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Preface

The central role of ISO2394 in providing a common basis of reliability principles for
structural design standards is affirmed by the fourteen ISO Standards for which it serves
as a normative reference and ten ISO member states who have adopted it as a national
standard; together with extensive citations in the related literature. The key departure
of the current 1S02394:2015 from previous versions is the introduction of risk and
risk-informed decision making as the fundamental basis for the regulation and stan-
dardization of safety and reliability of structures. From a geotechnical perspective, the
key departure of the current ISO2394:2015 from previous versions is the introduction
of a new informative Annex D on “Reliability of Geotechnical Structures”. The need
to achieve consistency between geotechnical and structural reliability-based design is
explicitly recognized for the first time in ISO2394 with the inclusion of Annex D.

There is a gradual but perceptible shift in geotechnical design codes towards
reliability-based design (RBD) in some countries such as Canada, Japan, USA, and
the Netherlands. The simplified or semi-probabilistic approach is usually applied to
calibrate these geotechnical RBD codes. It is useful to note that RBD can be applied in
place of a full risk assessment “when the consequences of failure and damage are well
understood and within normal ranges” (Clause 4.4.1, 1SO02394:2015). The basic goal
of RBD is to adjust a set of design parameters such that a prescribed target probability
of failure is not exceeded. In the reliability literature, the term “failure” is defined in
the general sense of failing to satisfy one or a set of performance requirements. RBD
can be further simplified “when in addition to the consequences also the failure modes
and the uncertainty representation can be categorized and standardized” (Clause 4.4.1,
1SO02394:2015). This simplified RBD approach is referred to as a semi-probabilistic
approach. The most popular simplified RBD format in North America is the Load
and Resistance Factor Design (LRFD) format (refer to Chapter 6). The simplified (or
semi-probabilistic) RBD approach may not be as widely applicable to geotechnical
design as to structural design, because “standardization” is less achievable in natural
geomaterials in contrast to made-to-order structural materials. The structural LRFD
practice that recommends a single numerical value for a resistance factor does not
allow room for the geotechnical engineer to exercise judgment in response to local site
conditions and to incorporate local experience/data. Site-specific issues are however
critical to geotechnical practice. There are merits to consider a direct probabilistic
approach (refer to Chapter 7) in some situations, which may include rock engineering
design.
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The purpose of Chapters 3 to 7 is to explain how simplified (semi-probabilistic)
and direct probabilistic approaches can be applied to geotechnical RBD in alignment
with the topics covered in Annex D of 1S02394:2015 (uncertainty representation of
geotechnical design parameters, statistical characterization of multivariate geotechni-
cal data, statistical characterization of model factors, and implementation issues in
geotechnical RBD). These chapters provide background information to substantiate
the special considerations needed for the use of reliability concepts for geotechnical
structures, as well as illustrations of approaches and procedures for uncertainty repre-
sentation and the implementation of geotechnical reliability-based design. At the same
time, it should be noted that Annex D is fully consistent and compliant with the gen-
eral principles of reliability given by 1SO2394:2015. The standard therefore provides
an overall framework for the advancement of geotechnical practice that is consistent
with the principles of reliability within the wider scope of buildings, infrastructure and
civil engineering works. A coherent approach is provided by the standard for relia-
bility based decision-making and design, as derived from optimized risk, expressed as
performance models that accounts for the levels of knowledge and uncertainty that
applies to the field of application under consideration.

Chapter 1, as an introductory chapter to this book, seeks to present a case to the
geotechnical community (including the rock community) to adopt reliability principles
as a basis for design and practice. It emphasizes the importance of integrating relia-
bility principles within the prevailing body of geotechnical knowledge and experience
in a judicious way to improve certain aspects of geotechnical practice, particularly
those amenable to mathematical treatment and to occasions where there is consider-
able practical value to do so. It makes clear that RBD plays a complementary role
and it does not displace or preclude well established elements of sound geotechnical
practice, in soils or in rocks. The centrality of engineering judgment and its role in
setting up the right lines of scientific investigation, selecting the appropriate models
and parameters for calculations, and verifying the reasonableness of the results are
affirmed. Practical avenues for site-specific effects to be incorporated in the RBD pro-
cess are highlighted. Chapter 2 provides an outline of ISO2394:2015 as seen from the
perspective of geotechnical RBD.

Editors
Kok-Kwang Phoon
Johan V. Retief
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Chapter |

Reliability as a basis for
geotechnical design

Kok-Kwang Phoon

ABSTRACT

The purpose of this introductory chapter is to present a case to the geotechnical commu-
nity (including the rock community) to adopt reliability principles as a basis for design
and practice. Engineers should be open to applying simplified (semi-probabilistic) or
direct probabilistic approaches to reliability-based design (RBD), depending on the
extent in which the design situations could be standardized. RBD refers to any design
methodology that applies reliability principles, explicitly or otherwise. The intent is
certainly not to advocate indiscriminate adoption of structural reliability principles,
but to consider how reliability principles (which are very general) can be integrated
within the larger body of geotechnical practice in a judicious way to improve certain
aspects, particularly those amenable to mathematical treatment and to occasions where
there is considerable practical value to do so. Aspects amenable to mathematical treat-
ment typically fall under the category of “known unknowns” where some measured
data and/or past experience exist for limited site-specific data to be supplemented by
both objective regional data and subjective judgment derived from comparable sites
elsewhere.

This chapter adds to the ongoing conversation on the relevance of RBD, simplified
or otherwise, in geotechnical engineering. It points out that discussions on geotechnical
design at times did not draw a clear distinction between performance verification strate-
gies (examples include global factor of safety, partial factors, or RBD) and broader
design considerations that affect all performance verification strategies if they were
sufficiently fundamental. All performance verification strategies must operate within
the prevailing norms of engineering practice and any shortcomings in these norms do
not reflect shortcomings in the performance verification strategies. Confusion of this
nature abound in some of the prevailing discussions pertaining to geotechnical RBD.
It is primarily a performance verification methodology and one should not view it as
a panacea for all afflictions affecting design calculations based on the factor of safety
or geotechnical practice in general.

The key point articulated in this chapter is that useful observations raised in ongo-
ing discussions should be viewed as providing approximate boundaries circumscribing
the limits of reliability calculations or acting as a caution against overly simplistic
reliability applications that do not respect geotechnical needs or constraints, rather
than invalidating reliability principles as a whole. This chapter emphasizes the need to
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apply reliability principles judiciously in conjunction with other design/construction
strategies. It is clear that RBD plays a complementary role. It does not displace or
preclude well established elements of sound geotechnical practice, in soils or in rocks,
which evolved to handle a moderate degree of “unknown unknowns”. Annex D of
[SO2394:2015 “Reliability of geotechnical structures” has been drafted with this
central intent in mind. The remaining chapters in this book explain how simplified
(semi-probabilistic) and direct probabilistic approaches can be applied to geotechnical
RBD in alignment with the topics covered in Annex D of 1SO2394:2015 (uncer-
tainty representation of geotechnical design parameters, statistical characterization
of multivariate geotechnical data, statistical characterization of model factors, and
implementation issues in geotechnical RBD).

1. INTRODUCTION

There is a gradual but perceptible shift in geotechnical design codes towards reliability-
based design (RBD) over the two decades, primarily in North America (Kulhawy &
Phoon 2002; Phoon et al. 2003a; Scott et al. 2003; Paikowsky et al. 2009; Allen
2013; Fenton et al. 2016) and Japan (Nagao et al. 2009; Honjo et al. 2009; Honjo
et al. 2010). RBD refers to any design methodology that applies reliability principles,
explicitly or otherwise. The term “geotechnical design” is used in a broad sense to
cover soil and rock engineering design. However, it is acknowledged that geotechnical
reliability research has been focused on soils thus far. Clause 4.4.1 of 1SO2394:2015
states that RBD can be applied in place of a full risk assessment “when the conse-
quences of failure and damage are well understood and within normal ranges”. The
basic goal of RBD is to adjust a set of design parameters such that a prescribed target
probability of failure is not exceeded. For example, the depth of a bored pile or width
of a footing is a practical design parameter that can be adjusted readily. The trial-
and-error adjustment of a design parameter is common to RBD and the prevailing
allowable stress design (ASD) method. The only difference is the design objective. The
former considers a design to be satisfactory if a target probability of failure, say one
in a thousand, is achieved. The latter considers a design to be satisfactory if a target
global factor of safety, say three, is achieved. The advantages of using the probability
of failure (or the reliability index) in place of the global factor of safety have been
discussed elsewhere (Phoon et al. 2003b), but debate on the usefulness of RBD within
the context of geotechnical design is still ongoing (Simpson 2011; Schuppener 2011;
Vardanega & Bolton 2016). This healthy debate is on-going in part because a large
part of geotechnical engineering is governed by natural geomaterials such as soils and
rocks and the subsurface environment (groundwater regime is one important aspect),
which can be fairly variable and complex. This challenge is further magnified by the
limited availability of site information due to the volume of soils/rocks involved and
possible changes in the ground conditions with time, among others. Chilés & Delfiner
(1999) noted that the volume of rock sampled is a minute fraction of the total volume
of a hydrocarbon reservoir in the petroleum industry. The geotechnical and the rock
engineer has to live with this heightened state of uncertainty and associated risk, parts
of which may not be amenable to mathematical (statistical/probabilistic) treatment.
One ramification is that the design phase and the construction phase may not be as
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distinct as those in structural engineering as it is not uncommon for the design to be
adjusted in accordance to actual ground response during construction to manage this
uncertainty and associated risk in a sensible way (e.g., adjust the spacing between rock
bolts during tunneling). It is crucial to appreciate “geotechnical design” in this context,
because it circumscribes where reliability can be applied and it emphasizes the need to
apply reliability principles judiciously in conjunction with other design/construction
strategies. There is a misconception that RBD precludes or displaces existing elements
of good practice and engineering judgment. Orr (2015) observed that “geotechnical
designs with appropriate degrees of reliability are achieved by using calculations with
partial factors ... and quality management measures related to the different stages
of a geotechnical design project which are: ground investigation, design calculations,
construction, and monitoring and maintenance after construction”. It is useful to view
design calculations, be it verified by a global factor of safety, partial factors, or RBD, as
one stage of a project. In this chapter, the term “partial factors” refers to the empirical
method of factoring soil parameters proposed by Hansen (1953, 1956, 1965). Partial
factors are not calibrated by reliability analysis and hence, it is not a simplified RBD
approach when viewed from this historical context. Although geotechnical reliability
evolves from structural reliability, there are critical elements distinctive to geotechnical
reliability that must be addressed for reliability principles to be integrated in a mean-
ingful way to geotechnical design and to the broader ambit of geotechnical practice.
For example, the structural Load and Resistance Factor Design (LRFD) practice that
recommends a single numerical value for a resistance factor does not allow room for the
geotechnical engineer to exercise judgment in response to local site conditions and to
incorporate local experience/data. Site-specific issues are however critical to geotech-
nical practice. Annex D of ISO2394: 2015 “Reliability of geotechnical structures” has
been drafted with this central intent in mind (Phoon et al. 2016).

Clause 4.4.1 of 1SO2394:2015 also states that RBD can be further simplified
“when in addition to the consequences also the failure modes and the uncertainty
representation can be categorized and standardized”. This simplified RBD approach is
referred to as a semi-probabilistic approach. It is immediately clear that the simplified
RBD approach is not as widely applicable to geotechnical design as to structural design,
because “standardization” is less achievable in natural geomaterials in contrast to
made-to-order structural materials. There are merits to consider a direct probabilistic
approach (refer to Chapter 7 Direct probability-based design methods) in some situa-
tions, which may include rock engineering design. In reference to Eurocode 7 or EC7
(EN 1997-1:2004), the Commission on Evolution of Eurocode 7 hosted by the Inter-
national Society for Rock Mechanics (https://www.isrm.net/gca/index.php?id=1143)
noted that “it is now widely recognised that EC7 is in many ways inappropriate —
and in some circumstances inapplicable — to rock engineering.” The purpose of this
Commission is to “to liaise with CEN/TC250/SC7 in order to help further develop
EC7 with regard to rock engineering design” during the current phase of Systematic
Review of the Structural Eurocodes (2015-2018).

The most popular simplified RBD format in North America is the Load and Resis-
tance Factor Design (LRFD) format (Allen 2013). In this chapter, the term “LRFD”
refers to a design format containing load and resistance factors that are calibrated to
achieve a target reliability index (Ravindra & Galambos 1978). In terms of format,
LRFD may be viewed as a special case of partial factors if one were to follow the
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terminology in EN 1997-1:2004 (Design Approach 2). However, the partial factors
“reflect more or less the different traditional practices without reference to any target
safety levels.” (Burlon et al. 2014). This chapter follows the North American terminol-
ogy of LRFD as a design approach intrinsically based on reliability calibration, rather
than simply as a format containing load and resistance factors (Paikowsky et al. 2004,
2010; Allen 2013). Chapter 6 Semi-probabilistic reliability-based design is devoted to
addressing some of the challenges in geotechnical design within the context of imple-
menting the semi-probabilistic approach. Other simplified RBD formats such as the
Multiple Resistance and Load Factor Design (MRFD) (Phoon et al. 2003c), the Robust
LRFD (R-LRED) (Gonget al. 2016), and the Quantile Value Method (QVM) (Ching &
Phoon 2011). In the 4th Wilson Tang Lecture, Phoon & Ching (2015) demonstrated
that there are challenges in applying the simplified RBD format to even relatively com-
mon design scenarios such as deep foundations installed in layered soils. In the author’s
opinion, these challenges attract less attention than they deserve, because existing
geotechnical LRFD or comparable simplified RBD formats focuses on standardization
at the expense of dealing with site-specific considerations directly.

Simplified RBD formats in the form of LRFD and MRFD are popular because
practitioners can produce designs complying with the target probability of failure (or
target reliability index), albeit approximately, while retaining the simplicity of perform-
ing one algebraic check per trial design. No tedious Monte Carlo simulations or more
sophisticated probabilistic analyses are needed. From the perspective of a practitioner,
there is no difference between applying a simplified RBD format, say LRFD, and the
prevailing factor of safety format, other than multiplying a set of resistance and load
factors to the corresponding resistance and load components (nominal or characteristic
values) mandated in such codes. The key difference is that the numerical values of these
resistance and load factors are not determined purely on experience or precedents, but
calibrated by the code developer using reliability analysis to achieve a desired target
reliability index. Once these resistance and load factors are made available in a design
code, the practitioner can use them for design without having to perform reliability
analysis or to be cognizant of soil statistics other than identifying variability in broad
terms, such as low, medium, or high. Given the diversity of natural geomaterials, it is
immediately obvious that simplified RBD must provide a channel for the practitioner
to incorporate his/her site-specific conditions. This “site-specificity” is rarely consid-
ered in structural materials, although it is clearly important for environmental loadings
and structural design codes do consider this. It is possible for geotechnical RBD that
ignores site-specific inputs on the material side to be viewed as insufficiently realistic
or incongruent with existing sound geotechnical practice.

It is accurate to say that simplified RBD formats is the most common application
of geotechnical reliability at present. A working group in the Japanese Geotechnical
Society (JGS) of TC23 prepared a report to summarize “important points to note
and recommendations when new design verification formulas are developed based
on Level I reliability based design (RBD) format for geotechnical structures” (Honjo
et al. 2009). Level I RBD format is another term for the simplified RBD format. The
report further observed that “RBD seems to be the only rational tool to provide a
design verification procedure that designs a structure for clearly defined limit states
(i.e. performances of structures and members) and introduces sufficient safety margin.
It is concluded that RBD will be used as a tool to develop design codes at least for the
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next several decades” (Honjo et al. 2009). Nagao et al. (2009) reported the revision
of the Japanese Technical Standard for Port and Harbor Facilities to align with semi-
probabilistic design. Fenton et al. (2016) highlighted that Section 6 “Foundations and
Geotechnical Systems” of the most recent edition of the Canadian Highway Bridge
Design Code (CAN/CSAS614:2014) incorporates significant changes with respect to
reliability based geotechnical design.

The purpose of this book is to explain how simplified (semi-probabilistic) and
direct probabilistic approaches can be applied to geotechnical RBD in alignment with
the topics covered in Annex D 0of 1ISO2394:2015 (uncertainty representation of geotech-
nical design parameters, statistical characterization of multivariate geotechnical data,
statistical characterization of model factors, and implementation issues in geotech-
nical reliability-based design). Chapter 1, as an introductory chapter to this book,
seeks to present a case to the geotechnical community (including the rock commu-
nity) to adopt reliability principles as a basis for design and practice. Engineers should
be open to applying semi-probabilistic or direct probabilistic approaches, depend-
ing on the extent in which the design situations could be standardized. The intent is
certainly not to advocate indiscriminate adoption of structural reliability principles,
but to consider how reliability principles (which are very general) can be integrated
within the larger body of geotechnical practice in a judicious way to improve cer-
tain aspects, particularly those amenable to mathematical treatment and to occasions
where there is considerable practical value to do so. It is clear that RBD plays a comple-
mentary role and it does not displace or preclude well established elements of sound
geotechnical practice, in soils or in rocks. This chapter describes the gap between
geotechnical and structural design, discusses the role of engineering judgment, and
contrasts the reliability and geotechnical requirements of a safety format. This “big
picture” overview shows that there is ample room for RBD to play a complemen-
tary role in geotechnical design. It may help to address comments directed at some
worrisome aspects of reliability calculations that in the opinion of the author, tend
to miss the forest for the trees. The chapter concludes by showcasing some specific
reliability applications that add value to practice to frame the technical contents pre-
sented in this book in a proper context. The focus is on the application of reliability
principles to design calculations, particularly using the popular semi-probabilistic or
simplified RBD format. It is useful to re-iterate the caveat that simplified RBD format
is not applicable to all geotechnical design situations, especially when the line between
design and construction is at times unclear and standardization is difficult to achieve.
There are merits to considering a direct probabilistic approach for geotechnical design
in these situations. Applications of reliability principles to other aspects of practice are
beyond the scope of this chapter. A fuller coverage of interesting possibilities is given in
1SO2394:2015.

1.2 EVOLUTION OF STRUCTURAL AND
GEOTECHNICAL DESIGN

The central role of ISO2394 in providing a common basis of reliability principles for
structural design standards is affirmed by the fourteen ISO Standards for which it
serves as a normative reference and ten ISO member states who have adopted it as a
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national standard. It has been cited in national standards such as the Eurocode head
standard EN1990:2002 Basis of Structural Design (Vrouwenvelder 1996), the South
African standard SANS10160-1:2011 Basis of Structural Design, and the Canadian
standard CSA S408 Guidelines for the Development of Limit States Design Standards,
in addition to being widely used as a basis for research on the application of reliability
principles. Faber (2015) explained that the key departure of the current 1ISO2394:2015
from previous versions is “the introduction of risk and risk-informed decision making
as the fundamental basis for the regulation and standardization of safety and relia-
bility of structures.” He further elaborated that “Whereas requirements to safety and
reliability in the previous edition of ISO 2394 took basis in efficiency requirements of
a heuristic character, these are now based on risk considerations and socio-economic
principles through utilization of the marginal life saving principle and the Life Quality
Index (LQI), see Nathwani et al. (1997). This in turn facilitates a more relevant use
of ISO 2394 in the context of sustainable societal developments and its adaptation for
application in different nation states in accordance with prevailing economic capacity
and preferences. The new revision of ISO 2394 thus facilitates regulation, verification,
documentation and communication of the adequately safe and reliable performance
of structures, and also to consider them in a broader sense as part of societal systems
and services.”

From a geotechnical perspective, the key departure of the current 1SO02394:2015
from previous versions is the introduction of a new informative Annex D on “Reliabil-
ity of Geotechnical Structures” (Phoon et al. 2016). The need to achieve consistency
between geotechnical and structural reliability-based design is explicitly recognized
for the first time in ISO2394 with the inclusion of Annex D. As highlighted previ-
ously, the emphasis in Annex D is to inject greater realism into geotechnical RBD,
while respecting the principles of prevailing geotechnical practice that evolved to han-
dle uncertainties (and risks) beyond those amenable to mathematical treatment. It
is further recognized that geotechnical engineering practice is less amenable to stan-
dardization compared to structural engineering practice, because there are diverse site
conditions and diverse local practices that grew and evolved over the years to suit
these conditions. The gap between structural and geotechnical design at a fairly fun-
damental level is already evident if one were to observe that a new Annex devoted to
geotechnical engineering only appears in 1SO2394:2015, which is the fourth edition.
The first edition of 1ISO2394:2015 was published in 1973, although foundations were
included as structural elements.

The evolution of geotechnical design over the past six or more decades is briefly
reviewed below to present a historical perspective of how structural and geotechnical
design diverge due to differences in design situations and differences in emphasis. A
large part of geotechnical design, particularly in the format of partial factors, was
influenced by Hansen (1953, 1956, 1965). The partial factors are determined subjec-
tively based on two guidelines: (a) a larger partial coefficient should be assigned to a
more uncertain quantity, and (b) the partial coefficients should result in approximately
the same design dimensions as that obtained from traditional practice (Hansen, 1965).
This partial factor approach was adopted in Denmark (Ovesen 1989) and subsequently
influenced geotechnical code developments in Canada (Meyerhof 1984) and Europe,
notably EN 1997-1:2004 [there are 60 occurrences of the term “partial factor(s)”
between Section 2 and 12 in EN 1997-1:2004]. It has been highlighted previously that
the original partial factor approach suggested by Hansen (1953, 1956, 1965) differs
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in one aspect from the partial factor approach recommended in EN 1997-1:2004. The
former approach applies the partial factor to the ground strength parameters, while the
latter approach permits application of the partial factor to both ground strength param-
eters and ground resistances. When the partial factor in EN 1997-1:2004 is applied
as a divisor to a ground resistance, it is the reciprocal of the LRFD resistance factor.
The “partial factor” terminology in EN 1997-1:2004 is not adopted in this chapter.
This chapter retains the original Hansen definition of a “partial factor” (which is a
divisor applied to a ground strength parameter) and refers to a “resistance factor” as
a multiplier to a ground resistance in the context of LRFD, where the term “resistance
factor” originates from. The limitations of this approach was widely debated (e.g.,
Simpson et al. 1981, Baike 1985, Fleming 1989, Valsangkar & Schriver 1991), but in
the opinion of the author, no satisfactory resolution emerged from these discussions.
Phoon et al. (2003a) opined that: “Implementation of limit state design within a non-
probabilistic framework, such as the empirical partial factors of safety method, does
not appear to address adequately most of the serious drawbacks associated with the
traditional factor of safety approach. For example, it is not clear how the empirical
partial factors of safety method can promote communication, assist in extrapolating
the experience of safe practice to new conditions, or permit full advantage to be taken
of improvements in the knowledge base. The adoption of such empirical methods
might pave the way for gradual rationalization of the partial factors using probabilis-
tic means, but the desirability of trading a known system for an unknown one solely
on this basis is debatable.”

In a more detailed historical review on the evolution of structural and geotech-
nical design since the fifties, Kulhawy & Phoon (2002) noted that structural design,
in the form of LRFD, “is essentially the logical end-product of a philosophical shift
in mindset to probabilistic design in the first instance and a simplification of rigorous
reliability-based design into a familiar ‘look and feel’ design format in the second”.
In contrast, geotechnical design predominantly involved a rearrangement of a single
global factor of safety into two or more partial factors. As mentioned above, this
arose in part because geotechnical engineers had to grapple with a heightened state of
uncertainty and associated risk, parts of which may not be amenable to mathematical
treatment. It is sensible for geotechnical engineers to seek clarity on more fundamental
design considerations (e.g., what is “design”? which design situations can be stan-
dardized? is the divide between ultimate and serviceability limit states real? is it more
sensible to assess the performance of a structure and foundation as a system based on
ground movements? should geotechnical design migrate towards performance-based
design?) and to devote less attention to performance verification which is only one
step, albeit an important one, in design. It may be noted in passing that the Japanese
Geo-code 21 is possibly the first performance-based foundation design code (Honjo &
Kusakabe 2002, Honjo et al. 2010). In the opinion of the author, discussions on
geotechnical design at times did not draw a clear distinction between performance ver-
ification strategies (examples include global factor of safety, partial factors, or RBD)
and broader design considerations that affect all performance verification strategies if
they were sufficiently fundamental. All performance verification strategies must oper-
ate within the prevailing norms of engineering practice and any shortcomings in these
norms do not reflect shortcomings in the performance verification strategies. Confu-
sion of this nature abound in some of the cited discussions presented in this chapter
that are intended to be illustrative rather than comprehensive.
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The relevance of RBD, simplified or otherwise, is still being debated in an exchange
clouded occasionally by confusion due to the evolving discussion on fundamental issues
at hand and their fairly tangled relationship to performance verification. The refer-
ence to “probability” or comparable terms engendered continuing controversy in the
geotechnical community. For example, Schuppener (2011) shared that a similar senti-
ment was expressed during the National Geotechnical Conference in Germany in 1982.
Schuppener (2011) summarized the following reservations raised during a discussion
panel in this conference:

e The probabilistic approach does not take account of human error in design and
execution although it is the main cause of damage.

o The possibilities of collecting statistical data on soil are severely limited in
practice.

e The differences between geotechnical engineering and other areas of structural
engineering are not only the higher coefficients of variation in the former — soil
cannot be produced with clearly defined characteristics according to a set formula —
but also that the geotechnical engineer only ever sees a limited part of the structure
he is designing.

e Damage is usually due to risks which are connected with the soil but which go
undetected.

e Distributions of geotechnical basic variables that have no upper or lower limit are
unsuitable as it is not possible to measure very high and very low values, nor are
such values considered likely to occur for mechanical reasons.

e Soil excavations and tests of the mechanical properties of soil never provide enough
data to enable a probability calculation to be performed.

The author hastens to add that the probabilistic approach is favorably received
in Canada (Fenton et al. 2016), the Netherlands (Vrouwenvelder et al. 2013), Japan
(Honjo et al. 2009, 2010), and USA (Allen 2013). Chapter 7 presents new safety stan-
dards for flood defenses in the Netherlands which is the first ever national standard that
adopts direct (or full) probability-based design methods (Schweckendiek et al. 2013,
2015). The author ventures to suggest that some of the reservations are based on the
misconception that RBD is a panacea for all afflictions affecting design calculations
based on the factor of safety or geotechnical practice in general. This aspect is clarified
in the next section. Other reservations relate to the scarcity and/or incompleteness of
available information. This crucial information aspect is clarified in Section 1.5. The
key point here is that the reservations expressed above should be viewed as providing
approximate boundaries circumscribing the limits of reliability calculations or acting as
a caution against overly simplistic reliability applications that do not respect geotech-
nical needs or constraints, rather than invalidating reliability principles as a whole.
For example, it is possible to incorporate upper and/or lower limits in probability
distributions. It is admittedly not possible to do this using the normal or lognormal
distribution, but this issue is related to over-simplification (which a part of the more
theoretically oriented geotechnical reliability literature may have indulged in) rather
than a fundamental limitation of reliability principles. There is no reason to retain sim-
ple reliability analysis that does not respect sound geotechnical principles. Section 1.5
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provides an overview of more advanced methods that can respect prevailing geotech-
nical principles and add considerable value to practice. Notwithstanding the merits of
using non reliability-based partial factors (all methods must have their pluses along
with minuses), it suffices to note at this point that structural and geotechnical design
cannot be bridged by an empirical basis. Using 1SO02394:2015 as a concrete exam-
ple, it is clear that there is no practical way for geotechnical design unsupported by a
reliability basis to fit in. It is also difficult for our geotechnical profession to benefit
from the ongoing and pervasive information technology revolution in big data and
data analytics in the absence of a rational framework, be it reliability or otherwise.

1.3 ROLE OF ENGINEERING JUDGMENT

There is no doubt that a discussion on the role of reliability calculations in geotechnical
design should be framed by useful caveats highlighted on a number of occasions (e.g.,
Simpson 2011, Schuppener 2011, Schuppener 2013, Vardanega & Bolton 2016). One
noteworthy caveat is the importance of engineering judgment (e.g., Burland 2008a,
Burland 2008b, Dunnicliff & Deere 1984, Focht 1994, Peck 1980, Petroski 1993,
Petroski 1994). Much has been written on this topic and it will not be repeated here
other than to reaffirm the centrality of engineering judgment in RBD. Certainly, it
is not judicious to rely completely on calculations, regardless of their sophistication,
generality, and precision. It is particularly important to repeatedly reinforce this mes-
sage, given the growing power and sophistication of computing, including big data
analytics and deep machine learning. Reliability analysis is merely one of the many
mathematical methods routinely applied to model the complex real-world for engineer-
ing applications. It is susceptible to abuse in the absence of sound judgment in the same
manner as a finite element analysis. Nonetheless, the author submits that we should
take this caveat as a given and draw clearer boundaries on which aspects of practice
would benefit from calculations (reliability analysis included). No one would argue
that engineering practice has benefited tremendously from mathematical modelling.

Kulhawy & Phoon (1996) clarified the role of engineering judgment in RBD as fol-
lows: “The advent of powerful and inexpensive computers in the last two decades has
helped to provide further impetus to the expansion and adoption of theoretical analyses
in geotechnical engineering practice. The role of engineering judgment has changed as
a result of these developments, but the nature of this change often has been overlooked
in the enthusiastic pursuit of more sophisticated analyses . .. For example, engineering
judgment still is needed (and likely always will be!) in site characterization, selection
of appropriate soil/rock parameters and methods of analysis, and critical evaluation of
the results of analyses, measurements, and observations. The importance of engineer-
ing judgment clearly has not diminished with the growth of theory and computational
tools. However, its role has become more focused on those design aspects that remain
outside the scope of theoretical analyses.” Examples would be provided in Section 1.5
on how reliability calculations could relieve engineering judgment from the unsuitable
task of performance verification in the presence of uncertainties so that the engineer
can focus on setting up the right lines of scientific investigation, selecting the appro-
priate models and parameters for calculations, and verifying the reasonableness of the
results (Peck 1980).
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The key advantage of reliability analysis is that it allows “known unknowns” to
be modeled formally as random variables/fields/processes (there are merits for doing
s0) and to determine the uncertainty in the response (or responses) consistently from
the input uncertainties. In principle, it is possible to analyse complex and large scale
real-world problems. There is a practical limit to the reach of engineering judgment,
particularly in the absence of precedents. In some sense, this step could be viewed
as a logical progression from presumptive bearing stresses based on precedence, rules
of thumb, and local experience to allowable stresses based on soil mechanics and
more rational methods for analyzing stability and a factor of safety to take care of
known unknowns and perhaps a moderate degree of unknown unknowns. From this
perspective, reliability analysis rationalizes a part of the factor of safety, particularly
characterization of the known unknowns using objective data and to some degree,
subjective experience. As such, the probability of failure computed from a reliability
analysis should be interpreted as a nominal value rather than as an actual value that
matches historical rates of failure. However, the nominal probability of failure has
demonstrated its value as an index that manages known unknowns in a consistent
way and by doing so, allows the value of geotechnical information to be quantified
in a defensible way. It is common for an engineer to grapple with the question on
how many tests should be conducted, because the cost of gathering more information
cannot be readily weighed against the “value” of doing so, particularly from the per-
spective of the client. The most extreme degree of an “unknown unknown” is referred
to as a “black swan” in the catastrophic risk literature. There is no prior experience of
encountering this “black swan” event that leads to disproportionate consequences. It
is safe to say that reliability analysis or any computational technique is not appropriate
to deal with these exceedingly rare events that may lead to catastrophic failures and in
any case, no one designs for these events, be it using a global factor of safety, partial
factors, or RBD. Between the known unknowns (“white swans”) where some reason-
able amount of data exist and extreme unknown unknowns (“black swans”), there are
perhaps different shades of “grey swans” such as events reasonably foreseeable even
in the absence of data (e.g., cavities in karst formations foreseeable from geologic con-
siderations and regional experience) or events unforeseeable but do not lead to major
failures (e.g., erratic soft spots below pile tips, moderate human errors, moderate acci-
dents). The former can be dealt with by selecting an appropriate foundation system
such as a raft to bridge over potential cavities. This foundation system is reasonably
robust against the unknown presence of cavities, provided the cavities are reasonably
smaller than the size of the raft and they are anomalous rather than prevalent subsur-
face features. This is where engineering judgment comes in — it is outside the scope of
reliability calculations which presupposes the selection of an appropriate design, limit
state, and failure mechanism to design against. The latter may be amenable to design
strategies and robustness provisions given in Section E.3 of 1S02394:2015 (Table 1.1).
Robust design in the sense discussed under Annex F is outside the scope of this book,
although it is briefly discussed in Section 2.4. A more restricted element of robustness
that accounts for the hard-to-control (i.e., cannot be easily adjusted by the practitioner)
and hard-to-characterize (i.e., the uncertainty is recognized but hard to quantify due
to insufficient data) noise factors, is discussed in Section 6.2 and 7.4.

One may argue that “grey swans” are considered in the global factor of safety
in a broad conceptual sense. It is widely perceived that the factor of safety contains
additional conservatism to take care of a moderate degree of “unknown unknowns”.
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Table I.1 Classification of design methods (Source: Table F2, 1ISO2394:2015. Reproduced with per-
mission from the International Organization for Standardization (ISO). All rights reserved

by ISO).

Method

Reduces

Issues to address

(a) Event control
(EQ)

(b) Specific load
resistance (SLR)

(c) Alternative load
path method
(ALP), including
provision of ties

Probability of occurrence
and/or the intensity of an
accidental event
Probability of local damage
due to an accidental event

Probability of further
damage in the case of
local damage

— Monitoring, quality control, correction,
and prevention

— Strength and stiffness

— Benefits of strain hardening

— Ductility versus brittle failure

— Post-buckling resistance

— Mechanical devices

— Multiple load path or redundancy

— Progressive failure versus the zipper stopper
— Second line of defence

— Capacity design and the fuse element

— Sacrificial and protective devices

— Testing

— Strength and stiffness

— Continuity and ductility

— Segmentation

— Warnings, active intervention, and rescue
— Redundancy of the services of the facilities

(d) Reduction of
consequences

Consequences of follow
up damage such as
progressive collapse

Meyerhof (1984) noted that partial factors were calibrated so that they result, on aver-
age, in overall factors of safety that are in agreement with existing practice. Hence,
one may argue that “grey swans” are considered in empirical partial factors calibrated
in this way. What about RBD? Beal (1979) voiced the concern that splitting the safety
margin into components associated with loads and resistances can result in omitting
some functions of the original factor of safety. Phoon et al. (2003a) proposed the
following key considerations for the selection of the target reliability index for trans-
mission line structure foundation design, taking into consideration the nominal nature
of the reliability index or equivalent probability of failure:

e It should be approximately consistent with empirical rates of foundation failure,
after making an appropriate adjustment for the difference between actual and
calculated rates of failure.

e It should fall within the range of reliability levels implicit in existing foundation
designs.

e It should be applicable for a variety of loading modes that are commonly imposed
on transmission line structure foundations.

e It should exceed the target reliability index for typical transmission line structures
because foundation repairs are more difficult and costly.

The second consideration is widely adopted in RBD (Ellingwood et al. 1980).
Hence, it is inaccurate to say that RBD does not consider “grey swans”. Kulhawy &
Phoon (1996) noted that this somewhat empirical approach of calibrating the target
reliability index possesses the advantage of keeping designs emerging from RBD com-
patible with the existing experience base. It is accurate to say, though, that the global
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factor of safety, partial factors, and RBD do not consider “grey swans” explicitly. The
notion of a moderate degree of “unknown unknowns” is ultimately a matter of judg-
ment. At present, judicious adjustment of the target reliability index is probably the
only realistic means of incorporating less quantifiable but important considerations
into RBD in a fairly consistent way. Section 7.7 presents some examples of target reli-
ability indices. It goes without saying that existing practice does not solely rely on the
global factor of safety or partial factors to handle “grey swans”. Some sensible mitigat-
ing measures are presented in Table 1.1. RBD can and should be used in conjunction
with these measures as well.

1.4 RELIABILITY VERSUS GEOTECHNICAL REQUIREMENTS
OF A SAFETY FORMAT

This section contrasts reliability requirements and geotechnical requirements of a safety
format to make clear that both sets of requirements are complementary. Clause D.5.2
of 1S02394:2015 states that the key goal in geotechnical RBD is to achieve a more
uniform level of reliability than that implied in existing allowable stress design. It fur-
ther clarifies that: “With regard to the semi-probabilistic approach, it is important
to highlight that reliability calibration is more challenging in geotechnical engineer-
ing. One key reason is the diversity of design scenarios that shall be considered in the
calibration domain, such as the range of COV resulting from different soil property
estimation methodologies. Another source of diversity is the number of different soil
profiles encountered even within a city size locale.” COV is the abbreviation for coef-
ficient of variation, which is defined as the ratio between the standard deviation and
the mean. The COV of structural strengths is around 10%, while that of soil strengths
can be considerably higher. Chapter 6 discusses how diverse design scenarios can be
handled within the semi-probabilistic reliability-based design framework that requires
some degree of standardization of the partial factors.

To reiterate, the goal of simplified RBD is to calibrate resistance or partial fac-
tors to achieve a target reliability index. The performance verification format only
affects the ability to achieve a uniform reliability level across different design scenar-
ios within the ambit of the design code. For a less effective verification format that
cannot maintain a reasonably uniform level of reliability, an expedient solution is to
partition the design space as shown in Figure 1.1. The COV partitions for undrained
shear strength in Figure 1.1 are based on a reasonably practical three-tier classifi-
cation scheme (Table 1.2) proposed by Phoon & Kulhawy (2008) for calibration
of resistance factors in simplified RBD. This partition method has been applied in
the Canadian Highway Bridge Design Code (CAN/CSA-S6-14:2014). Fenton et al.
(2016) highlighted that geotechnical resistance factors for the ultimate and service-
ability limit states are provided based on three levels of understanding in Table 6.2
of CAN/CSA-S6-14:2014. Tables 6.1 and 6.2 in Chapter 6 are earlier examples of an
information-sensitive RBD that is more appropriate for geotechnical design. This is
one of the simplest channel for site-specific conditions to be incorporated in simplified
RBD. The prevailing practice of reccommending one numerical value for each resistance
factor does not offer such a channel. This important point is related to the value of
geotechnical information and it is explained in more detail in the next section.
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Figure I.1 Partitioning of parameter space for calibration of resistance factors (Source: Figure D.3,
1SO2394:2015. Reproduced with permission from the International Organization for
Standardization (ISO). All rights reserved by ISO).

Table 1.2 Three-tier classification scheme of soil property variability for reliability calibration
(Source:Table 9.7, Phoon & Kulhawy 2008).

Geotechnical parameter Property variability COV (%)
Undrained shear strength Low? 10-30
Medium® 30-50
High® 50-70
Effective stress friction angle Low? 5-10
Medium® 10-15
High® 15-20
Horizontal stress coefficient Low? 30-50
Medium® 50-70
High® 70-90

a — typical of good quality direct lab or field measurements
b — typical of indirect correlations with good field data, except for the standard penetration test (SPT)
¢ — typical of indirect correlations with SPT field data and with strictly empirical correlations

From a geotechnical perspective, Simpson (2011) opined that an adequate safety
format ought to include proper account of the following features:

e the designer’s specific knowledge of the site, the ground conditions and their
possible variability. This includes taking full account of the geology, history,
geomorphology and hydrology of the site;

e an appropriate assimilation and compilation of data from all available sources,
including published literature, collection of comparable case histories and test
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results, often from several types of test of varying number, means of interpretation
and reliability;

a parametric study, to reveal the significance of variations of the lead variables;
in particular, a careful assessment of the worst credible values of parameters. This
will often not be obtained from a study of likely values and statistical variations
around a mean;

e adequate robustness. This entails providing adequate margins for secondary
actions and other variations that are not related to the primary parameters,
including moderate human errors;

e adequate prescription for both ULS and SLS, noting that these may be difficult to
separate.

These requirements are clearly complementary to the key RBD requirement of
achieving a more uniform level of reliability. The next section argues that these geotech-
nical requirements can be addressed in a more advantageous way within RBD. The
exception is robustness, which may be better addressed by Annex F, 1SO02394:20135,
rather than the semi-probabilistic approach. However, Gong et al. (2016) proposed
an interesting R-LRFD approach that considers robustness in a restrictive sense.
R-LRFD is a simplified version of a new design philosophy called robust geotech-
nical design (RGD) recently proposed by Juang et al. (2013a&b) to make the response
of a geotechnical system robust against, or insensitive to, the variation of uncertain
input parameters. Robust geotechnical design is an alternate approach to address
the recurring comment that statistics evaluated from limited data are unreliable. It
may be noted in passing that the more conventional approach is to consider “unreli-
able statistics” within the well-established framework of sampling errors or statistical
uncertainties. Statistical uncertainties rationally assign a cost that weighs against a
fairly common practice of collecting a minimum amount of geotechnical information
for the sake of complying with building regulations. This is an advantage.

Reflecting on the role of reliability analyses in design calculations, Simpson (2011)
observed that “Reliability analyses have the advantage that they provide a compre-
hensive parametric study. In the author’s view, it is possible that advanced reliability
analysis may be able to take account of all the aspects listed here, including consid-
eration of extreme values. However, simple reliability analysis, such as based on a
study of means and standard deviations, will not achieve this. Indeed, such an ana-
lytical approach is more likely to distract attention from the main issues relating to
geology, history, geomorphology and hydrology.” Indeed, the author agrees that more
realism should be injected into geotechnical RBD. Chapter 7 covers direct (or full)
probability-based design methods that are considerably more advanced than simpler
methods relying on means and standard deviations alone.

The “simple” reliability analysis arose in part because geotechnical RBD grew
from structural LRFD (e.g., Ravindra & Galambos 1978) and in the opinion of the
author, insufficient attention was paid to specific needs of geotechnical practice in the
past. Structural reliability has evolved rapidly beyond LRFD since the eighties (e.g.,
Chapter 2 describes that risk informed decision making is formally introduced as a
recognized basis for design in 1SO2394:20135), but geotechnical RBD has developed at
a considerably slower pace. While it is understandable for geotechnical RBD to adopt
structural LRFD concepts during its initial stage of development over the past decades,
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the author believes that it is timely for the geotechnical RBD community to look into
how we can improve our state of practice to cater to the distinctive needs of geotechnical
engineering practice. In fact, Annex D of 1SO02394:2015 is an important first step
to develop geotechnical RBD with practical geotechnical needs at the forefront. An
excerpt of D.1 Introduction is reproduced below to illustrate this spirit.

“The emphasis in this Annex is on the identification and characterization of critical
elements of the geotechnical reliability-based design process. These elements cannot
be accounted for in existing deterministic geotechnical practice. The critical distinctive
elements are the following:

(a)  Coefficients of variation (COVs) of geotechnical design parameters can be poten-
tially large because geomaterials are naturally occurring and in situ variability
cannot be reduced (in contrast, most structural materials are manufactured with
quality control).

(b) COVs for geotechnical design parameters are not unique and can vary over a
wide range, depending on the procedure in which they are derived.

(c) Because geotechnical design parameter characteristics are different from one site
to another, it is common to conduct a site investigation at each site. For this
reason, statistical uncertainty should be handled with much care.

(d) It is common to conduct both laboratory and field tests in a site investigation.
A geotechnical design parameter is typically correlated with more than one lab-
oratory and/or field test indices. It is important to consider this multivariate
correlation structure where possible because the COV of the design parameter
reduces when consistent information increases.

(e)  Spatial variability of geotechnical design parameters cannot be readily dismissed
because the volume of geomaterial interacting with the structure is related to
some multiple of the characteristic length of the structure and this characteristic
length (e.g., height of slope, diameter of tunnel, depth of excavation) is typically
larger than the scale of fluctuation of the design parameter, particularly in the
vertical direction.

(f)  There are usually many different geotechnical calculation models for the same
design problem. Hence, model calibration based on local field tests and local
experience is important. The proliferation of model factors, possibly site-specific,
is to be expected because of the number of models and the number of calibration
databases.

(g) A geotechnical system, such as a pile group and a slope is a system reliability
problem containing multiple correlated failure modes. Some of these problems
are further complicated by the fact that the failure surfaces are coupled to the
spatial variability of the soil medium.”

The elements highlighted by Simpson (2011) or in Annex D of ISO2394: 2015 are by
no means comprehensive and their relative importance may be debated, but they do
contribute to the ongoing conversation on how to place geotechnical RBD on a firmer
and more realistic basis. Some specific applications are discussed in the following
section to illustrate the key point that there is practical value to adopting reliability as
a basis for geotechnical design if one were to move away from simplistic assumptions
and methods that do not meet geotechnical needs and constraints.
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1.5 SOME RELIABILITY APPLICATIONS

1.5.1 Multivariate soil databases

Several multivariate probability models have been constructed for a variety of clay
parameters (Ching and Phoon 2012, 2013a, 2014a; Ching et al. 2014a). The details
for these databases are given in Table 4.1 in Chapter 4. The constructed multivari-
ate probability model can be used as a prior distribution to derive the multivariate
distribution of design parameters based on limited but site-specific field data. Note
that the entire multivariate distribution of multiple design parameters is derived, not
marginal distributions or simply means and coefficients of variation (COVs) presented
in Phoon & Kulhawy (1999a, 1999b) for soils and in Prakoso (2002) for rocks. Note
that multiple design parameters can be updated from multiple field measurements,
which is more useful than updating one design parameter using one field measurement
based on current practice (for example, updating the undrained shear strength using
the cone tip resistance). Details are given in Ching and Phoon (2014b) and Chapter 4.

There are clear advantages to compiling soil/rock data in a systematic way that can
be applied for updating purposes. It is difficult to carry out updating in a consistent
way in the presence of multiple parameters that are correlated to different degrees.
The intuitive approach of taking the average of estimates from different tests does
not work in all cases, because correlations between different parameters are ignored.
The author recommends applying judgment as a reality check on the final outcome
derived from Bayesian updating, rather than as a method of estimation. It goes without
saying that an engineer would be most well placed to assess the accuracy of the input
data and to remove potential outliers. Clearly, judgment is mostly effectively exercised
when it is informed by all available data, knowledge, and outcomes of rationally
defensible analyses. The important practical point here is that information (in which
site investigation is only one source) that can be handled in a defensible way can be
associated with a notion of “value of information” as elaborated below in Section 1.5.2.

Vardanega & Bolton (2016) opined that “Although reliable estimates of the mean
and standard deviation are easier to ascertain than the shapes of the pdfs, there remains
an unjustified tendency to rely solely on published COV values from other soil deposits.
Because variability in a soil deposit is a function of the processes of geological depo-
sition and geomorphological change that have influenced the site, intensive efforts
would be necessary to draw parallels between a new site that lacks such information
and previously explored sites for which COV values have been established.” In the
opinion of the author, it goes without saying that information gleaned from the litera-
ture should not be used indiscriminately. It has been emphasized in Section 1.3 citing
Peck (1980) that selecting the appropriate parameters for calculations is within the
purview of engineering judgment. Having said this, it is good practice to consider all
sources of information in design, including those reported in the literature. In addi-
tion, prior information in the literature can be updated by site-specific information.
This Bayesian updating approach is a powerful tool that geotechnical engineers could
exploit to provide better value for the cost of site investigation. Finally, our geotechnical
heritage is steeped in empiricism that includes the application of “global” correlations.
Although all engineers are cognizant of the site-specific nature of geotechnical prac-
tice, one would be hard pressed to say that our current practice of applying “global”
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correlations that do not quite fit the specific soils encountered in a particular site is
ineffective.

1.5.2 Geotechnical information: Is it an “investment’’ or a “cost’’?

One attractive advantage of RBD is that it offers an explicit linkage between site inves-
tigation and design. Site investigation is an activity unique to geotechnical engineering
practice and it is mandated in many building regulations around the world [for e.g., the
number of boreholes should be the greater of (i) one borehole per 300 sqm or (ii) one
borehole at every interval between 10 m to 30 m, but no less than 3 boreholes in a
project site]. Site investigation is typically viewed as a cost item and it is generally an
uphill task to convince clients to pay for site investigation over and above that man-
dated in building regulations. The practical significance of summarizing soil databases
as multivariate probability models is that the COV of one soil parameter is reduced
when information on a second relevant parameter (or a group of relevant parame-
ters) is made available, particularly in the presence of some correlations between these
parameters. More details on this Bayesian updating approach is given in Chapter 4.
It suffices to note here that site investigation can be viewed as an investment item
rather than a cost item, because reduction of uncertainties through multivariate tests
can translate directly to design savings through RBD (Ching et al. 2014b). This impor-
tant link between the quality/quantity of site investigation and design savings cannot
be addressed systematically in our traditional factor of safety approach. In short, the
advantage of RBD is that it can respond to a change of COV in a rational way explicitly
related to data, while the factor of safety approach cannot. This advantage is more
pronounced if the multivariate nature of geotechnical data is considered. The only
requirement to realize this advantage is to adopt an information-sensitive RBD design
approach. The simplest approach is to allow each resistance/partial factor to take a
different numerical value depending on the level of property variability (low, medium,
high) judged to be appropriate for a specific design scenario. This scheme is illustrated
in Figure 1.1 (Figure D.3 of 1ISO2394), which illustrates a more general three-tier vari-
ability scheme shown in Table 1.2. It has been highlighted that Tables 6.1 and 6.2 in
Chapter 6 are earlier examples of an information-sensitive RBD approach. It is logical
to expect the resistance factor to take a higher value when property variability is low
and vice-versa. This is the recommended minimum best practice to allow room for the
engineer to incorporate some site-specific variability information. The existing practice
of calibrating a single value for each resistance factor is inadequate for geotechnical
engineering. It is possible to use a single resistance factor value if the characteristic
resistance could be consistently adjusted to respond to different variability tiers, i.e.
the characteristic resistance changes with COV rather than the resistance factor as
discussed in Section 1.5.6. However, as pointed out in Section 1.5.7, it is virtually
impossible to do this using engineering judgment alone for multiple correlated resis-
tances. CAN/CSAS614:2014 has followed a similar scheme in allowing a resistance
factor to take on different values depending on the degree of “understanding” (low, typ-
ical, high). The degree of understanding covers the quality of site information and the
quality of performance prediction. It is possible to envisage an information-sensitive
RBD that eventually considers the complete gamut of geotechnical information, which
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could include both pre-design information (e.g., prior experience, site investigation,
small-scale model test, centrifuge test, prototype test) and post-design information
(e.g., quality control, monitoring). It is safe to say that Table 6.1 in Chapter 6 or
Table 6.2 in CAN/CSAS614:2014 is a step in the right direction to establish a closer
and more explicit linkage between geotechnical information and design. Overall, one
expects geotechnical practice to be impacted positively if information can be assigned
a “value” in a defensible way.

1.5.3 Model uncertainties

The model factor for the capacity of a foundation is commonly defined as the ratio
of the measured (or interpreted) capacity (Q,,) to the calculated capacity (Q.), i.e.
M=0,,/Q.. The value M =1 implies that calculated capacity matches the measured
capacity exactly, which is unlikely for all design scenarios. Intuition would lead us to
think that M takes a different value depending on the design scenario. This intuitive
observation is supported by a large number of model factor studies (see Chapter 5). It
is straightforward to apply this simple definition to other responses beyond foundation
capacity. Ideally, a calculation model should capture the key features of the physical
system, and the remaining difference between the model and reality should be random
in nature because it is caused by numerous minor factors that were left out of the
model. Hence, it is reasonable to represent M as a random variable. The probability
model of M (a lognormal distribution is usually adequate) is a description of these
random differences resulting from model idealisations. Chapter 5 provides a useful
compilation of model factor statistics for both ultimate and serviceability limit states.

This approach is entirely empirical, but it is practical way to emphasize the link
between a model and reality. Engineers can easily relate to and adopt this model factor
approach. It is obvious that M is a function of the prediction model (or calculation
method) and to a lesser extent, the definition of the capacity on a measured load-
displacement curve. Because of its empirical basis, it is potentially possible for the
distribution and statistics of M to be related to the calibration load test database.
It is highly recommended to validate the distribution of M or at least its statistics
against an independent load test database to gauge their applicability beyond scenar-
ios not covered in the calibration database. The model factor M is certainly not a
function of a response such as bearing capacity or lateral capacity. Phoon & Kulhawy
(2005) demonstrated using a large load test database that the mean of M for the lat-
eral capacity of a rigid drilled shaft is function of the prediction model (five models
for undrained mode, four models for drained mode) and the capacity interpretation
method [lateral or moment limit (Hp ), hyperbolic limit (H},)]. Reported model statistics
for a response without reference to a specific prediction model are probably ball-park
figures of unknown accuracy based on experience. This is amply illustrated by the
diversity of results for different models listed in Chapter 5.

Phoon (2005) demonstrated that the existing factor of safety for laterally loaded
rigid drilled shafts cannot be compared when the capacity is calculated using dif-
ferent calculation models. Phoon (2005) illustrated this well-known limitation using
a simple design example: shaft diameter=1m, shaft length/diameter=35, load
eccentricity = 0.5 m, a uniform undrained shear strength profile=50kPa, and an
applied load (F)=200kN. The factors of safety (H,/F), in which H, is the lateral
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Table 1.3 Values of the model factor yg.4 in the new French code for deep foundation, AFNOR (2012)
(Frank 2015).

Pressuremeter test Cone penetration test
(PMT) method (CPT) method
Pile type Compression Tension Compression Tension
All piles, except injected piles and piles .15 1.4 1.18 1.45
embedded in chalk
Piles embedded in chalk, except injected piles 1.4 1.7 1.45 1.75
Injected piles 2.0 2.0 2.0 2.0

capacity calculated from Reese, Broms, and Randolph & Houlsby models, are 3.1,
1.7, and 3.4, respectively. If one were to adjust the calculated capacity by the mean
model factors reported in Phoon & Kulhawy (2005), the revised factors of safety
(H,,,/F) are 2.8, 2.6, and 2.9, respectively for H,, = H| and 4.3, 4.0, and 4.5, respec-
tively for H,, = Hy,. A drilled shaft designed using Broms method has to be significantly
larger to achieve the same factor of safety (H,/F), because the degree of conservatism
intrinsic in the method is not included. Hence, it is useful to consider the mean model
factor in design, even within our existing allowable stress design framework. BS EN
1997-1:2004, Table A.11 “Correlation factors £ to derive characteristic values from
dynamic impact tests (n — number of tested piles)” noted that the correlation factors
should be multiplied by a model factor =0.85, 1.10, and 1.20 for the following three
methods of interpreting the ultimate compressive resistance from dynamic impact tests:
dynamic impact tests with signal matching, a pile driving formula with measurement of
the quasi-elastic pile head displacement during the impact, and a pile driving formula
without measurement of the quasi-elastic pile head displacement during the impact,
respectively. There are other references to model factors in BS EN 1997-1:2004, but no
values are recommended in this British standard. It is useful to point out that the model
factor in EN 1997-1:2004 (yg.q) and M differ in one fundamental aspect; the former
is number while the latter is a random variable. From the “design point” perspective
offered in Section 1.5.7 below, yg.4 can be consistently interpreted as the reciprocal of
M at the design point. Frank (2015) recommended some values of yg.4 for use in the
French standard in Table 1.3.

Vardanega & Bolton (2016) observed that “RBD is applied to the ultimate failure
of the soil, rather than to the onset of disappointing deformations that later develop
into serviceability issues, and then ultimately threaten structural collapse only if noth-
ing has been done to interrupt the loading process or enhance the soil-foundation
system. In that sense, the rigid demarcation between serviceability limit state (SLS)
and ultimate limit state (ULS) failures in limit state design is unrealistic and unhelpful
for a designer wishing to apply risk-based concepts.” They further observed that the
“challenge for geotechnical practitioners is not only to make settlement predictions,
but to do so within a rigorous statistical framework.” RBD can be applied to any
performance function. It has understandably been applied to ULS and SLS as these
limit states are commonly accepted to be important in prevailing design codes. If the
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geotechnical community were to consider that deformation checks are more important,
it would be even more important to characterize model uncertainties associated with
deformation calculations. Simpson et al. (1981) noted that structural engineers are
often unsure about the confidence that geotechnical engineers actually place on their
predictions of ground deformations. Vardanega & Bolton (2016) voiced a similar sen-
timent that deformation checks are less scrutinized and less validated than capacity
checks associated with critical slip surfaces. They recommended that the mobilizable
strength design (MSD) method provides engineers with a simple but realistic tool to
calculate ground deformations, but a correction factor is needed to match finite ele-
ment predictions. Zhang et al. (2015) extended the correction factor to a model factor
in a two-step process: (a) correct MSD by finite element analysis and (b) correct finite
element analysis by field measurements.

1.5.4 Scarcity of geotechnical data

This discussion is restricted to the issue of small sample size. The cost of a small
sample is rationally reflected in the larger COV produced by statistical uncertainties.
It is now possible to estimate statistical uncertainties even for random field parameters
(Ching et al. 2016a), which is an important advance because spatial variability is
a distinctive feature of geotechnical data (see Section 1.5.6 below). The impact of
statistical uncertainties was found to be significant in design (Ching et al. 2016b). This
is an important practical result, because it assigns a cost to the prevalent practice of
keeping site investigation to a minimum. It is useful to note that EN 1997-1:2004
has considered this in the relation to “correlation factors” for pile tests. Tables A.9,
A.10, and A.11 clearly increases the degree of conservatism when the number of tests
decreases. The statistical basis for these correlation factors is discussed in Bauduin
(2001) and Orr (2015).

It is also possible to tackle, at least partially, the difficulty of small sample size
using Bayesian methods and prior knowledge (Wang and Cao 2013, Cao and Wang
2014, Wang et al. 2016, Cao et al. 2016). The prior knowledge shall include, but
not limited to, engineering judgment, the designer’s specific knowledge of the site,
the ground conditions and their possible variability, and an appropriate assimilation
and compilation of data from all available sources (including published literature,
collection of comparable case histories and test results), as pointed out by Simpson
(2011) and discussed in Section 1.4. The prior knowledge may be quantified in a
rational and consistent manner using subjective probability assessment framework
(Cao et al. 2016) and further integrated with the small-size samples from a specific
site for providing the integrated knowledge on ground properties. Then, Markov chain
Monte Carlo simulation may be used to transform the integrated knowledge into a large
number of equivalent samples of ground properties and to bypass the difficulty in the
analysis due to small sample size. Similar to traditional geotechnical practice in which
the use of engineering judgment and prior knowledge is a critical element, engineering
judgment and prior knowledge may play a vital role when dealing with the issue of small
sample size in geotechnical RBD. Examples of using prior knowledge and Bayesian
methods to deal with the issue of small sample size are given in Sections 3.9 and 7.8.

The presence of “geologic surprises” due to scarcity of data belongs to the category
of “unknown unknowns”. The extreme form of “geologic surprises” that may lead
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to disproportionately large consequences and cannot be reasonably anticipated from
geologic considerations and prior experience are examples of “black swans”. They
cannot be captured by statistical uncertainties. It is more sensible to deal with these
perhaps using a design strategy robust against such unpleasant surprises, but there are
limits to robust design as well. Robust design and RBD are complementary as shown
in Annex F of [SO2394:2015.

1.5.5 Probability distributions that accommodate a “worst
credible’ value at a prescribed quantile

Simpson (2011) urged engineers to “consciously consider the worst situations and
parameter values that could be imagined on the basis of a reasonable and well informed
engineering assessment.” Simpson et al. (1981) termed such a value or situation the
“worst credible” and suggested that “it might be assumed to have a 1 in 1000 chance
of occurrence, on the basis that designers would be unlikely to be able to believe that
anything more remote might happen.” We defer the discussion on “worst credible
situation” to Section 1.5.6. We focus on the “worst credible value” in this sub-section.
For concreteness, we define a “worst credible value” asa 0.1% quantile, in other words,
there is less than one in a thousand chance of finding values smaller than this “worst
credible value”. It is unlikely to encounter this fairly extreme value in one particular site,
because the available sample size is typically not large enough. Vardanega & Bolton
(2016) noted that “any required inference of extreme values, beyond the predictive
limits of whatever data have been encountered on site, would have to appeal to a
wider regional experience of severe deviations.” The question can now be framed in
a concrete way: “are there probability distributions that can accommodate a worst
credible value derived from experience or judgment while respecting the objective but
limited measured data at hand?”

It is easier for an engineer to understand this question from a slightly different
perspective of imposing a lower limit on the probability distribution. A lower limit is a
“worst value”, because it is not physically or theoretically possible to produce values
lower than this limit. In other words, it is a zero percent quantile, which can be very
different in value from a 0.1% quantile due to strong nonlinearity at the probability tail.
An obvious lower limit is zero, because many physical variables are positive valued.
The lognormal distribution is commonly adopted to satisfy this limit. It is possible to
use a more general shifted lognormal distribution to satisfy a lower limit larger than
zero (e.g., overconsolidation ratio is larger than 1 by definition). In fact, any three-
parameter distribution can be adopted to fit a prescribed lower limit in addition to the
mean and COV of the data. This is a concrete example to reinforce the point that if the
normal/lognormal distribution proves to be overly simplistic for the problem at hand,
there are more realistic distributions available. Ching & Phoon (2015) showed that the
significantly more challenging problem of fitting a multivariate probability distribution
that respects both lower and upper limits can be addressed using the Johnson system
of distributions.

It is also possible to use Bayesian methods to integrate the worst credible value
derived from subjective experience or judgment (as prior knowledge) with the objective
but limited measured data from a specific site for providing probability distributions
that represent the integrated knowledge (Wang and Cao 2013, Cao and Wang 2014,
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Wang et al. 2016, Wang and Aladejare 2016). Examples of generating probability dis-
tributions from Bayesian methods using both engineering experience or judgment and
limited site-specific measured data are given in Sections 3.9 and 7.8. For example, a uni-
form probability distribution varying between the worst and best credible values may
be used to quantitatively represent the prior knowledge when using Bayesian methods.
When more informative prior knowledge is available from engineering experience or
judgment, more sophisticated probability distributions can be obtained using subjec-
tive probability assessment framework to represent the informative prior knowledge
(Cao et al. 2016).

To the knowledge of the author, there is no solution to the original question of fit-
ting a prescribed quantile along with the mean and COV of the data in the multivariate
context. The prescribed quantile or lower limit may be uncertain. This is an example
of how a conversation on placing geotechnical needs at the forefront of geotechnical
RBD can stimulate future research in more fruitful directions.

1.5.6 Spatial variability

Spatial variability is a common subsurface feature that can be handled systematically
using random fields. The realizations emerging from random field simulations can be
viewed as possible interpolations between boreholes. Extensive random finite element
studies have shown that spatially variable or heterogeneous soils can produce complex
failure mechanisms that are more critical than classical failure mechanisms developed
in homogeneous or layered soils (Fenton & Griffiths 2008). Simpson (2011) spoke
of worst credible situations and parameter values as situations/values that could be
imagined on the basis of a reasonable and well informed engineering assessment. Note
that it is potentially more important to “imagine” worst credible situations than worst
credible parameter values. In addition, there are many worst credible situations, even
if one were to focus on 1 in 1000 chance of occurrence.

The author submits that random field simulations can “imagine” these situations
more systematically from borehole data than an engineer. The finite element analysis
can produce more appropriate failure mechanisms consistent with mechanics and
boundary conditions than an engineer. Rather than applying engineering judgment
to imagining possible subsurface conditions and/or failure mechanisms, the engineer
can focus on discerning the realism of these computational outputs based on his/her
experience and his/her appreciation of the geological setting of the site.

EN 1997-1:2004, 2.4.5.2(2) recommends that the “characteristic value of a
geotechnical parameter shall be selected as a cautious estimate of the value affect-
ing the occurrence of the limit state.” Much attention has been focused on how to
obtain a “cautious estimate”. For example, EN 1997-1:2004, 2.4.5.2(11) notes that
“If statistical methods are used, the characteristic value should be derived such that
the calculated probability of a worse value governing the occurrence of the limit state
under consideration is not greater than 5%.” A note to this clause clarifies that “In this
respect, a cautious estimate of the mean value is a selection of the mean value of the lim-
ited set of geotechnical parameter values, with a confidence level of 95%; where local
failure is concerned, a cautious estimate of the low value is a 5% fractile.” There is less
discussion on the “value affecting the occurrence of the limit state”, particularly in
the geotechnical reliability literature. One notes that the occurrence of a limit state
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in terms of its physical manifestation as a critical slip surface is dependent on spatial
variability. The value affecting this occurrence is thus dependent on spatial variability.
It is the 5% quantile of this value, rather than the 5% quantile of the borehole data
(unrelated to any critical slip surface), that is relevant. The interaction between spatial
variability and formation of critical slip surfaces is complex and it is not surprising to
find that the 5% quantile of the “value affecting the occurrence of the limit state” is
not related to the 5% quantile of the borehole data in a straightforward way (Ching &
Phoon 2013b, Ching et al. 2014c, Hu & Ching 2015, Ching et al. 2016c). A realistic
assessment of the characteristic value in the context of spatial variability is certainly
beyond the reach of judgment. Tietje et al. (2014) quantified the characteristic shear
strength along a failure surface in the spirit of EN 1997-1:2004, 2.4.5.2(11) using
random field simulations.

It is useful to note that characteristic values are associated with uncertainties in the
input parameters, while a reliability index is associated with uncertainties in a response
(for a component) or a set of responses (for a system). The design value is defined as
the ratio of a characteristic value to an appropriate material partial factor. Because
the material partial factor is standardized to a single numerical value regardless of the
design scenario, one suspects that the characteristic value serves as a venue for “site
effects” to be included in the design. Ching & Phoon (2011) developed a Quantile
Value Method (QVM) for RBD that bears some similarities to the characteristic value
approach. However, Ching & Phoon (2011) demonstrated that a prescribed target
reliability index cannot be achieved using a fixed quantile, such as the 5% quantile.
The author hastens to add that there is no intent to achieve a prescribed target reliability
index through the characteristic value and the partial factor in EN 1997-1:2004.

1.5.7 Design point from the first-order reliability method
(FORM) and partial factors

The first-order reliability method or FORM is presented in standard text (Phoon 2008)
and it will not be repeated here other than to draw attention to its practicality in
computing the reliability index and its usefulness to complement partial factors. FORM
typically requires less than ten evaluations of the performance functions. Hence, even if
the performance function is defined implicitly by a finite element analysis, it is still com-
putationally comparable to routine parametric studies undertaken in design offices.
Engineers do not need to understand the mathematical details underlying FORM as
it has been implemented in an EXCEL spreadsheet (Low 2008). In other words, engi-
neers only need to acquire sufficient conceptual understanding of FORM to perform
actual reliability-based design properly with the aid of software tools.

The role of the engineer should be focused on characterizing the statistical inputs,
selecting an appropriate performance function, and interpreting the outputs. There are
numerous outputs that are useful. FORM provides a quantitative index of the sensitiv-
ity of a response (e.g., pile head lateral deflection) to each random variable. It is possible
to do this partially using conventional parametric studies, but these studies do not cover
correlated variables — a concept not found in deterministic analysis but correlation is
a characteristic of all geotechnical data (Section 1.5.1). It is important to appreciate
sensitivity, because it may direct our data collection efforts. It may not be necessary
collect more data to characterize an insensitive variable, including its statistics.
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FORM produces a “design point” which is called the most probable failure point
(“failure” in reliability parlance means unsatisfactory performance). For a reliability
index of 3 which corresponds to a probability of failure of about 1 in 1000, the
design point can be interpreted as a “worst credible” situation (or more accurately,
the most probable worst credible situation). The design point consists of one design
value for each random variable. For example, Low and Phoon (2015) describes a
footing problem (base of a retaining wall) with width =4.51 m, length =25 m, depth
of embedment = 1.8 m, resting on silty sand with a friction angle = ¢ and cohesion =c.
The means of ¢ and ¢ are 25° and 15 kN/m?, respectively. The COVs of ¢ and ¢ are
10% and 20%, respectively. The strength random variables, ¢ and ¢, are negatively
correlated with a Spearman coefficient=—0.5. It is subjected to a horizontal load
(Qy,) of mean value = 300 kN/m applied at a point 2.5 m above the base and a centrally
applied vertical load (Q,) of mean = 1100 kN/m. The COVs of Q, and Q, are 15% and
10%, respectively. The load random variables, Qj, and Q,, are positively correlated
with a Spearman coefficient =0.5. For a reliability index = 3, the design point yields
the following design values: 20.8° for ¢, 15.2kN/m? for ¢, 412.6 kN/m for Q),, and
1184.7 kN/m for Q,. It can be readily shown that these design values are 1.70 below
mean for ¢, about 0.10 above mean for ¢, 2.50 above mean for Qy,, and 0.8c0 above
mean for Q,, in which o is the standard deviation of the respective random variables.
These design values can be converted to quantile values as well to get a sense of how
“extreme” these values are: 3.6% for ¢, 56.6% for ¢, 98.6% for Q;, and 78.6% for Q,.
The most extreme design values occur for ¢ and Qy,. It is not possible to obtain a 3.6%
quantile from say less than 10 samples, but indirect correlation with cone tip resistance
can produce sufficient samples to estimate this quantile if transformation uncertainty
is accounted for. A 98.6% quantile load corresponds to a 71-year return period load.
The estimate of this quantile is within range of available historical load data.

Another perspective is to divide a characteristic value by the design value to
produce the FORM-based partial factor for a particular variable. For ¢, the char-
acteristic value based on a 5% quantile=21.1°. Hence, the partial factor for
¢ =21.1/20.8 =1.01 [the answer is almost the same for tan(¢)]. This FORM-based
partial factor will change according to all input statistics (not merely the COV of ¢)
and the performance function. For comparison, the partial factor for tan(¢) in BS
EN 1997-1:2004, Table A.2, is 1.25. Orr (2015) noted that taking the 5% quan-
tile for the characteristic value is too conservative by citing the note associated with
EN 1997-1:2004, 2.4.5.2(11) relating to a cautious estimate of the mean value. If
one adopts Schneider (1997)’s definition of a characteristic value being half a standard
deviation below the mean, the revised characteristic value for ¢ =23.7° and the revised
partial factor =23.7/20.8 = 1.14. Schneider & Schneider (2013) further extended the
half standard deviation rule of thumb to include the reduction of COV due to spatial
averaging (see Section 3.6).

One expects the “worst credible” situation to be produced by strength variables
taking values below their means and load variables taking values above their means.
At first glance, it is surprising to find the design value for ¢ to be slightly above its mean
value. However, a closer inspection would reveal that this bearing capacity problem is
sensitive to ¢ and hence the most probable worst credible situation involves ¢ taking
a value below the mean (1.7 times standard deviation below the mean). However,
because ¢ and ¢ are negatively correlated (this is created by linearization of the failure
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envelope that forces small ¢ to be associated with large ¢ and vice-versa), the design
value of ¢ must be “large” when the design value of ¢ is “small”. However, it is not
possible to “judge” if the design value of ¢ would appear below or above the mean
without a FORM analysis. It may be possible to apply engineering judgment to assess
a single worst credible value, but it will be increasingly difficult to rely on judgment
alone to assess multiple worst credible values (this is a common design task) that are
consistent with the correlation structure embedded in the site investigation data. There
is no reason to burden engineering judgment as the design point will produce a set of
worst credible values that is fully consistent with the input correlation matrix. Overall,
a comparison between Eurocode partial factors and FORM-based partial factors can
produce further insights into the design.

1.5.8 System reliability

System reliability needs to be addressed for problems that exhibit multiple distinct but
correlated failure modes. This situation is clearly the norm rather than the exception
in geotechnical systems. In fact, slope stability is an intrinsically system reliability
problem. FORM identifies only the “most probable” critical slip surface in a slope
and the failure probability so computed can be significantly underestimated because
contributions from the second most probable critical slip surface, third most probable
critical slip surface, and so on have not been included (Ching et al. 2009, Wang et al.
2011, Zhang et al. 2011).

Chapter 7 presents a gravity retaining wall example with three failure modes (i.e.,
sliding, overturning and bearing capacity failure). These failure modes tend to interact
among each other, because loads and resistances for different failure modes are corre-
lated. For example, self-weight of a gravity retaining wall, which is the major source of
resistance against sliding and overturning failure modes, but at the same time, is also a
major source of load for the bearing capacity failure mode. It is more straightforward
to solve this system reliability problem using direct simulation. Section 7.6 mentions
an EXCEL-based software package called UPSS (Uncertainty Propagation using Sub-
set Simulation) that can carry out direct simulation efficiently. It may be possible to
incorporate a “system” factor into a simplified RBD format for problems involving
failure modes that can be standardized. However, the difficulty of retaining the sim-
plified RBD format heightens when system reliability is coupled to spatial variability.
Some system reliability methods have been developed recently to address the variation
of slip surfaces, particularly when the spatial variability of soil properties is modelled
in the analysis (Zhang et al. 2011, Li et al. 2013, Li et al. 2014), but they have not
been simplified into the familiar LRFD or partial factor format at this point in time.

1.6 CONCLUDING THOUGHTS

Notwithstanding the unique features and conditions of geotechnical practice, the
author submits that there are merits for the geotechnical community to adopt reliabil-
ity as a basis for design. It is acknowledged that geotechnical engineers have to grapple
with a heightened state of uncertainty and associated risk, parts of which may not be
amenable to mathematical treatment, due to the complex and variable nature of natural
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geomaterials that cannot be readily standardized compared to made-to-order structural
materials. Site-specificity is an important consideration in geotechnical practice. In this
context, it is sensible for geotechnical engineers to seek clarity on more fundamental
design considerations and to devote less attention to performance verification which
is only one step, albeit an important one, in design.

The relevance of RBD, simplified or otherwise, is still being debated in an exchange
clouded occasionally by confusion due to the evolving discussion on fundamental issues
at hand and their fairly tangled relationship to performance verification. The author
ventures to suggest that some of the reservations are based on the misconception that
reliability is a panacea for all afflictions affecting design calculations based on the
factor of safety or geotechnical practice in general. Other reservations relate to the
scarcity and/or incompleteness of available information. The former includes a mis-
conceived notion that engineering judgment is no longer necessary. This is not true.
Reliability analysis is merely one of the many mathematical methods routinely applied
to model the complex real-world for engineering applications. It is susceptible to abuse
in the absence of sound judgment in the same manner as a finite element analysis. The
importance of engineering judgment clearly has not diminished with the growth of
theory and computational tools. However, its role has become more focused on those
design aspects that remain outside the scope of theoretical analyses. For example,
reliability calculations could relieve engineering judgment from the unsuitable task of
performance verification in the presence of uncertainties so that the engineer can focus
on asking the right questions, selecting the appropriate models and parameters for
calculations, and performing reality check on the results.

The second reservation concerning scarce and/or incomplete information is pos-
sibly a reaction to the application of overly simplistic assumptions and methods in
parts of the geotechnical reliability literature. The “simple” reliability analysis arose
in part because geotechnical RBD grew from structural LRFD and more attention
may have been paid in the past to reliability calculations than to developing geotech-
nical RBD with practical geotechnical needs at the forefront. It is timely for the
geotechnical RBD community to look into how we can improve our state of practice
to cater to the distinctive needs of geotechnical engineering practice. In fact, Annex D
of ISO2394:2015 “Reliability of geotechnical structures” has been drafted with this
central intent in mind.

The key point here is that the reservations expressed above should be viewed as pro-
viding approximate boundaries circumscribing the limits of reliability calculations or
acting as a caution against overly simplistic reliability applications that do not respect
geotechnical needs or constraints, rather than invalidating reliability principles as a
whole. It is important to emphasize the need to apply reliability principles judiciously
in conjunction with other design/construction strategies. In other words, RBD does
not preclude or displace existing elements of good practice and engineering judgment,
which evolved to handle a moderate degree of “unknown unknowns”. It plays a useful
complementary role. For example, RBD is very useful in handling complex real-world
information (multivariate correlated data) and information imperfections (scarcity of
information or incomplete information). It is also very useful in handling real-world
design dimensions such as spatial variability and system reliability that cannot be easily
treated using deterministic means.

Notwithstanding the merits of using non reliability-based partial factors (all meth-
ods must have their pluses along with minuses), it suffices to note at this point that
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structural and geotechnical design cannot be bridged by an empirical basis. Using
1SO2394:2015 as a concrete example, it is clear that there is no practical way for
geotechnical design unsupported by a reliability basis to fit in. It is also difficult for
our geotechnical profession to benefit from the ongoing and pervasive information
technology revolution in big data and data analytics in the absence of a rational frame-
work, be it reliability or otherwise. Using Annex D as an important starting point, this
book would hopefully stimulate a conversation in the wider geotechnical community
on how to improve our state of practice in geotechnical reliability-based design, par-
ticularly in what ways we can revise our current RBD codes to take cognizance of the
distinctive features and needs of geotechnical engineering practice.

This book elaborates the key aspects of geotechnical design that are outlined
in Annex D of 1SO2394:2015. It provides background information to substantiate
the special considerations needed for the use of reliability concepts for geotechnical
structures, as well as illustrations of approaches and procedures for uncertainty repre-
sentation and the implementation of geotechnical reliability-based design. At the same
time it should be noted that Annex D is fully consistent and compliant with the general
principles of reliability given by 1SO2394:2015. The standard therefore provides an
overall framework for the advancement of geotechnical practice that is consistent with
the principles of reliability within the wider scope of buildings, infrastructure and civil
engineering works. A coherent approach is provided by the standard for reliability
based decision-making and design, as derived from optimized risk, expressed as per-
formance models that accounts for the levels of knowledge and uncertainty that applies
to the field of application under consideration. An outline of the standard is given in
Chapter 2, as seen from the perspective of geotechnical reliability based design.
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Chapter 2

General principles on reliability
according to 1ISO2394

JohanV. Retief, Mahongo Dithinde, and Kok-Kwang Phoon

ABSTRACT

This chapter provides an overview of the standard 1S02394:2015 from the perspec-
tive of geotechnical engineering application. In addition to providing the context for
Annex D, it summarises the overall features of the normative standard and the infor-
mative annexes, with emphasis on the advances incorporated in the 4th edition of
1SO2394. As background the general role of the standard in reliability-based design
is summarised. The historic development since the publication of the 1st Edition in
1973 provides a perspective on the legacy of the standard and the objectives set for
the latest edition. An overview of the main components of the standard is presented
next: consisting broadly of the two parts of the normative standard, firstly of basic
principles and secondly the principles for applications. This is complemented by infor-
mative annexes that provide further guidance on implementation. The relevance of the
standard and the balance of annexes is subsequently interpreted in general terms from
the perspective of geotechnical structures; followed specifically in terms of the link to
Annex D. The chapter concludes with a summary of the strengths and challenges for
the advancement of reliability-based geotechnical design on the basis of the principles
presented in ISO2394.

2.1 INTRODUCTION: BACKGROUND TO THE DEVELOPMENT
OF 1SO2394:2015

Several advances that are of specific relevance to geotechnical structures are introduced
in the 4th Edition of 1SO2394, published in March 2015 as ISO2394:2015. Although
the latest edition represents a substantial revision from 1S02394:1998, it nevertheless
builds on a legacy of the standardization of a common basis of principles for structural
design. The objective of this chapter is to provide an overview of the evolution of the
standard over four editions since its first publication in 1973; the background to and
main features of the latest edition; the relevance of the standard to geotechnical struc-
tures, serving as a prelude to the specific link to Annex D Reliability of Geotechnical
Structures.

This overview should serve as reference to the common principles of reliability
that would ensure harmonization of geotechnical structures with related standards
concerned with selected topics such as the general basis of design, stipulations on
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actions and their combinations, the resistance of alternative common structural mate-
rials; and finally specific classes of structures. The main objective is to demonstrate the
degree to which the general principles of reliability in accordance with ISO2394:2015
can be applied compliantly with the specific characteristics of geotechnical structures.

At the most general level, 1SO2394:2015 is relevant to geotechnical structures
as a result of being sufficiently non-specific in the presentation and stipulation of
the principles of reliability, thereby allowing sufficient freedom to accommodate the
specifics of geotechnical materials and structures. At the other end of the scale the
inclusion of Annex D provides an acknowledgement of the nature of uncertainties that
need special consideration in geotechnical design practice.

The formulation of the standard at a high level of abstraction or generality ensures
that the principles apply to the broad scope of structures for buildings and civil
engineering works, including geotechnical structures. It is intended that additional
information should be provided from which operational requirements and procedures
can be derived using the principles of reliability presented in the standard. Such addi-
tional information should then reflect the characteristics of the intended scope of
application, such as the determination of actions and their combinations or provi-
sion for specific materials. An important consideration for expressing the principles
of reliability at the fundamental level is that the need for updating the standard in the
future is thereby reduced.

The inclusion of Annex D on geotechnical structures can also be regarded as
a specific feature of the revised standard: Whilst Annex D was a new addition to
the 1S02394:20135, provision for particular areas of applications provided for in the
previous edition, such as existing structures, durability or fatigue, were omitted during
the revision process as being too specific. However, it should also be noted that since the
publication of 1SO02394:1998, new standards were published for existing structures
(ISO13822:2010) and durability (ISO13823:2008). The primary motivation for the
introduction of Annex D to 1ISO2394:2015 was to confirm that geotechnical structures
do fall within the scope of the standard, the general principles presented in the standard
do apply to this area of application and to enhance unification between geotechnical
structures and structures constructed from concrete, steel, timber or masonry.

2.1.1 Stages of development of 1ISO2394

The central role of the standard “to unify the principles governing the design calcu-
lations of constructions” including “all civil engineering works” was initiated with
the publication of ISO2394:1973 General Principles for the Verification of the Safety
of Structures. The next step was the publication of a more substantial 2nd Edition
[SO2394:1986 General Principles on Reliability for Structures followed by Adden-
dum 1:1988 containing additional Annexes. As indicated above the present edition was
preceded by 1SO2394:1998, which included elaboration of both the normative require-
ments of the standard itself and the informative annexes, thereby almost tripling the
length of the standard. A summary of the main features of each edition of the standard
provided in Table 2.1 gives an indication of its evolution over the past four decades.
The overall trend of development throughout the various editions is that of an
elaboration of the initial central concept provided in 1973 which contains all the main
elements of reliability-based design, through a more formal and systematic treatment
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Table 2.1 Evolution of the scope and contents of the series of ISO2394 editions.

Edition Year

Scope & Contents of 1ISO2394

2

3

4

1973

1986

1998

2015

Provides a thumb nail outline of a semi-probabilistic limit state method.

— To be used by standards committees; requiring adaptation for each material;

— Based on principles of probability, including optimum cost for appropriate
degree of safety;

— Formulating concepts such as ultimate & serviceability limit states; uncertainties
of material strength, loads, models;

— Design values for resistance (R*) and load effects (5*) based on certain
coefficients (¥m, ¥s) and characteristic values (Xy);

— Verification of safety by satisfying R* > S*.

Elaboration includes the stipulation of topics such as:

— Fundamental requirements: Integrity to withstand local failure; use and
environmental conditions; hazards from error or extreme conditions (climate,
geotechnical); measures against human mistake; quality control (dedicated
clause); maintenance, repair;

— Principles of limit states design extensively formulated; including design
situations;

— Basic variables: classification of actions; materials & soils (tests, in situ
observations, conversion factors & scale effects); geometrical parameters;

— Analysis, calculations, model and prototype testing and their combined use;

— Design format of partial coefficients: Stipulated extensively for actions & their
combinations, generically for materials & soils (noting the need for different
treatment of soils and existing structures, obtaining characteristic values for
each case in principle by testing); geometry; model uncertainty; determination
of partial factors;

— Annex B provides extensive exposition of the first order probabilistic method;

— Addendum | presents annexes on characteristic values of classes of actions.

Whilst maintaining the same scope of application and contents of previous editions,

the normative clauses are generally extended and refined, compared to the previous

edition; whilst adding the following topics typically through dedicated clauses:

— Formal definitions of key reliability concepts, classified under general (5 items);
design (including the formal definition of reliability and related terms)
(29 items); actions (20 items); structural response, resistance & material
properties; geometry (6 items).

— Reliability differentiation in terms of cause & mode of failure, consequences,
expenses to reduce risk, societal & environmental conditions; measures
related to design and quality management.

— Principles of probability based design: Formal introduction of designing for
reliability as the probability of failure not to exceed a specified value (ps < pg)-

— Assessment of existing structures: Represented extensively in dedicated clause.

— Guidance in Annexes D (experiment), E (reliability-based design) & F (action
combinations) is equal in length of the normative standard.

Objectives, approach and layout of standard revised completely in terms of

optimized risk as basis for reliability-based and semi-probabilistic design:

— Fundamental derivation of reliability levels from optimized risk (owner)
and marginal life safety (society) using (i) risk representation; serving as
input to (ii) reliability-based design for standardized consequences and
(iii) semi-probabilistic design for standardized reliability classes, failure
modes, material properties.

— Layout structured to cover fundamental requirements (up to Clause 6);
procedures for the three levels of approximation (Clauses 7-9); guidance on
implementation in informative annexes (Annex A-G).
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and attending to specific topics such as basic variables and characteristic values,
design format and partial factors, design situations and structural integrity/robustness,
together with guidance on the principles of reliability-based design. There was a subtle
shift towards the treatment of actions after the 1st Edition, with some balance being
restored by placing more emphasis on resistance in the 4th Edition. However, the sig-
nificant change in direction can also be discerned from Table 2.1, from extension and
refinement up to the 3rd Edition to the more fundamental treatment in 1SO02394:2015
indicated above.

2.1.2 Status and use of 1ISO2394

The seminal role of 1SO2394 to fulfil its intended function in providing the com-
mon basis of reliability principles for structural design standards is affirmed by the
fourteen ISO Standards for which it serves as normative reference and ten ISO mem-
ber states who have adopted it as a national standard. The Eurocode head standard
EN1990:2002 Basis of Structural Design can be considered to represent an opera-
tional semi-probabilistic partial factor limit states design standard that is compliant
with ISO2394 (Vrouwenvelder, 1996). In a similar fashion, the South African standard
SANS10160-1:2011 Basis of Structural Design is compliant with SANS/ISO2394. The
Canadian standard CSA S408 Guidelines for the Development of Limit States Design
Standards is based on ISO2394 and cites it as a reference.

Even more significant than the role of ISO2394 as reference to other standards is its
extensive use as a basis for research and background investigations on the application
of reliability principles. In addition to direct background investigations on standard-
ization, the literature represents an extensive body of investigations on reliability-based
methodologies and fields of application which explicitly cite the standard. Reliability-
based methodologies address topics such as target reliability, optimization, service
life, durability, fatigue, extreme and environmental actions, fire safety, time dependent
processes, sustainability, sampling, Bayesian analysis, technical diagnostics, and traffic
assessment. In addition to the investigation of various aspects of conventional struc-
tural materials such as concrete, steel, composite construction, timber and masonry,
various structural types are considered such as buildings, bridges, tunnels, power
production and offshore structures, piles, flood protection, existing, temporary and
historical structures. More than 7000 citations of ISO2394 can be identified since
the year 2000; moreover the rate of citations steadily increased over this period from
about 200 to 700 per year, with the related citations arising from authoritative papers.

2.1.3 Objectives and fundamental principles

A general outline of the objectives, contents and the fundamental principles for the
revision of ISO2394 is provided by Faber (2015). As point of departure, the impact of
reliability theory on structural engineering practice is noted: ranging from application
areas such as high rise buildings, offshore structures and major infrastructure projects
at the advanced level, to the formulation and calibration of safety formats for structural
design standards at the operational level. The 1998 version of ISO2394 is a manifesta-
tion of the maturity reached by best practices of reliability application. Similar levels
of maturity in risk informed decision making has only been achieved more recently.
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The advantages that can be achieved by an integrated risk and reliability approach in
terms of cost efficiency and societal risk management served as motivation and objec-
tive for the revision of the standard. Risk information could then be used rationally
and transparently as basis for structural performance and associated decision making.
The objective for the revision is therefore to provide a consistent best-practice risk and
reliability-based decision making approach for the formulation of design standards
and for application to specific projects.

Accordingly the most prominent change resulting from the revision of ISO2394 is
the representation of the systematic and rational treatment of risk to implementation
of reliability-based design through standards. The rational basis is derived from socio-
economic principles that utilize the marginal life-saving principle to relate safety to
decision making at societal level of regulation. However, in addition to the principles
and requirements provided in the standard, the user is responsible for ensuring that
all relevant information is available and is applied. All assumptions underlying the
decisions need to be controlled and recorded or it must be ensured that the structure
will perform adequately despite possible deviations from the assumptions.

The background provided by Faber (2015) furthermore provides elaboration of the
fundamental concepts of risk and reliability which are used as basis for performance
modelling, fully taking account of uncertainty and its modelling. The basis for the
three levels of decision making and design consisting of risk informed, reliability-based
and semi-probabilistic design is discussed in some detail. Special attention is given to
structural robustness, its classification, measures and quantification; in addition to the
consideration of life safety and optimization. These are all topics that are considered
below.

2.2 OVERVIEW OF THE STANDARD 1SO2394:2015

1SO2394:2015 consists of the following main parts, which are briefly defined below,
together with a commentary which provides an assessment of each part:

e Preliminary and General: The general ISO Standards format is followed to pro-
vide introductory information (non-normative), the scope of application and the
procedures, normative reference standards, terms and their definitions and the list
of symbols (Introduction and Clauses 1-3).

e Fundamental Basis and Concepts: The conceptual basis for ensuring an adequate
level of risk and reliability is expressed in fundamental terms, together with a
general formulation of performance modelling in terms of basic variables and
their uncertainty (Clauses 4-6).

e Decision-Making and Design Approaches: Three alternative design approaches
are subsequently stipulated in Clauses 7-9 in a more systematic manner, as the
basis for separate operational design standards. Notably risk informed decision
making is formally introduced as a recognized basis for design (Clause 7), serving
also to establish the basis for reliability-based decision making (Clause 8) and
semi-probabilistic methods (Clause 9).

e Implementation Guidance: Informative annexes provide guidance on the way
in which key concepts, expressed in general terms in the standard, should be
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implemented in operational terms in design standards to ensure compliance with
risk and reliability principles. In spite of their lesser status, the annexes provide
essential information for the formulation of effective reliability-based standardized
design procedures.

The introduction to 1SO2394:2015 indicates the important addition of the methodical
risk-based fundamental basis for the regulation and standardization of the safety and
reliability of structures. The revised standard represents the development of systematic
and rational treatment of risk to implementation of reliability-based design through
codes and standards. However, it is confirmed that the standard is concerned with load
bearing structures relevant to the construction industry. The scope of application is
defined to cover the majority of buildings, infrastructure and civil engineering works.
The implied limit in scope refers to the need for adaptation and detailing in specific
cases where there are potentially extreme consequences of failure.

An important qualification in the definition of the scope of the standard is the need
for knowledge beyond what is contained in it, with the requirement to ensure that this
knowledge is available and applied. In addition to the obvious need for additional
information for specific applications, this stipulation implies that the standard and
annexes express risk and reliability-based requirements and procedures in such general
terms that compliance to the standard can be achieved in principle for any specific
field of application, including geotechnical design, when full account is taken of the
related characteristics of that specific field. Simply stated, design verification should be
based on performance modelling that fully accounts for uncertainty of basic variables
applicable to the specific class of structure, actions and materials.

Interestingly, no normative standard is referenced in 1S02394:2015, similar to
the practice followed by previous editions. The understandable motivation is that
ISO2394 serves as the head standard. The situation has changed however with the
new standard, where an appropriately formulated standard on risk should now become
the starting point of the value chain. The present ISO13824:2009 Bases for design of
structures — General principles on risk assessment of systems involving structures (15O,
2009) does not presently provide sufficient information and procedures for risk-based
optimization and the derivation of related decision criteria. The JCSS document Risk
Assessment in Engineering — Principles, System Representation and Risk Criteria can
serve as a pre-normative reference (JCSS, 2008). The concepts from the JCSS document
have essentially been included in ISO2394:2015.

The primary objective of the list of terms and definitions presented in Clause 2 is
simply to achieve clarity on the meaning of key concepts within the scope of the stan-
dard. This is particularly important for an international standard, including the need
for translation, where ambiguity and different terms for the same or similar concepts
may impact on the interpretation of the standard. A convenient way to accommodate
local conflicts for example in different countries or fields of application is to intro-
duce a dictionary of equivalent terms in a local standard, for example as given by the
Canadian standard CSA S408:2011.

An important utility of the list of terms is that it provides a concise compila-
tion of important concepts within the scope of the standard, tabulated under general
(47 items); design and assessment (37 items); actions and combinations (31 items);
resistance, material and geometrical properties (8 items). A pertinent example is the
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definition of the term Structure — Organised combination of connected parts includ-
ing geotechnical structures designed to provide resistance and rigidity against various
actions. This definition elaborates on the concept of load bearing structures used in
the introduction and confirms the comprehensive scope of the standard.

2.3 CONCEPTUAL BASIS AND FUNDAMENTAL REQUIREMENTS

The central role of risk as the basis for structural performance decision making
is stipulated in Clause 4 mainly through the formal presentation of the following
concepts:

o Risk-based decision making: Target structural performance shall be based on opti-
mized total risk, including loss of life and injury, damage to the environment
and monetary losses (Clause 2.1.38); using a marginal life-saving risk metric as
basis for safety and risk-based optimization as basis for specification by owners
(Clause 4.2.2).

o  Alternative approaches: Accordingly risk informed decision making is introduced
as the overarching approach, from which reliability-based design and semi-
probabilistic approaches can be derived under certain conditions; thereby formally
introducing a three-level approach for risk and reliability-based decision making
and design (Clause 4.4.1).

Clause 4 provides also the conceptual basis for decisions concerning structures (Clause
4.3.1); for structural performance modelling (Clause 4.3.2); and for uncertainty and the
treatment of knowledge (Clause 4.3.3). Further elaboration on performance modelling
is subsequently provided in Clause 5, by providing an outline of the reliability basis of
limit states design. The systematic exposition of uncertainty representation and mod-
elling is presented in Clause 6. The conceptual basis for the three alternative decision
making approaches given for risk-informed decisions concerning design and assess-
ment (Clause 4.4.2.1), reliability-based design and assessment (Clause 4.4.2.2) and
semi-probabilistic approaches (Clause 4.4.3) are each stipulated by means of systematic
procedures in Clauses 7, 8 and 9 respectively.

Clause 4 therefore not only introduces the concept of risk as the basis for struc-
tural performance and design, but also provides guidance on its implementation into
a hierarchy of alternative design approaches. It is formulated in terms of the funda-
mental aims and requirements for structural performance, the conceptual basis and
approaches that should be employed to ensure adequate levels of risk and reliability.
Performance requirements are expressed at levels of adequate functionality; ability to
withstand extreme conditions resulting from environmental exposure and use; and suf-
ficiently robust not to result in severe damage caused by extraordinary, even unforeseen
events or human error. The service life of the structure should be based on the duration
of the need for the structure. The dedicated sub-clause on provisions for durability in
1SO02394:1998 is replaced by reference to ISO13823 that has recently been published.

The fundamental approach to base the target performance level formally on an
appropriate degree of reliability that shall be judged with due regard to the possible
consequences of failure, the associated expense and the level of efforts and procedures
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necessary to reduce the risk of failure and damage. A dual process is stipulated,
with safety based on societal considerations including the marginal life-saving prin-
ciple which takes account of the costs associated with saving additional lives through
additional safety measures; whilst the interests of the owner is reflected by an opti-
mization of the cost of the construction and equivalent cost of failure. This defines
performance levels in terms of risk, as opposed to previous formulations in terms of
reliability.

The conceptual basis for decisions concerning structures provided in Clause 4.3
provides a fundamental formulation of the concept of structural performance mod-
elling, which is then stipulated extensively in Clause 5. Similarly the concept of
uncertainty and the treatment of knowledge are defined, with elaboration provided
in Clause 6. The principal characteristics and conditions for application for alterna-
tive approaches are provided in Clause 4.4. A somewhat abridged formulation of risk
informed decision making is presented in Clause 7, with formal recognition to its role
in structural performance decision making. A limited formulation of the probability
of failure through reliability-based decision making is provided in Clause 8, clarifying
its role in structural assessment and design. The more elaborate treatment of the semi-
probabilistic approach presented in Clause 9 is justified by the extensive application
of this approach in the various versions of the partial factor limit states based design
standards.

e Main features of 1SO2394:2015: In addition to the pertinent features of the
Standard mentioned above, a number of modifications were made during the
revision.

— The introduction of the principles of risk as the fundamental basis for
establishing the performance levels of structures.

— Accordingly, adding risk-based decision making as another level of design,
complementing reliability-based and semi-probabilistic design; including a
hierarchy based on the level of approximation related to the level of under-
standing of the consequences of failure and structural behaviour, with
associated categorization of the associated risk elements.

— Logical development of the reliability principles from fundamental concepts
of structural performance and representation of uncertainty, through to
alternative levels of approximation for decision making and design verification.

— The omission of specific fields of application, such as durability and reliability
of existing structures, both these cases being provided for in dedicated ISO
Standards.

— The strengthening of informative annexes providing guidance on critical
aspects of structural performance such as quality management, life cycle
management of integrity, design by testing, calibration for semi-probabilistic
reliability parameters, robustness and risk criteria.

2.4 KEY RELIABILITY CONCEPTS

In addition to reviewing the major advances made in 1SO2394:20135, it is useful to con-
sider the key reliability concepts that serve as the building blocks for reliability-based
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design procedures. In most cases, these key concepts were incorporated in previous
editions of the standard, but were in need for reassessment or more advanced treatment
in the context of the more principled approach taken in the latest edition.

e Decision making and service life: The concept of design and its reliability basis
is broadened to represent decisions related to design and assessment of structures
and systems involving structures over their service life (Clause 1). This implies
not only consideration of the various stages in the life cycle of the structure
(Clause 4.2.1) but also that all anticipated future consequences shall be accounted
for (Clause 4.4.2.1), with guidance given in Annex B Lifetime management of
structural integrity. Furthermore, the service lives for structures shall be based on
the duration of the need for the structure (Clause 4.2.1), as opposed to the previous
concept that the service life is a nominally pre-selected value.

e Quality management: The conceptual basis of decisions concerning structures is
that quality management and quality assurance play central roles for the perfor-
mance of structures and shall be completely integrated in the decision making
process (Clause 4.3.1). In general, quality management systems for construction
works shall be riskbased and according to an integral approach, encompassing
human errors, design errors, and execution errors (Clause 8.1). Whilst limited
further reference is made to quality management, assurance and control in the nor-
mative standard, extensive guidance is provided in the informative Annex A with
the objective of the validation of assumptions made in the risk and reliability-based
decision making process (Clause A.1). This is a key aspect in all geotechnical con-
struction processes. Section 4 of EN1997-1 is devoted to this aspect and requires
that all geotechnical construction processes, including the workmanship applied,
must be supervised, that the performance of the structure must be monitored, both
during and after construction, and that the finished structure must be adequately
maintained. The nature and quality of the supervision and monitoring prescribed
for a project must be commensurate with the degree of precision assumed in the
design, and in the values of the engineering parameters chosen and the partial fac-
tors used in the calculations. If the reliability of the design calculations is in doubt,
it may be necessary to prescribe an enhanced regime of construction supervision
and monitoring.

e  Uncertainty, knowledge and Bayesian probability: The basis for decisions concern-
ing structures shall account for all uncertainties of relevance for their performance
such as inherent natural variability (aleatory uncertainty) and lack of knowl-
edge (epistemic uncertainty) (Clause 4.3.3). It is stipulated that the Bayesian
interpretations of probability should be considered as the most adequate basis
for the consistent representation of uncertainties, independent of their sources.
It facilitates the joint consideration of purely subjectively assessed uncertainties,
analytically assessed uncertainties and evidence as obtained through observations
(Clause 6.1.3). In the case of relatively high uncertainties in actions, structural
properties and/or models, the possibility of updating procedures shall be con-
sidered in order to accomplish a more economical design or assessment solution
(Clause 6.6). Guidance on specific application of Bayesian updating is given in
Clause 4.3.3 Notes 1 & 2. Annex B.4.3 presents the general procedures for
the updating of probabilistic models in order to extend the evidence in terms of
observations to obtain risk and reliabilities that are gradually updated. The use
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of information gathered through quality control measures for updating is given in
Annex A.5.5. Updating of probabilistic models based on experimental methods
is considered in Annex C.5.3. Bayesian probabilistic modelling forms the basis
for semi-probabilistic design standards and regulations (see Clause 4.4.3) through
calibration (Annex E). As discussed in Chapter 3 and 4, Bayesian updating offers
a natural framework to combine prior information from comparable sites with
site-specific information. This updating step is crucial, because site-specific infor-
mation alone is usually too limited for reliability-based design and it is consistent
with existing geotechnical practice where all information is judiciously weighed,
albeit using engineering judgment.

e Robustness or damage insensitivity: A fundamental requirement for structures is
to be robust such as not to suffer severe damage or cascading failure by extraor-
dinary and possibly unforeseen events like natural hazards, accidents, or human
errors, providing sufficient robusiness (Clause 4.2.1). Robustness is closely related
to systems behaviour, as opposed to the design of individual elements (Clause 8.3).
For structures where failure and damage can imply very serious consequences, a
risk-based robustness assessment shall be undertaken as part of the design and/or
assessment verification (Clause 4.4.2.1). Allowance is made for categorization of
structures in accordance with their consequences of failure (to) decide whether
a risk-based robustness assessment is necessary or not. For a semi-probabilistic
approach the system performance shall be ensured, depending on the consequences
of system failure, either through risk-based robustness assessments or through
robustness provisions. The latter includes critical member design, structural ties,
and structural segmentation (Clause 4.4.2.2). Further guidance is given in Annex F
on classification of structures based on expected consequences and on appropriate
measures to ensure robustness. Guidance is also given on risk-based robustness
assessment. Extensive reference to robustness is also made in Annex A on quality
management.

e  Analysis Models: Although structural mechanics models for the physical behaviour
of structural systems form an integral part of performance modelling (Clause 5),
this topic is extensively dealt with as part of uncertainty representation and mod-
elling under Clause 6.2 Models for structural analysis. The motivation for the more
detailed consideration of structural models stems from the differences in nature of
models for actions and environmental influences (Clause 6.2.2), and geometrical
properties (Clause 6.2.3), material properties (Clause 6.2.4), structural response
and resistance (Clause 6.2.5). Models for consequences now require direct consid-
eration for the risk-based approach (Clause 6.3). As models are usually incomplete
and inexact as the result of lack of knowledge or a deliberate simplification for use
in operational design procedures, provision for model uncertainty must be made
(Clause 6.4). In contrast to the nominal treatment of reliability modelling of resis-
tance in previous editions of the standard, ISO2394:2015 gives increased attention
to the response and resistance of the structure, on a par with the attention paid to
actions on the structure. Accordingly material properties as represented as basic
variables receive proper attention throughout the new standard (e.g., Clause 6.2.4).
In recognition of the predominance of model uncertainty in geotechnical engineer-
ing, Annex D provides more details on this subject matter from a geotechnical
perspective.
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Design based on experimental models: Design procedures based on calculation
models can be complemented using experimental models. An important condition
is that the setup and evaluation of the tests should be performed in such a way
that the structure, as designed, has at least the same reliability with respect to
all relevant limit states and load conditions as structures designed on the basis
of calculation models only. The test results should be evaluated on the basis of
statistical methods. In principle, the tests should lead to a probability distribution
for the selected unknown quantities, including the statistical uncertainties (Clause
6.5). In Annex C, guidance is given on establishing design values or partial factors
either directly or by evaluation using an evaluation model. Unlike the proper-
ties of other structural materials, soil properties are not specified but determined
by testing on a site specific basis. In this regard, geotechnical design is always
based on site specific tests results. A classic example is the recognition of full
scale pile load tests on a given site as an accepted design method (see EN1997-1
clause 7.4.1).

Semi-probabilistic design approach: The semi-probabilistic (or partial factors)
method is defined as a verification method in which allowance is made for the
uncertainties and variability assigned to the basic variables by means of represen-
tative values, partial factors and, if relevant, additive quantities (Clause 2.2.24).
Despite the formal introduction of risk-based decision making in 1S02394:2015
and reliability-based design in 1SO2394:1989, the semi-probabilistic design
approach remains the most practical way to incorporate reliability-based design
principles in operational design procedures and standards. Clause 9 Semi-
probabilistic method therefore represents the closest format for expressing the
general principles on reliability for structures of 1S02394:2015 in operational
terms. Although this clause is completely revised from its previous version, the
changes are mainly in the logical development from principles to the symbolic
expressions for design verification, rather than representing any further advance-
ment. Notably the geotechnical fraternity has embraced semi-probabilistic limit
state design as the basis for the development of new generation of design codes.
The commitment of the geotechnical profession to the adoption of limit state design
framework is demonstrated by the establishment of a technical committee (TC 23)
on Limit State Design in Geotechnical Engineering under the auspices of the Inter-
national Society of Soil Mechanics and Geotechnical Engineering in 1990. TC23
was led by the late Dr. N. Krebs Ovesen of the Danish Geotechnical Society. This
was two years after work began on drafting Part 1 of Eurocode 7: Geotechnical
Design, General Rules. In the next seven years, the Danish Geotechnical Soci-
ety remained TC23’s sponsor. Not surprisingly, the emphasis was on activities in
Europe and on the development of the Eurocodes in particular. The development
of Eurocode 7 attracted interest outside of Europe. In recognition of this interest,
and possibly of the need to shift the emphasis away from Europe, the Geotechnical
Division of the South African Institution of Civil Engineers was asked to become
the sponsoring Member Society of TC 23 for the period 1997 to 2001. The TC
was led by Peter Day, the Chairman. The Japanese Geotechnical Society (JGS) was
asked to become the sponsoring Member Society of the TC from 2001 to 2009,
because the Japanese performance-based foundation design code called Geocode
21 was being developed over that period (Honjo and Kusakabe 2002). It was led by
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Professor Yusuke Honjo. Since 2009, this technical committee has been led by
Dr. Brian Simpson. It was renumbered as TC205 and more recently, renamed
as “Safety and Serviceability in Geotechnical Design” in 2013. The committee
was mandated with promoting and enhancing professional activities in the limit
state design in geotechnical engineering practice. Accordingly the committee has
organised several international symposia on limit state design in geotechnical
engineering practice. TC 205 works closely with TC304 (formerly TC32) which
focuses on engineering practice of risk assessment and management. TC32 was led
by Dr. Farrokh Nadim from 2001 to 2009. It was renumbered as TC304 and led
by Professor Kok-Kwang Phoon since then. Just like ISO2394, this technical com-
mittee focuses on and is tasked with promoting probabilistic site characterisation,
calibration of geotechnical design codes using the semi-probabilistic approach,
reliability-based design, risk-based decision analysis, and project risk management
among others.

e Risk-based conditions for semi-probabilistic design: The alternative approaches
for decision making and design are introduced as follows: When the conse-
quences of failure and damage are well understood and within normal ranges,
reliability-based assessments can be applied instead of full risk assessments. Semi-
probabilistic approaches as a further simplification are appropriate when in
addition to the consequences also the failure modes and the uncertainty repre-
sentation can be categorized and standardized (Clause 4.4.1). The implications
are that instead of the semi-probabilistic approach representing an improvement
on experience based safety factor design, from first principles it is now necessary
to fully account for risk-based acceptance criteria and for all sources of uncertainty
in deriving semi-probabilistic design procedures:

— Conditions for target reliability: Both reliability-based decision-making and
semi-probabilistic design procedures should be derived from risk informed
decision making based on categorized consequences (Clause 7). Guidance is
given in Annex G on risk optimization and criteria on life safety.

— Additional conditions: For structures for which the consequences of failure
and damage are well understood and the failure modes can be categorized and
modelled in a standardized manner, semi-probabilistic codes are appropriate
as basis for design and assessment. Standards shall serve to ensure the quality
of analysis, design, materials, production, construction, operation and main-
tenance, and documentation, and thereby explicitly or implicitly account for
the uncertainties which influence the performance of the structures. The spec-
ifications given in standards should be developed such that they quantify all
known uncertainties (Clause 4.4.3).

e Reliability elements for semi-probabilistic design: The following stipulation pro-
vides the basis for the reliability elements of semi-probabilistic design: For design
of structures based on codified load and resistance factor or partial safety factor
design, uncertainties shall be represented through design values and characteristic
values together with specified design equations, load cases, and load combina-
tion factors. The characteristic values shall, when relevant, account for available
information relating, for example, to loads and material properties (Clause 4.3.3).
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The following main reliability elements for semi-probabilistic design consist of
(Clause 9):

Safety format: semi-probabilistic design and assessment codes shall comprise
a safety format prescribing the design equations and/or analysis procedures
which shall be used for the verification of design and assessment decisions
(Clause 4.4.3). Further elaboration is given in Clause 9.4.

Characteristic values: The characteristic values of basic variables should be
specified preferably on a statistical basis, so that it can be considered to
have a prescribed probability of being exceeded towards unfavourable values
(Clause 2.2.30) and form part of the treatment of uncertainty and knowledge
(Clause 4.3.3). For a produced material, the characteristic value should in
principle be presented as an a priori specified quantile of the statistical dis-
tribution of the material property being supplied, produced within the scope
of the relevant material standard. For soils and existing structures, the val-
ues should be estimated according to the same principle and so that they are
representative of the actual volume of soil or the actual part of the existing
structure to be considered in the design (Clause 9.3.2). It must be pointed out
that in geotechnical engineering, there is no consensus on a clear definition
of the characteristic geotechnical parameter and still there is no universally
accepted methodology for its selection. Complications exist because a charac-
teristic geotechnical parameter depends in an inter-related way on the natural
(or spatial) variability and the volume of soil (or slip surface) that affects the
occurrence of the limit state. Clause 2.4.5.2 of EN 1997—1:2004: “Character-
istic values of geotechnical parameters” discusses some of the considerations,
but leaves out a critical aspect concerning the interaction between natural vari-
ability and emergence of the slip surface. For example, a sufficiently persistent
weak zone in the soil mass may force a slip surface to pass through this zone.
If one were to accept that natural variability can be modelled by a random
field, it would be necessary to consider that the slip surface trajectory changes
from realization to realization, as the distribution of weak zones varies from
realization to realization. In other words, the characteristic strength that is
relevant to the critical slip surface varies (probabilistically) in a complex way.
Additional observations are covered in Section 1.5.6 and Section 3.5. Details
are given elsewhere (Ching & Phoon 2013; Ching et al. 2014, 2016a, 2016b).
Partial safety factors: The most direct instrument available to the designer to
achieve required levels of reliability is the use of partial safety factors to be
applied to basic variables and design models. Guidance on the calibration of
partial factors is provided in Annex E.

Documentation: Recording of decisions related to the design of structures, as
well as their verification with respect to acceptance criteria .. . in a manner that is
tractable and transparent is required for the design of individual structures, as well
as the development and calibration of design codes. The comprehensive records
include site specific data, test results, models of the performance indicators, inspec-
tion results amongst other information (Clause 4.5). These requirements are very
much in line with the current geotechnical practice whereby the site specific data
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should be well documented in the form of ground investigation report and the
actual design in the form of a design report.

25 CONCLUDING SUMMARY OF 1SO2394:2015

A critical assessment of 1S02394:2015 and its relevance to the reliability-based per-
formance and design of geotechnical structures serve as summary of the standard and
conclusions on its merit and utility.

Based on four decades of capturing the essence of reliability-based performance
and design of load bearing structures since 1973, the latest edition of 1SO2394
represents advancement in that (i) it is based on principles of risk and reliability,
(i) as a result of this and efforts that were made to make it sufficiently general, it
covers all structures for buildings and civil engineering works, and (iii) it incorpo-
rates recent advances made in the determination of performance and safety criteria
based on risk optimization.

1SO2394:2015 is the foremost platform for the advancement of structural per-
formance based on principles of risk to determine appropriate levels of reliability
and the formulation of operational design procedures that explicitly or implicitly
account for the uncertainties which influence the performance of the structures
(Clause 4.4.3).

The principled approach represented by ISO2394:2015 makes it imperative that
full account should be taken of the various uncertainties in (i) the consequences of
failure, (ii) the nature of failure modes, (iii) basic variables including both actions
and material properties, and (iv) the models employed for analysis.

The fundamental approach presented requires performance levels and design levels
to reflect principles of risk-based safety and provision for uncertainty. This changes
the present trend of standardization where judgement based design elements are
incrementally being replaced by reliability-based calibration using improved mod-
els for uncertainty. This is presented in a clearly systemized manner through the
classification into the three levels of risk-based optimization, typically to obtain
reliability or performance levels; reliability-based decision making or calibration
to reflect uncertainties; in order to derive partial and other design factors for
operational semi-probabilistic design.

The gap between the fundamental approach where lack of knowledge is fully
accounted for and traditional progress calibrated to acceptable practice, can be
closed using 1ISO2394:2015 by expressing experience based information in terms
of Bayesian probability. This would ensure that the fundamental approach does
not introduce conservatism which is inconsistent with the extensive experience
base for structural performance. The formal use of experience of structural per-
formance provides a strong motivation for the harmonization of structural design,
capitalising on sharing of experience internationally.

Different selections from the standard should be followed for specific classes of
design standards, such as (i) for the basis of design, to be based on target lev-
els of reliability and consequence classes (Clause 7), limit states (Clause 5) and
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robustness (Annex F) and (ii) actions and their combinations, including proba-
bility models and classification of all relevant types of actions (Clause 6), safety
format (Clause 9). Similar selections can be made for the resistance of structures
constructed from various structural materials or for various classes of structures
such as buildings or bridges.

e The general survey of the standard reported in this chapter confirms the rel-
evance of the risk and reliability-based approach of ISO 2394 to geotechnical
structures in general, but with additional information that should be incorporated
to provide for the specific nature of geotechnical structures. In fact, the standard
provides a suitable platform for the advancement of the risk and reliability bases
for the design and performance of geotechnical structures. A unique selection of
the relevant clauses from the standard would apply to procedures applicable to
geotechnical structures: In addition to the topics considered in Annex D which are
mainly related to uncertainties of geotechnical materials and models, consideration
should be given to risk characteristics of the performance of geotechnical structures
and the consequences of their failure, the systems nature of geotechnical failures,
the integral nature of geotechnical actions and resistances, special requirements
for the combination of testing and experience based judgement, amongst other
considerations.

e Reference to Annex D provides guidance for geotechnical structures on uncertainty
representation and modelling (Clause 6), specifically considering types of uncer-
tainty (Clause 6.1.1 Note 4). However, topics addressed in Annex D also relate
to other clauses, such as reference made to reliability-based methods presented in
D.5.3 (Clause 8) and the semi-probabilistic approach assessed in D.5.4 (Clause 9),
specifically considering characteristic soil parameters in D.5.5 (Clauses 4.3.3 &
9.3.2) and systems reliability in D.5.7 (Clause 5.2.3).

e The standard provides a suitable platform for unification of the various fields of
application that may apply to individual installations. Efforts still need to be made
to ensure consistency of application for example between actions, structural and
geotechnical design at the following levels:

— Overall performance requirements for the installation under consideration,
serving as input for the basis for decision making and design — this is treated
comprehensively by the standard;

— At the output stage, consistency achieved in the constructed facility such as for
the design of the structure and foundation, serves as check for compliance to
the standard;

— The interface between structural and geotechnical design provides the opera-
tional basis for ensuring consistence of performance and reliability.
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Chapter 3

Uncertainty representation of
geotechnical design parameters

Kok-Kwang Phoon, Widjojo A. Prakoso,
Yu Wang, and Jianye Ching

ABSTRACT

Site investigation and the interpretation of site data are necessary aspects of sound
geotechnical practice. As such, the characterization of geotechnical variability should
play a central role in reliability-based design. This chapter discusses the uncertainties
associated with the most basic soil/rock property evaluation task, which is to estimate
a design parameter from a field test. The coefficient of variation in the estimate must
be a function of the natural variability of the site, measurement error associated with
the field test, and transformation uncertainty about the regression line that relates the
field data to the design parameter. In addition, soil/rock properties are spatially vari-
able. This autocorrelation (correlation between values measured at different spatial
locations for the same property) effect can be quantified, for instance, by the scale of
fluctuation. Useful statistical tables and guidelines for the coefficient of variation and
the scale of fluctuation derived from a comprehensive survey of soil and rock databases
are presented in this chapter. The cross-correlation (correlation between different prop-
erties at the same spatial location) effect is discussed in Chapter 4. Stratigraphy is also
spatially variable, but this geologic uncertainty is not well studied in the literature at
present.

The coefficients of variation derived from soil and rock databases may be larger
than those encountered in a specific site, because they are applicable in a generic
“global” sense. These generic statistics are useful as prior information in the absence of
site-specific data. Measurement error is not site-specific because it is typically related
to the equipment, procedure, and operator. Natural variability and transformation
uncertainty are potentially site-specific. It is possible to update the statistics for natural
variability and transformation uncertainty in the presence of site-specific data using
Bayesian methods. However, statistical uncertainties associated with inference from
spatially correlated data should be handled carefully.

3.1 INTRODUCTION

Site investigation and the interpretation of site data are necessary aspects of sound
geotechnical practice. One major source of complication in the interpretation of site
data is natural variability. Natural variability stems from the natural processes by
which soil masses are deposited and modified over time. It may take the form of a test
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profile varying with depth. This profile often consists of a trend function and a fluctuat-
ing component. In the geotechnical reliability literature, this fluctuating component or
natural variability is modeled, whenever possible, as a stationary (statistically homo-
geneous) random field. A real site generally exhibits spatial variation in both vertical
and horizontal directions, most often with more pronounced variability in the verti-
cal direction. Jaksa et al. (2003), Jaksa et al. (2005), and Goldsworthy et al. (2007)
used three dimensional random fields and Monte Carlo simulation to simulate the
spatially variable elastic modulus of a “virtual” site. Each spatially variable realization
constitutes a plausible full information scenario. Site investigation is then carried out
numerically by sampling the continuous random field at discrete locations. The site
investigation data so obtained constitute the typical partial information scenario com-
monly encountered in practice. Site investigation data also appear in a multivariate
form. For example, the Standard Penetration Test (SPT) is commonly conducted in the
same borehole where undisturbed soil samples are taken. It is routine to measure prop-
erties such as unit weight, natural water content, plastic limit, liquid limit, undrained
shear strength, and overconsolidation ratio from these soil samples. Data from differ-
ent tests conducted at the same spatial location will be correlated, even though they
are measuring different aspects of soil behavior under different boundary conditions
and over different influence domains. In addition, there are different degrees of sample
disturbance. In practice, a “point” refers to a sufficiently small volume of soil bounded
by two adjacent boreholes/soundings at comparable depths. Ching et al. (2014a) called
data simulated with the intent of replicating the multi-dimensional correlation struc-
ture underlying this basket of laboratory and field tests as “virtual site” data. Clearly,
this virtual site is restricted to describing the multi-dimensional (or vector) nature of the
information available within a point in the soil mass. Spatial variations between points
are not considered. Finally, there is limited work on construction and characterization
of non-stationary random fields, particularly in the form of one soil layer embedded in
another or inclusion of pockets of different soil type within a more uniform soil mass.
In existing practice, soil layers are most often assumed to be horizontal and uniform
in thickness. In actuality, the depth and thickness of each layer is uncertain between
boreholes. The coupled Markov chain (CMC) model has been applied to represent
this type of geologic uncertainty (Li et al. 2016). It is not possible to emulate every
aspect of site variability at present. The challenge lies in characterizing a full three-
dimensional non-stationary vector field from borehole and/or field test data measured
at only limited spatial locations [for example, FHWA (1985) stipulates one borehole
every 60 m for cut slopes].

Notwithstanding the evolving research in modeling and characterizing geotech-
nical variability, it is useful to present statistics that: (1) are founded on actual soil
databases and (2) are aligned with geotechnical engineering practice. Geotechnical
engineers can relate better to reliability-based design (RBD) when they can see explicit
connections to soil data and how existing practice can be enhanced in a demonstrably
fruitful way. For example, geotechnical design parameters are commonly estimated
from field data. The uncertainty in the design parameter (say indicated by the coeffi-
cient of variation) must be a function of the natural variability of the site, measurement
error associated with the field test, and uncertainty about the regression line (called
transformation uncertainty) that relates the field data to the design parameter. Phoon
and Kulhawy (1999a, 1999b) characterized geotechnical variability using this simple
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but practical approach. Rock data have not been characterized as extensively as soil
data, but some useful guidelines on the variability of rock properties are provided by
Prakoso (2002) and summarized in Section 3.7. Other studies are reported by Ng et al.
(2015), Kahraman (2001), Sari and Karpuz (2006), and Aladejare & Wang (2017).
The coefficients of variation reported in the above references may be larger than those
encountered in a specific site, because they are applicable in a generic “global” sense.
These generic statistics are useful as prior information in the absence of site-specific
data, although the usual caveat against indiscriminate adoption of these generic statis-
tics without an appreciation of the underlying databases from which they are derived is
applicable. Measurement error is not site-specific because it is typically related to the
equipment, procedure, and operator. Natural variability and transformation uncer-
tainty are potentially site-specific. The final two sections of this chapter deals with
statistical uncertainty and Bayesian quantification of site-specific natural variability.

Another common question is how to estimate a design parameter when it is known
to be correlated to different test data (say undrained shear strength can be correlated
to SPT N-value, cone tip resistance, overconsolidation ratio, and others) and these
tests happened to be conducted at a particular site. Chapter 4 describes a consistent
approach to couple different test data and to estimate one or more design parameters
from one or more test data.

3.2 SOURCES OF UNCERTAINTIES

The overall uncertainty underlying a geotechnical design parameter results from many
disparate sources of uncertainties, as illustrated in Figure 3.1. There are three primary
sources of geotechnical uncertainties: (1) natural (inherent) variability, (2) measure-
ment error, and (3) transformation uncertainty. The first results primarily from the
natural geologic processes that produced and continually modify the soil/rock mass
in-situ. The term “natural variability” is used here to be consistent with Section 4.3.3
and Section 6.1.1 in 1ISO2394:20135, but this term can be used interchangeably with
the term “inherent variability” or “spatial variability” (Section D.2.3). The second

SOIL — IN-SITU —» TRANSFORMATION —» ESTIMATED
MEASUREMENT MODEL SOIL PROPERTY
inhe_rlenl data statistical model
50i .
variability scatter | |uncentainty uncertainty
inherent | | measurement
soil
variability error

Figure 3.1 Sources of uncertainties contributing to overall uncertainty in a design soil parameter.
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is caused by equipment, procedural/operator, and random testing effects. The third
source of uncertainty is introduced when field or laboratory measurements are trans-
formed into design soil/rock parameters using empirical or other correlation models.

The relative contribution of these three sources to the overall uncertainty in the
design soil/rock parameter clearly depends on the site conditions, degree of equipment
and procedural control, and precision of the correlation model. Therefore, statistics of
soil/rock parameters that are determined from total uncertainty analyses only can be
applied to the specific set of circumstances (site conditions, measurement techniques,
correlation models) for which the design soil/rock parameters were derived. Geotech-
nical variability is now routinely discussed in texts (e.g., Chapter 10, Look 2014) and
design guides (e.g., Det Norske Veritas 2010, Joint Committee on Structural Safety
2006), but the coefficients of variation are tabulated without reference to the property
evaluation methodology and the soil/rock property databases. This ignores the practi-
cal reality that there are many different tests [e.g., standard penetration test (SPT), cone
penetration test (CPT)] and even different transformation models linking the same pair
of test and design parameters. Chapters 3 and 4 would fill this critical gap in the design
guides.

3.3 NATURAL VARIABILITY
Table 3.1, 3.2, and 3.3 summarize typical natural variability of strength properties,

index parameters, and field measurements, respectively. The general soil type and
the approximate range of mean value for which the coefficient of variation (COV) is

Table 3.1 Summary of natural variability of strength properties (Source: Table |, Phoon & Kulhawy

1999a).
No. tests/group Property value Property COV (%)
No. data

Property? Soil type groups Range Mean  Range Mean Range Mean
s, (UC) Fine-grained 38 2-538 101 6412 100 6-56 33
(kN/m?)
sy(UV) Clay, silt 13 14-82 33 15-363 276 1149 22
(kN/m?)
s,(CIUC) Clay 10 12-86 47 130-713 405 18—42 32
(kN/m?)
Sy Clay 42 24124 48 8-638 112 6-80 32
(kN/m?)®
o ()P Sand 7 29-136 62 3541 37.6 5-11 9
$ ()P Clay, silt 12 5-51 16 9-33 15.3 10-50 21
¢ Q% - 9 - - 1741 333 4-12 9
tan ¢ (TC) Clay,silt 4 - - 0.24-0.69 0.509 646 20
tan¢ (DS)  Clay,silt 3 - - - 0615 646 23
tan ¢° Sand 13 6111 45 0.65-0.92 0.744 5-14 9
a — s,=undrained shear strength; ¢ =effective stress friction angle; TC =triaxial compression test;

UC =unconfined compression test; UU = unconsolidated-undrained triaxial compression test; CIUC=
consolidated isotropic undrained triaxial compression test; DS = direct shear test
b — laboratory test type not reported



Table 3.2 Summary of natural variability of index parameters (Source:Table 2,Phoon & Kulhawy 1999a).

No. tests/group Property value Property COV (%)
No. data

Property © Soil type® groups Range Mean  Range Mean Range Mean
W, (%) Fine-grained 40 17439 252 13-105 29 746 18
wi (%) Fine-grained 38 15-299 129 27-89 51 7-39 18
wp (%) Fine-grained 23 32-299 201 1427 22 6-34 16
Pl (%) Fine-grained 33 15-299 120 1244 25 9-57 29
LI Clay, silt 2 32-118 75 - 0.094 60-88 74
¥ (kN/m3)  Fine-grained 6 5-3200 564 14-20 17.5 3-20 9
vd4 (kN/m®)  Fine-grained 8 4-315 122 13-18 157 2-13 7
D, (%) Sand 5 - - 30-70 50 11-36 19
D, (%) Sand 5 - - 30-70 50 49-74 6l

a—wj, = natural water content; wi_ = liquid limit; wp = plastic limit; Pl = plasticity index; LI = liquidity index; y = total
unit weight; Y4 = dry unit weight; D, = relative density

b — fine-grained materials derived from a variety of geologic origins, e.g., glacial deposits, tropical soils, and loess

c — total variability for direct method of determination

d — total variability for indirect determination using SPT values

Table 3.3 Summary of natural variability of field measurements (Source: Table 3, Phoon & Kulhawy

1999a).
No. tests/group ~ Property value Property COV (%)
Test No. data
type®  Property” Soil type® groups  Range Mean Range Mean Range Mean
CPT qc Sand 57 102039 115 0.4-29.2 4.10 10-8l 38
(MN/m?)  Silty clay 12 30-53 43 0.5-2.1 1.59 540 27
CPT qr Clay 9 - - 0.4-2.6 132 2-17 8
(MN/m?)
VST s,(VST) Clay 31 4-31 16  6-375 105 4-44 24
(kN/m2)
SPT N Sand 22 2-300 123 7-74 35 19-62 54
N Clay,loam 2 2-61 32 7-63 32 37-57 44
DMT A (kN/m?) Sand to I5 12-25 17 64-1335 512 20-53 33
clayey sand
A (kN/m?)  Clay 13 1020 17 119455 358  12-32 20
DMT B (kN/m?) Sand to I5 12-25 17 3462435 1337 13-59 37
clayey sand
B (kN/m?) Clay 13 1020 17  502-876 690 12-38 20
DMT Ep Sand to I5 10-25 I5 9.446.1 254 992 50
(MN/m?)  clayey sand
Eo Sand, silt 16 - - 104-534 216 7-67 36
(MN/m?)
DMT Ip Sand to I5 10-25 I5 0884 285 16-130 53
clayey sand
Sand, silt 16 - - 2.1-54 389 848 30
DMT Kp Sand to I5 10-25 I5 1.9-283 I15.1  20-99 44
clayey sand
Sand, silt 16 - - 1.3-93 4.1 17-67 38
PMT p. (kN/m?) Sand 4 - 17 1617-3566 2284 23-50 40
pL (kN/m?) Cohesive 5 1025 - 428-2779 1084 10-32 I5
PMT  Epmr Sand 4 - - 5.2-15.6 897 28-68 42
(MN/m?)

a — CPT = cone penetration test;VST = vane shear test; SPT = standard penetration test; DMT = dilatometer test;
PMT = pressuremeter test

b — q. =CPT tip resistance; q1 = corrected CPT tip resistance; s,(VST) =undrained shear strength from VST;
N = SPT blow count (number of blows per foot or 305 mm);A and B=DMT A and B readings; Ep = DMT modulus;
Ip = DMT material index; Kp = DMT horizontal stress in-dex; p. = PMT limit stress; Epmyt = PMT modulus
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applicable are also included in the tables. With respect to soil type, the COV of natural
variability for sand is higher than that for clay. With respect to measurement type,
the COVs of natural variability for index parameters are the lowest, with the possible
exception of derived parameters such as the relative density and liquidity index. The
highest COVs of natural variability seem to be associated with measurements in the
horizontal direction and measurements of soil modulus. More detailed characterization
at specific sites are given by Cherubini et al. (2007), Chiasson and Wang (2007), Jaksa
(2007), and Uzielli et al. (2007).

3.4 MEASUREMENT ERROR

Table 3.4 and 3.5 summarize typical measurement error of laboratory tests and field
tests, respectively. Statistical information on measurement error is rather limited. Based
on the statistics reported by comparative testing programs, the COVs of measurement
error for most laboratory strength tests are estimated to be between 5 and 15%. The
COVs of measurement error for the plastic and liquid limit tests were in the range of
10-15% and 5-10%, respectively. The COV of measurement error for the natural
water content was intermediate between those of the limit tests. For the plasticity index,
the standard deviation of the measurement error was between 2 and 6%. The unit
weight determination had the lowest COV of measurement error (~1%). As shown in
Table 3.5, the measurement error for the standard penetration test is the largest among
field tests, and the measurement errors for the electric cone penetration test and the

Table 3.4 Summary of total measurement error of some laboratory tests (Source: Table 5, Phoon &
Kulhawy 1999a).

No.Tests/Group Property value Property COV (%)
No. data

Property © Soil type groups Range  Mean  Range Mean  Range Mean
su(TC) Clay, silt I - 13 7-407 125 8-38 19
(kN/m?)

su(DS) Clay, silt 2 13-17 15 108-130 119 19-20 20
(kN/m?)

su(LV) Clay 15 - - 4-123 29 5-37 13
(kN/m?)

(TC) () Clay, silt 4 9-13 10 2-27 19.1 7-56 24
$(DS) (°) Clay, silt 5 9-13 Il 24-40 333 3-29 13
(DS) (°) Sand 2 26 26 30-35 327 13-14 14
tan (TC)  Sand,silt 6 - - - - 2-22 8
tan $(DS)  Clay 2 - - - - 6-22 14
W, (%) Fine-grained 3 82-88 85 1621 I8 612 8
wy (%) Fine-grained 26 41-89 64 17-113 36 311 7
wp (%) Fine-grained 26 41-89 62 12-35 21 7-18 10
Pl (%) Fine-grained 10 41-89 6l 4-44 23 5-51 24
¥ (kN/m3)  Fine-grained 3 82-88 85 16-17 17.0 1-2 I

a — s, =undrained shear strength; ¢ = effective stress friction angle; TC =triaxial compression test; UC =
unconfined compression test; DS = direct shear test; LV =laboratory vane shear test; w,, = natural water content;
wi = liquid limit; wp = plastic limit; Pl = plasticity index; y = total unit weight
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Table 3.5 Summary of measurement error of common in-situ tests (Source:Table 6, Phoon & Kulhawy

1999a).

cov cov cov cove cov?b
Test Equip. (%) Proc. (%) Random (%) Total (%) Range (%)
Standard penetration test (SPT) 5-75¢ 5-75¢ 12-15 14-100¢ 1545
Mechanical cone penetration test (MCPT) 5 [0-15¢  10-15¢ [5-22¢  15-25
Electrical cone penetration test (ECPT) 3 5 5-10¢ 7-12¢ 5-15
Vane shear test (VST) 5 8 10 14 10-20
Dilatometer test (DMT) 5 5 8 I 5-15
Pressuremeter test (PMT) 5 12 10 16 10-20°
Self-boring pressuremeter test (SBPMT) 8 15 8 19 15-25¢

a — COV(Total) = [COV(Equip.)? + COV(Proc.)2 + COV(Random)?]%

b — Because of limited data and the judgment involved in estimating COVs, ranges represent probable magnitudes
of field test measurement error

c — Best to worst case scenarios, respectively, for SPT

d —Tip and side resistances, respectively, for CPT

e — It is likely that results may differ for po, pr, and pi, but the data are insufficient to clarify this issue

dilatometer test are the smallest. Because of the limited data available and the need
to use judgment to estimate these errors, the last column of Table 3.5 represents the
range of probable total measurement error one can expect in typical field tests.

3.5 TRANSFORMATION UNCERTAINTY

The direct measurement from a geotechnical test typically is not directly applicable to
design. Instead, a transformation model is needed to relate the test measurement to an
appropriate design property. Some degree of uncertainty will be introduced, because
many transformation models in geotechnical engineering are obtained by empirical
or semi-empirical data fitting. Transformation uncertainty would still be present even
for theoretical relationships because of idealizations and simplifications in the theory.
The data scatter about the transformation model can be quantified using probabilistic
methods, as illustrated in Figure 3.2. In this approach, the transformation model is
typically evaluated using regression analyses. More general approaches are available
to quantify uncertainties beyond the pairwise correlations (refer to Chapter 4). The
spread of the data about the regression curve can be modeled in many instances as an
additive zero-mean random variable (¢). In this case, the standard deviation of € (s;) is
an indicator of the magnitude of transformation uncertainty, as shown in Figure 3.2.

It is natural to define the transformation uncertainty as the standard deviation
of the regression error (g). This definition is consistent with the regression literature.
However, there are three limitations associated with this approach. One, it is dif-
ficult to compare the precision between different transformation models using a
non-normalized quantity such as the standard deviation. Second, it is not applicable to
transformation models that are more rules of thumb than developed from a data-driven
regression analysis. These models are typically biased and this bias (over- or under-
predict actual value) is important to engineers. Third, a transformation model relates
a set of input variables (test measurements) to an output variable (design property).
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Figure 3.2 Transformation uncertainty resulting from pairwise correlation between a measured
property and a desired design property.

The transformation uncertainty effectively describes the performance of this model. It
is conceptually identical to the model uncertainty described in Chapter 5. The only dif-
ference is in the area of application. The transformation uncertainty is used to describe
the inexact relationship between soil/rock properties. The model uncertainty is used to
describe the inexact relationship between a measured and a calculated response, such as
pile capacity or settlement. Ching and Phoon (2014) proposed a new definition for ¢ as:

actual target value
€

= 3.1
b x predicted target value G-1)

where the actual target value = measured value of the design property and predicted
target value = estimated value of the design property from a transformation model. The
product of a constant b and the predicted target value produces an unbiased prediction
on the average, i.e. b=average bias. The random variable ¢ quantifies the deviation
between the actual value and the unbiased prediction. The mean value of ¢ is 1 by defi-
nition. It is easy to see that the model factor defined in Eq. (5.1) is related to € as follows:

M=bxze (3.2)

In other words, the mean of M=b and COV of M=COV of &. Examples of the
average bias and COV of ¢ for clay properties and sand/gravel properties are given in
Tables 4.2 and 4.3 in Chapter 4, respectively.

Transformation models are widely adopted in geotechnical engineering practice as
a matter of practical expediency. Useful compilations of these models (mostly pairwise
correlations) are available in the literature (e.g., Kulhawy & Mayne 1990, Mayne et al.
2001). A cursory review of these compilations would reveal a rather bewildering variety
and number of models. There are many different tests (e.g., standard penetration
test, cone penetration test) and even different transformation models linking the same
measured parameter (e.g., cone tip resistance) and design parameter (e.g., undrained



Uncertainty representation of geotechnical design parameters 57

shear strength). There is a large variety of transformation models, because many were
developed for a specific geomaterial type and/or a specific locale. It is not judicious to
apply these models indiscriminately to other sites without a proper appreciation of the
geomaterial behavior and geology. Site-specific models are generally more precise than
“global” models calibrated from data covering many sites (Ching and Phoon 2012).
However, site-specific models can be significantly biased when applied to another site.
This “site-specific” limitation is a distinctive and fundamental feature of geotechnical
engineering practice. Geotechnical RBD must take cognizance of this limitation to
avoid gross oversimplification of “ground truths”. Bayesian model comparison (Cao
and Wang 2014a) and model selection methods (Wang and Aladejare 2015) have
been developed to assist in selection of site-specific models using limited site-specific
observation data and prior knowledge such as typical ranges of geotechnical properties
(Wang and Cao 2013). More discussions on selection of “site-specific” transformation
model are given in Section 3.10.

The transformation uncertainties associated with these models are seldom analyzed
with the same degree of rigour as those presented in Ching and Phoon (2012). The
majority are empirical and do not contain sufficient information for statistical charac-
terization. A first-order estimate of the transformation uncertainty can be obtained by
noting that about two thirds of the data typically fall within one standard deviation
of the transformation model. Even with this simple technique, only a limited number
of models could be examined, because most models have been presented without their
supporting data.

Although the uncertainties in these empirical models are unknown, they are likely
to be as large as those indicated in Table 4 of Ching and Phoon (2012), particularly
for the case of empirical models where two (or more) parameters are being linked
together that are indirectly related. A good example is the standard penetration test
(SPT) N-value. The N-value is the dynamic driving resistance for a particular type of
sampler, yet it has been correlated with the soil consistency, relative density, vertical and
horizontal soil stress state, drained and undrained strength, modulus, and liquefaction
resistance. Although these parameters undoubtedly influence N indirectly, it is too
much to expect that they all (singly or collectively) can be predicted reliably without
incurring significant uncertainties.

From the above observations, it is clear that the uncertainty in a design soil param-
eter is a function of natural soil variability, measurement error, and transformation
uncertainty. These components can be combined consistently using a simple second-
moment probabilistic approach described in Phoon and Kulhawy (1999b). First-order
approximate guidelines for COVs of some design soil parameters as a function of
the test measurement, correlation equation, and soil type is presented in Table 3.6.
An illustrative COV for a spatial average over Sm is also presented in the table to
highlight the critical need to identify the characteristic design parameter governing a
specific limit state. For ultimate limit state problems, this characteristic design param-
eter is typically a spatially averaged strength over the most critical failure path. In the
presence spatial variability, the COV of this spatially averaged strength is smaller than
the COV of the point strength; the degree of COV reduction is a function of the scale
of fluctuation discussed in Section 3.6. It is clearly inappropriate to apply the point
COV to a problem where the COV reduction is significant, say because the scale of
fluctuation is short relative to some characteristic length scale of the failure path length
(e.g., height of slope, diameter of tunnel, depth of excavation).
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Table 3.6 Approximate guidelines for coefficients of variation of some design soil parameters (Source:
Table 5, Phoon and Kulhawy 1999b).

Design Point Spatial Avg. Correlation
Property® Test® Soil type COV (%) COV© (%) Equationf
s.(UC) Direct (lab) Clay 20-55 1040 -
s,(UU) Direct (lab) Clay 10-35 7-25 -
s.(CIUC) Direct (lab) Clay 20-45 10-30 -
su(field) VST Clay 15-50 15-50 14
s, (UU) qr Clay 30-40¢ 30-35¢ 18
s.(CIUC) qr Clay 35-50¢ 35-40¢ 18
s.(UU) N Clay 40-60 40-55 23
st Kb Clay 30-55 30-55 29
sy(field) Pl Clay 30-55¢ - 32
I Direct (lab) Clay, sand 7-20 620 -
O(TC) qr Sand 10—159 10¢ 38
Pev PI Clay 15-20¢ 15-20¢ 43
Ko Direct (SBPMT) Clay 20-45 1545 -
Ko Direct (SBPMT) Sand 25-55 20-55 -
Ko Kb Clay 35-50¢ 35-50¢ 49
Ko N Clay 40-75¢ - 54
Epmr Direct (PMT) Sand 20-70 15-70 -
Ep Direct (DMT) Sand 15-70 10-70 -
Epmr N Clay 85-95 85-95 6l
Ep N Silt 40-60 35-55 64

a — sy =undrained shear strength; UU = unconsolidated-undrained triaxial compression test; UC = unconfined
compression test; CIUC = consolidated isotropic undrained triaxial compression test; s, (field) = corrected s, from
vane shear test; ¢ = effective stress friction angle; TC = triaxial compression; ¢, = constant volume ¢; K, = in-situ
horizontal stress coefficient; EpMT = pressure-meter modulus; Ep = dilatometer modulus

b — VST =vane shear test; qr =corrected cone tip resistance; N =standard penetration test blow count;
Kp = dilatometer horizontal stress index; Pl = plasticity index

c — averaging over 5m

d — COV is a function of the mean; refer to COV equations in Phoon & Kulhawy (1999b) for details

e — mixture of s, from UU, UC, andVST

f — Equation numbering in Phoon & Kulhawy (1999b)

Two observations are noteworthy here. One, it is important to distinguish between
the definition of a characteristic design parameter from a physics viewpoint and the
definition of a characteristic value from a statistical viewpoint. The customary defini-
tion of a lower 5% quantile as a characteristic value must be interpreted as the lower
5% quantile of a probability distribution pertaining to the appropriate spatially aver-
aged strength or other design parameters similarly defined based on the physics of the
problem. Second, the spatially averaged strength along the failure path is not identical
to the spatially averaged strength along a prescribed line drawn in a spatially variable
medium. The latter has been studied fairly extensively (Vanmarcke 2010), while the
former is gradually being recognized (Ching and Phoon 2013; Ching et al. 2014b).

The ranges of COVs shown in Table 3.6 are based on representative statistics
of natural variability and measurement error, as presented in Section 3.3 and 3.4.
More accurate COVs can be calculated by substituting site-specific data on natu-
ral variability and measurement error into the closed-form COV equations given
in Phoon and Kulhawy (1999b) or comparable equations based on the proposed
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second-moment probabilistic approach. The COVs of the undrained shear strengths
determined by several different methods were found to be in the range of 10-60%. For
the undrained shear strength predicted from the standard penetration N-value, higher
COVs emerge when “global” relationships are used that are not calibrated to a specific
geology. The probable range of COV for the undrained shear strength is estimated to
be between 10 and 70%. The COV of the friction angle for sand and clay was found
to be between 5 and 20%. For the in situ horizontal stress coefficient (K,), the COV
was found to be in the range of 20-80% for clay, depending on the method of evalu-
ation. The corresponding range of COV for sand, which was found to be in the range
of 25-55%, would only be applicable to the direct determination of K,. The COV
for indirect methods of evaluation could not be evaluated because the uncertainties
underlying the transformation models were not available. The COV of soil modulus
was found to be highest. Even for direct methods of evaluation, the COV was found
to be in the range of 20-70%. Higher COVs were obtained for correlations with N,
particularly if the correlation is not restricted to a specific geology. The probable range
of COV for soil modulus is estimated to be on the order of 30-90%.

The upshot is that a design soil parameter and its probability distribution must
depend on the site condition, the measurement method, and the transformation model.
The mean or another characteristic value, say 5% quantile, is one aspect of this prob-
ability distribution that is routinely estimated in practice. The COV is merely another
aspect of the probability distribution and it must also depend on the site variabil-
ity, measurement precision, and transformation quality. This aspect is emphasized in
Section D.2 of 1SO2394:20135. It suffices to note that assigning a single COV value to
a design soil parameter without reference to the property evaluation methodology is
an example of gross over-simplification. For example, a COV of 30% for undrained
shear strength may be appropriate for good quality laboratory measurements or direct
correlations from field measurements such as the cone penetration test (CPT). It may
not be appropriate for indirect correlations based on the standard penetration test
(SPT). The practical impact of this observation is that it is unrealistic to calibrate a sin-
gle value for each resistance/partial factor in a simplified RBD format. This practice is
realistic for structural engineering, because the COV of manufactured materials can be
controlled within a narrow range, say between 5 and 15%. The COV of the undrained
shear strength, on the other hand, can vary between 10% and 70%. Based on reli-
ability calibration studies for foundations (Phoon et al. 1995), Phoon and Kulhawy
(2008) proposed a reasonably practical three-tier classification scheme (Table 3.7) for
calibration of resistance/partial factors in simplified RBD. Based on this scheme, each
resistance/partial factor can take a different numerical value depending on the level
of property variability (low, medium, high) judged to be appropriate for a specific
design scenario. This scheme is illustrated in Figure D.3 of 1SO02394:2015. A similar
approach was adopted by Paikowsky et al. (2004) in their reliability calibration of
resistance factors for deep foundations. It appears that site variability is divided into
low (COV <25%), medium (25% < COV <40%), and high (COV > 40%).

The 2014 Canadian Highway Bridge Design Code or CHBDC (CAN/CSA-S6-
14:2014) also followed a similar strategy in allowing a resistance factor to take on
different values depending on the degree of “understanding” (low, typical, high). The
degree of understanding covers the quality of site information and the quality of per-
formance prediction. It is possible to envisage Table 3.7 being expanded eventually
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Table 3.7 Three-tier classification scheme of soil property variability for reliability calibra-
tion (Source: Table 9.7, Phoon & Kulhawy 2008).

Geotechnical parameter Property variability COV (%)
Undrained shear strength Low? 10-30
Medium® 30-50
High® 50-70
Effective stress friction angle Low? 5-10
Medium® 1015
High® 15-20
Horizontal stress coefficient Low? 30-50
Medium® 50-70
High® 70-90

a — typical of good quality direct lab or field measurements
b — typical of indirect correlations with good field data, except for the standard penetration test (SPT)
c — typical of indirect correlations with SPT field data and with strictly empirical correlations

to classify the complete gamut of information, which could include both pre-design
information (e.g., prior experience, site investigation, prototype test) and post-design
information (e.g., quality control, monitoring). It is safe to say that Table 3.7 is a step
in the right direction to establish a closer linkage to good practice.

It may be noted in passing that the Load and Resistance Factor Design (LRFD)
(Section 6.2) involves comparing a factored resistance with the sum of two or more
factored loads. A factored resistance is the product of a resistance factor and a char-
acteristic/nominal resistance. Ching and Phoon (2011) noted that a quantile-based
characteristic resistance could be used to maintain a relatively uniform level of relia-
bility over a wide range of COVs without applying a resistance factor. Their proposed
method is called the Quantile Value Method (QVM) (Section 6.5). This alternate
strategy of keeping the resistance factor constant while adjusting the characteristic
resistance to handle different site conditions bears some semblance to the Eurocode
7 partial factor approach (EN 1997-1:2004). However, QVM is a form of simplified
RBD while Eurocode 7 is not. The main idea here is that geotechnical design is less
amenable to standardization than structural design and the engineer should be able to
exercise his/her judgment to adjust the resistance factor and/or characteristic resistance
to suit a particular site.

3.6 SCALE OF FLUCTUATION

Soil is a natural material that has been formed by a combination of various geologic,
environmental, and physical-chemical processes. Many of these processes are contin-
uing and can be modifying the soil in-situ. Because of these natural processes, all soil
properties in-situ will vary vertically and horizontally. As illustrated in Figure 3.3, this
spatial variation can be decomposed conveniently into a smoothly varying trend func-
tion [t(z)] and a fluctuating component [w(z)]. This fluctuating component represents
the natural soil variability.
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Figure 3.3 Random field model for natural soil variability (revised from Phoon and Kulhawy 1999a).

The natural variability is typically modeled as a stationary (statistically homoge-
neous) random field (Vanmarcke 1977). It is noteworthy that a physically homoge-
neous soil layer is not necessarily statistically homogeneous. Some reasonably practical
methods have been proposed to identify these statistically homogeneous layers (Phoon
et al. 2003; Uzielli et al. 2005). Methods are also available to identify simultaneously
the statistically homogeneous layers and the associated statistical parameters in each
statistically homogeneous layer (Cao and Wang 2013; Wang et al. 2013 & 2014). A
critical statistical parameter that is needed to describe natural variability is the corre-
lation distance or scale of fluctuation. The scale of fluctuation provides an indication
of the distance within which the property values show relatively strong correlation.
A simple but approximate method of determining the scale of fluctuation is shown as an
insert in Figure 3.3. However, this estimation method is only applicable to the squared
exponential autocorrelation function (Vanmarcke 1977 citing Rice 1944, 1945).

When the scale of fluctuation is very short, the property value at one point is
nearly independent of the property value at another point, even if the distance apart is
very short. This is manifested visually as properties varying rapidly with depth. This
extreme case, called the independent case, is rare in a typical soil profile. When the
scale of fluctuation is very long, the property value at one point is nearly equal to
the property value at another point for a given random realization, even if the dis-
tance apart is very long. This is manifested visually as property values following a
near constant trend with depth. This second extreme case, called the fully correlated
(or random variable) case, is also rare in a typical soil profile. The practical impor-
tance of considering a reasonable scale of fluctuation, i.e. a reasonably realistic spatial
variability, in the estimation of COV has been highlighted in Section 3.5. The assump-
tion of independent soil parameters will produce an unconservative reduction of the
point COV for the spatial average. The assumption of fully correlated soil parameters
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will not result in COV reduction for the spatial average, which is overly conservative.
There are even more fundamental concerns beyond COV reductions related to these
convenient but overly simplified assumptions. It suffices to note briefly that failure
mechanisms are related to spatial variability. Examples are provided by Fenton &
Griffiths (2008).

Table 3.8 provides a summary of scales of fluctuation reported in the literature.
It is apparent that the amount of information on the scale of fluctuation is relatively
limited in comparison to the amount of information on COV. Therefore, Table 3.8
should be viewed with caution, because there are insufficient data to establish their
generality on a firm basis. However, it would appear the horizontal scale of fluctuation
is about one order of magnitude larger than the vertical scale of fluctuation. Detailed
studies on the scale of fluctuation are available, but rather limited in number (Jaksa
1995; Fenton 1999a; Uzielli et al. 2005).

In addition to the scale of fluctuation, a correlation function is needed in the ran-
dom field modelling of natural variability, and the scale of fluctuation is generally
used as an input parameter to the correlation function. Although a single exponential
correlation function is frequently used in literature, several other correlation func-
tions can also be used, such as the binary noise function and the squared exponential
function (Fenton and Griffiths 2008; Cao and Wang 2014b). Based on the available
site-specific observation data, the most suitable correlation function can be selected
using a Bayesian model comparison method (Cao and Wang 2014b) and used in the
subsequent random field modelling of natural variability.

Table 3.8 Scales of fluctuation of some geotechnical parameters (Source: Table 4, Phoon & Kulhawy

1999a).
Scale of fluctuation (m)

Property © Soil type No. of studies Range Mean
Vertical direction
Sy Clay 5 0.8-6.1 2.5
qe Sand, clay 7 0.1-2.2 0.9
qr Clay 10 0.2-0.5 0.3
su(VST) Clay 6 2.0-6.2 38
N Sand | - 2.4
Wi Clay, loam 3 1.6-12.7 57
wL Clay, loam 2 1.6-8.7 52
Y Clay | - 1.6
Y Clay, loam 2 24-79 52
Horizontal direction
qc Sand, clay I 3.0-80.0 47.9
qr Clay 2 23.0-66.0 44.5
su(VST) Clay 3 46.0-60.0 50.7
W, Clay | - 170.0

a — sy =undrained shear strength from laboratory tests; s,(VST)=s, from VST; q. =CPT tip resistance;
qr = corrected CPT tip resistance; N=SPT blow count (number of blows per foot or 305 mm); w, = natural
water content; wi = liquid limit; y = effective unit weight; y = total unit weight



Uncertainty representation of geotechnical design parameters 63

3.7 INTACT ROCK AND ROCK MASS

3.7.1 Natural variability of intact rock

Several types of probability distribution for intact rock have been suggested in the
literature. However, a type of probability distribution that is simple, but physically
possible, is the lognormal probability distribution. Figure 3.4 shows an example of the
application of this probability distribution on actual rock property distributions. As
can be seen, the lognormal probability distribution fits well into the rock distributions,
and therefore it could be used as the primary rock property probability distribution in
the development of RBD procedures.

The variability of unweathered rock represented by the coefficient of variation
(COV) was evaluated for several different index, strength, and stiffness properties.
The index properties include the unit weight (y and yq), porosity (n), Schmidt hammer
hardness (R), and shore scleroscope hardness (S,) (Kulhawy and Prakoso 2003). The
strength properties include the uniaxial compressive strength (qu), Brazilian tensile
strength (qcprazilian)> and point load strength (I;), while the stiffness property is the tan-
gent Young’s modulus at 50 percent of q, (E.50) (Prakoso 2002). The typical COVs of
inherent variability in some basic test measurements of intact rocks are summarized in
Table 3.9. The mean, standard deviation (S.D.), and range of the COV are shown with
the total number of data groups per test. It is noted that clastic and chemical sedimen-
tary rocks dominate the database, followed by metamorphic non-foliated, intrusive
igneous, and extrusive igneous rocks. The databases for metamorphic foliated and
igneous pyroclastic rocks are small.

The mean and range of the COV of y and yq are relatively small, and therefore
these properties can be practically considered deterministic. The lower bound value
of the COV of inherent variability of the porosity (n) remains relatively constant at
about 5 to 10 percent over the range of mean values, but the upper bound on the
COV appears to decrease with increasing m, (mean of porosity). There is no apparent
effect of rock type on the COV, but it can be noted that sedimentary clastic rock data
dominate the higher m,.

10 Gabbro (Aggistalis et al. 1996)
Mean = 60.1 MPa
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Figure 3.4 Example distributions of intact rock properties.
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Table 3.9 COV of intact rock (Prakoso 2002).

Coefficient of Variation (%)

Test Type Property Number of data groups Mean S.D. Range
Index Ys Yd 79 1.0 1.2 0.1-8.6

n 30 24.2 18.6 3.0-71

R 54 8.7 54 1.4-26

Sh 59 .1 85 1.4-38
Strength Qu 174 14.0 1.7 0.8-61

Ge-Brazilian 54 19.4 12.9 3.8-61

I 66 20.5 14.3 2.8-59
Stiffness E..s0 72 20.5 16.9 1.4-69
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Figure 3.5 COV mean values versus mean hardness property values.

The mean values of COV inherent variability of the Schmidt hammer hardness
(R) and the shore scleroscope hardness (Sy,) are between 8 to 12 percent. The lower
bound value of the COV of R remains relatively constant at about 5 percent over the
range of mean values, while that of the COV of Sy, remains relatively constant at less
than § percent over the range of mean values. However, the upper bound of the COV
for both hardness properties appears to decrease with increasing mean values. The
overall trend of decreasing COV with increasing mean values for hardness properties
as shown in Figure 3.5. There is no apparent effect of rock type on the COV and mg
(mean of Schmidt hammer hardness).

The strength properties considered were the uniaxial compressive strength (qu),
Brazilian tensile strength (Qcprazlian), and point load strength (I;), while the stiff-
ness property considered is the tangent Young’s modulus at 50 percent of uniaxial
compressive strength (E.so). In developing the databases, when several data groups
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Figure 3.6 COV mean values versus mean strength and stiffness property values.

from the same site with different sample diameters (Bgymple), moisture contents, or core
orientations were available, only one data group was used. The one chosen preferably
had Bg,ple closer to 50-58 mm, was saturated, and was perpendicular to the bedding
or foliation.

The mean values of the COV of inherent variability of qu, Qe prazilians Ls, and E¢.so
are between 14 to 21 percent. The lower bound values of these COV ranges remain
relatively constant at about 5 percent over the range of their respective mean values,
Mgy, MyeBrailians Mis, and mge_so. However, the upper bound values of the COV appears
to decrease with increasing mean values. The overall trend of decreasing COV with
increasing mean values for strength and stiffness properties as shown in Figure 3.6.
There is no apparent effect of rock type on the COV and mg,.

Statistical evaluation of mjgs

Hoek and Brown (1980) introduced an empirical method to estimate the rock mass
strength, and Hoek et al. (1995) subsequently introduced the concept of Geologi-
cal Strength Index (GSI). One of the parameters required is the Hoek-Brown intact
strength constant based on triaxial test results (m;.gs1). The reader should not confuse
the symbol “m” associated with the Hoek-Brown intact strength constant with the
symbol “m” denoting mean in this section. Doruk (1991) conducted a comprehensive
evaluation of the intact rock parameter mj ggr. In this study, these results were used to
evaluate the uncertainty of m;.gg, and the statistical results are given in Table 3.10.
The probability distributions of m;.gs; can in general be represented by a lognormal
probability distribution. The mean COV of m; g is significantly greater than the mean
COV of q, and other strength parameters previously discussed.
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Table 3.10 Hoek-Brown m; g parameters (data after Doruk, 1991).

Hoek-Brown m; s parameter

Number of Mean, Range, COVicsi
Rock type data groups Mpics Fmi-Gs! (%)
Granite 18 25.3 843 37.7
Dolerite 4 13.2 I1-15 14.7
Granodiorite 4 26.0 16-35 314
Sandstone 57 16.0 3-42 53.8
Mudstone 7 19.2 947 75.8
Shale 3 14.6 3-29 91.9
Chalk 2 7.2 - -
Limestone 25 9.6 4-26 47.3
Dolostone 8 1.4 5-18 37.7
Carnallitite 5 20.8 3-46 94.7
Amphibolite 3 27.8 24-33 16.7
Quartzite 6 20.4 15-28 249
Marble 14 8.1 5-16 39.5
Mean = 47.2
S.D.= 27.1

COV comparison

The mean values of the COV of inherent variability of qu, QiBrazilian> Ls» and E¢.so are
within a relatively narrow range of 14 to 21 percent, and the mean COV values for
different tests shown in Figure 3.5 are relatively within a narrow band. This relatively
minor difference in the mean COV values suggests that the effect of test type is minor.

Furthermore, q, often is estimated from the results of the hardness tests (Kulhawy
and Prakoso 2003), and E,_s5 is commonly estimated from q,. The relationship between
the COV of q, and that of the hardness test results, and the relationship between the
COV of E; 50 and that of q,, are evaluated. The mean and range of the COV of q,
given in Table 3.9 are greater than those of R and Sy,. The individual COV values of
qu are plotted versus their corresponding COV of R and S}, in Figure 3.7, and only 55
percent of data groups falls below the 1:1 line. The mean and range of the COV of
E. 50 given given in Table 3.9 are somewhat greater than those for q,. The individual
COV values of E, 5y are plotted versus their corresponding COV of q, in Figure 3.7,
and only 42 percent of the data groups falls below the 1:1 line shown in Figure 3.7.
These results indicate that COV values of different tests are practically similar.

Effect of weathering

The variability of weathered rock is evaluated based on the results of several differ-
ent testing methods. Three sets of rock data are given in Table 3.11 to illustrate the
effect of different weathering conditions on the natural variability of intact rocks. The
COV values of these tests tend to increase as the weathering progresses. Furthermore,
Table 3.11 also indicates that the COV of properties with mixed weathering states (e.g.,
unweathered and slightly weathered and slightly and moderately weathered) tends to
be greater than those of properties related to a single weathering state.
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Figure 3.7 Comparison of COV values from different tests.
Table 3.11 Effect of weathering on COV (Prakoso 2002).
Coefficient of Variation (%)
Rock Type Test Type ) [} mn Combined
Gabbro Qu 332 51.5 - 52.8
Is 46.8 47.1 - 53.9
Basalt Qu 239 26.8 - 41.0
Is 26.1 45.7 - 39.6
Granite, qQu - 28.6 31.1 51.1
saturated Qe-Brazilian - 289 30.6 53.2
Is - 28.5 30.2 534
Qe-direct - 27.4 364 56.0
E..50 - 18.8 35.2 49.9
Note: | =fresh, Il =slightly weathered, lll = moderately weathered; number of samples > 10.

3.7.2 Intact rock measurement error

The intact rock measurement error and the associated transformation uncertainty have
been extensively discussed by Prakoso and Kulhawy (2011). The correlations between
the laboratory uniaxial compressive strength (qy), Brazilian indirect tensile strength
(Qe-Brazilian), and point load strength (I5) and the sample diameter were developed
to quantify the effect of sample diameter. The associated direct correlations among
these strength test types also were developed. These correlations show relatively large
uncertainties in the estimated intact rock strength. In spite of the large uncertainties
associated with the use of correlations to consider the effects of sample diameter on the
actual intact rock strength, the COV of these rock strength parameters with different
sample diameters is not significantly affected by the sample diameter. For both q, and
Qe-Brazilians the median value of the maximum change in the COV for individual data
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Figure 3.8 Comparison of COV values from test conditions (Prakoso 2002).

groups is about 5%. The median value of the maximum change for qcprasian and I
are about 8% as shown in Figure 3.8. In addition, the general rock types appear not
to affect the maximum change in the COV.

The rock strength qu, qe-prazitians and Iy obtained from dry and saturated samples
were also proposed. The strength decreases with increasing moisture content. In spite
of the large uncertainties associated with the use of correlations to consider the effect
of moisture content on the actual intact rock strength, the COV is not significantly
affected by the moisture content. When the oven-dried COV data are directly compared
to the saturated COV data, the data points lay about the 1:1 line as shown in Figure 3.8.
For the air-dried COV data versus the saturated COV data, the data points lay about
the 1:1 line, and the spread is minimal. The two observations suggest that different
drying procedures most likely would not affect the level of uncertainty significantly.

The effect of the core orientation relative to loading direction on the COV of rock
uniaxial compressive strength (q,) and point load strength (I;) was reported by Prakoso
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Table 3.12 Scale of fluctuation of intact rock strength.

Rock Type Direction Test Type Scale of Fluctuation, § (m)
Shale Vertical Qt-Brazilian 1.22
Sandstone Horizontal Ig 0.6l

Table 3.13 COV of rock mass Young’s modulus from load tests.

Rock Mass Modulus, E,,

Rock Name Number of Data Mean, mg,, (MPa) COVerm, (%)
Iron ore 12 406.3 66.6
“Paint” rock 4 205.5 49.9
Ash rock 4 484 .4 62.0
Pomona basalt: vertical 40 944| 63.4
Pomona basalt: horizontal 36 17908 67.2
Dworshak granite 24 23265 51.1
Sandstone 5 178.6 47.2
Mudstone: S-series 17 198.4 71.9
Mudstone: M-series 21 615.3 48.2
Shale 5 354.0 21.1
Shale 3 345.0 9.9
Shale 3 3020.0 29.1
Sandstone 3 148.7 13.8
Clay-shale 3 418.3 78.6
Mean = 47.9
SD= 21.8

(2002). The strength of intact rock might change with changing core orientation. The
individual COV values of rocks drilled normal to the foliation or bedding are plotted
versus their corresponding COV of rocks drilled parallel with foliation or bedding in
Figure 3.7, and only 55 percent of data groups falls below the 1:1 line, suggesting the
COV practically independent of the orientation.

3.7.3 Intact rock scale of fluctuation

The information in the literature on the scale of fluctuation of intact rock properties
is very limited. Table 3.12 shows the scale of fluctuation for two sedimentary clastic
rocks as reported by Prakoso (2002). For comparison, it can be seen from Table 3.8
that the horizontal scale of fluctuation for soils is typically of an order of 10 m or larger.

3.7.4 Rock mass natural variability

The rock mass natural variability herein is represented by the COV of the rock mass
Young’s modulus (E;). The uncertainty of E,, was evaluated based on the back-
calculated Ey, from field load tests taken from 9 reports as summarized by Prakoso and
Kulhawy (2004). The data base is given in Table 3.13, containing igneous intrusive,
igneous extrusive, and sedimentary clastic rock types only. The mean COV of E,, is
significantly greater than the mean COV of E.5 previously discussed.



70 Reliability of Geotechnical Structures in ISO2394

1.0 T T T T T T T T 1.5 T T T T T T T T T
g Il 1: SRpjock =-0.02 6 + 0.9; S.D. = 0.09 5
£ ¥ 2: SRpjock = 0.1; S.D. = 0.09 1 £
= 3: SRylock =0.020-1.1;S.D.=0.10 4 I L A
m . =
e 0.8 o o* 1 bﬂ A <
= L ' A ©
& & 10 & o g -
< 06 - ;\s—é
S 5 B
o >
04 ©
! ' >
) L 5 0.5 -
o = A Vertical Discontinuities
02} I [> Horizontal Discontinuities
ko] - ] < Vertical & Horizontal Discontinuities
g —E [ No. Discontinuity = 2: Mean = 0.98; S.D. = 0.12 1
[vd r o No. Discontinuity = 4: Mean = 0.92; S.D. =0.10
(7] (2] No. Discontinuity = 8: Mean = 0.92; S.D. =0.17
0 0 s 1 s 1 n 1 s 1 L
0 30° 60° 90° 0 2 4 6 8 10
Discontinuity Angle to Horizontal Plane, 0 Number of Discontinuities

A Einstein et al. (1969, 1973), 63 =0
< Ladanyi & Archambault (1972), 63 = 0.35 MPa
@ Ladanyi & Archambault (1972), 3 = 0.70 MPa
¥V Kulatilake et al. (1997), o3 = 0, symm.
¥ Kulatilake et al. (1997), 63 = 0, asymm.
O Yang etal. (1998), 63 =0
80 T T T T T T T
Discontinuity Angle to
I Horizontal Plane, 6 i
0°-25° 25°-70°
25°-90°
60 v V¥ Einstein & Hirschfeld (1973) —
A A Brown & Trollope (1970),
Brown (1970) |
<& ®  Ladanyi & Archambault (1972)

COV of (o1 - o3)f (%)

0 4 8 12 16
Confining Stress, o3 (MPa)

Figure 3.9 Variability of artificial rock mass (Prakoso 2002).

Furthermore, Prakoso and Kulhawy (2004) have also reported the variability of
artificial rock mass made of concrete blocks, including the effects of orientation of dis-
continuities, number of discontinuities, and confining pressures as shown in Figure 3.9.
The rock mass strength is represented by the rock mass to intact rock strength ratio
(SRpiock ). The left figure indicates that the variability of rock mass strength is depen-
dent on the rock mass predominant discontinuity angle and reaches its maximum for
discontinuity angle between 40° and 60°. The right figure indicates that the variability
of SRylock appears to increase with increasing number of discontinuities. The bottom
figure indicates that the variability decreases with increasing confining pressure.
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3.7.5 Rock mass transformation uncertainty

The rock mass transformation uncertainty herein is represented by the rock mass
Young’s modulus (E.,), which often is estimated from the intact rock Young’s modulus
(Et-50) using the ratio ag (= E/Ec.s50). However, ag is not a fundamental parameter and
is a lumped parameter of the intact rock properties and the discontinuity frequency and
properties. Heuze (1980) compiled and evaluated a number of physical ag evaluations
from a site, which are reproduced in Table 3.14 as a reference. The COV range is from
49 to 81 percent, relatively comparable to the COV range of direct back-calculated
En from field load tests previously discussed.

3.8 STATISTICAL UNCERTAINTY FOR SITE-SPECIFIC
NATURAL VARIABILITY

Three major variabilities are discussed so far, including natural variability (Sec-
tions 3.3 & 3.7), measurement error (Sections 3.4 & 3.7), and transformation
uncertainty (Sections 3.5 & 3.7). The natural variability and transformation uncer-
tainty are potentially site-specific. This section and the next section consider the
statistical uncertainty for site-specific natural variability, whereas Section 3.10 con-
siders the statistical uncertainty for site-specific transformation. Measurement error
is not site-specific because it is typically related to the equipment, procedure, and
operator.

3.8.1 Statistical uncertainty in site-specific trend

The trend for natural variability is clearly site-specific. The site-specific trend can be
estimated using regression based on the site investigation data, e.g., CPT sounding.
It is customary to assume that the estimated trend is the same as the actual trend.
This is the underlying assumption for de-trending: data after de-trending (residuals)
are treated as zero mean data (e.g., Fenton 1999a; Uzielli et al. 2005). However, the
de-trended data will not have zero mean if the estimated trend is not the actual trend.
Past studies have recognized that de-trending deserves more rigorous attention (e.g.,
Kulatilake 1991; Li 1991; Jaksa et al. 1997; Fenton 1999b).

The estimated trend is in principle not the same as the actual trend. The devi-
ation between the estimated and actual trends is the statistical uncertainty for the
trend. Honjo and Setiawan (2007) focused on the statistical uncertainty in site-specific
trend. Given the site-specific investigation data, a framework is proposed to char-
acterize the statistical uncertainty for the spatial average along a certain depth. In
their framework, the standard deviation (or COV) and scale of fluctuation (SOF) for
the site-specific natural variability are prescribed rather than estimated from data.
The rationale for prescribing COV and SOF is based on the fact that the number
of data points in site investigation is typically insufficient to estimate these second-
order statistics. To circumvent this practical difficulty, Honjo and Setiawan (2007)
suggested that conservative values for COV and SOF can be assumed based on past
experiences.
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Table 3.14 Rock mass modulus to intact rock modulus ratio (modified after Heuze 1980).

ag =En/Evso
Test Type Number of Data Mean, myge S.D, sy COV 4t (%)
Plate bearing 27 0.32 0.26 8l
Full scale deformation 14 0.44 0.26 59
Flat jacks 10 0.54 0.27 50
Borehole jack or dilatometer 9 0.33 0.17 52
Pressure chamber 8 0.45 0.22 49

3.8.2 Statistical uncertainty of site-specific COV and SOF

The COV and SOF for natural variability are also site-specific, because the COV and
SOF at one site are typically not the same as those at another site. The ranges sum-
marized in previous tables represent past experiences in the literature. Although it is
possible to assume conservative values for COV and SOF based on these tables, as
suggested by Honjo and Setiawan (2007), there are practical difficulties for doing so.
First of all, COV and SOF values in these tables vary in a wide range. For instance,
the COV for the natural variability of the undrained shear strength of a clay varies
from 6% to 80% (Table 3.1). Its vertical SOF varies from 0.8 to 6.2 m (Table 3.8). Its
horizontal SOF is known in a very limited way [only 3 studies in Table 3.8, ranging
from 46 to 60 m; another 3 studies collected by El-Ramly et al. (2003), ranging from
22 to 40 m]. If the conservative COV value is taken to be 80% (the upper bound), this
would be too conservative for most sites. If 80% is excessively conservative, which
COV is reasonably conservative? It is not trivial to answer this question. The same
question can be asked when SOF is selected based on the ranges in Table 3.8. More-
over, SOF may depend on the problem scale (Fenton 1999a) and COV and SOF may
depend on the adopted trend function and the sampling interval as well (Cafaro and
Cherubini 2002). The scale considered in previous studies may not be similar to the
scale applicable for the geotechnical project at hand. The trend function and sampling
interval studied in the literature may not be applicable to the conditions in the project
at hand.

Jaksa et al. (2005) took a different strategy: they suggested using a “worst case”
SOF, which for the example of a 3-storey, nine-pad footing building examined, is equal
to the spacing between footings. This “worst case” strategy circumvents the need to
estimate SOF from past experiences. However, “the spacing between footing” is only
applicable to the example studied in Jaksa et al. (2005). Table 3.15 shows the worse-
case SOFs reported in previous studies. The worst-case SOF is typically comparable
to some multiple of the characteristic length of the structure (e.g., width of footing,
height of retaining wall, diameter of tunnel, depth of excavation). However, there is
no universal way of determining the “worse-case” SOF.

It is more prudent to use the site investigation data to obtain the site-specific COV
and SOF than to assume their values using past experiences or to assume SOF to be
the “worse-case” SOF. However, the main difficulty lies in the fact that the amount
of available information in a typical site investigation program is not sufficient to
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Table 3.15 Worse-case SOFs reported in previous studies.

“Worse case” Characteristic ~ Worse-case
Study Problem type definition length SOF
Jaksa et al. Settlement of a Under-design Footing I xS
(2005) nine-pad footing system  probability is maximal spacing (S)
Fenton and Bearing capacity of a Mean bearing capacity Footing I xB
Griffiths (2003) footing on a c-¢ soil is minimal width (B)
Soubra et al.
(2008)
Fenton et al. Active lateral force Under-design Wall height (H) 0.5~1 xH
(2005) for a retaining wall probability is maximal
Breysse etal.  Settlement of a Footing rotation Footing 05xS
(2005) footing system is maximal spacing (S)

Different settlement  Footing f(S,B)

between footings is spacing (S)

maximal Footing (no simple

width (B) equation)

Griffiths et al.  Bearing capacity of Mean bearing Footing 05~2xB
(2006) footing(s) on a ¢ =0 soil capacity is minimal width (B)
Ching and Overall strength of Mean strength is Column I xW
Phoon (2013)  a soil column minimal width (W) (compression)
Ching et al. 0 xW
(2014b) (simple shear)
Hu and Ching  Active lateral force Mean active lateral Wall height (H) 0.2 xH
(2015) for a retaining wall force is maximal

accurately determine the site-specific COV and SOF. Ching et al. (2016a) show that
the vertical SOF in a soil property cannot be estimated accurately if the total depth
of the investigation data is less than 20 times of the actual vertical SOF. Suppose the
actual vertical SOF is 0.5 m, this means that the total depth has to be larger than 10 m.
However, many soil layers have thicknesses less than 10 m. Ching et al. (2016a) also
show that the COV cannot be estimated accurately if the total depth is less than 4 times
of the vertical SOF. This means that the total depth has to be larger than 2 m. Besides
the minimum requirement for the total depth, Ching et al. (2016a) show another
requirement regarding the sampling interval. The vertical SOF cannot be estimated
accurately if the sampling interval is larger than 1/2 of the vertical SOF. Suppose the
actual vertical SOF is 0.5 m, this means that the sampling interval has to be less than
0.25 m. This rules out most in-situ tests, e.g., SPT test typically has sampling interval
equal to 1 to 2 m. In contrast, CPT sounding has an advantage due to its small sampling
interval of 2 cm.

The deviation between the estimated COV and SOF and their actual values is
the statistical uncertainty for COV and SOF. As explicitly stated in Section D.1 item
¢ 1SO2394:20135, statistical uncertainty should be handled with much care because
the amount of information collected in a site investigation is limited. In Eq. (26) in
1SO2394:2015, it is also explicitly stated that the determination of the partial factor
(resistance factor) should incorporate the statistical uncertainty in the resistance. As
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discussed above, significant deviation can occur if the data depth is not sufficiently
large or if the sampling interval is not sufficiently small. The former issue (data depth
not sufficiently large) is critical to geotechnical engineering practice, because it is quite
common to have thin soil layers. Ching et al. (2016a) show that for small data depth
(e.g., thin layers), there is a strong tradeoff between estimated COV and SOF: there
are numerous combinations of COV and SOF that are all plausible with respect to
the observed site-specific data. Moreover, these plausible combinations of COV and
SOF form a manifold, a long and narrow region in the two-dimensional space. It is
impossible to simultaneously estimate site-specific COV and SOF with satisfactory
accuracy for a thin soil layer. However, prior information may be useful in narrowing
the possible ranges for COV and SOF. The use of prior information with a Bayesian
framework is discussed below.

To illustrate the statistical uncertainty in the trend, standard deviation (or COV),
and SOF, consider a CPT sounding at Wufeng District in Taichung City (Taiwan).
This CPT sounding was analyzed in Ching et al. (2016a). Figure 3.11a and 3.11b
show the CPT data (q, and f;), together with the soil behaviour type index profile (L)
(Robertson 2009) in Figure 3.11c. The vertical data interval is 0.05 m. The CPT-based
stratification result based on I is also shown in Figure 3.11c. The statistical uncertainty
for the site-specific trend, standard deviation, and SOF will be illustrated for two soil
layers — one sand layer and one clay layer, shown in Figure 3.11c.

The trend, standard deviation, and SOF for the logarithm of the normalized cone
resistance Q, (Robertson 2009) are of concern:

Qi =[(qr — 0v0)/Pal x (Pa/0y)" (3.3)

where q is the (corrected) cone resistance; P, = 101.3 kN/m? is one atmosphere pres-
sure; o/, and oy are the effective and total overburden stresses, respectively; n=0.5
for sand and n=1 for clay. Figure 3.12 shows the Qq, profiles within these two soil
layers in the logarithmic scale. The total depths (D) for the CPT records are 0.80 m and
4.55 m for the sand and clay layers, respectively. The sand layer exemplifies a thin soil
layer, whereas the clay layer exemplifies a thick soil layer. Figure 3.13 shows the mul-
tivariate probability density function (PDF) of the trend (i), standard deviation (o),
and SOF (8) for the sand layer (thin layer) updated by the site-specific data. Although
the trend p can be estimated with a reasonable accuracy, there is a tradeoff region
(manifold) between ¢ and 3. It is not possible to accurately estimate o and § simulta-
neously. The statistical uncertainty is significant. Figure 3.14 shows the multivariate
PDF for the clay layer (thick layer). It is clear that ¢ and § can now be estimated with
a reasonable accuracy. The statistical uncertainty is less significant.

Ching et al. (2016a) proposed a Bayesian framework of characterizing the statis-
tical uncertainty for site-specific trend, COV, and SOF. The past experiences, such
as the ranges summarized in Tables 3.1, 3.2, 3.3, and 3.8, are used to construct
the prior probability density function (PDF) for COV and SOF, whereas a flat prior
PDF is taken for the trend. Then, the site investigation data is used to update this
multivariate PDF of trend, COV, and SOF. The resulting multivariate posterior PDF
combines the past experiences and site investigation data. The posterior PDF is not
of standard type, e.g., multivariate normal or lognormal, but its random samples
can be drawn using the Markov chain Monte Carlo (MCMC) method. Ching et al.
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(2016a) show that an equivalent multivariate normal PDF for trend, COV, and SOF
can be constructed using the MCMC samples. Based on a large number of simulated
examples, they further show that the 95% Bayesian confidence region (an ellipsoid)
of this equivalent posterior PDF contains the actual trend, COV, and SOF with a
chance that is close to 95%. This implies the equivalent posterior PDF is effective and



Uncertainty representation of geotechnical design parameters 77

consistent in characterizing the statistical uncertainty in trend, COV, and SOF. This
conclusion holds for both thin soil layers (data depth <20 x actual SOF) and thick
soil layers (data depth > 20 x actual SOF). For thin soil layers, the equivalent poste-
rior PDF has large uncertainty, and the confidence region is a large ellipsoid that is
constrained by past experiences, and by the aforementioned tradeoff manifold as well.
For thick soil layers, the equivalent posterior PDF has small uncertainty, and the con-
fidence region is a small ellipsoid that centers at the most probable value for the trend,
COV, and SOF.

Ching et al. (2016b) showed that the impact of the statistical uncertainty in the
trend, COV, and SOF is to bring in extra uncertainty into the problem, hence to increase
the failure probability estimate. For Load and Resistance Factor Design (LRFD), it
means a smaller resistance factor is required to cater for the uncertainty in the resistance
and the statistical uncertainty arising from estimation of the resistance from limited
tests. They also pointed out that the common practice that only considers the point
estimates for the trend, COV, and SOF is unconservative, in the sense that the failure
probability can be greatly underestimated. The statistical uncertainty for site-specific
natural variability deserves further research. Honjo and Setiawan (2007) and Ching
et al. (2016a) have made some progress on this important subject, but both studies
adopt various simplifications. Honjo and Setiawan (2007) prescribe COV and SOF
values and only focus on the statistical uncertainty in the site-specific trend. Ching
et al. (2016a) relax this simplification and can characterize the statistical uncertainty
in the site-specific trend, COV, and SOF simultaneously. But, they assume the trend
function has a fixed functional form, e.g., a linear function with unknown intercept
and gradient. In reality, the functional form for the trend function is also unknown.
Moreover, SOF may not even be a constant parameter, as discussed by Fenton (1999a).
The SOF characterized by a small scale test may not be applicable to a large scale
construction project. Finally, it is not clear how the statistical uncertainty in the site-
specific natural variability can be systematically incorporated in simplified RBD, say
by applying a reduction factor to the resistance factor in LRFD or to the quantile
in QVM.

3.9 BAYESIAN QUANTIFICATION OF SITE-SPECIFIC
NATURAL VARIABILITY

Although the natural variability, measurement errors, statistical uncertainty, and
transformation uncertainty are usually lumped together as total variability and used
subsequently in geotechnical reliability analyses and designs, it has been argued that
only the natural variability affects the observed performance of geotechnical structures
and should be differentiated from other knowledge uncertainties (e.g., measurement
errors, statistical uncertainty, and transformation uncertainty) and quantified directly
(Wang et al. 2016). Bayesian methods have been developed to directly quantify the
site-specific natural variability, with systematic consideration of other knowledge
uncertainties simultaneously (Wang and Cao 2013; Cao and Wang 2014a; Wang et al.
2015; Wang et al. 2016). The direct quantification of natural variability is formu-
lated as a Bayesian inverse analysis problem in which the site-specific observation
data is used as input to an inverse analysis model for inferring the natural variability
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of geo-material properties as the model output. The occurrence of natural variabil-
ity, measurement errors, statistical uncertainty, and transformation uncertainty during
site characterization and their propagation towards the total variability are explicitly
modelled in the Bayesian inverse analysis method.

The Bayesian inverse analysis method contains three important elements: likeli-
hood function, prior distribution, and how to solve the Bayesian equation for obtaining
and expressing the posterior information in a user-friendly way. Likelihood function
is the most critical one, and it should reflect, as much as possible, the physical insights
into how the site-specific data are generated and observed, as well as the existing
knowledge on how the observation data are expected to behave. For example, because
the undrained shear strength of soil increases as its vertical effective stress increases, it
is more effective to formulate the likelihood function based on the ratio of undrained
shear strength over vertical effective stress than the undrained shear strength itself (Cao
and Wang 2014a). In addition, complexity of the likelihood function shall be consistent
with the available site-specific observation data. For example, it is extremely difficult,
if not impossible, to quantify scale of fluctuation using just several discrete site-specific
observation data points (e.g., SPT N values). In this case, it is probably more appro-
priate to model the natural variability of soil or rock properties within a statistically
homogeneous layer as a random variable than a sophisticated random field. A sophis-
ticated model with insufficient input data does not necessarily provide better results
than a simple model with necessary and sound input data.

Although the exact equation of the likelihood function is problem-specific, a gen-
eral process has been developed that streamlines the formulation of likelihood functions
for various soil and rock properties when estimated using different field or laboratory
tests (Wang et al. 2016). The streamlined process has been applied to probabilistic
characterization of effective friction angle of sand using CPT data (Wang et al. 2010;
Cao and Wang 2013) or SPT data (Wang et al. 2015), undrained Young’s modulus
(Wang and Cao 2013) and undrained shear strength (Cao and Wang 2014a) of clay,
and uniaxial compressive strength of rock (Wang and Aladejare 2015), and probabilis-
tic identification of underground soil strata using CPT (e.g., Wang et al. 2013; Cao
and Wang 2013) or water content data (e.g., Wang et al. 2014).

In the Bayesian methods, prior distribution is used to quantitatively represent
the prior knowledge on the site before the project (e.g., existing data in literature,
engineering experience, and engineers’ expertise). Two different methods have been
developed to quantify the prior knowledge as prior distribution (Cao et al. 2016; Cao
2012). When there is no prevailing prior knowledge on the site, prior knowledge mainly
reflects the engineering common sense and judgment, which may be quantitatively
modelled by a non-informative uniform prior distribution. Only the upper and lower
bounds of the uniform distribution are needed to fully specify the prior distribution.
For example, the various soil and rock property statistics summarized in Sections 3.3
and 3.7 can be used to define the upper and lower bounds of the uniform distribution.
Indicative prior estimates of some soil or rock properties are presented in Section 3.07:
Soil Properties, JCSS Probabilistic Model Code (Joint Committee on Structural Safety
2006). As the prior knowledge improves and becomes more and more informative, a
subjective probability assessment framework (SPAF) may be used to assist practitioners
in quantifying their prior knowledge and engineering judgments as a proper prior
distribution (Cao et al. 2016).
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After the likelihood function is formulated and the prior distribution is deter-
mined, the site-specific observation data are integrated with the likelihood function
and prior distribution through the Bayes’ theorem to provide the posterior or updated
information. When there are only sparse and limited site-specific observation data,
MCMCS based Bayesian equivalent sample method may be used to numerically depict
the updated natural variability through equivalent samples (Wang and Cao 2013). The
Bayesian equivalent sample method combines the information from limited site-specific
data with engineering experience and judgement (i.e., prior knowledge) through the
Bayes’ theorem and transforms the combined information into a large number of
numerical samples by MCMCS. It effectively tackles the difficulty in estimating rea-
sonable statistics of soil and rock properties from limited site-specific observation data
in engineering practice. When there are extensive site-specific observation data (e.g.,
CPT data), Laplace asymptotic approximation based Bayesian system identification
and model class selection methods may be used to estimate statistics of soil and rock
properties and their scale of fluctuation (Cao and Wang 2013; Wang et al. 2013; Wang
et al. 2014).

One limitation of the Bayesian methods is its mathematical and computational
complexity, which may create difficulty for practitioners. To remove this mathemat-
ical hurdle, the Bayesian equivalent sample method algorithm has been implemented
in a commonly available spreadsheet platform, Microsoft Excel, using its built-in
programming language, Visual Basic for Applications (VBA). The program is com-
piled as an Excel VBA add-in, called Bayesian Equivalent Sample Toolkit (BEST),
for distribution and installation. The BEST add-in can be downloaded freely from
https://sites.google.com/site/yuwangcityu/best/1. The users of BEST only need to pro-
vide the site-specific observation data (e.g., several SPT N data points) and prior
distribution (e.g., from the soil and rock properties statistics summarized in Sections
3.3 and 3.7). Then, the BEST will generate a large number of Bayesian equivalent
samples for quantifying the site-specific natural variability of soil or rock properties.

As an illustration, the BEST is used to quantify the natural variability of undrained
Young’s modulus, E,, using SPT N data obtained from the clay site of the United
States National Geotechnical Experimentation Sites (NGES) at Texas A&M University
(Briaud 2000). Five site-specific SPT N values are obtained within top stiff clay layer of
the clay site and it is illustrated in Figure 3.15(a). Figure 3.15(b) shows the results of 42
pressuremeter tests carried out in the top clay layer at different depths (Briaud 2000)
which is used for comparison purpose only. Typical ranges of undrained Young’s mod-
ulus reported in the literature (e.g., Kulhawy and Mayne 1990; Phoon and Kulhawy
1999a, 1999b) are used to define the uniformly distributed prior distribution for E,.
For example, the mean of E, is specified as uniformly distributed between 5.0 MPa
and 15.0 MPa, and the standard deviation of E, is modelled as uniformly distributed
between 0.5 MPa and 13.5 MPa.

Using the 5 SPT N values and prior distribution defined above, the BEST add-in is
used to generate 30000 Bayesian equivalent samples of E,,. Table 3.16 shows the statis-
tics of the E,, samples obtained from BEST and its comparison with those measured by
the pressuremeter tests. The BEST results are consistent with those from pressuremeter
tests. In addition, Figure 3.16 displays the cumulative distribution functions, CDFs, of
E, estimated from the cumulative frequency diagrams of the BEST equivalent samples
and the 42 pressuremeter test results which are represented by a solid line with triangle
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Figure 3.15 Standard penetration test (SPT) N values and undrained Young’s modulus measured by
pressuremeter tests, E, at the clay site of the NGES at Texas A&M University (after Briaud,
2000).

markers and open squares respectively. The open squares in Figure 3.16 plot close to
the solid line, indicating that the CDF of the E, obtained from BEST compares favor-
ably with that obtained from the 42 pressuremeter tests. The BEST add-in provides
reasonable statistics for quantifying the site-specific natural variability of E,.

3.10 SELECTION OF SITE-SPECIFIC TRANSFORMATION MODEL

Section 3.5 has highlighted the “site-specific” nature of transformation models as well
as a wide variety and large number of models available. There are even many different
transformation models relating the same measured and design parameters. This situ-
ation naturally leads to a question of how to select the “site-specific” transformation
model that is most appropriate for a given project site in practice, particularly when
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Table 3.16 Summary of the site-specific statistics of undrained Young’s modulus.

Difference between

Pressuremeter BEST and
Statistics BEST Tests Pressuremeter Tests
Mean (MPa) 11.46 13.50 2.04
Standard deviation (MPa) 6.00 7.50 1.50
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Figure 3.16 Site-specific cumulative distribution function of undrained Young’s modulus E,.

only a limited number of data on the measured parameter is obtained from a spe-
cific project and no direct measurement on the design parameter is available. This
is frequently the situation that practitioners are dealing with in practice when using
transformation models to estimate design parameters. Bayesian model comparison
(Cao and Wang 2014a) and Bayesian model selection (Wang and Aladejare 2015)
have been developed to assist engineers in selecting the most appropriate transforma-
tion models with data on the measured parameters obtained from a specific site only
(i.e., no data on design parameters). The most appropriate model is the model with the
highest occurrence probability for the given set of observation data on the measured
parameters.

For example, Wang and Aladejare (2015) used 19 data points of point load
index of granite from the Malanjkhand Copper project in India and selected the most



82 Reliability of Geotechnical Structures in ISO2394

appropriate site-specific transformation model among 4 commonly used regressions
that relate the point load index to the uniaxial compressive strength, UCS, of rock. No
UCS data are needed in the selection of site-specific regression model. This situation
is particularly beneficial for engineering practice, because when the use or selection
of regression model is needed in engineering practice, the UCS data are generally not
available. The selected site-specific regression model can be further used with prior
knowledge and site-specific measurement data (i.e., 19 point load index data points)
for quantification of the site-specific natural variability in UCS using the Bayesian
methods described in Section 3.9.

In the case where site-specific correlation data are not available, one can consider
implementing generic transformation model constructed based on global correlation
data. Ching and Phoon (2012) constructed such a generic transformation for the trans-
formation between CPTU parameters and the undrained shear strength (s,). However,
one should be alerted that such generic transformation models usually have larger
transformation uncertainties.

3.1 CONCLUSIONS AND FUTURE WORK

The most important element is the characterization of geotechnical variability. After
all, site investigation and the interpretation of site data are necessary aspects of sound
geotechnical practice. Any design methodology, be it RBD or otherwise, should place
site investigation as the cornerstone of the methodology. It is not possible to emu-
late every aspect of site variability at present. The challenge lies in characterizing a
full three-dimensional non-stationary vector field from borehole and/or field test data
measured at only limited spatial locations. Notwithstanding this challenge, statistics
that are founded on actual soil databases and evaluated in alignment with geotechnical
engineering practice are useful. It is important to show how geotechnical RBD is related
to soil data collected as part of a routine site investigation. It is also important to con-
vince an engineer that there is value to evaluate geotechnical variability explicitly and
this additional effort complements and simplifies the task of interpreting a single value
(or a “cautious estimate” in Eurocode 7 parlance) from a bewildering mass of data.
This chapter discusses the uncertainties associated with the most basic soil/rock
property evaluation task, which is to estimate a design parameter from a field test.
The uncertainty in the estimate (say indicated by the coefficient of variation) must be
a function of the natural variability of the site, measurement error associated with
the field test, and transformation uncertainty about the regression line that relates
the field data to the design parameter. Useful statistical tables and guidelines derived
from a comprehensive survey of soil and rock databases are presented. In particular,
it has been highlighted that the prevalent structural LRFD practice of assigning a
single value to a resistance factor does not meet the needs of geotechnical engineering
practice. Table 3.7 (or Figure D-3, 1SO2394:2015) is a sensible step to close this gap
and it can be expanded eventually to allow the quality of information emerging from
diverse practices covering site investigation (Section D.3,1502394:2015), performance
prediction method (Section D.4, 1SO02394:2015), small-scale model test, centrifuge
test, prototype test, quality control, and monitoring to be considered in a systematic
way. The 2014 CHBDC (CAN/CSA-S6-14:2014) has recommended resistance factors
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that vary with the degree of “understanding”. The degree of understanding covers
the quality of site information and the quality of performance prediction. Guidelines
comparable to Table 3.7 should be developed for rock properties.

It is possible to update the statistics for natural variability and transformation
uncertainty in the presence of site-specific data using Bayesian methods. However, sta-
tistical uncertainties associated with inference from spatially correlated data should be
handled carefully. It is also possible to update the uncertainty of a soil/rock parameter
when it is correlated to data from more than one test type. It is common to con-
duct multiple tests (both laboratory and field tests) in a site investigation and hence,
geotechnical data are typically available in a multivariate form. This aspect is discussed
in Chapter 4.

Another distinctive feature of geotechnical data is that they vary spatially both in
the vertical and horizontal direction. There are several practical observations associ-
ated with spatial variability. First, the spatial average along a failure surface is more
relevant for a limit state, rather than the property value at a general point in the soil
mass. This is obvious. Second, for limit states with failure surfaces constrained along
a fixed path (e.g., side resistance is mobilized along the shaft), the COV of the spatial
average is related to the COV of the property at a point and a variance reduction func-
tion (Vanmarcke 2010). This COV reduction effect increases with decreasing scale of
fluctuation. Hence, the assumption of independent soil parameters will produce an
excessive reduction of the point COV for the spatial average. The assumption of fully
correlated soil parameters will not result in COV reduction for the spatial average,
which is overly conservative. Third, Vanmarcke’s classical variance reduction function
does not apply to unconstrained failure surfaces that are coupled to spatial variability
(e.g., slope failure surfaces). The location and shape of such a surface are different for
different random realizations. In contrast, the surface where side resistance is mobi-
lized is always constrained along the shaft regardless of the spatial variation of the soil
property. The COV of the spatial average along such “unconstrained” failure surfaces
is more complicated. A full solution for this more general class of failure surfaces is not
available at present, although some progress has been made (Ching and Phoon 2013;
Ching et al. 2014b; Hu and Ching 2015; Ching et al. 2016c¢). The presence of “uncon-
strained” failure surfaces also complicates the effort to convert the property field of a
spatially variable medium into a homogeneous spatial average over a prescribed influ-
ence region, say a region below a footing equal to its width or some multiple of its
width (Ching et al. 2016d). There is a practical motivation to perform this conver-
sion, because it is obviously easier to carry out reliability-based design using a random
variable (spatial average) than a random field. Fourth, there is limited work on non-
stationary random fields, particularly in the form of one soil layer embedded in another
or inclusion of pockets of different soil type within a more uniform soil mass (Li et al.
2016). Finally, it is significantly more difficult to characterize correlated data statisti-
cally than independent data (Phoon et al. 2003, Ching et al. 2016a). This aspect is of
obvious practical significance and more research should be invested in this direction.
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Chapter 4

Statistical characterization of
multivariate geotechnical data

Jianye Ching, Dian-Qing Li, and Kok-Kwang Phoon

ABSTRACT

Section D.2 in ISO2394 Annex D focuses on the evaluation of the coefficient of varia-
tion (COV) for a single design soil parameter. This was the main focus for Chapter 3.
However, it is more common to conduct a variety of laboratory and field tests, some of
them in close proximity, in a site investigation. Data derived from two adjacent bore-
holes/soundings at comparable depths typically are correlated. Section D.3 in ISO2394
Annex D describes the advantage of adopting a multivariate distribution to capture
these correlations in a systematic way. This is the main focus of the current chap-
ter. The practical significance of doing this is that the COV of one soil parameter
(or a group of parameters) is reduced when information on a second parameter (or
a group of parameters) is made available. The reduction of the COV in the presence
of multiple soil tests can translate directly to design savings through RBD. This direct
link between the quality/quantity of site investigation and design savings cannot be
addressed systematically in our traditional factor of safety approach.

This chapter presents several multivariate geotechnical databases available in the
literature and the multivariate normal distributions constructed using these databases.
Useful multivariate transformation equations will be deduced from the multivariate
normal distributions. These equations not only can predict the mean value of the design
soil parameter but also can predict its COV. The COV will be further reduced in the
presence of multiple soil tests. As a supplement to the multivariate normal distribu-
tion, a copula-based approach for modelling the multivariate distribution of multiple
soil parameters will be also introduced in this chapter. With the copula theory, it is
possible to go beyond the multivariate normal distribution framework, e.g., a copula
based on the multivariate t distribution can be constructed. A more robust method of
estimating the correlation coefficients in the multivariate normal distribution will also
be proposed.

4.1 INTRODUCTION

The emphasis in 1S02394 Annex D is to identify and characterize critical elements
of the geotechnical reliability-based design (RBD) process that are distinctive from
the general principles presented in the main standard. One of the critical elements
is to introduce an explicit linkage between site investigation and geotechnical RBD.
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Site investigation is an activity unique to geotechnical engineering practice and it is
mandated in many building regulations around the world. In a site investigation
program, both laboratory and field tests are commonly conducted. A geotechnical
design parameter is typically correlated with more than one laboratory and/or field
test indices. Chapter 3 focused on quantifying the uncertainties in design soil param-
eters based on univariate information from a laboratory or in-situ test. Nonetheless,
multivariate information is usually available in a typical site investigation. For instance,
when undisturbed samples are extracted for oedometer and triaxial tests, standard pen-
etration test (SPT) and/or piezocone test (CPTU) may be conducted in close proximity.
Moreover, data sources such as the unit weight, plastic limit (PL), liquid limit (LL),
and liquidity index (LI) are commonly determined from relatively simple laboratory
tests on disturbed samples. A number of these data sources could be simultaneously
correlated to the design soil parameters, e.g., the undrained shear strength (s,). It is
prudent to incorporate all data sources to reduce the uncertainties in the design soil
parameters. By doing so, the site investigation effort can be linked to geotechnical
RBD design outcomes. This linkage is demonstrated in Ching et al. (2014a). There are
two key components in this linkage: (a) a simplified RBD method that is sufficiently
responsive to a wide range of geotechnical information and (b) a framework that is
able to update the mean and COV of the design soil parameters based on multivariate
geotechnical data. Component (a) is the subject of Chapter 6. The current chapter will
address component (b).

The main framework proposed in this chapter is a multivariate probability model
to couple all available sources of information together in a consistent way. The con-
structed multivariate probability model can be used as a prior distribution to derive
the multivariate distribution of design parameters based on limited but site-specific
field data. Note that the entire multivariate distribution of multiple design parameters
is derived, not marginal distributions or simply means and coefficients of variation
presented in Chapter 3. Multiple design parameters can be updated from multiple
field measurements, which is more useful than updating one design parameter using
one field measurement based on current practice (for example, updating the undrained
shear strength using the cone tip resistance).

The challenge for constructing the multivariate probability model is that genuine
multivariate data are rarely collected in a site investigation program, because it is not
cost effective to conduct multiple tests in close proximity. There is an obvious tradeoff
between conducting different tests in different locations and conducting different tests
in the same location. The former strategy collects more information on the natural vari-
ability of the site. The latter strategy collects information on the correlations between
all tests. It is not possible to correlate two measurements spaced more than one scale
of fluctuation apart vertically and horizontally, because of natural variability. In prac-
tice, it is common to adopt an intermediate strategy involving collecting multiple sets
of bivariate data in different locations, say take piezocone (CPTU) soundings next to
one borehole and conduct vane shear tests (VSTs) next to a second borehole. We do
not take CPTU soundings, conduct VSTs, and collect undisturbed samples for triaxial
tests in three separate locations. It is not possible to produce a site-specific correlation
between say the undrained shear strength from a laboratory test and the CPTU data
in this case. We also do not collect CPTU, VST, and undrained shear strength data at a
single location, because soil data from a single location are unlikely to be sufficiently
representative of the natural variability over the entire site.
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Table 4.1 Soil databases and multivariate probability models.

Range of properties

Database/ Parameters # data # sites/
model Reference of interest points  studies OCR Pl St
CLAY/5/  Ching and LI, sy, s, 0;, o, 345 37 sites |14 Sensitive to
345 Phoon (2012a) quick clays
CLAY/6/  Ching et al. su/0}, OCR, (q; — 0,)/ 535 40 sites 1-6 Lowto Insensitive
535 (2014b) o, (qe—u)/o, very high to quick
(u2—uo)/a, By plasticity clays
CLAY/7/  Ching and sy under 7 6310 164 I-10 Lowto Insensitive
6310 Phoon (2013)  different studies very high to quick
test modes plasticity clays
CLAY/10/ Ching and LL,PL, LI, 0}/ 7490 251 I-10 Lowto Insensitive
7490 Phoon (2014a) P,,0,/P,, s,/ studies very high to quick
o, Se, (qc — oy)/ plasticity clays
o}, (qc—u2)/o) Bq
CLAY/ Ching et al. OCR, s, Ngo, - - 1-50 - -
4/BN (2010) (qc — ov)la,,
F-CLAY/ D’lgnazio etal. s, 0;, o,,LL, 216 24 sites |1-8 Low to Insensitive
7216 (2016) PL, wy, S very high to quick
plasticity clays
SAND/  Ching etal. Dy, ¢', (N1)eo, - - - - -
4/BN (2012) qul

LL: liquid limit; PL: plastic limit; Pl: plasticity index; LI: liquidity index; wp: natural water content; s,: undrained shear
strength; s{°: remolded s,; 0;,: preconsolidation stress; o/,: vertical effective stress; o,: vertical total stress; OCR:
overconsolidation ratio; q.: corrected cone tip resistance; u,: pore pressure behind the cone; ug: static pore pressure;
Bq: CPTU pore pressure parameter; P,: one atmosphere pressure; S;: sensitivity; Ngo: SPT N (corrected for energy
ratio); D,: relative density; ¢': effective friction angle; (N|)go: SPT N (corrected for energy ratio & normalized by
overburden stress); q¢|: normalized q; (normalized by overburden stress).

This chapter will review some multivariate soil databases and the resulting mul-
tivariate probability models recently constructed in the literature. Table 4.1 shows
these soil databases, labelled as (soil type)/(number of parameters of interest)/(number
of data points). Comparable databases have been assembled in the literature recently
(Miiller et al. 2014; Liu et al. 2016). Although multivariate probability models are
available in the literature, it remains an outstanding challenge to fit one with available
data. The review will start from two genuine multivariate databases, CLAY/5/345
(Ching and Phoon 2012a) and CLAY/6/535 (Ching et al. 2014b), and the result-
ing multivariate probability models will be presented. Then, two bivariate databases
CLAY/7/6310 (Ching and Phoon 2013) and CLAY/10/7490 (Ching and Phoon 2014a,
2014b) are reviewed, and the resulting multivariate probability models are presented.
These four multivariate models are based on the multivariate normal distribution, so
this special model together with the concept of correlation will be first reviewed. Then,
two probability models based on the Bayesian network (Jensen 1996) will be reviewed
(CLAY/4/BN and SAND/4/BN in Table 4.1). The Bayes-net model can handle situa-
tions where bivariate data points are available only for some parameter pairs but not
for all pairs. For instance, OCR-s, and s,-CPTU data points are available, but OCR-
CPTU data points are not. Under suitable conditional independence assumptions, the
multivariate probability model can still be constructed. Finally, alternate multivariate
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probability models based on the copula theory will be demonstrated. With the copula
theory, it is possible to go beyond the aforementioned multivariate normal distribution
framework, e.g., a copula based on the multivariate t distribution can be constructed.

It is important to emphasize that the multivariate distributions constructed from
soil databases in Table 4.1 are generic in nature, because data are drawn from many
sites rather than one single site. Nonetheless, the author submits that it is reasonable
to adopt these multivariate distributions as prior information for a specific site. The
posterior probability distribution of a site-specific design property can be obtained
from this prior information when it is updated by site-specific field data. There are
occasional concerns expressed that only site-specific prior information is meaningful in
this updating exercise. In other words, data gathered from the literature pertaining to
comparable soils and/or sites cannot be used or more specifically, a generic multivariate
distribution is not useful as prior information. This concern is understandable, but it
is at odds with existing practice. The tradition of geotechnical engineering is steeped
in empiricism and one notable aspect is arguably the widespread application of non-
site specific generic transformation models to estimate site-specific design properties.
Whether one derives a single cautious estimate or a probability distribution from a
transformation model, the role of engineering judgment in selecting the appropriate
transformation model and weeding out unreasonable estimates is obviously integral
to this practice and needs no further emphasis.

4.2 CORRELATION

Correlation is a concept that is closely related to the transformation model discussed
in Section 3.5. Transformation models are widely adopted in geotechnical engineer-
ing practice as a matter of practical expediency. Useful compilations of these models
(mostly pairwise correlations) are available in the literature (e.g., Kulhawy and Mayne
1990; Mayne et al. 2001). Tables 4.2 and 4.3 list some examples. Clay and sand
databases are compiled to evaluate the bias and coefficient of variation (COV) of
the transformation models in the tables. The bias for a transformation model is esti-
mated as the sample mean of the ratio (actual target value)/(predicted value), and the
COV of a transformation model is estimated as the sample COV of this ratio [refer
to Egs. (3.1) and (3.2)]. For instance, for the LI-(st*/P,) model proposed by Locat and
Demers (1988) (the second model in Table 4.2), we have s*/P, ~ 0.0144 x LI=24*: the
target value is s'/P,, and the predicted value is 0.0144 x LI=2**, For each data point
with simultaneous knowledge of (LI, sff), the ratio (actual target value)/(predicted
value) = (s7/P,)/(0.0144 x LI">*%) can be computed. There are n=899 such data
points, hence 899 such ratios are available. The sample mean of these ratios is equal
to 1.92 (bias), whereas the sample COV of these ratios is 1.25 (COV). Tables 4.2 and
4.3 list the bias and COV for each transformation model. If the bias is close to 1, the
transformation model is unbiased on the average. If the COV is small, the transforma-
tion uncertainty is small. However, Tables 4.2 and 4.3 say nothing about multivariate
distributions. In particular, many transformation models in these tables only allow a
single input.

To illustrate the concept of correlation, let us consider Figure 3.2. As shown
in Figure 3.2, the data points (dots in the figure) inevitably scatter around the



Table 4.2 Transformation models in the literature for some clay properties (Source:Table 5, Ching and Phoon 2014a and results from D’Ignazio et al. (2016)).

Bias and COV

Relationship Literature Transformation model n Bias COV  Remarks
LI-(s/P,) Wroth and Wood (1978) si/Pa~ 1.7 x exp(—4.6 x LI) 899 NF NF  Based on modified Cam Clay model
Locat and Demers (1988)  sr¢/P, ~0.0144 x LI-2* 899 192 1.25
LI-S, Bjerrum (1954) S, A 108U 1279 206 1.09 Norwegian marine clays
Ching and Phoon (2012a,b) S, ~20.726 x LI'?1° 1279 0.88 1.28 Structured clays with S; =2-1000 & OCR = |14
LI-o,/P,-S, Mitchell (1993) Graphical curves in page 229 - - -
Ll-0,/P:-S, NAVFAC (1982) Graphical curves in page 7.1-142 - - -
Stas and Kulhawy (1984) o, /Pa~ |Qh1-t62xu 249 294 190 ClayswithS. <10
Ching and Phoon (2012a,b) o], /P, 220.235 x LI~"3!% x §23%¢ 489 132 0.78 Structured clays with S, = 2—-1000 & OCR = |4
Ll-s /o, Bjerrum and Simons (1960)  Graphical curves - - - Norwegian NC clays
Pl-s./a,, Mesri (1975, 1989) su/0,~0.22 155 1.04 055
OCR-s, /o), Jamiolkowski et al. (1985)  s,/0/, ~0.23 x OCR%® 1402 1.1l 0.53
D’lgnazio et al. (2016) s./0’y ~0.244 x OCR®7%? 173 093 0.27 Finnish soft clays; s, = corrected field vane value
OCR-s,/0/-S,  Ching and Phoon (2012a,b) s,/0] ~0.229 x OCR%#3 x 012! 395 0.84 0.34 Structured clays with
S:=2-1000 & OCR = |4
OCR-s,/o,-PI  D’lgnazio et al. (2016) sy/0’, ~0.328 x OCR®7%6 x p[o-16 173 0.95 0.29 Finnish soft clays; s, = uncorrected field vane value
OCR-s,/0/-LL  D’Ignazio et al. (2016) $u/0’y ~0.319 x OCR”* x L9333 73 094 0.6 Finnish soft clays; s, = uncorrected field vane value
OCR-s,/o,-w, D’lgnazio et al. (2016) su/0’, ~20.296 x OCR®788 5 w03%7 173 0.97 0.27 Finnish soft clays; s, = uncorrected field vane value
OCR-s,/o,-LI  D’lgnazio et al. (2016) sy/0’, ~0.281 x OCR%77 x L|~0088 173 0.95 0.33 Finnish soft clays; s, = uncorrected field vane value
OCR-s,/0/-S,  D’lgnazio et al. (2016) s./0’y 22 0.280 x OCRO78¢ x 50013 173 091 0.44 Finnish soft clays; s, = uncorrected field vane value
Ll-o7-s, Ng et al. (2015) su(kN/m?) ~0.2335 x o/ (kN/m?) 296 1.03 041 NC clays;s, =field
—2.6915 x w, x LI + 8.9657 vane value
CPTU-s,/c,, Ching and Phoon (2012c) (9 —0v)/su~29.1 x exp(—0.513B;) 423 095 049
(g — 0v)/sy = 34.6 x exp(—2.049B,) 428 1.1 057
(9qc — ov)/su = 21.5 x By 423 094 049
CPTU-OCR  Chen and Mayne (1996) OCR~0.259 x [(q; — 0y)/a,]"'” 690 1.0l 042
OCR~0.545 x [(q; — up)/a]>%*’ 542 1.06 057
Kulhawy and Mayne (1990) OCR= 1.026 x B;"°77 779 128 0.86
OCR~0.32 x (q; — 0y)/0, 690 1.00 0.39
CPTU-0,/P,  Chen and Mayne (1996) 0}/Pa0.227 X [(q. — 0y)/Pa] *® 690 099 042
0}, /P22 0.490 x [(qc — up)/Pa]" % 542  1.08 0.6l
0,/Pa~1.27440.761 x (U —uo)/P. 690 NF NF
Kulhawy and Mayne (1990) o, ~0.33 x (q. — oy) 690 097 0.39
0, ~0.54 x (uz — uo) 690 1.18 0.75

Wn: natural water content (in decimal value; e.g., if water content is 50%, w, = 0.5); PI: plasticity index (in decimal value; e.g., if plasticity index is 50%, Pl = 0.5); LL: liquid limit (in decimal
value; e.g,, if liquid limit is 50%, LL = 0.5); NF: validation data do not fit to the trend of the transformation model.



Table 4.3 Transformation models in the literature for some sand/gravel properties.

Bias and COV

Relationship Literature Transformation model n  Bias COV Remark

SPT — D, Marcuson and

Bieganousky(1977) 131 1.00 0.22 Sands with Ngo < 100

D, (%) ~ 100 x {|2.2+0.75\/222XN60+23|| —711 xOCR}

—779(c),/P,) — 50 x C2

Kulhawy and N ~ (N1
Mayne(1990) D, (%)~ 100 x \/[60 T 25 og)0(Dso)] X OCROE 195 1.01 021
CPT-D, Jamiolkowski D, (%) ~ 68 x [log(qc) — 1] 595 0.84 0.33 NC sands with qy <300
et al. (1985)
Kulhawy and N\ el
Mayne(1990) D, (%) ~ 100 x 305 x Oc x OCRO T3 823 0.97 0.34
D.-¢' Bolton (1986) ¢'~ dey + 3 x (D [10 = In(pp)] — 1) 431 1.02 0.047
Salgado et al. (2000) ¢'~ ¢, + 3 x (D,[8.3 — In(p;)] — 0.69) 27 1.08 0.054 Sands with 10% fines
SPT-¢’ Hatanaka and o'~ /154 (N)), + 20 28 1.05 0.091 Sands with (N;)s <40
Uchida (1996)
Chen (2004) '~27.5+ 9.2 x logio[(N1)e] 59 1.00 0.093
CPT-¢’ Robertson and '~ tan~'[0.] + 0.38 x logjo(q:/0")] 93 0.93 0.054
Campanella (1983)
Kulhawy and '~ 17.6+ 11 x logio(qu) 370 0.98 0.080

Mayne (1990)

*qu = (qt/Pa)/(c’v/Pa)o's; oy critical-state friction angle (in degrees); p; is the mean effective stress at failure = (o}; + o5 + 0%)/3; Qc = 1.09, 1.0,0.91 for low, medium,
high compressibility soils, respectively.
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transformation model (solid line in the figure). Consider the following simple
transformation between two soil parameters (Y1, Y2):

Yi=a+bYr+e (4.1)

The transformation model is the functional relation Y; =a + bY,, while ¢ is the zero-
mean transformation uncertainty with standard deviation s,. The product-moment
(Pearson) correlation between Y; and Y, is defined as:

_ Cov(Y1,Y>3) _ b x +/Var(Y,)
~ VVar(Y)Var(Ya)  /b% x Var(Y,) + 52

P12 (4.2)

where Var(Y) denotes the variance of Y, and Cov(Yy, Y») denotes the covariance
between Y; and Y. It is clear that if s, =0 (zero scattering about the transformation
model), p1; =+1 and perfect correlation exists between Y; and Y5. In this case, given
the information of Y, =y, Y1 =a + b x y; is deterministic, and COV =0 for Y; (i.e.,
Y1 is no longer uncertain when Y is known). In contrast, if s, is large (large scattering
about the transformation model), p1> is close to zero, and weak correlation exists
between Y; and Y. In this case, given the information of Y, =y, Y1 =a+b xy, +¢
is almost the same as ¢ and COV is relatively larger for Y (i.e., no point measuring
Y, if the purpose is to estimate Y1). The above simple example shows that correlation
pij between (Y, Y;j) quantifies how effective one piece of information (Y;) can be used
to update a second piece of information (Yj), and such effectiveness can be quantified
by the updated COV of Y; — the updated COV is small if pj; is close to 1 and is
relatively larger if pj; is close to zero. Evans (1996) labelled |p;l > 0.8 as “very strong”,
0.6 <lpijl <0.8 as “strong”, 0.4 <lp;jl < 0.6 as “moderate”, 0.2 < lp;jl < 0.4 as “weak”,
and lpjjl <0.2 as “very weak”.

Consider another example with three soil parameters: Y; =In(s, /o), Y2 =LI,
Y3 =In(OCR) (o), is the vertical effective stress; LI is the liquidity index; OCR is the
overconsolidation ratio), and consider the following two transformation models:

In(s,/0,) =—0.87 + 0.24 x LI+ ¢ In(s,/0))=—1.47 + 0.8 x In(OCR) +¢  (4.3)

Note that the second equation is related to the SHANSEP concept (Ladd and Foott
1974). The question now is how to update Y1 =In(s,/0}) given the bivariate informa-
tion of [LL, In(OCR)]? The key observation here is that the knowledge of p1, and py3 is
not sufficient for the updating — we also need to know p,3. If p3 =1 (this can happen
if e=¢), one piece of the information in (LI, OCR) is redundant, and we only need
the information LI (or OCR) to update In(s,/o},). In contrast, if py3 is relatively small
(this may happen if € and e are statistically independent), both pieces of information
(LI, OCR) should be used to update In(s,/o}). That is to say, updating Y; based on
multivariate information (Y, =y2,Y3=vy3,..., Y, =yy) requires pairwise (or bivari-
ate) correlations (pj: i=1,...,n—1,j=i+1,...,n). Note that only n x (n—1)/2
correlations are needed, because pj; = pji by definition.

Generally speaking, for updating purposes, a multivariate probability distribu-
tion function should be estimated from multivariate information, e.g., (s,, OCR, N)
simultaneously measured at approximately the same spatial point in the soil mass.
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The collection of bivariate correlations (pj: i=1,...,n—1,j=i+1,...,n) is not
sufficient. However, complete multivariate information is rarely available. Among
multivariate probability distributions, the multivariate normal distribution is avail-
able analytically and can be easily constructed based on the collection of bivariate
correlations alone. Because bivariate correlations between soil parameters are more
commonly available, for example s,-N, s,-OCR, and N-OCR (Tables 4.2 and 4.3
show some examples), the multivariate normal distribution is a sensible and practical
choice to capture the multivariate dependency among soil parameters in the presence
of transformation uncertainties (Phoon et al. 2012). Section 4.3 presents the general
framework for the multivariate normal probability distribution and how it can be
exploited for Bayesian analysis.

4.3 MULTIVARIATE NORMAL PROBABILITY
DISTRIBUTION FUNCTION

Many soil parameters are not normally distributed. Let Y denote a non-normally
distributed soil parameter. One well known cumulative distribution function (CDF)
transform approach can be applied to convert Y into a standard normal variable X:
X = ® [F(Y)], where ®(-) is the CDF of the standard normal random variable, F(-)
is the CDF of Y, and ®'(-) is the inverse function of ®(-). A set of multivariate
soil parameters Y =(Yq, Y2, ..., Y,) can be transformed into X = (Xy, X3, ..., X;)
by mapping Y; to Xy, Y to X5, and so forth. By construction, Xq, X5, ..., X,
are individually standard normal random variables. It is crucial to note here that
collectively (X1, X3, ..., X,) does not necessarily follow a multivariate normal
distribution even if each component is normally distributed. Even so, recent stud-
ies by Ching et al. (2010), Ching and Phoon (2012a), Ching and Phoon (2013),
Ching and Phoon (2014b), and Ching et al. (2014b) showed that the multivariate
normal distribution is an acceptable approximation for selected parameters of clays,
and Ching et al. (2012) arrived at the same observation for selected parameters of
sands.

The multivariate (standard) normal probability density function for X=(Xj,
X5,...,X,) can be defined uniquely by a correlation matrix:

£(X) = |C|—%<2n>—3exp(—§x .c! 'X) (4.4)

where C is the correlation matrix. For n =3, the correlation matrix is given by:

1 312 313
C=|3d2 1 3§53 (4.5)
313 %3 1

where 8;; = product-moment (Pearson) correlation between X; and Xj (not equal to the
correlation pj between the original physical variable Y; and Yj). It is clear that the
full multivariate dependency structure of a normal random vector only depends on a
correlation matrix (C) containing bivariate correlations between all possible pairs of
components, namely X; and X,, X; and X3, and X, and Xj3. One may be tempted
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to say that it is not necessary to measure Xy, X5, and X3 simultaneously. In other
words, information on X; and X;, X; and X3, and X, and X3 can be collected at
three separate borehole locations, rather than one single borehole location (which is
a more restrictive condition). However, although the former collection strategy can
produce three correlation coefficients to populate C fully, it does not guarantee that C
is a positive definite matrix. We discuss this abstract but important matrix property in
Section 4.5.1.

The correlation coefficients 8;; in the matrix C can be estimated using at least two

methods (Section 4.7.4 will introduce a more robust method based on the Kendall
correlations among Y data):

(a)

Full multivariate manner based on a genuine multivariate dataset (X1, X», ...,
Xn):

-1 k k T -1
sy N X<1)—m1 X(l)—ml Sy

s ! k=1 \ [ X — m, XK —m, sy !

(4.6)

where (X(lk), X(Zk), ..., X)) is the k-th data point (X1, Xa,...,X,); N is the total
number of data points; m; and s; are the sample mean and sample standard
deviation for X;. Note that the genuine multivariate dataset (X1, X3,...,X,) is
required for this method.

Entry-by-entry bivariate manner based on a bivariate dataset (Xj, Xj):

nj

2 (X —my) - (X —my)
k=1 (4.7)

njj jj

n1]—1 Z ¥ —m,)? n]—l Z _ml )

=
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where njj is the number of the bivariate (Xj, Xj) data points. The benefit of this
method is that the genuine multivariate dataset (X1, X>, ..., X,) is not required.
Only all possible bivariate datasets (Xj, X;) are needed. We have pointed out that
this method does not guarantee C to be positive definite, but it is more applicable
to geotechnical data in the literature.

The framework of the multivariate normal distribution brings another technical

benefit — analytical solutions for Bayesian analysis can be derived. For instance, given
the information of X, =x;, the updated mean and standard deviation of X; can be
derived analytically:

E[X;]X; =x] =E(Xj) + Cov(Xy, Xz)Var(Xs) " 'xo =812%)
Var[X;|X; =x3] = Var(X;) — Cov(Xy, X;3)Var(X;) " 'Cov(X,, X1) =1 — 6%2
(4.8)
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It is clear that if 815 =0, no correlation between X; and X, the updated mean and
standard deviation of X; are the same as the original values of 0 and 1, respectively.
In contrast, if 81, =1, perfect correlation between X; and X;, the updated mean of
X, becomes x; and the updated standard deviation is 0, i.e. zero uncertainty. Based
on Evans (1996) classification scheme, a “very weak” correlation produces less than
5% reduction in the variance. A “weak”, “moderate”, or “strong” correlation pro-
duces 10%, 25%, or 50% reduction, respectively. Finally, a “very strong” correlation
produces more than 2/3 reduction in the variance. The above analytical Bayesian equa-
tions can be generalized to multivariate cases: update the uncertainty in aX; + X + vy
by multivariate data sources (aXy, + bX, +¢,dX, +eXq +f,...), wherea, b, ..., 8,y
are arbitrary prescribed constants. The updated COV from multivariate information
is always less than the updated COV from univariate information. This further reduc-
tion of uncertainties by multivariate information is crucial. One recurring criticism of
geotechnical RBD is that there is no particular motivation to use it because it seems
to produce designs comparable to existing practice. The further reduction of uncer-
tainties by multivariate information shows that site investigation is not a cost item
but an investment item, because reduction of uncertainties using multivariate tests can
translate directly to design savings through RBD. There is no explicit link between
how much information is collected from a site and our existing factor of safety. Hence,
it is not surprising that a minimum number of boreholes is mandated in many build-
ing regulations, because it is difficult to justify site investigation costs, particularly to
people outside the geotechnical profession. Simplified RBD involving partial/resistance
factors that are independent of site information (e.g., resistance factor = 0.5 regardless
of number or types of tests conducted) is effectively the same as our existing factor of
safety approach insofar as linkage to site investigation is concerned. The performance
of various simplified RBD methods with regards to linking site investigation efforts to
final design savings is discussed in Chapter 6.

4.4 MULTIVARIATE NORMAL DISTRIBUTIONS CONSTRUCTED
WITH GENUINE MULTIVARIATE DATA

4.4.1 CLAY/5/345

A multivariate database of Y;=LI (liquidity index), Yo =s,, Y3=si (remolded
undrained shear strength), Y4 =0, (preconsolidation stress), and Ys=o, (effective
vertical stress) is compiled in Ching and Phoon (2012a). There are 345 data points of
structured clays from 37 sites worldwide, covering a wide range of sensitivity, LI, and
clay types, with simultaneous knowledge of (Y1, Y2,...,Ys). The OCR values of the
data points are generally small; 97% of the values is less than 4. Fissured and organic
clays are mostly left out of the database. Because s, values depend on stress state,
strain rate, stress path, etc., all s, values are converted into mobilized s, values follow-
ing the recommendations made by Mesri and Huvaj (1997). The marginal probability
density functions (PDF) for (Y1, Y2,..., Ys) and their statistics (mean of Y; = p;, COV
of Y;=V;, mean of In(Y;) =2;, standard deviation of In(Y;) =§;) are summarized in
Table 4.4.
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Table 4.4 Distributions and statistics of (Y, Y, ..., Ys) for CLAY/5/345 (Source: Table 3, Ching and
Phoon 2012b).

Mean cov Mean of In(Y) Stdev of In(Y)
Distribution () v) *) 3]
Y, =Ll Lognormal 1.251 0.487 0.122 0.459
Y,=s, Lognormal 31.009 kPa 0.951 3.051 0.898
Y3 =s{® Lognormal 2.514 kPa 1.516 0.226 1.191
Yi=o, Lognormal 105.820 kPa 0.975 4311 0.835
Ys=o, Lognormal 66.631 kPa 0.803 3.891 0.823

It is useful to point out that the univariate statistics shown in Table 4.4 are not
necessarily meaningful if data are collected over diverse sites and at different depths.
The technical reason is that the population is not statistically homogeneous. An alter-
nate way of saying this is that the deviation from the mean is not “random”. The
deviation may be explainable by, say the difference in depth or in-situ effective stress
state from which the data are measured. Many geotechnical parameters are related to
the effective stress state. For example, Y, =s,, is known to be dependent on the effec-
tive vertical stress (Ys=o0,) and stress history (Y4 =o0y). From this brief digression,
one may say that a multivariate distribution is a more robust model than a univariate
distribution. Correlations (such as between sy, 0y, and o},) are automatically captured
and the “unexplainable” residuals from a multivariate model are more likely to be
“random” as a result. There could be subtle correlations related to soil type or other
site-specific attributes that are not readily captured because data are insufficient or
incomplete (hence, “unexplainable” residuals may be explainable in the presence of
new data), but this caveat applies to all real world statistical analysis. In summary,
univariate statistics shown in Table 4.4 or comparable tables presented in Chapter 4
are not meant to use in a stand-alone manner without reference to the multivariate
distribution (specifically, the correlation matrix). On the other hand, the univariate
statistics (primarily coefficient of variation) given in Chapter 3 can be used in a stand-
alone manner, because they are site-specific and evaluated at comparable depths. A
discerning reader will notice that the coefficient of variation reported in Chapter 4 is
larger than that in Chapter 3. This is to be expected for reasons discussed above.

For lognormal Y, the CDF transform X = ®~[F(Y)] is simply:

Xi =[In(Y;) — nil/&i (4.9)

The transformed (X1, X3, ..., Xs) are individually standard normal random variables.
The inverse CDF transform has the following form:

Yi=exp(hi +&; - Xj) (4.10)
The correlation matrix C for (X1,Xs,...,X;s), estimated by Eq. 4.6, is shown

in Table 4.5, and (X;,X,,...,Xs) is assumed to be multivariate normal with the
correlation matrix listed in the table.
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Table 4.5 Correlation matrix C for (X;, Xy, ..., Xs) in CLAY/5/345 (based on the updated database
in Ching and Phoon 2012b).

X Xa X3 X4 Xs
X, (for LI) 1.000 d,=-0.128 d3=-0.832 d14=-0.162 di5=—0.274
Xz (fOI’ Su) 1.000 823 =0.272 67_4 =0.9I5 825 =0.782
C= X; (forsy) 1.000 834 =0.337 d35 = 0.429
X4 (for c;)) Symmetric 1.000 345 =0.832
Xs (for o)) 1.000
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Figure 4.1 Correlations between Y, and Y3 as well as between X, and X3 (revised from Ching and
Phoon 2012a).

The effectiveness of the CDF transform and the validity of the multivariate nor-
mal assumption are illustrated for (Y{ =LIL Y;=s) in Figure 4.1. Before the CDF
transform, both Y; and Y3 are roughly lognormally distributed, but after the trans-
form, both X; and X3 are roughly distributed as a standard normal distribution. More
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Table 4.6 Updated mean and COV of s, /o, for CLAY/5/345 under various combinations of information
(Source:Table 7, Ching and Phoon 2012b).

Information Updated mean of s,/o, Updated COV of s,/o,
LI LIo24! % 0.491 0.609
/0, (0‘;/6{,)0'925 x 0313 0.373
L, o /0, L[0-0612 5 (0;/0(,)0'9'4 x 0.312 0.371
S, 0p/0,, SO-121 ¢ (cl’,/o\’,)o'823 x 0.229 0.338
LIS, 0,/0, LI=0-287 5 §0-192 5 (0;/0(,)0'8'5 x 0.194 0.323

Table 4.7 Updated mean and COV of cf;,/Pa for CLAY/5/345 under various combinations of information
(Source:Table 8, Ching and Phoon 2012b).

Information Updated mean of o;,/Pa Updated COV of a;)/Pa
LI LI=92% x 1.07 0.985
LI, S, LI=!319 x 50536 % 0.235 0.729
LI, o, /P, LI%130 x (o7 /P, )8 x 1.507 0.485
LIS, 0, /P, LI703%8 5 S04 % (0! /P,)%7% x 0.722 0.433

P, = 101.3 kPa is one atmosphere pressure.

interestingly, the nonlinear correlation between (Y1, Y3) is evident, but after the CDF
transform, the correlation between (X1, X3) becomes fairly linear. This linear correla-
tion is also observed for other pairs of (Xj, Xj) (Ching and Phoon 2012a). Because of
the linear correlations for all pairs of (X, Xj), there is no strong evidence to reject the
underlying multivariate normality for this particular soil database. Ching and Phoon
(2015a) discussed more rigorous hypothesis testing methods for multivariate normality.

After the multivariate normal distribution of (X, X;, X3, X4, X;5) has been
established, Bayesian analysis can be conducted to find useful transformation models
among (X1, X, X3, X4, Xs). For instance, given (aX, + bX, + ¢, dX, +eXy +1,...),
what are the analytical solutions for the updated mean and COV of aX; + pX; + y?
Note that many quantities of interest can be expressed in the form of aX; + BX; + v,
e.g., In(sy/0,)=1In(Y2) — In(Ys) =&:X; — £5Xs5 + 2 — hs. Once the updated mean
and updated standard deviation for In(s,/o}), respectively denoted by m and s,
are derived, the updated mean and COV of s,/c) are simply exp(m + 0.5s?) and
[exp(s?) — 1]%°. Tables 4.6, 4.7, and 4.8 summarize useful transformation models
developed in Ching and Phoon (2012a) using Bayesian analysis. Note that the updated
probability distribution is still lognormal.

It can be seen from these three tables that the updated COV typically decreases with
increasing amount of information. This demonstrates numerically that uncertainty
in a design soil parameter can be reduced by multivariate correlations between the
design parameter and other available pieces of site investigation information. This also
illustrates the value of information. As stated earlier, site investigation is not a cost item
but an investment item, because reduction of uncertainties using multivariate tests can
translate directly to design savings through RBD. Moreover, the correlation matrix
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Table 4.8 Updated mean and COV of S, =s,/s® for CLAY/5/345 under various combinations of
information (Source:Table 9, Ching and Phoon 2012b).

Information Updated mean of S, Updated COV of S,
LI LI'?10 % 20.726 1.185
LI, o, /P, LI%'8 x (o /P,)*%7 x27.371 0.982
Ll,o,/P, LI2MS x (0;/P3)0'693><2I.256 0.858
Ll o, /0, LI' 809 x (0@/0@)0'5'3>< 16.422 1.125
LI, s,/ L1710 x (s,/07,)%83! x38.262 0.966
LI, sie/P, LI%624 x (sre/P,) 0% x 1.642 1.029
LI, s2/Pa, 0, /Pa LI%'97 x (sr¢/P,)~09% x (o, /P,)°%80 x 0.464 0.599
Ll,su/0,,0,/Pa L1939 x (s,/0),)%5% x (Oé/Pa)O'SSOX32.797 0.753
L, s /Pa, 0, /Pa LI0-0801 5 (sre /P, )~!058 (oé/Pa)"°°6x0.237 0.372
si°/Pa, 0, /P, (s /P,) "% x (o7 /P,)°®%' x0.359 0.601

C in Table 4.5 contains useful information on the effectiveness of a given test type
in reducing the uncertainty of another soil parameter. For instance, if the design soil
parameter of interest is s,(X3), it is clear that 3,4 is the largest, so the oedometer test
that determines the preconsolidation pressure (o}, or its natural logarithm transform,
X4) is the most effective test. In contrast, the knowledge of LI (or its natural logarithm
transform, Xj) is not very helpful in reducing the uncertainty in s, because 31, is
close to zero. The correlation matrix in Table 4.5 and the transformation models in
Tables 4.6, 4.7, and 4.8 should be suitable for structured clays (sensitive or quick clays)
with low OCR < 4.

4.4.2 CLAY/6/535

The CLAY/6/535 database consists of the following six dimensionless parameters
simultaneously measured in close proximity (Ching et al. 2014b) in the form
of Y= Su/(j:n Yy = OCR, Y3 = (qt - 0V>/0:/’ Y4= (qt - UZ)/(’:;) YS = (ul - uO)/O—;) and
Y =Bg. There are 535 genuine multivariate data points with complete (Y1, Y5, ...,
Ys) information from 40 sites worldwide. The clay properties cover a wide range of
OCR (mostly 1-6 except for 5 sites) and wide range of plasticity index PI (10~168).
Highly OC (fissured) and organic clays are mostly left out of this database. Because s,
values depend on stress state, strain rate, stress path, etc., all s, values are converted
into equivalent CIUC values. The statistics (mean and COV) and the range of each
component Y; are shown in Table 4.9. It is apparent that the range covered by each
component is fairly large.

For (Y1, Ya, ..., Ys), the lognormal distribution no longer provides a satisfactory
fit. The marginal distributions for (Y, Y, ..., Ys) are chosen among the Johnson
system of distributions (Phoon and Ching 2013). The Johnson system of distributions
contains three families of distributions (SU, SB & SL) that can be generated as a CDF
transformation from a standard normal random variable X:

by + ax - sinh1[(Y; — by)/ay] for SU
Xi={ by +ay - In[(Y; — by)/(ay + by — Y;)] for SB (4.11)
b% +ay - In(Y; — by) for SL
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Table 4.9 Statistics of (Y|, Y>,...,Y,) for CLAY/6/535 (Source: Table 2, Ching et al. 2014b).

Mean cov Max Min
Y, =s,/0, 0.641 0.596 3.041 0.105
Y, =0CR 2.353 0.657 9.693 1.000
Y3 =(q. —0,)/0, 9.350 0.678 58.878 2.550
Ys=(q — u)/c, 5.280 0.885 43.694 0.605
Ys = (u; — up)/c, 4,709 0.574 21.720 0.236
Ye =B, 0.556 0.338 1.072 —0.093

Table 4.10 Johnson family types and parameters for (Y, Y,,...,Ys) in CLAY/6/535 (Source: Table 2,
Ching et al. 2014b).

Johnson parameters

Parameter Family type ay b, a, b,

Y| =s,/0, SU 1.222 —1.742 0.141 0.250
Y, =0OCR SB 0.709 1.887 12.724 0.954
Y3=(q: —0,)/0, SU 1.033 —1.438 1.723 4.157
Ys=(q. —up)/c, SuU 0.989 —1.593 0.868 1.638
Ys = (u; — up)/c, SU 0.971 —0.762 1.116 3.123
Ye =B, SuU 2961 0.049 0.544 0.570

where the inverse hyperbolic function is defined as
sinh™!(x) =In(x + vx2 + 1) (4.12)

The distribution SU is an unbounded distribution that is defined on [—o0, 00], SB is a
bounded distribution defined on [by, a, 4+ by], and SL is a lower bounded distribution
defined on [by, oo]. The inverse CDF transforms have the following forms:

by + ay - sinh[(X; — by)/ax] for SU
Yi={ (by + (ay + by) - exp[(X; — by)/ax])/(1 + exp[(X; — by)/ax]) for SB
by + exp[(X; — b%)/a] for SL

(4.13)

where the hyperbolic sine function is defined as
sinh(x) = (e* —e™)/2 (4.14)

Slifker and Shapiro (1980) showed that it is possible to identify the family type (SU,
SB, SL) and estimate the four model parameters (ay, by, ay, by) based on four sample
quantiles of Y (Phoon and Ching 2013; Ching et al. 2014b). Table 4.10 shows the iden-
tified Johnson family types and estimated parameters for (Y1, Y,..., Ys). The Johnson
system can generate distributions with a wide range of mean value, COV, skewness,
and kurtosis. Details for the Johnson system can be found in Phoon and Ching (2013)
and Ching et al. (2014b). The chief advantage of the Johnson system is that it provides
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Table 4.11 Correlation matrix C for (X;,X,,...,Xs) in CLAY/6/535 (Source: Table 6, Ching et al.

2014b).
X X X; X Xs Xe
X, (for s,/a)) 1.00 0.62 0.67 0.6l 0.49 —0.28
X; (for OCR) 1.00 0.6l 0.51 0.54 —0.15
C= X; [for (q. —0,)/0] 1.00 0.83 0.70 —0.45
X4 [for (g — uz)/o)] 1.00 0.31 —0.77
Xs [for (u; — up)/o)] Symmetric 1.00 0.28
Xe (for By) 1.00

Table 4.12 Updated Johnson distribution and parameters of s,/o, for CLAY/6/535 under various
combinations of information (derived from Tables 5 and 9 in Ching et al. 2014b).

Updated Johnson parameters

Family
Information type  ay b, a, b,
OCR SU 1.555 (—1.742 - 0.619 x X;)/0.786 0.141 0.250
(9c —ov)/0, 1.647 (—1.742 —0.671 x X3)/0.742
(g — w2)/0, 1.545 (—1.742 — 0.612 x X4)/0.791
(u2 — uwg)/c, 1.405 (—1.742 — 0.493 x X5)/0.870
(9c —ov)/0,,Bq 1.649 (—1.742 — 0.683 x X30.0266 x X4)/0.741
(g — u2)/0,, Bq 1.669 (—1.742 —0.972 x X4 — 0.468 x X,)/0.732
(uz —ug)/o,, Bg 1.619 (—1.742—-0.618 x X5+ 0.451 x X,)/0.755
(9c —ov)/0,, (e — uz)/ 1711 (—1.742 — 0.443 x X3 — 0.609 x X4+ 0.124 x
oy, (U2 — ug)/o,,Bq Xs —0.422 x X()/0.714
Note: X = 1.887 + 0.709 x In[(OCR — 0.954)/(13.678 — OCR)]; X3 = —1.438 + 1.033 x sinh'{[(qc — ov)/
o, — 4.157]/1.723});  X4=—1.593 + 0.989 x sinh~"{[(qe — up)/c,, — 1.638]/0.868}; X5 =—0.762 + 0.97I x

sinh ™' {[(uz — ug)/o}, — 3.123]/1.116}; X¢ = 0.049 + 2.961 x sinh~'[(B40.570)/0.544].

Table 4.13 Updated Johnson distribution and parameters of OCR for CLAY/6/535 under various
combinations of information (derived from Tables 5 and 10 in Ching et al. 2014b)

Updated Johnson parameters

Information Family type a, by a, b,

(qc — ov)/0, SB 0.894 (0.709 —0.610 x X3)/0.793 12.724 0.954
(qe—w)/o, 0.826 (0.709 —0.514 x X4)/0.858

(u2—uo)/a;, 0.844 (0.709 — 0.542 x X5)/0.840

Bq 0.717 (0.709 +0.148 x X,)/0.989

(qe — 0v)/0,,Bq 0.909 (0.709 —0.681 x X3 — 0.158 x X4)/0.780

(qe — uz)/0,,Bq 0.927 (0.709 —0.982 x X4 — 0.608 x X;)/0.765

(qc — 0v)/0}, (qe — ua)/ 0.944 (0.709 —0.257 x X3 — 0.602 x X4 — 0.0589 x

oy, (U2 — ug)/o,,Bq Xs —0.415 x X4)/0.751

Note: X3, X4, X5, and Xy are defined in Table 4.10.

more flexibility in distribution fitting while retaining the closed-form simplicity of the
CDF transform X = ®~1[F(Y)].

(Y1,Y2,...,Y¢) are transformed into (X1,Xs,...,X¢) by using the CDF trans-
forms given in Eq. 4.11. The resulting (X1, X3, ..., Xs) are roughly standard normal.
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The correlation matrix C for (X1, X», ..., X¢) can be readily estimated based on Eq. 4.6,
as shown in Table 4.11. Tables 4.12 and 4.13 summarize useful transformation mod-
els developed in Ching et al. (2014b) using Bayesian analysis. Note that the updated
probability distribution is still Johnson (another practical advantage of the Johnson
system). The correlation matrix C in Table 4.11 and the transformation models in
Tables 4.12 and 4.13 should be suitable for normally to medium consolidated clays
with OCR <6.

4.5 MULTIVARIATE NORMAL DISTRIBUTIONS CONSTRUCTED
WITH BIVARIATE DATA

4.5.1 CLAY/7/6310

The CLAY/7/6310 database (Ching and Phoon 2013) consists of a large number of
su data points obtained from different test procedures from 164 studies worldwide.
The clay properties cover a wide range of OCR (mostly 1-10, 92% of the studies
are associated with OCR <10, but 99.5% of the studies are associated with OCR
<50) and a wide range of sensitivity S; (sites with S¢=1~tens or hundreds are
fairly typical). The seven clay parameters are normalized s, values under various test
modes: Y1 = (5,/0})ciuc, Y2 = (5u/0})cKouc, Y3 = (5u/0%)cKoUE> Y4 = (5u/0,)pss, Y5 =
(Su/0,)rv, Y6 = (Su/0,,)uu, and Y7 =(5,/0,)uc, where CIUC=isotropically consoli-
dated undrained compression test; CKoUC =Kj-consolidated undrained compres-
sion test; CKoUE =Kjy-consolidated undrained extension test; DSS=direct simple
shear test; FV =field vane test; UU=unconsolidated undrained compression test;
UC =unconfined compression test. §,/0, is the normalized undrained shear strength
of a normally consolidated clay with PI=20 subjected to a 1%/hr strain rate — three
factors, namely PI, OCR, and strain rate, are standardized, but the test mode is not
standardized although the effects of test mode on agcr, arate, and apy are considered:

Su/0, = (su/0%)/(A0CR X Arate X ap1) (4.15)

The aocRr, arate> and apy factors are given in Table 4.14. Table 4.15 shows the statistics
Of Yi.

The Y data points for each test mode are roughly lognormally distributed, i.e., X; =
[In(Y;) — N;i]/&; is roughly standard normal [; is the sample mean of In(Y;), and &; is the
sample standard deviation], as noted in Ching et al. (2013). The lognormal parameters
) and & are shown in Table 4.15. Table 4.16 lists the number of pairwise data where
(Xi, Xj) values under two test modes are simultaneously known. The diagonals are
the numbers of available data points for individual s, test modes (same as the third
column for parameter ‘n’ in Table 4.15). The correlation matrix C cannot be estimated
using Eq. 4.6 because this equation requires genuine multivariate data. Instead, each
correlation coefficient 3;; can be estimated with an entry-by-entry bivariate manner
based on a bivariate dataset (Xj, X;) using Eq. 4.7. Difficulties arise when estimating
8;j for pairs with limited data points, including those involve X5 (FV) (solid box in
Table 4.16) and the following pairs: (X3, Xg), (X2, X7), (X3, X¢), (X3, X7), (X4,
Xs), and (X4, X7) (dashed box in Table 4.16). The correlation coefficient §;; estimated
with limited (X;, Xj) data can be misleading. Reasonably practical procedures for
dealing with this sample size difficulty are proposed in Ching and Phoon (2013) to
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Table 4.14 aocr, arae, and ap factors (Source: Table 3 in Ching and Phoon 2013).

Factor Test type Formula
aocr = OCRA CluC OCR0-602
CKo,UC OCRO-¢8!
CKoUE OCR08%
DSS OCRO74
FV OCR0902
uu OCR0800
uc OCR0‘932
Arate 1.0+ 0.1 x logo(hourly strain rate/ %)
ap = (P1/20)¢ CluC (PI/20)° =1
CKo,UC (PI120)° = 1
CKoUE (P1/20)%'7®
DSS (P1/20)0-0655
FV (P1/20)%124
uu (PI/20)° =1
uc (PI/20)° =1

Table 4.15 Statistics of (Y|, Ya,...,Y7) for CLAY/7/6310 (Source:Table 4, Ching and Phoon 2013).

Efin(Y)] afin(Y)]
) (&)

Variable n Mean cov Min Max

\f (8u/0,)ciuc 637 0.404 0.316 0.12 0.82 —0.955 0.315
Y, (Su/0,)ckouc 555 0.350 0.318 0.063 1.72 —1.090 0.280
Y3 (S4/0%)cKouE 224 0.184 0.324 0.055 0.45 —1.748 0.355
Y, (Su/0,)Dss 573 0.241 0.399 0.081 1.83 —1.468 0.277
Ys (Su/0, v 1057 0.275 0416 0.068 1.25 —1.363 0.372
Ye (Su/0,)uu 435 0.243 0.504 0.067 1.44 —1.523 0.463
Yy (8u/0,)uc 387 0.223 0.611 0.039 1.01 —1.640 0.523

Table 4.16 Numbers of available (X;, X;) data pairs (Source:Table 5 in Ching and Phoon 201 3).

X, (CIUC) X, (CKoUC) X3 (CKQUE) X4 (DSS) Xs (FV) X (UU) X5 (UC)

X, (CIUC) 637 129 30 24 20 | 84 38
X, (CKoUC) 555 69 135 79 13 14 '
X3 (CKoUE) 224 66 43 7 14 !
X4 (DSS) 573 58 |18 14 . :
Xs (FV) 1057 123 140
Xe (UU) Symmetric 435 53
X7 (UC) 387

estimate those §; values. The resulting correlation matrix C for (Xi, X, ..., X7) is
shown in Table 4.17. We note in passing that limited data is the norm in geotechnical
engineering and the development of statistical methods that are robust under this
practical constraint remains one major challenge in geotechnical reliability.
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Table 4.17 Correlation matrix C for (X, X3, ..., X7) in CLAY/7/6310 (Source: Table 7, Ching and
Phoon 2013).

X, (CIUC) X, (CKoUC) X3 (CKoUE) X4 (DSS) Xs (FV) Xg (UU) Xy (UC)

X (ClUC) 1.00 0.84 0.47 0.72 0.63 0.88 0.85
X; (CKoUC) 1.00 0.39 0.78 0.35 0.7 0.6
X3 (CKoUE) 1.00 0.45 0.41 0.4 0.3
C =X, (DSS) 1.00 0.73 0.6 0.5
Xs (FV) 1.00 0.64 0.46
Xe (UV) Symmetric 1.00 0.68
X7 (UC) 1.00

Based on this correlation matrix, Ching and Phoon (2015b) further derived the
equations to calculate the updated mean (m) and standard deviation (s) for the natural
logarithm of the mobilized undrained shear strength, denoted by In[s,(mob)], given
the s, values from other test modes. s,(mob) is the undrained shear strength mobilized
in a full-scale undrained failure in the field (Mesri and Huvaj 2007). The equations
have the following generic form:

m = updated mean of In[s,(mob)/c,]
= ag + a1In[s,(CIUC) /0, ] + a2ln[s,(CKoUC)/0’] + asln[s,(CKyUE)/o ]
+ a4ln[s,(DSS) /0, ] + asln[s,(FV) /0., ] 4+ a¢ln[s,(UU) /o, ] + a7In[s,(UC)/0, ]
+ A'In(OCR) + B'In(PI/20) + In(asace) (4.16)

s> = updated variance of In[s,(mob)d’ ]

where s,(test mode) is the undrained shear strength obtained under a certain test
mode, e.g., CIUC; a,q is the strain rate correction factor (see Table 4.14). Ching
and Phoon (2015b) derived the equations for three types of s,(mob): (a) the s,(mob)
for an embankment failure; (b) the s,(mob) for the active state failure; and (c) the
su(mob) for the passive state failure. Table 4.18 lists the values of (ag, a1, a2, a3, as,
as, ag, a7, A, p’) and s for various combinations of s, information for the s,(mob) for
an embankment failure. The tables for the other two s,(mob) can be found in Ching
and Phoon (2015Db).

The usefulness of Table 4.18 is illustrated using the following example. At the depth
of 11 m of a clay site, s,(FV)=233.8 kN/m? and s,(UC) =25 kN/m? are known. The
vertical effective stress (o/) at this depth is 98.4 kN/m?, OCR = 2.06, and PI = 10. Here
we demonstrate the estimation of the mean and standard deviation of In[s,(mob)/o/]
(embankment failure) using s,(FV)/o}, and s,(UC)/o, [s,(FV)/o,, =33.8/94.8 =0.356;
su(UC)/ol, =25/94.8 =0.264]. According to Table 4.18, when information from
su(FV)/o;, and s,(FV)/o, is available, m and s are

m=ag + asln[ 28] + a;In[2U] 4 A'In(OCR) + p'In(P1/20) + In(asace)

4.17
s=0.187 ( )
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Table 4.18 Coefficients (ag, a;, a,, a3, a4, as, a, a7, A’, ') and s for the s (mob) of an embankment
failure (Source:Table 5, Ching and Phoon 2015b, with permission from ASCE).

Information do a a; as a4 as aq ay A B s
None (prior) —1.435 0.776 0.081 0.251
A single test mode

CluC —0.827 0.636 0.393 0.081 0.151
CKoUC —0.612 0.755 0.262 0.081 0.136
CKoUE —0.469 0.553 0.279 —0.017 0.157
DSS —0.278 0.788 0.185 0.030 0.124
FV —0.956 0.399 0.416 0.032 0.203
uu —0.942 0.363 0.486 0.081 0.187
uC —1.047 0.263 0.531 0.081 0.210
Two test modes

CKoUC & CKoUE —0.155 0.568 0.378 0.049 0.014 0.056
CIUC & FV —0.779 0.563 0.099 0.348 0.069 0.149
CIUC & UU —0.837 0.740 —0.080 0.395 0.081 0.150
ClUC & UC —0.856 0.955 —0.226 0.411 0.081 0.138
CKoUC & FV —0.454 0.649 0.228 0.128 0.053 0.110
CKoUC & UU —0.604 0.657 0.085 0.261 0.081 0.133
CKoUC & UC —0.604 0.719 0.032 0.256 0.081 0.135
DSS & FV —0.263 0.850 —0.062 0.196 0.033 0.123
DSS & UU —0.292 0.663 0.125 0.179 0.038 O0.115
DSS & UC —0.271 0.720 0.073 0.169 0.034 0.120
FV & UU —0.848 0.187 0.267 0.394 0.058 0.179
FV & UC —0.838 0.291 0.168 0.357 0.045 0.187
UU & UC —0.906 0.299 0.083 0.459 0.081 0.184
Three test modes

CIUC,FV & UU  —0.783 0.698 0.120 —-0.117 0.341 0.066 0.147
CIUC,FV & UC  —0.825 0.892 0.062 —0.214 0.382 0.074 0.137
CIUC,UU & UC —-0.882 1.226 —0.169 —0.262 0.418 0.081 0.133
CKoUC,FV & UU —0.428 0.728 0.278 —0.088 0.100 0.047 0.107
CKoUC,FV & UC —-0.453 0.682 0.243 —0.035 0.126 0.051 0.109
CKoUC,UU & UC —0.603 0.656 0.084 0.002 0.260 0.081 0.133
DSS, FV & UU —0.260 0.772 —0.150 0.163 0.203 0.049 0.110
DSS,FV & UC —0.250 0.796 —0.085 0.080 0.182 0.040 0.118
DSS,UU & UC —0.288 0.657 0.109 0.024 0.175 0.038 O0.115
FV,UU & UC —-0.817 0.182 0.210 0.077 0.372 0.059 0.177

where ag=—0.838,a5=0.291,27,=0.168, A’ =0.357, and B’ = 0.045. The constants
ay=ay=az=ag4=2ag=0 because CIUC, CK,UC, CKyUE, DSS, and UU are not
known. It is then clear that m=—1.135 + In(a,,) and s=0.187. These are the
updated mean and standard deviation for In[s,(mob)/c/,]. Because s,(mob)/d’, is log-
normal, the mean of s,(mob)/o, is exp(m +s?/2)=0.327 X ape and its COV is
[exp(s?) — 1]%° =0.189.

4.5.2 CLAY/10/7490

The CLAY/10/7490 database (Ching and Phoon 2014a, 2014b) compiles data from
251 studies worldwide. The number of data points associated with each study varies
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Table 4.19 Statistics of the tenclay parameters in CLAY/10/7490 (Source: Table 3, Ching and Phoon

2014a).
Parameter n Mean cov Min Max
LL 3822 67.7 0.80 18.1 515
PI 4265 39.7 1.08 1.9 363
LI 3661 1.01 0.78 —0.75 6.45
0,/P, 3370 1.80 1.47 4.13E-3 38.74
a';/Pa 2028 4.37 2.31 0.094 193.30
sJ/o), 3538 0.51 1.25 3.7E-3 7.78
St 1589 35.0 2.88 1.0 1467
B, 1016 0.58 0.35 0.0l 1.17
(9. —ov)lo;, 862 8.90 .17 0.48 95.98
(g — w2)lo;, 668 5.34 1.37 0.61 108.20
OCR 3531 3.85 1.56 1.0 60.23

Table 4.20 Johnson family types and parameters for (Y, Ya,..., Yjo) in CLAY/10/7490 (Source:
Table 5, Ching and Phoon 2014b).

Johnson parameters

Parameter Family type ax bx ay by

Y, [In(LL)] su 1.636 —1.166 0.616 3.479
Y, [In(PN] SsuU 1.433 —0.265 0918 3.178
Y; (L) suU 1.434 —1.068 0.629 0.358
Y4 [In(a’/P,)] SB 3.150 0.256 14.458 —7.010
Ys [In(0)/P)] SB 4.600 21.548 576.785 —4.793
Ye [In(su/o7)] suU 2.039 —0517 1.427 —1.461
Y5 [In(S:)] suU 2.393 —2.080 1.885 0.461
Ys (Bq) su 2.676 0.161 0.513 0.615
Ys (In[(qe — 0v)/0]) suU 1.340 —0.572 0.659 1.476
Yio (In[(ge — u2)/0]) N 2.134 —1.102 1.154 0.657

from 1 to 419 with an average 30 data points per study. The clay properties cover a
wide range of OCR (but mostly 1-10), a wide range of S; (insensitive to quick clays;
sites with S =1~ tens or hundreds are fairly typical), and a wide range of PI (but
mostly 8-100). There are a few data points for fissured clays as well as organic clays.
Details are given in Ching and Phoon (2014a). Ten dimensionless clay parameters
are compiled in this database: Y; =In(LL), Y, =In(PI), Y3 =LIL, Y4 =In(c/,/P,), Ys =
In(0},/P,), Y6 =In(s /), Y7 = In(S,), Yy = B, Yo =Inl(q; — 0)/0], and Y10 =1In[(q —
uz)/0,]. For Y, the s, values in the data points are all converted to the mobilized s,
values defined by Mesri and Huvaj (2007). The statistics are summarized in Table 4.19.

Due to its flexibility, the Johnson distribution is adopted in Ching and Phoon
(2014b) to fit the univariate (Y1, Y, ..., Y1o) data. The resulting Johnson parameters
are summarized in Table 4.20. The fitted Johnson distributions are plotted in
Figure 4.2 together with the empirical histograms constructed from Y data. For each
bivariate data (Y;, Yj), Y; and Y; can be individually transformed to standard normal
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Figure 4.2 Empirical histograms constructed from Y data (solid curves are the fitted Johnson
distributions) (Source: Figure 3, Ching and Phoon 2014b).
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Table 4.2] Numbers of available (X, X;) data pairs (Source: Table 4 in Ching and Phoon 2014b).

Y Yy Y3 Y4 Y5 Y Y7 Ys Yo Yio
Y, [In(LL)] 3822 3822 3412(2084 1362 1835 1184 680 618 541
Y, [In(PI)] 4265 342412169 1433 2173 1203 688 626 549
Y; =Ll Index properties 3661 | 1999 1314 1709 1279 660 598 521
Y4=In(c,/P,) 3370 1944 2419 853| 965 862 668
Ys =In(0,/P,) 2028 1423 554| 780 691 543
Y =In(s /o)) 3532 715 595 533 525
Y7=In(S,) Stresses and strengths 1589 | 240 230 190
Ys =B, 1016 862 668
Y9 =In[(qc —0v)/0,] Symmetric 862 590
Y10 =In[(q. — uz)/o}] CPTU 668
parameters

random variables (Xj, Xj) using the CDF transform given in Eq. 4.11 together with the
distribution type/parameters in Table 4.20.

Table 4.21 shows the number of bivariate (X, Xj) data points. The diagonal entries
in Table 4.21 are the numbers of data points with univariate information, which are
identical to the numbers in the second column of Table 4.19. The off-diagonal numbers
in Table 4.21 are the numbers of data points with bivariate information, i.e., two
parameters are measured in close proximity. Data points with bivariate information
are typically abundant: most (Xj, Xj) pairs are associated with more than 400 data
points. The only exceptions are the (X7, Xg), (X7, Xy), and (X7, X1¢) pairs which are
associated with about 200 data points (the entries in grey). It is apparently uncommon
to measure S; and CPTU data together in the literature. There are three diagonal boxes
in Table 4.21, representing the parameters relating to (a) index properties, (b) stresses
and strengths, and (¢) CPTU parameters. It is clear that index properties have the most
bivariate data points, while the CPTU parameters have the least in this CLAY/10/7490
database.

The correlation matrix C cannot be estimated using Eq. 4.6 because this equa-
tion requires genuine multivariate data. Instead, each correlation coefficient 8;; can be
estimated with an entry-by-entry bivariate manner based on a bivariate dataset (X, X;)
using Eq. 4.7 (same strategy as that adopted for CLAY/7/6310). The correlation matrix
C constructed in the entry-by-entry bivariate manner is not guaranteed to be positive
definite, but Ching and Phoon (2014b) proposed a bootstrap method to mitigate this
issue. The resulting correlation matrix C for (X1, X, ..., X10) is shown in Table 4.22.

Simulation

One attractive feature of the multivariate normal distribution is that simulation is
computationally simple. Let U be a 10 x 1 vector containing 10 independent samples
of the standard normal random variable. Let L be the lower triangular Cholesky factor
satisfying C=L x LT, in which C is the 10 x 10 correlation matrix given in Table 4.22.
Samples of correlated standard normal random variables can be obtained easily using
X =L x U, in which X is the random vector (X1,Xs,...,X10). Simulated samples of
soil parameters (Y1, Y>,..., Y10) can be obtained using Eq. 4.13. Simulated samples



112 Reliability of Geotechnical Structures in 1SO2394

Table 4.22 Correlation matrix C for (X, Xy, ..., Xjo) in CLAY/10/7490 (Source: Table 8, Ching and
Phoon 2014b).

X1 X2 X3 X4 Xs Xe X7 Xg Xq Xio
X [for In(LL)] 1.00 091 —025|-024 —-030 0.10 —021 009 0.09 0.07
X3 [for In(Pl)] 1.00 -0.32|-021 —-027 004 —-025 0.1 0.00 -00I
X3 (for LI) Index properties 1.00| —049 —-0.57 0.01 059 —-005 0.06 —0.05
X4 [for In(o}/P,)] .00 0.72 —050 0.00| 020 -0.38 —0.32
C=Xs [for In(o,/Pa)] 1.00 0.0l 006|—-0.03 0.11 0.04
X [for In(sy/o))] 1.00 0.18( —-024 073 0.3
X7 [for In(S¢)] Stresses & strengths 1.00| 0.18 0.15 —0.08
Xg (for Bg) .00 —0.45 —0.63
Ys (In[(qe — ov)/o}])  Symmetric 100 074
Yo (In[(qc — u2)/0}]) CPTU 1.00
parameters
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Figure 4.3 Comparison between (a) simulated and (b) measured data for the s,/o, — (q. — oy)/0,
correlation (Source: Figure 12, Ching and Phoon 2014b).

of other physical parameters, such as In(OCR), ln(su/ol’p), and CPTU cone factor (Nyt
and Nyg), can be derived from the samples of (Y1, Y», ..., Y1i0):

In(OCR) =In(o},/Ps) — In(oy/Pa) = Y5 — Y4

In(sy/0},) =In(su/0y) + In(oy/Ps) — In(o},/Pa) = Y6 + Y4 — Y5 (4.18)
In(Nyr) =In[(q: — ov)/su] =In[(qc — 0v) /0] = In(su/0,) = Yo — Y

In(Nig) = In[(qe — w2)/su] =In[(qe — u2)/07] — In(se/0}) = Y10 — Ys

As an example, Figure 4.3 compares measured and simulated data for the corre-
lation between s, /o), and (q; — oy)/0,. Most of the data points fall within the range
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Figure 4.4 Conditional probability distributions based on Y, = —0.577,Yg =0.207, and Yo = 2.899 for
(2) normalized preconsolidation stress (Ys) and (b) normalized undrained shear strength
(Ys) (arrow indicates actual measured value) (Source: Figure 15, Ching and Phoon 2014b).

8 < Nyt < 29 reported by Rad and Lunne (1988) for s, obtained from triaxial com-
pression strength [Nyt = (q; — oy)/su]. The median and 95% confidence interval for
the simulated data broadly agrees with the measured data in trend and scatter. More
comparisons between the measured and simulated (Y1, Y2, ..., Y1¢) data can be found
in Ching and Phoon (2014b). The conclusions are similar: the simulated and measured
data are consistent in trend and scatter.

Conditioning

Based on the multivariate probability distributions constructed in previous section, it is
possible to update the marginal distribution of any one parameter or even the multivari-
ate distribution of any group of parameters given information from other parameters
covered by the multivariate probability distribution. This is called the Bayesian updat-
ing. Consider an example involving updating the normalized preconsolidation stress
(Ys) and the normalized undrained shear strength (Ys) based on the normalized effec-
tive vertical stress (Yy4), the pore pressure ratio (Yg) and the normalized cone tip
resistance (Yo). This is a realistic example as Yg and Yy are routinely measured simulta-
neously in piezocone soundings. For illustration, assume that the following piezocone
information is available: Y4=In(0}/P,)=In(0.562)=—0.577, Ys=B,=0.178 and
Yo = In[(q; —oy)/o}] = In(17.78) = 2.878. The unconditioned and conditioned dis-
tributions for Ys and Y are shown in Figure 4.4 (details for obtaining the conditional
distribution are described in Ching and Phoon 2014b). The arrows in the figure indicate
the actual measured values of Y5 and Y.
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Table 4.23 Updated mean and COV of CIUC s, for unstructured clays under various combinations of
information (Based on Egs. 22-28, Ching et al. 2010).

Information Updated mean of CIUC s, (in kPa) Updated COV of s,
OCR (0/P,) x OCRO#* x 43.474 0.313
Neo N2£02 x (07/P,)0%* x 33.905 0.282
G — Oy [(qe — 0v)/P,1%%7¢ x 8.634 0.346
OCR, Ngo OCR373 5 NO2% x (07/P,)*¢% x 38.690 0.182
OCR, g — oy OCR*®! x [(q. — 0,)/P,]%3% x (0/P,)*¢7* x 25.001 0.196
Neo, qc — oy N2362 x [(qe — 0v)/Pa]1%3% x (07/P,)%* x 19.086 0.218

0
OCR, Ngo, qc — 3, OCRO ! 5 NO2% 5 [(q, — 0, )/P,]%22 x (0/P,)053 x 27.322  0.160

4.6 MULTIVARIATE NORMAL DISTRIBUTIONS CONSTRUCTED
WITH INCOMPLETE BIVARIATE DATA

4.6.1 CLAY/4/BN

Ching et al. (2010) presented another clay database containing four soil parameters:
Y, =0CR,Y; =s, from CIUC test, Y3 =q; — oy (net cone resistance), and Y4 =Ny
(SPT N corrected for energy efficiency). The range of OCR of this database is wider —
from 1 to 50. However, only bivariate data on (Y,Y;)=(OCR,s,), (Y3, Y2)=
(qc — oy, 8u), and (Y4, Y2) = (Ngo, sy) are available. Bivariate data on (Y, Y3) = (OCR,
gt — ovy), (Y1, Y4) = (OCR,Ngp), and (Y3, Y4)=(q; — oy, Ngo) are missing, i.e., the
bivariate correlations {8;: i=1,...,n—1,j=i+1,...,n} are only partially known.
Given that even complete bivariate information is not available, it is not possible to
apply the aforementioned CDF transform approach directly. It is accurate to say that
although it is common to measure more than two soil parameters in a site investigation,
it is uncommon to establish correlations between all possible pairs of soil parameters.
It is useful to point out that data limitation in geotechnical engineering is not con-
fined to the quantity of data, but can extend to incompleteness in a deep way such as
missing pairs of soil parameters. We have highlighted previously that even complete
information on all pairs of soil parameters is incomplete in the multivariate sense.

To deal with this difficulty of incomplete bivariate correlations, Ching et al. (2010)
constructed a multivariate normal distribution using a Bayesian network model which
prescribed a dependency structure based on some postulated but reasonable con-
ditional relationships between the soil parameters. Needless to say, this prescribed
dependency structure has to be validated. They considered Y; = OCR as a given num-
ber and the remaining soil parameters (Y2, Y3, Y4) are lognormally distributed random
variables. Hence, In(Y;)=In(sy) =X, +£X,, In(Y3)=In(q, —ov) =73 +£3X3, and
In(Y4) =In(Ngo) = hg + £4X4, in which X; are standard normal random variables. The
subsequent Bayesian analyses derived in Ching et al. (2010) lead to the transforma-
tion models in Table 4.23. It can be seen from the table that updated COV typically
decreases with increasing amount of information. This again demonstrates numerically
that uncertainty in a design soil parameter can be reduced by multivariate correla-
tions between the design parameter and other available pieces of site investigation
information.
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Table 4.24 Correlation matrix € for (X, X, X3, X4) for the four selected parameters of unstructured
clays (Source: Phoon et al. 2012, with permission from ASCE).

X, (for OCR) X3 (fors,) X3 (for g — o,) X4 (for Ngo)
X (for OCR) 1.000 0.554 0.355 0.395
C= X; (fors,) 1.000 0.642 0.714
X; (for q. —oy) 1.000 0.458
X4 (for Neo) Symmetric 1.000

Table 4.25 Updated mean and standard deviation of ¢’ for clean sands under various combinations of
information (Based on Egs. | 1-17, Ching et al. 2012).

Updated stdev
Information Updated mean of ¢’ (in degrees) (in degrees)
IR 3 x IR + ¢)cv 1.960
(N1)eo 6.220 x In[(N)¢0] +23.167 3.086
el 7.819 x In(qy) +2.401 3919
Ir, (N1)e0 1.996 X Ig +0.665 x dcy +2.081 x In[(N))s0] +7.751 1.655
IR, Qe 2335 x Ig +0.778 x ¢, + 1.735 x In(qy ) +0.533 1.753
(N1)eo, qei 3.840 x In[(N/)s0] +2.993 x In(qe) + 15.22 2.423
|R, (NI)60vqt| 1.814 x |R+0605 X ¢cv+ 1.518 x In[(N|)60]—|— 1.524

1183 x In(qe) + 6.015

Based on the results of Ching et al. (2010), Phoon et al. (2012) further
assumed OCR to be lognormal with a reasonable COV=0.25, ie., In(Y;)=
In(OCR) =7y +&1X;. Under this assumption, they showed that the underlying stan-
dard normal variables (X, X;, X3, X4) have the correlation matrix shown in
Table 4.24. The correlation matrix in Table 4.24 and the transformation models in

Table 4.23 should be suitable for unstructured clays covering a fairly wide range
of OCR.

4.6.2 SAND/4/BN

Ching et al. (2012) adopted the Bayes-net model proposed in Ching et al. (2010)
for clean sands. The study was based on a database containing five selected param-
eters of normally consolidated clean sands: Y| =d¢, (critical state friction angle),
Y, =1 (dilatancy index, see Bolton 1986 and Ching et al. 2012), Y;=¢' (peak
secant friction angle), Y4=(qi/P,)/(c)/P,)*5 =qu (corrected cone resistance), and
Ys=(Nj)so (SPT N corrected for energy efficiency and overburden stress). The
authors considered Y; = ¢, and Y, =Ir as given numbers and the remaining soil
parameters (Y3, Y4, Ys) are random variables: Y3 is normal, while Y4 and Ys are
lognormal. Technically, this means the results presented in Ching et al. (2012) is con-
ditional on ¢, and Ig. Hence, Y3 =¢' =3 +03X3, In(Y4) =In(qe) = ha +E4X4, and
In(Ys) =In[(N1)g0] = A5 + £5Xs, in which X are standard normal random variables.
Bayesian analyses produced the transformation models in Table 4.25. It can be seen
from the table that the updated standard deviation typically decreases with increasing
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Table 4.26 Correlation matrix C for (X, Xy, X3, X4, Xs) for the five selected parameters of clean

sands.
X (for ¢a)  Xo(fork) — Xs(ford)  Xe(forqu)  Xs [for (N))eo]
X, (for ¢ ) 1.000 0.000 0.642 0.491 0.536
X, (for Ir) 1.000 0.642 0.491 0.536
C = X; (for ¢') 1.000 0.764 0.835
X4 (for qur) Symmetric 1.000 0.638
Xs [for (N})eo] 1.000

amount of information. This again illustrates that uncertainty in a design soil param-
eter can be reduced by multivariate correlations between the design parameter and
other available pieces of site investigation information.

If we further assume ¢, and Ig are normal with reasonable standard deviations
of 3° and 1°, respectively, i.e., Y1 = ¢ey =1 +3X; and Y, =Ig =2 + X3, and also
assume independence between ¢, and Iy, it can be shown that the underlying standard
normal variables (X1, X3, X3, X4, X;5) has the correlation matrix shown in Table 4.26.
The correlation matrix in Table 4.26 and the transformation models in Table 4.25
should be suitable for normally consolidated clean sands.

4.7 MULTIVARIATE DISTRIBUTIONS CONSTRUCTED
WITH THE COPULA THEORY

As an alternative to the multivariate normal distribution, this section presents a copula-
based approach for modelling the multivariate distribution of multiple soil parameters.
The copula theory has been widely used for constructing bivariate distributions in the
geotechnical literature (e.g., Li et al. 2012, 2013, 2015; Li and Tang 2014; Tang
et al. 2013, 2015; Wu 2013; Zhang et al. 2014; Huffman and Stuedlein 2014).
However, there are limited studies applying copulas to multivariate distributions with
n dimensions (n > 2), because only the elliptical copulas have practical n-dimensional
generalizations. This section demonstrates the use of two elliptical copulas (i.e.,
Gaussian and t copulas) to construct the multivariate distribution for the Clay/5/345
database (Table 4.1; also Section 4.4.1).

4.7.1 Copula theory

As mentioned in Section 4.3, the multivariate normal distribution involves converting
non-normally distributed soil parameters Y = (Y1, Y2, ..., Y,) into standard normal
random variables X = (X1, X3, ..., X,)" using the CDF transform X = ®~'[F(Y)]. An
alternate approach is to convert Y into standard uniform random variables U= (U,
U, ..., Uy) by U=F(Y). This implies that the multivariate CDF F(yy, ya, ..., ya) for
Y can be represented by a CDF of coupled standard uniform variables (uy, up, .. ., uy),
namely C(uy, uy, ..., u,). The function C(uy, uy, ..., u,) is called a copula function.
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According to Sklar’s theorem (e.g., Nelsen 2006), the following relationship between
F(y1, y25 - - - yu) and C(uy, uy, ..., u,) holds:

F(yl:yZ’ o 9YH) = C(LIl,llz, ce ,U.n) = C(Fl(Yl), FZ(yl)a e ’Fn(yn)) (4'19)

where Fj(-) is the marginal (univariate) CDF of Y;. It can be seen from Eq. 4.19 that the
multivariate CDF F(yq, y2, ..., ya) is converted into a copula function C(uy, ua, ..., u,)
with u; = Fi(y;). It is understood that the relationship u; = F;(y;) characterizes the uni-
variate probability distribution for each individual soil parameter, while the copula
function C describes the multivariate correlation among all standard uniform vari-
ables (uy, uy, ..., uy). Therefore, the key tasks for the multivariate copula approach
are (a) to determine each marginal (univariate) distribution F(-) and (b) to select an
appropriate copula that provides reasonable fit to the correlation structure among (Uy,
U,, ..., Uy). Note that the above two tasks can be decoupled. The multivariate PDF of
Y=(Yy, Y2, ..., Yy) can be derived from the multivariate CDF by taking derivatives
of Eq. 4.19 (e.g., McNeil et al. 2005):

#C(F1(y1), Fa(y2), -, Falyn)) 1 OFi(yi)
9F1(y1) ... 0Fx(yn) Oy

f(YlaYZ,- .. 3yn) =

n

= c(Fi(y1), F2(y2), .. ., Falyn)) Hfi(Yi)
i1

= c(ug,u, ..., un) [ [filyi) (4.20)
i=1

where c(uy, u, ..., uy) = 3"C(uy, uz, ..., uy)/duy ... du, is the copula density function;
f;(-) is the PDF of Y;.

4.7.2 Elliptical copulas (Gaussian and t copulas)

The Gaussian copula and the t copula are derived from the multivariate normal dis-
tribution and the multivariate t distribution, respectively. Specifically, the multivariate
Gaussian copula has the following copula function C%(uy, ua, ..., uy; C) and copula
density function ¢%®(uy, ua, ..., uy; C) (McNeil et al. 2005):

Coup,uz,. .., Un3 C) = @p(@H(r), @' (w2), ..., @ (un); C) (4.21)

% (uy,uz,...,unC) = |C|1/Zexp<—%X’(C1 - I)X) (4.22)

where C is the correlation matrix defined in Eq. 4.4; ®,(., ..., .; C) is the standardized
multivariate normal distribution with correlation matrix C; |C| is the determinant
of C; I is the identity matrix; X =(®"!(uy), ®~(uz),..., P (u,)) is the vector of
standard normal random variables. Substituting the Gaussian copula density function
in Eq. 4.22 into Eq. 4.20 leads to the multivariate standard normal PDF in Eq. 4.4.
Therefore, the multivariate normal distribution adopted in the previous sections is a
combination of the Gaussian copula and standard normal univariate distributions.
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The multivariate t copula has the following copula function Ct(uy, ua, .. ., uy; C, v)
and copula density function ct(uy, uy, ..., uy; C, v) (McNeil et al. 2005):

Cl(ut,u2, -, un; Cyv) = ta(t; ! (1), 5 (), 65 (0); G, v) (4.23)

w0 [T (3 14 lTcp) 2
c'(ug,u, ..., un;C,v) = [C71/2 (E)E (2?1] [ +;TC] (4.24)

(%)] 1_[ (1 L ) 1D)/2

i=1

where t,(., ..., .; C, v) is the standard multivariate Student’s t CDF with correlation
matrix C and v degrees of freedom; t;1(-) is the inverse of univariate CDF of Student’s
t distribution with v degrees of freedom; T = (t; ! (uq), t; 1 (ua), .. ., t;1(uy,))’ is a vector
of Student’s t random variables with v degrees of freedom; t; =t; () is the i-th entry
in T; T is the Gamma function. The multivariate Gaussian copula is the limiting case
of the multivariate t copula when v approaches infinity. The additional parameter v in
the multivariate t copula characterizes the degree of non-normality in the multivariate
soil data. The degree of non-normality increases with decreasing v.

4.7.3 Kendall rank correlation

Correlation measures are essential to multivariate modelling. Section 4.2 intro-
duced the commonly-used correlation measure, i.e., the product-moment (Pearson)
correlation. Note that the Pearson correlation measures the degree of linear corre-
lation only. When the transformation model in Eq. 4.1 is not linear (For example,
Yi=a+ bY% +¢), the Pearson correlation coefficient pq, between Y1 and Y, will not be
equal to 1 even if s, = 0. Furthermore, the Pearson correlation is invariant only under
strictly monotonic linear transformations. Since the CDF transform X = ®~'[F(Y)] for
most distributions is nonlinear, the Pearson correlation between Yy and Y3 is not equal
to that between X; and X,. Therefore, when Y is transformed to X or X to Y, the
Pearson correlation needs to be re-evaluated. To overcome the aforementioned lim-
itation underlying the Pearson correlation, this section introduces the Kendall rank
correlation that only depends on the ranks rather than the actual numerical values.

Unlike the Pearson correlation, the Kendall correlation measures the degree of
“concordance” between Y; and Y,. The concept of concordance is simple. Let (Y,
Y,) and (Y, Y}) be a pair of data points. Then, (Y1, Y,) and (Y/, Y}) are concordant
if (Y1 —Y})(Y2—Y})>0 and are discordant if (Y; —Y})(Y2 —Y}) <0. Consider a
bivariate dataset (Y;, Yj) of sample size N. There are 0.5 x N x (N-1) possible pairs of
data, namely (Yim, Yjm) versus (Yis, Yjn) (m <n). For each pair (Yin, Yjm) and (Yi,,
Yjn), the concordance is judged by the sign of (Yim — Yin)(Yjm — Yjn). Then, the Kendall
correlation coefficient (tj) is defined as the portion of concordance minus the portion
of discordance (e.g., Nelsen 2006):

Z sgn[(Yim — Yin)(ij - YJn)]

L men 425
i 05xNx (N—1) (4.25)
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where sgn(-) is calculated by

_J 1 (¥im = Yin)(¥jm — ¥jn) = 0 (concordant) B
= { 1 (Yim — Yin)(Yim — yjn) <O (discordant) ™ =77 L2,...,N (4.26)

The numerator in Eq. 4.25 is the number of concordant pairs minus the number
of discordant pairs, and the denominator is the total number of pairs. The Kendall
rank correlation is invariant with respect to strictly monotonic transformations. This
means that the Kendall correlation between Y; and Y, remains unchanged after being
transformed into standard normal random variables X; and X;. This advantage will
simplify the calibration of the correlation matrix C in the Gaussian and t copulas, as
demonstrated in the following section.

4.7.4 Estimating C using Pearson and Kendall correlations

This section first demonstrates the application of the Gaussian copula to the Clay/5/345
database. The application of the t copula will be demonstrated in a later section. As
shown in Egs. 4.21 and 4.22, the Gaussian copula is characterized by the correlation
matrix C. It is the correlation matrix for the underlying standard normal variables
X=(® Yuy), @ '(uz), ..., @ H(u,)). The (i, j) entry in the C matrix is denoted by
8ij, which is the Pearson correlation between (Xj, X;). It will be clear that §; can be
estimated using the Pearson or Kendall correlation between (Yi, Y;). The focus in this
section is on the comparison of the Pearson and Kendall correlations as correlation
measures for estimating 8. The marginal (univariate) distributions for the five soil
parameters in the Clay/5/345 database are summarized in Table 4.4. It can be seen
that all the five soil parameters are roughly lognormally distributed. With the marginal
distributions determined, the next step is to calibrate the correlation matrix C in the
Gaussian copula. Note that §;; can be determined by matching either Pearson or Kendall
correlation. In general, §;; in the matrix C and the Pearson correlation between Y; and
Y; (denoted by pj;) have the following relationship (Li and Tang 2014):

Yi — Wi Yi — W f; (Y1)f (Y1) Sﬁ 12 28iiXiX] + 61]X]
p” - . p - 2 2 dYIdYI
0j /1 — 82 (1 - Bi]‘)

(4.27)

where p; and o; are the mean and standard deviation of Y;; x; = ®~![Fi(y;)] is standard
normal. It is nontrivial to solve the above integral equation for §;;. However, because Y;
and Yj are both lognormally distributed, Eq. 4.27 has the following explicit analytical
form:

ln<1 + 0y x \/eXp(E?) —1x \/eXp(Ef) - 1)
8 = (4.28)
£ X &

where &; (shown in the last column of Table 4.4) is the standard deviation of In(Y;).
From here on, the method of estimating 8; described in Eqs. 4.27 & 4.28 is referred
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Table 4.27 Pearson and Kendall correlations for (Y|,Y3,Y3,Y4,Ys) and the corresponding € matrix,
together with the AIC and BIC scores for the Gaussian copula.

Method P Method K
| 0.053 —-0.500 —0.060 —0.208
Pearson 0.053 | 0.169 0.844 0.567
correlation —0.500 0.169 | 0.303 0.417
among Y (pjj) —0.060 0.844 0.303 | 0.725

—0.208 0.567 0417 0.725 |

| —0.103 —-0.620 —0.113 —0.175

Kendall —0.103 | 0.177 0.747  0.592
correlation —0.620 0.177 | 0.209 0.279
among Y (T;) —0.113 0.747  0.209 | 0.662

—0.175 0.592  0.279  0.662 |

| 0.065 —0.914 —-0.077 -—0.26l

Correlation 0.065 I 0249 088l 0.635 | —0.161 —0.827 —0.176 —0.272

matrix C (5) | —0.914 0.249 | 0414 0533 P A S o

in Gaussian —0.077 0.881 0.414 | 0.780 70' 17 0'922 0.323 |. 0.8 3

copula —0261 0635 0533 0780 | —0.176 0. : 86
~0272 0802 0424 0863 |

AIC score 83.4 —1462.4

BIC score 121.8 —1424.0

to as Method P. Note that Eq. 4.28 is applicable only when Y’s are all lognormally
distributed. If they are not lognormal, Eq. 4.27 should be used in Method P to solve
for §j.

There is another method of estimating 8;; through the Kendall correlation t;; (Li
and Tang 2014):

8= sin(Tt z tii) (4.29)

This method of estimating 8 described in Eq. 4.29 is referred to as Method K. Note
that Method K is applicable regardless of the distribution types of Y.

Table 4.27 shows the Pearson correlations among (Y1, Y2, Y3, Y4, Y5) (pij), where
pij is estimated by Eq. 4.7 (X is replaced by Y), and Kendall correlations among (Y1,
Y2, Y3, Y4, Ys) (t5), where v is estimated by Eq. 4.25. Given pj;j and T, 8;; can be
determined using either Method P or Method K. The results are shown in Table 4.27.
Note that the 8;; estimated by Method P and Method K are quite different. To quantify
the goodness of fits to the Clay/5/345 database for the two calibrated Gaussian copulas,
both the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
are adopted (Li and Tang 2014). The AIC and BIC scores for the two Gaussian copulas
are summarized in Table 4.27. It is clear that the Gaussian copula using Method K
(matching Kendall correlation) provides better fit to the multivariate data in the sense
that AIC and BIC scores are significantly smaller (smaller is better).
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Figure 4.5 Comparison between simulated and measured data for the s, —o;, correlation produced by
() Method P and (b) Method K.

In addition to AIC and BIC, the fitness of the calibrated Gaussian copulas can
be verified by comparing their simulated samples with the measured data. Taking
the correlation between s, and o] as an example, Figure 4.5 shows the measured
data and the simulated data from Method P and Method K. It can be seen that both
methods can generate samples that broadly agree with the measured data in trend
and scatter. However, the samples from Method P exhibit larger scattering about the
main body of the measured data. On the other hand, the samples from Method K
provide better fit to the main body of the measured data. The reason is that the ;
estimated from Method P is 0.635, which is smaller than the 3;; estimated from Method
K (8;;=0.802). Therefore, Method P may underestimate the correlation between s, and
o), in multivariate modelling.

The reason why Method K outperforms Method P can be explained as follows:
Method P is applicable only when (Y1, Y3, Y3, Y4, Ys) are lognormally distributed.
In the case that (Y1, Y2, Y3, Y4, Ys) are only roughly lognormal, the errors for
the distribution fitting can affect the estimated 8;. On the other hand, Method K is
generally applicable regardless of the distribution types for (Y1, Y2, Y3, Y4, Ys). Even
if there are errors for distribution fitting, these errors do not affect the estimated §;;.
Therefore, Method K is superior to Method P for calibrating §;; in the Gaussian copula,
owing to both its simplicity and robustness.

It is also noteworthy that both Method P and Method K adopted in this section
match the correlations for the physical parameters (Y1, Y2, Y3, Y4, Ys). This is the
common method for estimating the C matrix in the Gaussian copula. The reason is
that only the correlation matrix for Y instead of the Y data is typically available in the
geotechnical practice. If the Y data is available, the data for Y can be firstly converted
to X and then estimate C using the X data. This method was adopted in Sections 4.4
and 4.5 and will be denoted by Method XP below, because it computes the Pearson
correlation for X.

Among Methods P, K, and XP, it is possible that Method K is the most robust
method of estimating the C matrix, because the accuracy in the estimated Kendall rank
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correlation is independent of the CDF transform from Y to X. The only assumption for
Method K is that the underlying X is multivariate normal, which is the assumption for
Eq. 4.29. Method XP requires the same assumption. However, Method XP estimates
the Pearson correlation for X. The estimated Pearson correlation will be inaccurate if
the converted X exhibits nonlinear correlations. Therefore, it is possible that Method
XP is less robust than Method K. For the Clay/5/345 dataset, X exhibits fairly linear
correlations. As a result, the C matrix estimated by Method XP (Table 4.5) is similar
to the one by Method K (Table 4.27). It is possible that Method P is the least robust,
because not only Method P requires the same assumption (underlying X is multivariate
normal) but Eq. 4.28 also requires the estimation for &; and &;. If & and &; are esti-
mated inaccurately, Method P may perform poorly. Both Methods K and XP are not
afflicted by this issue. The robustness of these methods under the multivariate normal
framework has been recently systematically studied by Ching et al. (2016). To our
knowledge, the robustness of these methods has not been studied systematically using
simulated multivariate non-normal data. This is a fruitful topic for future research.

4.7.5 Comparison between the Gaussian and t copulas

In the previous section, the Gaussian copula is adopted. However, the Gaussian copula
may not be the best choice for the Clay/5/345 database. Thus, this section further
compares the suitability of the t copula against the Gaussian copula.

The calibration method adopted here is different from that adopted in the previous
section. In the previous section, 8;; is estimated by either Method P or Method K. These
methods are “methods of moments”. However, the degrees of freedom v in the t copula
cannot be calibrated using these methods. In this section, the Maximum Likelihood
Estimation (MLE) (McNeil et al. 2005) is adopted to determine §; and v in the t copula.
For consistency, the MLE is also adopted to determine 8;; in the Gaussian copula.

The resulting MLE’s for §; and v are shown in Table 4.28. For comparison, the
AIC and BIC scores for the calibrated Gaussian and t copulas are also given in the table.
First of all, the correlation matrix C in the Gaussian copula based on MLE should be
compared with that based on Method K (Table 4.27). They are fairly consistent, but the
AIC and BIC scores based on MLE are slightly smaller (MLE fits slightly better). Note
that MLE is considered as a robust method for parameter estimation and that Method

Table 4.28 Calibrated correlation matrices, degrees of freedom,AlIC and BIC scores for the Gaussian
and t copulas using MLE.

Gaussian copula t copula
Correlation | —0.115 —-0.818 —0.161 —0.277 | —0.112 —0.832 —0.159 —0.293
matrix C (&;) | —0.115 | 0260 0910 0.769 —0.112 | 0.250 0913 0.763
in Gaussian or | —0.818 0.260 | 0.332 0.425 —0.832 0.250 | 0.323  0.429
t copula —0.161 0910 0.332 | 0.838 —0.159 0913 0.323 | 0.833

—0.277 0.769 0.425 0.838 | —0.293 0.763 0.429 0.833 |

Degrees of 00 15
freedom v
AIC score —1474.3 -1489.9

BIC score —1435.9 -1447.7
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K performs similarly with MLE. This indicates that Method K should be considered
as a robust method of estimating 8;; in the Gaussian copula as well.

Recall that the degrees of freedom v in the t copula characterize the degree of
non-normality. With MLE for v=15 (relatively high), it is expected that the degree
of non-normality in the Clay/5/345 database is insignificant. This explains why the
calibrated correlation matrices C for the Gaussian and t copulas (Table 4.28) are quite
similar. The AIC and BIC scores also give the same conclusion: the scores for the
Gaussian and t copulas are not very different (the t copula performs slightly better).
Therefore, the Gaussian copula can be considered as an appropriate copula for the
Clay/5/345 database.

Recall that the Gaussian copula is uniquely characterized by the correlation matrix
C, and C can be determined in both the full multivariate manner and the entry-by-
entry bivariate manner. Therefore, the Gaussian copula is applicable to both genuine
multivariate data and incomplete multivariate data with multiple sets of bivariate data.
It has been noted that the correlation matrix produced by multiple sets of bivariate
data may not be positive definite, but a bootstrap method proposed by Ching and
Phoon (2014b) can be applied to mitigate this issue. On the other hand, the t copula
is governed by both the correlation matrix C and the degrees of freedom v. Since v
cannot be calibrated from the correlations for Y, the t copula is only applicable to
genuine multivariate data with the aid of MLE.

4.8 CONCLUSIONS

It is possible to construct the multivariate probability distributions of soil parameters
based on the databases in the literature. Several such multivariate databases and dis-
tributions are demonstrated in this chapter. The main challenge lies in the fact that
genuine multivariate soil data are rarely available in the literature. Nonetheless, with
the techniques discussed in this chapter, it is still possible to construct the multivari-
ate distribution based on bivariate correlation data in the literature. Moreover, it is
possible to go beyond the multivariate normal distribution with the aid of the copula
theory. The copula theory decomposes a multivariate distribution into a copula func-
tion and multiple marginal (univariate) distributions. As a result, the modelling of a
multivariate distribution is simplified into the selection of an appropriate copula and
marginal distributions.

With the multivariate distribution of soil parameters, it is possible to update the
probability distributions for the target parameters (e.g., s,) based on the information
of multiple soil parameters (e.g., Atterberg’s limits and CPTU parameters) through
Bayesian analysis. Such Bayesian analysis can be done for both the aforementioned
multivariate normal distribution framework and the copula framework. By incorpo-
rating multiple soil information, the COVs in the target parameters can be further
reduced. Chapter 6 will discuss simplified RBD methods that are sufficiently respon-
sive to a wide range of COVs. With such simplified RBD methods, the multiple soil
information can be converted into more economical design outcomes (e.g., a shorter
pile). By doing this, the linkage between site investigation efforts and geotechnical
RBD outcomes can be constructed in an explicit and defensible way. The construction
of this linkage is a unique topic in geotechnical engineering.



124 Reliability of Geotechnical Structures in 1SO2394

REFERENCES

Bjerrum, L. (1954) Geotechnical properties of Norwegian marine clays. Geotechnique, 4 (2),
49-69.

Bjerrum, L. & Simons, N.E. (1960) Comparison of shear strength characteristics of normally
consolidated clays. In: Proc. of Research Conference on Shear Strength of Cobesive Soils.
Boulder, ASCE. pp. 711-726.

Bolton, M.D. (1986) The strength and dilatancy of sands. Geotechnique, 36 (1), 65-78.

Chen, B.S.Y. & Mayne, P.W. (1996) Statistical relationships between piezocone measurements
and stress history of clays. Canadian Geotechnical Journal, 33 (3), 488-498.

Chen, J.R. (2004) Axial Behavior of Drilled Shafts in Gravelly Soils. PhD Dissertation. Ithaca,
NY, Cornell University.

Ching, J. & Phoon, K.K. (2012a) Modeling parameters of structured clays as a multivariate
normal distribution. Canadian Geotechnical Journal, 49 (5), 522-545.

Ching, J. & Phoon, K.K. (2012b) Corrigendum: Modeling parameters of structured clays
as a multivariate normal distribution. Canadian Geotechnical Journal, 49 (12), 1447-
1450.

Ching, J. & Phoon, K.K. (2012c¢) Establishment of generic transformations for geotechnical
design parameters. Structural Safety, 35, 52-62.

Ching, J. & Phoon, K.K. (2013) Multivariate distribution for undrained shear strengths under
various test procedures. Canadian Geotechnical Journal, 50 (9), 907-923.

Ching, ]J. & Phoon, K.K. (2014a) Transformations and correlations among some
clay parameters — The global database. Canadian Geotechnical Journal, 51 (6),
663-685.

Ching, J. & Phoon, K.K. (2014b) Correlations among some clay parameters — The multivariate
distribution. Canadian Geotechnical Journal, 51 (6), 686-704.

Ching, J. & Phoon, K.K. (2015a) Constructing multivariate distributions for soil parame-
ters. Chapter 1. In: Phoon, K.X. & Ching J. (eds.) Risk and Reliability in Geotechnical
Engineering. London, Taylor & Francis.

Ching, J. & Phoon, K.K. (2015b) Reducing the transformation uncertainty for the mobilized
undrained shear strength of clays. ASCE Journal of Geotechnical and Geoenvironmental
Engineering, 141 (2), 04014103.

Ching, J., Phoon, K.K. & Chen, Y.C. (2010) Reducing shear strength uncertainties in clays by
multivariate correlations. Canadian Geotechnical Journal, 47 (1), 16-33.

Ching, J., Chen, J.R., Yeh, J.Y. & Phoon, K.K. (2012) Updating uncertainties in friction angles
of clean sands. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 138 (2),
217-229.

Ching, J., Phoon, K.K. & Lee, W.T. (2013) Second-moment characterization of undrained
shear strengths from different test modes. In: Foundation Engineering in the Face of
Uncertainty, Geotechnical Special Publication Honoring Professor F. H. Kulbawy. ASCE.
pp. 308-320.

Ching, J., Phoon, K.K. & Yu, J.W. (2014a) Linking site investigation efforts to final design
savings with simplified reliability-based design methods. ASCE Journal of Geotechnical and
Geoenvironmental Engineering, 140 (3), 04013032.

Ching, J., Phoon, K.K. & Chen, C.H. (2014b) Modeling CPTU parameters of clays as a
multivariate normal distribution. Canadian Geotechnical Journal, 51 (1), 77-91.

Ching, J., Li, D.Q. & Phoon, K.K. (2016) Robust estimation of correlation coefficients
among soil parameters under the multivariate normal framework, conditionally accepted
by Structural Safety.

D’Ignazio, M., Phoon, K.K., Tan, S.A. & Linsivaara, T.T. (2016) Correlations for undrained
shear strength of Finnish soft clays, Canadian Geotechnical Journal, in press.



Statistical characterization of multivariate geotechnical data 125

Evans, J.D. (1996) Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publish-
ing, Pacific Grove, CA.

Hatanaka, M. & Uchida, A. (1996) Empirical correlation between penetration resistance and
internal friction angle of sandy soils. Soils and Foundations, 36 (4), 1-9.

Huffman, J.C. & Stuedlein, A.W. (2014) Reliability-based serviceability limit state design
of spread footings on aggregate pier reinforced clay. ASCE Journal of Geotechnical and
Geoenvironmental Engineering, 140 (10), 04014055.

Jamiolkowski, M., Ladd, C.C., Germain, J.T. & Lancellotta, R. (1985) New developments in
field and laboratory testing of soils. In: Proceeding of the 11th International Conference on
Soil Mechanics and Foundation Engineering, San Francisco. Vol. 1. pp. 57-153.

Jensen, EV. (1996) An Introduction to Bayesian Networks. New York, Springer.

Kulhawy, EH. & Mayne, P.W. (1990) Manual on Estimating Soil Properties for Foundation
Design. Report EL-6800. Palo Alto, Electric Power Research Institute. Available online at
EPRL.COM.

Ladd, C.C. & Foott, R. (1974) New design procedure for stability in soft clays. ASCE Journal
of the Geotechnical Engineering Division, 100 (7), 763-786.

Li, D.Q. & Tang, X.S. (2014) Modeling and simulation of bivariate distribution of shear strength
parameters using copulas. Chapter 2. In: Risk and Reliability in Geotechnical Engineering.
Boca Raton, CRC Press. pp. 77-128.

Li, D.Q., Tang, X.S., Zhou, C.B. & Phoon, K.K. (2012) Uncertainty analysis of correlated
non-normal geotechnical parameters using Gaussian copula. Science China Technological
Sciences, 55 (11), 3081-3089.

Li, D.Q., Tang, X.S., Phoon, K.K., Chen, Y.F. & Zhou, C.B. (2013) Bivariate simulation using
copula and its application to probabilistic pile settlement analysis. International Journal for
Numerical and Analytical Methods in Geomechanics, 37 (6), 597-617.

Li, D.Q., Zhang, L., Tang, X.S., Zhou, W., Li, J.H., Zhou, C.B. & Phoon, K.K. (2015) Bivariate
distribution of shear strength parameters using copulas and its impact on geotechnical system
reliability. Computers and Geotechnics, 68, 184-195.

Liu, S., Zou, H., Cai, G., Bheemasetti, B.V., Puppala, A.]. & Lin, J. (2016) Multivariate cor-
relation among resilient modulus and cone penetration test parameters of cohesive subgrade
soils, Engineering Geology, 209, 128-142.

Locat, J. & Demers, D. (1988) Viscosity, yield stress, remoulded strength, and liquidity index
relationships for sensitive clays. Canadian Geotechnical Journal, 25, 799-806.

Marcuson III, W.E & Bieganousky, W.A. (1977) SPT and relative density in course sands. ASCE
Journal of the Geotechnical Engineering Division, 103 (11), 1295-1309.

Mayne, P.W., Christopher, B.R. & DeJong, J. (2001) Manual on Subsurface Investigations.
National Highway Institute Publication No. FHWA NHI-01-031. Washington, DC, Federal
Highway Administration.

McNeil, A.]., Frey, R. & Embrechts, P. (2005) Quantitative Risk Management: Concepts,
Techniques and Tools. Princeton, Princeton University Press.

Mesri, G. (1975) Discussion on “New design procedure for stability of soft clays”. ASCE Journal
of the Geotechnical Engineering Division, 101 (4), 409-412.

Mesri, G. (1989) A re-evaluation of s,(mob)=0.220, using laboratory shear tests. Canadian
Geotechnical Journal, 26 (1), 162-164.

Mesri, G. & Huvaj, N. (2007) Shear Strength Mobilized in Undrained Failure of Soft Clay and
Silt Deposits. ASCE Geotechnical Special Publication 173, Geo-Denver.

Mitchell, J.K. (1993) Fundamentals of Soil Behaviour. 2nd edition. New York, John Wiley
and Sons.

Miiller, R., Larsson, S. & Spross, J. (2014) Extended Multivariate Approach for Uncertainty
Reduction in the Assessment of Undrained Shear Strength in Clays, Canadian Geotechnical
Journal, 51 (3), 231-245.


http://www.EPRI.COM

126 Reliability of Geotechnical Structures in 1SO2394

NAVFAC (1982) Soil Mechanics DM7.1. Naval Facilities Engineering Command, Alexandria.

Nelsen, R.B. (2006) An Introduction to Copulas. 2nd edition. New York, Springer.

Ng, L.T., Yuen, K.V. & Dong, L. (2016) Nonparametric estimation of undrained shear strength
for normally consolidated clays. Marine Georesources and Geotechnology, 34 (2), 127-137.

Phoon, K.K. & Ching, J. (2013) Multivariate model for soil parameters based on Johnson distri-
butions. In: Withiam, J.L., Phoon, K.K. & Hussein, M.H. (eds.) Foundation Engineering in
the Face of Uncertainty: Honoring Fred H. Kulhawy (GSP 229). Reston, ASCE. pp. 337-353.

Phoon, K.K., Ching, J. & Huang, H.W. (2012) Examination of multivariate dependency struc-
ture in soil parameters. In: GeoCongress 2012 — State of the Art and Practice in Geotechnical
Engineering (GSP 225). Reston, ASCE. pp. 2952-2960.

Rad, N.S. & Lunne, T. (1988) Direct correlations between piezocone test results and undrained
shear strength of clay. In: Proc. International Symposium on Penetration Testing, ISOPT-1,
Orlando. Vol. 2. Rotterdam, Balkema. pp. 911-917.

Robertson, P.K. & Campanella, R.G. (1983) Interpretation of cone penetration tests: Part I —
Sands. Canadian Geotechnical Journal, 20 (4), 718-733.

Salgado, R., Bandini, P. & Karim, A. (2000) Shear strength and stiffness of silty sand. ASCE
Journal of Geotechnical and Geoenvironmental Engineering, 126 (5), 251-462.

Slifker, J.F. & Shapiro, S.S. (1980) The Johnson system: Selection and parameter estimation.
Technometrics, 22 (2), 239-246.

Stas, C.V. & Kulhawy, EH. (1984) Critical evaluation of design methods for foundations under
axial uplift and compressive loading. Report EL-3771. Palo Alto, Electric Power Research
Institute.

Tang, X.S., Li, D.Q., Rong, G., Phoon, K.K. & Zhou, C.B. (2013) Impact of copula selec-
tion on geotechnical reliability under incomplete probability information. Computers and
Geotechnics, 49, 264-278.

Tang, X.S., Li, D.Q., Zhou, C.B. & Phoon, K.K. (2015) Copula-based approaches for evaluating
slope reliability under incomplete probability information. Structural Safety, 52, 90-99.
Wroth, C.P. & Wood, D.M. (1978) The correlation of index properties with some basic

engineering properties of soils. Canadian Geotechnical Journal, 15 (2), 137-145.

Wu, X.Z. (2013) Probabilistic slope stability analysis by a copula-based sampling method.
Computational Geosciences, 17 (5), 739-755.

Zhang, J., Huang, H.W., Juang, C.H. & Su, W.W. (2014) Geotechnical reliability analysis
with limited data: Consideration of model selection uncertainty. Engineering Geology, 181,
27-37.



Chapter 5

Statistical characterization
of model uncertainty

Mahongo Dithinde, Kok-Kwang Phoon, Jianye Ching,
Limin Zhang, and Johan V. Retief

ABSTRACT

One of the key elements for practical implementation of RBD in geotechnical engi-
neering is the characterization of calculation model uncertainty. The calculation models
used in the analysis and design of geotechnical structures are in general incomplete and
inexact as a result of lack of knowledge or simplification for mathematical convenience.
The objective of this chapter is to present available methodologies for characterizing
calculation model uncertainty for geotechnical structures. Although the examples given
are limited, the methodologies presented are applicable to a wide range of geotechnical
structures. First, the general statistical characterization entailing (a) exploratory data
analysis, (b) outliers detection and correction of anomalous values, (c¢) using the cor-
rected data to compute the sample moments (mean, standard deviation, skewness, and
kurtosis), (d) verification of the randomness of the model factor, (e) determining the
appropriate probability distribution for M and (f) removal of statistical dependencies
is presented. This is followed by a presentation of published model factor statistics for
geotechnical structures at ultimate and serviceability limit states. It is concluded that
significant data on model uncertainty statistics is now available as prior information
to enable reliability calibration of partial factors required for semi-probabilistic design
approach.

5.1 INTRODUCTION

Calculation model uncertainty is one of the important sources of geotechnical design
uncertainties with a significant influence on reliability analysis and code calibration of
partial factors for semi-probabilistic design. It arises from imperfections of analytical
models for representing geological conditions and predicting engineering behaviour.
Generally, the mathematical modelling of physical processes entails making unrealistic
assumptions and simplifications physically and geometrically just to create a useable
and oftentimes an analytically tractable model. For example, Boussinesq’s solution
for stresses beneath a point load assumes that the soil is semi-infinite, homogeneous,
isotropic and elastic. Obviously, stresses obtained by equations based on these assump-
tions may differ from stresses obtained in real soil by a significant margin. Even the
derivation of the classical Terghazi’s bearing capacity equation makes the assump-
tion that the soil beneath the foundation is a homogeneous semi-infinite mass. But
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as demonstrated in Chapter 3, soils exhibit inherent spatial variability, making the
assumption of homogeneity unrealistic. Therefore inevitably, calculation models for
resistance and load effects are an over simplifications of complex real world phenom-
ena. Consequently, there is uncertainty in the calculation model predictions even if
the model inputs are known with certainty. It is for this reason that the Probabilistic
Model Code of the Joint Committee on Structural Safety (JCSS 2001) considers model
uncertainty to be a random variable accounting for the effects neglected in the models
and simplifications in the mathematical relations.

In the August 2016 revised version of JCSS (2001), the following “indica-
tive” model statistics are recommended for the following geotechnical structures in
Table 3.7.5.1:

1. Embankment slope stability based on failure arc analysis (e.g., Bishop, Spencer,
etc.) or 2-D FEM
— Homogeneous soils (mean = 1.1, standard deviation = 0.05)
— Non homogeneous soils (mean =1.1, standard deviation =0.10)
2. Stability of retaining (sheet piled) walls based on Brinch Hansen, or Blum, Elastic/
plastic spring supported beam model (mean = 1.0, standard deviation =0.10)
3. Shallow foundations stability based on Brinch Hansen
— Homogeneous soil profile (mean =1.0, standard deviation =0.15)
— Non homogeneous soil profile (mean = 1.0, standard deviation =0.20)
— Settlement: prediction (mean = 1.0, standard deviation =0.20-0.30)
4. Foundation piles (driven) based on CPT based empirical design rules
— DPoint bearing capacity (mean = 1.0, standard deviation=0.25)
— Shaft resistance (mean = 1.0, standard deviation =0.15)
5.  Embankment settlement prediction (mean = 1.0, standard deviation = 0.20)

However, it is not explained if these indicative statistics were estimated from load
test databases or were gathered primarily from engineering experience.

The current practice in quantifying model uncertainty in various fields includ-
ing geotechnical engineering, involves comparing results produced by the theoretical/
computational model with physical test results. Hence, model uncertainty is generally
represented in terms of the ratio of the measured to predicted values. In this Chapter,
this ratio is referred to as the model factor. Mathematically the model factor (M) is
expressed as:

R

M=-"
R,

(5.1)

where R,, = measured or real response estimated from test results and R, = calculated
response based on the theoretical/computational model (called “calculation model”
from hereon). Eq. (5.1) is identical to Eq. 3.9.3, Section 3.9 of JCSS (2001).

In Eq. (5.1), it should be noted that measured response can also be affected by test-
ing uncertainties. However, well conducted tests should produce fairly reliable results.
Ideally, robust model uncertainty statistics can only be evaluated using: (1) realistically
large-scale prototype tests, (2) a sufficiently large and representative database, and (3)
reasonably high quality testing where extraneous uncertainties are well-controlled.
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With the possible exception of foundations, insufficient test data are available to per-
form robust characterization of model uncertainties in many geotechnical calculation
models. Furthermore, it is important to note that the model factor applies to a specific
set of conditions (e.g., failure mode, calculation model, local conditions and experience
base, etc.). Therefore, a proliferation of model factors can be expected.

It should be noted that a set of observations of the model factor will take on a range
of values representing a sample from the population of interest. Such a raw dataset does
not convey much information and therefore needs to be reduced to manageable forms
to facilitate its interpretation. It is therefore natural to consider M as a random variable
following some probability distribution function. To estimate the statistical properties
of this random variable, the following steps are taken: (a) exploratory data analysis,
(b) outlier detection and correction of anomalous values, (c) using the corrected data to
compute the sample moments (mean, standard deviation, skewness, and kurtosis), (d)
verification of the randomness of M, and (e) determining the appropriate probability
distribution for M. If M is not random, additional steps are needed to remove its
dependency on some underlying parameters.

This Chapter first presents the general methodologies for deriving model uncer-
tainty statistics. Published model factor statistics for geotechnical structures, mostly
foundations, are next presented. These include (1) laterally loaded rigid bored piles
(ULS), (2) axially loaded piles (ULS), (3) shallow foundations (ULS), (4) axially loaded
piles (SLS), (4) limiting tolerable displacement (SLS); (5) factor of safety of a slope
calculated by limit equilibrium method and (6) base heave for excavation in clays.

5.2 EXPLORATORY DATA ANALYSIS

The first stage in any data analysis is to explore the data collected in order to reveal
general patterns/features of the dataset. Accordingly, the compiled database of model
factor observations needs to be subjected to exploratory data analysis, which generally
involves examination of graphical outputs (e.g., histograms and normality tests) and
descriptive statistics. Figure 5.1 presents an illustration of an output of exploratory
data analysis for model factors of pile capacities. The histograms of two datasets
consisting of N observations are compared to the probability density functions for a
lognormal distribution based on the sample mean and standard deviation (S.D.) in this
example. The Anderson-Darling test probability pap for goodness of fit to normality
(In(M) is normal if M is lognormal) is presented as well. A probability less than 0.05
means the hypothesis of normality can be rejected.

It is apparent from Figure 5.1 that the graphical display uncovers the following
hidden or at least not readily noticed features in the dataset:

e Immediate impression of the range of the data, its most frequently occurring values,
and the degree to which it is scattered about the mean,
Outlying observations which somehow do not fit the overall pattern of the data,
The exhibition of two or more peaks which may imply an inhomogeneous mixture
of data from different samples,
Whether the data is symmetric or asymmetric,
Indication of the underlying theoretical distribution for the data.
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Figure 5.1 Exploratory data analysis of model factors of pile capacities (After Dithinde et al. (2011)
with permission from ASCE).

For reliability analysis and design, the key statistics are the mean and the stan-
dard deviation, among others. In addition to the measure of centrality and dispersion,
the sample mean (#1)) and sample standard deviation (sy) of the model factor are
considered as indicators of the accuracy and precision of the calculation method. An
accurate and precise method gives mp; =1 and sy = 0 respectively, which means that
for each case, the calculated capacity equals the measured capacity (an ideal case).
However, due to presence of uncertainties, the ideal case cannot be attained in prac-
tice. Therefore in reality, a calculation method is considered better when ) is close to
1 and sy is close to 0. In general, when m5; > 1, the calculated capacity is less than the
actual capacity, which is conservative and safe; whereas when #13; < 1, the calculated
capacity is greater than the actual capacity, which is unconservative and unsafe.

Ideally, a calculation model should capture the key features of the physical system,
and the remaining difference between the model and reality should be random in
nature because it is caused by numerous minor factors that were left out of the model.
The statistics of the model factor should capture these random differences resulting
from model idealisations. In practice, the ratio between the measured result and the
calculated result may not be random in the sense that it is systematically affected
by input parameters such as the problem geometry. It is incorrect to model M as a
random variable in this situation. The simplest approach to remove dependency is
by linear regression of In(R,,) on In(R.). If Eq. (5.1) is applicable, the gradient of
the line should be close to 1. The statistical treatment of model factor data is closely
related to the field of design assisted by testing for which guidance is provided by ISO
2394:2015 Annex C and EN 1990:2002 Annex D. In fact, Eq. (5.1) is identical to Eq.
(C.14) in ISO 2394:2015 Annex C. A general approach towards the classification and
statistical treatment of model uncertainty is presented by Holicky et al. (2015) and
implementation is demonstrated by Dithinde et al. (2011).
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5.3 DETECTION OF DATA OUTLIERS

Data outliers are extreme values (high or low) that appear to deviate markedly from the
main body of a data set. In general, outliers in data may be attributed to human error,
instrument error and/or natural deviations in populations. The presence of outliers
may greatly influence any calculated statistics leading to biased results. For instance,
they may increase the variability of a sample and decrease the sensitivity of subsequent
statistical tests (McBean and Rovers, 1998). Therefore, prior to further numerical
treatment of samples and application of statistical techniques for assessing the param-
eters of the population, it is important to identify extreme values and correct erroneous
ones. However, it is important to note that there is also a possibility that what appears
to be an outlier is a correct observation representing the true state of nature. There-
fore, the data point suspected to be an outlier must be carefully scrutinised for errors
to justify its exclusion from subsequent analysis.

A number of procedures have been developed to detect outliers. The procedures can
be divided into univariate and bivariate approaches. In a univariate approach, screen-
ing data for outliers is carried out on each variable while in the bivariate approach,
variables are considered simultaneously. In this regard the sample z-score and box plots
constitute a basic univariate approach while scatter plots of predicted versus actual
performance constitute a common bivariate approach. Since there may be some cor-
relation between the variables, the bivariate approach is considered to be statistically
superior as it considers more information (Robinson et al. 2005).

5.3.1 Sample z-score method

The z score is a measure of the number of standard deviations that an observation is
above or below the mean. A positive z-score indicates that the observation is above
the mean while a negative z-score denotes that the observation is below the mean. The
z-score of an observation in a given data set is given by the expression:

(5.2)

where: x = original data value; X = the sample mean; s = the sample standard deviation;
z =the z-score corresponding to x.

According to Chebychev’s rule, in any distribution, the proportion of scores
between the mean and k standard deviation contains at least 1 — 1/k? scores. This
rule implies at least 75% of the scores lie between the mean plus/minus two standard
deviations (+2s), and 89% of the scores would lie between the mean plus/minus three
standard deviations (+3s). Another commonly adopted rule based on frequency expec-
tations produced by the normal distribution is the following: approximately 68% of
the z-scores reside between mean and +1s, approximately 95% of the scores resides
between mean and +2s, and approximately 99% of the scores reside between mean
and #3s. Both rules have led to the general expectation that almost all the observations
in a data set will have z-score less than 3 in absolute value. This implies that all the
observation will fall within the interval (x — 3s to x + 3s). Therefore the observation
with z-score greater than +3 is considered an outlier.



132 Reliability of Geotechnical Structures in 1SO2394

4
O D-NC

3 b -
0O B-NC gé
X D-C

2 L 4
* 48

Z-score

Figure 5.2 Sample z-scores for model factors from 4 load test databases: D-NC (driven piles in non-
cohesive soils), B-NC (bored piles in non-cohesive soils), D-C (driven piles in cohesive soils)
and B-C (bored piles in cohesive soils) (After Dithinde and Retief 2013).

To apply the above principle to the model factor dataset, first the z-score for each
data point is determined and the z-scores are then plotted against the model factors
(original data values). As an illustration, plots of z-score versus the model factors of pile
capacities are presented in Figure 5.2 for four load test databases. Two observations
located at z =3 can be identified as potential outliers.

5.3.2 Box plot method

The box plot method is a more formalised statistical procedure for detecting outliers
in a data set. A box plot displays a S-number summary in a graphical form. The
5-number summary consists of; the most extreme values in the data set (the maximum
and minimum values), the lower and upper quartiles, and the median. These values are
presented together and ordered from lowest to highest: minimum value, lower quartile,
median value, upper quartile, and largest value. Each of these values describe a specific
part of a data set: the median identifies the centre of a data set; the upper and lower
quartiles span the middle half of a data set; and the highest and lowest observations
provide additional information about the actual dispersion of the data.

In using the box plot to identify outliers in the data set, the inter-quartile range
(IQR) is required. The inter-quartile range is the difference between the upper quartile
and the lower quartile. Any observation that is more than 1.5 IQR beyond the upper
and lower quartiles is regarded as an outlier. Typical examples of box plots are pre-
sented in Figure 5.3, indicating observations 53 and 156 to be classified as outliers
from load test databases B-NC and B-C, respectively.
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Figure 5.3 Box Plot methods for model factors from load test databases: B-C (bored piles in cohesive
soils) and B-NC (bored piles in non-cohesive soils) (Dithinde and Retief 2013).
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Figure 5.4 Scatter plots of measured capacity versus calculated capacity for driven in non-cohesive
soils (D-NC) and bored piles in non-cohesive soils (B-NC) (After Dithinde et al. 201 |) with
permission from ASCE.

5.3.3 Scatter plot method

The main variables in the computation of model factor realisations are the calculated
and measured results. It is reasonable to expect the calculated and measured results to
be positively correlated, i.e. the calculated result should be large when the measured
result is large and vice-versa. Situations that do not follow this expectation would
appear as a point lying a significant distance from the general trend of the data in the
scatter plots of measured capacity (Q,,) vs calculated capacity (Q.). Typical examples
for pile foundation are presented in Figure 5.4. It can be seen that two data points in
the bored piles in non-cohesive soils dataset (case no. 53 and 55) are potential outliers.
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54 PROBABILISTIC MODEL FORM

The theory of reliability is based on a general principle that the basic variables (actions,
material properties and geometric data) can be modeled as random variables having
appropriate types of probability distribution. Accordingly, one of the key objectives of
statistical characterization of the model factor is to determine its distribution function.
This is customarily interpreted as the “actual” probability distribution of the random
variable under consideration and therefore extends beyond the available sample (i.e.
the distribution of the entire population). Once the probability distribution function is
known, inferences based on the statistical properties of the distribution can be made.
Needless to say, in the presence of a finite sample size, the “actual” probability distri-
bution cannot be identified with certainty. To be more specific, every sample quantile
(the collection of all sample quantiles forms the empirical cumulative distribution func-
tion) is subject to statistical uncertainty. It is well-known that the statistical uncertainty
increases as the sample quantile value decreases. The sample mean and standard devi-
ation are subject to statistical uncertainty as well. This statistical uncertainty aspect is
not covered in this Chapter.

For reliability calibration and related studies, the most commonly applied distribu-
tions to describe actions, materials properties and geometric data are the normal and
lognormal distributions (Holicky, 2009; Allen et al. 20035). Therefore, it is reasonable
to test goodness-of-fit to the normal and lognormal distribution before considering
more complicated distributions. The goodness-of-fit can be examined through (i) a
cumulative distribution function (CDF) plotted using a standard normal variate, z as
the vertical axis, and (ii) direct distribution fitting to the data.

The cumulative distribution function is a common tool for statistical characteri-
zation of random variables used in reliability calibration (e.g., Allen et al. 2005). In
the context of the model factor analysis, the CDF is a function that represents the
probability that a value of M less than or equal to a specified value. The CDF should
be familiar to geotechnical engineers, because it is identical to the grain size gradation
curve. This probability can be transformed to the standard normal variable (or vari-
ate), z, and plotted against M values (on x-axis) for each data point. This approach
is equivalent to plotting the model factor values and their associated probability val-
ues on a normal probability paper. An important property of a CDF plotted in this
manner is that normally distributed data plot as a straight line while lognormally
distributed data on the other hand will plot as a curve. Examples of CDF plots are
presented in Figure 5.5. A further characterization entails fitting predicted normal
and lognormal distributions to the CDF of the data sets. These theoretical distribu-
tions are also shown in Figure 5.5. Both distributions seem to fit the data reasonably
well, although the lognormal distribution seems to provide a slightly better fit at
the tails.

In the direct distribution fitting method, normal and lognormal probability density
functions based on the sample moment parameters are fitted to the histogram of M as
illustrated in Figure 5.6. The graphical comparison indicates the degree to which the
alternative distributions provide a smoothed representation of the M data. The uneven
nature of the histogram is expected for a finite sample size. A large sample size produces
less unevenness. It is not possible to judge if the degree of unevenness is explainable
by statistical uncertainties associated with a finite sample size by inspection.
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Figure 5.5 CDF plots with normal and lognormal fit (After Dithinde and Retief 2013).
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Figure 5.6 Normal and lognormal distribution fit to the data (After Dithinde and Retief 2013).

The quantitative assessment of the difference between the empirical data fre-
quencies and the assumed distributions is achieved through a goodness-of-fit test. In
Figure 5.6, the Chi-Square goodness-of-fit test was used. In these tests, the p-value is
a measure of the goodness of fit, with larger values indicating a better fit. Just like
the Anderson-Darling goodness-of-fit test was used in Figure 5.1, it is customary to
conclude that there is no evidence to reject a hypothesized distribution if the p-value
is larger than 0.05. However, based on past studies and practical considerations, a
lognormal distribution is found to be a more suitable probability distribution for the
model factor.
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5.5 VERIFICATION OF RANDOMNESS OF THE MODEL FACTOR

Reliability analysis is based on the assumption of randomness of the basic variables
including the model factor. Generally, the randomness of the model factor is verified by
investigating the presence or absence of correlation with related input parameters (e.g.,
material properties and geometric data) in the database. The presence of correlation
between M and deterministic variations in the input parameters would indicate that:

e The calculation model does not fully take the effects of the input parameters into
account.
e The assumption that M is a random variable is not valid.

The measure of the degree of association between variables is the correlation coef-
ficient. The basic and most widely used type of correlation coefficient is Pearson 7,
also known as the linear or product-moment correlation. The correlation can be neg-
ative or positive. When it is positive, the dependent variable tends to increase as the
independent variable increases; when it is negative, the dependent variable tends to
decrease as the independent variable increases. The numerical value of 7 lies between
the limits —1 and +1. A high absolute value of r indicates a high degree of association
whereas a small absolute value indicates a small degree of association. When the abso-
lute value is 1, the relationship is said to be perfect and when it is zero, the variables are
independent. These observations strictly apply to normal random variables. They are
approximately true for distributions close to normal. For strongly non-normal distri-
butions, the Spearman rank correlation coefficient is a more robust measure. For values
lying between these limits, a critical question is “when is the numerical value of the
correlation coefficient considered significant”? Several authors in various fields have
suggested guidelines for the interpretation of the correlation coefficient. The following
interpretation suggested by Franzblau (1958) seems to be popular:

Range of r: 0 to +0.2 — indicate no or negligible correlation.

Range of r: £0.2 to £0.4 — indicate a low degree of correlation.
Range of r: 0.4 to £0.6 — indicate a moderate degree of correlation.
Range of 7: £0.6 to £0.8 — indicate a marked degree of correlation.
Range of 7: £0.8 to 1 — indicate a high correlation.

The statistical significance of the correlation is determined through hypothesis
testing and presented in terms of the usual p-value. In this test, the null hypothesis is
that there is no correlation between M and the given input parameter (indicative of
statistical independence). A small p-value (p < 0.05) indicates that the null hypothesis
is not valid and should be rejected. The correlations between the model factor of a pile
capacity and inputs parameters (shaft length and diameter) are presented in Figure 5.7.

5.5.1 Removal of statistical dependencies

In order to correct for the calculation model uncertainty, the common practice is to
apply a model factor as an independent random variable on the calculated capacity.
This is only valid if the model factor does not vary systematically with some underlying
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Figure 5.7 Correlation between the model factor of a pile capacity and input parameters (shaft length
and diameter) (Adapted from Dithinde 2007).

factors. However, if there is some degree of correlation, then the calculated reliability
index is affected unless the correlation is explicitly accounted for. Even though corre-
lation can be incorporated into the reliability analysis, it complicates the calculations
as it involves transforming the original variables to a set of uncorrelated variables.
Therefore, to apply the model factor as an independent random variable in reliability
analysis, the statistical dependencies need to be removed. The two approaches to the
treatment of correlation are further discussed in the subsequent subsections.

5.5.1.1 Generalised model factor approach

The generalised model factor approach entails performing regression using the calcu-
lated values as the predictor variable. It was alluded to in section 5.4 that in general
the appropriate probabilistic model for the model factor is taken to be the lognor-
mal probability distribution. Taking pile foundations as an example, the generalised
model factor is derived from the regression of In(Q,,,) on In(Q.) where Q,, is the mea-
sured capacity and Q. is the calculated capacity. The resulting functional relationship
between In(Q,,) and In(Q,) is given by a general regression model of the form:

ln(Qm):a+bln(Qc>+8 (5.3)
in which @ and b are regression constants and ¢ is a normal random variable with zero

mean and non-zero variance.
Taking antilog on both sides of equation 5.3 yields;

O, =expla) - exp(e) - OF (5.4)
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The regression model in the form of Eq. 5.3 or 5.4 removes systematic effects and the
remaining component tends to appear random (Phoon and Kulhawy 2005).
Eq. (5.4) can be re-written as:

O, =expla +¢)Q? (5.5)
Let

expla+ &)= M (5.6)
Then;

O =MQ! (5.7)

Eq. (5.7) is the generalised representation of the model factor M. This equation is
immediately recognised as being of the same form as that for the conventional model
factor (i.e. O,, = MQ.). In fact, the conventional model factor is a special case of the
generalised model factor with b=1.

In equation (5.6), ¢ is a random variable and therefore M will likewise be random.
Assuming M is lognormally distributed, its mean and variance are as follows:

un = expla + 0.5&%)
om = tylexp(&) — 1] (5.9)

in which & is the standard deviation of €. The generalised model factor as presented in
Eq. (5.7) is not dimensionless in contrast to the conventional model factor equation.
The force unit (i.e. kN) adopted for the measured and predicted capacity is applicable to
Eq. (5.7). To make the generalised model factor dimensionless, both the measured and
calculated capacity need to be normalised. Dithinde (2007) investigated the following
normalization schemes for the generalised model factor for piles:

e Scheme 1: dividing In(Q,,,) and In(Q,) by area of pile base x atmospheric pressure
(ApPa)

e Scheme 2: dividing In(Q,,) and In(Q.) by volume of water displaced by the pile
(i.e. volume of piles x unit weight of water (V)

e Scheme 3: dividing In(QO,,,) and In(Q.) by weight of pile shaft (W)

The dimensionless generalised model factor is then obtained from the regression
analyses of normalised In(Q,,) on normalised In(Q.). Figure 5.8 presents two typical
regression results. The regression results presented in Figure 5.8 are then used in con-
junction with Eq. 5.8 and Eq. 5.9 to compute the required generalised model factor
statistics. The regression parameters and the ensuing generalised model factor statistics
for pile foundations are summarised in Table 5.1. It is evident from Table 5.1 that for
a given pile class, the model factor statistics corresponding to the three normalisation
schemes are comparable. Note that the statistics and the regression parameter “b” are
used as inputs into the performance function for computation of the reliability index.
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Figure 5.8 Regression of normalized In(Q.,) and In(Q.) (Adapted from Dithinde, 2007).

Table 5.1 Generalised model factor statistics for various normalisation schemes (Adapted from

Dithinde 2007).

Regression parameters

Generalised M statistics

Normalisation
Case Scheme R? a b £ U o cov
D-NC AyP, 0.88 —0.116 1.03 0.293 0.93 0.28 0.30
Vw 0.78 0.103 0.985 0.294 .16 0.35 0.30
Wi 0.55 0.527 0.887 0.291 1.77 0.53 0.30
B-NC AP, 0.76 —0.183 1.03 0.264 0.86 0.23 0.27
Vw 0.77 —0.019 0.993 0.264 1.02 0.27 0.27
W, 0.74 —0.425 1.094 0.262 0.68 0.18 0.27
D-C AyP, 0.68 0.223 0.977 0.273 1.30 0.36 0.28
Vw 0.74 0.670 0.89 0.267 2.02 0.55 0.27
Wi 0.74 0.571 0.89 0.267 1.83 0.50 0.27
B-C AP, 0.79 0.298 0.961 0.244 1.39 0.34 0.25
Vw 0.80 0.277 0.967 0.244 1.36 0.34 0.25
W, 0.80 0.248 0.967 0.244 1.32 0.33 0.25

5.5.1.2 Verification of removal of systematic dependency

The correlation of practical significance is that between the model factor and the
calculated performance. To verify the removal of such correlation, the regression error
(¢) which represents the model factor is plotted against the normalised In(Q.). For a
given pile class, the model error for a given data point is determined from Eq. (5.3).
As an example the model error for normalisation scheme 1 is given by:

e=In(Q,/App) —a—bIn(Q./Ap)

(5.10)
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Figure 5.9 Scatter plots of ¢ versus In(Q./AP) (Adapted from Dithinde 2007).

Illustrative scatter plots of the model error (¢) versus the calculated capacity are
presented in Figure 5.9. Visual inspection of the scatter plots shows that there is no
correlation between M (or ¢) and In(Q//Ap).

5.5.2 Model factor as a function of input parameters

The generalised model factor approach is purely empirical. Statistical dependencies are
removed in a gross manner by regressing the measured capacity against the calculated
capacity. There is no physical insight on the sources of these statistical dependencies.
The practical limitation that comes immediately to mind is how general are the gen-
eralised model factors and their statistics? A related limitation is that the scope of
applicability (for example, the range of pile lengths or soil strengths) is not explicit,
although one could argue that if the database covers most practical scenarios, the gen-
eralized model factors characterized from this database would be useful even in the
absence of an explicit scope of applicability.

Over-simplification is deliberately adopted at times to reduce the solution to a
simple analytical form. Although one may suspect various input parameters to be the
explanatory variables behind statistical dependencies between the model factor and the
calculated capacity, it is not easy to remove these dependencies in a more physical way
by regressing the model factor against each input parameter (in contrast to regressing
the model factor against the gross predicted capacity described in section 5.5.1.1)
because the values of these input parameters cannot be varied systematically in a load
test database for regression analysis.

Zhang et al. (2015) studied the calculation of cantilever retaining wall deflections
in undrained clay using the mobilized strength design (MSD) method proposed by
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Osman and Bolton (2004). The displacement model factor M is defined as:
S =M x 5. (5.11)

where §,, = measured wall top displacement either from case histories in the field or
from model tests in the laboratory and 8. = calculated displacement. The authors found
that this standard definition cannot be applied directly in the case of the MSD calcula-
tion method, because M is a function of six input parameters: (1) excavation width, (2)
excavation depth, (3) wall thickness, (4) at-rest lateral earth pressure coefficient, (5)
undrained shear strength ratio at mid-depth, and (6) ratio between undrained Young’s
modulus and undrained shear strength at mid-depth.

It is not possible to remove these dependencies from M using field data, because
the values of these input parameters cannot be varied systematically for regression
analysis. The authors proposed a rather novel approach consisting of: (1) removing
these dependencies using the finite element method (FEM) where the input parameters
can be freely varied and (2) characterizing the displacement model factor for the finite
element method which is unlikely to suffer from the same dependency problem, given
that it is mechanically more consistent. Step (1) is carried out by defining the ratio
between the FEM wall top displacement 8. pryp and the corresponding MSD calculated
displacement 8, nsp:

8c FEM =1 X 3¢ MSD (5.12)

The correction factor n in Eq. (5.12) can be decomposed into a systematic part
(f) that is determined using multivariate regression and a residual random factor n*
(regression error) as follows:

n=fxn* (5.13)

This regression can be carried out, because a large number of design scenarios described
by different combinations of the six input parameters can be analyzed using FEM and
MSD. No field data is involved in Eq. (5.12). Field data is involved in Step (2) where
the model factor for FEM (Mggny) is characterized in the usual way:

8m = MrEM X 8¢ FEM (5.14)

Zhang et al. (2015) showed that Mggys is indeed not plagued by the dependency
problem. Combining Steps (1) and (2), it is quite clear that the model factor for
MSD (M) is:

]\/IZZ\/Ilzm\/IX7fk Xf (5.15)

The critical observation here is that M is not a random variable because of the
deterministic function f, although it follows the standard model factor definition. More
specifically, M is the product of a random variable (Mggpm x %) and a deterministic
function f. One can also take the alternate view that the calculated displacement from
MSD should be modified by f. By rearranging Eq. (5.15), it is easy to see that the
model factor for this modified MSD method (8. msp x /) will be a random variable
M* = (Mpem x %)



142 Reliability of Geotechnical Structures in 1SO2394

Other geotechnical problems have been studied using the same framework:

e Bearing capacity of strip footings under combined positive loading (Phoon &
Tang 2015a), combined negative loading and combined general loading (including
positive and negative loading) (Phoon & Tang 2015b).

Bearing capacity of circular footings on dense sand (Tang & Phoon 2016a).
Uplift capacity of helical anchors in clay (Tang & Phoon 2016b).

The results are summarized in Table 5.2. The main differences in these studies from
Zhang et al. (2015) are that: (a) FEM is replaced by finite element limit analysis (FELA)
and (b) ultimate limit state is considered rather than serviceability limit state. It should
be pointed out that the size of the load test database adopted by Phoon and Tang
(2015a, 2015b) was larger than what is commonly available in practice: 120 load
tests for combined positive loading and 72 load tests for combined negative loading.
Because the size of a load test database is usually much smaller, Phoon and Tang (2015¢)
examined the effect of the load test database on the model statistics by randomly
drawing smaller databases from the original large parent databases.

5.6 AVAILABLE MODEL FACTOR STATISTICS

Available model factor statistics are primarily restricted to simple calculation methods
for foundations. This section presents model statistics for a variety of foundations at the
ultimate and serviceability limit states (ULS and SLS): Section 5.6.1 — laterally loaded
rigid bored piles (ULS); Section 5.6.2 — axially loaded piles (ULS); Section 5.6.3 —
shallow foundations (ULS); Section 5.6.4 — axially loaded foundations (SLS); Section
5.6.5 — limiting tolerable displacement (SLS). Section 5.6.6 presents model statistics
for the factor of safety of a slope calculated by limit equilibrium method while Section
5.6.7 presents model statistics for the basal heave factor of safety in excavation in clays.

5.6.1 Laterally loaded rigid bored piles (ultimate limit state)

The capacity of a laterally loaded pile is typically predicted using conventional ulti-
mate lateral soil stress models. The statistics of the model factor for different ultimate
lateral soil stress models under undrained and drained loading modes are presented in
Table 5.3.

5.6.2 Axially loaded piles (ultimate limit state)

Tables 5.4 and 5.5 present the model factor statistics for the capacity of axially loaded
piles for various calculation methods, soil conditions, and failure interpretation meth-
ods. See Paikowsky et al. (2004) for NCHRP Report 507. The model factors are
defined following Eq. (5.1).

5.6.3 Shallow foundations (ultimate limit state)

Model factor statistics for shallow foundations are scarce compared to pile founda-
tions. Model statistics for different loading modes (vertical eccentric loading, inclined
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Table 5.2 Summary of model statistics with response modified by f.

M
Problem Variables Inf =bo+ Xbix; Mean COV Notation
Strip footings on bo 0.28 1.04 0.1 D foundation width
sand under positive x; yD/p, b, —5.05 ¥ unit weight of sand
combined loading  x, & b, 114 p, atmospheric pressure
(Phoon and Tang X3 tang, by —0.26 d embedment depth
2015a) x4 d/B bs; —0.09 ¢, repose angle of sand
x5 alpq bs 0.21 e load eccentricity
x¢ €/B by —1.12 « load inclination
x7 (e/B)(x/¢s) b; —0.98
Strip footings on by 0.1 1.07 0.1 & empirical parameter
sand under x, yDIp, b, —4.5 £=0.02~0.12
negative combined x, & b, 10.4
loading (Phoon and x3 tan ¢, b; —0.25
Tang 2015b) x4 dIB by —0.12
Xs O!/¢a b5 —1.03
x¢ €lB bs —0.45
x7 (e/B)(a/p,) b; —1.8I
Strip footings on by 0.1 1.06 0.13
sand under general x, yDIp, b, —45
combined loading  x; £ b, 10.25
(Phoon and Tang X3 tang, b; —0.15
2015b) x4 dIB bs 0.05
X5 0[/¢a b5 —0.93
X¢ €lB bs —0.05
x7 (e/B)(algpg) b; —2.53
Circular footings by 1.97 1.02 0.15 D foundation diameter
on dense sand X| tang,, b, —3.12 Dg relative density of sand
(Tang and Phoon x; Dy b, 2.23 ¢, critical state friction angle
2016a) x3 yDIp, b; —0.68
Helical anchors in by 0.75 0.95 0.16 n number of helix plates
clay under tension x; n b, —0.05 S plate spacing
loading (Tangand  x, S/D b, —O0.11 D diameter of helix plate
Phoon 2016b) x3 HID b; —0.03 H depth of top helix
x4 yHIs, by —O0.11 s, undrained shear strength
Cantilever retaining by 0.89 .02 0.26 El wall stiffness
wall deflections x, 2D/B b, —0.13 B wall width
in undrained clay  x, InH./B b, 0.43 E,. soil stiffness
(Zhang et al. 2015) x3 InyD*/El by 0.12 o, effective vertical stress
x4 /K bs 0.69 K at-rest lateral earth coefficient
xs s,lo’, bs —0.74 D wall depth

xe¢ Euls, b —7x 1074 H, excavation depth
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Table 5.3 Model factors for rigid bored piles based on the hyperbolic
capacity (Source: Phoon and Kulhawy 2005).

Calculation Model® Statistics of Model Factor
Undrained: Number of load tests = 74
Reese (1958) Range 0.75-2.72
Mean 1.42
cov 0.29
Hansen (1961) Range 0.86-3.61
Mean 1.92
cov 0.29
Broms (1964a) Range 1.08—4.49
Mean 2.28
cov 0.37
Stevens and Audibert (1979) Range 0.55-2.13
Mean I.11
cov 0.29
Randolph and Houlsby (1984) Range 0.67-2.52
Mean 1.32
cov 0.29
Drained: Number of load tests =77
Reese et al. (1974) Range 0.40-3.35
Mean I.19
cov 0.43
Hansen (1961) Range 0.55-2.33
Mean 0.98
cov 0.33
Broms (1964b) Range 0.85-3.40
Mean 1.80
cov 0.38
Simplified Broms (1964b) Range 0.59-2.62
Mean 1.30
cov 0.38

2Model and reference details given in Phoon & Kulhawy (2005).

eccentric loading) are reported in NCHRP 651 (Paikowsky et al. 2010). Tables 5.6
through 5.10 present the summary model factor statistics for the different loading
conditions.

5.6.4 Axially loaded pile foundations (serviceability limit state)

Limit state design requires that the occurrence of both ultimate and serviceability limit
states are sufficiently improbable. For consistency, it is imperative that serviceability
limit state verification be based on reliability principles. Tables 5.11 and 5.12 present
values of the model factor for driven steel H-piles and bored piles, respectively. The
model factor here refers to the ratio of the measured pile settlement at the working
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Table 5.4 Model factors for driven piles (Source: NCHRP Report 507, Dithinde et al. 2011 with

permission from ASCE).
Calculation method No. of cases  Pile type Soil type Mean  COV  Source
B-method 4 H-pile Clay 0.6l 0.6l NCHRP Report 507
A-method 16 0.74 0.39
a-Tomlinson 17 0.82 0.40
a-API 16 0.90 0.41
SPT-97 mob 8 1.04 0.39
A-method 18 Concrete piless  Clay 0.76 0.39
a-API 17 0.8l 0.36
B-method 8 0.8l 0.31
a-Tomlinson 18 0.87 0.48
«-Tomlinson 18 Pipe piles Clay 0.64 0.50
a-API 19 0.79 0.54
B-method 12 0.45 0.60
A-method 19 0.67 0.55
SPT-97 mob 12 0.39 0.62
Nordlund 19 H-pile Sand 0.94 0.4
Meyerhof 18 0.81 0.38
B-method 19 0.78 0.51
SPT-97 mob 18 1.35 0.43
Nordlund 36 Concrete piles  Sand 1.02 0.48
B-method 35 1.1 0.44
Meyerhof 36 0.61 0.61
SPT-97 mob 36 1.21 0.47
Nordlund 19 Pipe piles Sand 1.48 0.52
B-method 20 1.18 0.62
Meyerhof 20 0.94 0.59
SPT-97 mob 19 1.58 0.52
a-Tomlinson/ 20 H-pile Mixed soils  0.59 0.39
Nordlund/Thurman
a-API/Nordlund/ 34 0.79 0.44
Thurman
B-method/Thurman 32 0.48 0.48
SPT-97 mob 40 1.23 0.45
a-Tomlinson/ 33 Concrete piles  Mixed soils ~ 0.96 0.49
Nordlund/Thurman
a-API/Nordlund/ 80 0.87 0.48
Thurman
B-method/Thurman 80 0.81 0.38
SPT-97 mob 71 1.81 0.50
FHWA CPT 30 0.84 0.31
a-Tomlinson/ 13 Pipe piles Mixed soils  0.74 0.59
Nordlund/Thurman
a-API/Nordlund/ 32 0.8 0.45
Thurman
B-method/Thurman 29 0.54 0.48
SPT-97 mob 33 0.76 0.38
Static formula 28 Concrete piles Sand .11 0.33 Dithinde et al. 2011
Static formula 59 Clay 1.17 0.26
Meyerhof 24 Sand 1.22 0.54  FHWA-HI-98-032
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Table 5.5 Model factors for bored piles (Source: Dithinde et al. 201 | with permission from ASCE,
Zhang & Chu 2009a, NCHRP Report 507).

Calculation method'  Constr. Method? No. of cases Soil type Mean COV Source
Static formula Mixed 30 Sand 0.98 0.24 Dithinde etal. 2011
Static formula 53 Clay .15 0.25
FHWA (1999) Casing I Sand/silt 0.6  0.58 Zhang and Chu 200%9a
FHWA Casing 17 Sand/silt 1.06 0.28
(Hong Kong data)
FHWA (1999) RCD 15 Rocks 0.48 0.52
COP (BD 2004) RCD 15 Rocks 257 031
FHWA (1999) Mixed 32 Sand .71 0.60
Casing 12 227 046
Slurry 9 1.62 0.74
R&W Mixed 32 122 0.67
Casing 12 Sand 145 05
Slurry 9 .32 0.62
FHWA (1999) Mixed 53 Clay 09 047
Casing 14 0.84 050
Dry 30 0.88 0.48
FHWA (1999) Mixed 44 Clay +Sand 1.19 0.30 NCHRP Report 507
Casing 21 1.04 0.29
Dry 12 .32 0.28
Slurry 10 129 0.27
R&W Mixed 44 1.09 0.35
Casing 21 Clay +Sand 1.01 0.42
Slurry 12 12 032
Slurry 10 .16 0.25
C&K Mixed 46 Rock 1.23  0.40
Dry 29 129 0.34
IGM Mixed 46 Rock 1.3 034
Dry 29 1.35 0.31

'Model and reference details given by source references.
2Casing = pile bore excavation assisted by steel casing; RCD =reverse circulation drilling in rocks; slurry =
excavation assisted by mineral slurry; dry = excavation above groundwater.

Y y;dry g

Table 5.6 Vertical-eccentric loading using the effective foundation width B" (Source: NCHRP 651).

Minimum slope criterion Two-slope criterion
Tests' No. cases  Mean  Std cov Mean  Std cov
DEGEBO - radial load path 17 (15)2 222 0.754 0340 2.04 0.668 0.328
Montrasio(1994)/Gottardi 14 1.71 0.399 0.234 1.52 0478 0313
(1992) — radial load path
Perau (1995) — radial load path 12 1.43 0.337 0.263 1.19 0470 0.396
All cases 34 (41)? 1.83 0.644  0.351 1.61 0.645  0.400

'Model and reference details given by NHCRP 651.
2Number of cases for two-slope criterion.
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Table 5.7 Vertical-eccentric loading using the full foundation width B (Source: NCHRP 651).

Minimum slope criterion Two-slope criterion
Tests' No. cases  Mean  Std cov Mean  Std cov
DEGEBO - radial load path 17 (15)? 1.30 0.464 0.358 1.20 0425  0.355
Montrasio (1994)/Gottardi 14 0.97 0.369 0.38 0.86 0339 0.396
(1992) — radial load path
Perau (1995) — radial load path 12 0.79 0.302 0.383 0.64 0296  0.464
All cases 34 (41)? 1.05 0.441  0.420 0.92 0423  0.461

'Model and reference details given by NHCRP 651.
2Number of cases for two-slope criterion.

Table 5.8 Inclined-eccentric loading when using the effective foundation width B’ (Source: NCHRP

651).
Minimum slope criterion Two-slope criterion

Tests' No. cases Mean Std  COV ~ Mean Std  COV
DEGEBO/Gottardi (1992) — radial load path 8 206 0813 0394 1.78 0552 0310

Montrasio (1994)/ 6 2.13 0496 0234 212 0495 0.233

Gottardi (1992)

Perau (1995) — 8 216 1.092 0.506 2.5 1.073 0.500

Positive eccentricity
Step-like load path Perau (1995) — 7 343 1.792 0523 229 1.739 0.713

Negative eccentricity

All step-like load cases 21 257 1.352 0526 2.56 1.319 0516
All cases 29 243 1.234 0.508 234 1.201 0.513

'Model and reference details given by NHCRP 651.

Table 5.9 Inclined-eccentric loading when using the full foundation width B (Source: NCHRP 651).

Minimum slope criterion Two-slope criterion

Tests' No. cases Mean Std COV  Mean Std  COV
DEGEBO/Gottardi (1992) — radial load path 8 1.07 0448 0417 094 0365 0.387
Montrasio (1994)/ 6 1.18 0.126 0.106 1.18 0.125 0.106
Gottardi (1992)
Perau (1995) — 8 070 0.136 0.194 0.70 0.135 0.194
Positive eccentricity
Step-like load path Perau (1995) — 7 1.09 0208 0.191 1.08 0.208 0.193
Negative eccentricity
All step-like load cases 21 097 0267 0276 096 0.267 0.277
All cases 29 1.00 0322 0323 096 0.290 0.303

'Model and reference details given by NHCRP 651.
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Table 5.10 Statistics for the ratio of measured (q;;) to calculated bearing capacity (q,.) for all
foundations on rock using the Carter and Kulhawy (1988) method (Source: NCHRP 651).

Cases n No. of sites  m;, 0, cov

All (measured q) 119 78 800 992 1.240
Measured discontinuity spacing (s') 83 48 803 1027 1.279
Fractured with measured discontinuity spacing (s') 20 9 4.05 242 0.596
All non-fractured 99 60 880 1066 1.211
Non-fractured with measured discontinuity spacing (s') 63 39 929 1144 1.232
Non-fractured with s’ based on AASHTO (2007) 36 21 7.94 922 1.16l

n=number of case histories, m; =mean of biases, o, =standard deviation, COV = coefficient of variation,
qu = uniaxial compressive strength of intact rock, g » = measured capacity interpreted using the L2 method.

Table 5.11 Model factors for driven piles at the working load level defined
as one half of Davisson’s capacity (Source: Zhang et al. 2008).

Calculation method No. of cases Soil type Mean cov
Vesic (1977) 34 Sand/silt 1.02 0.23
Fleming et al. (1992) 34 Sand/silt 0.66 0.22
Load transfer method 34 Sand/silt 1.34 0.22
Vesic (1977) 30 Rocks 0.96 0.27
Fleming et al. (1992) 30 Rocks 0.81 0.28
Load transfer method 30 Rocks 1.16 0.24

Table 5.12 Model factors for large-diameter bored piles at the working load level defined as one half
of Davisson’s capacity (Adapted from Zhang and Chu 2009b).

Construction No. of
Calculation method method cases Soil type Mean cov
Vesic (1977) Casing 20 Sand/silt 0.24 0.38
Mayne and Harris (1993) Casing 12 Sand/silt 0.64 0.22
Reese and O’Neill (1989) Casing 19 Sand/silt 1.80 0.31
Vesic (1977) RCD 14 Rocks 0.87 0.30
Kulhawy and Carter (1992) RCD 14 Rocks 1.01 0.24
Load transfer method RCD 14 Rocks 1.21 0.30

using correlation with RQD

load level and the calculated settlement at the same load level. The working load level
is defined as one half of Davisson’s capacity.

Model factor statistics for an allowable settlement=25 mm from another SLS
study are presented in Table 5.13. In this study, the SLS model statistics were derived
by fitting measured load-settlement data to a hyperbolic equation (Eq. 5.16). At the
ultimate limit state, a consistent load test interpretation procedure should be used to
produce a single “measured capacity” from each measured load-displacement curve.
The ratio of the measured capacity to the calculated capacity is called a model factor
as defined in Eq. (5.1). The same approach applies to the serviceability limit state
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Table 5.13 SLS model factor statistics for allowable settlement =25 mm (Source: Dithinde et al. 2011,
with permission from ASCE).

Statistics from first-order

Actual statistics second-moment approximations

M MM M MM
Case N n cov n cov n cov m cov
D-NC 28 1.084 0.077 1.202 0.351 1.076 0.082 1.195 0.340
B-NC 30 1.079 0.083 1.057 0.238 1.094 0.114 1.072 0.266
D-C 59 1.082 0.047 1.259 0.260 1.083 0.049 1.267 0.265
B-C 53 1.077 0.063 1.236 0.250 1.073 0.059 1.234 0.257

D-NC = driven piles in non-cohesive soils, B-NC = bored piles in non-cohesive soils, D-C = driven piles in cohesive
soils, B-C = bored piles in cohesive soils, Ms = model factor for SLS, M;M = combined statistics.

(SLS). The capacity is replaced by an allowable capacity that depends on the allowable
displacement. The distribution of the SLS model factor is established from a load test
database in the same way. Notice that the SLS model factor has to be re-evaluated when
a different allowable displacement is prescribed. Hence, it is important to note that
Tables 5.11 to 5.13 only apply to an allowable settlement =25 mm. If the allowable
settlement is treated as a random variable in the serviceability limit state, a more
general approach involving fitting measured load-displacement data to a normalized
hyperbolic curve is recommended as detailed below:

Q_ v
Om a+by

(5.16)

in which Q = applied load, Q,,, = failure load or capacity interpreted from a measured
load-displacement curve, “a” and “b” = curve-fitting parameters, and y = pile butt dis-
placement. Note that the curve-fitting parameters are physically meaningful, with the
reciprocals of “a” and “b” equal to the initial slope and asymptotic value of the hyper-
bolic curve, respectively. The curve-fitting equation is empirical and other functional
forms can be considered (Phoon and Kulhawy 2008). However, the important crite-
rion is to apply a curve-fitting equation that produces the least scatter in the measured
normalized load-displacement curves. Each measured load-displacement curve is thus
reduced to two curve-fitting parameters. Based on “a” and “b” statistics estimated
from the load test database (Table 5.14), one can construct an appropriate bivariate
probability distribution for (a, b) that can reproduce the scatter in the normalized
load over the full range of displacements. Details are given in Phoon and Kulhawy
(2008). Table 5.11 is in fact produced using this general curve-fitting approach. It is
evident that this approach can be used in conjunction with a random allowable settle-
ment. This approach has been applied to various foundation types (Phoon et al. 2006;
Phoon et al. 2007; Akbas and Kulhawy 2009a; Dithinde et al. 2011; Stuedlein and
Reddy 2013; Huffman and Stuedlein 2014; Huffman et al. 2015).
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Table 5.14 Statistics for hyperbolic parameters [Source: ACIP under axial compression (Phoon et al.
2006) with permission from ASCE; Spread foundation, drilled shaft, pressure-injected
footing under axial uplift (Phoon et al. 2007) with permission from ASCE; Driven piles
in non-cohesive soil, Bored piles in non-cohesive soils, Driven piles in cohesive soils,
and Bored piles in cohesive soil (Dithinde et al. 2011) with permission from ASCE;
Augered Cast-In-Place Piles in Granular Soils (Stuedlein and Reddy, 2013); Spread footing

on clay (Huffman et al. 2015)].

Augered cast-in-place pile (compression)

No. tests =40

a:Mean =5.15mm, SD = 3.07 mm, COV =0.60
b:Mean=0.62,SD =0.16, COV =0.26
Correlation = —0.67

Spread footing (uplift)

No. tests =85

a:Mean =7.13mm, SD =4.66 mm, COV =0.65
b: Mean=0.75,SD =0.14,COV=0.18
Correlation = —0.24

Augered cast-in-place pile in granular soils
No. tests =87

a (k2): Mean = 3.40 mm, COV = 0.49

b (kl):Mean=0.16 mm,COV =0.23

Spread footing on clay

No. tests =30

a(k2): Mean =0.70 mm, COV=0.16
b(kl):Mean=0.013,COV=0.53

Bored pile (uplift)

No. tests =48

a:Mean = 1.34 mm, SD =0.73 mm, COV = 0.54
b: Mean =0.89,SD = 0.063, COV =0.07
Correlation = —0.59

Pressure injected footing (uplift)

No. tests =25

a:Mean = 1.38 mm, SD =0.95 mm, COV =0.68
b:Mean=0.77,SD =0.21, COV =0.27
Correlation = —0.73

Driven piles in non-cohesive soils (compression)
No. tests =28

a:Mean =5.55mm, SD = 3.00 mm, COV =0.54
b:Mean=0.71,SD =0.10,COV=0.14
Correlation = —0.778

Bored piles in non-cohesive soils (compression)
No. tests =30

a:Mean =4.10 mm, SD = 3.20 mm, COV =0.78
b: Mean=0.77,SD =0.16, COV =0.21
Correlation = —0.876

Driven piles in cohesive soils (compression)
No. tests =59

a: Mean = 3.58 mm, SD =2.04 mm, COV =0.57
b:Mean=0.78,SD =0.09, COV =0.11
Correlation = —0.886

Bored piles in non-cohesive soils (compression)
No. tests =53

a: Mean =2.79 mm, SD =2.04 mm, COV =0.57
b:Mean =0.82,SD =0.09,COV=0.11
Correlation = —0.801

SD = standard deviation, COV = coefficient of variation.

For SLS the relationship of interest is that between allowable load (Q,) and the
resulting permissible settlement (y,) given by:

Ya

Qa = mgm

Let

Ya
a+by,

Then,

Qa :MSQm

(5.17)

(5.18)

(5.19)



Statistical characterization of model uncertainty 151

where M; is the SLS model factor and the other symbols are as defined previously. The
actual statistics for M, are shown in columns 3 and 4 of Table 5.13. On the basis of
first-order second moment analysis, the mean () and COV (COVyy,) of M; can be
estimated as follows (Phoon and Kulhway 2008):

s = — 24— (5.20)
Ha + UbYa
Vo2 + 207 + 29apap0u0y
COVy, = (5.21)

Ha + UpYa

where u, and pu, =mean of a and b respectively, and o, and o, = standard deviation
of a and b, respectively. Using Eq. 5.20 and 5.21 in conjunction with the hyperbolic
parameter statistics (e.g., Table 5.14) as well as their correlations, M; statistics can
be computed for a given allowable settlement. For routine building structures with an
allowable settlement of 25 mm, the estimated SLS model uncertainty statistics are pre-
sented in columns 7 and 8 of Table 5.13. The results show that the actual and estimated
statistics are close, implying that Egs. (5.20) and (5.21) are reasonable approximations.
It is important to distinguish between M, and M. The statistics for the former are meant
for SLS and they are functions of the permissible settlement (y,), while the statistics
for the latter are meant for ULS.

Since Q,, is generally unavailable at the design stage then Eq. (5.19) needs to be
modified as follows for reliability calibration:

Q. =M,(MQ,) (5.22)

The important point here is that uncertainties in ULS (manifested in M) must
be included if Q, is calculated from Q.. Assuming that M and M are uncorrelated,
then the combined statistics (M;M) can be estimated using first-order second moment
analysis as follows:

MMM = UsM (5.23)

COViu = ,/COV}, +COV}, (5.24)

The ensuing combined statistics are presented Table 5.13 as follows: actual statistics
in columns 5 & 6 and estimated statistics in columns 9 & 10. Even for the combined
statistics, the estimated and actual values are quite close.

This approach is practical and grounded realistically on the load test database with
minimal assumptions. The mean values in Tables 5.11 to 5.13 are different, because
the calculation methods are different. This is to be expected. It is more interesting to
observe that the COVs are comparable, despite the diverse variety of calculation meth-
ods. It is worth mentioning that Akbas and Kulhawy (2009b) have suggested a prob-
abilistic approach to address differential settlement of footings on cohesionless soils.

5.6.5 Limiting tolerable displacement (serviceability limit state)

Another important serviceability consideration is limiting tolerable displacements of
structures. The limiting tolerable displacements of a structure are affected by many
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Table 5.15 Statistics of intolerable settlement and limiting tolerable settlement of buildings (Source:
Table 3, Zhang & Ng 2007, with permission from ASCE).

Observed intolerable Limiting tolerable
settlement (mm) settlement (mm)
No. of Standard Standard
cases Mean deviation Mean deviation

Foundation type

All 221 328 265 156 118

Shallow foundations 165 321 280 218 185

Deep foundations 52 349 218 106 55
Structural type

All 185 296 220 134 109

Frame structures 115 278 236 148 126

With load-bearing wall 52 303 257 112 48
Soil type

All 182 311 270 165 159

Clay 126 357 290 169 131

Sand and fill 56 207 151 86 56
Usage of building

All 164 269 247 150 144

Mill structure 29 308 193 183 156

Office structure 135 255 265 121 64

factors, including the type and size of the structure, the intended usage of the struc-
ture, substructure-superstructure interactions, the properties of the structural materials
and the subsurface soils, and the rate and uniformity of settlement (Zhang & Ng 2005,
2007). For a full reliability-based design for serviceability limit states, it is preferable
to obtain the probability distributions of limiting tolerable displacement. Tables 5.15
and 5.16 provide statistics of intolerable settlement and angular distortion, and lim-
iting tolerable settlement and angular distortion of buildings based on records of the
displacements of 380 buildings. The intolerable or limiting tolerable displacements are
shown to follow the lognormal distribution.

5.6.6 Factor of safety of a slope calculated by limit
equilibrium method

Factor of safety (FS) is commonly used to quantify the safety level of a slope. The
most popular method of determining the FS of a slope is the limit equilibrium method
(LEM). Due to the uncertainty and variability involved in ground conditions and ana-
lytical methods, the calculated FS of a slope is not exact. In general, FS calculated
by LEM depends on the way that the input soil strength is determined (e.g., uncon-
fined compression test or vane shear test) and the calculation method (e.g., the Bishop
simplified or Spencer method). The model factor for a FS is defined as the actual FS
divided by the calculated FS.

Wu (2009) investigated a collection of undrained slope case histories analyzed by
LEM with circular slip surface assumption (e.g., simplified Bishop). He demonstrated
that if unconfined compression or vane shear test is the way of determining the input
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Table 5.16 Statistics of intolerable and limiting tolerable angular distortion (Source: Table 4, Zhang &
Ng 2007, with permission from ASCE).

Observed intolerable Limiting tolerable
angular distortion angular distortion
(radian) (radian)
No. of Standard Standard
Statistics cases Mean deviation Mean deviation
Foundation type
All 120 0.012 0.012 0.003 0.003
Shallow foundations 63 0.013 0.011 0.006 0.006
Deep foundations 57 0.008 0.011 0.002 0.002
Structural type
All 191 0.012 0.014 0.004 0.005
Frame structures 152 0.011 0.015 0.005 0.004
With load-bearing wall 39 0.015 0.011 0.004 0.002
Soil type
All 126 0.011 0.013 0.006 0.014
Clay 103 0.011 0.011 0.005 0.014
Sand and fill 23 - - - -
Usage of building
All 83 0.015 0.013 0.005 0.003
Mill structure 17 0.032 0.026 0.006 0.003
Office structure 66 0.013 0.013 0.003 0.002

undrained shear strength (s,), the model factor for the resulting FS has a mean value
roughly equal to 1.0 and COV ranging from 0.13 to 0.24.

Travis et al. (2011a) collected 301 FSs calculated by two-dimensional (2D) LEM
for 157 failed slopes, and Travis et al. (2011b) further conducted statistical analysis
for the database. They showed that the FSs for the failed slopes have sample mean
shown in Table 5.17. The sample standard deviation for the In(FS) is also shown in
the table. They found that the type of LEM has the main effect on the mean and stan-
dard deviation. Therefore, Table 5.17 presents the FS statistics for four types of LEM:
(a) direct method, including infinite slope, ordinary method of slice, Swedish circle,
etc.; (b) Bishop method, the simplified Bishop method; (c) force method, including
the Janbu and Lowe-Karafiath methods; (d) complete method, including the Spence,
Morgenstern-Price, and Chen-Morgenstern methods. If one accepts the view that
the actual FS for a failed slope is 1, the model factor is then simply M = (actual
FS)/(calculated FS)=1/FS. Let us denote the mean of FS by u and its COV by 6.
If FS is lognormal, let us further denote the mean value of In(FS) by A and its variance

by &2:
A=In(n)—0.5x &> £2=In(1+6%) (5.25)
The inverse relation is

u=exp(r+ 0.5 x £2) 8 =[exp(&?) — 1% (5.26)
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Table 5.17 Statistics of the FS calculated by four types of LEM for failed slopes (revised from
Travis et al. 201 Ib).

Direct Bishop Force Complete

Number of cases (n) 83 134 43 41

Mean of FS (1) 0.98 1.04 1.10 1.05
Standard deviation of In(FS) (&) 0.21 0.20 0.20 0.15
Mean of the model factor M [=exp(£2)/u] 1.07 1.00 0.95 0.97
COV of the model factor M [=[exp(£2) — 11°°1 0.21 0.20 0.20 0.15

Table 5.18 Statistics of the FS calculated by two types of LEM for failed slopes (revised from Bahsan
etal. 2014).

Man-made slopes (n=34)

Fill slopes (n=27) Cut slopes (n=7) Natural slopes (n=19)

A 3 A & A £
LEM method (mean of M)  (COV of M) (mean of M) (COV of M) (mean of M) (COV of M)
Simplified Bishop —0.068 0.28 0.158 0.28 0.001 0.83

(r.in (0.28) (0.89) (0.28) (1.41) (1.00)
Spencer —0.137 0.27 0.140 0.26 —0.124 0.8l

(1.19) 0.27) (0.90) (0.26) (1.57) (0.96)

It is clear that the mean value of In(1/FS) has mean = —A and variance = £2. It follows
from Eq. (5.26) that M = 1/FS has mean value =exp(—x 4 0.5 x £2) =exp(£2)/iu and
COV = [exp(£2) — 1]°°. Table 5.17 shows that the mean and COV of M for various
LEM methods. In general, the mean for the model factor M ranges from 0.95 to 1.07
and COV ranges from 0.15 to 0.21. This is consistent to the range summarized by
Wu (2009).

Bahsan et al. (2014) collected 43 case histories of failed undrained slopes. They
re-analyzed all cases using the simplified Bishop and Spencer methods. In the analysis,
they transformed the input s, value to the mobilized s, defined by Mesri and Huvaj
(2007). They modelled the vertical spatial variability for s, by adopting thin horizontal
clay layers in LEM and they also modelled the tension crack in LEM. Table 5.18
presents the statistics of In(FS) for the simplified Bishop and Spence methods. The
mean of In(FS) is denoted by A, and standard deviation is denoted by &. They found
that the statistics for man-made slopes (fills and cuts) are quite different from those for
natural slopes: the variability of FS calculated from failed natural slopes is very high
(very large &). Again, if one accepts the view that the actual FS for a failed slope is 1, the
model factor M is simply 1/FS. According to Eq. (5.26), the mean value of M is equal
to exp(A 4 0.5 x £%) and the COV of M is equal to [exp(£?) — 1]°3. Table 5.18 shows
the mean and COV for the model factor in the parenthesis. For man-made slopes, the
mean value of M ranges from 0.89 to 1.19 and its COV ranges from 0.26 to 0.28.
For natural slopes, the mean value ranges from 1.41 to 1.57 and its COV ranges from
0.96 to 1.00.
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Table 5.19 Statistics of the model factor for base heave FS (revised
from Wu et al. 2014).

Modified Terzaghi Bjerrum-Eide Slip circle

Mean of M 1.02 1.09 1.27
COV of M 0.157 0.147 0.221

5.6.7 Base heave for excavation in clays

Wu et al. (2014) collected 24 case histories for excavation in clays. Among the 24
cases, 8 cases totally failed by base heave, 7 cases nearly failed, and 9 cases did not
fail. Based on this database, they estimated the mean and COV of the model factors
(M) for three well known methods for calculating base-heave FS for excavation in
clays: (modified) Terzaghi method, Bjerrum-Eide method, and slip circle method. Here,
the model factor (M) for FS is defined as the actual FS divided by the calculated FS.
Table 5.19 summarizes the estimated mean and COV of the model factor.

5.7 CONCLUSIONS

The acceptance of reliability analysis and design in geotechnical practice calls for a
concerted effort on characterization of calculation model uncertainty. Model uncer-
tainty is generally represented in terms of the ratio of the measured to calculated values
termed model factor (M), considered as a random variable following some probability
distribution function. The model factor applies to a specific set of conditions (e.g., fail-
ure mode, calculation model, local conditions and experience base, etc.). Therefore, a
proliferation of model factors can be expected.

With the current state of knowledge, the statistics of M are derived following well
established statistical data analysis procedure comprising of (a) exploratory data anal-
ysis, (b) outlier detection and correction of anomalous values, (c) using the corrected
data to compute the sample moments (mean, standard deviation, skewness, and kur-
tosis), (d) verification of the randomness of M, and (e) determining the appropriate
probability distribution for M.

Reliability based design is based on the notion of randomness of the basic vari-
ables including the model factor. Therefore if M depicts some statistical dependency
with deterministic variations in the database, such statistical dependencies need to
be removed. Accordingly two approaches namely the “generalised model factor”
and “model factor as a function of input parameters” have been presented in this
Chapter.

Available model factor statistics are primarily restricted to simple calculation
methods for foundations (both ultimate and serviceability limit state). A comprehen-
sive survey of model statistics for foundations is conducted in this Chapter. Some
model statistics on the factor of safety for slope stability and basal heave are also
available. More research is needed to characterize the model uncertainties in other
common geotechnical systems (such as retaining walls and ground improvement
methods).
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Chapter 6

Semi-probabilistic reliability-based
design

Kok-Kwang Phoon and Jianye Ching

ABSTRACT

Geotechnical design codes, be it reliability-based or otherwise, must cater to diverse
local site conditions and diverse local practices that grew and adapted over the years to
suit these conditions. One obvious example is that the COVs of geotechnical param-
eters can vary over a wide range, because diverse property evaluation methodologies
exist to cater to these diverse practice and site conditions. Another example is that
deep foundations are typically installed in layered soil profiles that vary from site to
site. These diverse design settings do not surface in structural engineering. If the per-
formance of geotechnical RBD were to be measured by its ability to achieve a more
uniform level of reliability than that implied in existing allowable stress design over
these diverse settings (which is recommended in Section D.5, 1S02394:2015), then
LRFD and comparable simplified RBD formats widely used in structural design codes
are not adequate. While it is understandable for geotechnical RBD to adopt structural
LRFD concepts at its initial stage of development over the past decades, it is timely for
the geotechnical design code community to look into how we can improve our state
of practice in simplified geotechnical RBD. This chapter demonstrates that improved
formats such as the Quantile Value Method coupled with effective random dimension
(ERD-QVM) exist that can cater to a more realistic and diverse range of design sce-
narios. Specifically, ERD-QVM can maintain an acceptably uniform level of reliability
over a wide range of COVs of geotechnical parameters and a wide range of layered soil
profiles. It can achieve this while retaining the simplicity of an algebraic design check
similar to the traditional factor of safety format and LRFD. ERD-QVM is a step in the
right direction to develop geotechnical RBD for geotechnical engineers. More research
is urgently needed for geotechnical RBD to gain wider acceptance among practitioners.

6.1 INTRODUCTION

1SO2394:2015 contains a new informative Annex D on “Reliability of Geotechni-
cal Structures”. The need to achieve consistency between geotechnical and structural
reliability-based design is explicitly recognized for the first time in 1SO2394:2015
with the inclusion of Annex D. The emphasis in Annex D is to identify and char-
acterize critical elements of the geotechnical reliability-based design (RBD) process,
while respecting the diversity of geotechnical engineering practice. These elements are
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applicable to any implementations of RBD, be it in a simplified format such as the
Partial Factor Approach (PFA), the Load and Resistance Factor Design (LRFD), the
Multiple Resistance and Load Factor Design (MRFD) (Phoon et al. 2003a), the Robust
LRFD (R-LRFD) (Gong et al. 2016), and the Quantile Value Method (QVM) (Ching
and Phoon 2011), or in a full probabilistic form such as the expanded RBD approach
(Wang et al. 2011).

Clause 4.4.1 of 1SO2394:20135 states that RBD can be applied in place of full risk
assessments “when the consequences of failure and damage are well understood and
within normal ranges”. The objective of RBD is to adjust a set of design parameters
such that a prescribed target probability of failure is achieved or at least not exceeded.
For example, the depth of a bored pile is a practical design parameter that can be
adjusted readily. In principle, it is possible to adjust the shaft diameter but it is less
practical to constantly change the diameter of a rotary auger within a single site. This
constructability consideration applies to the current allowable stress design (ASD)
method. The trial-and-error adjustment of a design parameter such as the depth of a
bored pile is common to RBD and ASD. The only difference is the design objective. The
former considers a design to be satisfactory if a target probability of failure, say one
in a thousand, is achieved. The latter considers a design to be satisfactory if a target
global factor of safety, say three, is achieved. The advantages of using the probability
of failure (or the reliability index) in place of the global factor of safety have been
discussed elsewhere (Phoon et al. 2003b, 2003c¢).

Clause 4.4.1 of 1SO02394:2015 also states that RBD can be further simplified
“when in addition to the consequences also the failure modes and the uncertainty
representation can be categorized and standardized”. This simplified RBD approach
is referred to as a semi-probabilistic approach. Simplified RBD formats in the form
of PFA, LRFD, and MRFD are popular because practitioners can produce designs
complying with the target probability of failure (or target reliability index), albeit
approximately, while retaining the simplicity of performing one algebraic check per
trial design. No tedious Monte Carlo simulations or more sophisticated probabilis-
tic analyses are needed. From the perspective of a practitioner, there is no difference
between applying a simplified RBD format, say LRFD, and the prevailing factor of
safety format, other than multiplying a set of resistance and load factors to the corre-
sponding resistance and load components (nominal or characteristic values) mandated
in such codes. The key difference is that the numerical values of these resistance and
load factors are not determined purely on experience or precedents, but calibrated by
the code developer using reliability analysis to achieve a desired target reliability index.
Once these resistance and load factors are made available in a design code, the prac-
titioner can use them for design without having to perform reliability analysis. To the
authors’ knowledge, this simplified RBD approach is adopted in all geotechnical RBD
codes to date. The obvious limitation associated with replacing reliability analysis with
an algebraic design check is that the target reliability index cannot be achieved exactly.
We note in passing that it is possible to achieve a desired factor of safety exactly for
any design scenario, but the factor of safety concept is known to be inconsistent in
many ways.

It is possible to achieve the target reliability index exactly under any design scenario
if the full probabilistic approach is adopted. Hence, it is easy to achieve a com-
pletely uniform level of reliability under this approach. This is discussed in Chapter 7.
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However, the prevalence of simplified RBD formats in all existing design codes implies
that practitioners are not prepared to accept full probabilistic analyses at this point
in time. For simplified RBD formats that are easy to use, Section D.5 “Implementa-
tion issues in geotechnical RBD” clarifies that the “key goal in geotechnical RBD is
to achieve a more uniform level of reliability than that implied in existing allowable
stress design”. Section D. 5 further highlights that reliability calibration of these formats
are challenging in geotechnical engineering. There are many reasons why simplified
geotechnical RBD formats are harder to calibrate than those in structural engineering.
One reason is that these formats must cover a wide range of coefficients of variation
(COVs) resulting from different soil property evaluation methodologies (Phoon 2015).
Another source of challenge is that a simplified geotechnical RBD should be flexible
enough to cover a range of soil profiles encountered in locales within the ambit of the
design code.

The performance of a simplified RBD format should be measured by its ability
to produce designs achieving a desired target reliability index within an acceptable
error margin. When a simplified RBD format is first introduced into a design code,
it should preferably produce designs comparable to those produced by the factor of
safety method for continuity with past practice and experience. In fact, the target relia-
bility index is commonly prescribed to comply with this judicious continuity principle.
However, the primary goal must be to maintain a uniform level of reliability — this is
the key basis for switching to RBD in the first place. For a simplified RBD format,
the ability to maintain a uniform level of reliability is primarily related to the range of
design scenarios covered by the code and the number of available factors that can be
“tuned” during the reliability calibration process.

The authors recommend that a simplified RBD format should reveal the maxi-
mum deviation from the target reliability index among the range of design scenarios
appearing in the calibration domain. In principle, application of a simplified RBD for-
mat to a design scenario lying outside the calibration domain can produce a reliability
index far from the target value. Hence, it is important to state the salient features of
the underlying calibration domain (e.g., range of pile diameters, pile lengths, statis-
tics of geotechnical parameters, etc.) explicitly in association with any simplified RBD
format to avoid conveying the impression that it can be applied to any design sce-
nario, which is unlikely to be true. As highlighted above, one noteworthy feature of
this calibration domain that is distinctive to geotechnical engineering is that COVs of
geotechnical parameters can vary over a wide range, because of diverse property eval-
uation methodologies to cater for diverse practice and site conditions (refer to Section
D.1, ISO2394:2015). It is easy to envisage that a single resistance or partial factor
is unable to achieve a uniform reliability index if the range of COVs is sufficiently
large, say between 10% and 70% for undrained shear strength estimated using dif-
ferent methods as shown in Table 3.7. Phoon and Ching (2013) demonstrated that a
uniform reliability index is even more difficult to achieve in the presence of layered
profiles.

LRFD was originally proposed for structural steel design (Ravindra and Galambos
1978). Geotechnical structures, particularly piles, have been mostly treated as a com-
ponent comparable to columns in structural RBD codes. It is inappropriate to treat a
pile in the same way as a structural column in the context of LRFD. The resistance
provided by a column depends on the quality of concrete and steel. These structural
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materials are manufactured and their properties are assured by quality control. The
ultimate strength of cast in-situ concrete may be impacted by the curing tempera-
ture, which in turn is affected by the ambient temperature. However, this site-specific
issue can be mitigated by a variety of measures and it is significantly less influential
than say a pile being installed in a stratified ground that changes from location to
location. The variability of the ground also changes from location to location. The
method of estimating design soil properties and other aspects of local practice may
also change from location to location. In contrast, the testing methods for structural
materials are highly standardized. In spite of these evident differences, geotechnical
RBD continues to adopt the structural LRFD framework that does not explicitly con-
sider site-specific effects in the evaluation of the factored resistance. To the authors’
knowledge, geotechnical RBD was studied as a topic separate from structural RBD
only in the nineties or thereabouts (e.g., Barker et al. 1991; Phoon et al. 1995). In
the same vein, geotechnical aspects are explicitly considered only in 1SO2394:20135,
although the first edition of 1SO2394 was published in 1973. It is understandable
for geotechnical RBD to adopt structural LRFD concepts at its initial stage of devel-
opment over the past decades. However, sufficient studies have been carried out to
demonstrate that the traditional LRFD and PFA do not meet the needs of geotechnical
engineering practice. The authors believe that it is timely for the geotechnical design
code community to look into how we can improve our state of practice in simplified
geotechnical RBD.

The key challenge in geotechnical RBD can be stated as follows. It is to calibrate
a set of resistance factors, soil partial factors, or other factors such as quantiles that
would produce designs satisfying the target reliability index approximately over a
realistic range of design scenarios within the ambit of the design code, which must
include diverse local site conditions and diverse local practices that grew and adapted
over the years to suit these conditions. The factor of safety can be viewed as the
reciprocal of a resistance factor. For example, a resistance factor =0.5 is equivalent
to a factor of safety =2 if load factors are equal to 1. Based on this observation, it is
clear that applying a resistance factor = 0.5 will produce a range of reliability indices
as wide as applying a factor of safety=2! Can we do better than this? Table B2 in
EN1990:2002 recommends the minimum reliability index for three reliability classes
(RCs) for the ultimate limit state. For RC1, RC2, and RC3, the minimum reliability
indices for a 50 year reference period are 3.3, 3.8, and 4.3, respectively. In this case, one
would require the simplified RBD format to maintain reliability indices of the designs to
within a band of £0.5 or smaller. It may be argued that a single resistance factor value of
say 0.5 is still applicable if one allows the engineer to adjust the nominal/characteristic
resistance judiciously to accommodate site-specific conditions. This approach is similar
to the existing allowable stress design approach where a relatively constant factor
of safety is applied to a nominal resistance that should be suitably chosen by the
engineer. However, from a RBD perspective, it is more difficult to calibrate a nominal
resistance than a dimensionless resistance factor to maintain a relatively uniform level
of reliability, unless the nominal resistance is well defined in the probabilistic sense. The
QVM presented in Section 6.5 essentially exploits this possibility. We note in passing
that geotechnical RBD also needs to address the limited availability of data (soil data,
load test data, field monitoring data, etc.) in geotechnical practice. This challenge is
discussed in Chapter 3. To the authors’ knowledge, statistical uncertainty arising from
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small sample size has not been systematically incorporated in simplified RBD, say by
applying a reduction factor to the resistance factor in LRFD or to the quantile in QVM.

This chapter reviews some common reliability-based calibration methods and their
limitations. Two important limitations are illustrated numerically using a friction pile
installed in a single layer soil profile and a two-layer soil profile. It is shown that
the QVM (Ching and Phoon 2011) can maintain a relatively uniform level of reli-
ability over a wide range of COVs for the unit side resistance in a single layer soil
profile. However, QVM cannot maintain a uniform of reliability if it has to cater
to sites containing different number of soil layers. This limitation is important for
a design code covering deep foundations that are installed in layered soil profiles.
The number of layers typically is not a constant given the geographical coverage of a
design code and varying foundation lengths to carry different loads. This is an exam-
ple of a site-specific condition commonly encountered in geotechnical practice. Ching
et al. (2015) introduced the concept of an “effective random dimension” (ERD) into
QVM to extend its reach to layered soil profiles (ERD-QVM). An additional grav-
ity retaining wall is presented to show that the concept of ERD is related to the
issue of redundancy and hence simplified RBD formats that do not cover layered soil
profiles must still contend with variable ERD or variable redundancy during code
calibration.

6.2 SURVEY OF CALIBRATION METHODS

6.2.1 Basic Load Resistance Factor Design (LRFD)

In geotechnical engineering, the most popular simplified RBD format in North America
is the Load and Resistance Factor Design (LRFD) format (e.g., Paikowsky, 2004;
Paikowsky et al. 2010). In its simplest form, the LRFD equation is:

nF, <= ¥Qs (6.1)

where 1 is the load factor (>1) and ¥ is the resistance factor (<1), and therefore
the name “load-and-resistance-factor-design” (LRFD). The parameters, F,, and Q,,
are the nominal load and nominal capacity (or resistance), respectively. This LRFD
format is typically calibrated by assuming that the actual capacity (Q) can be modeled
as the product of a bias factor (bq) and a nominal capacity typically obtained from a
calculation procedure (Qy):

Q=bqQn (6.2)

The bias factor is similar to the model factor discussed in Chapter 5. The difference is
that the bias factor is based on a nominal capacity that can be a conservative estimate
mandated by a design code while the model factor is preferably based on a calculated
capacity that is a best estimate. The bias factor is considered as a lognormal random
variable in the reliability calibration process. Hence, it follows from Eq. (6.2) that Q is
a lognormal random variable. The random load F can be related to the nominal load
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(F,) in the same way. The reason for doing this is to produce an analytical expression
for the resistance factor:

. 1 (Fa/1F) \/(1 +VF)/(1 +VQ) o

(Qu/1a) eXP{BT\/In [a+ve) (1+ Vé)]}

where wq and pr are the mean value of Q and F, respectively; Vq and Vg are the
coefficient of variation (COV) of Q and E respectively; and Bt =target reliability
index.

The statistics of the bias factor is estimated from a load test database. It is evident
that the bias factor is essentially a “lumped” factor capturing both systematic bias
arising from the calculation model and random effects arising from parametric/model
uncertainties. By virtue of its lumped nature, the statistics of the bias factor are the-
oretically a function of the design parameters (e.g., geometrical and soil parameters).
In the most ideal case, the statistics of the bias factor are completely insensitive to the
design parameters, i.e. they can be applied to all possible problem geometries, geologic
formations, and soil properties. In this ideal case, statistics estimated from a load test
database are robust and can be applied quite confidently to the full range of design
scenarios encountered in practice. In the worst case, the statistics are very sensitive to
one or more design parameters. For example, statistics for short piles may not be the
same as statistics for long piles. This can arise because of physical reasons (e.g., side
resistance dominates total resistance in long piles) or statistical reasons (e.g., spatial
averaging of soil strength is more significant in long piles). In this case, it is debat-
able if the statistics derived from a load test database can be applied confidently to
problems not covered by the database. Kulhawy and Phoon (2002) have highlighted
this potential problem. Paikowsky (2002) has provided actual statistics to demonstrate
that the statistics of bias factors are generally dependent on some design parameters.
The statistics of the model factor can be afflicted by the same dependency issue and
care must be taken to ensure that bias or model factor statistics are sufficiently general
over the ambit of the design code. Details are given in Section 5.5.1.3.

If a particular design parameter, say length to diameter ratio of a pile (L/B), is
influential, it is important to divide the range of the parameter into two or more
segments and estimate different statistics over different segments. For example, it is
possible to divide the range of L/B into two segments, say less than 10 for short piles
and greater than 10 for long piles. The number of segments is clearly dependent on
the sensitivity of the statistics to that particular design parameter, which is problem
dependent. This segmentation procedure is a reasonable and practical solution to the
above dependency problem. However, there is a more subtle but rarely appreciated
problem in estimating sensitive statistics from a load test database. The problem is that
if a statistics is sensitive, it would be important to ensure that the calibration examples
are fairly uniformly distributed over any one segment of the parameter range. This
is very difficult to do in a load test database as examples are usually collected from
the literature rather than a single comprehensive research program. For example, for
L/B > 10, it could be that L/B is predominantly between 30 and 50 in a particular
database.
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6.2.2 Extended LRFD and Multiple Resistance
and Load Factor Design (MRFD)

Because of the various limitations in the basic LRFD approach, Phoon et al. (1995)
proposed alternatives to this methodology that focused on realistic treatment of basic
geotechnical issues than conformance with established LRFD procedures that evolved
from structural engineering practice. The proposed approach simply allowed the “best”
geotechnical calculation models to be used directly in the reliability calibration pro-
cess, rather than artificially simplifying the capacity into a single lognormal random
variable to fit the requirement of a closed-form reliability formula. The available cal-
culation models were examined and compared with available load test data from the
field and laboratory, as well as numerical simulations. These analyses led to a “best”
calculation model (most accurate, least variability, essentially no bias) that was used
in the reliability calibrations.

As part of this process, the key design parameters, such as the effective stress
friction angle, the undrained shear strength, and the coefficient of horizontal soil stress,
are modeled directly as random variables. A major advantage of this approach is that
the range of an influential design parameter, and its variability, can be segmented and
calibration points within each segment or domain can be selected to ensure uniform
coverage of the variables during the calibration process (Fig. 6.1). The disadvantages
are: (1) the closed-form reliability formula for lognormal random variables cannot be
applied, and a more involved reliability calculation method such as the First-Order
Reliability Method (FORM) is needed, and (2) it is necessary to adjust the resistance
factor over each segment by an optimization procedure to minimize the deviation from
the target reliability at each calibration point. However, once the calibration process
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Figure 6.1 Partitioning of parameter space for calibration of resistance factors (Source: Figure D.3,
1SO2394:2015. Reproduced with permission from the International Organization for
Standardization (ISO). All rights reserved by ISO).
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Table 6.1 Undrained ultimate uplift resistance factors for drilled shafts designed by Fso =¥ Qy, or
FSO = l!’suqun + l]rftu Qtun + llwa (Phoon etal. |995)

Clay COV of s, (%) Vu Vs Y Y
Medium 10-30 0.44 0.44 0.28 0.50
(mean s, = 25-50 kN/m?) 30-50 0.43 0.41 0.31 0.52
50-70 0.42 0.38 0.33 0.53
Stiff 10-30 0.43 0.40 0.35 0.56
(mean s, = 50—100 kN/m?) 30-50 0.41 0.36 0.37 0.59
50-70 0.39 0.32 0.40 0.62
Very Stiff 10-30 0.40 0.35 0.42 0.66
(mean s, = 100-200 kN/m?) 30-50 0.37 0.31 0.48 0.68
50-70 0.34 0.26 0.51 0.72

Note: Target reliability index = 3.2; Fsg = 50-year return period load; Q,, = nominal uplift capacity; Qsyn, = nominal
uplift side resistance; Q¢,n = nominal uplift tip resistance;W = weight of foundation.

is complete, the user never has to perform any reliability calculations or do any factor
optimization, as described below.

Based on extensive studies of the optimization process, and detailed evaluation
of typical ranges in the key design parameters and the COV ranges that should be
encountered for them, it was found that a 3 x3 segmenting was sufficient for practical
calibration (Phoon et al. 1995). The typical ranges of COV to be expected are shown
in Table 3.7. As can be seen, low variability corresponds to good quality direct lab
or field measurements, medium is typical of most indirect correlations, while high
represents strictly empirical correlations.

Once the calibration is complete, Eq. (6.1) is used directly with resistance factors
such as those values shown under V, in Table 6.1. Use of this table is straightforward
with an appropriate site investigation. First, the mean value of the key design parameter
is determined. For the undrained uplift example shown in Table 6.1, the key design
parameter is the undrained shear strength (s,). It is sufficient to determine the clay
type (medium, stiff, or very stiff clay) based on the mean value of s,. Second, the
COV is determined either by direct measurements or from experience using Table
3.7. Note that it is not necessary to pin-point the exact COV value. It is sufficient
to determine which variability tier (low, medium, high) or COV range is appropriate
for the information at hand. Finally, the resistance factor corresponding to the clay
type and variability tier is selected from Table 6.1. For example, for stiff clay and
high variability, {r, = 0.39. If variability is reduced to “low” as a result of conducting
more tests, the engineer can adopt a larger {, = 0.43 in design. Table 6.1 represents
the first attempt to link site investigation efforts to design explicitly. Although better
methods have been developed in recent years to quantify the value of site investigation
for design, it is important to view Table 6.1 as the minimum standard in geotechnical
reliability-based design. The basic LRFD approach that prescribes one resistance factor
value without reference to site investigation efforts is not appropriate for geotechnical
engineering. The desirability of adopting LRFD purely for the purpose of harmonizing
geotechnical and structural design at the design format level is debatable. Geotechnical
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and structural design should be harmonized by adopted a common basis in the form
of reliability principles.

As noted previously, in LRFD (basic or extended), the { value is applied to the
total geotechnical capacity, which is composed of distinctly different components. For
example, the uplift capacity of a drilled shaft during undrained loading is composed of
the side resistance, tip suction, and self-weight. These components, in turn, generally
are nonlinear functions of more fundamental design parameters, such as the founda-
tion depth, diameter, and weight and the soil undrained shear strength. The relative
contribution of each component to the overall capacity is not constant, and the degrees
of uncertainty associated with each component are different. For example, the shaft
weight is almost deterministic in comparison to the undrained side resistance, because
the COV of the unit weight of concrete is significantly smaller than the COV of the
undrained shear strength.

This issue has been examined in detail (e.g., Phoon et al. 1995, 2003a), and it was
found that a more consistent result in achieving a constant target reliability index was
obtained using the following equation:

nFn = l!—fsuqun + ll’tthun + IIIWW (64)

in which the ¥ values are calibrated for each distinct term in the geotechnical capacity
equation, as given in columns 4 through 6 of Table 6.1 for illustration, Qg is the
nominal uplift side resistance, Qu, is nominal uplift tip resistance, and W is the weight
of the foundation. Eq. (6.4) is defined as the “multiple-resistance-and-load-factor-
design” (MRFD) for a foundation in undrained uplift.

The LRFD and MRFD formats were compared by evaluating how closely the
actual achieved values of p were to the target value Br. For the extended LRFD format,
(B — Br)/BT Was about plus or minus 5 to 10%. However, for the MRFD format, the
(B — BT)/BT values were only about 1/2 to 2/3 those from the extended LRFD format,
indicating significant improvement over the LRFD format when each distinct term is
assigned a resistance factor. For the basic LRFD, only one value is prescribed for the
resistance factor. It is not specified or known whether the calibration was done for
low, medium, or high variability. Assuming that calibration was done for a medium
variability scenario, B would be greater than Br for a low variability scenario and
would be less than Bt for a high variability scenario, by amounts exceeding 10% at
the limits.

From these results, it should be clear that the MRFD format is preferred over
LRED. Not only is the 1 more closely achieved, it is being done using proper geotech-
nical design equations where the relative weighting of each term is being addressed
explicitly. And there is direct recognition of data quality in assessing the property vari-
ability. With these tools, an experienced engineer should have no trouble in selecting
the appropriate \ values for an improved design that is related to site investigation
efforts.

6.2.3 Robust LRFD (R-LRFD)

A fundamental challenge in RBD is to address uncertainty rationally in analysis and
design in the presence of limited data. A well-known problem is that the probability
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models constructed to handle uncertainty are themselves uncertain because data are
insufficient to characterize the statistics and distributions exactly. Bayesian methods
have been applied to address this statistical uncertainty (see Chapter 3), but Juang
etal. (2013) took a different track to address this challenge by proposing a new design
philosophy called robust geotechnical design (RGD). The essence of robust design is
to derive a design that accounts for the effect of the variation in “noise factors” while
simultaneously considers the safety and cost efficiency. The term noise factor refers
to input parameters that are hard-to-control (i.e., cannot be easily adjusted by the
designer) and hard-to-characterize (i.e., the uncertainty is recognized but difficult to
quantify due to insufficient data). The original RGD approach retains the reliability
index as a measure of safety (Juang et al. 2013; Juang and Wang 2013), and the
robustness of a design is measured in terms of the variation of the failure probability
(which is caused by the uncertainty in the probability distributions of noise factors).
For practical applications and being consistent with the design code of LRFD, the
reliability-based RGD has since been simplified to a format similar to LRFD called
the Robust LRFD (R-LRFD) (Gong et al. 2016). The theoretical basis of R-LRFD is
not probabilistic (because it assumes there are insufficient data for characterization of
probability distributions) and safety is not defined by the reliability index.

It is noted that the traditional robustness measures that are based on probabilistic
analyses, such as the variation of failure probability (Juang et al. 2013), signal-to-
noise-ratio (SNR) (Taguchi 1986; Phadke 1989; Park et al. 2006; Gong et al. 2014),
and feasibility robustness (Juang et al. 2013; Juang and Wang 2013), are suitable for
a design with quantified uncertain parameters. They are, however, not applicable to
the design with unquantified uncertain parameters. Thus, the robustness of a design
(d) against the variation of noise factors (0), in the context of R-LRFD, is measured
with the concept of gradient.

The plots in Fig. 6.2(a) and 6.2(c) depict the gradient-based robustness concept:
two designs (i.e., d; and d,) with the same noise factors (0;) exhibit different pat-
terns of system response; one (i.e., dy in Fig. 6.2a) yields high variation in the system
response and the other (i.e., d; in Fig. 6.2¢) yields low variation in the system response.
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Figure 6.2 Conceptual illustration of the robustness of a design: (a) System response of a non-robust
design d; with noise factors as its input; (b) Reducing the variation in the system response
by reducing the variation in noise factors; (c) Reducing the variation in the system response
by adopting a robust design d, without reducing the variation in noise factors (Gong et al.
2016).
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The design that yields lower variation in the system response, which is by definition a
more robust design, is shown to have a lower gradient. Thus, a robust design can be
obtained by lowering the gradient of the system response to the noise factors without
quantifying the uncertainties of noise factors. This characteristic of the gradient-based
robustness measure is a perfect match with LRFD, in which the uncertainties in noise
factors and the solution model are recognized but unquantified.

Within the framework of R-LFRD, the robustness of the resulting design (derived
with fixed LRFD partial factors) against the unquantified uncertainty (due to diverse
local site conditions and local practice) can be secured through a simplified multi-
objective optimization scheme. In this simplified optimization scheme, safety that is
evaluated with the traditional LRFD criterion is a compulsory constraint, while robust-
ness and cost efficiency are the objectives to be optimized. Details of the R-LRFD
methodology and application examples could be found in Gong et al. (2016).

6.2.4 LRFD for total settlement

The serviceability limit state (SLS) is the second limit state that is evaluated in founda-
tion design. It often is the governing design criterion, particularly for large-diameter
shafts and shallow foundations. Unfortunately, foundation movements are difficult
to predict accurately, so reliability-based assessments of the SLS are not common.
Ideally, the ultimate limit state (ULS) and the SLS should be checked using the same
reliability-based design principle. However, the magnitude of uncertainties and the
target reliability level for SLS are different from those of ULS, but these differences
can be assessed consistently using reliability-calibrated deformation factors (analog of
resistance factors).

Phoon et al. (1995) first examined this issue by employing large databases of
foundation load-displacement data that could be normalized and evaluated. It was
found that most databases could be best characterized by a two-parameter hyperbolic
model, as illustrated in Fig. 6.3 for drilled shafts in uplift loading and as given below:

F/Qu=y/(a + by) (6.5)

in which F=load, Q, = uplift capacity, y = displacement, and a and b are the curve-
fitting parameters.

Recently, Phoon and Kulhawy (2008) summarized developments in SLS and noted
that this model was most appropriate for the following foundation types: spread foun-
dations in uplift (drained and undrained), drilled shafts in uplift and lateral-moment
(drained and undrained), drilled shafts in compression (undrained), augered cast-in-
place (ACIP) piles in compression (drained), and pressure-injected footings in uplift
(drained). Drilled shafts in compression (drained) were fitted best by an exponential
model. More recently, Akbas and Kulhawy (2009a) also showed that the hyperbolic
model was appropriate for spread foundations in compression (drained).

The reliability of a foundation at the ULS is given by the probability of the capacity
being less than the applied load. It is logical to follow the same approach for the SLS,
where the capacity is replaced by an allowable capacity that depends on the allowable
displacement (Phoon et al. 1995; Phoon and Kulhawy 2008). The nonlinearity of
the load-displacement curve is captured by the two-parameter hyperbolic curve-fitting
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Figure 6.3 Load-displacement curves for drilled shafts in uplift (Phoon et al. 1995).

Table 6.2 Undrained uplift deformation factors for drilled shafts designed using Fso = {r,Qyan (Phoon

etal. 1995).
Clay COV of s, (%) Yy
Medium 10-30 0.65
(mean s, =25-50 kN/m?) 30-50 0.63
50-70 0.62
Stiff 10-30 0.64
(mean s, = 50—100 kN/m?) 30-50 0.6l
50-70 0.58
Very Stiff 10-30 0.61
(mean s, = 100-200 kN/m?) 30-50 0.57
50-70 0.52

Note: Target reliability index = 2.6.

equation. The uncertainty in the entire load-displacement curve is represented by a
relatively simple bivariate random vector containing the hyperbolic parameters as its
components, and the allowable displacement is introduced as a random variable for
reliability analysis. The resulting LRFD equation is given below:

Fnzllquuanzqfu[QunYa/(Ma + U/bYa)] (6.6)

where , is the uplift deformation factor given in Table 6.2, Q. is the nominal
allowable uplift capacity, Qu, is the nominal uplift capacity, y, is the allowable dis-
placement, and p, and p, are the mean values of a and b, respectively. Note that
the deformation factors are calibrated for a smaller Bt (or larger probability of failure)
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than for the ULS. Note that in reliability parlance, “failure” refers to any unsatisfactory
performance such as foundation displacement exceeding an allowable value.

6.2.5 LRFD for differential settlement

In foundation design, the SLS for individual foundations is important, and it can
be addressed as above. As long as the ground conditions are reasonably consistent,
the differential settlements are likely to be minimal. However, for certain types of
soil-foundation systems, such as spread footings on granular soils, the question of
differential settlement can be very important. Conventional practices are empirical
and commonly assume that the differential settlement is just some fixed percentage of
the total computed settlement, typically ranging from 50 to 100%.

Akbas and Kulhawy (2009b) suggested a probabilistic approach to this prob-
lem to provide a more rational method of assessment. For illustration, they used the
Burland and Burbridge (1985) settlement estimation method in the following form for
estimating differential settlements:

pm1 — Pm2 = (1/M)5s&iqB* (I — 1) (6.7)

where py1 and ppy is the measured settlements for neighboring footings 1 and 2, M
is the model factor (ratio of calculated-to-measured settlement), ¢, is the shape factor,
g is the depth of influence correction factor, q is the net increase in effective stress at
foundation level, B is the footing width, and I.; and I, are the compressibility index
values for neighboring footings 1 and 2 (=1.71/N}}), with Ngo = standard penetration
test N value corrected to an average energy ratio of 60%. The stress, model uncer-
tainty, and geotechnical parameters were treated as random variables, including the I,
values that are correlated as a function of distance between the footings. Note that the
definition of the model factor (M) in this study is the reciprocal of the more conven-
tional definition presented in Chapter 5. The results of the study are presented in the
following form:

qa=UD qn = VD °[pa/(¢s5iB* 1en)] (6.8)

where Yl® is the deformation factor for differential settlement, q, is the nominal value
of foundation applied stress, p, is the allowable settlement limit, qq is the revised design
value of qy, and L, is the nominal I.. calculated using mean Ngo. The llstLS values are
given in a lengthy table and are a function of the allowable angular distortion (1/150,
1/300, 1/500), the COV of N (25 to 55%), and the center-to-center footing distance
(3 to 9 m). For most parametric combinations, the deformation factors were less than
1.0, which is in contrast to some current practices for SLS. These practices may be
unconservative.

6.2.6 First-order Reliability Method (FORM)

Annex C of EN 1990:2002 “Eurocode: Basis of Structural Design” discussed the appli-
cation of a FORM design point method for calibration of partial factors. In essence,
the performance function evaluated at the design point (or most probable failure point)
is the simplified RBD equation. It is immediately clear that the design equation and
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the performance function are identical. The performance function is the best available
physical model for estimation of the probability of failure. It can be known only implic-
itly in the form of a sophisticated numerical code. The design equation is typically a
simple closed form equation provided in a code of practice for design purposes. The
MRFD calibration approach does not require the performance function and the design
equation to be linked. Another significant practical limitation of the FORM design
point method is that only one design scenario rather than a range of representative
design scenarios (see the dots in Fig. 6.1) can be selected for calibration.

6.2.7 Baseline technique

Ching and Phoon (2011) proposed a quantile-based reliability calibration approach
that does not require the capacity to be lumped as a single lognormal random variable
in LRFD nor does it require tedious segment by segment optimization of the resistance
factors in MRFD. This Quantile Value Method (QVM) is discussed in Section 6.5. The
approach shares some conceptual similarities with the above baseline technique (Task
Committee on Structural Loadings of ASCE 1991). This technique essentially involves
the matching of a suitably chosen nominal load and capacity to achieve a consistent
level of reliability as shown below (Criswell and Vanderbilt 1987):

Q. =Fso (6.9)

where Q. is the ¢ exclusion limit of capacity (Q) and Fsg is the 50-year return period
load (F). The baseline calibration procedure involves adjusting the exclusion limit
(¢) in Eq. (6.9) until a target annual probability of failure of 1% is achieved. From
Fig. 6.4, it is clear that an exclusion limit of 5 to 10% should be used in Eq. (6.9) if the
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Figure 6.4 Reliability of structural components designed using Q, = Fso (Source: Fig. 2, Phoon et al.
2003a, with permission from ASCE).
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target probability of failure is 1% and the capacity COVs lie between 10 and 20%.
The strength of the baseline RBD approach lies in its simplicity. First, a reasonably
consistent target probability of failure of 1% can be achieved by simply matching a
suitably chosen nominal load (Fso) and capacity (Qs). No load or resistance factor
is needed in Eq. (6.9). Second, the method makes use of familiar concepts, such as
exclusion limits and return periods, which are already used widely in structural design.
In addition, Fig. 6.4 shows that the probability of failure is fairly insensitive to changes
in the capacity COV from 10 to 20% and exclusion limit from 5 to 10% (shaded area
in Fig. 6.4).

The key differences between the Quantile Value Method (QVM) and the baseline
method are: (1) a single quantile (synonymous with exclusion limit) is proposed for
both capacity and load variables, (2) basic uncertain design parameters in the capacity
model can be modeled as random variables with different probability distributions,
rather than having to model the entire capacity as a single random variable (which is
restrictive), and (3) a normalization scheme is applied to minimize the effects of the
design parameters on the probabilistic characteristics of the safety ratio. The normal-
ization scheme is the most critical component of QVM. It allows a single quantile to
achieve consistent reliability, even over a wide range of COVs in the soil and load
parameters. This is theoretically not possible for the FORM method. It is quite evident
from Fig. 6.4 that the baseline method cannot maintain a single quantile for a COV
of the capacity exceeding 20%. The mathematical details of the normalization scheme
are furnished in Ching and Phoon (2011).

It is also worth emphasizing here that QVM bears no theoretical resemblance to the
application of quantile in the definition of a characteristic value in the Eurocodes. The
latter quantile is prescribed by design codes without reference to the target probability
of failure. For example, a quantile between 5% and 10% is typically prescribed for
the concrete compressive strength, f.,, in structural design codes. The main purpose
of this definition is to produce a suitably conservative compressive strength that varies
consistently with the coefficient of variation of f.,. The same quantile is applied to
different performance functions, for example moment/shear capacity of a beam or
compression capacity of a column. The quantile (¢) in QVM is fundamentally different.
It is calibrated rather than prescribed to achieve a specific target probability of failure.
It decreases in a relatively unique way with the target probability of failure for a given
performance function as shown in Fig. 6.5. It is intrinsically related to the performance
function. Hence, the quantile for a given soil property, say undrained shear strength,
will vary when the property is applied within the context of different performance
functions, even for the same target probability of failure.

6.2.8 Degree of understanding

The 2014 Canadian Highway Bridge Design Code (CAN/CSAS614:2014) calibrates
ULS and SLS resistance factors based on the following three levels of understanding:

1. High understanding: extensive project-specific investigation procedures and/or
knowledge are combined with prediction models of demonstrated quality to
achieve a high level of confidence with performance predictions,
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Figure 6.5 An example of € vs. Pg relation for QVM (Ching and Phoon 201 1, Figure 3).

2. Typical understanding: typical project-specific investigation procedures and/or
knowledge are combined with conventional prediction models to achieve a typical
level of confidence with performance predictions,

3. Low understanding: limited representative information (e.g., previous experience,
extrapolation from nearby and/or similar sites, etc.) is combined with conven-
tional prediction models to achieve a lower level of confidence with performance
predictions.

This is an elaboration of a scheme that provides an engineer with a choice to
select an appropriate resistance factor that suits a specific site condition (Phoon et al.
1995). The degree of site understanding is characterized by the coefficient of varia-
tion (COV) of the design property and three COV tiers are proposed for reliability
calibration as shown in Tables 6.1 and 6.2. Phoon and Kulhawy (2008) presented
different COV tiers for different design properties (Table 3.7). A similar approach was
adopted by Paikowsky et al. (2004) in their reliability calibration of resistance factors
for deep foundations. It appears that site variability is divided into low (COV <25%),
medium (25% < COV <40%), and high (COV > 40%). For CAN/CSAS614:2014, the
approach to introduce the level of site and model understanding into simplified RBD is
essentially to use Monte Carlo simulations, modeling the ground as a spatially varying
random field, and carry out a virtual site investigation, design, and construction of
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the geotechnical system. The detailed calibration steps are described by Fenton et al.
(2016):

1. Assume a trial resistance factor for design check for a geotechnical system
(e.g., shallow foundation) and limit state (e.g., ULS),

2. Produce a realization from a random field of ground properties,

3. Conduct a virtual site investigation by sampling the realization at some location.
The distance between the sampling location and the geotechnical system is related
to the level of site and model understanding,

4. Design the geotechnical system using the characteristic geotechnical parameters
determined from the sampled locations in step 3 and the resistance factor in step 1.

5. Virtually install the design from step 4 on (or in) the random field realization
generated in step 2,

6. Employ an accurate and unbiased model (e.g., the finite element method) to
determine if performance is unsatisfactory (exceedance of limit state),

7. Repeat a large number of times, recording the number of failures (Monte Carlo
simulation).

8. The probability of failure is then estimated as the number of failures divided by
the number of trials in step 7. If this probability exceeds the target value, the
resistance factor adjusted downwards and vice-versa. The process is repeated
until a resistance factor is obtained that produces designs satisfying the target
probability of failure.

Several examples of this calibration method are reported in Fenton et al. (2008)
(ULS design of shallow foundation); Fenton and Naghibi (2011) (ULS design of deep
foundations in cohesionless soils); Naghibi and Fenton (2011) (ULS design of deep
foundations in cohesive soils); Fenton et al. (2005a) (SLS design of shallow founda-
tions); Naghibi et al. (2014) (SLS design of deep foundations); Fenton et al. (2005b)
(ULS design of retaining walls).

6.3 ISSUE OF VARIABLE COEFFICIENT OF VARIATION

As highlighted previously, simplified geotechnical RBD formats are harder to cali-
brate than those in structural engineering, because these formats must cover a wide
range of COVs resulting from different soil property evaluation methodologies (Phoon
20135). The following simple example is adopted to demonstrate the issue of variable
COV in a concrete way. The COV of a soil parameter is not a constant in the sense
that it depends on site variability, measurement error, and transformation (regres-
sion) error arising from converting field data to the design soil parameter (Phoon
and Kulhawy 1999). It can vary in a wide range, say between 0.1 and 0.7 for the
undrained shear strength of a clay. The purpose of this section is to illustrate in a sim-
ple way that the widely used simplified RBD format based on constant partial factors
cannot achieve the same reliability level, even approximately, for scenarios with vari-
able COVs. Consider a friction pile with axial resistance Q and subjected to axial load
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(a) pile in a single soil layer (b) pile in two soil layers

Figure 6.6 lllustrative pile design examples (Ching et al. 2015, Figure ).

F (Fig. 6.6a). The axial resistance Q is provided by the side resistance (tip resistance is
ignored):

Q=7 xBxL xf (6.10)

where f; is unit side resistance; B is the pile diameter; L is the total embedment length.
The unit side resistance f; is lognormal with mean = g and COV =V, and the axial
load F is (independently) lognormal with mean = g = 1000 kN and COV=Vg=0.1.
It is clear that Q is lognormal with mean =g =7 x B x L x pug and COV =Vq = V.
The limit state function is defined to be G =1In(Q) — In(F). In the standard Gaussian
space, the limit state function is

G(ZQ,ZF) = hQ +EqQzq — M — &FzF
£ =+In(1+V?) (6.11)
= In(n) — 0.5 x &2

where \ and & are respectively the mean and standard deviation of the logarithm of
the subscripted variable, and (zq, zf) are jointly standard normal.

Two cases would be considered: a calibration case and a validation case. The mean
value and COV for the calibration case are (jLq, Vq), and those for the validation case
are (I, Vi) The mean and COV of the load F for both calibration and validation
cases are equal (wp =1000kN, Vr=0.1). Basically, the calibration case will be used
to calibrate the partial (load and resistance) factors to achieve a prescribed target
reliability index of Bt. The validation case will be used to examine whether these partial
factors indeed produce a design with an actual reliability index p’, that is reasonably
close to Br.
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6.3.1 Partial factors for the calibration case

Consider the calibration case with resistance mean =pq and resistance COV=V4=0.3
and also consider Bt = 3.0. One common method for calibrating the partial factors is
the first order reliability method (FORM) as reviewed above (Hasofer & Lind 1974).
This method first finds the FORM design point, which is the point on the limit state
line that is closest to the origin. Direct calculation shows that the FORM design point
has the following coordinates:

—BrEqQ BrEr
2= (6.12)
JE +EF JEy &
The resulting resistance and load factors, denoted by (s, 1) respectively, are
¥ = exp(hq + £qz0)/nq = exp(—0.554 — Breg /&g + &F)

1 = exp(hr + §rzf) /i = exp(—0.55¢ + Br&g/,/Eq + &) (6.13)

K
ZQ_

The design equation ng < YLq is the Load and Resistance Factor Design (LRFD)
format. Note that the calibrated (y, n) only depend on (£q, &f), not on (rq, A¢). This
implies that the calibrated (¥, 1) only depend on the COVs (Vq, V), not on the mean
values (inq, ). The calibration case is with Vq = 0.3 and Vg = 0.1, hence the resulting
partial factors are {=0.416 and n=1.096. In this LRFD format, the nominal load
and resistance are assumed to be equal to their respective mean values for simplicity.
Typically, the nominal load pr is given by the structural engineer. The main task for
the geotechnical engineer is to find the adequate dimension (B or L) of the geotechnical
structure so that pq is sufficiently large, to fulfill 1.096 ur <0.416pq.

6.3.2 Actual reliability index for the validation case

Itis of interest to know the actual reliability index, denoted by p', , implied by the partial
factors ¢ =0.416 and n = 1.096 when they are applied to the validation case. Although
we have highlighted that B, # 1 in all simplified RBD formats, it is important to know
the difference particularly for p/, <pBr (unconservative design). The same design equa-
tion is applied to the validation case. The only difference is that the calibrated factors
are applied to the mean resistance (ub) and mean load () for the validation case:
1.096 x up <0.416 x p/Q. Consider the validation case with p = 1000 kN, L’ =20 m,
wr, =S50kN/m?, and V} = Vi, =0.5. The geotechnical engineer needs to determine the
pile diameter B’ to fulfill the LRFD design equation 1.096 x pj <0.416 x pg. This

means that
1.096 x pp<0.416 x m x B" x L' x pj (6.14)

The resulting B’ is 0.838 m at the least. The actual failure probability (p; ,) for this

design size of B'=0.838 m can be determined using Monte Carlo simulation (MCS)
(sample size, n =10°):

pi o =P(nB'L'f <F)=0.0372 (6.15)
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The corresponding actual reliability index p’, = 1.78, significantly less than the target
value, Bt = 3.0. This p/, = 1.78 is for the case with Vo =0.5. Now consider Vi, vary-
ing between 0.1 and 0.7 for the validation case. The actual reliability index p, under
various Vg, is plotted as the solid line in Fig. 6.7. The actual reliability index () may

be as high as 6.86 (actual failure probability p; , =3.4 x 107"?) when V; =0.1 and
as low as 1.21 (p; , =0.11) when V{, =0.7. It is clear that a uniform reliability level is

not achieved by the calibrated partial factors ¥ =0.416 and n=1.096. In particular,
unconservative designs could be produced.

6.4 ISSUE OF VARIABLE SOIL PROFILES

Another difficulty encountered in the calibration of simplified geotechnical RBD for-
mats is the presence of layered soil profiles. This issue does not surface in structural
engineering. The examples shown in Fig. 6.6 are constructed to illustrate in a simple
way that the widely used simplified RBD method based on constant partial factors
cannot achieve the same reliability level, even approximately, for these scenarios. It
does not matter how numerical values are assigned to the partial factors, say empirical
re-distribution of the global factor of safety or rigorous calibration using reliability.
The application of a single numerical value for each partial factor regardless of the
subsurface profile imposes a fundamental limit on the ability of the design code to
achieve a uniform reliability level over the range of scenarios covered by the code.
A realistic deep foundation design code will have to cover layered soil profiles.
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Consider the first scenario in Fig. 6.6a with pp=1000kN, L'=20m,
iwr, =S50kN/m?, and Vi, =Vo=0.5. Suppose that an engineer needs to design for
the diameter B using constant partial factors { =0.416 and n=1.096. We have seen
in the previous section that the resulting B’ is 0.838 m, and the corresponding actual
reliability index B’y =1.78. Now consider the second scenario in Fig. 6.6b (two soil
layers now) with pp=1000kN, L} =L, =10m, pi, =pi, =50 kN/m?2, and Vi, =
Vi, =0.5. Note that the second scenario has the same total length as the first one.
Moreover, the mean value and COV for the second scenario are the same as those
for the first one. The only difference is that there are two independent soil layers in
the second scenario. With the partial factors  =0.416 and n=1.096, it is clear that
resulting B’ is still 0.838 m. The actual failure probability can be determined using
MCS (n=10°):

pip =P(BLIf, + nB Ly, <F)=4.9 x 107 (6.16)

where f;; and f;; are independent lognormal random variables with mean = 50 kN/m?
and COV =0.5. The actual reliability index g/, is 2.58. With the same partial factors
Py =0.416 and n=1.096 applied to both scenarios, the reliability indices differ by a
factor of 1.44 (B, =1.78 for one layer soil versus g, =2.58 for two-layer soil), but
it is more accurate to note that the probabilities of failure differ by a factor of 7.6
(pgp=0.0372 for one layer soil versus versus p; , =4.9 x 1073 for two-layer soil). In
fact, one can show that the actual reliability index for another scenario with five
independent soil layers with equal thicknesses further increases to 3.95! It is evi-
dent that this partial-factor-based (PF-based) simplified RBD format cannot produce
uniform reliability indices over these two scenarios unless the partial factors can be
adjusted.

Ching et al. (2015) shows that the issue of soil profile is connected to the issue
of variable redundancy. The first scenario in Fig. 6.6a has less redundancy than the
second one in Fig. 6.6b. The first scenario has only one soil layer, hence it requires more
caution in selecting the design value for f;, denoted by f 4, than the second scenario
with two soil layers. This is because the consequence for selecting an erroneous f, 4 for
the first scenario is large — there is only a single soil layer providing the resistance (no
redundancy). On the other hand, the consequence for selecting an erroneous fg; 4 for
the second scenario is mitigated by the presence of a second supporting soil layer (more
redundancy). It is rather unlikely for the errors in both layers to be identical in sign and
in magnitude. To achieve the same reliability level, the f; 4 value in the first scenario
should be selected in a more conservative way. Namely, a smaller partial factor should
be used for the first scenario than for the second scenario. This makes sense intuitively
even in the absence of more rigorous probabilistic argument. If a constant partial factor
is adopted, the resulting f/, will not be the same. This is why the PF-based simplified
RBD method cannot produce a uniform reliability index when it is applied to problems
involving variable redundancy. This issue of variable redundancy is not limited to pile
problems. It appears in other geotechnical design problems as well. However, the issue
can be explained in a more physically intuitive way for piles, because the degree of
redundancy is visually linked to the number of supporting soil layers in a concrete way
rather than appearing as a mathematical abstraction. As we will see later in a gravity
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retaining wall example, this issue of variable redundancy can exist in problems that
does not involve a variable number of soil layers.

6.5 QUANTILE VALUE METHOD (QVM)

Ching and Phoon (2011, 2013) developed a quantile-based simplified RBD method
that is more robust than the PF-based simplified RBD method. This quantile-based
method was referred to as the Quantile Value Method (QVM) in Ching and Phoon
(2013). The authors showed that QVM is robust under the presence of variable COV
of soil parameters. First, the random variables are classified as stabilizing or destabiliz-
ing according to their effects on G. A random variable is stabilizing (or destabilizing) if
the increase of this random variable will increase (or decrease) G. The basic idea of the
QVM is to reduce any stabilizing random variable (e.g., soil strength) to its ¢ quantile
(e is small) to obtain its design value, but to increase any destabilizing random variable
(e.g., load) to its 1 —¢ quantile to obtain its design value. The parameter ¢ is called
the probability threshold, and a constant ¢ is applied to both types of random vari-
ables: taking € quantiles for stabilizing variables and 1 — ¢ quantiles for destabilizing
variables. Then, an engineer can design the size of the geotechnical structure based on
these quantile-based design values. It is useful to note that a constant ¢ is equivalent
to applying a variable partial factor that changes according to the COV of the design
parameter. If X is a lognormal stabilizing random variable, its QVM design value is its
¢ quantile:

Xg=exp[hx + ExP 1 (e)] (6.17)

This is equivalent to applying a variable partial factor that changes according to
the COV:

Xa=yxix  yx=exp[hx +Ex® ()] /nx =exp[—0.58% + ExP '(e)] (6.18)

The equivalent partial factor depends on £x, which in turn depends on the COV of X.

6.5.1 Robustness of QVM against variable COV

Let us now demonstrate the use of QVM for the pile example in Fig. 6.6a. Again,
there are a calibration case and a validation case. For the calibration case, L=20m,
s = S0 kN/m?, Vq=Vi=0.3, pp=1000kN, Vg=0.1, and Br=3.0. Ching &
Phoon (2011) derived the relationship between ¢ and Br. For the calibration case,
this relationship reduces to (Ching and Phoon 2013)

—Br /&4 + &F
emo| VTR (6.19)

EqQ +EF

The calibrated & value is 9.02 x 1073, If one adopts the usual linearization (Eé +
£2)%°~0.7(5q +&r), Eq. (6.19) reduces to an even simpler form: e~ ®(—0.7 x fr).
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It is of interest to know the actual reliability index B/, implied by the calibrated
£=9.02 x 1073 when it is applied to the validation case. Consider the validation case
with iy =1000 kN, L' =20m, g, =50 kN/m2, and Vi =V’Q =0.5. The design value
for Q', denoted by Q, is its 9.02 x 10~ quantile:

=7 x B x L' x (9.02 x 10~*quantile of f,) (6.20)

Because f, is lognormal with mean = ¢ = 50 kN/m? and COV = Vi = 0.5, the 9.02 x
1073 quantile of . can be calculated analytically:

(9.02 x 10~ quantile of f/) = exp[hg + £ ®1(9.02 x 1073)]
= 14.63 kN/m? (6.21)

The design value for F', denoted by F/, is its (1 —9.02 x 1073) quantile:

(1—19.02 x 1073 quantile of F') = exp[rf 4+ £p® (1 — 9.02 x 1073)]
= 1259.8kN (6.22)

The geotechnical engineer needs to find the adequate diameter B’ so that Q) is suffi-
!

ciently large, to fulfill Q) =F/ at the least. It is easy to determine that the resulting B’
is 1.37 m. The actual failure probability P A for this design size of B'=1.37 m can be
determined using MCS (n=10°) using Eq. (6.15). The resulting p; , is 2.54 x 1073,
and B/, =2.80, which is fairly close to pr=3.0. This p}, =2.80 is for the case with
Vi =0.5. Now consider Vi, varying between 0.1 and 0.7 for the validation case. The
actual reliability index ), under various Vj, is plotted as the dashed line in Fig. 6.7.
B’y closely follows 3.0. The largest departure from 3.0 occurs at the two extremes:
B =3.34 for Vo =0.1 and By =2.71 for Vi, =0.7. The actual reliability level is fairly
uniform, compared to that for the PF-based simplified RBD format (solid line in
Fig. 6.7).

6.5.2 Pad foundation supported on boulder clay

The pad foundation example adopted herein was originally developed by the European
Technical Committee 10 (ETC 10) of the International Society of Soil Mechanics and
Geotechnical Engineering. The focus is on the ultimate limit state (ULS) requirement,
i.e. the total vertical load cannot exceed the total resistance. The details for this example
can be found in Ching et al. (2014). With a target reliability index Bt of 3.2, Ching et al.
(2014) showed that the calibrated ¢ value for QVM is 0.0083, whereas the calibrated
partial factor for the undrained shear strength (s,) depends on the mean and COV of
su, as shown in Fig. 6.8. Note that for QVM, a single ¢ value is calibrated, whereas for
the partial factor approach, multiple partial factors are calibrated: one partial factor
is calibrated for each partition shown in Fig. 6.8. It is clear that the calibrated partial
factor decreases as the COV of s, increases. This partitioned partial factor approach
is consistent to the MRFD approach discussed in Section 6.2. The MRFD approach
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Figure 6.8 Calibrated partial factors for various partitions.

that adopts partitioned partial factors is deemed to be more robust than the LRFD
approach that adopts a single universal partial factor.

It is further assumed in Ching et al. (2014) that the mean and COV of s, for a future
design case (validation case) depend on site investigation effort. Section 4.6.1 showed
how the mean and COV of s, can be updated based on OCR (overconsolidation ratio),
gt — oy (net cone resistance), and Ngo (SPT N corrected for energy efficiency) informa-
tion. A variety of site investigation efforts are produced by systematically changing: (a)
the number of test types and (b) the test precision. Four scenarios are considered for
the number of test types: (T1) only the range of Ny is known; (T2) the ranges for Ngo
and q; — oy are both known; (T3) the ranges for Ngo and OCR are both known; and
(T4) the ranges for Ngo, q; — oy, and OCR are all known. Scenario T1 is considered as
the basic case with the least effort, while T4 contains the most information in terms
of number of test types. Five scenarios (PO to P4) are considered for test precision and
they are summarized in Table 6.3. The ranges in Table 6.3 represent the bounds for
OCR, Ny, and q; — o, based on the assumption that more precise information on
each test type measurement is available perhaps by increasing the number of tests and
boreholes. PO means no site-specific tests are conducted and information bounds are
purely estimated from general literature appropriate for “clay”. P4 means that suffi-
ciently extensive tests (e.g., multiple CPT soundings or boreholes) are conducted to
narrow the ranges. Table 6.4 shows how the updated mean and COV for s, depend
on the site investigation efforts. It is clear that the COV decreases as the precision
increases (narrow information bound) and also decreases as the number of test types
increases.

Consider a future scenario with test type = T2 and precision = P3. Namely, bounds
for Ngo and q;—o, are known, and the bounds are [6, 10] and [1030 kN/m?,
1450 kN/m?], respectively. According to Table 6.4, the mean and COV of s, are
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Table 6.3 Characterization of site information: (a) function of test type and precision and (b) informa-
tion bounds for various precision scenarios (Table 6 in Ching et al. 2014, with permission

from ASCE).

Test type scenario

Precision scenario Ti T2 T3 T4

PO Zero precision Ne¢o Ne¢o & qc — oy N¢o & OCR Ne¢o, q: — oy & OCR
Pl Poor precision Ne¢o Ne¢o & qc — oy N¢o & OCR Ne¢o, q: — oy & OCR
P2 : N60 N60 & ge — Oy Neo & OCR Néo, qe — 0",( & OCR
P3 . Neo N60 & Je¢ — Oy N60 & OCR Néo, J¢ — Oy & OCR
P4 Excellent precision Ne¢o Ne¢o & q: — oy N¢o & OCR N¢o, q: — oy & OCR

Information bounds based on site investigation

Precision scenario OCR Nao q: — o, (kN/Im?)
PO Zero precision [1,50] [0, 100] [200, 6000]

Pl Poor precision [5,25] [3,18] [730,2040]

P2 : [7.5, 16.7] 5, 12] [940, 1580]

P3 : (8.5, 14.6] [6,10] [1030, 1450]
P4 Excellent precision [9.5, 13.1] [7,9] [1100, 1350]

Table 6.4 Updated mean and COV for s, under various scenarios (modified from Table 7 in Ching
et al. 2014, with permission from ASCE).

TI T2 T3 T4

Mean (kN/m?) (COV) [partial factor]

PO 115.8 (0.35)
[0.349]

Pl 111.3{0.32) 107.3 (0.27) 111.3 (0.32) 107.3 (0.27)
[0.349] [0.651] [0.349] [0.651]

P2 111.4(031) 105.7 (0.25) 102.4 (0.25) 100.4 (0.21)
[0.349] [0.651] [0.651] [0.651]

P3 111.3{031) 105.5 (0.24) 99.9 (0.24) 99.0 (0.20)
[0.349] [0.651] [0.664] [0.664]

P4 112.0 (0.31) 1053 (0.24) 99.5 (0.23) 98.1 (0.19)
[0.349] [0.651] [0.664] [0.664]

105.5kN/m? and 0.24, respectively (the underlined cell in the table). For this par-
ticular scenario, QVM can be adopted for the simplified RBD, and the calibrated ¢
value is 0.0083 (note that ¢ =0.0083 even if the future scenario is with different test
type and precision). Because s, is assumed lognormal, this means that the design value
of s, should be reduced to its 0.0083 quantile:

Design value of s, = exp[hey + Esu X ®1(0.0083)]

(6.23)
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where Ay, and &g, are the mean and standard deviation of In(s,):

£ =+/In(1 + V) =/In(1 + 0.24%) =0.237

(6.24)
ou =In(jgy) — 0.5 x £2, =In(105.5) — 0.5 x £2, =4.631

The resulting design value of s, for QVM is 58.2 kN/m?. Based on this design value,
it is concluded that the dimension (width B) of the pad foundation needs to be at least
2.92 m. The actual reliability index, denoted by B, for B=2.92 m can be determined
using reliability analysis (e.g., Monte Carlo simulation). The resulting B is equal to
3.22, fairly close to the target reliability index fr=3.2. Table 6.5 shows the final
design B sizes and corresponding B values for all Tm-Pn scenarios. The underlined
cell is the result for the aforementioned T2-P3 scenario. The required B in Table 6.5
shows reasonable trend — the largest for PO and the smallest for T4-P4. Moreover, the
actual reliability index Ba for QVM fairly close to the target value 3.2.

The partitioned partial factor approach can be applied to the same T2-P3
scenario. Table 6.4 shows that the calibrated partial factor for this scenario is
0.651. This means that the design value of s, should be reduced to 0.651 x mean
value =0.651 x105.5 = 68.68 kN/m?. Based on this design value, it is concluded that
the dimension (width B) of the pad foundation needs to be at least 2.69 m. The actual
reliability index (Ba) for B=2.69 mis equal to 2.59, somewhat different from the target
reliability index pr = 3.2. Table 6.6 shows the final design B sizes and corresponding
Ba values for all Tm-Pn scenarios with the partitioned partial factor approach. The

Table 6.5 Final design B size/Ba for QVM (modified from Table 10 in Ching et al. 2014, with permission

from ASCE).
Ti T2 T3 T4
PO 3.21 m/2.96
Pl 3.14m/3.05 3.02m/3.16 3.14m/3.04 3.0l m/3.16
P2 3.10m/3.04 2.94m/3.20 3.02m/3.21 2.89m/3.26
P3 3.10m/3.08 2.92m/3.22 2.99m/3.21 2.84m/3.28
P4 3.08 m/3.01 291 m/3.27 2.97 m/3.29 2.84m/3.21

Table 6.6 Final design B size/B for the MRFD approach with partitioned partial factors (modified from
Table 11 in Ching et al. 2014, with permission from ASCE).

Tl T2 T3 T4
PO 3.51 m/3.55
Pl 3.58m/3.92 2.67 m/2.30 3.58m/3.88 2.67m/2.30
P2 3.58 m/4.00 2.69 m/2.54 2.73m/2.49 2.76 m/2.90
P3 3.58 m/4.08 2.69 m/2.59 2.74m/2.58 2.75m/3.00

P4 3.57m/3.93 2.69 m/2.65 2.74m/2.67 2.76 m/2.99
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required B in general shows the reasonable trend — larger for PO and smaller for T4-P4,
but there are some unexpected results, such as T2-P1 having the smallest required B.
The actual reliability index Ba is in general around the target value 3.2 with some
occasional large deviations from 3.2, e.g., for T2-P1, 5 =2.30.

It is evident that QVM is effective in linking the site investigation efforts to design
savings (required B reduces with increasing site investigation efforts) and produces Ba
that are fairly close to the target value 3.2 in this pad foundation example (Table 6.5).
This is not an easy task at all — €=0.0083 is NOT calibrated with respect to any
specific design case with any particular site investigation effort. In general, the MRFD
approach with partitioned partial factors can link the site investigation efforts to design
savings, but it is less effective than QVM. It is expected that the LRFD approach with
a single universal partial factor will be further less effective than MRFD. The ability
to link to site investigation efforts is an obvious advantage for QVM.

6.6 EFFECTIVE RANDOM DIMENSION

Unfortunately, Ching et al. (2015) showed that QVM is not robust against variable
redundancy, either. Nonetheless, they discovered an interesting relationship between
the probability threshold ¢ and failure probability p;. This relationship opens up a
possibility to improve the robustness of QVM against variable redundancy. To demon-
strate this, consider again the pile examples in Fig. 6.6 with total depth L =20 m, but
now the load F=1000 kN is deterministic. Now consider four such examples with the
number of independent layers being n;. =1 to 4. Moreover, all layers have the same
thickness, e.g., for np =4, the thickness of each layer is 5 m. A large nr is associated
with more redundancy. The unit side resistance f; for each layer is lognormal with mean
g = 50 kN/m? and COV Vi, = 0.3. Suppose a constant ¢ = 0.01 is adopted for QVM.
The procedure presented above (Egs. 6.20 to 6.22) is used to find the resulting B', and
the actual failure probability p; , and actual reliability index p), for this resulting B’ are
evaluated through MCS. Table 6.7 shows the results. It is remarkable that p’, increases
significantly as n increases, indicating that QVM is not robust against variable redun-
dancy. Although not shown here, the PF-based simplified RBD method suffers from the
same degree of non-robustness. More interestingly, the following relationship holds
approximately (see the rightmost column in Table 6.7):

(Ba/Be)” ~ny (6.25)

Table 6.7 QVM design results for four pile examples with different numbers of soil layers.

n & Be B bta Pa (BalB.)?
| 0.0l 2326 0.658m 0.01 2326 [

2 0.0l 2326 0.658m 371x107* 3.374 2.10

3 0.0l 2.326 0.658m 1.68 x 107° 4.148 3.18

4 0.0l 2326 0.658m 7.00x 1077 4.825 4.30
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Table 6.8 QVM design results (considering n.) for the four pile examples.

n Be € fsd B’ Pia B

| 3.00 0.0013 19.85 kN/m? 0.802m 0.0013 3.00
2 2.12 0.0169 25.69 kN/m? 0.620 m 0.0010 3.08
3 1.73 0.0416 28.80 kN/m? 0.553m 8.52 x 10~* 3.14
4 1.50 0.0668 30.83 kN/m? 0.516m 751 x 1077 3.18
where B, = —®~!(e) can be viewed as the reliability index of the input side resistances,

because the probability of a side resistance being less than its design value is ¢ (design
value f, 4 is taken to be the € quantile of f; in QVM).
The observation that (Ba/B,)> ~ n suggests the following steps for RBD:

1. Estimate nj.

2. Given the estimated ny and the target reliability index pr, determine B, = BT/ngj .
Further determine £ = ®(—B,).

3. Determine the design values of the random variables using QVM. This involves
reducing all stabilizing random variables to their ¢ quantiles to obtain their design
values and increasing all destabilizing random variable to their 1 — ¢ quantiles.

4. Based on the design values obtained in Step 3, the size of the geotechnical structure
is obtained by solving G=0.

Now let us apply these steps to the four pile examples with np =1 to 4 with
Bt =3.0. Table 6.8 shows the design results. It is clear that now ¢ changes with np
(the third column): ¢ increases with increasing nr. This means that a “bolder” design
value of f; 4 can be adopted for a case with more redundancy (the fourth column).
The resulting B’ is smaller for a case with more redundancy (the fifth column), and
yet the actual reliability index p', is still satisfactory (close to the target value fr = 3.0;
the rightmost column). It is important to point out here that unit side resistance f;
for each layer is assumed to be statistically independent of other unit side resistances.
Compared to those in Table 6.7, the actual reliability indices p, in Table 6.8 are now
significantly more uniform.

In Ching et al. (2015), they proposed the concept of “effective random dimension”
(ERD) to characterize the degree of redundancy for limit state functions involving lin-
ear sums of normal random variables (possibly correlated). They showed that a simple
closed-form formula for ERD exists for linear sums of standard normal random vari-
ables. The significance of ERD is the effective number of independent standard normal
random variables that affect the limit state function. Moreover, they showed that

(Ba/B:)” =ERD (6.26)

for limit state functions involving linear sums of normal random variables. By com-
paring Eq. (6.26) with Eq. (6.25.), it is clear that ERD has the same physical meaning
as the number of soil layers (nr) for the pile examples in Tables 6.7 and 6.8. Ching
et al. (2015) further showed that (Ba/.)? for a general nonlinear limit state function
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(possibly involving some correlated non-normal random variables) can also be used
to characterize its degree of redundancy, to quantify the effective number of indepen-
dent random variables. Therefore, Eq. (6.26) is applicable to general nonlinear limit
state functions as well. ERD can be estimated by the characteristics of the problem at
hand. Because ERD is dimensionless, it is expected that ERD is dependent on some
dimensionless parameters governing the limit state function of interest. To construct
the relationship between ERD and these dimensionless parameters, a collection of
“calibration cases” are generated. To make the relationship generic, these calibration
cases must cover sufficiently diverse design scenarios. For each calibration case, ERD
can be determined by (Ba/B.)?, where B, = —®(e), whereas B4 is determined by MCS.
The relationship between ERD and the governing dimensionless parameters can then
be constructed using regression. Once this regression equation is obtained, ERD can
be estimated using these dimensionless parameters. This calibration exercise involving
MCS is carried out by the code developer, not the practitioner who is applying the
code. Note that a similar calibration exercise is also needed for existing simplified
RBD formats (Phoon et al. 2013).

6.6.1 Gravity retaining wall

The issue of variable redundancy is not limited to geotechnical structures embedded in
a variable number of soil layers, such as the friction pile example studied above. The
following gravity retaining wall example (Fig. 6.9) shows that this variable redundancy
issue can arise even if the geotechnical structure is embedded in a fixed number of soil
layers. The retaining wall has a total height of H and a base width B. There is a
surcharge pressure q on the retained ground level. The water table is assumed to be at
the ground level at the toe of the wall and it is hy, =\ x H above the base of the wall
at the heel of the wall. The foundation sand layer has submerged unit weight ys; and
effective friction angle ¢., whereas the backfill sand above the water table has dry unit
weight y4 and submerged unit weight y' = (1 + w)y4 — yw below the water table (w is
the water content; vy, is the water unit weight), and its effective friction angle is ¢'.
Sliding failure is typical for this cantilever wall type, because it is quite light. Therefore,
the limit state function for the sliding failure is considered in this example.

The issue of variable redundancy not only exists in the pile example with a variable
number of soil layers, but also exists in the current gravity retaining wall example, even
though this current example involves a fixed number of soil layers. Ching et al. (2015)
showed that by solely change the statistics (mean and COV) of the surcharge q, ERD
can change from 2.20 to 3.15. Based on 1000 randomly selected calibration cases,
Ching et al. (2015) showed that ERD can be effectively estimated using the following
equation based on some dimensionless parameters.

ERD = 3.25 — 0.42(B/H)> — 1.19%% — 1.04(B/H) + 0.71x
+0.44 - 1H[Mq/(lkyd -H- Ka)]
+1.46-Vq—1.87 - Vg +1.35 -V — 0.13p — 0.03pL¢r (6.27)

where K, =tan?(45° — wy/2); Wyds Hg'> and pg are the mean values for vy, ¢/, and q,
respectively; Vg, Vg, and Vq are the COVs for ¢, ¢;, and q, respectively. Note that this
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Figure 6.9 Gravity retaining wall example (Ching et al. 2015, Figure 5).

ERD equation is developed by the code developer as part of the reliability calibration
exercise, not the practitioner who is applying the code. A new QVM procedure that
considers the degree of redundancy, called the ERD-QVM, is proposed by Ching et al.
(2015):

1. Estimate ERD using Eq. (6.27).

2. Given the estimated ERD and the target reliability index Br, determine B, =
Br/ERD?S. Further determine £ = &(—p;).

3. Determine the design values of the random variables using QVM. This involves
reducing all stabilizing random variables to their € quantiles to obtain their design
values and increasing all destabilizing random variable to their 1-g¢ quantiles.
Conceptually, this step is the same as computing a design value by dividing a
characteristic value by a partial factor (for a stabilizing variable) or by multiplying
a characteristic value by a partial factor (for a destabilizing variable). The outcome
is a numerical value that will be substituted into an algebraic design check.

4. Based on the design values obtained in Step 3, the size of the geotechnical structure
is obtained by solving G =0. For the current gravity retaining wall example, the
size is the base width B. With Bt = 3.0, Ching et al. (2015) showed that the original
QVM with € =0.0265 performs satisfactorily: the actual reliability indices p’, for
1000 validation cases fall into a range between 2.43 and 3.72. Nonetheless, the
ERD-QVM further improves the performance: p/, ranges from 2.64 to 3.44.
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6.7 CONCLUSIONS

Simplified RBD formats are expected to dominate geotechnical design codes in the
next few decades. They are very attractive to practitioners, because it is possible
to enjoy the advantages of reliability-based design without performing reliability
analysis. In fact, the computational effort between applying simplified RBD format
and applying the factor of safety format is similar, because both design checks are
algebraic.

While it is understandable for geotechnical RBD to adopt structural LRFD con-
cepts at its initial stage of development over the past decades, the authors believe that it
is timely for the geotechnical design code community to look into how we can improve
our state of practice to cater to the distinctive needs of geotechnical engineering prac-
tice. Section D.5 in 1SO2394:2015 clarifies that the “key goal in geotechnical RBD is
to achieve a more uniform level of reliability than that implied in existing allowable
stress design”. This goal is not explicitly recognized in many existing implementations
of simplified geotechnical RBD formats. The advantage of adopting RBD over existing
allowable stress design is largely nullified if the prescribed target reliability index can-
not be achieved consistently over the full range of design scenarios within the ambit of
the design code. This is not a pedantic issue. In fact, it goes to the heart of geotechnical
engineering practice that must cater to diverse local site conditions and diverse local
practices that grew and adapted over the years to suit these conditions. One obvious
example is that the COVs of geotechnical parameters can vary over a wide range,
because diverse property evaluation methodologies exist to cater to these diverse prac-
tice and site conditions (refer to Section D.1,1502394:2015). A simplified geotechnical
RBD format that meets the diverse needs of geotechnical engineering practice is not
available. Existing LRFD or comparable simplified RBD formats are limited in more
than one substantial aspect. For examples, these simplified RBD formats do not allow
room for the geotechnical engineer to exercise judgment in response to local site con-
ditions and to incorporate local experience. This chapter demonstrates that improved
formats (e.g., ERD-QVM) exist that can cater to a more realistic range of design sce-
narios. Specifically, ERD-QVM can maintain an acceptably uniform level of reliability
over a wide range of COVs of geotechnical parameters and a wide range of layered
soil profiles. It can achieve this while retaining the simplicity of an algebraic design
check similar to the traditional factor of safety format and LRFD. Nonetheless, it has
not been tested in more complex design settings. Complex design settings can arise
in the mechanical soil-structure interaction sense, such as staged construction in deep
excavations. Complex design settings can also arise in the probabilistic sense, such
as slopes which are intrinsically system reliability problems. More research is clearly
needed, but it is important for geotechnical RBD to be developed with geotechnical
needs at the forefront.
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Direct probability-based design
methods
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ABSTRACT

This chapter focuses on recent development of direct probability-based design methods,
including the expanded reliability-based design (expanded RBD) method, reliability-
based robust geotechnical design (RGD) method, and the new safety standards for
flood defenses in the Netherlands which is the first ever national standard that adopts
direct (or full) probability-based design methods. One major criticism to the simpli-
fied semi-probabilistic RBD format is displacement of sound engineering judgment
and lack of flexibility for practitioners. Because the simplified semi-probabilistic RBD
format adopts the same trial-and-error approach as traditional allowable stress design
(ASD) methods and it is developed to circumvent the need for practitioners to perform
probabilistic analysis, these compromises seem unavoidable. An alternative solution
to this dilemma is to maintain the engineering judgment and flexibility similar to
ASD methods, but at the expense of performing probabilistic analysis using direct
probability-based design methods. It is shown that, with the aid of commonly available
computers and widely used computer software such as Microsoft Excel, performing
Monte Carlo Simulation (MCS)-based probabilistic analysis and design are becoming
more and more straightforward and convenient. MCS is already available in some
commercial geotechnical software programs. MCS can be comprehended easily as a
repetitive computer execution of traditional ASD design calculation, and the reliability
analysis background required for performing MCS is substantially reduced. A gravity
retaining wall design example is used in this chapter to illustrate the MCS-based design
method in Excel.

7.1 INTRODUCTION

The new edition of 1S02394:2015 considers a design process as a decision making
process which shall take basis in information concerning the implied risks (See Clause
4.4.1 of ISO2394:2015). Both failure probability and failure consequences (e.g., loss
of lives and injuries, damages to the qualities of the environment, and monetary losses)
are integral elements of risk. When the consequences of failure vary substantially and
explicit quantification of failure consequences is needed, full risk-informed decision
making is often performed (See Clause 7 of 1SO2394:2015). For example, assess-
ment on dam safety is frequently a risk-informed decision making process because
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consequences of dam failure certainly vary beyond normal ranges (e.g., Hartford and
Baecher 2004). When the consequences of failure and damage are well understood
and within normal ranges, reliability-based decision making can be applied instead
of full risk-informed decision making. The reliability-based decision making may be
directly based on probabilistic analysis and all specified reliability requirements are
explicitly checked and satisfied (See Clause 8 of 1SO2394:2015). Such an approach is
referred to as direct (or full) probability-based design methods. Application of direct
probability-based design methods requires the availability of uncertainty models, reli-
ability methods, and expertise in probabilistic analysis, which are not always available
in engineering practices. When in addition to the consequences also the failure modes
and the uncertainty representation can be categorized and standardized, the design
process may be further simplified a semi-probabilistic reliability-based design (RBD)
format (See Clause 9 of 1SO2394:2015), as discussed in Chapter 6.

The semi-probabilistic RBD methods have formats similar to the traditional allow-
able stress design (ASD) methods. The factor of safety (FS) in ASD methods is replaced
by a combination of load and resistance factors (or material partial factors) in semi-
probabilistic RBD methods. The same trial-and-error approach is used in both ASD
and semi-probabilistic RBD methods, in which a trial design is proposed and checked
against various design requirements, followed by revision of the trial design, if neces-
sary. No probabilistic analysis is needed for practitioners when using semi-probabilistic
RBD methods in engineering practice. The probabilistic aspect of semi-probabilistic
RBD methods is reflected through some calibration processes during the RBD code
development that produces a table of load and resistance factors (or material par-
tial factors) for a given target probability of failure or reliability index. Examples are
given in Table 6.1 and 6.2. Practitioners are only required to select appropriate load
and resistance factors (or material partial factors) from the provided table during the
design, and they are not involved in the code calibration processes or probabilistic anal-
yses. This process precludes practitioners from performing probabilistic analysis and
circumvents the need for practitioners to learn how to perform probabilistic analysis.
However, it is a double-edged sword.

Because practitioners are not involved in the calibration processes, many assump-
tions and simplifications (e.g., uncertainty models, including calculation model
uncertainty, probability distributions of loads and geotechnical properties, and prop-
agation of these uncertainties) adopted in the calibration processes are frequently
unknown to the practitioners. This situation can lead to potential misuse of the load
and resistance factors (or material partial factors) that are only valid for the assump-
tions and simplifications adopted in the calibration processes. In other words, when
using the load and resistance factors (or material partial factors), practitioners have
to accept all the assumptions and simplifications adopted in the calibrations. More
often than not, the assumptions and simplifications underlying the calibration pro-
cesses are not stated in the design code (at least not stated explicitly). Only the final
outcomes of the calibration processes in the form of load and resistance factors are pre-
sented. Practitioners may feel uncomfortable to accept these “black box™ calibration
processes blindly. In addition, practitioners have no flexibility in changing any of these
assumptions/simplifications or making their own judgment because recalibrations are
necessary when any assumption or simplification is changed. This situation leads to one
major criticism of semi-probabilistic RBD methods: displacement of good geotechnical
sense and sound engineering judgment which have been long considered as a critical
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element in geotechnical practice to cater for diverse property, load and resistance eval-
uation methodologies and diverse site conditions (Bolton 1983; Fleming 1989; Phoon
2008). In fact, existing LRFD codes that recommend a single value for each resistance
factor is an example of straitjacketing that do not allow engineers to incorporate uncer-
tainties specific to their sites/design scenarios into the design. It has been argued that
engineers could apply their judgment by judicious selection of a cautious estimate of
the nominal/characteristic resistance suitable for a particular site, but this approach is
identical to what is being done in ASD. The uncertainties presented in Chapter 3 and
4 are not considered explicitly at the site level and Chapter 1 has argued that imposing
on engineering judgment alone to assess a cautious estimate in the presence of auto-
and cross-correlated input parameters and how these parameters manifest themselves
in the response is onerous. Adoption of direct probability-based design methods is a
possible mitigation to this criticism, particularly when the expertise in probabilistic
analysis required in direct probability-based design methods is substantially reduced
or practitioners are equipped with sufficient background in probability and statistics.
With rapid development of computer technology and commonly available personal
computers (PC), it is now possible to use a PC to perform probabilistic analysis with
minimal expertise in probabilistic analysis, although having such expertise is always
advantageous.

This chapter focuses on recent development of direct probability-based design
methods. It starts with a non-exhaustive list of situations in which using direct
probability-based design methods is beneficial and necessary, followed by some
recently developed direct probability-based design methods, including the expanded
reliability-based design (expanded RBD) method (Wang et al. 2011a; Wang 2011,
2013; Wang and Cao 2013a), reliability-based robust geotechnical design (RGD)
method (Juang et al. 2013a, b; Juang and Wang 2013), and the new safety standards
for flood defenses in the Netherlands (Schweckendiek et al. 2012; Schweckendiek
et al. 2015) which is the first ever national standard that adopts direct (or full)
probability-based design methods. Then, two important aspects (i.e., system relia-
bility and reliability target) in the implementation of direct probability-based design
methods are briefly reviewed. An example of a gravity retaining wall design is used
to illustrate the expanded RBD method and its implementation in a widely used Excel
spreadsheet platform. Quantification of uncertainty in soil properties from a limited
number of site-specific standard penetration test (SPT) and triaxial test results is also
performed using Excel spreadsheet and included in this illustration.

7.2 SITUATIONS OF DIRECT PROBABILITY-BASED
DESIGN METHODS BEING NECESSARY

Although there are many cases in which semi-probabilistic design methods in a simpli-
fied RBD format are sufficient and probabilistic analysis can be bypassed, sometimes
direct probability-based design methods are necessary and beneficial. A non-exhaustive
list of such situations is provided below:

1. Out of the calibration domain for semi-probabilistic RBD codes
Chapter 6 has emphasized the importance of clearly stating the salient features
of the underlying calibration domain (e.g., range of pile diameters, pile lengths,



196 Reliability of Geotechnical Structures in 1SO2394

statistics of geotechnical parameters) that have been used during the development
of semi-probabilistic RBD codes. The load and resistance factors (or material
partial factors) are valid only when the design scenario is within the calibration
domain. When the design scenario is out of the calibration domain (e.g., the pile
diameters, pile lengths or statistics of geotechnical parameters are out of the range
of those that have been used in calibration), it is inappropriate to use the load and
resistance factors (or material partial factors) from semi-probabilistic RBD codes.
In this case, it is necessary and beneficial to use direct probability-based design
methods. In addition, most semi-probabilistic RBD codes are only calibrated for
a single soil layer profile, it is inappropriate to directly apply the resulting load
and resistance factors (or material partial factors) to a multiple soil layer profile,
which is very common in geotechnical practice (see Chapter 6). Recalibration and
further studies are needed for using semi-probabilistic methods in a multiple soil
layer profile, as discussed in Chapter 6. Before completion of the recalibration and
further studies, one feasible alternative to this multiple soil layer profile problem
is direct probability-based design methods.
2. Different calculation models
To carter for the diverse property, load and resistance evaluation methodologies
and diverse site conditions in geotechnical practice, many different calcula-
tion models have been developed and adopted in traditional ASD practice. For
example, bearing capacity of foundation can be estimated using many different
calculation models. Some of them have theoretical basis, such as Terzaghi’s and
Vesic’s bearing capacity equations, and some of them empirically correlate the
foundation bearing capacity with results of some commonly used in-situ tests,
such as SPT or cone penetration test (CPT). Models for settlement calculations
are even more diverse. There are at least tens of different calculation models for
estimating foundation settlement. In traditional ASD practice, practitioners have
the flexibility to exercise their sound engineering judgment to decide which cal-
culation model to use and how to use. In contrast, only one “best” calculation
model is selected during the calibration and development of semi-probabilistic
RBD codes. The load and resistance factors (or material partial factors) are valid
only for the pre-selected calculation model. If the selected model is changed, recal-
ibration is needed and the resulting load and resistance factors (material partial
factors) are probably different. When using semi-probabilistic RBD codes, practi-
tioners therefore have to stick to the pre-selected calculation models. They cannot
exercise their sound engineering judgment or have the flexibility to use a calcula-
tion model that, in their opinions, best suits the design scenario and information
in hand, if this calculation model is different from the pre-selected one. Direct
probability-based design methods may be used when practitioners prefer to use
different calculation models.
3. Different uncertainty models
During the calibration of semi-probabilistic RBD codes, an uncertainty model
is developed and adopted, although it is often opaque to practitioners. The uncer-
tainty model generally includes: (i) decision on which variables are considered
as uncertain; (ii) probabilistic modelling of the uncertain variables as random
variables (e.g., probability distributions of the random variables); and (iii) auto-
and cross-correlation structures. The uncertainty model is an integral part of the
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calibration process. If the uncertainty model changes, the load and resistance fac-
tors (or material partial factors) resulted from the calibration process are very
likely to change too. In other words, the load and resistance factors (or mate-
rial partial factors) are valid only for the specific uncertainty model adopted
in calibration process. When using semi-probabilistic RBD codes, practition-
ers therefore have to accept the uncertainty model underlying the calibration of
the load and resistance factors (or material partial factors). They cannot exer-
cise their sound engineering judgment or have the flexibility to develop and
adopt an uncertainty model that, in their opinions, best suits the design sce-
nario and site-specific information in hand, if this uncertainty model is different
from the one adopted in the calibration. For example, most, if not all, existing
semi-probabilistic RBD codes consider the foundation allowable settlement as
a deterministic value. However, Zhang and Ng (2005) showed that the foun-
dation allowable settlement is indeed highly uncertain. This uncertainty has
significant effect on probabilistic analysis and should be considered in foun-
dation design (Wang et al. 2011a). The existing semi-probabilistic RBD codes
cannot accommodate this uncertainty unless recalibration is performed with this
uncertainty included in the recalibration. Before such a recalibration is available,
direct probability-based design methods may be used in this case or other similar
situations.
Different target failure probability, p

Semi-probabilistic RBD codes often only provide load and resistance factors
(or material partial factors) for one or a few pre-selected values of target failure
probability, pg. It is therefore difficult for practitioners to adjust the design pg,
unless recalibration is performed to obtain different sets of load and resistance
factors (material partial factors) for other pg values. Adjustment of py, is benefi-
cial in geotechnical practice because it allows practitioners to exercise their sound
engineering judgment and have the flexibility to adjust the pg value to reflect
the importance of the intended geotechnical structures and the consequence of
failure. Such adjustment is common in traditional ASD practice where practition-
ers adjust the design FS to accommodate the different consequences of failure
as one important consideration. Because the FS in ASD codes is replaced by a
combination of load and resistance factors (or material partial factors) in semi-
probabilistic RBD codes, it is difficult for practitioners to apply their experience in
FS adjustment from ASD to semi-probabilistic RBD practice. Direct probability-
based design methods are beneficial in this case where the pg value needed in
the design is different from the one pre-specified in semi-probabilistic RBD codes.
It is recognized that some codes mitigate this situation by allowing structures to be
design according to different target failure probabilities associated with different
reliability classes (Table B2 in EN1990:2002).
Exact value of failure probability is needed

The exact value of failure probability p; may be needed in some engineering
applications, such as quantitative risk assessment and risk-based decision mak-
ing (See Clauses 7.1-7.5 of 1SO2394:2015). Both failure probability and failure
consequences (e.g., economic loss or number of fatality) are integral elements of
risk. When the risk needs to be assessed quantitatively, the exact value of failure
probability is also needed. In this case, direct probability-based design methods
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are necessary. It is also worthwhile to note that using the load and resistance fac-
tors (or material partial factors) in existing semi-probabilistic RBD codes does not
guarantee achievement of the target failure probability prescribed in the codes,
as discussed in Chapter 6 and some previous studies (e.g., Wang 2011; Wang
2013). When such a guarantee is needed, the failure probability needs to be eval-
uated explicitly using direct probability-based design methods. We use the term
“exact” to sharpen the contrast between the ability of direct methods to achieve
any prescribed pg to any desired accuracy and the ability of simplified methods
to achieve only a few pre-selected values of pg and even for each pg, the actual
pr achieved is different from pg. It goes without saying that the accuracy of p¢
is limited by available information and achieving anything more “exact” is not
necessarily practically meaningful.
6. Correlated load and resistance
Although semi-probabilistic RBD methods have been successfully applied to
foundation design where load and resistance are usually independent, it has been
less satisfactory when applied to earth retaining structures or slopes (Christian
and Baecher 2011; Wang 2013). One major challenge is that, for earth retaining
structures and slopes, the load and resistance are usually originated from the same
sources (e.g., effective stress of soil) and correlated with each other. It is therefore
difficult to decide whether the effective stress of soil or earth pressure should be
regarded as a load or resistance. This situation leads to a difficult but frequently
asked question in the retaining wall design with Eurocode 7: should passive earth
pressure be regarded as a resistance or load (e.g., Bond and Harris 2008, Wang
2013)? The answer to this question obviously has a significant bearing and may
result in different designs, because the partial factors are different for resistances
and loads. In addition, it is common that loads and resistances are modelled
as independent random variables during RBD code calibrations. Although this
uncertainty model is generally sufficient for foundations, it violates the funda-
mental physics for earth retaining structures or slopes because both load and
resistance are originated from effective stress of soil and they intrinsically cor-
relate with each other. Some direct probability-based design methods, such as
expanded RBD method (Wang et al. 2011a; Wang 2013), can effectively bypass
the difficulty in handling the correlated load and resistance. Details are provided
in the next section.
7. Serviceability limit state (SLS) design
Most existing semi-probabilistic RBD codes, except a few (e.g., Phoon et al.
1995), only deal with ultimate limit state (ULS) design of geotechnical structures,
without considering serviceability limit state (SLS) design. It is obvious both ULS
and SLS designs are necessary for geotechnical structures. In the absence of semi-
probabilistic RBD codes for SLS design, direct probability-based design methods
may be used to fill the gap.
8. Rock Engineering
It may be difficult to apply a semi-probabilistic RBD approach to rock
engineering which is typically governed by geometric uncertainties such as ori-
entation of joints that cannot be easily factored in the conventional LRFD
way. In addition, the associated failure wedges are more myriad than a bear-
ing capacity mechanism in soil. As mentioned in Chapter 1, the Commission
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on Evolution of Eurocode 7 hosted by the International Society for Rock
Mechanics (https://www.isrm.net/gca/index.php?id=1143) noted that the partial
factor approach in Eurocode 7 “is in many ways inappropriate — and in some
circumstances inapplicable — to rock engineering.”

One common feature in the situations listed above is displacement of sound engi-
neering judgment and lack of flexibility for practitioners. Because semi-probabilistic
RBD codes adopt the same trial-and-error approach as traditional ASD methods and it
is developed to circumvent the need for practitioners to perform probabilistic analysis,
some compromises seem unavoidable, such as displacement of sound engineering judg-
ment and lack of flexibility for practitioners. One possible solution to this trade-off is
to maintain the engineering judgment and flexibility similar to ASD methods, but at
the expense of performing probabilistic analysis using direct probability-based design
methods.

Similar to the semi-probabilistic RBD methods, the objective of direct probability-
based design is to find a set of design parameters such that a prescribed target failure
probability py, is achieved. A trial-and-error approach may be used to adjust the design
parameters until the p; of the trial design is smaller than the prescribed pg. The failure
probability for each trial design is evaluated directly and explicitly using reliability
analysis methods, such as first order second moment method (FOSM), first or sec-
ond order reliability method (FORM or SORM), or Monte Carlo simulation (MCS).
Although application of direct probability-based design methods is relatively rare for
conventional types of geotechnical structures with no exceptional risk or difficult
ground or loading conditions (e.g., the Geotechnical Category 2 defined in Eurocode 7,
such as spread foundations, raft foundations, pile foundations, retaining walls, excava-
tions, bridge piers and abutments, embankments and earthworks, ground anchors and
other tie-back systems), direct probability-based design methods have been commonly
used in several geotechnical related engineering fields, such as earthquake engineering,
offshore engineering, dam engineering and nuclear engineering (e.g., site selection and
foundation design for dam and nuclear facilities). For example, probabilistic seismic
hazard analysis (PSHA, Cornell 1968; Reiter 1990) is a routine element in earthquake
engineering practice and there is an entire research community devoted to PSHA.
Liquefaction potential of soils may be evaluated probabilistically using results of either
SPT (e.g., Cetin et al. 2004; Juang et al. 2008, 2013c) or CPT (e.g., Juang et al. 2000,
2006). Offshore pile foundations are frequently designed using probability-based
methods (e.g., Tang et al. 1990; Lacasse et al. 2013; Chen and Gilbert 2014).

Since sufficient expertise in reliability analysis is needed for practitioners to use
direct probability-based design methods and practitioners are not necessarily experts in
reliability analysis, the need to gain new knowledge becomes a major hurdle for adop-
tion of direct probability-based design methods in geotechnical practice. To remove
this hurdle, new direct probability-based design methods for geotechnical structures
have been recently developed, such as the expanded RBD method (Wang et al. 2011a;
Wang 2011; and Kulhawy et al. 2012). Under the expanded RBD method, the burden
imposed on practitioners to learn new reliability concepts is substantially reduced. The
design process is conceptualized as a systematic sensitivity study in this method, which
is common in geotechnical practice and familiar to practitioners. In such a sensitivity
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study, a large number of design alternatives (or trial designs) are evaluated systemat-
ically, and the optimal design with the maximum utility and satisfying the reliability
requirements is chosen as the final design. Details of the expanded RBD method are
provided in the following section.

7.3 EXPANDED RELIABILITY-BASED DESIGN
(EXPANDED RBD) METHOD

The expanded RBD method (Wang et al. 2011a; Wang 2011; and Kulhawy et al.
2012) formulates the geotechnical design process as an expanded reliability problem
in which a single run of MCS is used in a PC to address, explicitly and simultane-
ously, the ULS, SLS, economically-optimized limit state (EOLS, a measure of utility,
Wang and Kulhawy 2008; Wang 2009), and reliability requirements of the design.
An expanded reliability problem, as described herein, refers to a reliability analysis
of a system in which a set of system design parameters are considered artificially as
uncertain with probability distributions specified by the user for design exploration
purposes. Consider, for example, a pile foundation design in which design parameters
are pile depth D and diameter B. Both D and B are treated artificially as discrete uni-
form random variables. Then, the design process is considered as a process of finding
failure probabilities for design alternatives with various combinations of B and D [i.e.,
conditional probability p(FailurelB, D)] and comparing them with a target probability
of failure pg, which could be a ULS or SLS requirement. A single run of MCS with
a total sample number n is performed to evaluate p(FailurelB, D), as illustrated in
Figure 7.1. The traditional ASD calculations are repeated n times in the MCS, and it is
equivalent to a systematic sensitivity study that contains n different design cases with
various input parameters and/or design parameters. The conditional failure probabil-
ity p(FailurelB, D) is calculated from the MCS results as (Wang et al. 2011a and Wang
2011):

p(B, D|Failure)

(Failure|B,D) =
P p(B,D)

ps (7.1)

in which p(B, DIFailure) = conditional joint probability of B and D given failure. Since
B and D are independent discrete uniform random variables, p(B,D) in Eq. 7.1 is
expressed as:

1
ngnp

(7.2)

in which ng and np =number of possible discrete values for B and D, respectively.
The quantities p(B, DIFailure) and p; in Eq. 7.1 are estimated using a single run of
MCS in a PC.

Monte Carlo Simulation

Monte Carlo Simulation (MCS) is a numerical process of repeatedly calculating a
mathematical or empirical operator in which the variables within the operator are
random or contain uncertainty with prescribed probability distributions (e.g., Ang
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Figure 7.1 Flow chart for Monte Carlo Simulation in expanded RBD method (Modified from Wang
etal. 201 [a).

and Tang 2007). With the aid of commonly available PC and computer software such
as Microsoft Excel, performing MCS is becoming more and more straightforward
and convenient. The reliability analysis background required for performing MCS is
substantially reduced when using some built-in functions and add-ins in Excel.
Consider the expanded RBD method above. The mathematical operator involves
calculation of load (L) and resistance (R) and judgment of whether failure occurs. Fail-
ure here does not refer to catastrophic collapse of geotechnical structures, but only
refers to events in which the load exceeds resistance (i.e., L > R) or some limit states
are exceeded. Figure 7.1 shows MCS procedures schematically for the expanded RBD
method. The MCS starts with characterization of probability distributions for the
design parameters (e.g., B and D for a drilled shaft) and geotechnical-related uncer-
tainties that are considered in the expanded RBD method. In addition to the discrete
uniform distributions specified for design parameters (e.g., B and D), proper probabil-
ity distribution functions are used to model uncertainties that arise in loads, geologic
site interpretations, geotechnical properties, and computational models. For exam-
ple, effective friction angle ¢’ of soil can be modeled by a lognormal distribution
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(e.g., Phoon et al. 1995; Wang et al. 2011a) or a site-specific probability distribu-
tion estimated from site investigation data (e.g., Wang et al. 2015 & 2016). Then,
repeated random samples of the uncertain variables (e.g., B, D, and other uncertainties
considered) are generated from their respective probability distributions, followed by
repeated calculation of L and R and judgment of whether failure occurs using each set
of random samples as input. Finally, statistical analysis of the output is performed to
estimate p; and p(B, DIFailure) as:

n
pr= Hf (7.3)
p(B, D|Failure) = I:}—i (7.4)

in which n = total number of MCS samples, n = number of MCS samples where failure
occurs, and n; = number of MCS samples where failure and a specific set of B and D
values occur simultaneously. Note that a total number ng x np of ny values is obtained
from a single run of MCS, and each n; value corresponds to a possible combination
of B and D. Combining Eqs 7.1-7.4 leads to:

npnpng

p(Failure|B, D) = (7.5)

Note that np, np and n are pre-specified by practitioners before MCS, and n; and ng
are obtained by simply counting the numbers of failure samples for each combination
of B and D and the total failure samples in MCS. Estimation of the p(FailurelB, D)
using Eq. 7.5 is therefore straightforward.

Figure 7.2 shows an illustration of the p(FailurelB, D) obtained from MCS. Note
that the relationships given in Figure 7.2 are variations of p¢ as a function of the design
parameters B and D that represent different designs. From this perspective, these are
results of a sensitivity study on p¢ versus the design parameters. Feasible designs can
be inferred directly from the figure, and they are those with p(FailurelB, D) < pg. The
feasible designs satisfy the ULS, SLS, and reliability requirements. Then, the EOLS
requirement should be adopted to finalize the design, which will be the one with the
minimum construction cost. Wang and Kulhawy (2008) outlined a straightforward
optimization process that allows the incorporation of ULS and SLS designs with con-
struction costs to select the most cost-effective geotechnical structures among those
being considered. The construction costs for geotechnical structures may be estimated
using published, annually-updated, unit cost data, such as Means Building Construc-
tion Cost Data (e.g., Means 2007). The construction costs for all feasible designs are
calculated as the product of their unit costs and respective design parameters, and
the final design is determined by comparing their construction costs. The final design
therefore satisfies the ULS, SLS, EOLS, and reliability requirements.

Although MCS has the advantage of conceptual and mathematical simplicity and
can be comprehended easily as a repetitive execution of traditional ASD design, there
is a question about how many MCS samples are necessary to ensure a desired level of
accuracy in the results. As a rule of thumb, the number of MCS samples should be at
least ten times greater than the reciprocal of the probability level of interest, i.e., pg
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Figure 7.2 Anillustration of conditional failure probability from MCS (Modified fromWang et al. 201 la).

(e.g., Roberts and Casella 1999; Wang et al. 2011a). For the expanded RBD method,
the minimum number of samples (ny;,) can be estimated as follows:

1 OanD
Pft

(7.6)

Nmin =

The ny,;, value estimated from Eq. 7.6 increases rapidly and the computation effort
required increases significantly as the number of design parameters and their possible
combinations increases. When the computational effort is a concern and improvement
of the computational efficiency for MSC is preferred, advanced MCS, such as Subset
Simulation (Au and Beck 2001; Au and Wang 2014), may be used together with the
expanded RBD method. Subset Simulation can be implemented conveniently in Excel
spreadsheet (Au et al. 2010; Wang et al. 2011b). Examples of using expanded RBD
method together with Subset Simulation in Excel spreadsheet are referred to Wang and
Cao (2013a).

Advantages of expanded RBD method

The expanded RBD method deals rationally with several important characteristics of
geotechnical engineering practice, making it perhaps particularly suitable for geotech-
nical structures. Some advantages of the expanded RBD method are highlighted
below:

(1)  The ULS and SLS calculation models in the expanded RBD method are estab-
lished in the same way as those in traditional ASD methods. Practitioners
therefore have the same flexibility to select and use, in their opinions, the “best”
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calculation models and make appropriate design assumptions and modifications
that best suit the design situation in a particular project. This allows practitioners
to exercise their practical good sense and sound engineering judgment, which is
always considered as a critical element in geotechnical engineering practice, in a
way similar to the traditional ASD methods.

(2)  The uncertainties are modelled explicitly and directly. Practitioners have the
flexibility to include uncertainties deemed appropriate and to model the uncer-
tainties in soil and rock properties on a site-specific basis, which is necessary and
beneficial because of the site-specific nature of ground properties.

(3) It decouples reliability assessment from traditional ASD design calculations, and
it has a unique capability of dealing rationally with correlated load and resis-
tance (e.g., earth retaining structures and slopes). The expanded RBD method is
a repetitive computer execution of traditional ASD design calculations, and the
correlation between the load and resistance is implicitly considered in the tradi-
tional ASD calculation models. The reliability assessment is performed by MCS,
i.e., repetitive computer execution of the traditional ASD calculation models, and
the difficulty in handling the correlated load and resistance in semi-probabilistic
RBD codes is bypassed in this MCS-based method.

(4) It is able to properly handle system reliability problems (e.g., multiple failure
modes or complex system structure). As far as the multiple failure modes and
interaction among various system components are represented properly in the
traditional ASD calculation models, the MCS-based reliability assessments in
the expanded RBD method is simply a repetitive computer execution of the ASD
calculation model. No sophisticated system reliability analysis is required. The
process for system reliability problems is largely identical to that for single failure
mode or component reliability problems. As discussed in Section 7.6, the major-
ity of geotechnical problems are in fact system reliability problems, and therefore,
the expanded RBD method is particularly suitable for geotechnical practice.

(5) It provides practitioners the flexibility to adjust pg, without additional calcula-
tions, for accommodating specific project needs (see Section 7.7). It also offers
additional insight into how the expected performance level changes as the design
parameters change.

Finally, the MCS in expanded RBD method is conceptually and mathematically
simple (i.e., it is just a repetitive computer execution of the ASD calculations). It can
be implemented easily in a spreadsheet environment (e.g., Microsoft Excel). This is
particularly convenient for practitioners who frequently perform design calculations
using spreadsheets. With rapid development of modern computer technology, thou-
sands of MCS samples can be generated and calculated for conventional foundation
designs within seconds. An illustrative example of using expanded RBD method in
Excel spreadsheet is provided in Section 7.8.

7.4 RELIABILITY-BASED ROBUST GEOTECHNICAL

DESIGN (RGD)

Due to the limited data available, the probability distributions of input parameters
and solution models may not be able to be accurately characterized. A new design
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philosophy called robust geotechnical design (RGD) was recently proposed by Juang
et al. (2013a&b) to address such a circumstance. Robust geotechnical design aims to
make the response of a geotechnical system robust against, or insensitive to, the varia-
tion of uncertain input parameters (referred to as noise factors in RGD). For example,
the uncertainties in soil properties are difficult to quantify due to insufficient data, and
they may be treated as noise factors in RGD. By systematically changing design param-
eters, RGD is realized through a multi-objective optimization that explicitly considers
all design requirements such as safety, robustness and cost. The results of such an opti-
mization are expressed as a Pareto Front, which is a collection of optimal designs that
collectively defines a trade-off relationship between cost and robustness. It is found
that the cost generally increases as the robustness improves. Thus, the robustness may
be considered as additional conservativeness that is invested in the design and accounts
for the hard-to-control (i.e., cannot be easily adjusted by the practitioner) and hard-to-
characterize (i.e., the uncertainty is recognized but hard to quantify due to insufficient
data) noise factors, such as uncertainty in soil properties. Note that the optimal designs
on the Pareto Front meet all the safety requirements. The Pareto Front therefore could
be adopted by practitioners to make an informed design decision according to a target
cost or robustness.

According to the uncertainty characterization of noise factors, three levels of robust
geotechnical design (RGD) could be implemented: (1) site-specific data or knowledge is
quite limited and the noise factors could only be characterized by the upper bounds and
the lower bounds, the fuzzy set-based RGD (Gong et al. 2014a&b) might be employed;
(2) more data availability is achieved and the noise factors may be characterized by
probability distributions, however, the statistical information of the corresponding
probability distributions (e.g., coefficient of variation and type of distribution) could
not be calibrated accurately, the reliability-based RGD (Juang et al. 2013a&b; Juang
and Wang 2013; Khoshnevisan et al. 2014) or the sensitivity-based RGD (Gong et al.
2014c; Gong et al. 2016) might be adopted; and (3) sufficient site-specific data or
knowledge is available and the statistical information of the probability distributions
of noise factors could be accurately characterized, the direct reliability-based method,
such as expanded RBD (Wang et al. 2011a; Wang 2011, 2013; Wang and Cao 2013a),
can be adopted. The focus of this section is placed on the reliability-based RGD, while
the other RGD approaches could be referred to the references listed above.

Within the framework of the reliability-based RGD (Juang et al. 2013a&b; Juang
and Wang 2013), the variation of the failure probability of the geotechnical design,
caused by the uncertainty in the probability distributions of noise factors, is explicitly
considered; and, the essence of reliability-based RGD is to seek an optimal design
that simultaneously minimizes the variation of the failure probability (i.e., robust
requirement) and the cost (i.e., economic requirement) while meets the target fail-
ure probability (i.e., safety requirement). In reference to Juang et al. (2013b), the steps
of reliability-based RGD can be summarized in what follows:

(1) Define the problem of concern and classify all input parameters of the design
geotechnical structures into design parameters and noise factors. For the
given geotechnical structures, the traditional ASD calculation models can be
established.

(2)  Estimate statistics of uncertain parameters, quantify the uncertainty in the statis-
tics of noise factors, and identify the design domain. For geotechnical structures,
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key uncertain soil parameters are usually treated as noise factors. The uncer-
tainty in the statistics (e.g., coefficient of variation) of each noise factor may be
characterized based upon published literatures and engineering judgment. The
design domain generally includes typical ranges of the design parameters. These
design parameters might be specified in discrete numbers, leading to a design
domain consisting of a finite number (M) of design alternatives.

(3)  Evaluate the robustness of a given design. The system performance of concern
of a design alternative, in the context of reliability-based RGD, is the failure
probability, and the robustness of a design alternative is therefore measured by
the standard deviation of the failure probability. Reliability analysis is performed
in this step to evaluate the failure probability and its statistics (i.e., mean and
standard) for a given design alternative.

(4) Repeat Step 3 for all design alternatives specified in Step 2. For each design
alternative, the mean and standard deviation of the failure probability are
determined.

(5) Carry out a multi-objective optimization to establish a Pareto Front and choose
the most preferred design from the Pareto Front. In this multi-objective opti-
mization, the mean of the failure probability is the design constraint that must
be less than the target failure probability, while the standard deviation of the
failure probability and the cost are design objectives to be minimized.

Details of the reliability-based RGD methodology and application examples could be
referred to a series papers by Juang and his co-workers (e.g., Juang et al. 2013a&b;
Juang and Wang 2013).

7.5 THE NEW SAFETY STANDARDS FOR FLOOD
DEFENSES IN THE NETHERLANDS

The current requirements of dike safety for flood defenses in the Netherlands are stip-
ulated by the Dutch Flood Defense Act from 1996. Different from most countries,
where safety standards and codes of practice refer to design of new structures, the
Dutch safety standards employ periodic safety assessments of the existing structures
to warrant an appropriate protection level from flooding. When dikes are found to
be unsafe in the 6-yearly or 12-yearly assessments, the responsible authorities need to
strengthen the structures for achieving the required safety standards. There is a Dutch
national dike reinforcement program (HWBP, in Dutch: Hoogwaterbschermingspro-
gramma) with a yearly budget of roughly 360 million Euro with the objective of
bringing all non-compliant flood defenses up to the standards until roughly the year
2050 (Schweckendiek et al. 2015).

In autumn 2014, the Dutch minister of Infrastructure and the Environment
announced that the safety standards established in 1996 will be updated and legally
established in 2017. The new safety standards will change the definition for safety stan-
dard from an exceedance probability of a normative load event (e.g., a design water
level corresponds to an annual exceedance frequency of 1/2,000) to an acceptable
annual probability of flooding. The main difference between the current and the new
definitions is that, while the current safety levels purely referred to the design hydraulic
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Figure 7.3 Assessment framework and process for the new safety standards in the Netherlands (after
Schweckendiek et al. 2015).

load conditions, the new version explicitly includes the resistance of the flood defenses
with all associated uncertainties.

The change in safety standard and assessment criterion towards an acceptable
probability of flooding has created the need for new safety assessment methods, rules
and tools. The national project dedicated to this, WTI-2017, is developing such meth-
ods and tools for the first round of the new type of safety assessments starting in 2017.
Direct probability-based design methods are adopted, and WTI-2017 aims to facilitate
the methods and tools for semi-probabilistic assessments in 2017 and for fully prob-
abilistic analyses of the most important failure mechanisms in 2019 (Schweckendiek
et al. 2015). An overview of the safety assessment framework and process is shown in
Figure 7.3. The safety assessment is based on evaluation of the relevant failure mech-
anisms, such as overtopping/overflow, macro instability, and internal erosion/piping.
After identifying the relevant failure mechanisms for the dike under investigation, the
level 1 simplified assessment is carried out. Level 1 assessments are typically based
on the characteristic values of the loading (i.e. water level and wave characteristics,
if applicable) and rather easy-to-obtain geometrical parameters. If a failure mecha-
nism cannot be ruled out in level 1, it proceeds to the level 2 detailed assessments.
At this level typically physics-based assessment models are used for each failure



208 Reliability of Geotechnical Structures in 1SO2394

mechanism, such as limit equilibrium models for slope stability or Sellmeijer criterion
for backward internal erosion. Note that the increased level of detail in the assessments
demands an increased level of detail in the input data, especially on ground conditions
and geotechnical properties.

The most noteworthy feature on level 2 is that the assessment can be semi-
probabilistic on a cross section of a dike with characteristic values and partial safety
factors (i.e., semi-probabilistic RBD format such as load and resistance factor design)
or fully probabilistic, i.e., direct probability-based design methods. The fully proba-
bilistic assessment can be made for one mechanism on a cross section of a dike (level
2a) or for the combination of several mechanisms and sections in one dike segment
(level 2b), which is typically in the order of tens of kilometers long. It is explicitly rec-
ognized that, compared with fully probabilistic assessments, simplifications made in
semi-probabilistic assessments come at the cost of additional conservatism. There-
fore, one objective of the WTI-2017 project is to ensure consistency between the
semi-probabilistic and the fully probabilistic approaches by calibrating partial safety
factors to the target probabilities of failure established in the new safety standards
(Schweckendiek et al. 2012; Huber et al. 2015).

If the safety requirements are found to be unsatisfactory after the detailed
assessments, level 3 tailored assessments can be considered. In this level, suitable
state-of-the-art modeling and/or monitoring techniques may be used. The main con-
sideration to move or not to level 3 is if one expects the extra efforts and investments
in data acquisition and modeling to pay off in terms of a sufficiently distinct or more
accurate assessment compared to level 2. Finally, if none of the level 1-3 assessments
above permits the conclusion that the dike is safe with respect to all failure mechanisms,
the dike is considered unsafe and needs to be strengthened.

7.6 SYSTEM RELIABILITY

Although traditional reliability-based design and decision making are primarily applied
to elements and individual limit states (e.g., ULS or SLS failure), systems behavior is of
concern because systems failure is usually the most serious consequence associated with
failure of a structure. It is therefore of interest to assess the probability of system failure
following an initial element failure, as highlighted in Clause 8.3 0of 1SO02394:2015. This
is particularly true for geotechnical structures.

Because the majority of geotechnical structures have multiple failure modes, most
geotechnical reliability analysis problems are indeed system reliability problems. For
example, a simple gravity retaining wall has at least three failure modes: horizontal
sliding along the base of the wall, overturning or rotation about the toe of the wall,
and bearing capacity failure of the soil beneath the wall. These failure modes tend to
interact among each other, because loads and resistances for different failure modes
are correlated. For example, self-weight of a gravity retaining wall, which is the major
source of resistance against sliding and overturning failure modes, but at the same
time, is also a major source of load for bearing capacity failure mode.

A pile foundation for high-rise buildings is often a system of piles, which consists
of several pile groups, each group consisting of a few individual piles. The failure of the
pile foundation is initiated by yielding of an individual pile within the system. Collapse
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of the pile system occurs when each of the individual piles within the system collapses
and the pile system is unable to accommodate additional load. The evaluation of the
reliability of the pile system requires the consideration of the reliability of the individual
piles, the pile group effects, and the system effects arising from pile-superstructure
interactions (Zhang et al. 2001).

Many geotechnical structures form failure mechanisms in the surrounding soil
mass in the ultimate limit state (e.g., slopes, tunnels, deep excavations). For example,
a soil slope may have many potential slip surfaces, and each potential slip surface
in the soil mass is a failure mode. Therefore, the slope stability problem contains
many failure modes, and it is a system reliability problem. This system reliability
characteristic can be even more distinct for rock slopes where multiple failure wedges
can easily formed. Reliability analysis of slope stability has been performed using
FORM. However, only one slip surface (i.e., the so-called most critical slip surface) or
a single failure mode is usually used in FORM, and the probability of failure associated
with this “most likely” failure mode identified by FORM only provides a lower bound
for the system probability of failure. The failure probability from FORM therefore
can be significantly underestimated and biased towards the unconservative side (Ching
et al. 2009; Wang et al. 2011b; Zhang et al. 2011). Some system reliability methods
have been developed recently to address the variation of slip surfaces, particularly
when the spatial variability of soil properties is modelled in the analysis (Zhang et al.
2011; Li et al. 2013; Li et al. 2014).

In contrast to a pile foundation where the sliding surface is mostly restricted to
the interface between soil and pile, the trajectory of a slip surface in a soil mass is cou-
pled to the specific realization of a random field and can only be determined through
numerical analysis. This class of system reliability problems is complex, because of the
coupling between mechanics and spatial variability. However, it is not uncommon in
geotechnical engineering. MCS-based methods can be used as a viable and unbiased
way of estimating system reliability and handling the coupling between mechanics and
spatial variability. The multiple failure modes and interaction among various system
elements are modeled explicitly in the traditional ASD calculation models, and the spa-
tial variability is modelled separately in the uncertainty models. Then, the MCS-based
reliability assessments is simply a repetitive computer execution of the ASD calculation
model using samples generated based on the uncertainty models. No sophisticated sys-
tem reliability analysis is needed. The process for system reliability problems is largely
identical to that for single failure mode or element reliability problems.

When the traditional ASD calculation models are complex, the computational
time and efforts required for the MCS-based methods might be expensive. In this case,
improvement of computational efficiency is preferred, and advanced MCS methods
can be used, such as Subset Simulation (Au and Beck 2001; Au and Wang 2014)
and important sampling. Both subset simulation and importance sampling have been
implemented successfully in the reliability analysis of slope stability (e.g., Ching et al.
2009; Au et al. 2010; Wang et al. 2011b). An Excel-based software package called
UPSS (Uncertainty Propagation using Subset Simulation) has been developed to imple-
ment Subset Simulation in Excel. UPSS can be obtained from the following web
page: https://sites.google.com/site/upssvba/. Examples of using the Excel-based Sub-
set Simulation in foundation and slope stability problems are referred to Wang and
Cao (2015).
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Table 7.1 Summary of reliability index, probability of failure,and corresponding expected performance
level (after U. S. Army Corps of Engineers 1997).

Reliability Index Failure Probability Expected Performance
B pr=0(—p) Level

1.0 0.16 Hazardous

1.5 0.07 Unsatisfactory

2.0 0.023 Poor

25 0.006 Below average

3.0 0.001 Above average

4.0 0.00003 Good

5.0 0.0000003 High

Note: ®(-) = standard normal cumulative distribution function.

Table 7.2 Summary of target reliability index B, in several geotechnical RBD codes.

Design Code ULS B, SLS B
Electric Power Research Institute (EPRI) multiple 32 2.6
resistance and load factor design (MRFD)

Canadian Highway Bridge Design Code (CHBDC 2014) 3.1-3.7 2.3-3.1
Canadian National Building Code (NCBC) 35 Not available
American Association of State Highway and Transportation 2.0-35 Not available
Official (AASHTO) foundation design code

Eurocode 7* 4.7 29

Note: Reference period of the reliability indices is | year, except CHBDC 2014 in which a period of 75 years is
used (Fenton et al. 2016); *: Refer to Reliability Class 2 (RC2) in Eurocode.

7.7 RELIABILITY TARGET

As discussed in Clause 8.4 of 1SO2394:20135, the target failure probability pg (or target
reliability index B¢) should depend on the consequence and the nature of failure, the
economic losses, the social inconvenience, effects to the environment, sustainable use
of natural resources and the amount of expense and effort required to reduce the proba-
bility of failure. Table 7.1 summarizes various expected performance levels adopted by
U. S. Army Corps of Engineers and their corresponding reliability indices and failure
probability. The reliability indices for most structural and geotechnical components
lie between 1 and 4, corresponding to pf ranging from about 16% to 0.003%, as
shown in Table 7.1. Table 7.2 summarizes target reliability indices recommended in
several geotechnical RBD codes (mostly foundation design codes). The reliability tar-
get varies for different limit states and in different codes. It is worthy to note that a
foundation often consists of many components such as individual piles. The levels of
reliability of the entire foundation and the components are often not identical. The
components should be so designed that the entire foundation satisfies the reliability
target. The selection of reliability target for an individual pile in a pile system has been
demonstrated by Zhang et al. (2001).
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Design variables:

£ Band b
Soil properties:
Mass concrete You= 19 kN/ms
3
Vi = 20 kN/m
¢:'A'II ¢;Hn

Mass concrete:

=241N/m’

ycon

B =tan (1/4)=14.0°
9=tan [(B-b)/(2H)]

Figure 7.4 Gravity retaining wall design example.

7.8 GRAVITY RETAINING WALL DESIGN EXAMPLE

A gravity retaining wall design example is used in this section to illustrate the expanded
RBD method. Figure 7.4 show a design of a mass concrete gravity retaining wall with
a symmetrical trapezoid cross section. The wall height is H=4m, and the bottom
and top wall width are B and b, respectively. B and b are design variables in this
example. The slope angle of the backfill soil is B, the angle between the back face
of the wall and the vertical is 6. Note that 6 =tan~'[(B — b)/(2H)] in this example.
Site investigation is performed to obtain the soil properties required in the design. A
borehole is drilled under the intended retaining wall, and SPT is performed in the
borehole. Table 7.3 summaries the corrected SPT N (i.e., (Ny)go) values obtained
from the tests for foundation soil. Using the soil samples obtained from the borehole,
the foundation soil is found to be dense sand with a unit weight ygg, =20 kN/m3.
In addition, laboratory tests are performed for the coarse-grained backfill soil. The
backfill unit weight is yg = 19 kN/m>. Two triaxial tests are also carried out for the
backfill soil to obtain its effective friction angle, ¢, as 36.3° and 38.6°, respectively.
The unit weight of concrete is yeon =24 kN/m?. The other geotechnical properties
required for the design include effective friction angle of the foundation soil, ¢, ,
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Table 7.3 Summary of SPT test results for foundation soil.

Depth (m) Corrected SPT N results, (N})e0
0.5 1.7
2.0 9.8
3.5 1.9
5.0 27.8

Table 7.4 Summary of uncertainty model.

Random Variables Statistics Values Distribution Type
Effective friction angle of Mean 37.4° Figure 7.7 (from
backfill soil, ¢, Standard deviation 4.6° BEST Excel Add-in)
Effective friction angle of Mean 39.6° Figure 7.9 (from
foundation soil, ¢y, Standard deviation 4.4° BEST Excel Add-in)
Ratio of 8 to ¢y, Min* 0.5 Triangle distribution
i.e., ry = du/dgy, Peak* 2/3
Max* 1.0
Ratio of 8 to ¢y, Min* 0.5 Triangle distribution
i.e., rp = 3p/diy, Peak* 2/3
Max* 1.0
Wall bottom width, B Min* 1.8m Discrete uniform
Max* 32m distribution
Increment 0.2m
Difference between wall Min* 0.5m Discrete uniform
bottom and top width, Max* 1.5m distribution
x=B—-b Increment 1.0m

Note: *Min = Minimum, Max = Maximum, Peak = the most probable value.

soil-wall interface friction angle 3,,, and the interface friction angle between the base
of the wall and the foundation soil §y,.

Based on the information above, the expanded RBD method is used to design the
gravity retaining wall. Details of the method are illustrated step by step in the following
three subsections: uncertainty model, deterministic calculation model (i.e., traditional
ASD calcualtion model), and MCS.

Uncertainty model

Table 7.4 summarizes the uncertainty model used in this example. Under the expanded
RBD method, B and b are design parameters and they are treated as discrete ran-
dom variables uniformly distributed over a possible range. Because H=4m, a typical
B range suggested by Geoguide 1 in Hong Kong (GEO 1993) is 0.5H-0.7H or
2.0m-2.8 m. Therefore, a slightly bigger range of [1.8 m, 3.2 m] with an increment
of 0.2 m is adopted in this example. The number of B values ng = 8. To simplify the
ASD calculation model (see the next subsection), a new design parameter x=B —b
is used to replace b. A possible range of [0.5 m, 1.5 m] with an increment of 1 m is
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Table 7.5 Summary of prior knowledge for ¢, and ¢y, .

b (°) btan (°)
Random variable
Statistic Mean Standard Deviation Mean Standard Deviation
Min 25 1.25 34 1.70
Max 45 6.75 45 6.75

adopted for x. In other words, two possible x values of 0.5 m and 1.5 m are considered
in this example, and the number of x values n, = 2.

In this example, four geotechnical parameters are considered uncertain and treated
as random variables, including ¢, ¢f;., 8w, and 8. Because 8, and 8, are often linked
to ¢f, and ¢f, , respectively, in geotechnical practice, the ratios between them (i.e.,
7w =dw/d, and r, =38,/d;, ) are treated as random variables. A triangle distribution
within a range of [0.5, 1.0] and having a peak value at 2/3 is used to model r,, and
7. Using the site investigation data mentioned above, Bayesian equivalent sample
method (Wang and Cao 2013b, Wang et al. 2016) described in Section 3.9 of Chapter
3 is applied to quantify the uncertainty in ¢f,; and ¢g, . The Excel-based Bayesian
equivalent sample toolkit (BEST) is used in this example. The BEST Excel toolkit can
be downloaded freely from https://sites.google.com/site/yuwangcityu/best/1.

The BEST Excel Add-in is used to integrate the site-specific test data with engineer-
ing experience and judgment (referred to as prior knowledge in Bayesian methods).
Then the integrated knowledge is transformed into a large of number of equivalent
sample through Markov chain Monte Carlo simulation. Table 7.5 summarizes the
prior knowledge used for ¢f, and ¢f, in this example. A uniform distribution is
adopted to represent the relatively uninformative prior knowledge (Cao et al. 2016).
Only the typical ranges (i.e., the maximum and minimum values) are needed to define
the uniform distribution. Note that, because foundation soil is known as dense sand,
the minimum value of effective friction angle for the foundation soil is larger than that
for the backfill soil.

Two direct measurements of ¢p, (i.e., 36.3° and 38.6°) are obtained from lab-
oratory triaxial tests. These two measurement values are integrated with the prior
knowledge in Table 7.5 using the User-defined model in BEST, as shown in Figure 7.5.
Because ¢y, is measured directly, no transformation model is needed. The only input
data to the BEST is the observation data (i.e., 36.3° and 38.6°) and prior knowledge
in Table 7.5. After the data input, the “Generate” button in Figure 7.5 is clicked to
activate the Bayesian equivalent sample generation window in Figure 7.6. 30,000 sam-
ples of ¢f, are generated in this example. Then, conventional statistical analysis of the
30,000 samples can be performed, such as calculating mean and standard deviation
and plotting histogram. Figure 7.7 shows a probability density function (PDF) of the
¢y, estimated from histogram.

SPT was performed in the foundation soil, and the test results are summarized
in Table 7.3. The BEST program is used to integrate the SPT test results with the
prior knowledge in Table 7.5. A transformation model is needed to the correlate SPT
N values to the effective friction angle of interest here. As shown in Figure 7.8, the
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Figure 7.5 The Excel window for quantifying uncertainty in ¢, using BEST.

Equivalent Sample Generation “

Number of Runs Il—
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Samples to Discard I 2000 Eleco‘;ommmded:
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Figure 7.6 The sample generation window of BEST.
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Figure 7.7 Probability density function (PDF) for ¢g,.

BEST program contains a built-in model that correlates the corrected SPT N values to
effective friction angle using a correlation developed by Ching et al. (2012):

In(N1)go =0.161¢7,, +3.724 + ¢ (7.7)

where ¢ represents model uncertainty and follows a normal distribution with a zero
mean and standard deviation o, =0.496. Figure 7.8 shows an Excel window when
using the BEST program. After specifying the (Ny)go and the prior knowledge, the
“Generate” button in Figure 7.8 is clicked to activate the Bayesian equivalent sample
generation window in Figure 7.6. 30,000 samples of ¢¢, are generated in this example.
Then, conventional statistical analysis of the 30,000 samples is performed to obtain
mean, standard deviation, and histogram. Figure 7.9 shows the ¢{, PDF estimated
from histogram of the 30,000 equivalent samples.

Deterministic calculation model

Traditional ASD calculation model for gravity wall design is adopted as the determin-
istic calculation model in the expanded RBD method. Practitioners may exercise their
sound engineering judgment and select, in their opinions, the most suitable calculation
model to best suit the design situation in hands. For example, Coulomb theory of earth
pressure is adopted to calculate the active pressure coefficient, K,, as:

cos? (¢fy — 6)

2
cos2 0 cos(8y + 0) |: +\/5m(5 wH Q) sin(9p — ﬂ)i|

K, =

cos(dw+6) cos(6—pB)
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Effective friction angle from Corrected SPT N val...n

Corrected SPT N value data [eetl 1$D$5:3D$9 _ I

Data Description:

Input data are corrected SPT N values, (Nj)s with no unit, that are stored
in a column.

Output data are effective friction angle, ¢' values in a unit of degree (°).

Transformation Model Description:

Random variable type: Normal distribution.

Transformation model: In(N,),, =a¢’+b +¢

where (N} )s 1s the corrected SPT N value, ¢' 1s effective friction angle.
Coefficients: a=0.161, b=-3.724, p.= 0, 5. = 0.496.

Reference:

Ching. J., Chen JR., Yeh, I.Y.. Phoon. K.K.. 2012. Updating uncertainties in
friction angles of clean sands. Joumal of Geotechnical and Geoenvironmental
Engineering, 138 (2), 217-229.

Prior Knowledge on Effective friction angle
Uniform IGaussian' Triangular | Histogram | Subjective I

Mean  Max [ ] M [ ]
Standard .
Doviaton M2 [675 ] M [G77]

| Save |

Reset All | Generate Cancel

Figure 7.8 The Excel window for quantifying uncertainty in ¢y, using BEST.

The resultant force, P,, from the active pressure is then expressed:

1
P, = EKayfille (7.9)

The horizontal component of P, is denoted as P, }, and it is calculated as:

P, =P, cos(d,, +6) (7.10)
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Figure 7.9 Probability density function (PDF) for ¢j,.

The vertical component of P, is denoted as P, , and it is calculated as:

Py, =P, sin(3, +0) (7.11)
The weight of the mass concrete wall is denoted as W, and it is calculated as

W =Yyconl(b+ B)H/2] (7.12)

Three failure modes are considered in this example, including sliding, overturning,
and bearing capacity failures. Three factors of safety for sliding, overturning, and
bearing capacity failures are denoted as FSgjiding, FSoverturing and FSp, respectively,
and they are calculated using the equations below. When the value of FS is less than
1, the corresponding failure mode occurs. For the sliding failure mode, FSyjiding is
calculated as:

P W) tan(8
FSuing = 20 000) (7.13)
ah
For the overturning failure mode, FSoyertuming 1s calculated as:
B 1 (B=b)
M, W3 +Puu(B—-355
Fsoverturning = = ( ) (714)

My P,,H/3
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where M, is the resisting moment and My is the driving moement. For the bearing
capacity failure mode, the bearing pressure, q, is calculated as:

W+ P,y 6e
=—" |1+ — 7.15
a=pr (14 5) 7.15)

where e = eccentricity of the sum of the vertical forces, and it is calculated as:

B M, —M,y

_B_M.—-My 1
T2 WP, (7.16)

Because the foundation soil has no effective cohesion and there is no surcharge pressure,
the ultimate bearing capacity, qu, is calculated as (Vesic 1975):

Qult = 0-5denB/Nyiy (717)

where N, = bearing capacity coefficient, i, = inclination factors, B’ =B — 2e = effective
width of foundation base. In addition, N, is calculated as:

N, =2 (Nq + 1) tan ¢y, (7.18)

Ny = exp(m tan c]>}dn)tan2 <% + %) (7.19)

i, = (1 — Ky)™t! (7.20)
Pah

Ki=——"7"— 7.21

(W +P,y) (7.21)

m; =2 (7.22)

The FSy,. is calculated as:

FS), = Jule (7.23)
q

In addition to the checking of the FS,,. value using Eq. 7.23, a checking on the e value is
performed to ensure that the minimum q value is larger than zero. When the absolute
value of e is larger than B/6 (i.e., |e| > B/6), the bearing capacity failure mode also
occurs and the FSy. value is set as “0”.

For a given set of B, b, ¢f,;, 7., 8w, and 3}, values, the calculation model described
above can be easily implemented in an Excel spreadsheet, as illustrated by Figure 7.10.
The Row “1” in Figure 7.10 lists some constant parameters, including the wall height
H and respective unit weight of concrete ycon, backfill soil y4), and foundation soil y44p.
Columns “A” to “G” are used to define the input parameters that are treated as random
variables, including the design parameters (i.e., B, B—Db, and b) and geotechnical
parameters (i.e., ¢f, Ofy.» 7w and 7). Using the information provided in Row “1”
and Columns “A” to “G”, deterministic calculations are performed in Columns “H”
to “AB” using Eqs 7.8-7.23. Judgment of whether or not failure occurs is performed
in Columns “AC” to “AE”, using an “IF” function in Excel. If a FS is less than 1,
failure occurs and “1” is assigned to the corresponding cell. Otherwise, “0” is assigned
to the cells. For example, the syntax in Cell “AC8” is “=IF(Z8 > 1,0”,“1”)”. It is
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Figure 7.10 lllustration of deterministic calculation model in an Excel spreadsheet.

worthwhile to note that, starting from Row “8”, each row in Figure 7.10 is a repetitive
execution of the deterministic calculation model described above. In other words, each
row in Figure 7.10 is a MCS sample using a combination of different B, B —b, ¢,
®f4,»> Tw> and 7, values generated in accordance with the uncertainty model described
above.

MCS and expanded RBD method

The MCS is a repetitive computer execution of the deterministic calculation model
described above (i.e., a row starting from Row “8” in Figure 7.10). As noted in Figure
7.1, the simulations start with generation of random samples using the probability
distributions specified in the uncertainty model (see Table 7.4). Two independent design
parameters (i.e., B and x=B — b) and four independent geotechnical parameters (i.e.,
®fy> Dfgns> Tws and 7p) are considered as random variables. Random samples of the
uniformly distributed discrete random variables B and x may be easily generated using
an Excel function called “randbetween”. For example, the discrete B and x=B—b
samples can be generated using the following syntax “=0.2+RANDBETWEEN(9,12)”
and “=RANDBETWEEN(1,2)-0.5”, respectively. The b value is then calculated as
b=B—x.

Random samples of ¢f;, ¢f;.» 7w, and 7, can be generated in Excel using an
inverse transformation method. Excel has a built-in random number generator (i.e.,
“rand()”) for a continuous random variable U; that uniformly distributes between
[0, 1]. Because U; is uniformly distributed between 0 and 1, it can be interpreted as
a probability. To generate samples y; of a non-uniform random variable Y, simply set
U; =P[Y <y;] =CDF of Y and calculate the value of y; from U; (i.e., y; = CDF~'(U;),
where CDF~! is an inverse CDF function for Y). Then, the y; values obtained are
random samples of Y. For example, 7,, and 7y, in this design example follows a triangle
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distribution with the min, max and peak value of 0.5, 1.0, and 2/3, respectively. Their
CDF function is expressed as (e.g., Y =7y or 7},):

0 Vi< 0.5
= L J12(yi— 0.5 0.5<yi<2/3
Ul—CDF(Y1)— 1 —6(1 _Yi)2 2/3<Y1<1 (724)
1 I<yi
Then, the inverse CDF function is expressed as:
0.5+,/% Uxg4i
= CPFU) = \/j . (7.25)
-5 U3

Note that U; is generated in Excel using the built-in function “rand()”. Random samples
of ry or r, are generated by implementing Eq. 7.25 with U; as an input in Excel through
an “IF” statement.

The inverse transformation method can also be used to generate random samples
of ¢f, and 7, . As described early in this section, the uncertainty in ¢f,;, and ¢, is
quantified by 30,000 equivalent samples, respectively. The PDFs (see Figures 7.7 and
7.9) and CDFs of ¢, and ¢7, are developed from the respective 30,000 equivalent
samples, and their CDFs are empirical CDFs that might not be able to be expressed
analytically as an equation (e.g., similar to Eq. 7.25 for ry or r,). To generate ran-
dom samples of ¢f; (or g, ), the 30,000 equivalent samples are firstly sorted in an
increasing order of ¢f; (or ¢f, ) using the “sort” function in Excel. Then, a new col-
umn with an integer from “1” to “30000” is added to denote the ranking of each
equivalent sample of ¢f, (or ¢f, ) after sorting. Finally two Excel built-in functions,
“RANDBETWEEN(1,30000)” for generating random integers from 1 to 30,000 and
“VLOOKUP” for finding the ¢, (or ¢f, ) value corresponding the random integer
generated, are used together to generate random samples of ¢f, (or ¢f, ) from the
ranking column and the column with the 30,000 equivalent samples.

After random samples of B, x=B — b, ¢{,, d7,., 7w, and 7, are generated, they are
inserted into Columns “A” to “G” in Figure 7.10 to perform deterministic calculations
repetitively. In this design example, the numbers of B and x values considered are ng = 8
and ny =2, respectively. If a p; = 0.001 is adopted in the analysis, using Eq. 7.6 leads
to a minimum MCS sample number ny,;, = 160,000. In this example, n= 1,600,000
(i.e., about 100,000 samples for each combination of B and B — b values) is adopted to
ensure good accuracy of the MCS results. It takes only several minutes for a PC with an
Intel Core i7-2600 CPU @3.40 GHz and 16.0 GB RAM to perform such an MCS run.

After the MCS, statistical analysis is performed by simply counting the number of
failure samples, and the failure probability is the ratio of the failure sample number
to the total sample number in each combination of B and B —b values. Figure 7.11
shows the results from the expanded RBD method, which is a variation of failure
probability as a function of B and B — b values. For a target failure probability of 0.001
(i.e., Br =3.09, see the horizontal solid line in Figure 7.11), feasible designs includes
thosewnthZ 8mand B—b=0.5m and those with B>3.0mand B—b=1.5m. If
the cross section area of the retaining wall is used as an index of construction cost for
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Figure 7.11 Results from the expanded RBD method.

the EOLS requirement, the final design is B=3.0m and B—b=1.5m (or b=1.5m)
with the minimum cross section area of 9 m? and p¢ = 0.0008.

Result analysis

The expanded RBD method allows practitioners to adjust the target failure prob-
ability easily without additional computational efforts. For example, if the target
failure probability is adjusted from 0.001 to 0.0047 (i.e., B; = 2.6, see the horizontal
dashed line in Figure 7.11), then, the feasible designs include those with B > 2.4 m and
B —b=0.5mand those withB>2.6 mand B—b=1.5m. The final designis B=2.6 m
and B—b=1.5m (or b=1.1m) with the minimum cross section area of 7.4 m? and
pr=0.00375. As the target failure probability increases or the safety requirements
become less stringent, the construction cost, as measured by the cross section area
of the retaining wall, also decreases. It is a trade-off between safety and cost. The
expanded RBD method provides practitioners with a quantitative relationship between
the risk and cost associated with various design alternatives and enables practitioners
to have a risk-informed decision making on the final design.

Three failure modes (i.e., sliding, overturning and bearing capacity failure) are con-
sidered in the gravity retaining wall design example. It is a system reliability problem
with multiple failure modes. Additional insights into the interaction between different
failure modes can be obtained from the expanded RBD method. Figure 7.12 shows
the failure probabilities for sliding, overturning and bearing capacity failure modes,
respectively. As B increases, the occurrence probability of three failure modes all tends
to decreases. As shown in Figure 7.12(b), the probability for overturning failure is rela-
tively small and has little contribution to the overall failure probability of the retaining
wall. When pg; =0.001 and B—b=0.5m, the most feasible design is B=2.8m (see
Figure 7.11). For this particular feasible design, about 100,000 MCS samples are
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generated in the expanded RBD method. The number of failure samples is 95, and the
total failure probability is 0.00095. Among these 95 failure samples, bearing capacity
and sliding failure occurs in 93 and 20 samples, respectively. Overturning failure mode
is not observed for this feasible design. Therefore, the failure probability for sliding,
overturning and bearing capacity failure modes is 0.0002, 0, and 0.00093, respectively.
In addition, among the 20 sliding failure samples, bearing capacity failure mode also
occurs in 18 of them. Therefore, bearing capacity failure mode is the dominant failure
mode that controls this feasible design.

In contrast, when p;=0.001 and B—b=1.5m, the most feasible design is
B=3.0m (see Figure 7.11). Among about 100,000 MCS samples generated for this
particular feasible design, the number of failure samples is 80, and the total failure
probability is 0.0008. Among these 80 failure samples, bearing capacity and sliding
failure mode occurs in 49 and 43 samples, respectively. No overturning failure mode
is observed for this feasible design. Therefore, the failure probability for sliding, over-
turning and bearing capacity failure modes is 0.00043, 0, and 0.00049, respectively. In
addition, sliding and bearing capacity failure modes occur together in 12 samples. Both
sliding and bearing capacity failure modes contribute significantly to the total failure
probability and play an important role in the design. In other words, this particular
feasible design is governed by both sliding and bearing capacity failure modes. This
is different from the feasible design with B—b=0.5m and B=2.8 m discussed in the
previous paragraph. Through detailed analysis of the failure samples generated in the
expanded RBD method, practitioners are able to identify the failure mode(s) that con-
trols the design and obtain insights into the interaction between different failure modes.

7.9 CONCLUDING REMARKS AND FUTURE WORK

Although most existing RBD codes are in a simplified semi-probabilistic RBD format,
sometimes direct probability-based design methods are beneficial and necessary. One
major criticism to the simplified semi-probabilistic RBD format is displacement of
sound engineering judgment and lack of flexibility for practitioners, which has been
long recognized as an important and critical element in geotechnical practice. Because
the simplified semi-probabilistic RBD format adopts the same trial-and-error approach
as traditional ASD methods and it is developed to circumvent the need for practi-
tioners to perform probabilistic analysis, these compromises seem unavoidable. One
alternative solution to this trade-off is to maintain the engineering judgment and flexi-
bility similar to ASD methods, but at the expenses of performing probabilistic analysis
using direct probability-based design methods. With the aid of commonly available PC
and widely used computer software such as Microsoft Excel, performing MCS-based
probabilistic analysis and design are becoming more and more straightforward and
convenient. MCS has the advantages of conceptual and mathematical simplicity and
can be comprehended easily as a repetitive computer execution of traditional ASD
design calculation. The reliability analysis background required for performing MCS
is substantially reduced when using some built-in functions and add-ins in Excel. In
addition, the MCS-based design process can be conceptualized as a systematic sensitiv-
ity study, in which a large number of design alternatives (or trial designs) are evaluated
systematically and the optimal design satisfying the reliability requirements and with
the maximum utility is chosen as the final design.
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