors, and each sector is sampled. The usual approach is to collect 
in each sector a number of samples proportional to the area of 
the sector. Another common approach is to define the number of 
samples proportional to the complexity of the sector, with more 
heterogeneous sectors receiving more samples.

A simple and effective form of stratification is based on the 
theory of soil change along a toposequence, and thus, a topose-
quence (meaning positions along a slope) can be used as the spa-
tial stratifier. In general, the concept is summarized as follows: 
(1) get images from the area, (2) correlate them with an elevation 
map, and (3) mark the places to collect soils from top to bottom, 
using the toposequence system. With several toposequences 

(transects along slopes), the most different soils in the area can 
be likely identified. Other types of data can be used as strata, 
particularly SS data plotted across a landscape.

A more automated stratification system that can use multiple 
SS and terrain data is the conditioned Latin hypercube (cLHS) 
algorithm (Minasny and Mcbratney, 2006), which, according to 
the authors, is a stratified random procedure that provides an 
efficient way of sampling variables from their multivariate distri-
butions. In fact, Mulder et al. (2013) used the cLHS to assess the 
variation of soil properties at a regional scale by using the first 
three principal components of an ASTER satellite image and a 
DEM. According to them, the sampling approach was success-
ful in representing major soil variation. The cLHS algorithm has 
been used to map multiple soil properties and included GSS data 
such as electrical conductivity and γ-ray data (Viscarra Rossel 
et al., 2007; Adamchuk et al., 2011). In one case, Viscarra Rossel 
et al. (2008) reduced 1878 samples with MIR information to 213 
samples chosen for laboratorial analysis using cLHS. Other sam-
pling methods have been proposed, and they all stratify the area 
based on auxiliary information. A method by Simbahan and 
Dobermann (2006) uses many variables (soil series, relative ele-
vation, slope, electrical conductivity, and soil surface reflectance) 
for sample optimization. A variance quadtree algorithm succes-
sively divides the study area into strata, and each stratum has a 
similar variation (Minasny et al., 2007; Rongjiang et al., 2012).

24.5.2 � Strategies for Soil Attribute 
Prediction and Mapping

Soil analysis is the basic source of data for many applications, 
notably agriculture and environmental monitoring. The conven-
tional laboratory analysis based on wet chemistry is the most 
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important source of this information with more than 100 years 
of knowledge. On the other hand, the need for faster informa-
tion with environmental care has taken research to find other 
technologies. Since many soil attributes have strong relation-
ship with spectra, their quantification using chemometric tech-
niques constitutes one of the main goals of SS analysis. Since 
the pioneering work of Schreier (1977), who made quantitative 
measurements of soil attributes from ground-to-space sensors, 
this line of research has evolved to more advanced methods 
including the NIRA method performed by Ben-Dor and Banin 
(1995a,b). However, SS still relies on wet chemistry analysis as 
the basic source of data and greatly benefits from existing data-
banks. Notably in the early part of this decade, soil attribute 
prediction using SS has been more important, and many papers 
were published on the quantification of several soil elements by 
SS, including N, Ca, Mg, K, P, Na, pH, clay, sand, silt, miner-
alogy, OM, carbon, carbonates, CEC, micronutrients, Fe2O3, 
Al2O3, heavy metals, and others, with prediction quality vary-
ing for different attributes. History shows how we are going 
forward on this task: Schreier (1977) used simple regression for 
each band, which evolved to the use of band depth (Clark et al., 
1990)—although with AVIRIS data; then we reached Coleman 
et al. (1991) using a multivariable analysis with selected bands; 
afterward using the reflexion inflexion difference (Nanni and 
Demattê, 2006a); until the use of all spectra with PLS method 
(Viscarra Rossel et al., 2006). Today, Vohland et al. (2014) raise 
the discussion about the effects of selected variables on the quan-
tification of soil attributes. Thus, papers indicate that discussion 
is still needed on this subject to reach the best results and are 
discussed in this section as summarized in Tables 24.2 (ground 
data) and 24.3 (aerial and space data).

24.5.2.1  Strategies for Ground Spectral Sensing

Soil properties assessment using spectroscopic approaches in 
UV–VIS–NIR–SWIR–MIR ranges (from 100 to 25,000  nm) 
has gained importance in the last 20 years (Ben-Dor, 2011). Soil 
properties with direct relation to the spectral signature have bet-
ter prediction performances, especially SOC, calcium carbon-
ate, clay content, clay mineralogy, Fe and Al oxides, and water 
content (Brown, 2007; Waiser et al, 2007; Morgan et al., 2009; 
Reeves III, 2010). Other soil chemical attributes, such as, pH, Ca, 
CEC, N (and all its forms), and Mg, have been predicted with 
variable accuracy. These properties are not directly related to 
the soil spectral response, that is, they do not cause absorption 
features, and their prediction depend on good correlations with 
spectrally active properties (Kuang et al., 2012).

The correlation between spectra and attributes is generally 
found using an array of mathematical and statistical procedures. 
Early in the use of spectroscopy for quantifying soil constitu-
ents, linear methods, such as stepwise multiple linear regression 
(MLR), principal components regression (PCR), and partial least 
squares regression (PLSR), were used. PCR and PLSR can deal 
with a large number of predictor variables that are highly collin-
ear (this is the case of spectral curves) (Varmuza and Filzmoser, 
2009). The PLSR provides better results than PCR and is by far 

the most used method for predicting soil properties; however, 
non-normal distributions of soil properties, for example, SOC, 
hinder the use of linear models like stepwise MLR and PLSR 
(Gobrecht et  al., 2014). Nonlinear modeling methods offer an 
alternative in these cases and include support vector machines 
(SVMs), regression trees (RTs) and its derivations, and artificial 
neural networks (ANNs). They are sometimes more complicated 
to interpret, but can deal with any nonnormal distributions, col-
linearities, and missing data better than linear methods (Brown 
et al., 2006; Viscarra Rossel and Behrens, 2010; Gobrecht et al., 
2014).

Usually, spectral preprocessing methods are applied to cor-
rect nonlinearities, measurement, and sample variations, and 
for noise reduction in spectra (Stenberg and Viscarra Rossel, 
2010). Examples of these approaches are transformation from 
reflectance (R) to log 1/R (absorbance), and the Kubelka–Munk 
transformation. Wavelet transformations have been used to 
reduce the number of variables in a multiple regression model 
and clarify interpretation of predictors, performing as well as 
PLSR (Ge et  al., 2007). Other pretreatments are suggested to 
mitigate scattering and path length variation between samples 
such as multiplicative scatter correction (Geladi et  al., 1985), 
standard normal variate transformation (Barnes et  al., 1989), 
smoothing, and first and second derivatives of spectra (Stenberg 
and Viscarra Rossel, 2010), including Savitzky–Golay transfor-
mation (Savitzky and Golay, 1964).

Because of its importance to the soil condition, hydrologic 
cycle (infiltration and water retention), and global C cycle, 
interest in estimating SOC with SS is very high. Bellon-Maurel 
and McBratney (2011) reviewed the spectroscopic prediction 
of SOC and its use in carbon stock evaluation; they concluded 
that MIR had better results than VIS–NIR. The difficulty is that 
MIR requires laborious sample preparation (soil ground and 
sieved at a 200 mesh, and sometimes diluted in KBr) and is not 
practical for field measurements (Reeves III, 2010). Some stud-
ies report predictions of SOC using spectroscopic techniques 
with rather large R2 (>0.90) (Stenberg et al., 2010; Kuang et al., 
2012; McDowell et  al., 2012). Gmur et  al. (2012) characterized 
soil attributes by spectral signature measurement with ground 
sensor using classification and RTs and obtained predictions of 
N (R2 0.91), carbonate (R2 0.95), total carbon (TC; R2 0.93), and 
OM (R2 0.98) in the soil.

Using classification and RT statistical methods, concentra-
tions of N (R2 0.91), carbonate (R2 0.95), TC (R2 0.93), and OM 
(R2 0.98) were obtained.

When evaluating the performance of these prediction mod-
els, it is important to analyze the geographical extent and the 
availability and independence of validation and calibration 
data (Bellon-Maurel and McBratney, 2011). Soriano-Disla et al. 
(2014) reviewed the performance of LSS and FSS for predict-
ing SOC. They concluded that overall MIR (20 studies) per-
formed better (coefficient of determination—R2—of 0.93) than 
NIR (23 studies; R2 of 0.85). Adding UV, VIS, or multiple com-
binations of wavelength ranges, that is, VIS–NIR, NIR–MIR, 
UV–VIS–NIR, or VIS–NIR–MIR, did not necessarily improve 
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Table 24.2  Summary of Revision Related with Quantification of Soil Attributes by Ground SS

Elementa 
Spectral 
Rangeb 

Element 
Rangec N. Cal. 

Cal. 
Scale 

R2 
RMSEP/RMSECV, 

SEP/SECV (%) 
References Range Median N Range Median N

A. Lab—dried
Clay (%) UV–Vis–

NIR
70–90 121–207 R/N 0.61–0.72 0.67 2 12.3,

8.9
12.3,
8.9

2 Islam et al. (2003) and Pirie et al. (2005)

Vis–NIR 70 to >90 457–4184 G 0.73–0.78 0.77 3 7.5–12 9.5 3 Brown et al. (2006), Ramirez-Lopez et al. (2013), Shepherd and Walsh 
(2002)

Vis–NIR 20 to >90 30 to >1000 R/N 0.02–0.91 0.78 22 2–8.5,
4.9–13.7

5.3,
7.8

26 Demattê and Garcia (1999), Nanni and Demattê (2006), Bricklemyer 
and Brown (2010), Chang et al. (2005), Curcio et al. (2013), Genot 
et al. (2011), Gogé et al. (2012, 2014), Islam et al. (2003), Kinoshita 
et al. (2012), Knadel et al. (2013), Ramirez-Lopez et al. (2013, 2014), 
Sankey et al. (2008), Stenberg (2010), Summers et al. (2011), Thomsen 
et al. (2009), Waiser et al. (2007), Vendrame et al. (2012), Viscarra 
Rossel and Behrens (2010), Viscarra Rossel et al. (2009), Viscarra 
Rossel and Lark (2009), Viscarra Rossel and Webster (2012)

Vis–NIR <5–80 16 to >100 F 0.39–0.82 0.70 11 0.36–6.3 1.8 11 Debaene et al. (2014), Mahmood et al. (2012), McCarty and Reeves 
(2006), Ramirez-Lopez et al. (2014), Wetterlind and Stenberg (2010)

NIR 30–90 35 to >400 R/N 0.50–0.94 0.71 10 3.9–16,
5–10.3

5.3,
8.6

11 Ben-Dor and Banin (1995a), Chang et al. (2001), Islam et al. (2003), 
Malley et al. (2000), Stenberg et al. (2002), Wang et al. (2013b), 
Waruru et al. (2014)

NIR 20–50 20–52 F 0.47–0.86 0.63 6 1.9–5.7 3.1 6 Igne et al. (2010), Sudduth et al. (2010), Wetterlind et al. (2008), 
Viscarra Rossel et al. (2006)

MIR 30 to >90 60–663 R/N 0.55–0.94 0.86 11 3.7–10.5 6.6 8 D’Acqui et al. (2010), Ge et al. (2014b), Janik et al. (2009), Janik and 
Skjemstad (1995), Minasny and McBratney (2008), Minasny et al. 
(2008, 2009), Pirie et al. (2005), Viscarra Rossel and Lark (2009)

MIR 20 116–209 F 0.67–0.77 0.70 3 1.6 to ~2 1.7 3 Igne et al. (2010), McCarty and Reeves (2006), Viscarra Rossel et al. (2006)
CEC (cmol 

kg−1)
UV–Vis–

NIR
13–97 49–205 R/N 0.47–0.64 0.52 3 1.3–5.8,

4.3
3.5,
4.3

3 Islam et al. (2003), Lu et al. (2013), Pirie et al. (2005)

Vis–NIR 55–165 740–4184 G 0.74–0.88 0.81 2 3.8–6.7 5.3 2 Brown et al. (2006), Shepherd and Walsh (2002)
Vis–NIR 14–92 94 to >2000 R/N 0.68–0.91 0.81 7 1–7.8,

3.9
2.1,
3.9

8 Chang et al. (2001), Dunn et al. (2002), Genú et al. (2011), Gogé et al. 
(2014), Islam et al. (2003), Kinoshita et al. (2012), Vendrame et al. 
(2012), Viscarra Rossel and Webster (2012)

Vis–NIR 16 50–299 F 0.73–0.83 0.78 2 1.4 1.4 3 van Groenigen et al. (2003), Nanni and Demattê (2006), Sudduth et al. 
(2010)

NIR 29–91 35–1100 R/N 0.64–0.73 0.69 4 9.6,
3.3–8.5

9.6,
4.1

4 Ben-Dor and Banin (1995b), Genot et al. (2011), Islam et al. (2003), 
Waruru et al. (2014)

NIR 2–7 49 F 0.13 0.13 1 1.04 1.04 1 Viscarra Rossel et al. (2006)
MIR 36–94 60–662 R/N 0.77–0.92 0.86 5 2–4.8 4.6 3 D’Acqui et al. (2010), Janik et al. (2009), Minasny and McBratney 

(2008), Minasny et al. (2008, 2009), Pirie et al. (2005)
MIR 5–16 50 F 0.34–0.56 0.45 2 0.9–2.1 1.5 2 van Groenigen et al. (2003), Viscarra Rossel et al. (2006)

OC (%) UV–Vis–
NIR

1–5 49–207 R/N 0.76–0.83 0.76 3 0.12–0.5,
0.44

0.31,
0.44

3 Islam et al. (2003), Lu et al. (2013), Pirie et al. (2005)

(Continued)
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Table 24.2 (Continued)  Summary of Revision Related with Quantification of Soil Attributes by Ground SS

Elementa 
Spectral 
Rangeb 

Element 
Rangec N. Cal. 

Cal. 
Scale 

R2 
RMSEP/RMSECV, 

SEP/SECV (%) 
References Range Median N Range Median N

Vis–NIR 2–33 <50 to >3,000 R/N 0.31–0.96 0.84 29 0.06–0.88,
0.28–2.94

0.35,
0.72

27 Bricklemyer and Brown (2010), Chang and Laird (2002), Conforti et al. 
(2013), Daniel et al. (2003), Deng et al. (2013), Doetterl et al. (2013), 
Dunn et al. (2002), Fystro (2002), Gogé et al. (2012, 2014), Kinoshita 
et al. (2012), Knadel et al. (2013), Liu and Liu (2013), Moron and 
Cozzolino (2002), Nocita et al. (2011), Ramirez-Lopez et al. (2013), 
Sankey et al. (2008), Stenberg (2010), Summers et al. (2011), Tian 
et al. (2013), Wang et al. (2013a), Viscarra Rossel and Behrens (2010), 
Viscarra Rossel and Lark (2009), Vohland and Emmerling (2011), 
Vohland et al. (2014)

Vis–NIR <1–14 25–287 F 0.12–0.99 0.75 15 0.07–1.6,
0.33

0.3,
0.33

20 Debaene et al. (2014), Fontan et al. (2011), He et al. (2007), Heinze 
et al. (2013), Kuang and Mouazen (2011), Kuang and Mouazen 
(2013b), McCarty and Reeves (2006), Wetterlind and Stenberg (2010), 
Yang et al. (2012)

NIR 2–60 39 to >2,000 R/N 0.45–0.99 0.83 21 0.14–0.83,
0.16–2.95

0.32,
0.61

21 Ben-Dor and Banin (1995b), Cambule et al. (2012), Chen et al. (2011), 
Dalal and Henry (1986), Dunn et al. (2002), Fidêncio et al. (2002), 
Genot et al. (2011), Islam et al. (2003), Malley et al. (2000), McCarty 
et al. (2002, 2010), Miltz and Don (2012), Nocita et al. (2011), 
Rabenarivo et al. (2013), Reeves et al. (2006), Stenberg et al. (2002), 
Todorova et al. (2009), Zornoza et al. (2008)

NIR 1–10 20–299 F 0.34–0.95 0.93 7 0.1–0.77 0.18 8 Reeves and McCarty (2001), Viscarra Rossel et al. (2006), Guerrero et al. 
(2014), Sudduth et al. (2010), Wetterlind et al. (2008), Xie et al. (2011)

MIR 3–8 87–1545 G 0.93–0.95 0.94 2 0.02–0.25 0.14 2 Bornemann et al. (2008), Kamau-Rewe et al. (2011)
MIR 2–30 31–560 R/N 0.77–0.98 0.93 14 0.11–0.61 0.35 13 D’Acqui et al. (2010), Ge et al. (2014b), Grinand et al. (2012), Janik and 

Skjemstad (1995), Masserschmidt et al. (1999), McCarty et al. (2002, 
2010), Minasny et al. (2009), Pirie et al. (2005), Rabenarivo et al. 
(2013), Reeves et al. (2006), Viscarra Rossel and Lark (2009), Vohland 
et al. (2014)

MIR 1–3 118–217 F 0.73–0.96 0.95 3 0.11–0.15,
0.67

0.14,
0.67

3 McCarty and Reeves (2006), Viscarra Rossel et al. (2006), Xie et al. 
(2011),

TC (%) Vis–NIR 2–55 30 to >400 R/N 0.66–0.95 0.88 6 0.02–2.8,
0.3

0.54,
0.3

6 Chang and Laird (2002), Chang et al. (2005), McDowell et al. (2012), 
Sørensen and Dalsgaard (2005), Thomsen et al. (2009), Vendrame 
et al. (2012)

Vis–NIR 1–17 16–429 F 0.01–0.93 0.76 11 0.16–1.1,
0.1

0.19,
0.1

10 Fontan et al. (2011), Kuang and Mouazen (2011), Mahmood et al. (2012), 
van Groenigen et al. (2003), Wetterlind et al. (2010), Yang et al. (2012)

NIR 4–5 83–91 G 0.85–0.94 0.90 2 0.35–0.41 0.38 2 Barthes et al. (2006), Brunet et al. (2007)
NIR 10–28 150 to >700 R/N 0.85–0.87 0.86 3 0.54–0.79 0.71 3 Chang et al. (2001), McCarty et al. (2002), Reeves et al. (2006)
NIR 1 209 F ~0.65 ~0.65 1 ~0.16 ~0.16 1 Igne et al. (2010)
MIR 10–50 56–660 R/N 0.79–0.97 0.95 7 0.24–2.28 0.34 7 Janik et al. (2009), Ludwig et al. (2008), McDowell et al. (2012), 

Minasny et al. (2008, 2009), Reeves et al. (2006), McCarty et al. 
(2002), Minasny and McBratney (2008)

MIR 1 50–209 F 0.01 to ~0.85 0.43 2 ~0.1 ~0.1 1 Igne et al. (2010), van Groenigen et al. (2003)
(Continued)
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Table 24.2 (Continued)  Summary of Revision Related with Quantification of Soil Attributes by Ground SS

Elementa 
Spectral 
Rangeb 

Element 
Rangec N. Cal. 

Cal. 
Scale 

R2 
RMSEP/RMSECV, 

SEP/SECV (%) 
References Range Median N Range Median N

IC (%) Vis–NIR 13 4184 G 0.83 0.83 1 0.62 0.62 1 Brown et al. (2006)
Vis–NIR 3–4 76–86 R/N 0.96–0.98 0.97 2 0.15–0.19 0.17 2 Chang and Laird (2002), Chang et al. (2005)
Vis–NIR 1–2 90–492 F 0.53–0.95 0.74 2 0.08,

0.15
0.08,
0.15

2 Fontan et al. (2011), Yang et al. (2012)

NIR 7 177 R/N 0.87 0.87 1 0.31 0.31 1 McCarty et al. (2002)
MIR 7–10 60–418 R/N 0.82–0.97 0.96 6 0.02–0.42,

0.28
0.12,
0.28

6 D’Acqui et al. (2010), Ge et al. (2014b), Grinand et al. (2012), McCarty 
et al. (2002), Reeves et al. (2006)

B. Lab—field moist
Clay (%) Vis–NIR 40–90 187–2000 R/N 0.76–0.77 0.77 2 5.25 9 2 Chang et al. (2005), Ge et al. (2014a)

MIR 20 209 F ~0.7 ~0.7 1 ~2 ~2 1 Igne et al. (2010)
OC (%) Vis–NIR 3–9 75–2000 R/N 0.53–0.94 0.86 6 0.38–0.73,

0.15–0.67
0.68,
0.41

6 Chang et al. (2005), Fystro (2002), Ge et al. (2014a), Mouazen et al. 
(2007, 2010), Terhoeven-Urselmans et al. (2008)

Vis–NIR 1–7 47–104 F 0.58–0.82 0.72 4 0.2–1.7 1.23 9 Kuang and Mouazen (2012), Kuang and Mouazen (2013b)
TC (%) Vis–NIR 4 162 R/N 0.85 0.85 1 0.42 0.42 1 Chang et al. (2005)

MIR 1 209 F ~0.6 ~0.6 1 ~0.15 ~0.15 1 Igne et al. (2010)

C. In field (including at site and on-the-go measurements)
Clay (%) Vis–NIR 40–60 311 to >1000 R/N 0.17–0.83 0.78 3 6.1–7.9,

9.0
7.0,
9.0

3 Bricklemyer and Brown (2010), Waiser et al. (2007), Viscarra Rossel 
et al. (2009)

Vis–NIR 20 209 F ~0.7 ~0.7 1 ~2 ~2 1 Igne et al. (2010)
Gamma 30–40 13–660 R/N 0.86 0.86 1 4–12 6 5 Petersen et al. (2012), van der Klooster et al. (2011)
Gamma <5–40 7–70 F 0.63–0.94 0.72 8 0.81–6.56 3.1 11 Mahmood et al. (2013), Piikki et al. (2013), Priori et al. (2014), Taylor 

et al. (2010), van der Klooster et al. (2011), van Egmond et al. (2010), 
Viscarra Rossel et al. (2009)

OC (%) Vis–NIR 2–11 28–765 R/N 0.0–0.91 0.84 7 0.31–1.16,
0.35

0.42,
0.35

6 Gomez et al. (2008b), Gras et al. (2014), Kusumo et al. (2008), 
Bricklemyer and Brown (2010), Daniel et al. (2003), Denis et al. 
(2014), Nocita et al. (2011)

Vis–NIR 1–37 15 to >400 F 0.65–0.90 0.75 3 0.07–7.15,
0.56

1.74,
0.56

8 Knadel et al. (2011), Kuang and Mouazen (2013a, b), Reeves et al. 
(2010), Wijaya et al. (2001)

NIR 2–3 24–120 R/N 0.53–0.86 0.74 4 0.18–0.52,
0.42–0.53

0.36,
0.48

5 Christy (2008), Cozzolino et al. (2013), McCarty et al. (2010), Nocita 
et al. (2011), Sudduth and Hummel (1993)

NIR 1–3 11–216 F 0.61–0.95 0.82 4 0.09–0.27 0.18 4 Kweon and Maxton (2013), Reeves et al. (2010), Schirrmann et al. 
(2012)

TC (%) Vis–NIR 1–3 38–209 F ~0.6–0.89 0.86 3 0.16–0.19 0.16 3 Igne et al. (2010), Kodaira and Shibusawa (2013), Kusumo et al. (2011)
NIR 1–2 45–78 F 0.46–0.68 0.57 2 0.15–0.48 0.18 2 Huang et al. (2007), Munoz and Kravchenko (2011)

a	CEC, cation exchangeable capacity; OC, organic carbon; IC, inorganic carbon; TC, total carbon.
b	The exact spectral range in the individual studies may deviate to some extent but will stay within ranges as described later.
c	 This is included to give an idea of the variation in the element range (i.e., clay content) in the studies used to calculate the prediction statistics since this has a large impact on the prediction statistics. The 

individual ranges are presented as percentage units, and “element range” in the table is the range of these for the studies used.
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Table 24.3  Summary of Revision Related to Quantification of Soil Attributes by Aerial and Orbital Sensors

Soil Properties Sensor 
Nr. Samples 

(Total/Validation) 
Modeling 
Approach Validation 

Validation/Calibration Results 

References R2 (P)/R2 (CV) RMSEP/RMSECV SEP/SECV

Multispectral
SOC ATLASa 31–40 MLR — 0.63–0.91 0.11%–0.22% — Chen et al. (2008)

SPOTb 10–11/17–27 MLR Pred. 0.55–0.72 4.06–6.57 g kg−1 — Vaudour et al. (2013)
OM LANDSAT 5b 378/95 MLR Pred. 0.41 — — Fiorio et al. (2010)

LANDSAT 5b 184 MLR — 0.561 — — Nanni and 
Demattê (2006a)

LANDSAT 5b 164 LR — 0.79 1.5 g kg−1 — Dogan and Kılıç 
(2013)

LANDSAT 7b 110/155 MLR Pred. 0.27 — — Demattê et al. 
(2007a)

Total carbon IKONOSb 144–222/14–24 MLR Pred. 0.11–0.61 0.11%–0.24% — Sullivan et al. (2005)
LANDSAT 7b 78 MLR Jackknifing (10-fold) 0.33–0.46 0.27%–0.25% — Huang et al. (2007)

Total N LANDSAT 7b 164 LR — 0.612 — 0.06% Dogan and Kılıç 
(2013)

Clay LANDSAT 5b 378/95 MLR Pred. 0.61 — — Fiorio et al. (2010)
LANDSAT 5b 184 MLR — 0.675 — — Nanni and 

Demattê (2006a)
LANDSAT 7b 110/155 MLR Pred. 0.63 — — Demattê et al. 

(2007a)
Sand LANDSAT 5b 378/95 MLR Pred. 0.63 — — Fiorio et al. (2010)

LANDSAT 5b 184 MLR — 0.525 — — Nanni and 
Demattê (2006a)

LANDSAT 7b 110/155 MLR Pred. 0.67 — — Demattê et al. 
(2007a)

ASTERb 22/5 ER Pred. 0.63 19.33 g kg−1 — Breunig et al. (2008)
Silt LANDSAT 5b 378/95 MLR Pred. 0.54 — — Fiorio et al. (2010)

LANDSAT 5b 184 MLR — 0.508 — — Nanni and 
Demattê (2006a)

LANDSAT 7b 110/155 MLR Pred. 0.29 — — Demattê et al. 
(2007a)

CEC LANDSAT 5b 378/95 MLR Pred. 0.45 — — Fiorio et al. (2010)
LANDSAT 5b 184 MLR — 0.551 — — Nanni and 

Demattê (2006a)
LANDSAT 7b 44 MLR — 0.57 — — Ghaemi et al. (2013)
LANDSAT 7b 110/155 MLR Pred. 0.26 — — Demattê et al. 

(2007a)
LANDSAT 5b 113 MLR-RK/RT/

GAM-RK/KED
Jackknifing (100-fold) — 6.48–5.53/7.27/ 

6.94–6.18/5.41 
cmolc kg−1

— Bishop and 
McBratney (2001)

(Continued)

©
 2016 T

aylor &
 F

rancis G
roup, L

L
C

  



681
Spectral Sen

sin
g from

 G
rou

n
d

 to Space in
 Soil Scien

ce

Table 24.3 (Continued)  Summary of Revision Related to Quantification of Soil Attributes by Aerial and Orbital Sensors

Soil Properties Sensor 
Nr. Samples 

(Total/Validation) 
Modeling 
Approach Validation 

Validation/Calibration Results 

References R2 (P)/R2 (CV) RMSEP/RMSECV SEP/SECV

Fe2O3 (total) LANDSAT 5b 184 MLR — 0.725 — — Nanni and Demattê 
(2006a)

SiO2 — 0.598 — 0.60%
TiO2 — 0.727 — —
CaCO3 LANDSAT 7b 164 LR — 0.716 — — Dogan and Kılıç 

(2013)
pH LANDSAT 7b 164 LR — 0.659 — 0.3 Dogan and Kılıç 

(2013)
Total P LANDSAT 7b 111 MLR/CK/RK CV 0.46/−/− — 356.1/279.2/238.8 mg kg−1 Rivero et al. (2007)

ASTERb 111 MLR/CK/RK CV 0.39/−/− — 281.8/238.2/200.1 mg kg−1

K LANDSAT 7b 110/155 MLR Pred. 0.11 — — Demattê et al. (2007a)
Ca LANDSAT 7b 110/155 MLR Pred. 0.13 — — Demattê et al. (2007a)
Mg LANDSAT 7b 110/155 MLR Pred. 0.19 — — Demattê et al. (2007a)
H + Al LANDSAT 7b 110/155 MLR Pred. 0.18 — — Demattê et al. (2007a)
Basis (CEC 

saturation)
LANDSAT 5b 378/95 MLR Pred. 0.01 — — Fiorio et al. (2010)

LANDSAT 7b 110/155 MLR Pred. 0.21 — — Demattê et al. (2007a)
Al (CEC 

saturation)
LANDSAT 5b 378/95 MLR Pred. 0.13 — — Fiorio et al. (2010)

EC LANDSAT 7b 164 LR — 0.498 — 131.3 Dogan and Kılıç 
(2013)

Hyperspectral
SOC AHS-160a 68/16 PLSR Pred. 0.53/0.75 2.42/1.18 g kg−1 — Bartholomeus et al. 

(2011)
CHRIS-

PROBAb
72/24 RK/PLSR/

PLSR-K
Pred. — 1.06–1.16 g kg−1 — Casa et al. (2013a)

AHS-160a 88–91 PLSR CV (LOO) 0.93–0.96 3.68–4.9 g kg−1 — Denis et al. (2014)
AVNIRa 321 MLR — 0.2692 0.081% — De Tar et al. (2008)
HyMapa 67/29 PLSR Pred. 0.71 — 2.07/1.64 g kg−1 Gerighausen et al. 

(2012)
EO-1 

Hyperionb
72 PLSR CV (LOO) 0.51 0.73% — Gomez et al. (2008b)

HyMapa 95 PLSR CV (LOO) 0.02 2.6 g kg−1 — Gomez et al. (2012)
HyMapa 204 PLSR CV (LOO) and Pred. 0.83 1.10/1.05 g kg−1 — Hbirkou et al. (2012)
SpecTIRa 269 PLSR CV (LOO) 0.65 0.0019 — Hively et al. (2011)
EO-1 

Hyperionb
49/14 PLSR/MLR CV (LOO—PLSR)/CV 

(LOO—MLR) and 
Pred. (MLR)

0.63 (PLSR)/0.50 
(P—MLR)/0.63 
(CV—MLR)

1.6 g kg−1 (PLSR) — Lu et al. (2013)

HyMapa 72 PLSR/MLR CV (LOO) 0.90 (PLSR)/0.86 
(MLR)

0.29% 
(PLSR)/0.22% 
(MLR)

— Selige et al. (2006)

(Continued)
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Table 24.3 (Continued)  Summary of Revision Related to Quantification of Soil Attributes by Aerial and Orbital Sensors

Soil Properties Sensor 
Nr. Samples 

(Total/Validation) 
Modeling 
Approach Validation 

Validation/Calibration Results 

References R2 (P)/R2 (CV) RMSEP/RMSECV SEP/SECV

CASIa 227/57 PLSR Pred. 0.85 — 5.1/4.8 g kg−1 Stevens et al. (2006)

AHS-160a 197/102 PLSR Pred. 0.86/0.89 3.56/3.01 g kg−1 — Stevens et al. (2010)c

188/101 PSR Pred. 0.88/0.91 3.20/2.54 g kg−1 —
201/101 SVMR Pred. 0.84/0.99 4.20/0.43 g kg−1 —

AHS-160a 400/126 PLSR/PSR/
SVMR

Pred. 0.56–0.73/0.85–0.98 4.74–6.11/1.37–
3.45 g kg−1

— Stevens et al. 
(2012)c

CASIa 47 MLR-PCA/
ANN-PCA

CV (10-fold CV) 0.745 (MLR)/0.590 
(ANN)

0.49% (MLR)/ 
0.592% (ANN)

— Uno et al. (2005)

EO-1 
Hyperionb

28/08 PLSR Pred. 0.48/0.56 0.33%/0.43% — Zhang et al. (2013)

OM DAIS-7915a 62 MLR Pred. 0.827 — 0.015%/0.003% Ben-Dor et al. (2002)
AVNIRa 321 MLR — 0.4857 0.08% — De Tar et al. (2008)
SpecTIRa 269 PLSR CV (LOO) 0.75 0.4% — Hively et al. (2011)
EO-1 

Hyperionb
28/08 PLSR Pred. 0.74/0.72 0.66%/0.72% — Zhang et al. (2013)

POM EO-1 
Hyperionb

18 PLSR CV (LOO) 0.67 4.56% — Anne et al. (2014)
MAOM 0.74 2.450% —
Labile C 0.93 6.72 mg g−1 —
Stable C 0.71 31.51 mg g−1 —
N total CHRIS-

PROBAb
73/24 RK/PLSR/

PLSR-K
Pred. — 0.144–0.139 g kg−1 — Casa et al. (2013a)

HyMapa 72 PLSR/MLR CV (LOO) 0.92/0.87 0.03%/0.02% — Selige et al. (2006)
EO-1 

Hyperionb
28/08 PLSR Pred. 0.70/0.63 0.032%/0.033% — Zhang et al. (2013)

Labile N EO-1 
Hyperionb

18 PLSR CV (LOO) 0.96 0.34 mg g−1 — Anne et al. (2014)

Stable N 0.69 2.58 mg g−1 —
Clay MIVISa 80/29 PLSR Pred. 0.48 7.20% — Casa et al. (2013b)

CHRIS-PROBAb 0.52 6.87% —
CHRIS-PROBAb 132/44 RK/PLSR/PLSR-K Pred. — 5.33%–5.82% — Casa et al. (2013a)
AVNIRa 321 MLR — 0.6708 3.23% — De Tar et al. (2008)
SIM-GAa 40/11 Regression with 

band depth 
(2210 nm)

Pred. 0.5994 — — Garfagnoli et al. 
(2013)

HyMapa 67/29 PLSR Pred. 0.85 — 19.41/20.34 g kg−1 Gerighausen et al. 
(2012)

HyMapa 52 PLSR CV (LOO) 0.64 49.60 g kg−1 — Gomez et al. (2008a)
HyMapa 95 PLSR CV (LOO) 0.67 42.15 g kg−1 — Gomez et al. (2012)

(Continued)
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Table 24.3 (Continued)  Summary of Revision Related to Quantification of Soil Attributes by Aerial and Orbital Sensors

Soil Properties Sensor 
Nr. Samples 

(Total/Validation) 
Modeling 
Approach Validation 

Validation/Calibration Results 

References R2 (P)/R2 (CV) RMSEP/RMSECV SEP/SECV

SpecTIRa 269 PLSR CV (LOO) 0.66 2.2% — Hively et al. (2011)
HyMapa 33 Regression with 

CR data 
(2206 nm)

CV (LOO) 0.61 54 g kg−1 — Lagacherie et al. 
(2008)19 0.60 130 g kg−1 —

33 + 19 0.58 82 g kg−1 —
AISA-Dual
Vis–NIRa

152/30 PLSR/RTs CV (LOO) and Pred. 0.81/0.78/0.78/0.77 87/67/93/69 g kg−1 — Lagacherie et al. 
(2013)

HyMapa 72 PLSR/MLR CV (LOO) 0.71/0.65 4.2%/3.8% — Selige et al. (2006)
EO-1 

Hyperionb
28/08 PLSR Pred. 0.51/0.83 5.46%/2.21% — Zhang et al. (2013)

Sand EO-1 
Hyperionb

18 PLSR CV (LOO) 0.58 7.02% — Anne et al. (2014)

MIVISa 80/29 PLSR Pred. 0.64 7.82% — Casa et al. (2013b)
CHRIS-

PROBAb
0.45 9.32% —

CHRIS-
PROBAb

132/44 RK/PLSR/
PLSR-K

Pred. — 6.80%–7.40% — Casa et al. (2013a)

AVNIRa 321 MLR — 0.8063 4.83% — De Tar et al. (2008)
HyMapa 95 PLSR CV (LOO) 0.20 90.47 g kg−1 — Gomez et al. (2012)
SpecTIRa 269 PLSR CV (LOO) 0.79 7.9% — Hively et al. (2011)
AISA-Dual
Vis–NIRa

152/30 PLSR/regression 
trees

CV (LOO) and Pred. 0.75/0.83/ 0.78/0.77 119/97/111/107 g 
kg−1

— Lagacherie et al. 
(2013)

HyMapa 72 PLSR/MLR CV (LOO) 0.95/0.87 9.7%/12.9% — Selige et al. (2006)
Silt MIVISa 80/29 PLSR Pred. 0.32 3.28% — Casa et al. (2013b)

CHRIS-
PROBAb

0.23 3.43% —

CHRIS-
PROBAb

132/44 RK/PLSR/
PLSR-K

Pred. — 3.12%–3.67% — Casa et al. (2013a)

AVNIRa 321 MLR — 0.7518 3.34% — De Tar et al. (2008)
HyMapa 95 PLSR CV (LOO) 0.17 74.84 g kg−1 — Gomez et al. (2012)
SpecTIRa 269 PLSR CV (LOO) 0.79 6.9% — Hively et al. (2011)

Silt + clay EO-1 
Hyperionb

18 PLSR CV (LOO) 0.82 1.95% — Anne et al. (2014)

Soil moisture 
(gravimetric)

EO-1 
Hyperionb

18 PLSR CV (LOO) 0.82 3.02% — Anne et al. (2014)

DAIS-7915a 62 MLR Pred. 0.645 — 0.14%/0.045% Ben-Dor et al. (2002)
HyMapa 205 Linear regression 

with NSMI 
index

— 0.82 2.30% — Haubrock et al. 
(2008a,b)

EO-1 
Hyperionb

28/08 PLSR Pred. 0.40/0.79 5.12%/3.13% — Zhang et al. (2013)

(Continued)
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Table 24.3 (Continued)  Summary of Revision Related to Quantification of Soil Attributes by Aerial and Orbital Sensors

Soil Properties Sensor 
Nr. Samples 

(Total/Validation) 
Modeling 
Approach Validation 

Validation/Calibration Results 

References R2 (P)/R2 (CV) RMSEP/RMSECV SEP/SECV

Saturated soil 
moisture 
(gravimetric)

DAIS-7915a 62 MLR Pred. 0.759 — 0.021%/0.019% Ben-Dor et al. (2002)
AVNIRa 321 MLR — 0.4859 3.07% — De Tar et al. (2008)

Available soil 
water

CHRIS-
PROBAb

132/44 RK/PLSR/
PLSR-K

Pred. — 2.50%–2.79% — Casa et al. (2013a)

Iron oxides ROSISa 35/16 Redness index Pred. — — 4.97%–10.59%/4.38%–
11.39%

Bartholomeus et al. 
(2007)d

Spectral feature 
area (550 nm)

— — 5.73%–9.08%/6.41%–
7.26%

Standard 
deviation after 
CR

— — 5.79%–7.71%/6.39%–
6.43%

HyMapa 95 PLSR CV (LOO) 0.78 0.28 g 100g−1 — Gomez et al. 
(2012)

Fe2O3 (total) AVIRISa 22 Regression with 
band depth 
(1710 nm)

— 0.83 — — Galvão et al. (2001)
TiO2 — 0.74 — —

Al2O3 Regression with 
band depth 
(2200 nm)

— 0.68 — —

CaCO3 HyMapa 52 PLSR CV (LOO) 0.77 76.67 g kg−1 — Gomez et al. (2008a)
HyMapa 95 PLSR CV (LOO) 0.76 64.32 g kg−1 — Gomez et al. (2012)
HyMapa 33 Regression with 

CR data 
(2341 nm)

CV (LOO) 0.59 113 g kg−1 — Lagacherie et al. 
(2008)19 0.61 133 g kg−1 —

33 + 19 0.47 132 g kg−1 —
RCGb HyMapa 30 Spectral index — 0.75 — — Baptista et al. (2011)
CEC HyMapa 95 PLSR CV (LOO) 0.62 1.84 cmolc kg−1 — Gomez et al. (2012)

AISA-Dual
Vis–NIRa

147/30 PLSR/RT CV (LOO) and Pred. 0.71/0.79/0.72/0.79 4.6/3.3/4.6/3.4 
Meq 100 g−1

— Lagacherie et al. 
(2013)

EO-1 
Hyperionb

49 PLSR CV (LOO) 0.40 1.55 cmolc kg−1 — Lu et al. (2013)

pH DAIS-7915a 62 MLR Pred. 0.528 — 0.26/0.146 Ben-Dor et al. (2002)
AVNIRa 321 MLR — 0.6164 0.076 — De Tar et al. (2008)
HyMapa 95 PLSR CV (LOO) 0.31 0.37 — Gomez et al. (2012)
SpecTIRa 269 PLSR CV (LOO) 0.51 0.40 — Hively et al. (2011)

(Continued)
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Table 24.3 (Continued)  Summary of Revision Related to Quantification of Soil Attributes by Aerial and Orbital Sensors

Soil Properties Sensor 
Nr. Samples 

(Total/Validation) 
Modeling 
Approach Validation 

Validation/Calibration Results 

References R2 (P)/R2 (CV) RMSEP/RMSECV SEP/SECV

EO-1 
Hyperionb

49/14 PLSR/MLR CV (LOO—PLSR)/CV 
(LOO—MLR) and 
Pred. (MLR)

0.68 (PLSR)/0.65 
(P—MLR)/0.83 
(CV—MLR)

0.19 (PLSR) — Lu et al. (2013)

Extractable P AVNIRa 321 MLR — 0.6975 4.32 mg kg−1 — De Tar et al. (2008)
Total P EO-1 

Hyperionb
49/14 PLSR/MLR CV (LOO—PLSR)/CV 

(LOO—MLR) and 
Pred. (Indep. 
data—MLR)

0.62 (PLSR)/ 0.54 
(P—MLR)/0.74 
(CV—MLR)

0.2 g kg−1 (PLSR) — Lu et al. (2013)

EO-1 
Hyperionb

28/08 PLSR Pred. 0.25/0.44 176.67/141.86 
mg kg−1

— Zhang et al. (2013)

K AVNIRa 321 MLR — 0.6391 45.03 mg kg−1 — De Tar et al. (2008)
SpecTIRa 269 PLSR CV (LOO) 0.59 89.5 mg kg−1 — Hively et al. (2011)

Ca AVNIRa 321 MLR — 0.6188 9.51 meq L−1 — De Tar et al. (2008)
SpecTIRa 269 PLSR CV (LOO) 0.69 166.1 mg kg−1 — Hively et al. (2011)

Mg AVNIRa 321 MLR — 0.582 4.32 meq L−1 — De Tar et al. (2008)
SpecTIRa 269 PLSR CV (LOO) 0.69 50.3 mg kg−1 — Hively et al. (2011)

Na AVNIRa 321 MLR — 0.6224 9.11 meq L−1 — De Tar et al. (2008)
Al SpecTIRa 269 PLSR CV (LOO) 0.76 104.7 mg kg−1 — Hively et al. (2011)
Mn SpecTIRa 269 PLSR CV (LOO) 0.62 19.6 mg kg−1 — Hively et al. (2011)
Zn SpecTIRa 269 PLSR CV (LOO) 0.64 1.4 mg kg−1 — Hively et al. (2011)
Cl AVNIRa 321 MLR — 0.7376 12.24 meq L−1 — De Tar et al. (2008)
Fe SpecTIRa 269 PLSR CV (LOO) 0.75 49.3 mg kg−1 — Hively et al. (2011)
EC DAIS-7915a 62 MLR Pred. 0.665 — 4.58/4.36 ms cm−1 Ben-Dor et al. (2002)

CHRIS-
PROBAb

74/24 RK/PLSR/
PLSR-K

Pred. — 123.74–129.6 
µS cm−1

— Casa et al. (2013a)

AVNIRa 321 MLR — 0.6696 1.96 dS m−1 — De Tar et al. (2008)
Bulk density EO-1 

Hyperionb
18 PLSR CV (LOO) 0.82 0.03 g cm−3 — Anne et al. (2014)

CK, CoKriging; CR, continuum removed; KED, kriging with external drift; MAOM, mineral-associated organic matter; NSMI, normalized soil moisture index; PLSR-K, PLSR with kriging interpolation; 
POM, particulate organic matter; PSR, penalized-spline signal regression; RCGb, Index related to soil weathering; RK, regression-kriging; RT, regression trees; SVMR, support vector machine regression.

a	Airborne sensor.
b	Orbital sensor.
c	 These results concern models fitted locally using soil types to stratify the area.
d	Quantifications were done using linear regression approach, and indices as predictive variables.
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prediction accuracy. The UV range has been used for SOM pre-
diction because it allows the detection of any molecule with 
alternating double and single bonds (Schulthess, 2011).

Nitrogen is part of SOM, relating to SOC, since the absolute 
majority of this element is in the form of organic N at a C:N rate 
of about 10:1 in SOM. Organic N has specific absorption fea-
tures, such as those originated by amide groups, although these 
features are expected to be very weak due to the very low N con-
tent in soil (generally below 1%) (Stenberg et al., 2010). Thus, N 
may be better predicted based on a correlation with spectrally 
active soil components, such as SOC. Mean R2 values for predic-
tions of total N in various soil studies were about 0.9 using MIR 
and 0.86 using VIS–NIR (Soriano-Disla et al., 2014).

Prediction of soil particle fractions (clay, silt, and sand con-
tents) using spectroscopic techniques is reported as feasible in 
literature. Soil texture is especially related to the mineralogical 
composition of soils, mainly of clay minerals and the quartz 
content, and thus it directly influences the soil spectra. Indeed 
Araújo et  al. (2014a) indicated that when a SL was clustered 
into smaller datasets based on mineralogy and geology prior 
to model calibration, the R2 value increased. Mean values of 
R2 for clay and sand predictions, in validations datasets, using 
MIR (0.80 and 0.83, considering 14 and 11 studies, respectively) 
were almost equivalent for those obtained using VIS–NIR wave-
lengths (Soriano-Disla et al., 2014).

Another physical soil property of interest in spectroscopy is 
soil moisture. Different forms of water in soil (hydration, hygro-
scopic, and free water) are all active regarding electromagnetic 
energy absorption (Ben-Dor, 2011). In a given area, water (soil 
moisture) is related with quartz, clay minerals, and SOM, which 
are also spectrally active soil properties (Kuang et al., 2012). In 
general, Soriano-Disla et al. (2014) reported mean R2 values for 
volumetric water content predictions of 0.89 for UV–VIS–NIR, 
0.86 for NIR and VIS–NIR, and 0.83 for MIR wavelength ranges. 
The most important wavelengths for predicting soil water are 
1350–1450, 1890–1990, and 2220–2280  nm (Zhu et  al., 2010). 
Table 24.1 indicates the relation of these and other wavebands 
with respective soil attributes.

Iron and aluminum oxides, hydroxides, and oxi-hydroxides 
(most commonly hematite, goethite, and gibbsite) together with 
clay minerals (kaolinite, illite, and smectites) originate the main 
absorption features in the VIS–NIR range (Ben-Dor, 2011). 
Vendrame et  al. (2012) predicted kaolinite, gibbsite, goethite, 
and hematite contents, measured by the sulfuric acid method, for 
Brazilian soils, using radiometric data in the NIR, and obtained 
R2 of 0.83, 0.78, 0.56, and 0.60, respectively. Sellito et al. (2009) 
reported R2 values of 0.46 and 0.80 for goethite and hematite pre-
diction in soils using a simple spectral band depth calculation in 
the VIS range, as corroborated by a similar method performed 
by Richter et  al. (2009) for iron oxides. Summers et  al. (2011) 
quantified carbonate and iron oxide contents through VIS–NIR 
and obtained R2 values of 0.66 and 0.61, respectively.

An important soil property that affects soil fertility and soil 
management is CEC, which in most cases have good prediction 
models, with reported mean R2 values of 0.85, 0.81, and 0.84 

for MIR, NIR, and VIS–NIR, considering 13, 9, and 8 studies, 
respectively (Soriano-Disla et  al., 2014). Plant nutrients (Ca, 
Mg, K, and P) do not present absorption features in UV–VIS–
NIR–MIR, except when these elements are present as constitu-
ents in molecular groups (Kuang et  al., 2012). For predictions 
of exchangeable Ca content, mean R2 values of 0.82, 0.75, and 
0.80 were reported considering MIR, NIR, and VIS–NIR ranges 
in 8, 11, and 7 studies, respectively, with similar trends for Mg 
(Soriano-Disla et al., 2014). On the other hand, highly weathered 
soils from the tropics usually have very low carbonate and Ca 
contents, which can explain the low values obtained by Nanni 
and Demattê (2006a). Predictions of exchangeable K are gener-
ally less accurate (Kuang et al., 2012; Soriano-Disla et al., 2014). 
Inaccurate predictions are reported, in most cases, for available 
P content in soils, with mean R2 of 0.35, 0.48, and 0.49 for MIR, 
NIR, and VIS–NIR, respectively (Soriano-Disla et al., 2014).

Predictions of soil pH depend mainly on correlation with 
spectrally active attributes, such as SOM and clay content. An 
important aspect to be considered is that soil acidity can be 
developed from different sources (organic or inorganic), gen-
erating instabilities in models created over large soil variabili-
ties or geographical areas (Stenberg and Viscarra Rossel, 2010). 
Despite this, relatively accurate results have been reported with 
mean R2 values as great as 0.79 (VIS–NIR) considering 18, 21, 
and 15 studies for MIR, NIR, and VIS–NIR wavelengths, respec-
tively (Soriano-Disla et al., 2014).

Despite the indications of papers in this section, Table 24.2 
aggregates more information about the subject. The quantifica-
tion of clay, CEC, OC, IC, and TC certainly has strong results. 
In laboratory conditions, we observe average of R2 between 0.67 
and 0.78 depending on the scale of the work and with low error 
(RMSEP/RMSECV, SEP/SECV). In this exploratory evaluation, 
we found 25 papers with regional or national focus, and only 3 
for global scale. Despite this, the global scale reached 0.77 of R2 
very similar to the regional or national, with less or more num-
ber of samples. This shows that number of samples, although 
important, is not a prerogative, if global or regional, but the rep-
resentation of the distribution. Anyway, all results indicate the 
feasibility and repeatable strong results on the quantification of 
clay in laboratory conditions.

It is important to observe that there are much more works 
related with VIS–NIR (about 58 in this revision) and only 11 
with MIR. Similar differences are observed for the other ele-
ments. This is mostly due to the lack of MIR equipments (Stark 
et al., 1986) and the difficulty on use them (Reeves III, 2010). On 
the other hand, the results reached with MIR are higher than 
VIS–NIR, going from an average of 0.71–0.78 of R2, where MIR 
reached a maximum of 0.86. For CEC, we go from a maximum 
of 0.81 in VIS–NIR to 0.86 in MIR. For organic C, the differ-
ences are even more important, where we have an R2 range of 
0.75–0.93 and 0.93–0.95 for VIS–NIR and MIR, respectively. 
Thus, although not so great, in laboratory conditions, MIR pres-
ents better results than VIS–NIR. In an important approach, 
Viscarra Rossel et  al. (2010) performed thematic maps of iron 
oxides and color by spectra information of all Australia.
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24.5.2.2  Strategies for Space Spectral Sensing

Evaluating soils from aerial or orbital sensor is certainly a dif-
ficult but interesting task. Imagine trying to seek a soil property 
such as SOM with a sensor about 1–800 km away from the target! 
There are numerous factors interfering on the signal. Despite the 
challenge, new methods of atmospheric correction and sensors 
provide the possibility of improving current results. The key 
for detecting reliable soil attribute information from a pixel is 
directly related to the correct detection of areas of bare soil in 
the image. Opportunities for further research are plentiful; there 
are still issues to be studied, such as the alterations of soils due 
to agricultural management and contamination. Despite these, 
this section describes several works with this approach, and they 
are summarized in Table 24.3.

A considerable amount of studies have evaluated the use 
of multispectral data to predict soil properties. Sullivan et  al. 
(2005) evaluated high-spatial-resolution IKONOS multispec-
tral reflectance data for successfully mapping soil properties in 
regions of Alabama. Chen et al. (2008) used the ATLAS sensor 
(2 m of spatial resolution and 8 bands in the VIS–NIR–SWIR) 
data to predict SOC, reporting an R2 of 0.63 and root mean 
square error (RMSE) of 0.22%. Löhrer et al. (2013) identified and 
mapped mineralogical composition of Pleistocene sediments 
using ASTER and SPOT-5 images associated with spectral labo-
ratory, obtaining good results.

Several studies in the tropics were successful in quantifying 
soil properties using a technique to detect bare soil (Demattê 
et  al., 2009a—see Section 24.7). An average R2 of 0.67 was 
obtained for clay content estimation using MLR (Demattê and 
Nanni, 2003; Demattê et al., 2005; Nanni and Demattê, 2006a, 
b; Fiorio et  al., 2010). Using the same methodology, Demattê 
et  al. (2007a) studied pixels with two different information of 
soils with a high variance on texture and reached a value of 0.86 
R2 for clay. Using Landsat, Demattê et  al. (2009b) and Fiorio 
and Demattê (2009) predicted clay, Al2O3, Fe2O3, and weather-
ing indicators, Ki, SiO2, and TiO2, with similar R2 values of 0.61, 
0.68, 0.67, 0.54, 0.65, and 0.72, respectively. To monitor the spa-
tial variation of CEC, Ghaemi et  al. (2013) developed a model 
based on Landsat ETM data in a semiarid area in the Neyshabur 
Province, Iran, where the model correctly classified the spatial 
variation of CEC in 45%–65% of the cases. Additionally with 
Landsat, Masoud (2014) predicted salt abundance in soils of 
an area in Burg Al-Arab, Egypt, using Landsat-based spectral 
mixture analysis (SMA) and soil spectroscopy, achieving an R2 
of 0.88. Still with Landsat, Dogan and Kiliç (2013) studied the 
relationship between soil variables and the Landsat seven bands 
using digital number (DN) values and found good correlation 
for pH, OM, CaCO3, and N with band 5.

Using ASTER with eight bands, Vicente and Souza Filho 
(2011) observed R2 of 0.65–0.79 between spectral signatures 
measured from soil samples and ASTER pixels to map kaolin-
ite and iron oxides using a mixture-tuned matched filtering 
(MTMF) approach. Similarly, Genú et  al. (2013a) combined 
ground and ASTER pixel reflectance with multiple endmember 

spectral mixture analysis (MESMA) for mapping SOM, reach-
ing a 60% agreement between them. As to aggregate all infor-
mation of ASTER, including its 2–14 μm range, Hewson et al. 
(2012) studied the sensor SL (SWIR and TIR spectral signature) 
to evaluate the spectral indices for composition and texture of 
natural soil samples.

Despite the multispectral data, hyperspectral has great 
importance due to the high number of bands. On the prediction 
of SOC, Gomez et al. (2008b) reported an R2 of 0.66, RMSE of 
0.61%, and residual prediction deviation (RPD) of 1.69 for labo-
ratory measurements, and an R2 of 0.51, RMSE of 0.73% and RPD 
of 1.43 for Hyperion data, while Hbirkou et al. (2012) reached 
0.83 of R2 with HyMap. Stevens et al. (2012) using the AHS-160 
hyperspectral sensor obtained high accuracy with R2 of 0.73 and 
RMSE of 4.7 g kg−1 applying a soil-type calibration strategy and 
PLSR to derive the prediction model for SOC contents. For N, 
Selige et al. (2006) reported similar performance for PLSR and 
MLR models, using HyMap data, to predict total N content, with 
R2 of 0.92 and RMSE of 0.03% for PLSR. Afterward, Zhang et al. 
(2013) also performed total N content quantification but used a 
Hyperion image and reported an R2 of 0.70.

The influence of soil particle distribution, for example, clay and 
sand, on spectra is great, and studies such as Selige et al. (2006) 
evaluated the potential of ASS (HyMap sensor) to predict these 
properties. The authors found R2 values of 0.71 and 0.95 for clay 
and sand contents, respectively. De Tar et  al. (2008) used MLR 
with AVNIR hyperspectral imagery (60 spectral bands from 
429 to 1010 nm) and reported R2 values of 0.81, 0.75, and 0.67 for 
sand, silt, and clay contents, respectively. Gomez et al. (2008a, 
2012) performed clay content quantification through HyMap 
sensor data and obtained R2 of 0.64 and 0.67, with RMSE of 49.6 
and 42.2 g kg−1 respectively using PLSR. Hively et al. (2011) using 
HyperSpecTIR sensor data obtained R2 of 0.79, 0.79, and 0.66 for 
sand, silt, and clay content predictions, respectively. Casa et  al. 
(2013b) compared different hyperspectral sensors—the airborne 
MIVIS (VIS–NIR–SWIR) and the spaceborne CHRIS-PROBA 
(VIS–NIR)—with spatial resolutions of 4.8 and 17 m, respectively, 
and obtained R2 values of 0.48 and 0.52, and RMSE of 7.20 and 
6.87, for clay prediction with both sensors, respectively.

Moisture is highly related to the soil spectra because water 
content affects the baseline height (albedo) and causes several 
spectral absorption features (Lobel and Asner, 2002). Whiting 
et al. (2004) proposed a spectral technique to estimate SM con-
tent, in which an inverted Gaussian function is fitted centered on 
the assigned fundamental water absorption region at 2800 nm, 
and the area of the inverted function accurately estimated the 
water content within an RMSE of 2.7% and R2 of 0.94, for labora-
tory spectral data. Ben-Dor et al. (2002) applied MLR to predict 
soil gravimetric moisture using DAIS-7915 hyperspectral sen-
sor and obtained an R2 of 0.64 for the calibrated model. Later, 
Zhang et al. (2012) used the entire spectral range measured by 
the Hyperion to model soil gravimetric moisture using PLSR. 
The authors reported an R2 of 0.79, RMSE of 3.13%, and RPD of 
2.22 for the calibration dataset (cross-validation), and R2 of 0.40, 
RMSE of 5.12%, and RPD of 1.15 for the validation dataset.
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The soil mineralogy has also been studied using SSS. Galvão 
et  al. (2001) evaluated AVIRIS data to quantify TiO2, Fe2O3, 
and Al2O3 contents and reported R2 values of 0.74, 0.83, and 
0.68, respectively. Bartholomeus et al. (2007) observed correla-
tion between spectral bands of ROSIS hyperspectral sensor and 
iron content determined by the dithionite–citrate method, as 
high as 0.5, for spectral measurements near 650 nm. Lagacherie 
et al. (2008) and Gomez et al. (2012) predicted CaCO3 content 
using band depth measurements (near 2341 nm) from HyMap 
data and obtained R2 values between 0.47 and 0.77. Baptista 
et  al. (2011) applied a spectral index (RCGb) to estimate soil 
weathering degree using HyMap and reported a value of 0.75 R2 

between the proportions of kaolinite and gibbsite in soil samples. 
Alterations of minerals are also evaluated, for example, Molan 
et al. (2014) used HyMap to map the distribution of altered clay 
minerals in Iran.

In terms of the soil chemical attributes predicted by SSS, De 
Tar et al. (2008) estimated Ca, Mg, K, P, and pH using an MLR 
approach and reported R2 values of 0.62, 0.58, 0.64, 0.70, and 
0.62, and RMSE values of 9.51 meq L−1, 4.32 meq L−1, 45.03 mg 
kg−1, 4.32 mg kg−1, and 0.076, respectively, using AVNIR hyper-
spectral data. Hively et al. (2011) also evaluated predictions of Ca, 
Mg, K, and pH using HyperSpecTIR sensor data and obtained R2 

values from 0.51 to 0.69. Gomez et al. (2012) report a less optimis-
tic result for pH reaching a maximum R2 of 0.31. Lu et al. (2013) 
used Hyperion imagery and PLSR to predict soil total P and pH 
reporting R2 of 0.62 and 0.68, respectively. Using hyperspectral 
images (AISA-Dual VIS–NIR), Lagacherie et al. (2013) predicted 
soil attributes such as clay, sand, and CEC, in profiles with R2 
between 0.71 and 0.81 for topsoil samples. Gomez et al. (2012) 
report a less optimistic result reaching a maximum R2 of 0.31. Lu 
et al. (2013) used Hyperion imagery to predict soil total P and pH 
reporting R2 of 0.62 and 0.68, respectively. Using hyperspectral 
images (AISA-Dual VIS–NIR), Lagacherie et al. (2013) predicted 
soil attributes such as clay, sand, and CEC, in profiles with R2 
between 0.55 and 0.81. Gomez et al. (2012) quantified CEC and 
obtained an RMSE of 1.84 cmolc kg−1 using PLSR with HyMap 
data. Using Hyperion, Lu et al. (2013) reported cross-validation 
RMSE of 1.55 cmolc kg−1 for CEC quantification. Figure 24.4a 
demonstrates the potential of HyMap data to develop a soil map 
of iron (Richter et al., 2007). The masked and no-iron extractable 
areas are associated with other components in the image, such as 
water surfaces or high vegetation cover areas. As another exam-
ple, Figure 24.4b shows EnMAP sensor-based predictions for 
clay content in topsoils of exposed surfaces in agricultural areas 
of southern Spain, where error estimates were about R2 ~ 0.5 
(Chabrillat et al., 2014). Another interesting work (van der Meer 
and de Jong, 2003) takes into account a discussion about hyper-
spectral sensing and band depth on the quantification of soil 
attributes. The authors indicate a simple linear interpolation 
method introduced to estimate absorption band parameters 
from hyperspectral image data. By applying this hyperspectral 
data, it has been demonstrated that absorption feature maps cor-
respond favorably with the main alteration phases characteriz-
ing the systems studied. Thus, the derived feature maps allow 

enhancing the analysis of airborne hyperspectral image data for 
surface compositional mapping. Despite the quantification of 
soil attributes, images have great importance to provide informa-
tion on their spatial distribution as observed by Seid et al. (2013).

The soil property prediction and mapping based on SS data 
have been done for a while. By far, the most studied soil prop-
erties are clay content and SOC (Table 24.3). This is related to 
the fact that clay and SOC, as well as mineralogy and water 
content, are spectrally active attributes in soil (Stenberg et  al., 
2010). Moreover, these attributes may potentially be predicted 
with high accuracy. Although attributes like soil cations are 
not spectrally active, these might be predicted correctly using 
remotely sensed radiometric data. In these cases, Stenberg et al. 
(2010) state that these attribute variations on an area are related 
to spectrally active attributes, and consequently satisfactory 
coefficients of determination (R2) can be obtained. Considering 
the R2 reported for clay and SOC prediction, it is highly variable 
with a range of 0.01–0.9. This fact proves that although the tech-
nique (multi- and hyperspectral) is capable of predicting soil 
attributes, other conditions need to be accomplished in order 
to obtain models considered robust. One of these conditions is 
to correct the radiometric data regarding the influence of atmo-
spheric components, which significantly improves the quantita-
tive potential of soil spectra. Besides, soil moisture contents and 
nonphotosynthetic vegetation (NPV) mixture with soil in the 
imaged pixels reduce the predictive potential of algorithms.

Many techniques have been applied to soil property predic-
tion, but those related to multivariate statistics are predominant. 
When considering multispectral sensors, the MLR is the most 
applied. On the other hand, the PLSR are recurrent in hyper-
spectral data modeling (Table 24.3). Furthermore, there is cur-
rently a trend in using multispectral images as secondary data 
in the mapping process, using concomitant other information 
easily accessible, such as DEM and terrain attributes derived 
from these. Due to the constrained spectral resolution present 
in these sensors, using multispectral images as a primary source 
on soil modeling might be a limiting factor. Moreover, with the 
availability of new hyperspectral sensors, the diffusion of more 
robust statistical algorithms, in addition to greater capacity for 
computational processing, turned the hyperspectral sensing 
more reliable as a primary source for soil prediction, considering 
the great quantity of information provided by this kind of data.

From Table 24.3 we also observe the following: (1) R2 results 
vary from very low (under 0.3) to high (over 0.8) and very strong 
(over 0.9). (2) In a general vision, multispectral sensors with low 
number of bands such as IKONOS show the lowest results. (3) 
Other multispectral data, the most used being landsat satellite, 
have variable, but rather good, results with a strong background 
on processing and understanding over the last 44  years. (4) 
Hyperspectral information should be the best results, as previ-
ously discussed; on the other hand, many of them are similar 
to landsat data. This can be due to the limited experience with 
these sensors when related with landsat; thus these will probably 
be improved in the future with upcoming opportunities, and 
these techniques have to be  encouraged. (5)  Interesting to see 
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that several soil attributes have been achieved since clay, sand, 
silt, carbon, OM, Ca, Mg, K, P, N, carbonates, iron, and many 
others. (6) Many airborne hyperspectral sensors have been used 
and tested such as HyMap and SpecTIR, which indicates that 
community is going toward these equipments. (7) Considering 
repeatable results, the most reliable soil attributes to be quanti-
fied are clay, OM, OC, carbonates, and Fe2O3. (8) There are great 
results for other elements such as N, Al, Mn, Zn, Cl, and Fe, but 
these have very low content and low effect directly in spectra, 
and thus it is suggested that more studies be conducted to prove 
that the results are reliable.

Finally, it is interesting to observe that, for example, clay 
soil attribute has great results from aerial or orbital, multi- or 
hyperspectral sensing, and, in many cases, have similar R2 when 

compared with observations when quantified with ground sens-
ing (Table 24.2). The point is that theoretically, results should 
present the following sequence from the best to the worse 
results: laboratory sensing—field sensing—aerial hyperspectral 
sensing—orbital hyperspectral—orbital multispectral sensing. 
On the other hand, the results observed in literature, as indi-
cated in these sections (and some summarized in Tables 24.2 
and 24.3), take us to the following points: (1) there are overlap-
ping results between the sequence, (2) we can find a multispec-
tral sensor with a better result of a hyperspectral or vice versa, 
(3) we can have a laboratory result worse than an orbital mul-
tispectral data, and (4) we can have very low results for chemi-
cal elements such as K with laboratory sensor and a good result 
from a hyperspectral airborne sensor. This brings us to some 
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Figure 24.4  Cabo de Gata-Nijar Natural Park, southern Spain: (a) HyMap true-color image (left) and associated soil iron map (right). (From 
Richter et al., 2007.) (b) Potential of upcoming EnMAP hyperspectral satellite for quantitative surface soil mapping. Soil clay content maps (Cabo 
de Gata natural Park, Spain) based on airborne HyMap (left) and spaceborne simulated EnMAP hyperspectral images (right). (From Chabrillat 
et al., 2014.) Model error metrics calculated using independent validation data.
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conclusions: (1)  the quantification of soil attributes is a reality 
and can be done from any platform; (2) some soil attributes have 
more literature consistency because they are repeatable and have 
a theoretical background that explains the results, not relying 
only on R2 values; (3) the differences have several factors such 
as number and homogeneity or heterogeneity of data, quality of 
data, atmospheric correction factors, date and quality of images, 
quality of soil analysis, soil moisture effects when analyzing aer-
ial or orbital data, quality of the sensor data, statistical analysis, 
spectra data processing methods, and others. Thus, it is impor-
tant to take these into account in future studies looking toward 
reaching better results.

24.5.2.3  Strategies for Thermal Infrared

Thermal information has been widely used for geology (e.g., van 
der Meer et al., 2012), and now its importance to soil evaluation 
is being explored. On the other hand, it has been very poorly 
explored for soil studies, despite its exciting approach. The deter-
mination of soil temperature can be related with soil organisms, 
OM alterations, soil moisture, culture development, and others. 
Some works have explored this approach. Zhan et al. (2014) show 
that thermal SSS can be used to estimate soil temperatures. The 
result was generated using data from the MODIS satellite and 
demonstrated that soil temperatures with a spatial resolution of 
1 km under snow-free conditions can be generated at any time of 
a clear-sky day. Comparison between the MODIS and ground-
based soil temperatures shows that the accuracy lies between 0.3 
and 2.5 K with an average of approximately 1.5 K.

Using another strategy, Zhao et  al. (2014) used time-series 
remotely sensed data, including thermal imagery extracted from 
MODIS combined with vegetation indices (soil-adjusted vegeta-
tion index—SAVI) calculated from Landsat ETM+ to estimate 
the spatial variation of SOM by land surface diurnal temperature 
difference in China. They suggested that time-series remotely 
sensed data can provide tools for mapping SOM. Soliman et al. 
(2011) described a method by thermal inertia using standardized 
principal component analysis (PCA) applied to a time series of 
TIR images. The images were taken from a camera mounted at 
a height of 17 m above ground level using a mobile hydraulic 
boom lift, and results were well related with intrinsic soil physi-
cal properties, such as soil bulk density and porosity.

24.5.3  Strategies for Soil Classification

Soil classification is a dynamic procedure that requires knowl-
edge on soil science and spatial sciences. The data derived from 
the soil profile (control section) analysis are the most important 
information for soil classification of a pedon (smallest, three-
dimensional unit at the surface of the earth that is considered 
as an individual soil). Many classification systems require soil 
characterization from the laboratory as well as a complete mor-
phological description of the soil horizons. The morphological 
evaluation of soil structure in the field, for example, requires 
determination of the type, shapes, and size of soil structural 
peds, where the soil structure is determined by the activity of 

soil biota (macro- and microorganisms), clay content, mineral-
ogy, OM, and soil aggregation. This requires opening soil pits 
of variable dimensions where the soil is described and classified 
based on the upper 2 m profile. This is a time-consuming proce-
dure. Thus, the advantage of using SS on soil classification is to 
infer soil properties using sensors.

The radiometric data can be used to aid soil classification fol-
lowing three main approaches: (1) by quantifying soil properties 
and then using them as input data for the taxonomic classifica-
tion; (2) by analyzing the spectral curves of single horizons in 
search for class-specific spectral patterns, since every spectrum 
constitutes a unique fingerprint that relates to the soil horizon 
properties; and (3) by analyzing the spectral curves of all soil 
horizons simultaneously, combining and interpreting this infor-
mation to achieve a soil taxonomic classification. The last strat-
egy can be done only using ground-based sensors, directly in 
field or by bringing sampled horizons into the laboratory. Some 
methods have been proposed to do this type of analysis, for 
example, going inside a pit with the spectroradiometer to col-
lect radiometric data (Viscarra Rossel et al., 2009), inserting an 
optic fiber in a hole and evaluating the spectra at different depths 
or horizons (Ben-Dor et  al., 2008), or collecting samples with 
an auger or hydraulic core and analyzing them using spectral 
data measured in the laboratory (Demattê et al., 2004a; Waiser 
et al., 2007; Morgan et al., 2009)—see Figure 24.2. When using 
soil surface sensors (orbital, aerial, or ground), the approach is 
different, since only surface information can be assessed this 
way (Figure 24.2). Hartemink and Minasny (2014) have recently 
discussed the importance and future of soil morphometrics, 
where they describe several soil sensors that can assist in soil 
classification, including VIS–NIR–SWIR–MIR radiometers, 
ground-penetrating radar (GPR), electrical resistivity meters, 
cone penetrometer, hyperspectral core scanner, x-ray fluores-
cence meter, and others. Despite these possibilities, there is one 
important limitation: until today, no equipment was able to indi-
cate directly the shapes and sizes of peds, and thus, technologies 
still rely on other (chemical and physical) qualities of the soil 
profile to infer soil classification. On the other hand, to reach 
a soil classification, we also need to understand the behavior of 
the attributes in different soils, such as made for class texture 
(Franceschini et al., 2013), clay activity (Demattê et al., 2007b), 
weathering indexes (Galvão et al., 2008), mineralogy (Madeira 
Netto, 2001), and electrical conductivity (Ucha et  al., 2002). 
Other interesting techniques have evolved in this area. Schuler 
et al. (2011) indicate that the gamma spectrometry is a promis-
ing potential as a tool to distinguish Reference Group WRB soil 
profile, field, and the landscape scale, but needs to be verified in 
other regions of the world.

24.5.3.1  Strategies for Ground Spectral Sensing

One of the first attempts to classify soils using spectra was 
performed by Condit (1970) and complemented by Stoner 
and Baumgardner (1981). In general, evaluation is done based 
on the spectrum of each horizon individually (Galvão et  al., 
1997). Later on, Demattê et al. (2002) proposed the analysis of 
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the spectral morphology considering the following aspects of 
the curve: complete shape, reflectance intensity (albedo), and 
absorption features, which were used to characterize several 
different soils from the tropics (Nanni et al., 2011, 2012, 2014). 
This has recently had an upgrade with the development of the 
morphological interpretation of reflectance spectrum, Demattê 
et al. (2014), which indicate a detailed system for users to look at 
spectra shapes looking toward soil classification.

On the other hand, quantitative methods have been used 
to directly predict soil classes from soil spectra. For example, 
Vasques et al. (2014) introduced a system where the spectra of 
different soil layers (depths) are evaluated at the same time and 
reached 90% accuracy for some classes. Bellinaso et  al. (2010) 
reached an 80% agreement between soils classified by spectra and 
soils classified in the field following traditional soil survey pro-
tocols, as corroborated by Viscarra Rossel and Webster (2011). 
Thus, it is important to aggregate quantitative and descriptive 
analysis to reach the best result on soil classification.

24.5.3.2  Strategies for Space Spectral Sensing

Unlike in GSS, data acquired by SSS are usually not enough to 
classify soils accurately. These aerial or orbital sensors measure 
only the superficial layer of soil and consequently do not rep-
resent the entire profile. Despite that, SSS can still have a great 
contribution in soil discrimination and mapping by allowing 
to detect spatial patterns in soil surface variation that relate 
to the spatial distribution of soil classes. Several studies using 
Landsat data (Demattê et al., 2004c, 2005, 2007a, 2009a; Nanni 
et al., 2011, 2012, 2014; Genú et al., 2013b) demonstrated a high 
potential for soil discrimination. Basically, these studies used 
images atmospherically corrected and transformed into reflec-
tance, detected bare soil spots, and correlated these pixels with 
the field soil classification. They found high correlation among 
the spectral curves of similar soil classes (see example in Figure 
24.2, strategy 1). The authors indicated that the soil surface 
patterns are related to underlying soil variation and dynamics 
within the soil profile that are specific to each soil class, allow-
ing this correlation. On the other hand, authors emphasized 
that this correlation is not present in all cases. It is possible that 
two very different soils (e.g., an arenosol and a lixisol) have a 
sandy surface that could present similar spectra and thus not be 
discriminated. In this case, we would have to aggregate a new 
strategy to outline this problem, such as relief information. We 
have to underline that this strategy can allow the separation of 
different soils without necessarily giving them names (classes). 
This is helpful, for example, to find similar soils and delineate 
soil mapping or management units. Their names (the classifica-
tion itself) can be given in the field using other strategies (Figure 
24.2, Strategies 2 and 3).

24.5.4  Strategies for Soil Class Mapping

Soil class (survey) maps, when used at the appropriate car-
tographic scale, allow the improvement of the land produc-
tive capacity preventing environmental degradation. New 

methodologies and strategies are needed to map soils in 
unmapped areas efficiently fostering sustainable food produc-
tion. Soil SS have the potential to assist users in efficient soil 
mapping. Like other applications, the user has to understand 
that each SS technique, based on field, laboratory, airborne, or 
orbital sensors, needs to be explored and adapted to the different 
objectives presented, considering their advantages and limita-
tions, the desired characteristics of the final products, includ-
ing the type of product (model, map, or both), scale, and level of 
accuracy, and the final users of the information.

24.5.4.1  Strategies for Ground Spectral Sensing

When spatial data are available, a soil map can be created by fol-
lowing this suggested sequence: (1) assign the sampling points 
where soil samples will be collected in the field, based on the 
methodology described in Section 24.5.1; (2) describe the soil 
and collect the soil samples at the sampling sites; (3) take sam-
ples to the laboratory and prepare them for spectra readings; (4) 
acquire, process, and interpret spectral data; (5) based on spectra 
information, choose the most representative one, which will go 
to traditional wet analysis; and (6) wet versus spectra ones will 
create models for quantification. The other samples will be quan-
tified by spectra information; (7) relate spectral data to known 
soil properties and classes; and (8) interpolate the known soil 
information across the area of interest using spatial interpolation 
techniques. With portable equipment and appropriate calibra-
tion models, the third step can be replaced by spectral measure-
ments made directly in the field. FSS measurements produce less 
accurate predictions of soil properties than LSS. However, more 
observations can be made because there is no need for transport 
or sample preparation. Nonetheless, GSS measurements can be 
augmented by traditional soil profile evaluation in the laboratory 
for a more accurate classification of the soil unit, as suggested in 
Section 24.5.4. Demattê et al. (2001, 2004a) have demonstrated 
how soil spectra data measured at sampling points can be used 
to derive soil maps. These authors used ground-based spectros-
copy for pedological purposes, collecting spectra (VIS–NIR–
SWIR) in soil profiles along landscapes and relating spectra to 
soil classes using a spectral pedological databank with descrip-
tive and quantitative information associated to the radiometric 
measurements. These methods were used to create a pedological 
map that was well correlated (79%) with the results of the tradi-
tional mapping approach.

24.5.4.2  Strategies for Space Spectral Sensing

Soil sensing data are valuable for providing either primary or 
auxiliary information, which can be used to interpolate soil 
properties assessed using other techniques. Preferably, the 
spectral imagery must be atmospherically corrected and trans-
formed into reflectance before use. Generally, only pixels with 
bare soil are considered to study soils using SSS, and techniques 
to identify these pixels must be applied before soil characteriza-
tion. Reflectance values at each pixel of designated soil obser-
vations can be related to image data bases of surface spectra. 
Though the use of orbital/aerial SS data does not provide direct 

© 2016 Taylor & Francis Group, LLC

  



692 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

measurements beyond topsoil spectra, this information is a 
first indication of soil spatial variability and can be combined 
with undersurface soil properties from another data source to 
create complete soil maps. For example, Demattê et al. (2012b) 
combined aerial photographs and radar and laboratory spec-
tral information to develop soil maps. In fact, the use of orbital 
images in bare soil mapping is restricted in areas under haze 
or clouds, under shades, and under vegetation (crop fields or 
natural vegetation). Also, in situations where legacy soil data 
are scarce or unavailable, remotely sensed soil data can be an 
important source to fill data gaps, for example, by interpolation 
(McBratney et al., 2003; Mulder et al., 2011).

Boettinger et al. (2008) used Landsat data as environmental 
covariates for digital soil mapping (DSM) in arid and semiarid 
regions. In this example, data successfully represented environ-
mental covariates for vegetation (e.g., normalized difference veg-
etation index—NDVI, fractional vegetation cover) and parent 
material (e.g., band ratios diagnostic for gypsic and calcareous 
materials). Browning and Duniway (2011) presented a semiau-
tomated method to map soils with Landsat ETM+ imagery and 
high-resolution (5 m) terrain (IFSAR) data. Later, Grinand et al. 
(2008) predicted soil distribution using Landsat ETM imag-
ery, terrain factors (e.g., elevation and slope), land cover, and 
lithology maps. Hengl et  al. (2007) employed multiple covari-
ates including six terrain parameters, MODIS enhanced veg-
etation index images, and a polygon map of 17 physiographic 
regions of Iran, to map soil classes. Hansena et al. (2009) used 
coarse-resolution soil maps, combined with NDVI, normalized 
difference IR index, SWIR reflectance, slope, and two relative 
elevation layers, to map soils in Uganda. Although with low spa-
tial resolution (1 km), Hou et al. (2011) used MODIS to identify 
different soil types, reaching a Kappa index of 0.75.

The importance of images in soil mapping is more than sim-
ply aiding in soil classification. They help to detect geographic 
boundaries among soils to delineate soil mapping units. In fact, 
Nanni et al. (2014) tested several SS sources, from ground sensors 
and spectra from images, to evaluate which source could reach 
better performance for soil mapping. The traditional soil survey 
map had 53 polygons, while the ground spectra determined 22 
polygons, and Landsat gave 35 polygons. Working with aerial 
photographs, Demattê et al. (2001) defined 12 polygons versus 15 
polygons delineated by traditional field soil survey.

Considering the use of hyperspectral imagery, Galvão et al. 
(2008) described the use of AVIRIS data to map several soil 
properties related with soil classification such as Fe2O3 and Ki 
(weathering index)—Figure 24.5. They mapped the selected soil 
properties using hyperspectral images and found good agree-
ment between weathering indexes and elevation. Chabrillat et al. 
(2002) also used AVIRIS data, but mapped soil expansive clays 
(Figure 24.6a) considering differences between spectral signa-
tures of mineral endmembers (Figure 24.6b). Chabrillat et  al. 
(2002) examined the potential of optical RS and in particular 
hyperspectral imagery for the detection and mapping of expan-
sive clays in the Front Range Urban Corridor in Colorado, USA. 
Here spectral endmembers were extracted from the images 

without field knowledge and were implemented with differ-
ent algorithms for clay mapping. Results showed that spectral 
discrimination and identification of variable clay mineralogy 
(smectite, illite/smectite, kaolinite) related to variable swelling 
potential was possible using different algorithms, in the presence 
of significant vegetation cover. Field checks have shown that the 
maps of clay type derived from the imagery and interpretation in 
terms of swell hazard are accurate. The main limitations for the 
expansive clay soil detection were in case of a heavy vegetation 
cover (forest or green grass) and when the reflectance of the soils 
is approximately 10% or less.

24.5.5 I ntegrating Strategies

Mapping soils accurately and at detailed enough spatial resolu-
tions requires merging multiple types of spatial data and statis-
tical techniques to maximize soil inference from these datasets. 
SS data from orbital and airborne platforms can provide infor-
mation supporting DSM. SS involving field and laboratory pas-
sive optical sensors and active microwave instruments have been 
used at regional and coarser scales to map soil mineralogy, tex-
ture, moisture, SOC, salinity, and carbonate content. Ballabio 
et al. (2012) employed a vegetation-based approach for mapping 
SOC in alpine grassland. They used a map of the properties of 
the plant communities created by combining high-resolution 
multispectral images and light detection and ranging data. 
Additionally, McBratney et  al. (2003) discuss methods to find 
quantitative relationships between soil properties or classes and 
their environment. One issue of particular difficulty in DSM 
is the combination of data collected at different spatial resolu-
tions and with different accuracies. For example, a soil pedon 
description and subsequent laboratory analysis contain the 
highest-quality information, but the spatial extent is extremely 
sparse. GSS data, for example, collected across a soil profile, can 
be more detailed, but still done on a point support. Moreover, if 
GSS data are collected without proper soil description, its use 
is limited for soil mapping. On the other hand, SSS data pro-
vide seamless ground coverage to assess soil spatial variation, 
but their spectral resolution and signal-to-noise ratio (SNR) are 
usually poorer than laboratory and field sensors. These three 
types of data acquisition can be combined using a neighbor-
hood-type statistical technique (Zhu et al., 2004). Additionally, 
filtering techniques can be employed to overlay multiple scales 
of remotely sensed soil data as suggested by Behrens et al. (2010).

24.5.6  Strategies to Infer Soils from Vegetation

SS data obtained directly from bare soils are not always available 
to allow soil characterization. Often, soil, photosynthetic vegeta-
tion (PV), and NPV occur associated on the landscape, and the 
fractions they occupy in pixels vary with land use and environ-
mental characteristics of the studied area. For this reason, the use 
of SS to study soils in densely vegetated areas relies on indirect 
relations between vegetation and soil properties (Mulder et al., 
2011). Vegetation has been used to assess soil characteristics and 
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variability in a number of studies (Bartholomeus et  al., 2011). 
For example, Asner et al. (2003) related SOC and N to fractional 
cover by PV and NPV and were able to show the trends in these 
soil properties at the ecosystem level. Kooistra et al. (2003, 2004) 
used vegetation spectral characteristics obtained by a handheld 
spectrometer in the field, to estimate Zn, Ni, Cd, Cu, and Pb 
in a floodplain, indicating the potential of using SS techniques 
for the classification of contaminated areas. Vegetation indi-
ces, like NDVI, have been applied as indicators of crop growth 
and site quality (Sommer et al., 2003). Sumfleth and Duttmann 
(2008) found, in a study carried out in paddy soil landscapes in 

southeastern China, that NDVI values are related to SOC, N, and 
silt contents, and to some terrain attributes. In specific cases, the 
combination of several spectral indices can minimize the veg-
etation influence on estimated soil properties like iron content, 
as verified by Bartholomeus et al. (2007). Mann et al. (2011) used 
NDVI, among other covariates, to map the productivity of a cit-
rus grove and stated that the productivity zones could be used 
successfully to plan soil sampling and characterize soil variation 
in new fields.

Mulder et  al. (2011) indicated two possible approaches to 
retrieve soil properties from vegetation SS data: through plant 
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functional types (PFTs) and Ellenberg indicator values. The for-
mer states that resource limitations, response to disturbance, 
biotic factors, and other environmental aspects are related to 
morphological and physiological adaptations in plants, and the 
ability to detect functional types with RS relies on the extent to 
which such relationships are generalized (Ustin and Gamon, 
2010). As an example, Schmidtlein (2004) used the spectral char-
acterization of PFT to discriminate different soil units. In the 
same way, Ellenberg indicator values can be used to retrieve soil 
properties, like soil moisture, pH, and fertility, and hyperspec-
tral imagery can be used to derive these values (Schmidtlein, 
2004; Mulder et al., 2011).

24.5.7 � Strategies for Soil Management 
and Precision Agriculture

The main goal of PA is site-specific management, considering 
soil and crop factors to maximize the efficiency of the applied 
resources. These resources include seed (seeding rates and site-
specific genetics), fertilizers, soil amendments such as using 
lime, herbicides, pesticides, and growth regulators. Information 
needs by PA include high-resolution (<10 m) maps of soil proper-
ties, such as plant-available water and nutrient status in the root-
ing zone. Thus, accurate indication of soil properties with dense 
spatial coverage is important, and this can be done with SS. For 
example, VIS–NIR models were used by Wetterlind et al. (2010) 
to assist field soil characterization using small local calibrations 
and national libraries, reaching good results. SS is particularly 
useful to PA because it allows, besides posterior soil character-
ization, real-time assessment of soil properties and their varia-
tion. This is the most successful data source that might relate the 
well-being of the crop to nutrient needs. Many PA users desire 
soil sensing strategies that assess nutrient content in the soil 
linking to plants’ needs, although this is a difficult task as already 
demonstrated in Section 24.5.2.1. Looking at this approach, 
Tekin et al. (2013) used AgroSpec (Tec5) mobile, fiber type, and 
VIS–NIR spectrophotometer to measure online soil pH (field 
measurement). They produce variable-rate lime recommenda-
tion maps with results R2 = 0.81, RMSEP = 0.20, and RPD = 2.14.

Today, SS can assist in PA implementation providing data 
on soil properties such as clay content, SOM, SOC, and CEC, 
which are related to nutrient supply and retention as well as 
productivity potential. Nonetheless, laboratory and controlled 
experiments are important to understand the crop response to 
the environment, including soil variability, and perhaps can 
provide a better basis for relating measurable soil properties to 
nutrient availability and soil water storage, among others. One 
attempt to combine lab knowledge with spectroradiometer data 
is described by Demattê et al. (2003a). They identified alterations 
in soil spectra due to fertilizer application but concluded that it 
was not possible to identify P in soils. However, lime applica-
tion in the soil affected soil spectra (Demattê et al., 2003a). This 
was corroborated by Araújo et al. (2013), who reached a value of 
0.90 R2 predicting liming requirement for a sandy and a clayey 
oxisol using spectroscopy.

Most SS studies focusing on PA use GSS combined with lab-
measured soil properties (clay, SOC, SIC, and others). A review 
on GSS is provided by Kuang et al. (2012). Mouazen et al. (2007) 
developed a soil sensing system consisting of an optical probe 
mounted on a soil penetrometer to measure SOC, SM, pH, and 
P. Calibration models were developed using laboratory soil data 
and were validated using spectra from field measurements. 
Estimation of soil moisture content was satisfactory (R2 = 0.89), 
whereas the estimates of SOC, pH, and P were not as well 
matched to the corresponding reference values (R2 of 0.73, 0.71, 
and 0.69, respectively). Later, Kodaira and Shibusawa (2013) 
found a strong correlation between CEC (R2 = 0.89) and on-the-
go spectroscopy data.

To actually measure the soil solution, Viscarra Rossel and 
Walter (2004) built a soil analysis system comprising a batch-
type mixing chamber with two inlets for 0.01 M CaCl2 solution 
and water, respectively. The system was tested in the laboratory 
using soil solutions of 91 Australian soils and in a 17 ha agricul-
tural field to estimate lime requirements. The system produced 
an RMSE of 0.2 for pH (R2 = 0.66). However, the coefficient of 
determination for pH buffer estimates was not high (R2 = 0.49). 
Despite this, results indicate a great potential, and research is 
still required. Due to this, Ballari et al. (2012) propose the use of 
a network of mobile sensors associated with the expected value 
of information (Evoi) and mobility restrictions to reduce the 
costs of monitoring phenomena such as soil and natural radio-
activity. Christy (2008) used a field spectrophotometer to pro-
vide several soil attributes in real time, obtaining an RMSE of 
0.52% and 0.67 R2 to soil OM.

The success of on-the-go SS, thus, has several tasks. Gras et al. 
(2014) focused at optimizing the acquisition procedure of topsoil 
VNIR spectra in the field with the view to predict soil properties. 
Obtaining good VNIR cross-validation for calcium carbonate, 
total nitrogen, OM, and exchangeable potassium, RPD reached 
up to 9.1, 2.9, 2.8, and 3.0, respectively.

24.5.8  Strategies for Soil Conservation

To perform land use planning and promote soil conservation, 
information about a specific area is needed such as relief and 
slope data, erosion susceptibility, soil classes, vegetation cover, 
among management factors. Additionally, it is also necessary to 
identify areas that have already exhibited problems, so that cor-
rective measures can be taken. SS can be used to identify pos-
sible problems in the soil and monitor the effects of management 
decisions by looking at soil and plant spectral responses. Brodský 
et al. (2013) mapped the SOC through VNIR spectroscopy with 
R2 over 0.7 and RPD over 1.5 in eroded areas at the farm level. 
King et  al. (2005) and Vrieling (2006) presented an interest-
ing review describing erosion mapping techniques integrating 
inputs derived from SSS and additional data sources into runoff 
and erosion prediction models. Similarly, Shruthi et  al. (2014) 
detected erosion effects and monitored variations in erosion 
dynamics and degradation levels using Ikonos-2 and GeoEye-1. 
Both D’Oleire-Oltmanns et al. (2012) and Peter et al. (2014) used 
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an unmanned aerial vehicle (UAV) for monitoring soil erosion 
in the Souss Basin (Morocco), where the imagery data were used 
to quantify gully and badland erosion in 2D and 3D and to ana-
lyze the erosion susceptibility of surrounding areas.

Different acquisition levels of SS have been combined for soil 
conservation studies. Garfagnoli et al. (2013) used a hyperspec-
tral dataset acquired with an airborne Hyper SIM-GA sensor 
from Selex Galileo simultaneously with ground soil spectral 
signatures to monitor soil degradation processes. Liberti et  al. 
(2009) assessed how accurately a badland area can be identified 
from Landsat TM and ETM data. The authors found that the 
combined use of SS and auxiliary morphological information 
significantly improved the mapping of badlands over large areas 
with heterogeneous landscape features. With another approach, 
Nadal-Romero et  al. (2012) assessed badland dynamics using 
multitemporal Landsat TM and ETM imagery for the period 
1984–2006 in Spain, and the results showed that NDVI helped 
in revealing degraded areas.

Martínez-Casasnovas (2003) presented a method to compute 
the rate of retreat of gully walls and the associated rate of sedi-
ment production caused by erosion by integrating multitempo-
ral aerial photos and multiresolution DEMs in Catalonia, Spain. 
Ries and Marzolff (2003) designed a hot-air blimp as a plat-
form sensor to obtain large-scale aerial photographs from the 
Barranco de Las Lenas (Spain) with very high spatial and tempo-
ral resolution for monitoring the development and dynamics of 
erosion. In southern Italy, Conforti et al. (2013), combining GSS 
in the VIS–NIR spectral range with aerial photo interpretation 
and geostatistics, predicted and mapped SOM content, relating 
it back to water erosion processes. Vågen et al. (2013) combined 
Landsat ETM+ imagery, systematic field methodologies, IR 
spectroscopy, and ensemble modeling techniques for landscape-
level assessments of land degradation risk and soil condition. 
The Landsat prediction was robust, with R-squared values of 
0.86 for pH and 0.79 for SOC, and was used to create maps for 
these soil properties. Moreover, they developed models for map-
ping soil erosion and root depth restrictions, with an accuracy of 
about 80% for both variables.

24.5.9  Strategies for Soil Monitoring

Soil monitoring implies observing the soil over time provid-
ing data/information to assure that it stays healthy (chemically, 
physically, and biologically) and secured against environmental 
or human degradation. Soil and food security are priorities in 
today’s global agenda, and soil monitoring is an essential activity 
for achieving sustainable food production and sustainable devel-
opment. Specifically, soil monitoring studies are also interested 
in observing the temporal, spatial, and concentration changes in 
organic and inorganic contaminants in the soil. However, per-
haps the most common soil monitoring applications relate to the 
maintenance of soil fertility over time. In this context, SS can be 
used to monitor soil condition (i.e., quality) spatially and tempo-
rally to support management decisions that enable soil stabiliza-
tion and improvement.

24.5.9.1  Strategies for Ground Spectral Sensing

Kemper and Stefan (2002) used VIS–NIR reflectance spectros-
copy to estimate concentrations of contaminants in soils in 
Spain with an R2 of 0.82 for As, 0.96 for Hg, 0.95 for Pb, and 
0.87 for S. Vohland et  al. (2009) performed a spectroscopy 
approach to quantify the same previous elements in floodplain 
soils using VIS–NIR laboratory data and reported R2 values 
between 0.60 and 0.71. Jean-Philippe et al. (2012) detected sev-
eral heavy metals, in particular Hg, with a performance predic-
tion (R2) of around 0.91. Song et al. (2012) observed relationships 
between Cr, Cu, and As, and absorption features caused by 
iron oxides, clay minerals, and SOM, suggesting that they are 
strongly bounded to these soil constituents. Araújo et al. (2014b) 
used VIS–NIR–MIR spectroscopy to assess soil contamination 
with Cr by tannery sludge. They observed strong alterations of 
absorption features in selected wavelengths (500–600  nm and 
2600 wavelength cm−1) and an overall decrease in reflectance 
intensity across the spectrum promoted by the sludge.

Brunet et al. (2009) monitored chlordecone (a toxic insecti-
cide) used in banana plantations in the French West Indies and 
determined its content by NIR spectroscopy in andosols, niti-
sols, and ferralsols. Conventional analyses and spectral predic-
tions were poorly correlated for chlordecone contents higher 
than 12 mg kg−1. However, 80% of samples were correctly pre-
dicted when the dataset was divided into three or four classes 
of chlordecone content. Chakraborty et  al. (2010) quantified 
total petroleum hydrocarbons (TPHs) in contaminated soils 
in situ by using VIS–NIR diffuse reflectance spectroscopy and 
later mapped them in the field using the same spectral range 
(Chakraborty et  al., 2012a,b). To determine TPH’s content in 
soil, PLSR and boosted RT models were used, and the best per-
formance for validation showed an R2 of 0.64 and an RPD of 
1.70. Schwartz et  al. (2012) and Reuben and Mouazen (2013) 
detected diesel-contaminated soils by SS and assessed the rela-
tionships between petroleum hydrocarbon concentrations, soil 
moisture, and clay content. Forrester et al. (2013) also developed 
calibration models based on PLSR using NIR and MIR data from 
a diffuse reflectance infrared Fourier-transform (DRIFT) sen-
sor for predicting TPH concentrations in contaminated soils 
in southeastern Australia. The authors confirmed DRIFT spec-
troscopy associated with PLSR as capable to provide accurate 
models for TPH prediction, where the MIR range outperformed 
NIR deriving high-quality predictions (RPD = 3.7, R2 = 0.93). 
A common by-product of sugarcane industry is the vinasse (fer-
mentation residue), which can be used as an important K fertil-
izer. On the other hand, if used in high quantities, it can pollute 
soils and make them very saline. Monitoring this by-product, 
Demattê et al. (2004b) observed differences by VIS–NIR infor-
mation. Another interesting approach was performed by Shi 
et al. (2014b), which monitored arsenic in agricultural soils by 
spectral reflectance of rice plants. Other SS techniques have been 
used such as that by Radu et al. (2013), which clarified that por-
table XRF can be used to track and quickly identify possible hot 
spots of pollution and trends in the elementary distributions.
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24.5.9.2  Strategies for Space Spectral Sensing

In a review about image spectroscopy to study soil properties 
and applications, Ben-Dor et  al. (2009) provided some case 
studies in which different aerial and orbital sensors, with dis-
tinct resolutions, were used. The cases addressed by the authors 
included a variety of soil science applications, such as soil degra-
dation, salinity, erosion and deposition, mapping and classifica-
tion, pedogenesis, contamination, water content, and swelling. 
Reschke and Hüttich (2014) used multitemporal Landsat data 
combined with high-spatial-resolution satellite data to extract 
sub-pixel information of coastal and inland wetland classes for 
environmental goals. Aerial or orbital detection of reflected 
radiation from solids has been widely employed in soil monitor-
ing applications (Schwartz et al., 2013). These authors developed 
steps to identify hydrocarbons in soil.

Adar et al. (2014) studied the automatic identification of soil 
changes in different surface soil types by HySpex SS in the VIS–
NIR and SWIR spectral ranges. This study identified a gradual 
change over time in SOM, soil crusting, and compaction, and 
demonstrated that the SWIR range allowed better change detec-
tion than the VIS–NIR. Ghosh et al. (2012) used EO-1 Hyperion 
data to identify salt-affected soils, correctly identifying highly 
affected soils in 84.4% of the cases.

Regarding hyperspectral SS monitoring of heavy metals 
in soils, Shi et  al. (2014a) discussed the applicability of SS for 
mapping soil contamination over large areas. The authors also 
presented methodologies to estimate heavy metal concentra-
tions using VIS–NIR imaging spectroscopy and reported good 
results. In a similar research, Choe et al. (2008) used combined 
data of geochemistry, field spectroscopy, and hyperspectral sens-
ing (HyMAP) to map heavy metal pollution in stream sediments 
in Rodalquilar mining area (Spain). In fact, when narrowbands 
are used, they have the opportunity to provide greater focus 
on targeting specific waveband spots and are likely to provide 
greater accuracies or R-squares compared to broadbands and 
their indices, as shown in these papers.

24.5.10 � Strategies for Microwave 
(RADAR) and Gamma Ray

According to a review made by Mulder et al. (2011), the feasibility 
of determining soil texture, moisture, and salinity by active and 
passive microwave SS was scaled from medium to high, whereas 
the feasibility of determining land cover and degradation ranged 
from low to medium. Microwave SS has been applied to mea-
sure the thermal radiation emitted by bare soil, which is mainly 
affected by its moisture content and temperature (Parrens et al., 
2014), where soil temperature is also dependent on soil mineral-
ogy and SOM (van Lier, 2010).

Alternatively, gamma ray spectroscopy is related with the 
detection of three basic elements: uranium (238U), thorium 
(232Th), and potassium (40K) (Minty, 1997). One of the advan-
tages of microwave or gamma ray sensors, compared with VIS–
NIR–MIR reflectance meters, is that they are less influenced by 
vegetation cover and climate. One exception, for example, is very 

dense vegetation cover (as in tropical rainforest), where micro-
wave and gamma rays might be attenuated by the vegetation.

24.5.10.1  Ground-Penetrating Radar

GPR has been used since the 1970s. In fact, Johnson et al. (1979) 
determined the first information about GPR in soil survey. The 
GPR emits electromagnetic radiation pulses to the soil, and varia-
tions in some soil properties such as moisture, porosity, salinity, 
SOM, texture, and mineralogical content (iron oxides, high clay 
activity, and others) affect this radiation (Pozdnyakova, 1999). GPR 
uses wavelengths with high frequencies in the microwave spec-
tral range (from 10 MHz to 2.5 GHz) (Daniels, 2004; Jol, 2009). 
Typically, interfaces between horizons (as in soil layering) produce 
changes in reflectance that are recognizable in GPR images (Stroh 
et al., 2001; Doolittle and Butnor, 2009). Since the 1980s, studies 
have demonstrated the applicability of GPR as a tool for the charac-
terization of organic and mineral undersurface horizons regarding 
their thickness and lateral variability (Collins et al., 1990), and for 
the identification of lithic contact (Doolitle et  al., 1988). GPR is 
primarily limited to soils with coarser texture, low electrical con-
ductivity (Ucha et al., 2002), and higher (or high enough) moisture 
contents (Ardekani, 2013).

The use of GPR to identify argillic and cambic B-horizons has 
been useful for understanding pedogenetic processes (Inman 
et al., 2002) that are important for soil mapping. Doolittle et al. 
(2007) produced the “Ground-Penetrating Radar Soil Suitability 
Map of the Conterminous United States,” which limited areas 
rated as being “unsuited” for GPR to saline and sodic soils, 
reassessed calcareous and gypsiferous soils, and provided a 
mineralogy override for soils with low activity clay, where the 
efficiency of the equipment is restricted to a clay content of 
35% (Mahmoudzadeh et  al., 2012). The great majority of GPR 
applications in soil science are concentrated in hydropedology 
(Doolittle et al., 2012; Zhang and Doolittle, 2014), with studies 
on the variations in water table depths and groundwater flow 
patterns (Doolitle et al., 2006), vertical moisture dynamics in a 
soil profile (Steelman and Endres, 2012), and quantification of 
soil water content in the vadose zone (Minet et al., 2012; Yochim 
et  al., 2013) at the field scale. Transport of contaminants and 
agrochemicals in subsurface has also been investigated with GPR 
(Glaser et al., 2012; McGlashan et al., 2012). In fact, Yoder et al. 
(2001) identified offsite movement of waterborne agrochemicals 
using conventional soil survey combined with electromagnetic 
induction (EMI) and GPR. They concluded that EMI mapping 
provides rapid identification of areas of high potential for offsite 
movement of subsurface water, GPR mapping of areas identi-
fied by EMI mapping provides a means to identify features that 
are known to conduct concentrated lateral flow of water, and 
combining the capabilities of EMI and GPR instrumentation 
makes possible the surveys of large areas that would otherwise 
be impossible or unfeasible to characterize.

Other uses of GPR include the assessment of soil poros-
ity (Causse and Sénéchal, 2006), soil compaction (Tosti et  al., 
2013), and delineation of agriculture management zones (André 
et al.,  2012).
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24.5.10.2  Aerial and Orbital Radar

A good review about microwave SSS and soil salinity was writ-
ten by Metternicht and Zinck (2001). Bell et al. (2001) used an 
airborne polarimetric synthetic aperture radar (SAR) for map-
ping soil salinity in the Alligator River Region of the Northern 
Territory in Australia. According to Hasan et  al. (2014), veg-
etation cover is still a main factor in the attenuation, scatter-
ing, and absorption of the microwave emissions from the soil 
that impacts its brightness. These authors used the airborne 
Polarimetric L-band Multibeam Radiometer 2 (PLMR2) and the 
L-band Microwave Emission of the Biosphere (L-MEB) model 
to simulate microwave emissions from the soil–vegetation 
layer and to retrieve surface soil moisture in Germany (mois-
ture retrieval with an RMSD of 0.035 m3 m−3 when compared 
to ground-based measurements). NASA’s soil moisture active 
passive (SMAP) mission will carry in 2014 the first combined 
spaceborne L-band radiometer and SAR system with the objec-
tive of mapping near-surface soil moisture with high (~3 km), 
low (~36  km), and intermediate resolutions (~9  km). For that, 
Panciera et  al. (2014) conducted three experiments combining 
field and airborne sources to provide prototype data for the 
development and validation of soil moisture retrieval algorithms 
applicable to the SMAP mission.

The sensitivity of spaceborne SAR is well established for 
soil moisture. However, soil moisture monitoring can be 
confounded by the effects of vegetation and surface rough-
ness. In this context, Singh and Kathpalia (2007) proposed 
an approach based on a genetic algorithm with the inclu-
sion of empirical modeling to determine the soil moisture, 
texture, and roughness with backscattered data from ERS-2 
SAR. Kornelsen and Coulibaly (2013) presented a critical 
review about technical and methodological advances, limita-
tions, and potential of SAR. They concluded that soil moisture 
estimation can be retrieved with multi-angular SAR without 
in situ measurements. Fatras et al. (2012) analyzed the poten-
tial of the radar altimeter aboard ENVISAT to successfully 
estimate the surface SM in a semiarid region in Northern 
Mali, with correlation coefficients (r) higher than 0.8 between 
SM and the backscattering coefficient, and SM predictions 
with RMSE <2%.

24.5.10.3  Aerial and Ground Gamma Ray

Passive gamma ray spectrometry is a fast and cost-efficient tool 
for developing a spatial map of soil properties related to clay con-
tent, mineralogy, and soil weathering. It can be used proximally 
or through an airborne sensor. Initial airborne gamma surveys 
started with geologists for mineral and lithological explora-
tion (Graham and Bonham-Carter, 1993). Later on, Cook et al. 
(1996) examined the ability of ground and airborne systems to 
detect the spatial distribution of soil-forming materials across 
the landscape and distinguished highly weathered from fresh 
soil materials, which was also done by Wilford et al. (2011). This 
usefulness was recently observed by Gooley et al. (2014). They 
used gamma ray spectrometry from aerial and ground sensing 

to develop a DSM of the available water content (QWC) across an 
irrigated area through map soil properties.

Approximately 50% of the observed gamma rays origi-
nate from the top 0.10 m of dry soil, 90% from the top 0.30 m 
reaching 95% from the upper 0.5 m of the profile (Taylor et al., 
2002). Different factors can attenuate gamma rays through the 
soil, such as moisture and bulk density. Radiation attenuation 
increases by approximately 1% for each 1% increase in volumetric 
water content, while a dry soil with a bulk density of 1.6 Mg m−3 
causes a decrease in the radiation to half its value at each 10 cm 
(Cook et al., 1996). The radiation decrease caused by air is much 
smaller, for example, 121 m are needed to reduce the radiation to 
half its value considering a 2 MeV source, thus making possible 
the detection of gamma rays from airborne platforms (Viscarra 
Rossel et al., 2007). Pracilio et al. (2006) demonstrated the use 
of gamma ray radiometric mapping of clay and plant-available 
potassium contents at the farm scale, obtaining R2 up to 0.68 for 
clay and 0.60 for potassium.

The gamma region of electromagnetic spectrum has been 
applied successfully for studying the properties of cultivated soils 
(Medhat, 2012), such as field capacity, porosity, moisture content, 
and bulk density. There is a rising interest in this spectral range 
for applications in DSM. Gamma ray spectrometry was found to 
be an accurate predictor of topsoil clay content in alluvial soils 
(Piikki et al., 2013). Also van der Klooster et al. (2011) investigated 
the prediction of soil clay contents in three marine clay districts 
in the Netherlands with R-squared varied between 0.50 and 0.70.

Vulfson et al. (2013) merged data from microwave and gamma 
ranges for monitoring soil water content in the root zone and 
showed strong correlations (R2 > 0.9) between field and labora-
tory measurements. Evidence suggests that gamma ray spec-
trometry can be used for assessing SOC (Dierke and Werban, 
2013), which is commonly associated with clay content. Dent 
et al. (2013) obtained gamma radiometric data from an airborne 
to imply soil proprieties. This investigation confirmed that air-
borne radiometric has the capability to map different parent 
material and indirectly can infer on soil texture.

Table 24.2 indicates some results for clay content with an 
on-the-go sensor, reaching 0.86 of R2. On the other hand, 
Table 24.4 indicates more soil attributes so we can have an idea 
of its utility. Attributes such as clay, silt, sand, fine sand, coarse 
sand, gravel, plant-available water capacity (PAWC), EC, OC, 
pH, and K obtained variable R2 results. The best results were for 
carbon and clay attributes with R2 0.89 and 0.83, respectively.

Soderstrom and Eriksson (2013) studied the use of aerial and 
ground-based gamma radiometry to assess Cd contamination 
risk in food production. In a field with Cd content in the flu-
vial sediment, gamma ray measurements allowed to improve 
mapping of contamination risk in relation to a general soil map. 
Their results show that geological maps and gamma radiation 
mapping, calibrated with a few analyses of Cd concentrations in 
soils and crops, can be used for risk classification of soils at the 
regional scale. In fact, from aerial gamma, there are several that 
can be evaluated as is shown in Table 24.4. Results of R2 are vari-
able since 0.02 for Ca until 0.93 for Sr.

© 2016 Taylor & Francis Group, LLC

  



699Spectral Sensing from Ground to Space in Soil Science

A comparison between ground and airborne information 
can be extracted from Table 24.4. We observed that clay had R2 
maximum and average of 0.95 and 0.83 respectively, for ground 
information. On the other hand, aerial presented 0.68 and 0.59 
of R2, lower than field data. This is true since in field, the sensor 
has a higher spatial resolution and less interference factor. But 
we rather have to consider that aerial data are good. Another 
important information given by gamma are the great R2 for 
parent material elements such as strontium and vanadium that 
showed an R2 of 0.93 and 0.83, which can certainly assist in rela-
tion with soils.

24.5.11  Strategies for In Situ Spectral Sensing

Pretreating the soil samples before scanning, that is, drying and 
sieving, is common and improves the quality and repeatabil-
ity of the spectral data acquired in the laboratory, reducing the 

negative influence of variable soil moisture or soil particle size in 
data acquisition (Tekin et al., 2012). However, the goal is to scan 
the soils in the field without pretreatment. However, field scans 
are subject to other sources of variation, including variations in 
viewing angle, illumination, soil roughness, soil moisture, soil 
temperature, and soil structure, in the presence of specific fea-
tures (e.g., redoximorphic features and clay films), among oth-
ers, all affecting the quality of the measurements.

Applying SS to field studies reduces costs associated with 
collection, transport, preparation, and analysis of soil samples. 
As already stated, LSS measurements are made under controlled 
conditions with standard protocols, which provide a minimum 
of interference in the acquired radiometric data (Ben-Dor, 2011), 
whereas for in  situ measurements, there are more possibilities 
for interference due to soil and environmental conditions that 
cause variations affecting data acquisition. Other in  situ fac-
tors that affect data quality include noise associated with tractor 

Table 24.4  Summary of Revision Related with Quantification of Soil Attributes by Ground and Aerial Gamma Platforms

R2 RMSE 

References Range Median N Range Median N

A. Aerial
Clay (%) 0.53–0.68 0.59 5 2.40–13.65 3.1 5 Pracilio et al. (2006), Martelet et al. (2013)a

Silt (%) 0.34 0.34 1 10.41 10.41 1 Martelet et al. (2013)a

Sand (%) 0.56 0.56 1 18.53 18.53 1 Martelet et al. (2013)a

Gravel (%) 0.13 0.13 1 6.73 6.73 1 Martelet et al. (2013)a

Bic-K (mg kg−1) 0.04–0.55 0.53 4 103–145 127 4 Pracilio et al. (2006)
Al (g kg−1) 0.50 0.50 1 1.18 1.18 1 Martelet et al. (2013)a

Si (g kg−1) 0.56 0.56 1 2.18 2.18 1 Martelet et al. (2013)a

Ca (g kg−1) 0.02 0.02 1 2.98 2.98 1 Martelet et al. (2013)a

Fe (g kg−1) 0.43 0.43 1 0.74 0.74 1 Martelet et al. (2013)a

Mn (g kg−1) 0.24 0.24 1 279.80 279.80 1 Martelet et al. (2013)a

Mg (g kg−1) 0.35 0.35 1 0.16 0.16 1 Martelet et al. (2013)a

Na (g kg−1) 0.35 0.35 1 0.19 0.19 1 Martelet et al. (2013)a

Pb (g kg−1) 0.48 0.48 1 7.33 7.33 1 Martelet et al. (2013)a

Sr (g kg−1) 0.93 0.93 1 4.19 4.19 1 Martelet et al. (2013)a

V (g kg−1) 0.83 0.83 1 11.13 11.13 1 Martelet et al. (2013)a

B. Proximal
Clay (%) 0.17–0.95 0.83 19 1–8.40 2 18 Viscarra-Rossel et al. (2007), Wong et al. (1999), 

Priori et al. (2014), Van der Klooster et al. (2011)
Silt (%) 0.40–0.89 0.40 3 2.29–2.46 2.38 2 Viscarra-Rossel et al. (2007), Wong et al. (1999)
Sand (%) 0.65–0.85 0.77 4 6.7–7.9 7.4 1 Priori et al. (2014)
Fine sand (%) 0.05–0.31 0.18 2 3.23–3.96 3.60 2 Viscarra Rossel et al. (2007)
Coarse sand (%) 0.3–0.73 0.55 2 6.73 9.31 2 Priori et al. (2014)
Gravel (%) 0.49–0.58 0.51 4 0.11 0.10–0.11 4 Priori et al. (2014)
PAWC (mm) 0.50 0.50 1 11.4 11.4 1 Wong et al. (2009)
EC (ms m−1) 0.30–0.60 0.45 2 27.96–46.55 37.26 2 Viscarra Rossel et al. (2007)
OC (g kg−1) 0.89 0.89 1 Wong et al. (1999)
pHCa 0.40–0.63 0.52 2 0.43–0.48 0.46 2 Viscarra Rossel et al. (2007)
Colwell-P (mg kg−1) 0.68 0.68 1 1 Wong et al. (1999)
K (mg kg−1) 0.61 0.61 1 83.57 83.57 1 Viscarra Rossel et al. (2007)

Bic-K, Plant-available potassium; Al, aluminum; Si, silicon; Ca, calcium; Fe, iron; Mn, manganese; Mg, magnesium; Na, sodium; Pb, lead; Sr, 
strontium; V, vanadium; PAWC, plant-available water capacity; EC, electrical conductivity in units milliSiemens per meter; OC, organic 
carbon; pHCa, pH using 0.01 M CaCl2; Colwell-P, phosphorous using the NaHCO3 method; K, bicarbonate-extractable potassium.

a	Models include morphological variables.
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vibration, sensor-to-soil distance variation (Mouazen et  al., 
2007), stones, plant roots, and difficulties of matching the posi-
tion of soil samples collected for validation with corresponding 
spectra collected from the same position (Kuang et al., 2012).

Water, in the form of soil moisture and soil moisture vari-
ability, is a fundamental concern to consider when using SS 
measurements of unprocessed soil surfaces or soil cores from 
the field (Waiser et al., 2007; Nduwamungu et al., 2009). Many 
working in spectroscopy have attempted to address the prob-
lem of soil moisture on SS data. However, the solutions usually 
include linear transformations and or require prior knowledge 
of the soil moisture, posing difficulties for applications in the 
field. An effective strategy is to create calibration models using 
only field-collected spectra (Waiser et al., 2007; Morgan et al., 
2009; Bricklemyer and Brown, 2010). However, this approach 
does not contribute to available soil SLs that require accompany-
ing soil samples. Aiming to reduce the effects of water in the soil 
spectra without prior knowledge, a technique called “external 
parameter orthogonalization (EPO)” has been developed and 
will be discussed in Section 24.9.

As previously discussed, several factors limit the field applica-
tion of VIS–NIR spectroscopy, such as temperature, luminosity, 
climatic conditions, sample surface roughness, organic resi-
dues, and appropriate equipment to obtain subsurface spectra. 
Some solutions have been proposed to address these issues, for 
example, by Ben-Dor et al. (2008) and Ge et al. (2014a). FSS has 
obtained good results for clay content (Viscarra Rossel et  al., 
2009) and SOC (Gomez et al., 2008b) prediction in Australian 
soils, as well as in Texas for clay content (Waiser et al., 2007), 
and both SOC and SIC (Morgan et al., 2009). Chakraborty et al. 
(2012a,b) demonstrated the feasibility of VIS–NIR analysis 
in the field to map TPH contamination in soil in an extensive 
area. Field measurements can also have issues when working 
with noncontact equipments (see Figure 24.2, strategy 3) due to 
atmospheric interferences. For example, the 1400- and 1900-nm 
bands cannot be detected hindering the interpretation of soil 
mineralogy, as observed by Fiorio et al. (2014). Thus, it is better 
to use a contact probe in the field, avoiding atmospheric interfer-
ences and sunlight variations.

Soil MIR analysis is not widely used in the field mainly due to 
(1) the need for sample preparation and (2) strong water absorp-
tion in naturally moist soils leading to spectral distortion and 
total absorption (Ge et  al., 2014b). As an alternative, Ge et  al. 
(2014b) used attenuated total reflectance (ATR) as a technique to 
obtain MIR spectra of neat soil samples. Accordingly, MIR-ATR 
can be a promising and powerful tool for soil characterization 
combining the advantages of both VIS–NIR (minimum sample 
preparation and high analysis throughput) and diffuse reflec-
tance MIR (better model performance) (Ge et al., 2014b).

Table 24.2 indicates quantification of soil attributes in field 
conditions. The lab-field moist situation indicates high values 
for all elements going from 0.7 to 0.85 of R2. Specifically in field 
conditions (or on-the-go), we have still important results for clay 
(R2 0.78), OC with 0.84 and TC with 0.86. Gamma also has inter-
esting results reaching 0.86 of R2 for clay measurement.

24.5.12  Soil Spectral Libraries

The first soil SL was built by Condit (1970) and complemented 
by Stoner et al. (1980) as an atlas, published afterward by Stoner 
and Baumgardner (1981) with soils mainly from the United 
States and some samples from Paraná state, Brazil. After that, 
Epiphânio et al. (1992) and Formaggio et al. (1996) constructed 
an SL comprising 14 soil classes for one Brazilian state, while 
Bellinaso et  al. (2010) reached six Brazilian states with ~8000 
soil samples. Even though these and other SLs (e.g., Clark, 
1999b) are promising, there are still few examples including a 
wide diversity of soil classes (Ben-Dor et al., 1999; Chang et al., 
2001; Malley et al., 2004). The first publication using an SL with 
global samples was presented by Brown et al. (2006).

After 2000, several SL initiatives appeared, including the 
ICRAF-ISRIC world soil SL, composed of 785 soil profiles from 
58 countries from Africa, Europe, Asia, and the Americas. 
Viscarra Rossel and Webster (2011) described a large SL with 
~4000 soil profiles covering the Australian continent. An SL 
covering the United States has been collected under the Rapid 
Carbon Assessment project (Soil Survey Staff, 2013) with 144,833 
VIS–NIR spectral data for 32,084 soil profiles. The European 
SL called LUCAS (Land Use/Cover Area Frame Survey; http://
eusoils.jrc.ec.europa.eu/projects/Lucas) consists of about 20,000 
topsoil samples, collected from 23 countries in Europe, and 
measured for 13 soil properties in a single laboratory (Stevens 
et al., 2013). Another important example of soil SL was the one 
built by Baldridge et al. (2009), called ASTER SL. This SL is a 
compilation of 2400 spectra of soils, rocks, minerals, and other 
related materials. Soil SL initiatives in other countries include 
Brazil (Bellinaso et  al., 2010), Czech Republic (Brodsky et  al., 
2011), France (Gogé et al., 2012), Denmark (Knadel et al., 2012), 
Mocambique (Cambule et al., 2012), and Spain (Bas et al., 2013).

Soil SLs can be applied for many purposes, including (1) 
modeling of soil attributes; (2) soil survey, classification, and 
mapping; (3) soil contamination and monitoring, by extracting 
the baseline electromagnetic properties of soils, which can be 
compared with any contaminated samples; (4) communication 
among researchers (soil classification has several systems, but 
spectra are the same!); and (5) development of field, aerial, and 
space sensors, among others. To understand the usefulness of 
soil SL, consider the following example: the interested parties 
(farmers or researchers) could send their soil samples to a central 
SL (e.g., a national or global SL) where they would be scanned and 
the spectral curves stored, or they could send already acquired 
soil spectral curves that compose their local SLs. Local SL can 
be explored for personal interests (e.g., soil monitoring) and also 
feed global SL, growing a global repository. Once having a global 
SL, spectral curves from a profile of an unknown could be com-
pared with other spectra from the global SL and a preliminary 
soil classification or the SOC or clay content could be estimated.

The ideal scale (global, continental, regional, local, or farm) 
for a soil SL application has had much inquiry, and the gen-
eral result is that the spatial scale of coverage and application 
depends. This topic was initially raised by Coleman et al. (1993), 
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which concluded that there was evidence that regional/local 
scale is the most reliable. Later on, Demattê and Garcia (1999) 
observed better results for soil modeling with a local soil SL than 
with a regional one. Brown (2007) used a global VIS–NIR SL for 
local soil characterization and landscape modeling in a second-
order Uganda watershed. In brief, a soil attribute may be esti-
mated in a farm using samples collected at the farm to constitute 
a local SL, or the soil spectra collected at the farm can be com-
pared against other spectra in a global SL to retrieve predictions. 
One strategy, called “spiking,” combines global library with local 
samples to get better predictions at the local level (Brown et al., 
2006; Wetterlind and Stenberg, 2010). Others have tried using 
pedological knowledge to subsample a geographically more 
extensive SL (Ge et al., 2011). In the subsampling context, parent 
material filter improved predictions of clay content; however, for 
SOC subsampling, the first three principal components coupled 
with Mahalanobis distance was more effective (Ge et al., 2011). 
Similar results were found by Araújo et al. (2014a) when analyz-
ing the spectra of 7172 tropical soil samples. They found that 
separating the global dataset into more mineralogically uni-
form clusters improved predictive performance of clay content 
regardless of the geographical origin, showing that probably 
physically based, soil-related stratification criteria in libraries 

offer better results. An interesting study by Ramirez-Lopez et al. 
(2013) developed the spectrum-based learner, which indicates 
the best performance of data to reach high quality of quantifica-
tion when using complex data. Another important discussion is 
how to use the dataset to reach best results. Debaene et al. (2014) 
found little significant increase in the prediction capacity of soil 
attributes with the use of an entire dataset, watching an increase 
in the R² of 0.63–0.72 for SOC and R² of 0.71–0.73 for clay. The 
point if local, regional, or global is certainly an actual discus-
sion. Genot et al. (2011) built a methodological framework for 
the use of NIR spectroscopy on a local and global scale by spec-
tral treatment and regression methods. In addition, evaluated 
the ability of NIR spectroscopy to predict total organic carbon 
(TOC; R2 = 0.91 local and R2 = 0.70 global), TN (R2 = 0.73 local 
and R2 = 0.61 global), clay (R2 = 0.64 local and R2 = 0.61 global), 
and CEC (R2 = 0.73 local and R2 = 0.43 global) above several soil 
conditions.

Despite these discussions, results have suggested that the best 
scale for an SL is very much application dependent. The application 
will define the precision needed. Generally, developing a global 
library does not exclude embracing a local or physically based 
library, and the user will need to decide which scale to use. Figure 
24.7 suggests the sequence on how to construct and use soil SLs.
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Figure 24.7  Illustration on how to contract and use soil spectral libraries. (Photograph of Luiz de Queiroz College of Agriculture, Department 
of Soil Science, Luis Silva [technician from Department of Soil Science], soil profile pictures from Texas A&M University.)
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24.6 � Soil Spectral Behavior at 
Different Acquisition Levels

Soil spectra result from the interaction of many soil attributes 
with the electromagnetic energy. According to Demattê and 
Terra (2014), descriptive spectral analyses of soil horizons are 
important because their shapes have direct relation with min-
eralogical and organic constituents that, in turn, result from 
the pedogenetic processes acting in the soil profile. This took 
them to define the term “spectral pedology,” which can be sum-
marized as “a detailed and accurate evaluation of soil spectral 
behavior obtained by proximal and/or RS, and analyzed by its 
qualitative (shape, absorption features and reflectance intensity/
albedo) and/or quantitative information, where the convergence 
of evidences guides to a probable soil classification or behavior.” 
This section aims to indicate some important spectral features of 
soils that relate to their attributes and taxonomic classes.

24.6.1  Spectral Behavior at the Ground Level

Minerals from soils have different and specific spectral shapes 
(Figure 24.8a), and each one contributes to the total soil spec-
trum. Features at 1300–1400, 1800–1900, and 2200–2500  nm 
(hydroxyl groups) are strong indicatives of clay content and type 
(Zhu et al., 2010). Soil particle size has great influence on spec-
tra. In this case, a coarser texture increases the scatter of energy 
(reduces reflection), and the apparent absorbance increases as path 
length increases. In fact, Figure 24.8b presents great differences 
of energy reflection from clay to sandy soils with different angles 
(shapes) and intensities of energy with highest peaks occurring 
after 2000 nm (Demattê, 2002; Franceschini et al., 2013).

The SOM is another important attribute affecting not only 
specific features in the NIR–MIR region but also the overall 
spectrum in the VIS region. Udelhoven et  al. (2003a) showed 
the relation between soil brightness and SOC and developed 
several systems for its analysis (Udelhoven et  al., 2003b,c). 
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Demattê (2002) indicated that spectra of superficial soil layers 
had lower reflectance intensities than undersurface ones, which 
was related to lower SOC contents (Figure 24.8c). Stenberg et al. 
(2010) stated that, although soil samples tend to get darker col-
ors with increasing SOM, other soil properties, such as texture 
and moisture, also influence the soil brightness, thus SOM 
would only be a useful indicator in a specific situation. The 
same authors have suggested that there are specific features in 
spectra that would provide a better correlation with SOM, for 
example, bands around 1100, 1600, 1700–1800, 2000, 2200, and 
2400 nm. The spectral features of SOM in soil VIS–NIR spectra 
are explained by combination and vibration modes of organic 
functional groups (Chen and Inbar, 1994).

The VIS–NIR–SWIR ranges are strongly influenced by the 
soil water content. Water in soils can be incorporated to the 
clay mineral lattice, filling pore spaces as free liquid water or 
adsorbed on a surface as hygroscopic water. In the first case, the 
water is related to the mineralogy of the soil samples and directly 
affects features near 1400 and 1900 nm bands (Hunt et al., 1971). 
Bishop et al. (1994) also related the vibrations of bound water in 
the interlayer mineral lattice to the features in 1400 and 1900 nm. 
In fact, Stenberg et  al. (2010) stated that the bands related to 
vibrations of bound water occurs at shorter wavelengths close to 
1400 and 1900 nm, but the hygroscopic water appears as shoul-
ders at 1468 and 1970  nm. Besides, hygroscopic and free pore 
water are responsible for reducing the albedo of soil spectrum 
(Figure 24.8d; Lobel and Asner, 2002). Once the surroundings of 
soil particles are changed from air to water, the refractive index 
decreases, in other words, changes in the medium surround-
ing soil particles affect the average degree of forward scattering 
(Ishida et al., 1991), reducing the reflectance.

Differences in mineral spectra are related to their chemical 
composition and structure. For example, kaolinite has well-
delineated features at 1400 and 2200  nm, but a weak signal 
in 1900  nm, compared to other minerals (Figure 24.8e). For 
instance, the spectra of montmorillonite have a strong feature 
at 1900 nm and a different shape close to 2200 nm (Figure 24.8f; 
Demattê et  al., 2006). Another important mineral in tropical 
soils is the gibbsite, which has an aluminum octahedral struc-
ture with spectral features occurring mainly close to 1400 and 
2265 nm (Figure 24.8a, top curve).

Hunt et  al. (1971) summarized the physical mechanisms 
responsible for Fe2+ (ferrous) and Fe3+ (ferric) spectral activi-
ties in the VIS–NIR range and indicated that iron oxides and 
hydroxides are spectrally active attributes due to the electronic 
transition of iron cations. Due to their absorption features and 
overall spectra shapes, the presence of goethite and hematite 
alters the shape of spectra of soils (e.g., Figures 24.8a through d, 
and 24.9a). Demattê and Garcia (1999) compared the VIS range 
from the spectra of oxidic soils and indicated that soils with a 
predominance of goethite have a narrower feature with higher 
reflectance between 400 and 570  nm, whereas the opposite 
occurs with the predominance of hematite (Figures 24.8 and 
24.9). In soils derived from carbonate rocks, that is, rocks com-
posed generally by calcite and dolomite minerals, the carbonate 

groups (–CO3) are spectrally active causing specific absorption 
features due to the C–O bonds (Ben-Dor, 2011). A mineral com-
monly found in temperate soils is montmorillonite, which is a 
highly enriched Al smectite and consequently presents Al–OH 
bonds, resulting in a feature at 2160–2170  nm in soil spectra 
(Figures 24.8f and 24.9c). Other smectites affect the soil spectra 
in specific regions, so we suggest the referred studies for further 
information (Stenberg et al., 2010; Ben-Dor, 2011).

As stated by Demattê and Garcia (1999), it is possible to dis-
criminate and identify soils with different weathering condi-
tions. For example, compare the spectra of an oxisol (highly 
weathered soil) (Figure 24.9a, Typic hapludox) with that of a 
vertisol (less weathered soil) (Figure 24.9a, aquic hapludert). 
In fact, the degree of weathering can determine the relative 
amounts of kaolinite and montmorillonite present in the soil, 
with important differences in spectral features (Figure 24.9d). 
Moreover, soils with higher weathered mineralogy have higher 
iron oxide contents, which add other specific spectral features. 
Demattê et al. (2003b) found that crystalline hematite and goe-
thite are responsible for the spectral features at 400–850 nm. On 
the other hand, when these iron forms were extracted from the 
soil in the laboratory, the concave shapes disappeared from this 
region (400–850 nm) (Figure 24.9e). For clayey soils, reflectance 
decreases in intensity around 1200  nm, due to the remaining 
presence of magnetite. Several wavebands and respective soil 
attributes can be seen in Table 24.1.

Classification of soils by their spectral behavior must be 
made by interpretation of all horizons. For example, a ferralsol 
(oxisol) has only minor differences regarding reflectance inten-
sity and spectral features among spectra collected at different 
depths, that is, from surface versus subsurface horizons (Figure 
24.10a and b). On the other hand, spectra of a lixisol (ultisol) 
show differences between these horizons, mainly after 2000 nm, 
due to differences in sand content (quartz mineral). In fact, 
the absorption features of quartz can be observed in the MIR 
spectra, mostly between 1111 and 1300  cm−1 (in wavenumber) 
(Figure 24.10d). Observe that there is a great difference in the 
quartz peak (~1300 cm−1) between the A and B horizons of the 
lixisol (Figure 24.10d), and no difference in the ferralsol (Figure 
24.10b), which is in line with the characteristics of these soils. In 
fact, ferralsols do not have great differences in clay contents with 
depth, as opposite to lixisols. These findings allow to relate the 
shapes and trends in spectra to specific soil classes, aiding in soil 
classification.

24.6.2 � Spectral Behavior at the Space Level: 
From Aerial to Orbital Platforms

Compared to ground-based sensors, aerial and orbital ones have 
low SNR due to the larger atmospheric path length, decreased 
spatial and spectral resolution, geometric distortions, and spec-
tral ambiguity caused by recording multiple signals from adja-
cent targets. On the other hand, space-based sensors have larger 
ground coverage (Obade and Lal, 2013). Data from some satel-
lite sensors, such as Landsat ETM, ASTER, and MODIS, may be 
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freely downloaded, not requiring a portable radiometer, which 
is an expensive tool.

The first aspect to be analyzed is the feasibility of ground and 
space information for soil assessment (attribute prediction, soil 
classification, and mapping). Figure 24.11 illustrates the study 
of Demattê et al. (2009a) and indicates the position on the land-
scape of nitisols, arenosols, and oxisols in a Landsat TM image 
(RGB = 5, 4, 3). Darker and lighter colors are related with clayey 
and sandy soils, respectively. These and other areas were evalu-
ated, and the spectra of pixels were compared with ground 
spectra by correlating 294 laboratory spectra (Figure 24.11c) 
simulating Landsat TM spectra (Figure 24.11d) with Landsat 
TM spectra obtained directly from the pixel in the image (Figure 
24.11e). They observed similar trends between spectra simulated 
from the ground sensor and that collected from space. Clayey 

and oxidic soils (nitisols) are very different from sandy soils 
(arenosols) in many aspects. Of course, ground information is 
more accurate due to the higher spectral resolution. The main 
differences were related to the reflectance intensities from bands 
5–7, where drops in the Landsat TM spectra are related to mois-
ture. Other studies proved the capabilities of Landsat data to 
differentiate moisture content in soils (Shih and Jordan, 1992; 
Vicente-Serrano et al., 2004). Satellite images can provide a good 
discrimination of soil classes and consequently support soil 
mapping either visually or through DSM. In the given example, 
the image colors range from a dark blue to magenta correspond-
ing to a sequence of nitisol, rhodic oxisol, and typic oxisol.

As another example, Figure 24.12 presents soil spectra of 
the same spot taken from ground (2151 bands), Landsat TM 
(6 bands), and Hyperion (220 bands). From ground to aerial or 
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orbital sensors, water bands differ among spectra due to atmo-
spheric absorption. Compared to the multispectral sensors, 
many inferences can be made, although the quality of soil attri-
bute predictions and spectral characterization are limited by 
the SNR and spectral resolution. Comparing the spectral data 
acquired from different levels, such as Hyperion, at the field or 
in the laboratory, the influence of the SNR is clearly observed. 
Due to the lower spectral resolution, multispectral sensors, such 
as Landsat TM, do not present important features, and conse-
quently many spectrally active attributes cannot be predicted 
(e.g., minerals). Despite this, Landsat data have a good temporal 
resolution, that is, information about soils is continuously gener-
ated. In this example, older soils (oxisols and nitisols) presented 
lower reflectance intensities, while arenosols and inceptisols 

(younger soils) presented higher reflectance intensity. Some 
similarities among spectra from different sensors are observed, 
for example, the reflectance intensity and convexity, which are 
greater in the Typic Kandiudult, and lower in the rhodic haplu-
dox. According to Demattê (2002), arenosols and some acrisols 
present higher reflectance intensities at the IR band (Landsat 
TM band 5) and increasing albedo from VIS to NIR due to their 
lower clay content. It is important to notice that, despite the great 
spectral resolution of Hyperion (Figure 24.12b), spectra are very 
noisy, which makes its interpretation difficult.

Soil monitoring based on orbital and aerial sensors is another 
useful method, although interferences due to the soil moisture 
content in the field, atmospheric conditions, and intensity of 
illumination in different periods need to be overcome.
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24.7 � Space Spectral Sensing: Factors to 
Be Considered for Soil Studies

24.7.1  Data Used for Soil Characterization

An important characteristic of radiometric data acquired by 
remote sensors is that it is generally recorded and delivered to 
users as DNs. Since the image formed by each spectral band is 
a monochrome image, it is usual to refer to DNs as gray levels 
(Varshney and Arora, 2004). These DNs or gray levels are scaled 
integer numbers obtained from quantization of the electromag-
netic energy that reaches the sensor, and they are not a physical 
energy measure (Liang, 2004). Generally, DNs have a linear rela-
tion with values of radiance at the top of atmosphere, which are 
a physical energy measure, and they can be converted to these 
values using available algorithms that take in parameters related 
to the sensor and to the environment at the time of acquisition 
(Lillesand et al., 2007).

DN values represent different reflectance intensities (bright-
ness) in distinct images, that is, these values are not comparable 
between images. However, they can still be used to compare 
visually different images or to analyze the relative brightness 
in the same image (Campbell and Wynne, 2011). Although the 
radiometric data can be statistically analyzed using DNs or radi-
ance at the top of atmosphere, these data can be compared only 
among sensors and acquisition levels after processing them to 
surface reflectance, especially when using hyperspectral data 
(Ustin et  al., 2004). Surface reflectance is achieved by correct-
ing the radiometric data regarding the influence of atmospheric 

conditions, sunlight, and viewing angle. Radiative transfer mod-
els are usually used for this task. It is a necessary procedure if the 
objective of the study includes the characterization of biophysi-
cal properties of the imaged target, since suitable differences 
in the signal can have great influence in the results obtained, 
especially in studies of quantitative nature (Liang, 2004; Jensen, 
2005; Lillesand et  al., 2007). Only after radiometric data cor-
rection to surface reflectance, it is possible to compare space-
based spectra with spectra measured in the field or laboratory 
(Ustin et  al., 2004). Figure 24.13 shows examples of these dif-
ferent radiometric products. Besides radiometric correction, an 
important preprocessing step is to apply geometric correction, 
assuring that the image pixels are correctly georeferenced, that 
is, they match their true position on the surface of the earth.

To make the image as representative as possible of the scene 
being recorded it is necessary to rectify and correct the data mea-
sured (Richards, 2013). This is necessary because geometric and 
radiometric distortions hamper an accurate representation of the 
surface reflectance in the spectral bands measured. Geometric 
distortions are shape and scale alterations of the obtained pixels, 
while radiometric distortions concern to the inaccurate trans-
formation of surface reflectance to DNs (Varshney and Arora, 
2004). Taken in account that great part of SS data is provided 
to the user after complete or partial registration and correction 
for errors caused by sensor malfunction, the radiometric distor-
tions, concerning the brightness values assigned to the pixels, 
are an important obstacle between the user and the accurate 
spectral information. Radiative transfer models are generally 
used to perform radiometric correction of remotely sensed data. 
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Figure 24.13  Landsat-5 TM images from spectral bands 1–5 and 7, showing a pixel predominantly with bare soil (a), with reflectance values 
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These models consider the scattering and absorption properties 
of atmospheric components and, in this way, make it possible to 
transform radiance at the top of atmosphere to surface reflec-
tance (Figure 24.13).

Looking at Figure 24.13, is possible to notice that the radiance 
data (Figure 24.13b) preserve the general irradiance spectra of 
the energetic source, that is, the sun, since these data are not 
corrected for wavelength dependence of radiation that reaches 
the earth or for atmospheric influences. After transformation 
to reflectance at the top of the atmosphere (Figure 24.13d), data 
no more resemble the sun irradiance spectra, but still are influ-
enced by atmospheric components, especially in the VIS wave-
lengths (from 400 to 700 nm), where absorption and scattering 
are stronger. Finally, the surface reflectance spectrum (Figure 
24.13e) includes correction to the effects caused by atmospheric 
components and resembles the spectrum taken in the labora-
tory (Figure 24.13f) for a soil sample collected in the same spot. 
In fact, Demattê and Nanni (2003) observed great differences 
between spectra in DN and surface reflectance, arguing that 
different soil types were distinguishable only when DNs were 
transformed into surface reflectance.

24.7.2 �T emporal and Spatial Variations: 
Implications to the Spectral Sensing of 
Soil in Croplands and Natural Areas

Variations in soils and their surrounding landscapes result 
from natural and anthropic processes occurred in the past and 
present, which operate at diverse temporal and spatial scales. 
Thus, the occurrence and variation of lithological formations, 
soil bodies, natural, or cultivated vegetation can be gradual or 
abrupt with great complexity in their development in space and 
time (De Jong and van der Meer, 2004).

Soil characterization through remotely sensed data can be ham-
pered by the landscape complexity as well as by imagery resolution 
limitations, since the detail level that can be assessed by images is 
determined by its resolution (Campbell and Wynne, 2011). The 
components mixture in the pixels has always to be considered 
when using remote sensors to study soils. Even images with great 
spatial resolution will generally contain mixture at some degree in 
its pixels. To illustrate the influence of mixing different materials 
on soil spectra, in this case, PV, NPV, and lime were added to bare 
soil in gradual amounts (Figure 24.14). Considering the sequence 
of soil + PV spectra, it is important to highlight that chlorophyll 
and other pigments cause absorption in the VIS region of the 
electromagnetic spectrum, with characteristic features from 350 
to 700 nm, and that water in the leafs causes absorption in wave-
lengths near 970, 1200, 1450, 1950, and 2250 nm (Kokaly et al., 
2009; Ustin et al., 2009). In the case of NPV, besides absorption 
near 1400 and 1900 nm due to water, the main feature occurs at 
2100  nm caused by cellulose and other structural components, 
since sugars and nonstructural components are readily degraded 
by microorganisms (Nagler et al., 2003).

More specifically, adding PV to soil (Figure 24.14a) alters the 
albedo and attenuates or suppresses soil spectral features. This 

happens especially in VIS–NIR (from 400 to 950  nm), where 
characteristic absorption features of iron oxides, hydroxides, 
and oxihydroxides are present in soil, and also in wavelengths 
near 2200 nm, where absorption features of phyllosilicates and 
gibbsite occur (Stenberg et  al., 2010). As already said, strong 
absorption features caused by pigments influence the VIS reflec-
tance. However, it is also important to emphasize the effect that 
PV cover has from 680 to 700 nm, a region called “red edge,” 
to longer wavelengths. In the “red edge” region, reflectance 
increases in the edge between the chlorophyll absorption fea-
ture, in the red wavelengths, and the multiple scattering caused 
by the cell wall–air interface within leafs, in the NIR (Treitz and 
Howarth, 1999). For wavelengths longer than the “red edge,” a 
pronounced alteration in albedo occurs as the fraction of PV 
increases in relation to the soil fraction in the field of view.

Soil mixture with NPV (Figure 24.14b) causes soil spectral 
feature attenuation or suppression together with increases in 
albedo, the same trend observed in the mixture of soil and PV 
(Figure 24.14a). However, the influence of this mixture in soil 
spectra is stronger, since 45% of NPV cover will mask all soil 
absorption features almost completely; however, the spectral 
feature near 880  nm, for example, caused mainly by hematite 
(Stenberg et al., 2010), is still visible, although attenuated, even 
with high PV. The mixture with NPV influences soil spectra 
markedly near 2100  nm, where absorption features related to 
cellulose and other structural components in NPV occur, thus 
masking the phyllosilicate absorption band near 2200  nm. 
The example presented in Figure 24.14 follows the same prin-
ciple of the study made by Nagler et  al. (2003), corroborating 
their results, as well as the conclusions of Serbin et  al. (2009) 
and Hbirkou et al. (2012), which state that the VIS–NIR–SWIR 
spectral signature of PV is distinct from those obtained for soil 
and NPV. NPV spectra are very similar to soil spectra and can 
severely affect soil characterization and soil attribute prediction 
using spectral data. Along the same lines, we observed different 
changes of soil spectral behavior between clayey and sandy soils 
upon adding lime, which will affect aerial/orbital image inter-
pretation as well (Figure 24.14c and d). Thus, accurate ground 
laboratory measurements are always recommended as a basis to 
correctly interpret aerial/orbital images.

Chabrillat et  al. (2002) observed that clay minerals can be 
identified and mapped even when the PV fraction in a pixel is 
between 40% and 50% or the NPV is between 20% and 30%. On 
the other hand, Bartholomeus et al. (2011) found that a PV frac-
tion greater than 5% can already decrease accuracy, and a frac-
tion greater than 20% can hamper soil property prediction using 
spectral information. Hbirkou et al. (2012) reported higher per-
formance of SOC prediction by HyMap hyperspectral airborne 
sensor in recently tilled areas with bare soil (R2 = 0.73), when 
compared to areas containing 10% of weeds and crop residues 
(R2 = 0.61) or about 30% of straw residues (R2 = 0.34).

Thus, in studies searching to describe or predict soil proper-
ties through remotely sensed data, it is usual to use masks and 
remove pixels with mixture levels that can hamper an accurate 
analysis. A methodology developed to isolate pixels containing 
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mostly exposed soil in imagery obtained by remote sensors is 
described by Demattê et al. (2009a). In brief, they used a semi-
automated approach consisting of the following steps: (1) visu-
ally evaluate different spectral band compositions, for example, 
in the case of Landsat-5 TM, they used bands 3 (660  nm), 

2 (560 nm), and 1 (485 nm), and bands 5 (1650 nm), 4 (830 nm), 
and 3 in RGB compositions, respectively; (2) evaluate the pix-
els to be analyzed using the SAVI (Huete, 1989); (3)  use the 
soil line concept (Baret et al., 1993) to check if the pixels have 
characteristic behavior of bare soil areas; and (4)  compare 
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pixel spectra with an SL of soils obtained from laboratory and 
orbital sensors for surface samples (see Figure 24.11 for exam-
ples of spectral curves). The pixels that correspond to bare soil 
in all the steps are classified as so. Another example of bare soil 
detection methodology was applied by Chabrillat et al. (2011) 
and Gomez et  al. (2012) using HyMap imagery analyzed in 
the HYperspectral SOil MApper (HYSOMA) software (avail-
able free-of-charge at http://www.gfz-potsdam.de/hysoma). 
The approach is similar to that described by Madeira Netto 
et al. (2007) in which NDVI (Tucker, 1979) is used to mask out 
pixels containing a high proportion of PV. For this, a thresh-
old was assigned to the NDVI values (0.3) evaluating known 
bare soil areas in the image and the coherence of the resulting 
mask. As suggested by Madeira Netto et al. (2007), Chabrillat 
et al. (2011), and Gomez et al. (2012) evaluated absorption fea-
tures near 2100 nm, caused by cellulose and other structural 
components in NPV, in areas covered by significant amounts 
of NPV. Chabrillat et  al. (2011) used the cellulose absorp-
tion index (CAI; Nagler et  al., 2003) and a threshold-based 

method to select areas of bare soil for soil attribute estimation 
(Figure  24.15). In the end of this analysis, depending on the 
environmental conditions in the study sites, variable results 
are obtained for pixel classification as bare soil or mixed cover, 
based on the predominance of soil features in the pixel spectral 
signature.

One of the most commonly used techniques for pixel unmix-
ing is the SMA, introduced by Horwitz et al. (1971). The SMA 
models consider that each pixel is a mix of different components 
(endmembers), and thus, the pixel spectral signature can be 
decomposed as a linear or nonlinear combination of the spectra 
of the endmembers (e.g., soil, vegetation, and shape), consider-
ing that these represent all the individual components present 
in the scene. To compose the pixel spectral signature, the end-
member spectra are weighted according to the respective per-
cent fraction of each endmember in the pixel. Guerschman et al. 
(2009) described an approach to determine fractional cover of 
bare soil, PV, and NPV using a linear SMA of NDVI and CAI 
images adapted for hyperspectral sensors.

HyMap
Soil mask Quality layer

Iron oxides Clay minerals Carbonates

SOCSoil moisture

High

Soil parameter
mapping (%)

Low

Figure 24.15  Soil attribute mapping from airborne HyMap imagery over Cabo de Gata Natural Park, Spain. Map outputs were created using 
the HYSOMA software. (From Chabrillat et al., 2011.)
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Due to the simplicity of linear SMA models, they are applied 
more frequently in remotely sensed data analysis, although they 
are suitable especially to mixtures in which the components are 
segregated spatially. However, when the components to be ana-
lyzed are found intimately associated in a pixel, nonlinear mod-
els are more indicated. For example, a bare soil pixel could be 
roughly decomposed into three intimately associated endmem-
bers: (1) the soil matrix composed of solid mineral and organic 
materials, (2) water in pores and associated with particles of the 
soil matrix, and (3) air taking the remaining soil volume.

Spectral unmixing is possible only because the electromag-
netic energy interacts with each pixel component differently 
depending on their characteristics as it is multiple scattered 
(Keshava and Mustard, 2002). The choice between linear and 
nonlinear SMA models is still controversial, and it depends on 
the desired level of accuracy of the fraction assessment (Somers 
et al., 2011), since nonlinear models are more complex and dif-
ficult to implement. One of the most important limitations of 
the conventional linear SMA is that only one spectrum (end-
member) is assigned to represent a specific scene (pixel) com-
ponent, when in reality, each endmember might have variable 
spectral signatures in an RS image. For example, in the case of 
vegetation, biochemical composition and physical structure can 
vary between different species and phenological stages, among 
other factors, creating a wide variability in the spectral signa-
tures of this component (Varshney and Arora, 2004). To deal 
with spatial and temporal endmember variabilities, approaches 
such as MESMA (Roberts et  al., 1998) were proposed. In this 
case, multiple endmembers are considered for each component 
in an iterative way in the SMA. This methodology was one of 
the first attempts to manage the endmember variability for each 
component considered in the SMA. For this, SLs that represent 
component variability are used. In a review, Somers et al. (2011) 
indicated other methodologies to deal with spatial and temporal 
endmember variabilities.

To implement the conventional linear SMA, it is assumed that 
all the components (endmembers) in the scene have their spec-
tral signatures known and available to be used in the analysis. 
However, partial unmixing techniques have been developed in 
order to avoid the necessity to know all endmembers to esti-
mate the abundance for the components of interest. The MTMF 
(Boardman and Kruse, 2011) is one of the most widespread par-
tial unmixing techniques. An example of the MTMF application 
is given in Chabrillat et al. (2002), who estimated the clay min-
eral abundance using hyperspectral imagery. The methodology 
allowed to quantify the amount of different types of clay with 
different swelling potentials (2:1 clay minerals—smectite and 
illite—versus 1:1 clay minerals—kaolinite) exposed at the soil 
surface in AVIRIS hyperspectral airborne imagery (Figure 24.6a 
and b).

Sophisticated methodologies to estimate components 
abundance in pixels have been made available and tested, for 
example, the approach based on neural networks described by 
Licciardi and Del Frate (2011) for hyperspectral data. Although 
bare soil area identification for subsequent processing is a viable 

alternative, it limits the extent of the analysis and mapping to 
the identified bare soil pixels, resulting in information loss in 
other areas. This motivated the use of information about vegeta-
tion to describe soil characteristics and variability, as detailed 
in Section 24.5.6. In addition, Bartholomeus et al. (2011) devel-
oped a technique entitled residual spectral unmixing (RSU), 
which removes the vegetation influence in the pixels’ reflectance 
spectra. The authors stated that RSU can be applied to obtain 
continuous spectral information in the imaged area. Table 24.5 
presents the main differences between airborne and orbital sen-
sors and will be discussed later.

24.8 �C omparison between 
Classical and Spectral Sensing 
Techniques for Soil Analysis

Chemical analyses are largely used for the evaluation of the fer-
tility of crop soils and environment monitoring. Nevertheless, 
these analyses demand high costs and long periods to obtain 
results, which are the main obstacles in producing soil informa-
tion. It is estimated that in Brazil, the number of chemical analy-
ses of soils reached 1 million in 2001, demanding huge amounts 
of reagents and generating chemical waste (Raij et  al., 2001). 
If such waste is mishandled or inadequately disposed of, it can 
result in soil and water contamination. These analyses have the 
support of strong background and reliable results. For example, 
Cantarella et  al. (2006) found consistent results for chemical 
analysis in support of fertilizer application. Lime recommen-
dation for a soil with 32% of base saturation reached the target 
value of 70% ± 8% in 74% of the cases. In about 90% of the cases, 
fertilizer recommendations were on or close to the target rates. 
Sizable deviations of the fertilizer recommendations for P and 
K that could affect profit occurred in less than 5% of the results 
reported. In terms of mineralogical properties, Lugassi et  al. 
(2014) studied the potential of reflectance spectroscopy across 
the VIS–NIR–SWIR spectral region in combination with ther-
mal analysis for soil mineralogy assessment. They concluded that 
the sensitivity of SS is higher than that of x-ray diffractometry.

SS can overcome the issues related to time, cost, and envi-
ronmental pollution of classical soil analysis. However, whether 
these analyses can be definitely substituted by SS still needs to 
be answered. In general, soil reflectance spectra are directly 
affected by chemical and physical chromophores, as indicated 
by Ben-Dor et al. (1999). The spectral response is also a product 
of the interaction between soil constituents, calling for a precise 
understanding of all chemical and physical reactions in soils. 
A review of soil attributes already available from reflectance 
spectroscopy can be found in Malley et al. (2004) and Viscarra 
Rossel et al. (2011a,b). Janik et  al. (1998) already questioned if 
spectra could replace soil extractions. This intriguing question 
raised several papers along years. In fact, Brown et  al. (2006) 
and Demattê and Nanni (2006) made comparisons between wet 
laboratory and spectra and stated that the first could not be sub-
stituted, but optimized, using spectral information. Despite the 
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great relationship between spectra and soil properties, soil wet 
analysis cannot be completely substituted. This is because the 
analytical procedure to derive chemical information from soil 
spectroscopy is based on models between wet chemistry (as 
the independent variable) and reflectance data (as the depen-
dent variables). Thus, the accuracy of the spectral data cannot 

exceed the reference wet chemistry information, or, in other 
words, these comparison papers assumed wet chemistry as the 
standard reference method for soil analysis. Nonetheless, the 
need for rapid, simultaneous, and accurate analysis of many 
soil properties in many soil samples favors the adoption of soil 
spectroscopy. In fact, Sousa Junior et al. (2011) determined that a 

Table 24.5  Current and Upcoming Sensor Systems Providing Optical Data for Soil Attribute Mapping

Platform Sensor Origin 
Start of 

Operation Subsystem 

Spatial 
Resolution 

(m) 

Spectral Characteristics 

Spatial 
Coverage

Number 
of 

Bands

Wavelength 
Coverage 

(μm)

Spectral 
Resolution 

(nm)a

Spaceborne optical sensorsb

Operating/
ready for 
launch

Landsat 8m United States 2013 VNIR–TIR 30/100 9 0.45–12.50 — Global
MODISm United States 1999 VNIR–TIR 250/1000 36 0.40–14.40 — Global
ASTERm Japan/United States 1999 VNIR–TIR 15/30/90 14 0.52–11.65 — Global
MERISm ESA 2002 (until 

2012)
VNIR 300/1200 15 0.41–1.05 — Global

Hyperionh United States 2000 VNIR–SWIR 30 242 0.36–2.58 10 Regional
CHRISh ESA 2001 VNIR 17/34 6/18/37 0.40–1.05 5.6–32.9 Regional
AVNIR-2m Japan 2006 VNIR 10 4 0.42–0.89 — Global
HJ-1Ah China 2008 VNIR 100 128 0.45–0.95 5 Regional
HySIh India 2008 VNIR 506 64 0.40–0.95 ~10 Global
HICOh United States 2009 VNIR 90 102 0.35–1.08 5.7 Regional
HSE Resurs-Ph Russia 2013 VNIR 30 192 0.40–0.96 5–10 Regional
Sentinel-2m ESA 2015 VNIR–SWIR 10/20/60 13 0.44–2.28 — Global

Under 
development

EnMAPh Germany 2017 VNIR–SWIR 30 242 0.42–2.45 6.5/10 Regional
HISUIh

PRISMAh
Japan
Italy

2017
2017

VNIR–SWIR
VNIR–SWIR

30
30

185
237

0.40–2.50
0.40–2.50

10/12.5
~12

Regional
Regional

Planned HIPXIM-Ph

HyspIRIh
France
United States

~2019
≥2020

VNIR–SWIR
VNIR–TIR

8
60

>200
>200/6

0.40–2.50
0.38–12.30

10
10/530

Regional
Global

Shalomh Israel/Italy TBD VNIR–SWIR 10 200 0.40–2.50 10 Regional

Airborne hyperspectral sensors
AHS-160 Daedalus, Spain ~2004 VNIR–TIR 2.5–10 48 0.45–13 12–550 Local
aisaEAGLE Specim, Finland ~2004 VNIR ~0.5–5 ~488 0.40–0.97 3.3 Local
aisaHAWK Specim, Finland ~2004 SWIR ~0.5–5 254 0.93–2.5 12 Local
aisaFENIX Specim, Finland 2013 VNIR–SWIR ~0.5–5 620 0.38–2.5 3.5–12 Local
aisaOWL Specim, Finland 2013 TIR tbd 84 8–12 100 Local
APEX VITO, Belgium 2009 VNIR–SWIR 2–10 300 0.38–2.50 5–10 Local
AVIRIS JPL, USA 1987 VNIR–SWIR 4–20 224 0.38–2.500 10 Local
CASI ITRES, Canada ~1985 VNIR 0.25–1.5 288 0.38–1.05 >3.5 Local
HyMap HyVista 1996 VNIR–SWIR 2–10 128 0.45–2.480 13–17 Local
HySpex-1600 Norsk, Norway 2010 VNIR 0.5–5 160 0.40–1.0 3.7 Local
HySpex-320 Norsk, Norway 2010 SWIR 2–20 256 1.0–2.5 6 Local
MIVIS CNR, Italy 1993 VNIR–TIR 3–10 112 0.43–12.7 20-50-9-450 Local
ROSIS DLR, Germany 1993 VNIR 2 115 0.43–0.96 5 Local
ProspecTIR specTIR, USA ~2008 VNIR–SWIR ~0.5–5 653 0.40–2.5 3.3–12 Local
SASI-600 ITRES, Canada ~1985 SWIR ~1–5 160 0.95–2.45 10 Local
SEBASS Aerospace, USA ~1985 TIR ~1–10 128 2.5–13.5 ~5 Local
TASI-600 ITRES, Canada ~1985 TIR ~1–5 32 8–11.4 125 Local
HyperCam Telops, Lux. 2014 TIR tbd 256 3–12 tbd Local
TRWIS-III TRW, Canada 1996 VNIR–SWIR ~0.5–11 384 0.4–2.45 5.2/6.2 Local

m, multispectral sensor; h, hyperspectral sensor; TBD, to be demonstrated.
a	Full-width half-maximum (provided for hyperspectral sensors only).
b	Modified from Staenz et al. (2013).
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measurement with a spectrometer in the laboratory takes 10 min 
including sample preparation (the sensor takes only 1  min to 
acquire 100 spectral readings), whereas a granulometric analy-
sis takes 48 h considering the Bouhoucus method, for example. 
O’Rourke and Holden (2011) calculated the costs per sample, 
analytical accuracy, and time involved in SOC analysis, in order 
to identify the best method compared against Walkley–Black 
(Walkley and Black, 1934). The conclusion indicated that MIR 
spectroscopy and laboratory hyperspectral imaging were the 
cheapest techniques, with a cost of €0.45 and €1.26 per sample, 
respectively. In comparison, samples measured in a TOC ana-
lyzer costed €15.15 per sample.

An important point to use spectra is related with variances 
in wet analysis. Schwartz et al. (2012) observed a 20% difference 
in soil analysis inside the same laboratory and a 103% difference 
between laboratories, although for very specific analysis (petro-
leum contamination). Demattê et al. (2010) compared traditional 
soil analysis and its variations, and the relationship with spectra 
information. They concluded that there were 84%–89% agree-
ment obtained for sand content and 74%–87% for clay between 
traditional laboratory variations and the estimated spectral 
data. Despite this, agriculture needs faster information. Looking 
toward this goal, Viscarra Rossel et al. (2006) showed the great 
advantages of SS analysis. In fact, Nanni and Demattê (2006a) 
already stated that the analysis of some soil attributes, such as 
clay and CEC, could already be optimized by spectral analysis, 
without complete substitution of traditional laboratory meth-
ods. Their data reached high R2 values (>0.8), ratified by several 
other publications (e.g., Sheperd and Walsh, 2002; Araújo et al., 
2014a). Recent studies have started using SS as a primary analyti-
cal method to measure soil properties. For example, Bradák et al. 
(2014) used NIR spectroscopy to quantify SOC in a paleoenvi-
ronmental investigation, as Gomez et al. (2008b) used MIR spec-
tra to measure SOC in an investigation in Australia.

Another important point would be to define a protocol or a 
method for collecting spectra in the laboratory. For example, the 
system geometry, number of readings, and sample preparation 
should be the same to compare spectra among users. In real-
ity, spectroscopy research has been done using different light 
sources, distances of sensors to soil samples and to the light 
source, sample preparation, and so on. Thus, data collection 
in SS has been done accordingly to individual preferences. To 
overcome this issue, in 2014, Ben-Dor et al. (personal commu-
nication; 2014, in press) proposed the first protocol for LSS data 
collection. As an analogy, SS is going on the same track of tra-
ditional soil analysis, with a good perspective to soon become 
commercially attractive and accurate enough for routine soil 
analysis in laboratories.

Recently, in view of the growing soil spectral community, 
Viscarra Rossel (2009) generated an initiative (Soil World Spectral 
Group, http://groups.google.com/group/soil-spectroscopy) in 
which all members of the soil spectral community were asked to 
join together and contribute their local SLs in order to generate 
a worldwide SL that would be accessible to all. This initiative, 
besides being the first attempt to gather spectral information on 

the world’s soils, is an important step toward establishing a stan-
dard protocol and quality indicators that will be accepted by all 
members of the community. To that end, it is important to men-
tion that special sessions dealing with soil spectroscopy have 
been organized in several leading conferences on earth and soil 
sciences (e.g., European Geosciences Union in 2007 and 2008; 
World Congress of Soil Science in 2010; WD 2014) and in spe-
cific workshops (e.g., European Facility For Airborne Research 
(EUFAR2) in 2014). These meetings expose many scientists from 
soil and related sciences to these new technologies.

In summary, the main purpose of SS is not to substitute tra-
ditional soil analyses, but to optimize them. Samples could be 
summarized in a primary evaluation by spectra and then fol-
lowed to wet analysis. The good prediction results for many soil 
properties observed in the literature (see Section 24.5.2) show 
the potential of SS, attracting the attention of soil scientists and 
making SS an interesting and constantly evolving field. Soil spec-
troscopy is a relatively new science with much ongoing research, 
and the multitude of alternative tools of SS for soil character-
ization and attribute quantification make it an intriguing line 
of research with promising perspectives for soil and environ-
mental analysis. Some important questions to be answered in 
the future include (1) should we need a databank to estimate a 
soil property by spectra?; (2) if yes, should it be local, regional, or 
global?; (3) how should data be processed and in what statistical 
packages?; and (4) should we test universal prediction models, 
or should they be regionalized depending on the types of soils? 
We hope  that this chapter provides some guidance on how to 
achieve these answers.

24.9 � Moisture Effects in 
Spectral Sensing

Soil moisture is a very important property in RS and PS spec-
troscopy not only because it is an important target soil prop-
erty to detect, but also because it has a nonlinear interference on 
spectra (Lobel and Asner, 2002; Haubrock et al., 2008a). Water 
molecules alter spectra in shape and intensity. The wavebands 
at 1400 and 1900  nm are pronounced under higher moisture 
contents, while at 2200  nm, the opposite is true. Even though 
variable soil moisture affects our ability to accurately predict soil 
properties, it is the way in which water and soil minerals bond 
that provide spectral information that allows prediction of many 
soil constituents (Demattê et al., 2006).

For field soil spectra to be collected and properly used at 
its full potential, it is imperative to account for soil moisture. 
Aiming to reduce the effects of water in the soil spectra, without 
prior knowledge of the soil water and in a way that SLs of dried 
and ground samples can be used, Minasny et al. (2011) proposed 
a technique called external parameter orthogonalization (EPO), 
previously conceived by Roger et al. (2003) to eliminate the effect 
of temperature in SS data. The EPO technique requires a calibra-
tion using a set of soils scanned moist (intact or ground) so that 
a transformation can be applied to the SL in use and to any sub-
sequent field scans of soils whose properties are to be predicted 
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(Ge et al., 2014a). Most recently, Ge et al. (2014a) tested the EPO 
concept on intact field moist soil cores and removed the effect of 
soil moisture and intactness so that a VIS–NIR SL of dried and 
ground could be used to predict clay content and SOC (Ge et al., 
2014a). This promising technique has the goal of making in situ 
field prediction of soil constituents using a combination of field 
VIS–NIR spectroscopy and SLs of dried and ground samples.

From ground to space, Haubrock et al. (2008a,b) (Figure 24.6c) 
developed a solid technique for topsoil moisture retrieval at the 
field and space levels, based on the influence of soil-available 
water capacity (AWC), a proxy for soil moisture, on the edges 
of the spectral absorption band at 1900 nm, which is currently 
used in many SS applications. Their method, called normal-
ized soil moisture index (NSMI), and the method from Whiting 
et al. (2004), based on the analysis of the water absorption fea-
ture at 2700 nm (soil moisture Gaussian model—SMGM), were 
both automatized and implemented in the HYSOMA toolbox 
(Chabrillat et al., 2011). SMGM seems to deliver slightly better 
estimates, although in general both methods deliver similar SM 
retrieval performance, for example, with an R2 of 0.7 for air-
borne HyMap images with 4 m pixel size (Chabrillat et al., 2012).

Sobrino et al. (2012) estimated soil moisture at the aerial level 
using an airborne hyperspectral scanner (AHS) sensor and, at 
the orbital level using ASTER, by combining remotely sensed 
images with in situ measurements. Their methodology consid-
ered the correlation between surface temperature, NDVI, and 
emissivity, and allowed SM predictions with an RMSE of 0.05 
and 0.06 m3 m−3 from AHS and ASTER, respectively, compared 
with ground measurements.

24.10 � Basic and Integrated Strategy: 
How to Make a Soil Map 
Integrating Spectral Sensing 
and Geotechnologies

Why do we need to use geotechnologies for soil mapping? During 
the fieldwork, the pedologist starts to create a mental picture of 
the soil boundaries envisioning a soil class map. In this task, sev-
eral tools can be used, including RS. Aerial photographs have 
been extensively used in the past (and still today). Vink (1964) 
proved that the use of aerial photographs added efficiency to 
soil mapping, requiring less fieldwork compared to mapping 
procedures done without this product. Later on, Campos and 
Demattê (2004) highlighted the importance of using a colorim-
eter to quantify soil color in substitution to the visual compari-
son with Munsell soil color charts. They compared data from 
five pedologists that performed soil color for the same sample 
using the Munsell color chart approach. They observed a 17.5% 
and 8.7% agreement among pedologists for dried and moist 
samples, respectively. All pedologists superestimated the hue, 
with consequences for soil classification. Given that field light 
conditions are highly variable, and the eye sensitivity changes by 
person and with age, among other factors, we argue that auto-
matic systems should be used for color determination. Bazaglia 

Filho et al. (2013) compared soil maps of the same area produced 
by four experienced pedologists and observed important differ-
ences and inconsistencies among maps. These findings prove the 
necessity to aggregate other technologies in the soil mapping 
activity, not only to improve the accuracy of the information but 
also to minimize the subjectivity of pedologists. In this aspect, 
we can integrate SS and DSM methods for soil map produc-
tion. Here, we will suggest a sequence that aims to assist users 
and guide future research on how to integrate SS and DSM. The 
sequence can be altered depending on user goals and tools avail-
able. Also, some references are cited in the sequence, but there 
are several other methods that could be applied presented in this 
paper or elsewhere.

The success of soil class mapping starts by understanding 
the  classical soil survey technique (Legros, 2006). Afterward, 
the first step is to define the characteristics and objectives of the 
map (i.e., soil taxonomic level, map scale/spatial resolution, tar-
get users). Second, define the data, information, and tools you 
have (legacy soil data, spectrometers, images, equipments), and 
understand their advantages and limitations (e.g., looking at 
Table 24.5). One of the first used and most important SS tools 
employed in soil mapping was aerial photography, as described 
by Vink (1964). Since the stereoscope until the new aerial 3D 
visualization of the landscape, all instruments greatly improve 
the delineation of soil boundaries (Figure 24.16). Third, use 
orbital and aerial images with color compositions integrated 
with aerial photographs and elevation maps (e.g., DEMs) to 
achieve several goals, including (1) to define spots to collect soil 
samples (see Section 24.5.1); (2) to define toposequences to study 
and determine the soils distribution patterns in the area; (3) to 
define boundaries based on different physiographies (looking 
at the landscape), and colors (looking at the images), without 
attributing soil classes at this time; (4) to analyze quantitative 
information of soil surface by images; and (5) to relate landscape 
shapes and patterns with soil classes. Fourth, go to field and col-
lect samples, bring them to the laboratory, and pass through 
spectral sensors (mainly VIS–NIR–SWIR–MIR); choose which 
samples should go to wet laboratory analysis. Another approach 
would be taking spectra directly in the field, although several 
issues such as moisture still remain. During field collection, mea-
surements should be taken at different depths (Ben-Dor et al., 
2008). Fifth, with the laboratory soil data and spectra of samples 
acquired in the laboratory (Nanni and Demattê, 2006a,b) or field 
(Waiser et  al., 2007), the following activities can be pursued: 
(1)  relate the spectra with landscape (Galvão et  al., 2001) and 
weathering (Demattê and Garcia, 1999) patterns; (2) understand 
the soil alterations along toposequences (Demattê and Terra, 
2014) based on spectra; (3) analyze spectra using quantitative 
(Brown et al., 2006) and qualitative (Demattê, 2002) methods to 
group samples and determine soil mapping units (Demattê et al., 
2004a); (4) compare soil spectra with available minerals libraries 
(Clark et al., 2007; Baldridge et al., 2009) to estimate the pres-
ence and content of minerals; (5) relate all samples with an SL 
containing pedological data and analyze spectra for soil classi-
fication qualitatively (Bellinaso et al., 2010; Demattê et al., 2014) 
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or quantitatively (Vasques et al., 2014), and/or for soil attribute 
estimation (Nocita et al., 2013); (6) use other equipments such as 
gamma ray sensors (Piikki et al., 2013) or electrical conductivity 
meters (Aliah et  al., 2013) in the field; (7) incorporate labora-
tory soil data, SS data, and other available resources into DSM 
models (Behrens et al., 2010) and derive soil maps; (8) combine 
image radiometric data with elevation models; (9) derive models 
to map related geographical phenomena/properties influencing 
soil formation (e.g., geomorphic structures; Behrens et al., 2014); 
and finally (10) organize all available data and derived products 
in a GIS for publication. In all phases until the final results are 
achieved, including models and maps, human expertise and 
interpretation is required. Several skills are necessary, such as 
photopedology, spectral pedology, chemometrics, geoprocess-
ing, pedometrics, and field experience. The methods described 
earlier are a suggestion and can be modified depending on the 
situation (objectives, scale, costs, equipments, and products 
available), or other strategies can always be proposed. The most 
important message is that today soil mapping is more complex 
for a pedologist since they have to integrate the classical expe-
rience with all these equipments, statistics, and modeling. In 
fact, there has been a great task to professionals to have all these 
skills, in addition to basic principles of pedology. On the other 

hand, technology is in constant evolution, and pedologists need 
to be able to use new available information, and thus, their back-
ground have to have these disciplines.

24.11 � Potential of Spectral 
Sensing, Perspectives, 
and Final Considerations

The potential of SS in soil and environmental sciences is con-
stantly growing and can be perceived based on the impressive 
developments of hardware and analytical tools going from 
ground to space sensors. In relation to GSS that started in 
the laboratory with, for example, Bowers and Hanks (1965), 
half a century later, we have advanced to extraterrestrial sen-
sors exploring the soils from planet Mars (e.g., Murchie et al., 
2009). GSS has reached early maturity with more than 60 years 
of papers and a strong theoretical background, but still new 
opportunities for GSS may arise with the development of better 
and less expensive sensors. Basic science in ground sensors has 
developed useful and fundamental relationships with several 
soil constituents such as water, granulometry, silicate clay type 
and content, mineralogy, Fe oxides, SOM, SOC, SIC, and CEC. 
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The applications toward soil inference are several, covering soil 
classification, mapping, quantification, conservation, and moni-
toring. The ground sensors are becoming more portable for the 
field, for example, VIS–NIR–MIR, gamma, radar, and apparent 
electrical conductivity, while computer technology and software 
are becoming cheaper and more powerful.

The perspectives to achieve undersurface information with 
sensor-mounted penetrometers have great importance. Indeed, 
this will not substitute the usual soil pit and the morphologi-
cal description and sampling of soil horizons, but can certainly 
reduce the number of soil pits and samples necessary for fine-
resolution (scale) mapping. Additionally, GSS has been adopted 
by PA management systems to optimize soil quality and crop 
production. It is still a difficult task to quantify attributes related 
to soil nutritional information (Ca, Mg, K, pH) because this 
information is primarily associated with soil water chemistry. 
However, correlations between soil water chemistry and soil 
physical (i.e., spectral or electromagnetic) properties, which can 
be sensed, are possible. Despite this weakness in detecting plant-
available nutrients, GSS can assist PA with other information 
such as clay content, SOM, SOC, and CEC for indicating and 
optimizing soil sampling, assessing soil fertility, and quantify-
ing soil water storage potential, among other properties. SS is 
not a panacea, but certainly can assist on the solution of some 
issues by providing continuous, quantitative, and accurate soil 
(spectral) data and mapping products, needed to assess and 
monitor soil status. Since 2000, an exponential increase in pub-
lications (e.g., Hartemink and McBratney, 2008; Ben-Dor et al., 
2009; Chabrillat et al., 2013; Vasques et al., 2014) has promoted 
soil spectroscopy as a hot topic in soil science, with new interest-
ing developing ideas. In fact, the question made by Janik et al. 
(1998) in their title “Can mid infrared diffuse reflectance analy-
sis replace soil extractions?” was an indication that a revolution 
of new ideas on how to quantify soil properties was imminent. 
In fact, many papers in this research line have merged since then 
as observed in a review by Soriano-Disla et al. (2014). Today we 
can conclude that laboratory wet analysis cannot be substituted 
but certainly can be optimized by SS.

In 1993, Coleman et  al. raised another question: “Spectral 
differentiation of surface soils and soil properties: is it possible 
from space platforms?” They answered this question with mod-
els that achieved 0.40 and 0.28 of R2 for clay and iron quantifica-
tion, respectively, using data from a sensor located 800 km from 
the target (Landsat). The authors admitted that the results were 
not very accurate, considering the use of a multispectral sensor, 
but that space-based spectroscopy had potential. This stimulated 
researchers. More recently, Nanni and Demattê (2006a) reached 
R2 values of 0.67 and 0.95 also with Landsat and for the same ele-
ments, differing in the method to detect bare soil on the image, 
proving that SSS is no longer a potential, but a reality. The per-
spective is to improve these results with the future generation of 
optical satellite sensors, such as Copernicus sensors (Sentinel-2, 
to be launched in 2015) and hyperspectral EnMAP (launch 
planned for 2017) and other airborne or spaceborne hyperspec-
tral sensors. Also, we expect that new methodologies on how to 

isolate the soil information in image pixels emerge, thus making 
soil quantification and mapping more accurate.

Considering the actual development in aerial and orbital sen-
sors, which now have a better spectral resolution, for example, 
hyperspectral sensors, we foresee improvements in soil property 
prediction using RS images, and thus, SLs will be important to 
understand and decompose the spectra in image pixels. Along the 
same lines, great opportunities for DSM applications are expected 
in the near future with the upcoming availability of satellite 
hyperspectral sensors that will routinely deliver high-spectral-
resolution images for the entire globe, for example, EnMAP 
(Germany; Kaufmann et  al., 2006), HISUI (Japan), HyspIRI 
(USA), HypXIM (France), PRISMA (Italy), and SHALOM 
(Israel–Italy). These hyperspectral satellite sensors are in devel-
opment, with the earliest (EnMAP, HISUI) presently in phase 
D with a launch date around 2017 and the others (e.g., HyspIRI, 
HypXIM, PRISMA, SHALOM) planned for launching around 
2020. They will have high SNR and pixel sizes from 8 (HypXIM) 
to 30 m (EnMAP) up to 60 m (HyspIRI), thus providing a range 
of options and image products for the soil science community. 
Table 24.5 summarizes these sensors and is described as follows.

With the development of the imaging spectroscopy concept 
in the early 1980s, the development of imaging systems was first 
focused on airborne instruments. Based on the expertise in the 
development of such systems, many terrestrial spaceborne mis-
sions have been under study, such as NASA’s High-Resolution 
Imaging Spectrometer (Goetz and Davis, 1991), the Australian 
Resource Information and Environment Satellite (Roberts et al., 
1997), and ESA’s Ecosystem Changes through Response Analysis 
(Tobehn et al., 2002), to list just a few initiatives. Unfortunately, 
only a few, such as Hyperion (Middleton et al., 2013), made it into 
space the last decade. Table 24.5 provides an overview of current 
and upcoming civilian multispectral and imaging spectroscopy 
(hyperspectral) sensors currently operating for the imaging of 
the earth’s soil surface. A survey of spaceborne missions cur-
rently operating or ready for launch is provided, completed with 
a survey of hyperspectral missions under development and a list 
of new initiatives currently in a planning stage. The latter is prob-
ably not a complete list of missions, but provides a good cross 
section of sensors, which might be in space around the 2020 time 
frame. With the launch in 2013 of Landsat 8 (former Landsat 
Data Continuity Mission) and the expected launch in 2015 of 
the first one of the Sentinel-2 satellites series, the new ESA flag-
ship with a repeat rate of 10 days (5 days when the second sen-
sor will be launched 2 years later), global earth coverage needs 
will be covered with additional spectral capabilities than pre-
vious multispectral sensors. In complement, with the expected 
launch of the HSE on the Resurs-P spacecraft in 2013, the next 
generation of imaging spectroscopy sensors is emerging. It will 
be followed by PRISMA, HISUI, and EnMAP, the three missions 
targeting a 30 m spatial resolution resulting in a swath width of 
15–30 km and a 10 nm spectral resolution covering the VNIR 
and SWIR. These missions will replace the existing sensors cur-
rently in space in the 2016–2018 time frame, with increased data 
acquisition capacity and superior data quality compared to the 
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technology demonstrators Hyperion and CHRIS. Although it 
is difficult to predict which of the hyperspectral sensors in the 
planning stage for a launch around 2020 or beyond will eventu-
ally be built and put in space, we can expect that the develop-
ment of missions will continue and become more operational.

This overview of system shows the technical difficulties linked 
to the design and development of hyperspectral sensors. Due to 
the high requirements of hyperspectral systems toward higher 
spectral resolution and spectral coverage (up to 600 bands for 
airborne systems, up to 200 bands for spaceborne systems), then 
a compromise always has to be realized between the four pillars 
of space systems development: spectral resolution, spatial reso-
lution, SNR, and temporal resolution. In hyperspectral missions, 
temporal resolution is sacrificed versus spectral resolution, so 
that all hyperspectral spaceborne systems have low revisit rate in 
comparison to multispectral missions with ~10 spectral bands. 
To avoid this difficulty, additional pointing capabilities such 
as in the EnMAP hyperspectral mission allow a higher revisit 
rate (4 days instead of 23 days in nadir mode) but then at the 
expense  of adding the effect of different viewing angle. Then, 
the triangle (1) spectral resolution, (2) spatial resolution, and 
(3)  SNR are the determining factors for system performances. 
The smaller the pixel, the lower the SNR. SNR can be improved 
only by increasing spectral bandwidth or increasing pixel size. 
As can be seen in the resulting design of the planned hyper-
spectral missions, this compromise leads to higher pixel size 
(Landsat-equivalent) for many missions (30 m EnMAP, HISUI, 
PRISMA, 60 m HypsIRI), and only two missions are considering 
smaller pixels (8 m HypXIM, 10 m SHALOM) at the expense of 
signal quality or lower spectral resolution. Data storage capacity/
satellite downlink capabilities are the next limiting factors that 
prevent global coverage for hyperspectral missions.

Table 24.5 presents additionally a list of currently oper-
ating and new airborne hyperspectral sensors. The latter is 
probably not complete but shows the extensive development 
of airborne systems toward compacter and more portable 
systems (separated cameras for VIS–NIR and SWIR, e.g., 
Hyspex and AISA systems), with higher spectral resolution 
and more variable spectral coverage. One can note the recent 
development of TIR airborne hyperspectral sensors that will 
open new frontier of soil science as this spectral domain up 
to this point has mainly been available only from laboratory 
instrumentation.

It is difficult to understand the spectra of a soil type from 
space without knowing basic ground information. The link 
between field observations (e.g., from portable field sensors or 
from samples analyzed in the laboratory) and space sensors will 
be possible through soil SLs. After their start in the 1980s (Stoner 
and Baumgardner, 1981), soil SLs have evolved to a global SL 
soon to be published, with the participation of about 90 coun-
tries and coordinated by Dr. Raphael Viscarra Rossel (The Soil 
Spectroscopy Group, http://groups.google.com/group/soil-spec-
troscopy). The available EPO method to remove moisture effects 
from field samples will allow faster evaluation of soil properties 
(Ge et al., 2014a) in conjunction with soil SL. Irrespective of the 

acquisition level, from ground to space, hyperspectral ground 
information is still the basis for understanding and interpret-
ing soil spectra generated by the new upcoming aerial or orbital 
sensors. An experienced “spectral” pedologist will be able to 
directly take measurements in situ and have a mental picture of 
the soil constituents, and thus soil class boundaries, in real-time. 
Removing or minimizing the need of laboratory analyses will 
create opportunities for the soil professional to cover larger areas 
with higher observation density and at a higher spatial resolu-
tion, reducing the time and cost of this activity.

Probably, the most important contribution of SS to soil sci-
ence (since aerial photographs and now with many available 
ground and space sensors) relates to the identification, char-
acterization, and delineation of soil bodies and mapping units 
across the landscape. Whereas ground sensors offer the oppor-
tunity to observe soils with great detail and fine sampling 
density, airborne and spaceborne sensors allow to extrapolate 
soil–spectra and soil–landscape relationships across large areas. 
Moreover, nowadays, other regions of the electromagnetic spec-
trum are being studied, such as TIR, microwaves, and gamma, 
with promising contributions to soil sensing. These sensors are 
already available at different acquisition levels, from ground to 
aerial and orbital.

In PA, the use of SS techniques has been part of the concept 
from the very beginning, and these techniques continue to 
develop, with diverse applications from soil status evaluation 
to crop yield monitoring. The demand for detailed information 
in farms stresses the need for fast and cheap methods, which 
includes both remote (airborne and spaceborne) and proximal 
(ground) sensing techniques. There is a growing interest in 
tractor-mounted sensors for real-time soil property quanti-
fication by SS in agriculture. Also, small UAVs that can carry 
several types of electromagnetic sensors, bringing the airborne 
techniques closer to the ground, will probably have great impact 
on soil sensing. Although most of the research so far using UAV 
has been on vegetation (Zhang and Kovacs, 2012), the possible 
applications are the same as those in traditional airborne or 
orbital-based SS. Both tractor-mounted and UAV-based sensing 
will require much research for future commercial applications.

Data integration and interpolation techniques that maximize 
information contained in multi-scale and multi-accuracy data 
sources need more development to achieve reliable and repeat-
able soil property predictions for DSM applications. For exam-
ple, radar is still an important method mainly for soil moisture 
quantification, whereas gamma has been used for clay content 
estimation, among others. These sensors can be combined to 
assess both (and other) soil properties simultaneously.

These SS technologies are very attractive to soil scientists, 
especially younger ones, and care should be taken to focus the 
attention on the real “patient”—the soil—and not on the tech-
nology itself. The technology can help, but the real notion on 
how to use them comes from the human expertise and creativ-
ity, which the SS community has so far demonstrated. Thus, we 
have to avoid the paradox of the technology driving the science 
and the questions, because in reality, the opposite must be true. 
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We recommend multidisciplinary work that includes classical 
pedology (i.e., knowledge of soils), statistics, and understanding 
of the sensors (knowing their benefits and limitations) and their 
derived SS information. Effective and accurate SS must merge 
with terrain modeling and soil genesis knowledge to reach the 
highest levels of accuracy and detail for soil quantification, clas-
sification, and mapping. The inherent flexibility of SS allows 
merging micro- and macro-scale knowledge of soil properties, 
combining ground- to space-based data.

In conclusion, SS not only provides a general and flexible set 
of instruments and tools for users who need soil information, 
but also constitutes a real science domain under rapid devel-
opment. Relevant SS applications that advance our knowledge 
of soils can contribute to understand soil-forming processes 
and soil patterns, both horizontally and vertically. Soil SS 
equipment is in constant evolution and, together with power-
ful computing and statistical tools, will support soil research-
ers reach the next level in soil assessment and mapping. It is 
a matter of time to coalesce technology and information to 
reach the main goal of soil science: to understand and pre-
serve soils for the future through sustainable land use and 
management.
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Acronyms and Definitions

AHS		  Airborne Hypersepctral Sensor 
ASD		  Analytic Spectral Devise 
ASTER		�  Advanced Spaceborne Thermal Emission and 

Reflection
Atm		  Atmosphere 
AVIRIS		�  Airborne Visible InfraRed Imaging 

Spectrometer
BRDF		�  Bidirectional Reflectance Distribution 

Function 
CASI		  Compact Airborne Spectrographic Imager
CCD		  Charge Couple Device 
CD		  Change Detection 
CNES		  Centre National d’Etudes Spatiales
DAIS		  Digital Airborne Image Spectrometer 
EART-1		  LANDSAT-1 
ESA		  European Space Agency 
FWHM		  Full Width Half Max 
FTIR-PAS	 photo acoustic Furrier Transform Infra Red 
ERSDAC		 Earth Remote Sensing Data Analysis Center
GPS		  Ground Position System 
GSD		  Ground Spatial Dimension 

HRS		  Hyperspectral Remote Sensing 
ISRO		  Indian Space Research Organisation
ITC		�  Faculty of Geo-InformationScience and 

Earth Observation 
IR		  Infra Red 
LIDAR		  Laser Imaging Detection and Ranging
LWIR		  Long Wave Infra Red
MCT		  Mercury Cadmium Telluride
NASA		�  National Aeronautics and Space 

Administration
MODIS		�  Moderate Resolution Imaging 

Spectroradiometer
MODTRAN	� MODerate resolution atmospheric 

TRANsmission
MWIR		  Mid Wave Infra Red 
NIR		  Near Infra Red
NOAA		�  National Oceanic and Atmospheric 

Administration 
NSA		  Normalized Spectral Area 
OSACA		  OSACA program
OM		  Organic Matter 
PLSR		  Partial Least Square 
RID		  Reflectance Inflection Difference 
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RS		  Remote Sensing
RMSE		  Root Mean Square Error 
SOC		  Soil Organic Matter
SWIR		  Short Wave Infra Red 
SASI		�  Shortwave infrared Airborne Spectrographic 

Imager
SNR		  Signal to Noise Ratio 
SOC		  Soil Organic Carbone 
SPOT		  Système Pour l’Observation de la Terre
TPH		  Total Petroleum Hydrocarbon 
TM		  Thematic Mapper 
UAV		  Unmanned Airborne Vehicle 
UV		  Ultra Violet 
VIS		  Visible
2D		  Two Dimension 
3D		  Three dimension 

25.1 I ntroduction

In 1987, Mulder published a book entitled Remote Sensing in Soil 
Science (Mulder, 1987) that provided a comprehensive summary 
and background of all of the soil RS activities known at the time. 
Mulder’s excellent review covered theory, sensors, and applica-
tions for soil using RS means. Since 1987, remarkable progress 
has been made in the soil RS arena, including electro-optic and 
space technologies, computing power, applied mathematics (for 
data manipulation), and soil spectral analysis and databases. After 
almost three decades, these significant advances in soil remote 
sensing have attracted many young as well as experienced users 
from the scientific community and from the industry. Many new 
users have entered the soil RS field and use the technology in dif-
ferent ways, making up specific scientific working groups that have 
created a unique subcommunity. With better accessibility to this 
infrastructure (in the laboratory, field, air and space domains), soil 
spectroscopy has become a very basic and powerful tool from both 
point and imaging spectral viewpoints. This chapter is thus aimed 
at covering some key historical stages of this promising technol-
ogy and reviewing most of the advances in this arena to date. 
Based on past and present activities, this chapter also highlights 
the leading directions in the field and provides some thoughts on 
future possibilities for the remote sensing of soils.

25.2  Soil

25.2.1  Soil System

Soil has been defined as “The upper layer of the earth which 
may be dug, plowed, specifically, the loose surface material of 
the earth in which plants grow” (Thompson, 1957). Soil, as an 
anchoring medium for roots and a supplier of nutrient for crops, 
is a complex material that is extremely variable in its physical 
and chemical composition. It is formed from exposed masses of 
partially weathered rocks and minerals of the earth’s crust. Soil 
formation, or genesis, is strongly dependent on the environmen-
tal conditions in both the atmosphere and lithosphere.

Soils are the product of five factors: climate, vegetation, organic 
matter (OM), topography, and parent materials. The great vari-
ability in soils is the result of myriad interactions among these 
factors and their influence on the formation of different soil pro-
files (Buol et al., 1973). The general equation describing the final 
soil body is

	 S = f P, C, T, O, t( ) 	 (25.1)

where
S represents the soil
P is the parent material
C is the climate
T is the topography
O is the OM
t is related to time (relative age of the soil)

The high variation of soils makes it impossible to solve the afore-
mentioned equation numerically or empirically. Soil serves as 
an important resource for food production for mankind and 
carries out other key environmental functions that are essential 
for human subsistence, such as water storage and redistribution, 
pollutant filtration, and carbon storage. The soil-forming factors 
segregate the weathered parent material into diagnostic horizons 
within the soil profile. In general, the profile, composed of sev-
eral horizons, typically refers to the upper horizon A (termed 
the alluvial horizon), the intermediate horizon B (termed illuvial 
horizon), and the bottom horizon C (the transition to the parent 
material) (Figure 25.1). The number, nature, and development of 
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Figure 25.1  Illustration of the soil body along the soil profiles gen-
erated during the soil formation.
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the horizons are products of aforementioned five soil-forming fac-
tors, and their relationships play a major role in soil-classification 
and mapping processes that require a description of the entire 
soil profile (Soil Survey Stuff, 1975). Pedology is one of the most 
important and ancient branches of soil science that is strongly 
related to soil genesis, formation, and mapping. Although soil 
mapping requires a description of the entire soil profile, observ-
ing the soil surface from close or far domains is the ultimate 
tool before and during any comprehensive field study aimed at 
generating a soil map (Simonson, 1987). In this respect, remote 
sensing, which sees mostly the upper part of the earth from afar, 
plays a major role in soil mapping, mostly for observations of the 
topmost (Ao) horizon where recently some effort is being taken 
toward enlarging this capability into the subsurface soil domains 
as will further be illustrated on in this chapter.

25.2.2  Soil Composition

The soil body is a mixture of three phases: solid, liquid, and gas. A 
typical soil volume may consist of about 50% pore space with tem-
porally varying proportions of gas and liquid. The solid phase con-
tains organic and inorganic matter in a complicated and generic 
mixture of primary and secondary minerals, organic components 
(fresh and decomposed), and salts. The solid phase consists of three 
main particle-size fractions: sand (2–0.2 mm), silt (0.2–0.002 mm), 

and clay (<0.002 mm), whose mixture is responsible for soil tex-
ture and structure. Soil texture is a function of the proportion of 
particle-size fractions (Figure  25.2), defining the soil as sandy, 
silty loam, or clayey. Soil structure is a function of the adhesive 
forces between the soil particles and describes the aggregation sta-
tus of the solid particles (block, prism, grains, and others). These 
two properties play a major role in the soil’s behavior and govern 
important soil characteristics such as drainage, porosity, fertility, 
and moisture that have importance on plant growth and erosion 
process. The inorganic portion of the solid phase consists of miner-
als, which are generally categorized as either primary or secondary. 
Primary minerals are derived directly from the weathering of par-
ent materials and are formed under much higher temperatures and 
pressures than those found at the earth’s surface. Secondary miner-
als are formed by geochemical weathering of the primary miner-
als. An extensive description of minerals in the soil environment is 
given by Dixon and Weed (1989), and readers who wish to expand 
their knowledge in this area are referred to this classic comprehen-
sive text. In general, the dominant primary minerals are quartz, 
feldspar, orthoclase, and plagioclase. Some layer silicate miner-
als are mica and chlorite, and ferromagnesian silicate minerals 
include amphibole, peroxide, and olivine. The secondary minerals 
in the soil body (often termed clay minerals) are aluminosilicates 
with a layer structure, such as smectite, illite, vermiculite, sepiolite, 
kaolinite, and gibbsite. The type of clay mineral present in the solid 
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phase of the soil is strongly dependent on the weathering stage of 
the parent material and can be a significant indicator of the envi-
ronmental conditions under which the soil was formed (Singer, 
2007). Other secondary minerals in soils are aluminum and iron 
(Fe) oxides and hydroxides, carbonates (calcite and dolomite), sul-
fates (gypsum), and phosphates (apatite). Most of these minerals 
are relatively insoluble in water and maintain an equilibrium with 
the water solution. Soluble salts such as halite may also be found in 
soils, but they are mobile in water and are sometimes transported 
to the soil matrix by external forces (e.g., wind or artificial irriga-
tion). Clay  minerals are most likely found in the fine-sized soil 
particles (<2 μm) and are characterized by relatively high specific 
surface areas (50–800 m2/g). The primary minerals and other non-
clay minerals are usually found in both the sand and silt fractions 
and consist of relatively low specific surface areas (<1  m2/g). In 
addition to the inorganic components in the solid phase, organic 
components are also present. Although the OM content in mineral 
soils does not exceed 15% (and is usually less), it plays a major role 
in the soil’s chemical and physical behavior (Schnitzer and Khan, 
1978). OM is composed of decaying tissues from vegetation and 
the bodies of micro- and macrofauna. Soil organic matter (SOM) 
can be found in various stages of degradation, from coarse dead 
to complex fine components called humus (Stevenson, 1982). Its 
content is naturally higher in the upper soil horizon, making con-
siderations of OM essential for remote sensing (RS) applications, 
where only the upper thin layer is detected.

The liquid and gas phases in soils are complementary to the 
solid phase and occupy about 50% of the soil’s total volume. 
The liquid consists of components of water and dissolved anions 
and cations in various amounts and positions. The water mol-
ecules either fill the entire pore volume in the soil (“saturated”), 
occupy a portion of its pore volume (“wet”), or are adsorbed on 
the surfaces particles (“air dry”). Water status can be determined 
by the pressures needed to extract the water from the soil matrix 
(often call “matrix tension”). These range from 15 atm (the dry 
condition; wilting point for vegetation) to 0.3 atm (gravimetric 
water draining out) and 0 atm (the saturated stage). The compo-
sition of the soil’s gaseous phase is normally very similar to that 
of the atmosphere, except for the concentrations of oxygen and 
carbon dioxide that vary according to the biochemical activity 
in the root zone due to biogenic respiration processes.

25.3  Remote Sensing

25.3.1  General

Remote sensing is the acquisition of information about an object 
or phenomenon without physical contact, using electromagnetic 
radiation (Elachi and Van Zyl, 2006). The term “remote sensing” 
was first introduced in 1960 by Evelyn L. Pruitt of the U.S. Office 
of Naval Research (Pruitt 1979). In general, remote sensing can be 
performed in two ways: passively, where the radiation is not con-
trolled by the sensing system (e.g., the sun’s radiation in photogra-
phy), and actively, where the radiation is part of the sensing system 
(e.g., microwaves for radar). The RS discipline mostly uses air- and 

spaceborne sensors but also portable instruments for close-range 
measurements in the field. As several types of electromagnetic radi-
ation are available for both active and passive remote sensing (e.g., 
shortwave infrared [SWIR] and longwave infrared [LWIR], milli- 
and microwaves), we will limit our discussion to the passive radia-
tion of the sun, which is actually the main source of radiation for 
remote sensing. This decision is backed up by Mulder et al. (2011) 
who reviewed RS means and demonstrated that across this region, 
all of the soil properties that can be remotely sensed use the solar 
spectral region, termed “optical” region (as the foreoptics are made 
of glass), see Table 25.1. This region can be separated into three 
parts: visible (VIS) 0.4–0.7 μm, near infrared (NIR) 0.7–1.0 μm, and 
SWIR 1.0–2.5 μm. Midwave infrared (MWIR) 2.5–5 nm and LWIR 
(8–14 μm) are other regions used in passive remote sensing of the 
earth and are products of the radiation emitted by the earth due to 
its black-body characteristics. In the MWIR, there is some conjunc-
tion between solar radiation and earth radiation due the character-
istics of the Planck black-body function of the two bodies (sun and 
earth). Remote sensing can be performed with one or more instru-
ments covering part or all of the aforementioned spectral regions, 
the choice being based mainly on the question at hand. RS sensors 
collect the radiation, disperse it into selected frequencies, measure 
the intensity at each frequency analogically, and then convert it to 
digital values for archiving and processing. The RS assembly con-
sists of optics (e.g., lens and slit), a disperser element (e.g., prism 
or grating), and a detector (e.g., a charge-coupled device [CCD]). 
For every spectral region, there are specific materials that are sensi-
tive to that radiation’s frequencies, lenses, and dispersive elements. 
For solar radiation, the lens and prism are made of quartz and the 
detectors of Si (for the VIS–NIR region), InGaAs (for the NIR 
region), or HgCdTe (MCT) for the SWIR (Levinstein and Mudar, 
1975). The final product of any RS sensor is governed by the quality 
of these components. There are several resolutions in the RS field 
related to the available technology as follows: spatial resolution, 
which refers to the size of the pixel (often termed ground sampling 
distance [GSD]), sensor swath and dimensionality (2D, flat, or 3D, 
elevation), spectral resolution (number of bands, bandwidths that 
measure by the full width at half maximum of the band [FWHM]) 
and sampling intervals, electronic sampling resolution (the number 
of bits for the stored digital data), radiometric resolution (the accu-
racy of conversion of the digital data into physical units), temporal 
resolution (time elapsed between acquisitions for the same area), 
and viewing resolution (the number of viewing angles capturing 
the same GSD). These resolutions are interrelated: for example, 
high spatial resolution requires low spectral resolution to ensure a 
high signal-to-noise ratio (SNR) (Figure 25.3). Optical RS means 
are categorized according to the sensor’s spectral performance as 
follows: monospectral (the sensor carries a monochromatic band 
that is often termed panchromatic), multispectral (the sensor car-
ries between 3 and around 7 semibroad spectral bands), superspec-
tral (the sensor carries around 7–20 semibroad spectral bands), and 
hyperspectral (the sensor carries over 20 narrow spectral bands). 
The spectral data can be acquired in image or point domains. In the 
image domain, the CCD works to capture a response from every 
pixel on the ground that corresponds to every CCD pitch or divides 
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onto one of the CCD axis into every ground pixel along one axis 
and its spectral information on the other axis. In the point domain, 
only one pixel is captured by the sensor, and the detector, which 
is formed in line-array architecture, uses it to measure the spectral 
information. Data acquisition in the image domain requires mov-
ing the sensor to form the image via line-by-line accumulation, 
known as “push broom” technology. The systems that collect pixel-
by-pixel information and gather it into a final image are termed 
“whisk broom” sensors. The point (pixel) domain is mostly used 

on the ground to measure an object’s response by integrating the 
photons of the point GSD, which is based on the field of view of the 
foreoptic characteristics.

For soil applications, it is most important to retain high spectral 
resolution and high SNR in order to extract quantitative informa-
tion on the soil object (see Section 25.7). High spatial resolution 
is also important, but this is strongly related to the question being 
asked. GSD resolutions of 1–30 m are very reasonable values for 
remote sensing of soils ranging from a selected plot to larger field 

Table 25.1  A List of Soil Remote Sensing Applications that Can Be Remotely Sensed from Orbit and the Systems Requirements 
for Each Applications

Soil and Terrain Attributes 

Radar

Lidar

Optical

Passive Active Multispectral Spectroscopy

Terrain attributes
Elevation — High High Medium —
Slope — High High Medium —
Aspect — High High Medium —
Dissection — Medium-high Medium-high Low-medium —
Landform unit — Medium-high Medium-high Medium-high Low-medium
Digital soil mapping — High Medium-high Medium-high Medium
Soil type — — — Medium High

Soil attributes–proximal sensing
Mineralogy — — — — High
Soil texture — High — — High
Iron content — — — — Medium–high
Soil organic carbon — — — — High
Soil moisture High High — — High
Soil salinity — — — — Medium
Carbonate content — — — — Medium
Nitrogen content — — — — High
Lichen — — — — Medium–high
Photosynthetic vegetation — — — — Medium–high
Nonphotosynthetic — — — — Medium–high

Soil attributes-remote sensing
Mineralogy — — — Medium Medium–high
Soil texture — Medium — Medium Medium
Iron content — — — Low Medium
Soil organic carbon — — — Low High
Soil moisture Medium–high Medium–high — Medium Low–medium
Soil salinity Medium–high — Low–medium Medium
Carbonate content — — — Low–medium Low–medium
Nitrogen content — — — — Medium
Lichen — — — Low–medium Medium
Photosynthetic vegetation — — — Medium Medium–high

Nonphotosynthetic vegetation — — — Medium Medium–high
Ellenberg indicator values — — — — Low
Plant functional type — — — Low–medium Low
Vegetation indices — — — High Medium
Land cover — Low–medium — Medium–high High
Land degradation — Low–medium — High Low–medium

Source:	 Taken from Mulders, V.L., Geoderma, 162, 1, 2011.
a	Feasibility (1–5) = weighted average scores for the number of studies reported, dataset quality, obtained result and applicability to field 

surveys. Low = 1; low–medium = 2; medium = 3; Mmdium–high = 4; high = 5.
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coverage, respectively. Fortunately, most of the RS means today, 
from either air or space domains, are characterized by these GSD 
characteristics. If the high spatial resolution is accompanied by 
high spectral resolution, then the quality of the RS capability 
increases, if the SNR is also kept high. This capability provides a 
better detection limit or interpretation of the data at hand and is 
sometimes crucial. Unfortunately, high spectral and spatial resolu-
tion is not yet possible from orbit; however, when it does become 
available, the exploitation of remote-sensing means will foster new 
applications. New technology that steers the sensor’s foreoptic to 
the same pixel during its overpass and provides two- to fourfold 
better integration time will soon be available, enabling high spec-
tral, spatial, and temporal resolution from orbit. This has already 
been achieved for the air domain, based on the relatively slow sen-
sor speed that enables collecting a sufficient number of photons, 
even from small pixels. It should be remembered, however, that 
sometimes high resolution is simply overkill, and a comprehensive 
selection of sensor performance for the question at hand is critical.

25.3.1.1  Satellite Sensors

The orbital RS era started with the first Russian mission to space, 
Sputnik 1, on October 4th, 1957. A handheld manual camera 
enabled the first large view of the earth’s surface, showing its cur-
vature (which later became a major challenge for the RS operator 
who had to correct for it). However, at that time, space missions 
were restricted to the military/defense sectors, and the civilian 
community was not able to gain access to the data. There was no 
available space-observation technology for civilian applications, 
and several years passed before the first civilian sensor, ERTS 1 
(also known as Landsat 1) from NASA was made available to all 
(1972). Today, many missions, sensors, platforms, and data are 
available to the public from several space agencies, as well as 
from the private sector. The distribution policy ranges from free 
of charge (NASA) to full-price data availability. The International 
Institute for Geo-Information Science and Earth Observation 

(ITC) has published a list of 309 orbital sensors that shows how 
remote sensing has advanced since ERTS 1 (http://www.itc.nl/
research/products/sensordb/allsensors.aspx). Table 25.2 provides 
a list of the main sensors in orbit covering the VIS–NIR–SWIR 
regions that were, are, and will be available to the public and can 
be used for soil applications. The sensors are divided into multi-, 
super-, and hyperspectral sensors consisting of different spatial, 
temporal, and spectral resolutions.

In contrast to the few, highly expensive satellites that were 
available 25  years ago, providing RS technology for scientists 
only at the demonstration and research levels, today, remote 
sensing from space (and the aerial domain) has become a com-
mercial endeavor; it is less expensive, and the data are easier to 
process and can be used by all. Google Earth is a good exam-
ple of how satellite data have become freely available, provid-
ing a new dimension in our understanding and exploration of 
the earth’s surface from afar. A general list of all NASA satel-
lites (along with available data archives) is provided at http://
nssdc.gsfc.nasa.gov/nmc/spacecraftSearch.do. As most of the 
sensors are still characterized by broadbands and low spec-
tral resolution, effort is being devoted to placing hyperspec-
tral–high-spatial-resolution sensors in space, as they can 
provide quantitative rather than qualitative information of 
small areas (see more details in this chapter). An important 
list in this regard is given by Maksimenka for ESA, provid-
ing a summary of super- and hyperspectral orbital sensors in 
use today and planned for the near future, http://ubuntuone.
com/2QsaOhOLPL7602cCOO3IZ5. The high spectral–spatial 
resolution data can serve as a significant management tool for 
precision farming activities covering, for example, soil cultiva-
tion and formation, contamination, degradation, and fertiliza-
tion (see more further on in this chapter). Aside from spectral 
and spatial resolution, for soil applications, temporal resolution 
is also important. A high capability to provide information in a 
short time domain is important for properties such as soil mois-
ture, SOM, and clay content variability. The temporal resolution 
may vary from daily to yearly coverage. In soils, the yearly tem-
poral coverage is important for applications such as land use 
and coverage, change detection (CD) in large areas, and soil 
mapping. Figure 25.4 provides a scheme showing the tempo-
ral versus spatial resolutions required for soil applications (in 
comparison to climate and weather forecast applications) along 
with the currently operational satellites as adopted from Jensen 
(2011).

25.3.1.2  Airborne Sensors

In addition to the satellite sensors that provide large coverage and 
high temporal resolution, there are also sensors onboard air plat-
forms that provide better spatial (and recently also better spectral) 
resolution but with small coverage of a given overpass. Airborne 
remote sensing began many years ago with aerial photography. 
The history of aerial photography and remote sensing is provided 
with some impressive facts and illustrations by Baumann (2010) 
at http://www.oneonta.edu/faculty/baumanpr/geosat2/RS%20
History%20I/RS-History-Part-1.htm; the following text reparses 
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Table 25.2  A List of Past, Present, and Future Orbital Sensors for Soil Remote Sensing and Their Basic Characteristics

Sensor Year Mission Sensor 
Channels in 

VIS-NIR-SWIR 
Spectral 

Range (mm) 
Spatial 

Resolution (m)
Revisit 
(Day) Swath (km) 

Soil Application 
(Spectral Base)

Soil 
Applications 
(Spatial Base) Sector 

Multi 
spectral

1972, 1975, 1978 EART 
(Landsat 1-3)

MSS 4 0.5–1.1 60 18 170 × 185 General, color Large area
General view

NASA

1995, 1997 IRS-1C-1D- LISS-3 4 0.52–1.70 23.5/70.5 24 141/148 General/semi 
quantitative

Medium to 
large coverage

ISRO

Land use, 
general view

1988/1991 IRS-1A-1B LISS-1,2 4 0.45–0.86 36/72.5 22 140 General/semi 
quantitative

Medium to 
large coverage

ISRO

Land use, 
general view

1986, 1990, 1993 SPOT 1-3 HRV 4 0.50–0.89 10/20 2–3 60 General/color Medium to 
large coverage

CNES

Land use (field  
to landscape)

1998 SPOT-4 HRVIR 5 0.50–1.73 10/20 2–3 60 General/color + 
nonvisible color

Medium to 
large coverage

CNES

Land use (field 
to landscape)

1999, 2000 IKONOS 1-2 5 0.45–0.90 1/4 <3 11 General/color Small coverage, 
field scale

Digital-Globe

2000, 2001 QUICK BIRD 
1-2

5 0.45–0.90 0.6/2.4 <1–5 20/40 General/color Small coverage, 
field scale

Digital-Globe

2002 SPOT-5 5 0.48–0.71 2.5/10 2–3 60 CNES
2003 Orb View 3 5 0.45–0.90 1/4 <3 8 General/color Small coverage, 

field scale
GeoEye

2012, 2014 SPOT 6–7 5 0.45–0.89 1.5/8 2–3 60 General/color+ Medium to 
large coverage

CNES

Land use (field 
to landscape)

1982, 1984 Landsat 4–5 TM 6 0.45–2.35 30 18 170 General, semi 
quantitative

Medium to 
large coverage

NASA

Land use
1999 Landsat 7 ETM+ 7 0.45–2.35 30/15 18 170 General/semi 

quantitative
Medium to 

large coverage
NASA

Land use
(Continued)
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Table 25.2 (Continued)  A List of Past, Present, and Future Orbital Sensors for Soil Remote Sensing and Their Basic Characteristics

Sensor Year Mission Sensor 
Channels in 

VIS-NIR-SWIR 
Spectral 

Range (mm) 
Spatial 

Resolution (m)
Revisit 
(Day) Swath (km) 

Soil Application 
(Spectral Base)

Soil 
Applications 
(Spatial Base) Sector 

Multi 
spectral

1997 Orb view 2 8 0.4–0.86 1100 1 2800 General Large coverage GeoEye
2009 World View -2 8 0.40–900 0.46/2.08 1.1 16.4 Spectral base Small coverage, 

field scale
Digital-Globe

1997 Orb view 2 8 0.4–0.86 1100 GeoEye
2001 EO-1 ALI 9 0.43–2.40 10/30 16 37 NASA
2013 Landsat 8 OLI 9 0.43–2.29 30/15 170 × 183 Semi quantitative Medium to 

large coverage
NASA

Land use (field 
to landscape)

Super 
spectral

1999 Terra ASTER 10 0.52–2.43 15/30 16 60 Semi quantitative / 
quantitative

Medium to 
large coverage

NASA/METI

Land use (field 
to landscape)

2017 Venus 12 0.4–1.0 5.3 2 27.5 Spectral based  
(limited)

Small coverage, 
field scale

ISA-CNES

2018 Copernicus Sentinel-2 13 0.4–2.4 10/60 2/3 250 General/Spectral 
Base (limited)

Medium to 
small 
coverage.

ESA

2015 World view-3 CAVIS 16 0.45–2.365 0.34/4.1 1 13.1 Spectral base Small coverage, 
field scale

Digital-Globe

1999 Terra MODIS 20 0.459–2.155 250/1000 1–2 2330 General, Semi 
quantitative

Large coverage
General large 

view

NASA

Hyper 
spectral

2001 Chris-Proba 60 0.4–0.9 18 7 14 Spectral base 
(limited)

Medium 
coverage

ESA

2019 ALOS-3 HISUI 185 0.4–2.5 30 90 Spectral base Medium 
coverage

JAXA

2017 En Map 228 0.42–2.45 30 4 30 Spectral base Medium 
coverage

DLR

2017 PRISMA 238 0.4–2.5 30 29 30 Spectral base Medium 
coverage

ASI

2001 EO-1 Hyperion 244 0.4–2.45 30 16 7.7 Spectral base Medium 
coverage

NASA

Source:	 Modified from ITC list.
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the main points from his site. The first aerial photograph was 
taken in 1858, and its first practical use emerged 50 years later 
during World War I. The military on both sides of the conflict 
saw the value of using the airplane for reconnaissance work. 
Aerial observers, flying in two-seater airplanes with the pilots, 
performed aerial reconnaissance by sketching maps and ver-
bally conveying the conditions on the ground. Toward the end 
of that war, the Germans and the British were monitoring the 
entire front at least twice a day with a total of half a million pho-
tographs from the English side and many more from the German 
side. The war brought major improvements in camera and prod-
uct quality. As a result, in the late 1920s, the first books on aerial-
photograph interpretation were published (a full list is given on 
Baumann’s webpage). World War II brought tremendous growth 
and recognition to the field of aerial photography, which contin-
ues to this day. In 1938, the chief of the German General Staff, 
General Werner von Fritsch, stated “the nation with the best 
photoreconnaissance will win the war.” Admiral J. F. Turner, 
commander of the American Amphibious Forces in the Pacific, 
stated that the importance of “photographic reconnaissance can-
not be overemphasized.” In parallel to its military development, 
aerial photography was used for soil applications. The first report 
on this use of aerial photography was published around 1927 
for soil surveys of the United States (Bushnell, 1932), Australia 
(Prescott and Taylor, 1930), and the USSR (Levenhangst, 1930). 
Vink (1964) generated a checklist and bullet points on how to use 
aerial photographs for soil applications and highlighted the nec-
essary methods to interpret the images and translate them into 
a soil map. Figure 25.5 provides an example of a final product 
conducted using stereo aerial photographs to interpret “possible 
soil boundaries” according to Vink’s (1964) instructions. It can 
be seen that this map is still not informative and field work is 

strongly needed. On the other hand, Vink’s (1963a,b) work was 
the first to prove that the use of aerial photographs diminish-
ing the number of observation on the development of a soil map, 
in comparison with a work for the same area and same scale, 
although without the use of this product. Its invaluable need for 
soil survey application was later well documented by Goosen 
(1967). This demonstrates the impact of aerial photography at 
that time for soil science, that is, in providing possible bound-
aries based only on the gray tones of the aerial photograph and 
indicating less need of field observations. Aerial photography is 
still a common way of mapping the surface, and many mapping 
agencies have instrumentation to interpret the analog data that 
today have mostly been converted to digital format. Other sen-
sors, such as multispectral and hyperspectral sensors, are also 
available from the aerial domain, and over the last decade, they 
have been widely used for studying particular areas and zooming 
in on particular fields. Unmanned platforms (unmanned aerial 
vehicles [UAVs]) are also entering the field of aerial photography 
based on high-quality light cameras and GPS availability with an 
easy operational scheme. A recent example is given by d’Oleire 
et  al. (2012), who monitored soil erosion in Morocco using a 
UAV. Ben-Dor et al. (2013) provide a comprehensive overview of 
hyperspectral RS (HSR) technology along with a full description 
of the main available airborne hyperspectral sensors worldwide; 
a detailed list can be found at http://www.tau.ac.il~rsl/rgomez. 
Those authors concluded that soon, HSR technology would move 
from the realm of scientific demonstration to become a practical 
commercial tool for remote sensing of the earth’s surface, includ-
ing soils. As it is possible to obtain high spectral and spatial reso-
lutions using this technology onboard aircrafts, its contribution 
for soil applications is straightforward. Herein, we present the 
reasons why HSR technology is promising for soil monitoring.
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Figure 25.4  The spatial and temporal resolutions that are needed for soil applications and the orbital sensors available for that. Also given for 
comparison is the climate application. (The figure is modified from Jensen, R.J., Remote Sensing of the Environment: An Earth Resources Perspective, 
Pearson Prentice Hall Press, 2011, p. 592.)

© 2016 Taylor & Francis Group, LLC
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25.3.1.3  Sensor per Mission

Selection of a sensor that best suits a particular mission, and more 
specifically a particular soil application, must be tailored to the 
question at hand. Such questions might involve large or small 
areas, quantitative or qualitative information, CD or current-state 
position of the soil, as well as cost. Many of the satellite data avail-
able today are free of charge (mostly from governmental bodies 
such as NASA, NOAA, and ESA), whereas others can be costly 
as DigitalGlobe (https://www.digitalglobe.com/) and Imagesat 
(http://www.imagesatintl.com). Airborne data are also costly but 
may provide more information on a small scale based on its high-
spatial-resolution domain and solve local problems by capturing 
high spectral/spatial information. Tactical considerations for a 
specific mission are important, and taking into account the pro-
cessing time and spectral sensitivity of the sensor is crucial.

As across the VIS–NIR region, both radiation and detectors 
are at their maximum sensitivity, this region is well covered 
by most of the current sensors. In the SWIR regions, however, 
detector sensitivity and produced radiation intensity are poor, 
making this region more problematic and hence less available. 

The evolution of remote sensing shows that the VIS sensors were 
the first to be used. Instead of a digital detector, a sensitive emul-
sion (film) for VIS radiation was used to capture visual informa-
tion, allowing only limited interpretation of the RS data. Today, 
all sensors are equipped with a CCD assembly and the raw 
product is delivered in digital format. The computing power and 
digital visualization provide an innovative way of visualizing 
and analyzing the data using algorithms that can be shared with 
a wide spectrum of users. This is a real breakthrough for soil 
applications, where most of the information is hidden beneath 
the spectral responses of the solid and water phases.

In summary, there are different remote-sensor options related 
to the source of energy (passive or active sensors), the type of 
platform (ground, air, or space), the spectral region (optical, IR, 
microwave), the platform trajectory, the number and width of 
the spectral bands (e.g., panchromatic, multispectral, superspec-
tral, hyperspectral), the spatial resolution (high, medium, low), 
the spatial coverage (point or image view), the temporal reso-
lution (e.g., hourly, daily, or weekly revisiting frequencies), the 
radiometric resolution (e.g., 8, 12, 16 bits), and the collection sys-
tem (push broom or whisk broom). The modern sensors provide 
information on spatial and spectral domains from aboveground 
elevations of a few meters (field sensors) to 800 km (orbital sen-
sors), with spatial resolutions varying from a few centimeters to 
tens of meters and temporal coverage of minutes to days.

25.4  Remote Sensing of Soils

Remote sensing of soils refers to the product that can be obtained 
on soils from remote sensors. It should cover the information 
extracted and interpreted on a soil entity from afar. Although 
problems still exist in correctly remotely sensing the soil body, 
the advances made in both the technology and the know-how 
over the years are remarkable. In 1987, Mulder wrote that “it is 
still impossible to extrapolate the remote sensing information for 
the entire profile.” Although for the most part, optical RS means 
cannot detect the entire soil body that extends from the surface 
down to the parent material, today, some innovative ideas can be 
used to probe below the soil surface. Most of the RS soil products 
in the optical domain characterize the surface, because the sun’s 
radiation cannot penetrate more than 50 μm of the soil’s surface 
(Ben-Dor et al., 1999). Accordingly, only the upper (mostly Ao) 
horizon can be sensed, with limited ability to extrapolate the 
information to the soil’s deeper horizons. If the parent material 
is known (mostly from metadata such as geological maps), the 
Ao information can provide inferences about the soil body if the 
soil in question is a direct product of the lengthy rock-weath-
ering process. However, as the soil surface is frequently char-
acterized by a short time process, the upper soil horizon (Ao) 
can provide valuable information on the environmental (soil) 
processes such as soil degradation, dust accumulation, contami-
nation, salinity, OM, crust formation, soil-surface moisture, soil 
runoff, and water infiltration (see further on). This information 
can be valuable for the farmer, and thus the RS product can assist 

Probable soils boundaries
Possible soils boundaries
Open water (river, oxbow lakes)
Roads
Urban areas

Figure 25.5  An example of the spatial map that was generated 
from aerial photography and then was used by soil surveyors to assess 
the soil entity by opening trenchers and describing the entire soil pro-
files. (Taken from Vink, A.P.A., J. Soil Sci., 14, 88, 1963a; Vink, A.P.A., 
Planning of soil surveys in land development. International Institute 
for Land Reclamation and Improvement, publication 10, U.D.C. 631.47: 
528.77, the Netherlands, 1963b, 53p.)
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decision makers in selecting appropriate action. For these appli-
cations, high-spectral-resolution sensors are needed. Obtaining 
spectral information from afar is not simple and requires high 
performance from both operational and infrastructural stand-
points. Nonetheless, if the spectral-reflectance information 
can be captured from air and space domains in a precise man-
ner, then information on the status of the soil surface becomes 
invaluable and promising. This makes reflectance spectroscopy 
a significant factor in the remote sensing of soils. Satellites can 
provide overviews of larger areas than airborne sensors and have 
a better temporal resolution. However, high spectral and spatial 
resolution from orbit is still problematic, whereas data storage 
and computing power are no longer limiting, thanks to cloud 
technology and computing power that can be shared by many 
computers. Despite some limitations, remote sensing of soils 
can assist the development of digital soil mapping by providing 
a good basis for soil surveyors and enabling the monitoring of 
surface processes in a unique way. New computing power, user-
friendly software, and open-source algorithms combined with 
other sensors in the air and on the ground will enable (and in fact 
are enabling) new RS dimensions. It is obvious that soil, as one 
of the main covers of the earth’s surface, is an ideal study target 
for RS technology, especially from satellites. Ge et al. (2011) pro-
vide a brief description of the history of remote sensing of soils 
from satellite sensors. They pointed out that in the late 1960s and 
early 1970s, soil scientists began to understand the capabilities 
of Landsat 1 data, from which differences in surface soils could 
be delineated (Kristof, 1971). Soon after, Kristof and Zachary 
(1974) reported partial success in delineating soil series in an 
Alfisol–Mollisol region through digital analysis of aerial multi-
spectral data. It was only in 1972, when Landsat 1 data became 
available to the public, that the era of remote sensing of the soil 
began. This was mainly based on studies that realized that soil 
spectral information is a key factor in exploiting soil (optical and 
chemical) data obtained from afar. The first investigations of soil 
spectroscopy were published in around 1970 (e.g., Condit 1970, 
1972). Those studies showed that the spectral information can be 
used as a tool to discriminate between soil families. Along these 
lines, it was shown that a dataset consisting of 160 different soil 
spectra could be categorized spectrally into three groups. This 
actually opened up the era of soil spectroscopy as the basis for 
soil RS disciplines. This topic is further elaborated upon later in 
this chapter.

25.5  Soil Reflectance Spectroscopy

25.5.1  Definition

The soil reflectance spectrum (ρ) is a collection of values 
obtained at every spectral band (λ) from the ratio of radiance (E) 
and irradiance (L) fluxes across most of the spectral region of the 
solar emittance function:

	
ρ λ λ

λ
( )

( )

( )
= E

L
	 (25.2)

The reflectance values are traditionally described, from a practi-
cal standpoint, by a relative ratio against a perfect reflector spec-
trum measured at the same geometry and position as the soils 
(Palmer, 1982; Baumgardner et al., 1985; Jackson et al., 1987).

To illuminate the value of the soil spectrum, this section 
will provide some historical notes and then a comprehensive 
theoretical background on the interaction of electromagnetic 
radiation with the soil matrix described by ρ.

25.5.2  Historical Notes

When spectrometers became available in around 1960, stud-
ies were conducted to elucidate the spectral responses of soils 
and pure minerals. From 1970 to 1982, Hunt and Salisbury 
conducted a comprehensive study on the spectral characteris-
tics of pure minerals, which was published in (1970, 1971a–d, 
1976, 1980). In 1965, a first attempt to demonstrate the quanti-
tative capabilities of soil spectral information showed a correla-
tion between moisture content and spectral response at several 
wavebands (Bowers and Hanks, 1965). Later, a systematic inves-
tigation of the relationship between soil spectral information 
and soil properties was conducted by Condit (1970) and then 
by Montgomery and Baumgardner (1974), who later systemati-
cally studied the soil reflectance of American soils (Stoner and 
Baumgardner, 1981). These latter authors also published the first 
“soil reflectance atlas” (Stoner et al., 1980); they demonstrated the 
importance of soil spectroscopy and for the first time, the spec-
tral grouping of mostly U.S. soils into five major soil types (one 
of them, type 5, was from Brazil). Their soil spectral library was 
initially constructed with complete soil profiles (horizons) and 
its classification, which quickly became a classical tool for soil 
scientists and a fundamental reference source for future studies. 
The emerging activity in soil spectroscopy over the past decade, 
resulting in a vast accumulation of knowledge, led workers to 
complete Baumgardner’s work on a global basis by establishing 
more libraries worldwide (e.g., Viscarra Rossel, 2009). In 1991, 
the first portable spectrometer hit the market (ASD, http://www.
portableas.com/index.php/manufacturers/asd/), ringing in the 
era of portable and facile spectral sensing of soils (as well as other 
earth materials) in both field and laboratory domains (Goetz, 
2009). This drove many scientists to the field of soil spectroscopy, 
and today, there is a strong scientific community in this field of 
interest from many aspects and contributing their know-how to 
the practical utilization of this promising tool. The significant 
contribution of soil reflectance lies in the possibility of extract-
ing quantitative soil information from the spectrum by establish-
ing a proximal-sensing approach, which historically started (in 
soils) around 1986; at that time, Dalal and Henry (1986) were the 
first to adopt the spectral data-mining technique based on Ben-
Gera and Norris’s (1968) approach developed a decade prior for 
wheat grains. From 1994 onward, after Ben-Dor and Banin (1994) 
showed the potential of the proxy technique to extract several soil 
properties (among them even “featureless”), soil spectral studies 
advanced rapidly. In 1983, the first hyperspectral airborne sen-
sor arrived at NASA (Goetz, 2009), but it took years until this 
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technology was adopted for a proximal-sensing approach in 
soils (Ben-Dor et al., 2002). Today, with some of the obstacles to 
extracting reflectance information from air and space domains 
having been partially overcome, this seems to be the direction 
that will enable exploitation of soil spectral information for the 
needs of mankind, such as soil monitoring, mapping, and cultiva-
tion. The following sections provide a theoretical background on 
soil reflectance to understand its capacity in the RS field, and then 
its applications in soil science will be demonstrated.

25.5.3 � Radiation Interactions 
with a Volume of Soil

The process of radiation scattering by soils results from a multi-
tude of quantum-mechanical interactions between the enormous 
number and variety of atoms, molecules, and crystals in a macro-
scopic volume of soil. In contrast to certain absorption features, 
most characteristics of the scattered radiation are not attribut-
able to a specific quantum-mechanical interaction. The effects of 
a particular mechanism often become obscured by the compos-
ite effect of all of the interactions. The difficulty in accounting for 
the effects of a large number of complex quantum-mechanical 
interactions often leads to the use of non-quantum-mechanical 
models of electromagnetic radiation. Physicists frequently resort 
to the classical wave theory or even to geometrical optics to elu-
cidate the effects of a macroscopic volume of matter on radiation.

25.5.3.1  Refractive Indices

When light passes through a medium, some part of it will always 
be absorbed. This can be conveniently taken into account by 
defining a complex index of refraction:

	 �n n i= + κ 	 (25.3)

Here, the real part of the refractive index n indicates the phase 
speed, while the imaginary part κ indicates the amount of 
absorption loss when the electromagnetic wave propagates 
through the material (i is the square root of −1). That κ corre-
sponds to absorption can be seen by inserting this refractive 
index into the expression for the electrical field of a plane elec-
tromagnetic wave traveling in the z-direction. The wave number 
is related to the refractive index by

	
k

n= 2

0

π
λ

	 (25.4)

where λ0 is the vacuum wavelength. With complex wave number 
and refractive index n + iκ, this can be inserted into the plane 
wave expression as
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0

1Re E ei k≈−( )( ) 	 (25.5)

Here, we see that gives an exponential decay, as expected from 
the Beer–Lambert law. Since intensity is proportional to the 
square of the electrical field, the absorption coefficient becomes 
4πκ/λ0.
κ is often called the extinction coefficient in physics, although 
this has a different definition in chemistry. Both n and κ are 
dependent on the frequency. Under most circumstances, κ > 0 
(light is absorbed) or κ = 0 (light travels forever without loss). 
In special situations, especially in the gain medium of lasers, it 
is also possible for κ < 0, corresponding to an amplification of 
the light. In the soil matrix, the radiation travels through a thin 
layer of particles, is reflected back to the sensor, and provides 
a spectrum whose shape and nature are affected by the afore-
mentioned process (consisting of both the real and imaginary 
part of the complex refractive index). Any substance in the soil 
matrix that affects the indices given earlier is termed a “chromo-
phore.” Knowing the chromophores’ behavior can shed light on 
the physical and chemical constituents of the soil matrix under 
study. This information can either be derived by the naked eye’s 
“color vision” (across the VIS region) or by careful analysis of the 
spectral responses (across the VIS–NIR–SWIR regions) accord-
ing to the aforementioned theory. In general, due to its complex-
ity, a given soil sample consists of a variety of chromophores, 
which vary with environmental conditions. In many cases, the 
spectral signals related to a given chromophore can overlap with 
other chromophores’ signals, thereby hindering the assessment 
of the direct effect of the chromophore in question. Accordingly, 
it is important to understand the chromophores’ physical pro-
cesses as well as their origin and nature. Another point to men-
tion is that in soil, there are many cases in which relationships 
between chromophoric and nonchromophoric properties exist.

We define the factors affecting soil spectra as “physical” if 
the real part of the refractive index is associated and “chemical” 
if the spectral changes are associated with the imaginary part 
of the refractive index. This terminology is adopted from the 
weathering processes in soil where “physical” weathering refers 
to “size” changes in the soil matrix with no chemical alteration 
and “chemical” weathering refers to chemical “alteration” of the 
soil materials. Figure 25.6 provides the possible light interac-
tions within the thin layer of the soil surface.

50 μm
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Figure 25.6  An illustration showing the interaction of light with  
the soil particles at the soil surface. 

© 2016 Taylor & Francis Group, LLC

  



745Remote Sensing of Soil in the Optical Domains

25.5.3.2 C hemical Chromophores

25.5.3.2.1  Physical Mechanism
Chemical chromophores are those materials that absorb inci-
dent radiation at discrete energy levels. The absorption process 
usually appears on a reflectance spectrum at positions attrib-
uted to specific chemical groups in various structural configu-
rations. The interaction between radiation and matter occurs 
at the atomic and molecular levels. Electromagnetic radiation 
can be emitted or absorbed when an atom or molecule tran-
sitions between energy states. The energy of an emitted or 
absorbed photon equals the difference between the energy lev-
els. Furthermore, the energy-level transitions must be accom-
panied by either a redistribution of the electric charge carried 
by electrons and nucleic protons or a reorientation of nuclear or 
electronic spins before a photon is emitted or absorbed (Hunt, 
1982). A comprehensive description of the physical mechanisms 
describing the interactions of electromagnetic radiation with 
diverse minerals and rocks is provided by Clark (1999). This 
section focuses on the most common chromophores in the soil 
environment and their relationship with electromagnetic radia-
tion across the VIS–NIR–SWIR spectral region.

25.5.3.2.2  Vibration Processes in the SWIR Region
The absorption or emission of shortwave radiation usually 
results from energy-level transitions accompanied by charge 
redistributions involving either the motion of atomic nuclei or 
the configuration of electrons in atomic and molecular struc-
tures. A molecule possesses several modes of vibration depend-
ing on the number and arrangement of its atoms. A molecule 
with N atoms may have 3N-5 vibrational modes if the atoms are 
arranged linearly or 3N-6 vibrational modes if the bonding is 
nonlinear (Castellan, 1983). The absorbed (or emitted) frequen-
cies are called overtone bands when a vibrational mode transi-
tions from one state to another that is more than one energy level 
above (or below) the original state. Combination bands refer to 
frequencies associated with transitions of more than one vibra-
tional mode. These combined transitions occur when the energy 
of an absorbed photon is split between more than one mode 
(Castellan, 1983). Vibrational transitions corresponding to the 
fundamental bands are generally more likely to occur than 
transitions corresponding to combination and overtone bands 
(Castellan, 1983) and are usually stronger than the overtone 
transition. The fundamental transition of soil chromophores 
occurs mostly in the IR region (>2.5 μm), whereas the overtones 
occur in the SWIR region, mostly above 1 μm. The two basic 
vibrations that correspond to the atoms’ motions in the chemi-
cal bonds’ molecular processes in soil minerals are stretching (ν) 
and bending (δ).

Aside from the overtone transitions, combination modes are 
also excited when the quantum mechanism enables combin-
ing different vibrational processes of the same bonds, such as 
stretching and bending. Combination and overtone bands asso-
ciated with hydroxyl group (OH) vibrations are, for example, 
often apparent in soil reflectance spectra. OH groups are found 

on many soil minerals and the exact wavelength location of the 
associated bands depends upon which OH-bearing minerals are 
present in the soil. The one fundamental OH band due to oxy-
gen–hydrogen stretching is found near 2.8 μm and the first over-
tone band due to this stretch is located near 1.4 μm. Absorption 
at this overtone band is the most common feature in the NIR 
spectra of terrestrial materials (Hunt, 1982). The hydrogen–
oxygen stretch can also be coupled with other vibrations in the 
molecular structure of the soil minerals to create combination 
band features. Bending at magnesium–OH bonds coupled with 
stretching results in a combination band near 2.300 μm, and 
bending at aluminum-OH bonds coupled with stretching pro-
duces a combination band near 2.200 μm (Hunt, 1982).

25.5.3.2.3  Electron Processes in the VIS–NIR Region
At higher electromagnetic radiation energy (UV and VIS–
NIR), the spectral response is associated with electron transi-
tions. The locations of these bands are due to the relatively large 
gaps between electron energy states. The principles of quantum 
mechanics dictate that each electron of an atom, ion, or molecule 
can exist in only certain states corresponding to discrete energy 
levels. There are four possible electronic possibilities, termed 
crystal field, charge transfer, color center, and semiconductor. 
In soil and soil minerals, the first two are dominant. A crystal 
field can often be inferred from reflectance spectra of minerals 
containing transition metals. The allowable energy states for the 
unpaired transition-metal electrons and the gaps between states 
are determined primarily by the valence state of the ion and the 
coordination number and symmetry of the crystal site in which 
the ion occurs. The energy states are also influenced by the type of 
ligand surrounding the ion, by the interatomic metal–ligand dis-
tance, and by site distortion (Hunt, 1982). This latter author dis-
played the reflectance spectra of six minerals containing ferrous 
iron (Fe2+) to demonstrate the effects of coordination number, 
site symmetry, and site distortion. Charge transfer is a mechanism 
involving the electrons of a specific ionic bond between adjacent 
ions. Charge transfer occurs when an electron migrates between 
the adjacent ions with a corresponding change in energy state. 
The usually prominent decrease in reflectance in the blue region 
of soil reflectance spectra is due to the charge transfer between 
iron and oxygen in Fe oxides (Hunt, 1982). The dark color of 
some minerals, such as magnetite (Fe3O4), which contain both 
ferrous (Fe3+) iron, is due to charge transfer between these two 
ions (Nassau, 1980, 1983). Color centers refer to unpaired elec-
trons and paired valence electrons that play a role in the interac-
tion of shortwave radiation with soils. Molecular-orbital theory 
describes the distribution of paired-electron charges among the 
atoms of a molecule or crystal. In some cases, an electron pair 
may remain associated with a specific bond between two adja-
cent atoms or ions. In other cases, the charge may be distrib-
uted over several atoms or even throughout a crystal structure. 
Semiconductors interact like solids in which the allowable energy 
states of the bonding electrons are divided into two broadbands. 
The lower energy band is called the valence band and the higher-
energy band, which contains all of the excited states, is called the 
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conduction band. Between these two bands is a region called 
the forbidden gap within which no electrons are allowed. To be 
absorbed by a semiconductor, a photon must carry at least enough 
energy to elevate an electron from the upper level of the valence 
band to the lower level of the conduction band (Nassau, 1980). 
The reflectance spectrum of a semiconductor is distinguished by 
an intense absorption edge, which marks the width of the forbid-
den gap (Hunt, 1980).

25.5.3.3  Physical Chromophores

In addition to chemical chromophores, the reflectance of light 
from the soil surface is dependent upon numerous physical pro-
cesses, most of them related to the real part of the refractive index. 
Reflection, or scattering, is clearly described by Fresnel’s equation 
and depends upon the angle of incidence radiation and upon the 
index of refraction of the material in question. In general, physi-
cal factors are those parameters that affect soil spectra in terms 
of Fresnel’s equation (the real part of the refractive index), but 
which do not cause changes in the position of the specific chemi-
cal absorption. These parameters include particle size, particle’s 
geometry, hydration stage, viewing angle, radiation intensity, 
incident angle, and azimuth angle of the source. Changes in these 
parameters are most likely to affect the shape of the spectral curve 
through changes in baseline height and absorption-feature inten-
sities. In the laboratory, measurement conditions can be held 
constant; in the field, several of these parameters are unknown, 
which may complicate accurate assessments of their effect on soil 
spectra. Many studies, covering a wide range of materials, have 
shown that differences in particle size alter the shape of soil spec-
tra (e.g., powdered material) (Hunt and Salisbury, 1970; Pieters, 
1983; Baumgardner et al., 1985). Specifically, Hunt and Salisbury 
(1970) quantified particle-size difference effects of about 5% in 
absolute reflectance and noted that these changes occurred with-
out altering the position of diagnostic spectral features. Under 
field conditions, aggregate-size rather than particle-size distribu-
tion may be more important in altering soil spectra (Orlov, 1966; 
Baumgardner et al., 1985). In the field, aggregate size may change 
over short periods due to tillage, soil erosion, aeolian accumu-
lation, or physical crust formation (e.g., Jackson et  al., 1990). 
Basically, the aggregate size, or more likely roughness, plays a 
major role in the shape of field and airborne soil spectra (e.g., 
Cierniewski, 1987, 1989). Escadafal and Hute (1991) showed 
strong anisotropic reflectance properties in five soils with rough 
surfaces. Cierniewski (1987) developed a model to account for 
soil roughness based on the soil-reflectance parameter, illumi-
nation properties, and viewing geometry for both forward and 
backward slopes. The model showed that the shading coefficient 
of the soil surface decreases with decreasing soil roughness. For 
soils on forward slopes of more than 20°, the shadowing coef-
ficient also decreased with increasing solar altitude for the full 
interval of sun altitudes ranging from 0° to 90°. The model indi-
cated that the relationship for soil slopes with surface roughness 
lower than 0.5 might be reversed for a specified range of solar 
altitudes. Using empirical observations of smoothed soil sur-
faces, Cierniewski (1987) showed that the model closely agrees 

with field observations. An excellent brief summary on multiple- 
and single-scattering models for soil particles with respect to the 
roughness effect is given by Irons et al. (1989).

25.5.3.4 C hromophores in Soils

This section focuses on the most common chromophores in 
the soil environment and their relationship with electromag-
netic radiation across the VIS–NIR–SWIR spectral region. 
All  features in the VIS–NIR–SWIR spectral regions have a 
clearly identifiable physical basis. In soils, three major chemical 
chromophores can be roughly categorized as follows: minerals 
(mostly clay and Fe oxides), OM (living and decomposing), and 
water (solid, liquid, and gas phases). Physical chromophores in 
soils are related to particle size and measurement geometry.

25.5.3.4.1  Soil Minerals
As already discussed previously, Hunt and Salisbury (1970–
1980) have studied the details of the spectral behavior of many 
minerals on earth. Some minerals reported in their comprehen-
sive review are encountered in the soil environment and will be 
discussed here, with additional information related to the soil 
medium.

Clay minerals: Of all clay mineral elements, only the OH group 
is spectrally active in the VIS–NIR–SWIR region. This group 
can be found as part of either the mineral structure (mostly in 
the octahedral position, which is termed lattice water) or the 
thin water molecule that is directly or indirectly attached to the 
mineral surface (termed adsorbed water). Three major spectral 
regions are active for clay minerals in general and for smectite 
minerals in particular: around 1.3–1.4 μm, 1.8–1.9 μm, and 
2.2–2.5 μm. For Ca–montmorillonite (SCa-2)—a common clay 
mineral in the soil environment—the lattice OH features are 
found at 1.410 μm (assigned 2νOH, where νOH symbolizes the 
stretching vibration around 3630 cm−1) and at 2.206 μm (assigned 
νOH + δOH where δOH symbolizes the bending vibration at 
around 915 cm−1), whereas OH features of free water are found 
at 1.456 μm (assigned νW + 2δW, where νW symbolizes the 
stretching vibration at around 3420  cm−1 and δW the bending 
vibration at around 1635 cm−1), 1.910 μm (assigned ν′W + δW 
where ν′W symbolizes the high-frequency stretching vibration at 
around 3630 cm−1), and 1.978 μm (assigned for νW + δW). Note 
that these assigned positions can change slightly from one smec-
tite to the next, depending upon their chemical composition and 
surface activity. The spectra of three smectite end members are 
given in Figure 25.7, as follows: montmorillonite (dioctahedral, 
aluminous), nontronite (dioctahedral, ferruginous), and hecto-
rite (trioctahedral, manganese). The OH absorption feature of the 
νOH + δOH in combination mode at around 2.2 μm is slightly but 
significantly shifted for each end member. In highly enriched Al 
smectite (montmorillonite), the Al–OH bond is spectrally active 
at 2.16–2.17 μm. In highly enriched iron smectite (nontronite), 
the Fe–OH bond is active at 2.21–2.24 μm, and in highly enriched 
magnesium smectite (hectorite), the Mg–OH bond is spectrally 
active at 2.3 μm. Based on these wavelengths, Ben-Dor and 
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Banin (1990a) were able to find a significant correlation between 
the absorbance values derived from the reflectance spectra and 
the total content of Al2O3, MgO, and Fe2O3. Except for a signifi-
cant lattice OH absorption feature at around 2.2 μm in smectite, 
invaluable information on OH in free water molecules can be 
measured at around 1.4 and 1.9 μm. Because smectite minerals 
contribute to the soil’s relatively high specific surface area, which 
is covered by free and hydrated water molecules, these absorp-
tion features can be significant indicators of soil water content. 
Kaolinite and illite minerals are also spectrally active in the SWIR 
region as they both consist of octahedral OH sheets. In the case 
of kaolinite, a 1:1 mineral (one octahedral and one tetrahedral), 
the fraction of the OH group is higher than in 1:2 minerals (one 
octahedral and two tetrahedral), and therefore the lattice OH sig-
nals at around 1.4 and 2.2 μm are relatively strong, whereas the 
signal at 1.9 μm is very weak (because of relatively low surface 
area and adsorbed water molecules). In the case of gibbsite, an 
octahedral aluminum structure (1:0), the signal at 1.4 μm is even 
stronger, but that at 2.2 μm is shifted significantly to the IR region 
relative to kaolinite and presents an important diagnostic band 
at 2.265 μm. It should be noted that under relatively high SNR 
conditions, a second overtone feature of the structural OH (3υOH) 
can be observed at around 0.95 μm in OH-layer-bearing miner-
als as well (Goetz et al., 1991). The affinity of water molecules to 
clay mineral surfaces under the same atmospheric conditions is 
correlated to the minerals’ specific surface area. For the afore-
mentioned minerals, the specific surface area follows the order 
smectite > vermiculite > illite > kaolinite > chlorite > gibbsite, and 
these usually provide a similar spectral sequence for the water-
absorption feature near 1.9 μm (area and intensity). As smectite 
and kaolinite are often found in soils, they can also appear in a 
mixed-layer formation with spectral overlaps (Kruse et al. 1991).

Carbonates: Carbonates, particularly calcite and dolomite, are 
found in soils that are formed from carbonic parent materials or 

in a chemical environment that permits calcite and dolomite pre-
cipitation. Carbonates, and especially those of fine particle size, 
play a major role in many of the soil chemical processes that are 
most likely to occur in the root zone. The C–O bond, part of the 
CO3 radical in carbonate, is the spectrally active chromophore. 
Hunt and Salisbury (1970, 1971d) pointed out five major over-
tones and combination modes that describe the C–O bond in the 
SWIR region. Table 25.3 provides the band positions (calculated 
and observed from Gaffey, 1986) and their spectral assignments. 
In this table, υ1 accounts for the symmetric C–O stretching 
mode, υ2 for the out-of-plane bending mode, υ3 for the antisym-
metric stretching mode, and υ4 for the in-plane bending mode 
in the IR region. Gaffey (1986) added two additional significant 
bands centered at 2.23–2.27 μm (moderate) and at 1.75–1.80 μm 
(very weak), and van der Meer (1995) summarized the seven 
possible calcite and dolomite absorption features with their 
spectral widths. It is evident that significant differences occur 
between the two minerals. This enabled Kruse et al. (1990), Ben-
Dor and Kruse (1995), and others to differentiate between calcite 
and dolomite formations using airborne spectrometer data with 
10 nm bandwidths. In addition to the seven major C–O bands, 
Gaffey and Reed (1987) were able to detect copper impurities in 
calcite minerals, as indicated by the broadband between 0.903 
and 0.979 μm. However, such impurities are difficult to detect 
in soils because overlap with other strong chromophores may 
occur in this region. Gaffey (1985) showed that iron impurities 
in dolomite shift the carbonate’s absorption bands toward lon-
ger wavelengths, whereas magnesium in calcite shifts the bands 
toward shorter wavelengths. As carbonates in soils are likely to 
be impure, it is only reasonable to expect that the carbonates’ 
absorption-feature positions will differ slightly from one soil to 
the other.

Organic matter: The wide spectral range found by different 
workers to assess SOM content suggests that OM is an important 
chromophore across the entire spectral region. Figure 25.8 shows 
the reflectance spectra of coarse OM (in the NIR–SWIR region) 
isolated from an Alfisol and the humus compounds extracted 
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Figure 25.7  Reflectance spectra of three pure smectite endmembers 
in the SWIR region (nontronite = Fe-smectite; hectorite = Mg-smectite; 
montmorillonite Al-smectite). Note the different position of combina-
tion modes of (νOH + δOH) around 2.2 and 2.3 μm.

Table 25.3  Band Positions and Assignments for Calcite Mineral

 Band Position (μm) Band Assignment 

Hunt and Salisbury 
(1971)

2.55 v1 + v3

 2.35 3v3 
2.16 v1 + 2v3 + v4 or 3v1 + 2v4

 2.00 2v1 + 2v3 
 1.90 v1 + 3v3 
Haxter (1958) 2.55 2v3 + 270 + 2 × 416
 2.37 2v3 + 270 + 3 × 416 
Schroeder et al. (1962) 2.54
Matossi (1928) 2.533 2v3 + v1

 2.500 2v3 + v1 
 2.330 3v3 
 2.300 3v3 

Source:	 Gaffey 1986.
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from it. There are numerous absorption features that relate to the 
high number of functional groups in OM. These can all be spec-
trally explained by combination and vibration modes of organic 
functional groups (Chen and Inbar, 1994). Ben-Dor et al. (1997) 
referred the absorption peaks across the SWIR region to overtone 
and combination modes of nitrogen and carbon groups and across 
the VIS regions to charge transfer in the remaining chlorophyll, as 
well as to other smeared electronic processes that affect the entire 
VIS spectral region, flatting the reflectance spectrum accordingly. 
Dry litter and fresh OM show many absorption features across 
the SWIR region related to many chemical chromophores, such 
as starch, cellulose, lignin, and water.

Water: The various forms of water in soils are all active in the 
VIS–NIR–SWIR region (based on the vibration activity of the 
OH group) and can be classified into three major categories: (1) 
hydration water, which is incorporated into the lattice of the min-
eral (e.g., limonite [Fe2O3.3H2O] and gypsum [CaSO4.4H2O]); 
(2) hygroscopic water, which is adsorbed on soil-surface areas as 
a thin layer; and (3) free water, which occupies the soil pores. 
Each of these categories influences the soil spectra differently, 
enabling identification of the water condition of the soil, and 
each is treated separately below. Three basic fundamentals in the 
IR regions exist for water molecules, particularly the OH group: 
υw1-asymmetric stretching, δw bending, and υw3-symmetric 
stretching vibrations. Theoretically, in a mixed system of water 
and minerals, combination modes of these vibrations can yield 
OH absorption features at around 0.95 μm (very weak), 1.2 μm 
(weak), 1.4 μm (strong), and 1.9 μm (very strong) related to 
2υw1 + υw3, υw1 + υw3 + δw, υw3 + 2δw, and υw3 + δw, respec-
tively. The hydration water can be seen in minerals such as gyp-
sum as strong OH absorption features at around 1.4 and 1.9 μm 
(Hunt et al., 1971b). However, free water changes the soil spec-
trum significantly as the real part of the refractive index is very 
dominant, causing a decrease in reflectance through the entire 
spectral range and consequently masking other possible fea-
tures. This causes a problem in soil remote sensing when the soil 
is saturated or very wet.

Iron: This is the most abundant element on the earth’s sur-
face and the fourth most abundant element in the earth’s crust 
(Dixon, 1989). Changes in its oxidation state, and consequently 
in its mobility, tend to occur under different soil conditions. The 
major Fe-bearing minerals in the earth’s crust are the mafic sili-
cates, Fe sulfides, carbonates, oxides, and smectite clay minerals. 
All Fe3+ oxides have striking colors, ranging from red and yel-
low to brown, due to selective light absorption in the VIS range 
caused by transitions in the electron shell. It is well known that 
even a small amount of Fe oxide can change the soil’s color sig-
nificantly. The red, brown, and yellow hue values, all caused by 
iron, are widely used in soil-classification systems in almost all 
countries. The iron feature assignments in the VIS–NIR region 
result from the electronic transition of iron cations (3+, 2+), 
either as the main constituent (as in Fe oxides) or as impurities 
(as in iron smectite). Hunt et al. (1971a) summarized the physi-
cal mechanisms responsible for Fe2+ (ferrous) and Fe3+ (ferric) 
spectral activity in the VIS–NIR region as follows: the ferrous 
ion typically produces a common band at around 1 μm due to 
the spin allowed during the transition between the Eg and T2g 
quintet levels into which the D ground state splits into an octa-
hedral crystal field. Other ferrous bands are produced by transi-
tions from the 5T2g to 3T1g states at 0.55 μm, to 1A1g at around 
0.51 μm, to 3T2g at 0.45 μm, and to 3T1g at 0.43 μm. For the ferric 
ion, the major bands produced in the spectrum are the result of 
the transition from the 6A1g ground state to 4T1g at 0.87 μm, 4T2g 
at 0.7 μm, and either 4A1g or 4Eg at 0.4 μm.

Salts: Soil salts are reported to be Na2CO3, NaHCO3, and 
NaCl, which are very soluble and mobile in the soil environ-
ment. In most cases, the spectra of these salts are featureless. 
However, indirect relationships with other chromophores can 
indicate their existence (e.g., OM, particle-size distribution). 
Hunt and Salisbury (1971c) reported an almost featureless spec-
trum of halite (NaCl 433B from Kansas), whereas later, Farifteh 
et al. (2007) reported some features of the salt, mostly related to 
the adsorbed water as it is a hygroscopic material, and confirmed 
Hick and Russell’s (1990) hypothesis that there are certain 
wavelengths across the VIS–NIR–SWIR region that correlate 
to water features. Mougenot (1993) noted that in addition to an 
increase in reflectance with salt content, high salt content may 
mask ferric ion absorption in the VIS region. They concluded 
that salts are not easily identified in proportions below 10% or 
15%. Salt is also visible in the VIS region due to its light tone, 
which reflects back radiation from the soil surface under dry 
conditions. This occurs mainly because the soluble salt migrates 
to the soil surface via capillary forces controlled by the evapora-
tion process transporting water molecules from the soil body to 
the atmosphere.

To provide an overview of chemical chromophore activity in 
soils and to summarize this section, Figure 25.9 provides a spec-
trum from a Haploxeralf soil from Israel with the positions of 
all possible chromophores. Figure 25.10 provides six spectra of 
different soils from Israel consisting of different chromophores 
content as illustrates in Figure 25.9 across each spectral region 
segments. Figure 25.11 summarizes the chemical chromophores 
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Figure 25.8  The reflectance spectrum of soil organic matter and the 
humic acid extracted from it. (Taken from Ben-Dor, E. et al., Soil spec-
troscopy, in Manual of Remote Sensing, 3rd edn., A. Rencz (ed.), John 
Wiley & Sons Inc., New York, 1999, pp. 111–189.)
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associated with soil and geological matter as collected from the 
literature and summarized by Ben-Dor et al. (1999). It also lists 
the intensities of each chromophore in the VIS–NIR–SWIR spec-
tral regions as they appear in those studies. The current review 
demonstrates that high-resolution spectral data can provide addi-
tional, sometimes quantitative, information on soil properties 
that are strongly correlated with the chromophores, that is, pri-
mary and secondary minerals, OM, Fe oxides, water, and salt. It 
also demonstrates the importance of soil spectroscopy in design-
ing a sensor for a soil mission and selecting the proper tools to 
interpret the results acquired by RS means using solar radiation.

25.6 � Radiation Source and 
Atmospheric Windows

25.6.1  General

To acquire the chromophores by RS means, the radiation source 
and the medium through which it travels (the atmosphere) must 
be investigated. The Planck function is a physical expression 

describing the energy emitted from a black body. The sun, as an 
ideal black body, is the main radiation source for remote sens-
ing of the earth across the VIS–NIR–SWIR region. If a sensor 
is located far from the soil (air or space), radiation must travel 
from the source to the object and back to the sensor, thus cross-
ing the atmosphere twice. The gasses and aerosols in the atmo-
sphere interact with the radiation across this path and hinder 
soil reflectance at certain frequencies. Thus, the components in 
the atmosphere are spectrally active. This interaction has to be 
minimized as much as possible to obtain a signal from the soil. 
This can be done in two ways: (1) allocating the sensor bands 
across the high-transition spectral region of the atmosphere 
(known as atmospheric windows) or (2) determining the physi-
cal interaction of the radiation with the known atmospheric 
component using a physical calculation (known as “radiative 
transfer model”). Whereas in multi- and superspectral sensors, 
the spectral bands are usually located across atmospheric win-
dows, in hyperspectral sensors, this is not possible, as the bands 
cover the entire spectral region, and thus the use of the radia-
tive transfer model is called for to extract the soil reflectance. 
Masking the atmospheric attenuation from the sensor’s radi-
ance is termed “atmospheric correction.” Figure 25.12 illustrates 
the spectral regions under which atmospheric attenuation can 
affect the soil spectrum. This figure shows the reflectance spec-
trum of an E-7 soil from Israel (Haploxeralf, taken from Tel Aviv 
University’s spectral library) overlain on its simulated (soil) radi-
ance as calculated by MODTRAN. The latter is normalized to 
the Planck sun function at the top of the atmosphere to illustrate 
only the atmosphere transmittance. As the atmospheric attenu-
ation remains, the most affected spectral regions can be clearly 
seen. The VIS region is affected by aerosol scattering (monoto-
nous decay from 0.4 to 0.8 μm) and absorption of ozone (around 
0.6 μm), water vapor (0.73 and 0.82 μm), and oxygen (0.76 μm). 
The NIR–SWIR regions are affected by absorption of water vapor 
(0.94, 1.14, 1.38, 1.88 μm), oxygen (at around 1.3 μm), carbon 
dioxide (at around 1.56, 2.01, 2.08 μm), and methane (2.35 μm). 
Also seen are the absorption peaks of the soil chromophores at 
2.33 μm (carbonates), 2.2 μm (clay), 1.9 and 1.4 μm (hygroscopic 
water), and 0.5, 0.6, and 0.9 μm (Fe oxides) that overlap with the 
aforementioned atmospheric chromophores. It can be seen that 
the most informative region for the soil has some overlap with 
the atmosphere (water vapor at 1.4 and 1.9 μm, oxygen at 0.76 
μm), and if we do not allocate our spectral bands in this area, 
information about some soil attributes may be lost (moisture, Fe 
oxides, and OM).

Figure 25.12 provides also the radiation observed from a given 
pixel composed of the source (sun), the atmospheric transition, 
and the soil reflectance. The mixed radiation maintains a high 
response to the solar radiation source, followed by the atmo-
spheric attenuation and, lastly, the soil response. Also seen is 
that the energy at the end of the SWIR region (2–2.5 μm) is low 
and may affect the quality of the information from this region 
based on the low SNR in this region due to the low radiation 
flux. It is hence demonstrated that the intensity of the soil target 
within the radiance observed by a sensor is quite small (>5%) 
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and hence needs to be carefully isolated from the total radiance 
information at the sensor level. The atmospheric components are 
as follows: water vapor (at 0.68, 0.94, 1.12, 1.4, 1.9 μm), oxygen 
(0.76 and 1.3 μm), and CO2 (2.105 and 2.015 μm). Ozone also 
sometimes plays a role in the VIS region at around 0.45–0.50 μm. 
Aerosol is also part of the atmosphere, and its scattering effect on 
the radiation is mostly in the VIS region (0.4–0.8 μm). The sun’s 
radiation interacts with the atmospheric molecules (known as 
Rayleigh scattering) and with particles (known as Mie scatter-
ing). As previously discussed, the aforementioned components 
can be physically described by the radiative transfer equations 
that aim to remove the atmospheric effects, leaving the reflected 
information from the soil only. If the soil reflectance informa-
tion can be extracted without artifacts from the sensor radiance, 
those soil chromophores may be useful for either qualitative or 
quantitative spectral utilization. A comprehensive description 
of methods to remove the atmospheric attenuations is given by 

Ben-Dor et  al. (2002) and Gao et  al. (2006, 2009). As already 
mentioned, even weak spectral features in the soil spectrum can 
contain very useful information. Therefore, great caution must 
be taken before applying any quantitative models to soil reflec-
tance spectra derived from air- or spaceborne hyperchannel 
sensors. Validation of the (atmospherically) corrected data is an 
essential step in ensuring that the reflectance spectrum contains 
reliable soil information. This section shows that atmospheric 
attenuation plays a major role in the final soil spectral products 
as the soil contributes less than 5% to the overall energy acquired 
by the sensor’s detector.

25.6.2 � Factors Affecting Soil Reflectance 
in Remote Sensing

Many factors can hinder the spectral information from a given 
soil sample or pixel. Residual atmospheric attenuation, mainly 
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across a highly active atmospheric spectral region, may be the first 
to strongly affect the soil spectrum. If not effectively removed, 
these residuals can contribute to spectral noise signals that are not 
related to soil. In many studies, some spectral ranges are ignored 
based on strong absorption of atmospheric constituents (e.g., 1.4 
and 1.9 μm due to water vapor). In the multispectral sensor, this 
interference is minimal as most of the bands are allocated across 
atmospheric windows. In this case, however, a more continuous 
spectral effect, such as that obtained from aerosol scattering, may 
affect the soil reflectance, mostly in the VIS region. Lagacherie 
et al. (2008) presented a comparison of field, air, and space reflec-
tance of soils, showing differences in the spectral information 
mostly due to different SNR values and the atmospheric residual 
in the corrected data. The soil surface is exposed to many natu-
ral effects, such as rain, erosion, and deposition, as well as fire 
and cultivation. These effects also play an important role in the 
accurate identification of a soil entity. This is mainly because such 
effects can hinder the real soil chromophores’ interactions with 
solar radiation. In this case, even a thin layer on the soil surface 
can make a difference. In this respect moisture, fire, dust, crust, 
and roughness play a major role in the sensor’s final response to 
the soil at any spectral resolution. The sensor quality also has an 
important effect on the soil spectrum. Airborne and spaceborne 
sensors vary in their SNR values, which are mostly lower than 
those used in the field and laboratory. A noisy spectral signature 
cannot be further analyzed as in many cases, it cannot be used 
for quantitative approaches. In the laboratory, soil-reflectance 
measurements are performed under controlled conditions and 
thus it is possible to standardize all spectral measurements and 
compare spectral libraries between users to allow a robust analy-
sis (Piemstein et al., 2010, Ben Dor et al., 2015). In the field, how-
ever, this standardization is not yet achievable and spectra may 

vary from one measurement to the next, mostly due to physical 
factors (e.g., viewing and illumination angles, particle-size and 
roughness distributions). Although correlations have been found 
between spectral responses of soils in the laboratory and field (e.g., 
Stevens et al., 2008), this is valid only for a select database and 
cannot be applied to sensor data from other areas. Some analyti-
cal manipulations (e.g., partial least squares [PLSR]) can decrease 
the variation between the two measurement domains, but upscal-
ing the laboratory models to airborne data is still difficult. This 
problem calls for a common protocol and well-agreed-upon mea-
surement scheme in the field, since it is the most relevant condi-
tion for remote sensors, and quantitative models are generated for 
that domain. In the field, reflectance measurements are fraught 
not only with variations in viewing angle and changes in illumi-
nation but also with variations in soil roughness, soil moisture, 
and soil sealing (Ben-Dor et al., 1999). Knadel et al. (2014) studied 
the spectral changes in four representative soils from Denmark 
with water retention ranging from wet to dry. Soil reflectance 
was found to decrease systematically, albeit not proportionally, 
with decreasing matric potential and increasing molecular lay-
ers. The changes in molecular layers were best captured by the 
soil reflectance of clay-rich soils, demonstrating the importance 
of an intercorrelative approach to the quantitative analysis of soil 
water content under dry and semidry conditions, as with other 
soil attributes. This study demonstrated the problem of the water’s 
influence on soil spectra as discussed in Section 25.5.3.4.1.

Acquiring soil-reflectance data from air and space involves 
additional difficulties, such as homogeneity of the area being 
observed and problems on how to represent the sensor’s pixel by 
ground-truth measurements, as the pixel size of the sensor is a 
major factor affecting the soil’s spectral response. Hengl (2006) 
provided analytical and empirical rules for selecting the proper 
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pixel size for a particular mission. He concluded that there is 
no ideal grid resolution; it has to be determined according to 
the property in question. For soil, this is a crucial element. If 
salinity is important, then the ground truth needs to be taken 
at high spatial distance using a high-spatial-resolution sensor. 
Using sensors that are not adequate for the mission is a waste of 
resources and time. In this regard, the grid selected for the ques-
tion being asked must maximize the predictive capabilities or the 
informational content of the final processed map. Sometimes, the 
pixel size plays a more dominant role than the SNR values. Asner 
and Heidebrecht (2003) demonstrated lower accuracy in sensing 
bare soil areas from the Hyperion (30 m, low SNR) than from the 
AVIRIS (4.5 m, high SNR), but convolving the AVIRIS spectra 
into Hyperion’s 30-m grid gave similar accuracy. Lagacherie et al. 
(2008) examined the performance of clay and calcium carbon-
ate (CaCO3) estimations using laboratory (ASD) versus airborne 
(HyMap) spectral scales. A significant decrease was observed 
going from laboratory to field and then to airborne domains. 
They indicated that the main factors inducing the uncertainties 
were the radiometric- and wavelength-calibration uncertainties 
of the HyMap sensor and possible residual atmospheric effects. 
In general, to represent a pixel area of a given sensor on the 
ground, it is necessary to set a ground truth of the given pixel at 4 
px. This means that the reflectance property of this grid has to be 
measured in several locations along the 4 × 4 GDS area and then 
averaged to yield the “pixel spectral response.” If the pixel size 
is large (such as in Landsat 8, 30 m), then a large (120 × 120 m) 
area is the minimal area required for the ground-validation mis-
sion. As soil-surface conditions may also affect the field spectrum 
based on the previously mentioned factors, a representative pixel 
area must be fully covered by both ground-reflectance measure-
ments and sampling. Soil sampling must be planned according 
to a statistical (or other logical) framework (McKenzie and Ryan, 
1999), and soil sampling should cover the 0–1 cm layer as much 
as possible (this is a compromise between what the sensor sees 
and what can be sampled under real field conditions). As this 
sampling is not easy, mis-sampling of soil can occur and hin-
der the classification results and accuracy based on laboratory 
analysis of the soil samples. As previously discussed, laboratory-
based measurements provide an understanding of the chemical 
and physical properties of the soil reflectance. If the soil sample 
is not well represented, the spectral-based models or indices from 
the laboratory will not work for the field. This makes the models 
nonrobust and the transformation from one sensor to another 
almost impossible. As there is still no standardization process for 
field reflectance measurements, this problem continues to exist, 
even for high SNR data. Another problem is vegetation (or litter). 
Termed biospheric interference, these cover many soil surfaces 
worldwide and hinder direct sensing of the soil. Within the non-
vegetated area, only a portion of the soils are characterized by 
an unaltered surface layer (e.g., as a consequence of soil tillage), 
and partial sensing of the natural soil surface can be interpolated 
into the vegetated area (Ben-Dor et al. 2002). A partial solution 
for this is “inferring soil properties through vegetation” (Huete, 
2005) or the connection of vegetation to soil properties (e.g., 

Maestre and Cortina, 2002) where a recent study by Kopackova 
et  al. (2014) demonstrated how this method can shed light on 
the information obtained from the root zone, mainly for heavy-
metal content. However, it seems that this method cannot (yet) be 
used to obtain information on other important soil parameters, 
such as clay, silt and clay, OM, and CaCO3, and thus it is still lim-
ited. Spectral unmixing is often used to account for the biogenic 
fraction (Asner and Heidebrecht 2002; Robichaud et al., 2007).

Radiation intensity on the soil pixel can also change the 
reflectance properties from a topographic view but can be cor-
rected geometrically. A more difficult problem is the bidirec-
tional reflectance distribution function (BRDF). This function 
assumes that the radiation source, the target, and the sensor are 
all points in the measurement space and that the ratio calculated 
between absolute values of radiance and irradiance is strongly 
dependent upon the geometry of their positions. Theories and 
models explaining the BRDF phenomenon in relation to soil 
components have been widely discussed and covered in the lit-
erature (Hapke 1981a,b, 1983, 1984, 1986, 1993; Pinty et al., 1989; 
Jacquemoud et al., 1992; Liang and Townshed, 1996). A number 
of models have been developed, which express soil bidirectional 
reflectance as a function of illumination and viewing direction. 
They cannot, however, be inverted to directly estimate soil prop-
erties on the basis of bidirectional reflectance observations nor 
can the equations be used to predict reflectance distributions on 
the basis of soil-property measurements in the field. Thus, the 
BRDF effects, although well studied, still play a major role in the 
final output of the soil spectral response (from all domains), and 
more research into this phenomenon is warranted. The soil spec-
tral response can therefore be affected by the aforementioned 
factors in two ways: in its physical behavior, that is, spectral-
baseline position (e.g., in the case of the BRDF effect), and in its 
chemical behavior, that is, new or absence of spectral features 
(e.g., in the case of atmospheric attenuation).

In summary, the spectral information from a given soil pixel 
(from either RS means or ground-truth measurements) may be 
affected by a variety of factors that can change the soil spectral 
response significantly. This calls for user caution in upscaling 
data from the laboratory to the field, in analyzing the data, and in 
exchanging data. Table 25.4 summarized the aforementioned fac-
tors in a qualitative scale. As clearly seen, the SWIR region is more 
sensitive to these factors as well as the hyperspectral systems. This 
illustrates that the hyperspectral sensors are the most sensitive 
systems for soil remote sensing. In other words, it can be said that 
if all of the aforementioned factors maintain small, then HRS can 
be the most sensitive way to remote sense the soil system.

25.7 � Quantitative Aspects 
of Soil Spectroscopy

25.7.1  Proximal Sensing

Proximal sensing refers to the quantitative information on soil 
attributes that is mined from the soil-reflectance data. Today, 
quantitative soil spectroscopy is a mature discipline that has 
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come quite a long way since the mid-1960s, when Bowers and 
Hanks (1965) published their paper on the correlation between 
soil reflectance and soil moisture content. That pioneering 
study, followed by a series of papers by Hunt and Salisbury 
(1970, 1980) and Hunt (1982), proved that water and minerals in 
the soil environment have unique spectral fingerprints that can 
be further used for specific recognition. Learning from several 
sectors’ successes (e.g., food science, tobacco, textile), Dalal and 
Henry (1986) applied the proximal-sensing (proxy) approach 
to soils. In 1990, Ben-Dor and Banin demonstrated the power 
of reflectance spectroscopy in accounting for CaCO3 content in 
the soil (Ben-Dor and Banin, 1990a) and, later, in monitoring 
the structural composition of smectite soil minerals in the labo-
ratory (Ben-Dor and Banin, 1990b). Later still, when portable 
field spectrometers were introduced to the market (in around 
1993), more scientists realized the potential of soil spectroscopy 
and consequently, more spectral libraries were assembled (e.g., 
Shepherd and Walsh, 2002; Bellinaso et  al., 2010). A compre-
hensive summary of the quantitative applications of soil reflec-
tance spectroscopy was provided by Ben-Dor et al. (2002) and 
Malley et al. (2004) and later by Viscarra Rossel et al. (2006). In 
April 2009, a world soil spectroscopy group was established by 
Viscarra Rossel (http://groups.google.com/group/soil-spectros-
copy), who gathered soil spectra and corresponding attributes 
from more than 80 countries worldwide to generate a global 
soil spectral/attribute database, providing proxy capability to 
all. This initiative was based on the idea that since the quan-
titative approach in soil sciences had become well established 
and applicable, it should be more collaborative. This was the 
obvious step after understanding that only sharing informa-
tion would help advance quantitative soil spectroscopy (e.g., 
Condit, 1970; Shepherd and Walsh., 2002; Brown et al., 2006). 
Comprehensive reviews on proxy applications for soils can be 
found in Malley et al. (2004) and Viscarra Rossel et al. (2006), 
and other important reviews focusing on soil-reflectance the-
ory and applications can be found in Clark and Roush (1983), 
Irons et al. (1989), Ben-Dor et al. (1999), and Ben-Dor (2002). 
The number of national and international soil-spectral librar-
ies is growing, constituting a database for spectral-based model 
generation for the proximal-sensing strategy. Ben-Dor et  al. 
(2009) summarized the quantitative utilization of soil spectros-
copy from airborne domains. It was pointed out that although 

two communities are utilizing soil spectroscopy—soil scientists 
and the RS communities—there is a lack of consistency between 
the terminologies used by these two groups, leading to poten-
tial misunderstandings. The soil scientists define soil proximal 
sensing across the 400–2500 nm region as visNIR (as adopted 
from other disciplines such as the food sciences), whereas the 
RS community refers to this exact spectral region as VIS–NIR–
SWIR (see Section 25.3.). As no common agreement has yet been 
reached, we suggest using the terms VIS/NIR/SWIR/TIR for 
any soil proxy analyses to emphasize the spectral regions (and 
accordingly, the chromophores) in which the analysis has been 
done for better performance (the TIR region is also divided into 
MWIR and LWIR).

25.7.2  Application Notes

In general, soil reflectance spectra are directly affected by chemi-
cal and physical chromophores, as already discussed. The spec-
tral response is also a product of the interaction between these 
parameters, calling for a precise understanding of all chemical 
and physical reactions in soils. For example, even in a simple 
mixture of Fe oxides, clay, and OM, the spectral response cannot 
be judged simply by linear mixing models of the three end mem-
bers. Strong chemical interactions between these components 
are, in most cases, nonlinear and rather complex. For instance, 
organic components, mostly humus, affect soil clay minerals in 
chemical and physical ways. Similarly, free Fe oxides may coat 
soil particles and mask photons that interact with the real min-
eral components or the Fe oxides themselves (and OM as well). 
In addition, the coating material may collate fine particles into 
coarse aggregates that may physically change the soil’s spectral 
behavior from a physical standpoint. McBratney et  al. (2003; 
2006) also shed light on this technology through their pioneer-
ing work over the years. Brown et al. (2006) concluded that the 
spectral proxy technique in soil has the potential to replace or 
enhance standard soil-characterization techniques, basing their 
conclusion on 3768 soil samples from the United States. As noted 
earlier, in view of the growing soil spectral community, Viscarra 
Rossel (2009) generated an initiative (Soil World Spectral Group, 
http://groups.google.com/group/soil-spectroscopy) in which 
all members of the soil spectral community were asked to join 
together and contribute their local spectral library to generate a 

Table 25.4  Factors Attenuate Soil Reflectance Quality from Remote Sensing Domains in Different Systems and Spectral Regions

Spectral Range and 
Sensing Systems 

Factors Affecting Reflectance Tetrieval from RS Sensors 

Atmosphere SNR Sensor Stability
Radiometry 
Calibration BRDF

Spatial 
Resolution

Effect on Soil Surface Chromophores 
(e.g. Dust, Water, Crust) 

VNIR-multi + ++ ++++ ++ +++ ++ +++
VNIR-super ++ +++ ++++ +++ +++ +++ +++
VHIR-hyper ++++ ++++ ++++ +++++ ++++ ++++ ++++++
SWIR-multi ++ +++ +++++ +++ ++++ +++ ++++
SWIR-super +++ +++++ +++++ ++++ ++++ ++++ ++++
SWIR-hyper ++++ ++++++ +++++++ ++++++ ++++++ ++++++ +++++++

Notes:	+, low; ++, moderate; +++, average; ++++, high; +++++, very high.
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worldwide library that would be accessible to all. The world spec-
tral library is composed (at the time of this writing, 2014) of about 
20,000 soil spectra with their chemical attributes. This initiative, 
besides being the first attempt to gather spectral information on 
the world’s soils, is an important step toward establishing stan-
dard protocols and quality indicators that will be accepted by all 
members of the growing soil-spectral community. To that end, 
it is important to mention that special sessions dealing with soil 
spectra have been organized at several leading conferences for 
both earth material and soil sciences (e.g., EGU 2007, 2008; WSC 
2010, WD, 2014), along with specific workshops (e.g., EUFAR-2, 
2014). As a consequence, many soil scientists who were unaware 
of this technology are now being exposed to it.

The quantitative option and the availability of field spectrom-
eters enabled users to show that the soil-spectral-based technol-
ogy can be used in the field. Some key works (among many that 
have been published) are mentioned here. Genu and Demattê 
(2006) evaluated 3300 samples using the multiple method with 
spectral proxy analysis and reached an R2 of 0.74 and 0.53 for 
clay and OM, respectively. Demattê et  al. (2009a) evaluated 
1000 samples and determined R2 = 0.85 for clay using a labo-
ratory spectrometer. Nanni and Demattê (2006) suggested a 
reflectance inflection difference (RID) index, representing the 
difference between reflectance values at the highest and lowest 
points of inflection (or amplitude of spectral data in this range—
demonstrating the height of the curve between the peak and the 
valley). This approach led them to use only some of the spectral 
information from the overall 400–2500 nm range. Using mul-
tiple stepwise statistics, they obtained R2 = 0.91 and 0.89 for clay 
and SOM, respectively. Fiorio and Demattê (2009) obtained R2 = 
0.83 and 0.30 for clay and SOM, respectively, also with ground 
spectra analyzing 450 samples. Viscarra Rossel and Webster 
(2011) mapped the distribution of the spectral proxy approach’s 
information from Australian soils. They concluded that the tech-
nique can provide integrative measures of soil properties and can 
act as an alternative to the conventional analytical method that 
can be effectively applied for both soil classification and environ-
mental monitoring. As an example from Israel, Schwartz et al. 
(2012) evaluated the total petroleum hydrocarbon (TPH) content 
in the soil in a field. The technique has also reached the precision 
agriculture discipline, as demonstrated by several workers who 
used it to assess important soil attributes in the field (e.g., recent 
research by Debaene et al. (2014) on clay and carbon, Araújo et al. 
(2013) with cation-exchange capacity and pH, among others, and 
Barnes et al. (2003) with OM and electrical conductivity).

25.7.3 �C onstraints and Cautions in Using 
Proximal Remote Sensing for Soils

In reality, the number of chromophores in soils is quite lim-
ited relative to the soil’s attributes. The factors affecting the soil 
spectrum (see Sections 7 and 8) also hinder the proxy analysis. 
In addition, there is no simple correlation between the spec-
troscopy and the chromophore content, as it requires a sophisti-
cated data-mining approach with significant validation tests. For 

example, using the spectral information for quantitative analysis, 
Karmanova (1981) selectively removed Fe oxides from soil sam-
ples and concluded that the effects of various iron compounds on 
the spectral reflectance and color of soils were not proportional 
to their relative contents. Another aspect is that the proxy models 
are not always robust and may be related to the soil population 
in the analysis. In fact, Araujo et al. (in press) clustered 7125 soil 
samples in relation with their mineralogy and gathered much 
stronger models than the global one provides. As pointed out by 
Bedidi et al. (1990, 1991), the normally accepted view of decreas-
ing soil-baseline height with increasing moisture content (VIS 
region) does not hold for lateritic (highly leached, low-pH) soils. 
They concluded that the spectral behavior of such soils under vari-
ous moisture conditions is more complex than originally thought. 
In this context, Galvao et al. (1995) showed spectra from laterite 
soils (VIS–NIR region) consisting of complex spectral features 
that appeared to deviate from those of other soils. Al-Abbas et al. 
(1972) found a correlation between clay content and reflectance 
data in the VIS–NIR–SWIR region and suggested that this is not 
a direct but rather an indirect relationship, strongly controlled by 
the OM chromophore. Another anomaly related to the interac-
tions between soil chromophores was identified by Gerbermann 
and Neher (1979). They carefully measured the reflectance prop-
erties in the VIS region of a clay–sand mixture extracted from the 
upper horizon of a montmorillonite soil and found that “adding 
of sand to a clay soil decreases the percent of soil reflectance.” This 
observation is in contrast with the traditional expectation from 
adding coarse (sand) to fine (clay) particles in a mixture (soil), 
that is, that this will tend to increase soil reflectance. Likewise, 
Ben-Dor and Banin (1994, 1995a–c) concluded that intercorrela-
tions between feature and featureless properties play a major role 
in assessing unexpected information about soil solely from their 
reflectance spectra in either the VIS–NIR or SWIR regions. Ben-
Dor and Banin (1995b) examined arid and semiarid soils from 
Israel and showed that “featureless” soil properties (i.e., proper-
ties without direct chromophores such as K2O, total SiO2, and 
Al2O3) can be predicted from the reflectance curves due to their 
strong correlation with “feature” soil properties (i.e., properties 
with direct chromophores). Csilag et al. (1993) best described the 
effect of multiple factors indirectly affecting soil spectra in their 
discussion on soil salinity, which can be considered a featureless 
property. They stated that “salinity is a complex phenomenon 
and therefore variation in the [soil] reflectance spectra cannot be 
attributed to a single [chromophoric] soil property.” To get the 
most out of soil spectra, they examined the chromophoric prop-
erties of OM and clay content, among others, and ran a principal 
component analysis to fully account for the salinity status culled 
from the soil reflectance spectra.

The poor quality of the data acquired from orbit as compared 
to the laboratory may hinder the transfer of proxy models from 
the laboratory to orbit domains. This problem can be solved by 
generating models based on field conditions and measurements 
and using a better method to upscale laboratory data to orbital 
domains. This idea has been implemented by several users as will 
be discussed further on.
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25.8 � Soil Reflectance and 
Remote Sensing

25.8.1  General

A short review of remote sensing of soils from an optical per-
spective was published by GE and Sui (2011). A comprehen-
sive description of soil spectral remote sensing can be found in 
Ben-Dor et al. (2008). Many studies have been conducted with 
the intention of classifying soils and their properties using 
optical sensors on board orbital satellites, such as Landsat MSS 
and TM, SPOT, and NOAA-AVHRR (e.g., Cipra, 1980; Frazier 
and Cheng, 1989; Kirein Young and Kruse, 1989; Agdu et al., 
1990; Dobos et al., 2001). Qualitative classification approaches 
have traditionally been applied to multichannel data in cases of 
limited spectral information and in early 1990 also to hyper-
spectral data (Vane, 1993). Nevertheless, important qualita-
tive, and sometimes even quantitative, information has been 
obtained on soil OM, soil degradation, and soil conditions 
(Price, 1990; Ben-Dor and Banin, 1995a, Metternicht et  al. 
2010). Huete (2004) has summarized some RS applications of 
soils (using different sensors and resolutions) and discussed 
on “properties controlled soil reflectance.” His excellent over-
view of soil RS applications was strongly tied to the relation-
ship between green vegetation, litter, and soils as based on the 
fact that most of the soils are altered by these substances. Later, 
Huete (2005) have provided more ideas on the how to use the 
spectral information from hyperspectral domains to measure 
bare soils and mixed soil–vegetation–litter and overlaying veg-
etation pixels in order to investigate the soil properties. As the 
technology progresses, soil spectra are becoming an important 
vehicle for the remote sensing of soils, and spectral libraries 
are being established to cover vast geographical areas world-
wide (e.g., Latz et al., 1981; Price, 1995; Visscora Rossel, 2009; 
Montanarella et al., 2011). Although the use of these libraries 
has many limitations, it is understood that the spectral domain 
is very important for soil mapping and that effort has to be 
invested in super- and hyperspectral sensors. Over the past 
30 years, HSR has developed to a point where it is now in high 
demand by many users (Ben-Dor et al., 2013). HSR technology 
provides high-spectral-resolution data with the aim of giving 
near-laboratory-quality reflectance or emittance information 
for each individual picture element (pixel) from far or near dis-
tances (Vane et al., 1984). This information enables the identi-
fication of objects based on the spectral absorption features of 
their chromophores and has found many uses in terrestrial and 
marine applications (Clark and Roush, 1984; Vane et al., 1984; 
Dekker et al., 2001). Figure 25.13 illustrates this concept, where 
the spectral information of a given pixel shows a new dimen-
sion that cannot be obtained by traditional point spectroscopy, 
air photography, or other multiband images. HSR can thus be 
described as an expert geographical information system (GIS) 
in which layers are built on a pixel-by-pixel basis, rather than 
with a selected group of points (McBratney et al., 2003). This 
enables spatial recognition of the phenomenon in question 

with a precise spatial view and use of the traditional GIS-
interpolation technique in precise thematic images. Since the 
spatial–spectral-based view may provide better information 
than viewing either the spatial or spectral views separately, 
imaging spectroscopy serves as a powerful and promising tool 
in the modern RS arena. Since 1983, when the first airborne 
imaging spectroscopy (AIS) sensor (Vane et al., 1984) ushered 
in the HSR era, this technique has been used mostly for geol-
ogy, water, and vegetation applications. It appears that soil 
applications for HSR are quite limited because soils present a 
complex matrix and many of the previously discussed prob-
lems have not yet been resolved. Nonetheless, with the advent 
of better and lower cost HSR sensors, along with comprehen-
sive studies by many scientists developing a wealth of innova-
tive soil-spectral applications, the future of superspectral and 
HRS from airborne and spaceborne sensors is bright. Other 
previously discussed problems (see Sections 7 and 8) will hope-
fully be resolved in the near future, enabling this technology’s 
use for other RS applications. A comprehensive overview of 
the pros and cons of hyperspectral technology for soils can be 
found in Ben-Dor et al. (2009).

25.8.2 � Application of Soil Remote 
Sensing: Examples

25.8.2.1  Multi- to Hyperspectral Concept in Soil

Based on the theory presented earlier, this section provides case 
studies exemplifying the application of remote sensing to soils 
taking into account the pros and cons of this technology. We 
will focus on the multi- to hyperspectral domains, with special 
emphasis on the latter. In addition, we will demonstrate that low 
spectral resolution can be sufficient for some soil applications 
(e.g., Palacios-Orueta, and Ustin, 1998; Chen et  al., 2000; Fox 
and Sabbagh, 2002; Dematte et al., 2007). A good example of this 
is the fact that some major soil properties are correlated with 
color, and soil surveyors describe soil colors that can be seen 
with the naked eye. From a RS perspective, Chen et al. (2000) 
were able to map SOM content from color aerial photographs by 
measuring the color tones and correlating them with the SOM 
content. Demattê et al. (2000, 2009) summarized the capabilities 
of the limited channel of the Landsat TM sensor from orbit to 
provide quantitative information on soils. Using the 6 TM bands 
in the VIS–NIR–SWIR region, they were able to allocate a reli-
able quantitative model for the Al2O3/Fe2O3 ratio using band 7. 
In another study, Nanni and Dematte (2006) showed that TM 
band 7 is mandatory for SiO2 and TiO2, whereas TM band 4 was 
not selected. The authors speculated that band 7 might be asso-
ciated with the influence of younger, more clayey soils contain-
ing kaolinite minerals that are spectrally active around band 7. 
The  quantitative potential of Landsat TM was shown by Ben-
Dor and Banin (1995c), who convolved a soil spectral library 
to TM channels and were able to predict CaCO3, SiO2, loss on 
ignition (LOI), and specific surface area solely from the reflec-
tance data. Landsat TM has also been used to establish a strong 
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relationship between iron and reflectance (Frazier and Cheng, 
1989; White et al., 1997; Tangestani and Moore, 2000; Jarmer, 
2012), where recently, Kumar (2013) showed that from the clas-
sified image, they can point to the best fertilization areas using 
soil color. Better results were obtained later with the complete 
spectral information, as already discussed, using either point 
or image spectroscopy. The technology of spectral imaging has 
advanced soil remote sensing, with spectral know-how in the 
laboratory providing an innovative starting point. In general, 
imaging spectroscopy (HSR) is capable of generating qualitative 
and quantitative spatial indicators for ecologists, land managers, 
pedologists, and engineers. For soils, this technology has been 
used for the past 10 years to combine spatial information with 
the spectral one thus providing farmers with a spatially explicit 
quantitative overview of the soil properties and phenomena in 
question. This allows them to control their resources, such as 
irrigation, nutrients, and cultivation and obtain better yields 
per hectare. Since the HSR product is a geopositioned mosaic 
comprised many spectral points, traditional (quantitative) 
approaches that work successfully for point-spectrometry mea-
surements in minerals and soils (e.g., Clark and Roush, 1984) 
may be suitable for the imaging domain. Despite its drawbacks, 
most of the applications developed for point spectrometry can 
be immediately adapted for the imaging spectroscopy domain. 
The following sections provide examples in which both multi- 
and hyperspectral technologies were used for various applica-
tions in soil, revealing this technology’s potential for soil science.

25.8.2.2  Soil Organic Matter

SOM, or soil organic carbon (SOC) (SOM ≈ SOC × 1.72), plays a 
major role in many chemical and physical processes in the soil 
environment and therefore has a strong influence on soil-
reflectance characteristics. Consequently, and as described 

earlier, this can be seen in the tone of the soil’s color (Chen et al., 
2000). SOM is a mixture of decomposing tissues of plants, 
animals, and secreted substances. The sequence of OM decom-
position in soils is strongly determined by the activity of soil 
microorganisms. The nature of SOM is responsible for many soil 
properties, such as compaction, fertility, water retention, and 
soil-structure stability, and it constitutes one of the major 
resources in the global carbon cycle (Stevens et al., 2008). The 
mature stage refers to the final stage of microorganism activity, 
when new, complex compounds, often called humus, are formed. 
The most important factors affecting the amount of SOM are 
those involved with soil formation, that is, topography, climate, 
time, type of vegetation, and oxidation state. OM, and especially 
humus, plays an important role in many of the soil’s properties, 
such as aggregation, fertility, water retention, ion transforma-
tion, and color. SOM is part of the upper soil horizon that serves 
as the interface between the body of the soil, the biosphere, and 
the atmosphere. Since OM is mainly concentrated in the top Ao 
horizon that is exposed to the sun’s radiation, it is a perfect prop-
erty for RS assessments. This notion is strengthened by the fact 
that pure OM has unique spectral fingerprints (Ben-Dor et al., 
1999) that can be correlated to content, composition, and matu-
rity (Ben-Dor et al., 1997). Much attention has been devoted to 
OM from many perspectives. As OM has spectral activity 
throughout the entire VIS–NIR–SWIR region, especially the 
VIS portion, workers have extensively studied OM via RS (e.g., 
Kristof et al., 1971). Baumgardner et al. (1970) noted that if the 
SOM drops below 2%, it has only a minimal effect on soil reflec-
tance. Montgomery (1976) indicated that OM content as high as 
9% does not appear to mask the contribution of other soil 
parameters to soil reflectance. Galvao and Vitorello (1998) 
showed how OM affects the iron oxides’ influence of the spectral 
reflectance and color of Brazilian tropical soils. In another study, 
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Figure 25.13  The spectral imaging concept where each pixel is described by a detailed spectrum consisting of many narrow continuous bands. 
(Taken from NASA website)
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Schreier (1977(indicated that OM content is related to soil 
reflectance by a curvilinear exponential function. Mathews et al. 
(1973) found that OM correlates with reflectance values in the 
0.5–1.2 μm range, whereas Beck et al. (1976) suggested that the 
0.90–1.22 μm region is best suited for mapping OM in soils. 
Krishnan et al. (1980) used a slope parameter at around 0.8 μm 
to predict OM content, and Da-Costa (1979) found that simu-
lated Landsat channels (# 4, 5, and 6) yield reflectance readings 
that are significantly correlated with SOC. The power of spectral 
information also led Ben-Dor et al. (1997) to exploit reflectance 
for the detection of SOM decomposition status and control of 
the soil biogenic activity aside from total SOM content. 
Vinogradov (1981) developed an exponential model to predict 
the humus content in the upper horizon of plowed forest soils by 
using reflectance parameters between 0.6 and 0.7 μm for two 
extreme end members (humus-free parent material and humus-
enriched soil). Schreier (1977) found an exponential function to 
account for SOM content from reflectance spectra. Al-Abbas 
et al. (1972) used a multispectral scanner, with 12 spectral bands 
covering the 0.4–2.6 μm range, from an altitude of 1200 m and 
showed that a polynomial equation will predict the OM content 
from only five channels. They implemented the equation on a 
pixel-by-pixel basis to generate an organic content map of a 
25 ha field. Dalal and Henry (1986) were able to predict the OM 
and total organic nitrogen content in Australian soils using 
wavelengths in the SWIR region (1.702–2.052 μm), combined 
with chemical parameters derived from the soils. Using similar 
methodology, Morra et al. (1991) showed that the SWIR region 
is suitable for identification of OM composition between 1.726 
and 2.426 μm. Evidence that OM assessment from soil-reflec-
tance properties is related to soil texture, and most likely to soil 
clay, was provided by Leger et  al. (1979) and Al-Abbas 
(1972). Aber et al. (1990) noted that OM, including its stage of 
decomposition, affects the reflectance properties of mineral soil. 
Baumgardner et al. (1985) demonstrated that three organic soils 
with different decomposition levels yield different spectral pat-
terns. Hill and Schütt (2000) successfully used the coefficients of 
a polynomial approximation of a spectral continuum between 
0.4 and 1.6 μm to set up a statistical model to map organic car-
bon concentrations with multi- and hyperspectral imagery. As 
already discussed, based on the strong spectral relationship, 
SOM can also be estimated from soil color. Fox et al. (2002) pre-
sented a method in which the soil line Euclidean distance 
(SLED) could be used to estimate SOM from aerial color images. 
They reported coefficients of determination of 0.70 and 0.78 
between observed and predicted SOM contents for two study 
sites. Nonetheless, these results were site dependent and did not 
work in another area, suggesting that the stage of SOM decom-
position was not similar (see Ben-Dor et  al., 1997). Ray et  al. 
(2004) estimated SOC and nitrogen from an IKONOS multi-
spectral image, but with only limited accuracy. This improved a 
little with Dematte et  al.’s (2007) attempt to use Landsat TM 
images crossing a large geographical area (43,000 ha), which 
again showed “scene (local)-dependent” SOM determination 
from multispectral domains. In fact, research varies with OM 

quantification, since some works demonstrates high quantitative 
values and others does not. In this aspect, it is interesting to note 
that several works performed in the tropics where OM is usually 
lower than in temperate areas show poor results. This can be 
probably due to the low values and variability in the tropics, 
which implies in the statistical models, as they are less detected. 
Despite this, it is likely that models for SOM are more related 
with local situations due to innumerous factors (climate, micro-
organisms, soil management). Jarmer et al. (2005) used a combi-
nation of CIE color coordinates (e.g., Escadafal, 1993) and 
specific spectral absorption features to parameterize statistical 
models to obtain maps of organic and inorganic carbon con-
tents, as well as total iron content, on a regional scale. Chen et al. 
(2006, 2008) proposed using Euclidean distance for statistical 
clustering and the world neural network system to select fields 
with similar image properties, thereby ensuring the success of 
mapping SOC for a group of fields. Ben-Dor et al. (2002) were 
the first to use HSR technology from the air (DAIS 7915), adapt-
ing the spectral information modeling to quantitatively map 
SOM in Vertisol soils from Israel. Later, Stevens (Stevens et al., 
2006, 2008, 2010) enlarged the HSR envelope and used CASI 
and SASI sensors over cultivated soils in Belgium, demonstrat-
ing the potential of HSR for mapping SOM, even with relatively 
low content. The assessed values of SOC ranged from a mean of 
3.0% (5.8% max) to 1.7% (0.8% min). Assuming that the SOC-
to-SOM ratio is about 0.58, the SOM content in these soils was 
rather low (6.8%–0.99%) but, in some cases, still higher than the 
2% threshold set by Baumgardner et al. (1985) for spectral deter-
mination. Over these low SOM areas, Stevens et al. (2008) were 
able to map SOC on a pixel-by-pixel basis only if the VIS–NIR–
SWIR regions were combined. Although the root mean square 
error (RMSE) of prediction was 0.17% SOC, which is double the 
value of the laboratory’s accuracy, the processed SOC image was 
reliable and gave the first spatial overview of SOM distribution 
within a given field. Additional studies, such as those of Ben-
Dor et al. (2002) and Toure and Tychon (2004), also showed the 
ability to derive SOM, but their accuracy was rather low. Zheng 
(2008) summarized all spectral attempts to obtain SOM and 
related components (such as total nitrogen and phosphorus) 
with point and imaging sensors from the air domain using sev-
eral airborne HSR sensors. A comprehensive review of SOM 
estimation from reflectance data is given by Ladoni et al. (2010), 
showing varying results and means. In  general, coefficients of 
determination from remote sensing of SOM vary from low (0.4 
from Landsat TM; Dematte et al., 2007) to very high (0.96 from 
laboratory measurements; McCarty et al., 2002). The HSR sen-
sors provided moderate (0.56, CASI, Uno et  al. 2005) to high 
(0.89, HyMap, Selige, 2006) coefficients. This again demonstrates 
that finding a good model for predicting SOM is a challenging 
task with high potential. In mineral soils, the SOM content is 
rather low (less than 15% and about 0.1%–2% in arid soils) 
where, as stated earlier, less than 2% is almost undetectable spec-
trally. As the spectral fingerprints are strongly related to the 
decomposition stage of the OM, different locations may have 
different SOM spectral features. Other problems are soil 
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moisture, which can hinder small SOM features, BRDF effects, 
and sensor SNR. It is concluded that SOM is an interesting chro-
mophore that can be problematic and challenging. There are 
many studies on determining SOM by RS means, with varying 
results. As SOM is a very important issue in soil, more such 
studies are warranted, as the technology progresses. Figure 25.14 
provides an example of a SOM map that was generated based on 
spectral information and HSR data from the Hyperion satellite 
sensor (taken from Zheng, 2008; Zhang et al., 2013). More SOM 
quantitative images that were generated from airborne HSR sen-
sors can be seen in Stevens 2007 as well as with many others.

25.8.2.3 C hange Detection in Soils

CD and multitemporal analysis of RS data are aimed at detect-
ing various types of changes between two or more images taken 
at different times (Singh, 1989). The temporal information adds 
new data for the interpreter and “temporal resolution” (added 
to spectral and spatial resolution) to sensor-performance char-
acterization. Adding a spectral dimension to the soil RS data 
provides better mapping capabilities than obtained from using 
limited spectral channels—even when the spatial resolution is 
high (e.g., Ben-Dor, 2002; Ben-Dor et al., 2005; Goidts and van 
Wesemael, 2007; Stevens et  al., 2010; Hill et  al., 2010; Hbirkou 
et al., 2012; Casa et al., 2013). Adding a temporal dimension to the 
spectral resolution provides even better capabilities. In practice, 
spectral resolution has the dominant role in the evolving HSR 
arena, and temporal resolution has been left behind. However, 

temporal spectral analysis can cull information on interactions 
between the soil surface and the surrounding environment and 
accordingly can provide a better view of the factors affecting soil 
formation (Jenny, 1941). Rapid changes on the soil surface can 
occur from erosion, deposition, physical arrangement, self-seg-
regation, and man-made activity (Lemos and Lutz, 1957). More 
specifically, the thin upper soil layer (which is ultimately sensed 
by optical sensors) may be altered by dust accumulation (Offer 
and Goossens, 2001), rust formation (Ona-Nguema et al., 2002), 
plowing activity (Fu et al., 2000), changes in particle-size distribu-
tion (Sertsu and Sánchez, 1978), vegetation coverage (Zhou et al., 
2006), litter (Frey et al., 2003), and the formation of physical and 
biogenic crusts (Bresson and Boiffin, 1990; Karnieli et al., 1999; 
Valentin and Bresson, 1992). Until recently, applications for high 
spectral and temporal resolution data were scarce, mainly due 
to the high cost of data acquisition by airborne HSR. However, 
this situation is expected to change significantly as many satellite 
HSR sensors are in the pipeline with high spectral, spatial, and 
temporal resolution capabilities (Ben-Dor et  al., 2013). A com-
prehensive overview of forthcoming HSR sensors is provided by 
Staenz et al., and Held (2012). As a result, the scientific commu-
nity is starting to perform controlled experiments (Buddenbaum 
et  al., 2012) to prepare the RS community for the multiresolu-
tion (spatial, spectral, temporal) approach. Methods to account 
for CD between areas that are well identified either spectrally or 
spatially (e.g., soil to vegetation) are well known and frequently 
used (Adar et al., 2014a). Methods to account for CD between the 

Streams

N

0 2,500 5,000 10,000
Meters

Morse reservoir
Cicero creek watershed

Organic matter content %
0
0–2
2–4
4–6
6–8
8–10
10–13.03

Figure 25.14  Prediction of soil organic matter distribution map in Cicero Creek Watershaed as generated from Hyperion data. (After Zheng, B., 
Using satellite hyperspectral imagery to map soil organic matter, total nitrogen and total phosphorus, A Master thesis submitted to the Department 
of Earth Science, University of Indiana, Indianapolis, IN, 2008, p. 81.)
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same land-cover categories (e.g., soil to soil) are more complex. In 
this case, the more information provided on the area in question, 
the better the discrimination capability will be. Spectral reflec-
tance, as achieved from HSR sensors, can provide added infor-
mation. Nonetheless, due to the aforementioned problems with 
factors affecting soil spectroscopy, this mission is very challeng-
ing, as a small spectral change might occur due to factors other 
than real change on the soil surface. Recently, Adar et al. (2014a) 
developed an approach in which the “factors affecting soil reflec-
tance” can be estimated from HSR images. This method enables 
better CD analysis based on real spectral changes. Those authors 
demonstrated the approach using HyMap data acquired over 
an open-mining area in the Czech Republic at a 1-year interval. 
More recently, Adar et al. (2014b) conducted a controlled study to 
understand the capability of high spectral information for spatial 
discrimination between soil entities under optimal conditions, 
where “factors affecting soil reflectance” are minimized. An 
artificial soil matrix (made of 50 different soil samples, each in 
a 3 × 3 cm dish), which was measured by an image spectrometer 
(HySpex) under laboratory conditions, provided the database for 
this study. Several changes were made in the soil matrix between 
each data acquisition along with relocating some of the soils’ 
original position. Using the VIS–NIR, SWIR, and VIS–NIR–
SWIR spectral segments separately, with several known methods 
to detect possible (spectral) changes in a given pixel, it was found 
that the wider the spectral coverage, the better the discrimination 
capability. Figure 25.15 shows an example of the results obtained 
by this analysis using the VIS–NIR–SWIR regions (alone and 
together). As seen, only when the complete spectral region is used 
with a specific method to assess the spectral changes, the spa-
tial changes could be obtained (compare image d–a). The authors 

revealed limitations in identifying changes between different 
soils in three cases: (1) When the soils were within the same larger 
group of soil classes, very small changes could not be detected; 
(2) when there were opposing effects on the spectral signature, 
such as twice the Fe oxides and, at the same time, twice the OM, 
their effects might cancel each other out, resulting in very simi-
lar spectral signatures; and (3) when differences in some of the 
spectral absorption features are reduced as a result of similar and 
high average particle-size fraction, this reduces the albedo of the 
spectral signatures to a very similar level. Although Adar et al.’s 
(2014b) study demonstrated limitations for CD in soils and indi-
cated that different algorithms can produce better results, they 
also concluded that CD in soils from both spectral and spatial 
domains is a difficult task and calls for caution in drawing any 
conclusions. They did, however, suggest overcoming these limita-
tions by fusing chemometric capabilities with CD techniques and 
not relying purely on the spectral information of the image. To 
summarize, CD in soils can shed light on some quick processes 
on the soil surface but at the same time present difficulties in sig-
nificantly distinguishing between the two (or more) soils.

25.8.2.4  Soil Salinity

Soil salinity is a dynamic property that emerges on the soil’s 
surface mostly under arid and semiarid conditions and under 
secondary water utilization. It can therefore be effectively moni-
tored by remote sensing as light spots of NaCl obtained under 
a high-salinity regime that can be monitored by aerial pho-
tography (Rao and Venkataratnam, 1991). At the lowest saline 
concentrations, the unaided eye cannot detect salinity effects 
and a better analytical tool is required. Airborne digital mul-
tispectral cameras and videography, usually with three to four 
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channels in the VIS and IR regions, and color IR photographs 
were used as tools to identify and assess problem salinity areas 
in U.S. agriculture in the 1980s and 1990s. Everitt et al. (1988) 
used narrowband videography to detect and estimate the extent 
of salt-affected soils in Texas, United States, while Wiegand et al. 
(1991, 1992, 1994) analyzed and mapped the response of cotton 
to soil salinity using color IR photographs and videography with 
three bands (0.84–0.85 μm, 0.64–0.65 μm, and 0.54–0.55 μm) 
and a spatial resolution of 3.4 m. By relating video and field data 
such as soil electrical conductivity, plant height, and percent 
bare area, they determined the interrelations between plant, 
soil salinity, and spectral observations. These studies found that 
color IR composites and red narrowband images were better 
than green and NIR narrowband images (Escobar et al., 1998; 
Wiegand et al., 1992, 1994). Extensive research on the applica-
tion of panchromatic and multispectral satellite imagery to 
map salt-affected areas has been conducted over the last four 
decades, mostly using panchromatic and multispectral (VIS–
NIR–SWIR and/or thermal) sensor. Works by Csillag et  al. 
(1993), Epema (1990), Metternicht and Zinck (1997), Rao et al. 
(1995), and Evans and Caccetta (2000) provide some examples 
of applications on different continents and in different environ-
mental settings. All of these works were generally successful 
in mapping saline versus nonsaline surfaces. Some research-
ers have attempted to map salinity types (e.g., saline, alkaline) 
and degrees (e.g., low, moderate, high) (Metternicht and Zinck, 
1996; Kalra and Joshi, 1996), with varying degrees of success. 
From the year 2000 onward, experimental hyperspectral satel-
lite data from sensors like the CHRIS onboard the ESA mission 
PROBA-1, or Hyperion on EO-1, were assessed for their ability to 
identify and map salt-affected areas (Dutkiewicz, 2006; Schmid 
et al., 2007). A comprehensive description of all attempts to map 
soil salinity from multispectral satellite sensors, starting from 
old sensors such as Landsat MSS to newer ones such as IKONOS, 
is given in Metternicht and Zinck (2008). This book also covers 

other RS means of detecting soil salinity, such as active and pas-
sive sensors in the microwave and thermal domains.

While the aforementioned means were being used mostly to 
locate saline soil areas, especially those that are visible to the 
naked eye, research was being directed to assessing soil salinity 
that is low in content or in its first stages of development, as such 
soil can be agrotechnically treated to obtain optimal cultivation 
under extreme conditions. In this case, full spectral informa-
tion is needed and sophisticated analytical approaches to min-
ing spectral information related to salt were developed (Farifteh 
et al., 2004, 2006; Huang and Foo, 2002). The added value was 
the identification of salt-affected areas before they become vis-
ible to the naked eye, as done by Ben-Dor et al. (2002) and later 
also by Howari et al. (2002) and Dehaan and Taylor (2002) using 
hyperspectral sensors. These studies were based on Taylor et al. 
(1994), who were the first to show that it is possible to use air-
borne superspectral data to map salinity by using the 24-band 
airborne Geoscan, and VIS–NIR/SWIR data, at Pyramid Hill, 
in Victoria, Australia.

Whereas the salinity is most important in the root zone, it is 
interesting to note that two recent innovative studies were able 
to correlate salinity level at 30 cm depth to surface reflectance as 
acquired by an airborne hyperspectral sensor (Figure 25.16) and 
form an indirect correlation between leaf reflectance of tomato 
and the electrical conductivity measured in the root zone. These 
data were then projected on a cartographic domain to generate 
soil salinity-affected areas for the farmer (Goldshleger et al., 2013).

Vegetation is an indirect factor that facilitates detection of 
salt in soils from reflectance measurements (Hardisky et  al., 
1983; Wiegand et al., 1994). Gausman et al. (1970), for example, 
pointed out that cotton leaves grown in saline soils have a higher 
chlorophyll content than leaves grown in low-salt soil. Hardisky 
et al. (1983) used the spectral reflectance of a Spartina alterni-
flora canopy to show a negative correlation between soil salin-
ity and spectral vegetation indices. In the absence of vegetation, 

Surface

EC values
40 ds/m

1 ds/m30
 cm

30 cm

Figure 25.16  Soil salinity map as generated from an airborne AISA sensor (Eagle & Hawk sensors covering the VIS-NIR-SWIR region) used 
a spectral model generated from several samples taken at 0 and 30 cm depth. As seen, a  favorable map was obtained for the salinity at 30 cm and 
not only  on the soil surface.
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salt’s major influence is on the structure of the upper soil sur-
face. Figure 25.17 shows saline and nonsaline spectra, taken 
from Everitt et  al. (1988), in the VIS–NIR region. The saline 
soils had relatively higher albedo than the nonsaline ones. 
Furthermore, the saline soils had crusted surfaces that tended 
to be smoother than the generally rough surfaces of the nonsa-
line soils. Although Gausman et al. (1977) and Rao et al. (1995) 
reported similar trends in other soils, it should be noted that in 
soils with relatively high salt content, the opposite behavior can 
also be reasonably expected. This is because salt is a very hygro-
scopic material, which tends to decrease the soil albedo as water 
content rises. Because no direct significant spectral features are 
found in the VIS–NIR–SWIR region to identify sodic soil, indi-
rect techniques are thought to be more appropriate for classify-
ing salt-affected areas (Verma et al., 1994; Sharma and Bhargava, 
1988). Salt in water is most likely to affect the hydrogen bond 
in water molecules, causing suitable spectral changes. Based on 
this, Hirschfeld (1985) suggested that high-spectral-resolution 

data are required. Support for this idea was given by Szilagyi and 
Baumgardner (1991), who reported that characterizing salinity 
status in soils is feasible with high-resolution laboratory spectra. 
A relatively high number of spectral channels are also impor-
tant for identifying an indirect relationship between salinity and 
other soil properties that appear to consist of chromophores in 
the VIS–NIR–SWIR regions. Csillag et al. (1993) analyzed high-
resolution spectra taken from about 90 soils in the United States 
and Hungary for chemical parameters, including clay and OM 
content, pH, and salt. They stated that because salinity is such 
a complex phenomenon, it cannot be attributed to a single soil 
property. While studying the capability of commercially avail-
able earth-observing optical sensors, they indicated that six 
broadbands in the VIS–NIR–SWIR region best discriminate 
soil salinity. These six channels were selected solely on the basis 
of their overall spectral distribution, which provided complete 
information about salinity status. Thus, it can be concluded that 
it is necessary to look at the entire spectral region to evaluate 
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Figure 25.17  The reflectance spectra of a selected soil that was artificially contaminated with different evaporates  in different content. (After 
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salinity levels in different environments and unknown soil sys-
tems. In summary, soil salinity is a property that can be moni-
tored by RS means but requires high temporal, spectral, and 
spatial resolution.

25.8.2.5  Soil Moisture

Soil moisture is an important property, not only for assessing 
the available water content needed for plant utilization but also 
for assessing the direct exchange of soil water with the atmo-
sphere (e.g., evaporation) and quantifying moisture effects on 
other chromophores. In fact, it is considered to be one of the 
most significant parameters in the soil system. It can vary from 
hygroscopic moisture (water left on the surface after equilib-
rium has been achieved with the atmosphere) to a saturated 
stage (water fills 50% of the soil pores). The effect of the water 
molecules on soil reflectance is strong and significant. Whereas 
hygroscopic water most likely shows the absorption features of 
OH molecules at 1.4 and 1.9 μm with a strong SWIR shoulder 
at 2.62 μm (demonstrating the imaginary part of the refractive 
index), in the saturated condition, the real part of the refrac-
tive index is dominant and hence the entire spectrum is affected 
such that the overall spectral-baseline height (“albedo”) is low-
ered (visible to the naked eye as darker soil). In between these 
two moisture contents, the spectral signatures are affected by 
both mechanisms (real and imaginary parts), complicating the 
assessment of water content from soil reflectance. In most cases, 
the impact of soil moisture on the reflectance is unknown and 
therefore ignored. Muller and Decamps (2001) modeled reflec-
tance changes due to soil moisture in a real field situation using 
multiband airborne Spot data. They showed that the impact of 
soil moisture on reflectance could be higher than the differences 
in reflectance due to the soil categories and hence calls for cau-
tion in applying soil remote sensing under wet conditions. On 
the other hand, several attempts have been made to map soil 
water content using soil reflectance information, some under 
laboratory conditions, and others in the field and in air and 
space domains. Nevertheless, assessing soil water content from 
reflectance measurements is still a challenge, in particular cor-
recting for the water-masking effect that hinders the capture of 
other soil chromophores’ activities. Under dry soil conditions 
(mostly represented by hygroscopic water), the absorption fea-
tures at 1.4 and 1.9 μm, and others across the SWIR region, can 
be correlated with water, as shown by Bowers and Hanks (1965), 
Dalal and Henry (1986), and Ben-Dor et al. (1999). A study by 
Demattê et al. (2006) assessed the 1900 nm water combination 
band feature and others for practical use and found that the best 
interpretation of water content occurs when both dry and wet 
soil samples are spectrally measured.

A novel approach to reconstructing the soil’s spectral signa-
ture was through the use of various water film depths related to 
moisture content. Thus, Bach and Mauser (1994) simulated the 
reflectance change in the soil spectra from dry to moist. They 
combined Lekner and Dorf ’s (1988) model for internal reflec-
tance with the absorption coefficients from Palmer and Williams 
(1974) into Beer’s law. Bach and Mauser (1994) simulated dry 

through wet soil and applied the process for predicting water 
content to an AVIRIS image of a partially irrigated field and a 
field with dark organic soil at the Freiburg test site in Germany. 
Today, we have a better understanding of the causes to change 
the soil spectral and we are improving the methods for modeling 
water content in soils.

The challenge in determining soil moisture content across 
the VIS–NIR–SWIR region lies in the fact that the water mol-
ecules significantly affect all other spectral chromophores and 
thus may hinder the quantitative spectral approach to deter-
mining chromophores, such as OM, Fe oxide, clay, and car-
bonates. Accordingly, the water–radiation interaction is a very 
important issue in the soil proximal-sensing discipline, which 
is attracting more and more users and accumulating experience 
in the laboratory and field and, recently, from RS domains as 
well. Based on the strong effect of the real part of the refrac-
tive index, gray-level values in the VIS region enable estimat-
ing water content under certain amounts of water (Mouazen 
et al., 2005). Zhu et al. (2011) recently showed a good correlation 
between soil moisture and digital gray level under very moist 
soil conditions (25%–60%). Weidong et al. (2002) have shown 
that a better soil moisture prediction using soil spectroscopy 
can be determined by adjusting the soil types. Lobell and Asner 
(2002) demonstrated that the SWIR region is much more sen-
sitive than the VIS region when assessing soil moisture and 
described an exponential relationship between the water con-
tent and soil reflectance values. Mouazen et al. (2006) showed 
that the soil moisture content can be estimated using the VIS–
NIR and only part of the SWIR regions (306.5–1710.9  nm) 
where Whiting et al. (2004) suggested using the far SWIR region 
(2200–2500 nm) to estimate water content by fitting an inverted 
Gaussian function centered on the assigned fundamental 
water-absorption region at 2800 nm. As the far SWIR region is 
strongly affected by the left shoulder of the aforementioned fun-
damental absorption, a logarithmic soil spectrum continuum 
with convex hull boundary points was found to be correlated to 
water content. Based on the aforementioned method, they were 
also able to present a processed AVIRIS hyperspectral image 
that provides the soil-surface moisture content (Figure 25.18, 
Whiting et  al., 2004). The spectral approach also attracted 
Haubrock et al. (2008), who successfully validated a new model 
for predicting gravimetric soil moisture. The method was 
termed normalized soil moisture index and combines reflec-
tance values at 1800 and 2119 nm around the 1900 nm water 
combination bands. This index was applied to remotely sensed 
images and enabled the production of soil-surface moisture 
maps, generated from HyMap airborne images, which were 
found to be highly correlated with the field moisture content 
measured at the time of the overflight (Figure 25.19; Haubrock 
et  al., 2008). Surprisingly, neither Whiting’s nor Haubrock’s 
methods have been implemented in practice, probably because 
they are relevant to certain conditions in which moisture is 
not high. As the real part of the refractive index is dominant 
at high moisture levels, modeling the spectral features of the 
water becomes difficult in certain soil moisture ranges and the 
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reflectance should be treated differently, as done by Zhu et al. 
(2011). This author used the brightness of the water film as an 
indicator to determine the soil moisture from the VIS region.

It should be mentioned here that in general, other remote 
methods exist to estimate soil water content, such as using 
thermal bands in the LWIR region (estimating the latent and 
sensible heat fluxes; Eltahir, 1998) or active microwave and 
millimetric wave (Eliran et al., 2013) spectral domains that 
are based on sensing the dielectric constant of the soil–water 
mixture. A comprehensive review of soil moisture assessment 
from orbital sensors is given by Serrano (2010). As the water 
reflectance properties are important not only for determining 

the water content but also to sharpen and fine-tune other soil 
properties, it is essential that this field continue to be explored. 
Further work in reconstructing the spectra that will combine 
the spectral relationships of water content and soil components 
based on the physical nature of the materials and photon inter-
actions is strongly needed. Other challenges include examining 
the models obtained under select conditions using satellite plat-
forms and defining a robust way to assess water content at all lev-
els, in all orders of soil. An excellent review on monitoring soil 
moisture content from all orbital RS means is given by Barrett 
and Petropoulos (2013). The optical means is partially covered 
by them mainly because the HRS is not yet widely operational 
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Figure 25.18  Surface water content (gravimetric) from AVIRIS data (May 3, 2003, near Lemoore, California) as estimated with the SMGM. 
(Generated by Whiting, M.L. et al., Remote Sens. Environ., 89, 535, 2004.)
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Figure 25.19  (a) Soil moisture content as estimated from HyMap images acquired on July 20, 2004, over Welzow, Germany, and (b) RGB image 
of the area encoded 0.619, 0.528, and 0.452 μm. (After Haubrock, S. et al., 2006.)
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from space, whereas other limitations are also reported, which 
are identical to what was discussed in Section 25.7. Nevertheless, 
they concluded that the high spectral and spatial resolutions of 
the HSR technology may open up another channel to better esti-
mate soil moisture content from orbit.

In summary, it can be concluded that the soil-surface water 
content can be cautiously estimated using reflectance measure-
ments, but due to the effect on other soil components, their spec-
tral absorption requires proper attention. This approach has not 
yet been fully studied or developed in this innovative direction, 
that is, for use in HSR, although it seems to hold great promise. 
Other spectral regions, such as thermal, millimetric, and micro-
waves, may also be used for this mission.

25.8.2.6  Soil Carbonates

Carbonates, particularly calcite and dolomite, are found in soils 
that are formed from carbonic parent materials or in a chemi-
cal environment that permits calcite and dolomite precipita-
tion. Carbonates, and especially those of fine particle size, play 
a major role in many of the soil chemical processes that are most 
likely to occur in the root zone. A relatively high concentration 
of fine carbonate particles may cause fixation of iron ions in 
the soil and consequently inhibition of chlorophyll production 
(chlorosis-driven carbonates). On the other hand, an absence 
of carbonate may affect the soil’s buffering capacity and thus 
negatively affect the biochemical and physicochemical pro-
cesses. Remote sensing allows distinguishing among the com-
mon carbonate minerals on the basis of unique spectral features 
found in the SWIR (as well as TIR) regions. The C–O bond, 
part of the –CO3 radical in carbonate, is the spectrally active 
chromophore. Hunt and Salisbury (1970, 1971) pointed out 
that five major overtones and combination modes are available 
to describe the C–O bond in the SWIR region. Gaffey (1986) 
added two additional significant bands centered at 2.23–2.27 
μm (moderate) and 1.75–1.80 μm (very weak), whereas van der 
Meer (1995) summarized the seven possible calcite and dolo-
mite absorption features with their spectral widths. It is evident 
that significant differences occur between the two minerals. 
This enabled Kruse et  al. (1990), Ben-Dor and Kruse (1995), 
and others to differentiate between calcite and dolomite for-
mations using airborne spectrometer data with bandwidths 
of 10  nm. In addition to the seven major C–O bands, Gaffey 
and Reed (1987) were able to detect copper impurities in cal-
cite minerals, as indicated by the broadband between 0.903 
and 0.979 μm. However, such impurities are difficult to detect 
in soils, because overlap with other strong chromophores may 
occur in this region. Gaffey (1985) showed that iron impurities 
in dolomite shift the carbonate’s absorption bands toward lon-
ger wavelengths, whereas magnesium in calcite shifts the band 
toward shorter wavelengths. As soil carbonates are most likely 
to be impure, it is only reasonable to expect that the carbon-
ates’ absorption-feature positions will differ slightly from one 
soil to the next. A correlation between reflectance spectra and 
soil carbonate concentration was first demonstrated by Ben-Dor 
and Banin (1990b). They used a calibration set of soil spectra 

from Israel and CaCO3 content to find three wavelengths that 
best predict the calcite content in the soil samples (1.8, 2.35, and 
2.36 μm). They concluded that the strong and sharp absorp-
tion features of the C–O bands in the examined soils provide 
an ideal tool for studying the soil carbonate content solely from 
their reflectance spectra. The best obtained performance for 
quantifying soil carbonate content ranged between 10% and 
60%. Since that pioneering work, several proxy models to assess 
soil carbonate content have been published (e.g., Balsam and 
Deaton, 1996; Thomasson, 2001). The use of the SWIR region 
to map carbonates from airborne HSR has been shown by many 
users in arable lands (e.g., Lagacherie et al., 2008; Gomez et al., 
2008). However, in agricultural soil, where the plowing layer is 
mixed, estimating CaCO3 content is still a significant challenge. 
This is especially true in heavily leached environments (low 
pH) where lime is required to improve soil function. Demattê 
et al. (2003) already determined alterations between controlled 
and limed soils. Along these lines, Viscarra Rossel et al. (2005) 
and later Araujo et al. (2013) developed a spectrally based con-
cept to account, in the field, for the “lime requirement” con-
tent and demonstrated its applicability to precision agriculture. 
Mapping carbonate rocks from airborne domains using HSR 
technology is well documented (e.g., Kruse et al., 1990; Ben-Dor 
et al., 1995), as is mapping from satellites (e.g., Ninomiya et al., 
2005; Gersman et  al., 2008), but in soil, where the carbonate 
is mixed with other minerals, it is more difficult. Gmur et  al. 
(2012) showed the efficiency of hyperspectral analysis associ-
ated with a regression tree to increase the prediction accuracy of 
carbonate in the soil (R2 = 0.95). Lagacherie et al. (2008) exam-
ined how reflectance spectrometry can be used to estimate clay 
and CaCO3 contents simultaneously in soil using both field and 
airborne measurements. They showed nine intermediate stages 
from the laboratory to HyMap sensor measurements crossing 
spatial and sensor characteristics such as radiometric quality, 
spectral resolution, spatial variability, illumination conditions, 
and surface status including roughness, soil moisture, and pres-
ence and nature of pebbles. They found significant relationships 
between clay and CaCO3 contents from the spectral continuum 
removal values computed, respectively, at 2206 and 2341  nm, 
which persisted from an ASD spectrophotometer to the HyMap 
spectral imaging sensor. Decreasing performance was obtained 
going from the laboratory to the hyperspectral domains, indi-
cating the factors affecting reflectance spectra as discussed in 
Section 7. In summary, it can be concluded that soil calcite con-
tent has significant potential for quantitative monitoring using 
spectral information across the end of the SWIR spectral region 
but, at the same time, has some constraints related to its mix-
ture with other soil materials (minerals, SOM, and water), low 
solar energy, and accuracy deterioration in airborne relative to 
field and laboratory results.

25.8.2.7  Soil Contamination

Soil contamination refers to a process in which nonpedo-
genic constituents enter the soil volume with no relation to 
the soil’s natural formation or generation. This refers mostly 
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to short-term processes in the soil. Soils can be contaminated 
by various sources, either anthropogenic (e.g., hydrocarbon) or 
natural (e.g., dust accumulation). As various contaminants may 
change the soil’s chemistry as well as its physical behavior, one 
would expect to be able to monitor such processes by spectral 
sensing means. Demattê et al. (2004a) examined the industrial 
by-product of sugarcane that was dumped into a nearby soil area 
and found it to significantly alter the soil’s chemical properties. 
Accordingly, they found that this alteration was noticeable in the 
spectral reflectance of the soils via the magnitude of the signal, 
without much change in the general spectrum’s shape. This is 
probably due to physical effects of the sugarcane by-product that 
may cause different aggregation stages in the natural and con-
taminated soils. Chemical contamination is also an important 
issue in the soil environment. Heavy-metal contamination of 
alluvial soils on river banks has been addressed in experimental 
studies that used the soil proxy approach (Kooistra et al., 2003, 
2004; Wu et al., 2007; Xia et al., 2007). However, probably most 
operational applications of airborne HSR missions for monitor-
ing soil contamination have been performed in the context of 
chronic or accidental pollution resulting from metal mining. For 
example, Chevrel et al. (2005) investigated six mining areas in 
the MINEO project, five in Europe (Portugal, United Kingdom, 
Germany, Austria, and Finland) and one in Greenland, using 
HyMap airborne-imaging-spectrometry data. HSR was used 
for mapping the extent and type of chronic contamination with 
heavy metals using primarily trace minerals of pyrite oxidation 
as an indirect indicator of potential contamination, forming 
an indispensable basis for environmental impact assessment, 
environmental monitoring of historical mining sites, and reme-
diation planning. Within the framework of the EO-MINERS 
project (2010–2013), Chevrel (2013) used two HSR sensors 
(HyMap and AHS) to monitor the coal-ash contamination 
from open mines in the nearby urban and soil environments. 
Ren et al. (2009) have also estimated the soil contamination by 
As and Cu using reflectance spectroscopy of areas near min-
ing activities. In April 1998, the dam of a mine tailings pond 
in Aznalcollar, Spain, collapsed and flooded a soil area of more 
than 4000 ha with pyrite-bearing sludge containing high con-
centrations of heavy metals. An emergency airborne RS mission, 
with the objective of assessing the extent of residual heavy-metal 
contamination after the first cleanup operations that lasted until 
1999, was flown with HyMap covering the affected area in 1999 
and 2000 (Kemper and Sommer, 2002, 2003, Garcia-Haro et al., 
2005). As a first step, the possibility of adapting chemometric 
approaches to a quantitative estimation of heavy metals in the 
soils polluted by the mining accident was explored (Kemper and 
Sommer, 2002). Six months after the end of the first remediation 
campaign in early 1999, soil samples were collected for chemical 
analysis and VIS to SWIR reflectance (0.35–2.4 μm) was mea-
sured. Concentrations of As, Cd, Cu, Fe, Hg, Pb, S, Sb, and Zn 
in the samples were well above background values. Prediction of 
heavy metals was achieved by stepwise multiple linear regression 
analysis and by using an artificial neural network approach. This 
enabled the prediction of six out of the nine elements with high 

accuracy. The best R2 values between the predicted and chemi-
cally analyzed concentrations were As, 0.84; Fe, 0.72; Hg, 0.96; 
Pb, 0.95; S, 0.87; and Sb, 0.93. Results for Cd (0.51), Cu (0.43), and 
Zn (0.24) were not significant.

In the second step of the study, variable multiple end member 
spectral mixture analysis (VMESMA; Garcia-Haro et al., 2005) 
was used to analyze the HyMap data acquired in 1999 and 2000. 
A spectrally based zonal partition of the area was introduced 
to allow the application of different submodels to the selected 
areas. Based on an iterative feedback process, the unmixing per-
formance could be improved in each stage until an optimum 
level was reached. The sludge quantities obtained by unmixing 
the hyperspectral data were confirmed by field observations and 
chemical measurements of samples taken in the area. Figure 
25.20 shows the sludge-abundance map derived from the 1999 
HyMap data using this iterative VMESMA approach. The semi-
quantitative estimate of sludge from residual pyrite-bearing 
material could be transformed into quantitative information to 
assess acidification risk and the distribution of residual heavy-
metal contaminants based on an artificial mixture experiment 
and the derivation of simple stoichiometric relationships. As a 
result, the sludge-abundance map could be rescaled to quanti-
ties of residual pyrite sludge, associated heavy metals, and acidi-
fication potential due to the need to counteract calcite buffering. 
Wu et  al. (2005), who used reflectance spectroscopy to study 
the mercury contamination in suburban agricultural soils in 
the Nanjin region, China, revealed interesting results. They 
found correlations between mercury concentration and goethite 
and clay absorbance features at 496 and 2210 nm, respectively. 
They concluded that an intercorrelation between mercury and 
the aforementioned constituents is the key factor for obtain-
ing a prediction of mercury, as it has no spectral fingerprints in 
the VIS–NIR–SWIR region. Although they have not yet been 
applied, the authors strongly recommended the use of opera-
tional RS techniques to fully implement this interesting finding 
for mapping of soil contamination with mercury. Another pos-
sible intercorrelation is with SOM. Malley and Williams (1997) 
showed that reflectance properties of sediments are associated 
with the content of OM, which acts as a chelating substance. As 
SOM has spectral fingerprints as previously discussed, the inter-
correlation of the heavy metal bound to the SOM may enable 
extraction from the reflectance characteristics of the soil.

Several other studies have been published on the capacity of 
soil spectral information to detect heavy-metal content in soils. 
Wu et  al. (2011) demonstrated that the intercorrelation of the 
nonspectral active constituents (Ni, Cr, Co, and Cd) with spec-
trally active soil components (Fe oxides, SOM, and clay) is the 
major predictive mechanism. They showed that a correlation 
with total iron (including active and residual iron) is the major 
mechanism by which cadmium can be spectrally active in the soil 
environment. Looking toward showing a mechanism of public 
control of the environment, Araujo et  al. (2014) indicated that 
VIS–NIR, as combined with MWIR, was able to detect Cr varia-
tion on soils caused by chemical products discarded from leather 
industries with a 0.93 R2. The authors observed strong alteration 
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on spectral features (i.e., in the 500 and 570 nm and 2400 cm−1 
bands) and lower intensities in all spectra when high application 
of the product was performed. Other workers have demonstrated 
similar capability to assess heavy metals spectrally, such as Pandit 
et  al. (2010) who modeled the concentrations of Pb and other 
heavy metals using soil reflectance and concluded that reflectance 
spectroscopy has a promising potential to map the spatial distri-
bution of Pb abundance in soils. Another indirect way to study 
heavy-metal content in the root zone via remote sensing was dem-
onstrated by Kooistra et al. (2004), Liu et al. (2010), and recently 
Kopackova et al. (2014), who studied the relationship between the 
leaves’ spectral response to the heavy-metal content in the root 
zone. They found a good correlation between leaf spectra and both 
aluminum and basic cations in the soil solution of the 0–20 cm 
soil (organic) horizon. Associating the results with HyMap HSR 
data on a small scale could indirectly result in mapping the 
organic horizon status of the soil underneath the vegetation. This 
work shows that an innovative idea can play an important role in 
exploiting reflectance properties in all domains to understand the 
soil condition in general and pollution in particular.

Hydrocarbon contamination of soil is another important 
constituent that can be detected by reflectance spectroscopy. 
The spectral detection of hydrocarbons can be divided into two 
categories: direct sensing of hydrocarbons and indirect sens-
ing of minerals altered by the hydrocarbons. Whereas sensing 
of the first category relies on the spectral fingerprints of the 
hydrocarbon materials, the second category examines the soil 
matrix (minerals) that might be affected by hydrocarbon con-
tamination. Direct detection using spectral means was reported 
by Malley et al. (1999), who concluded that reflectance spectros-
copy has good potential to work in the laboratory. Later, Hörig 
et al. (2001), using a HyMap sensor, showed that HSR technology 
can detect hydrocarbon signals in an artificially contaminated 
soil environment. Another comprehensive work in this area is 
Winkelmann’s thesis dissertation (2005), in which she systemati-
cally studied the applicability of HSR for detecting contaminated 
sites (including soils). Souza Filho (2013) also demonstrated the 
ability of airborne HSR to quantitatively detect hydrocarbons 
from both the SWIR and TIR spectral ranges. Detection via 
indirect sensing has been reported by several authors, such as 
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Yang et al. (2000) and van der Meer et al. (2002) and also Bihong 
et  al. (2007) who used ASTER data to detect seepage from 
hydrocarbon reservoirs. A recent attempt to map an oil spill 
from Landsat data (combined with radar data) was performed 
by Espinosa-Hernandez et al. (2013): Landsat images identi-
fied polluted areas over the bare soil. Several studies based on 
reflectance spectroscopy have demonstrated its ability to detect 
hydrocarbon species and their concentrations (Schwartz et al., 
2011). Schwarz et  al. (2012) also demonstrated that measure-
ment of TPH from reflectance spectroscopy is as good as mea-
surements performed by three certified laboratories using wet 
chemistry analyses and concluded that this approach has com-
mercial applicability. Accordingly, a patent has been assigned 
for this application (US 20140012504 A1). Interpolating spectral 
measurements of TPH in the field on a GIS-based map enabled 
demonstrating the spatial distribution of the main source of the 
oil contamination from within a gas station area. Figure 25.21 
shows a case study of a contaminated gas station where point 
spectral measurements and GIS interpolation provides similar 
results as laboratory measurements of the same points.

In summary, it can be concluded that the reflectance proper-
ties of soils enable the assessment of various contaminants in 
their environment and that HSR technology is proving to be a 
promising tool for this purpose. Many more ideas and research 
directions are still open and workers are encouraged to further 
explore and study this promising field.

25.8.2.8  Soil Aggregation and Roughness

Many studies have shown that particle-size differences alter the 
shape of soil spectra (in powdered shape) (Hunt and Salisbury, 

1970; Pieters, 1983; Baumgardner et al., 1985). Specifically, Hunt 
and Salisbury (1970) quantified an effect of about 5% in absolute 
reflectance due to particle-size differences and showed that these 
changes occurred without altering the position of diagnostic 
spectral features. The physical process of the particle-size effect 
was related to changes in the real part of the refractive index 
resulting in attenuations in scattering and shading. Under field 
conditions, aggregate size rather than particle size may be more 
dominant in altering soil spectra (Orlov, 1966, Baumgardner 
et al., 1985). Soil aggregation is related to cementing agents in 
the soil such as clay, Fe oxides, and OM. Ben-Dor et al. (2008) 
demonstrated that rubification (the coating of quartz particles 
with Fe oxides) is responsible for sand-dune stabilization due 
to the cementing effect of Fe oxide. In the field, aggregate size 
may change over a short time frame due to tillage, soil erosion, 
artificial contamination (e.g., sugarcane by-product), aeolian 
accumulation, or physical crust formation (e.g., Dahms, 1993). 
Basically, the aggregate size, or more likely roughness, plays a 
major role in the shape of the soil spectra acquired in the field and 
air domains (e.g., Cierniewski 1987, 1989; Feingersh et al., 2007). 
Escadafal and Hute (1991) showed strong anisotropic reflectance 
properties of five soils with rough surfaces. Cierniewski (1987) 
developed a model to account for soil roughness based on the 
soil reflectance parameter, illumination properties, and view-
ing geometry for both forward and backward slopes. The model 
showed that the shading coefficient of the soil surface decreases 
with decreasing soil roughness. For soils on forward slopes of 
more than 20°, the shadowing coefficient also decreased when 
the solar altitude increased throughout the range of 0°–90°. The 
model indicated that the opposite relationship might hold for 
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Figure 25.21  A contamination soil site with petroleum and the interpolation map generated from 5 samples using  TPH analysis at the labora-
tory (a) and spectral-based model in the field (b).
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soil slopes with surface roughness lower than 0.5 for a speci-
fied range of solar altitudes. Using empirical observations of 
smoothed soil surfaces, Cierniewski (1987) showed that the 
model agrees closely with field observations. A brief and excel-
lent summary on the multiple- and single-scattering models 
of soil particles with respect to the roughness effect is given 
by Irons et  al. (1989). Soil aggregation is strongly correlated 
to the content of cementing agents in the soil such as OM, Fe 
oxides, carbonates, and clay. Selige et al. (2006) studied the vari-
ability of field topsoil texture and SOM using HyMap airborne 
hyperspectral imagery. They found a good correlation between 
reflectance and two related properties: OM and soil texture, 
suggesting that SOM is the direct chromophore for soil texture. 
Cierniewski et al. (2014) evaluated the fit between HSR bidirec-
tional reflectance data of soil surfaces formed by a cultivator, a 
pulverizing harrow, and a smoothing harrow, collected under 
field conditions (as illuminated by direct and diffuse solar radia-
tion), to their bidirectional reflectance equivalents measured in 
the laboratory with only a direct radiation component and soil 
roughnesses similar to those in the field. They found that the fit 
increased from 400 to 450 nm and decreased notably for wave-
lengths between 1950 and 2300 nm. A less significant decrease 
in fit was revealed at around of 700, 940, and 1140  nm. This 
again shows the constraint encountered when upscaling from 
the laboratory to field domains as a result of the soil’s roughness 
characteristic. In another study, Piekarczyk (2013) performed a 
controlled study using broadband (VIS) albedo characteristics 
to study the optimal conditions for remote sensing of soils (in 
terms of radiation and general geometry). Using five different 
roughnesses of the same soil with the same solar zenith angle, 
the difference between the optimal time and the available times 
from current sun-synchronous satellites was examined (using 
NOAA-15 and MODIS). It was found that the MODIS, cross-
ing the equator at 10:30 a.m. in an orbit that is far from opti-
mal for the albedo approximation, is much less useful than the 
NOAA-15, crossing the equator at 7:30 a.m. Another conclusion 
drawn from that research was that the relationship between the 
broadband (blue sky) albedo of a bare cultivated soil surface and 
the angle of the solar zenith clearly depend on the soil rough-
ness. In summary, it can be concluded that soil aggregation size 
may affect the reflectance properties of a soil surface, with a sig-
nificant impact on the overall spectral signal. As the roughness 
may be associated with soil degradation, deposition, or other 
pedogenic effects, it can serve as an indicator for the RS of these 
processes but needs special attention to generate a quantitative 
model for that purpose.

25.8.2.9  Soil Sealing (Cover, Dust, and Crust)

Soil crusts and covers can be formed by different processes. The 
biogenic crust is one example of such interference, and mineral 
alteration by fire is another. Aeolian material and desert var-
nish are also good examples of surface crusts. Biogenic activ-
ity can be captured by RS means via what is called a biogenic 
crust. This crust is made up of cyanobacteria and strongly affects 
the general albedo of the soil reflectance as well as the SWIR 

region absorption features (Karnieli et al., 1999). The biogenic 
crust shows photosynthetic activity when the soil water content 
is on the rise and is less active under dry conditions. Demattê 
et al. (1998) observed that the spectral behavior of the biologi-
cal aggregates changes according to their chemical composition 
and is associated with the micro- and macrofauna activity in the 
soil pedon. They speculated that the animals bring soil particles 
from the undersurface to the surface, which can be distinguished 
using field spectroscopy. The crust is active in arable semiarid 
to arid soils, where cultivation is rare and vegetation even more 
so. Karnieli and Tsoar (1995) showed that overgrazing destroys 
the biogenic crust to the point that significant albedo differences 
can be obtained from satellite views. Similarly, they showed that 
these differences are significant across the Egypt–Israel border 
based on overgrazing activity on the Egyptian side and relatively 
low grazing on the Israeli side. Other studies have demonstrated 
similar effects across the globe (Lucht et al., 2000).

Another type of crust on the soil surface is termed “physical 
crust.” This crust is formed by raindrops’ energy (Morin et al., 
1981), which causes segregation of fine particle sizes at the sur-
face of the soil and hence affects its reflectance characteristics. 
This crust reduces water infiltration and accordingly, increases 
runoff, resulting in soil erosion. The crusting effect is more pro-
nounced in saline soils and has been well studied in relation 
to the mineralogical and chemical changes in the soil surface 
(Agassi et al., 1981; Sheinberg, 1992) that also affect soil rough-
ness (Cierniewski et al., 2013). The immediate observation after a 
rainstorm is enhanced “hue” and “value” of the soil color because 
of an increase in the fine fraction on the surface. One can assume 
that the reflectance spectrum of the “physical crust” will be 
totally different from that of the original soil, because it contains 
a greater clay fraction with a different textural component. In a 
study conducted by Goldshleger et al. (2019), using soils from 
Israel and the United States under artificial rain conditions, the 
spectral feature of clay minerals enabled detecting the mecha-
nism of crust formation and distortion (under heavy rainstorm 
energy). The spectral changes observed at the soil surface were 
caused by changes in the soil’s texture (fine-fraction enrich-
ment), structure (from loose to compact), roughness, and min-
eralogy (clay minerals rather than primary minerals). Several 
innovative studies have shown a significant relationship between 
spectral information and the infiltration rate of water into the 
soil profile as measured in the laboratory (e.g., Ben-Dor et  al., 
2003; Goldshleger et al., 2005). The next requisite step in the rain-
simulation studies was to test the use of an airborne HSR sen-
sor to characterize a structural crust in the field (Ben-Dor et al., 
2004). Using a spectral-based index (the normalized spectral 
area [NSA]), they were able to generate a possible erosion-haz-
ard map of the soil area (Figure 25.22). An important question 
based on that finding was whether a generic spectral model could 
describe the crust’s status, rather than the kinetics of the forma-
tion process. A study by Goldshleger et al. (2019) showed that the 
spectral model used to predict crust status might be more robust 
than originally thought. By using four soils from Israel and three 
soils from the United States subjected to rain events in a rain 

© 2016 Taylor & Francis Group, LLC

  



769Remote Sensing of Soil in the Optical Domains

simulator, promising results were obtained using a combined 
prediction equation for infiltration rate, with a cross-validation 
RMSE of 15.2% and a prediction-to-deviation ratio of 1.98.

Dust is another factor that can hinder remote sensing of 
the soil surface. The wind blowing the dust also has abrasive 
effects on the soil surface. Chappell et  al. (2005) investigated 
the effect of soil-structure changes due to rain and wind-tunnel 
events. Their results showed that the spectral information can 
shed more light on the soil composition and structure gener-
ated by these two factors (rain crust and aeolian abrasion). Dust 
has two major effects: (1) It contaminates the atmosphere with 
a spectral signature that seems to interfere with soil-surface 
sensing and (2) it can accumulate on the soil surface as a thin 
layer that masks the true soil characteristics. One of the first 
observations of the effect of dust contamination on soil spectral 
information was reported by Montgomery and Baumgardner 
(1974). In a more recent study, Chudnovsky et al. (2009) dem-
onstrated that an aeolian plume of Sahara dust has a significant 
effect on the clay mineral signals obtained from Hyperion data. 
They pointed out that the mineralogy of the dust plume can 
hinder the surface’s spectral fingerprint. Dust accumulation 
on the soil surface has not yet been comprehensively studied. 
This is mainly because the spectral features of dust and the soil 
background may have similar features, and it is difficult to sep-
arate their contributions. This is unlike what can be seen over a 

vegetated background, especially if the dust is bright (Ben-Dor 
and Levin, 2000). Desert dust is most visible on a dark back-
ground (whereas anthropogenic dust is most visible on a light 
background) and hence is strongly affected by the underlying 
soil albedo. Li et  al. (2013) demonstrated the impact of dust 
from a soil surface on nearby snow-covered areas as observed 
from MODIS and found significant indications of the dust-
source area’s characteristics. Musavi et al. (2013) demonstrated 
the influence of dust on four different soils using MODIS ther-
mal data. They concluded that different soil types have different 
effects on surface-dust detection due to their spectral mixing 
process and demonstrated the connection between the real soil 
and the overlying accumulated dust. Okin and Painter (2004) 
studied the effect of soil-surface texture on spectral reflectance 
from the Mojave Desert. Sand plumes, eroded from the fields 
by wind, transported by saltation, and deposited downwind of 
the fields, were studied based on reflectance and on its correla-
tion with grain-size distribution in the direction of wind trans-
port. Analysis of AVIRIS-derived apparent surface reflectance 
demonstrated the expected negative correlation between effec-
tive grain size of the sand in the plume and reflectance, with 
the most significant correlations being in the SWIR region. The 
change in reflectance per mm change in particle diameter was 
−0.06 at λ ∼ 1.7 μm and −0.08 at λ ∼ 2.2 μm with R2 = 0.89 and 
0.93, respectively.
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Figure 25.22  A colored scaled image (band 14, 576 nm)  to account for the water infiltration rate of Loess soil as estimated from the spectral 
model that was based on  the physical crust effect. Given also 4 controlled plots where the crust was broken by a gentle cultivation (“cold” colors) 
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Another type of soil sealing is the crust formed on the soil 
surface during fire events. This crust is responsible for reduc-
ing infiltration and increasing erosion stages. Studies by Lugassi 
et  al. (2010, 2014) showed that the high fire temperatures can 
alter the surface soil mineralogy, thereby hindering sensing of 
the real natural surface of soils that have been subjected to fire. 
They showed that Fe oxide species formed during the heating 
process can be good indicators of the temperature of the fire long 
after it has gone out. Other reflectance changes in burned soils 
have described by Kokaly et  al. (2007). In summary, it can be 
concluded that the effects on top of the soil surface (“sealing”) 
are important and can be clearly observed. Although they hin-
der correct sensing of the real soil body, the spectral effects can 
provide added information on processes in the “sealed” soils, 
such as water infiltration (in the case of a physical crust) and 
water runoff (in the case of burned soil).

25.8.2.10  Soil Iron

Just as OM acts as an important indicator for soils, Fe oxides 
provide significant information on the soil’s formation and con-
ditions (Schwertmann, 1988). Fe oxide content and species are 
strongly correlated with short- and long-term soil processes. 
An example of a short-term process is fire, whereas weathering 
exemplifies a long-term process. Fe oxide transformation often 
occurs under natural soil conditions. Hematite and goethite are 
common Fe oxides in soils and their relative content is strongly 
controlled by soil temperature, water regime, OM, and annual 
precipitation. Fe oxide is the major chromophore in the VIS–
NIR region, contributing a red-brown color to the soil. It was 
thus obvious that RS imagery would prove successful in assess-
ing Fe oxide coverage using soil color (Escadafal, 1993), and if 
spectral information was available, by modeling the absorption 
features of the active chromophore. Fe oxides (and Fe hydrox-
ides) have specific absorption features that are located across 
the VIS–NIR region (based on electronic processes) and can be 
estimated from multispectral or imaging spectrometer images 
(Abrams and Hook, 1995). However, due to the occurrence of 
spectral oversampling, it is still problematic to quantitatively 
assess the soil’s exact Fe oxide content (Deller, 2006). Different 
Fe oxide species have different colors. Hematitic soils are reddish 
and goethitic soils are yellowish-brown to yellowish. Hematite 
(α-Fe2O3) has Fe3+ ions in octahedral coordination with oxygen. 
Goethite (α-FeOOH) also has Fe3+ in octahedral coordination, 
but different site distortions along with the oxygen ligand (OH) 
provide the main absorption features that appear near 0.9 μm. 
Lepidocrocite (γ-FeOOH), which is associated with goethite 
but rarely with hematite, is another common unstable Fe oxide 
found in soils. It appears mostly in subtropical regions and is 
often found in the upper subsoil position (Schwertmann, 1988). 
Maghemite (γ-Fe2O3) is also found in soils, mostly in subtropi-
cal and tropical regions, but also occasionally in humid temper-
ate areas. Ferrihydrite is a highly disordered Fe3+ oxide mineral 
found in soils in cool or temperate moist climates, characterized 
by young Fe oxide formations and soil environments that are 
relatively rich in other compounds (e.g., OM, silica). Fe oxides 

are secondary minerals that are sensitive indicators of pH, Eh, 
relative humidity, and other environmental conditions. This 
enabled monitoring mine-waste remediation activities over con-
taminated soils (Crowley et al., 2003; Zabric et al., 2005). Iron-
bearing minerals in the soil precipitate, ordered according to 
pH, are as follows: jarosite, pH < 3; schwertmannite, pH 2.8–4.5; 
mixtures of ferrihydrite and schwertmannite, pH 4.5–6.5; and 
ferrihydrite or a mixture of ferrihydrite and goethite, pH > 6.5. 
Based on the Fe oxides’ spectral features, accordingly Zabcic 
et al. (2009), Kopackova (2014) and others were able to map sur-
face pH, as shown in the Figure 25.23 example.

Iron associated with clay mineral structures is also an active 
chromophore in both the VIS–NIR and SWIR spectral regions. 
This can be seen in the nontronite-type mineral presented in 
Figure 25.24. Based on the structural OH–Fe features of smec-
tite in the SWIR region, Ben-Dor and Banin (1990a) generated 
a predictive equation to account for the total iron content in a 
series of smectite minerals. The wavelengths that were selected 
automatically by their method were 2.2949, 2.2598, 2.2914, and 
1.2661 μm. Stoner (1979) also observed a higher correlation 
between reflectance in the 1.55–2.32 μm region and iron con-
tent in soils, whereas Coyne et al. (1989) found a linear rela-
tionship between total iron content in montmorillonite and 
absorbance measured in the 0.6–1.1 μm spectral region. Ben-
Dor and Banin (1995a) used spectra of 91 arid soils to show 
that their total iron content (both free and structural iron) 
can be predicted by multiple linear regression analysis and 
wavelengths 1.075, 1.025, and 0.425 μm. Obukhov and Orlov 
(1964) generated a linear relationship between reflectance 
values at 0.64 μm and the total percentage of Fe2O3 in other 
soils. Taranik and Kruse (1989) showed that a binary encod-
ing technique for the spectral-slope values across the VIS–NIR 
spectral region is capable of differentiating a hematite mineral 
from a mixture of hematite–goethite–jarosite. It is important 
to mention that iron can often have an indirect influence on 
the overall spectral characteristics of soils. In the case of free 
Fe oxides, it is well known that soil particle size is strongly 
related to absolute Fe oxide content (Soileau and McCraken, 
1967; Stoner and Baumgardner, 1981; Ben-Dor and Singer, 
1987): as the Fe oxide content increases, the size fraction of 
the soil particles increases as well, because  of the cementing 
effect of the free Fe oxides. As a result, problems resulting from 
different scattering effects are introduced into the soil analy-
sis. Moreover, free Fe oxides, mostly in their amorphous state, 
can coat the soil particles with a film that prevents natural 
interaction between the soil particle (clay or nonclay minerals) 
and the sun’s photons. Fe oxide minerals can be indicators for 
soil-stabilization processes (Ben-Dor et al., 2005). Karmanova 
(1981) found that well-crystallized iron compounds have the 
strongest effect on the spectral reflectance of soil and that 
removal of nonsilicate iron (mostly Fe oxides) helps enhance 
other chromophores in the soil. In this respect, Kosmas et al. 
(1984) demonstrated a second-derivative technique in the VIS 
region as a feasible approach for differentiating even small 
features of synthetic goethite from clays, and they suggested 
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Figure 25.23  A pH map of Sokolov lignite basin Czech Republic as obtained from a spectral model based on  iron oxides minerals. (After 
Kopačková, V., Int. J. Appl. Earth Observ. Geoinform., 28, 28, 2014.)
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that such a method be adopted to assess quantities of Fe oxide 
in mixtures. Based on these spectral characteristics, Scott 
and Pain (2008) showed the possibility of spectrally assess-
ing the alteration of regolith Gerbermann and Neher (1979) 
showed that soil mixtures of clay and sand can be predicted 
from reflectance spectra. The first to map Fe oxides from the 
HSR domain were Ben-Dor et  al. (2005), who modeled very 
low Fe oxide absorption features in a sand dune in Ashdod, 
Israel, from CASI data. Using this approach, they were able 
to account for the rubification process in the sand dune and 
for dune stabilization and soil formation over the dune. In 
Figure  25.25, the area as seen from Landsat in natural RGB 
band combination and from CASI data that were modeled to 
extract the free Fe oxide content is shown. Later, Bartholomeus 
et al. (2007) also applied HSR data from the ROSIS airborne 
image spectrometer and showed that quantification of soil 
iron content is possible over Mediterranean soils in Southern 
Spain. Fe2O3 was also well quantified and mapped by Landsat 
data by Dematte et al. (2009). The authors also observed a high 
correlation between laboratory Fe2O3 spectral readings, with 
R2 0.82 and orbital R2 0.67 in a 500 ha area with 500 samples. 
Lugassi et al. (2010) showed that alteration of goethite to hema-
tite in soils subjected to fire can be depicted from the soil spec-
tra and further used as an indicator to assess the temperature 
of the fire long after it has gone out. Another recent study by 
Lugassi et al. (2014) showed that minerals other than iron are 
altered during fire events and they can be used to assess the fire 
characteristics long after the actual fire event. While crystal-
line iron, such as hematite, occurs in high weathered tropical 
soils, amorphous iron occurs in low ones. Demattê and Garcia 

(1999) observed that amorphous iron presents absence of spec-
tral shape between 800 and 1000  nm, while crystalline iron 
is responsible for the convex shape. The same occurs between 
400 and 600 nm where Sherman and Waite (1985) indicate a 
narrow convex shape for goethite, which were corroborated by 
Demattê and Garcia (1999), who observed the absence of this 
convexity when extracting goethite. These findings corrobo-
rate the importance of descriptive evaluation of spectra and 
not only quantitative information.

It can thus be concluded that iron is a very strong chromo-
phore in soil and that its relationship with many of the soil’s 
physical and chemical processes can be exploited by using its 
spectrum (or color) to track those processes. Based on the com-
plexity of the iron component in the soil environment, as well as 
on the intercorrelation between iron and other soil components, 
sophisticated methods and data with relatively high spectral res-
olution are absolutely required to determine iron content from 
reflectance spectra.

25.8.2.11  Soil Classification and Taxonomy

As soil mapping requires grouping soil entities according to 
their chemical and physical characteristics, classification pro-
cesses are a major issue. Soil classification is related to a taxo-
nomic system that aims to give a common and agreed-upon 
definition and name to a given soil entity (Simonson, 1987). 
There are several such systems, the most common being the 
World Reference Base for Soil Resources classification protocol 
(FAO, 1998). These systems present the state and nature of sev-
eral soils attributes, as well as their horizontal characteristics 
across the soil profile, which are then combined to define the soil 
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name (class). Spectrally based soil classification was introduced 
by Stoner et al. (1980) as an atlas, which was published afterward 
by Stoner and Baumgardner (1981), who were able to group 
American soils into five spectral categories. This was the first 
method introduced to indicate soil entities based on soil spectra 
and was well studied. The limitation of this first soil’s spectral 
atlas was that it used only surface soil samples that could not yet 
represent the soil profile as needed for soil classification. Other 
methods projected the spectral signatures into quantitative 
domain and determine several soil properties solely from the 
reflectance information (Dalal and Henry, 1986; Ben-Dor et al. 
1995). Later, Demattê et  al. (2002) proposed a complementary 
method to assist in descriptive spectral evaluations, with soil 
classification as the major goal. The authors indicated three 
major spectral aspects: complete shape, reflectance intensity, 
and absorption features. They also attempt for the necessity to 
evaluate spectra from each horizon, extract soil diagnostic 
information, compare spectra between them, and merge all data 
to reach soil classification. In fact, they observed that Ultisols 
have different spectra between A and B horizons mostly related 
to the clay gradient. An important descriptive difference was 
observed at about 2000  nm where A and B horizon spectra 
change because A has less clay (with more quartz) and B more 
clay (with less quartz). In fact, quartz raises reflectance intensity 
in SWIR as observed by White et al. (1997). The opposite obser-
vation was found in Oxisols. Usually, Oxisol description in the 
tropics indicates that there are very few differences between 
horizons, for example, in clay content and color. In fact, Demattê 
et al (2001, 2004b) conducted the first work to indicate a practi-
cal approach on how to perform soil-classification mission using 
reflectance spectra. Afterward, several works indicated the 
importance of spectra interpretation from all horizons on the 
same profile (Rizzo et al., 2014; Vasquez et al., 2014). Adopting a 
descriptive method, Bellinaso et  al. (2010) created a database 
using spectra of all horizons from a given profile, indicating the 
importance of this characterization for soil classification. In this 
work, they revealed 75% efficiency in classifying 236 tropical soil 
profiles from five Brazilian states. Soil spectroscopy can also be 
used to describe variations in soil attributes along the profile and 
for soil classification (Ben-Dor et al., 2008). Odgers et al. (2011) 
developed a system for the continuous classification of soils of 
262 profiles from Australia using the MWIR (2.5–5 μm) spectral 
region. Using the fuzzy K-means clustering algorithm, they 
showed a low level of confusion. Steffens and Buddenbaum 
(2013) studied diagnostic horizons of Luvisols through labora-
tory spectroscopic-imaging technique, indicating great poten-
tial for elucidating the processes and mechanisms of soil 
formation. Nanni et  al. (2011) evaluated 18 types of soils and 
indicated that in many cases, there were differences between 
profiles that could only be depicted by a detailed spectral shape 
evaluation of samples taken from the soil-diagnostic horizons. 
In fact, the problem was how to evaluate spectra from different 
horizons at the same time using an automated system. To this 
end, Ben-Dor et al. (2008) were the first to introduce the 3HED 
assembly that is inserted into a small borehole and describes the 

profile’s chemical variations by spectral-based analysis, without 
having to sample the profile. This was the first goal on getting 
information from undersurface, since opening trenchers with 2 
by 2 m is a difficult, high-cost, and time-consuming mission in 
traditional works. Elaborating on more tools for these descrip-
tive evaluation, Demattê et  al. (2014) described the multiple 
interpretations of reflectance spectra (MIRS) method, which 
relies on a detailed evaluation of spectral shapes, intensities, fea-
tures, angles, and complete behavior across the VIS–NIR–SWIR 
region, crossing all of the diagnostic horizons along the soil’s 
profile. Automated spectral-based systems are a more objective 
tool, as demonstrated by Vasques et al. (2014), which can practi-
cally avoid subjectivity of the interpreter. These authors pro-
posed the insertion of spectra from each horizon from the same 
profile in the same system, observing a spectrum across the 
entire VIS–NIR–SWIR region from three sequent horizons 
(A, B1, B2), thus analyzing the spectra of all profiles as a contin-
uum and reported 90% efficiency for soil-classification pro-
cesses. Rizzo et al. (2014) ratified these findings and revealed a 
high correlation when classifying tropical soil profiles with the 
OSACA program (Carré and Jacobson, 2009). Other researchers 
also succeeded to classify soils based on spectroscopy, such as 
Nanni et  al. (2004) who used stepwise multivariable analysis 
with 91% accuracy, Du et al. (2008) who used IR photoacoustic 
spectroscopy (FTIR-PAS) with 96% accuracy, and Linker (2008) 
who used MWIR with 95% accuracy. Using VIS–NIR–SWIR 
descriptive analysis, Demattê et al. (2012) distinguished 17 pro-
files of tropical soils derived from different parent materials. 
This was ratified by Cezar et al. (2013) who obtained 70% agree-
ment with traditional field classification. Both stated that statis-
tical methods are important, but cannot detect all of the 
particularities inside the spectral information, and thus human 
expertise and interpretation are still required. Whereas soil 
spectroscopy can generate soil attributes objectively, it cannot 
provide the morphological view of the soil that plays an impor-
tant role in the soil-classification process. Another important 
property that the soil spectroscopy can provide is the objectively 
determination of the boarders between soil horizons. This allows 
an accurate profile spectral pattern description, which can then 
be projected into the profile pattern library accompanied with 
the soil-classification information as obtained by an expert. This 
library can be used then to classify unknown soil profile by 
applying multispectral classifier approaches. This technique was 
demonstrated by Demattê et al. (2004b), who determined soils 
classification by the descriptive correlation of known spectral 
patterns. To assist soil classification, image data can be used to 
support the traditional field work by indicating homogeneity 
and topography of the area in question (both are playing a major 
role in the soil-classification process). Demattê et  al. (2009a) 
showed an error of 0.028% using discriminant analysis of 
Landsat images for soil classification. Each (nonvegetated) pixel 
along the study area was classified in the field using undersur-
face information and traditional method. The results indicated 
high performance between the traditional soil classification and 
the pixel (spectral) information. The spectrum of the surface of 
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each classified soil was different in intensities and tendencies on 
shape. Accordingly, although image captures only the surface 
information, it shows a significant relationship with the under-
surface soil properties that enabling discrimination between soil 
classes solely from the satellite imaga. Nonetheless, the readers 
need to realize that this is a very delicate procedure and must be 
taken and evaluated with care, because in some cases, different 
soil classes can have the same surface information. This needs an 
expert to evaluate and validate the RS results before transferring 
them to the end users for operation.

To summarize, classification processes are an important 
application that have progressed significantly in the last few 
years due to the use of soil spectroscopy with field spectrom-
eters, airborne HSR sensors, and orbital sensors such as Landsat 
TM. Spectral information is particularly powerful in drawing 
the soil’s boundaries more accurately than traditional aerial 
photography and in deriving information on the soil’s horizon 
across the soil profile, by either measuring cores or using foreop-
tics that penetrate the soil profile. Nonetheless, for soil-mapping 
purposes, we strongly feel that merging RS technologies will 
advance soil-mapping missions. HSR with LIDAR and HSR with 
field profile spectroscopy are good examples of this.

The few success stories of soil classification using Landsat 
images strongly suggest that the HSR technology from orbit has 
a promising potential and needs further research. The problem 
to measure the spectral information of the soil horizons in a con-
venient way and the limitation to assess soil morphology from 
spectroscopy are issues that need to be further studied as well.

To summarize, soil-classification process as a punctual infor-
mation process is an important application that have progressed 
significantly in the last few years due to the use of soil spectros-
copy mostly in the field and laboratory. Favorite results from 
Landsat to classify soil pixels indicate that the emerging HSR 
technology from orbit has quite promising potential to that end. 
Soil classification from remote optical means still suffers from 
an inconvenient way to determine all of the horizons in a given 
profile and to a lesser extent to the fact that spectroscopy cannot 
provide the soil morphology.

25.8.2.12  Soil Mapping

Soil mapping involves gathering the soil’s components into logi-
cal groups based on characteristics of the soil surface and pro-
file according to taxonomical rules. Soil mapping is a basic stage 
in assessing a soil’s agricultural potential for present and future 
activity. It is a difficult, time-consuming, and expensive task 
that requires difficult field and laboratory work along with pro-
fessional manpower and a complex infrastructure. Soil map-
ping is carried out by expert soil surveyors who have a broad 
background in soil formation and genesis and are often termed 
pedologists. An important reference to understand soil mapping 
is Legros (2006) who provided an excellent perspective on how 
and why remote sensing is an important tool for soil mapping. 
Along with the spatial information required for soil-mapping 
processes, soil-field observations such as with auger (boreholes) 
are used to assist detection of soil boundaries. On a next step, 

soil profile information is needed to classify the delineated poly-
gon. Moreover, for the spatial domain, the soil surface’s chemical 
and physical complexity also poses problems, significantly con-
straining the mapping process. Whereas the profile information 
is difficult to obtain with optical sensors, spatial variation can be 
obtained by remote sensing and, as has been demonstrated, with 
better accuracy if the spectral resolution is high. Airborne pho-
tographs have been intensively used in the past by soil survey-
ors to assist in soil-mapping procedures. The spatial variations of 
the soil surface were determined by grayscale analysis or color 
interpretation of soil boundaries. Vink (1963a) presented the 
information that can be culled from aerial photographs for soil 
pedological mapping and demonstrated the added value of this 
tool. Demattê and Garcia (1999) showed a significant relationship 
between spectral information and aerial photographs (drainage 
patterns) that could then be utilized in the field for soil pedologi-
cal mapping. In another study, aerial photographs were used to 
map relief variations and were exploited to pinpoint areas for 
spectral sampling and measurement reaching a soil map (Demattê 
et al., 2001). This approach reached 90% accuracy with traditional 
field systems and demonstrated the strength of soil spectroscopy. 
The use of multispectral sensors from orbit enables locating pure 
soil pixels for soil sampling and false-alarm detection of nonpure 
(partially vegetated or covered with litter) soil pixels. Accordingly, 
Demattê et al. (2009a) developed a sequence-based technique to 
indicate an area of bare soil using RS means. This method used 
atmospheric-correction data and then evaluated pixels based on 
the soil-line concept and use of color compositions of 5,4,3 and 
3,2,1 (red, green, blue of Landsat), calculating soil-adjusted and 
normalized-difference vegetation indices and, mostly, judging 
the spectral surface shape based on a soil databank from both 
ground and space (Landsat) domains. Based on this technique, 
several workers succeeded to quantify soil-surface properties of 
tropical Brazilian soils (Demattê and Nanni, 2003; Nanni and 
Demattê, 2006) using Landsat data, which were then projected 
to obtain better soil-classification results (Demattê et  al., 2007, 
2009b and Nanni et al., 2012). These latter authors observed that 
merging geological maps with spectral profiles increases mapping 
accuracy. Gaining experience with field, aerial, and orbital data, 
Demattê et  al. (2001, 2004b) obtained 85% agreement between 
soil maps traditionally generated by soil surveyors and those 
using their RS method. As indicated by Legros (2006), one of the 
most important steps in soil mapping is determining soil delinea-
tion and afterward making their classification. But where is the 
limit of soils? Looking toward this task, Demattê et  al. (2004b) 
and recently Demattê and Terra (2014) demonstrated that soils 
can be differentiated along toposequences by a spectral pedol-
ogy analysis, which can detect their limits. In fact, these authors 
observed the close relationship between the pedogenetic altera-
tions along the toposequence, which goes toward the detection 
of their limits. Thus, if we replicate several toposequences in a 
certain area, we will have several limits, which can be linked using 
relief information (e.g., by aerial photographs, as indicated by 
Vink, 1963), and we will reach the soil’s polygons. This method 
does not implicate necessarily with soil classification instead only 
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perform the figure of the map. In a subsequent step, inside the 
polygons, we would indicate the best spot to account for a profile; 
go inside with a sensor (see Viscarra Rossel and Webster 2011) 
or make a borehole with a fiber-optic method (see Ben-Dor et al. 
2008). These spectral measurements can assist the classification 
of the soil entity and can then be further used with the image to 
generate the soil map.

In a different approach, Löhrer et  al. (2013) identified and 
mapped the mineralogical composition of Pleistocene sedi-
ments using ASTER and SPOT-5 images associated with spec-
tral laboratory work and also obtained good results. Although 
the orbital sensors see only the top 50 μm of the soil surface, the 
production of good soil-classification results indicates that 
the surface has, in some cases, a connection with below-surface 
dynamics of soil processes. Galvão et  al. (2001) used AVIRIS 
data to show that surface-reflectance values and constituents 
(total iron, OM, TiO2, Al2O3, and SiO2) represent three impor-
tant soil types from central Brazil (Terra Roxa Estruturada [STE], 
Latossolo Vermelho-Escuro [SLE], and Areia Quartzosa [SAQ]) 
i.e, Nitosol, Ferralsol, and Arenosol, respectively. Nonetheless, 
Demattê et al. (2009b) stated that some soils cannot be differen-
tiated, mainly those that require morphological interpretation of 
the soil profiles. With the emergence of the new HSR technology 
(along with other multi- and superspectral data from orbit), the 
spectral approach was further extended to the notion of digital 
soil mapping (McBratney et al., 2003). Up until now, digital soil 
mappers have mainly used RS images as spatial data inputs rep-
resenting the landscape variables that are related to soil, such 
as vegetation, topography, and parent material (soil covariates). 
Boettinger et al. (2008) reviewed the main indicators that could 
be retrieved from multispectral images for estimating these soil 
covariates. Along these lines, a modern RS approach can serve 
as a tool to assist soil scientists in obtaining up-to-date and 
accurate information on the soil surface in question. The recent 
implementation of HSR technology for the digital soil-mapping 
approach (Lagacherie et al., 2013) makes a significant contribu-
tion to soil-surface characterization, adding more information 
to both aerial photography and multispectral information. As 
most of the earth’s soil areas are still unmapped, and those that 
have been mapped need updating, new methods (such as HSR 
technology) to map and classify soils are crucial. This issue is 
most relevant today with the rapidly growing world population, 
as it could lead to better utilization of soil resources, a critical 
issue for feeding mankind. Despite the constraints, reported in 
Section 7, to utilizing HSR technology, it has the proven capabil-
ity to extract both quantitative and qualitative information on 
the soil surface, thereby providing a better way to account for the 
surface’s complexity and variations.

To summarize, spectral information is particularly powerful 
for detecting soil limits and spots with punctual soil information 
with increasing observation density. Observation density is the 
most important rule we have to attempt on a soil mapping and is 
directly related with scale of the final product. This can assist on 
drawing the soil’s boundaries and will mostly show better use if 
we achieve bare soil in continuous areas as indicated by several 

methodologies stated before. If these observations are combined 
with traditional aerial photography, for deriving information 
on the soil’s horizon across the soil profile, by either measuring 
cores or using foreoptics that penetrate the soil profile, we will 
certainly reach the best on soil mapping. Nonetheless, for soil-
mapping purposes, we strongly feel that merging RS technologies 
will advance soil-mapping missions. HSR with LIDAR and HSR 
with field profile spectroscopy are good examples of this.

25.9  Summary and Conclusions

This chapter summarizes most of the key studies in soil remote 
sensing using the VIS–NIR–SWIR spectral region and provides 
the basic theory for optical remote sensing of soil. It demon-
strates the significant progress that has been achieved in RS 
technology in the last 10  years. This progress has enabled the 
exposure and validation of many sensors from all domains for 
scientific and commercial use. Remote sensing of the soil is thus 
entering a new era, in which more data, information, infrastruc-
tures, and applications can be provided more efficiently to the 
end user. This calls for further development of both electro-optic 
technology and data-mining algorithms. Mulder et  al. (2011) 
partially summarized the soil applications for remote sensing 
by all means, emphasizing mainly the optical region. Although 
their summary ignored some of the fundamental work done 
with optical remote sensing of soil at that time, their conclusion 
is important in terms of understanding the need for RS data with 
both high temporal and spectral resolution. The future will call 
for merging sensors, databases, and know-how and developing 
more accurate methods for data exchange and generating more 
robust models to be executed by many users. Another aspect that 
will need further attention is the establishment of standards and 
protocols for the acquisition of soil spectra in both the laboratory 
and field domains, as well as the development of quality indica-
tors and assurance for the new RS data. New programs that place 
HSR sensors in orbit will enable better temporal resolution and 
wide coverage of all soils worldwide. This calls for more attention 
to this direction and adoption of the comprehensive know-how 
that has already been achieved in soil spectroscopy. Upscaling 
reflectance data from the ground to the air and space domains 
is still a bottleneck that needs to be overcome. Mulder (1987) 
stated that every work exploiting RS data requires field work, to 
either verify or expand the information into the soil profile. This 
has led us to realize that new ideas on how to extract soil-profile 
characteristics are important but still lacking. The idea of Ben-
Dor et al. (2008) to sense the profile as a catheterization optical 
assembly provides a proof of concept for RS measurements of 
soil profiles but needs to be further developed. Combining such 
a method with the spatial view obtained by RS means (mainly 
HSR) may pave the way for future activity in the remote sensing 
of soils from afar. Other directions are also welcome, and more 
ideas on how to improve the remote sensing of soils are required. 
Nonetheless, the current achievements in remote sensing of soils 
are remarkable considering that not long ago, analog grayscale 
aerial photos were the basic and indeed only tool to remotely 
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sense soils from afar. As new satellite missions covering all reso-
lutions (spatial, spectral, and temporal) are being planned, and 
their availability tends to be for all, it is strongly anticipated that 
the remote sensing of soil will undergo further development, 
utilization, and exploitation to monitor soil status such that soil 
productivity will be benefited for all of mankind.
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Acronyms and Definitions

ACD	 Above ground carbon density
AGB	 Above ground biomass
AgRISTARS	� Agriculture and resources inventory sur-

veys through aerospace remote sensing
ALS	 Airborne laser scanning
APAR	 Absorbed photosynthetically active radiation
ASAR	� Advanced synthetic aperture radar onboard 

ENVISAT
ASS	 Aerial spectral sensing
ATSR	 Along-track scanning radiometer 
AVHRR	 Advanced very-high-resolution radiometer
CAI	 Cellulose absorption indices 
CDL	 Cropland data layer
CHM	 Canopy height model
COSMO-SkyMed	� Constellation of Small Satellites for 

Mediterranean basin Observation 
(COSMO)-SkyMed 

DTM	 Digital terrain model
DSM	 Digital surface model
EnMAP	� Environmental Mapping and Analysis 

Program
ENVISAT	 Environmental satellite
EO	 Earth observing
EVI	 Enhanced vegetation index
FAO	� Food and Agriculture Organization of the 

United Nations
FLUXNET	� A network of micrometeorological tower 

sites to measure carbon dioxide, water, and 
energy balance between terrestrial systems 
and the atmosphere

GEO	 Group on Earth Observation
GIEWS	� Global Information and Early Warning 

System 
GIMMS	� Global Inventory Modeling and Mapping 

Studies data
GIS	 Geographic information systems 
GLAI	 Green leaf area index
GLAM	 Global Agricultural Monitoring 
GLAS	 Geoscience Laser Altimeter System
GPP	 Gross primary productivity
GPS	 Global positioning systems 
GSS	 Ground spectral sensing
HNB	 Hyperspectral narrow bands
HVI	 Hyperspectral vegetation indices
HyspIRI	 Hyperspectral Infrared Imager 
ICESat 	 Ice, Cloud, and land Elevation Satellite 
IRS	 Indian Remote Sensing Satellites
JERS	 Japanese Earth Resources Satellite
LACIE	 Large Area Crop Inventory Experiment 
LAI	 Leaf area index
LiDAR	 Light detection and ranging

LSP	 Land surface phenology
LSS	 Laboratory spectral sensing
LUC	 Land use classes
LUE	 Light use efficiency
LULC	 Land use, land cover
LULCC	 Land use, land cover change
MARS	� Monitoring Agricultural Resources action of 

the European Commission European Union 
MODIS	� Moderate-resolution Imaging Spectroradio

meter
MLS	 Mobile laser scanning
NASA	� National Aeronautics and Space 

Administration
NDTI	 Normalized difference tillage index
NDVI	 Normalized difference vegetation index
NOAA	� National Aeronautics and Space Admini

stration
NIR	 nearinfrared
NP	 Nonphotosynthetic vegetation 
NPP	 Net primary productivity
PAR	 Photosynthetically active radiation
PolSAR	 RADARSAT-2 polarimetric SAR ()
PRI	 Photochemical reflectance index
PROSAIL	� Combination of PROSPECT and SAIL, the 

two nondestructive physically based mod-
els to measure biophysical and biochemical 
properties 

PROSPECT	� Radiative transfer model to measure leaf 
optical properties spectra

PV	 Photosynthetic vegetation
REDD	� Reducing Emissions from Deforestation in 

Developing Countries
SAR	 Synthetic aperture radar
SAIL	� Scattering by arbitrary inclined leaves 

(SAIL)—a physically based model to measure 
and model canopy bidirectional reflectance

SAVI	 Soil adjusted vegetation index 
SPOT	� Satellite Pour l’Observation de la Terre, 

Frech Earth Observing Satellites
STAARCH	� Spatial temporal adaptive algorithm for 

mapping reflectance change
SWIR	 Shortwave infrared
TLS	 Terrestrial laser scanning
TM	 Thematic mapper
UAV	 Unmanned aerial vehicle
UNFCCC	� United Nations Framework Convention on 

Climate Change 
USAID	� The United States Agency for International 

Development 
USDA	 United States Department of Agriculture
VHRI	 Very-high-resolution imagery
VI	 Vegetation index
VIS	 Visible
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26.1 � Monitoring Photosynthesis 
from Space

Terrestrial biological activity is fundamental to the production of 
food, fiber, and fuel and is often considered the most important 
measure of global change (Running et al., 2000, 2004). Biological 
activity on Earth depends ultimately on solar radiation and its 
conversion into biochemical energy through photosynthesis. 
The fundamental paradigm measuring photosynthesis in ter-
restrial vegetation was first proposed by Monteith (1972) who 
showed us that stress-free annual crop productivity was linearly 
related to vegetation-absorbed photosynthetically active radia-
tion (APAR) (e.g., Figure 26.1). Chapter 1 by Dr. Alfredo Huete 
et al. traces the development of various methods and approaches 
that have been applied in measuring, modeling, and mapping 
photosynthesis, accurately and routinely, using remote sensing 
data. In Chapter 1, they review the integration of remote sensing 

with traditional in situ methods and the more recent eddy cova-
riance tower approach for estimating gross primary productivity 
(GPP) and net primary productivity (NPP) at global scales. Light 
Detection and Ranging (LiDAR) integration with field inventory 
plots now provides calibrated estimates of aboveground carbon 
stocks, which can be scaled up using satellite data of vegetation 
cover, topography, and rainfall to model carbon stocks. A series 
of six productivity models are presented and discussed, based on 
the light use efficiency (LUE) concept and primarily dependent 
on satellite data inputs. These include the following: (1) NPP 
derived from the integral of growing season normalized differ-
ence vegetation index (NDVI), as surrogate of vegetation APAR 
radiation and, more recently, integral of enhanced vegetation 
index (EVI); (2) biome-biogeochemical cycles (BGC) model that 
calculates daily GPP as a function of incoming solar radiation, 
light use conversion coefficients, and environmental stresses; 
(3) vegetation index–tower GPP relationships where spectral 
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Figure 26.1  Time series of the different FAPAR satellite products (persistent vegetation component) for Australia and eight Australian drain-
age divisions. The plots on the right present the frequency histograms of each product (full FAPAR signal) for each region. (From Pickett-Heaps, 
C.A. et al., Remote Sens. Environ., 140, 241, 2014, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2013.08.037.)
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vegetation indices (VIs) are directly related to eddy covariance 
tower carbon flux measurements; (4) temperature and green-
ness (T-G) model that combines land surface temperature and 
EVI products from Moderate Resolution Imaging Spectrometer 
(MODIS); (5) greenness and radiation (G-R) model where chlo-
rophyll-related spectral indices are coupled with measures of 
light energy, photosynthetically active radiation (PAR), to pro-
vide robust estimates of GPP; and (6) satellite-based vegetation 
photosynthesis model (VPM) that estimates GPP using satellite 
inputs of EVI and the land surface water index (LSWI), along 
with phenology and temperature scalars. Many of the limita-
tions in productivity assessments concern the difficulty in deriv-
ing independent estimates of LUE, and the hyperspectral-based 
photochemical reflectance index (PRI), a scaled LUE measure 
based on light absorption processes by carotenoids, is discussed 
as a way to advance the accuracies of remote sensing retrievals 
of productivity. Significant and promising advances in direct 
estimates of GPP, even under stress conditions, have been dem-
onstrated with new spaceborne measures of solar-induced chlo-
rophyll fluorescence (SIF) based on near-infrared light reemitted 
from illuminated plants, as a by-product of photosynthesis, 
and thereby strongly correlated with GPP (Guanter et al., 2010, 
Frankenberg et al., 2011).

Remote sensing offers the ability to model and map pro-
ductivity for the entire planet due to its synoptic and temporal 
coverage and thus complements other conventional approaches 
that are costly, time consuming, and very limited in cover-
age. Indeed, despite the rapid growth of FLUXNET (a network 
of micrometeorological tower sites that use eddy covariance 
methods to measure carbon dioxide, water, and energy balance 
between terrestrial systems and the atmosphere; Source: fluxnet.
ornl.gov) there is not even a single tower present in many parts 
of the world. FLUXNET has been shown invaluable for validat-
ing remotely sensed measurements and process-based produc-
tivity models. However, the combination of in situ with satellite 
data offers much more than calibration opportunities. It will 
be through a better understanding of why satellite and in  situ 
relationships hold, or don’t hold, that will greatly advance and 

contribute to our comprehension of the carbon cycle mecha-
nisms and scaling factors at play.

26.2 � Vegetation Characterization 
Using Physically Based Models 
such as SAIL and PROSPECT

Canopy biophysical variables (e.g., leaf area index [LAI], frac-
tion of absorbed photosynthetically active radiation [FAPAR]; 
see Table 26.1) are retrieved through methods such as (1) direct 
destructive measurements, (2) indirect nondestructive statis-
tical modeling by relating biophysical quantities to spectral 
reflectivity in various wavebands or to indices derived from 
these wavebands, and (3) nondestructive physically based 
models such as the canopy bidirectional reflectance model 
called scattering by arbitrary inclined leaves (SAIL), leaf opti-
cal properties model based on the radiative transfer model 
called PROSPECT (Leaf Optical Properties Spectra), and a 
combination of these two called PROSAIL. Direct measure-
ments of biophysical quantities (e.g., LAI, FAPAR, biomass, 
plant height, and canopy cover) are most accurate but require 
destructive sampling and are resource (e.g., time, money) 
intensive. Statistical approaches of estimating biophysical 
quantities by relating them to reflectivity of spectral wave-
bands or various VIs are nondestructive and less resource 
intensive compared to in situ methods and often explain over 
80% variability in data (e.g., Figure 26.2). Physically based 
methods rely on inverting surface reflectance properties 
in various wavebands to determine biophysical quantities. 
Nondestructive methods are not as accurate as destructive 
method, but often explain over 80% variability in each of the 
biophysical quantity, are less resource intensive, and avoid 
destructive sampling. Darvishzadeh et  al. (2008) showed a 
carefully selected spectral subset (Table 26.1) that contains 
sufficient information for a successful model inversion.

Chapter 2, written by Dr. Frédéric Baret, focuses on retrieving 
canopy biophysical quantities based on various physically based 

Table 26.1  Spectral Subset Used for Successful Model Inversion in Physically Based Models like PROSAIL, SAIL, PROSPECT

Wavelength (nm) Vegetation Parameters References

466 Chlorophyll b Curran (1989)
695 Total chlorophyll Gitelson and Merzlyak (1997), Carter (1994)
725 Total chlorophyll, leaf mass Horler et al. (1983)
740 Leaf mass, total Horler et al. (1983)
786 Leaf mass Guyot and Baret (1988)
845 Leaf mass, total, chlorophyll Thenkabail et al. (2004)
895 Leaf mass, LAI Schlerf et al. (2005), Thenkabail et al. (2004)

1114 Leaf mass, LAI Thenkabail et al. (2004)
1215 Plant moisture, cellulose, starch Curran (1989), Thenkabail et al. (2004)
1659 Lignin, leaf mass, starch Thenkabail et al. (2004)
2173 Protein, nitrogen Curran (1989)
2359 Cellulose, protein, nitrogen Curran (1989)

Source:	 Darvishzadeh, R. et al., Remote Sens. Environ., 112(5), 2592, 2008, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2007.12.003.
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models, through model inversion. They demonstrate how green 
leaf area index (GLAI; m2/m2), LAI, and FAPAR are retrieved 
through physically based radiative transfer model inversion 
methods. They address this through two approaches: (1) radio-
metric-driven approach that minimizes the distance between 
observed and simulated reflectance and emphasizes on outputs 
(radiometric data–driven approach) of the radiative transfer 
model and (2) canopy biophysical variables that are based on the 
VI approaches or are based on machine learning approaches and 
emphasize on inputs (the canopy biophysical variable–driven 
approach) of the radiative transfer model. The chapter then goes 
on to discuss the pros and cons of retrieval approaches. The 
chapter then provides limitations of these models and enumer-
ate on the strategies of reducing their uncertainties.

Later in Chapter 9, some of the statistical approaches and 
methods of determining biophysical quantities from remote 

sensing are discussed. Readers can also look into recent works of 
Marshall and Thenkabail (2015) on in situ and statistical meth-
ods as well as other novel work on statistical models for biophys-
ical retrieval in Chapter 9 and by Thenkabail et al. (2000, 2004a, 
2004b, 2004c, 2012, 2013, 2014).

26.3 � Remote Sensing of Global 
Terrestrial Carbon

Methods for measuring carbon stocks and fluxes include satel-
lite remote sensing, forest inventory, soil inventory, eddy flux, 
flask measurements, ecosystem modeling, and biome modeling 
(Bates et al., 2008). Micrometeorological eddy covariance stud-
ies and studies using forest inventory plots have yielded conflict-
ing results regarding the sink strength of the mature tropical 
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Figure 26.2  Contour maps for coefficients of determination (R2) between rice leaf nitrogen concentrations and normalized (a), ratio (b), and 
difference (c) indices using two spectral bands (λ1 and λ2) (n = 312). (From Tian, Y.C. et al., Field Crops Res., 120(2), 299, 2011, ISSN 0378-4290, 
http://dx.doi.org/10.1016/j.fcr.2010.11.002.)
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forests in the Amazon (Robinson et al., 2009). All these methods 
vary in complexity, precision, accuracy, and costs.

However, satellite remote sensing offers the most distinct 
advantages in consistency of data, synoptic coverage, global 
reach, and cost per unit area, repeatability, precision, and accu-
racy (Meng et al., 2009). Opportunities to significantly advance 
C storage and flux estimates through improved land use class 
(LUC) estimates and modeling exist with the evolution in space-
borne hyperspectral, hyperspatial, and advanced multispectral 

sensors (e.g., Figure 26.3a), as a result of improvements in the 
spatial, spectral, radiometric, and temporal properties as well 
as in optics and signal-to-noise ratio of data. High spatial reso-
lution allows location, while high spectral resolution allows 
identification of features. Hyperspectral remote sensing sen-
sors allow direct measurement of canopy chemical content 
(e.g., chlorophyll, nitrogen), forest species, chemistry distribu-
tion, timber volumes, and water (Asner and Martin, 2008) and 
improved biophysical and yield characteristics (Thenkabail 

Sinharaja, Sri Lanka
Pasoh, Malaysia

Lambir, Sarawak,
Malaysia; and Kwala

Belalong, Brunei

Scale 1:12 000 000
20001000010000–1

0 II
000

0 II
010

II
020

II
030

II

00E 080E 090E 0100E 0110E 0120E 0130E 0140E

Elev (m)
7540

1

1510

3020
4530

6030

Kilometers

Landsat TM
(06-26-92)

Mixed canopy

Flood damage

Hyperspectral data of
Chromolaena odorata

0.2

0.3

042

0.5

0.1

0
500 700 900 1100 1300 1900 2100 250023001700

Wavelength (nanometer)

Re
�e

ct
an

ce
 fa

ct
or

1500

Hyperion:843,680,547

Hyperion:1642,905,680

Hyperspectral data(a) Multispectral dataHyperspatial data

Cleared forest
for agriculture

Hyperion:1245,680,547

Hyperion:680,547,486

Pristine forest

Chromolaena odorata

Tropical rainforests

Western ghats and
Krishna River Basin, India
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© 2016 Taylor & Francis Group, LLC

  

http://dx.doi.org/
http://dx.doi.org/


798 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

et  al., 2004a,b). Thenkabail et  al. (2004c) demonstrated an 
increased accuracy of about 30% in LUC and biomass when 
30 hyperspectral wavebands are used relative to 6 nonthermal 
Landsat Thematic Mapper (TM) bands. Hyperspatial data have 
demonstrated the ability to extract individual tree crowns from 
1 m panchromatic data. Agroforest successional stages have 
been mapped and their varying carbon sink strengths assessed 
using IKONOS (Thenkabail et  al., 2004a). In contrast, forest 
structure variables (e.g., biomass, LAI) are poorly predicted by 
the older-generation sensors.

A model can be developed for characterizing forest struc-
ture, biomass yield, and carbon (C) storage based on hyper-
spectral, hyperspatial, and advanced multispectral data (e.g., 
Figure 26.24a) and the field-plot data by discerning a large num-
ber, say K, of LUCs. Letting τk, k = 1…K, represent the total C in 
the kth LUC, we propose that the model

	 τ λ εk k k kA= + 	 (26.1)

is a practical model for regional estimates of C storage by LUC, 
which becomes possible as we can discern a sufficiently narrow 
number of LUC using advanced remote sensing. In this model, 
λk is average C per hectare in LUCk, Ak is the total land area in 
LUCk, and εk is the departure of τk from its expected value. We pro-
pose to use-field-plot data, supplemented with additional above- 
and belowground sampling, to evaluate λk for a suite of LUCs of 
importance in the wet tropical Asian bioregion (WTAB) region. 
Remotely sensed data will be used to evaluate Ak at various scales or 
pixel resolutions, radiometry, bandwidth, and time of acquisition.

The aforementioned model attempts to capitalize on having a 
sufficiently large number of LUC so that each is relatively homo-
geneous with respect to C and biomass variability. For example, 
Thenkabail et  al. (2004a) have demonstrated the potential for 
such fine-resolution classification by LUC. The temporal change 
in τk is given by
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If the instantaneous rate of change in the aforementioned model 
is integrated into annual changes, the resulting discretized 
model of change in C storage and biomass is

	 ∆ ∆ ∆ ∆τ λ λ εk k k k kA= + + 	 (26.3)

For many LUC, for example, mature upland forests, Δλk, are 
anticipated to be small, so that the model for Δτk will be domi-
nated by the λkΔAk term. Moreover, ΔAk is discernible from sat-
ellite data, whereas regional estimates of λk will be determined 
by field work. For LUCs that cannot be so finely discerned as to 
support an assertion that Δλ ≈ 0, then a spatially averaged value, 
say ∆λk, will be used in (26.3).

Chapter 3 by Dr. Wenge Ni-Meister has exclusive focus on 
aboveground biomass (AGB) assessment and carbon stock 
estimations using multisensor remote sensing. Recent global 

observation systems provide measurements of horizontal and 
vertical vegetation structure of ecosystems, which will be criti-
cal in estimating global carbon storage and assessing ecosystem 
response to climate change and natural and anthropogenic dis-
turbances. Remote sensing overcomes the limitations associated 
with sparse field surveys; it has been used extensively as bases for 
inferring forest structure and AGB over large areas. They pro-
vide a systematic approach wherein they discuss AGB estimates 
based on

	 1.	 Optical remote sensing
	 2.	 Radar remote sensing
	 3.	 LiDAR remote sensing

Optical passive remote sensing data are sensitive to vegeta-
tion structure (LAI, crown size, and tree density), texture, and 
shadow, which are correlated with AGB. Radar data are directly 
related to AGB through measuring dielectric and geometrical 
properties of forests (Le Toan et al., 2011). LiDAR remote sensing 
is promising in characterizing vegetation vertical structure and 
height, which are then associated to ABG. Vegetation structure 
characteristics measured from satellite data are linked to field-
based AGB estimates, and their relationships are used to map 
large-scale AGB from satellite data.

Many studies have demonstrated that LiDAR is significantly 
better at estimating biomass than passive optical or radar sen-
sors used alone. LiDAR directly measures horizontal and verti-
cal vegetation structure characteristics; AGB models developed 
from LiDAR structure metrics are significantly more accurate 
than those using radar or passive optical data. The use of LiDAR 
data, particularly spaceborne data, is limited by its sparse spa-
tial sampling. Both radar and passive optical remote sensing 
provide large-scale imaging capability. However, both optical 
and synthetic aperture radar (SAR) estimates of AGB are lim-
ited by a loss of sensitivity with increasing biomass. Innovative 
approaches have been developed to fuse passive optical imagery 
or radar-imaging data with spatially extended point-based esti-
mates of biophysical parameters derived from LiDAR to develop 
high-quality wall-to-wall AGB maps with unprecedented accu-
racy and spatial resolution. Particularly, the synergy of space-
borne large-footprint LiDAR (e.g., Ice, Cloud and land Elevation 
Satellite (ICESat) Geoscience Laser Altimeter System (GLAS)) 
and medium-resolution optical data, primarily from the MODIS, 
has been exploited to map AGB and carbon storage at regional to 
continental scales. A laser-based instrument being developed for 
the International Space Station will provide a unique 3D view of 
Earth’s forests, helping to fill in missing information about their 
role in the carbon cycle (e.g., Figure 26.3b).

Such advances as remote sensing of carbon stock assessment in 
various landscapes such as forests, agroforests (e.g., Figure 26.3b,c), 
and other land use and land cover (LULC) categories will help in 
setting up an operational global carbon monitoring framework 
such as the one under the United Nations Framework Convention 
on Climate Change (UNFCCC) mechanism for Reducing 
Emissions from Deforestation in Developing Countries (REDD). 
An important advance presented and discussed in Chapter 3 is 
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the use of multisensor data fusion approaches to increase accu-
racies of biomass quantification and carbon stock estimations. 
Readers should also look into Chapters 14 through 17 for other 
aspects of biomass and carbon estimations using remote sensing.

26.4  Remote Sensing of Agriculture

One of the main applications of remote sensing has always been 
agriculture. When the first Landsat was launched in 1972, one of 
the main uses of its data was for agriculture through such pro-
grams as the Large Area Crop Inventory Experiment (LACIE) 
and the agriculture and resources inventory surveys through 
aerospace remote sensing (AgRISTARS). Pioneering work of 
Compton Tucker (1979) showed the use of red and near-infrared 
bands for computing now widely used NDVI from any sensor that 
carries these wavebands. Remote sensing of agriculture is now 
common from any platform: ground based, airborne, spaceborne, 
or unmanned aerial vehicles (UAVs) using sensors gathering data 
in wavelengths including optical, thermal, radar, and LiDAR.

In Chapter 4 by Dr. Clement Atzberger et al., the importance of 
remote sensing of agriculture, type of its applications, and its evolu-
tion over the last 50 years is well documented. They identify remote 
sensing application of agriculture into the following main areas:

	 1.	 Qualitative crop monitoring involving changes that take 
place from within and across seasons. Changes such as 
deviation from normal conditions and changes from 
croplands to cropland fallows (also see Chapter 6)

	 2.	 Cropland classification and mapping including crop type 
identification leading to acreage estimation and phenological 
studies, identifying shifts in cultivation (also see Chapter 6)

	 3.	 Regression modeling involving spectral indices, FAPAR, 
and/or wavebands to predict crop growth and yield vari-
ables such as grain yield and biomass

	 4.	 Physical modeling of crop growth through remote sens-
ing data assimilation in dynamic (process-driven) crop 
growth models

	 5.	 Data mining approaches in cropland studies

Chapter 4 makes an assessment of various remote sensing data 
used for different types of agricultural applications such as 
coarse-resolution high revisit data for crop yield and biomass 
estimation, hyperspectral data in quantifying biophysical and 
biochemical quantities (also see Chapter 9), and multispectral 
broadband data in cropland classification.

Over the years, a cropland study from remote sensing still pro-
vides a number of challenges. The issues involved include imagery 
resolution, time of acquisition, and number of images available 
during the season and their frequency, preprocessing and atmo-
spheric correction, and classification methods and approaches 
(e.g., Figure 26.4). In Figure 26.4, multispectral QuickBird 2.44 
m imagery is used for classification and mapping of crops and 
other land use using a number of different classification algo-
rithms. When object-oriented segmentation approaches are used 
with different classification algorithms, they provide much bet-
ter results. Similarly, crop biophysical and biochemical modeling 

faces a number of challenges. Nevertheless, modern remote sens-
ing is increasingly overcoming these challenges. For example, 
availability of imagery from multiple sensors (e.g., Landsat, 
Sentinel, Indian Remote Sensing Satellites or IRS, and Satellite 
Pour l’Observation de la Terre or SPOT) provides more frequent 
coverage of the same area that will overcome cloud cover issues 
and advance our ability to more precisely monitor phenology. 
Temporal images will also increase the classification accuracies.

Chapter 4 also provides an overview of existing global and 
regional remote sensing data–based agricultural monitoring sys-
tems such as the global food security support analysis data @ 30 m 
(GFSAD30) of United States Geological Survey (USGS) [http://geog-
raphy.wr.usgs.gov/science/croplands/ and https://www.croplands.
org/), Group on Earth Observation’s (GEO) Global Agricultural 
Monitoring (GLAM), The United States Agency for International 
Development (USAID), Famine Early Warning Systems Network 
(FEWS-NET), United Nations’ Food and Agriculture Organization 
(FAO) Global Information and Early Warning System (GIEWS), 
European Join Research Center’s (JRC’s), Monitoring Agricultural 
Resources action of the European Commission (MARS), 
European Union Global Monitoring for Food Security program 
(GMFS), and Crop Watch Program at the Institute of Remote 
Sensing Applications of the Chinese Academy of Sciences (CAS) 
(CropWatch). Evolution of these various crop-monitoring systems, 
from various agencies of the world, is the testament of the progress 
and maturity of remote sensing data in agricultural studies.

26.5 � Agricultural Systems Studies 
through Remote Sensing

Humans started domesticating the agriculture some 10–12 
thousand years ago. Early civilizations were primarily agrarian. 
Agricultural systems of the world have evolved over millennia 
and with these evolutions have also seen major changes in how 
agriculture is farmed and managed by humans. The present-
day agriculture systems include both croplands and rangelands 
and occupy nearly one-third of the global terrestrial area. So an 
understanding and study of agricultural systems would involve 
every component of croplands and rangelands and their asso-
ciations (e.g., Figure 26.5). Since croplands and rangelands are 
spread across the world and are dynamic by nature, remote sens-
ing provides an ideal platform to characterize, model, and man-
age agricultural systems of the world routinely.

Chapter 5 by Dr. Agnès Bégué et al. provides approaches on 
applying remote sensing to study agricultural systems. They 
show us how remote sensing data are used to derive land cover, 
land use, and land systems, which are then tied to croplands, 
cropping systems, and cropland systems, respectively. Crop 
type is the first criterion used to characterize agricultural 
systems at the regional scale, followed by the cropping pat-
tern, the water supply, and the cropland extent and fragmen-
tation. Image resolutions (spatial, spectral, radiometric, and 
temporal) are all important in discerning particular features 
of agricultural systems. Especially, when the sensor spatial 
resolution is smaller than the objects of interest (fields, trees, 

© 2016 Taylor & Francis Group, LLC

  

http://geog-raphy.wr.usgs.gov/


800 Land Resources Monitoring, Modeling, and Mapping with Remote Sensing

etc.), the agricultural landscape can be described as a mosaic 
of patches, and thus agricultural systems can be characterized 
and mapped directly using object-based analysis and land-
scape metrics (landscape agronomy). When the sensor spatial 
resolution is larger than the object of interest, the agricultural 
systems should be characterized indirectly by computing a 

large variety of satellite-derived indices, and environmental 
and socioeconomic variables are further processed with data 
mining techniques in order to stratify the agricultural lands. 
Dr. Agnès Bégué et al. in Chapter 5 provide concrete illustra-
tions of mapping agroforestry in Bali using submeter to 2 m 
QuickBird imagery and double cropping in Brazil using high 
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Figure 26.4  Result of the least (a, b, c, d, e) and most accurate (a′, b′, c′, d′, e′) land use classifications based on QuickBird 2.44 m imagery with 
and without segmentation based on number of well-known algorithms: (a) P*, (b) MD*, (c) MC*, (d) SAM*, (e) ML* for pan-sharpened image and 
pixel as minimum information unit (MIU); (a′) P, (b′) MD, (c′) MC, (d′) SAM for multispectral image and pixel + object as MIU; (e′) ML for pan-
sharpened image and pixel + object as MIU. Note: P*, parallelepiped; MD*, minimum distance; MC*, Mahalanobis classifier distance; SAM*, spec-
tral angle mapper; ML*, maximum likelihood. (From Castillejo-González, I.L. et al., Comput. Electron. Agric., 68(2), 207, 2009, ISSN 0168-1699, 
http://dx.doi.org/10.1016/j.compag.2009.06.004.)
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Figure 26.5  The distribution of arable farm types in agrienvironmental zones dominated by arable farm types, dairy farm types in agrienvi-
ronmental zones dominated by arable farm types, beef farm types in agrienvironmental zones dominated by beef farm types, and other farm types 
in agrienvironmental zones dominated by other farm types. (From Kempen, M. et al., Agric. Ecosyst. Environ., 142(1–2), 51, 2011, ISSN 0167-8809, 
http://dx.doi.org/10.1016/j.agee.2010.08.001.)
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temporal MODIS data (direct approach) and rainfed cropping 
in Mali also using MODIS time series data (indirect approach). 
Overall, they show us the potential of remote sensing to study 
agricultural systems at various levels such as region, landscape, 
field, and plant using appropriate imagery.

26.6 � Global Food Security-support 
Analysis data @ Various 
Resolutions from Earth 
Observation Satellites

Globally, there is between 1.5 and 1.7 billion hectares of crop-
lands of which around 400 million hectares are irrigated fully or 
partially when you consider cropping intensity (i.e., how many 
crops are grown over the same area in a calendar year; so one 
may account area twice when there are two crops a year over the 

same land). An overwhelming proportion of rainfed croplands 
is cropped only once a year, during the rainy season. An over-
whelming proportion of irrigated areas is cropped more than 
once a year. Cropland area estimates include-plantation crops. 
Understanding the importance of croplands is essential for man-
aging its crop productivity (productivity per unit of land; kg/m2) 
and water productivity (productivity per unit of water; m3/m2). 
All of this has huge implications on managing food security.

Chapter 6 by Dr. Pardhasaradhi Teluguntla et al. provides a 
comprehensive overview of the state of the art of mapping  global 
agricultural croplands using multi-sensor, multi-resolutions 
(in terms of spatial, spectral, radiometric), and multi-temporal 
remotely sensed data from Earth Observing Satellites. A common 
application of remote sensing over the last five decades has been 
agricultural cropland mapping and separating them from other 
land cover (e.g., Figure 26.6a). However, most of these applications 
were limited to smaller areas. A few large area applications exist, 
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such as the United State Department of Agriculture’s (USDA’s) 
cropland data layer (CDL). Global cropland products are limited 
to a few studies, but they provide large uncertainties due to fac-
tors such as coarse resolution of the imagery used and lack of field 
data and understanding needed to develop and test algorithms, 
so uncertainties in existing cropland products are substantial. 
Generally, it is agreed that crop products derived from remote 
sensing should include (also see: http://geography.wr.usgs.gov/
science/croplands/ and https://www.croplands.org/),

•	 Cropland extent and areas
•	 Watering method: irrigated or rainfed (e.g., separating 

irrigated from rainfed; Figure 26.6b)
•	 Cropping intensity: single, double, triple, or continuous 

cropping
•	 Crop type: major global crops
•	 Change: how crops change over a given location over 

space and time

Accurate production of such products will also lead to far 
greater accuracies in cropland water use. Since 70%–80% of all 
human water use goes toward agriculture to produce food, it is of 
utmost importance. Accurate production of the aforementioned 

products will lead to better assessment, planning, and manage-
ment of crop productivity (productivity per unit of land; kg/
m2) and water productivity (productivity per unit of water; m3/
m2), which are very essential for increasing food production 
from population that is currently at little over 7.2 billion, but is 
expected to reach 9–10 billion by the year 2050. Chapter 6 shows 
us the remote sensing data, approaches, methods, and synthesis 
involved in use of remote sensing earth observation (EO) data 
for global cropland studies at various resolutions from 30 m (e.g., 
Landsat) and 250 m (e.g., MODIS) to 1000 m (e.g., Advanced 
Very High Resolution Radiometer [AVHRR]). Strengths and 
limitations of various remote sensing EO data, methods and 
algorithms required to routinely and repeatedly produce accu-
rate cropland products, and approaches of using these data in 
food security analysis have been presented and highlighted.

26.7 � Precision Farming and 
Remote Sensing

The concept and the idea of precision farming were established 
in the early quarter of the last century. Precision farming is vari-
ously referred to as site-specific farming, variable rate technology, 
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LULC classes

Water: lakes and rivers (class 1)-2001
Mixed: marshlands and himalayan barren lands with dark tones (class 12)-2001
Rainfed crops (class 18)-2001

Forests (Himalayan): mature (class 27)-2001
Irrigated: rice and other crops (class 26)-2001

LULC classes
Irrigated: rice, sugarcane, agroforests, other crops (class 22)-2001

Irrigated: water logged crops (indus), rice, Shrubs (class 24)-2001

Irrigated: rice with wetlands (class 25)-2001

Figure 26.6 (continued )  (b) Space-time spiral curves (ST-SCs) to study subtle and not-so-subtle changes in LULC spectral separability. The 
ST-SCs are a unique and powerful representation of observing subtle and not-so-subtle changes over time mapped in 2D feature space. MODIS 
band reflectance in band 1 (red) and band 2 (NIR) is used to plot ST-SCs for (A) 5 spectrally distinct LULC classes and (B) 6 spectrally similar 
irrigated area classes. As the spectral properties of classes change over time, we can observe dates on which 2 or more spectral classes intersect (no 
spectral separability) or stay spectrally separate highlighting the near-continuous interval multitemporal data in LULC studies. (From Thenkabail, 
P.S. et al., Remote Sens. Environ., 95(3), 317, 2005, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2004.12.018.)
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or prescription farming. Concisely, precision farming can be 
understood as a customized subfield agricultural management 
decision system relying on information from advanced technol-
ogies such as remote sensing, geographic information systems 
(GIS), and global positioning systems (GPS). Usery et al. (1995) 
define precision farming as the application of a combination of 
advanced technologies to (1) improve agricultural crop produc-
tivity and (2) reduce environmental pollution through quan-
titative and qualitative information of within field variability 
(or site-specific variability) due to natural and human causes. 
Adoption of precision farming accelerated as sophisticated tech-
nologies such as remote sensing, GPS, GIS, and yield sensors 
improved and decreased in cost. An integrated approach to use 
these technologies has made precision farming realistic. The tar-
get of precision farming is to identify, map, quantify, and assess 
farm by farm (but spread across entire regions; e.g., Figure 26.7a) 
spatial and temporal variability for maximizing profits, sustain-
able production, and protecting the environment. Information 
requirements of precision farming (Moran et al., 1997) include

•	 Seasonally stable factors
•	 Soil properties, topography, prior management history, 

etc. (e.g., Figure 26.7a)

•	 Seasonally variable factors
•	 Crop biophysical parameters, crop growth, crop yield 

(e.g., Figure 26.7b), phenology, crop disease, weed infesta-
tion, nutrient deficiencies, soil characteristics, and evapo-
transpiration rates

Based on the earlier text, precision farming seeks to diagnose 
the cause of crop growth and/or yield variability and develop 
management strategies

Remote sensing technology is ideally suited to answer ques-
tions: How much are we producing (e.g., grain or biomass, or 
LAI) per unit of land (kg/m2; Figure 26.7b)? What is the vari-
ability in these production quantities within and between agri-
cultural fields (e.g., Figure 26.7)? Providing such information 
at high spatial resolutions (typically <10 m but preferably sub-
meter to a few meters) becomes invaluable for increasing crop 
productivity by targeting management to areas that produce 
less or are more responsive. Remote sensing is a generally well 
established, powerful, and accurate technology for quantifying 
crop biophysical quantities such as biomass, LAI, plant den-
sity, crop vigor, grain yield, and even plant height and canopy 
cover. As a result, remote sensing has been widely applied for 
better management of crops over the last 25 years. Especially 
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Figure 26.7  (a) Yield, NDVI, soil depth, and NDVI (biomass)/yield classification on a single field at Buntine, Western Australia. For biomass/
yield classification LL, low biomass and low yield; HH, high biomass and high yield; HL, high biomass and low yield; LH, low biomass and high 
yield. (From Robertson, M. et al., Field Crops Res., 104(1–3), 60, 2007, ISSN 0378-4290, http://dx.doi.org/10.1016/j.fcr.2006.12.013.)� (continued )
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when remote sensing is combined with other spatial technolo-
gies such as GIS, GPS, and spatial modeling, they become a 
powerful tool to understand and manage agricultural crops 
leading to improved productivity. However, precision farming 
requires an intimate understanding of crop stresses and their 
causes (e.g., nutrient, pest, disease, water deficiency, weeds, 
and even macro- and micronutrients). Whereas remote sensing 
can detect stress accurately, its ability to detect the nature of 
stress (e.g., whether from pests or nutrients) is still uncertain. 
Hyperspectral data acquired at very high spatial resolution and 
often combined with other types of data (e.g., thermal) have 
been helpful in making advances. For example, hyperspectral 
narrowbands (HNBs) and hyperspectral vegetation indices 
(HVIs) from specific wavelengths have enabled advances.

Dr. David Mulla, in Chapter 7, identifies specific HVIs for 
detecting N, P, or K, disease, insects, and weeds. For example, 
Dr. Mulla shows us that normalized difference vegetation index 
(NDVI), soil adjusted vegetation index (SAVI), and red edge are 

good for detecting N, P, or K; fluorescence and PRI are good for 
detecting disease; aphid index, damage index, and leaf hopper 
index are good for insects; and ratio VI is good for weeds. Of 
course, there are indices like NDVI or SAVI that can detect mul-
tiple types of crop stress. Yet the uncertainty in understanding 
and modeling specific stress causes using remote sensing is very 
high. Some of these uncertainties can be reduced substantially 
if we have sufficient spatial resolution (e.g., centimeters) along 
with hyperspectral and other supplementary data (e.g., thermal). 
Chapter 7 by Dr. Mulla provides an overview of remote sensing 
technology use over the last 25 years and establishes the current 
state of the art. There is great scope for further research and devel-
opment of precision farming applications using remote sensing to 
reduce uncertainties and increase accuracies of prediction. UAVs 
offer a new platform with much higher spatial resolution (e.g., 
few centimeters) as well as the ability to fly multiple sensors (e.g., 
hyperspectral, thermal) and offer new opportunities for precision 
farming applications of remote sensing. But these need to go hand 

4a. Wheat �eld#a12

4c. Wheat �eld#a29(b)
4d. Wheat �eld#c14

4b. Wheat �eld#a14

4e. Wheat �eld#c04c9c13
Mean yield
(Mg ha2)

Mean
NDVI

0.72 5.33

0.586 3.69

0.452 2.05

0.318 0.42

N

Figure 26.7 (Continued)  (b) Understanding, modeling, and mapping crop yields to improve crop productivity (productivity per unit of land; 
kg/m2) and water productivity (productivity per unit of water; m3/m2). Spatial distribution of wheat yield based on Landsat TM data. These are the 
typical maps used in precision farming to understand and improve crop and water productivity of crops.
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in hand with methodological improvements. UAVs will, however, 
come with their own limitations such as the ability to get permis-
sion to fly, inability to carry heavier sensors, errors due to stability 
issues, and inability to cover large areas. Nevertheless, a combina-
tion of multisensor approach, with greater efforts in ideal sensor 
design (e.g., hyperspectral sensor that is of a few centimeter reso-
lution), and improved methodological efforts will lead to wider 
application of remote sensing technology in precision farming 
leading to improved productivity in crop grain and biomass.

Remote sensing can be used to collect quantitative crop infor-
mation on subareas within a farm, including

•	 Crop biophysical quantities—LAI, biomass
•	 Within field variations over time (temporal changes)
•	 Spatial variations in growth stage and phenology
•	 Weed and pest infestations
•	 Crop stress and disease
•	 Quantitative and qualitative changes within and between 

seasons

The aforementioned information can be linked to decision sup-
port systems such as pest or drought early warning systems, 
leading to county- or regional-scale agricultural decision sup-
port systems.

26.8 � Mapping Tillage versus Nontilled 
Lands and Establishing Crop 
Residue Status of Agricultural 
Croplands Using Remote Sensing

The importance of mapping tilled versus no-till agricultural lands 
is discussed in Chapter 8 by Dr. Baojuan Zheng et  al. Conser
vation tillage practices improve soil and cropland management. 
Conventional tillage practices often have detrimental impacts, 
including soil erosion, loss of organic matter, and leaching of 
nutrients. Conservation tillage practices leave crop residues (e.g., 
Figure 26.8) on the soil surface to retain moisture and resist soil 
and wind erosion. So the ability to reliably monitor tilled versus 
no-till lands on a field-by-field basis becomes an important com-
ponent of soil and landscape management. Dr. Baojuan Zheng 
et al. survey state-of-the-art strategies to map tillage practices by 
estimating crop residue cover. Further, they survey applications 
of remote sensing tillage assessment using

	 1.	 Optical remote sensing
	 2.	 SAR remote sensing

For optical remote sensing, shortwave infrared (SWIR) bands 
in range of 2000–2300 nm are critical to distinguish live crops 
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Figure 26.8  Percent crop residue cover map over the Casselman/St. Isidore study site derived from spectral mixture analysis on a SPOT 
image acquired on November 9, 2007. A land cover mask (nonagricultural areas) is overlaid on the residue cover map. (From Pacheco, A. and 
McNairn, H., Remote Sens. Environ., 114(10), 2219, 2010, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2010.04.024.)
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versus crop residue versus soil. Cellulose absorption bands cen-
tered at 2100 nm are especially valuable. Landsat bands 5 and 7 
(for calculation of the Normalized Difference Tillage Index 
[NDTI]) are widely used in detecting crop residue, thereby dis-
tinguishing tilled and no-till conditions. Classification meth-
ods such as maximum likelihood, spectral angle mapping, and 
data mining (e.g., the random forest classifier and support vec-
tor machines [SVMs]) are widely used. However, narrowbands 
centered at 2030, 2100, and 2210 nm with bandwidths of ~10 nm 
or less are likely to provide the best results. When hyperspec-
tral data are available (e.g., Hyperion, Environmental Mapping 
and Analysis Program [EnMAP], and Hyperspectral Infrared 
Imager [HyspIRI]), they can be used to compute cellulose 
absorption indices (CAIs). Accurate tillage assessment depends 
upon observing crop residue in fields within a short interval at 
the start of the growing season, just as farmers begin to plant 
crops. So timeliness of imagery is key to successful mapping of 
tillage status using optical images, which are subject to effects of 
cloud cover. Further, Zheng et al. explore SAR images acquired 
from multiple platforms at X, C, and L bands, showing that SAR 
backscatter coefficient thresholds are key to distinguishing tilled 
from no-till conditions. SAR images perform best when more 
than one frequency and polarization are used. Cloud penetration 
of SAR images offers important advantages. Research to investi-
gate the role of polarimetric images will likely form an important 
topic supporting SAR applications for tillage assessment.

26.9 � Hyperspectral Remote Sensing 
for Terrestrial Applications

Traditional remote sensing from sensors such as Landsat, SPOT, 
and IRS gathered data in broad spectral wavebands across the 
electromagnetic spectrum, typically in spatial resolution of 
greater than 20 m. The new-generation hyperspatial sensors (e.g., 
IKONOS, QuickBird) acquired data in very high spatial resolu-
tion (e.g., submeter to 5 m) but also in broad spectral wavebands 
across the electromagnetic spectrum. However, there is great 
scientific interest and need to gather data near continuously 
across the electromagnetic spectrum. This need is fulfilled by 
hyperspectral or imaging spectroscopy data (Goetz, 2010).

Chapter 9 by Dr. Prasad S. Thenkabail defined hyperspectral 
data as follows:

“Remote sensing data is called hyperspectral when the data 
is collected contiguously over a spectral range, preferably in 
narrow bandwidths and in reasonably high number of bands.”

So typical hyperspectral (imaging spectroscopy) data are gath-
ered in very narrow bands (~1–10 nm bandwidths), contiguously 
across electromagnetic spectrum (e.g., 400–2500 nm), resulting 
in several 10s, or 100s, or 1000s of narrowbands of data.

Chapter 9 begins by enumerating key characteristics of 
ground-based, airborne, and spaceborne hyperspectral sensors. 
The spatial, spectral, radiometric, and temporal characteristics 
of the key spaceborne hyperspectral sensors are presented and 

discussed. One of the first steps in hyperspectral data analysis is 
data mining. Data mining is extremely important from the point 
of view of reducing the data volumes to eliminate redundant 
bands, especially in the age of “big data.” The value, importance, 
and approach of overcoming Hughes’ phenomenon are discussed. 
A greater number of HNBs are very important to increase classifi-
cation accuracies as well as to develop unique and more powerful 
HVIs. Chapter 9 shows that it is feasible to achieve increased accu-
racies of 30% or higher when ~20 HNBs are involved relative to 7 
Landsat broadbands. The chapter also shows that there are several 
unique two-band HVIs (e.g., Table 26.2) targeted to study specific 
biophysical and biochemical quantities. Further multiband HVIs 
involving 3–10 HNBs often provide much higher R-square values 
relative to commonly known two-band indices like NDVI.

The key highlights of Chapter 9 include a summary of

	 1.	 28 optimal HNBs for studying agricultural crops and 
vegetation

	 2.	 6 categories of important HVIs for modeling crop and 
vegetation biophysical and biochemical quantities

	 3.	 4, 6, 8, 10, 12, 16, and 20 HNB combinations to best clas-
sify croplands and vegetation

Further, Chapter 9 presents and illustrates various hyperspec-
tral data analysis methods that are broadly grouped under two 
categories: feature extraction methods and information extrac-
tion methods. The various hyperspectral classification methods 
discussed and illustrated include spectral matching techniques, 
spectral mixture analysis (SMA), SVMs, and tree-based ensem-
ble classifiers (e.g., Random Forest and Adaboost). Readers are 
also referred to detailed studies on hyperspectral remote sensing 
of vegetation and agricultural crops in Thenkabail et al. (2012).

26.10  Rangelands: A Global View

Rangelands represent relatively arid sites where potential vegeta-
tion is predominantly comprised of grasses, forbs, and shrubs 
(e.g., Figure 26.9). Examples include savannas, shrub- and grass-
lands, tundras, open woodlands, and chaparral. Rangelands are 
globally important as sources of forage for both domesticated and 
wild animals. Additionally, rangelands support unique flora and 
fauna and provide numerous ecosystem services. Roughly 24% of 
the terrestrial area or about 3 billion hectares (double the area of 
croplands) can be considered rangeland. Omitting deserts from 
the global terrestrial area, however, increases rangeland propor-
tion to as much as 52% as mentioned in Chapter 10. So definition 
is key to how rangelands are assessed and accounted for.

Given the vastness and inaccessibility of rangelands, remote 
sensing offers the best opportunity to study rangelands. The key 
factors of rangeland studies using remote sensing are presented 
in detail in Chapter 10 by Dr. Matt Reeves et al. These factors are

	 1.	 Rangeland degradation studies that involve quantifying 
and modeling degradation of land and soil and ensuing 
desertification

	 2.	 Biomass, NPP, and forage quantification and modeling
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Table 26.2  Some of the Best Two-Narrowband HVIs as per Early Research by Thenkabail et al. (2000)

Crop (Sample Size) Crop Variable
Band Center 

and Width (nm)

Band Centers (λ1 and λ2) and Band Widths (Δλ1 and Δλ2) for 
Two-Band VI

Index 1 
(nm)

Index 2 
(nm)

Index 3 
(nm)

Index 4 
(nm)

Index 5 
(nm)

Index 6 
(nm)

Index 7 
(nm)

1. �Cotton (73) except for 
yield that has a sample 
size of 50

WBM (kg/m2) (see Figure 26.4) λ1 682 682 568 555 615 525 982
Δλ1 28 28 10 20 175 4 10
λ2 918 845 918 666 925 540 940
Δλ2 20 250 10 5 20 7 10

LAI (m2/m2) λ1 682 550 678 550 568 525 940
Δλ1 15 30 15 50 4 60 10
λ2 940 682 865 675 915 540 980
Δλ2 60 20 275 50 15 60 10

Yield (lmt/ha) λ1 540 696 678 540 690 678 670
Δλ1 30 4 30 40 10 30 50
λ2 678 940 940 684 720 860 970
Δλ2 20 20 50 20 20 290 20

2. Potato (25) WBM (kg/m2) λ1 550 550 678 682 720 682 615
Δλ1 20 30 10 20 30 10 70
λ2 682 682 920 940 790 710 935
Δλ2 4 26 20 40 20 20 50

LAI (m2m2) (see Figure 26.5) λ1 682 472 682 678 550 682 625
Δλ1 28 15 28 28 20 7 50
λ2 982 790 738 860 688 940 940
Δλ2 36 20 45 100 28 30 8

3. Soybean (27) WBM (kg/m2) (see Figure 26.4) λ1 725 732 696 565 550 635 490
Δλ1 25 10 28 50 20 30 75
λ2 845 758 791 875 755 682 682
Δλ2 70 10 10 130 10 10 28

LAI (m2/m2) λ1 625 495 495 730 682 690 418
Δλ1 30 30 30 20 10 40 510
λ2 688 685 670 840 790 860 855
Δλ2 15 20 40 60 20 100 90

4. Corn (17) WBM (kg/m2) λ1 720 505 715 620 620 620 490
Δλ1 18 10 4 30 30 30 50
λ2 820 645 990 830 1.000 940 825
Δλ2 160 6 20 160 30 70 110

LAI (m2/m2) (see Figure 26.5) λ1 620 550 635 470 495 495 650
Δλ1 20 30 20 8 50 50 4
λ2 590 684 720 740 760 1.000 800
Δλ2 10 28 10 2 40 25 165

5. All crops (151)a WBM (kg/m2) λ1 682 655 525 660 525 640 510
Δλ1 30 90 20 30 50 120 100
λ2 910 920 682 875 675 880 670
Δλ2 20 20 25 250 30 280 60

LAI (m2/m2) λ1 540 682 550 682 682 670 490
Δλ1 20 10 40 28 35 40 30
λ2 682 756 682 910 754 910 965
Δλ2 10 20 30 200 40 200 20

Source:	 Thenkabail, P.S. et al.,. Remote Sens. Environ., 71, 158, 2000.
Note:	 These were linear models. However, often, two-band nonlinear and/or multiband linear models involving more than two narrowbands provide signifi-

cantly improved results.
Band centers (λ1 and λ2) and bandwidths (Δλ1 and Δλ2) in nanometers. For example, an HVI involving two bands, one centered at 682 nm (bandwidth = 28 nm) 

and another centered at 918 nm (bandwidth 20 nm), provides the best index for modeling wet biomass of cotton crop. Ranking of indices: Index 1 always has the 
highest R-square value and hence ranked higher and index 7 has the lowest R-square of the seven indices listed for each variable of each crop.
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	 3.	 Assessment of rangeland fires that include (a) burned area 
determination, (b) burned area impact on land and atmo-
sphere, and (c) fire progression and intensity monitoring

	 4.	 Land cover studies in rangelands
	 5.	 Rangeland extent mapping and monitoring

Chapter 10 also provides a history of rangeland studies and its 
evolution over time, starting from early days of Landsat in the 
1970s to the current period. A wide array of satellites and sen-
sors are routinely used in rangeland studies. For example, wide 
area fire studies are best conducted using thermal imagery from 
sensors such as Along-Track Scanning Radiometer (ATSR-2), 
Advanced ATSR, and MODIS. Degradation studies typi-
cally use indices such as NDVI, Tasseled Cap, or classification 
approaches. Given the large areal extent of rangelands, routine 
monitoring of large landscapes can be done using coarse spatial 
but high temporal resolution imagery such as AVHRR, MODIS, 
Visible Infrared Imaging Radiometer Suite, and Sentinel. But 
more detailed assessments of rangelands are often conducted 
using either hyperspatial or hyperspectral imagery.

26.11  Rangeland Biodiversity Studies

Rangelands are often the ideal landscapes for study using 
remote sensing (e.g., Figure 26.10). They are vast and contigu-
ous, are relatively uninhabited, have a clear phenology based 

on precipitation, and have characteristic vegetation com-
prising of grasslands, shrublands, or some mixture of these. 
Maintenance of biodiversity is the goal for managing range-
lands sustainably; rangeland health is monitored to prevent 
an irreversible loss of biodiversity. Dr. Raymond Hunt et al. in 
Chapter 11 identify 19 indicators of rangeland health of which 
3 are the most important: (1) bare ground, (2) vegetation com-
position by plant functional type, and (3) presence of invasive 
plants. Spatial, spectral, temporal, and radiometric properties 
of sensors play key roles in determining what rangeland indi-
cators can be studied and at what accuracy. Spectral unmixing 
of either medium-resolution or hyperspectral data is impor-
tant for estimating the cover of bare ground and the amount 
of soil erosion. Land characterizations need to have sufficient 
temporal resolution; for example, functional types of the 
rangeland grasses (e.g., tallgrass C3, tallgrass C4, short-grass 
C3, and short-grass C3 study reported in Chapter 11) are best 
distinguished using temporal data. Better characterization of 
NPP, biomass, and rangeland plant functional types can be 
made using new satellite sensors that have high temporal cov-
erage with medium spatial resolution (between 30 and 100 m 
pixels). Accurate characterization of rangeland species types 
and invasive species within these rangelands and study of their 
health will require either hyperspectral or hyperspatial data 
(<10 cm pixels). Invasive species are often a significant problem 
in most rangelands, and hence Hunt et al. provide substantial 

Livestock only, rangeland-based, arid/semiarid
Livestock only, rangeland-based, humid/subhumid
Livestock only, rangeland-based, temperate/highland
Mixed farming, irrigated, arid/semiarid

Mixed farming, rainfed, humid–subhumid

Other
Urban
Mixed farming, rainfed, temperate/highland

Mixed farming, rainfed, arid/semiarid
Mixed farming, irrigated, temperate/highland
Mixed farming, irrigated, humid/subhumid

Figure 26.9  Global livestock production systems. (From Kruska, R.L. et  al., Agric. Syst., 77(1), 39, 2003, ISSN 0308-521X, http://dx.doi.
org/10.1016/S0308-521X(02)00085-9.)
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discussion on remote sensing of invasive plants in Chapter 11. 
They found that spectral matching algorithms like spectral 
angle mapper and spectral diversity of classified objects have 
potential to estimate rangeland biodiversity directly, but the 
spectral similarity of green leaves will be a limit to the number 
of species individually characterized. For managing biodiver-
sity, hyperspatial imagery acquired from low-flying manned or 
unmanned aircraft can be used to estimate most of the range-
land health indicators, especially bare ground, vegetation com-
position, and invasive species that are not spectrally unique. 
New ways of analyzing hyperspatial data include statistical 

analysis of transects over the landscape and methods based on 
computer vision research.

26.12 � Methods of Characterizing, 
Mapping, and Monitoring 
Rangelands

Remote sensing methods, approaches, and techniques of range-
land characterization, mapping, and monitoring are many and 
depend on the parameter studied. Broadly, these are grouped as 
follows.

(a)

(b)

(c)

Figure 26.10  False color images draped over the surface height model derived from LiDAR data for selected sites. Data recorded by Carnegie 
Airborne Observatory: (a) dense woodland in private reserve, L3 granite Sabi Sand; (b) highly impacted rangeland in communal rangeland with 
very low woody vegetation cover, L6 gabbro rangeland; and (c) cultivated and fallow fields in communal areas with large trees, L6 granite fields. 
(From Wessels, K.J. et al., Forest Ecol. Manage., 261(1), 19, 2011, ISSN 0378-1127, http://dx.doi.org/10.1016/j.foreco.2010.09.012.)
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26.12.1  Rangeland Phenology and Productivity

Natural as well as human-induced (e.g., grazing) changes in 
rangeland dynamics are studied using VIs such as the NDVI, 
EVI, and a host of other VIs. Rangeland productivity parameters 
modeled using NDVI, EVI, and other variables include biomass, 
LAI, percent cover, fractional cover, species dominance, and 
species type. Phenology is characterized by taking, for example, 

a wide range of NDVI characteristics: cumulative NDVI over a 
season, NDVI at peak, NDVI at the start of season and/or end of 
season, NDVI amplitude, and so on (e.g., Figure 26.11).

26.12.2  Rangeland Ecological Characteristics

Distinct ecologies of rangelands are distinguished using differ-
ences in NDVI magnitude and timing.
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Figure 26.11  Spatial distribution of the phenological trend combinations using GIMMS data over the period 1982–2006 over Europe. In the 
background the primarily precipitation-driven areas (Mediterranean, light grey) and the primarily temperature-driven areas (central–northern 
Europe, dark grey) for phenological development are shown delineated after the Köppen–Geiger climate classification. (From Ivits, E. et al., Global 
Planetary Change, 88–89, 85, 2012, ISSN 0921-8181, http://dx.doi.org/10.1016/j.gloplacha.2012.03.010.) (a) Earlier longer seasons and earlier shorter 
seasons. Grey shaded areas, not significant trends and/or not significant spatial agglomerations. (b) Earlier shift of season and later shift of season. 
Grey shaded areas, not significant trends and/or not significant spatial agglomerations. (c) Longer seasons and shorter seasons. Grey shaded areas, 
not significant trends and/or not significant spatial agglomerations.
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26.12.3 � Rangeland Biological Diversity, Fuel 
Analysis, and Change Detection

The biological diversity, fuel loadings, and change detection are 
determined using VIs, well-known methods of classification 
such as decision trees, various supervised and unsupervised 
classification methods, as well as newer methods such as neural 
networks, random forest, and object-oriented classifications.

26.12.4  Rangeland Change Detection

Apart from classification approaches, image-differencing meth-
ods are of great importance for rangeland change detection.

26.12.5  Vegetation Continuous Fields

Vegetation continuous fields are mapped through the use of dig-
ital remote sensing data coupled with field-based measurements 
and advanced statistical modeling techniques. 

26.13 � Land Surface Phenology in 
Food Security Analysis

Dr. Molly Brown et  al. in Chapter 13 identify the two basic 
approaches to measure food insecurity directly: anthropomet-
rics measuring body weight, height, and age of the population 
and determining the individual consumption of food per day 
compared to average requirements. Both approaches require 
extensive, time-consuming, and costly data to be collected in 
households and communities. Early warning organizations 
require much more rapid and timely information about the prob-
ability of food insecurity in response to droughts, floods, and 
other environmental shocks. Modern-day remote sensing can 
provide a proxy for possible food insecurity through the mea-
surement of land surface phenology (LSP). The NDVI time series 
provides a good proxy for LSP. Sensors such as the MODIS 250 m 
(6.25 ha per pixel) are ideal in time series coverage of LSP. The 
idea here is to look at LSP for normal, food secure year and com-
pare it with food insecure years where food production has been 
affected. The ability to make these observations for every pixel 
enables us to study very small areas in regions with food insecure 
communities (e.g., Figure 26.12). Chapter 14 provides illustration 
of this in highly food insecure countries like Niger. Developing 
countries that have food insecure populations are also character-
ized by small, irregularly shaped fields where a variety of crops 
are cultivated. Ideally, LSP studied using pixel resolutions that 
can capture crop types would be ideal. Remote sensing data from 
high-resolution sensors like Landsat have sufficient resolution for 
identifying crop types in small fields but often do not have suf-
ficient cloud-free images during the growing season to use the 
sensor for agricultural monitoring. MODIS 250 m data are ideal 
in terms of temporal coverage, but often the pixel will have more 
than one crop due to the small field size. Even then, LSP stud-
ies from a pixel with multiple crops will suffice in food security 
analysis. However, the change from 1 year to the next may just 

be due to the change in the distribution of crop types within a 
pixel area and not a change in agricultural productivity. The use 
of LSP in global food security studies can have a powerful impact 
in understanding and monitoring food security. The ideal remote 
sensing platforms for LSP studies will be to acquire frequent 
data of good quality and sufficient resolution (e.g., 30 m or less) 
throughout the growing season. However, the current MODIS 
250 m data that have excellent daily coverage are of great value.

26.14 �T ropical Forest Characterization 
Using Multispectral Imagery

Forest carbon (C) estimates vary widely (Chapters 14 through 17) 
as a result of knowledge gaps, data and methods used, and rapid 
changes in tropical land use that may account for the “missing 
sink” of carbon in the global C budget. Depending on changes 
in land use and global climate, tropical forests can alternate 
between sources and sinks of atmospheric C, leading to uncer-
tainty in future trends in forest C fluxes. The long-term net flux 
of carbon between terrestrial ecosystems and the atmosphere has 
been dominated by two factors: (1) changes in the total area of 
forests and (2) per hectare changes in forest biomass resulting 
from management and regrowth (Chapters 14 through 17). Apart 
from regional-level uncertainties in tropical forest carbon fluxes, 
uncertainties also exist in the regenerative capacity of forests and 
in harvest and management policies (Chapters 14 through 17).

The need to remove uncertainties and errors in estimates of 
tropical forest C storage and fluxes is more urgent than ever 
before. Under the UNFCCC, countries regularly report the state 
of their forest resources and emerging mechanisms, such as 
REDD+, and are likely to require temporally and spatially fine-
grained assessments of carbon stocks.

In Chapter 14, Dr. E.H. Helmer et al. focus on the character-
istics of tropical forests that are relevant to REDD+ and studied 
with various types of multispectral imagery. These parameters 
include aboveground live tree biomass (AGLB) or height, age (to 
estimate rates of C accumulation in regrowth), degradation, and 
forest type. In the chapter, they use coarse-, medium-, and high-
resolution imagery to quantify and model these parameters. They 
highlight the use of remote sensing methods such as the following:

	 1.	 Forest type or tree species community mapping, which 
can be critical to REDD+ and are achieved over a range of 
resolutions with various classification methods. The detail 
at which these classes are mapped and accuracies at which 
they are mapped depend on the resolution of the imagery, 
methods used, and richness of data (e.g., how frequent the 
temporal images are or whether they include climate phe-
nological extremes).

	 2.	 Forest degradation studies, which are conducted using mul-
tispectral imagery with pixel sizes less than about 10 m or 
with SMA of multispectral imagery with coarser spatial 
resolution. SMA decomposes green vegetation, nonphoto-
synthetic vegetation (NPV), soil, and shade. Normalized 
Difference Fraction Index (NDFI) is used for forest 

© 2016 Taylor & Francis Group, LLC

  



813Remote Sensing of Land Resources

degradation studies. NDFI values of 1 are for intact forests 
and −1 for bare soil. Forest degradation is of many types that 
include roads and trails for selective logging, slash, and burn 
agriculture that are detected using fine-resolution imagery.

	 3.	 AGLB has been modeled using spectral indices or bands 
of various multispectral sensors. C stored in tree bio-
mass is relatively accurate when summed over large areas 
even though pixelwise estimates are somewhat uncertain 
because models underestimate AGLB at high biomass and 
overestimate it at low biomass.

	 4.	 When image time series span the age range of regrowth 
forests, spectral data can precisely estimate forest height 
or AGLB; stand age can also be determined, which is 
required for estimating rates of C removal from the atmo-
sphere in tree biomass.

	 5.	 Fine spatial resolution imagery is used to characterize the 
distribution of canopy crown sizes, which is then used to 
estimate AGLB (also see Chapter 3) (Figure 26.13).

26.15 � LiDAR and Radar for 
Forest Informatics

LiDAR and radar are both active sensors and as a result pro-
vide their own light source and hence have the ability to 
acquire data during day or night as well as offer better cloud 
penetration. Prof. Juha Hyyppa et al., in Chapter 15, provide an 
exhaustive state of the art on forest informatics assessed, mod-
eled, and mapped by collecting 3D information using LiDAR 
and radar.
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Figure 26.12  Spatial distribution of rice cultivation with season and irrigation source. (a) Spatial distribution of boro, (b) aus, (c) aman rice, 
and (d) net rice with other land use/land cover. (From Gumma et al., 2010, 2014.) Note: boro, aus, and aman are three distinct seasons.
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LiDAR acquires data by illuminating the surface with 
laser in (1) 600–1000 nm, inexpensive but unsafe for eyes; (2) 
1550  nm, eye safe but less accurate (note: this wavelength is 
widely applied by Riegl and Toposys; with these companies, 
there are no accuracy problems); (3) 1064  nm, safe for eye 
but greater attenuation in water; and (4) 532 nm, bathymetric 

applications. The most common types of LiDAR data acquisi-
tion platforms are

	 1.	 Terrestrial (ground)-based laser scanning (TLS) or terres-
trial LiDAR.

	 2.	 Mobile laser scanning (MLS) or mobile LiDAR.
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Figure 26.13  Comparison of bitemporal ETM data showing the subsets of (a) ETM 2000 land cover classification with (b) the ETM 2000 AGB 
estimates and (c) the ETM 2003 land cover map and the AGB predictions of (d) the radiometrically calibrated ETM 2003 image. (From Wijaya, A. 
et al., Forest Ecol. Manage., 259(12), 2315, 2010, ISSN 0378-1127, http://dx.doi.org/10.1016/j.foreco.2010.03.004.)
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	 3.	 Airborne laser scanning (ALS) or airborne LiDAR.
	 4.	 Spaceborne LiDAR missions. NASA’s GLAS onboard 

NASA’s ICESat is the first spaceborne LiDAR. ICESat 
GLAS acquired data from 2003 to 2009.

Radar data are collected in various bands by a number of space-
borne SAR over many years as outlined in the following text:

	 1.	 X band (frequency, 12.5–8 GHz; wavelength, 2.4–
3.75 cm). Satellites include TerraSAR-X, TanDEM-x, and 
Constellation of Small Satellites for Mediterranean basin 
Observation (COSMO)-SkyMed. Data heavily used in 
military reconnaissance and surveillance

	 2.	 C band (frequency, 8–4 GHz; wavelength, 3.75–7.5  cm). 
RADARSAT and European Remote Sensing Satellite 
(ERS). Sea-ice surveillance. Penetration of vegetation lim-
ited to top layers.

	 3.	 S band (frequency, 4–2 GHz; wavelength, 7.5–15  cm). 
Meteorological applications (e.g., rainfall measurement)

	 4.	 L band (frequency, 2–1 GHz; wavelength, 15–30  cm). 
Satellites include Advanced Land Observing Satellite 
(ALOS) and Phased Array type L-band Synthetic Aperture 
Radar (PALSAR). Penetrates vegetation, ice, and glaciers 
studies

	 5.	 P band (frequency, 1–0.3 GHz; wavelength, 30–100 cm). 
Satellites include European Space Agency’s (ESA) Explorer 
7 (435 MGz). High-biomass penetration

An important advance is the ability to assess forest biomass and 
in turn carbon stocks and fluxes using data from ESA’s Explorer 
7 that acquires data in P-band synthetic aperture polarimetric 
radar operating at 435  MHz. Early days of radar were limited 
to 2D application with the real advantage of cloud penetration 
unlike optical sensors.

But as outlined by Juha Hyyppa et al., in Chapter 15, both 
LiDAR and radar provide point clouds (echo) that allow for 
creating 3D clouds of trees and other vegetation. The for-
est informatics derived by the LiDAR and radar 3D cloud 
of points (e.g., Figure 27.14) include parameters such as tree 
location, tree height, diameter at breast height, species, age, 
basal area, crown area, volume, biomass, and LAI. These for-
est variables from 3D point clouds are obtained through two 
approaches: (1) area-based approaches (ABAs) and (2) indi-
vidual/single-tree detection approaches (ITDs). Regression 
models, neural networks, and random forest are some of the 
methods used in ABAs and ITDs. The 3D data further help 
derive digital terrain model (DTM), digital surface model 
(DSM), and canopy height model (CHM) and normalized 
DSM (CHM/nDSM).

Extensive discussion on how to derive forest informatics 
using LiDAR and radar 3D point clouds including methods and 
approaches used, strengths, and limitations is presented and dis-
cussed in Chapter 15.

26.16 � Hyperspectral Imager and 
LiDAR Data in Study of Forest 
Biophysical, Biochemical, 
and Structural Properties

When remote sensing data are acquired in narrowbands and 
contiguously over a wavelength range representing a spectrum, 
it is called hyperspectral data. The number of bands itself is not 
as critical a factor, so 20 or 30 or 100 or 200 narrowbands (typi-
cally, ≤10  nm bandwidth) over 400–2500  nm are quite com-
monly used as hyperspectral data. When hyperspectral data are 
collected in an image format using ground-based, airborne, or 
spaceborne sensors, such data are called hyperspectral imager 
(HSI). In contrast, LiDAR is an active sensor based on emit-
ted laser pulses, which provides 3D information in the form of 
laser point clouds (see further details on LiDAR in Chapter 15). 
Dr. Gregory Asner et al. in Chapter 16 assess the HSI and LiDAR 
data uses in the study of forest:

	 1.	 Biophysical properties
	 2.	 Biochemical properties
	 3.	 Canopy physiological properties
	 4.	 Canopy structural and carbon properties

HSI is ideal for the study of biophysical, biochemical, and phys-
iological properties of vegetation (e.g., Figure 26.15). LiDAR is 

Biomass, Mg/ha
<50

LiDAR/Radar
>200151–200101–15051–100

Figure 26.14  Forest biomass mapping from LiDAR and radar syn-
ergies. Biomass map from SRTM phase center height and PALSAR data 
developed from regression model using random biomass samples from 
LVIS-derived reference map. The image was smoothed using a 5 by 5 win-
dow (pixel size of 15 m). (From Sun, G. et al., Remote Sens. Environ., 115(11), 
2906, 2011, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2011.03.021.)
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ideal for characterizing the structural and architectural prop-
erties of vegetation and for advancing biomass assessments. 
Dr. Gregory Asner et  al. in Chapter 16 discuss all of these 
and show us the advances one can make in studying these 
features. Biophysical variables include LAI (m2/m2), biomass 
(kg/m2), equivalent water thickness (mm), and leaf mass area 
(g/m2). Biochemical properties include nitrogen, cellulose, 
lignin, pigments (e.g., chlorophyll a, b, total; anthocyanins, 
carotenoids), PAR, APAR, and LUE. These are studied using 
HSI-derived HVIs (see Thenkabail et al., 2014, 2013), radiative 
transfer models such as PROSPECT (Jacquemoud et al., 2009), 
and empirical spectroscopic algorithms (Asner et  al., 2011). 
Specific HVIs can be applied to study specific properties, for 
example, biomass or LAI using narrow spectral bands centered 
at 680 and 910  nm or LUE using PRI (531 and 570  nm). In 
contrast, LiDAR is often used to study tree heights, AGB of 
vegetation, forest structure, and aboveground carbon density 
(ACD). Research is still in progress on establishing accuracies 
of LiDAR-estimated ACD with that of plot-based measure-
ments. An important part of Chapter 16 is the illustration and 
enumeration of advances one can make in improved under-
standing of structural, architectural, biophysical, biochemi-
cal, and ACD characteristics of forests by integrating HSI and 
LiDAR data.

26.17 �T ree and Stand Heights from 
Optical Remote Sensing

Over the years, remote sensing has been used to map and 
monitor forests in terms of their cover, type, distribution, spe-
cies dominance, deforestation, tree crown, biomass, LAI, stand 
area, and a host of other parameters including forest health and 
change over time. But almost all these remote sensing measure-
ments have been 2D. NASA created the first 3D global map of 

forest heights using GLAS on ICESat (GLAS/ICESat), MODIS, 
and Tropical Rainfall Measuring Mission data (Lefsky, 2010). 
Greater accuracies and lesser uncertainties in forest biomass 
and carbon estimates are feasible through improved accura-
cies in measurement of tree heights. Traditionally, tree heights 
are measured by plot sampling in the field. This is extremely 
tedious, difficult in complex forests due to difficulty in acces-
sibility, and resource prohibitory to cover forests of the world, 
which cover about 30% of the terrestrial area. Further, since 
rapid changes occur in forests particularly due to anthropo-
genic activities, repeated measurement of these changes is 
required.

Chapter 17 by Dr. Sylvie Durrieu and Dr. Cédric Véga et al. 
shows us the approaches and methods of estimating tree heights 
through 3D vertical measurement using digital photogramme-
try and more recently (and increasingly) through LiDAR remote 
sensing. The main advantage of LiDAR is that it sees all the veg-
etation within the plot, whereas field-plot data may describe in a 
plot only a sample of trees for the sake of cost-effectiveness, and 
digital photogrammetry points see only dominant vegetation. 
Dr. Sylvie Durrieu and Dr. Cédric Véga et al. present and discuss 
in details the following:

	 1.	 The principles of height measurement using LiDAR and 
photogrammetry.

	 2.	 Stand level height assessments made through ABAs that 
include (i) field inventory at plot level of forest param-
eters, (ii) extracting LiDAR point clouds of the for-
est parameters for inventoried plots, (iii) establishing 
empirical models linking LiDAR data with field-plot 
data for each forest parameter, and (iv) extrapolating 
the empirical models same over the entire forests lead-
ing to large area inventories of forest parameters. The 
process involves developing models relating LiDAR 
or photogrammetric 3D data versus field-plot data of 
forest characteristics (e.g., tree height, basal area) and 
applying the same over larger forest areas. For greater 
accuracies, large area inventories require segmenting 
forest types into distinct categories and developing the 
stand level models for each of these forest categories 
separately.

	 3.	 Individual tree height assessment through (a) raster-
based approaches (e.g., canopy height modeling, detect-
ing tree apices, measuring tree crowns), (b) point-based 
approaches, and (c) hybrid approaches. For tree height 
modeling using raster-based approach, the tree crown 
data may or may not be required, but CHM and detecting 
tree apices are required. The point-based approach detects 
not only the dominant trees (apices) but also overtopped 
trees taking advantage of the ALS 3D point cloud (e.g., 
Figure 26.16). Hybrid approaches, combining raster-based 
and point-based approaches, have shown improved indi-
vidual tree extraction.

Figure 26.15  Demonstration of a virtual active hyperspectral 
LiDAR in automated point cloud classification. Hyperspectrally clas-
sified point cloud visualized from two viewing directions. The back-
ground points were left out, and only the needle (green) and trunk 
(brown) points are plotted. The red arrow points toward the point of 
measurement. (From Suomalainen, 2010, 2011.)
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26.18  Study of Biodiversity from Space

Chapter 18 by Dr. Thomas Gillespie et al. provides a lucid outline 
on how to use remote sensing data from space in biodiversity 
studies. They approach this by looking at three categories of bio-
diversity assessment using optical, radar, LiDAR, and thermal 
remote sensing data from space. The three categories are

	 1.	 Mapping
	 2.	 Modeling
	 3.	 Monitoring

Mapping presentation and discussions include vegetation catego-
ries and invasive species. Mapping of vegetation categories and 
broad habitats can be, typically, performed using 30 m Landsat or 
better resolution. However, accurate and detailed mapping of spe-
cies or individual trees requires hyperspectral data (5 m or bet-
ter) from sensors such as QuickBird, GeoEye, and IKONOS and/
or hyperspectral data from sensors such as Hyperion. The ability 
to map animals from space is limited due to the lack of coverage 
of frequent images at sufficiently high spatial resolution and also 
data from specific spectral bands such as thermal that can detect 
body heat from animals if data are within a meter or so.

Spatial modeling for biodiversity studies such as understand-
ing species richness, ecosystems richness for habitats, and car-
rying capacity will be a powerful tool. This would involve using 
a wide array of spatial data such as precipitation, land use/
cover, soils, and elevation and then performing spatial models 

for planning and decision-making process (e.g., Which lands to 
conserve? Where are the richest habitats for biodiversity?).

Monitoring biodiversity is important for understanding fac-
tors such as habitat loss or degradation and productivity changes 
and assessing development and conservation.

Many biodiversity studies like identifying species or trees 
require hyperspatial data that are also hyperspectral. Other 
biodiversity studies like habitat mapping require more tempo-
ral data at moderate resolutions like Landsat 30 m or MODIS 
time series (e.g., Figure 26.17). Monitoring animals will require 
hyperspatial data that are possibly thermal as well.

In Chapter 18, Dr. Thomas Gillespie et al. provide the remote 
sensing data characteristics needed for biodiversity studies and 
present the state of the art in mapping, modeling, and monitor-
ing biodiversity.

26.19 � Multiscale Habitat Mapping 
and Monitoring Using Satellite 
Data and Advanced Image 
Analysis Techniques

There are wide-ranging habitats on the planet that house plants 
and animals, such as the forest, savanna, desert, and wetland. 
The ability of EO data to map and study habitats varies widely 
depending on the detail at which a habitat needs to be mapped 
and the basic characteristics of remote sensing data like their 
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Figure 26.16  Single-tree biomass modeling using airborne laser scanning. Example of ALS points inside one tree canopy segment and of 
CHM with 0.5 m grid size. (From Kankare, V. et  al., J. Photogramm. Remote Sens., 85, 66, 2013, ISSN 0924-2716, http://dx.doi.org/10.1016/j.
isprsjprs.2013.08.008.)
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spatial, spectral, and temporal resolutions. If the need of mapping 
is to discern a single species of tree or shrub or grass, the require-
ment of spatial resolution could be submeter to few  meters. 
If the need of habitat mapping is to get a broad understanding 
of density of forest cover, then coarse resolution like 30 or 250 m 
may suffice. However, if the goal of the habitat mapping is to get 
a broad understanding of habitat land cover over vast areas, even 
1 km data that are more temporally rich may be needed.

In Chapter 9, Dr. Stefan Lang provides habitat mapping proto-
cols using a wide array of EO data. The biodiversity of each habi-
tat defines the richness of plant and animal species contained 
in these habitats. They begin with providing the importance of 
habitat studies by referring to GEO, identifying biodiversity as 
one of the nine societal beneficial areas. Central to their chap-
ter is the strategy, approaches, and methods adopted in two 

major European Union projects such as Multiscale Service for 
Monitoring NATURA 2000 Habitats of European Community 
Interest (MS.MONINA) and Biodiversity Multi-SOurce 
Monitoring System (BIO_SOS). For example, as highlighted in 
Chapter 9, these projects use

	 1.	 Very high spatial resolution imagery (VHRI) from sensors 
like WorldView-2 for fine-scale habitat mapping

	 2.	 Imaging spectroscopy (hyperspectral) data from 
Compact High Resolution Imaging Spectrometer/Project 
for On-Board Autonomy or Hyperion for plant biophysi-
cal and biochemical properties

	 3.	 LiDAR data from ICESat/GLAS, to determine tree height 
and 3D biomass

	 4.	 X-band radar for from fine-resolution sensors like 
TerraSAR-X to differentiate plant species

	 5.	 Thermal VHRI can be used to even count number of cows 
in rangelands

However, in order to map fine details of habitats such as indi-
vidual species, one may require a combination of hyperspatial, 
hyperspectral, and other data (e.g., bathymetry) analyzed with 
an ensemble of algorithms (e.g., Figure 26.18).

Chapter 19 provides a sensor suitability table showing what 
forest, grassland, heathland, and wetland habitat variables are 
mapped and at what detail by various low-, medium-, very high-, 
hyperspectral-, laser-, and microwave sensors.

26.20 �E cological Characterization of 
Vegetation Using Optical Sensors

The launch of optical sensors, starting with Soviet’s Sputnik and 
NOAA AVHRR, changed our view of the world on how we study 
planet Earth. In Chapter 20, Dr. Conghe Song et  al. provided 
an exhaustive series of optical satellites, their brief history and 
characteristics, and their value in studying vegetation. These sat-
ellites provide data in distinct wavebands and have unique spec-
tral, spatial, radiometric, and temporal coverage of the entire 
planet Earth. Hence, quantifying, modeling, and mapping of 
vegetation from remote sensing became widespread, especially 
with the launch of the first Landsat in 1972. Vegetation char-
acterization has been grouped into two broad categories by 
Dr. Conghe Song et al.:

Vegetation structure that include
Vegetation cover
Forest successional stages
LAI
Biomass and NPP

Vegetation functions that include
LSP
FAPAR
Chlorophyll
LUE
GPP/NPP

Congruence of biomass carbon and
mammal species diversity

in Tanzania
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Figure 27.17  A framework for integrating biodiversity concerns 
into national REDD+ programs. Example national scale map for 
Tanzania displaying congruence values between carbon and biodiver-
sity at the scale of a 5  km grid and across all vegetation types. Map 
generated using freely available land cover data from MODIS, mam-
mal data from the freely available African mammal databank (African 
Mammals Databank and African carbon data provided by UNEP-
WCMC, based on multiple sources (Khan, 2011)). This kind of simple 
overlay map can help in identifying those areas of both high opportu-
nity (strong positive correlation in carbon and biodiversity values) and 
risk (low in carbon but high in biodiversity) in the REDD+ planning 
process. (From Gardner, T.A. et al., Biolog. Conserv., 154, 61, 2012, ISSN 
0006-3207, http://dx.doi.org/10.1016/j.biocon.2011.11.018.)
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Figure 26.18  Habitat maps from (a) reference data and (b) classification results of the fused dataset (hyperspectral imagery, aerial photography, 
and bathymetry data) and ensemble analysis of random forest, SVMs, and k-nearest neighbor. Six code-level habitats were observed: HC (soft coral, 
hard coral, sponge, and algae hardbottom), HS (hardbottom with perceptible sea grass [<50%]), SD (moderate to dense, continuous beds of sea 
grass), SDB (moderate to dense nearly continuous beds [sea grass > 50%], with blowouts and/or sand or mud patches), SPH (dense patches of sea 
grass [>50%] in a matrix of hardbottom), and SS (sparse continuous beds of sea grass). (From Zhang, C., J. Photogramm. Remote Sens., Available 
online 27 June 2014, ISSN 0924-2716, http://dx.doi.org/10.1016/j.isprsjprs.2014.06.005.)
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Chapter 22 shows us

	 1.	 Vegetation cover modeling using various techniques that 
include statistical regression with VIs, classifications, and 
SMA

	 2.	 Forest successional stages characterized by physically 
based models, empirical models, change detection 
approaches

	 3.	 LAI algorithms based on VIs, radiative transfer models
	 4.	 Biomass and NPP through regression models, k-nearest 

neighbor algorithms, machine learning algorithms, and 
biophysical approaches

	 5.	 LSP through VIs
	 6.	 FAPAR through empirical models involving VIs, biophys-

ical models
	 7.	 Chlorophyll assessment through VIs and radiative trans-

fer models
	 8.	 LUE through PRI
	 9.	 GPP and NPP based on LUE and other process-based 

models using remotely sensed data as inputs

As we can clearly see, this is an exhaustive list of vegetation 
parameters that are widely used in a wide array of global and 
local studies such as the primary productivity of GPP and NPP, 
understanding ecosystems, and assessing degradation and 
changes over space and time (e.g., Figure 26.19). These products 
are often the most accurate data on vegetation and their charac-
teristics that feed into global change models and climate models.

26.21  Land Cover Change Detection

Remote sensing is an ideal way to observe, quantify, and moni-
tor land cover and land cover changes (LCLCC) over space and 
time. The advantage remote sensing offers is repeated coverage, 
synoptic views over large areas, global coverage, and the abil-
ity to study LCLCC in different resolutions or scales and using 
consistent data over time. Remote sensing does not directly pro-
vide information on land use but is inferred from land cover. So 
LULC studies are widespread through the use of a plethora of 
remotely sensed data. Many types of LULC applications are pos-
sible through remote sensing. These applications involve forests, 
grasslands, croplands, and so forth. The degree of detail one can 
study in LULC and LULC change (LULCC) will depend on the 
characteristics of remotely sensed data and their spatial, spectral, 
radiometric, and temporal resolution. Also, the degree of detail 
depends on methods, techniques, and approaches used in clas-
sifying and synthesizing. All these factors influence the details 
at which LULC and land use and land use change (LULUC) are 
mapped and their accuracies achieved (e.g., Figure 26.20).

Chapter 21 by John Rogan and Nathan Mietkiewicz provides 
a background on the importance of land cover change detection 
studies, outlines the theory and practice, enumerates on trends 
of change detection studies, outlines and discusses methods 
and approaches, and provides an assessment of map accuracy 
strategies. They show us how the 40+ years of spaceborne remote 
sensing archives, from various sensors such as 1–10 km AVHRR, 

250–1000 m MODIS, and 30 m Landsat, is helping us study and 
understand land cover trends in any part of the world. For exam-
ple, there is now a monthly continuous record of AVHRR Global 
Inventory Modeling and Mapping Studies (GIMMS) NDVI data 
for 30 years (1982–2012); Landsat 4–7 band data epochs of the 
1970s, 1980s, 1990s, 2000s, 2005s, and 2010s; also Landsat 4–7 
band record of 40 years (even through number of coverage for 
any location on the earth may differ widely); and 15-year record 
of MODIS (2–36 bands). Such a record has enabled land cover 
studies in various spatial, spectral, temporal, and radiometric 
resolutions.

Chapter 21 reviews the three types of change detection 
approaches: (1) monotemporal change detection where only 
a single image of an area is involved; (2) bitemporal change 
detection where two images, of two distinct dates, of an area 
are involved; and (3) temporal trend analysis where a continu-
ous series of images (e.g., monthly maximum value composites 
over 1 or more years) of an area are involved. They compare 
several automated change detection approaches that include 
(1) disturbance index, (2) MODIS global disturbance index, 
(3) Carnegie Landsat Analysis System–Lite (CLASlite) (a forest 
cover automated change detection algorithm), (4)  vegetation 
change tracker, and (5) Spatial Temporal Adaptive Algorithm for 
mapping Reflectance Change (STAARCH). They demonstrate 
the CLASlite method of change detection for three study areas 
(rural, urban, coastal) using Landsat images for eight eras (1985–
1993, 1993–1995, 1995–1999, 1999–2002, 2002–2009, 2009–2010, 
2010–2011, and 2011–2013) in Central Massachusetts. CLASlite 
method partitions each scene into proportional fractional cover 
types of bare ground (B), photosynthetic vegetation (PV), and 
NPV for every pixel. They use very high spatial resolution data 
(submeter to 5 m) obtained from Google Earth as reference data 
to establish forest versus nonforest class accuracies using classic 
error matrices.

26.22 � Radar Remote Sensing in Land 
Use and Land Cover Mapping 
and Change Detection

Radar remote sensing has some unique features such as cloud 
penetration and all-day imaging ability (since it is an active sen-
sor) when compared with optical remote sensing. Radar data 
are acquired over 0.3–100 cm wavelength, in one or more of the 
four polarization (HH, HV, VH, VV), three modes (SpotLight, 
StripMap, and ScanSAR), various incident angles, repeat fre-
quency, and resolutions (range and azimuth). Radar data are 
also processed at various levels: slant range data, ground range 
data, and geocoded and orthorectified data. How the radar data 
are acquired and processed is important in determining what 
applications are these data used. An application such as change 
detection and interferometry requires radar data acquisition 
to have identical parameters (e.g., orbit, incidence angle, and 
polarization). In Chapter 22, Dr. Zhixin Qi and Dr. Anthony 
Gar-On Yeh discuss a number of applications of radar data that 
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Figure 26.19  Terrestrial Earth couple climate–carbon spatial variability and uncertainty. Climatic types influenced by NPP MODIS (left 
hand) and GPP MODIS (right hand). (From Alves, M.C. et al., Global Planetary Change, 111, 9, 2013, ISSN 0921-8181, http://dx.doi.org/10.1016/j.
gloplacha.2013.08.009.)
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Figure 26.20  Tivoli Bays land cover map produced using IKONOS data with two methods: (a) Method 1 relied solely on the four spectral bands 
(blue, green, red, near infrared) of the IKONOS image.� (continued )
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include LULC classification, forest inventory and mapping, crop 
and vegetation identification, urban environments, snow and 
ice, and a number of others. These studies are reported based 
on data acquired in various frequencies and wavelengths by a 
wide array of spaceborne SAR sensors such as Environmental 
Satellite Advanced Synthetic Aperture Radar (Envisat ASAR), 
TanDEM-X, TerraSAR-X, RADARSAT constellation, ERS, 
Japanese Earth Resource Satellite (JERS), ALOS PALSAR, and 

COSMO-SkyMed. Chapter 22 highlights the following strengths 
of SAR data in various applications:

	 1.	 LULC classification: A wide array of SAR data have been 
used in classifying forest types (e.g., primary, secondary, 
slash and burn agriculture, regrowth or regenerative for-
ests, plantations) or LULC classes (e.g., cropped areas, 
bare soil areas, forestry, forest clear cut, forest burnt areas, 
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Figure 26.20 (continued )  Tivoli Bays land cover map produced using IKONOS data with two methods: (b) Method 2 used a maximum-likelihood 
classification of the four spectral bands, supplemented by local texture information (variance) calculated in a moving 3 by 3 pixel (Method 2) or 5 by 
5 pixel (Method 3) window, superposed separately on each band of the IKONOS image. Ultimately, eight bands were used in the classifications for 
Method 2. (From Laba, M. et al., Remote Sens. Environ., 114(4), 876, 2010, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2009.12.002.)
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water bodies). A large number of LULC classes as men-
tioned earlier are, for example, mapped when single date 
ALOS PALSAR fine/dual beam is combined with multi-
temporal Envisat ASAR. Some studies have shown overall 
classification accuracies as high as 87% for several land 
cover classes such as built-up areas, water, barren land, 
crop/natural vegetation, lawn, banana fields, and forests 
by combining the SAR textural, polarimetric, and inter-
ferometric information extracted from RADARSAT-2 
polarimetric SAR (PolSAR) images. Combining multi-
ple-frequency SAR scenes (e.g., L band, P band, PolSAR, 
polarimetric interferometry SAR) and fusing them pro-
vided greater accuracies in LULC classification than using 
single-frequency SAR images. Numerous studies have 
reported significant improvement in classification accura-
cies when radar data are combined with optical data.

	 2.	 Forest species identification has been successfully per-
formed using SAR data with multiple incident angles and 
variation of backscatter coefficient in various incident 
angle.

	 3.	 Crop classification: Crops such as corn, soybeans, cere-
als, and hay pasture are classified with 70%–89% accu-
racy with SAR data, with accuracies increasing with an 
increasing number of temporal coverage and multiple 
frequencies.

	 4.	 Biophysical characterization of forests have been con-
ducted using interferometric coherence maps derived 
from ERS-1 and ERS-2 SAR images and from JERS-1 SAR 
images.

	 5.	 Urban applications: Increased accuracies in urban map-
ping was possible when very high resolution optical imag-
ery (e.g., ,QuickBird) is combined with SAR data.

Radar data have also been used extensively for AGB estimations 
and for carbon stock assessments (e.g., Figure 26.21). However, 
radar data have high noise and large geometric distortion rela-
tive to optical imagery, hence requiring its own specialized 
algorithms to process data. This is nowhere as developed as for 
optical sensors (Nolte et al., 2001).

Radar data can provide complementary/supplementary infor-
mation to optical remote sensing to advance our understanding 
and better map, model, and monitor land themes. So wherever 
feasible, it is better to use optical and radar data to complement/
supplement information of each sensor type.

26.23 � Global Carbon Budgets 
and Remote Sensing

The global carbon budget consists of four terms, atmosphere, 
land, oceans, and fossil fuels, as presented by Dr. Richard 
Houghton in Chapter 23. The long-term net flux of carbon 
between terrestrial ecosystems and the atmosphere has been 
dominated by two factors (Chapters 15 through 19 and 25): (1) 
changes in the total area of forests and (2) per hectare changes 
in forest biomass resulting from management and regrowth. 

Apart from regional level uncertainties, the carbon flux of tropi-
cal forests is greatly influenced by uncertainty in the regenera-
tive capacity of forests and in harvest and management policies 
(Chapters 23 and 24).

Chapter 23 highlights the need to keep track of global car-
bon budget annually in order to determine how much carbon is 
emitted to the atmosphere, how much is absorbed by land and 
oceans, and how much stays in the atmosphere. Currently, of the 
32 billion tons of carbon (C) emitted to the atmosphere each year 
due to anthropogenic activity, tropical forests sequester about 
4.25 billion tons, soils and other vegetation another 4.25 billion 
tons, and oceans 8.5 billion tons, leaving the residual 15 billion 
tons in the atmosphere (Lewis et  al., 2009). Also, land use 
change, mainly from deforestation in the tropics, is responsible 
for estimated net emissions of about 6 billion tons of greenhouse 
gases—greater than the emissions from all the world’s planes, 
ships, trucks, and cars (Lewis et al., 2009, see also Chapters 14 
through 17). Dr. Richard Houghton points out that the fraction 
of carbon that remains in the atmosphere has been remarkably 
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Figure 26.21  Biomass assessment in the Cameroon rainforests 
and savannas using ALOS PALSAR data. Pixels saturate at 150 Mg/ha. 
Dense forest classes were masked out using the GlobCover 2009 land 
cover map (Bontemps et al., 2011). Figure shows the north–south AGB 
gradient. (From Mermoz, S., Remote Sens. Environ., Available online 15 
May 2014, ISSN 0034-4257, http://dx.doi.org/10.1016/j.rse.2014.01.029.)
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constant over the last 50 years, with the increase in emissions 
compensated by an increase in sinks on land and in the oceans. 
Estimates of C storage in terrestrial ecosystems are still very 
approximate. For example, Lewis et  al. (2009) report a wide 
range (0.29–0.66 Mg C/ha/year) in tropical forest C storage. The 
Wet Tropical Asian Bioregion forests, for example, contain high 
C density of up to 500 Mg/ha (Lasco, 2004) but are changing 
rapidly due to selective logging, forest conversion to agriculture 
resulting in C density of less than 40 Mg/ha, and conversion to 
plantations (agroforests), which are responsible for at least a 50% 
decline in forest C density.

In order to track carbon sources and sinks from land, first, 
Chapter 23 discusses the bookkeeping model of early days, which 
uses annual rates of land cover change and standard growth and 
decomposition rates per hectare to calculate annual changes in 
carbon pools as a result of management. This highly aggregated 
approach did not use remote sensing as input but was based 
on statistics available from national and international sources, 
which were subjective and approximate.

The current approach to global carbon budgets enumerated 
by Dr. Houghton in Chapter 23 is “based on two broad types 
of explanatory mechanisms [that] account for the loss and 
accumulation of carbon on land: (1) disturbances and recovery 
(structural mechanisms) and (2) the differential effects of envi-
ronmental change (e.g. CO2, N deposition, climate) on photosyn-
thesis and respiration (metabolic mechanisms).” This approach 
uses significant remote sensing. The flux of carbon from LULCC 
is based on disturbances and recovery, especially from medium 
resolution (30–100 m). Analyses include

	 1.	 Rates of change in forest area
	 2.	 Biomass density
	 3.	 Measurement of changes in carbon density

Houghton presents an example of estimating flux of carbon 
from LULCC taking the UNFCCC REDD+. Under this mecha-
nism, when a country reduces emissions, it is eligible for carbon 
credits. I recommend readers to pay attention to the nine issues 
inherent in estimating the flux of carbon from LULCC outlined 
by Dr. Richard Houghton in Chapter 23. These nine issues are

	 1.	 Definitions
	 2.	 Assigning a carbon density to the areas deforested
	 3.	 Committed versus actual emissions
	 4.	 Gross and net emissions of carbon from LULCC
	 5.	 Initial conditions
	 6.	 Full carbon accounting
	 7.	 Accuracy and precision
	 8.	 Attrition
	 9.	 Uncertainties

Opportunities to significantly improve estimates of C storage 
and flux through improved estimates of LUC and modeling 
are possible with the evolution in spaceborne hyperspectral, 
hyperspatial, and advanced multispectral sensors, as a result 
of improvements in the spatial, spectral, radiometric, and tem-
poral properties as well as in optics and signal-to-noise ratio of 

data (e.g., Figure 26.22). High spatial resolution allows location, 
while high spectral resolution allows identification of features. 
Hyperspectral remote sensing sensors allow direct measure-
ment of canopy chemical content (e.g., chlorophyll, nitrogen), 
forest species, chemistry distribution, timber volumes, and water 
and improved biophysical and yield characteristics (Chapter 18). 
Thenkabail et  al. (2004a) demonstrated an increased accuracy 
of about 30% in LUC and biomass when 30 hyperspectral wave-
bands are used relative to six nonthermal Landsat TM bands. 
Hyperspatial data have demonstrated the ability to extract indi-
vidual tree crowns from 1 m panchromatic data. Agroforest suc-
cessional stages have been mapped and their varying carbon sink 
strengths assessed using IKONOS (Thenkabail et al., 2004b). In 
contrast, forest structure variables (e.g., biomass, LAI) are poorly 
predicted by the older-generation sensors. One also has to look 
at the new Orbiting Carbon Observatory-2 launched in 2014 to 
study CO2 in the column of air over the Earth’s surface, which 
will further advance our understanding of CO2 sources and sinks.

26.24  Spectral Sensing of Soils

Spectral sensing implies gathering near-continuous or noncontin-
uous spectral data of targets as images or spectral behaviors from 
different platforms (i.e., remote and proximal sensing). Depending 
on the level of acquisition, we classified spectral sensing into labo-
ratory spectral sensing (LSS), field spectral sensing (FSS), ground 
spectral sensing (GSS), aerial spectral sensing (ASS), and space 
spectral sensing (SSS). Chapter 24 by José A.M. Demattê dwells 
deep into how soils can be evaluated by spectral sensing using 
platforms from ground to space. The chapter shows a new way to 
see soils and study their characteristics by spectral sensing point 
of view. In this way, the chapter indicates the study of soil proper-
ties of all types such as soil organic matter and carbon, pH, plant 
nutrients (e.g., N, Ca, Mg, K, P, and Na), soil particle size (clay, 
sand, and silt) content, moisture, and color. A large portion of the 
chapter includes summaries on how the spectral bands and indi-
ces are correlated with soil properties using linear and nonlinear 
modeling. Linear modeling includes statistical methods involving 
linear and multilinear regressions, principal component analyses, 
and partial least squares regression. Nonlinear modeling methods 
include SVM, boosted regression trees, and artificial neural net-
works. An extensive discussion of literature shows how various 
wavebands (absorption features) in spectral sensing help decipher 
soil information. What is important to note is that one to multiple 
wavebands or indices can be used to obtain important correla-
tions with soil properties (typically, R2 of 0.80 or above). For exam-
ple, the most important wavebands for predicting soil water are 
1350–1450, 1890–1990, and 2220–2280 nm. Minerals like goethite 
and hematite are predicted with R2 values as high as 0.8 using a 
simple spectral band depth calculation in the visible wavelengths.

As also pointed out in the chapter, no single problem has 
plagued soil scientists more than the identification of the spa-
tial boundaries of an individual soil body on the landscape (e.g., 
Figure 26.23). Chapter 24 by José A.M. Demattê demonstrates 
several strategies on how to use spectral data to assessment soils 
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indicating advantages and limitations of each platform. It further 
demonstrates the ability of spectral sensing to assist and produce 
accurate (approximately 80%) pedological maps comparable to 
traditional approaches. The aspect of studying soils from veg-
etated areas involves their use and coverage, and PV and NPV 
and has been discussed in this chapter. Use of soil mapping for 
precision farming needs detailed spatial information of soil physi-
cal and chemical properties like nutrient status and water-holding 
capacity where field spectral sensing has been applied. Soil con-
servation requires a large-scale understanding of relief and slope, 
erosion susceptibility, drainage systems, and vegetation cover, 
which aerial and space spectral sensing can be very useful. Study 
of soil profiles at depths up to 2 m can employ new ground-pen-
etrating spectral sensing equipments that will help establish soil 
information. Gamma ray spectroscopy helps produce fast and 
cost-effective soil maps for soil properties associated with parent 
material. Radar helps penetrate soils to few centimeters to study 
soil moisture, salinity, and other properties. Further, this chapter 
deals with variations about the study of soil properties from differ-
ent platforms as well as building spectral libraries from these data. 
The chapter also indicates on how to use spectral sensing asso-
ciated with pedotransference system to build pedological maps. 

An exciting option, going forward, is the expected launch of vari-
ous hyperspectral sensors in coming years. These sensors include 
EnMAP (Germany), Hyperspectral Imager Suite (Japan), HyspIRI 
(United States), Hyperspectral-X Imager (France), PRecursore 
IperSpettrale della Missione Applicativa, Hyperspectral PRecursor 
of the Application Mission (PRISMA) (Italy), and Spaceborne 
Hyperspectral Applicative Land and Ocean Mission (Israel–Italy). 
The idea of spectral sensing from space and building spectral 
libraries for soil applications is an exciting one, given the unifor-
mity of such a data collection on a routine temporal basis.

26.25  Soil Studies from Remote Sensing

Soils are foundation of agriculture and all vegetation on the 
planet and have any number of other uses in preserving our 
environments and sustaining our livelihoods. Ideal soils for 
agriculture are balanced in contributions from mineral compo-
nents (sand, 0.05–2 mm; silt, 0.002–0.05 mm; clay, <0.002 mm), 
soil organic matter, air, and water (Parikh and James, 2012). Soils 
are also places that house many living beings such as microbes, 
fungi, earthworms, and mites. So the study of basic soil proper-
ties and understanding their fertility and soil degradation are 
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Figure 26.22  Total carbon stock of aboveground forest biomass for the European Union countries calculated separately for broadleaves and 
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of utmost importance for agriculture, carbon storage, biomass 
sustainability, and livelihood of plants, animals, and humans. 
Soil formation is a result of five factors (climate, parent material, 
time, organic matter, and topography) that leads the world soils 
to vary widely, from location to location, even within a small 
area. Soil formations have occurred over thousands of years 
and are heavily influenced by climate as enumerated by the 
International Soil Reference and Information Centre (ISRIC). 
The ISRIC defines the soils of the world into the following broad 
climate-driven themes: (1) tropical soils, strongly weathered and 
leached with low nutrient with only lush vegetation to replenish 
soils; (2) arid soils, low precipitation and high evapotranspiration 

leading easily soluble components like calcium carbonate and 
gypsum left behind after evaporation of water; (3) temperate cli-
mate soils, soil formation restricted to the warmer part of the 
season and hence less deep, but less weathered; (4) subarctic and 
northern temperate soils, melting of large glaciers from last ice 
removed most of the soils and hence new soils have formed after 
the ice retreat and hence are relatively young and immature; 
and (5) arctic climate soils, soil formation is highly restricted 
and is permanently frozen (permafrost). So a global or a local 
study of soils using a wide array of satellite sensors is considered 
both cost effective and powerful (World Reference Base for Soil 
Resources; Figure 26.24, FAO-GIS, 1998).
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In Chapter 25, Dr. Eyal Ben Dor and Dr. Jose Demattê pro-
vide a comprehensive assessment of soil studies using optical 
remote sensing. They show us how remote sensing is used widely 
and successfully, to map soil’s properties: (1) organic matter, 
(2) salinity, (3) degradation and change, (4) moisture, (5) car-
bonates, (6) contamination, (7) aggregation, and roughness, (8) 
sealing, (9) classification and taxonomy, and (10) pedomapping. 
It is clear from their synthesis that much of success is achieved 
in characterizing, and/or quantifying, and/or mapping surface 
soil moisture, organic matter, texture, and color. Organic matter 
has spectral activity throughout the entire visible (VIS)–near-
infrared (NIR)–SWIR region. Researchers have shown wave-
lengths such as 425–695, 500–1200, 900–1220, 1926–2032, and 
1726–2426 nm as effective in soil organic matter studies. Saline 
versus nonsaline soils as well as salinity types (e.g., saline, alka-
line) and salinity degrees (e.g., low, moderate, high) are success-
fully delineated using optical remote sensing using data from 
the VIS–NIR–SWIR spectrum. However, often the uses of mul-
tiple bands across 400–2500 nm when used to classify and deter-
mine soil properties provide far better results. This may involve, 
for example, the use of 10 or 20 HNBs used to classify an area 
and determine soil characteristics like organic matter, salinity, 
and moisture. However, optical data can only penetrate soils to 
some degree, resulting in measuring, to most extent, only sur-
face properties. In a summary of all soil applications obtained 
from remote sensing, they concluded that the optical region is 
the most widely used. Nonetheless, a soil study conducted using 
nonoptical remote sensing has great value but accordingly is not 

part of Chapter 25. For example, thermal data are, often, used 
in determining salt effects and soil moisture. Microwave (both 
active and passive) data are widely used to quantify and map sur-
face soil moisture as well as near-surface (<20 cm) soil moisture.
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A

ABAs, see Area based approaches (ABAs)
Aboveground biomass (AGB), 451, 475, 798

airborne/spaceborne multispectral, 61
vs. belowground biomass, 49–50
biome-averaged method, 49–51
direct method, 50–51
ECV, 48
LiDAR

airborne/spaceborne, 61
Global Ecosystem Dynamics 

Investigation LiDAR, 63
ground-based data, 53–54
large-footprint LiDAR system, 

53–54, 58
LVIS, 53–54, 58
mean AGB and RSE values, 61–62
small-footprint LiDAR system, 

53–54, 58
strengths and limitations of, 55

multisensor fusion, 59–61
optical remote sensing

ASTER, 52–53, 56
AVHRR and MODIS, 52–53, 56
AVIRIS and EO1 sensors, 52–53
ETM+, 52–53
land cover classification maps, 56
Landsat images, 52–53, 56–57
MISR, 57
QuickBird imagery, 57
strengths and limitations of, 55

prediction methods, frequency 
distribution of, 54–55

radar sensors
airborne/spaceborne, 61
ALOS-PALSAR(2), 52–53
ALOS/PALSAR data, 52–53, 57
ENVISAT, 52–53, 57
ERS, 52–54
HV- and HH-polarized backscatter, 57
PolInSAR, 57
RADARSAT, 52–53, 57
strengths and limitations of, 55
TerraSAR-X, 52–53
X-band InSAR, 57

species-based allometric method, 
50–51

tree-based models, 55

vegetation AGB, definition of, 49
woody volume and density based 

allometric method, 50–52
Aboveground carbon density (ACD), 437, 

646–647, 653, 816
Aboveground live tree biomass (AGLB)

accumulation rate, 376–377
high-resolution imagery, 375–376
single image epoch, 377–378

Aboveground net primary production 
(ANPP), 4, 6–7

Absorbed photosynthetically active radiation 
(APAR)

biochemical properties, 816
crops, 83–84
GPP, 9, 13–14
LUE, 559
vegetation, 5–6, 436

ACCA, see Automated cropland classification 
algorithm (ACCA); Automatic 
Cloud Cover Assessment (ACCA)

ACD, see Aboveground carbon density (ACD)
Adenosine triphosphate (ATP), 435
Advanced Land Observing Satellite (ALOS), 

52–53, 57, 645
Advanced Land Observing Satellite-2 

(ALOS-2), 629
Advanced spaceborne thermal emission and 

reflection radiometer (ASTER), 
52–53, 56, 371

AGB and carbon stock estimates, 52
land cover change detection, 585
soil samples, 687

Advanced very high resolution radiometer 
(AVHRR), 6, 76, 78, 535–536, 551, 
607, 652

AGB and carbon stock estimates, 52–53, 56
ecological resilience, 331
food security, LSP studies, 356
global ecosystem models, 290
land cover change detection, 582–583
rangeland monitoring and assessment

global land cover, 262–264
NDVI, 253
TIROS-N, 241

Advanced wide field sensor (AWiFS), 290, 
369, 371

AGB, see Aboveground biomass (AGB)
Aggregation index (AI), 330

AGLB, see Aboveground live tree biomass 
(AGLB)

Agriculture and resources inventory surveys 
through aerospace remote sensing 
(AgRISTARS), 800

Agriculture, remote sensing
accuracy metrics, 125
adaptations, 73
agricultural challenges, 73, 800

environmental impacts, 74
food security challenges, 113
increasing crop production, pathways 

for, 75–77
increasing global food demand, 74–75
natural resources management, 

improvement of, 113
AgRISTARS, 800
agro-forestry in Bali (see Agroforestry, 

in Bali)
arable farm types, distribution of, 

800–801
broad-scale remote sensing data, 125–126
crop acreage estimation, 74

accuracy, 97
crop mapping, 92–94
crop masks, 90
fractional abundances, 94–96
LULC maps, applications of, 90
NLCD, 90
OBIA (see Object-based image analysis 

(OBIA))
regional-scale cropping patterns, 90
soybean mapping, BN approach, 96–97

crop development and phenology
curve-fitting approach, 100
Fourier transforms, 100
LSP products applications, 98–99
maximum of season (MOS), 98–99
start of season (SOS), 98–99
temporal variability of vegetation 

biomass, 97–98
vegetation green-up and senescence 

timing, 100
wavelet transform, 100

cropping systems, 116
data, use of, 73
double cropping, southeastern Amazon 

(see Double cropping, in 
southeastern Amazon)

Index
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farming systems, 114–115
food price volatility and spikes, 73
GEOBIA and ontologies, 126
GEOGLAM initiative, 101–102
H- and L-resolution model, 125
information needs, 73–74
LACIE, 799
landscape agronomy research, 126–127
landscape metrics, 117
land use system mapping, 114–116
LULC mapping, 116
monitoring systems, 100–101, 800
monthly wheat prices (1960–2011), 72
precision farming (see Precision farming, 

remote sensing)
radiometric-based methods, 116–117
rain-fed agriculture, in Mali, 800, 802

farming system map, 120
food security systems, 

deliverables of, 120
MODIS spatial resolution, 121
Pareto boundary method, 125
random forest, classification 

accuracy, 124
typology, data, and methods, 120
village-based farming systems, 

122, 124
recommendations, 102
spatial allocation models, 118
strengths and applications of, 74
temporal resolution, 125
traditional and intensive agricultural 

systems, 118
world’s agricultural production, 113
yield and biomass assessment, 74

CGMs (see Crop growth models 
(CGMs))

Monteith’s light-use efficiency 
equation, 83–85

qualitative crop monitoring, 78–80
regression-based yield prediction, 

80–83
yield-correlation masking, 88–90

Agroforestry, in Bali, 800
agrosystem map, 120–121
areal altimetry distribution, 121–122
cash-crop vulnerability, 118
coffee, quality notation rate, 119
digital elevation model, 119
QuickBird image visual interpretation, 

119–120
small stakeholders’ agroforestry, 118
typology, data, and methods, 120

Agro-meteorological modeling, see Crop 
growth models (CGMs)

Airborne hyperspectral remote sensing
AVIRIS, 203
HyMap imagery, 203–204

Airborne imaging spectroscopy (AIS) sensor, 
430, 755

Airborne imaging system for different 
applications (AISA) Eagle camera, 
171, 213, 228

Airborne laser scanning (ALS), 401, 405, 
409–410, 414–415, 420

single-tree biomass modeling, 816–817
tree and stand heights

vs. photogrammetric products, 
463–465

time series of, 476
vegetation height measurements, 

458–460
Airborne synthetic aperture radar (AIRSAR), 

624, 626
Airborne visible infrared imaging 

spectrometer (AVIRIS), 203
clay, 711
hyperspectral sensors, 203, 287
leafy spurge, 242
plant species, 287
soil

mineralogy, 688
moisture, 762
properties, 692–693
surface moisture content, 762–763
types, 775

vegetation types, 333
AIS sensor, see Airborne imaging 

spectroscopy (AIS) sensor
Allometries, 450
Along-Track Scanning Radiometer (ATSR-2), 

250, 809
ALOS, see Advanced Land Observing Satellite 

(ALOS)
ALS, see Airborne laser scanning (ALS)
Analytical spectral devices (ASD), 211, 

752, 764
Beech vs. Poplar forests, 203
crops, 205–206
tree spectra, 202

Animal biodiversity, 282, 285, 287
ANNs, see Artificial neural networks (ANNs)
APAR, see Absorbed photosynthetically 

active radiation (APAR)
Aphid index (AI), 168, 805
Area based approaches (ABAs), 408–409, 815
Area diversity index (ADI), 117
Area fraction images (AFI), 95
Aridity index (AI), 245, 259
Artificial neural networks (ANNs), 212, 

334, 676
ASD, see Analytical spectral devices (ASD)
Assessment of the Status of Human-induced 

Soil Degradation in South and 
Southeast Asia (ASSOD), 247

ASTER, see Advanced spaceborne thermal 
emission and reflection radiometer 
(ASTER)

Atmospheric removal program (ATREM), 287
Australian Collaborative Rangelands 

Information System (ACRIS), 280
Australian rangelands

ACRIS, 280
BioCondition, 280
BioMetric, 281
Habitat Hectares method, 280–281

Australian Resource Information and 
Environment Satellite, 716

Automated cropland classification algorithm 
(ACCA), 142–145

Automated Monte Carlo Unmixing 
(AutoMCU), 588, 591–592

Automatic Cloud Cover Assessment (ACCA), 
372–373

AVHRR, see Advanced very high resolution 
radiometer (AVHRR)

AVIRIS, see Airborne visible infrared 
imaging spectrometer (AVIRIS)

B

Bayesian networks (BNs) approach, 29, 96–97
Bayes’s theorem, 96
Bidirectional reflectance distribution 

function (BRDF), 375, 752
Bidirectional reflectance factor (BRF), 28, 35
BioCondition, 280–281
Biodiversity Multi-Source Monitoring 

System: from Space to Species 
(BIO_SOS), 507–509, 523–524, 818

Biodiversity, spaceborne sensors, 490, 817
mapping, 498

animals, 491–492
individual trees, 491
invasive species, 490–491
Landsat 8 satellite, 496
lidar sensors, 497–498
MODIS sensors, 497
NASA Landsat series, 496
radar sensors, 497
species assemblages, 492–493
vegetation types, 490–491

modeling, 498
active spaceborne sensors, 495
land cover and diversity, 

493–494
Landsat 8 satellite, 496
lidar sensors, 497–498
MODIS sensors, 497
multiple passive sensors, 495
NASA Landsat series, 496
NDVI, 494–495
radar sensors, 497
species distribution, 493–494

monitoring, 498
forest cover and forest cover change, 

495–496
land cover, 496–497
Landsat 8 satellite, 496
lidar sensors, 497–498
metrics, 495
MODIS sensors, 497
NASA Landsat series, 496
radar sensors, 497

BioGeochemical Cycles (BIOME-BGC) 
model, 9–10, 15

Biome-properties look-up table (BPLUT), 9
BioMetric, 281
Biophysical settings (BPS), 319–320
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BIO_SOS, see Biodiversity Multi-Source 
Monitoring System: from Space to 
Species (BIO_SOS)

Bookkeeping model, 641–642, 825
Brazilian Low Carbon Agriculture (ABC) 

Program, 113
BRDF, see Bidirectional reflectance 

distribution function (BRDF)
Brightness, greenness, and wetness 

(BGW), 325
Brightness temperature (BT), 250, 373, 668

C

CAI, see Cellulose absorption index (CAI)
Canopy biophysical variables

FAPAR, 24–25
GLAI, GAI, and PAI, definitions of, 24–25
leaf area index, definition of, 24–25
PROSAIL, SAIL, and PROSPECT, 794
radiative transfer model (see Radiative 

transfer model inversion method)
theoretical estimation performances, 

30–31
Canopy chlorophyll content index (CCCI), 165
Canopy height model (CHM), 58, 407, 

415–416, 815
modeling and optimization, 471–472
tree apices detection, LM, 472
tree crowns measurement, 472–473

Canopy height profile (CHP), 58
Carbon stock estimates, 795–799; see also 

Aboveground biomass (AGB)
biome-averaged method, 50–51
direct method, 50–51
ECV, 48
lidar (see Light detection and ranging 

(LIDAR))
multisensor fusion, 59–61
optical remote sensing (see Optical 

remote sensing)
passive optical remote sensing data, 52
radar sensors (see Radio detection and 

ranging (Radar))
species-based allometric method, 50–51
terrestrial carbon cycle, 48
tropical rain forests, 48–49
woody volume and density based 

allometric method, 50–52
Carnegie Landsat Analysis System-Lite 

(CLASlite)
atmospheric correction and cloud 

masking, 589
AutoMCU, 588
computation time, data type, and 

functionality, 588
image calibration and mosaic 

multiimage, 589
in Massachusetts

deforestation and disturbance 
mapping, 591–592, 597

forest cover mapping, 591, 593
Gardner, forest change, 592, 594

Kappa values and Cramer’s V 
statistics, 591, 595

MaFoMP maps, 591, 595
pixel agreement, 591, 595
rural, urban and coastal landscapes, 

591–593
scene date, 590–591
spatial location and sensor type, 

590–591
2011 tornado disturbance, 

592–593, 596
use and cost, 588

Cation exchangeable capacity (CEC), 662, 686
CBD, see Convention on Biological 

Diversity (CBD)
CCD, see Charge-coupled device (CCD)
CEC, see Cation exchangeable capacity (CEC)
Cellulose absorption index (CAI), 183–185, 

710, 807
CERES model, 86
CGMs, see Crop growth models (CGMs)
Change detection analysis, rangeland, 

758–759, 812
aim of, 332
area distribution pattern metrics, 328–329
chi-square transformations, 335
classification methods

ANPP and the NDVI, 334
DT classifier, 334–335
fuzzy methods, 334
HMM, 332
ISODATA clustering, 332–333
K-means methods, 332
MAD, 333
MDM, 332
MESMA and SMA, 333
MLC, 332–334
PAR, MID, and NN, 332–333
SAC, 333

conditions, 332
contagion/interspersion, 329–330
core area, 329
ecological resilience, 331
ecological sites

elevation vs. aspect, 337–338, 340
elevation vs. slope, 337–338, 340
Landsat TM imagery, 335
NAIP, 336
NDVI value, 336–339
NRCS, 335
pixel basis, 338
Rich County, USA, 336–338
sdNDVI, 336–339

Gramm–Schmidt transformation, 335
grazing management, 331
image differencing and ratioing, 335
landscape-scale monitoring, 331–332
mean proximity index, 329
patch shape complexity, 329
rangeland indicators, 327–328
seasonal conditions, 331
selection of, 332
spatial heterogeneity, 330–331

standardized and nonstandardized 
PCA, 335

TC transformation, 335
TE and MPE, 329

Charge-coupled device (CCD), 192, 
736–737, 742

Charge transfer, 745
Chemical chromophores

carbonates, 747
clay minerals, 746–747
electron processes, VIS–NIR region, 

745–746
iron, 748
organic matter, 747–748
physical mechanism, 745
salts, 748–750
vibration processes, SWIR region, 745
water, 748

China–Brazil Earth Resources Satellite 
(CBERS), 369, 371

Chlorophyll fluorescence (ChF), 557, 559
CHM, see Canopy height model (CHM)
Citizen science, 267
CLASlite, see Carnegie Landsat Analysis 

System-Lite (CLASlite)
Clean Development Mechanism (CDM), 

368–369
Cloud screening

Landsat TM imagery, 372–374
manual and semiautomated 

approaches, 372
MODIS imagery, 374–375
observations, percentage of, 372
SPOT imagery, 373–374

Coherent change detection (CCD), 192, 420
Color centers, 745
Combined PROSPECT and Scattering 

by Arbitrarily Inclined Leaves 
(PROSAIL) model, 282, 794

Commonwealth Scientific and Industrial 
Organisation (CSIRO), 241

Compact airborne spectrographic imager 
(CASI), 334, 757, 772

Composite burn index (CBI), 251–252
Conditioned Latin hypercube (cLHS) 

algorithm, 675
Conservation Technology Information Center 

(CTIC), 180–181
Contributing missions, 506
Convention on Biological Diversity 

(CBD), 506
Coordination of Information on the 

Environment (CORINE) 
program, 580

Copernicus land monitoring service, 509
Core area (CA), 329
Crop Circle ACS 430 sensor, 167
Crop Circle ACS 470 sensor, 167
Crop growth models (CGMs)

CERES, 86
characteristics, 85
CROPSYST, 86
deterministic, 86
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environmental driving variables, 85
forcing method, 86–88
OILCROPSUN, 86
parameterization/initialization, 86
recalibration/re-parameterization 

approach, 86–87
reinitialization of, 86–87
SAFY and GRAMI, 86
spatialized information, 86
state variables, 85
STICS, 86
updating method, 86–87
water and energy balance modules, 86

Cropland area fraction (CAF), 138
Cropland data layer (CDL), 357, 

802–803
Cropland mapping, 802–803

ACCA method, 142–145
AWiFSMODIS, 150
change vector analysis, 142
class identification and labeling process, 

142, 145
cropland extent, 138
cropland pixel, 138
cropping intensity, 138
crop type, 138
decision tree algorithms, 142
FFCS method, 150
field-plot data, 138, 141
finer spatial resolution, 150
GCAD, 133–134
global cropland products (see Global 

cropland products)
global geospatial information system, 134
high temporal resolution data, 152
irrigated and rain-fed cropland maps, 

134–135
irrigation, definition of, 138
ISDB, creation of, 142
land use and land cover, 

134–135
MFDC, 140–142
minimum mapping unit, 138
phenology, 142
primary satellite sensor data, 

138–140
rain-fed areas, definition of, 138
Resourcesat\Landsat, 150
secondary data, 138
SMTs algorithms, 142–143, 152
south Asia, rice map of, 150, 155
space-time spiral curves, 142
total global cropland area, 134
VHRI data, 140–141

Crop scouting, 163–164
Crop-specific normalized difference 

vegetation index (CNDVI), 83
CROPSYST, 86
Crop Watch Program, 101
Crop water stress index (CWSI), 163
Cultivated land utilization index (CLUI), 117
Cumulated maximum normalized difference 

vegetation index (cumNDVI), 354

D

Damage sensitive spectral index (DSSI), 
166, 168

Dark object subtraction technique, 210
DASF, see Directional area scattering 

factor (DASF)
Data mining, 807

Hughes’s phenomenon, 210, 212
hyperspectral data analysis, 210, 212–213
tree-based models, 55

DATT index, 165
Decision tree (DT), 91–92, 334–335
Deforestation, 648
Derivative hyperspectral vegetation indices 

(DHVIs), 219–220
Desertification, land degradation, and 

drought (DLDD), 245
Diameter at breast height (DBH), 49, 51, 453
Differenced normalized burn ratio (dNBR), 

251–252
Digital elevation model (DEM), 325
Digital photogrammetry (DP)

vs. ALS products, 463–465
development of, 461
principle of, 460–461
time series of, 476
tree height, 462–463

Digital surface model (DSM)
canopy height, 398, 406–407
land cover–dependent approach, 414
surface roughness, 414

Digital terrain model (DTM), 406–407, 459
Directional area scattering factor (DASF), 433
Disaster Monitoring Constellation 

(DMC), 290
Disturbance index (DI), 588–589
Double cropping, in southeastern Amazon, 800

commercial agriculture, 120
cropping systems, maps of, 122–123
crop types, harvests, 122–123
land use systems, 122–123
MODIS-based approaches, 120–121
net cropped areas, 120
typology, data, and methods, 120

Double Hough transformation (DHT), 170
DP, see Digital photogrammetry (DP)
DSM, see Digital surface model (DSM)
DTM, see Digital terrain model (DTM)
Dubois model, 194

E

Earth observation data for habitat monitoring 
(EODHaM) system, 523

Earth observation satellites
biodiversity, 498

Landsat 8 satellite, 496
lidar sensors, 497–498
MODIS sensors, 497
NASA Landsat series, 496
radar sensors, 497

cropland area database, 82–803

Earth Observing-1 (EO-1) Hyperion data
arid land characterization, 224
first spaceborne civilian hyperspectral 

sensor, 203, 205
HSI sensor, 430
porphyry copper belt, 216, 222, 226
salt-affected soils identification, 697, 760
soil attributes, 681–683
3D cubes, 208–209
tree composition, 491

Earth Resources Technology Satellite (ERTS), 
239–240, 593

Electron transport rate (ETR), 435
Ellenberg indicator values, 695
Enhanced vegetation index (EVI), 

551–553, 794
vs. ANPP, 6–7
biomass, 253
chlorophyll spectral indices, 12
cropping systems, 125
GPP, 10–11
G–R models, 13
LST, 12
PARtoc measurements, 13
rangeland phenology and productivity, 811
VPRM, 13–14

Environmental Mapping and Analysis Program 
(EnMAP), 431, 716–717, 807

clay content, topsoils, 688–689
tillage assessment, 188

EO-1 Hyperion data, see Earth Observing-1 
(EO-1) Hyperion data

EPO, see External parameter 
orthogonalization (EPO)

Equivalent water thickness (EWT), 433–434
ESA’s Ecosystem Changes through Response 

Analysis, 716
Essential climate variable (ECV), 48
ETR, see Electron transport rate (ETR)
Eucledian distance similarity (EDS), 142
EU Habitats Directive, 509, 511
European Nature Information System 

(EUNIS), 509, 518
EVI, see Enhanced vegetation index (EVI)
EWT, see Equivalent water thickness (EWT)
External parameter orthogonalization (EPO), 

700, 713–714, 717

F

Factor analysis (FA), 328
False color composites (FCCs), 205, 208
Famine Early Warning Systems Network 

(FEWS NET), 114, 358–360
FAO, see Food and Agricultural 

Organization (FAO)
FAO-LCCS taxonomy, 518, 524
FAPAR, see Fraction of absorbed 

photosynthetically active radiation 
(FAPAR)

Farming systems, 114–116
Far–near infrared (FNIR), 165
Field inventory plots, 4–5, 793
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Fire behavior fuel models (FBFM), 319–322
Fire radiative energy (FRE), 250
Fire radiative power (FRP), 250
Fisher linear discriminant analysis, 169
Fixed-wing aircraft, 171–172
Fluorescence explorer (FLEX) satellite, 17, 559
Fmax models, 409
Food and Agricultural Organization (FAO), 

51, 74, 114, 239, 509
Food security

access, 353
availability, 353
biofuel production, impact of, 133
biotechnology, 133
blue revolution, 133
change analysis, 148–149, 153–154
chemical fertilizers, impact of, 133
crop water productivity, 133
definition of, 353
evergreen revolution, 133
global cropland mapping (see Cropland 

mapping)
global cropland products (see Global 

cropland products)
green revolution, 132–133
LSP models

access to food, 358
agricultural changes estimation, 353
agricultural yield estimates, 357
AVHRRs, 356
cropland abandonment, 357
cropping intensity, 357
droughts, 358
food insecurity measurement, 358
food prices and health outcomes, in 

Kenya, 360
growing season length, 354–356
Landsat 1, 356
livelihood approach, 358
MODIS sensors, Terra and Aqua 

satellites, 356
in Niger, FEWS NET, 358–360
personal and economic shocks, 358
quadratic and multiple-model fit 

approaches, 356
rice cultivation, spatial distribution of, 

812–813
seasonality, impact of, 357
SOS metric, 354
undernourished population, percent 

of, 356
precision farming, 133
rangeland forage assessments

AVHRR NDVI, 252–253
LEWS, 253–254
MODIS NDVI, 253

stability, 353
utilization, 353
world population, fertility variants, 

132–133
Forest Inventory and Analysis (FIA) program, 

542, 549, 580
Forest resources assessment (FRA), 645

Fourier filtered cycle similarity (FFCS) 
method, 150

Fraction of absorbed photosynthetically 
active radiation (FAPAR), 78, 313

biophysical models, 553–554
canopy biophysical variables, 24
computation of, 25–26
definition, 25
empirical models, 553–555
FIPAR values, 25
turbid/clumped canopies, 30–31

Fraction of intercepted photosynthetically 
active radiation (FIPAR), 25, 39

FRAGSTAT, see Spatial Pattern Analysis 
Program for Categorical Maps 
(FRAGSTAT)

Free water, 748
Fuel analysis, 340, 812

diameters, time lag categories, 318–319
extreme fire weather conditions, 318
FarSite and FlamMap, 319
Prometheus, 319
quantification of, 319
stand structure and species 

composition, 319
strategic assessment, 318
surface FBFM, 319–322
wildland fuel data, tactical uses of, 318

Full pixel area (FPA), 138

G

GAI, see Green area index (GAI)
Gap Analysis Program, 241
Gaussian processes (GP), 54
Gaussian process regression (GPR), 28
GeoEye satellite, 162, 242–243
GEOGLAM initiative, 101–102
Geographic information system (GIS), 

291, 580
precision farming, 162
rangeland biodiversity and gap 

analysis, 322
species distribution models, 493

Geographic object-based image analysis 
(GEOBIA), 126

Geological Survey Global Visualization 
Viewer (GLOVIS), 336

Geoscience laser altimeter system (GLAS), 54, 
58, 402, 431, 646

GEO system of systems (GEOSS), 506
Geoweb, 587
GeoWiki, 102
GIS, see Geographic information system (GIS)
GLADA, see Global Assessment of Land 

Degradation and Improvement 
(GLADA)

GLAS, see Geoscience laser altimeter system 
(GLAS)

Global Agricultural Monitoring (GLAM), 
101, 134

Global assessment of human-induced soil 
degradation (GLASOD), 247–248

Global Assessment of Land Degradation and 
Improvement (GLADA), 247–249

Global carbon budget, 824–826
bookkeeping model, 

641–642
carbon emissions, 640
disturbances and recovery, 640
environmental change, 640
history, 640–641
LULCC (see Land use and land-cover 

change (LULCC))
net flux, 640
NOAA, 640
permafrost thaw, 640
sources and sinks, 641
spatial analyses, 642–643
stocks and flows, 639–640
terrestrial ecosystems, 640

Global Climate Observing System (GCOS), 48
Global cropland area database (GCAD), 

133–134
Global cropland products, 156, 803

crop health/vigor, 135
cropland class labeling convention, 135, 

137–138
cropland extent/areas, 135–136
cropping calendar, 135
cropping intensities, 135–136
crop types, 135–136
flood and drought information, 135
global cropland extent maps

MODIS 250 m time-series data, 143, 
147, 155

MODIS 500 m time-series data, 146, 
149, 155

nominal 1-km resolution, 143, 
146–148, 150–152, 155–156

nominal 30 m resolution, 143, 146, 
148, 155

irrigated and rain-fed cropland maps, 
143, 146

multisensor remote sensing, 152
precise location of crops, 135
uncertainties in, 149–150
watering methods, 135–136
water use assessments, 135
yield/productivity, 135

Global Earth Observation System of Systems 
(GEOSS), 101, 134, 506

Global food security support analysis data 
(GFSAD), see Food security

Global Information and Early Warning 
System (GIEWS), 101, 800

Global Inventory Modeling and Mapping 
Studies (GIMMS), 148, 245–246

Global Land Cover 2000 (GLC2000) project, 
56, 263–264

Global Land Degradation Information 
System (GLADIS), 247–249

Global monitoring for the environment and 
security (GMES), 416, 506–507

Global Monitoring of Food Security (GMFS), 
101, 800
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Global Navigation Satellite System (GNSS), 
401, 405, 418

Global Ozone Monitoring Experiment-2 
(GOME-2), 17

Global positioning systems (GPSs)
land cover change detection, 580
precision farming, 162

Global vegetation models (GVMs), 451
Good Agricultural Practices (GAP), 113
Google Earth, 387, 738
GPP, see Gross primary production (GPP)
GPSs, see Global positioning systems (GPSs)
GRAMI, 86
Gramm–Schmidt (GS) transformation, 335
Green area index (GAI)

definition of, 24–25
turbid/clumped canopies, 30–31

Green fraction (GF), 24
Greenhouse gases observing satellite 

(GOSAT), 17, 651
Green leaf area index (GLAI), 24–25
Greenness and radiation (G–R) model, 12–13, 

15–16, 794
Green normalized difference vegetative index 

(GNDVI), 165
GreenSeeker sensor, 167
Green vegetation index (GVI), 311
Gross domestic product (GDP), 74–75
Gross primary production (GPP), 252–253, 

559–561, 793–794
BIOME-BGC model, 9–10, 15
EVI and tower GPP relationship, 10–11
G–R model, 12–13, 15–16
LUE values, 9
plot level ANPP measurements, 4
PRI, 14
SIF, 14, 17
T–G model, 11–12, 15
VPRM, 13–14, 16

Ground-penetrating radar (GPR), 690, 697
Ground sampling distance (GSD), 736–738
Ground spectral sensing (GSS)

soil attributes, 676–679, 686
soil classification, 690–691
soil monitoring, 696
soil spectral behavior, 702–703

Group on Earth Observations (GEO), 101, 
134, 506, 800

GSD, see Ground sampling distance (GSD)

H

Habitat Hectares method, 280–281
Helicopters, 171–172, 291, 419
Hidden Markov model (HMM), 332
High spatial resolution (HSR), rangeland 

monitoring
aerial-image acquisition, 291–293
assessment of, 294–295
ground imaging, 290–291
pixel sizes, 290
spatial resolution, effect of, 290–291
UAS, 294

very-large scale, 290
visual-analysis-facilitating software 

programs, 293–294
HSI, see Hyperspectral imaging (HSI)
Hughes’ phenomenon, 210, 212, 807
HVIs, see Hyperspectral vegetation 

indices (HVIs)
Hydration water, 748
Hygroscopic water, 703, 748, 762
Hyperion onboard Earth Observing-1 

satellite, see Earth Observing-1 
(EO-1) Hyperion data

Hyperspectral biochemical indices 
(HBCIs), 219

Hyperspectral biomass and structural index 1 
(HBSI1), 219–220

Hyperspectral Imager for Coastal Oceans 
(HICO) sensor, 210–211

Hyperspectral imaging (HSI), 815–816
biochemical properties, 432

DASF, 433
EWT, 434
foliar and canopy water content, 434
Nanawale Forest Reserve, 433–434
NPV, 434
PLSR analysis, 433–434

biophysical properties, 432–433
canopy physiology

APAR, 436
ATP, 435
chlorophyll fluorescence, 436
ETR, 435
NPQ, 435
photochemistry, 435
PRI, 435–436
SIF, 435
Vcmax, 435

data fusion benefits, 439–440
data quality, 431–432
data sources, 430–431

Hyperspectral infrared imager (HyspIRI), 
188, 210–211

Hyperspectral light-use efficiency index 
(HLEI), 219

Hyperspectral lignin cellulose index 
(HLCI), 219

Hyperspectral narrowbands (HNBs), 212, 
230, 805, 807

Hyperspectral red-edge indices (HREIs), 
219, 243

Hyperspectral remote sensing, 230
airborne hyperspectral remote sensing

AVIRIS, 203
HyMap imagery, 203–204

bandwidths, 202
contiguity in data collection, 202
data mining, 210, 212–213
data normalization, 210
definition of, 202, 807
feature extraction methods, 212, 214
FieldSpec JR spectroradiometer, 

202–203
Hughes’s phenomenon, 210, 212

HVIs (see Hyperspectral vegetation 
indices (HVIs))

information extraction methods, 212, 214
vs. multispectral data, 205, 208
OHNBs, 212

minerals, 213, 216
vegetation and cropland studies, 213, 

215–216
principal component analysis, 220, 224
random forest and Adaboost, 223–224, 

229–230
rangeland monitoring

assessment of, 287
invasive plant species detection, 

286–287
plant chemical composition, 285
plant species, spectral separability 

of, 285
reflectance spectrum, 284
SAM, 284–285
spectral matching algorithms, 284
spectral unmixing, 284

SMA (see Spectral mixture analysis (SMA))
spaceborne hyperspectral sensors

characteristics of, 208, 210–211
EO-1 Hyperion, 203, 205–207

SVMs, 212, 223, 228
3D data cube visualization, 208–209
unmanned aerial vehicles, 205
wavebands, number of, 202
whole spectral analysis, 212

DHVIs, 219–220
SMTs, 219, 223

Hyperspectral RS (HSR) technology, 741, 755
HYperspectral SOil MApper (HYSOMA) 

software, 710
Hyperspectral vegetation indices (HVIs), 805, 

807–808
biophysical and biochemical quantities, 

219, 222
HBSI1, 219–220
MBHVIs, 214, 216–218
PRI, 219, 221
TBHVIs

categories of, 217, 219
definition, 214
optimal waveband centers and widths, 

214–216
refinement of, 214
R-square values, rice wet biomass vs. 

HVIs, 214, 217
Hyperspectral water and moisture indices 

(HWMIs), 219
Hysp, see Hyperspectral remote sensing

I

ICESat2, 458, 475
ICRAF-ISRIC world soil SL, 700
Ideal spectra data bank (ISDB), 142, 150
IDW method, see Inverse distance weighted 

(IDW) method
ImageMeasurement, 294
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Imaging spectroscopy, see Hyperspectral 
imaging (HSI); Hyperspectral 
remote sensing

Improved dark object subtraction 
technique, 210

Indian Resources Satellite (IRS) series, 371, 
384, 800

Individual/single-tree detection approaches 
(ITDs), 408–409, 418, 815

Infrared index (II), 313
Integral Equation Model (IEM), 

193–194
Intergovernmental Panel on Biodiversity and 

Ecosystem Services (IPBES), 523
Intergovernmental Panel on Climate Change 

(IPCC), 51, 56, 75, 369, 678
International Geosphere–Biosphere 

Programme (IGBP), 263
International Geosphere–Biosphere 

Programme Data and Information 
System Global Land Cover 
Classification (IGBP DISCover), 
263–264

International Society for Photogrammetry 
and Remote Sensing (ISPRS), 407

Interspersion and juxtaposition index (IJI), 330
InTime Corp, 163
Inverse distance weighted (IDW) method, 471
IPCC, see Intergovernmental Panel on 

Climate Change (IPCC)
ISPRS, see International Society for 

Photogrammetry and Remote 
Sensing (ISPRS)

ITDs, see Individual/single-tree detection 
approaches (ITDs)

J

Jenny’s equation, 664
Jet Propulsion Laboratory (JPL), 203, 

624–626
Joint Experiment for Crop Assessment and 

Monitoring (JECAM), 102
Joint Polar Satellite System (JPSS), 266

K

Kauth–Thomas transformation, 240, 313
k-Nearest neighbor imputation (kNN), 

548–549
Kubelka–Munk transformation, 676

L

Laboratory spectral sensing (LSS), 676, 691, 
699, 713

LAD, see Leaf angle distribution (LAD)
LAI, see Leaf area index (LAI)
Land cover change detection, 820, 

822–823
abundance, composition, and 

condition, 581
accuracy assessment, 590

AVHRR, MODIS, and Landsat, 582–583
bitemporal change detection method

advantages and disadvantages, 
585–586

categorical/continuous 
comparison, 585

factors, 585
map-updating approaches, 585

carbon sequestration, 582
CLASlite (see Carnegie Landsat Analysis 

System-Lite (CLASlite))
CORINE program, 580
DI, 588–589
DI′, 588–589
dual approach, 580
EOSD program, 580
FIA program, 580
GPSs and GISs, 580
land cover change, causes of, 583–584
land cover modification analysis, 582
Landsat imagery, 581–582, 593, 596
Landsat NALC data, 580
LandTrendr, 588–589
LIDAR return values, 581
MGDI, 588–589
microwave backscatter values, 581
monotemporal change detection, 583–585
NCRS, 580
spatial context of, 581
STAARCH, 588–589
temporal trend analysis, 587
UN-REDD and REDD+, 580
UN-SPIDER initiative, 593
urban change detection, 582
USGS-LCCP, 580
VCT, 588–589

Land cover classification system (LCCS), 
263–264, 509

Land cover modification analysis, 582
Land Degradation Assessment in Drylands 

(LADA), 245, 247–248
Land Remote Sensing Policy Act of 1992, 265
Land resource region (LRR), 279
Land resource unit (LRU), 279
Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS), 140
Landsat thematic mapper (TM) imagery

AGB and carbon stock estimates, 52
cloud and cloud shadow screening, 

372–374
precision farming

management zones, 163
nutrient deficiencies, 167
soil fertility patterns, mapping of, 162

rangeland assessment, 240–241
Landscape index (LSI), 329
Landscape metrics, 117
Land surface phenology (LSP), 812

agricultural changes estimation, 353
agricultural yield estimates, 357
4th Assessment Report, 551
cropland abandonment, 357
cropping intensity, 357

definition, 353–354
food security assessment

access to food, 358
AVHRRs, 356
droughts, 358
food insecurity measurement, 358
food prices and health outcomes, in 

Kenya, 360
growing season length, 354–356
Landsat 1, 356
livelihood approach, 358
MODIS sensors, Terra and Aqua 

satellites, 356
in Niger, FEWS NET, 358–360
personal and economic shocks, 358
quadratic and multiple-model fit 

approaches, 356
seasonality, impact of, 357
SOS metric, 354
undernourished population, percent 

of, 356
impact, 550
maxNDVI and cumNDVI, 354
SOS, LOS, and EOS, 354
synoptic patterns, 550
vegetation index

AVHRR archive, 551
brightness and wetness, confounding 

effect, 551–552
continental- to global-scale 

monitoring, 551
derivation and validation, 553
EVI, 552–553
NDVI values, 551
seasonal dynamics, 551

Land surface temperature (LST), 11–12, 588
Land surface water index (LSWI), 13–14, 794
Land use and land cover (LULC)

mapping and monitoring, 820, 823–824
applications, 606
AVHRR, 607
change detection, 622–624
classification scheme, 606, 622–624
crop and vegetation identification, 

626–627
cross-sensor multitemporal SAR data, 

628–629
forestry inventory and mapping, 

624–626
L-band ALOS/PALSAR data, 628
multitemporal C-band 

RADARSAT-2, 628
optical remote sensing, 607–608
SAR, 607
shoreline changes, North Carolina 

coast, 628
snow and ice mapping, 627–628
socioeconomic activities, 605–606
urban environment, 627–629

Land use and land-cover change (LULCC)
RED, REDD, and REDD+

accuracy and precision, 650
attribution, 650
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committed vs. actual emissions, 
648–649

definitions, 648
full carbon accounting, 649–650
initial conditions, 649
net and gross emissions, 649
uncertainties, 650–651

residual terrestrial sink, 640, 643
management and environmental 

changes, 651
OCO-2, 651–652
vegetation activity, satellite 

monitoring, 652–653
satellite data

bias, inconsistency, and 
subjectivity, 643

biomass density, 645–648
deforestation rates, 

643–644
primary weakness, 644–645
sample-based approaches, 644
spatial analyses, 645–646
spatial resolution, 643–645
temporal resolution, 643
uncertainties, 645

Land, Vegetation, and Ice Sensor (LVIS), 
58, 431

Large Area Crop Inventory Experiment 
(LACIE), 78, 799

Largest patch index (LPI), 329
Laser vegetation and ice sensor (LVIS), 

53–54, 58
LCCS, see Land Cover Classification System 

(LCCS)
Leaf angle distribution (LAD), 432–433
Leaf area index (LAI), 78, 313–314, 432–433, 

794–795
definitions, 24–25, 544
radiometric data-driven approach, 

26–27
Leafhopper index, 168
Leaf mass per area (LMA), 432–433
Light detection and ranging (LIDAR), 430

AGB and carbon stock estimates, 798
airborne/spaceborne, 61
Global Ecosystem Dynamics 

Investigation LiDAR, 63
ground-based LiDAR data, 53–54
large-footprint LiDAR system, 

53–54, 58
LVIS, 53–54, 58
mean AGB and RSE values, 61–62
small-footprint LiDAR system, 

53–54, 58
strengths and limitations of, 55

ALS, 405, 414–415
biomass, 437–438
canopy structure, 437–438
concept and utility, 412–414
country-wide laser scanning, 414
data acquisition platforms, 813–814
data fusion benefits, 439–440
data quality, 431–432

data sources, 431
features, 401–402
forest structural properties, 437
frequencies/wavelengths, 

398–399
habitat structure, estimates of, 282
light penetration, 438
MLS, 405
space-borne lidar, 402
TLS, 405
tree heights

history of, 457–458
NFI plots, 470
principle of, 457

vegetation, 514
vegetation productivity, 5
wetland habitats, 521

Light sport airplanes (LSAs), 291
Light use efficiency (LUE), 9

ChF, 557, 559
crop growth estimation, 557
FLEX, 559
GPP/NPP, 559–561
incident radiation, 557
LiDAR, Radar, and optical sensors, 562
MODIS, 536, 558–559
PAR, 557–558
photosynthesis-light response curve, 557
PRI, 559
stable value, 557–558
uncertainties, errors, and accuracy, 

561–562
Lignin cellulose absorption (LCA), 

183–184
Linear Imaging Self-Scanner (LISS), 371, 385
Linear regression model (LM), 54
Linear spectral mixture model, 283
Livestock Early Warning Systems (LEWS), 

253–254
LMA, see Leaf mass per area (LMA)
Local net primary productivity scaling (LNS) 

approach, 246–247
Look-up tables (LUTs), 9, 14, 33

canopy biophysical variables
associated uncertainties, 29
computation requirements, 28
cost function, 26–27
observational configuration 

flexibility, 29
prior information, integration of, 29
retrieval and quality assessment, 

robustness of, 30
Oh model, 194
roughness/dielectric estimation, 193

LSP, see Land surface phenology (LSP)
LSS, see Laboratory spectral sensing (LSS)
LUE, see Light use efficiency (LUE)
LULC, see Land use and land cover (LULC)
LULCC, see Land use and land-cover change 

(LULCC)
LUTs, see Look-up tables (LUTs)
LVIS, see Land, Vegetation, and Ice 

Sensor (LVIS)

M

MAESPA model, 450
Mahalanobis distance (MAD), 333, 701
Major land resource area (MLRA), 279
Management zones (MZs), 162–163
Massachusetts Forest Monitoring Program 

(MaFoMP), 590
Maximum likelihood classification (MLC), 

332–334, 823
Maximum normalized difference vegetation 

index (maxNDVI), 354
Maximum rate of carboxylation (Vcmax), 435
Mean absolute error (MAE), 320, 326, 452, 462
Mean canopy profile height (MCH), 437
Mean patch edge (MPE), 329
Medium-resolution imaging spectrometer 

(MERIS), 165
burned area products, 250
C3 and C4 grasses, 288
chlorophyll studies, 556
habitat monitoring, 514
land cover classes, 263
MGVI, 28
MTCI, 12
narrow-band channel settings, 

wavelengths of, 12
tropical forest mapping, 384–385

Mega File Data Cube (MFDC) concept, 
140–142

MERIS terrestrial chlorophyll index (MTCI), 
12, 165

MESMA, see Multiple endmember spectral 
mixture analysis (MESMA)

MICMAC, see Multi Image Matches for Auto 
Correlation Methods (MICMAC)

Midwave infrared (MWIR), 736, 765, 773
Millennium Ecosystem Assessment 

(MEA), 522
Minimum distance to mean (MDM), 332
Minimum noise fraction (MNF), 210, 224, 

287, 617
Minimum normalized difference tillage index 

(minNDTI), 185–188, 196
Mixture tuned matched filtering (MTMF) 

method, 204, 227, 284, 287, 687
MLR, see Multiple linear regression (MLR)
Mobile laser scanning (MLS), 401, 403, 405, 

411, 814
Mobile-phone-embedded laser scanning, 419
Moderate resolution imaging 

spectroradiometer (MODIS), 536, 
558–559, 768

AGB and carbon stock estimates, 
52–53, 56

double cropping, in southeastern 
Amazon, 120–121

ecological resilience, 331
land cover change detection, 582–583
LSP studies

agricultural yield estimates, 357
cropping intensity, 357
food security, 356, 359–360
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mean GPP, 9–10
mean NPP, 5
rangelands monitoring and assessment, 243

data usage, 265–266
fire monitoring, 250–251
forage assessment, 253
global extent of, 239–240
global land cover datasets, 262–264
NPP time series, 258–262
vegetation productivity, 256–257

Modified RESAVI (MRESAVI), 165
Modified Simpson’s diversity (MSIDI), 330
Modified spectral angle similarity (MSAS), 

142, 219
MODIS, see Moderate resolution imaging 

spectroradiometer (MODIS)
MODIS global disturbance index (MGDI), 

588–589, 820
Moisture stress index (MSI), 313
Monitoring Agriculture with Remote Sensing 

(MARS), 78
Monitoring Trends in Burn Severity 

(MTBS), 250
Monte Carlo approach, 380
Monteith’s efficiency equation, 78, 83–85
MTMF method, see Mixture tuned matched 

filtering (MTMF) method
Multiangle Imaging Spectroradiometer 

(MISR), 57, 536–537
Multi-band hyperspectral vegetation indices 

(MBHVIs), 214, 216–218
Multi Image Matches for Auto Correlation 

Methods (MICMAC), 462–463
Multiple cropping index (MCI), 117
Multiple endmember spectral mixture 

analysis (MESMA), 333, 687
Multiple linear regression (MLR), 676, 

765, 770
Multiscale Service for Monitoring NATURA 

2000 Habitats of European 
Community Interest (MS.
MONINA), 507–509, 514–519, 
524–526, 818

N

NASA’s High-Resolution Imaging 
Spectrometer, 716

National Agricultural Imagery Project 
(NAIP), 336

National Center for Airborne Laser Mapping 
(NCALM), 431

National forest inventories (NFIs), 49, 400, 451
crowdsourcing, 418–419
kNN, 548
multitemporal ALS data, 414–415

National Land Cover Database (NLCD), 90, 
288, 315

National Oceanic and Atmospheric 
Administration (NOAA), 76, 78, 
246, 431, 535–536, 640

National Polar-orbiting Partnership 
(NPoP), 266

Natural Resources Conservation Service 
(NRCS), 335, 580

NDVI, see Normalized difference vegetation 
index (NDVI)

Nearest neighborhood (NN), 54, 332–333, 335
Near-infrared (NIR) wavelength, 534, 536, 

539, 545
Net ecosystem exchange (NEE), 4, 14, 559
Net primary production (NPP), 83, 313, 

559–561, 793; see also Gross 
primary production (GPP)

agricultural yield statistics, 4
ANPP and MODIS iEVI estimation, 6–7
APAR, 436
biomass, 547–548
BIOME-BGC model, 10
growing season phenology relationships, 7
integrated NDVI values, 6
MODIS, 5
potential limits to, 4

Neural networks (NNs) approach, 94–96
canopy biophysical variable, 28–29
nonparametric classifiers, 617
regression trees, 541
3D point clouds, 815

NFIs, see National forest inventories (NFIs)
Nitrogen deficiency, 166–169
Nitrogen nutrition index (NNI), 165
NN, see Nearest neighborhood (NN)
NOAA, see National Oceanic and 

Atmospheric Administration 
(NOAA)

NOAA-15, 535, 768
Nonphotochemical quenching (NPQ), 435
Nonphotosynthetic vegetation (NPV), 180, 

543, 591, 688, 709
canopy stress indicator, 434
CLASlite, 591
forest degradation, 812
spectral properties of, 183
spectral unmixing, 283

Normalized difference burn ratio (NDBR), 
250–251

Normalized difference fraction index (NDFI), 
380, 812–813

Normalized difference moisture index 
(NDMI), 378, 551

Normalized difference red-edge (NDRE) 
index, 165

Normalized difference soil-adjusted 
vegetation index (NDSVI), 314

Normalized difference tillage index (NDTI), 
184–185, 807

Normalized difference vegetation index 
(NDVI), 78, 432–433, 494–495, 
551, 652

AGB estimates, 56
net primary production, 5–6
precision farming, 164–166

disease detection, 169
insect detection, 168
nutrient deficiencies, 167–168
weed detection, 170

rangeland assessment, 240–241, 283
biomass and vegetation health 

modeling, 245–246
ecological resilience, 331
forage assessment, 252–253
fuel analysis, 319–322
grass functional types, 288–289
PFTs, phenological metrics, 288
time series, 258–262
vegetation productivity, 256

Normalized difference water index (NDWI), 
325, 551

Normalized soil moisture index (NSMI), 694, 
714, 762

North American Landscape Characterization 
(NALC), 580

NPP, see Net primary production (NPP)
NPQ, see Nonphotochemical quenching 

(NPQ)
NPV, see Nonphotosynthetic vegetation 

(NPV)
NSMI, see Normalized soil moisture index 

(NSMI)

O

Object-based image analysis (OBIA), 518
and DT approach, 91–92
heathland habitats, 521
image segmentation, 90–91
object-oriented classification, 90–91
rangeland conditions, 335
stages, 91

Object-oriented image analysis (OOIA), 618
Object retrieval approach, 34–35
OCO-2, see Orbiting Carbon Observatory-2 

(OCO-2)
Octocopter, 172
OHNBs, see Optimal hyperspectral 

narrowbands (OHNBs)
OILCROPSUN, 86
Optical remote sensing

AGB and carbon stock estimates, 798
ASTER, 52–53, 56
AVHRR and MODIS, 52–53, 56
AVIRIS and EO1 sensors, 52–53
ETM+, 52–53
land cover classification maps, 56
Landsat images, 52–53, 56–57
MISR, 57
QuickBird imagery, 57
strengths and limitations of, 55

tillage assessment
CAI, 183–185
capability, 188
challenges, 187–188, 196
green vegetation, spectral properties 

of, 182–183
Landsat TM imagery, 185–186
LCA, 183–184
minNDTI approach, 185–187
NDTI, 184–185
NPV, spectral properties of, 183
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SINDRI, 184–185
soils, spectral properties of, 182–183

of tree and stand heights (see Tree and 
stand heights)

vegetation mapping (see Vegetation mapping)
Optimal hyperspectral narrowbands 

(OHNBs), 212
minerals, 213, 216
vegetation and cropland studies, 213, 

215–216
Optimal multiple narrow band reflectance 

index (OMNBR), 164
Orbiting Carbon Observatory-2 (OCO-2), 17, 

651–652, 825
Organising Carbon and Hydrology 

in Dynamic Ecosystems 
(ORCHIDEE) model, 451

P

PALSAR, see Phased array type L-band 
synthetic aperture radar (PALSAR)

PAR, see Photosynthetically active 
radiation (PAR)

Parameter-elevation regressions on 
independent slopes model 
(PRISM), 319

Partial least squares regression (PLSR), 169, 
212, 433–434, 676

Patch richness (PR), 330
PCA, see Principal component analysis (PCA)
PCR, see Principal components 

regression (PCR)
Pearson’s correlation coefficients (PCC), 326
Percent difference (PD), 331
Perpendicular vegetation index (PVI), 

5, 313–314
Personal laser scanning (PLS), 419
PFTs, see Plant functional types (PFTs)
Phased array type L-band synthetic aperture 

radar (PALSAR), 815
biomass estimates, 52–53
global carbon budget, 641–642
LULC mapping, 611

Phosphorus deficiency, 166–169
Photochemical reflectance index (PRI), 14, 

169, 219, 221, 435–436, 559, 794
Photosynthesis, vegetation productivity, 17–18

definition of, 4
eddy covariance (EC) tower flux 

measurements, 4–5
FAPAR satellite products, time series 

of, 793
FLUXNET, 4, 794
gross primary productivity

BIOME-BGC model, 9–10, 15
EVI and tower GPP relationship, 10–11
G–R model, 12–13, 15–16
LUE values, 9
plot level ANPP measurements, 4
PRI, 14
SIF, 14, 17
T–G model, 11–12, 15

VPM, 13–14, 16
VPRM, 13–14, 16

lidar, 5
net primary production, 8

agricultural yield statistics, 4
ANPP and MODIS iEVI estimation, 

6–7
BIOME-BGC model, 10
growing season phenology 

relationships, 7
integrated NDVI values, 6
MODIS, 5
NDVI–fAPAR relationships, 5–6
potential limits to, 4

terrestrial net primary production, 4
Photosynthetically active radiation (PAR), 

12–13, 83–84, 313, 557–558
Photosystem II (PSII), 166
Phytomass Growth Simulation model 

(PHYGROW), 253
Planck’s radiation law, 668
Plant area index (PAI), 24–25, 544
Plant functional types (PFTs), 278, 288, 

693–695
PLS, see Personal laser scanning (PLS)
PLSR, see Partial least squares regression 

(PLSR)
Point density, 410, 458–459, 467, 470, 473
Point distribution model, 467–468
Point height metrics, 407–409
Polarimetric and interferometric radar 

(PolInSAR), 57, 63, 622, 824
Polarimetric SAR (PolSAR) system

features, 614–615
multifrequency images, 611
orbital system, 611

Portable Airborne Laser System (PALS), 470
Postclassification comparison (PCC), 

585–586, 621–622
Potassium deficiency, 166–169
Precision agriculture (PA), see Precision 

farming, remote sensing
Precision farming, remote sensing

aerial imaging, 171
aim of, 162
airplanes, 162
benefits, 162, 173
commercial satellite imagery, 162
companies, remote sensing services, 163
computer vision, 173
corn, deficiency, 167
crop nutrient deficiencies

chlorophyll, 167
commercial sensors, 167, 169
Crop Circle ACS 210, 167
Crop Circle sensors, 167
GreenSeeker operates, 167
macronutrients, 166–167
micronutrients, 166–167
phosphorus deficiencies, 167
proximal sensing, 167
reflectance spectra, 167
scout, 167

crop scouting, 163–164
crop stress, 172–173
definition of, 162, 173, 804
disease detection, 168–169
farming by soil vs. grid soil sampling, 162
GIS and GPS, 162, 804
HVIs, 805
hyperspectral imagery, 164–166, 173
information requirements, 804
insect detection, 168
Landsat TM imagery (see Landsat 

thematic mapper (TM) imagery)
leaf chlorophyll, fluorescence of, 166
management practices, 162
management zones, 163
multispectral broadband vegetation 

indices, 164–165
plant deficiency, 168
proximal sensing, 171–172
spatial resolution, 170–172
spectral resolution, 171
target of, 804
UAVs (see Unmanned aerial vehicles (UAVs))
variable rate irrigation, 163
variable rate spreaders, 162
weed detection, 169–170
weed discrimination, machine vision for, 170
yield monitors, 162

PRI, see Photochemical reflectance 
index (PRI)

Primary tree growth, 450
Principal component analysis (PCA), 328, 

335, 825
degrees of freedom, 439
feature extraction, 617
functions, 220
soil reflectance spectra, 754
soybean varieties, discrimination of, 

220, 224
temporal datasets, 624
TIR images, 690

Principal components regression (PCR), 676
Probability image (PI), 96–97
PROSAIL model, 282, 794
PROSPECT model, 30, 285, 433, 556, 

794, 816
Proximal sensing (PS), 171

crop nutrient deficiencies, 163, 167
soil attributes, 752–753
soil maps, 664
soil moisture content, 762
soil organic matter content, 162
weeds, 162, 169–170

Q

Quadrocopter, 172
Quality assurance framework for Earth 

observation (QA4EO), 506
QuickBird imagery, 539–540

AGB estimates, 57
biodiversity monitoring, 495–496, 498, 817
cropping system, 119–120, 125
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forest types, 476
invasive species, 490
land use classifications, 799–800
LC assessments, 512
precision farming, 162, 164, 169, 171
rangeland monitoring and assessment, 

242–243
tropical forest monitoring, 370–371
urban land cover mapping, 627–628

Quick scatterometer (QSCAT), 60, 493, 495, 497

R

Radar, see Radio detection and ranging (Radar)
Radiative transfer model inversion method, 

24, 795
canopy structure, 31–32
coupled models, 35
decametric and kilometric spatial 

resolution sensors, 36–39
FAPAR computation, 25–26
forward and inverse problems, 25–26
GAI retrieval performances, 32–33
leaf optical properties, 32, 35
leaf reflectance, 31
LUTs and iterative optimization methods

associated uncertainties, 29
computation requirements, 28
cost function, 26–27, 34
observational configuration 

flexibility, 29
prior information, introduction of, 

29, 34
retrieval and quality assessment, 

robustness of, 30
machine learning approaches

associated uncertainties, 29–30
calibration, 26–27
computation requirements, 28
GEOV1, GEOV2, and GLASS 

products, 35–36
LAI and FAPAR MODIS products, 

35–36
NNTs, 28–29, 35–36
observational configuration 

flexibility, 29
prior information, integration of, 29
retrieval and quality assessment, 

robustness of, 30
SMV and GPR, 28
training dataset, 28
vegetation index-based approaches, 28

multitemporal patch inversion scheme, 35
soil reflectance, 31
spatial constraints, 34–35
spectral and directional reflectance, 32
temporal constraints, 34
under-determination and ill-posedness 

of, 32
Radio detection and ranging (Radar)

AGB and carbon stock estimates, 798
airborne/spaceborne, 61
ALOS-PALSAR(2), 52–53, 629

ALOS/PALSAR data, 52–53, 57
ENVISAT, 52–53, 57
ERS, 52–54
HV- and HH-polarized backscatter, 57
PolInSAR, 57
RADARSAT, 52–53, 57
strengths and limitations of, 55
TerraSAR-X, 52–53
X-band InSAR, 57

bands, 815
classifier selection

nonparametric classifiers, 617–618
OOIA, 618
parametric classifiers, 617

feature extraction
feature selection, 616–617
interferometric features, 614–616
multifrequency, 615–616
multiple incidence angle, 616
pixel intensity values, 613
polarimetric features, 614–615
speckle features, 613–614
textural features, 613

features, 401–402
frequencies/wavelengths, 398–399, 

607–608
habitat mapping, 514
image preprocessing, 612–613
incidence angle, 608–609
LULC (see Land use and land cover 

(LULC))
polarization, 607–609
RADARSAT constellation, 629
SAR systems

airborne, 609–610
crop classification, 611
cross-polarized dataset, 611
depolarization, 611
dual polarization classification, 

611–612
incidence angle, 612
interferometry, 404–405, 415–416
land surface characteristics, 612
multifrequency PolSAR images, 611
optimization, 611
orbital PolSAR systems, 610–611
phase information, 403
radar cross section, 404
radargrammetry, 405, 415–416
radar intensity, 403
radar pulse, 404
range measurement, 404
Seasat, 610
SIR-A and SIR-B systems, 610
spaceborne, 609–610

sensor parameters, 607
target parameters, 607
unauthorized land development, 630
unsupervised change detection methods

case-based reasoning, 621
graph-cut and generalized Gaussian 

model, 621
image differencing, 621

image ratioing, 618–620
maximum likelihood approach, 621
multilayer perceptron and Kohonen 

neural networks, 621
multitemporal coherence analysis, 621
PCC, 621–622
radon transform and Jeffrey 

divergence, 621
statistical measure, 620–621

weather conditions, 607–608
Radiometric normalization technique, 210
Radionuclides, 674
Rain use efficiency (RUE), 246–247
Random forest (RF), 91, 409, 466, 549, 807

ABAs and ITDs, 815
aboveground biomass estimates, 54–56, 59
bare ground, percent canopy cover of, 

326, 328
black box, 327
habitat maps, 819
implications, 327
multiple bootstrapped regression trees, 326
out-of-bag samples, 326
PCC, MAE, and RMSE, 326
R package YaImpute, 326
shrubs, percent canopy cover of, 

326–327
strengths of, 326
tree-based ensemble classification, 

223–224, 229–230
variable importance and parsimony, 326
village-based farming systems, 121, 124

Rangeland biodiversity
animal biodiversity, 282
Australian rangelands, 280–281
climax plant community, 279
ecological sites and state-and-transition 

models, 279–280, 295
gap analysis, 322
high spatial resolution data, 810

assessment of, 294–295
ground imaging, 291–293
pixel sizes, 290
spatial resolution, effect of, 290–291
UAS, 294
very-large scale, 290
visual-analysis-facilitating software 

programs, 293–294
high spectral resolution data

assessment of, 287
invasive plant species detection, 

286–287
plant chemical composition, 285
plant species, spectral separability 

of, 285
reflectance spectrum, 284
SAM, 284–285
spectral matching algorithms, 284
spectral unmixing, 284

high temporal resolution data
assessment of, 290
climatic variability, 287–288
grass functional types, 288–289
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invasive plant species detection, 
289–290

PFTs, phenological metrics, 288
medium-resolution remote sensing, 

295, 809
commercial satellite data, 284
habitat heterogeneity and structure, 

283–284
Landsat 8 operational line imager, 

282–283
Landsats 4 and 5 thematic mapper, 

282–283
linear spectral unmixing, 283
red and near-infrared spectral 

indices, 282
vegetation indices, 282–283
wildlife and livestock grazing 

patterns, 283
PFTs diversity, 278
plant succession, 279
rangeland health indicators, 281–282, 809

Rangelands
biodiversity (see Rangeland biodiversity)
change detection analysis (see Change 

detection analysis, rangeland)
citizen science, 267
definition of, 239, 278, 310
digital remote sensing, history of

CSIRO, Australia, 241
ERTS, 239
ERTS-1 TVI values vs. green 

biomass, 240
exoatmospheric and surface 

irradiance, 243
Gap Analysis Program, 241
GeoEye-1 and WorldView-2, 242–243
IKONOS imagery, 242–243
Landsat 7, 242–243
Landsat 4 and 5, launch of, 241
Landsat TM sensor, 240–241
MODIS sensor, 243
multispectral aerial imagery, 239
NASA, Internet, 242
NDVI, 240–241
QuickBird, 242–243
SAVI, 241
SPOT, launch of, 241
SSI images, 241
tasseled cap transformation, 240–241
TIROS-N, AVHRR, 241

ecological characteristics, 811
factors, 807–808
forage assessment

AVHRR NDVI, 252–253
LEWS, 253–254
MODIS NDVI, 253

fuels (see Fuel analysis)
georeferenced field data, 266–267
global change, monitoring of

agricultural land use, 255
climate impacts and land conversion, 255
GIMMS NDVI and MODIS NPP time 

series, 258–262

human habitability, 253, 255
vegetation productivity, 255–257

global extent of, 239–240
global fire regimes, 249–250

ATSR-2 and AATSR, 250
dNBR, 251–252
FRP and FRE, 250
MCD64 algorithm, 250
MCD45 MODIS product, 250–251
MTBS, 250
NDBR measurement, 250–251
NIR and SWIR, 250–251
RdNBR vs. CBI assessments, 251–252

global land cover datasets
AVHRR and MODIS Mod12Q1, 

262–263
GLC2000, and GlobCover, 263–264
IGBP, 263
UMD, IGBP DISCover and MODIS 

products, 263–264
global livestock production systems, 

807, 809
goods and services, 310
JPSS, 266
Land Remote Sensing Policy Act of 

1992, 265
land, soil degradation and desertification

AI values, 245
biophysical indicators, 245
drylands, global extent of, 248–249
GLASOD, 247–248
human-induced dryland degradation, 

248–249
LADA-GLADA and GLADIS, 247–249
local NPP scaling, 246–247
NDVI and NPP, 245–246
NPP losses, estimates of, 248–249
RUE, 246–247

livestock grazing, 278
microprocessor speed, 265
MODIS data usage, 265–266
northern mixed-grass prairie, North 

America
C3 and C4 grass species, 314–315
carbon flux tower PG data, 318
field-measured vegetation data, 

317–318
landscape-level phenological 

measures, 315
MODIS sNDVI time series plots, 

315–316
study site, 315
vegetation classes, 317

vs. pasture lands, 310
productivity, 811
regional and global applications, sensors 

for, 243–245
spaceborne sensors, application of, 265
spectral channels and usefulness, 266
Suomi NPoP satellite, 266
sustainability, 278
temporal resolution imagery, 809
thermal imagery, 809

VCFs, regression tree (see Vegetation 
continuous fields (VCFs))

vegetation indices
formula, 313
and fractional cover (fc), 314
and LAI, 313–314
net primary productivity 

estimation, 313
soil reflectance variation, 311–312
spectral indices, soil background 

impacts on, 312
vegetation reflectance variation, 

311–312
vegetation phenology, 310–311, 811
VIIRS, 266

Rapid Carbon Assessment project, 700
RapidEye imagery, 36–37, 140, 540

grassland classification, 521
LC assessments, 512
precision farming, 162

Ratio vegetation index (RVI), 164–165, 314
Rayleigh–Jeans law, 668
Recalibration method, 86–87
REDD, see Reducing emissions from 

deforestation and forest 
degradation (REDD)

Red-edge chlorophyll index (CIred edge), 165
Red-edge difference vegetation index 

(REDVI), 165
Red-edge inflation point (REIP), 165, 169
Red-edge ratio index, 165
Red-edge renormalized difference vegetation 

index (RERDVI), 165
Red-edge soil-adjusted vegetation index 

(RESAVI), 165
Reducing emissions from deforestation and 

forest degradation (REDD), 648, 
812, 818

AGB, 60, 63
forest degradation, 380
forest types, maps of, 381
GHG inventories, 368–369
tropical forest carbon stocks, 48–49

Reflectance inflection difference (RID) 
index, 754

Refractive index, 703, 744, 762, 767
Regression models, 56, 78, 80–83, 253, 325, 

408, 548
Regression tree analysis, 94
Regression trees (RTs), 55, 94

aboveground biomass, 549
cloud gaps, 375
soil carbonates, 764
soil properties, 676
VCFs (see Vegetation continuous fields 

(VCFs))
vegetation cover, 541

Relative degradation index (RDI), 331
Relativized differenced normalized burn ratio 

(RdNBR), 251–252
Re-parameterization approach, 86–87
Residual prediction deviation (RPD), 687
Residual spectral unmixing (RSU), 711
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Resource optimization theory, 6
Reststrahlen spectral features, 673
RF, see Random forest (RF)
RID index, see Reflectance inflection 

difference (RID) index
Root mean square (RMS), 189–190, 

193–194, 380
Root mean square error (RMSE), 83, 185, 326, 

460, 757
RTs, see Regression trees (RTs)

S

SAFY, 86
SAM, see Spectral angle mapper/mapping 

(SAM)
SampleFreq, 294
SamplePoint, 181, 293–294
SARs, see Synthetic aperture radars (SARs)
Satellite-borne EO technique

biodiversity
BIO_SOS project, 508
“democratic tool,” 508
ecosystem services, 509
“glocalized” phenomenon, 508
habitat conservation, 509–510
“halting biodiversity,” 508
land cover, habitats, and indicators, 

518–519
monitoring service, 524–526
MS.MONINA project, 508

biophysical parameters, 517
EU Habitats Directive, 509, 511, 519
global change, 506–507
habitats

forest habitats, 519–520
grassland, 520–521
land cover and indicators, 518–519
pressures and changes, 523–524
quality, 522–523
revisiting time, 514
spatial resolution, 511–513
spectral resolution, plant species, 512, 

514–516
wetland, 521

semiautomated classification 
methodologies, 518

Satellite Pour l’Observation de la Terre 
(SPOT) program, 244, 538–539, 800

cloud screening, 372–374
land cover information, 584
land-use classification, 334
launch of, 241
SPOT 4 and 5, 269

SAVI, see Soil-adjusted vegetation 
index (SAVI)

Savitzky–Golay transformation, 676
Scanning LiDAR imager of canopies by echo 

recovery (SLICER), 54, 58, 458
Scattering by arbitrary inclined leaves (SAIL), 

556, 794
Scorpan, 664
Semiconductor, 745–746

Shannon’s diversity index (SHDI), 330
Shannon’s evenness index (SHEI), 330
Shortwave infrared (SWIR), 165, 534

ASTER, 186, 188
burned area mapping, 250–251
crop residues, 183–184
global change, monitoring of, 506
green vegetation, spectral properties of, 182
plant chemical composition, 285
tropical forests, 371, 378, 381, 385
vegetation mapping (see Vegetation 

mapping)
Shortwave infrared normalized difference 

residue index (SINDRI), 184–186, 
195–196

Shuttle Imaging Radar (SIR-A) system, 610, 612
Shuttle Imaging Radar (SIR-B) system, 610, 

616, 624
Shuttle radar topography mission (SRTM)

AGB and carbon stock estimates, 59–60
biodiversity, 493, 497
biomass map, 815
C-band’s interferometric heights, 404
soils, 706
3D techniques, 415

Signal-to-noise ratio (SNR), 431–432, 457, 
692, 736, 751, 825

Simple ratio (SR), 313, 329, 433, 546, 555
Simple tillage index (STI), 184, 186
SINDRI, see Shortwave infrared normalized 

difference residue index (SINDRI)
Site-specific crop management, see Precision 

farming, remote sensing
SL, see Spectral library (SL)
SLED, see Soil line Euclidean distance (SLED)
SMA, see Spectral mixture analysis (SMA)
SMTs, see Spectral matching techniques 

(SMTs)
SNR, see Signal-to-noise ratio (SNR)
SOC, see Soil organic carbon (SOC)
Society for Range Management (SRM), 239
Soil, 828

airborne sensors, 738, 741–742
Ao information, 742
applications, 736–737, 753–754
CCD, 736–737
classification, 663
constraints and cautions, 754
definition, 663, 734
factors, 734
geometric vs. spectral resolution, 736, 738
GSD, 736–738
historical notes, 743–744
horizons, 734–735
MWIR, 736
“optical” region, 736
orbital sensors, 738–740
proximal sensing, 752–753
radiation interactions

chemical chromophores (see Chemical 
chromophores)

physical chromophores, 746
refractive index, 744

radiation source and atmosphere
atmospheric attenuation, 749–751
BRDF, 752
components, 749
pixel size, 752
radiation intensity, 752
reflectance spectrum, 749, 751
SNR values, 751
soil-reflectance data, 751–752
soil reflectance quality, 752–753

sensor per mission, 742
soil composition, 735–736
soil formation, 663–664
soil reflectance

aggregation and roughness, 767–768
applications, 755
carbonates, 764
change detection, 758–759
classification and taxonomy, 772–774
contamination, 764–767
HSR, 755
iron, 770–772
moisture, 762–764
multi- to hyperspectral domains, 

755–756
salinity (see Soil salinity)
soil mapping, 774–775
soil sealing, 768–770
SOM, 756–758
spectral imaging, 755–756

spectral information, 743
spectral sensing, 712, 825–827

absorption features, 668
advantages and limitations, 675
aerial and orbital radar, 698
atomic interactions, 668
bare soil detection methodology, 710
cellulose absorption index, 710
chemometric techniques, 676
clayey and sandy soils, 708–709
conservation, 695–696
definition, 665
fundamental vibrations, 668
gamma ray, 673–674
gamma ray spectroscopy, 697
ground-penetrating radar, 697
GSS (see Ground spectral 

sensing (GSS))
history and evolution, 666–667
in situ spectral sensing, 699–700
integrating strategies, 692
landscapes, 708
light interactions, 668
linear SMA models, 710–711
microscale perspective, 666
microscopic interactions, 667
microwaves, 668
moisture effects, 713–714
molecular vibrations, 668
nonfundamental vibrations, 668
nonphotosynthetic vegetation, 

708–709
photosynthetic vegetation, 708–709
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potential of (see Spectral sensing, 
potential)

precision agriculture, 695
proximal sensing, 665–666
radiometric data, 707–708
sampling, 675
soil analysis, 711–713
soil maps, 714–715
spatial perspective, 666
spectral library, 700–701
SSS (see Space spectral sensing (SSS))
surface landscape perspective, 666
terminology, 665–666
thermal infrared, 668, 673, 690
vegetation, 692–693, 695
Vis–NIR–SWIR spectral ranges, 

668–673
temporal vs. spatial resolutions, 738, 741
uses, 665

Soil-adjusted vegetation index (SAVI), 
313–314, 709, 805

precision farming, 164–165
nutrient deficiencies, 166, 169
weed detection, 170

rangelands, 241
vegetation continuous fields, 325

Soil and Terrain Vulnerability in Central and 
Eastern Europe (SOVEUR), 247

Soil inorganic carbon (SIC) stocks, 665
Soil leaf canopy (SLC) model, 30–31
Soil line Euclidean distance (SLED), 757
Soil map unit (SMU), 319, 335–336, 340
Soil organic carbon (SOC), 369, 650, 662, 737, 

756–758
Soil organic matter (SOM), 182, 662, 736, 748, 

756–758
Soil reflectance

aggregation and roughness, 767–768
applications, 755
carbonates, 764
change detection, 758–759
classification and taxonomy, 772–774
contamination, 764–767
HSR, 755
iron, 770–772
moisture, 762–764
multi- to hyperspectral domains, 755–756
salinity (see Soil salinity)
soil mapping, 774–775
soil sealing, 768–770
SOM, 756–758
spectral imaging, 755–756

Soil salinity
definition, 759
high-spectral-resolution data, 761
hygroscopic material, 761
IR composites, 760
saline and nonsaline spectra, 761
surface reflectance, 760

Soil stability index (SSI), 241
Soil Survey Geographic database 

(SSURGO), 319
Soil Tillage Intensity Rating (STIR), 180

Soil–vegetation–atmosphere transfer (SVAT) 
modeling, see Crop growth models 
(CGMs)

Solar-induced chlorophyll fluorescence (SIF), 
14, 17, 435, 794

SOM, see Soil organic matter (SOM)
South West Regional GAP (SWREGAP) 

project, 324
Spaceborne hyperspectral sensors, 807

characteristics of, 208, 210–211
EO-1 Hyperion, 203, 205–207, 491

Space-for-time substitution approach, 
542–543

Space spectral sensing (SSS)
soil attributes

aerial and ground gamma ray, 698–699
agricultural management and 

contamination, 687
ASTER, 687
chemicals, 688
hyperspectral sensing, 689–690
prediction and mapping, 688
quantification of, 680–687
RPD, 687
soil mineralogy, 688
soil particle distribution, 687

soil classification, 691–692
soil class (survey) maps, 691–695
soil monitoring, 697
soil spectral behavior, 703–706

Spartina alterniflora canopy, 760
Spatial allocation model (SPAM), 118
Spatial and temporal adaptive reflectance 

fusion model (STARFM), 188, 375, 
588–589

Spatial Pattern Analysis Program for 
Categorical Maps (FRAGSTAT), 328

Spatial Temporal Adaptive Algorithm for 
mapping Reflectance Change 
(STAARCH), 588–589, 820

Spectral angle classifier (SAC), 333
Spectral angle mapper/mapping (SAM), 94, 

186, 212, 284–285, 799, 807, 810
Spectral correlation measure (SCM), 284
Spectral correlation similarity (SCS), 

142, 219
Spectral Hourglass approach, 287
Spectral information divergence (SID), 284
Spectral library (SL)

creation of, 219
soil spectral libraries, 755

ASTER, 700
contract and uses, 701
ICRAF-ISRIC world, 700
LUCAS, 700
Rapid Carbon Assessment project, 700
SOC, 700–701
soil attributes, 700–701
soil map, 715
soil profiles and classification, 743
soil samples, Brazil, 700
spatial and hyperspectral data, 663
spatial scale, 700–701

Spectral matching techniques (SMTs)
cropland mapping, 142–143, 152
qualitative pheno-SMT approach, 219, 223

Spectral mixture analysis (SMA), 212, 333, 
541–542, 710

end member, 222, 224
Hyperion unmixing of

minerals, 222, 226–227
vegetation fractional cover, 222, 225

tropical forest degradation, 380
wheat vs. barley crops, 222, 224

Spectral sensing, potential
aerial and orbital sensors, 716
classical pedology, 718
earth’s soil surface, 712, 716
EnMAP hyperspectral mission, 717
GSS, 715–716
hyperspectral satellite sensors, 712, 

716–717
optical satellite sensors, 716
PA, 717
soil SLs, 717
terrain modeling and soil genesis 

knowledge, 718
UAVs, 717

Spectral similarity value (SSV), 142, 219
Spectroradiometers, 202–203
SPOT program, see Satellite Pour 

l’Observation de la Terre (SPOT) 
program

SR, see Simple ratio (SR)
SRTM, see Shuttle radar topography mission 

(SRTM)
SSS, see Space spectral sensing (SSS)
Standwise field inventories (SWFIs), 400
STARFM, see Spatial and temporal adaptive 

reflectance fusion model 
(STARFM)

Stereophotogrammetry process, 460
STICS, 86
Stock-difference method, 369
Supervised spectral angle classifier 

(SSAC), 333
Support vector machines (SVMs), 212, 223, 

228, 807
aboveground biomass estimates, 54
for data classification, 617–618

SWIR, see Shortwave infrared (SWIR)
Synthetic aperture radars (SARs), 607

airborne, 609–610
capabilities, 195
challenges, 196
change detection and classification, 

192–193
civilian spaceborne radar sensors, 

188–189
configurations, impact of

frequency, 190
incidence angles, 190
polarimetry, 191–192
polarization, 190–191

dielectric permittivity, 189–190
energy generation, 188
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orbital PolSAR systems, 610–611
parameters

crop classification, 611
cross-polarized dataset, 611
depolarization, 611
dual polarization classification, 

611–612
incidence angle, 612
land surface characteristics, 612
multifrequency PolSAR images, 611, 

615–616
optimization, 611

polarimetric features, 614–615
residue, 190
row direction, 190
SAR-derived products and tillage 

information, 194
Seasat, 610
semiempirical and physical models

Dubois model, 194
IEM, 193–194
Oh modeled backscatter, 194
perturbation and Kirchhoff models, 

192–193
soil properties, 192
surface roughness map, 

194–195
SIR-A and SIR-B systems, 610
spaceborne, 609–610
surface roughness, 189

T

Tasselled cap green vegetation index 
(TC-GVI), 5, 10

TBHVIs, see Two-band hyperspectral 
vegetation indices (TBHVIs)

Television Infrared Observation Satellite-
Next Generation (TIROS-N) 
satellite, 241

Temperature and greenness (T–G) model, 
11–12, 15–16, 794

Terrestrial aboveground biomass estimation, 
see Aboveground biomass (AGB)

Terrestrial laser scanning (TLS), 401, 403, 
405, 814

Terrestrial Observation and Prediction 
System (TOPS) model, 559–561

The Nature Conservancy (TNC), 324
Thermal Infrared Sensors (TIRS), 265, 538
Three-dimensional (3D) forest information, 

813–815
ABA, 408–409
ALS, 405
biomass, 417–418
bi-temporal point clouds, CD, 406
characteristics, 402–403
CHM, 407
concept and utility, 412–414
conventional practices

FI, 400
forest area and coverage, 399
forest measurements, 400–401

country-wide laser scanning, 414
crowdsourcing, 418–419
diameter derivation, 411–412
DSM and DTM processing, 406–407
explanatory power, 416–417
features, 401–402
forest attribute estimation, 406
individual tree extraction methods, 410–411
ITDs, 408–409
laser intensity calibration, 398
lidar-derived terrain model, 398–399
MLS, 405
mobile-phone-embedded laser 

scanning, 419
multi-epoch ALS data, 414–415
PLS, 419
point height metrics, 407–408
precision forestry, 420–421
radargrammetry and interferometry, 

415–416
space-borne lidar, 402
space-borne SAR

interferometry, 404–405
phase information, 403
radar cross section, 404
radargrammetry, 405
radar intensity, 403
radar pulse, 404
range measurement, 404

stem curve derivation, 412
TLS, 405
tree detection, 409–410
UAV-based laser scanning, 419–420

Threshold percentage method, 354
Tillage assessment

conservation tillage
benefits of, 180
crop residues, 806–807

crop residue cover, CTIC definitions, 
180–181

detrimental impacts of, 180
field and validation data, 

challenges of, 196
global tillage monitoring, 

challenges of, 196
intensity, 180
mechanization, 180
optical remote-sensing imagery, 806–807

CAI, 183–185
capability, 188
challenges, 187–188, 196
green vegetation, spectral properties 

of, 182–183
Landsat TM imagery, 185–186
LCA, 183–184
minNDTI approach, 185–187
NDTI, 184–185
NPV, spectral properties of, 183
SINDRI, 184–185
soils, spectral properties of, 182–183

SAR sensors, 806–807
capabilities, 195
challenges, 196

change detection and classification, 
192–193

civilian spaceborne radar sensors, 
188–189

dielectric permittivity, 189–190
energy generation, 188
frequency, 190
incidence angles, 190
polarimetry, 191–192
polarization, 190–191
residue, 190
row direction, 190
SAR-derived products and tillage 

information, 194
semiempirical and physical models, 

192–195
surface roughness, 189

STIR, 180
TIN, see Triangular irregular network (TIN)
TM imagery, see Landsat thematic mapper 

(TM) imagery
Topographic relative moisture index 

(TRMI), 326
Total edge (TE), 329
Total petroleum hydrocarbon (TPH), 696, 754
Transformed chlorophyll absorption reflection 

index (TCARI), 165–166, 169
Transformed Normalized Difference 

Vegetation Index (TNDVI), 240
Transformed vegetation index (TVI), 240
Tree and stand heights

ALS-derived predictions, 469
area-based approaches, 

465–466, 469
canopy height, 450
carbon stocks and fluxes, 451
components, 451
determinants, 450
digital photogrammetry (see Digital 

photogrammetry)
dominant height (Hdom), 467–468
field measurements

angle and distance measurements, 452
clinometer, 452
DBH, 453
forest information, 453–456
limitations, 453
mean absolute errors, 452
measuring tape, distance, 452
total height, 452

gap sizes, 451–452
growth and yield models, 451
hybrid approaches, 473–475
indicators, 450–451
LiDAR (see Light detection and ranging 

(LIDAR))
Lorey’s height (HL), 467–468
point-based approaches, 473–474
raster-based approaches (see Canopy 

height model (CHM))
3D ALS data (see Airborne laser 

scanning (ALS))
total height, 452
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Triangular irregular network (TIN), 460
Tropical forests, multispectral imagery

AGLB, 812–814
accumulation rate, 376–377
high-resolution imagery, 375–376
single image epoch, 377–378

anthropogenic pressures, 379
cloud and cloud shadow screening (see 

Cloud screening)
coarse-spatial-resolution imagery, 

384–385
disturbance–fire–climate feedback, 386
forest associations and land cover, 

381–382
forest carbon offsets, 368–369
forest degradation, detection of

mining detection, 379
NDFI values, 380
road and trail detection, 379
SMA models, 380

gap filling, 375
global-scale land-cover maps, 385–386
greenhouse gas inventories, 368–369
height, 376–377
high-resolution imagery, 381
image spatial resolution, 385
medium-resolution imagery, 383–384
precipitation, 368
remote tree species identification, 381, 383
secondary forest area, 376–379
species richness, 384
types, characteristics of, 369–371

Tropospheric Monitoring Instrument 
(TROPOMI) satellite, 17

Two-band hyperspectral vegetation indices 
(TBHVIs)

categories of, 217, 219
definition, 214
optimal waveband centers and widths, 

214–216
refinement of, 214
R-square values, rice wet biomass vs. 

HVIs, 214, 217

U

UAVs, see Unmanned aerial vehicles (UAVs)
United Nations Framework Convention on 

Climate Change (UNFCCC), 48, 
368, 451, 648, 798, 812

Unmanned aerial vehicles (UAVs), 419–420, 
462, 741

advantages, 162
agriculture, 800
animals, monitoring of, 491–492
cameras, 172
disadvantages, 162
fixed-wing aircraft/helicopters, 171–172
global change, monitoring of, 506
HSI and LiDAR data, 439
hyperspectral sensors, 205–206
octocopter, 172
precision farming, 805–806

quadrocopter, 172
soil erosion, monitoring of, 696

Unmanned aircraft systems (UAS), 294
Unsupervised change detection methods

case-based reasoning, 621
graph-cut and generalized Gaussian 

model, 621
image differencing, 621
image ratioing, 618–620
ML approach, 621
multilayer perceptron and Kohonen 

neural networks, 621
multitemporal coherence analysis, 621
PCC, 621–622
radon transform and Jeffrey divergence, 621
statistical measure, 620–621

Unsupervised spectral angle classifiers 
(USAC), 333

US Fish and Wildlife Service (USFWS), 241
Utah Division of Wildlife Resources 

(UDWR), 324

V

Vapor pressure deficit (VPD), 9, 318, 
560–561, 653

Variable multiple end member spectral 
mixture analysis (VMESMA), 765

Variable rate irrigation, 163
Variable rate spreaders, 162
Variable rate technology (VRT), 167, 803
Vegetation change tracker (VCT), 588–589
Vegetation condition index (VCI), 78–79, 283
Vegetation continuous fields (VCFs), 812

bare ground estimation, 322
Box Elder County, Utah, 323–324
canopy cover estimation, 322–323
continuous response surfaces, 323
explanatory variable

BGW transformation, 325
land-cover map, SWRGAP project, 326
Landsat TM imagery, 324
NDSAVI, 325
NDWI, 325
SAVI, 325
slope, aspect, and landform, 325–326
TRMI, 326

field data, 324–325
objectives, 323
random forests, regression with (see 

Random forest (RF))
Vegetation index (VI)

canopy biophysical variables, 28
EVI and tower GPP relationship, 10–11
rangeland monitoring

formula, 313
and fractional cover (fc), 314
and LAI, 313–314
net primary productivity estimation, 313
soil reflectance variation, 311–312
spectral indices, soil background 

impacts on, 312
vegetation reflectance variation, 311–312

Vegetation mapping, 818, 820
AVHRR program, 535–536
biomass

biophysical approaches, 549
forest ecosystems, 547–548
kNN, 548
machine learning algorithms, 548–549
NPP, 547–548
regression, 548
vegetation successional stage, 548

Copernicus, 539
forest succession

empirical-based approaches, 542–543
physical-based models, 542
stage process, 542

FPAR
biophysical models, 553–554
empirical models, 553–555

history, 535
IKONOS, 539
LAI and clumping index

definitions, 544
ground measurement techniques, 

544–545
radiative transfer models, 547
spectral vegetation indices, 545–547

Landsat program, 537–538
leaf chlorophyll content

chlorophyll molecules, 554–555
laboratory extraction, 556
leaf reflectance, 555
radiative transfer models, 556–557
SPAD meter, 556
spectral vegetation indices, 556
thylakoid membranes, 554

LUE
ChF, 557, 559
crop growth estimation, 557
FLEX, 559
GPP/NPP, 559–561
incident radiation, 557
LiDAR, Radar, and optical sensors, 562
MODIS, 536, 558–559
PAR, 557–558
photosynthesis–light response 

curve, 557
PRI, 559
stable value, 557–558
uncertainties, errors, and accuracy, 

561–562
MISR, 536–537
NIR wavelength, 534
NOAA program, 535–536
Sentinel satellite, 539
SPOT program, 538–539
Sputnik 1, 534–535
Suomi NPP, 537
SWIR wavelength, 534
uncertainties, errors, and accuracy, 550
vegetation cover, 539–540

fractional vegetation cover, 540–541
fuzzy classification, 541
percentage of pixels, 540
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regression, 541
SMA, 541–542
spectral signatures, mixtures, 541

vegetation phenology
leaf expansion and shoot growth, 550
LSP (see Land surface phenology 

(LSP))
winter dormancy, 550

VIIRS, 537
Vegetation photosynthesis and respiration 

model (VPRM), 13–14, 16
Vegetation photosynthesis model (VPM), 

13–14, 16, 794
Verified Carbon Standard program, 369
Very-high-resolution imagery (VHRI), 

140–141, 144, 469

Visible Infrared Imaging Radiometer Suite 
(VIIRS), 243, 266, 290, 537

Visible to near infrared (VNIR), 430, 439
Visible to shortwave infrared (VSWIR), 

430, 439
VPD, see Vapor pressure deficit (VPD)

W

Web-Enabled Landsat Data (WELD) 
program, 356, 587

Wetness brightness difference index 
(WBDI), 378

Whole spectral analysis (WSA), 212
DHVIs, 219–220
SMTs, 219, 223

Wide dynamic range vegetation index 
(WDRVI), 12

Wide Field Sensor (WiFS), 371
Wildlife habitat relationship (WHR), 241
WorldView-2 imagery, 242–243, 290, 511–512, 

514–516, 549
WSA, see Whole spectral analysis (WSA)

Y

Yara N sensor, 165, 167, 169
Yield-correlation masking technique, 

88–90
Yield gap

cereal crops, 75–76
definition, 75
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