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Foreword

Unprecedented demands are being placed on the world's soil resources (Koch et al.
2013). Responding to these challenging demands requires relevant, reliable, and
applicable information. Indeed, soils have critical relevance to global issues such as
food and water security and climate regulation and they are increasingly recognized
as major contributors to a wide range of ecosystem services. Mankind depends
upon soil for nearly everything. Our soil resource is being under threat, and we
must improve our knowledge about the current state and trend of soil condition.

Traditional soil survey involves field reconnaissance and data collection to draw
soil map unit boundaries (polygons) on maps. However, traditional soil survey
programs are cost and time-consuming. Therefore, many parts of the world have no,
or little, soil survey information. Also, as traditional soil survey mainly relies on
expert knowledge, it cannot be easily reproduced and the uncertainties of the
predictions are very difficult to estimate.

Digital soil mapping (DSM) has been proposed as a solution to increase
cost-effectiveness of mapping soil classes and soil properties (McBratney et al.
2003), including an assessment of uncertainties. Basically, this method is based on
the hypothesis that soil classes or properties can be predicted in a spatially explicit
way, by using soil information and (1) spatially exhaustive proxies of soil formation
factors and (2) spatially exhaustive sensors of some soil properties. Since the
seminal paper from McBratney et al. (2003), enormous advances in DSM have
been achieved, mainly thanks to the IUSS Working Group on Digital Soil Mapping.
Indeed, DSM has substantially matured and we have reached major advances
concerning suitable mapping and modelling procedure.

The DSM Working Group, currently led by Mogens Greve of Aarhus
University, Denmark, holds biennial global workshops (Montpellier in 2004, Rio de
Janeiro in 2006, Logan in 2008, Rome in 2010, Sydney in 2012); this book presents
selected papers presented at the 6th Global Workshop on Digital Soil Mapping. It
was held in November 2014 in Nanjing, China, skillfully organized by our Chinese
colleagues. Prof. Zhang Ganlin and his colleagues were excellent hosts, and their
hospitality was highly appreciated.
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The participation of the workshop was successful, considering the contributions
of 120 attendees originating from 15 countries from all continents, having 58 talks
and 17 posters. The full papers published in this book are a selection from these
presentations. They range from overviews of the DSM technology in general to
specific applications in areas having more or less available soil information or areas
where specific properties are investigated. In this book, recent findings are pre-
sented on the use of legacy data, soil sampling, covariates, soil spectroscopy, and
3D modelling in DSM. Particularly, sampling strategy and the uncertainty assess-
ment of DSM products are major issues that are addressed and which should be
accounted for in the future research. The coverages and scales of the applications
described in this book range from the field, to landscape, national, continental, or
world levels. Case studies in different parts of the world provide an excellent
opportunity to evaluate DSM technique and test its utility.

These proceedings give a useful overview of the state of the art in DSM. I am
convinced that it will be of broad interest for people involved in soil information
delivery and utilization. It will be a valuable resource for many years to come for
scientists, students, soil surveyors, and end users.

Dominique Arrouays
INRA-InfoSol Unit, France
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Preface

Digital Soil Mapping Across Paradigms, Scales and Boundaries contains papers
presented at the 6th Global Workshop on Digital Soil Mapping, held November
11–14, 2014, at the Institute of Soil Science, Chinese Academy of Sciences of
Nanjing, China. The organizing committee was chaired by Dr. Gan-Lin Zhang,
professor of Institute of Soil Science, Chinese Academy of Sciences.
Approximately 120 participants from 15 countries presented and discussed nearly
60 papers during the four-day session, demonstrating the global engagement in
digital soil mapping.

Digital soil mapping is advancing on different fronts at different paces
throughout the world, facilitating the development of digital soil information with
increasing precision for many areas. To map the soils of the world to the every
detail, we need is a glorious task of soil scientists, especially when it is done in a
modern and fashionable way—mapping soils digitally. The goal of the sixth
workshop is to review and discuss the state of the art in digital soil mapping and to
explore the strategies for bridging research, methodologies, and environmental
applications. The contents of predictive soil mapping, including the concepts,
paradigms, models, and mathematical and computational tools, develop continu-
ously and more and more researches and projects, in various sizes, resolutions, and
geographic regions, are running in the world. There are also more and more sci-
entists and users who are working in and shaping the frontiers of the field. It is
certainly necessary once again to bring people together to exchange and share
research results and to discuss the future of digital soil mapping, and we hope to
recognize these distinct foci within the realm of digital soil mapping.

We have selected 29 papers from the workshop that focus on digital soil map-
ping research, environmental application, and operation. Part I is an introductory
chapter which provides context for the whole book. The remaining papers are
organized into the following parts: (II) Digital Soil Modelling; (III) Environmental
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Application and Assessment; and (IV) Soil Sensors and Legacy Data. The
CD-ROM accompanying this book contains the digital versions of all contributions
with full colour. Whenever reference is made in the book to colour images, the
reader is kindly requested to consult the CD-ROM.

Nanjing Gan-Lin Zhang
November 2014 Dick Brus

Feng Liu
Xiao-Dong Song

Philippe Lagacherie
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Part I
Digital Soil Modelling



Chapter 1
Digital Soil Mapping Across Paradigms,
Scales, and Boundaries: A Review

Gan-Lin Zhang, Feng Liu, Xiao-Dong Song and Yu-Guo Zhao

Abstract Accurate spatial soil information is urgently needed for dealing with the
global issues such as agricultural production, environmental pollution, food security,
water security, and human health. This need has been motivating the development of
digital soil mapping. We reviewed recent advances in digital soil mapping with
respect to paradigms, scales, and boundaries, with the intent to improve our
understanding on current status of soil mapping. Some important challenges thus
research opportunities emerged recently were then outlined, such as 3D digital
mapping of the soil properties beyond soil organic matter, soil mapping in areas with
intensive human activities, and multi-source soil data integration for soil mapping.

1.1 Introduction

The series of the global workshops on digital soil mapping run under the umbrella of
the International Union of Soil Sciences Working Group on digital soil mapping.
The first global workshop on digital soil mapping was held in the year of 2004 at
Montpellier, France. Its theme was “Digital Soil Mapping: An Introductory
Perspective.” A wide range of skills and tools that can be used for digital soil
mapping were discussed in this workshop. The second workshop was held in the
year of 2006 at Rio de Janeiro, Brazil. Its theme was “Digital Soil Mapping for
Regions and Countries with Sparse Soil Data Infrastructures.” The digital soil
mapping techniques and applications that focused on areas with limited soil data
were emphasized. The third workshop was held in the year of 2008 at Logan,
America, with the theme of “Digital Soil Mapping: Bridging Research, Production,
and Environmental Application.” The soil mapping research, environmental appli-
cation, and operation were discussed. The fourth workshop was held in the year of
2010 at Roma, Italy, with the theme of “From Digital Soil Mapping to Digital Soil

G.-L. Zhang (&) � F. Liu � X.-D. Song � Y.-G. Zhao
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese
Academy of Sciences, Nanjing 210008, China
e-mail: glzhang@issas.ac.cn
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Scales and Boundaries, Springer Environmental Science and Engineering,
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Assessment: Identifying key gaps from fields to continents.” The issues of spatial
scales were discussed. The theme of the fifth workshop was held in the year of 2012
at Sydney, Australia, with the theme of “Digital Soil Assessments and Beyond.”
Current and potential contributions of digital soil mapping to various assessments
driven by stakeholders and global issues were emphasized. Then, it comes to the
sixth global workshop on digital soil mapping. This event was organized by the Soil
Science Society of China and the Institute of Soil Science, Chinese Academy of
Sciences at Nanjing, China on November 9–11, 2014. Its theme was “Digital soil
mapping across paradigms, scales, and boundaries.” The advances in digital soil
mapping paradigms, scales, and boundaries were emphasized in this workshop.

The state of the art of digital soil mapping has been reviewed several times
mainly from different perspectives such as history, techniques, data production, and
applications (McBratney et al. 2003; Lagacherie 2008; Grunwald 2010; Arrouays
et al. 2014; Minasny and McBratney 2015). The objective of this paper is to present
current status with respect to paradigms, scales, and boundaries and important
issues on digital soil mapping that emerged more recently.

1.2 Soil Mapping Paradigms

A paradigm is a set of concepts or thought patterns, including theories, methods,
and models. It provides solutions for a community of practitioners. In 1883, the
Russian pedologist Dokuchaev put forward the famous theory on soil-forming
factors, i.e., soil is formed over time as a consequence of climatic (CL), parent
material (P), and biological processes (O), which he demonstrated that soils are
products of soil-forming factors. Jenny (1941) further developed this into a
soil-forming function, i.e., S = f (clorpt…) by adding topographic relief as a factor.
This equation suggests that, by looking for changes in these factors as the landscape
is traversed, one can identify boundaries between different bodies of soils. The
formulation has been used by a lot of soil investigators as a conceptual soil-forming
model for understanding soil–landscape patterns within a region. Many studies
have tried to quantitatively formalize the equation. Based on a review of various
quantitative approaches to making digital soil maps, McBratney et al. (2003)
proposed a quantitative framework suitable for digital mapping and modeling of
soil classes and properties, i.e., the well-known SCORPAN model. It is an
empirical model, and both factors and soil predictions are spatially and temporally
explicit. To explicitly account for the role of anthropogenic factors in soil forma-
tion, Grunwald et al. (2011) and Thompson et al. (2012) proposed a new framework
for soil mapping and modeling, i.e., the STEP-AWBH model. Water properties
(e.g., surface runoff, infiltration rate) and human-induced forcings (e.g., contami-
nation, greenhouse gas emissions) were added as new soil-forming factors. It is an
enhanced quantitative framework for soil mapping and modeling. Its key features
includes accounts for time-dependent variation of the factors and facilitates mod-
eling of soil evolution and change.
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1.3 Soil Mapping Scales

Soil varies over space and changes over time. At different spatial or temporal scales,
soil can exhibit distinct processes and patterns. In order to meet the requirements of
soil information for different levels of applications, digital soil mapping has been
explored across various spatial or temporal scales. Temporal scales can span from
hours to several decades and even one thousand years. Studies of digital soil
mapping at specific temporal scale mainly focus on the changes of soil salinity, soil
carbon, and soil thickness (Douaik et al. 2005; Follain et al. 2006; Lark et al. 2006;
Sun et al. 2012; Ardekani 2013). Its purpose is to reveal the patterns of soil
evolution. Spatial scales include global, continental, regional, catchment, landscape,
and field. Digital soil mapping has been conducted at all these scales. The
GlobalSoilMap.net Project launched in 2009 aims to produce a new digital soil map
of the globe using digital soil mapping technologies. It will map most of the ice-free
land surface of the world at a 90-m spatial resolution (Sanchez et al. 2009). The
interpretation and functionality options will also be provided with the maps to
support improved decisions for a range of global problems. However, limited
attempts have been made at global scale especially for a high-resolution map. When
there is no detailed map or soil samples are available in a region of interest,
Mallavan et al. (2010) proposed a Homosoil method to extrapolate from other parts
of the globe. In order to provide a consistent global soil data, Köchy et al. (2014)
derived global distribution of soil organic carbon based on the Harmonized World
Soil Database. Hengl et al. (2014) developed global 3D soil distribution data based
on regression or regression-kriging methods. But due to some limitations, the
prediction accuracies are relatively low. A few attempts have been made on the
continental scale for all five continents (Henderson et al. 2001; Viscarra Rossel
et al. 2011; Odgers et al. 2012; TÓth et al. 2013; Stevens et al. 2013; Dewitte et al.
2013; Láng et al. 2015). Scull and Okin (2007) discussed sampling challenges
posed by continental-scale soil–landscape modeling and argued that the success of
the sampling design in continental scale largely depend on the ability to anticipate
the spatial variability of the variable being measured. Grunwald et al. (2011)
incorporated anthropogenic forcings into a space-time modeling framework to
provide a solution for soil mapping and modeling at continental scales. Some
continental-scale mapping initiatives are also considered as national scale, because
they cover the extent of a whole country, e.g., China, Australia, and the USA. A lot
of studies have been made on the regional (Lacoste et al. 2011; Kerry et al. 2012;
Wang et al. 2013; Heung et al. 2014; Guo et al. 2015), catchment (Zhu et al. 2001;
Qin et al. 2011; Karunaratne et al. 2014; Wahren et al. 2015), landscape (Liu et al.
2013; Lacoste et al. 2014; Stockmann et al. 2015), and field scales (Ardekani 2013;
Li et al. 2015; Bevington et al. 2016) due to the increasing requirements of soil
information in agriculture and environmental management. Most digital soil map-
ping techniques have been developed for these scales.
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1.4 Soil Mapping Boundaries

The soil-mapping boundaries can be the boundaries between different regions or
nations and between soil science and other disciplines. First, if the soil-mapping
area spans two or more countries, the soil data collected by different countries and
different soil survey projects can be different in many aspects: data collection time
(old vs. new soil survey data), data formats (profile points, polygon-based maps,
and soil survey reports), sampling strategies (random, regular, or representative),
sampling density (sparsely vs. densely distributed), sampling depth (topsoil vs.
profile), laboratory analysis methods (e.g., laser diffraction techniques vs. pipette
method for measuring soil texture), and soil classification systems (e.g., Canadian
soil classification system vs. USDA soil taxonomy). Thus, soil data harmonization
is necessary to get consistent soil data for digital soil mapping. Quite a few studies
have explored the soil data harmonization techniques (Soon and Abboud 1991;
Nemes et al. 2003; Pieri et al. 2006). The specifications of the GlobalSoilMap.net
products (v2.3) have identified most of these problems and provide some regression
equations for harmonizing multi-source soil data to a reference standard (Arrouays
et al. 2014). Baruck et al. (2015) discussed the soil data harmonization issues for
soil mapping across the eight Alps countries. The process of collecting soil data and
mapping soils, as well as the soil classification systems used, significantly differs
among the countries. The harmonization includes an upgrade of an existing inter-
national soil classification, e.g., the World Reference Base WRB (IUSS 2014). The
harmonization is not only an international transborder problem. For example, in
Italy within the Pedological Methods Program in the year 2000, criteria were
established for making the soil map of Italy at a scale of 1:250,000. But in order to
take into account local specificities, several regions developed their own soil survey
manual. Second, the soil information products derived from digital soil mapping
should not only meet the applications of soil science (e.g., agricultural production
and management) itself but also those of other disciplines including hydrological,
ecological, and climatic modeling and even pipeline network design. To what
extent the products made by soil mappers can match the requirements of applica-
tions in other fields is still an issue to be addressed mainly due to the gaps between
the disciplines.

1.5 Current Challenges

1.5.1 3D Digital Soil Mapping of Soil Properties

Most soil maps are continuous surface maps in two dimensions ignoring the fact
that soil also varies with depth over a landscape. A few attempts have been made on
3D soil mapping (Liu et al. 2013; Minasny et al. 2013; Arrouays et al. 2014). Most
considered it as multiple 2D soil-mapping operations at a set of predefined depth
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intervals. These 2D mapping results are represented as depth averages (for con-
centrations) or sums (for stocks). These averages can be reconstructed into a full 3D
soil property map. Although multiple 2D mapping is simple to implement, it is a
pseudo 3D mapping approach and has two drawbacks (Liu et al. 2015). One is that
soil variation pattern in the vertical dimension is neglected when performing sep-
arate horizontal soil predictions for each depth interval. The other is that depth
function fitting is often applied twice in the mapping process. Any errors in the
fitting are thus repeated and may be magnified. In addition, most 3D soil-mapping
studies only focus on soil organic carbon, mainly because the profile distribution of
this property is relatively simple and thus can be easily fitted by an exponential
decay function. But, other soil properties such as soil texture and bulk density, to a
big extent, have been ignored by the 3D soil-mapping studies mainly due to their
complex distribution patterns with depth. Thus, it is necessary to study how to
generate accurate 3D maps of these demanded soil properties in the next years.

1.5.2 Soil Mapping in Areas with Intensive Human
Activities

Human activities are an important soil-forming factor, which exhibit both deter-
ministic patterns (e.g., land-use patterns) and highly randomness (e.g., agricultural
practices such as irrigation and fertilization). There are two types of areas with
intensive human activities. One is the urban areas experiencing intensive urban-
ization, and the other is the cultivated areas experiencing intensive land uses. Urban
soils present a diversity of specific processes and features, such as soil pollution and
compaction, zoning, fertilization, sewage release, and combustion. These processes
may result in high patchiness and short-distance heterogeneity. Very high
short-distance soil variability within such areas and long distances between set-
tlements limit the use of traditional spatial interpolation methods. Similarly, agri-
culture soils also have high spatial heterogeneity because of irrigation and
fertilization and specific practices. Thus, the digital soil mapping in these two types
of areas is challenging. In both, much attention is needed for anthropogenic
soil-forming factors. Vasenev et al. (2013, 2014) explored the soil organic carbon
mapping in a highly urbanized area. In addition to traditional factors, urban-specific
factors, including size and history of the settlements and functional zoning, were
used as auxiliary information for mapping soil organic carbon stocks.

1.5.3 Multi-Source Data Integration for Soil Mapping

Soil data used for digital soil mapping can be collected from multiple sources:
legacy soil data from conventional soil survey and new soil sampling data from
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recent soil survey projects. As mentioned above, data harmonization is needed
before they are used for soil mapping. It includes the harmonization within a single
soil data source and that between multiple sources. Both are challenging tasks. The
soil-type cross-references from one soil classification system to another can only be
performed at a coarse level (e.g., soil great group). It is usually difficult to convert
clay, silt, or sand content from one soil texture classification standard to another.
The conversion between different laboratory analysis methods is always empirical
and dependent on the soil regions or types. In particular for the soil properties that
are not steady over time (e.g., one or more decades), such as soil organic carbon and
pH value, how to integrate legacy soil data with new soil sampling data for digital
soil mapping remains a challenge. Sun et al. (2015) compared the changes of digital
maps of soil organic matter generated from three sets of soil sampling data from
three soil survey projects conducted at different periods. The proximal soil sensing
and digital soil morphometrics are also important soil data sources which can
provide a large amount of “soft” soil data for soil mapping. It is necessary to
incorporate these data into existing soil sampling data for high-resolution digital
soil mapping. But much work is still needed to be done. In addition to the data
collected by specialists in soil science, Rossiter et al. (2015) argued that the citizen
(non-specialists) can also assist digital soil mapping by providing soil samples or
landscape knowledge. They proposed digital soil-mapping and citizen-science
initiatives. The “citizen” can be farmers, land managers, civil engineers, gardeners,
and participants in outdoor activities. They pointed out that a key issue for the
citizen science is how to integrate observations from citizens and those from the
professionals.
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Chapter 2
Spatial Prediction of Soil Antibiotics Based
on High-Accuracy Surface Modeling

Wenjiao Shi, Tianxiang Yue, Xuewen Li and Zhengping Du

Abstract The spatial prediction of soil antibiotic is more difficult than other
normal soil properties due to the diverse sources of soil antibiotics. Few studies
have attempted to predict soil antibiotic residues in intensive vegetable cultivation
areas. High-accuracy surface modeling (HASM) is regarded as an important new
technique in the pedometrics and digital soil mapping fields. A total of 100 surface
soil samples were collected from the north-central part of the Shandong Province of
China. The antibiotic concentrations, including ciprofloxacin (CF), enrofloxacin
(EF), norfloxacin (NF), and fluoroquinolones (FQs), were analyzed using
high-performance liquid chromatography–tandem mass spectrometry. We
employed splines to compare its performance with that of HASM method. The
errors of HASM for NF, CF, EF, and FQ were less compared to splines. HASM has
less mean absolute error (MAE) and root mean square error (RMSE) than splines.
The RMSEs of splines for FQ, CF, EF, and NF were 3.02, 2.34, 3.46, and 2.64
times lager than those of HASM, respectively. Therefore, HASM can be considered
as an alternative and accurate method for interpolating soil antibiotics. It can also
make the map more consistent with the true spatial distributions.
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2.1 Introduction

A large number of antibiotics are released into soils via animal manures applied to
the soil (Bound and Voulvoulis 2004), because antibiotics are widely used in
treating disease, protecting animal health, and improving the feeding efficiency of
animals (Xie et al. 2012; Sarmah et al. 2006; Aust et al. 2008; Li et al. 2013, 2014).
Accumulation of antibiotics in the soil can damage the structure of bacterial
communities, be absorbed by vegetables or crops thereby threatening the safety of
agricultural products, or be leached to groundwater thereby affecting environmental
health (Xie et al. 2012; Martínez-Carballo et al. 2007). The apparent immobilization
of soil antibiotics in the surface soils to a greater depth was attributed to the
presence of higher percentages of clay and organic matter in the surface soils with
residues of antibiotics bound strongly to soil particles (Sarmah et al. 2006).

In order to avoid the risk of soil antibiotics on vegetable quality and human
health, it is vital to research the spatial patterns of soil antibiotics (Sarmah et al.
2006). So, it is necessary to explore an effective surface modeling methods for soil
antibiotics. Low accuracy of interpolation results of soil antibiotics will result in
incorrect risk assessment. There are several interpolators in spatial prediction for soil
properties, such as kriging (Stein and Corsten 1991; Stein et al. 1988; Webster and
Oliver 2001; Goovaerts 1999), inverse distance weighting (IDW) (Panagopoulos
et al. 2006; Weber and Englund (1992, 1994); Gotway et al. 1996), and splines
(Webster and Oliver 2001). However, the spatial predictions of soil antibiotics are
more difficult than other normal soil properties due to the diverse sources of soil
antibiotics. Few studies have focused on the interpolation of antibiotic residues in
soils of the intensive vegetable cultivation areas.

High-accuracy surface modeling (HASM) is a spatial interpolation technique
based on the fundamental theorem of surfaces (Yue 2011), which has been suc-
cessfully used in soil property interpolation (Shi et al. 2011, 2009, 2012).
The HASM method combined with some ancillary information can improve the
interpolation of soil properties (Shi et al. 2011). Due to the specific characters of the
spatial distributions of soil antibiotics, we added the distribution characters of soil
antibiotics in different vegetable areas in HASM method to predict the spatial
distributions of soil antibiotics. The aims of this study are (i) to explore the dis-
tribution characters of soil antibiotics in different vegetable areas, (ii) to assess the
feasibility of HASM combined with the statistical characters of soil antibiotics in
different vegetable types in spatial interpolation of soil antibiotics, and (iii) to
evaluate the performance of HASM in improving the soil property interpolation
compared with classical methods such as splines.
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2.2 Data and Methods

2.2.1 Data

The study area of this study is an important vegetable area in the north-central part
of Shandong Province, China, covering 160 km2. There are several typical veg-
etables grown in this area, such as cucumber, tomatoes, peppers, melons, eggplant,
and some leaf vegetables. Several types of animal manure such as chicken manure
and cow dung as organic fertilizer were applied in this area. The map of manure
applications has been shown in the previous reference (Li et al. 2013). The whole
study area was with manure application. The study area was covered by 100
sampling sites. The average distance between soil sampling locations is approxi-
mately 1 km. The sampling sites were designed to cover evenly the whole area and
to include different vegetable types, different manure types, and different applica-
tion years. Three types of fluoroquinolone (FQ) concentrations, including cipro-
floxacin (CF), enrofloxacin (EF), and norfloxacin (NF), were analyzed using
high-performance liquid chromatography–tandem mass spectrometry. The regents
and sample analysis methods were in detail in the former studies (Xie et al. 2012;
Li et al. 2013, 2014).

2.2.2 Methods

A full discussion on the theoretical aspects of HASM applied for the interpolation
of soil properties was given by Shi et al. (2009, 2011, 2012). We only introduced
the main steps here. HASM uses samplings of soil antibiotics to globally fit a
surface through several iterative simulation steps. This surface is then used to
interpolate soil antibiotic values at unknown points. The iterative simulation steps
are summarized as follows (Yue et al. 2010): (1) interpolate within the domain of
the sample data ðxi; yj; �ui;jÞ, from which we can get interpolated values ~ui;j

� �
at

point ðxi; yjÞ; (2) u0i;j ¼ ~ui;j calculate the first fundamental coefficients En
i;j, F

n
i;j
, and

Gn
i;j and the second fundamental coefficients Lni;j and Nn

i;j as well as coefficients in

terms of uni;j
n o

; (3) for n� 0, we can get unþ 1
i;j

n o
by solving the HASM equations;

and (4) the iterative process is repeated until simulation accuracy is satisfied.
Here, we calculated the mean values of antibiotic residues in the soils of different

vegetable-type areas. Then, the mean values were grided as 100 m × 100 m over the
whole study area. This layer was defined as u0i;j. So, the distribution characters of
soil antibiotics in different vegetable-type areas were combined with HASM.

A total of 80 training points were randomly created as the interpolation data set,
and the remaining 20 samples were used as the validation data set. We used the
most common indices, the mean error (ME), the mean absolute error (MAE), and
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the root mean square error (RMSE) as measures of interpolation quality (Shi et al.
2011, 2009, 2012).

As there are n sites belonging to the validation sample set, the ME, the MAE,
and the RMSE are determined from the measured values zðxiÞ and the interpolated
value z�ðxiÞ. They are given by,

ME ¼ 1
n

Xn
i¼1

z�ðxiÞ � zðxiÞ½ � ð2:1Þ

MAE ¼ 1
n

Xn
i¼1

z�ðxiÞ � zðxiÞj j½ � ð2:2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

z�ðxiÞ � zðxiÞ½ �2
s

ð2:3Þ

The ME is a measure of the bias of the interpolation, which should be close to
zero for unbiased methods, and the MAE and RMSE are measures of the accuracy
of interpolation which should be as small as possible for accurate interpolation.

2.3 Results and Analysis

2.3.1 Distributions of Soil Antibiotics in Different Types
of Vegetable Areas

In the three soil FQ residues, soil CF has the highest mean concentration with
104.4 μg/kg, and the followings were the concentrations of soil NF and EF with
55.7 and 15.8 μg/kg, respectively (Table 2.1). The standard deviations (SDs) were
high for FQ (151.07 μg/kg), indicating that the FQs varied largely with different
vegetables planted and different inputs (Li et al. 2014). More than 25 % samples of
soil FQs were over 222 μg/kg, and the maximum (Max) was 682.69 μg/kg. The
concentrations of CF in the surface soil were much higher than the other two types
of FQs; the mean, median, and Max were 104.4, 72.4, and 651.6 μg/kg, respec-
tively. Soil NF followed, and the mean, median, and Max were 55.7, 33.3, and
288.3 μg/kg, respectively. The concentrations of soil EF were the lowest, and the
mean and median were only 15.8 and 7.0 μg/kg, respectively. Soil EF in 25 %
samples was less than 0.6 μg/kg.

There is a large variability of soil FQs in different soil samples, so we analyzed
the distributions of soil FQs in different types of vegetables (Table 2.1). Tomato–
tomato and cucumber–cucumber were the two main planted types in the north part
of study area, accounting for more than 50 % area. There were 21 (72.4 % of all the
samples (29 samples) more than 200 μg/kg) samples more than 200 μg/kg for soil
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FQs found in the two planted types. As shown in Table 2.1, higher FQ concen-
trations were mainly composed of higher CF residues, and a few higher NF samples
located in the tomato–melon, eggplant, and leaf planted areas which were over
200 μg/kg.

The distributions of soil FQ residues in different planted vegetable types showed
that FQ residues in the cucumber–cucumber-planted soil were the highest to
246.3 μg/kg and followed by those in tomato–tomato, eggplant, leaf, pepper, and
tomato–melon planted areas with 196.6, 187.9, 176.1, 160.5, and 149.3 μg/kg
(Fig. 2.1). The averages of soil CF in these two planted type area were also the
highest, which were 147.5 and 132.4 μg/kg. The average of soil EF was fewer
compared to the other two soil FQs, but the coefficients of variation were larger than
100 % only except for pepper and leaf planted areas.

2.3.2 Comparisons of the Performance of HASM
and Splines

In order to compare the performance of HASM and splines, we computed ME,
MAE, and RMSE (Table 2.2). HASM had higher accuracy in the two techniques,
which performed better for the three indices than splines. The MEs of HASM for
FQ, CF, EF, and NF were closer to zero than splines. Also, splines had larger

Table 2.1 Descriptive statistics of antibiotics concentrations in surface soil (unit: μg/kg)

Min 5 % 10 % 25 % Median 75 % 90 % 95 % Max Mean SD

FQ 9.1 20.5 31.2 63.8 132.2 222.3 413.8 509.9 682.7 175.2 151.1

NF 0.4 5.0 7.6 14.2 33.3 79.5 149.6 171.1 288.3 55.7 56.4

CF 2.4 8.7 13.0 29.3 72.4 141.0 221.2 302.1 651.6 104.4 117.5

EF 0.0 0.0 0.0 0.6 7.0 18.5 50.6 70.2 167.0 15.8 25.5

Fig. 2.1 Soil FQ concentrations in different vegetable planted areas. C–C cucumber–cucumber;
T–T tomato–tomato; P pepper; T–L tomato–leaf; E eggplant; L leaf; T–M tomato–melon
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MAEs and RMSEs for FQ, CF, EF, and NF. The MAE of HASM for FQ was
46.7 μg/kg and that of splines was 168.13 μg/kg. For RMSE, HASM also per-
formed better than splines. The RMSEs of splines for FQ, CF, EF, and NF were
3.02, 2.34, 3.46, and 2.64 times greater than those of HASM, respectively.

2.3.3 The Interpolated Maps by HASM Methods

We mapped the distributions of FQ, CF, EF, and NF by HASM (Fig. 2.2). The map
based on HASM has more details in the interpolation maps and also has consistent
maximum and minimum with those of soil samples. Although the spatial patterns of
the two techniques had similar spatial distribution tendency of higher FQ residues
in the north part of the study area, HASM showed lower values of FQs consistent
with the concentration of soil samples. However, splines has not showed this
character in the interpolation maps. The EF concentrations in the soil of the study
area were the lowest in the three types of the FQs, which had lower values less than
100 μg/kg except a small part of the north. Although a few higher values over than
200 μg/kg of NF were in the southeast of the study area, most of the NF con-
centrations in the soil were less than 100 μg/kg. In these three types of soil FQs, CF
values were the highest. For example, there were about half areas of the study area
more than 150 μg/kg, and 10 to 20 % areas of the study area were more than
200 μg/kg.

Table 2.2 The MEs, MAEs,
and RMSEs of the validation
set for HASM and splines
(unit: μg/kg)

Soil antibiotics Indices HASM Splines

FQ ME 19.69 86.34

MAE 46.66 168.13

RMSE 68.73 207.23

CF ME -0.61 18.12

MAE 44.03 109.88

RMSE 58.97 137.72

EF ME 6.54 21.62

MAE 13.37 33.71

RMSE 16.86 58.37

NF ME 16.48 46.35

MAE 33.69 75.98

RMSE 39.16 103.28
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2.4 Conclusions

China is the country which is the largest producer and consumer of antibiotics
compared to the other countries in the world, and antibiotics can be easily added to
soil particles with fertilizers of livestock and poultry feces. Fluoroquinolones
(FQs) are the most frequently detected antibiotics in the feces of farm livestock and
poultry in China. However, relatively few studies focus on the interpolation of soil

Fig. 2.2 The spatial patterns of soil FQ, CF, EF, and NF residues obtained by HASM. a FQ,
b CF, c EF, d NF
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antibiotic residues in the intensive vegetable cultivation area. High-accuracy surface
modeling (HASM) is regarded as an important new technique in the pedometrics
and “digital soil” fields. The HASM method is a spatial interpolation technique
based on the fundamental theorem of surfaces. In this study, a total of 100 surface
soil samples were collected from the north-central part of the Shandong Province of
China to test the performance of HASM with that of classical method. We found
that the errors of HASM for NF, CF, EF, and FQ were less compared to splines.
HASM has less MAE and RMSE than splines. The RMSEs of splines for FQ, CF,
EF, and NF were 3.02, 2.34, 3.46, and 2.64 times larger than those of HASM,
respectively. Therefore, HASM can be considered as an alternative and accurate
method for interpolating soil antibiotics. HASM is not only as an alternative and
accurate method for interpolating soil antibiotics, but also can make the map more
consistent with the true spatial distributions.
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Chapter 3
Incorporating Probability Density
Functions of Environmental Covariates
Related to Soil Class Predictions

Jenette M. Ashtekar, Phillip R. Owens, Zamir Libohova
and Ankur Ashtekar

Abstract The distribution of continuous soil properties and their environmental
covariates within soil classes are often times unknown or not evaluated.
Understanding and defining the distribution of environmental covariates within soil
classes is fundamental to the fuzzy logic inference mapping processes. Under
knowledge-based applications of fuzzy logic mapping, the user typically utilizes
predetermined distribution functions to define a representative relationship between
soils and their covariates. If the predetermined distributions do not adequately
describe the soil–covariate relationship, the misrepresentation can lead to inade-
quate prediction of soil properties while requiring a high level of user input. To
move away from knowledge-based “guesses” of distributions, we present a new and
innovative method of modeling the distribution of environmental covariates,
specifically terrain attributes (TAs), within the landform-based soil classes. This
eliminates the need for manually manipulated, user-defined curves and works to
more accurately represent the distribution of TAs within soil classes. The fully
automated method fits a variety of probability distribution functions (PDFs) to TA
values within algorithm-derived landform classes. We compared the Pearson’s
correlation coefficient for goodness of fit to determine which PDF best models the
distribution of TAs within soil classes. This fully automated method works to
improve our understanding of how terrain attributes vary within soil classes,
allowing for more accurate and reliable model predictions.
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3.1 Introduction

Digital soil mapping (DSM) typically uses information ancillary to sampled soil
data to classify and predict soil properties (McBratney et al. 2003; McKenzie and
Austin 1993; McKenzie and Ryan 1999; Scull et al. 2003). This ancillary, covariate
information often comes in the form of remotely sensed continuous rater data such
as satellite imagery, digital elevation models (DEMs), and their derivatives. Digital
elevation models and their derivatives are frequently used to represent important
topographic features that drive soil formation and differentiation. These derivatives,
called terrain attributes (TAs), have been used in DSM to aid in soil classification
and property prediction (Behrens et al. 2010; Bruin and Stein 1998; Gessler et al.
2000; Moore et al. 1993).

Traditionally, soil mapping was performed by individual soil scientists who used
their personally developed mental models to delineate taxonomic soil classes across
the landscape. When parent material was held constant, surveyors would delineate
based on landscape positions, following the toposequence, or catena models. Some
forms of DSM seek to replicate the modeling process played out in the mind of the
soil scientist by using computer technology to mimic and expand upon the sur-
veyor’s decision-making process.

Fuzzy logic modeling is a typically user-driven process which utilizes expert
knowledge to estimate the distribution of TAs within user-defined soil classes.
Under inference-based fuzzy logic mapping, membership curves, or functions, are
used to quantify the membership of a given cell in each predicted soil class. Under
the knowledge-based approach, curves are typically bell-shaped, s-shaped, and
z-shaped, with full membership (curve peak) and half membership values defined
by the user. The expert sets the curves based on their assumed concept of the TA
distribution within theoretical soil classes, and the actual distribution is unknown
(Ashtekar and Owens 2013; Zhu et al. 1996, Zhu et al. 2001, 1996). The success of
this knowledge-driven method hinges on the user’s ability to understand and define
the relationships between soil classes, properties, and continuous TAs. When this
knowledge is lacking, it becomes necessary to define membership curves using
alternate means.

The goal of this study is to describe the actual distribution of TAs within soil
classes represented through algorithm-driven landform classification. Because we
know the spatial extent of each assumed soil class, we can fit probability density
functions to the TAs within those classes, fitting curves to the data itself, not the
Soil Scientist’s mental concept. For fuzzy mapping purposes, we can rescale the
PDF to become the fuzzy membership function.

The scope of this study was limited to exploring the automated fitting of different
probability density functions (PDFs) to TA values within soil classes, as repre-
sented by algorithm-derived topographic landform classes and excludes the actually
fuzzy mapping of soil classes and properties.
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3.2 Methods

3.2.1 Site and Data Description

The study was conducted at the Southeastern Purdue Agricultural Center (SEPAC),
located in southeastern Indiana, in the Midwestern region of the USA. The site
encompasses an approximately 16 ha agricultural field currently managed under a
corn soybean rotation. The field is characterized by loess over till.

The study site is interesting in that it encompasses areas of preglacial residual
limestone interspersed with glacial till, overlain by a highly variable loess cap
ranging from 5 cm on slopes to over 300 cm in low lying depressions. The area has
a distinct, red paleosol layer formed in till underlying the loess.

A five-meter digital elevation model was obtained from the Indiana Spatial Data
Portal (www.gis.iu.edu) from which a variety of terrain attributes were generating
using SAGA GIS. The TAs selected for analysis were chosen for their relation to
the soil classes. Certain values of a particular TA may be highly correlated to the
occurrence of a particular soil type. For the purpose of field-level mapping, we
focused on TAs relevant to water redistribution across the field and relative land-
scape position including slope, topographic wetness index (TWI), catchment area,
multiresolution ridge top flatness (MRRTF), and multiresolution valley bottom
flatness (MRVBF). We worked under the assumption that water redistribution is the
main driver of soil differentiation and can be adequately represented by terrain
attributes.

3.2.2 Landform Classification

Geomorphometry quantitatively characterizes the land surface topography, and
geomorphometric algorithms can be used to segment and classify the landscape into
landform units which may be relevant to soil-forming processes as well as overall
soil function (Park and van de Giesen 2004; Park et al. 2001; Pennock 2003;
Pennock et al. 1987; Pike et al. 2009). A variety of landform classification pro-
cedures are available, with most using computer manipulation of elevation, repre-
sented by raster DEMs, to segment the landscape (Iwahashi and Pike 2007;
Jasiewicz and Stepinski 2012; MacMillan et al. 2000; Park et al. 2001; Pennock and
Corre 2001; Pike et al. 2009).

For the purpose of automatically classifying landforms, two freely available
landform classification algorithms were selected to act as surrogates for
user-defined landform-based soil classes or previously defined class boundaries
such as existing soil survey polygons. The Iwahashi and Pike and Geomorphons
algorithms were selected for their applicability to any landscape, DEM grid size,
and spatial extent (Iwahashi and Pike 2007; Jasiewicz and Stepinski 2012).
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The automated landform classification approach outlined by Iwahashi and Pike
(2007) is an unsupervised, empirical method which uses a nested means approach
to classify topography automatically on the basis of three terrain attributes: slope
gradient, surface convexity, and texture. The Geomorphons method, presented by
Jasiewicz and Stepinski (2012), offers a unique approach to automated mapping of
geomorphological units. While most other methods rely heavily on differential
geometry for the generation of terrain attributes, from which landform classes are
derived, Geomorphons identifies landforms from patterns in relative elevation,
classifying landforms directly from the DEM itself.

The Iwahashi and Pike and Geomorphons classifications were run at a five-meter
resolution for the study area. Iwahashi and Pike allows for the prediction of 8, 12, or
16 landform classes. Classification of 8 landforms was selected because it was
assumed that 12 or more functionally district soil class are not present at the 16 ha
SEPAC site.

3.2.3 Curve Fitting

Four probability density functions were generated for each TA within each land-
form including both the Iwahashi and Pike and Geomorphons classifications. The
normal distribution (Eq. 3.1), log normal distribution (Eq. 3.2), exponential dis-
tribution (Eq. 3.3), and Weibull distribution (Eq. 3.4) were selected. To generate the
functions, the TA values of each grid cell were first extracted by landform. From
this dataset, 30 % of the pixels were randomly selected from each landform in an
attempt to bring independence into the dataset. The resulting subset was used to fit
each PDF in MATLAB. Parameter estimation for all PDFs was performed using
maximum likelihood estimation (MLE).

y ¼ f ðxjl; rÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p e
�ðx�lÞ2

2r2 ð3:1Þ

y ¼ f ðxjl; rÞ ¼ 1

xr
ffiffiffiffiffiffi
2p

p e
�ðln x�lÞ2

2r2 ð3:2Þ

y ¼ f ðxjlÞ ¼ 1
l
e
�x
l ð3:3Þ

f ðxja; bÞ ¼ b
a

x
a

� �b�1
e�ðx=aÞ6 ð3:4Þ

The parameters of the normal, lognormal, and exponential probability density
functions are mean, μ, and standard deviation, σ, given the data, x. The parameters
of the Weibull distribution are, a, the scale parameter, and b, the shape parameter.
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3.2.4 Goodness-of-Fit Assessment

To assess the goodness of fit of each distribution, chi-square (χ2) and Kolmogrov–
Smirnov (K-S) tests were performed. The chi-square test is used to determine
whether the fitted distribution differs from the actual observed distribution and is
calculated as follows:

v2c ¼
Xm
i¼1

nðfsðxiÞ � pðxiÞÞ2
pðxiÞ ð3:5Þ

where n is the number of observations, m is the cell size, and p(x) is the probability
associated with each cell, 1/m. The test was performed at a 95 % confidence level,
where α = 0.05. If the calculated test statistic, χc

2, is less than χα,υ, the fitted dis-
tribution cannot be rejected (Massey 1951).

The Kolmogrov–Smirnov (K-S) test focuses on the deviation from the fitted
cumulative density function (CDF).

F̂ðxiÞ ¼ i
n

ð3:6Þ

where x(i) is the smallest ith value of the original annual maximum times series, x,
and n is the total number of observations. The test statistic of interest is as follows:

d2 ¼ max
n

i¼1
F̂ðxiÞ � FðxiÞ
�� ��� � ¼ max

n

i¼1

i
n
� FðxiÞ

����
����

� 	
ð3:7Þ

where F(x(i)) is the fitted CDF. If the test statistic, d2, is less than the K-S limit, then
the fitted distribution cannot be rejected. The K-S test was performed at a confi-
dence level of 95 %, where α = 0.05 (Norton 1945).

3.3 Results and Discussion

3.3.1 Landform Classification

Both the Geomorphons and Iwahashi and Pike algorithms were run for the SEPAC
site using a five-meter DEM. The resulting classifications are shown in Figs. 3.1
and 3.2. Geomorphons predicted all 10 possible landforms, with class 1, flats,
having only one cell classified. Because some classes encompassed too few grid
cells for adequate curve fitting, these classes were combined logically with larger
landform groups that were assumed to share common soil-forming conditions. The
class numbers, corresponding landform names, total grid cells classified, and
reclassification are shown in Table 3.1. Spurs and slopes were found to dominate
the landscape. Flats, summits, and shoulders were grouped together.

3 Incorporating Probability Density … 25



Fig. 3.1 Geomorphons classification. Algorithm derived classification of ten Geomorphons

Fig. 3.2 Iwahashi and Pike classification. Algorithm derived classification of eight Iwahashi and
Pike landforms
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The shoulder landform typically occurs at the outer edges of the summit and acts
as the transition from summit to side slope. Because these landforms are spatially
contiguous, they were grouped with the assumption that the fuzzy nature of the
modeling process would draw out the transitional characteristics of the shoulder
position. Footslopes, valleys, and depressions were combined, given that they all
represent environments in which water may accumulate. Though the Geomorphons
algorithm is considered scale independent, some of the landforms, such as hollows,
valleys, and ridges, would not typically be found at the field scale.

The Iwahashi and Pike algorithm was run to classify 8 landforms, shown in
Fig. 3.2. Reclassification was not needed as all landforms encompassed a number of
grid cells adequate for distribution fitting. The nested means approach of the
Iwahashi and Pike algorithm ensures a more equal distribution of pixels among
landform classes, when compared to Geomorphons, given that the data are not
highly skewed. The class numbers, corresponding landform descriptions, and total
grid cells classified are shown in Table 3.2. The gentle classes were found to
dominate, which is consistent with the gently sloping farm field environment.

Table 3.1 Geomorphons classification

Class number Landform name Grid cells classified Reclassification

1 Flat 1 1

2 Summit 56 1

3 Ridge 835 2

4 Shoulder 62 1

5 Spur 1373 3

6 Slope 2089 4

7 Hollow 684 5

8 Footslope 8 6

9 Valley 523 6

10 Depression 23 6

Landform name, number of cell classified, and reclassified class numbers

Table 3.2 Iwahashi and Pike classification

Class number Landform description Grid cells classified

1 Steeper/high convexity/fine texture 109

2 Steeper/high convexity/coarse texture 415

3 Steeper/low convexity/fine texture 348

4 Steeper/low convexity/coarse texture 578

5 Gentler/high convexity/fine texture 1039

6 Gentler/high convexity/coarse texture 966

7 Gentler/low convexity/fine texture 974

8 Gentler/low convexity/coarse texture 1225

IP class landform descriptions and number of grid cell classified per class
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The Iwahashi and Pike and Geomorphons algorithms produced noticeably dif-
ferent landform patterns. Determining which algorithm works best to represent soil
classes will require further study, including field sampling and fuzzy logic-based
property mapping. Based on observations made in the field, the Iwahashi and Pike
classification was able to identify a distinct soil-forming environment (class 5),
clearly identifiable in the field and a broad, flat summit position having deep loess
of approximately 125 cm, located in the southeast corner of the field.

3.3.2 Curve Fitting

Normal, lognormal, exponential, and Weibull PDFs were generated for each
combination of landform class, TA, and distribution. The resulting goodness-of-fit
assessments are shown in Tables 3.3 and 3.4.

For the Geomorphons landform classification, very few distributions passed the
K-S and χ2 goodness-of-fit tests. Of the 120 PDFs generated, 12 passed the K-S test,
approximately 10.0 %, and four passed the χ2, approximately 3.3 %. Of these, the
Weibull distribution produced the largest number of passing PDFs, seven, and the
exponential distribution the lowest, with two. Distribution of passes among classes
showed no identifiable pattern, and no PDFs for class 2 were found to pass.

Table 3.3 Chi-squared and Kolmogrov–Smirnov test statistics for Geomorphons fitted
distributions

Terrain
attribute

Class Weibull Log normal Normal Exponential

Χ2 K-S Χ2 K-S Χ2 K-S Χ2 K-S

Slope % 1 23.79 0.15 98.31 0.25 18.01 0.14 18.78 0.13

2 27.54 0.06 371.44 0.17 40.42 0.08 132.29 0.13

3 33.79 0.02* 148.15 0.08 80.64 0.06 610.9 0.21

4 34.76 0.03 378.99 0.1 46.82 0.03 1189.48 0.23

5 29.66 0.05* 103.86 0.12 64.47 0.05* 465.7 0.24

6 25.43 0.05* 43.12 0.06 109.27 0.13 111.01 0.18

TWI 1 26.42 0.11* 46.38 0.16 33.59 0.13 65.97* 0.49

2 357.63 0.16 218.16 0.14 298.52 0.16 2680.2 0.51

3 754.15 0.19 391.97 0.14 666.78 0.18 5972.13 0.54

4 927.39 0.15 347.2 0.09 714.86 0.13 8142.39 0.53

5 90.4 0.07 29.29 0.03* 54.56 0.05 2091.41 0.48

6 14.89 0.04* 15.44 0.05* 3.67* 0.03* 2549.27 0.5

Mod catch 1 30.19 0.23 25.07 0.16 62.77 0.38 44.65 0.31

2 177.72 0.19 108.16 0.16 567.17 0.32 398.65 0.32

3 235.24 0.26 585.49 0.21 486 0.38 237.47 0.41
(continued)
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Table 3.3 (continued)

Terrain
attribute

Class Weibull Log normal Normal Exponential

Χ2 K-S Χ2 K-S Χ2 K-S Χ2 K-S

4 389.51 0.18 437.6 0.13 1509.13 0.33 478.33 0.3

5 50.32 0.1 23.81 0.05 298.37 0.27 182.49 0.21

6 44.9 0.06 96.51 0.07 77.27 0.15 43.18 0.06*

MRRTF 1 83.15 0.2 161.95 0.28 84.68 0.2 444.47 0.38

2 828.15 0.12 1340.23 0.13 572.09 0.19 789.21 0.13

3 180.29 0.08 532.44 0.18 730.45 0.27 720.8 0.21

4 192.57 0.07 292.82 0.13 1088.79 0.36 1446.98 0.39

5 29.02 0.1 105.58 0.2 208.38 0.36 38.09 0.23

6 20.42* 0.13 20.39* 0.09 169.53 0.37 14.69* 0.16

MRVBF 1 24.83 0.12* 7.72 0.08* 65.16 0.3 51.31 0.22

2 157.75 0.08 169.73 0.13 522.01 0.2 156.18 0.08

3 231.08 0.11 805.45 0.19 633.75 0.25 670.36 0.16

4 271.17 0.08 851.33 0.12 1256.56 0.28 1124.03 0.32

5 167.51 0.09 483.31 0.18 251.66 0.2 168.91 0.12

6 302.24 0.17 418.18 0.22 334.74 0.12 536.48 0.25

Test statistics for each combination of soil class, terrain attribute (TA), and probability density function
(PDF). TAs include slope %, topographic wetness index (TWI), modified catchment area (Mod. Catch),
multiresolution valley bottom flatness (MRVBF), and multiresolution ridgetop flatness. K-S and χ2

values denoted by * indicates that the data fit the distribution

Table 3.4 Chi-squared and Kolmogrov–Smirnov test statistics for Iwahashi and Pike fitted
distributions

Terrain
Attribute

Class Weibull Log Normal Normal Exponential

Χ2 K-S Χ2 K-S Χ2 K-S Χ2 K-S

Slope % 1 22.35 0.13 7.24* 0.08* 9.39* 0.13* 198.95 0.44

2 55.66 0.08 6.42* 0.03* 42.47 0.08 831.57 0.44

3 24.74 0.06 8.37* 0.04* 11.66* 0.04* 963.74 0.46

4 175.22 0.13 50.42 0.08 133 0.12 1521.7 0.47

5 72.45 0.06 507.38 0.18 133 0.11 172.83 0.13

6 54.73 0.05 273.74 0.11 26.85 0.04 794.02 0.25

7 54.84 0.06 212.07 0.09 93.93 0.08 422.22 0.18

8 97.14 0.07 403.44 0.12 58.16 0.05 906.2 0.23

TWI 1 33.45 0.16 15.24* 0.09* 10.27* 0.11* 94.85 0.59

2 44.79 0.09 9.74* 0.04* 13.05 0.04* 3373.7 0.57

3 222.91 0.16 116.51* 0.14 160.62* 0.16 1917.5 0.54

4 123.45 0.13 31.25 0.06 57.48 0.08 3557.6 0.56

5 238.58 0.11 127.14 0.1 176.6 0.12 3313.6 0.5
(continued)
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Iwahashi and Pike landforms performed better in goodness-of-fit assessment. Of
the 160 PDFs generated, 16 passed the K-S test, approximately 11.3 %, and 16
passed the χ2 test, approximately 10.0 %. The majority of the passing PDFs were
from the normal and lognormal distributions. Only three Weibull and none of the
exponential were found to fit the data.

Table 3.4 (continued)

Terrain
Attribute

Class Weibull Log Normal Normal Exponential

Χ2 K-S Χ2 K-S Χ2 K-S Χ2 K-S

6 525.77 0.17 215.16 0.12 327.6 0.14 6429 0.55

7 50.66 0.04* 120.25 0.07 62.89 0.05 2674.1 0.45

8 264.7 0.09 93 0.06 185.1 0.08 3592.7 0.49

Mod
catch

1 14.25 0.15 5.51* 0.12* 16.92 0.21 30.54 0.32

2 23.42 0.08 5.07* 0.03* 27.69 0.12 131.06 0.29

3 12.94 0.18 13.5 0.15 75.93 0.29 35.76 0.24

4 79.23 0.15 38.65* 0.09 138.6 0.27 54.52 0.19

5 207.95 0.15 142.56 0.09 535.7 0.35 589.78 0.23

6 138.34 0.17 109.39 0.09 333.8 0.29 158.39 0.19

7 48.06 0.04* 107.03 0.07 388.5 0.23 151.3 0.15

8 92 0.11 40.87 0.07 657.7 0.29 696.59 0.28

MRRTF 1 5.08 0.11* 19.15* 0.21 22.63 0.24 12.44 0.27

2 56.88 0.2 144.1 0.26 89.95 0.29 88.76 0.35

3 9.93 0.15 66.3 0.27 78.46 0.28 29.09 0.27

4 40.99 0.15 175.79 0.24 101.9 0.27 44.59 0.24

5 1269.4 0.18 1923.8 0.17 786.3 0.21 1210.3 0.18

6 133.83 0.07 92.44 0.05 619.3 0.24 317.89 0.13

7 217.03 0.08 165.75 0.05 703.9 0.27 707.33 0.22

8 96.82 0.06 44.84 0.03* 295.8 0.27 79.99 0.1

MRVBF 1 0.28* 0.08* 9.87* 0.21 26.68 0.28 7.21 0.21

2 58.16 0.13 177.55 0.24 59.3 0.27 42.4 0.3

3 5.05 0.07 49.16 0.15 98.08 0.28 54.32 0.28

4 76.82 0.12 330.1 0.21 94.51 0.23 45.86 0.21

5 171.65 0.1 167.61 0.07 414.9 0.23 170.77 0.09

6 315.51 0.11 127.4 0.07 460 0.23 263.06 0.11

7 243.36 0.11 326.38 0.12 416.5 0.21 253.29 0.11

8 369.37 0.1 383.89 0.07 953.9 0.24 393.9 0.11

Values of test statistics for each combination of soil class, terrain attribute (TA), and probability
density function (PDF). TAs include slope %, topographic wetness index (TWI), modified
catchment area (Mod. Catch), multiresolution valley bottom flatness (MRVBF), and
multiresolution ridgetop flatness. K-S and χ2 values denoted by * indicates that the data fit the
distribution
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3.4 Conclusions

The use of fitted probability density functions in fuzzy logic-based soil mapping has
much potential. These functions have the ability to act as fuzzy membership curves,
with no need of user definition of curve properties. By fitting a variety of curves and
choosing the best one, it may be possible to improve fuzzy map prediction.
Moreover, this method allows for curves to be generated automatically, lessening
the need for expert supervision.

The high number of PDFs found to inadequately fit the data implies that the
normal, lognormal, Weibull, and exponential distributions do not work well to
model the distributions of terrain attributes within the algorithm-derived landforms.
These distributions are generally unimodal and will not perform well for multi-
modal data. Further research is needed to explore multimodal PDFs for the purpose
of better fitting membership functions.
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Chapter 4
Mapping Horizontal and Vertical Spatial
Variability of Soil Salinity in Reclaimed
Areas

Yan Guo, Zhou Shi, Jingyi Huang, Laigang Wang, Yongzheng Cheng
and Guoqing Zheng

Abstract In coastal China, there is an urgent need to increase the land area for
agricultural production and urban development, where there is a rapid growing
population. One solution is land reclamation from coastal tidelands, but soil
salinization is problematic. As such, it is very important to characterize and map the
within-field variability of soil salinity in space and time. Some proximal sensors
such as the EM38 allow for the rapid and cost-effective in situ collection of
high-resolution data. In this study, we used the EM38 to study spatiotemporal
variability of soil salinity in a coastal paddy field. Geostatistical methods were used
to determine the horizontal spatiotemporal variability of soil salinity over three
consecutive years. The study found that the distribution of salinity was heteroge-
neous and the leaching of salts was more significant in the edges of the study field.
By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical
spatiotemporal variability of soil salinity was determined and the leaching of salts
over time was easily identified. We concluded that the methodology of this study
can be used as guidance for researchers interested in understanding soil salinity
development as well as land managers aiming for effective soil salinity monitoring
and management practices.
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4.1 Introduction

Over the past decades, most of the tidelands in China have been reclaimed for
agriculture and urban buffer zones (Huang et al. 2008). However, the highly saline
coastal soil often causes adverse effects on agricultural productivity, particularly in
the first 20 years of agricultural production. In order to better manage the reclaimed
tidelands, it is important to determine the spatial and temporal variability of soil
salinity in an accurate and efficient way.

In the last century, conventional visual observations with limited laboratory
measurements have been used to map soil salinity variability. However, visual
observations provide only qualitative information (Doolittle and Brevik 2014), and
laboratory methods are often time-consuming, expensive, and labor-intensive
(Corwin 2008). Generally, in order to characterize the soil spatial variability using
geostatistical methods, approximately 100 sample points are required to estimate a
spatial statistical model (Webster and Oliver 1992). For example, in an attempt to
map soil salinity, Gallichand et al. (1992) collected 80 soil samples at two different
depths on a regular grid and used 2D and 3D kriging to interpolate the conductivity
of the saturated paste extract (i.e., ECe) in a field in Southern Alberta.

So, collection of easily obtainable auxiliary information cost-effectively is the
first necessity. In this case, the proximal sensing electromagnetic induction
(EMI) emerges as the need to detect soil salinity rapidly and effectively (Corwin
2008). EMI can acquire a large number of georeferenced and quantitative mea-
surements that can be easily correlated with the spatial variability of salinity
(Doolittle and Brevik 2014; Guo et al. 2015b). Under saline condition, soil apparent
electrical conductivity (ECa) is mainly response to soil salinity (Lesch et al. 2005;
Triantafilis et al. 2000). The most commonly used conductivity meter (EM38,
Geonics Ltd., Ont, Canada) can measure ECa. The EM38 data have been used to
map soil properties (e.g., ECe and soil moisture) using various calibration models
(Corwin and Rhoades 1982, 1984; Cook and Walker 1992; Lesch et al. 1995a, b;
Padhi and Misra 2011) at field (Lesch et al. 1995a, b), region (Akramkhanov et al.
2011), and catchment (Triantafilis et al. 2000) scales.

In addition to mapping the variability of soil salinity, many researchers have
attempted to measure ECa at different soil depths with an inversion algorithm.
A pioneering work in this field was undertaken by Hendrickx et al. (2002) and Li
et al. (2013). In this literature, Tikhonov regularization was used to invert the EM38
data using measurements collected at different heights above the ground and in
different directions. Though successful, the inversion was essentially a 1D inversion
model and could not characterize the lateral variation of soil salinity. After several
years, researchers developed 2D inversion algorithms to invert the EM38 data into
2D vertical slices (Vervoort and Annen 2006; Monteiro Santos et al. 2010; Mester
et al. 2011; Viganotti et al. 2013) and 2D horizontal slices (Monteiro Santos et al.
2002). In recent years, the research with a combination of horizontal slices and
vertical slices was employed to determine the 3D variability of soil conductivity
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(Shiraz et al. 2013; Triantafilis et al. 2013; Guo et al. 2015a). With these inversion
approaches, spatial variability of soil electrical conductivity and the correlated soil
properties (e.g., salinity) can be presented in a 2D or 3D view.

Despite the successful application of EMI in soil salinity monitoring and
assessments, few publications have reported on the spatiotemporal variability of
soil salinity from a multidimensional view. The aim of this study is to map the
spatiotemporal variability of soil salinity in a reclaimed costal paddy field using
three years of EM38 data. Geostatistical analysis and a Quasi-3D inversion algo-
rithm were combined to map the horizontal and vertical spatial variability of soil
salinity in the study field.

4.2 Materials and Methods

4.2.1 Study Area

The study was conducted on a 4.25 ha paddy field in a coastal saline area located in
the northern region of Shangyu City, Zhejiang Province, southeast of Hangzhou
Bay, China. The climate is subtropical with an average annual temperature of 16.5 °
C and an average annual precipitation of 1300 mm. Over the past 40 years,
approximately 17,000 ha of coastal land has been reclaimed around Shangyu City
in successive programs (Fig. 4.1). The soil is derived from recent marine and fluvial
deposits. The study area was enclosed and reclaimed for rice cultivation in 1996. In
this area, fields were separated by small embankments (bunds) which ensured
flooded conditions within each field.

Fig. 4.1 Locations of the study area and ECa measurements
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4.2.2 Data Collection and Processing

Measurements of ECa (mS/m) were taken with a Geonics EM38 (Geonics Ltd.,
Ont., Canada) in the horizontal mode of operation after the rice was harvested and
the field was drained. Data files created with data logging system (DAS70-CX) can
be used to position a survey according to locations recorded separately by a Global
Positioning System (GPS), which can be combined with EM38 records through
NMEA-0183 compatible data (i.e., GGA and GSA). The EM38 was placed on the
ground, and georeferencing was provided by a Trimble GPS with differential
correction within 2 m. ECa measurements were acquired on an approximate 20-m
grid along the furrows in three consecutive years. There were 251, 256, and 339
ECa measurements collected in October 2009, November 2010, and November
2011, respectively. In order to calculate the coefficient of variation over time, EM38
measurements in 2010 and 2011 were harmonized onto a common grid consisting
of the 251 ECa measurement sites in 2009 (see Fig. 4.1c) using the nearest neighbor
algorithm available in ArcGIS 9.3.

It should be noted that EM38 measurements drift significantly when tempera-
tures are over 40 °C and the drift is more obvious for small ECa readings (i.e., less
than 100 mS/m) (Robinson et al. 2004). In this study, the temperature conditions
were similar when the three surveys were taken (approximately 25 °C) and the
study area was highly conductive, so we did not calibrate the ECa measurements to
a standard temperature of 25 °C as suggested by Sheets and Hendrickx (1995).
However, we still calibrated the equipment many times when conducting field
measurements to reduce the error (Corwin and Lesch 2003).

4.2.3 Mapping Horizontal Spatiotemporal Variability
of Salinity Using Geostatistical Approaches

Geostatistical methods are often used to define the variance structure, spatial dis-
tribution, and trend changes of soil properties. Generally, kriging is the most
familiar univariate interpolation method, which uses the semivariogram to quantify
the spatial variation of a regionalized variable, of which ordinary kriging (OK) is
one of the most popular interpolation methods (Li and Heap 2011). It was defined
as follows (Webster and Oliver 2007):

cðhÞ ¼ 1
2NðhÞ

XNðhÞ
i¼1

ZðxiÞ � Zðxi þ hÞ½ �2 ð4:1Þ

where cðhÞ is a semivariogram that measures the mean variability between two
points x and x + h as a function of their distance h; Z(xi) and Z(xi+h) are the values of
the variable Z at location xi and xi + h; and N(h) is the number of pairs of sample
points separated by the lag distance h.
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The horizontal spatial variability of soil salinity (ECa) was interpolated by OK
(Eq. 4.2) (Webster and Oliver 2007) with ArcGIS 9.3.

Z�ðx0Þ ¼
Xn
i¼1

kiZðxiÞ ð4:2Þ

where Z*(x0) is the predicted ECa at location x0; Z(xi) is the measured ECa at
location xi; ki is the weight assigned to the observation Z(xi); and n is the number of
measurements.

As for the horizontal temporal variability, the coefficient of variation (CVti) over
time at each measurement site was calculated to evaluate the stability of soil salinity
(Eq. 4.3). The technique has been used by Shi et al. (2002) to assess the stability of
soil properties in grasslands.

CVti¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�Pn

t¼1 ECa
2
it � ðPn

t¼1 ECaitÞ2Þ=n� ðn� 1Þ
q

ðPn
t¼1 ECaitÞ=n

ð4:3Þ

where CVti is the coefficient of variation over three years at the ith ECa mea-
surement site in the tth year and n is the number of ECa measurements.

4.2.4 Mapping Vertical Spatiotemporal Variation of Salinity
Using Quasi-3D Inversion

To determine the distribution of true electrical conductivity (σ—mS/m) at different
depths beneath the ECa measurements, an inversion software (EM4Soil) was used
to convert ECa to σ. Herein, the Quasi-3D module (Q3Dm) of the software was
employed following the procedure of Monteiro Santos et al. (2011) to invert the
ECa data of the three consecutive years. Q3Dm is a 1D spatial constrained tech-
nique (1D SCI) and a forward modeling approach. It assumes that below each
measured site, the 1D variation of the soil conductivity is constrained by the
variation under neighboring sites. The modeling process is based on the cumulative
function (Eqs. 4.1 and 4.2). The inversion algorithm is based on the Occam reg-
ularization method (Sasaki 1989; De Groot-Hedlin and Constable 1990).

First, gridding was applied onto the raw dataset using the gridding tool of the
Q3Dm package. The gridding was based on the inverse distance-weighted method
(EM4SOIL Manual, 2011). In this study, a weight value of 2.0 was selected and the
grid consisted of 10 x-lines (west–east) and 8 y-lines (south–north) with grid
spacing of 18 m. Then, the inversion of ECa data was performed using Algorithm 3
with a damping factor of 0.3, 10 iterations, a data error of 1.00, and a misfit target of
0.20. An initial two-layer laterally homogeneous model was predefined with initial
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electrical conductivity of 10 mS/m for both layers, a depth of 0.6 m for the first
upper layer, and a depth of 1.2 m for the bottom layer. ECa data of the three
consecutive years were inverted separately.

4.3 Results and Discussion

4.3.1 Statistical Analysis of Multitemporal EM38 Data

Table 4.1 shows some basic summary statistics and quartile estimates for ECa in
2009, 2010, and 2011. The average values decrease substantially from 2009
(166.19 mS/m) to 2010 (134.02 mS/m) and 2011 (113.29 mS/m). Similarly, the
quartile estimates of ECa show a decreasing trend from 2009 to 2011 with a lesser
difference between 2010 and 2011 than 2009 and 2010. The Shapiro–Wilk (S-W)
statistics are 0.925, 0.930, and 0.925 with P-values less than 0.01, which indicate
significant deviation from normality. In such cases, Box–Cox transformation
method was adopted to transform the data by monotonically increasing (or
decreasing). In the next section, the datasets were also normalized by this method.

Figure 4.2 gives the curves of the cumulative distribution function (CDF) for the
study area which illustrates visible temporal variations of soil salinity among the
three years. For a given ECa value, CDF is largest in 2011 and smallest in 2009. In
order to quantify the difference, we used the Tukey–Kramer multiple comparison

Table 4.1 Descriptive statistics of ECa (mS/m) in 2009, 2010, and 2011

Year n Mean Stde Min 25 % Median 75 % 90 % Max S-W test

2009 251 166.19 3.50 51.3 145.4 179.3 195.6 209.18 226.7 0.925

2010 256 134.02 2.00 20.1 96.15 151.85 182.9 193.4 217.7 0.930

2011 339 113.29 3.01 10.5 73.2 140.2 157.9 168.5 181.8 0.925

Fig. 4.2 Plot of cumulative
distribution function (CDF) of
ECa (mS/m) in 2009, 2010,
and 2011
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procedure. The Tukey–Kramer means comparisons are shown in Table 4.2. The
values indicate the actual absolute differences in the means minus the least sig-
nificant difference (i.e., abs-LSD). Here, there are two important things to note, first,
that the mean with positive values indicates significant difference, and second,
because the borders of the table are sorted by the mean, the most significant
differences among the years appear in the upper right-hand corner. As shown in
Table 4.2, the most significant change of ECa occurs between 2009 and 2011,
followed by the period from 2009 to 2010, and then between 2010 and 2011.

4.3.2 Horizontal Spatiotemporal Variability
of EM38-Directed Soil Salinity with Geostatistical
Approaches

Analyses of spatial dependence were carried out on all the three datasets. The plot
of experimental semivariances and the fitted semivariogram models for the ECa
from 2009 to 2011 is shown in Fig. 4.3. And the parameters of these models are
given in Table 4.3. The semivariances of the models indicate that the spatial
behavior has good continuity in space and can be modeled quite well with expo-
nential models which were selected by simulations using GS + 7.0 (Gamma Design
Software, USA). However, different tendencies were found for models of the three
years. The nugget value (C0) decreases from 2009 to 2011, indicating that the
variations of soil salinity over a short distance have become smaller and smaller.

Table 4.2 Comparison of
means of ECa (mS/m) for
2009, 2010, and 2011 using
the Tukey–Kramer test

Year Mean 2009 2010 2011

2009 166.19 −11.61 22.71 42.06

2010 134.02 −6.64 12.24

2011 113.29 −9.99

Fig. 4.3 Semivariance and
fitted models (solid lines) for
soil ECa (mS/m) in years
2009–2011
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The ratios of C0 to sill (C + C0) decline sharply from 17.07 % (2009) to 0.26 %
(2011). According to Shi et al. (2005), the ratio of C0 to (C + C0) reflects the spatial
dependence of soil attributes (i.e., a ratio less than 0.25 indicates strong spatial
dependence; a value between 0.25 and 0.75 denotes moderate spatial dependence;
and a value greater than 0.75 indicates weak spatial dependence).

In this regard, we can conclude that the spatial autocorrelation of ECa was
becoming stronger during the study period. This increase may be caused by the
alternating irrigation and drainage practices necessary for rice cultivation. In
addition, the relatively large nugget effect in the ECa data is most probably the
consequence of an uneven distribution of soil salinity between ridge and furrow
irrigation, perhaps associated with a small georeferencing error; Also the abrupt
transitions in soil salinity, i.e., a short distance variability was not taken into
account by the density of the sampling, and in this case, the nugget effect decreases,
it can be assumed that the transitions, initially steep, soften between 2009 and 2011.

Maps of ECa in 2009, 2010, and 2011 generated by OK method are shown in
Fig. 4.4a, b, and c, respectively. These smoothed contour maps show that ECa has
decreased over the three years. For example, the maximum value of ECa is
181.8 mS/m in 2011 versus 226.7 mS/m in 2009 with the minimum value of ECa
also decreasing from 2009 (51.3 mS/m) to 2011 (10.5 mS/m). As well as in a
central block of the field (i.e., easting: 286,520–286,560 m; northing: 3,340,360–
3,340,400 m), ECa was mostly larger than 200 mS/m in 2009, but the values
decreased to 175–200 mS/m in 2010 and then dropped to 125–150 mS/m in 2011.
The decreasing ECa value was most likely due to the irrigation and drainage
practices for rice cultivation which leached the salts into a deep soil profile or the
groundwater.

On the other hand, the spatial distribution of soil salinity also changed. In 2009,
the largest ECa values (>200 mS/m) were found in the center of the field and values
decreased with distance from the center. However, in 2010, the largest ECa values
(>200 mS/m) were found in the right half of the field, and there was a distinctive
difference in ECa between the left and right halves of the field. With regard to year
2011, any differences in ECa between the left and right field halves were not
obvious and the field was mostly dominated by ECa values of 125–150 mS/m. The
heterogeneous and changing salinity distribution of the study area may be caused
by the presence of ditches in the study area because the study area is a paddy field
and surrounded by ditches. The tillage with large-size tractor tends to result in
uniform field surface topography irrigation and drainage for rice cultivation leach

Table 4.3 Models and parameters of semivariogram for ordinary kriging of soil ECa (mS/m) in
2009, 2010, and 2011

Year Semivariogram
model

Nugget
(C0)

Sill (C0 + C) C0/(C0 + C) Range
(A)

r2

2009 Exponential 495 2899 17.07 225.90 0.964

2010 Exponential 380 4302 8.83 165.00 0.912

2011 Exponential 10 3807 0.26 127.50 0.928
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the soil salt into deeper soil layers; and soil salt migrated with the water table to
topsoil, ditches, and channels around the field. The low ECa level in the sur-
rounding field may arise of the drainage ditches surrounding the field, and the same
continuous agricultural practices (i.e., ridge building in the surroundings, irrigation,
and drainage for rice) make the soil salinity content become lower in surroundings.
Water table fluctuations are also mitigated by the presence of drainage ditches with
an approximate depth of 0.8 m, and as such, the topsoil and subsoil ECa gradually
decline. Therefore, the rate of leaching of salts will be a function of the distance to
the ditches. This is consistent with the large coefficient of variation (CVti) values in
the margins of the study area shown in Fig. 4.4d.

In order to assess the temporal stability of salinity, the calculated coefficient of
variation (CVti) of each measurement over three years is shown in Fig. 4.4d.
According to Shi et al. (2005), the variation should be considered stable with
CVti610% and is moderately stable with 10 % < CVti < 25 % and unstable
CVti>25%. Interestingly, it can be found that the area with a high salinity content
(easting: 286,520–286,560 m; northing: 3,340,400–3,340,440 m) displays temporal
stability, while the surrounding area shows temporal instability, especially the edges
of the field with a lower salinity level. This is consistent with the reports by Shi

Fig. 4.4 Spatial variability of soil ECa (mS/m) in a 2009, b 2010, and c 2011. The plot of
d coefficient of variation (CVti) over three years
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et al. (2005). The sharp change of salinity within the field edges may be due to the
presence of irrigation ditches around the field (Fig. 4.1c) where large amounts of
irrigation water allow salts to leach into deeper soils.

4.3.3 Vertical Spatiotemporal Variability of Soil Salinity
With Quasi-3D Inversion

The Quasi-3D inversion of vertical spatial variability results is shown in Fig. 4.5.
The vertical spatiotemporal variability of the soil salinity can be elaborated by the
distribution of modeled σ. Seeing from the 2D cross section oriented west–east, the
salinity decreased from topsoil to subsoil over the three years. For example, in
2009, it was around 200 mS/m at the depth of 0.4–1 m, while it decreased to
100–150 mS/m at the depth of 1.0–1.6 m. The consistent decrease of salinity from
topsoil to subsoil is primarily determined by the annual rainfall amount (i.e.,
1300 mm) and irrigation and leaching of paddy soils.

Fig. 4.5 3D models of soil electrical conductivity σ (mS/m) in a 2009, b 2010, and c 2011 across
the study area
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More specifically, the salts of the soil are found to migrate downward over the
three years. For example, the area with easting from 286,511.2 to 286,545.6 m and
depth from 0.5 to 1.6 m was primarily dominated by values between 100
and 150 mS/m in 2009. However, the conductivity of the area decreased to
75–150 mS/m in 2010. Furthermore, in the year of 2011, this conductivity was
mostly 75–100 mS/m. This might be explained by the leaching of the salts from
topsoil to subsoil, and it is also evident in 2D cross sections oriented south–north of
the Quasi-3D models. The phenomenon is consistent with the vertical distribution
of soil salinity of paddy field, where rice is cultivated. Additionally, the horizontal
2D cross sections at the top of the models of the three years are consistent with the
kriging maps shown in Fig. 4.4. This implies that the two approaches for deter-
mining spatiotemporal variability of salinity are reliable and actually consistent with
each other.

4.4 Conclusions

Determining the spatiotemporal variability of the soil salinity requires accurate and
effective mapping. Using ordinary kriging, horizontal distributions of ECa over
three years show the heterogeneous variability of soil salinity as well as the
leaching process of salts mainly due to precipitation and irrigation. During the rice
cultivation, irrigation, and drainage, land tillage results in salts leaching into deep
soil depths and surrounding ditches. Quasi-3D inversion of ECa provides detailed
information of the vertical variation in soil salinity. These vertical variations of
salinity due to irrigation ditches are consistent with observations of Rhoades et al.
(1997). Spatiotemporal variability of soil salinity in paddy fields determined by the
fast, cost-effective, and efficient EMI measurements provides valuable fine-grained
information for scientific research on the salinity change associated with agricul-
ture. It can be also used as a guide for field salinity management. For example,
salinity level is about 150 mS/m, soybean and cowpea can normally grow, and we
can take leaching and increasing the mulching film methods to reduce the accu-
mulation of salt in the surface soil. If the salinity level was low (85 mS/m), cau-
liflower can be of normal growth. Reasonable agronomic measures, such as
irrigation and fertilization, can be taken to adjust and control the salt content.
Considering the actual situation and farming operation convenience, flatting land
can be employed to adjust the influence of microtopography on salt migration; on
the other hand, the rotation (rice and dryland crop), irrigation, and drainage salinity
can be used to decrease the salt content (Guo et al. 2013). These methods also can
be used in large-scale management, and stand by this point, different crops and
agronomic measures can be adopted in different management zones. And the deeper
mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g.,
DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil
profiles (Huang et al. 2014).
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Chapter 5
Mapping Soil Organic Matter
in Low-Relief Areas Based on Time Series
Land Surface Diurnal Temperature
Difference

Ming-Song Zhao, Gan-Lin Zhang, Feng Liu, De-Cheng Li
and Yu-Guo Zhao

Abstract Accurate estimates of the spatial variability of soil organic matter
(SOM) are necessary to properly evaluate soil fertility and soil carbon sequestration
potential. In plains and gently undulating terrains, soil spatial variability is not
closely related to relief, and thus, digital soil mapping methods based on soil–
landscape relationships often fail in these areas. It is necessary to find new envi-
ronmental variables and methods to mapping soil attribute over the low-relief areas.
Time series remotely sensed data, such as thermal imagery, provide possibilities for
mapping SOM in such areas. In this study, Jiangsu Province was chosen as an
example in eastern China and a total of 1519 soil samples (0 * 20 cm layer) were
collected from the Second National Soil Survey of Jiangsu Province. 8-day com-
posited land surface diurnal temperature difference (DTD) was extracted from the
time series of MODIS 8-day composited land surface temperature. 8-day averaged
DTD was mean of 8-day composited DTD in the same periods between 2002 and
2011. Analysis showed that SOM content was significantly negative correlated with
8-day averaged DTD of different periods, of which higher correlation was in
vegetation sparse periods. Averaged DTD of many periods and averaged DTD of
specific periods were selected as two group of independent variable dataset. Linear
regression, regression kriging (RK), and linear mixed model (LMM) fitted by
residual maximum likelihood were used to model and map SOM spatial distribu-
tion. Ordinary kriging was used as a baseline comparison. The root-mean-squared
error, mean error, and mean absolute error calculated from independent validation
were used to assess prediction accuracy. Results showed that LMM are the best
predictions, of which LMM using DTD of specific periods and DTD cell statistics
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as variables performed best. RK were somewhat worse than LMM. Linear
regression performed worst. This suggests that time series remotely sensed data can
provide useful auxiliary variable for mapping SOM in low-relief agricultural areas
and LMM improved mapping SOM spatial distribution, which provided an effec-
tive approach for improving DSM in the low-relief areas.

Keywords Digital soil mapping � Land surface diurnal temperature difference �
Linear mixed model � Low-relief areas � Soil organic matter, Jiangsu province

5.1 Introduction

Soil organic matter (SOM) is a crucial soil constituent related to soil physical,
chemical, and biological processes, soil fertility and agricultural productivity. SOM
is also a major component of the global carbon pool (Yadav and Malanson 2007).
Current digital soil mapping (DSM) methods to map SOM are mostly based on
quantitative soil–landscape relationship models using easily obtained regional
environmental factors (McBratney et al. 2003; Qi et al. 2006), especially geo-
morphometry, vegetation, land cover, and parent material. However, models based
on geomorphometry perform poorly in low-relief areas such as alluvial and coastal
plains (Pei et al. 2010; Santos et al. 1997; Stoorvogel et al. 2009; Zhu et al. 2010).
Moreover, in old agricultural areas such as eastern China long-term cultivation has
weakened the relationship between soil properties and land cover (Ding et al. 1989;
Zhu et al. 2010), and therefore, DSM methods based on soil–landscape relation-
ships using geomorphometry and land cover as predictors are often ineffective in
these areas.

Recently, some attempts have been made to map SOM in plains using DSM
techniques and other predictors, such as using multi- and hyper-spectral remote
sensing (RS) (Stevens et al. 2010) and the soil line Euclidean distance calculated
from near-infrared remotely sensed data (Fox and Sabbagh 2002). Direct sensing of
the soil has three disadvantages: (1) the soil surface is often obscured by vegetation;
(2) the land surface may be obscured by clouds; and (3) only the few millimeters
surface are sensed.

With the development of multi- and hyper-temporal RS, attempts have been made
to use time series analysis to model spatial variability of soil properties. Chang et al.
(2003) used the brightness temperature of multitemporal RS to identify soil texture
in the southern Great Plains of North America based on an artificial neural network
applied to multiple drying cycles. Zhu et al. (2010) developed a method called land
surface dynamic feedbacks (LSDF) based on moderate-resolution imaging spec-
troradiometer (MODIS) imagery to differentiate the spatial variability of soil type
after a major rainfall event in low-relief areas with partial vegetation cover in
Heilongjiang and Xinjiang, China. Liu et al. (2012) mapped soil texture (sand, silt,
and clay content) using LSDF derived from MODIS after a major rain event in
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south-central Manitoba, Canada. Wang et al. (2012) predicted soil texture in
Jiangyan using the changing pattern of land surface diurnal temperature difference
(DTD) derived from MODIS land surface temperature (LST), based on
fuzzy-c-means clustering method. These researches suggested that soil properties
that affect water content can be related to LST, DTD, and their change pattern.

The theory behind these results is as follows. Water has a much higher thermal
capacity than mineral or organic matter in soils, so that wetter soils have higher
thermal capacity, given a constant composition (Verstraeten et al. 2006). Thus,
intra-day changes of LST are reduced because of the increased thermal inertia; this
is reflected in lower DTD. Wet soils also have slower decomposition of organic
matter. Thus, the hypothesis is that in the long term, soils showing low DTD have
high SOM content, and vice versa. Further, clay has a higher thermal inertia than
sand; this fact implies a positive feedback to the moisture effect just noted:
finer-textured soils retain more moisture and hold it more tightly due to their finer
pore-size distribution. Further, clay provides both physical and chemical mecha-
nisms protecting SOM from microbial breakdown, while soils high in sand gen-
erally have higher mineralization rates and thus lower SOM content (Hook and
Burke 2000). The question remains to what degree these theoretical differences can
be seen by RS.

Based on the direct, indirect, and interactive relationships between SOM, soil
moisture, soil texture, and the change of surface soil temperature, our hypothesis is
that time series DTD could reflect the spatial variability of SOM in the long term.
The objectives of this study were (1) to examine this hypothesis and how much
information of SOM can be explained by appropriately chosen DTD in low-relief
agricultural areas and (2) to predict SOM content by regression kriging (RK) and
linear mixed model (LMM).

5.2 Materials and Methods

5.2.1 Description of the Study Area

Jiangsu Province, located in eastern China (116° 18′–121° 57′ E, 30° 45′–35° 20′N),
was selected as the study area (Fig. 5.1). Jiangsu covers a total area of
10.26 × 104 km2 with 69 % in plains, 14 % in low mountains and hills, and 17 % in
lakes and rivers. The climate is characterized, by a typical transition from subtropical
to temperate. The mean annual temperature ranges from 13 to 16 °C, mean annual
precipitation ranges from 800 to 1200 mm, with an increasing trend from northwest
to southeast of Jiangsu. The elevation is generally less than 40 m above sea level,
except low hills in the northeast and southwest of Jiangsu. Double-cropping systems
of rice–wheat (or rapeseeds) rotation in the middle and southern parts and wheat–
maize (or soybean) rotation in the northern part dominate land use.
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5.2.2 Soil Samples and Analysis

The soil dataset were obtained from the Second National Soil Survey of China
conducted in the 1980s including typical soil profiles. The soil profile information
includes sampling site, soil physical and chemical properties. This study focused on
the topsoil SOM content (0–20 cm). A total of 1519 soil profiles were selected to
represent all land use types and soil types (Fig. 5.1). 302 samples were randomly
selected as the validation samples to evaluate the predictions, and 1217 remaining
samples were training samples. SOM content was determined using wet combustion
(Walkley–Black method).

5.2.3 Acquisition of DTD and Processing

8-day composited MODIS LST products (MOD11A2, 1 km resolution) were
obtained from NASA LAADS Web (http://ladsweb.nascom.nasa.gov/data/search.
html), including the day and night LST. 8-day composited DTD was derived from
the composited day LST minus night LST. This research obtained 8-day com-
posited LST of ten years (2002–2011), and corresponding DTD were calculated.

Fig. 5.1 Map of location, sampling sites of Jiangsu Province
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8-day averaged DTD was mean of 8-day composited DTD in the same periods
between 2002 and 2011. For example, DTD001 was mean of DTD at period 1 from
2002 to 2011, the rest by analogy (Fig. 5.2). Finally, this research got a total of 33
average composited DTD at 33 periods because of poor data quality. These pro-
cessed DTD can reflect long-term soil hydrothermal regimes and variation.

5.2.4 Linear Mixed Model

We use a multivariate linear model to fit the presumed deterministic component of
the universal model. Here Y is the dependent variable, X is design matrix of
independent variables, and β is the coefficient matrix. If the residual ε is indepen-
dently and identically distributed with the same variance σ2 as shown in Eq. (5.1),
we can estimate the coefficients by ordinary least squares (OLS):

Y ¼ Xbþ e; e�Nð0; r2IÞ ð5:1Þ

However, we cannot in general assume this structure for the residuals; rather, we
assume they have a structure, as shown in Eq. (5.2). This results in the LMM as
shown in Eq. (5.2):

Y ¼ Xbþ g; g�Nð0;VÞ ð5:2Þ

The residuals are considered themselves a random variable that represents both
the spatial structure of the residuals from the fixed-effects model, and the unex-
plainable (short-range or measurement uncertainty) noise; the latter corresponds to
the noise σ2 of the linear model of Eq. (5.1). The new element here is V, a
positive-definite variance–covariance matrix of the model residuals.

Fig. 5.2 Flow chart of DTD data processing
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In the case of spatial correlation, we ensure positive definiteness by using an
authorized covariance function C and assuming that the entries are completely
determined by the distance between two points i and j:

Vi;j ¼ Cðxi � xjÞ ð5:3Þ

Further constraints on these equations and the solution are presented clearly by
Lark and Cullis (2004) and several case studies (Lark et al. 2006; Lark 2012). These
are called mixed models: Some effects (β) are fixed effect and others (η) are random
effects but follow a known covariance structure. REML is used to maximize the
likelihood of both sets of parameters (fixed β and random η) at the same time. The
only prerequisite is to select the functional form of the covariance model. This is
generally estimated by visual inspection of the residual variogram from an OLS
model.

5.2.5 Data Processing and Analyzing

To make predictions, we (1) modeled the fixed effects using the gls function of the
R (R Development Core and Team 2010) nlme “linear and nonlinear mixed effects
models” package (Pinheiro and Bates 1996) using the REML option; (2) fitted a
model of spatial correlation of the regression residuals considered as random
effects, with the R gstat package (Pebesma 2004); (3) used SK on the GLS
regression residuals, using the fitted variogram model; and (4) added the SK pre-
dictions and variances to the GLS predictions and variances at each prediction
point.

Independent validation was used for model evaluation, using three indices: mean
error (ME), mean absolute error (MAE), and root-mean-squared error (RMSE). ME
measures the prediction bias, while RMSE and MAE both measure how close the
prediction is to reality.

5.3 Results and Discussion

5.3.1 Exploratory Data Analysis

Table 5.1 shows the statistics of SOM content in Jiangsu. SOM content ranges from
1.3 to 52.4 g/kg, with the mean of 16.55 g/kg belonged to a medium level. The CV
of SOM indicating the degree of variation and dispersion is 51.36 %, which belongs
to moderate variability. The frequency distribution of SOM content follows a
lognormal distribution.

There is clear global spatial structure of SOM content in the Jiangsu, showing a
general increasing trend from north to south (Fig. 5.3). Some of this may be due to
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soil environment and clay content. Different soil environment, such as soil moisture
and temperature regimes, significantly alters organic matter accumulation and
decomposition dynamics. High clay content in soil provided more physical pro-
tection (Hook and Burke 2000). In the central and southern part, it covers with
dense river network and shallow underground water level; thus, soil environment is
more humid in the long term. Additionally, clay and clay loam mainly distributed in
these regions. These are contributed to SOM accumulation.

5.3.2 Relationship Between DTD and SOM

SOMcontentwas negatively correlatedwith all compositedDTD (p= 0.01) (Fig. 5.4).
Scatter plots of SOM content versus composited DTD value show diffuse but highly
significant negative linear correlations. Correlation was the best for DTD313 at
autumn and became poorer as vegetation canopy coverage became dense, indicating
the importance of selecting the proper DTD image. For paddy field, correlation
between SOM and DTD is good, and correlation for dry land is poor, indicating that
land use would affect the relation between DTD and SOM to a certain degree.

Table 5.1 Summary
statistics of SOM in Jiangsu
Province (g/kg)

Range Mean Skewness Kurtosis CVa

(%)

1.3–52.4 16.55 ± 8.49 1.12
(−0.48)b

1.75
(0.57)b

51.36

aCV Coefficient of variation
bValue in brackets was log transformed (n = 1.519)

Fig. 5.3 Post-plot of SOM
content in Jiangsu Province
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Pearson correlation coefficients varied with time series (Fig. 5.5). High corre-
lation was at autumn and winter, especially DTD289 and DTD313 had the highest
correlation coefficient. At these periods, land covered with sparse vegetation. More
diurnal variation of the LST would result in high DTD, which made the soil

Fig. 5.4 Scatter plots of DTD and SOM content colored by land use, with empirical smoothed
lines

54 M.-S. Zhao et al.



temperature rising and falling easily, meanwhile made SOM decomposition faster.
Therefore, DTD and SOM content showed a negative correlation.

Most of the average composited DTD images show a decreasing trend from the
north to the south (Fig. 5.6), which was opposite to the trend of SOM content
(Fig. 5.3); this is the expected negative relation between DTD and SOM. Some may
be due to geographical environment and soil texture. The central and south parts are
plain and depression, with mean elevation less than 3 m. In these regions, it is
covered with dense river network and lakes, with the drainage density about more
than 2.01 km/km2. The underground water level is shallow with the value of 0.6–
0.8 m. Thus, soil environment is more humid in the long term, resulting in bigger
soil thermal capacity and lower DTD. But in the north part, elevation ranged from
40 to 10 m with a decreasing trend from west to east gradually. It is covered with
drainage density about 1.21 km/km2 and deeper underground water level.
Additionally, sandy soil and sandy loam mainly distribute in this region, and it has
loose soil structure and much soil pore space. These lowers soil thermal capacity,
leading to higher DTD.

5.3.3 Mapping of SOM Based on DTD and Linear Mixed
Model

Linear regression analysis was used to identify the relationship between DTD and
SOM content. This research adopted two solutions to selected DTD for modeling
SOM. The first solution was that all DTD images were selected to model SOM by
multiple linear stepwise regression. Only thirteen DTD images were selected as
covariates for prediction at last (OLS1 in Table 5.2), and OLS1 model could explain
39 % of SOM spatial variability. The second solution was that six DTD images at

Fig. 5.5 Pearson correlation
coefficients varied with time
series
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sparse vegetation canopy periods were selected for prediction by multiple linear
regression (OLS2 in Table 5.2). Although OLS2 only had six variables, it could
explain 34 % of SOM variability, indicating that selecting of proper DTD images

Fig. 5.6 Acquired 8-day composited and averaged DTD data
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could fit SOM model well and avoid difficulty of collecting continuous time series
image.

Two OLS and GLS models of SOM based on the two group covariates were
fitted (Table 5.2). There are very large differences in coefficients between the OLS
and GLS fit: (1) much lower intercept (β0) for GLS fits; (2) much smaller regression
slopes for GLS fits, indicating SOM does not change as much with DTD when
spatial correlation among observations is accounted for. This shows that the OLS
fit, which assumes independent residuals, is not appropriate in this area, with strong
spatial autocorrelation of the residuals; this is confirmed by the substantially lower
AIC values for the GLS models.

The GLS models were used for further analysis. Figure 5.7 shows the empirical
variograms of the residuals from the LMMs, their models, and fitted parameters.
Figure 5.7e shows the empirical variogram for rawSOM, alongwith theirfittedmodels.
Compared with variogram of raw SOM, nugget-to-sill ratio of GLS residual and
effective range both became bigger, indicating spatial dependence lowers. Again,
residual variograms of OLS and GLS were quite different: For GLS residual, the
moderate nugget-to-sill ratio (68.06 and 67.66%) and effective rangemore than 100 km
showmoderate spatial dependency; forOLS residual, amuch higher nugget-to-sill ratio
(86.35 and 84.62 %) and effective range lesser than 100 km show weak dependence.

The residuals from the LMMs are the random effects (η) in Eq. (5.3). The random
effect depends on the covariance structure of the residuals with respect to points being

Table 5.2 Results of the models using OLS and GLS in Jiangsu

Variables Coefficient OLS1 GLS1 OLS2 GLS2
Intercept β0 31.50 25.80 39.48 29.38

DTD025 β1 0.65 0.94 1.48 1.21

DTD145 β2 0.57 −0.12 0.62 −0.09

DTD177 β3 −0.54 −0.15 −0.58 −0.19

DTD289 β4 −1.02 −0.27 −0.85 −0.13

DTD313 β5 −1.40 −1.03 −1.53 −0.98

DTD329 β6 −2.40 −1.40 −1.43 −1.13

DTD049 β7 1.15 0.70 – –

DTD361 β8 0.86 0.04 – –

DTD081 β9 0.77 0.49 – –

DTD089 β10 −0.77 −0.32 – –

DTD153 β11 −0.40 −0.19 – –

DTD281 β12 0.67 0.32 – –

DTD353 β13 0.54 −0.10 – –

R2
Adj 0.39 – 0.34 –

St. Error 6.69 8.89 7.01 7.78

F-value 53.9 – 103.8 –

P-value <0.001 <0.001 <0.001 <0.001

AIC 8090.89 7944.03 8193.93 7939.81
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predicted, and among them. These variograms for different residuals were slightly
different. This is consistent with the slight change from OLS to GLS models in this
area. The nugget and sill of residuals from fixed-effect models became little lower
when all DTD and selected DTD images were adding to the fixed-effects model GLS
in sequence, and the spatial dependence, weakened substantially (Fig. 5.7c, d). The
nugget-to-sill ratio increased when more fixed effects were explained, which was
agreement with Chai et al. (2008). Comparing with the ordinary variogram of SOM,
the spatial correlation distances for residuals were increased when the fixed effects
were removed. The similar was reported by Chai et al. (2008).

The residuals from fixed effects of the LMMs and OLS model were interpolated
by SK, using the fitted variogram models. These predictions were added to the
fixed-effects predictions to get the final predictions (Fig. 5.8). Ordinary kriging was
used to compare SOM mapping.

5.3.4 Comparison of Spatial Predictions and Validation

Table 5.3 shows the summary statistics of predicted SOM and Fig. 5.8 shows the
spatial predictions. All predictions show a generally similar spatial distribution
pattern: high SOM content in the central and south part with a decreasing trend from
south to north, consistent with the post-plots (Fig. 5.3). However, the details differ.
Predictions by OK are over-smoothed both spatially and in the attribute range.

Fig. 5.7 Variograms and parameters for residuals and raw SOM (a–d residuals of OLS1, OLS2,
GLS1 and GLS2; e raw SOM)
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Predictions by RK and LMM have a wider range, similar quartiles and standard
deviations, much closer to the original value range (Tables 5.1 and 5.3). Predictions
by GLS are over a much narrower range than the known points. This is because
when spatial structure of residual was not accounted for, the fixed-effect models
correctly represented the limited predictive power of DTD as a deterministic pre-
dictor (Fig. 5.8), which is the best predictor if we have no local observations. Adding
these, with their known spatial structure, in a universal model of soil variation,
results in the most accurate map. Predictions by LMM were the best result.

Validation results are shown in Fig. 5.9. GLS models are worse, because it does
not account for the observations’ spatial structure. RK models are also worse than
OK. LMMs are somewhat better than OK. In LMM, fixed effects by GLS1 and

Fig. 5.8 Predictions of SOM content (a–d OLS1, OLS2, RK1, RK2; e–h GLS1, GLS2, LMM1,
LMM2; i OK)
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Table 5.3 Summary statistics of predicted SOM

SOM Min 1st Qua Median Mean 3rd Qub Max SDc

SOMOLS1 −1.28 12.38 16.08 16.41 20.30 48.11 5.42

SOMOLS2 −1.85 12.53 16.36 16.45 20.27 50.60 5.55

SOMGLS1 3.69 13.22 15.04 15.30 17.14 37.47 2.91

SOMGLS2 5.41 14.04 15.86 16.09 17.97 38.67 2.92

SOMRK1 −1.69 11.60 15.43 16.44 21.00 49.00 6.13

SOMRK2 −2.16 11.64 15.46 16.46 21.09 48.98 6.16

SOMLMM1 3.05 11.68 14.81 16.31 20.70 40.40 6.47

SOMLMM2 2.98 11.72 14.86 16.34 20.76 40.29 6.61

SOMOK 6.19 11.65 14.44 16.15 20.70 35.46 5.92
aThe first quartile
bThe third quartile
cStandard deviation

Fig. 5.9 Validation results and scatter plots (a–d OLS1, OLS2, RK1, RK2; e–h GLS1, GLS2,
LMM1, LMM2; i OK)
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GLS2 were similar, and the final predictions by LMM were also similar, indicating
that only selecting fewer DTD images of proper periods also got good prediction by
LMM. Although RK and LMM have the similar predicting form, LMM performs
better. This is because when fixed effect predicted by GLS, the spatial structure of
random effect was considered by REML.

The method explained in this paper has inherent limits to its accuracy. The most
obvious limit is the use of a MODIS pixel over a heterogeneous land surface, i.e.,
an average DTD. This accords with the results of Bartholomeus et al. (2011), who
reported that the applicability of imaging spectroscopy in mapping soil organic
carbon decreased rapidly when fields were partially covered with vegetation;
Ben-Dor et al. (2009) report a similar result. Chinese agricultural practices with
household as a unit, lacking unified management, lead to diversities of harvest time
and land cover conditions. Although this study chose an appropriate observation
period with sparse vegetation cover to avoid the impact as possibly, these factors
will affect the relationship between DTD and SOM, which can bring uncertainty
into SOM prediction. It needs to consider rectifying impacts of these factors on
DTD for more accurate prediction and in large areas in further research.

5.4 Conclusions

This research examined the hypothesis that DTD extracted from MODIS LST could
be used as an environmental covariable for mapping SOM in low-relief areas. This
hypothesis was confirmed in Jiangsu, with the caution that proper DTD image must
be selected, as the relationship between DTD and SOM weakened as the vegetation
canopy became dense. Results showed that LMMs are the best predictions, of
which LMM using DTD of specific periods as variables performed best. RK were
somewhat worse than LMM. This suggests that time series remotely sensed data
can provide useful auxiliary variable for mapping SOM in low-relief agricultural
areas and LMM improved mapping SOM spatial distribution, which provided an
effective approach for improving DSM in the low-relief areas.

Acknowledgments Project supported by the National Natural Science Foundation of China
(41130530) (No. 41501226), the Foundation of State Key Laboratory of Soil and Sustainable
Agriculture (Y412201431), the International Science and Technology Cooperation Project of
China (2010DFB24140), and the “Strategic Priority Research Program” of the Chinese Academy
of Sciences (XDA0505050303).

References

Bartholomeus H, Kooistra L, Stevens A, van Leeuwen M, van Wesemael B, Ben-Dor E, Tychon B
(2011) Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging
spectroscopy. Int J Appl Earth Obs 13:81-88.

Ben-Dor E, Chabrillat S, Dematte JAM, Taylor GR, Hill J, Whiting ML, Sommer S (2009) Using
Imaging Spectroscopy to study soil properties. Remote Sens Environ 113:S38-S55.

5 Mapping Soil Organic Matter in Low-Relief Areas … 61



Chai XR, Shen CY, Yuan XY, Huang YF (2008) Spatial prediction of soil organic matter in the
presence of different external trends with REML-EBLUP. Geoderma 148:159-166.

Chang DH, Kothari R, Islam S (2003) Classification of soil texture using remotely sensed
brightness temperature over the southern great plains. IEEE T Geosci Remote 41:664-674.

Ding YX, Xu SR, Zhu KG (1989) Application of remote sensing techniques on 1:500,000 soil
mapping in Nanjing, Jiangsu Province, China. Soils (in Chinese) 6:304-306.

Fox GA, Sabbagh GJ (2002) Estimation of soil organic matter from red and near-infrared remotely
sensed data using a soil line Euclidean distance technique. Soil Sci Soc Am J 66:1922-1929.

Hook PB, Burke IC (2000) Biogeochemistry in a short grass landscape: Control by topography,
soil texture, and microclimate. Ecology 81: 2686-2703.

Lark RM (2012) Towards soil geostatistics. Spatial Statistics 1:92-99.
Lark RM, Cullis BR (2004) Model-based analysis using REML for inference from systematically

sampled data on soil. Eur J Soil Sci 55:799-813.
Lark RM, Cullis BR, Welham SJ (2006) On spatial prediction of soil properties in the presence of

a spatial trend: the empirical best linear unbiased predictor (E-BLUP) with REML. Eur J Soil
Sci 57:787-799.

Liu F, Geng XY, Zhu AX, Fraser W, Waddell A (2012) Soil texture mapping over low relief areas
using land surface feedback dynamic patterns extracted from MODIS. Geoderma 171–172:
44-52.

McBratney AB, Santos MLM, Minasny B (2003) On digital soil mapping. Geoderma 117:3-52.
Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683-691.
Pei T, Qin CZ, Zhu AX, Yang L, Luo M, Li BL, Zhou CH (2010) Mapping soil organic matter

using the topographic wetness index: A comparative study based on different flow-direction
algorithms and kriging methods. Ecol Indic 10:610-619.

Pinheiro JC, Bates DM (1996) Unconstrained parametrizations for variance-covariance matrices.
Stat Comput 6:289-296.

Qi F, Zhu AX, Harrower M, Burt JE (2006) Fuzzy soil mapping based on prototype category
theory. Geoderma 136:774-787.

R Development Core and Team (2010) R: a language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.
org; accessed 11/2/2012.

Santos MLM, Guenat C, Thevoz C, Bureau F, Vedy JC (1997) Impacts of embanking on the
soil-vegetation relationships in a floodplain ecosystem of a pre-alpine river. Global Ecol
Biogeogr Lett 6:339-348.

Stevens A, Udelhoven T, Denis A, Tychon B, Lioy R, Hoffmann L, van Wesemael B (2010)
Measuring soil organic carbon in croplands at regional scale using airborne imaging
spectroscopy. Geoderma 158:32-45.

Stoorvogel JJ, Kempen B, Heuvelink GBM, de Bruin S (2009) Implementation and evaluation of
existing knowledge for digital soil mapping in Senegal. Geoderma 149:161-170.

Verstraeten WW, Veroustraete F, van der Sande CJ, Grootaers I, Feyen J (2006) Soil moisture
retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated
for European forests. Remote Sens Environ 101:299-314.

Wang DC, Zhang GL, Pan XZ, Zhao YG, Zhao MS, Wang GF (2012) Mapping soil texture of a
plain area using fuzzy-c-means clustering method based on land surface diurnal temperature
difference. Pedosphere 22:394-403.

Yadav V, Malanson G (2007) Progress in soil organic matter research: litter decomposition,
modelling, monitoring and sequestration. Prog Phys Geog 31:131-154.

Zhu AX, Liu F, Li BL, Pei T, Qin CZ, Liu GH, Wang YJ, Chen YN, Ma XW, Qi F, Zhou CH
(2010) Differentiation of soil conditions over low relief areas using feedback dynamic patterns.
Soil Sci Soc Am J 74:861-869.

62 M.-S. Zhao et al.

http://www.R-project.org
http://www.R-project.org


Chapter 6
Mapping Soil Thickness by Integrating
Fuzzy C-Means with Decision Tree
Approaches in a Complex Landscape
Environment

Yuanyuan Lu, Ganlin Zhang, Yuguo Zhao, Decheng Li, Jinling Yang
and Feng Liu

Abstract Predictive soil mapping depends on understanding the relationships
between soil properties and environmental factors. However, in a complex soil
landscapes, there is a shortage of suitable approaches to establish these relation-
ships. The main objective is to predict soil thickness in an alpine watershed relating
to soil environmental factors based on an unsupervised fuzzy clustering method
(fuzzy c-means, FCM) and decision tree (DT) method. In this study, FCM method
was used for stratifying the landscape, and then, a representative soil thickness was
assigned to each class. For each class, a number of points were randomly chosen in
proportion to representative areas, and then, the environmental factors at these point
locations were extracted as a training data set (3626 points). For the training data
set, DT method was used to obtain the critical threshold of soil–environment
relationships. Finally, soil thickness map was created by applying the results of the
DT across the region. An independently collected field sampling set (31 points) was
used to evaluate the effectiveness of the proposed approach. For training set,
95.48 % of the total training data were correctly predicted. For validation set, the
overall accuracy and Kappa coefficient could reach 74.2 % and 0.659, respectively.
Evaluation accuracy of soil map was up to 74.2 %. In conclusion, it is suggested
that soil–landscape modeling using FCM and DT methods can be efficiently used as
a valuable research technique for spatial soil thickness prediction in a complex soil
landscape where soil characteristics and properties are not available.
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6.1 Introduction

Soil thickness is one of the most important input parameters for hydroecological
models especially in arid and semiarid regions (Buol et al. 2011; Boer et al. 1996).
Meanwhile, soil thickness can directly reflect the degree of soil development and
can also influence soil fertility condition and earth surface processes, such as
vegetation growth, surface hydrology, and soil moisture (Zheng and Liu 2003;
DeRose et al. 1991; Fuhlendorf and Smeins 1998; Meyer et al. 2007). However,
soil thickness is characterized by high spatial variability, and to measure, it is
laborious and time-consuming (Hudson 1992), especially in areas with complex
landscape. Therefore, there is an urgent need for models to predict the spatial
distribution pattern of soil thickness.

Currently, physical mechanisms, geostatistics, remote sensing inversion, and
soil–landscape relationship reasoning are the four mostly used methods in predic-
tive soil thickness mapping. The first three methods mentioned above require a
long-term experiment with the in situ monitoring in small watersheds, or high
demand for the quantity and distribution of sampling points, or the result can easily
be affected by vegetation coverage. Therefore, these methods are difficult to be used
for soil thickness mapping in areas with the condition of diverse environment and
landscape ecology (Dietrich et al. 1995; Santos et al. 2000; Zhou 2012; Scull et al.
2003). In this study, relatively efficient method of soil–landscape relationships was
used to obtain and establish the soil–environment relationship in a complex land-
scape environment. The basis of predictive soil thickness mapping based on soil–
landscape relationship method is to understand and acquire the relationships
between soil thickness and environmental factors, while existing models used to
establish their relationships are limited (McBratney et al. 2000, 2003), especially in
the complex landscape environment.

In the complex landscape environment, various environmental combinations are
easy to influence the distribution of soil thickness. So it is difficult for soil scientists
to clearly describe and clarify the relationships between soil thickness and envi-
ronmental factors. Furthermore, it is also hard to collect sampling points according
to the preconcerted layout scheme for limitations of the natural condition. In
consequence, it is urgent for scientists to combine field investigation data with
pedogenesis principles for obtainment of soil–environment relationships for pre-
dictive soil thickness mapping in the complex landscape environment.

In the present study, our major objective is to provide a new approach to obtain
the critical threshold of soil environment and knowledge by integrating the methods
of fuzzy c-means clustering (FCM) and decision tree (DT), in a complex landscape
environment where traditional soil mapping methods are difficult to undertake.
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6.2 Materials and Methods

6.2.1 Study Area

The study area (38° 12′ 19″N to 38° 16′ 12″N and 99° 50′ 09″E to 99° 53′ 52″E) is
the Hulugou watershed, located in the upstream of Heihe River, a typical alpine
basin, and covers a total area of 23.1 km2 with rugged mountainous terrain on the
southeastern part of the Qilian Mountain (Fig. 6.1a). Altitude of the region ranges
from 2916 to 4600 m above the mean sea level, with a span about 1700 m, which is
indicative of an extremely steep environmental gradient. The region belongs to the
alpine continental climate zone and has a mean annual precipitation with an average
range from 400 to 600 mm (Han et al. 2013). The representative soil types of the
region are Cambisols, Primosols, Histosols, Isohumosols, and other types,
according to the Chinese Soil Taxonomic Classification.

The representative characteristics of this study area are complicated and various
landscapes, obvious differentiations of vertical gradient, and intensive spatial
variability of soil properties. Meanwhile, the study area is located in the alpine
landscape zone, which is a typical area for researches in the complex landscape
environment. In conclusion, Hulugou watershed is chosen as the research area for
the above reasons.

6.2.2 Data Sources

The basic geospatial data utilized in this research were all downloaded from the
Cold and Arid Regions Science Data Center (http://westdc.westgis.ac.cn/). The data
sets mainly included DEM and Landsat TM remote sensing image. A 30 m × 30 m

Fig. 6.1 The location and validation points of the study area. a Study area. b Validation points

6 Mapping Soil Thickness … 65

http://westdc.westgis.ac.cn/


DEM was obtained from the advanced spaceborne thermal emission and reflection
radiometer global digital elevation model (ASTER GDEM). The primary topo-
graphic attributes such as elevation, slope, aspect, profile curvature, and plan cur-
vature were derived from the ASTER DEM using the spatial analysis tools module
in ArcGIS 9.3. The System for Automated Geoscientific Analyses (SAGA) soft-
ware was used to calculate river basin topographic wetness index (TWI) (Ambroise
et al. 1996). In addition, the distribution of vegetation also exhibited obvious dif-
ferentiation under the influence of differentiation of elevation gradient. Hence,
normalized difference vegetation index (NDVI) computed by infrared and
near-infrared band of the Landsat TM images at 30-m resolution was used to
indicate vegetation intensity (Rouse 1973).

In this study, 31 independent sampling profiles were collected as validation data
set (Fig. 6.1b). Sampling points were designed to represent the range of topographic
and vegetational variation in this watershed. The sampling design could cover
various landscape units as much as possible. When the points were collected in the
field,some descriptions were recorded in detail. The descriptions included landscape
characteristics, vegetation distribution, rock content, and pedogenesis
characteristics.

According to the division of soil thickness from the global workshop on digital
soil mapping (GSM), soil thickness was divided into six grades in this study: 0–5
(level 1), 5–15 (level 2), 15–30 (level 3), 30–60 (level 4), 60–100 (level 5), and
100–200 cm (level 6), respectively.

6.2.3 Methodology

6.2.3.1 Construction of the Environmental Factors Database

In general, at the landscape scale, the main factors that play dominant roles in soil
formation are topographical and hydrological conditions (Yang et al. 2007).
Topography is an important element, which can influence the matter and energy
exchange between soil and environment and can also influence other soil factors
during the process of soil development (Huang 2000). Previous studies have shown
that topographical attributes, such as elevation and slope, can basically represent the
principal factors that influence the formation and development of soil thickness
(Moore et al. 1993; Gessler et al. 1995; McIntosh et al. 2000; Park et al. 2001;
McKenzie et al. 2000). Consequently, in this study, combining the previous
researches with the characteristics of this study area, topographical attributes such
as elevation, slope, aspect, profile curvature, plan curvature, and TWI derived from
ASTER DEM were selected to construct the database of environmental factors. The
distribution of derived environmental parameters in the Hulugou watershed was
presented in Fig. 6.2.

In this study, statistical description and correlational analysis were executed to
reduce the redundancy among multivariate. According to the correlation of
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environmental attributes, the following three topographic variables (elevation,
profile curvature, and TWI) were selected as input independent variables for fuzzy
c-means cluster analysis.

6.2.3.2 Combinations Obtainment Using FCM Method

FCM is a widely used and effectively unsupervised fuzzy clustering method, which is
based on the objective function, through optimization to solve fuzzy classification and
clustering of the input data set (Sun et al. 2008). The principle of this method is to
calculate the distance between each point and each prototype inmulti-attributes-based
space by using statistical methods, weighing the membership, ultimately obtaining
minimum value of weighted error square and objective function (Zhu et al. 1996;
Bezdek et al. 1984). The fuzzy objective functions are shown in Eqs. (6.1) and (6.2).

Jm U; vð Þ ¼
Xn

k¼1

Xc

i¼1

uikð Þmd2ik ð6:1Þ

d2ik ¼ yk � vik k2A¼ yk � við ÞsA yk � við Þ y 2 Y ð6:2Þ

Equations (6.1) and (6.2) contain a number of variables where U is the mem-
bership matrix of fuzzy clustering, v is the clustering center set, Y is the element data
set for the environmental factors, n is the number of data in Y, c is the number of

Fig. 6.2 Distribution of derived environmental parameters of Hulugou watershed. a Slope.
b Aspect. c Profile curvature. d Plan curvature. e TWI. f NDVI
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cluster categories, m is weighted index (also called fuzzy degree index), dik is the
weighted distance from point yk to the cluster center point vi, uik is the membership
of the first k point belongs to the ith class, A is the distance weighting matrix, and
Jm is the fuzzy classification error.

FCM was used to identify the unique combination that existed in the environ-
mental data set. In general, the areas with high membership value were the typical
combinations for various environmental conditions. The output of continuous
classification was influenced by selection and determination of the number of
cluster categories (c) and the weighted index (m). The partition coefficient (F) and
normalized entropy (H) were used to determine the optimal value of cluster cate-
gories (Bezdek et al. 1984). Some studies have shown that the optimal weight index
is in the interval between 1.5 and 2.5 (Yang et al. 2007; Odeh et al. 1992);
therefore, a series of m values could be set to contrast corresponding results for
choosing the optimal m value.

In this study, 3 environmental factors (elevation, profile curvature, and TWI)
were calculated by FCM algorithm by applying 5 different weighed index (m = 1.5,
1.75, 2.0, 2.25, 2.5) settings. The optimal number of cluster categories was ensured
by the relative change of F and H. In this study, C = 15 was chosen as the optimal
number of cluster categories when m was equivalent to 1.75 by comprehensive
analysis..

6.2.3.3 Extraction of the Training Data Set

The processes for extracting the training data set consist of the following steps.
Firstly, the environmental factors which play dominant roles in determining soil
thickness were defined, and then, the clustering center of various environmental
factors combinations and membership of environmental conditions about clustering
center were obtained by FCM analysis. Secondly, the general rules of soil sickness
distribution were gained by analyzing distribution for different combinations of
environmental factors, combined with field investigation data and pedogenesis
principles. Next, the corresponding grade of soil thickness distribution under the
condition of different combinations of environmental factors was determined. Then,
a representative soil thickness to each class was assigned, and the corresponding
relationship between soil thickness distribution and environmental factors combi-
nations was obtained. And then, the typical areas of fuzzy membership threshold
greater than a certain value (e.g., fuzzy membership > 0.5) were selected and a
certain number of points which were proportional to area extent were randomly
chosen. In addition, an approximated quantity of points was extracted with corre-
sponding grade of soil thickness. Finally, the environmental factors at these typical
points were extracted to build up the training data set.

In this study, elevation, slope, aspect, plan curvature, profile curvature, topo-
graphical wetness index, and NDVI were chosen as independent variables; the soil
thickness grade of corresponding points was used as dependent variable.
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6.2.3.4 Obtainment of Soil–Environment Relationships Using DT
Method

DT algorithm is a machine-learning method used in data mining for constructing
predictive model from data. The goal of DT is to create a model that predicts the
value of a target variable based on several input independent variables with a tree
structure. The tree is generated by partitioning the data recursively into a number of
groups, each division being used to differentiate the response variable in the
resulting nodes. Detailed information about the principles and characteristics of DT
can be referred to papers by Loh (2011).

In this research, the C5.0 decision tree algorithm was used to predict soil
thickness grade and then obtain the critical thresholds of environmental factors and
the knowledge rule set of soil–environment relationships.

6.2.3.5 Evaluation of the Soil Thickness Map

Once the soil property values were calculated, they were compared with the
observed soil property values to assess model performances. In order to test pre-
diction accuracy, the validation set was used to estimate the accuracy of the model
for prediction of soil thickness. Several indexes were used for quantitative
assessment of models, such as the overall classification accuracy, Kappa index,
producer accuracy, and user accuracy (Taghizadeh-Mehrjardi et al. 2014; Cohen
1960; Xu et al. 2011). In these indexes, the overall classification accuracy indicated
the probability of consistency between classification results and the ground
investigation data. Kappa index was used to estimate consistency of the categorized
results. Producer accuracy was used to describe how successful the model is for
prediction, and user accuracy can be used to show how well map predictions are
represented in reality.

6.3 Results and Discussion

6.3.1 Extraction of the Training Data Set

The premise for acquiring the distribution rules of soil and environment was to
obtain the optimal combinations of environmental factors. Fuzzy membership maps
of representative combinations of environmental factors based on fuzzy c-mean
clustering were shown in Fig. 6.3.

According to the analysis by running FCM algorithm, 15 environmental classes
were identified to be the optimal number of classes in the study area based on the
selection of partition coefficient and entropy of classification. Membership maps of
the derived 15 environmental classes were generated, and locations with high

6 Mapping Soil Thickness … 69



membership values in these environmental classes were considered as locations of
typical soil instances. Figure 6.3 was an example of analyzing and gaining the
preliminary correspondence. As shown in Fig. 6.3a, class 1 is mainly distributed
along the watercourse, surrounded by gully area, with a lower altitude than other
clusters, terrain relief, relatively higher wetness index, good soil water condition,
and relatively good soil development. Moreover, rock content in soil of class 1 is
more sufficient than other categories due to short distance from the river. The
overall soil thickness is approximately 30–60 cm, which belongs to the level 4.
Class 7 mainly distributes in the high altitude alpine desert with concave slope area.
Soil water condition is ordinary for class 7. From satellite images and field sampling
record data, we can see that there is almost no soil development in areas covered by
glaciers. So soil thickness of the corresponding category is 0, which belongs to the
level 1. Meanwhile, class 8 mainly distributes in the bottom of alpine desert, which
is in the transition zone between alpine desert and meadow belt. Although soil has
initiatory development, the thickness is very thin in these areas. Thus, the soil
thickness is mainly around 15–30 cm that belongs to the level 3. The remaining 12
clustering categories were assigned to corresponding soil thickness distribution
grade using similar reasoning.

According to the principle that combinations of environmental categories can
both cover the whole areas and have the smallest interaction areas, areas with
clustering fuzzy membership higher than 0.5 were selected, and then typical points
were extracted (according to the steps described in 6.2.3.3) to build the training data
set in these areas. In this study, a total of 3626 typical points were extracted by
using 15 cluster categories and 6 soil thickness grades (Fig. 6.4). It can be seen from
Fig. 6.4 that the training points are relatively evenly distributed, with more points
located in the transitional belt of alpine desert and meadow than in other zones. The
reason for this is that in these places the variations of soil development and soil
thickness are more dynamic. But nonetheless, the training data set can cover the
different combinations of the soil environmental factors in this region.

Fig. 6.3 Fuzzy membership maps of various combinations of environmental factors based on
fuzzy c-mean clustering. a Class 1. b Class 7. c Class 8
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6.3.2 Knowledge Obtainment of Soil–Environment
Relationships

The formation and development of soil is the result of interactions of formative
environmental factors, but there are some diversities at different spatial scales or by
the influence of soil formative essentials. To build knowledge rule sets, the selec-
tion of principle for environmental factors was required. The principle for selecting
environmental factors was that it can characterize the soil environmental conditions
and can be easily obtained and utilized. In addition, the selected environmental
factors can guide the subsequent field investigation. According to this principle,
finally elevation, slope, aspect, plan curvature, profile curvature, and NDVI were
chosen as input variables.

In the present study, the critical thresholds of soil environmental factors and the
knowledge about soil–environment relationships were obtained by running training
data set through the DT arithmetic. To obtain the minimum rate of error for clas-
sified results, debugging and building based on the C5.0 model were repeated many
times for the training data set. Finally, the parameters were determined and the
global pruning was used. The parameters were as follows:The pruning purity is 99
%, the number of leaf nodes is 21, and frequency for promotion and interaction is
10. The following five factors (elevation, slope, plan curvature, profile curvature,
and NDVI) were chosen for constructing knowledge rule set about soil–environ-
ment relationships. However, the factor of aspect was not involved in the following
steps for the reason that most of the areas in this study are located in the same
direction of mountains; though there are differences for aspect, the differences are
not large enough to influence the distribution of soil thickness grade. The confusion

Fig. 6.4 Distribution of
training points in Hulugou
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matrix for training data set was shown in Table 6.1. From the table, we were able to
calculate that 3462 points were correctly predicted, accounting for 95.48 % of the
total training data set, and 164 points were wrongly predicted, with the percentage
of 4.52 %.

About 25 rules about the knowledge of soil–environment relationships were
summarized through the above analyses. Through the rules we can discover that the
spatial variations of soil thickness were complicated and existed obvious
cross-distribution on the space in this complex landscape environment. Overall, the
main crucial factors influencing the distribution of soil thickness were elevation,
followed by profile curvature and slope, while plan curvature and NDVI worked
only on a smaller scale.

6.3.3 Validation of the Methods

6.3.3.1 Spatial Distribution of Soil Thickness

The rules obtained by combinations of FCM and DT method were applied to
predict the distribution of soil thickness across the study area (Fig. 6.5). As shown
in Fig. 6.5, almost all the areas of soil thickness in the range of 0–5 cm are
distributed in high altitude areas, which is consistent with the actual field situation
in this study area. This is because these areas are covered with glacier or of alpine
desert landscape; there is basically no soil development. Within the range of 5–
30 cm, soil thickness arises cross-distribution on the space. Because this region is
located in the transition zone between alpine desert and meadow.There is a rela-
tively preliminarily developed soil type.And the ecological environment is fragile.
Besides the discrepancy of soil thickness is also influenced by micro-topography.
The areas where soil thickness is more than 30 cm are located in low altitude and
relatively flat district. Besides, the staggered distribution of soil thickness is
influenced by the following factors, such as distance to the river, vegetation cov-
erage, and uneven soil surface, and so on.

Table 6.1 Confusion matrix of training set at various soil thickness grade

Prediction Validation

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total

Level 1 608 9 0 0 0 0 617

Level 2 0 606 1 0 0 0 607

Level 3 0 0 597 1 0 0 598

Level 4 0 0 17 511 38 37 603

Level 5 0 0 0 10 587 3 600

Level 6 0 0 0 39 9 553 601

Total 608 615 615 561 634 593 3626
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6.3.3.2 Evaluation of the Predictive Map

In this study, an independent set was used to examine the effectiveness of the
approach for establishing the relationships between soil thickness and environ-
mental factors. The result was presented in Table 6.2. The overall accuracy and
Kappa coefficient can reach 74.2 % and 0.659, respectively. The accuracies of level
1 and level 6 were the best, followed by level 3 and level 4. It was difficult to
evaluate accuracy for level 2 and level 5 due to limited number of validation points.

As shown in Table 6.2, the best accuracy was level 1, while the worst prediction
was for level 2. Overall, 23 were correctly predicted out of 31 validation points.
There were 6 points wrongly predicted in adjacent areas, which were related to the
artificial partition of soil thickness hierarchy. In addition, another 2 points were
wrongly predicted because of the locations of the points. For instance, the point,
which was located in the transition zone between alpine desert and meadow, was
attached to level 1, but it was wrongly predicted into level 3. Areas of soil thickness
around the point that was covered with vegetation are 10–20 cm, but this was 0 for
the location of the point.

Compared to results with other analogous researches (Henderson et al. 2005;
McKenzie and Ryan 1999), the accuracy for this study was better than previous
research. Additionally, distribution of predictive map was basically consistent with
the actual distribution. For instance, Primosols was located in high altitude, while
Histosols lied to the low-lying areas in intermediate altitude. Consequently, it is
possible to predict the distribution of soil thickness in the complex alpine landscape
environment by using the combination of FCM and DT methods.

Some restrictions or deficiencies existed when the methods in this study were
used for the subsequent application in other areas.For example, the premise of the
methods could be used for reference in other researches is familiar with the regional

Fig. 6.5 Distribution of soil
thickness of Hulugou
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distribution of soil properties and possess with knowledge of pedogesis. Besides, at
present, there is still no good method for choosing the number of optimal tree for
classification (Scull et al. 2005). All the restrictions or deficiencies need to be
further improved in subsequent research. Consequently, this study was carried out
at catchment scale. The generality and transferability of the proposed method in this
work to other areas still remain to be tested.

6.4 Conclusions

In this study, FCM and DT methods were integrated to construct the training data
set, extract the knowledge set of soil–environment relationships, and predict the
distribution map of soil thickness. This present study demonstrated the prediction of
the spatial distribution of soil thickness in the complex landscape environment
through the forementioned process. In application of this method, a variety of
auxiliary variables derived from different sources have been used.

For the accuracy of validation set, the overall accuracy and Kappa coefficient
could reach 74.2 % and 0.659, respectively, which was superior to other analogous
research. The distribution of predicting soil thickness was consistent with the actual
distribution. The accuracy was influenced by some uncontrolled uncertainties. The
uncontrolled uncertainties were aroused by the complex local variations of soil
thickness, the number of sampling points and DEM resolution. Without regard to
these uncontrolled uncertainties, the accuracy in this study can be considered as an
important improvement toward solving the need for distributed soil thickness
information in the context of complex alpine landscape environment.
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Table 6.2 Confusion matrix of validation set at various soil thickness grade in study area

Predicted soil thickness
grade

Validated soil
thickness grade

Total Producer accuracy
(%)

User accuracy
(%)

1 2 3 4 5 6

1 9 0 1 0 0 0 10 90.0 100

2 0 0 0 0 0 0 0 0 0

3 0 1 2 1 0 0 4 50.0 50.0

4 0 0 1 4 1 1 7 57.0 80.0

5 0 0 0 0 0 1 1 0 0

6 0 0 0 0 1 8 9 88.8 80.0

Total 9 1 4 5 2 10 31 74.2 %
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Chapter 7
Multivariate Sampling Design
Optimization for Digital Soil Mapping

Gábor Szatmári, Károly Barta and László Pásztor

Abstract In this study, we have extended the spatial simulated annealing
(SSA) methodology to be able to simultaneously optimize a completely new
sampling design for more than one pedological variable using regression kriging
prediction-error variance (RKV) as optimization criterion. For this purpose, the
following soil properties were chosen: soil organic matter content, rooting depth,
calcium carbonate content, and plasticity index according to Arany. The number of
new observations was set to 100. The methodology is illustrated with a legacy soil
dataset and auxiliary information from a study site in Central Hungary. The com-
bined structure of the regression models and the variogram of the dominant soil
parameter were applied in the optimization process provided by SSA to calculate
the quality measure (i.e., spatially averaged RKV). The resulted sampling design
was evaluated by various statistical and point pattern analysis tools. The
Kolmogorov–Smirnov test’s results and the observed empty space function showed
that the optimized sampling configuration represents properly both the feature and
geographic space. Furthermore, the empty space function pointed out that there is
an inhibition between the sampling points, which caused a “quasi”-regular point
pattern. The extended SSA methodology is suitable to optimize the sampling design
for more than one soil variable.
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7.1 Introduction

Digital soil mapping (DSM) aims at spatial prediction of soil types and properties by
combining soil observation at points with auxiliary information, such as contained in
digital elevation models, remote sensing images, and climatological records
(McBratney et al. 2003; Heuvelink et al. 2007). Hence, the direct observations of the
soil are important for two main reasons: (1) they are used to characterize the rela-
tionship between soil property and auxiliary information and (2) they are used to
improve the predictions based on the auxiliary information, by spatial interpolation
of the differences between the observations and predictions (Heuvelink et al. 2007).
Regression kriging (RK), also termed universal kriging or kriging with external drift
(Hengl et al. 2007), illustrates pretty well that twofold application of the observa-
tions, since it combines a regression of the target pedological variable on covariates
with kriging of the regression residuals. Nevertheless, RK assumes that sampling
points properly cover (i.e., represent well) both geographic and feature space (Hengl
2007), where the latter is defined by the covariates.

Extensive work has been done on sampling strategy optimization for DSM over
the past decades to satisfy the topical demands, which were suggested by soil
surveyors, pedometricans, end users, etc. These demands can be, e.g., the expec-
tation of the accuracy and/or uncertainty of the prediction(s), taking auxiliary
information into account, optimization of the sampling design for more than one
soil variable, taking previously collected samples into account, consideration of any
kind of constraints such as the number of the new observations, inaccessible areas
for sampling, budget, and/or accuracy constraints. One of the niggling techniques is
spatial simulated annealing (SSA) that has been frequently applied in soil surveys to
optimize the sampling design using RK prediction-error variance (RKV) as opti-
mization criterion. SSA with RKV is sporadically able to satisfy the mentioned
demands. The main drawback of SSA is that it can be used only for one target
variable. However, in a soil survey the usual aim is to describe the spatial distri-
bution of not just one but several pedological variables (Vašát et al. 2010). Vašát
et al. (2010) and Szatmári (2014) extended the SSA methodology to be able to
optimize the sampling design for more than one pedological variable; however,
they used different approaches. Vašát et al. (2010) used the linear model of core-
gionalization to model the mutual spatial dependence of four target soil properties
and applied that along the optimization procedure, while Szatmári (2014) optimized
the sampling design for two soil variables through a combined regression structure
and the variogram of the dominant soil parameter.

The objective of this paper is to extend the SSA methodology, following
Szatmári (2014), to be able to optimize the sampling configuration for more than
two soil properties using the spatially averaged RKV as optimization criterion. The
methodology is tested and illustrated in a study site in Central Hungary using a
legacy soil dataset and auxiliary information. Four basic soil properties (i.e., soil
organic matter content, rooting depth, calcium carbonate content, and plasticity
index according to Arany) were chosen for the implementation of the method.
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7.2 Materials and Methods

7.2.1 Study Site and Legacy Soil Data

The study site is located in the central part of Hungary (Fig. 7.1). The area of
interest, approximately 17 km2, is mainly covered by Haplic Chernozems and
Kastanozems with significant secondary carbonates. Calcisols and Regosols are
found on the eroded steeper slopes, where the top-horizon is too thin for Mollic or it
is completely missing. Colluvic material can be found at the bottom of the slopes,
where Phaeozems or Regosols were formed.

The soil data were collected at the end of the 1980s in the framework of the
National Land Evaluation Programme. The dataset consists of 117 topsoil (0–
30 cm) observations for the area of interest. Four soil variables were chosen from
the dataset to present, test, and evaluate the extended methodology, namely soil
organic matter (SOM), rooting depth (RD), calcium carbonate content (CC), and
plasticity index according to Arany (KA). This last variable quantifies the amount of
water in cubic centimeter added (by continuous mixing) to 100 g of air-dried soil
sample to obtain the upper limit of plasticity (MSZ 08-0205:1978). The gained
value is appropriate to infer the mechanical composition of the soil sample. The
summary statistics of the four variables are presented in Table 7.1.

Fig. 7.1 The location of the study site in Central Hungary (left), the land use map and the digital
elevation model of the study area (right)
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7.2.2 Auxiliary Data

The exhaustive auxiliary information comes from a 20-m spatial resolution digital
elevation model (DEM) and from the land use (LU) map of the study area
(Fig. 7.1). The following morphometric parameters were derived from DEM: alti-
tude, slope, slope length, aspect, profile and plan curvature, LS factor (Wischmeier
and Smith 1978), topographic wetness index, vertical distance to channel network,
and potential incoming solar radiations (direct and diffuse).

Products of the official aerial photography campaign of Hungary, taken in 2005,
were used to derive the LU map. In contrast with the morphometric parameters, LU
types are categorical variables. In consideration of that, each LU type was converted
into indicator variable, respectively. A raster map was made for a given LU type
with value domain showing 1 at the locations of the given LU and showing 0 for all
other locations.

Principal component (PC) analysis was performed on the auxiliary data and the
resulted PCs were used as covariates. It is a crucial step, because PCs are
orthogonal and independent. Hence, those satisfy the requirements of the multiple
linear regression analysis and decrease the multicollinearity effects (Hengl 2007).

7.2.3 Regression Kriging

In the last decade, RK has been more and more popular in DSM, as well as in SSA
sampling optimization procedure using its prediction-error variance as optimization
criterion. RK assumes that the deterministic component of the target soil variable is
accounted for by the regression model, while the model residuals represent the
spatially varying but dependent stochastic component. The estimation for Z variable
at an unvisited location s0 is

Ẑðs0Þ ¼ qT0 � bþ kT0 � ðz� q � bÞ; ð7:1Þ

where β is the vector of the regression coefficients, q0 is the vector of the covariates
at the unvisited location, λ0 is the vector of the kriging weights, z is the vector of the

Table 7.1 The summary statistics of the four soil variables computed from the legacy dataset

Soil variable Mean Minimum Maximum Std. deviation Skewness

SOM (%) 2.90 1.51 4.44 0.56 −0.28

RD (cm) 73.54 5.00 150.00 27.46 0.09

CC (%) 8.22 0.5 29.00 5.41 0.54

KA (cm3) 41.74 26.00 58.00 4.18 0.30

SOM soil organic matter, RD rooting depth, CC calcium carbonate, KA plasticity index according
to Arany
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observations, and q is the matrix of covariates at the sampling locations. RKV at s0
is given by

r2ðs0Þ ¼ cð0Þ � cT0 � C�1 � c0
þðq0 � qT � C�1 � c0ÞT � ðqT � C�1 � qÞ�1 � ðq0 � qT � C�1 � c0Þ;

ð7:2Þ

where c(0) is the variance of the residuals, c0 is the vector of covariances between
the residuals at the observed and unvisited locations, and C is the variance–co-
variance matrix of the residuals. RKV is independent from the observed values (see
Eq. 7.2), so it can be calculated before the actual sampling takes place, which can
be considered as a beneficial property in point of costs and time. Furthermore, RKV
incorporates both the prediction-error variance of the residuals and the
estimation-error variance of the trend, which endeavor SSA algorithm to optimize
the sampling configuration both in geographic and feature space (Heuvelink et al.
2007). However, it mainly depends on, how the prediction-error variance of the
residuals and the estimation-error variance of the trend contribute to RKV.

7.2.4 Extended SSA Methodology and Its Settings

In brief, SSA is an iterative, combinatorial, model-based sampling optimization
algorithm in which a sequence of combinations is generated by deriving a new
combination from slightly and randomly changing the previous combination (van
Groenigen et al. 1999). When a new combination is generated, the quality measure
(i.e., spatially averaged RKV) is calculated and compered with the quality measure
value of the previous combination (van Groenigen et al. 1999; Brus and Heuvelink
2007). The Metropolis criterion defines the probability that either accepts the new
combination as a basis for the further computation, or rejects it, and the previous
combination stays as a basis further (van Groenigen et al. 1999).

The SSA algorithm (using RKV as optimization criterion) requires for a given
soil variable that the structure of the regression model (without the regression
coefficients) and the variogram of the residuals are known (Heuvelink et al. 2007).
The legacy soil dataset and the covariates were used to satisfy these requirements.
Multiple linear regression analysis was performed to characterize the relationship
between the target soil variables and the covariates. Stepwise method was applied to
select the covariates into the regression models using significance level of 0.05. In
the next step, the residuals were derived from the regression models and the cor-
responding variograms were calculated to model their spatial structures, respec-
tively. According to Szatmári (2014), the combined structure of the resulted
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regression models and the variogram of the residuals, which had the shortest spatial
continuity, were applied in the optimization process provided by SSA to calculate
the quality measure for a combination (i.e., sampling configuration). The reason of
the variogram selection was to represent spatial continuity of the most variable
residuals across the area of interest. It was called as “dominant parameter” by Füst
and Geiger (2010). In case of multivariate sampling or monitoring network opti-
mization, the dominant parameter has to control the optimal sampling distance
between the sampling or monitoring locations in the geographic space; otherwise,
the sampling configuration or the monitoring network will not be optimal for the
most variable parameter (i.e., the sampling distance will be larger than the range of
the dominant parameter).

The number of the new observations was set to 100, which can be considered as
a sampling constraint for this study. Furthermore, this number of the new obser-
vations is commensurable with the sample size of the legacy soil dataset. The
“initial temperature” for SSA was chosen in such a way that the average increase
acceptance probability was 0.8 and the “cooling” was exponential. Furthermore, a
stopping criterion was defined to rein up the simulation when the quality measure
did not improve in many tries. The stopping criterion was set to 200. R software
environment (R Development Core Team 2014) was used for the implementation.

7.2.5 Evaluation of the Optimized Sampling Design

The optimized sampling configuration was evaluated by various statistical and point
pattern analysis tools. Kolmogorov–Smirnov test was used to examine for a given
covariate, if the distribution from the optimized configuration is equal to the dis-
tribution from the complete area of interest. The null hypothesis of the statistical test
was that the two distributions were drawn from the same distribution. The applied
significance level was 0.01. The Kolmogorov–Smirnov test’s results represent how
the sampling points cover the feature space defined by the covariates.

The nearest-neighbor distribution function G(r) and the empty space function
F(r) were calculated based on the optimized configuration to explore the type of
interaction between the sampling points and to examine how they cover the geo-
graphic space. The G(r) function measures the distribution of the distances from an
arbitrary sampling point to its nearest sampling point, while the F(r) function
measures the distribution of all distances from an arbitrary point of the plane to its
nearest sampling point (Bivand et al. 2008). In case of F(r), the grid (with 20 m grid
spacing) of the planned prediction locations was applied to measure the so-called
empty space distances. The benefit of this practice is that it gives direct information
on the kriging neighborhood (Szatmári et al. 2015).
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7.3 Results and Discussion

7.3.1 Regression and Variogram Models

The main parameters of the resulted models are summarized in Table 7.2. The
models explained 52, 39, 35, and 21 % of the total variation of RD, SOM, CC, and
KA, respectively.

The residuals were derived from the regression models, and the corresponding
variograms were calculated to model their spatial structures, respectively. Table 7.3
summarizes the parameters of the fitted variogram models. The model type was
spherical in all cases. The range values increase in the order
CC < RD < SOM < KA. Soil property CC is the most variable across the area of
interest; hence, it is the dominant parameter in this case.

7.3.2 Sampling Optimization by the Extended SSA
Methodology

A combined regression structure was used in the SSA algorithm, which was built
upon the regression models of the four soil variables (Table 7.2). This combined
structure was set in such a way that it contains all kinds of covariates from the four
models, which occurs at least once in any of themodels, according to Szatmári (2014).

Table 7.2 The main parameters of the fitted regression models

Soil
property

R2

(%)
No. of
covariates

Sig. List of covariates

SOM 39.01 4 <10−7 PC1, PC2, PC14, PC18

RD 52.14 6 <10−7 PC1, PC3, PC7, PC16, PC17, PC21

CC 34.93 8 <10−7 PC2, PC3, PC7, PC11, PC13, PC14,
PC16, PC19

KA 20.87 3 7 × 10−6 PC2, PC14, PC20

SOM soil organic matter, RD: rooting depth, CC: calcium carbonate, KA plasticity index according
to Arany

Table 7.3 The parameters of the fitted variogram models

Soil variable Type Nugget Partial sill Nugget/sill (%) Range (m)

SOM Spherical 0.042 0.150 21.87 1520

RD Spherical 43.20 316.79 12.00 980

CC Spherical 0.00 18.60 0.00 560

KA Spherical 4.90 8.62 36.24 2075

SOM soil organic matter, RD rooting depth, CC calcium carbonate, KA plasticity index according
to Arany
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For example, PC21 occurs only in the RD model as covariate, in contrast with PC2,
which occurs in the SOM, CC, and KA models, respectively (see Table 7.2).
Although, the PC21 occurs only once altogether, it has to be involved into the
combined structure, as well as the PC2 covariate, because it is relevant in RD variable
(even if it is irrelevant in SOM, CC, and KA variables). According to this practice, the
combined regression structure involved 13 covariates. The feature space is defined by
these 13 covariates, where the sampling design should be optimized.

The variogram of the CC residuals had the shortest spatial continuity (i.e., range),
which has to control the optimal sampling distance between the points in the geo-
graphic space; otherwise, the sampling configuration will not be optimal. The
application of the CC residuals’ variogram will infer that any of the planned pre-
diction locations has at least one kriging neighbor. It also means that any of them has
an influence from at least one sampling point (i.e., the geographic space is fully
covered by the sampling locations), as it was presented by Füst and Geiger (2010)
and Szatmári (2014). In addition, the optimized sampling design does not depend on
the absolute value of the sill and the nugget; it merely depends on the nugget/sill
ratio. If the nugget/sill ratio rises to 75 %, it has an influence on the sampling
configuration (van Groenigen 2000). In the present study, there has been no any
case, where the nugget/sill ratio would be close to 75 % (see Table 7.3). Hence, the
variogram of the dominant parameter is appropriate to apply along the optimization
procedure (Szatmári 2014).

The combined regression structure and the CC variogram were used to calculate
(with Eq. 7.2) the RKV as optimization criterion. It must be admitted that the
calculated RKV is an imaginary quality measure; however, it is appropriate to
compare alternative sampling configurations and to optimize the sampling design
for DSM (Szatmári 2014). The resulted sampling configuration by SSA is presented
in Fig. 7.2.

Fig. 7.2 The optimized sampling configuration with the inaccessible areas on the study site using
the extended SSA methodology
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7.3.3 Performance of the Sampling Configuration

The results of the Kolmogorov–Smirnov test are presented in Table 7.4. Only three
cases gave that the two distributions are different (see Table 7.4). Hence, correlation
test was performed on those three covariates to examine whether the value of the
correlation coefficient is zero between the two distributions, following Hengl
(2007). This null hypothesis was rejected in all cases. Moreover, the calculated
Pearson correlation coefficients showed that there is a strong relationship between
the two distributions in all cases. Based on the statistical tests’ results, the feature
space is properly covered by the optimized sampling design.

The observed G(r) and F(r) functions are presented in Fig. 7.3. Based on the
observed functions, there is an inhibition (i.e., competition) between the sampling
points, which caused a “quasi”-regular point pattern (see Fig. 7.2). It means that the

Table 7.4 The Kolmogorov–
Smirnov test’s results for the
feature space

Covariate εemp Equal to? (YES/NO)

SPC1 0.1938 YES

SPC2 0.5696 YES

SPC3 0.0783 YES

SPC7 0.0038 NO

SPC11 0.0006 NO

SPC13 0.4540 YES

SPC14 0.3752 YES

SPC16 0.6172 YES

SPC17 0.0039 NO

SPC18 0.0104 YES

SPC19 0.0571 YES

SPC20 0.1314 YES

SPC21 0.4413 YES

Fig. 7.3 The observed nearest-neighbor distribution function Gobs(r) (left graph) and empty space
function Fobs(r) (right graph) for the optimized sampling configuration
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applied variogram model had the dominant influence along the optimization pro-
cedure rather than the regression structure, according to Heuvelink et al. (2007).
However, it relates to our earlier expectation that the feature space is fairly
homogeneous in point of topography and land use (Szatmári et al. 2015).

The calculated empty space distances are appropriate measures to characterize
the relationship between the sampling points and the planned prediction locations
(Szatmári et al. 2015). The summary statistics of these measures are presented in
Table 7.5. The maximum value is larger than the range value of the CC residuals’
variogram (see Table 7.3); it means that there is at least one prediction location (i.e.,
grid cell or pixel), which did not have any kriging neighbor. It is reasonable to
examine, there are more such locations. Only 15 locations (i.e., grid cells or pixels),
from the total of 42,037, were found which did not have any kriging neighbor.
These 15 grid cells are located in the easternmost part of the study site, where many
inaccessible areas are located for sampling too (see Fig. 7.2). On the other hand, the
probability, to find the nearest sampling location to a given prediction location
within the distance of 270.6 m, is equal to 0.95 (see Fig. 7.3 right graph). As a
consequence, the geographic space is properly covered by the sampling
configuration.

The optimized sampling design, provided by the extended SSA methodology,
covered properly both the feature and geographic space, and thus, it can be applied
to map the spatial distributions of the chosen four soil variables. While some
components of our approach is less elaborated than that of provided by Vašát et al.
(2010) (e.g., the calculated RKV is not suitable to use as absolute qualifier for the
predictions), its significant advantage is that it is able to take auxiliary information
into account along the optimization procedure.

7.4 Conclusions

The extended methodology of SSA, which was tested and evaluated with four soil
variables in this paper, is able to simultaneously optimize the sampling design for
more than one pedological variable using the RKV as optimization criterion. As it
was presented, the extended methodology preserved the RKV beneficial properties
and the optimized sampling design is appropriate for DSM purpose, because the
sampling configuration covered properly both the feature and geographic space,
which is essential in point of DSM.

Table 7.5 The summary statistics of the empty space distances

Mean Median Minimum Maximum Std.
deviation

Skewness

Empty space
distances (m)

167.60 170.42 1.83 706.38 70.60 0.69
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Nevertheless, the calculated RKV, which was derived from the combined
regression structure and the variogram of the dominant parameter, is an imaginary
quality measure. Hence, it is not suitable to use as absolute qualifier for the pre-
diction accuracies, as well as the joined uncertainties. To get around this problem,
RKV can be recalculated based on the corresponding regression and variogram
model for a given soil variable. The recalculated RKV will then satisfy the
above-mentioned demands.
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Chapter 8
Applying Artificial Neural Networks
Utilizing Geomorphons to Predict Soil
Classes in a Brazilian Watershed

H.S.K. Pinheiro, P.R. Owens, C.S. Chagas, W. Carvalho Júnior
and L.H.C. Anjos

Abstract The use of landscape terrain attributes associated with the field infor-
mation in geographic information systems (GISs) helps to improve the methods
applied in soil survey. Geomorphons is a novel technique to map surface elements
from digital elevation model and visibility distance (search radius) of a central point
in the landscape, which can adopt flexible scales. The main goal of this study was to
evaluate the potential for incorporating Geomorphons, which is used to recognize
landscape patterns and to improve the soil class predictions by artificial neural
networks (ANNs). The procedures involved the acquisition of a cartographic
database, creating digital models that represent landscape attributes relevant to
paedogenesis on the research site (including Geomorphons of different search
radius), sample collection and description of one hundred soil profiles in predefined
locations, and finally the supervised classification by neural networks. The
covariates used were as follows: elevation, slope, curvature, combined topographic
index (CTI), euclidean distance, clay minerals, iron oxide, normalized difference
vegetation index (NDVI), geology, and Geomorphons. All models for the terrain
attributes have 30-m pixel resolution, and these variables correspond to neurons in
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the input layer of the neural networks. The output layer of the supervised classi-
fication corresponded to the nine dominant soil classes in the study area. To define
the appropriate scale of Geomorphons map, sixteen sets of neural networks contain
each one of the terrain attributes plus a Geomorphons map calculated from different
search radius. For comparative purposes, one of the sets included no Geomorphons.
Selection of the appropriate Geomorphons search radius was based on the statistical
indexes obtained from a confusion matrix. The results showed that the best clas-
sification used the Geomorphons map obtained by forty-five pixels of search radius,
in combination with other variables. This classifier presented values to kappa index
and global accuracy corresponding to 0.74 and 77.0, respectively.

Keywords Digital soil mapping � Artificial neural networks, ternary patterns �
Geomorphometric attributes � GRASS

8.1 Introduction

Digital soil mapping (DSM) is a tool that can work to improve the products of soil
surveys through geographic information systems (GISs) and knowledge of soil
genesis, morphology, and classification. DSM can improve soil surveys by increasing
the efficiency of cost and time, while improving overall map accuracy. These tech-
niques can improve the classical procedures applied to soil surveys, incorporating
pedometric concepts, allowing analysis from quantitative data and qualitative aspects
of the physical environment. The flexibility of DSM products can provide easier
interpretation and multifaceted presentations of soil–landscape information.

The morphometric parameters of landscape, derived from digital elevation
models (DEMs) are particularly important to DSM for generating covariates that
provide a consistent approach to representing landforms. In this sense, some studies
about landforms have been developed based on recognizing and mapping terrain
units and landscape patterns (Schmidt and Hewitt 2004; Iwahashi and Pike 2007;
Ehsani and Quiel 2008).

In the last decade, there have been numerous studies using artificial neural
networks (ANNs) for spatial correlations in soil classification and correlated soil
properties (Tranter et al. 2007; Choi et al. 2010; Chen et al. 2011; Motaghian and
Mohammad 2011; Carvalho Junior et al. 2011; Chagas et al. 2011). Some recent
studies have focused on developing efficient techniques for auto-classification and
mapping landforms elements (Iwahashi and Pike 2007; Ehsani and Quiel 2008).
The Geomorphons approach provides the auto-classification of the ten most com-
mon recognized surface types, based on ternary patterns (Jasiewicz and Stepinski
2013). The values of ternary patterns were calculated based on a central pixel and
the relative elevation of neighboring pixels.

The goal of this study was to evaluate the potential use of Geomorphons, in
combination with other terrain covariables, as an input variable to predict soil
classes through ANN.
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8.2 Materials and Methods

8.2.1 Characterization of the Area

The study area corresponds to the Guapi-Macacu watershed in Rio de Janeiro,
Brazil (Fig. 8.1). The watershed is an important natural unit and is appropriate for
hydrological or environmental studies and analyses. The Brazilian National Policy
on Water Resources (Law N° 9433/97) recognizes the watershed as a territorial unit
to manage water resources and develop management plans for land use. Guanabara
Bay, in the state of Rio de Janeiro, encompasses 12 watersheds of great importance
with direct contribution to the bay (Cortes et al. 2010). The Guapi-Macacu
watershed corresponds to approximately 31 % of the total land area of contribution
and has a contribution area of 1250.78 km2 and a perimeter of 199.2 km. Figure 8.1
shows the location of Guapi-Macacu watershed, in Rio de Janeiro State, Brazil.

The climate corresponds to the tropical rainy with dry winter (Aw) according to
the classification proposed by Köppen (1948). The average temperature is 23 °C,
and the average annual rainfall exceeds 1200 mm reaching 2600 mm in the highest
quotes on the watershed (Ecologus-Agrar 2003; Dantas 2000).

Fig. 8.1 Location of the Guapi-Macacu watershed, in Rio de Janeiro State, Brazil
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8.2.2 Terrain Attributes (Input Variables)

The main geographic information system used was the ArcGIS Desktop v.10.
Complementary analyses were performed in ERDAS Imagine v.9.1. (ERDAS
Systems) and Geographic Resources Analysis Support System (GRASS). All layers
were created at a 30-m spatial resolution and projected in Universal Transverse
Mercator (UTM), horizontal datum SIRGAS 2000 Zone 23 S.

The DEM was created by interpolation of primary elevation data (contours,
elevations points from the official database in Brazil) using the tool “TopotoRaster”
at a 30-m resolution. The slope and curvature map were derived from the DEM,
using the module “Spatial Analyst Tools: Surface.” The euclidean distance of
stream network was calculated by the tool “Distance.” Compound topographic
index (CTI) was generated in ArcINFO. Three indexes were generated using
remotely sensed data from Landsat 5 TM (image from Sep 2011) in ERDAS, and
they are as follows: normalized difference vegetation index—NDVI (Yang et al.
1997), clay minerals, and iron oxide, calculated as the ratio between the band 5 and
band 7, and band 3 by band 4, respectively (Chagas et al. 2013).

The lithology of study supported the differentiation of soil types. This map was
adapted from the geological survey charts of Rio de Janeiro state (CPRM 2001).
The parent material map is important for soil mapping because it provides the
boundary conditions for soil development.

Geomorphons algorithm was used to characterize terrain types based on the
neighborhood of a central pixel, and consider not the relative elevation as well as
the rate of change of their angles. Geomorphons was created using a flexible
procedure, making possible the recognition of the same types of landforms at
different scales. At the end of the process of auto-classification, the ten most
commonly recognized surface types were identified (Fig. 8.2).

The Geomorphons maps were created using the Geomorphons add-on in
GRASS (http://sil.uc.edu/). The procedure to calculate the landforms is flexible and
produces different resulting maps according to the different distances of zenith and
nadir angles, also called search radius, lookup distance or scale—L (Jasiewicz and
Stepinski 2013). Fifteen maps of Geomorphons were generated with search radius

Fig. 8.2 The ten most common landforms (Source Jasiewicz and Stepinski 2013)
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corresponding to 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, 300, and 500
pixels, respectively.

8.2.3 Soil Sampling and Profile Description

Conditioned Latin Hypercube Sampling (cLHS) was selected for its ability to
capture the variation in soil property distribution, while maintaining some degree of
randomness (Roudier et al. 2012; Minasny and McBratney 2006). The selection of
sampling points involved elevation, slope, and curvature as conditions for the cLHS
to select one hundred sample locations, within a 100 m buffer from the road
(Carvalho Junior et al. 2014). The urban areas were excluded of the soil survey.

Based on the field survey, nine dominant soil orders were recognized and
selected as output classes to be predicted by ANN. Soil taxonomic descriptions
were adapted to World Reference Base for Soil Resources (WRB 2014).

To characterize the morphometric patterns, 500 pixels from each soil type were
collected for each of the nine pedogenetic units, consistent with characteristics of
the point of observations. A subset of 350 pixels was selected as training samples,
and the remaining 150 pixels were used for validation. Zhu (2000) proposed a
number of training samples around 30 times the number of output classes to
account for the complexity of the relation between number of inputs variables and
output classes. The author also suggested that the number of validation samples
should be nearly half the number of training samples.

The selection of the training and validation samples was based on the variability
of the terrain variables in each one of the nine soil orders. In this procedure lies an
important step of the supervised classification once the success of the prediction
depends directly of the coherence of the samples to represent the output classes, and
the variables are used as an input (Pinheiro 2012).

8.2.4 Classification by Neural Networks

The definition of the network architecture was comprised of the following
parameters: (1) number of layers, (2) number of neurons (perceptrons) in each layer,
(3) type of connection between nodes, and (4) network topology. The input layer
was represented by terrain covariables, and the output layer corresponded to the
dominant soil orders.

For the first instance, the supervised classification by ANNs requires a training
process where the network “learns” the conditions where each soil class occurs
(Tso and Mather 2009). The learning algorithm was based on “backpropagation”
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which allows the random distribution of the interneurons’weights between −1 and 1,
varying learning rates and cycles. The parameters adopted in the training process
were number of cycles (or iterations) corresponding to 2000 and learning rate equal
to 0.2.

To select the appropriate Geomorphons search radius to be used as an input in
predictive models, the training of sixteen set of ANNs were performed, each using all
the terrain attributes in combination with each of the 16 differing Geomorphons
maps. For comparison, one of the sets included no Geomorphons map (reference set).
Table 8.1 presents the organization of the sets and respective variables used as an
input in the predictive models.

To define the appropriated architecture of each set (described above), the training
of seventeen networks with different numbers of nodes in the hidden layer (1–15,
20, and 30) was performed. The criterion used to add neurons in the hidden layer
was based on the mean square error (MSE), which measures the difference between
the estimated and the desired values for the training, according to Eq. 8.1.

MSE ¼
P ðe� dÞ2

n
ð8:1Þ

where “e” represents the estimated value for each pixel; “d”, the desired values; and
“n,” the number of learning cycles. Thus, the training should be stopped when the
error have the lowest possible and no longer oscillates with new cycles (Chagas
et al. 2011).

Table 8.1 Training sets using different sizes of Geomorphons search radius (L)

Set Terrain variables in input layer

1 Elevation, slope, curvature, CTI, euclidean distance, geology, clay minerals, iron oxide,
and NDVI (reference set)

2 All attributes from set 1 plus Geomorphons calculated with 3 cells of search radius

3 All attributes from set 1 plus Geomorphons calculated with 5 cells of search radius

4 All attributes from set 1 plus Geomorphons calculated with 10 cells of search radius

5 All attributes from set 1 plus Geomorphons calculated with 15 cells of search radius

6 All attributes from set 1 plus Geomorphons calculated with 20 cells of search radius

7 All attributes from set 1 plus Geomorphons calculated with 25 cells of search radius

8 All attributes from set 1 plus Geomorphons calculated with 30 cells of search radius

9 All attributes from set 1 plus Geomorphons calculated with 35 cells of search radius

10 All attributes from set 1 plus Geomorphons calculated with 40 cells of search radius

11 All attributes from set 1 plus Geomorphons calculated with 45 cells of search radius

12 All attributes from set 1 plus Geomorphons calculated with 50 cells of search radius

13 All attributes from set 1 plus Geomorphons calculated with 100 cells of search radius

14 All attributes from set 1 plus Geomorphons calculated with 150 cells of search radius

15 All attributes from set 1 plus Geomorphons calculated with 300 cells of search radius

16 All attributes from set 1 plus Geomorphons calculated with 500 cells of search radius
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8.3 Results and Discussion

8.3.1 Characterization of Soil Types and Occurrence
Conditions

The dominant soil orders in the study area were Ferralsols (28 %), Cambisols (18 %),
Gleysols (15 %), Acrisols (24 %), Regosols, and Fluvisols (6 %). The output classes
corresponding to the mapping units were as follows: (1) Haplic Acrisols (Clayic),
(2) Haplic Acrisols (Chromic), (3) Haplic Cambisols, (4) Haplic Gleysols,
(5) Endosalic Gleysols, (6) Haplic Ferralsols (Xanthic), (7) Haplic Ferralsols
(Dystric), (8) Fluvisols, and (9) Regosols.

Figure 8.3 shows the variability of terrain attributes derived from the DEM to
each map unit. To allow for the comparison of all the terrain variables at the same
time, a rescale procedure was applied to restrict the variability of attributes from 0
to 1. More details about this procedure were described in Pinheiro (2012).

Haplic Acrisols Clayic occurs on gentle slopes and low elevations; in contrast,
the Haplic Acrisols Chromic are common in higher elevations under wide slope
conditions and were predominantly associated with alkaline rocks. The Haplic
Cambisols dominated on concave forms, steep slopes, and high elevation, some-
times occurring in association with the Regosols and rock outcrops. The Gleysols
occurred in low areas of recent sedimentation with low slopes and planar curvature,
which were divided in two main units: Haplic Gleysols and Endosalic Gleysols.
The difference in the landscape was mainly due to elevation and CTI, where the
Endosalic Gleysols have higher CTI values and lower elevation values. Ferralsols
occurs predominantly in convex landscapes and present reduced wetness index
(CTI). The Fluvisols present high values of CTI, and its occurrence was observed
surrounding the stream networks, the Macacu and Guapi-Acu rivers.

0
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0.8

1 2 3 4 5 6 7 8 9

Elevation Slope Curvature Euclid.Dist. CTI

Fig. 8.3 Comparison of terrain attributes derived from the DEM over the nine map units. 1 Haplic
Acrisols (Clayic); 2 Haplic Acrisols (Chromic); 3 Haplic Cambisols; 4 Haplic Gleysols; 5
Endosalic Gleysols; 6 Haplic Ferralsols (Xanthic); 7 Haplic Ferralsols (Dystric); 8 Fluvisols; 9
Regosols
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8.3.2 Inferred Classification Using Geomorphons
as Discriminant Variable

Sixteen sets were trained each with different network architectures and different
number of neurons in the hidden layer (1–15, 20, and 30), while keeping the same
number of neurons in the input layer (terrain variables) and output layer (soil
classes). The analysis of supervised classification was based on statistical indexes
such as MSE, kappa, and global accuracy, which determine the proportion of
correct guesses (accuracy). Figure 8.4 shows the analysis of MSE to some of the
training sets.

According to the graph, all sets present similar behavior with respect to MSE.
Set 11 has the lowest MSE in the network with 30 nodes in the hidden layer
(0.139). However, the decreasing error rates show reduced rates from 10 nodes in
the hidden layer. Similar observations were reported by Chagas et al. (2011). Foody
and Arora (1997) highlights that larger and complex networks can be more efficient
to properly characterize a training set but are usually less efficient than simpler
networks to generalize the output classes. Having said that, networks with largest
number of neurons in the hidden layer do not necessarily imply a better perfor-
mance of the neural network. At the end of the training step, a confusion matrix was
created for each neural network, which determines the values to kappa index,
overall and variance (Congalton and Green 1999). The comparison of neural net-
works was based on a significance matrix from these statistical indices. Table 8.2
shows the significance matrix between the neural networks of the set that used
Geomorphons map with 45 cells of search radius as an input variable, and varying
the number of neurons in the hidden layer (Set-11).

According to the data in Table 8.2, the network with seven neurons in the hidden
layer was chosen to represent this set, because it represents better results for the
kappa index (0.741) and variance (0.000166), and shows statistical difference when
compared with other networks with the same input variables. For each set of input
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Fig. 8.4 Analysis of mean square error from different sets and numbers of neurons in the hidden
layer

96 H.S.K. Pinheiro et al.



variables, the network with the best performance of the statistical indexes (kappa
and variance), obtained from a confusion matrix, was selected. The contribution of
each set was defined assuming that the reference set corresponds to Set 1, where the
input data contain no Geomorphons map.

Table 8.2 Significance matrix from Set 11 with Geomorphons generated with the 45 pixels of
search radius as an input variable

N(1) 1 2 3 4 5 6 7 8

Kappa 0.688 0.665 0.695 0.685 0.662 0.669 0.741 0.654

Var(2) 1.86 1.93 1.83 1.87 1.96 1.93 1.66 1.97

1 50.45

2 1.18 47.87

3 0.36 1.55 51.38

4 0.16 1.03 0.52 50.09

5 1.33 0.15 1.70 1.18 47.29

6 0.98 0.20 1.34 0.82 0.36 48.16

7 2.83* 4.01* 2.46* 2.98* 4.15* 3.80* 57.51

8 1.74 0.56 2.10* 1.58 0.40 0.76 4.57* 46.60

9 0.00 1.18 0.36 0.16 1.33 0.97 2.82* 1.73

10 1.93* 0.76 2.30* 1.78 0.60 0.96 4.76* 0.20

11 2.63* 1.46 3.00* 2.48 1.30 1.66 5.46* 0.90

12 1.63 0.46 2.00* 1.48 0.30 0.66 4.45* 0.10

13 3.58* 2.40* 3.95* 3.42* 2.24* 2.60* 6.41* 1.84

14 0.10 1.08 0.47 0.05 1.23 0.87 2.93* 1.63

15 0.87 0.31 1.24 0.72 0.46 0.10 3.69* 0.86

20 1.84 0.66 2.20 1.68 0.50 0.86 4.66* 0.10

30 1.49 0.31 1.85 1.33 0.15 0.51 4.32* 0.25

N(1) 9 10 11 12 13 14 15 20 30

Kappa 0.688 0.65 0.636 0.656 0.617 0.686 0.671 0.652 0.659

Var(2) 1.88 2.00 2.04 1.99 2.08 1.87 1.93 1.99 1.94

9 50.18

10 1.93 45.96

11 2.63* 0.70 44.53

12 1.63 0.30 1.00 46.50

13 3.57* 1.63 0.94 1.93 42.78

14 0.10 1.83 2.53* 1.53 3.47* 50.17

15 0.87 1.06 1.76 0.76 2.70* 0.77 48.30

20 1.83 0.10 0.80 0.20 1.74 1.73 0.96 46.22

30 1.48 0.45 1.15 0.15 2.10* 1.38 0.61 0.35 47.31

N(1) = number of neurons in hidden layer
Var(2) = variance × 104
*Significance difference at 95 %
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Table 8.3 shows the contribution of the best network of each set with different
Geomorphons as an input variable compared with the reference set (without
Geomorphons map).

The Set 11, a Geomorphons map created with 45 cells of search radius, had the
highest positive value to contribution, when compared with the reference set and
among others. The sets that used Geomorphons maps with search radius varying
between 15 and 40 cells and the Set 14 with 150 cells of search radius had inferior
performance when compared with the reference set.

A significance matrix with the best network of each set was generated from the
kappa and variance values, to compare the performance between different neural
networks with different Geomorphons search radius (Table 8.4).

The results showed that the best architecture was obtained from Set 11, which
used the Geomorphons maps with a forty-five pixels of search radius as an input and
seven neurons in the hidden layer. Statistical indices from the resulting classification
showed superior performance, with values of kappa index, global accuracy, and
variance corresponding to 0.741, 77.0, and 1.66 × 104, respectively. Although this
set does not present a statistical difference between sets 5 and 12, a visual evaluation
to analyze the coherence with other layers was performed, confirming that the Set 11
has a better performance than the others sets. Jasiewcz et al. (2014) used similar
value to search radius (40 cells or 1200 m) to calculate the Geomorphons derived of
DEM with 30 m pixels. Figure 8.5 shows the Geomorphons map calculated with
45 cells of search radius.

Table 8.3 Summary of the comparison between the best neural network of each set

Set L Neuronsa Kappa Global accuracy Varianceb Contribution

1 0 8 0.709 74.1 1.78 –

2 3 13 0.735 76.4 1.67 0.026

3 5 5 0.713 74.5 1.76 0.004

4 10 5 0.716 74.7 1.76 0.007

5 15 5 0.69 72.4 1.87 −0.019

6 20 4 0.703 73.6 1.8 −0.006

7 25 1 0.662 69.9 1.96 −0.047

8 30 2 0.68 71.6 1.88 −0.029

9 35 5 0.685 72 1.88 −0.024

10 40 4 0.686 72.1 1.86 −0.023

11 45 7 0.741 77 1.66 0.032

12 50 7 0.74 76.9 1.65 0.031

13 100 11 0.717 74.8 1.75 0.008

14 150 2 0.704 73.7 1.79 −0.005

15 300 5 0.716 74.7 1.76 0.007

16 500 5 0.719 75 1.75 0.01

L = size of search radius (cells) in Geomorphons map
aNeurons = number of neurons in hidden layer
bVariance = variance × 104
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The evolution of soils as a function of the water behavior in the landscape, which
determines the favorable conditions for pedogenesis or morphogenesis, justifies the
application of the Geomorphons approach to recognize the main landforms in study
area. Landscape patterns need to be sensitive to natural processes and variations in
the surface shape of landscapes, but also appropriated for the map scale and details.
The Geomorphons map selected to represent the landforms (Fig. 8.5) shows
coherence with the features, as observed in the field, relating the soils with the
incipient degree of evolution (Regosols and Cambisols) with landforms as shoulder,
peak, and ridge. The Acrisols and Ferrasols have a wide occurrence area and
landform shapes, associated with the most of cases with slope landforms, gentle or
steep. In contrast, the floodplains and drainage networks show direct relationship
with flat and valley landforms, where Gleysols and Fluvisols occur.

8.4 Conclusion

The dominant soil orders in the Guapi-Macacu watershed were Ferralsols,
Cambisols, Gleysols, Acrisols, Regosols, and Fluvisols. The interpretation of
remote sensing images, DEM and thematic maps, combined with field observations
and a literature review allowed for identifying consistent relationships between the

Fig. 8.5 Geomorphons map with 45 cells of search radius (Set 11). FL flat; PK peak; RI ridge; SH
shoulder; SP spur; SL slope; HL hollow; FS footslope; VL valley; PT pit
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landforms and helped to understand the occurrence of different soil types in the
study area.

The network selected to represent the soil distribution in the watershed is
composed of ten discriminating variables, seven neurons in the hidden layer, and
nine in the output layer, corresponding to identified soil classes. The parameters that
justified the chosen network were the values of statistical indexes, such as global
accuracy (77 %), kappa (0.741), and variance (0.000166). This set also showed a
smaller value of MSE compared to all the different sets analyzed.

The Geomorphons map generated with a forty-five cell search radius was
selected to represent the landforms as an input variable to predict soil classes in this
watershed. The use of Geomorphons to represent landforms can improve the
methods and data applied in soil surveys, providing greater information about the
soil–landscape relationships.
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Chapter 9
Comparison of Traditional
and Geostatistical Methods
to Estimate and Map the Carbon
Content of Scottish Soils

Nikki Baggaley, Laura Poggio, Alessandro Gimona and Allan Lilly

Abstract The Scottish Government wish to preserve the carbon stocks already
stored or sequestered in both organic and mineral soils and see land-use change as
one of the key drivers affecting storage of soil organic carbon (SOC). A key
component to develop any strategy to maintain the existing carbon stocks is the
quantification of these stocks both in terms of the carbon content and its spatial
distribution. To date, two different methods that use the same existing legacy data
have been used to quantify carbon stocks in Scotland: a traditional approach and a
hybrid generalised additive model (GAM)—geostatistical 3D model. Each of the
methods revealed differences in the spatial patterns of SOC stocks. Understanding
these differences will enable the development of more robust and accurate models
that can be used to assess changes in stocks due to changing land use. Here, we
compare these methods for the Scottish mainland, Western Isles, and Orkney. The
traditional approach was based on calculating average organic carbon values from a
subset (6000) of around 40,000 observations stored within the Scottish Soil
Database. The total SOC stock was then determined by multiplying the areal extent
of each soil series/land-use combination by the calculated profile stock. The
uncertainty was also quantified based on standard error of the measured carbon
contents and the uncertainty in the bulk density pedotransfer functions. A hybrid
GAM-geostatistical 3D model combined the fitting of a GAM using a 3D smoother
with related covariates and the kriging or Gaussian simulations of the residuals to
spatially account for local details. The uncertainty was also calculated and was
found to be large, indicating a wide range of credible values for each pixel. The
deviation from the median ranges was between 5 and 75 % for the interpolated
values depending on location.
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Keywords Carbon stocks � GAM-geostatistical 3D model � Soil legacy data �
Soil mapping

9.1 Introduction

Improving soil and environmental management requires spatially explicit infor-
mation about soil properties, processes, and variation across landscapes. Reliable
estimates of regional soil organic carbon (SOC) stocks and their spatial variability
and uncertainty are essential to better understand their vulnerability to direct and
indirect climate and land-use change impacts (Mishra and Riley 2012). Knowledge
of the spatial distribution of soil carbon is important for numerous reasons. It
provides input values for simulation models and baseline values for the assessment
of change as well as aiding in the understanding of the variables affecting carbon
stocks and in the identification of areas where stocks are more vulnerable to
changing environmental conditions or management. Numerous estimations of soil
carbon stocks exist at different scales from global to local (see Minasny et al. (2013)
for a recent review). Most of the studies considered in the review do not provide
any measure of uncertainty for the results presented, and about half of them do not
use validation. We compare two approaches to mapping soil carbon in which both
consider uncertainty in the input data.

The first is a traditional approach using soil- and land-use polygons combined
with representative soil profiles (referred to as SP approach in the text). This
approach has been used in the USA to produce maps of carbon concentration for the
global soil map (Odgers et al. 2012). Carbon concentrations and predicted bulk
densities have been combined to predict carbon stocks and potential carbon storage
in soils using 1:1,000,000 soil typological units for Europe (Stolbovoy and
Montanarella 2008) and 1:250,000 scale map unit data in Scotland (Lilly and
Baggaley 2013).

The second approach (Poggio and Gimona 2014) based on a 3DGAM (gener-
alised additive model) coupled with 3D kriging (referred to as 3DGAM + GS in the
text) was used and compared to other methods such as mass-preserving splines
(Malone et al. 2009) and regression kriging (Hengl et al. 2004). The method takes
into account the spatial neighbour information in both lateral and vertical dimen-
sions, and at the same time, building relationships with the relevant covariates
which were selected to describe the most important scorpan factors (McBratney
et al. 2003).

Scotland provides an ideal landscape in which to test these 3D approaches to
mapping carbon stocks as the soils includes mineral, organo-mineral soils, and deep
peat soils (Fig. 9.1), with differing carbon contents. The land-use and vegetation
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types also vary and include arable, grassland, moorland, and forestry (Fig. 9.1)
allowing a comparison between the mapped stocks under differing land uses defined
from aerial photography and those derived from satellite sensors.

9.2 Methods

The SP approach was based on calculating average organic carbon values from a
subset of around 40,000 observations stored within the Scottish Soil Database. The
average SOC concentration was calculated for individual horizons deemed as
typical of individual soil types (soil series taxonomic unit) and taking account of
whether the soil was cultivated or not. The stock for each horizon (calculated from
horizon thickness, average SOC concentration, and predicted bulk density) was
summed to give an estimate for a modal soil profile typical of each individual soil

Fig. 9.1 Maps of the Scottish mainland, Western Isles, and Orkney a the dominant land-use types
based on aerial photograph interpretation from the land cover of Scotland 1988 map (MLURI
1993). b The dominant major soil types based on the Scottish soil classification showing the
distribution of organic, organo-mineral, and mineral soils Scotland (Soil Survey of Scotland Staff
1981)
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series to a depth of 1 m and spatially extrapolated using the 1:250,000 scale national
soil map of Scotland (Soil Survey of Scotland Staff 1981) combined with land-use
data (MLURI 1993). Uncertainty estimates around the mean carbon stock were
calculated based on the 95 % prediction intervals on the pedotransfer functions used
to calculate bulk density combined with the standard error on the measured carbon
concentrations.

The 3DGAM + GS approach used a subset of 26,000 horizons (7800 profiles)
from the same soil database, with 75 % selected for model development and 25 %
randomly selected as a validation data set. Numerous covariates derived from
globally available data, such as MODIS and SRTM, were considered. In this study,
the continuous vertical and lateral distributions of carbon stocks in Scottish soils
were modelled with a 3DGAM + GS approach. The approach used involves
(1) GAM modelling of the trend with full 3D spatial correlation, i.e. exploiting the
values of the neighbouring pixels in 3D space and (2) 3D kriging to interpolate the
residuals. The values at each cell for each of the considered depth layers were
predicted with a hybrid GAM-geostatistical 3D model, combining the fitting of a
GAM to estimate the trend of the variable, using a 3D smoother with related
covariates and Gaussian simulations of the model residuals as spatial component to
account for local details. The total SOC stock for the profile was obtained summing
the values at each depth. The uncertainty was calculated with a high number of
simulations for both the trend predictions and the residuals interpolation.

In order to undertake a comparison, the stocks from the SP approach were
aggregated to the same 1-km grid used in the 3DGAM + GS and grid squares where
there was no soil present (e.g. urban areas, rock, and water) were masked out. The
differences in the stocks for each grid were then mapped. To further explore the
differences, we used the land-use and soil map polygons to calculate the total stocks
based on broad soil and land-use classes.

9.3 Results

For the 3DGAM + GS, the uncertainty was large indicating a wide range of credible
values for each pixel. The deviation from the median ranges was between 5 and
75 % for the interpolated values depending on location (Fig. 9.2b). The uncertainty
limits calculated for a given map unit using the SP approach, based on bulk den-
sities and measured carbon contents, were of a similar order of magnitude
(Fig. 9.2a).

When the carbon stocks in the 1 km2 were compared (Fig. 9.3), the greatest
similarities were amongst the predominantly mineral soils of the agricultural areas in
the east. There is greater variability between the two approaches in the north and west
where organic and organo-mineral soils dominate and the terrain is more variable.
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When the stocks are compared by soil type (Fig. 9.4), the 3DGAM+GSpredictsmuch
greater stocks in the oroarctic (high altitude, cryoturbated soils) and immature soils
(Rankers, Lithosols, and Regosols) compared with the SP approach, with almost
double the stock of carbon in oroarctic soils being predicted by the 3DGAM + GS.
The SP approach, however, predicts much greater stocks of carbon in areas of deep
peat soils. The differences in peat soils are greatest in the far north where deep blanket
peat bogs dominate the landscape (Fig. 9.1b).

When summarised by vegetation type, the two approaches show much more
similarity in stocks (Fig. 9.5) and the greatest differences are seen under moorland
with the 3DGAM + GS showing greater stocks than the SP approach. The SP
approach, however, shows greater stocks under forest and bog.

Fig. 9.2 a Carbon stocks using soil and land-use polygons and aggregated soil legacy data (SP
approach: upper 3 maps) b carbon stocks using a hybrid GAM-geostatistical 3D model
(3DGAM + GS: lower 3 maps)
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Fig. 9.3 Differences in the central estimates of carbon stock. Aggregated stocks from the SP
approach subtracted from the results of the 3DGAM + GS. Grid cells where SP approach predicts
greater stocks are shown in blue. Grid cells where 3DGAM + GS predicts grater stocks are shown
in orange

Fig. 9.4 Differences in the central estimates of carbon stock by main soil types
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9.4 Discussion

The spatial distributions of SOC stocks for both methods are quite different,
especially for organo-mineral soils and soils under moorland vegetation. The dif-
ferences between the central values, when aggregated by soil type, are greater than
that when the data are aggregated by land use. This may due to the way individual
vegetation communities were amalgamated into broad habitat types.

However, further work is needed to formally test the significance of the differ-
ences, between soils and land cover types. Further work will also compare the
carbon stocks for each of the depths (0–5, 5–15, 15–30, 30–60, and 60–100 cm)
defined for the global soil map. This will allow consideration of how the methods
predict the varying carbon contents at depth and how the aggregation and
smoothing processes in both approaches predict the stocks in a wide variety of soils
with varying carbon contents in horizons throughout the soil profile. Further
exploration of the difference in total soil depth and bulk densities through the soil
profile will also be analysed.

The large differences in the two approaches to quantifying stocks in immature
(often shallow soils) and soils of the high, exposed mountain tops may be due to the
small-scale variations in topography or exposure in these areas where soils can
change from having an organic-rich mineral topsoil to an organic topsoil within a
distance of 5 m. In order to further compare the methods, an assessment using
independent samples is needed.

The uncertainty limits in the SP approach are probably underestimated as we only
consider the uncertainty in the carbon contents and in the predictions of bulk density
and have currently ignored uncertainty in estimates of horizon thicknesses and stone
contents. There is also >10 % of stocks for which the uncertainty could not be
quantified as there was only one record for that individual soil in the database with

Fig. 9.5 Differences in the central estimates of carbon stock by broad habitats
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which to characterise the soil horizon or where bulk densities could be calculated
with the pedotransfer functions. Further work will therefore seek to better quantify
the uncertainty in this approach perhaps through identifying similar soils where there
are more data or by amalgamating soils to a higher level in the classification system.
Additionally, more work is required to identify why there appear to be greater
differences between the two approaches for soils with organic surface layers, that is,
Peats, Peaty gleys and Peaty podzols ((Soil Survey of Scotland Staff 1984),
Histosols, Histic Gleysols, and Histic Podzols (IUSS Working Group WRB 2014)).

9.5 Preliminary Conclusions

• The stocks for the 3DGAM + GS are more smoothly distributed than those for
the SP approach, as expected due to the method used for interpolation.

• The stocks in mineral soils under cultivation are the most similar, and the
greatest differences in predicted carbon stocks are in peats and organo-mineral
soils under moorland and montane vegetation. However, further work is needed
in order to assess if the differences (i.e. between methods and between soil types
or land uses) are statistically significant.

• The SP approach has lesser stock estimates than the 3DGAM + GS approaches
in parts of the central highlands, south of the Great Glen (where there is a large
proportion of immature and oroarctic soils).
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Chapter 10
Digital Soil Mapping for Hydrological
Modelling

George M. van Zijl, Johan J. van Tol and Eddie S. Riddell

Abstract Digital soil mapping approaches can play a role in providing soil infor-
mation in a format useful to hydrological modellers, thus filling a void in the current
state of hydrology. In this paper, it is shown how an expert knowledge-based digital
soil mapping approach was used to provide the soil-related input needed for a
process-based hydrological model (ACRU) of the Stevenson Hamilton Research
Supersite (SHRS) in the Kruger National Park, South Africa. First, a soil map was
created for the entire 4001 ha study area. This soil map had a validation point
accuracy of 73 %. Thereafter, the study area was divided into hillslopes. The hill-
slopes combined with the soil map were used to create a map showing the size and
position of the hillslope-specific conceptual hydrological response models
(CHRMs). The CHRM map was then used to configure ACRU and to model stream
flow in a first-, second- and third-order catchment within the larger area. The stream
flow modelling proved successful for the second- and third-order catchments, with
Nash–Sutcliffe model efficiency coefficients (NS) of 0.79 and 0.73 for the two
catchments, respectively. That the first-order catchment did not model well was
explained by the level of detail of the soil mapping which was too coarse to model
such a small catchment successfully. All configurations of ACRU modelled the
third-order catchment very well (NS between 0.75 and 0.79), but failed to map single
rain events consistently. This work showed that digital soil mapping can provide the
soil information necessary to configure a process-based stream flow model suc-
cessfully, provided that the scale of the mapping corresponds with the scale of the
first-order controls of the process being modelled. It was indicated that the optimal
time frame for this form of hydrological modelling is a hydrological season.
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Keywords ACRU � Conceptual hydrological response model � Hydropedology �
Kruger National Park � SoLIM

10.1 Introduction

Soil plays an integral role in hydrology, as it can transmit, store and react with water
(Park et al. 2001). In the same way, water plays a primary role in the formation of
soils. Soil genesis is a function of climate, organisms, relief, parent material and
time (Jenny 1941), but it is largely the influence of the soil-forming factors on the
hydrology which determines the influence of the soil-forming factors on soil for-
mation. As a result of this interaction, soil carries the marks of the soil water regime
under which it formed as morphological hydrological signatures, such as gleying,
mottles, concretions and carbonate deposits. Valuable information regarding
hydrological processes (Ticehurst et al. 2007; Van Tol et al. 2010) and hillslope
hydrological behaviour (Lin et al. 2006) can be gained by careful interpretation of
the hydrological signatures. Qualitative two-dimensional hillslope-based conceptual
hydrological response models (CHRMs) can be created from the interpretation of
such signatures. Integrating the two-dimensional CHRMs into three-dimensional
catchments can assist in the making of predictions in ungauged basins (PUBs).
Thus, hydropedological knowledge is increasingly sought after in the quest to make
PUBs, because of the difficulty to observe and measure important hydrological
processes (Sivapalan 2003).

However, soil information is often not optimally used in hydrological modelling.
Part of the reason for this is that the quality of soil information at a spatial point is
often in a form that cannot be successfully extrapolated to be representative of the
hydrological response unit, due to heterogeneity and thus uncertainty. Thus, soil data
usefulness to hydrological models on a basin scale is cumbersome and typically a
considerable expense for modelling studies. Digital soil mapping can provide the
answer to this dilemma. In this paper, an expert knowledge-based digital soil
mapping approach was used to create a hillslope-based CHRM map for the
Stevenson Hamilton Research Supersite (SHRS) within the Kruger National Park,
South Africa. The CHRM map was used to configure ACRU, a process-based
agrohydrological model (Schulze 1995). It uses a daily time step and multiple soil
layers and can run in lumped or distributed mode. In lumped mode, average soil
parameters are used across the catchment and no configuration of the soils of the
landscape is necessary in the model. There are two distributed modes. The standard
mode, ACRU2000, allows for two soil layers, an A and B horizon and a deep
groundwater layer. In a revised version, ACRU-Int Lorentz et al. (2007) added an
intermediate layer between the B horizon and the groundwater store. Soil inputs are
as follows: thickness of soil horizon, water contents at the start of simulation, per-
manent wilting point, drained upper limit, saturation, plant available water, drainage
rates and the soil erodibility factor.
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The aims were to create an acceptable soil map of the area, to use this map to
create a conceptual hydrological response unit (CHRU) map of the entire area and
use this map to configure ACRU and then to assess the model outputs on different
temporal and spatial scales. The hypothesis tested is that an accurate homogenized
spatial representation of soil information will lead to more accurate model outputs.

10.2 Site Description

The Kruger National Park is a pristine savannah conservation area of some
2,000,000 ha in north-eastern South Africa (Fig. 10.1b), bordering Mozambique and
Zimbabwe. In 2013, the Research Supersites were established (Smit et al. 2013),
with the idea of attracting the various ecosystem-focused research programmes to the
same area, in order to enable integrated research findings and allow data sharing, to
inform conservation management. The SHRS (Fig. 10.1a) consists of 4001 ha and is
located in the south-western part of the park, in the Renosterkoppies land type
(Venter 1990), which is characterized by a highly dissected landscape with a high
stream density cutting through the granite and gneiss of the Nelspruit suite. The
mean annual precipitation is 560 mm/a (Smit et al. 2013), which falls predominantly

Fig. 10.1 The Stevenson Hamilton Research Supersite (a), the location of the Kruger National
Park within South Africa (b) and the three catchments wherein stream flow was modelled (c)
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in the summer months (September to March). Typical bushveld vegetation occurs,
with a very good correlation between the woody vegetation, terrain position and soil
type (Venter 1990). For the stream flow modelling, three small catchments where
discharge data exist (ascertained through rated channels with pressure transducers)
were used. This site included a first-, second- and third-order catchment (Fig. 10.1c).

10.3 Materials and Methods

Van Zijl and Le Roux (2014) created a functional hydrological soil map of the
SHRS by applying an expert knowledge digital soil mapping approach, using
SoLIM (Zhu 1997). Covariate data used included Spot 5 (Spot image 2013),
Landsat 7 (USGS 2013), the Stellenbosch University DEM (SUDEM) (Van
Niekerk 2012) (interpolated to both 10 m and 30 m resolutions) and remotely
sensed evapotranspiration and biomass data for a series of dates (eLEAF 2013).
One hundred and thirteen soil observations (Fig. 10.1c) were classified according to
the South African soil classification system (Soil classification Working Group
1991). Stoniness, hand-estimated texture, mottles and structure were also noted per
soil horizon. Of the 113 observations, the positions of 29 were predetermined using
conditioned Latin hypercube sampling (Minasny and McBratney 2006), and
another 25 were predetermined by smart sampling, using colour aerial photographs
of the site. By visual inspection, the colour photographs were divided into five
classes, each comprising of homogeneous colour units with a unique colour sig-
nature. Soil observations were then placed by hand within each of the colour units.
Out of these potential observations, 25 sites were chosen which are based on
accessibility, but also ensuring good spatial coverage of the site, as well as at least
three observations within each colour unit. The remaining 59 were determined by
the soil surveyors in the field. The latter group was used for the validation obser-
vations and the predetermined observations as training data. Soil observations were
grouped into hydrological soil associations (Table 10.1) and mapped as such. This
work is described in Van Zijl and Le Roux (2014). Validation was expressed as a
point accuracy percentage, with a one pixel buffer around the soil mapping units
(SMUs) allowed as in Van Zijl et al. (2012).

Following Van Tol et al. (2013), a hydrological response to each soil map unit
was assigned, thus creating a hydrological soil map. Using the 30 m DEM, a
hillslope map of the whole site was created using ArcGIS. By superimposing the
hillslope map onto the hydrological soil, specific CHRMs could be devised for
every hillslope, thus creating a CHRM map.

Van Tol et al. (2015) used this map to configure ACRU for three small catch-
ments within the site, where hydrological measurements were available for the
hydrological season 2012–2013. The three catchments are a first-order (10.8 ha),
second-order (42.7 ha) and third-order (148.2 ha) catchment, respectively, which
allowed for the spatial scale of modelling to be assessed. New to this paper, the
model was also assessed on a temporal scale, using three specific large rain events,
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representing early season (4 December), mid-season (25 December) and end-season
(17 January), a full hydrological season (15 November–15 March) and a full year
(15 April 2012–15 April 2013), which thus allows the examination of temporal
scaling responses to antecedent catchment conditions. Model accuracy was assessed
based on how well the modelled stream flow matched the observed.

10.4 Results and Discussion

The soil map (Fig. 10.2a) achieved an acceptable validation point accuracy of 73 %
(Table 10.2). The majority of the incorrectly mapped observations were soils of the
clayey recharge association, on either the sandy interflow or clayey interflow soil
map units. The soil map was converted to a hillslope-based CHRM map
(Fig. 10.2b), with eleven different CHRM-type hillslopes identified (Fig. 10.3) (Van
Zijl and Le Roux 2014).

The statistical analysis of the stream flow modelling outputs for the third-order
catchment for the hydrological season 2012–2013 (Table 10.3) shows that the soil

Table 10.1 Descriptions of the soil map units

Soil
association

Soil formsa WRB
reference
groupsb

Determining characteristics CHRUc

Sodic site Sterkspruit Solonetz,
planosols

Abrupt textural transition
between the topsoil and subsoil.
Redox morphology in C horizon

Responsive

Clayey
interflow

Sepane, Bonheim Luvisols,
phaeozems

High clay percentage in B
horizon. Redox morphology in
C horizon

Interflow

Clayey
recharge

Bonheim,
Valsrivier, Swartland,
Milkwood, Mayo

Phaeozems,
luvisols,
leptosols

High clay percentage in A
and/or B horizon. No redox
morphology in C horizon

Recharge

Sandy
interflow

Tukulu, Pinedene,
Westleigh, Avalon

Arenosols Coarse textured A and/or E
horizon. Redox morphology in
C horizon

Interflow

Sandy
recharge

Clovelly, Oakleaf,
Mispah, Glenrosa

Arenosols,
leptosols

Coarse textured A horizon. No
redox morphology in C horizon

Recharge

Rock
outcrops

Rock Rock Cracked rock outcrop Recharge

Alluvial
soils

Dundee, Oakleaf,
Tukulu

Fluvisols,
arenosols

Coarse textured soils from
alluvial deposits

Recharge

WRB World Reference Base; CHRU conceptual hydrological response unit
aSoil Classification Working Group (1991)
bIUSS (2007)
cVan Tol et al. (2013)
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input does improve the stream flow modelling. For the second- and third-order
catchments, both ACRU-Int and ACRU2000 achieved Nash–Sutcliffe model
coefficients (NS) of above 0.72. This correlates well with the average NS of 0.71
which Royappen (2002) achieved in 13 catchments using ACRU and is slightly
lower than the highest median model efficiency of Siebert and McDonnell (2013) of
0.8–0.85. Both ACRU-Int and ACRU2000 outperformed ACRU lumped in all
three catchments, emphasizing the improvement that soil process information can
yield in modelling hydrological processes. ACRU-Int also performed slightly better
than ACRU2000, showing that increasing the soil detail by adding an extra soil
horizon is also a valuable improvement.

The first-order catchment was, however, modelled less accurately than the
second- and third-order catchments, with the outputs showing low R2- and negative
NS-values. These disappointing results are ascribed to the detail of mapping. When
creating a soil map with sufficient detail for an area of 4001 ha, one will inevitably
miss some detail which is important in a 10.8 ha area. This is what happened here,
as the authors noted a small wetland occurring within the first-order catchment, not
noted on the soil map. As the area on which the modelling was applied increased, so
did the modelling accuracy. This is to be expected as the primary hydrological
controls functioning in the larger area are closer to the level of detail at which the
soils were mapped. As the area of modelling increases in size, the first-order
hydrological controls will change (Bloschl and Sivapalan 1995). In this case, the
first-order catchment level of detail of the soil map did not match the process scale
of the model for the hydrological controls of that size catchment. Thus, the results
of the modelling were not very good at this scale and represent a lower threshold of

Fig. 10.2 The soil map of the area (a) and the conceptual response model (CHRM) map, also
showing the hillslopes (b). Int interflow, Res responsive, Rec recharge
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utility of digital soil mapping information. With increasing catchment size, at some
point the level of detail of the soil map will correspond to the first-order hydro-
logical controls functioning in the catchment. This is the optimal level of detail at
which the mapping can be used as input for hydrological modelling. As the area
modelled increases further, another factor such as climate will become the
first-order hydrological control, and thus, the need for soil input into a hydrological
model will diminish with increasing catchment size. The inconclusive results

Hard rock C horizon showing redox mottling

Prismatic impermeable horizon Permeable soil horizon

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 10.3 The different hillslope CHRMs functioning within the study site. The percentage of area
which each CHRM occupies is shown after the model name. a Interflow 25.4 %, b interflow–
responsive 11.6 %, c interflow–responsive–interflow 1.2 %, d recharge 2.7 %, e recharge–
interflow 25.3 %, f recharge–interflow–responsive 7.5 %, g recharge–responsive 9.0 %,
h recharge–responsive–interflow 5.8 %, i responsive 2.0 %, j responsive–interflow 5.2 %
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between the second and third orders suggest that the optimal spatial scale have not
been reached.

The stream flow modelling output for the third-order catchment for the hydro-
logical season 2012–2013 is shown graphically in Fig. 10.4. One can clearly see
that the stream flow from rain events in the beginning of the season is overpredicted
by all three modes of ACRU, while the stream flow from one very big rain event

Table 10.3 The statistical
output for the stream flow
values modelled against those
observed, for the 2012–2013
hydrological season

Order Mode RMSE R2 NS

First ACRU-Int 6.60 0.51 −0.71

ACRU2000 6.22 0.57 −0.51

Lumped 6.21 0.49 −7.62

Second ACRU-Int 1.36 0.87 0.79

ACRU2000 1.55 0.83 0.72

Lumped 2.05 0.57 0.52

Third ACRU-Int 2.63 0.91 0.73

ACRU2000 2.67 0.90 0.72

Lumped 2.89 0.82 0.67

From Van Tol et al. (2015)
NS Nash–Sutcliffe model efficiency coefficient

Fig. 10.4 The daily (a) and cumulative (b) stream flow model output for the third-order catchment
for the hydrological season 2012–2013. From Van Tol et al. (2015)
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later in the season was underpredicted. The cumulative flow of ACRU-Int closely
resembled the measured cumulative flow, while ACRU2000 and ACRU lumped
overestimated the flow. The same graphs for the second- and third-order flow are
shown and discussed in Van Tol et al. (2015).

The modelling accuracy of specific rainfall events is shown in Table 10.4, in
which mixed results were obtained. The NS peaked above 0.75 during each rain
event. Specifically, the second-order catchment modelled with ACRU-Int achieved
very good results. However, negative NS-values for at least one catchment for
every rain event were also obtained, which means that the modelling was less
accurate than an average value would have been. When looking at the R2-values, it
seems that ACRU lumped and ACRU2000 outperformed ACRU-Int frequently
with very high values above 0.8 being recorded often. However, ACRU-Int also

Table 10.4 The statistical output for the stream flow values modelled against those observed, for
three rain events during the hydrological season 2012–2013

Date Order Mode RMSE R2 NS

2012/12/04–2012/12/09 First ACRU-Int 4.41 0.32 −1.49

ACRU2000 4.24 0.31 −1.30

Lumped 4.19 0.59 −1.24

Second ACRU-Int 0.39 0.93 0.91

ACRU2000 0.49 0.87 0.81

Lumped 0.40 0.87 0.77

Third ACRU-Int 2.25 0.61 −2409.46

ACRU2000 0.62 0.95 −2886.29

Lumped 0.43 0.95 −3306.31

2012/12/25–2012/12/30 First ACRU-Int 3.80 0.83 −1.83

ACRU2000 3.67 0.83 −1.61

Lumped 3.66 0.84 −1.59

Second ACRU-Int 0.89 0.65 0.80

ACRU2000 0.45 0.86 0.63

Lumped 0.38 0.85 0.28

Third ACRU-Int 2.33 0.60 −7578.78

ACRU2000 0.61 0.94 −8666.15

Lumped 0.45 0.94 −10301.94

2013/01/17–2013/01/25 First ACRU-Int 6.79 0.96 −6.92

ACRU2000 6.24 0.89 −5.68

Lumped 5.74 0.72 −4.66

Second ACRU-Int 7.11 0.55 0.75

ACRU2000 2.62 0.81 0.73

Lumped 2.24 0.84 0.45

Third ACRU-Int 10.12 0.86 0.64

ACRU2000 2.80 0.90 0.65

Lumped 2.40 0.91 0.58

NS Nash–Sutcliffe model efficiency coefficient
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achieved very high (0.93) R2-values in some instances. Thus, the data are incon-
clusive as to whether or not modelling at a small timescale is accurately possible
and whether or not a certain model configuration outperforms the others. When
looking at the visual representation of the model outputs (Fig. 10.5), it is clear that

Fig. 10.5 Visual representation of the model outputs and measured stream flow values for three
large rain events
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in the beginning of the season, there is hardly any response to rainfall events and
that the models incorrectly modelled such responses. However, for the rain event
near the end of the season, all the models underestimated the stream flow. There can
be two explanations for this. Either the water store of the soil is larger than
anticipated, and thus the first two rain events served to fill up the soil water store,
and as the soil could take no more water, most of the rainfall from the third rain
event ended up as stream flow, or the sheer magnitude of the third rain event
(145 mm in two days) would bring about greater stream flow than would be
expected when setting up the model. Either way, the lack of consistently being able
to model single rain events show that there is a gap in our understanding of
hydropedological processes and our ability to model such events.

On a year scale (Table 10.5), the results are much more accurate than those on a
single rain event scale. When moving from the first order to the third order, the
model accuracy increased and ended with very good results for the third-order
catchment. ACRU-Int slightly outperformed the other modes in the second and
third orders, but performed worse in the first-order catchment. In the visual rep-
resentation of the data (Fig. 10.6), one can clearly see that ACRU-Int predicted the
cumulative discharge much closer to the observed values than the other two con-
figurations. The overall accuracy of the models decreased from the hydrological
season scale to the year scale, when measured with the R2-value. This is due to the
few rain events during the dry season that initiate a response in the models, but not
observed to generate stream flow in reality. When measuring the model accuracy
with the NS, it tells a different story, as NS-values increased for the full year for the
first- and third-order catchment, but decreased for the second-order catchment. This
is due to the high amount of time where no flow was recorded, influencing the
average values to which the NS coefficient compares the model outputs.

Table 10.5 The statistical
output for the stream flow
values modelled against those
observed, for the year 15
March 2012–15 March 2013

Order Mode RMSE R2 NS

First ACRU-Int 3.26 0.42 −0.10

ACRU2000 3.06 0.45 0.03

Lumped 3.06 0.41 0.03

Second ACRU-Int 2.10 0.40 0.47

ACRU2000 2.13 0.36 0.46

Lumped 2.30 0.23 0.37

Third ACRU-Int 1.53 0.90 0.79

ACRU2000 1.57 0.88 0.78

Lumped 1.68 0.80 0.75

NS Nash–Sutcliffe model efficiency coefficient
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10.5 Conclusions

It was shown that a hydrological model (ACRU) could be configured using detailed
soil information obtained by digital soil mapping. The more soil information was
included into the model, the better the model performed. However, the model
overestimated stream flow when low flow volumes were recorded and underesti-
mated the flow with high flow volumes. This shows that there is still a lack of our
understanding of hydrological processes within the soil or our ability to model those
processes through hydro-pedotransfer functions. The optimal level size of area for

Fig. 10.6 Daily measured and modelled stream flows for the third-order catchment from
2012-04-15 until 2013-04-15 (a), as well as cumulative flow for the same period (b)
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including soil mapping in hydrological modelling has not been confirmed but is
larger than second-order catchments. In general, ACRU modelled the hydrological
season well, but achieved less accurate results for a full year. Single rain events
were modelled erratically. Future work should define the optimal size of area at
which soil should be included into hydrological modelling and improve our
understanding of soil-related hydrological processes and determine how we could
model such processes.
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Chapter 11
Some Challenges on Quantifying Soil
Property Predictions Uncertainty
for the GlobalSoilMap Using Legacy Data

Zamir Libohova, Nathan P. Odgers, Jenette Ashtekar,
Phillip R. Owens, James A. Thompson and Jon Hempel

Abstract The GlobalSoilMap project aims to create digital soil property maps in a
raster format for six standard depths (0–5; 5–15; 15–30; 30–60; 60–100;
100–200 cm) and, for the first time, with estimates of uncertainty for predicted soil
property maps. Data-driven methods and expert knowledge methods have been
proposed, both of which present unique challenges. Initially, the majority of the
predicted soil property maps will be derived from legacy soil data. The quantification
of uncertainty, in particular, presents challenges due to the inherent nature of legacy
data coming from different vintages (varying scales, formats, degree of complete-
ness, differences in methods of observations, measurements, and classifications). We
discuss the merits of each approach and potential practical and temporary solutions
using two case studies from the USA, North America, and Llanos Orientales,
Columbia, South America. Both case studies have limited data with insufficient point
observations for a meaningful statistical approach for the estimation of prediction
interval (PI) uncertainty. For the US case study, the available point measurements

Z. Libohova (&) � J. Hempel
National Soil Survey Center, U.S. Department of Agriculture, Natural Resources
Conservation Service, Washington, D.C, USA
e-mail: zamir.libohova@lin.usda.gov

N.P. Odgers
Department of Environmental Sciences, Faculty of Agriculture and Environment,
The University of Sydney, Sydney, Australia
e-mail: nathan.odgers@sydney.edu.au

J. Ashtekar � P.R. Owens
Department of Agronomy, Purdue University, West Lafayette, USA
e-mail: goodman2@purdue.edu

P.R. Owens
e-mail: prowens@purdue.edu

J.A. Thompson
Division of Plant and Soil Sciences, West Virginia University, Morgantown, USA
e-mail: james.thompson@mail.wvu.edu

© Springer Science+Business Media Singapore 2016
G.-L. Zhang et al. (eds.), Digital Soil Mapping Across Paradigms,
Scales and Boundaries, Springer Environmental Science and Engineering,
DOI 10.1007/978-981-10-0415-5_11

131



are not adequate for PI uncertainty quantification at soil map unit level and fur-
thermore have been purposively collected to support the assignment of estimated
mean, upper and lower property values to soil map units. We compared the estimated
soil map unit upper and lower limits and 90 % CI from measured pedon for soil pH
and found no significant differences between the two. The results suggest that the
estimated upper and lower values from soil map units can be used for estimating the
90 % PI uncertainty at least initially until other independent measured point data
become available. The available points in Llanos Orientales were collected for soil
fertility evaluations and were independent of soil map unit polygons. However, they
were surficial samples, clustered, and biased toward cultivated fields. As a result,
only the 90 % CI was calculated and was found to be as wide as the range of the
mean predicted soil property. These examples highlight few challenges in quanti-
fying the 90 % PI and the need for more measured point data and flexible approaches
when dealing with uncertainty quantification.

Keywords GlobalSoilMap � Digital soil mapping � Soil legacy data � Soil prop-
erty maps � Uncertainty

11.1 Introduction

Quantifying the uncertainty associated with predicted soil property maps based on
the GlobalSoilMap (GSM) specifications (GlobalSoilMap Science Committee
2013) presents numerous challenges (Odgers et al. 2012). These challenges relate
mostly to the lack of sufficient point measured data that can be used for the cal-
culation of the 90 % prediction interval (PI) around the mean. Thus, existing legacy
data need to be used with Digital Soil Mapping (DSM) approaches (Lagacherie and
McBratney 2007) that are tailored to the kind and quality of legacy data as dis-
cussed by Minasny and McBratney (2010). These approaches need to be flexible
and combine data-driven approaches (Malone et al. 2011a, b) with expert knowl-
edge methods (Lilburne et al. 2009).

The objective of this study is to highlight few challenges in quantifying soil
property predictions uncertainty from two different scenarios that are commonly
associated with the soil legacy data. The United States scenario deals with Soil
Survey Geographic (SSURGO) database that provides estimated upper and lower
limits to represent the typical range in the predicted soil property distributions of
each soil series or soil map unit (USDA-NRCS 2013). The estimated upper and
lower limits have been derived from a combination of laboratory-measured values
and expert knowledge resulting in predicted values that are not necessarily inde-
pendent of each other. In practical terms, this means that experts (i.e., soil mappers)
derived these predictions by combining measured data with other field observations
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to predict mean and ranges for soil polygon and soil type-related properties. The
major hypothesis is that the estimated upper and lower limits are derived from the
distribution of the measured point pedon data. If true, they can be used as 90 % PI
of the SSURGO predicted soil property maps.

The Llanos Orientales scenario represents a case when soil map units do not
have any estimated or measured values for the soil properties. However, there are
laboratory-measured values that are most likely independent of the soil map units,
meaning that were not used for attributing soil polygon maps with soil properties,
but that are surficial samples collected for soil fertility testing. These samples are
clustered mostly in agricultural fields and do not cover the entire area for which soil
property maps are needed. Also the number of points is not sufficient for predictions
at map unit level. The major objective for this case study was to use measured data
from soil fertility campaign in combination with expert knowledge, fuzzy logic
mapping (Zhu et al. 2001) combined with terrain analysis (Jasiewicz and Stepinski
2013), and homosoil approach (Mallavan et al. 2010) to generate predicted soil
property maps and 90 % CI.

11.2 Materials and Methods

11.2.1 US Case Study

The analysis is based on soil pH values for soil series with mapping extend greater
than 400,000 ha in order to assure an adequate sample size of sampled point data
from USDA-NRCS National Cooperative Soil Survey Soil Characterization
Database (NCSS-SCDB) (Libohova et al. 2013). The soil series were selected from
the National Soil Information System (NASIS) database. We attempted to select
soil series with more than 30–35 measured pedons data based on the central limit
theorem assumption that the distribution of sampled measured values from a
population tends to be close to that of the population for a sample size greater than
30–35 (Ott and Longnecker 2001). For the purposes of this comparison, a
straightforward match at the soil horizon level of the soil pH between measured
point pedon data and estimated values in SSURGO was difficult due to different
naming of these horizons in NCSS-SCDB and NASIS. As a result, the comparisons
were conducted only for the surface horizon in order to assure a satisfactory match
between measured data from the NCSS-SCDB and estimated values from
SSURGO/NASIS. Simple linear regression analysis was used to assess the overall
significance of the relationship between the estimated upper and lower limits and
the calculated 90 % CI from pedons to determine whether they were closely
associated to support their use as 90 % PI.
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11.2.2 Colombia Case Study

The Llanos Orientales occupies approximately 238,181 km2 of northeastern
Colombia. The area has a general soil map (1:250,000) and a semi-detailed soil map
(1:25,000–1:50,000), which cover only 35 % of the study area. The existing soil,
geology, and vegetation maps were used to understand soil–landscape relationships
in order to be applied for the unmapped areas. A total of 64 sampled point data
analyzed for soil organic carbon (SOC) were obtained from the Instituto Geografico
Agustin Codazzi (IGAC) (http://www.igac.gov.co/igac) for 0–10 and 10–20 cm
depths.

A pattern recognition landform classification (Jasiewicz and Stepinski 2013)
based on the 90 m Shuttle Radar Topography Mission (SRTM) (Jarvis et at. 2008)
digital elevation model was used to generate 10 geomorphons that were aggregated
in five landscape positions (flat, ridges, slope, valley, and footslope). A zonal
statistics for normalized height, topographic wetness index (TWI), and slope gra-
dient were conducted for the aggregated landscape positions and the existing
semi-detailed soil map units. Further, the landform classification offered more detail
compared to the existing semi-detailed soil map; thus, only zonal statistics for
aggregated landscape positions was used. However, the relationships between
existing semi-detailed soil map and geology and vegetation were useful in pre-
dicting initial coarse scale soil map units for the unmapped areas (Ashtekar et al.
2013). The mean and standard deviation of each terrain attribute for the five
aggregated landscape positions were used as rules to generate a fuzzy soil class map
(Zhu et al. 2001). The values of SOC were assigned to each soil class (aggregated
landscape positions) based on the mean from the measured sampled points that fell
within each soil class. The derived mean values were multiplied with the fuzzy
membership values of each soil class to make a continuous predicted SOC
map. The 90 % CI for predicted SOC map was calculated by combining all mea-
sured sampled point data.

11.3 Results and Discussion

11.3.1 US Case Study

The mean measured pedon soil pH and estimated SSURGO mean were signifi-
cantly correlated (Adjusted R2 = 0.4; RMSE = 0.4; p-value < 0.01). More impor-
tantly, the lower boundary of 90 % CI from pedons and the SSURGO estimated
lower limit was significantly correlated (Adjusted R2 = 0.86; RMSE = 0.27;
p-value < 0.001) as was the upper boundary of the 90 % CI from pedons and
SSURGO estimated upper limit (Adjusted R2 = 0.67; RMSE = 0.21;
p-value < 0.001). As previously stated, these comparisons were not based on a
straightforward relationship between the horizons for measured pedon data and the
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estimated lower and upper limits. There were discrepancies between horizon
nomenclatures due to various database transactions that have taken place over time
(USDA-NRCS 2013). Most notably is the fact that the SSURGO database has
aggregated various horizons in layers named H1–H3 based on their interpreted
behavior but has also maintained the genetic horizon nomenclature for other soil
series. This mixed naming convention has made it almost impossible to establish
the straight links at matching genetic horizons between measured pedon data and
SSURGO attribute data which is not uncommon when dealing with legacy data. In
addition, the measured soil data were collected to support the soil mapping activ-
ities; thus, the sampling schemes were not necessarily designed for statistical
purposes. As such the interpretation of statistical analysis needs to be done cau-
tiously and within the context of legacy soil data. Indeed, Minasny and McBratney
(2010) argue that the kind and quality of the legacy soil data determines the kind of
DSM approaches which requires flexibility especially when legacy soil data are the
only data available to support such mapping. However, the fact that the 90 % CI
from measured pedon data and estimated upper and lower limits of predicted soil
properties from SSURGO are highly correlated would justify the use of estimated
SSURGO upper and lower limits as the 90 % PI at least initially until more
measured point data becomes available for a truly statistical quantification of the
90 % PI according to GlobalSoilMap standards.

11.3.2 Colombia Case Study

The detailed soil map generated based on the geomorphons methodology (Jasiewicz
and Stepinski 2013) showed much greater detail compared with the semi-detailed
soil map (1:25,000–1:50,000) (Fig. 11.1). More importantly, the soil map generated
from geomorphons extended to the entire Llanos Region, providing a better soil
map resolution compared to the existing general soil map (1:250,000). The previ-
ously generated geology and geomorphology maps (Goosen 1971; Atehortúa et al.
2010) were overall in agreement with the new soil map but did not provide the level
of detail needed for soil property maps at finer resolution. Using the homosoil
approach (Mallavan et al. 2010), however, allowed for a detailed soil map based on
the information provided from the geology, vegetation, and especially geomor-
phology maps in combination with the semi-detailed soil map.

The continuous SOC map generated from the fuzzy geomorphons soil map that
was based on fuzzy logic approach (Zhu et al. 2001) highlights some differences
associated with geomorphology and soil landscape position (Figs. 11.2a and 11.3a).
The Plains overall had more SOC compared to the Dissected High Plains, mostly
due to historical and management differences. The Dissected High Plains have
experienced severe erosion since the last tectonic uplift that lead to the establish-
ment of Meta River that divided the Llanos Region into two distinct geomorphic
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units (Goosen 1971). The Plains, on the other hand, have received continued fresh
deposits from the uplift of Cordilleras Mountains northwest of the Llanos Region.
Also the dominant vegetation of the Plains has been the savannah type which has
favored the accumulation of the SOC compared to the Dissected High Plains where
the opposite has occurred due to erosion caused by age of the landscape and
anthropogenic factors (Goosen 1971).

The 90 % CI for the predicted SOC map were found to be as great as the
variability in the predicted SOC itself (Figs. 11.2b and 11.3b). This is to be
expected given the bias associated with the point observations that were used to
generate the map. Most of the samples were taken near roads in agricultural fields
displaying a degree of clustering (Ashtekar et al. 2013). As a result, the observation
points failed to capture the large degree of variability present in the Llanos Region.
Also, because of the insufficient sample points the 90 % CI instead of the 90 % PI
was calculated, which does not meet the GlobalSoilMap standards for quantifying
the uncertainty of predicted soil properties. The map is far from perfect; however, it
provides an overall picture of the surface SOC distribution for the entire region. In
addition, it highlights areas that may need more sampling thus serving as a platform
for designing unbiased sampling schemes that would allow for a better represen-
tation of the variability of the entire region and quantification of uncertainty of
predicted soil property maps.

0 10 20 30 405
Kilometers

Validation Points (Lavelle & Fonte)
Field Visits Points 
Modeling Points (IGAC) 

Fig. 11.1 Map of the major soil landscape positions based on geomorphons for a portion of
Llanos Region. The delineations in yellow represent the existing semi-detailed soil map units. The
color-coded dots represent observation points that were used to make property maps (modeling
points) and validation [validation points—for more on validation, see Ashtekar et al. (2013)]
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Fig. 11.2 a Continuous soil organic carbon (% SOC) map and b the 90 % confidence interval
SOC map for a portion of Llanos Region for the 0–10 cm soil layer

11 Some Challenges on Quantifying Soil Property … 137



11.4 Conclusions

We have identified some challenges surrounding the development of maps of
uncertainty predictions for GlobalSoilMap products based on legacy soil data
collected in the USA and Llanos Orientales Region in Colombia. It is likely that
some of the issues we identified here may be applicable to other jurisdictions also,

% SOC

0 80 160 240 32040
Kilometers

% SOC

Plains

Dissected High Plains

Plains

Dissected High Plains

(a)

(b)

Fig. 11.3 SOC map 90 % CI for the 0–10 cm layer for the Llanos Region. The dashed line shows
the current location of Meta River that was created as a result of tectonic uplift dividing the Llanos
region into two distinct geomorphic units. The area in red represents the selected portion of the
region where most of the point observations used to generate the SOC maps were located
(Fig. 11.2a, b)
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and that other jurisdictions will experience challenges unique to their own legacy
soil data as well. Given the limitations associated with using legacy soil data, there
may be a need to be pragmatic and make some assumptions as the data are used for
tasks that were unforeseen at the time of their collection. As a result, uncertainty
predictions about the reported soil property values will likely be high, but it will be
quantified spatially exhaustively for the first time.
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Chapter 12
Spatial Assessment of Soil Organic
Carbon Using Bayesian Maximum
Entropy and Partial Least Square
Regression Model

Bei Zhang and Sabine Grunwald

Abstract There has been great interest in the estimation of soil carbon over the last
decade to address critical environmental, agronomic, and sociopolitical issues. Soil
proximal sensing has shown much potential for soil carbon assessment.
Visible/near-infrared diffuse reflectance spectroscopy (VNIRS) has been introduced
as a complementary data source in digital soil mapping due to its cost effectiveness.
However, inmany studies, the uncertainty in soil modeling usingVNIRS has not been
explicitly taken into account. Bayesian maximum entropy (BME) is a modern geo-
statistical method that incorporates auxiliary/soft data within a theoretical sound
framework. Our objective was to employ VNIR data and BME to spatially estimate
soil organic carbon (SOC). Another objective was to compare the performance to
estimate SOC using BME to classical geostatistical methods. A total of 1012 soil
samples from Florida, USA, were employed from a database that included pairs of
SOC measurements derived by dry combustion and hyperspectral data with 1-nm
resolution in the VNIR spectral range (350–2500 nm). Partial least square regression
(PLSR) was used to model the relationship between VNIR data and SOC. For spatial
estimations of SOC, we employed BME using “hard” (SOC measurements from the
laboratory) and interval “soft” data (predictions of VNIR–PLSR model). For the
purpose of comparison, ordinary kriging (OK) was used with only the hard data set
(OK1) and the SOC estimates derived from the VNIRS–PLSR model (OK2) at point
locations. Both BME and OK2 show distinctly different pathways of assimilating
vague (“soft”) data into the spatial modeling process. The three spatial estimation
methods (BME, OK1, and OK2) were examined using the independent validation set
by calculating bias, root mean square error (RMSE), residual prediction deviation
(RPD), and ratio of performance to inter-quartile distance (RPIQ). The preliminary
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results show that BME performed generally as well as OK1, which may be due to the
data splitting effects. However, both BME and OK1 were better than OK2. As BME
can take advantage of data from the PLSRmodel, it offers the possibility to reduce the
amount of laboratory-measured samples to map across a region. OK2 performed
worse than OK1, which showed that using vague data into kriging leads to higher
uncertainties. In this case, data from the VNIRS model may not help to improve the
performance of predictions in kriging. These results underpin the potential of theBME
approach in digital soil mapping.

Keywords Bayesian maximum entropy � Digital soil mapping � Soil carbon �
Visible/near-infrared reflectance spectroscopy

12.1 Introduction

Soil carbon is considered as the largest pool of carbon in terrestrial ecosystems (Lal
2004) with multiple environmental cobenefits including fertility, productivity, and
soil health that influence many agronomical, environmental, and political issues
(Lacoste et al. 2014). Mapping the spatial distribution of soil carbon at a variety of
spatial and temporal scales has been of great interest to address needs (Grunwald
2009; Minasny et al. 2013). A variety of methods have been used in soil carbon
mapping, such as regression kriging (Vasques et al. 2010), geographically weighted
regression (Zhang et al. 2011), and random forest (Wiesmeier et al. 2010).
Visible/near-infrared reflectance spectroscopy (VNIRS) has been established as an
alternative tomore costly laboratorymeasurements to characterize soil properties. It is
rapid and nondestructive and requires less sample preparationwith less or no chemical
reagents (McCarty et al. 2002;Viscarra Rossel et al. 2006; Brown 2007;Vasques et al.
2008). Modeling the quantitative relationships between soil attributes and spectral
characteristics requires sophisticated statistical techniques (Viscarra Rossel et al.
2006).A variety of regressionmethods have been used formodeling soil VNIRS, such
as principal component regression (PCR), partial least squares regression (PLSR),
multiple linear regression (MLR), and artificial neural network (ANN) (Mouazen et al.
2010; Rossel and Behrens 2010). Among those techniques, PLSR is the most widely
used (Brown et al. 2005; Vasques et al. 2008; Volkan Bilgili et al. 2010). The algo-
rithm of PLSR is computationally faster than other methods; models are more inter-
pretable and are relatively insensitive to over-fitting (Brodský et al. 2013). However,
Brodský et al. (2013) found that PLSR modeling can cause uncertainty in the map of
spatial prediction. More importantly, the uncertainty from spatial estimation by
kriging can be substantial. Consequently, using VNIRS data directly in the kriging
process may be not a good choice. The geostatistical methods that can incorporate
auxiliary variables, such as regression kriging (RK) usingVNIRS data to estimate soil
properties (Ge et al. 2007), might be an alternative approach. However, if the rela-
tionship between auxiliary variable and target variable is not constant in all parts of the
study area, the predictions might be even worse than just using plain kriging (Hengl
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et al. 2007). It is critical to note that RK and PLSR fail to incorporate the prediction
uncertainty explicitly into themodeling process. To explicitly incorporate soil spectral
data into the modeling process to predict soil properties has been underexplored, but
will be addressed in this study.

Bayesian maximum entropy (BME) proposed by Christakos (1990, 2000) is a
modern geostatistical approach, which can integrate data with uncertainty into the
modeling process, aiming to improve predictive capabilities compared with tradi-
tional estimation methods. In this framework, the term “hard data” refers to the
most precise and accurate data with current instrumentation (e.g., soil analytical
laboratory measurements), while “soft data” may represent varying levels of
uncertain observations related to the target variables. The latter may be estimates of
soil carbon derived from spectral data. Intervals of values or probability density
functions are two ways to represent soft data. BME has been successfully applied in
soil science (Bogaert and D’Or 2002; Douaik et al. 2004, 2005), environmental risk
assessment (Lee 2005; Yu et al. 2009; Bogaert et al. 2009), environmental health
(Puangthongthub et al. 2007; Money et al. 2009; Lee et al. 2009; Pang et al. 2010),
and climate research (Lee et al. 2008).

Different kinds of soft data have been used in soil science, such as legacy soil
map and raw measurement data (Bogaert and D’Or 2002; Douaik et al. 2004).
There are no studies yet that have incorporated soil VNIRS data into the BME
framework to improve predictions of soil properties.

The aims of this research were to: (i) investigate the performance of BME spatial
estimation for SOC combined with VNIRS data, (ii) assess the performance of
BME with soft data derived from VNIRS–PLSR models, and (iii) compare the
accuracy of BME spatial estimation with traditional ordinary kriging as a reference.

12.2 Materials and Methods

12.2.1 Study Area

The study area is the State of Florida located in the southeastern Coastal Plain,
USA, extending over six and one-half degrees of latitude (24.55–31.00 N, 80.03–
87.63 W). The prevalent climate in Florida is humid subtropical, while the southern
part has a tropical climate (add reference). The majority of soils in Florida are
Spodosols (32 %), Entisols (22 %), Ultisols (19 %), Alfisols (13 %), and Histosols
(11 %) (Natural Resources Conservation Service 2006). Land use and land cover
are composed of wetlands (28 %), pinelands (18 %), and urban and barren lands
(15 %), while agriculture, rangelands, and improved pasture occupy 9 %, 9 %, and
8 % of this state, respectively (Florida Fish and Wildlife Conservation Commission
2003). Florida is characterized by relatively flat topography with gentle slope
varying from 0 to 5 % in most parts of the region. Only less than 1 % of the state
has moderate slopes of 5–19 % (US Geological Survey 1999).
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12.2.2 Data Preparation

We used soil data from a previous project “Rapid Assessment of Trajectory
Modeling of Changes in Soil Carbon across a Southeastern Landscape” (courtesy of
the soil database maintained by Dr. Grunwald’s Pedometrics, Landscape Analysis,
and GIS Laboratory). A detailed description of sampling design, laboratory anal-
ysis, and spectral scanning were provided by Xiong et al. (2014). Briefly, a total of
1012 soil samples were collected from March 2008 to August 2009 using a
random-stratified sampling design based on land use—soil order strata. At each site,
four 20 × 5.8 cm soil cores were collected within a 2-m-diameter area. These four
soil samples were bulked in the field and then placed in a cooler until they could be
transported to laboratory. SOC was analyzed in the laboratory using dry combus-
tion (Shimadzu TOC-V/SSM-5000). For preliminary analysis, SOC values higher
than the 75 % quantile of the whole data were removed. This pretreatment reduced
the number of sample to 759.

Spectral data were derived from scanning of soil samples in the laboratory in the
VNIR spectral range (350–2500 nm) at 1-nm intervals. Each sample was scanned
four times. The average of these four scans was computed for every single sample.
Three preprocessing methods were applied to the spectra data. First, the reflectance
curves were smoothed across a moving window of 9 nm by using the Savitzky–
Golay algorithm with a third-order polynomial. Then, to reduce the complexity of
the data, the averages of reflectance values were taken across a 10-nm window.
Last, the second-order derivate was applied with a 4 polynomials and 7-nm win-
dow. Those 3 steps reduced each of the spectral curves to 215 values.

12.2.3 Data Analyses

The BME approach was employed that provides a systematic and rigorous way to
incorporate soft data in addition to hard data into the modeling process. According
to Christakos (1990), BME balances two requirements: high prior information
about the spatial variability and high posterior probability about the estimated
map. The first requirement uses a variety of sources of prior information and
involves the maximization of an entropy function. The second requirement leads to
the maximization of a so-called Bayes’ function.

To implement BME and kriging, all soil samples were randomly divided into
four groups. The first one (model set) included laboratory-measured SOC and
scanned spectral data and was used for establishing the VNIRS model using PLSR.
By using the VNIRS–PLSR model, predictions of SOC were derived with spectral
data from the second group (soft data set) to acquire prediction values and devia-
tions. With the prediction outcomes of the VNIRS–PLSR model, each individual
soft interval can be obtained. Specifically, for each sample in the soft data set, the
upper limit of the interval equaled the SOC prediction value plus one deviation, and
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the lower limit was set to the SOC predication value minus deviation. The last two
groups were hard data and independent validation data, respectively. Although both
of them were laboratory-measured SOC, the hard data set was only used for cali-
bration and the other set was used to validate the performance of geostatistical
estimations. Soft interval data and hard data were both integrated into the BME
estimation process. The model set, soft data set, hard data set, and validation set
included 190, 380, 114, and 75 samples, respectively.

For spatial estimations of SOC, we employed BME using “hard” (SOC mea-
surements from the laboratory) and “soft” data (VNIR data). The BME analysis
included three main stages (Christakos 1990; Douaik et al. 2005):

Prior stage: with the goal to maximize the information content using generalized
knowledge which was implemented using the model set (i.e., pairs of
laboratory-measured SOC and VNIR data) and PLSR to estimate the prior proba-
bility density function (PDF).
Meta-prior stage: By using the VNIRS–PLSR model, predictions of SOC were
derived with spectral data from the second group (i.e., the soft data set) to acquire
prediction values and deviations. With the prediction outcomes of the VNIRS–
PLSR model, each individual soft interval can be obtained. Specifically, for each
sample in the soft data set, the upper limit of the interval equaled the SOC pre-
diction value plus deviation and the lower limit was set to the SOC predication
value minus deviation.
Posterior stage: aiming to maximize the posterior PDF through updating of the prior
PDF by taking into account the hard data set. The posterior and the prior PDFs are
related through the conditional probability law based on Bayes’ theorem.

For the purpose of comparison, ordinary kriging (OK) was used with only the
hard data set (OK1). Then, OK was also employed using SOC estimates derived
from the VNIRS–PLSR model (OK2). Both BME and OK2 show distinctly dif-
ferent pathways of assimilating vague data into the spatial modeling process. The
three spatial estimation methods (BME, OK1, and OK2) were examined using the
independent validation set by calculating bias, root mean square error (RMSE),
residual prediction deviation (RPD), and ratio of performance to inter-quartile
distance (RPIQ).

12.3 Results and Discussion

The descriptive statistics of SOC are reported in Table 12.1. Soil organic carbon
(SOC) in Florida was highly variable with range values for all four sets with more
than 17 g kg−1. The means of all the four data sets were similar, except the
validation set with a mean of 11.2 g kg−1 and median of 10.2 g kg−1. This indicates
a slight bias in the validation data set toward high SOC values which may have
impacted the validation evaluation process. Moreover, the minimum value of the
validation set was 3.9 g kg−1 that was substantially higher than the values in the soft
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and hard sets. This may be another reason that impacts the result of validation
especially when there are estimated values less than 3.9 g kg−1 derived from BME
and kriging. As SOC in all the data set was positively skewed, the PLSR model was
built using natural logarithm-transformed SOC values.

The PLSR model built from the model dataset performed fairly well with R2 of
0.52 and RMSE of 0.32 g kg−1 (Fig. 12.1). Figure 12.2 shows the predicted SOC
values using the VNIRS–PLSR model and the spectral data from the soft set. This
shows a good model fit. In both models (Figs. 12.1 and 12.2), residuals in the high
and low SOC range were found indicating the uncertainty arising from models.

The spatial covariance derived from the hard set and soft interval data was
modeled by nesting two exponential models. The sills for these two models were
13.5 and 2, and the ranges were about 1000 m and 30,000 m, respectively. The
ranges of these models showed that the spatial correlation of SOC in Florida was
relatively large (Fig. 12.3).

Figures 12.4, 12.5, and 12.6 show the results of spatial estimation of BME, OK1,
and OK2 in Florida. The basic patterns of these three maps are quite similar, with
the high values of SOC mainly located in the southeast corner of Florida consisting
of highly organic soils. The range in SOC was narrower for BME than kriging, with

Table 12.1 Descriptive statistics of soil organic carbon in different data sets

N Mean SD Median Min Max Range Skew Kurtosis

g kg−1

Whole set 759 10.3 4.4 9.4 1.3 21.3 20.0 0.6 −0.5

Model set 190 9.9 4.5 8.7 3.0 21.1 18.1 0.7 −0.6

Soft set 380 10.2 4.2 9.5 1.3 20.9 19.6 0.5 −0.5

Hard set 114 10.3 4.7 9.5 1.9 20.9 19.1 0.6 −0.6

Validation set 75 11.2 4.6 10.2 3.9 21.3 17.4 0.6 −0.7

N Number of observations in each set, SD Standard deviation

Fig. 12.1 Predicted and
observed log-transformed soil
organic carbon (log SOC)
values derived from partial
least square regression
(PLSR) using the model set
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the maximum value only 15.4 g kg−1 that only covered about 75 % of the original
range. This indicated that the method of BME was not sensitive to model high
values. Another possible explanation may be the uncertainty associated with SOC
of the PLSR model. As the goodness of fit for the model was just acceptable, the
prediction SOC values may enlarge the uncertainty in BME. In contrast, the esti-
mated SOC range by OK1 and OK2 corresponded well to the actual range in
measured SOC within the State of Florida. The validation results indicate OK1
performance as well as BME (Table 12.2). The RMSE, RPD, and RPIQ of these
two evaluations were almost the same. However, the SOC estimation map of BME
was capable of showing more variations, whereas OK tended to smooth out SOC
variation. The outcomes of OK2 were the worst, which indicate that assimilating
vague data directly into kriging was not a good choice.

Fig. 12.2 Predicted and
observed log-transformed soil
organic carbon (log SOC)
values derived from VNIRS–
PLSR model using the soft
data set

Fig. 12.3 The covariance
structure of soil organic
carbon (g kg−1) and nested
models
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Fig. 12.4 Estimations of soil
organic carbon (g kg−1) using
Bayesian maximum entropy

Fig. 12.5 Estimations of soil
organic carbon in g kg−1

using ordinary kriging and the
hard data set (OK1)
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12.4 Conclusions

Theoretically, BME is expected to perform better than traditional univariate geo-
statistics (OK) because BME incorporates both—hard and soft data—into the
modeling process. This was not found in the current preliminary study and needs
further investigation probing into the causes. Preliminary findings suggest that the
two methods, BME and kriging, performed almost the same using hard data.
However, the spatial estimates of BME showed more details of SOC heterogeneity
than OK1 and OK2. The VNIR spectral data used as soft data inputs in the BME
modeling process possibly enhanced the capability to model SOC variability across
Florida. The relatively small validation data set could not identify significant dif-
ferences in performance between BME and OK in this study. Since the BME
modeling process was influenced by many factors, such as preprocessing of
VNIRS, the quality of the PLSR model, and parameter set during BME computing,

Fig. 12.6 Estimations of soil
organic carbon in g kg−1

using ordinary kriging and the
prediction from
visible/near-infrared spectral
(VNIRS)–partial least square
regression (PLSR) model
(OK2)

Table 12.2 Validation results for soil organic carbon (g kg−1) derived from Bayesian maximum
entropy, ordinary kriging with hard data (OK1), and ordinary kriging with predictions from partial
least square regression model (OK2)

RMSEa Bias RPDa RPIQa

BME 4.50 −1.27 1.02 0.63

OK1 4.45 −0.55 1.04 0.63

OK2 4.66 −1.86 0.99 0.61
aRMSE Root mean square error, RPD Residual prediction deviation, RPIQ Ratio of performance to
inter-quartile distance
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the accuracy of BME is expected to be improved by adjusting those factors. VNIR
spectral data are easy to obtain and are poised to provide “vague” secondary data
input to enhance the scarcity of hard (laboratory)-measured SOC data.
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Chapter 13
Estimation of the Actual and Attainable
Terrestrial Carbon Budget

P. Chaikaew, S. Grunwald and X. Xiong

Abstract Organic carbon is a key component of the terrestrial system that affects
the physical, chemical, and biological processes. Changes in both the soil and the
terrestrial carbon storage occur due to the interactions of natural ecological pro-
cesses and anthropogenic activities. Research gaps to quantify soil and terrestrial
carbon still exist. To discern between the actual and attainable carbon pools is
critical to identify suitable adaptation and management alternatives to optimize
natural carbon capital in the context of regional imposed changes, such as land use
and climate change. Our objectives were to: (i) assess the spatially explicit rela-
tionships between observed soil organic carbon (SOC) and environmental factors
and (ii) assess actual (TerrCactual) and attainable (TerrCattain) terrestrial carbon
capital considering below-ground (soil) and above-ground (biomass) carbon. We
collected 234 soil samples in the topsoil (0–20 cm) in 2008 and 2009 across the
Suwannee River Basin in Florida, USA, based on a random design stratified by land
cover/land use and soil suborders. For above-ground carbon assessment, we derived
data from the LANDFIRE project which provided a high-resolution map of
year-2000 baseline estimates of biomass carbon. A comprehensive set of 172
soil-environmental and human covariates was assembled from multiple data sources
to predict and validate observed SOC stocks and TerrCactual using Random Forest
(RF). The STEP-AWBH conceptual model (with S: Soil, T: Topography,
E: Ecology, P: Parent material, A: Atmosphere, W: Water, B: Biota, and H: Human
factors) provided the conceptual modeling framework to model TerrCattain that was
implemented using RF and simulated annealing in combination. In the simulation,
the STEP factors were kept constant, but the AWBH factors were varied by ±10,
±20, and ±30 %. The combined factors which amount to the highest modeled
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terrestrial carbon stocks were postulated to equal the attainable terrestrial carbon
stocks. Results suggest that the TerrCattain stocks showed slightly larger amounts
than the TerrCactual stocks across the basin. The TerrCactual was 190 Tg C and the
maximum TerrCattain was 195 Tg C. Biotic, soil, parent material, topographic, and
water-related factors played important roles in determining SOC storage, while
human factors were only weak predictors. Although mean annual precipitation and
monthly mean temperature in summer months were significant to explain both SOC
and terrestrial carbon stocks, they showed moderate/minor influence on carbon
storage. The land use/land cover variables were the strongest factors predicting soil
and terrestrial carbon stocks. These findings suggest that land use adaptions have
much potential to achieve TerrCattain, specifically conversions from cropland to land
use systems with larger net primary productivity. Bare soils, which represent
marginal soils, also have potential to elevate carbon storage through management
adaptions that do not compete with other land uses.

Keywords Actual carbon stocks � Attainable carbon stocks � Terrestrial carbon �
Soil organic carbon � Random forest � Simulated annealing � STEP-AWBH

13.1 Introduction

Carbon sequestration has become an important policy option to mitigate the
increasing atmospheric greenhouse gases (GHG) that pose threats to a warming
global climate. The terrestrial biosphere can sequester significant amounts of
anthropogenic carbon dioxide (CO2) by the natural carbon uptake process through
plant biomass and soils. However, how ecosystem factors and carbon dynamics in
terrestrial systems interact with each other that determine critically important
ecosystem services is not well understood yet.

Numerous digital soil mapping studies have modeled soil organic carbon
(SOC) across large regions (Bélanger and Pinno 2008; Wang et al. 2011; Wu et al.
2009; Xiong et al. 2014), and terrestrial carbon has been assessed at global and
continental scale by Lal (2008) and Dickson et al. (2014). Yet, these carbon
assessments focus on actual conditions without providing clues of attainable or
potential carbon that could be sequestered in a landscape. To identify those
site-specific adaptations that demonstrate most promise to attain the largest amount
of carbon storable in soil and biomass is of interest because they can guide land
management, adaptation, mitigation, decision making, and policy implementations
to achieve a more carbon neutral global state.

The STEP-AWBH model was developed for pixel-specific assessment of soil
properties from a suite of soil-environmental factors (Grunwald et al. 2011). This
conceptual model embraces soil (S), topography (T), ecology (E), parent material
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(P), atmosphere (A), water (W), biota (B), and human (H) factors together to
account for the effects on soil genesis. The STEP-AWBH model is flexible enough
to be implemented with various geostatistical techniques, ensemble regression, and
data mining methods to predict soil and terrestrial properties. For example, Xiong
et al. (2014) applied the STEP-AWBH modeling concept to model SOC stocks in
Florida using various data mining techniques, such as regression trees, bagged
trees, random forest (RF), and support vector machines, from a large set of pre-
dictors (210 STEP-AWBH variables).

This study adopts the STEP-AWBH model and applies it to assess the attainable
capacity of a terrestrial ecosystem to store carbon. Similar to the SOC sequestration,
the attainable terrestrial carbon (TerrCattain) is set by factors that limit the inputs of
carbon to the system (e.g., residue from vegetation, and fertilization that stimulates
biomass production/net primary production), which can be modified by humans
(e.g., implementation of best management practices, reduction of burning of fossil
fuels for energy consumption, and wetland restoration) (Ingram and Fernandes
2001; Stockmann et al. 2013). The actual terrestrial carbon (TerrCactual) is con-
trolled by factors that modulate carbon storage (e.g., drainage, tillage, land use
management, soil respiration, or photosynthesis) and depends on a combination of
environmental landscape factors, past and current anthropogenic forcings, and
socioeconomic drivers. We postulate that human-induced management strategies
combined with environmental fluctuations of climate, land use, and hydrology
contribute to TerrCattain that is constraint by site-specific soil-landscape conditions.
Importantly, which of these coupled human-environmental combinations achieve
the maximum attainable carbon storage in terrestrial systems is usually not known.
The objectives of this study were to: (i) assess the spatially explicit relationships
between measured SOC stocks and environmental factors and (ii) assess the
environmental value of actual (TerrCactual) and attainable (TerrCattain) terrestrial
carbon capital across the Florida portion of the Suwannee River Basin, (FL-SRB)
consisting of below-ground and above-ground carbon.

13.2 Study Area

The FL-SRB is located in north-central Florida with an approximate area of
19,665 km2 (Fig. 13.1). Dominant soils are sand-rich which inherently does not
promote SOC accretion. On the other hand, soils formed in aquic conditions are
carbon-rich which are prominent in the FL-SRB. The soil temperature regimes are
mixed with 86 % of the area’s soil classified as thermic and 14 % as hyperthermic
(Natural Resources Conservation Service (NRCS), 2006). The ecological landscape
conditions such as land use/land cover (LULC) and hydrology are complex.
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13.3 Materials and Methods

13.3.1 Above-Ground and Below-Ground Carbon Data

A total of 234 soil samples in the topsoil (0–20 cm) were collected between 2008
and 2009 across the FL-SRB and its buffer area (20 km around the FL-SRB) based
on the random design stratified by LULC and soil suborders. Each soil sampling
location was georeferenced with a differential global positioning system. Total
carbon (TC) was measured by a combustion gas analyzer (Shimadzu
TOC-V/SSM-5000) at 900°C, while inorganic carbon (IC) was analyzed by treating
soil samples with 42.5 % phosphoric acid (H3PO) and then combusting them at
200°C. The SOC concentration was calculated by subtracting the IC concentration
from the obtained TC concentration (mg kg−1). The SOC concentration for each site
was converted to stock units (kg C m−2) using measured bulk density and soil
depth. For above-ground carbon assessment, we derived data from the LANDFIRE
project which provided a high-resolution map of year-2000 baseline estimates of
above-ground biomass carbon (National Biomass Carbon Data, NBCD 2000
Version 2) (Kellnorfer et al. 2013). The above-ground live and dry biomass in kg C
m−2 was extracted at each of the soil sampling locations. The site-specific
TerrCactual stocks were derived by the summation of the measured SOC stocks in

Fig. 13.1 Terrestrial carbon observations at 234 locations in the Suwannee River Basin (Florida
portion) and land use/land cover classes
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the top 20 cm of the soil and above-ground biomass from the NBCD database
(kg C m−2) based on 234 soil sampling locations.

13.3.2 Environmental and Anthropogenic Covariates

A comprehensive set of 172 environmental and human covariates representing the
STEP-AWBH factors was compiled from multiple data sources using ArcGIS
software. Predictors included 31 categorical and 141 continuous data types and are
described in detail in Chaikaew (2014).

The S factor was described by 15 soil properties (e.g., soil taxonomic order and
soil texture) and ten soil–water variables (e.g., surface soil moisture and drainage
class); the T factor was represented by 9 topographic attributes (e.g., slope and
compound topographic index); the E factor was described by 2 ecological variables
(e.g., ecoregion and physiographic province); the P factor was represented by 2
parent material variables (e.g., environmental geology and surficial geology); the A
factor was described by 3 atmospheric factors (e.g., precipitation, temperature, and
solar radiation); the B factor was represented by 16 vegetation factors (e.g., LULC,
canopy coverage, and cropland); and the H factor was described by 5 human
covariates (e.g., population growth and household income).

13.3.3 Modeling the Relationships Between SOC
and STEP-AWBH Factors

This study is embedded in the STEP-AWBH modeling concept which explicitly
combines spatially and temporally explicit environmental and human variables that
model the evolution of the soil ecosystem (Grunwald et al. 2011) (Eq. 13.1).

SA z; px; tcð Þ ¼ f
Xn
j

Sj z; px; tcð Þ; Tj px; tcð Þ;Ej px; tcð Þ;Pj px; tcð Þ� �( )
;

Zm
i¼0

Xn
j

Aj px; tið Þ;Wj px;ð Þ;Bj px; tið Þ;Hj px; tið Þ� �( )
ð13:1Þ

where SA is the target soil (or terrestrial) realization, S represents the ancillary soil
properties, T represents the topographic properties, E represents the ecological
properties, P represents the parent material and geologic properties, A represents the
atmospheric properties, W represents the water properties, B represents the biotic
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properties, H represents the human-induced forcings, j is the number of predictors,
j = 1, 2,…, n, px is a pixel with size x (width = length = x) at a site specific on land,
tc is the current time, ti is the time to tc with time steps i = 0, 1, 2,…, m, and z is the
soil depth. The spatially explicit STEP factors capture the relative stable
soil-forming factors within a human time frame, while the AWBH factors account
for time-dependent variation (Thompson et al. 2012).

The RF regression method was used to identify the most powerful environmental
predictive factors to model SOC. The model was randomly split into a calibration
set (70 %, n = 164) and a validation set (30 %, n = 70). Model performance was
assessed using the coefficient of determination (R2), root-mean-square error
(RMSE), and residual prediction deviation (RPD), and ratio of prediction error to
interquartile range (RPIQ) was reported for error assessment of the RF model.

13.3.4 Assessing Terrestrial Carbon Stocks

The most powerful predictors (n = 43) in the first quantile of all STEP-AWBH
variables of the SOC model were selected and used to predict the observed
TerrCactual stocks using the RF model. To assess the TerrCattain stocks, we posit that
the STEP factors are not expected to substantially change within a human time
frame (e.g., past decades), whereas AWBH factors are likely to be variable in time
and may increase or decrease. Thus, the latter were used to vary within a range of
upper and lower bounds to simulate TerrCattain.

The same 43 STEP-AWBH predictors were used to predict TerrCattain stocks at
the 234 sites using a simulated annealing (SA) approach (Kirkpatrick et al. 1983).
In the TerrCattain model, the STEP factors were kept constant. The AWBH factors
were varied by ±10, ±20, and ±30 %, respectively, by keeping AWBH factors
constant, except for one of them that was increased/decreased one-by-one with the
respective percentage value, until all factor combinations were assessed within
reasonable upper and lower bounds. The factor combination which amounted to the
highest terrestrial carbon stocks simulated at the 234 sites for the FL-SRB was
postulated to equal the attainable terrestrial carbon stocks that could be obtained
based on dynamic AWBH variables and relatively stable STEP conditions.

To characterize the spatial distribution of actual terrestrial carbon stocks across
the basin, the regression kriging (RK) technique (Odeh et al. 1995) was used. First,
the residuals of TerrCactual at the 234 sites were kriged and then added back to the
estimates of TerrCactual to create interpolated surfaces showing terrestrial carbon
stocks.
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13.4 Results

13.4.1 Variable Importance and Spatial Variation in Soil
Organic Carbon

The variables that emerged in the first quantile of the RF-SOC model showing
predictive power were as follow: biota > soil > topography. Minor, yet significant,
predicting variables represented water, atmospheric properties, and parent material.
Soil taxonomic variables, such as soil great group, suborder, and subgroup, were
highly interrelated with SOC stocks as shown in the top ten explanatory variables.
Areas with poorly to very poorly drained soils tended to accumulate SOC content,
whereas areas with well-drained to excessively drained soils had a tendency to have
net losses of SOC. These results suggest that topographic and soil/water-related
variables play a dominant role to infer on SOC storage in the basin.

Slope was negatively correlated with SOC stocks. This indicates that the rela-
tively flat downslope positions were correlated with high SOC, and vice versa,
upslope positions showed the opposite behavior. Even though topographic terrain in
Florida is relatively flat (0–5 % slopes), the steeper slopes are found in the northern
region of Florida where the FL-SRB is located. Distance from streams or open
water, available water capacity (0–25 cm), hydrologic group, ponding frequency
class, and soil runoff potential were water variables (W) in the model that
demonstrated strong connectivity with SOC stocks. The effect of wetness in soil is
considered to be a major factor that controls vegetation growth and the decom-
position process that are closely interlinked with SOC gain (Vasques et al. 2012).

The parent material was found to have high influence on SOC, while the ecology
variables (E) were not strongly associated with SOC. The influence of parent
material on SOC stocks occurs through different sources, such as soil weathering,
mineralogy, water permeability, nutrient supply, mineral complexation, structure,
that control the pH, and microbe’s habitat affecting plant production and decom-
position (Post et al. 2004).

Three climatic variables of long-term (2000–2008) monthly maximum temper-
ature in summer (July, August, and September) were negatively correlated with
SOC stocks. The opposite was found for annual average precipitation that was
positively correlated with SOC stocks. Ample research has been conducted to study
the interactions between climate and SOC which are still debated fiercely because
interactions vary geographically around the globe (Bardgett 2011; Ontl and Schulte
2012; Poeplau et al. 2011; Xiong et al. 2014).

Human variables were not considered powerful predictors in the model as they
ranked in the middle and bottom of all predictor variables. Fertilizer consumption
(74th) had the most influence among the H factor, followed by best management
practice (BMP) implementation (100th) of all variables, while population growth
ranked near the bottom of all predictors. This indicates that human factors may have
an indirect effect (e.g., through land use management and tillage operations) or little
impact on SOC.
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13.4.2 Model Performance

The prediction model of SOC stocks using 172 STEP-AWBH variables was able to
account for 93 % of the variation in calibration mode and 44 % of the variation in
validation mode across the basin. The RMSE value of 2.65 kg C m−2 in the
validation set was higher than 1.33 kg C m−2 in the calibration set, and RPD values
of 1.28 kg C m−2 in the validation set were lower than 2.58 kg C m−2 in the
calibration set. Considering that the minimum of SOC stock was 1.1 kg C m−2 and
the maximum of SOC stock in the basin was 28.8 kg C m−2, the errors suggest that
the model performed moderately well.

13.4.3 Estimates of the Terrestrial Carbon Stocks

The amount of carbon was almost twofold in the terrestrial ecosystem (mean of
9.2 kg C m−2) in comparison with topsoil (mean of 5.2 kg C m−2) at a site-specific
basis. The results imply that about 44 % of carbon storage is found above ground
and 56 % of carbon is stored in topsoils. This is a conservative estimate because
additional carbon is present in subsoils. The relatively high terrestrial carbon stocks
were observed in swamps and forests. The highest mean TerrCactual stock values
were found in mixed wetland forests 16.6 kg C m−2), followed by swamps (14.6 kg
C m−2) and pineland (11.0 kg C m−2). The lowest TerrCactual stocks were present in
row/field crops with a mean value of 1.2 Tg C (2.7 kg C m−2).

The modeled TerrCattain estimates under different environmental forcings (i.e.,
AWBH forcings) clearly showed that factor combinations (i.e., climatic properties,
water, and biota) concomitantly had strong effects on carbon storage. Assuming that
predictors are changed by ±10 %, our model simulated a minimal increase in
terrestrial carbon stocks with mean values of 9.3 kg C m−2 and median values of
8.8 kg C m−2. The mean TerrCattain was 9.4 kg C m−2 and the median was 8.8 kg C
m−2 when the environmental factors fluctuated by ±20. And the mean TerrCattain
was 9.4 kg C m−2 and the median was 9.0 kg C m−2 when the environmental factors
fluctuated by ±30.

The TerrCactual stocks in the model indicated that this terrestrial system was close
to the saturation condition. The absolute increase from predicted TerrCactual to
TerrCattain (±30 %) in terrestrial carbon stocks amounted to 4.3 Tg (mean) and
13.2 Tg (median) which are substantial amounts. The predicted TerrCattain (±30 %)
for wetlands, pinelands, and hardwood forests were 13.7, 9.4, and 10.5 kg C m−2,
respectively, while the predicted TerrCactual for wetlands, pinelands, and hardwood
forests were 11.9, 9.1, and 10.3 kg C m−2, respectively. The TerrCactual and
TerrCattain stocks in pineland and forests were quite similar in values with differ-
ences in TerrCactual and TerrCattain of 0.3 kg C m−2 (pineland) and 0.3 kg C m−2

(hardwood forests). The actual storage of carbon in the terrestrial ecosystem
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amounted to 190 Tg C and the maximum storable attainable carbon was 195 Tg C.
The spatial distribution of terrestrial carbon stocks is shown in Fig. 13.2.

13.5 Conclusions

We assessed the relationships between SOC stocks and STEP-AWBH factors in the
FL-SRB and found that biotic, soil/water, and topographic factors played crucial
roles in determining SOC storage, whereas human factors seemed to be fading from
being strong predictors. Among the predictors, maximum temperature in summer
time and mean annual precipitation also stood out as controlling factors for SOC
storage. The whole basin stores tremendous amounts of carbon, multiple times
larger than atmospheric carbon, with about 190 Tg of TerrCactual carbon stocks
based on the RK model. There was no single environmental factor that imparted
most control on SOC storage, but instead intricate combinations of STP-AWB
variables.
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Fig. 13.2 Terrestrial carbon stock estimates derived from regression kriging (RK): a observed
actual terrestrial carbon stocks; b, c, and d attainable terrestrial carbon stocks derived from
simulated annealing considering environmental variables change by ±10, 20, and 30 %,
respectively
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Importantly, biotic factors played a larger role to associate with SOC stocks and
terrestrial carbon compared to climatic factors. This inherently implies that global
climate change will have less of an impact compared to land cover and land use
change to achieve the attainable carbon level in this soil landscape. The model
predicted that the TerrCactual stock values were close to the TerrCattain stock values
in some instances (e.g., under wetlands) suggesting the presence of saturation in
this area, while in other regions (e.g., under row/field crops) ample opportunities
exist to enhance carbon sequestration.

The simulated TerrCattain values were “point specific (in kg C m−2)” assuming no
fixed depth (i.e., soil depth/volume or vegetation height/volume) to store carbon.
This vantage point liberates us from the constraint to consider a fixed soil volume
(kg C m−2 and 0–20 cm depth) to accrete carbon up to a saturation limit. As is well
known, hydric soils tend to accrete carbon through an increase in soil depth rather
than enhancement of carbon density within existing peat layers. Similarly, attain-
able biomass carbon is not necessarily linearly linked to a specific height of the
vegetation and may increase carbon not only through growth but also through
changes in the vegetation density.

The major goal was to preserve the carbon stored in the terrestrial system of the
FL-SRB and enhance them through optimized carbon management. Land use
adaptations have much potential to reach TerrCattain, specifically land use conver-
sions from cropland to systems with larger net primary productivity (NPP). Bare
soils, which represent marginal soils, also bear potential to elevate carbon storage if
improved through management. Our study demonstrated a novel approach to assess
terrestrial carbon through management, adaptation, and mitigation that is attainable
in a subtropical basin consisting of a mosaic of different land uses embedded in a
complex soil landscape. This approach is generalizable and transferable to any other
landscape setting. Rather than offsetting CO2 emissions, there are other cobenefits
of increased levels of carbon sequestration to the ecosystem functions (e.g.,
improvements in crop productivity, soil security, food security, soil aggregation that
enhances nutrient storage, and water holding capacity). The spatially explicit
modeling of actual and attainable terrestrial carbon stocks allows identifying and
targeting carbon poor areas to implement conservation and carbon management
strategies. Hence, our approach has much value to outline pathways into a
carbon-rich future.
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Chapter 14
The Meta Soil Model—An Integrative
Framework to Model Soil Carbon Across
Various Ecosystems and Scales

S. Grunwald, P. Chaikaew, B. Cao, X. Xiong, G.M. Vasques, J. Kim,
C.W. Ross, C.M. Clingensmith, Y. Xu and C. Gavilan

Abstract Over the past decades, a changing climate, land use shifts, socioeco-
nomic development, and political decisions have had a tremendous impact on the
spatial and temporal variation of soil carbon. How soil carbon interacts with such
changing natural environmental and anthropogenic forcings within various
ecosystem domains and spatial and temporal scales is still poorly understood. We
discern different paradigms to model soil carbon and explore the meaning of such
diversity in soil carbon paradigms situated within digital soil mapping (DSM) and
beyond. The Meta Soil Model offers a container to hold multiple modeling para-
digms that generate a variety of soil carbon realizations. The term soil realization
acknowledges that there is not only one ‘soil carbon map’ or ‘soil carbon model’,
but also several possible ones that approximate reality. The Meta Soil Model allows
integrating, fusing, and synthesizing various soil carbon observations/maps/models
through laboratory, field, or proximal/remote methods and ensembles other inte-
gration methods aiming to create more holistic representations of soil carbon.
Besides explicit integration of soil carbon data/maps/models, the Meta Soil Model
also facilitates side-by-side comparisons in a consistent and coherent framework.
Here, we present a multiplicity of different DSM and modeling approaches and how
they are integrated into aMeta Soil Carbon Model. Each approach is exemplified by
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a coherent model that entails the full suite of classical steps adopted in DSM to:
(1) identify research questions and model approach, (2) develop a sampling design,
(3) collect soil carbon data, (4) collect ancillary data in environmental and human
domains, (5) analyze data (modeling), (6) create soil carbon predictions, estimates,
or simulations and their uncertainties, and (7) test and validate soil carbon models.
We present the integration pathways to build each of the exemplified Meta Soil
Carbon Models. In conclusion, soil carbon can be viewed through various lenses—
from above (through remote and/or proximal sensing), below (a soil pit or petri dish
in the laboratory), or sideways (i.e., in new ways integrating multiple approaches).
DSM and modeling is shifted into a new phase that is pluralistic in nature
embracing a multiplicity of pathways focused to integrate data, methods, and
knowledge and to understand about soils and ecosystems. In that sense, it is
becoming more and more inter- and transdisciplinary, and through multiple com-
parisons, adaptations and validations, more robust, reliable and useful.

Keywords Soil organic carbon � Meta Soil Model � Digital soil mapping
paradigms � Integration � Fusion � Soil models

14.1 Introduction

Over the past decades, a changing climate, land use shifts, population growth, and
associated socioeconomic development and political decisions have had a
tremendous impact on the spatial and temporal variation of soil carbon. This has
spawned a profound number of soil carbon-related research from pedometrics,
biogeochemistry, physical (e.g., sensing), and other vantage points. ‘Soil carbon’
publications have been exploding with currently over 1.76 million publications
identified by Google Scholar using a generic search (205,000 using an exact phrase
search) and 268,656 publications in the Web of Science. The topical focus of soil
carbon studies has been diverse with a vast amount on soil carbon assessment
(20.5 % in Web of Science and 29.6 % in Google Scholar), soil carbon modeling
(17.6 % in Web of Science and 24.3 % in Google Scholar), and less so connoted
explicitly as digital soil mapping (DSM) (1.2 % in Web of Science and 3.0 % in
Google Scholar) (Table 14.1). A major amount of publications on soil carbon has
been focused on soil carbon and management (33.4 % in Web of Science and
42.9 % in Google Scholar) and understanding soil carbon from a chemical per-
spective (25.4 % in Web of Science and 20.9 % in Google Scholar). Soil carbon has
been stylized as a unifying theme playing a key role in inter- and transdisciplinary
projects and programs, soil security (Bouma and McBratney 2013; McBratney et al.
2014), and food security (Lobell et al. 2008).

Considering this profound amount of knowledge on soil carbon, critical ques-
tions arise. How do we deduct and synthesize knowledge and understanding from
these millions of publications and studies? Are there DSM methods/models that are
universally applicable to gain insight into Spatio- and temporal soil carbon
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dynamics? Is the site-specific imprint that controls soil carbon dynamics too unique
and geographically diverse hampering generalizations about soil carbon variation in
space and time? The latter question arises specifically in context of wicked envi-
ronmental problems at continental and global scale (Brown et al. 2010). In this
paper, we hone into the depth of integrative soil carbon modeling across various
ecosystems and scales. We present pathways for a more integrative soil carbon
science that has the potential to raise more public awareness about soils, increase
political action to sustain soil resources, and engage stakeholders and practitioners.

14.2 Soil Carbon Modeling Paradigms

Considering different paradigms, soil carbon can be perceived as (i) an empirical
variable mapped at a specific time and geographic location—e.g., in state budget
assessments or soil carbon maps, (ii) a response (dependent) variable to stressors or
landscape factors (e.g., climate or management)—e.g., in soil factorial models, such
as SCORPAN (McBratney et al. 2003) or STEP-AWBH (Grunwald et al. 2011),
(iii) a relational variable interconnected with other soil ecosystem properties as part
of an ecosystem—e.g., statistical and chemometric models, (iv) soil natural capital
in ecosystem services context, (v) a state variable that describes the mathematical
state of a dynamic ecosystem comprised of multiple interacting biological, physical,
and chemical processes—e.g., mechanistic simulation or pedogenetic models,
(vi) an active agent that interacts with the environment through positive and neg-
ative feedback processes cocreating their environment—e.g., in autopoietic and
agent-based models, (vii) a metaphor or symbol (e.g., ‘soil carbon * black gold’)
evoking intuitive, emotional responses in people to protect, sustain, or degrade
soils.

An example for model paradigm (i) was provided by Guo et al. (2006) who
mapped soil organic carbon (SOC) and soil inorganic carbon (SIC) across the USA.
They used the State Soil Geographical database (STATSGO), which represents soil
carbon by map units (polygons), and provided carbon budgets for different regions in
the USA. Approach (ii) is exemplified by the SCORPAN modeling approach that is
used widely in DSM. For instance, Grimm et al. (2008) mapped SOC concentrations
and stocks using environmental covariates and random forest (RF) in Panama.
Grunwald (2009) provided a comprehensive review of studies that assessed soil
carbon (and other properties) using various soil factorial models, spatial scales, and
methods applied in diverse geographic regions. Another example of approach
(ii) was provided by Vasques et al. (2010b) who mapped soil total carbon (TC),
recalcitrant carbon, hydrolyzable carbon, hot water soluble (labile) carbon, and
mineralizable soil carbon across a subtropical watershed in the southeastern USA.
They applied lognormal block kriging and regression block kriging in their study.
The conceptual STEP-AWBH modeling framework (paradigm ii) uses space-time
soil environmental variables to predict a targeted soil property (e.g., soil carbon). It
incorporates hydrologic and anthropogenic variables explicitly into the modeling
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process. Xiong et al. (2014a, b) demonstrated the STEP-AWBH DSM approach
using 210 potential space-time variables that exhaustively cover pedogenic and
environmental factors. Their aim was to identify those variables with the strongest
response to estimate SOC in Florida, USA. Several other prediction, estimation, and
simulation methods have been used to infer on soil carbon, including geostatistical,
fuzzy logic, neural network, Bayesian, data mining, and other methods. They all can
be grouped under (ii) because they imply directionality where input data (predictor
variables) are used to infer on a response (dependent) variable (e.g., SOC). This differs
from approaches grouped under (iii) that focus on understanding relationships rather
than making predictions of soil properties. These relationships identify correlations
and reciprocity between properties acknowledging that soil properties are interde-
pendent on other environmental properties and, vice versa, environmental properties
form them. Importantly, no directionality or cause–effect relationships are implied in
model (iii) types. Typicalmethods that represent (iii) are genetic algorithms,which are
heuristic search methods to investigate input–output relationships. The model para-
digm (iii) is prominent in soil spectroscopy where hyperspectral data (e.g.,
visible/near-infrared/mid-infrared spectral range) are related to laboratory-measured
soil properties or pedo-transfer functions. Examples for approach (iii) investigating
relationships between soil carbon and spectral data were provided by Gomez et al.
(2008), Vasques et al. (2008),Minasny et al. (2009), and Ladoni et al. (2010). Another
example (iii) where the emphasis was on understanding relationships between land
use change, climatic factors, and SOC using general linear models was presented by
Xiong et al. (2014a, b). The approach (iv) focuses on soil carbon capital assessed
typically within the context of ecosystem services. For example, Egoh et al. (2008)
mapped soil carbon storage as one service among others in a study in South Africa.
SOC sequestration is considered a soil ecosystem service (or benefit to humans) as
demonstrated in a comprehensive study using the Integrated Valuation of Ecosystem
Services and Tradeoffs (InVest) tool in Oregon, USA (Nelson et al. 2009). Approach
(v) can be exemplified by soil carbon simulation models, such as Century (Kelly et al.
1997) orRoth-C (Jones et al. 2005). Thesemodels adopt a system theoretical approach
modeling ecosystem processes deterministically based onmechanistic, process-based
understanding of biological, physical, chemical, pedogenic, hydrologic, and other
interconnected systems. Manzoni and Porporato (2009) reviewed 250 biogeochem-
ical models that simulate soil carbon and nitrogen mineralization across multiple
spatial and temporal scales demonstrating the widespread use of models adopting
strategy (v). Agent-based models, representing paradigm (vi), have appeared in other
domains, such as agent-based land use modeling (Matthews et al. 2007), agent-based
climate modeling (Moss et al. 2001), and human–environment interaction modeling
(Schreinemachers and Berger 2011). Matthews (2006) applied an agent-based model
(People and Landscape Model, PALM) in which soil carbon was one of the com-
ponents considering household agents to simulate resource flows. The last one,
paradigm (vii), uses a symbolic ormetaphorical approach often framed as narratives to
express the value and beliefs about soil carbon. These may be positively framed as
concepts of safety or security (e.g., ‘soil carbon secures soils, functionality, food
security, and survival of humanity’) or negatively framed as threat or risk (e.g., ’soil
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carbon loss degrades food production and threatens livelihood of smallholder farm
communities’). The perception of these narratives about soils is associated to beliefs
and values that typically evoke people, stakeholders, action groups, and politicians to
act, rest in denial, ignorance, indifference, or paralysis. The disparity among soil
carbon paradigms (i–vii) is profound. To integrate these contrasting and antithetical
perspectives is not about one approach being better and more profound than the other
(e.g., stating that my soil carbon assessment is better or more right than yours). A truly
integral approach honors all perspectives about soil carbon.Yet it takes a stance tofind
unity in the diversity of soil carbon paradigms. Esbjörn-Hargens and Zimmerman
(2009) described such an integrative framework—Integral Methodological Pluralism
(IMP)—based on three key principles: (i) nonexclusion, (ii) enactment, and (iii) en-
foldment. These principles are at the core of theMeta Soil Model that was introduced
by Grunwald (2013, 2014).

14.3 The Meta Soil Model—Integrative Modeling of Soil
Carbon

Grunwald (2013) describes the Meta Soil Model that juxtaposes soil and environ-
mental datasets and various methods grounded in different philosophical world-
views. It addresses the quintuplet questions—‘Why,’ ‘For Whom,’ ‘What,’ ‘Who,’
and ‘How’ we can describe and model soils and soil ecosystems. Therefore, it
connects the purpose of soil maps and models with those who will use and value
them (e.g., land managers, decision makers), identifies the soil attributes that are
mapped and soil landscapes that are modeled, the individual experts or interdisci-
plinary teams that are performing the DSM, and methods that are applied. Thus, this
framework is multidimensional (Fig. 14.1) and in a broad sense relates to the five
dimensions of soil security: (i) capability, (ii) condition, (iii) capital, (iv) connec-
tivity, and (v) codification (McBratney et al. 2014). Importantly, the Meta Soil
Model offers a container to hold multiple modeling paradigms that generate a
variety of soil realizations and integration pathways (Grunwald 2014). In its core, it
is pluralistic and embraces synthesis and integration aiming to enhance our deep
understanding of soils and its role in context of complex and wicked environmental
problems at global scale. Synthesis is a key integrative concept, and it occurs when
disparate data, concepts, or theories are combined in ways that yield new knowl-
edge, values, insights, understanding, or explanations (Pickett et al. 2007; Carpenter
et al. 2009; Peters 2010). The Meta Soil Model’s intent is to synthesize, thereby
generating new knowledge, values, and insight, and understand soil ecosystems
connecting past, current, and future soils through integration pathways. Thus, it
holds much premise to improve contemporary soil models. It provides an explicit
quantitative construct complementing the loosely coupled dimensions of soil
security. The term ‘Meta’ (‘after,’ ‘beyond’) expresses the complexification of
models where ‘Meta Model’ (or surrogate model) refers to a ‘model of a model’
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meaning that a more complex model is build that integrates submodels, data,
algorithms, concepts, or other. For example, several decades ago, DSM pioneers
applied ordinary kriging to model soil carbon, while recently more complex
methods are applied, such as regression kriging, and ensemble soil carbon models.
At the cutting edge of DSM at the current time are soil carbon models that even go
beyond those combining data fusion and meta modeling (e.g., multitier soil carbon
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frameworks derived from splining of soil carbon profile data, Bayesian estimation
of soil carbon and uncertainty assessment, and coupling to human-induced impact
assessment to quantify soil carbon change and evolution). These models strive for
higher spatial and temporal resolutions and more explicit linkages between attribute
(here: soil carbon), environmental factors, ecosystem processes, functions, services,
and responses.

We argue that the Meta Soil Model is poised to extend contemporary soil model
applications because it generates various realizations of soil properties (Fig. 14.1),
and thus, allows derivation of more complex soil ecosystem assessments, such as
soil risk, vulnerability of soils, adaptability, and sustainability. The term soil real-
ization acknowledges that there is not only one ‘soil carbon map’ or ‘soil carbon
model’, but several possible ones that approximate reality. The Meta Soil Model
facilitates fusion and synthesis of various soil carbon observations/maps/models
through laboratory, field, or proximal/remote data processing methods and
ensembles Bayesian or other integration methods aiming to create more holistic
representations of soil carbon. Grunwald et al. (2014a) presented the underlying
data infrastructure to populate a Meta Soil Carbon Model exemplified for the USA.
This framework is transferable to any region and scale and to develop other type of
Meta Soil Models (e.g., Meta Soil Security Model). Grunwald et al. (2014b) pro-
vided an explicit description of 20 different integration pathways that compose the
Meta Soil Model. It is applicable to define a Meta Soil Carbon Model.

14.4 Moving Toward a Meta Soil Carbon Model

We applied the Meta Soil Carbon Model scheme in various ecosystems and across
temporal and spatial scales in the southeastern USA including: (i) SOC space-time
mapping (Ross et al. 2013); (ii) predictive SOC modeling from environmental
covariates (Vasques et al. 2010b, 2012a; Xiong et al. 2014a, b); (iii) modeling of
SOC–environmental covariate relationships (Vasques et al. 2012b; Xiong et al.
2014a, b), soil carbon–soil relationships (Ahn et al. 2009; Bliss et al. 2013), and soil
carbon–spectral (visible/near-infrared and mid-infrared spectral data) relationships
(Vasques et al. 2008, 2009, 2010a; Knox et al. 2015); (iv) soil carbon ecosystem
services modeling soil carbon as natural carbon capital (Chaikaew 2014); (v) pro-
cess-based modeling of soil carbon dynamics using Century (Kwon and Grunwald
2014) and DayCent to model SOC vulnerability and adaptability to climate change
(ongoing); and (vi) agent-based modeling of soil carbon dynamics (future). Next,
we present two examples of integration pathways embedded within the Meta Soil
Carbon Model.
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14.4.1 Meta Soil Carbon Modeling Based on Data Mining
and Ensemble Modeling of SOC Stocks in Florida
(Fig. 14.2)

Data mining is the practice of examining large datasets in order to reveal new
patterns and generate new information and knowledge. Typically, it involves
combinations of methods (i to vi) such as machine learning, statistical methods, and
artificial intelligence. Xiong et al. (2014a, b) used 210 different space-time envi-
ronmental covariates to model SOC stocks in Florida, USA. Figure 14.2 identifies
the integration pathways (as outlined by Grunwald et al. 2014b) adopted in this
study to build a Meta Soil Carbon Model for Florida. They employed a two-tier
approach consisting of ‘all-relevant variable strategic selection’ that revealed the
ecosystem processes to explain the variation in SOC stocks and ‘minimum-optimal
variable selection’ to identify parsimonious models with similar accuracy when
compared to exhaustive, highly parameterized SOC models. In this study, ensemble
models were employed to derive SOC predictions. The major factors explaining
SOC variation in Florida were vegetation and soil water gradient. Topography and
climate showed moderate effects on SOC variation (Xiong et al. 2014a, b). These
results confirmed findings by Vasques et al. (2012b) who identified soil hydrologic
factors and biotic properties as most critical to explain the spatial variation in SOC
in Florida These results differ from other geographic regions where land use,
vegetation, and topography impart most control on SOC variability. The Meta Soil
Carbon Model is used in the Florida Forever Conservation Program.

Fig. 14.2 Integration pathways as codified by Grunwald et al. (2014b) to build a Meta Soil
Carbon Model for Florida based on Xiong et al. (2014a, b). In this Meta Soil Carbon Model,
integration pathways (2), (3), (6), (9), and (10) were used (see Grunwald et al. 2015 for detailed
description of integration pathways)

174 S. Grunwald et al.



Fig. 14.3 Integration pathways as codified by Grunwald et al. (2014b) to build a Meta Soil
Carbon Model for the Suwannee river basin (Florida portion) based on Chaikaew (2014). In this
Meta Soil Carbon Model, integration pathways (1), (2), (3), (6), (8), (9), (10), (15), (17), (18), and
(19) were used (see Grunwald et al. 2015 for detailed description of integration pathways)
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14.4.2 Meta Soil Carbon Modeling Focused on Ecosystem
Services in a Basin in North-Central Florida
(Fig. 14.3)

Historical and current SOC stocks were assessed using ordinary and block kriging,
and SOC sequestration and change analysis incorporated uncertainty assessment
explicitly in the modeling process. Actual SOC stocks were predicted from a large
set of soil-environmental covariates (n: 172) and RF and regression kriging
(Chaikaew 2014). Random forest is an ensemble regression method that allows
modeling high-order, complex relationships between soil-environmental covariates
and SOC stocks. Actual and attainable terrestrial carbon was assessed using a
conjoint RF-simulated annealing approach that allows quantifying the adaptability
to imposed external environmental change through three scenarios (Chaikaew et al.
2014). The quantitative SOC stock assessment was integrated with findings from a
survey that incorporated a choice experiment to assess the perceptions, values, and
beliefs of residents in the basin using a Bayesian belief network (BBN) to model
three ecosystem services, of which SOC sequestration was one service (Chaikaew
2014). The BBN modeling entailed four scenarios projecting future states of the
ecosystem (BU, Business as Usual; GP, Go toward Projection; GE, Gain Economic
value; GA, Go with Environmental Awareness) (Chaikaew 2014).

14.5 Final Remarks

Soil carbon can be viewed through various lenses—from above (through remote
and/or proximal sensing), below (a soil pit or petri dish in the laboratory), or
sideways (i.e., in new ways integrating multiple approaches). DSM and modeling is
shifted into a new phase that is pluralistic in nature embracing a multiplicity of
pathways focused to integrate data, methods, and knowledge and to understand
about soils and ecosystems. In that sense, it is becoming more and more inter- and
transdisciplinary, and through multiple comparisons, adaptations and validations,
more robust, reliable and useful.

We are in the process to extend the Meta Soil Carbon Model approach to select
regions in Southeast Asia and Latin America focused on fusion of laboratory,
ground, and remotely sensed spectral datasets. We envision a global Meta Soil
Carbon Model to emerge that combines spectral and DSM and modeling techniques.
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Chapter 15
Example of Bayesian Uncertainty
for Digital Soil Mapping

Laura Poggio, Alessandro Gimona, Luigi Spezia and Mark J. Brewer

Abstract Any model for digital soil mapping suffers from different types of errors,
including interpolation errors, so it is important to quantify the uncertainty asso-
ciated with the maps produced. The most common approach is some form of
regression kriging (RK) or variation involving geostatistical simulation. Another
way of assessing the spatial uncertainty lies in the Bayesian approach where the
uncertainty in the results is described by the posterior density. The aim of this paper
is to present an example of a Bayesian approach for uncertainty estimation when
mapping the topsoil organic matter content in the Grampian region of Scotland
(UK, about 12,100 km2). The chosen approach uses (Bayesian) latent Gaussian
models fitted using integrated nested Laplace approximation (INLA) and the
stochastic partial differential equation (SPDE) models approach for coping with
spatial correlation (INLA_SPDE). For practical comparison purposes, the results of
INLA_SPDE were compared with the results of an extension of the scorpan kriging
approach, i.e., (1) combining generalized additive models (GAM) with Gaussian
simulations and (2) traditional RK. The results were assessed using in-sample and
out-of-sample measures and compared for distribution similarity, spatial structure
reproduction, computational load, and uncertainty ranges. We conclude that the
Bayesian framework using INLA offers a viable alternative to existing methods and
an improvement over traditional RK.
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15.1 Introduction

Any model for digital soil mapping suffers from different types of errors, including
interpolation errors, and it is therefore important to quantify the uncertainty asso-
ciated with the maps produced. Recent developments in digital soil mapping
include methodologies to evaluate and map the spatial uncertainty. The most
common approach is some form of regression kriging (RK) or variation involving
geostatistical simulation. This represents a frequentist approach with uncertainty
calculated from a (large) number of realizations. Another way of assessing the
spatial uncertainty lies in the Bayesian approach where the uncertainty in the results
is described by the posterior density. Markov chain Monte Carlo (MCMC) algo-
rithms are normally used for Bayesian computation when dealing with complex
stochastic systems. MCMC is flexible and able to deal with virtually any type of
data and model, but involves computationally and time-intensive simulations, e.g.,
Gaussian univariate Bayesian spatial regression models (Banerjee et al. 2008). The
integrated nested Laplace approximation (INLA; Rue et al. 2009) method has been
recently developed as a computationally efficient alternative to MCMC. INLA is
designed for latent Gaussian models, a very wide and flexible class of models,
including (generalized) linear mixed spatial models. INLA can be combined with
the SPDE approach proposed by Lindgren et al. (2011) in order to implement
efficient models for spatial point data.

The aim of this paper is to present an example of a Bayesian approach for
uncertainty estimation when mapping the topsoil organic matter content in the
Grampian region of Scotland (Fig. 15.1a). The chosen approach uses (Bayesian)
latent Gaussian models fitted using INLA and the SPDE approach for coping with
spatial correlation (INLA_SPDE).

For practical comparison purposes, the results of INLA_SPDE were compared
with the results of an extension of the scorpan kriging approach—a geostatistical
model combining generalized additive models (GAM; Wood 2006) with Gaussian
simulations (GAM+GS; Poggio and Gimona 2014).

15.2 Data

15.2.1 Test Area

The Grampian region of Scotland (UK, about 12,100 km2) covers the whole of NE
Scotland (Fig. 15.1a) and has a variety of landscapes and soils. It includes large
river catchments and the Cairngorm mountains, with some of the highest peaks in
Scotland.
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15.2.2 Response Variable

A total of 1183 profiles derived from the National Soil Inventory of Scotland
(NSIS, Lilly et al. 2010) were available in the selected test area. The samples were
collected on a regular 10-km grid. Only the topsoil values were used. In order to
provide validation of the models, the data available were randomly split into
training and validation sets with a ratio of 75:25. In this study, the soil property
considered was proportion of soil organic matter and the data were transformed
using the logit transformation. The data were divided into three more homogeneous
groups derived from the database: organic, intermediate, and mineral (Fig. 15.2).
The groups were considered separate (i.e., having different means) according to
Tukey’s honest significant differences (Miller 1981).

15.2.3 Covariates

The freely and globally available covariates included were selected to describe the
most important scorpan factors, namely topography; vegetation; climate; time; and
geographic position.

Fig. 15.1 Test area location and selected mesh for the test area. a Grampian region and
b INLA_SPDE mesh
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Morphological features
The digital elevation model (DEM) used as a covariate in the fitted models was
Shuttle Radar Topography Mission (SRTM). SRTM has a spatial resolution of 90 m
with global coverage, and it was further processed to fill in no-data voids (Jarvis
et al. 2006; Rodriguez et al. 2006). The measures used were as follows:

– altitude (meters);
– slope: steepest slope angle, calculated using the D8 method (O’Callaghan and

Mark 1984).

In order to match the resolution of the other covariates, the medians in each grid
cell of 1 × 1 km were used.

MODIS
The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) 8 and 16 day
composite products were used to derive a set of indices selected for their capability
to differentiate spectral responses from different bare soils, vegetation cover and
mixed situations. The 12-year (2000–2012) time series of data was acquired from
the NASA FTP Web site (ftp://e4ftl01u.ecs.nasa.gov/MOLT/). The single images
were processed to fill the cloud gaps (Poggio et al. 2012), and finally, the medians

Fig. 15.2 Soil organic groups in the input data. a Boxplots with the proportion of soil organic
matter on the y-axis and b histograms with the frequency of logit proportions on the y-axis and the
logit proportions of soil organic matter are on the x-axis
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over the 12 considered years were used as covariates. The indices calculated were
as follows:

1. Enhanced Vegetation Index (EVI; Huete et al. 2002)
2. Normalized difference water index (NDWI; Gao 1996) calculated with NIR

(near infrared) and 2130 short-wave infrared (SWIR) band (Gu et al. 2008):

NDWI ¼ NIR� SWIR
NIRþ SWIR

ð15:1Þ

15.3 Methods

This study used Bayesian latent Gaussian models, fitted using INLA and with the
SPDE model approach for coping with spatial correlation (INLA_SPDE). Below,
Eq. (15.2) describes the model used for INLA_SPDE in this study in R-like syntax
(R Core Team 2013).

The approach involved the following: (1) SPDE (Lindgren et al. 2011) to model
the spatial structure of the data and (2) INLA (Rue et al. 2009) to model the
observed data with the support of the relevant covariates. Our analysis adapted the
tutorial described in Blangiardo et al. (2013) for spatial data. The model is specified
like so

SOM� InterceptþRandom effectsþ f covariates;model ¼ RW2ð Þ
þ f spatial effect;model ¼ spdeð Þ ð15:2Þ

The spatial structure is modeled using a mesh, i.e., the corresponding finite
element representation of a continuously indexed spatial random field with piece-
wise linear basis functions over a triangulated mesh (Lindgren et al. 2011). The
mesh is created performing a constrained refined Delaunay triangulation for a set of
spatial locations. The triangle vertices are placed at the observation locations, and
then, further vertices are added to satisfy triangulation quality constraints. The mesh
can be adjusted with various parameters: (1) offset: defines how much the con-
sidered domain should be extended within and outside the borders of the test area;
(2) maximum edge; (3) minimum angle: set the triangle structure; and (4) cutoff: set
the minimum allowed distance between points. Depending on the values chosen for
the mesh arguments, the total number of vertices changes with a trade-off between
the accuracy of the spatial representation and the computational costs. The net result
is that the mesh generated forms a network for a Markov spatial correlation model,
which is more flexible than (say) a grid structure as the mesh adapts correctly to
different densities of points in different regions of space. In this example, the prior
were non-informative.

The results of INLA_SPDE were compared with the results of an extension of
the scorpan kriging approach, a geostatistical model combining generalized additive
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models (GAM; Wood 2006) with Gaussian simulations (GAM+GS; Poggio and
Gimona 2014).

The GAM+GS approach involves the following: (1) modeling the trend with full
spatial correlation and (2) Gaussian simulations to interpolate the residuals. The
values at each cell were defined using a hybrid GAM–geostatistical model, com-
bining the fitting of a GAM to estimate the trend of the variable, using a smoother
with related covariates, and Gaussian simulations of the model residuals as a spatial
component to account for local detail.

Table 15.1 presents a summary comparison between the chosen INLA_SPDE
approach and the comparison GAM+GS method.

Finally, traditional RK with linear models (RK_LM; Hengl et al. 2004) and
regression trees (RK_RT; e.g., Kheir et al. 2010) were also performed, to enable
further comparison for the median values only.

15.3.1 Validation

The results of the approaches are assessed using in-sample and out-of-sample
measures and compared for distribution similarity, spatial structure reproduction,
computational load, and uncertainty ranges. In particular:

1. Root mean square error (RMSE),
2. R2 derived from a linear model between observed and modeled data R2LM, and
3. Standardized squared prediction errors H

HðxÞ was taken as an index suggested by Lark (2000) to check that the used
model is a valid representation of the spatial variation of the property:

HðxÞ ¼
ẑðxÞ � zðxÞ
� �2

r2ðxÞ
ð15:3Þ

Table 15.1 Differences between INLA_SPDE and GAM+GS

INLA_SPDE GAM+GS

Approach Bayesian Frequentist

Predictor Conditional autoregressive with latent model
RW2 (Random Walk)

GAM

Spatial term structure Mesh Variogram of the
residuals

Spatial model SPDE Gaussian
simulations

Random effects Three groups of decreasingly organic soils
(organic, intermediate, and mineral)

Not used
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zðxÞ is the measured value and ẑðxÞ is the estimated value and r2ðxÞ is its estimated

variance. A mean of HðxÞ close to 1 and a median close to 0.455 indicate a good fit
and ensure an unbiased variance for the kriging (Lark 2000), respectively.

15.3.2 Software Used

The analyses were performed using open source software:

1. GRASS GIS (GRASS Development Team 2014) for data management, prepa-
ration, and visualization;

2. the R software (R Core Team 2013). The following packages were used:
(a) raster for data management, preparation, and visualization (Hijmans and
van Etten 2013); (b) mgcv for GAM (Wood 2006); (c) geoR (Ribeiro and
Diggle 2001) for fitting the variograms of the residuals; (d) gstat (Pebesma
2004) for kriging; (e) rgdal for data management (Keitt et al. 2009);
(f) R-INLA for INLA_SPDE approach (Rue et al. 2014). (g) randomForest
(Liaw andWiener 2002) for regression trees; and (h) GSIF (Hengl 2014) for RK.

15.4 Results

The results obtained with INLA_SPDE were compared with out-of-sample
assessment and GAM+GS as an example of a more traditional scorpan kriging
approach. Table 15.2 presents the main summary parameters. The two approaches
give similar results. However, they both showed a considerable improvement
compared to RK. The relationships between the variable of interest and the
covariates were not linear. Therefore, as expected, methods using splines and
nonlinear approaches perform better.

INLA_SPDE reproduces more closely the values of the soil property, while
GAM+GS reproduces more closely the spatial structure and the spatial variability
(Θ median closer to 0.445 and Fig. 15.3b). The quantile–quantile plots in Fig. 15.3a
confirmed that both approaches provide similar results with INLA_SPDE slightly
closer to the 1-to-1 line. The maps obtained are presented in Fig. 15.3. The spatial

Table 15.2 Assessment of
the results: INLA_SPDE and
GAM+GS with RK
comparison (using both LM
and RF approaches)

INLA_SPDE GAM+GS RK_LM RK_RF

RMSE 25.41 26.63 39.79 39.99

R2LM 0.39 0.38 0.09 0.11

Θ (mean) 1.02 0.96 2.86 2.69

Θ (median) 0.27 0.36 1.84 1.69
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patterns are rather different, with GAM+GS predicting larger areas with higher
organic matter content (Fig. 15.4).

Comparing the results from the distribution (Fig. 15.5), the two approaches have
very similar results for the mean and the median. However, they tend to diverge
when considering percentiles. This is also confirmed by the higher values of GAM
+GS for the percentage of the validation set that is outside the considered confi-
dence intervals at different percentiles (Table 15.3). GAM+GS was run with only
500 simulations. A higher number of simulations could result in more validation
values within the confidence intervals.

INLA_SPDE approach is rather sensitive to the chosen mesh. Figure 15.6 shows
the ratio of the different results obtained with different meshes, while Table 15.4
summarizes the validation parameters, i.e., RMSE and R2. The results are most
sensitive to choice of the cutoff parameter, which determines the minimum distance
between points; in the current example, choosing a value of 1000 would seem to be
too large, as it does not allow the capture of smaller-scale autocorrelation. Note that

Fig. 15.3 Assessment of the results: INLA_SPDE and GAM+GS. a Qq-plots and b variograms

Fig. 15.4 Maps: INLA_SPDE and GAM+GS
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the process of choosing the right mesh is analogous to the process of choosing the
right variogram.

GAM+GS featured better performances when a covariate with the membership
of one of the three groups (i.e., organic, intermediate, and mineral) was used. The
explained deviance increased to 47.3 % from 41.7 %, and the AIC decreased to
3214 from 3220. However, in order to obtain a full spatial prediction, it is necessary
to have a map indicating which pixels belong to which group. This map is not
needed when using INLA_SPDE, but it would improve model performance. The
map to derive the three groups could be derived from a traditional soil map (e.g.,
reclassification of soil groups) providing an important synergy with legacy soil data.

Fig. 15.5 Comparison of percentiles between INLA_SPDE and GAM

Table 15.3 Proportion of the validation set values outside CI credible intervals (for INLA_SPDE)
and confidence intervals (for GAM+GS) at different percentiles: CI90 = between 5 and 95;
CI80 = between 10 and 90; CI50 = between 25 and 75

INLA_SPDE GAM+GS

CI90 0.21 0.38

CI80 0.33 0.33

CI50 0.56 0.65
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The computational load is lower in INLA_SPDE: 90 s versus 4 min (for 500
simulations of GAM+GS) for about 12,000 pixels. GAM+GS could be further
optimized, but it is likely that more simulations are needed to fully characterize the
distribution. Finally, as INLA_SPDE is a full Bayesian approach, prior information
and soft data can be integrated into the analysis.

15.5 Discussion, Conclusions, and Future Work

Often, the interest of a statistical analysis is estimating the effect of a set of relevant
covariates on the observed data, while accounting for the spatial correlation implied
in the model. There are several advantages to the Bayesian approach, mainly (1) the
specification of prior distributions allows the formal inclusion of information that
can be obtained through legacy data or from expert opinion and (2) it is relatively
easy to specify a hierarchical structure on the data and/or parameters, which in turn
makes prediction for new observations and missing data imputation relatively
straightforward.

Fig. 15.6 Validation: mesh parameters. The size of the spheres is proportional to the
goodness-of-fit measure, i.e., larger sphere indicates a better validation result

Table 15.4 Validation: mesh
parameters for INLA_SPDE

Cutoff Offset Maxedge R2 RMSE

2 500 10,000 10,000 0.41 25.07

3 1000 10,000 10,000 0.03 38.71

4 1000 10,000 25,000 0.02 39.38

5 500 10,000 5000 0.43 25.75

6 500 5000 5000 0.43 25.87

7 500 5000 2500 0.44 25.84
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In this paper, we presented an example of the use of the INLA_SPDE approach
for DSM and we compared it with a more traditional approach derived from the
family of scorpan kriging, such as GAM+GS. Table 15.5 summarizes the main
differences in results and implementation of the two approaches. Further work is
needed to apply INLA_SPDE to 3D modeling to take into account the vertical as
well as the lateral variability of soil properties. INLA_SPDE is also suitable for
integration of information derived from legacy soil data and maps to be used as
prior information.

INLA_SPDE proved to be an interesting framework comparable with an
approach such as GAM+GS and a considerable improvement compared to tradi-
tional RK. The main advantages are the possibility to include soft data, the com-
putational load, and the possibility to use a subset of covariates for prediction, i.e.,
to build the model with covariates only available at points’ locations. However, its
implementation and the spatial modeling are still more complex than a scorpan
kriging-like approach and some aspects of spatial modeling (e.g., anisotropy) are
not yet fully included.
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Chapter 16
An Unsupervised Fuzzy Clustering
Approach for the Digital Mapping of Soil
Organic Carbon in a Montaneous Region
of China

Lei Zhu, Jiandong Sheng, Hongtao Jia and Hongqi Wu

Abstract Spatial distribution of soil attributes is the basic information required for
land surface process simulating and ecological modeling. Purposive sampling
method based on typical points which employed environmental factors has been
widely used in digital soil mapping (DSM) to acquire soil spatial properties at
different scales. Clustering analysis of soil environmental covariates was performed
to explore for sampling points representative of different grades of soil spatial
distribution and to formulate a sampling designing method based on representa-
tiveness grade. This method was used to predict soil organic matter (SOM) content
in the surface layer of grassland soil within a 4 km2 area of the Bayanbulak District,
Xinjiang Uyghur Autonomous Region. Six terrain factors, including elevation,
slope, aspect, planform curvature, profile curvature, and topographic wetness index,
were clustered by fuzzy c-means method. Fuzzy membership distribution of 9
groups of environmental factors was derived to position 18 soil samples in the area
with membership larger than 0.9. Then, SOM map was predicted with fuzzy
membership model. Finally, 35 individual soil samples (16 regular sampling points,
9 cross-sectional sampling points, and 10 sampling points according to altitude)
were collected as the verify point. The results showed that purposive sampling
combined with FCM is a low cost and efficiency mapping method with satisfactory
prediction precision and model stability and could be possibly applied to
small-scale region with the similar landscape conditions.
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16.1 Introduction

Spatial distribution of soil properties provides essential information for agricultural
and environmental management applications (Zhu et al. 2010). Conventional soil
survey maps are not only time-consuming, but also unable to meet the requirement
of many environmental modeling and land management applications. In recent
years, with the development of remote sensing, geographic information systems,
artificial intelligence and fuzzy reasoning technology, and digital soil mapping
(DSM) have made great progress (Zhu et al. 2001; McBratney et al. 2003; Zhang
et al. 2004, 2012; Yang et al. 2007; Sun et al. 2013). Based on fuzzy logic theory,
Zhu et al. have established fuzzy inference model, soil land inference model
(SoLIM), which has been promoted as a standard technique by US Department of
Agriculture (USDA) for soil survey (Zhu et al. 2005). The model which has been
applied in different area, such as Wisconsin Raffelson River basin in USA and
Heshan Farm of Heilongjiang Province in China, mainly focused on watershed
scale and acquired higher soil map accuracy than traditional (Zhu et al. 2008; Yang
et al. 2009). However, more case studies are needed to prove the model applica-
bility in small scale.

Bayanbulak alpine grassland is China’s second largest prairie grasslands.
Research on the distribution characteristics of soil organic carbon in this region and
its relationship with environmental factors can provide scientific basis for reha-
bilitation of degraded rangelands and play the potential of grassland ecosystem
better.

In this paper, taking a small area of typical grassland in Bayanbulak, Xinjiang, as
an example, fuzzy c-means clustering (FCM) method is used to establish the
relationship between terrain factors and surface soil organic matter (SOM) in the
study area. Then, we design typical sampling point on the basis of the fuzzy
membership degree distribution. Through the indoor test analysis, finally, simulate
surface SOM, and validate result accuracy through independent sample.

16.2 Study Area

The study area is located in Bayanbulak Town, Hejing County, Xinjiang Uygur
Autonomous Region, China. It has an area of about 4 km2, with a length of 2.01 km
in the east–west direction and a width of 2.00 km in the north–south direction. With
the north side higher than the south, the elevation is between 2603 and 2995 m. In
this area, the average temperature is 4.8 °C. The absolute winter minimum could
reach −48 °C in January, while the absolute summer maximum could climb to
30.5 °C in July. The annual average wind speed is 2.7 m/s, the annual precipitation
is 276.2 mm, the annual evaporation range from 1022.9 to 1247.5 mm, the sunshine
duration is about 2466–2616 h, the heat energy is 562.8 kJ/cm2/year, the day of
snow lying is normally 150–180 days throughout the year, and there is no absolute
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frost-free period in this area. Totally, it is the typical alpine climate. The soil in the
study area is the subalpine steppe soil, which is intensively covered by alpine
meadow, mainly including Stipa purpurea, Kobresia capillifolia, and Polygonum
viviparum. (Fig. 16.1).

16.3 Methods

16.3.1 Establish Environmental Factors Database

Under landscape scale, the main factors of soil changing are the topographic and
hydrological conditions (Yang et al. 2007). Especially in a small study area,
topographic features can basically represent the main influencing factors of soil
formation and development (McSweeney et al. 1994). Because the study area is just
nearly 4 km2, climate condition can be regarded as uniform. In addition, parame-
terization of the regional geological age is difficulty and semiquantitative analysis
and sample-based methods are difficult to generate raster data with sufficient
accuracy, so time factor is not considered in this study. The environmental con-
ditions for the study area were characterized at 30-m resolution and the following
environmental variables were used: elevation, slope gradient, slope aspect, profile
curvature, planform curvature, and topographic wetness index (Fig. 16.2).

16.3.2 Cluster Combination Based on Fuzzy Logic

Using FCM method (FCM), we get a set of combinations of environmental factors.
Fuzzy membership degree (FMD), which is derived from different combination of

Fig. 16.1 Location map of study area
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environmental factors, shows the spatial change of soil properties. And according to
FMD, the central area in a combination and the transition zone between different
combinations could both be distinguished. Finally, we design one or two typical
points with higher membership degree in the center of each environmental factor
combination (Yang et al. 2010).

Through partition coefficient and normalized entropy with the change of cluster
number, FCM can determine the optimal clustering number (Bezdek et al. 1984;
Yang et al. 2007; Zhu et al. 2008). In general, with the increase of the cluster
number, if decreasing quantity of partition coefficient from (c − 1) to c is smaller
than from c to (c + 1), the clustering result can be considered relatively stable, and
the corresponding cluster number is the optimum. In this study, the optimal cluster
number is 9 and fuzzy weighted is 2. Membership degree of nine environmental
factor combinations were calculated by SoLIM. Figure 16.3 shows class1 and class
5 as examples.

Fig. 16.2 Environmental factors of study area

Fig. 16.3 Membership degree of environmental factors combination (class1 and class 5)
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16.3.3 Obtain Surface SOM of Typical Points for Each
Combination

Based on clustering of six environmental factors in the study area, distribution of
fuzzy membership degree class of nine environmental factor combinations was
captured (Fig. 16.3). Then, 14 typical points were selected in the center of each
environmental factor combination (Yang et al. 2010). Finally, surface soil sample
(0–20 cm) was collected for each typical points by field sampling, and SOM of each
sample points was obtained through laboratory analysis.

16.3.4 Simulate Surface SOM

We used a fuzzy membership-weighted average model in which the soil property
value at a location is the weighted average of the typical soil property values of the
prescribed soil types with the weights being the fuzzy membership values (simi-
larity values) (Eq. 16.1) (Zhu et al. 1997).

Vij ¼
Pn

k¼1 S
k
ijV

kPn
k¼1 S

k
ij

ð16:1Þ

where Vij is the predicted soil property value at location i, j, Skij is the fuzzy mem-
bership value in soil type k for the soil at the given location, and vk is the typical soil
property value for soil type k. This model is based on the assumption that the higher
the membership of a local soil in a given soil series, the closer the property values at
that location will be to the typical property values of the series (Zhu et al. 2010).

16.4 Results

16.4.1 Simulation of Surface SOM

According to the membership function of the soil and the environment factors,
surface (0–20 cm) SOM in the study area was simulated combined with environ-
mental factor databases and experimental data (Fig. 16.4). The results showed that
surface SOM in the study area varies continuously and changes with the terrain.

16.4.2 Accuracy Measure

Predicted SOM distribution results were compared with the measured data in order
to assess model performances. A total of 35 independent samples were collected in
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the study area including 16 equal interval sampling points (500 m) for testing the
whole simulation (ZR), 9 transection sampling points designed to cross the path of
the hills and valleys and tested whether simulation results can better reflect the
characteristics of the spatial gradient of soil properties (ZT), and 10 perpendicular
band sampling points (ZG), which was used to test the change of soil properties
along the elevation gradient. Mean absolute error (MAE), root mean square error
(RMSE), and coefficient of determination (R2) were set up for evaluation of
mapping results by using above independently validation points (See Table 16.1
and Fig. 16.5). The results showed that the inference results matched measured
value well on the whole. Besides, simulation accuracy was relatively high for
locations with a short distance from the cluster center or areas with more significant
changes in the terrain.

Based on the environmental similarity, formula (16.2) is calculated to assess the
speculated uncertainty caused by the sample representativeness:

Uncertaintyij ¼ 1�max S1ij; S
2
ij; . . .; S

n
ij

� �
ð16:2Þ

In oder to predict the uncertainty, we put the environmental similarity of the
predictive points and the center points into formula 16.2. Then we got the spatial
distribution of predicted uncertainty, as shown in Fig. 16.6.

Fig. 16.4 Simulated distribution of surface SOM and distribution of verification points
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Table 16.1 Evaluation
results of the surface SOM of
study area

MAE RMSE

Total 35.26 45.61

ZR 67.36 45.65

ZT 21.85 27.71

ZG 44.00 58.18

Fig. 16.5 Scatter diagram of
validation points

Fig. 16.6 Uncertainty
distribution map
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16.5 Conlusions

In this study, taking a small area of typical grassland in Bayanbulak, Xinjiang, as an
example, FCM method is used to establish the relationship between terrain factors
and surface SOM in the study area. Then, we design typical sampling point on the
basis of the fuzzy membership degree distribution. Through the laboratory analysis,
finally, simulate surface SOM, and validate result accuracy through 35 independent
sample points. The results showed that FCM method could rationally and effec-
tively classify the combination of terrain factors, and it is a low cost and efficiency
mapping method with satisfactory prediction precision and model stability and
could be possibly applied to areas with the similar landscape conditions. Besides,
prediction precision was relatively higher for locations were a short distance from
the cluster center or areas with more significant changes in the terrain.

Purposive sampling design method based on typical points is efficient for spatial
simulation of regional soil properties. The method is also effective for small scale of
the study area. In future study, vegetation information (such as the surface of the
biomass) should be added to the environmental factor clustering model, which will
help improve the quality of model.
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Chapter 17
Application of Digital Soil Mapping
Techniques to Refine Soil Map of Baringo
District, Rift Valley Province, Kenya

Rita Juma, Tamás Pőcze, Gábor Kunics and István Sisák

Abstract Detailed and precise description of soil information is important for both
developed and developing countries. Africa is highlighted as the most soil
data-challenged land surface in the world and it is the area most in need of
improved soil information. Our objective was to compile a detailed soilscape class
map for the Baringo area in Kenya by using auxiliary variables (digital elevation
model, satellite images, and climate maps). In the first step, we extracted landscape–
soil relationships based on soil classes from KENSOTER database. We applied soil
spatial prediction based on nine standardized predictor variables: x and y coordi-
nates of the sampling points, two principal components from the seven bands of
satellite images explaining 83 % of the total variance, three principal components
from the 42 variables of climate database explaining 96 % of the total variance, and
slope and elevation from digital elevation model. In the first phase (rule extraction),
explanatory and target maps were sampled at 999 random points. In the next phase
(prediction), 14 major combined soil classes were predicted based on randomly
placed 10,000 points. Distances between point values and centroids of the soil
classes were calculated, and the closest were scored with 1 and the others with 0.
The scores were kriged to obtain continuous probability estimates. Final map was
derived based upon the highest probabilities. Our approach had the clear advantage
that real-world variability was represented by stacked layers of smooth probability
estimates for the soil classes instead of blurred outputs where neighboring pixels
can be differently allocated. Our method is suitable to update old and less detailed
soil maps or predict new ones for similar environments in the presence of fine
resolution auxiliary information. Validity of the prediction should be appropriately
tested.
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17.1 Introduction

Detailed and precise soil information is very important for both developed and
developing countries. Unfortunately, in many countries this information is not
available if so then the existing soil databases are incomplete, not exhaustive or
precise enough, and the direct assessment of these resources is therefore constrained
by limited spatial data—particularly soil data (Dent and Bai 2008) especially in
many tropical countries where limited infrastructure is emphasized (Gonzalez et al.
2008; Hartemink et al. 2008).

The African continent is simultaneously highlighted as the most soil
data-challenged land surface in the world and as the area most in need of improved
soil information (Eswaran et al. 1997; Palm et al. 2007; Rossiter 2008). Time and
cost involved in soil survey are probably one of the reasons for the scarcity of more
detailed and updated soil maps since traditional soil survey is known to be very
expensive, laborious, and time-consuming (Nachtergaele and Van Ranst 2003).
Besides, the number of soil scientists and financial resources is also scarce in these
particular regions.

This emphasizes a clear need for quantitative soil information and need for
efficient alternative methods to utilize historical and limited soil databases to pro-
duce detailed and precise quantitative soil maps of fine resolution at lower costs, in
less time and with higher accuracy. One response to this demand is digital soil
mapping, where soil maps are produced digitally based on environmental variables
(McBratney et al. 2003). In the recent digital era, digital soil mapping plays a more
and more important role in this context (Lagacherie and McBratney 2006; Rossiter
2004); as Information Technology continues to improve rapidly, in particular GIS,
remote sensing, expert systems, as well as prediction models and digital soil
mapping techniques (Cook et al. 2008). Applying digital soil mapping based on
existing data emerges as a potential alternative to help to address the increasing
demands (Bacic 2008) and the limitations.

In Kenya, majority of soil maps were prepared by conventional methods with
soil information commonly available in reconnaissance scale, and based on broadly
based classifications that are of general, rather than specific application.
Furthermore, not adequate data are available, and if available, a good percentage
lacks detail in both spatial location and soil attribute information. According to
Nachtergaele and Van Ranst (2003) and Zinck (1995) soil surveys coverage in 44
low- and middle-income countries, Kenya has 100 small-scale (1:500,000 to
±100,000); 25 medium-scale (1:100,000 to ±50,000) only; and no large-scale
(1:50,000 to ±10,000) maps. Besides, their concepts and goals vary and time of
compilation stretches way back to colonial era (1960s).

In spite of the recent and speedy developments in digital soil mapping methods,
high-resolution soil data are seldom digitized and evaluated and if so, they are
lacking systematic quality assessment. Our study exhibits how to update a rough
soil map to a detailed digital fine scale soil class map by exploiting existing aux-
iliary data and digital soil mapping techniques. The result of this study may be
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suitable to update old and less detailed soil maps or predict new ones for similar
environments in the presence of fine resolution auxiliary information. Such
description of up-to-date soil status is needed by various areas of speciality; for
instance, researchers and policymakers need accurate and consistent soil informa-
tion to support policy development for environmental integrity, economic devel-
opment, and food and water security. Besides, this study may also contribute to
projects such as GlobalSoilMap.net (Sanchez et al. 2009) which is currently
working on African soils.

17.2 Materials and Methods

17.2.1 Study Area

The Study area is Baringo district, one of the districts in Rift Valley Province of
Kenya. The district has a population of 264,978 (1999 census). Geographically, the
area is situated from 00° 13′S to 1° 40′N and 35° 36′E to 36° 30′E. The district
covers an area of 10,162 km2, of which about 108 km2 is covered by water surface,
as shown in Fig. 17.1.

Fig. 17.1 SRTM elevation map of Baringo district in Kenya
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Baringo district falls into the Kenyan Highland Zone, described by Morgan
(1973) as having two peaks of rainfall patterns: long and short rain. The long rains
start from the end of March to the beginning of July, and the short rains from the
end of September to November. Average annual rainfall ranges from 600 mm in the
lowlands to 1000–1500 mm while the annual mean minimum and maximum
temperatures range from 16 to 18 and 25 to 30 °C respectively, with period between
January and March as the hottest. The major topographic features in the district are
river valleys and plains, the Tugen Hills, floor of the Rift Valley, and the northern
plateau. The altitude varies between 752 m in the lowlands and 2600 m in the
Tugen Hills.

The hills occurring in a north–south bearing mainly consist of volcanic rocks
with steep slopes dissected by gullies. On the eastern and western parts of the hills
are the escarpments and rivers flowing down these hills past through very deep
gorges.

Vegetation change is remarkable along the topographic gradients, including
temperate forests in the highlands to desert shrubs, such as drier acacia-species, on
the valley floors. The highlands of the south and southwest of the catchment area
and the summits of Tugen Hills are partly occupied by evergreen forest, farms, and
pastures. The top of the eastern rift escarpment is covered by evergreen bushland
with semi-deciduous wooded grassland at the foot of the hills. The soil consists of
clay and clay loams with various depths.

17.2.2 Data Collection

The input soil data were collected from KENSOTER database (Batjes and Gicheru
2004) and consisted of 2570 soil profiles taken during the 1990s distributed
throughout the country. The KENSOTER dataset is compiled by the Kenya Soil
Survey (KSS) and ISRIC in accordance with the SOTER methodology developed
for national and local agricultural planning purposes (Van Engelen and Wen 1995).

Digital elevation model (DEM) was obtained by the Shuttle Radar Topography
Mission (Rabus et al. 2003) and downloaded from the free data service site with
90 × 90 m ground resolution. DEM is a numerical representation of topography,
usually made up of equal-sized cells, each with a value of elevation. Its simple data
structure and widespread availability have made it a popular tool for land charac-
terization and soil distribution analysis (Blöschl and Sivapalan 1995; Chaplot et al.
2000; McBratney et al. 2003). Using the TOPOgrid function with ArcInfo
Workstation GIS available in ArcGIS 9.3 package (ESRI, USA), a digital elevation
model with 30 arc sec, corresponding to a pixel size of approximately 90 m, was
generated, based on 1:50,000 topographic map obtained from USGS global topo-
graphic Data (GTOPO30)—SRTM (Shuttle Radar Topography Mission) (Rabus
et al. 2003). First, it was prepared from the digitized contours and spot height using
option in 3D Analyst and later converted to raster to give DEM. The DEM was
used, directly or as a component, to compute slope gradient in percent.
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Satellite images were generated from Landsat 5 (Jan 2010).
Surface Climate and rainfall distribution dataset were acquired from Almanac

Characterization Tool (ACT) database (Mitchell and Jones 2005) with a roughly
5 × 5 km ground resolution, along with monthly rainfall from the CRU TS dataset
(Mitchell and Jones 2005). The climate variables used were monthly mean values
for minimum temperature, maximum temperature, precipitation, solar radiation,
evaporation, etc. These climate surfaces can also be used to generate secondary
information, e.g., bioclimatic parameters such as mean temperature of warmest
period, precipitation of driest quarter., which are useful in determining the climatic
envelope for such processes as soil formation among others.

We then converted all the data layers into a GIS database with WGS 1984
projection and with Projected Coordinate Systems of WGS 1984 PDC Mercator.prj.

17.2.3 Data Evaluation: Extracting Relationships
from Existing Databases

We used the first and second most frequent soil types of KENSOTER database,
combined them into a complex soil category whenever it was necessary and the
output was used as target class-variable in our study.

A total of 999 random sample points were selected within the entire study area
using Arcview Data management tools function. Surface spot and intersect tools
were used to get the values for each and every sample points from all data layers
(KENSOTER complex soil classes, 7 bands from satellite images, elevation and
slope from SRTM DEM, and 42 indicators from ACT climate database). These
attached values were then analyzed to develop relationships and predict the refined
map based on the derived rules. The data were sampled in ArcGIS 9.3 environment
(ESRI, USA) then exported and analyzed statistically using SPSS version 13 and
MS Excel.

Principal component analysis is often preferred as a method for data reduction.
Some describe it as a method of fitting a linear subspace to multivariate data by
minimizing the chi distances (Jolliffe 2002). PCA is mostly used as a tool in
exploratory data analysis and for making predictive models. The main application
of principal component techniques in this study was to reduce the number of
predictor variables to few and relatively easy to manage data. In this context, we
reduced number of variables in Landsat and ACT climate data layers to two and
three factors, respectively.

Following the steps above, we acquired nine explanatory variables (x and y
coordinates of the 999 random sampling points, elevation and slope, two factors
from satellite bands, and three factors from climate data) to predict complex soil
classes in KENSOTER. These variables were then standardized to determine the
centroid for each complex soil class in the defined space.
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17.2.4 Data Evaluation: Prediction

For prediction phase, we sampled the predictive maps of variables in the study area
at 10,000 random points (approximately one point per square kilometer). We cal-
culated distances between point values and the centroids of the KENSOTER soil
classes deduced from the previous step. Each complex soil class had one probability
variable. The closest centroid to the point scored a value of 1 and the others 0 in the
respective probability variables. On this way, we got 10,000 probability estimates
for the soil classes with values 1 and 0.

The scores were then kriged to obtain continuous probability estimates for all the
complex soil classes, and we subsequently combined the individual probability
maps into a complex soil prediction map based on the highest probability values.
Eventually, the final map was then evaluated with majority block statistics and it
was converted into a vectorial map for evaluation and interpretation purposes.

17.3 Results

14 combined soil classes had more than 10 points among the initial 999 random
points (Table 17.1) which we used as a proxy for defining major (>1 % area) and
minor (<1 % area) soil categories. We considered that less than 10 points are
insufficient to establish a reliable average for the centroids; thus, we performed our
analysis for the major soil categories only. Four combined classes exist. There are
Calcaric Regosols alone and in combination with Chromic Luvisols, there are Lithic
Leptosols alone and Leptosols in combination with Haplic Calcisols, and Calcic
Solonetz are combined either with Calcaric Fluvisols or with Calcisols. There is
also a major non-soil category: relatively unaltered lava flows. We expected that
soil categories alone or in combination with other categories should fall relatively
close to each other in the established nine-dimensional space. However, this was
only true between Calcaric Regosols and their complexation with Chromic Luvisols
(distance < 1) and not for other combinations. However, centroids for lava flows
and Calcaric Fluvisols were very close to each other (distance < 1) and that was the
case for Haplic Andosols and Chromic Cambisols, too. These similarities had
consequences for the final prediction as it will be discussed later. Distances between
1 and 2 existed for 16 of the possible 91 pairs of combinations.

In the next step, we performed prediction by using standardized explanatory
variables at 10,000 random points, allocating probabilities to points and kriging
allocated values. The result for one combined soil class (Leptosols + Haplic
Calcisols) is shown in Fig. 17.2. The core relationships between soil classes and
explanatory variables did not present themselves in the whole area from where it
was drawn, and in turn, it was present also in other areas where originally other soil
categories were indicated in the KENSOTER database. Transitional areas were
represented with lower probabilities.
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Table 17.2 shows the changes between KENSOTER map and the final predicted
map. The proximity of certain classes with respect to the explanatory variables
resulted strong changes in area percentages. This is the major reason for the
increased ratio of lava surfaces. Shallow and weakly developed soils (Leptosols,
Regosols) usually lost their shares due to the large percentage of moderately steep
slopes at lower elevations where the method predicted presence of Cambisols and
other soil classes with more distinct profiles but still in initial phase of their
development. The final predicted map is shown in Fig. 17.3.

17.4 Discussion

Digital soil mapping (DSM) provides a framework to formalize the use of existing
information. The conceptual framework of DSM (McBratney et al. 2003) is based
on the original model of Jenny (1941). Numerous DSM studies adopted the
SCORPAN framework as the underlying conceptual model to predict soil proper-
ties and classes:

Table 17.1 Representation of soil categories in the initial sampling set

Combined soil classes Number of points Soil units (FAO-UNESCO 1974)

RGc + LVx 208 Calcaric Regosols + Chromic Luvisols

LPq 186 Lithic Leptosols

LP + CLh 128 Leptosols + Haplic Calcisols

RGc 123 Calcaric Regosols

SNk + FLc 88 Calcic Solonetz + Calcaric Fluvisols

Lav 42 (Lava flows)

CMe 36 Eutric Cambisols

NTu 35 Humic Nitisols

FLc 31 Calcaric Fluvisols

NT 24 Nitisols

CMx 18 Chromic Cambisols

ANh 16 Haplic Andosols

CMu 13 Humic Cambisols

SNk + CL 12 Calcic Solonetz + Calcisols

Major soil classes 960
RGe 9 Eutric Regosols

FLe 7 Eutric Fluvisols

GLe 7 Eutric Gleysols

ANm 5 Mollic Andosols

CMc 5 Calcaric Cambisols

LXh 2 Haplic Lixisols

Minor soil classes 35
not defined 4 (Lake surface)
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Fig. 17.2 Probability map for
the Leptosols + Haplic
Calcisols combined soil class
and its final allocated area

Table 17.2 Changes in the predicted soil map compared to the KENSOTER database

KENSOTER Predicted map

Soil classes Number of
polygons

% of total
area

Number of
polygons

% of total
area

Lithic Leptosols 3 19.38 15 10.75

Calcaric Regosols + Chromic
Luvisols

2 17.44 4 10.43

Calcaric Regosols 10 13.25 14 10.96

Leptosols + Haplic Calcisols 3 11.7 10 9.25

Calcic Solonetz + Calcaric
Fluvisols

8 8.7 11 11.55

Calcaric Fluvisols 6 4.39 18 7.18

Lava flows 4 4.31 22 10.92

Humic Nitisols 3 4.11 5 5.34

6 minor soils 15 3.84 0 0

Nitisols 1 3.65 14 4.06

Eutric Cambisols 7 3.03 10 10.43

Chromic Cambisols 1 2.53 18 5.16

Haplic Andosols 3 1.33 8 1.59

Calcic Solonetz + Calcisols 2 1.28 2 0.7

Humic Cambisols 1 1.07 4 1.69

Total 71 155
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Sc ¼ f s,c,o,r,p,a,nð Þ or Sa ¼ f s,c,o,r,p,a,nð Þ

where Sc is a set of soil classes and Sa is soil attributes (properties) and the seven
factors for soil spatial prediction are given as: s: refers to soil information at the
same location either from a prior map or from remote sensing or expert knowledge,
c: climate; o: organism (vegetation, fauna, or human activities); r: relief, the local
topography (such as elevation, slope gradient, topographic wetness index); p: the
parent materials; a: means age, and n: the geographical position. These factors are
referred to as environmental covariates. McBratney et al. (2003) recognized that it
is a rather rare case when all the soil-forming factors are represented in a study and

Fig. 17.3 Predicted soil class map for Baringo district, Kenya
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this is the case for our work, too. Time is difficult to include in the analysis but
parent material (lithology) was also missing from our evaluated datasets. We can
assume that conversion of soil categories into lava surfaces could have been better
explained by inclusion of such data. Digital elevation models allow to calculate
large number of terrain parameters which are more or less correlated (Behrens et al.
2010). We retained in our study only elevation and slope as predictor variables
because an additional investigation indicated irrelevance of further variables.
Climate was exhaustively described by 42 variables but only three factors of
principal component analysis represented 96 % of their total variance. Surface
cover and land use were captured by seven Landsat bands and 83 % of the total
variance was represented by two PCA factors.

A comprehensive review of DSM is provided in McBratney et al. (2003) and an
overview of pedometric techniques is used in DSM by McBratney et al. (2000) and
Grunwald (2006). Many methods have been developed to extract or determine
relationships between soil properties and terrain variables (McBratney et al. 2000,
2003). These methods can be grouped into four major types based on data sources:
(1) methods for obtaining knowledge on relationship from local scientists;
(2) methods for establishing relationships from field samples; (3) methods for
discovering relationships from existing soil maps; and (4) methods for extracting
relationships from typical pedons (typical classes).

The third approach (using existing soil maps to obtain landscape–soil relation-
ship rules) has got special attention recently (Bui et al. 1999, 2002; Qi et al. 2006;
Mayr et al. 2008) and disaggregation of existing soil maps was the objective of
several studies. Häring et al. (2012) disaggregated spatially complex soil map units
with the decision-tree method. In Hungary, Pásztor et al. (2014) and Sisák and Benő
(2014) used classification trees to refine soil maps with the help of more detailed
ancillary data.

Digital soil mapping approaches which utilize soil information from existing
(usually small or medium scale) soil maps and field observations perform much
better than pure theoretical constructions (Mendonça-Santos et al. 2008). Soil maps
are physical representations of the mental models of the mappers on how
soil-forming factors interact (Bui 2004). They provide us a path through the almost
infinite number of theoretically possible combinations to the most probable out-
come. In countries where small- or medium-scale soil maps exist, their statistical
analysis may help to define homogenous soil regions or soilscapes and represen-
tative areas for detailed soil surveys (Behrens et al. 2009; Schmidt et al. 2010). By
using these concepts, our study was a soilscape disaggregation exercise since we
dismissed minor soil classes but refined probable areas for major classes.

In the study of Häring et al. (2012), original soil polygons were not overwritten
only subdivision was allowed to the contrary of the papers of Bui and Moran (2001)
and Yang et al. (2011) with which our work has some methodological similarities.
However, the authors of both papers used unsupervised classification (k-means
clustering and fuzzy c-means clustering) to establish environmental variable cen-
troids for subclasses the number of which was fairly well known from pedological
descriptions. In our study, only one centroid was calculated for each soil class so
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classification was not our objective. Both other studies calculated distances between
pixel values and cluster centroids while we calculated distances between values in
random sampling points and centroids. Then, we obtained pixel-wise allocation
rules with kriging. The two approaches have rather different results. Pixel-based
calculations may produce extremely unhomogenous surfaces in the first step while
our method produces relatively smooth probability estimates for each soil classes
and the stacked layers of different classes with different probabilities represent the
real-word variability. Grinand (2008) observed that soil class prediction accuracy
can only be approximated correctly if test samples are collected at a certain distance
from the training samples when predicting unvisited areas. Nauman and Thompson
(2014) have found very similar results. The prediction accuracy was rather low for
point profiles but it increased considerably when 60 m surrounding was considered.
This may lead us to the conclusion that it is almost impossible to exactly predict soil
class at a given location from small-scale soil maps at least in a variable terrain.
However, we can allocate probabilities of occurence as our results suggest.

Our digital map has the same advantage as those reported by Bui and Moran
(2001) and Yang et al. (2011) that existing boundaries in the map (seam along
aligned map sheets or borderline of large polygons) can be overwritten and cor-
rected by the derived rules.

Further refinement of the methodology is possible. We predicted a map only for
soils with primary probabilities but it is still possible to produce similar maps for
soils with secondary and tertiary probabilities and the resulting maps can be
combined. Further possibility for modification when instead of 1 and 0 for the
closest and the other centroids, we use membership measures with value of 1 for
the closest centroid and continuous lower values proportional to the distances for
the others (Yang et al. 2011). However, 1 and 0 scoring has the clear advantage of
the nonambiguities.

17.5 Conclusion

With help of auxiliary variables, we were able to predict a refined soilscape map of
Baringo district, Kenya, compared to the original KENSOTER database. We
sampled the surface at random points and kriged the result instead of pixel-based
calculations. Our approach had the clear advantage that real-world variability was
represented by stacked layers of smooth probability estimates for the soil classes
instead of blurred outputs where neighboring pixels can be differently allocated. We
derived a soilscape map from classes of primary probabilities but calculation with
secondary and tertiary probabilities is also possible and the resulting maps can be
combined. 1 and 0 scoring of the most probable and the remaining soil classes
seemed to have the clear advantage of nonambiguity but alternative calculation of
membership grade is also possible.
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Chapter 18
Predictive Mapping of Soil Organic Matter
at a Regional Scale Using Local
Topographic Variables: A Comparison
of Different Polynomial Models

Xiao-Dong Song, Gan-Lin Zhang and Feng Liu

Abstract Borrowing the idea of software engineering, this paper aimed to evaluate
the mapping accuracy of soil organic matter (SOM) content from the “black box”
perspective by combing regression kriging (RK) with local terrain attributes cal-
culated by different polynomial models. When calculating local terrain attributes,
we applied two neighborhood shapes (square and circular) and six frequently used
algorithms (Evans-Young, Horn, Zevenbergen–Thorne, Shary, Shi, and Florinsky).
Overall, 35 combinations of first- and second-order derivatives were produced as
secondary information for RK. For comparison, the ordinary kriging (OK), ordinary
cokriging (COK), and universal kriging (UK) were also utilized to map the SOM
spatial distribution. The results of the study showed that the RK application out-
performs OK, COK, and UK in improving the prediction quality of SOM content in
a region where the soil properties were strongly influenced by the toposequence and
the altitude was with a wide range. The most accurate mapping result was obtained
by the combination of the Evans-Young algorithm and Zevenbergen–Thorne
algorithm for the calculation of first- and second-order derivatives, respectively. The
mapping results from the higher-order approach (Zevenbergen–Thorne and
Florinsky) yielded less prediction errors and the circular-neighborhood method
could enhance some algorithms for the calculation of local terrain attributes.
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18.1 Introduction

In the past thirty years, significant advances have been made in information tech-
nology, especially in Geographic Information System (GIS), remote and proximal
sensors, and digital elevation models (DEMs), which have significantly boosted the
vitality of soil science (McBratney et al. 2003). Taking DEM as an example, a
number of fundamental topographic attributes have been proposed to quantitatively
identify landform classes and features within geomorphology (Wilson 2012), and
thus, diverse algorithms are presented focusing on specific goals and scenarios.
Much attention, therefore, has been devoted to predict soil properties by using the
terrain attributes. A large number of studies have shown that prediction methods
incorporating these pieces of secondary information outperform generic geostatis-
tical models (e.g., ordinary kriging) (Bishop and McBratney 2001).

Some of topographic attributes are distinguished from non-local or regional
parameters, and hence are referred to as local terrain attributes, which are derived
directly from DEMs without additional inputs and usually calculated by moving a
three-by-three window (Behrens et al. 2010; Florinsky 1998; Shary et al. 2002;
Wilson 2012), such as slope, curvature, roughness, and elevation percentile. After a
traversal across DEM, a new grid with the same dimension will be produced, whose
cells are each filled with a calculated value of land surface parameter. For mor-
phometric variables, the terms local and non-local are usually used regardless of the
study scale or DEM resolution and associated with the mathematical sense of a
particular variable (Florinsky 2011).

Among local terrain parameters, slope and aspect, twelve kinds of curvatures
(Shary 1995) are also called first- and second-order derivatives, respectively, as
they are defined by the formulae depending on the first- and second-order partial
derivatives of altitudes. Multifarious mathematically modeling methods have been
developed to calculate these derivatives from a gridded DEM focusing on various
landscapes (Evans 1980; Horn 1981; Minár et al. 2013; Shary 1995; Shary et al.
2002; Shi et al. 2007; Zevenbergen and Thorne 1987). As the accuracy of the
variables is unavoidably influenced by the DEM data and calculation algorithms,
numerous studies have been published to estimate the accuracy of these algorithms
(Schmidt et al. 2003; Warren et al. 2004), analyze the relationships between errors
of derived parameters with DEM data characteristics (Chang and Tsai 1991; Gao
1997), and compare computed slope gradients with actual field measurements
(Bolstad and Stowe 1994; Warren et al. 2004). Nevertheless, none of those studies
is within the context of soil mapping and their results are hardly applicable to
knowledge-based digital soil mapping (Shi et al. 2012). The selection approaches of
terrain attributes also have not received the attention they deserve in soil science
literature (Behrens et al. 2010).

The purpose of this research was to evaluate the mapping performance of soil
organic matter (SOM) that results from RK technique combined with local terrain
attributes based on different polynomial models. Nine terrain attributes were cal-
culated from grid DEMs: elevation, topographic wetness index (TWI), slope,
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aspect, plan curvature, profile curvature, tangent curvature, maximal curvature, and
minimal curvature. The local terrain attributes were derived from six quadratic and
Lagrange polynomials and two types of neighborhood shapes. Among the six
algorithms, the Evans-Young algorithm (Evans 1980; Young 1978), the Horn
algorithm (Horn 1981), and the Shary algorithm (Shary 1995) are based on a
quadratic polynomial, and the Zevenbergen–Thorne algorithm (Zevenbergen and
Thorne 1987), the Shi algorithm (Shi et al. 2007), and the Florinsky algorithm
(Florinsky 2009) are based on a Lagrange polynomial. At the beginning of inter-
polation, Pearson correlation and partial correlation analyses were performed to
scan the relations between SOM and all variables. We then compared the results of
ordinary kriging (OK), ordinary cokriging (COK), universal kriging (UK), and
regression kriging (RK). Furthermore, we discussed the combination of local terrain
variables for RK which achieved acceptable quality for predicting the spatial
variation of SOM contents and potentially other soil properties.

18.2 Materials and Methods

18.2.1 Data

The study area, the upper and middle reaches of the Heihe River Basin, is located
along the northeast margin of the Qinghai-Tibetan Plateau in China at the inter-
section of the Tibetan Plateau, the Inner Mongolia-Xinjiang Plateau, and the Loess
Plateau (Fig. 18.1). With the geographical boundary of about 97°20′–101°51′E and
37°41′–39°59′N, this area stretches for 340 km from the northwest to the southeast
at a width between 115 and 180 km. Soil sampling was conducted in July to August
2012, including regular sampling and purposive sampling (Zhu et al. 2008) based
on the concept of soil–environment relationships. A total of 223 topsoil (0–20 cm)
samples recorded in above collections were compiled in a digital database. These
data points were randomly split into calibration (80 %; n = 178) and validation
(20 %; n = 45) datasets using the subset function of Geostatistical Analyst in
ArcGIS (ESRI 2010).

18.2.2 Calculation of Local Terrain Variables and Other
Related Terrain Variables

Terrain variables used in this study for the estimation of SOM were slope gradient,
slope aspect, profile curvature, maximal curvature, minimal curvature (Table 18.1),
elevation, and TWI. SRTM DEM data were employed and geo-referenced from
three-arc second resolution to 90 m × 90 m resolution. The principal differences
among most algorithms for the computing of local terrain variables are the number
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of grid cell used and the weight given to each of those cell values. In general, most
algorithms utilize some elevation values in a three-by-three window centered on the
elevation cell in question, so that one can find all the unknown coefficients for a
polynomial. However, a three-order polynomial should be fitted over all points in a
5 × 5 neighborhood for approximation of all the coefficients (Florinsky 2009; Minár
et al. 2013).

The approximations for regular grid DEMs used were bivariate second-, third-,
and partial fourth-order polynomials. In this paper, the first- and second-order
terrain attributes were selectively calculated using the circular and square neigh-
borhood, which resulted in a total of 39 layers (14 first-order derivatives and
25 s-order derivatives). The first-order derivatives, slope and aspect, were computed

Fig. 18.1 Location of the study area and distribution of soil sampling sites

Table 18.1 Descriptive
statistics of measured soil
organic matter stock (SOM),
log-transformed SOM
(LnSOM), of the study area

Variables SOM
g kg−1

LnSOM
g kg−1

Mean 33.61 2.99

Median 19.44 2.97

Minimum 1.21 0.19

Maximum 269 5.96

Standard deviation 41.49 1.02

Coefficient of variation (%) 140.10 34.11

Coefficient of skewness 3.91 0.19

Coefficient of kurtosis 20.06 0.28

SOM the soil organic matter stock; LnSOM log-transformed soil
organic matter stock
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by seven algorithms: the Horn, Zevenbergen–Thorne, and Florinsky algorithms
using the square neighborhood, the Shi and Evans-Young algorithms using both
square and circular neighborhood. Five kinds of curvatures (Table 18.1) were
achieved by five algorithms: the Zevenbergen–Throne, Shary, and Florinsky
algorithms with square neighborhood, and the Evans-Young algorithm with both
square and circular neighborhood. Hence, 35 combinations of first- and
second-order derivatives were grouped. All combinations were incorporated into
the multiple linear regression of RK, so as to test which group would yield the best
performance. The formula of aforementioned variables could be found in literatures
(Florinsky 2011; Horn 1981; Shary 1995; Shary et al. 2002; Shi et al. 2007;
Zevenbergen and Thorne 1987).

For convenience, in the rest of this paper, a specific terrain variable and all
attributes with the same order are abbreviated to “Variable _ Method _
Neighborhood” and “Method” + “n” + “Neighborhood,” respectively, where n is
the order of local topographic attributes. For example, Slp_EY_C denotes the slope
gradient using circular neighborhood and the Evans-Young algorithm; FY_2_Q is
the second derivatives calculated by the Florinsky algorithm with square neigh-
borhood. Most of the layers were generated by the Terrain Analysis function of
ArcSIE®, and other algorithms were implemented in C++ using GDAL library.

18.2.3 Methods

Four geo-statistical methods were involved in this study, including ordinary kriging
(OK), cokriging (COK), universal kriging (UK), and regression kriging (RK). As a
most general and widely used method of kriging, OK was employed to characterize
the spatial variation of SOM and map overlays. If an interpolation is merely based
on sample dataset, OK is commonly applied. OK uses the spatial correlation
structure of the dataset to calculate weights for linear prediction from known points.
Therefore, this method may require dense sample data for an interpolation with
reasonable accuracy. In addition to OK, UK, COK, and RK are hybrid interpolation
methods in which the variation of soil properties is quantified by deterministic and
stochastic (empirical) models and can incorporate one or more ancillary variables in
the estimation.

Cross-validation procedure was conducted to evaluate the accuracy of different
models through three statistical measurements of the prediction error. The accuracy
of estimates was assessed by the mean absolute error (MAE), the root mean squared
errors (RMSE), and mean relative error ratio of performance to deviation (RPD).
These indices were derived according to Eqs. (18.1), (18.2), and (18.3),
respectively:
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MAE ¼ 1
n

Xn
i¼1

Z� xið Þ � Z xið Þj j½ � ð18:1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Z� xið Þ � Z xið Þ½ �2
s

ð18:2Þ

RPD ¼ STD
RMSE

ð18:3Þ

where Z(xi) is the observed value of Z at locations xi, Z
*(xi) the predicted value at

the same location, n the number of samples, and STD the standard deviations of the
variable. MAE and RMSE were used to estimate the accuracy of the predictions
which should be as low as possible for accurate interpolation. The RPD was
employed so as to interpret the prediction ability of each model.

18.3 Results

18.3.1 Exploratory Data Analysis

The summary statistics for SOM and log-transformed SOM (LnSOM) are presented
in Table 18.1. The observed SOM content in surface soils varied from 1.21 to
386.00 g kg−1, with a mean value of 34.61 g kg−1. The coefficient of variation
(CV) was 140.10 g kg−1, indicating that SOM for all samples had a very large
variability. The value of skewness was 3.91 g kg−1, suggesting that samples had a
positively skewed distribution (Fig. 18.2a). The Kolmogorov–Smirnov (K–S) test
(p-value = 0.000 < 0.05) rejected the null hypothesis of normality for samples.
The SOM stock data were transformed by natural logarithm to create an

(a) (b)

Fig. 18.2 Histogram of raw (a) and processed (b) datasets of SOM
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approximately normal distribution, with mean (2.99 g kg−1) and median
(2.97 g kg−1). Coefficients of skewness and kurtosis of lognormal SOM stock
dropped from original values to 0.19 and 0.28 g kg−1, respectively. Finally, the
prediction values of SOM were back-transformed to original units.

Pearson’s correlation analysis was carried out to explore the relationship
between LnSOM and the terrain attributes based on the Evans-Young algorithm
using square neighborhood (Table 18.2). These correlations were significant at the
0.01 level, suggesting that topography has important impacts on the distribution of
SOM. The step-wise regression therefore was executed, aiming to derive the best
subset of predictor variables and reduce the number of predictors (Table 18.2).

18.3.2 Prediction Accuracy of Different Kriging Methods

The aforementioned 45 validation datasets were used to assess the performance of
different kriging methods with elevation, TWI, and local terrain attributes
(Table 18.3). The prediction accuracy of SOM in this study was improved using RK
with various combinations of local topographic attributes. The smallest and the
largest prediction errors were produced by RK(EY1S_ZT2S) and RK
(FY1S_EY2S), respectively. Compared with the worst method, the MAE and
RMSE produced by RK(EY1S_ZT2S) method decreased by 6.46 g kg−1 and
20.23 g kg−1, respectively, and the MRE increased by 0.84. The results of vali-
dation indicated that the combination of EY1S_ZT2S for the deriving of the local
terrain attributes could remarkably improve the prediction accuracy of SOM pre-
diction in this study area. RK(HN1S_ZT2S) also achieved a considerable accuracy,
while the Horn and Zevenbergen–Throne algorithms might be the most widely used
to calculate the first- and second-order derivatives due to the integration of main-
stream GIS software. In the case of MAE, no values were close to zero, suggesting
that there was a biased prediction. The RMSE values were slightly smaller than the
standard deviations of the soil sample values (41.49 for SOM), and most of the
RPD values were larger than 1.4. The inclusion of more auxiliary information in the
RK regression models significantly improved the prediction performance.

Another important finding was that the performances of RK method whose
second-order terrain attributes (SI1S_FY2S, ZT1S_FY2S, and SI1C_FY2S) were
calculated by the third-order polynomial (Florinsky 2009) method outperformed
most of the RK combinations and other kriging methods. Simultaneously, all the
RPD values of RK combinations with FY2S, EY2C, and ZT2S were greater than
1.4, whereas the combinations with SA2S and EY2S were smaller than 1.4.
Among RK results, RK with EY2S achieved the poorest performance, whereas all
the RK with EY2C produced acceptable errors (RPD > 1.4). For all RK combi-
nations, the circular neighborhood did not perform consistently better than the
square neighborhood. This confirmed the previous conclusion (Shi et al. 2007) that
the circular-neighborhood method may be more advantageous when used together
with a specified neighborhood size, especially on a high-resolution DEM.
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It is clearly seen that RK produced the SOM maps with more marked fluctuation
than those of OK, COK, and UK (Figs. 18.3 and 18.4), especially when the maps
were draped over the DEM they were based on. The obvious differences between
the SOM maps generated by RK and other three kriging methods were the predicted
SOM values in south part of study area (Qilian Mountain). The maps produced by
RK showed more details of SOM content in spatial variation, which convincingly
indicated the significant influences of toposequence as only the terrain attributes
were used within the multiple linear regression.

One of the overall aims of this study was to compare the accuracies of SOM
maps derived from RK with various combinations of local terrain attributes.
Different from quantitative surface analysis (Jones 1998; Zhou and Liu 2004), it is
an application-specific scenario for the mapping of SOM in regional area where the
topography undulates greatly. Different combinations of first- and second-order
derivatives provide diverse SOM maps due to their describing abilities of the
general geomorphometry of land surface. In common with one of the objectives of
geomorphometry, to a certain extent, digital soil mapping aims to quantitatively
describe and model the variation of soil properties in terrestrial ecosystem. This

Table 18.3 Assessment of the various methods for predicting soil organic matter

Methods MAE RMSE RPD Methods MAE RMSE RPD

RK(EY1S_ZT2S) 15.50 23.08 1.80 RK(EY1S_EY2C) 18.03 28.68 1.45

RK(SI1S_FY2S) 16.25 24.85 1.67 RK(SI1S_EY2C) 16.98 28.73 1.44

RK(ZT1S_FY2S) 16.97 26.36 1.57 RK(SI1C_SA2S) 19.53 37.41 1.11

RK(SI1C_FY2S) 16.98 26.39 1.57 RK(ZT1S_SA2S) 19.55 37.45 1.11

RK(HN1S_ZT2S) 17.28 27.40 1.51 RK(SI1S_SA2S) 20.10 38.29 1.08

RK(EY1C_ZT2S) 17.26 27.47 1.51 RK(EY1C_SA2S) 20.53 38.41 1.08

RK(FY1S_ZT2S) 17.31 27.73 1.50 COK 19.15 38.85 1.07

RK(FY1S_FY2S) 17.43 27.78 1.49 RK(HN1S_SA2S) 20.77 38.99 1.06

RK(EY1C_EY2C) 17.00 27.81 1.49 RK(ZT1S_EY2S) 21.08 39.32 1.06

RK(HN1S_EY2C) 17.16 27.86 1.49 RK(SI1C_EY2S) 21.09 39.35 1.05

RK(EY1C_FY2S) 17.50 27.92 1.49 RK(FY1S_SA2S) 20.80 39.47 1.05

RK(EY1S_FY2S) 18.40 28.06 1.48 OK 21.29 39.52 1.05

RK(HN1S_FY2S) 17.56 28.07 1.48 RK(EY1S_SA2S) 21.23 39.73 1.04

RK(FY1S_EY2C) 17.19 28.28 1.47 UK 20.71 40.29 1.03

RK(SI1S_ZT2S) 17.19 28.35 1.46 RK(EY1C_EY2S) 21.32 40.84 1.02

RK(ZT1S_ZT2S) 16.95 28.44 1.46 RK(SI1S_EY2S) 21.49 41.47 1.00

RK(ZT1S_EY2C) 16.69 28.48 1.46 RK(HN1S_EY2S) 21.68 41.76 0.99

RK(SI1C_ZT2S) 16.96 28.49 1.46 RK(EY1S_EY2S) 22.47 42.60 0.97

RK(SI1C_EY2C) 16.72 28.55 1.45 RK(FY1S_EY2S) 21.96 43.31 0.96

RK regression kriging; OK ordinary kriging; COK cokriging; UK universal kriging; MAE mean
absolute error; RMSE root mean squared error; RPD ratio of performance to deviation. EY
Evans-Young algorithm; ZT Zevenbergen–Throne algorithm; HN: Horn algorithm; SA Shary
algorithm; SI Shi algorithm; FY Florinsky algorithm; S square neighborhood; C circular
neighborhood
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quantitative description could be seemed as a scientific approach to evaluating the
land surface modeling, which is reflected directly by the correlations between
topographic variables and soil properties. Generally, it is confirmed especially when

(c) 

(a) (b) 

0 10050    km

SOM (g/kg)
 < 6
7 - 9
10 - 15
16 - 20
21 - 30
31 - 40
41 - 60
61 - 90
91 - 140
 > 141

Fig. 18.3 The spatial predictions of soil organic matter content (g kg−1) by universal kriging (a),
ordinary kriging (b), and ordinary cokriging (c)
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Fig. 18.4 Predicted soil organic matter (SOM) maps using regression kriging. Note The
prediction values are draped over the DEM they are based on
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the soil patterns are not affected by the agriculture and other anthropogenic
activities.

It is helpful to arrive at a conclusion that we could achieve an optimal combi-
nation of first- and second-order derivatives based on disparate algorithms rather
than the same algorithm. Other contrastive studies of polynomial models also found
that modeling results from higher-order approaches show higher sensitivity to local
variations (Florinsky 2009; Schmidt et al. 2003), such as the Zevenbergen–Throne
algorithm and the Florinsky algorithm. This was coincided with the results of
cross-validation listed above. There were 8 and 14 RK methods whose
second-order derivatives were calculated by the Zevenbergen–Throne and
Florinsky algorithms in the top 10 and 20 combinations. The main advantage of the
Florinsky algorithm is the local denoising by approximating the polynomial to
elevation values of the 5 × 5 window which could enhance the calculation of partial
derivatives. Likewise, the modified Zevenbergen–Thorne algorithm with
circular-neighborhood method is more sensitive to noise in the DEM, whereas the
square-neighborhood method is less sensitive (Shi et al. 2007).

18.4 Conclusions

The contrast results of the current study could be deemed as the benchmark of
different algorithms of local topographic variables. Nevertheless, it does not mean
that the best method for the calculation of local parameters in this study will
outperform others with different spatial resolutions and neighborhood sizes, espe-
cially when the DEM datasets are generated variously due to the vital accuracy of
DEM. Comparing with traditional application, we can conclude that the perfor-
mance of predictive methods that can incorporate auxiliary variables might be
improved by using the same local terrain variable calculated by different methods.
However, although the “black box” approach of digital soil mapping is working in
hindsight, a more accuracy soil map of large poorly accessible area or difficult
terrain might be achieved, which takes up a little time and energy rather than high
sampling costs. In conclusion, our findings are important to select the algorithms of
local morphometric variables for the RK technique or other prediction methods
especially for the high-relief sites. Our study also provides a promising approach to
choose the ancillary variables for mapping the spatial variation of other soil
properties.
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Chapter 19
Estimating Soil Carbon Sequestration
Potential in Fine Particles of Top Soils
in Hebei Province, China

Xianghui Cao, Huaiyu Long, Qiuliang Lei and Shuxia Wu

Abstract Accurate evaluation of carbon sequestration potential (CSP) plays an
important role in mitigating the buildup of atmospheric carbon dioxide. This study
evaluated topsoil CSP of Hebei, using data collected during the recent soil inven-
tory in 2010–2011. The results showed that shajiang black soils, irrigation silting
soils, and coastal solonchaks were found the highest C content, and the values of
them are 109.46 ± 14.70, 108.96 ± 30.24, and 146.91 ± 19.43 t C/ha, respectively.
However, in terms of total potential of sequestration, although average potential of
brown earths, cinnamon soils, and fluvo-aquic soils is not the highest, total potential
of them is higher, and the values of them are 161.11, 475.12, and 409.76 Tg,
respectively. From the perspective of the spatial pattern of CSP, the soils of
80–120 t C/ha that included bog soils, shajiang black soils, solonchaks, and
irrigation silting soils possess the largest area (60.39 % of total soil area) and
distributed mainly in the middle part of Hebei. The results will make it clear to
understand the status quo of CSP, and the different types of soils play different roles
in sources and sinks of CO2.

Keywords Topsoil � Carbon sequestration � SOC � Carbon saturation

X. Cao � H. Long � Q. Lei (&) � S. Wu
Institute of Agricultural Resources and Regional Planning,
Chinese Academy of Agricultural Sciences, Beijing 100081, China
e-mail: leiqiuliang@caas.cn

X. Cao
e-mail: 820646658@qq.com

H. Long
e-mail: hylong@caas.ac.cn

S. Wu
e-mail: 330889755@qq.com

© Springer Science+Business Media Singapore 2016
G.-L. Zhang et al. (eds.), Digital Soil Mapping Across Paradigms,
Scales and Boundaries, Springer Environmental Science and Engineering,
DOI 10.1007/978-981-10-0415-5_19

233



19.1 Introduction

The world pays more attention to the climate change in recent years. The atmo-
spheric CO2 concentration has increased by 0.31 times from 1750 to 1999 and is
currently increasing at the rate of 1.5 ppmv/year (McCarthy and Intergovernmental
Panel on Climate Change. Working Group II 2001). However, terrestrial soils play
an important role in the atmospheric carbon dioxide budget, which includes
1500 Pg of organic carbon, or 2.5–3 times as much organic carbon as the global
atmosphere or terrestrial vegetation (Batjes 1996; Follett 2010). Consequently,
these estimates will help establish better soil management practices, which could
improve soil quality and mitigate the effects of global warming (Lal 2004a).

Currently, national or regional scale soil organic carbon (SOC) density and
carbon sequestration research, especially in agricultural soils, have attracted sig-
nificant attention (Vleeshouwers and Verhagen 2002; Marland et al. 2003).
Numerous studies have been conducted to estimate agricultural soil sequestration
potentials and explore management options to enhance carbon sequestration at
national and regional levels (West and Post 2002). For example, no-tillage can
contribute to the reduction of soil carbon significantly by reducing the loss of soil
aggregates and the exposing of young and unstable organic matter to microbial
decomposition in order to enhance CSP (Paustian et al. 2000). Recently, the DNDC
model has been used to evaluate the significance of RMPs contributing to increase
soil carbon sequestration and to explore effective carbon sequestration options by
using a regional mode (Li et al. 2004; Tang et al. 2006; Zhang et al. 2006). Some
research also have combined site-level process-based model with GIS, which
extrapolated point measurements to regional scales (Falloon et al. 2000;
Zimmerman et al. 2004). Nevertheless, soil carbon sequestration is a complicated
process that is affected by many factors, such as organic carbon inputs from crop
residue, climatic and soil property, the original carbon content, and soil type. At
present, few studies focus on the CSP of different soil types.

So, in this study, quantitative estimation of CSP of different types of top soils is
analyzed in Hebei Province of China according to the current investigation data in
Hebei Province. We aimed to understand the status quo of CSP to provide the basis
for choosing the measures of sustainable soil management and evaluate the capacity
of soil carbon sequestration to make it clear that different types of soils play
different roles in sources and sinks of CO2.

19.2 Materials and Methods

19.2.1 Study Area

This research was conducted in Hebei Province (36°–43°N, 113°–120°E) in China.
Hebei Province covers about 190,000 km2 and the area of the cultivated soils
accounted for 39.91 % of the total area. The altitude of north is higher than that of
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south, and the climate is temperate and warm temperate continental monsoon cli-
mate. The annual mean temperature and precipitation are 9.67 °C and 536 mm,
respectively. There are 21 types of dominant soils, the names of which are shown in
Fig. 19.1 and the covering area of each soil is in Table 19.1.

19.2.2 Data Source

The data were based on the current soil survey conducted in 2010–2011 in Hebei
Province. There were 166 profiles according to the method of traditional sampling
design. The sampling points of the overall 21 soil types identified by the soil survey
were divided into uncultivated and cultivated soils according to the soil survey.
Locations of the sampling points were shown in Fig. 19.1. The basic data of soils
investigated mainly include SOM content, bulk density (some samples), mechanical
composition, and the area of region.

Fig. 19.1 The location of Hebei Province in China (a), elevation map of Hebei Province and
distribution of soil sampling sites (b), and soil map of Hebei Province (c)
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19.2.3 Calculation Methods

19.2.3.1 Calculation of SOC Content and SOC Density in Topsoil
(0–30 cm)

This paper mainly studied the soils of thickness of soil horizon (0–30 cm).
However, the thickness of some top soils exceeds 30 cm and that of some top soils
is less than 30 cm. For the thickness of soil horizon exceeding 30 cm, SOC of
0–30 cm is original values. However, SOC of 0–30 cm can be calculated by the
thickness weight method. The soil organic matter content of the samplings was
converted to SOC by multiplying a constant (0.580).

SOC0�30 cm ¼
0:58 OiHi þOj 30� Hið Þ

h i
30

ð19:1Þ

where SOC0–30 cm means the SOC content of 0–30 cm; Hi is the thickness of soil
horizon that is less than 30 cm; Oi means the SOM content of Hi; and Oj means the
SOM content of the thickness of soil horizon ranging from Hi to 30 cm.

The topsoil SOC density (Dsoc) was estimated using Eq. (19.2).

Doc ¼ SOC0�30 cm � c� H � 1� d2mm=100
� �

� 10�1 ð19:2Þ

where Doc (t/ha) is the total amount, γ (g/cm3) is the bulk density, H is the soil
depth (cm), and δ2 mm(%) is the 2-mm coarse fraction of the soil. Partial data of
bulk density were missing, and bulk density was estimated by regression analysis
between the available bulk density and SOC content for a given layer.

19.2.3.2 Calculation of Carbon Sequestration Potential

According to clay and silt content of different soil types, maximum amount of SOC
associated with the particles (<20 μm) can be calculated by (Hassink 1997):

Csat ¼ 4:09þ 0:37�% clayþ siltð Þ ð19:3Þ

where Csat means the saturated carbon content of clay and silt (g/kg).
Based on total organic carbon content and the proportion of stable carbon of clay

and silt (<20 μm) (x), the saturated carbon content of clay and silt can be calculated.
The percentage content (x) of saturated carbon content in total organic carbon
content ranges from 85 to 89 %. Generally, the percentage content (x) is 85 ± 2.5 %,
and the carbon sequestration of soil void can be calculated by:
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Sdef ¼ Csat � xSOC0�30 cm ð19:4Þ

where Sdef means carbon sequestration amount of soil void (g/kg) and SOC0–30 cm

means the current content of SOC (g/kg).
The potential capacity of carbon sequestration can be estimated by:

Sc ¼ Sdef � BD� 1� RFð Þ � d � 10�1 ð19:5Þ

19.2.3.3 Calculation of Soil Bulk Density

Because bulk densities did not fully follow the measurement of SOM in the current
soil survey, the missing bulk densities could be estimated by establishing correla-
tion between the available bulk densities and SOC content. The regression between
soil bulk density and SOC content does rest with soil types. Of the data available,
30 topsoil samples had the value of both SOC content and bulk density (γ). The
regression between bulk density and SOC is established as follows:

c ¼ 1:5915� e�0:012�SOC R2 ¼ 0:7816
� � ð19:6Þ

The regression Eq. (19.6) was used to calculate the missing bulk density value.

19.3 Results and Discussion

19.3.1 Current SOC Density in Different Soil Types

The estimated SOC density of individual soil types ranged from 22.25 ± 7.71 to
85.65 ± 9.75 t C/ha widely (Fig. 19.2). The difference of organic carbon density of
different soil types is significant. SOC density of black soils is the highest
(85.65 ± 9.75 t C/ha), and the second highest is the gray forest soils
(72.84 ± 18.96 t C/ha). SOC density of aeolian soils is the lowest
(22.25 ± 7.71 t C/ha). SOC density of the other soil types is between 31.95 ± 0.39
and 70.85 ± 8.64. The differences of SOC density may be due to different soil
environment and soil characteristics. Generally, SOC density of luvisols,
semi-luvisols, calcium soil, and semi-hydromorphic soil is higher. However, SOC
density of primitive soil, saline-alkali soil, and anthrosol is lower. For instance, black
soils and gray forest soils that belong to semi-luvisols have higher carbon density.
The main reason is that lower annual average temperature (<1 °C) slows down the
decomposition rate of organic matter so that organic matter converts into lots of
humus. Aeolian soils that form mainly in the extreme arid area have lower carbon
density. Low soil moisture and vegetation coverage rate result in low decomposition
rate of plant residue and high mineralization rate so that the accumulation rate of
organic matter is very low in soil (Fig. 19.2).
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19.3.2 Carbon Sequestration Potential and Saturation Level
of SOC in Different Soils

In total, 166 soil profiles from the 2010 to 2011 survey were identified as having
sufficient data to derive the clay and silt content for both the 0–30 cm. According to
the formulas (19.1) and (19.3), saturation level of SOC can be calculated. The soils
of different types have different saturation level of SOC. As shown in Table 19.1,
on average, the saturation level for the different soil types varied widely, ranging
from 46.76 ± 10.95 to 166.35 ± 16.98 t C/ha. Saturation level of coastal solonchaks
is the highest and that of aeolian soils is the lowest. The positive correlation
between the clay–silt content and the saturation level were shown in Table 19.1.
Several studies showed that the saturated SOC is mainly related with clay and silt
content. A number of published studies indicate that the ability of associating with
clay and silt particles is one of the principal factors responsible for physical pro-
tection of organic matter in soils (Theng 1979). It has been determined that the
capacity of silt and clay of protecting organic matter is finite and the capacity can be
determined. The saturated SOC is related to the percentage of the clay and silt
fraction in the total size fraction (Hassink 1997).

There was wide variation in average potential of carbon sequestration for dif-
ferent types of soils, ranging from 14.03 ± 7.25 to 146.91 ± 19.43 t C/ha. Potential
of shajiang black soils, irrigation silting soils, and coastal solonchaks is higher, and
the values of them are 109.46 ± 14.70, 108.96 ± 30.24, and 146.91 ± 19.43 t C/ha,
respectively. The higher CSP of these soils could be mainly due to their occurrence
in low lands and their high clay that contribute to accumulate SOC (Pan et al. 2004;
Li et al. 1992). However, in terms of total potential of sequestration, although

Fig. 19.2 Soil organic carbon density of different soil types
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average potential of brown earths, cinnamon soils, and fluvo-aquic soils is not the
highest, total potential of them is higher, and the values of them are 161.11, 475.12
and 409.76 Tg, respectively. Total potential of the three types of soils accounts for
11.34, 33.43, and 28.83 %, respectively. Brown earths (2308.51 kha), cinnamon
soils (5080.39 kha), and fluvo-aquic soils (4251.11 kha) possess larger area of
Hebei, which can explain this phenomenon. In terms of total potential, cinnamon
soils, brown earths, and fluvo-aquic soils will play an essential role in carbon
sequestration to mitigate global warming in the future.

19.3.3 Spatial Distribution of Carbon Sequestration
Potential and Saturation Level of SOC

Statistics based on 166 soil samplings for the saturation level of SOC (t C/ha) map
of Hebei (Fig. 19.3a) show that saturation level of SOC in different polygons varied
dramatically, with the lowest saturation level (46.76 t C/ha) and the highest level
(166.35 t C/ha). The total soil area is 17475.93 kha in Hebei Province, China, with
the largest area of 100–150 t C/ha (88.79 %) and with the most small area of
0–50 t C/ha (1.06 %). Figure 19.3 shows that the distribution of saturation level is

Fig. 19.3 Spatial pattern of saturation level of SOC (a) and potential of carbon sequestration
(b) among different soil types in Hebei Province of China
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uneven in Hebei. The soils of 100–150 t C/ha dominated saturation level, dis-
tributing mainly in the south and northeast of Hebei. The soil types of this region
mainly include brown earths, bog soils, skeletal soils, shajiang black soils, red
primitive soils, and cinnamon soils. However, the distribution scope of the other
three grades is narrow. The soils of 50–100 t C/ha including castanozems, meadow
soils, and black soils mainly distributed in the north of Hebei. The soils of 0–50 and
150–200 t C/ha present the condition of scattered distribution. Although the soil
area of 0–50 t C/ha (aeolian soils) is close to that of 150–200 t C/ha (coastal
solonchaks), saturation level of the soils ranging from 150 to 200 t C/ha is more
than three times than that of the soils ranging from 0 to 50 t C/ha. The main factors
affecting this distribution pattern of SOC saturation level are climate, degree of
vegetation coverage, terrain, degree of the land use, and human activities.

Figure 19.3b depicts the spatial patterns of CSP for different soil groups in Hebei
Province, China. The highest C sequestration potential (120–160 t C/ha) that
accounted for about 1.16 % of total soil area occurred mostly in northeastern Hebei;
and the lowest C sequestration potential (0–40 t C/ha) that accounted for about 9.62%
of total soil area can be found in northern Hebei. However, the soils of 80–120 t C/ha
that included Bog soils, shajiang black soils, solonchaks, and irrigation silting soils
possess the largest area (60.39 % of total soil area) and distributed mainly in the
middle part of Hebei. Such regional distribution is closely associated with the pattern
of climate, cropping systems, and soil properties (Li et al. 2004; Li et al. 2005; Sun
et al. 2010). The middle parts of Hebei are dominated by high-clay soils, whereas
other regions of Hebei are dominated by relatively low temperature and soils with low
silt and clay content.

Overall, the middle regions accounting for 60.39 % of the total Hebei have
higher CSP and should be considered as future carbon sequestration items
(Fig. 19.3b). From spatial distribution, it was possible to identify the distribution
regions of carbon sequestration.

19.3.4 Carbon Sequestration Potential of Different Land
Uses

Different land-use types present different CSP (Fig. 19.4). CSP in the grassland,
forestland, and arable land ranged from 14.03 ± 7.25 to 85.69 ± 21.54 t C/ha,
19.87 ± 6.45 to 108.64 ± 32.01 t C/ha, and 25.94 ± 7.78 to 112.96 ± 25.58 t C/ha,
respectively. It is easy to see that average CSP of three land-use types was different
significantly. And average CSPs of them are 42.37(grassland), 61.92(forestland),
and 83.89(arable land) t C/ha, respectively. It is clear that average CSP of arable
land is the highest. Generally, SOC content of agricultural soils is lower than that of
natural soils, which is mainly due to lower carbon input (as a result of annual
harvest and removal of crop residue, etc.), higher organic carbon decomposition
(owing to frequent tillage), increasing soil erosion (Lal 2004a), and other factors.
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Several evidences also showed that amounts of crop residue carbon returning back
to soil contribute to CSP ultimately (Srinivasarao et al. 2012, 2014). Probably, it
could be considered as the adoption of RMPs (Xu et al. 2011). This indicates that
arable land plays an essential role in the CSP.

19.3.5 Analyses and Suggestions for Management

Soil is considered as one of the most important sources and sinks of greenhouse
gases that cause global warming and climate change (Janssens et al. 2003). Soils
account for approximately 20 % of total carbon dioxide emissions due to soil and
root respiration, including 12 and 60 % of methane and anthropogenic nitrous oxide
emissions, respectively (IPCC 2007). Soil has potential for mitigating global
warming by sequestrating carbon (Pathak et al. 2011). According to our results,
different soils possess various carbon sequestration capacities. For example,
Endogleyic solonchaks have a distinct carbon sequestration advantage over other
soils (Brevik and Homburg 2004). Thus, these soils have a very high potential
(126.48–146.91 t C/ha) for accumulating large amounts of carbon, at high rates and
over long periods because they continuously accumulate organic-rich sediments.

The average CSP in soils of different ecosystems has been estimated in Hebei,
emphasizing agricultural soils. According to the previous experience, compared
with grassland and forestland, the study found that arable land has higher capacity
of carbon sequestration (Smith et al. 1998). So it is necessary to strengthen the
management of agricultural soil. Currently, crop straws are removed from fields
after harvest, and crop roots remain in the soil. No-tillage contributes to enhance the
carbon sequestration. It is well documented that greater tillage intensities result in
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Fig. 19.4 Carbon sequestration potential of different land-use types
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greater SOM decomposition rates due to the effects of tillage on macro-aggregate
breakage, soil aeration, and crop residue burial (Huang et al. 2010; Mishra et al.
2010). Therefore, no-tillage with minimum SOM decomposition interference is
preferable for increasing CSP. Of course, although grassland and forestland possess
only 16.3 and 16.7 % of soil area of Hebei, the importance of them in the mitigating
the CO2 concentration of atmosphere cannot be ignored. It is necessary to protect
forest and grass ecosystem to mitigate the climate change combining with con-
trolled agriculture ecosystem.

19.4 Conclusion

It is well known that several factors such as soil type, production, and management
influence CSP; and it is important to identify CSP in different soil groups. This
paper conducts the study in SOC density, carbon saturation level, and CSP of 21
types of soils in Hebei.

The research found that whether the CSP of soils is high or low is not deter-
mined by single factor of SOC density or carbon saturation level. However, CSP is
the comprehensive result of SOC density and carbon saturation level. Shajiang
black soils, irrigation silting soils, and coastal solonchaks are higher, and the values
of them are 109.46 ± 14.70, 108.96 ± 30.24, and 146.91 ± 19.43 t C/ha, respec-
tively. However, in terms of total potential of sequestration, although average
potential of brown earths, cinnamon soils, and fluvo-aquic soils is not the highest,
total potential of them is higher, and the values of them are 161.11, 475.12, and
409.76 Tg, respectively. This indicates that they will play a important role in
mitigating climate change in the future. Of course, we know of not only the CSP of
soils but also the spatial pattern of CSP of soils. The soils ranging from 80 to 120
C/ha that included bog soils, shajiang black soils, solonchaks, and irrigation silting
soils possess the largest area (60.39 % of total soil area) and distributed mainly in
the middle part of Hebei. This suggests that soils of middle part should be paid
more attention. From the aspect of land-use types, agricultural soils have higher
capacity of carbon sequestration. In summary, these provide information for sus-
tainable soil management of Hebei and sources and sinks of CO2.
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Part III
Soil Sensors and

Legacy Data



Chapter 20
Digital Soil Morphometrics via a Low-Cost
Radiometer for Estimating Soil Organic
Carbon and Texture

Alexandre ten Caten, Ricardo Simão Diniz Dalmolin,
André Carnieletto Dotto, Jean Michel Moura-Bueno,
Evandro Loch Boeing, Jose Lucas Safanelli, Walquiria Chaves Silva
and Bruno Fellipe Bottega Boesing

Abstract There is scientific evidence toward the incorporation, in a near feature, of
diffuse reflectance spectroscopy (DRS) as an everyday laboratory tool for soil attri-
bute determination. Nevertheless, research still has to be conducted toward the
capabilities of limited ranges of the spectra (i.e., 325–1075 nm), as well as the use of
more affordable spectrometers. This study aimed at evaluating the capacity of a
15,000 USD spectrometer for estimating soil organic carbon (SOC) and texture. Soil
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samples were collected in 10 Ferralsol profiles of basaltic parental material in Serra
Geral Formation in southern of Brazil. Spectral signatures were collected in 45
air-dried soil samples previously sieved through 2-mm mesh and 45 soil samples
grounded in an agate mortar. Sample preparation through pestle grounding showed a
slight gain in modeling accuracy. The best results of partial least squares regression
(PLSR) were achieved for SOC with an error of prediction of 2.44 g kg−1, R2 of 0.88,
and RPD of 2.85. These results are an indication of the applicability of a low-cost
spectrometer for soil attribute determination through DRS. This approach could lead
to a wider adoption of the technique, especially in laboratories were there are budget
limitations and are in need of this important soil attribute determination.

Keywords Diffuse reflectance spectroscopy � Soil reflectance � Proximal soil
sensing � Digital soil mapping � Near-infrared measurement

20.1 Introduction

In recent years, researchers have been evaluating a wide range of possibilities to
increase soil scientists’ capacity in collecting data to attend an increasing demand
for soil information for environmental modeling. Particle size and soil organic
carbon (SOC) are two attributes of fundamental importance when defining soil use
and management. With the increasing demand for food and energy, knowledge of
the physical and chemical soil characteristics imposes a greater ability to sample
this natural resource which renews at such slow pace.

In this context, digital soil mapping (DSM) has proven to be an efficient
approach for building soil class and properties datasets (McBratney et al. 2003). To
help in this task, proximal soil sensing (PSS) has facilitated the collection of a larger
amount of soil spatial data using faster and less laborious techniques (Viscarra
Rossel et al. 2009). Having reached a mature level of acceptance and application by
soil science community, both approaches toward soil mapping, DSM and PSS, have
recently given birth to a new discipline in soil science: Digital soil morphometrics
(DSMh) (Hartemink and Minasny 2014).

DSMh takes advantage of an enormous evolution of PSS equipments. Attempts
have already been made to measure properties and attributes of soil profiles in situ
(Viscarra Rossel et al. 2009; Waiser et al. 2007) and ex situ in laboratory-controlled
conditions (Vasques et al. 2014). It is claimed that soil attributes such as horizons,
texture, color, structure, moisture, redoximorphic features, consistence, carbonates,
rock fragments, and pores can be determined by PSS in the DSMh Pedology
approach (Hartemink and Minasny 2014).

Diffuse reflectance spectroscopy (DRS) operating in visible and near-infrared
(VNIR) spectral region has gained attention as a PPS technique that could deliver soil
data with required speed and accuracy even for the development of on-the-go sensors.
The literature has shown the evidences of full-spectrum data compression techniques’
capabilities, such as partial least squares regression (PLSR) toward a deep under-
standing of soil-spectroscopy relationships (Viscarra Rossel et al. 2010).
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In the spectral region of 325–1075 nm, very important spectrum features, related
to the presence of iron oxides such as goethite and hematite, are located (Stenberg
and Viscarra Rossel 2010). Humic acids as part of SOC fraction can also be
responsible for broad absorptions in visible portion of spectra. Using a spectrometer
in the spectral region of 325–1075 nm, Melendez-Pastor et al. (2008) found a high
correlation (r > 0.75) for soil spectral signature in visible region (380–700 nm) and
its attributes such as silt, sand, electrical conductivity, carbonates, and organic
matter, showing DRS as a reliable technic for collecting soil data more quickly and
with little environment impact. Viscarra Rossel et al. (2006) have demonstrated the
potential of DRS operating in visible region (400–700 nm) for organic carbon
prediction, with a RMSE of 0.18 dag kg−1 and R2 of 0.60. Authors have highlighted
that the cost of mid-infrared equipment (25,000–2500 nm) could not be justified for
carbon prediction, since predictions using only the visible region are comparably
accurate and not as expensive as the former.

One of the drawbacks for a wider application of PPS is the equipment cost.
VNIR (400–2500 nm) spectrometers might cost as much as 60,000 USD. This
underlines the importance of research into the use of more affordable PSS equip-
ment. Besides, there has to be broader collaboration toward development of PSS
technique in a worldwide range of soils. The objective of this study was to evaluate
the capacity of a 15,000 USD spectrometer, with limited spectral range acquisition
(325–1075 nm), for estimating SOC and texture.

20.2 Materials and Methods

A total of 10 Ferralsol profiles were morphological described in the southwest part
of Marombas River watershed located near the center of Santa Catarina State, south
of Brazil (Fig. 20.1). Parental material in the region consists mainly of basaltic
rocks of Serra Geral Formation. The climate is subtropical with mild summer and
mean annual temperatures of 16 °C. Köppen climate classification system for the
area is Cfb. Annual precipitation is about 1.600 mm. Altitude of watershed varies
from 900 to 1300 m above sea level. Natural vegetation belongs to the Mixed
Ombrophylous Forest (or Araucaria Forest). The total area of the watershed is
approximately 950 km2, and predominant land cover consists of 22 % of agriculture
(garlic, onion, soy beans, and maize), 37 % of cultivated forest (Pinus taeda), 33 %
of natural forest (with Araucaria angustifolia), and 8 % of grassland and pasture.
Prevalent soil types are Ferralsol, Nitisol, Cambisol, Leptosols, and Regosols.

All 10 profiles were sampled and classified following the Brazilian System of
Soil Classification (SiBCS). Every profile was sampled in its pedogenetic soil
horizons following SiBCS, and in total, 45 soil samples were collected from top
until to 2 m deep. In each profile, morphological features as soil color were
recorded, using a Munsell® color book, for the purpose of soil classification.
Chemical and physical attributes were determined in 45 soil samples after air-dried,
grounded, and sieved through 2 mm mesh according to Embrapa (1997). Half of
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every soil sample was used for grounding in an agate mortar, for at least 10 min, in
order to test micro-aggregation influence.

Diffuse reflectance spectroscopy of sieved and grounded samples was collected
with a spectrometer FieldSpec HandHeld II (ASD Inc.) with a spectrum range
acquisition of 325–1075 nm and spectral resolution of <3 nm at 700 nm. Soil scanning
was conducted inside a black painted box (dimensions L/750 ×H/400 ×W/400 mm),
in order to allow the illumination to be controlled (Fig. 20.2). Inside the box, soil
samples were put in a Petri dish. Spectrometer was installed on the top of the box with
a conical field of view of 10° in a distance of 400 mm from samples. With this

Fig. 20.1 a Location of study area in the southern state of Santa Catarina in Brazil. b Location of
the 10 sampled Ferralsol profiles in Marombas River watershed

Fig. 20.2 Spectrometer mounted on the top of the sampling box for sample illumination control
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configuration, the spectrometer sampling area in the Petri dish was 40.7 cm2. A light
source of 70 W quartz–tungsten–halogen lamp with integrated reflector was placed
inside the box. Light source was placed 400 mm away from the soil sample and
inclined 30° from lamp nadir. Four composite scans (each one is an average of 100
internal scans) were obtained for each sample from the four quadrants of Petri dish by
rotating it 90°. Final spectrum was calculated by averaging all four composite scans.

Before statistical analyses, spectra noisy ends were removed (325–400 and 980–
1075 nm) (Fig. 20.3a). The remaining reflectance spectra were smoothed by a
Savitzky–Golay second-order polynomial across a moving window of nine bands
(Torrent and Barrón 2002). Furthermore, an average across a 5 nm moving window
was applied to all spectra. Savitzky–Golay first-order derivatives were calculated on
resulting soil reflectance spectra using a first-order polynomial across a nine-band
moving window (Fig. 20.3b). Equally, Savitzky–Golay second-order deriva-
tiveswere calculated on soil reflectance spectra using a second-order polynomial
across a nine-band moving window (Fig. 20.3c).

First- and second-order derivatives have the capability of eliminating baseline
fluctuation and background noise, and at the same time, they enhance the reflec-
tance features through peak values. Both derivatives procedures followed the best
results achieved by Vasques et al. (2008) in preprocessing spectral curves tests.
Derivatives were calculated in sieved (<2 mm) and agate mortar grounded

Fig. 20.3 a Reflectance data of the 45 soil samples; b 1st derivative of reflectance; c 2nd
derivative of reflectance; d regression coefficients in PLSR for clay prediction. All graphs were
produced by data collected in sieved (<2 mm) soil samples
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reflectance samples. Dependent variable dataset was formed by SOC and texture
analyses. Reflectance first- and second-order derivatives for sieved and grounded
samples formed the independent variable dataset.

The multivariate technique PLSR was used for data modeling. PLSR takes the
advantage of spectral information and relates it to soil attributes, which can be seen
through peaks of higher regression coefficients (positive or negative) in some
wavelength when spectral data are applied to clay prediction, specially at 420, 550,
730, and 880 nm (small circles on Fig. 20.3d). PLSR is a similar approach to
principal components analysis (PCA) reducing the dimensionality of a large
number of potential correlated variables, thus avoiding the problems of multi-
collinearity and minimizing the lost of information of original variables.
Furthermore, PLSR has the advantage that it also takes into consideration the
dependent variables, in this case soil attributes information, when calculating the
principal components. PLSR were computed using the orthogonalized PLSR
algorithm and evaluated through a cross-validation test. Tabulated statistics were
R2, root-mean-squared error for cross-validation (RMSECV) and ratio of standard
deviation of soil attributes to RMSECV (RPD). PLSR was used for data modeling
in the Unscrambler X 10.3 software (CAMO Technologies Inc., Woodbridge, NJ).

20.3 Results and Discussion

Soil samples had an average of 50.3, 253.0, and 696.6 g kg−1 of sand, silt, and clay,
respectively (Table 20.1). The soil texture content of samples characterizes those
soils as being of clay soil class. The calcic plagioclase and pyroxene basalt
weathered completely and formed clay minerals through hydrolysis process of the
parental material contributing to the soil texture.

Attribute SOC reached a maximum of 23.78 g kg−1 (Table 20.1) due to constant
supply of new organic material in vegetated areas. The altitude of the region causes
annual average temperature to be around 16 ºC, thus collaborating to maintain a
higher SOC content in top layers. Clay soil texture also plays a role in protecting
organic carbon from declining through covering of organic molecules. It was found
that SOC decreases with depth, a fact which follows from continuing deposition of
organic matter on superficial horizons and low solubility of humic and fulvic acids
to migrate in depth into the soil profile.

Table 20.1 Descriptive statistics of 45 soil samples used in the study

Attribute Minimum Mean Maximum Standard deviation

Sand (g kg−1) 15.10 50.35 154.95 35.62

Silt (g kg−1) 165.43 253.02 355.00 46.85

Clay (g kg−1) 556.39 696.65 777.09 55.66

SOC (g kg−1) 1.74 12.56 23.78 7.04

SOC soil organic carbon
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Generally, preparation of soil samples through agate mortar grounding repre-
sented a slight improvement in PLSR prediction capability for soil texture
(Table 20.2). Regarding derivatives, soil attributes showed different results among
the three studied particle sizes. Clay prediction best performed when soil was
grounded and second-order derivative applied (RMSECV, R2, and RPD of
32.04 g kg−1, 0.67, and 1.70, respectively). This was also the case for silt which
was best predicted through grounded soil samples and second-order derivative
(RMSECV, R2, and RPD of 27.27 g kg−1, 0.66, and 1.70, respectively). On the
other hand, sand prediction achieved best results with first-order derivatives and
grounded samples (RMSECV, R2, and RPD of 20.19 g kg−1, 0.69, and 1.74,
respectively). Stenberg and Viscarra Rossel (2010) state that soil coarser structure
increases scattering and reduces reflection, which could ultimately lead to poorer
model predictions. Our results showed that soil grounding produced a finer struc-
ture and improved prediction of soil texture in weathered soils such as Ferralsols.

Further preparation of samples through grounding showed no improvement for
SOC prediction. Best results were achieved for this attribute through 2-mm sieved
samples and first-order derivatives, reaching values of RMSECV, R2, and RPD of
2.44 g kg−1, 0.88, and 2.85, respectively. Taking into account that soil grounding in
agate mortar requires an extra effort in soil preparation, DRS can be collected in
sieved (<2 mm) Ferralsols soil samples without loss of prediction power of SOC.

Table 20.2 Summary of
PLSR results for the four soil
attribute datasets

Soil attribute RMSECV R2 RPD

1st derivative <2 mm sieved samples

Sand (g kg−1) 21.66 0.63 1.62

Silt (g kg−1) 35.80 0.44 1.29

Clay (g kg−1) 36.27 0.58 1.52

SOC (g kg−1) 2.44 0.88 2.85

1st derivative pestle grounded samples

Sand (g kg−1) 20.19 0.69 1.74

Silt (g kg−1) 28.69 0.64 1.60

Clay (g kg−1) 36.60 0.58 1.51

SOC (g kg−1) 2.77 0.84 2.51

2nd derivative <2 mm sieved samples

Sand (g kg−1) 22.26 0.60 1.58

Silt (g kg−1) 30.05 0.60 1.54

Clay (g kg−1) 35.40 0.60 1.55

SOC (g kg−1) 2.62 0.86 2.66

2nd derivative pestle grounded samples

Sand (g kg−1) 21.93 0.62 1.61

Silt (g kg−1) 27.27 0.66 1.70

Clay (g kg−1) 32.04 0.67 1.70

SOC (g kg−1) 2.95 0.82 2.36

SOC soil organic carbon
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Results for SOC are superior to the ones found by Nocita et al. (2013). These
authors, using spectral data from 350–2500 nm, determined SOC with a RMSE of
4.72 g kg−1 and a R2 0.78. This shows that, even using a limited part of spectra,
promising prediction results for SOC could be delivered with a low-cost spec-
trometer. Waiser et al. (2007) reported an R2 of 0.81 and an error of prediction for
fine clay (<2 mm) of 34 g kg−1 when using first-order derivative of visible
near-infrared reflectance spectra (350–2500 nm). RPD values, from 1.29 to 1.74,
for soil texture show that using a more affordable equipment deserves further
investigation (Table 20.2).

RPD values for SOC varied from 2.36 to 2.85, with mean 2.59, showing the
potential of a low-cost spectrometer for this important biological soil attribute
determination. According to Vasques et al. (2008), these high RPD values indicate
that models are robust enough to predict SOC when applied to soils from the same
geographical area and within the same characteristics Thus, modeling SOC with a
limited spectra spectrometer could also take profit of national and/or global soil
spectral libraries, nevertheless using only part of the vis-NIR region of the spectra.

This research on the potential of a low-cost spectrometer for soil attribute
determination through DRS is still being conducted. Sampling intensity will be
increased 10 fold in the near future. Besides Ferralsols, the soil classes Nitisol,
Cambisol, Leptosols, and Regosols will also be sampled. Following the recom-
mendations of Vasques et al. (2010), an approach through generating PLSR models
separately, for every soil class, might improve the prediction capabilities. This
could be spatially important for a limited range spectrometer like the one used in
this study. Tests will also be carried out toward evaluating the potential of the 400–
980-nm spectral region for in situ soil attribute determination, specially organic
carbon content.

20.4 Conclusions

We have demonstrated the capabilities of a cheaper spectrometer operating in
spectral range of 325–1075 nm in predicting soil attributes sand, silt, clay, and
SOC. Through PLSR, clay content was predicted to an accuracy of 32.04 g kg−1, R2

of 0.67, and RPD value of 1.70. Results for the prediction of SOC content reached
and accuracy of 2.44 g kg−1, R2 of 0.88, and RPD of 2.85. The literature shows that
full range VNIR spectrometers (400–2500 nm) have reached higher absolute
accuracy values than those demonstrated here. However, our results have to be
considered if there are budget constraints and lower cost equipment is the only
option available.

Further research has to be conducted toward the adequacy of cheaper spec-
trometers for soil attribute prediction, as well as possible preprocessing transfor-
mation options which could improve the prediction capability.
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Chapter 21
Transferability and Scaling of VNIR
Prediction Models for Soil Total Carbon
in Florida

Congrong Yu, Sabine Grunwald and Xiong Xiong

Abstract The assessment of soil total carbon (TC) across large land areas is critical
to derive global and regional soil carbon budgets and better understand the inter-
actions between carbon and other biogeochemical cycles. But the cost and time
involved in measurements of TC with standard laboratory methods are impractical.
Research has suggested that visible/near-infrared (VNIR) diffuse reflectance spec-
troscopy can provide robust and accurate estimations for TC. The applicability,
transfer, and scalability of VNIR-derived soil models are still poorly understood.
The objectives of this study in Florida, USA, were to (i) compare two methods to
predict soil TC using five fields (local scale) and a pooled (regional scale) VNIR
spectral dataset, (ii) assess the model’s transferability among fields, and (iii) eval-
uate the up- and downscaling behavior of TC prediction models. A total of 560
TC-spectral sets were modeled by partial least squares regression (PLSR) and
support vector machine (SVM). The transferability and up- and downscaling of
models were limited by the following factors: (i) the spectral data domain, (ii) soil
attribute domain, (iii) methods that describe the internal model structure of
VNIR-TC relationships, and (iv) environmental domain space of attributes that
control soil carbon dynamics. All soil logTC models showed excellent performance
based on both methods (PLSR and SVM) with R2 > 0.86, bias < 0.01 %,
root-mean-square prediction error (RMSE) = 0.09 %, residual predication deviation
(RPD) > 2.70 %, and ratio of prediction error to inter-quartile range (RPIQ) > 4.54.
PLSR performed substantially better than SVM to scale and transfer models.
Upscaled soil TC models performed somewhat better in terms of model fit (R2),
RPD, and RPIQ, whereas downscaled models showed less bias and smaller RMSE
based on PLSR. But no universal trend was found indicating which of the four
investigated factors (i–iv) had the most impact that constraints transferability and
scalability. The findings from this study have implications for the development of
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‘universal’ spectral-based soil models aiming to predict soil properties for a diverse
set of different soils formed in different environmental conditions covering a wide
range of geographic settings, at its extreme the whole globe. Those ‘universal’
spectral libraries are based on the premise that soil predictions (e.g., soil TC) can be
made anyplace because they are built using soil spectral datasets that characterize
exhaustively the attribute feature space. This assertion is limited by the fact that a
large number of interacting factors of soils, spectra, and environmental properties
are needed to represent the exhaustive sample population which has not material-
ized yet. Given the many factors that can impinge on empirically derived soil
spectral prediction models, as demonstrated by this study, more focus on the
applicability and scaling of them is needed.

Keywords Soil organic carbon � Visible/near-infrared spectroscopy �
Transferability � Scalability � Modeling

21.1 Introduction

Research has suggested that visible/near-infrared (VNIR) diffuse reflectance spec-
troscopy can provide robust and accurate estimations for TC and carbon fractions
(Viscarra Rossel et al. 2006; Vasques et al. 2009, 2010; Nocita et al. 2011; Sarkhot
et al. 2011; McDowell et al. 2012a, b). Spectral soil carbon models are poised to
contribute to spatially explicit regional and global carbon assessment. However,
knowledge gaps still exist in terms of the prediction quality across different soils
and landscapes, transferability, and scalability of such models. Scaling and transfer
concepts and their implications for modeling were presented by Blöschl and
Sivapalan (1995), Wu et al. (2006), and Grunwald et al. (2011).

Given the multitude of potential factors that may impact the application of VNIR
soil carbon models to make predictions for unknown samples, the underlying
motivation for this research was to design an experimental study to investigate the
transfer and up- and downscaling behavior of soil TC-VNIR models. The specific
objectives were to (i) compare the performance of two methods to predict soil TC
using five fields (local) and a pooled (regional) VNIR spectral dataset, (ii) assess the
model’s transferability among five representative field sites in Florida, (iii) evaluate
the upscaling and downscaling behavior of TC prediction models, and (iv) examine
the constraining factors in model transferability and scaling.

21.2 Data and Methods

Five fields (each of size *0.25 km2) were selected that represent prominent soil–
land-use types in Florida, USA (Xiong 2013). Table 21.1 provides a description of the
main landscape characteristics of each field. A total of 112 samples (0–20 cm depth)
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in each field were collected (whole dataset comprising five fields n = 560) using the
unbalanced nested spatial sampling design described by Lark (2011). In each field, at
first, nine main centers gridded at 200-m intervals were chosen to constitute the
highest level of the hierarchy. Secondly, at each main center, one additional sampling
point (subnode) was collected 67m away in a random direction. In similar pattern, the
2nd, 3rd, and 4th hierarchical sampling points were fixed at locations 22, 7, and 2 m
away from their parent nodes, respectively. The approximately threefold hierarchy
has been proven to be effective in capturing soil variation and avoiding overlaps
among different branches (Webster and Oliver 2007).

Soil TC content was measured by dry combustion in the laboratory using a
Shimadzu TOC-5050 analyzer (Table 21.2). The samples were 2 mm sieved and
then oven dried at 40–45 °C for 12 h before scanning with a QualitySpec Pro
Spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO) in the VNIR
spectral range (350–2500 nm) with a 1-nm-interval spectral resolution. For each
sample, four replicate scans were taken at each of the four quadrants of a petri dish
by rotating the sample at angles of 90°. The spectrometer was recalibrated to
remove the baseline at every 10 samples with white spectralon. An average
reflectance spectral curve was obtained for each sample that was used for modeling.
Two preprocessing transformations were applied to the soil reflectance curves:
First, the reflectance curves were smoothed across a moving window of nine nm
using the Savitzky–Golay algorithm with a third-order polynomial to reduce the
random noise (Savitzky and Golay 1964). Second, the first-degree Savitzky–Golay
derivative with a search window of seven measurements and second-order poly-
nomial was applied to the smoothed curves.

Two different multivariate regression techniques were applied to develop spectral
models to predict logTC: partial least squares regression (PLSR) (Martens and Næs
1989) and support vector machine (SVM) (Vapnik 2000). First, leave-one-out

Table 21.2 Descriptive statistics of measured soil total carbon (original values: TC,
logarithm-transformed values: logTC)

TC (%) logTC (log %)

Datasets n Min. Median Mean Max. CV Skew. Mean SD CV Skew.

Whole 560 0.31 1.04 1.18 3.55 0.55 0.99 0.01 0.24 30.56 0.06

Field 1 112 0.32 0.56 0.59 1.12 0.28 1.02 −0.24 0.11 −0.47 0.37

Field 2 112 0.70 1.63 1.77 3.35 0.36 0.78 0.22 0.15 0.68 0.15

Field 3 112 0.31 0.62 0.68 2.32 0.42 3.28 −0.20 0.14 −0.70 1.28

Field 4 112 0.56 1.05 1.10 2.84 0.30 2.25 0.030 0.11 4.48 0.74

Field 5 112 1.02 1.69 1.76 3.55 0.26 0.80 0.23 0.11 0.47 0.09

CAL 392 0.33 1.02 1.17 3.55 0.55 1.06 0.01 0.23 31.77 0.11

VAL 168 0.31 1.07 1.19 3.21 0.55 0.86 0.01 0.24 28.53 −0.02

SUB-W 112 0.32 1.04 1.20 2.85 0.53 0.69 0.02 0.24 15.29 −0.04

CAL = the dataset used to calibrate the models; VAL = the dataset used to validate the models;
SUB-W = the 112 observations randomly chosen from the five fields (Fig. 21.1); n = number of
observations; SD = standard deviation; CV = coefficient of variation; skew. = skewness
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(LOO) cross-validation was employed to evaluate the model performance of the
CAL datasets (70 % or n = 392 of the whole dataset). Second, independent validation
was used to assess the model performance using the VAL datasets (30 % or n = 168
of the whole dataset). The coefficient of determination (R2) was used as the
goodness-of-fit statistic. The root-mean-square error (RMSE), residual prediction
deviation (RPD) (Williams 1987), ratio of performance to inter-quartile distance
(RPIQ) (Bellon-Maurel et al. 2010), and bias (Davies and Fearn 2006) were pro-
vided as complementary error statistics to evaluate the performances of different
prediction models.

The transferability and scalability analyses were conducted using PLSR and
SVM models. In this study, the definitions of ‘model transfer,’ ‘scale transforma-
tion,’ and ‘up-/downscaling’ as provided by Blöschl and Sivapalan (1995) and Wu
et al. (2006) were adopted. Hence, ‘transferability’ denotes the transfer (or appli-
cation) of a VNIR-based soil TC prediction model (Models 1 to 5) developed at one
field site (Fields 1, 2, 3, 4, and 5, respectively) to another field site (Fields 1, 2, 3, 4,
and 5, respectively) (Fig. 21.1b). The model performance at calibration sites was
assessed using LOO cross-validation, and transferability was assessed using R2,
RMSE, RPD, and RPIQ. In this paper, ‘scalability’ denotes a change in the extent
(size) of the geographic area represented by models, ‘upscaling’ refers to an
escalation of the area (i.e., from smaller to larger extent), and ‘downscaling’ refers
to the contraction of the area (i.e., from larger to smaller extent) Wu et al. 2006)
(Fig. 21.1c, d). In the scaling analysis, a pooled subset-whole (SUB-W) dataset was
created (n = 112) randomly selected from the whole dataset (n = 560) (Fig. 21.1a).
The observation size of the SUB-W was equal to that of each field (n = 112),

Fig. 21.1 The principle scheme of the transferability and scaling analysis: a the sample source of
SUB-W dataset; b transferability at field scale; c downscaling analysis; d upscaling analysis. Note
S23 in Fig. 21.1a represented the 23 samples randomly chosen from each of the five fields to
calibrate the regional model
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eliminating any bias or negative effects caused by the different sample sizes on the
comparative analysis. To assess the downscaling behavior, the regional SUB-W
models were applied to each of the five fields (Fig. 21.1c). And vice versa, to assess
the upscaling performance, the TC models using PLSR and SVM developed for
each of the five fields were applied to the regional SUB-W dataset (Fig. 21.1d). The
same error statistics as outlined above were used to evaluate scaling behavior of TC
models.

The Gower similarity coefficient (Gower 1971), as outlined in Mallavan et al.
(2010), was employed to measure the similarity in soil-forming factors among fields
according to Eq. (21.1). Important variables that were included in the similarity
analysis are shown in Table 21.1.

Sij ¼ 1
p

Xp
k¼1

1� xik � xjk
�� ��
range k

� �
ð21:1Þ

where Sij is the Gower similarity coefficient between two sites i and j; k represents
the soil-forming factors (i.e., environmental covariates); p is the number of vari-
ables; range k is the value range of variable k in the whole study area.

21.3 Results and Discussion

21.3.1 Prediction Performance of Spectral Prediction
Models

The TC predictions derived from PLSR and SVM across all five fields (Table 21.3)
and at the five field sites (Table 21.4) showed moderate performance. The R2 was
≥0.86, and the RPIQ ≥4.54 for the whole dataset (Table 21.3). Brown et al. (2005)
found that VNIR models developed using boosted regression trees (BRTs) outper-
formed PLSR to predict soil organic carbon (SOC) and soil TC, while McDowell

Table 21.3 Summary statistics for the spectral models of logTC produced by partial least squares
regression (PLSR) and support vector machine (SVM) derived from calibration (CAL) using 70 %
of all the samples (n = 392) and validation using 30 % of the samples (n = 168)

LOO cross-validation
using CAL

Validation using VAL

R2 RMSE (log
%)

R2 Bias (log
%)

RMSE (log
%)

RPD RPIQ

PLSR 0.88 0.08 0.86 0.004 0.09 2.70 4.54

SVM 0.87 0.09 0.88 0.01 0.09 2.78 4.67

LOO cross-validation = leave-one-out cross-validation; R2 = coefficient of determination;
RMSE = root-mean-squared deviations; RPD = residual prediction deviation; RPIQ = ratio of
prediction error to inter-quartile range
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et al. (2012b) found no significant difference among PLSR and random forest
(RF) ensemble regression trees to predict soil TC on Hawaiian soils. Minasny and
McBratney (2008) and Minasny et al. (2009) in Australia found excellent predictions
for SOC and TC using regression rules (Cubist approach). In contrast, Vasques et al.
(2010) identified SOC predictions made by ensemble regression trees as more
accurate than those derived from PLSR in an investigation in Florida. This suggests
that depending on the geographic soil region, one method may outperform several
others to make SOC or TC predictions from VNIR spectra.

21.3.2 Factors that Impact the Transferability
and Scalability of Prediction Models

Overall, PLSR models performed better to transfer and scale than SVM models
(Tables 21.5, 21.6, 21.7, and 21.8). This implies that linear relationships between
VNIR spectra and soil TC (quantified by PLSR) were more pronounced than
nonlinear, complex relationships (quantified by SVM). Reasons that constrain the
transferability and scaling of soil prediction models may be explained by differ-
ences in the (i) spectral data domain space, (ii) soil attribute domain space,
(iii) methods that determine the internal model structure of VNIR-TC relationships,
and (iv) environmental domain space of attributes that control soil carbon dynamics
(i.e., soil-forming factors).

21.3.2.1 Spectral Data Domain Space

The transferability and scaling of models may be also dependent on the spectral
data domain. The VNIR models to predict TC selected variables in the spectral
regions of the absorption features of C–H, N–H, and O–H groups, similar to the
VNIR models presented by Vasques et al. (2008, 2009, 2010). These spectral

Table 21.4 Summary
statistics of leave-one-out
cross-validation for partial
least squares regression
(PLSR) and support vector
machine (SVM) models of
logTC (log %) developed in
SUB-W and the five field
datasets

Models PLSR SVM

R2 RMSE (log %) R2 RMSE (log %)

Model
SUB-W

0.82 0.10 0.84 0.10

Model 1 0.69 0.06 0.55 0.08

Model 2 0.62 0.10 0.59 0.11

Model 3 0.46 0.10 0.33 0.11

Model 4 0.56 0.07 0.59 0.08

Model 5 0.61 0.07 0.52 0.08

R2 = coefficient of determination; RMSE = root-mean-squared
deviations; SUB-W = the 112 observations randomly chosen
from the five fields (Fig. 21.1)
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signatures are produced by the overtones and combinations of absorption molecular
vibrations (e.g., C–H, O–H, H2O, and CO3� ) in mid-infrared regions (Brown et al.
2005). The features associated with TC can be masked or distorted by Fe-oxides
and secondary clays which are commonly found in soils (Clark 1999). This alludes
to a critical issue of VNIR-modeling that other soil properties, such as texture,
nutrient content, and minerals, may mask or interfere with the prediction of a given
property of interest (e.g., soil TC) and thus impact the transferability of models. In
this study, the soil texture differed only slightly among the five fields with sand
content ranging between 90.8 and 98.6 % and clay content between 1.2 and 5.2 %.
Hence, the effect of soil texture imposed on TC-spectral signatures was likely
minor. However, the soil suborders differed among sites with Entisols (Psamments),
Ultisols (Aquults, Udults), Inceptisols (Udepts), and Spodosols (Aquods)
(Table 21.1), suggesting that the mineralogy, sesquioxides, and other chemical and
physical soil properties differed substantially among sites.

Table 21.5 The transferability of partial least squares regression (PLSR) models developed in one
of the five study fields to predict the soil logTC (log %) of the other four fields

Models Validation datasets R2 Bias (log %) RMSE (log
%)

RPD RPIQ

(n = 112)

Model
1

Field 2 0.53 −0.15 0.19 0.83 1.27

Field 3 0.51 −0.16 0.21 0.66 0.68

Field 4 0.17 −0.34 0.36 0.32 0.33

Field 5 0.11 0.01 0.17 0.64 0.95

Model
2

Field 1 0.15 0.01 0.11 0.99 1.36

Field 3 0.39 −0.10 0.18 0.74 0.77

Field 4 0.15 −0.01 0.17 0.67 0.70

Field 5 0.17 −0.23 0.27 0.40 0.59

Model
3

Field 1 0.12 0.28 0.31 0.37 0.51

Field 2 0.09 −0.46 0.58 0.28 0.42

Field 4 0.02 −0.21 0.34 0.34 0.35

Field 5 0.02 0.01 0.20 0.54 0.80

Model
4

Field 1 0.34 0.34 0.35 0.32 0.44

Field 2 0.29 0.05 0.15 1.09 1.67

Field 3 0.32 0.19 0.23 0.59 0.61

Field 5 0.34 0.19 0.21 0.51 0.75

Model
5

Field 1 0.24 0.37 0.39 0.29 0.41

Field 2 0.28 0.05 0.16 0.98 1.49

Field 3 0.25 −0.23 0.28 0.48 0.50

Field 4 0.22 0.07 0.14 0.82 0.85

R2 = coefficient of determination; RMSE = root-mean-squared deviations; RPD = residual
prediction deviation; RPIQ = ratio of prediction error to inter-quartile range
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21.3.2.2 Soil Attribute Domain Space

The soil attribute space, i.e., the upper and lower bounds and dispersion of soil TC
used to build spectral-based prediction models (Table 21.2), may explain some of the
transferability and scalability behavior of models. Typically, the soil attribute domain
space expands as the geographic size of the modeled region increases (Grunwald
et al. 2011). The range of soil TC values of CAL, VAL, and the SUB-W sets matched
reasonably well the min. of 0.31 % and max. of 3.55 % of the Whole dataset.
However, the differences in soil TC among field sites were profound. Ideally, the
boundary conditions of attributes used for model development of a transfer function
(or calibration spectral model) matches the boundary conditions of a transfer set.
Brown et al. (2005) demonstrated the limitations of spectral-based model transfer to
predict soil carbon in fields in Montana, USA, where the SOC values differed widely
among field sites (min. of 1.93 g kg−1 to max. of 15.82 g kg−1).

In this study, PLSR Models 1, 3, and 4 that resembled the TC range of SUB-W
most closely with TC min. of 0.32 % and TC max. of 2.85 % did not show

Table 21.6 The transferability of support vector machine (SVM) models predicting soil logTC
(log %) developed in one of the five study fields to predict the soil logTC (log %) of the other four
fields

Model Test datasets R2 Bias (log %) RMSE (log %) RPD RPIQ

(n = 112)

Model 1 Field 2 0.13 −0.47 0.49 0.32 0.49

Field 3 0.12 −0.06 0.15 0.93 0.96

Field 4 <0.01 −0.28 0.30 0.38 0.39

Field 5 0.31 −0.48 0.49 0.22 0.33

Model 2 Field 1 0.06 0.39 0.40 0.28 0.39

Field 3 0.17 0.37 0.39 0.35 0.36

Field 4 <0.01 0.14 0.18 0.62 0.65

Field 5 0.21 −0.06 0.12 0.88 1.30

Model 3 Field 1 0.33 0.09 0.14 0.81 1.12

Field 2 0.01 −0.38 0.41 0.39 0.60

Field 4 0.02 −0.19 0.22 0.52 0.54

Field 5 0.27 −0.39 0.41 0.27 0.40

Model 4 Field 1 <0.01 0.28 0.30 0.38 0.52

Field 2 <0.01 −0.18 0.24 0.67 1.02

Field 3 0.06 0.23 0.27 0.51 0.53

Field 5 0.18 −0.20 0.22 0.49 0.72

Model 5 Field 1 0.04 0.46 0.47 0.24 0.33

Field 2 <0.01 0.00 0.16 1.00 1.53

Field 3 0.05 0.41 0.43 0.32 0.33

Field 4 <0.00 0.19 0.22 0.51 0.53

R2 = coefficient of determination; RMSE = root-mean-squared deviations; RPD = residual
prediction deviation; RPIQ = ratio of prediction error to inter-quartile range

21 Transferability and Scaling of VNIR Prediction Models … 267



persistent responses in terms of transferability (Table 21.5). For example, Model 3
(developed in Pineland and Psamments) failed to transfer well to Field 4, whereas
the opposite was found for the transfer behavior of Model 4 (developed in
Improved Pasture and Udults) to Field 3. These findings were confounded in down-
and upscaling mode (Tables 21.7 and 21.8).

Besides the upper and lower bounds of attributes that matter for successful
model transfer and scaling, it is also the internal variability (variance) of soil
attributes that potentially impacts behavior. McBratney (1998) and Grunwald et al.
(2011) asserted that an increase in the variance of soil attributes can impact the
model building process, transferability, and scalability of soil properties. In this
study, the coefficient of variation (CV) ranged from 0.26 % (Field 5) to 0.42 %
(Field 3) which was lower than in the pooled sets (0.53 % in SUB-W and 0.55 % in
whole, respectively). Effects of variability in TC on transfer and scalability of TC
models are evident (compare CVs in Table 21.2 and results in Tables 21.5, 21.6,
21.7, and 21.8).

21.3.2.3 Model Structure

Regression methods use different strategies to relate predictors (here: spectral data)
and a response variable (here: soil TC). The underlying strategies for predictor
selection are different for PLSR and SVM impacting transfer and scale responses.

Table 21.7 The downscaling performance of the partial least squares regression (PLSR) and
support vector machine (SVM) models predicting soil logTC (log %) developed at regional scale
(SUB-W) predicting samples at field scales

Model Validation
datasets (n = 112)

R2 Bias (log %) RMSE (log %) RPD RPIQ

PLSR models

Model SUB-W
(n = 112)

Field 1 0.42 <0.01 0.11 1.07 1.47

Field 2 0.47 −0.02 0.13 1.27 1.93

Field 3 0.32 0.07 0.16 0.87 0.90

Field 4 0.51 −0.04 0.10 1.10 1.14

Field 5 0.20 −0.03 0.16 0.68 1.00

SVM models

Model SUB-W
(n = 112)

Field 1 0.35 0.08 0.12 0.92 1.26

Field 2 0.55 −0.08 0.13 1.19 1.81

Field 3 0.26 0.08 0.14 0.95 0.99

Field 4 0.65 0.01 0.07 1.63 1.69

Field 5 0.51 −0.03 0.08 1.32 1.94

R2 = coefficient of determination; RMSE = root-mean-squared deviations; RPD = residual
prediction deviation; RPIQ = ratio of prediction error to inter-quartile range; SUB-W = the 112
observations randomly chosen from the five fields (Fig. 21.1)
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If the internal model structure that describes the relationship between spectral
predictors and soil TC is not stable when it is scaled, it suggests scale-variant
behavior. The PLSR and SVM models predicting logTC showed significant dif-
ferences in the selection of spectral predictors in Models 1 to 5 and the SUB-W
Model (results not shown). Thissen et al. (2004) has found major differences in the
selection of spectral predictors that are inherent to the modeling process of PLSR
and SVM, specifically in cases where the physico-chemical composition of the soil
samples differed. In this study, PLSR was more robust than SVM to transfer models
among sites. The PLSR models mainly focused on three regions to identify spectral
predictors: *350, *1860, and *2200 nm, which represented the reflection region
of organic matter (Galvao and Vitorello 1998); O–H, water, C–H, C–N, C–O, N–H
(Vasques et al. 2008); and calcium carbonate (2206 and 2341 nm) (Lagacherie et al.
2008), and various C–O (Brown et al. 2005). On the other hand, the top 50
important spectral wavelengths of the SVM models were found around *670,
*1400, *1800, and *2200 nm. Although SVM is advantageous to model
complex, high-dimensional spectral datasets because it can model nonlinear
structures it performed poorly to transfer and upscale models (Tables 21.6 and
21.8). This can be explained by the high susceptibility of SVM to overfitting
(Hernández et al. 2009). The substantially larger amount of spectral values selected
as important in the SVM model compared to the PLSR model suggests overfitting.

Table 21.8 The upscaling performance of the partial least squares regression (PLSR) and support
vector machine (SVM) models predicting soil logTC (log %) developed at field scale predicting
samples at regional scale (SUB-W)

Models Validation
dataset

R2 Bias (log %) RMSE (log %) RPD RPIQ

PLSR models

Model 1 SUB-W
(n = 112)

0.53 −0.12 0.22 1.09 1.97

Model 2 0.64 −0.03 0.15 1.58 2.87

Model 3 <0.01 −0.17 0.50 0.48 0.86

Model 4 0.57 0.18 0.23 1.02 1.84

Model 5 0.36 0.06 0.23 1.02 1.86

SVM models

Model 1 SUB-W
(n = 112)

0.08 −0.27 0.35 0.67 1.22

Model 2 0.19 0.15 0.27 0.90 1.63

Model 3 0.04 −0.18 0.29 0.81 1.48

Model 4 0.11 0.03 0.23 1.05 1.91

Model 5 0.15 0.21 0.31 0.77 1.40

R2 = coefficient of determination; RMSE = root-mean-squared deviations; RPD = residual
prediction deviation; RPIQ = ratio of prediction error to inter-quartile range; SUB-W = the 112
observations randomly chosen from the five fields (Fig. 21.1)

21 Transferability and Scaling of VNIR Prediction Models … 269



21.3.2.4 Environmental Domain Space of Attributes

Soil carbon gains/losses have been linked to various environmental factors such as
climate (Hook and Burke 2000), land use/land cover (John et al. 2005), soil
moisture/hydrology (Vasques et al. 2012a, b), and topography (Yimer et al. 2006).
Mallavan et al. (2010) asserted that the more similar regions (fields) are in terms of
soil–environmental properties the more likely it is to successfully transfer a soil
prediction model. The soil–environmental factors of fields differed widely in terms
of topography, climate, parent material, organism/biota, and soils (Table 21.1). The
homology among soil–environmental conditions explained a substantial amount of
the ability to transfer TC models to other field sites and scales in this study (Fig. 21.2
and Table 21.9). Minasny et al. (2009) found that the transfer of mid-infrared
spectral SOC prediction models among three different regions in Australia did not
perform well due to differences in parent material and climate in which soils have
formed in Queensland, New South Wales, and Victoria. Although the R2 of trans-
ferred models were still moderate, all models showed significant bias. Studies that
test not only for similarity in soil TC among sites, but also consider the similarity in
environmental factors that form soil carbon are still rare in the soil science literature.

Fig. 21.2 The coefficient of determination (R2) of each model transferred to other fields and scale
versus the Gower similarity coefficient between the model development field/scale and the model
application field/scale: a partial least squares regression (PLSR); b support vector machine (SVM)

Table 21.9 Gower similarity
coefficients of soil–
environmental factors among
fields and across scales
(SUB-W)

Field
1

Field
2

Field
3

Field
4

Field
5

SUB-W

Field 1 1.00 0.64 0.68 0.73 0.71 0.78

Field 2 – 1.00 0.72 0.76 0.66 0.81

Field 3 – – 1.00 0.62 0.69 0.80

Field 4 – – – 1.00 0.63 0.81

Field 5 – – – – 1.00 0.80

SUB-W – – – – – 1.00

SUB-W = the 112 observations randomly chosen from the five
fields (Fig. 21.1)
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21.4 Conclusions

This study showed that, although the spectral models to predict soil TC with
different methods (PLSR and SVM) were successful in calibration and validation
modes at five different fields nested within a large sand-dominated region in the
USA, the transferability and up- and downscaling of models were limited by several
factors. All of them interacted with each other impacting the transferability of
models among field sites, upscaling, and downscaling behavior of spectral soil
prediction models. These findings have implications for the development of ‘uni-
versal’ spectral-based soil models aiming to predict soil properties for a diverse set
of different soils formed in different environmental conditions covering a wide
range of geographic settings, at its extreme the whole globe. Those ‘universal’
spectral libraries are based on the premise that soil predictions (e.g., soil TC) can be
made anyplace because they are built using soil spectral datasets that characterize
exhaustively the attribute feature space. This assertion is limited by the fact that a
large number of interacting factors of soils, spectra, and environmental properties
are needed to represent the exhaustive sample population which has not material-
ized yet. Furthermore, the stationarity in mean and variance in local (field) cali-
brations of spectral soil prediction models are usually easier to meet though can
have severe effects on scale-variant behavior of models at escalating spatial scales.
The confounding trends in TC up- and downscaling behavior found in this study
suggest that scale matters indicating the need for further soil scaling studies. Given
the many factors that can impinge on empirically derived soil spectral prediction
models, as demonstrated by this study, more focus on the applicability and scaling
of them is needed. This study juxtaposed local and regional predictions, transfer-
ability, and scalability of soil TC models derived from VNIR spectra within a
subtropical region in the southeastern USA. The constraints of soil spectral models
identified in this research may also be found in other regions and spectral libraries
that intent to have universal applicability.
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Chapter 22
Digital Soil Resource Inventories:
Status and Prospects in 2015

David G. Rossiter

Abstract Eleven years ago, the author published a paper (Soil Use and
Management 20(3): 296–301) titled “Digital soil resource inventories: status and
prospects,” which concluded that, at the time, the quantity and quality of digital soil
survey information at global, national, regional, and local scales was increasing
dramatically, however, with several problems such as (1) lack of metadata,
(2) limited interpretations for professionals who are not soil specialists, (3) geodesic
incompatibility with other digital data, (4) frequent reorganization of Web sites, and
most seriously (5) much digital data were proprietary and only available for sale or
under license. The current paper updates the situation to mid-2015, with an
inventory of publically available soil geographic databases, their coverage, the type
of information, and intended purposes. These are summarized in a portal main-
tained by the author (http://www.css.cornell.edu/faculty/dgr2/research/sgdb/sgdb.
html). With regard to the deficiencies identified eleven years ago, metadata pro-
vision is much improved; more products come with interpretations; geodetic
incompatibility has largely been overcome by metadata and conversion programs;
Web sites still change frequently and are often confusing; and much data are still
proprietary or not generally accessible. Over the next several years, several dis-
ruptive technologies are predicted to radically change how online soil survey
information is collected, compiled, and disseminated. The question of open access
to primary data is not resolved.
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22.1 Introduction

Eleven years ago, this author published a paper (Rossiter 2004) titled “Digital soil
resource inventories: status and prospects,” surveying the state of digitally available
primary soil information (point observations, polygons, and grids) as well as sec-
ondary information, i.e., interpreted for end users. The present paper has the same
objective. The intervening ten years have been a decade of dramatic progress in
information technology, large disciplinary data initiatives such as OneGeology1 and
WorldClim,2 and interdisciplinary spatial data infrastructures such as Infrastructure
for Spatial Information in the European Community (INSPIRE).3 This paper
reviews to what extent the soil mapping and soil data provision community have
participated in this progress. The view is from an interested user, searching the
Internet for publically available primary soil survey information. If I have missed
something, it is likely too difficult for others to find.

22.2 Forms of OnLine Soils Information

These can be categorized as (1) freely downloadable GIS-ready coverages, with
adequate metadata to allow users to produce their own products such as customized
maps, model inputs, and interpretations; (2) same but available only on off-line
digital media, typically DVD-R; (3) commercially available (under license or for
purchase) in both formats; (4) viewable and printable online but not available as a
digital product; (5) non-georeferenced scanned maps as images, sometimes with
their original accompanying documentation (e.g., soil survey reports), in both
formats. Of these, the most useful is the first form. A variant of (1) is data provided
dynamically as a Web Feature Service (WFS). A variant of (4) is data provided
dynamically as a Web Map Service (WMS), where the GIS data remain with a map
server but can be integrated into the user’s GIS.

Another categorization is by the originating institution. Comprehensive
general-purpose soil resource inventories (SRI), also called soil surveys, usually
with interpretations, have traditionally been produced by national soil survey
organizations. Other government institutions, for example, forestry or irrigation
departments, have sometimes made special-purpose surveys. Development projects
and consultants have made surveys of limited areas, often as interpreted rather than
primary products, e.g., suitability for irrigation projects. These sources have been

1http://www.onegeology.org/.
2http://www.worldclim.org/.
3http://inspire.ec.europa.eu/.
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combined into synoptic products by institutions with international mandate, notably
the FAO,4 the European Soil Bureau,5 and ISRIC—World Soil Information.6

Yet another categorization is by type of information: (1) soil types in some
classification system; (2) “static,” or at least slowly changing, soil properties;
(3) dynamic soil properties, notably soil moisture and temperature; and (4) inter-
pretations directly usable by modelers and land managers.

22.3 Users of OnLine Primary Soils Information

Potential users include (1) soil mappers within the producing organization; (2) land
use specialists within the producing organization, using the primary information to
make interpretations; (3) government departments responsible for land use planning,
public lands management, and taxation; (4) soil mappers in other organizations,
using these maps as a basis for more detailed or generalized products; (5) land use
specialists in other organizations, e.g., development consultants; (6) land managers
and their consultants; (7) environmental modelers of, e.g., surface energy balance or
watershed hydrology, (8) outdoor recreation enthusiasts such as hunters and hikers.

Some of these users prefer, or can only understand, interpreted information.
Primary soil survey data are widely used in environmental modeling, e.g., pollution
risk assessment (Sekhon et al. 2014), soil hydrology (Toth et al. 2012), gas flux
(Yao et al. 2013), and watershed hydrology (Yu et al. 2014), just to mention a few
recent examples. Modelers typically need primary, rather than interpreted, infor-
mation, because they build their own interpretive models.

22.4 Status of Primary Soil Survey Information

Here, I review the current status of online static or slowly changing soil survey
information over world, regional, national, and local extents.

22.4.1 Area Coverages (Polygons and Grids)

22.4.1.1 World

The most detailed compiled and edited product is the harmonized world soil
database (HWSD)7 (IIASA et al. 2012), supported by the FAO and compiled by

4http://www.fao.org/soils-portal/en/.
5http://eusoils.jrc.ec.europa.eu.
6http://www.isric.org/.
7http://www.iiasa.ac.at/Research/LUC/luc07/External-World-soil-database/HTML/index.html.
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IIASA. This is a gridded product (21,600 × 43,200) with a consistent 30 arc-second
(approximately 1 km2 at the equator) resolution. Although 1 km2 corresponds to the
minimum legible delineation (MLD) of a 1:200k map, considering a 5 × 5 grid cell
window as the MLD, the resulting map scale is 1:1M.

Data sources for the HWSD include SOTER, European Soil Database, Soil Map
of China, the WISE profile database, and the digitized 1:5M scale FAO–UNESCO
soil map of the world. This latter was produced in stages from 1971 to 1981 and
thus is seriously outdated. The resulting raster database consists of 21,600 rows and
43,200 columns, which are linked to harmonized soil property data. The use of a
standardized structure allows for the linkage of the attribute data with the raster map
to display or query the composition in terms of soil units and the characterization of
selected soil parameters (organic Carbon, pH, water storage capacity, soil depth,
cation exchange capacity of the soil and the clay fraction, total exchangeable
nutrients, lime and gypsum contents, sodium exchange percentage, salinity, textural
class, and granulometry). Although the product is consistently formatted, there are
extreme differences in the level of categorical and cartographic detail, depending on
the source. Surprisingly, some well-studied areas (USA, Canada) are only repre-
sented by the 1:5M source and not by the much more detailed national soil survey
databases. ISRIC is currently updating the HWSD with improved basis polygons, a
single classification system (FAO Revised Legend 1988), estimates of uncertainty,
and seven soil depth slices (layers) of representative synthetic profiles, following
the SOTER specifications. Soil parameter estimates are recomputed for each
component soil unit using an elaborate taxotransfer scheme that evolved from
earlier work with FAO, IIASA, and ISRIC and contributions by ISRIC to HWSD
via the SOTER program and WISE project. The above procedure considers 20 soil
properties, five textural classes (SOTER criteria), seven depth layers up to 2 m
depth, and broad climate as an important covariate in the taxotransfer scheme.

A global product produced by digital soil mappingmethods is SoilGrids1 km from
ISRIC—World Soil Information8 (Hengl et al. 2014). This is a collection of con-
sistent soil property and class maps of the world at 1-km resolution, produced using
documented statistical models, from primary data (points and polygons) provided by
soil survey organizations and environmental covariates which cover the whole world,
including long-term NDVI time series and WorldClim layers. The soil polygon
covariate is the HWSD, so that areas with poor HWSD resolution (e.g., USA) have
much less spatial precision than those with the best HWSD resolution (e.g., China).
Newer editions of SoilGrids may replace the HWSD with either an updated HWSD
or may omit it altogether; although it covers the whole world, it is not a consistent
coverage. The authors have chosen 3D regression with splines for continuous soil
properties and multinomial logistic regression for soil classes. Both of these provide
uncertainty: confidence limits from the kriging prediction variance for continuous
properties and probability of membership for soil classes. An advantage of this

8http://www.isric.org/content/soilgrids.
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product is that it is easily updatable: provide improved soil polygons, points, or
environmental covariates and rerun the models. The data are available for download9

and via an API10 for incorporation into user-written applications. It can also be
viewed via a SoilInfo tablet and smart phone application,11 “providing free access to
soil data anytime anywhere…for everyone.” The mapping method can be used at
finer resolutions (see AfSoilsGrid250m, below), depending only on the availability
of covariates at these resolutions and sufficient calibration points.

The GlobalSoilMap.net consortium12 (Arrouays et al. 2014) has since late 2007
been working toward a gridded soil map of the world at a nominal 100-m reso-
lution. Specifications (Science Committee 2013) include a consistent geometry and
tiling method, depth increments, properties, and uncertainty description. Each
regional node is free to use any method to populate the grid according to the
specifications. The first publically available product is from Australia (see below).

The Global Soil Partnership (GSP)13 is a FAO-coordinated consortium “to
improve governance of the limited soil resources of the planet… in accordance with
the sovereign right of each State over its natural resources.”One of its five “Pillars of
action” is the fourth: to “enhance the quantity and quality of soil data and information:
data collection (generation), analysis, validation, reporting, monitoring and integra-
tion with other disciplines.” As part of this, Omuto et al. (2012) produced a report on
the status of global and regional soil information, and aworking groupwrote an action
plan (late 2014), which has been transformed (mid-2015) to an implementation plan,
and it is hoped (subject to financing) to a global soil information system.

22.4.1.2 Regional

A product with a long history is SOTER,14 a collaborative activity of ISRIC, FAO,
and UNEP, endorsed by the International Union of Soil Sciences (Oldeman and van
Engelen 1993) and used for a wide variety of regional assessments (e.g., Batjes
et al. 2007). This is a well-structured soil geographic database: polygons at scales
1:5M to 1:250k, depending on quality of source data with a linked relational
database. This is hierarchical from terrain, through terrain component, to soil
components, to profiles, and to representative horizons. Each product is internally
harmonized across country boundaries, using a consistent mapping concept based
on terrain units, and a consistent soil classification. Regions available are Central
and Eastern Europe, southern Africa, central Africa, Latin America, and the
Caribbean. The concept of soil units within terrain units is not always in accordance

9http://soilgrids.org/.
10http://rest.soilgrids.org/.
11http://soilinfo.isric.org/.
12http://globalsoilmap.net.
13http://www.fao.org/globalsoilpartnership/en/.
14http://www.isric.org/projects/soil-and-terrain-database-soter-programme.
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with the soilscape (e.g., in volcanic areas), leading to some difficulties in delimiting
and characterizing units. Soil components are not necessarily mappable at the target
scale, in which case their proportions are estimated.

Dewitte et al. (2013) report on the Soil Atlas of Africa,15 which was produced as
an update to the HWSD. Nominal scale is 1:3M, corresponding to a minimum
legible area (MLA) of 225 km2. It is available as PDF, as e-book, and for download
as GIS coverage16 on request.

ISRIC has used a similar methodology to the global SoilGrids1 km to produce
AfSoilsGrid250 m,17 a finer-resolution product for the non-desert areas of Africa.

Europe is served by the European Soil Bureau (ESB), which has set up a
European Soil Data Centre (ESDAC) to fulfill its responsibility for responding to
the European Commission for policy support (Panagos et al. 2012). ESDAC
includes the European Soil Portal18 with access to the European Soil Database
(ESDB), a 1:1M harmonized coverage. Single-property 1 × 1 km and 10 × 10 km
grids have been extracted from this. Several “soil threats” gridded maps are
available, including heavy metals in topsoils, soil salinization, susceptibility to
compaction, organic C, and erosion estimates. The ESB operates under a compli-
cated legal framework (EU-wide and national) and strives to make the primary data
as open as legally possible; for restricted products at least, the metadata is supplied,
so that a potential user can judge the fitness for use.

22.4.1.3 National

A few soil survey organizations provide free download of their polygons (map
units) with associated attribute tables, e.g., Canada (CanSIS19), the USA, Australia
(ASRIS20), and New Zealand (S-Map21). Some provide gridded data, e.g.,
Australia. Point observations (profiles) are only available for the USA; this very
detailed database (with the extensive laboratory tests required by USDA Soil
Taxonomy) also includes some non-USA observations.

SOTER is available at scales of 1:1 M (Argentina, Burundi, Cuba, Kenya, RSA,
Rwanda, Senegal and the Gambia, Tunisia) and 1:2M (DRC).

The USA has two almost complete polygon coverages: SSURGO 2.2
(semi-detailed, source scale 1:12,000–1:25,000) and STATSGO2 (1:250,000,
generalized from SSSURGO). These are provided to the public by the Web Soil

15http://eusoils.jrc.ec.europa.eu/library/Maps/Africa_Atlas/.
16http://eusoils.jrc.ec.europa.eu/library/maps/africa_atlas/data.html.
17http://www.isric.org/data/AfSoilGrids250m.
18http://eusoils.jrc.ec.europa.eu/.
19http://sis.agr.gc.ca/cansis/.
20http://www.asris.csiro.au/.
21http://smap.landcareresearch.co.nz/home.

280 D.G. Rossiter

http://eusoils.jrc.ec.europa.eu/library/Maps/Africa_Atlas/
http://eusoils.jrc.ec.europa.eu/library/maps/africa_atlas/data.html
http://www.isric.org/data/AfSoilGrids250m
http://eusoils.jrc.ec.europa.eu/
http://sis.agr.gc.ca/cansis/
http://www.asris.csiro.au/
http://smap.landcareresearch.co.nz/home


Survey interface,22 which allows the user to specify an area of interest. Two other
interfaces to the same data source are provided by the California Soil Resource
Lab23: SoilWeb, which uses Google maps, and SoilWebEarth, which uses Google
Earth to allow a 3D view of the soilscape. The USA has gridded the SSURGO
product at 30-m resolution (gSSURGO) and is experimenting with a disaggregation
(dSSURGO) to this resolution using environmental covariates as a training set
(Chaney et al. 2015); however, this last-named is not yet publically available.

Many European countries have digital databases of polygons and/or points, but
these are not immediately available online. Some have provided data viewers or static
maps online, for example, the Dutch.24 Depending on national data policies, theymay
be provided by commercial contract, use agreement, cooperative project, or publically
available. Some products are generalizations of more detailed products that are kept
for internal use. For example, the Base de Données Géographique des Sols de
France,25 available asArcInfo coverages onCD-ROMfor the cost of reproduction and
postage, is a 1:1M generalization of several detailed products (Connaissance
Pédologique de la France, Secteurs de Référence) at 1:50,000 or 1:100,000. These are
only available under agreement to regional partners and cooperation projects.

Australia has produced the first national map to GlobalSoilMap specifications:
the Soil and Landscape Grid of Australia.26 This is managed as part of ASRIS. In
addition to the soil properties, it also provides many landscape attributes, e.g., the
Prescott Index measure of water balance and solar radiation.

22.4.1.4 Local

The national products listed in the previous section can be queried for any locality.
There are a few purely local digital products. For example, SOTER is available at
scale 1:250k for the upper Tana River basin, Kenya.

22.4.1.5 Standards

Each product has its own standards, which are in general well documented. The
three international standards are for the HWSD, GlobalSoilMap.net, and SOTER
(Pourabdollah et al. 2012).

22http://websoilsurvey.nrcs.usda.gov/.
23http://casoilresource.lawr.ucdavis.edu/soilweb-apps/.
24http://maps.bodemdata.nl.
25http://gissol.fr/programme/bdgsf/bdgsf.php.
26http://www.clw.csiro.au/aclep/soilandlandscapegrid/.
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22.4.2 Points

Georeferenced point observations (typically of soil profiles), generally with accom-
panying laboratory data, are especially valuable as uninterpreted primary information
on soils at known locations. The largest freely available sets are as follows:

1. US National Soil Survey Center Soil Characterization Data27: (1) analytical data
for more than 20,000 USA and 1100 other pedons and (2) standard morpho-
logical pedon descriptions for about 15,000 of these.

2. Soil Profile Databases for Europe28 (SPADE); actual or inferred profiles for each
soil typological unit in the 1:1M SGDBE.

3. Land Use/Cover Area frame Statistical Survey (LUCAS)29; selected properties
of approximately 20,000 topsoil samples from 25 European countries (coarse
fragments, particle size distribution, pH, organic carbon, carbonates, P, total N,
extractable K, CEC, multispectral properties).

4. WISE30: The result of various ISRIC projects, this contains about 11,000
non-harmonized profiles with attributes, of which 1125 have been harmonized.

5. Africa Soil Profiles database31 from the Africa Soil Information Service (AfSIS)
and ISRIC; about 15,000 profiles.

6. World Soil Profiles32 from ISRIC, about 32,000, allows users to submit their
own profiles and create their own data entry templates.

22.4.3 Scans

Maps from the ISRIC collection have been scanned as non-georeferenced images
by the European Soil Bureau and published online and as DVD as the European
Digital Archive on Soil Maps of the World (EuDASM)33 (Panagos et al. 2011). The
accompanying reports have not been included; many of these can be found in the
Wageningen University library via a search interface34 and are currently being
scanned by ISRIC. A similar project but with focus on British soil survey activities
(in the UK and former colonies) is the World Soil Survey Archive and Catalogue
(WOSSAC) hosted by Cranfield University (England).35

27http://ncsslabdatamart.sc.egov.usda.gov/.
28http://eusoils.jrc.ec.europa.eu/projects/spade/.
29http://eusoils.jrc.ec.europa.eu/projects/Lucas/.
30http://www.isric.org/data/isric-wise-international-soil-profile-dataset.
31http://www.isric.org/content/africa-soil-profiles-database.
32http://worldsoilprofiles.org.
33http://eusoils.jrc.ec.europa.eu/esdb_archive/EuDASM/EUDASM.htm.
34http://www.isric.org/content/search-library-and-map-collection.
35https://www.wossac.com/.
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22.5 Status of Dynamic Soil Information

The International Soil Moisture Network36 collects volunteered datasets; one of the
largest is from the former Soviet Union, digitized by the Global Soil Moisture
Databank of the Rutgers University. The Soil Climate Analysis Network (SCAN)
from the (USA) National Water and Climate Center37 does give downloadable time
series of soil moisture, temperature, and snowpack for scattered stations across the
USA and some for Puerto Rico and the US Virgin Islands. Texas A&M University
has produced a harmonized and quality-controlled historical soil moisture database
for the USA and some Canadian provinces.38

22.6 Progress Over the Past Decade

Comparing the current situation to that in 2004:

1. There is much more digital geoinformation and more is publically available.
This is despite the low level of new soil survey activity.

2. Online access and user interfaces to find and obtain geoinformation are much
improved.

3. Metadata provision is much improved. Although most of the above-listed
databases do not use formal metadata standards, almost all have sufficient
information for proper use. Some products include uncertainty estimates in
metadata and some as interpolated layers.

4. Interpretations for professionals who are not soil specialists are excellent in
some databases, notably the USA and Australia. Some organizations, such as
the European Soil Bureau, use their databases to make separate interpretive
products that are directly useable.

5. Geodesic incompatibility with other digital data are far less of a problem. Many
data providers have standardized on WGS84 geographic coordinates. The
Europe-wide databases have standardized on ERTS89 coordinate system. But
with easy conversions provided by the GDAL program39 bundled with R40 and
most GIS, and the collection of coordinate reference systems in the EPSG
database,41 combined with much better metadata, this problem becomes minor.

6. Frequent reorganization of Web sites is still a big problem. The new organi-
zation may be better but data that could be found previously is now relocated.

36http://ismn.geo.tuwien.ac.at/.
37http://www.wcc.nrcs.usda.gov/scan/.
38http://soilmoisture.tamu.edu/.
39http://www.gdal.org/.
40http://www.r-project.org/.
41http://www.epsg-registry.org/.
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A related problem is the increasing number of datasets per site (in itself a good
thing); this often makes finding a particular dataset more difficult.

7. Much digital data are still proprietary and only available for sale or under
license. Some is considered public but not made available to the general public
in digital form, only as a view in a Web mapping application or as a Web
Mapping Service (WMS) layer for use in GIS.

8. There is a new generation of “geoportals” which provide an entry point to find
digital geodata from multiple themes, including soils, for example, INSPIRE
from the European Commission.42 These give exposure to soil data to users who
might not find them otherwise, and to users who are looking for different
coverages of the same area for integrated modeling.

22.7 Prospects

What will the next ten years bring us? Clear trends in the GIS world are as follows:
(1) massive increase in data storage and processing power, allowing models to be
run on large grids with many layers; (2) many new high-resolution sensors from
satellite systems, providing almost unmanageable data streams, many of these
useful as soil mapping covariates; (3) new ultra-resolution airborne and field sen-
sors, including low-cost drone-borne LIDAR and spectrometers; (4) large, cheap
networks of point sensors with automatic recording, e.g., soil moisture; and
(5) increasingly powerful Web services over a faster Internet backbone, reaching
most clients via very high-capacity links. Sensors will increase not only in number
and coverage, but also in temporal resolution. The data volume will be too large for
manual processing; this will require automated methods of quality control and
summary, as is being developed for streaming sensors in environmental monitoring
networks (Campbell et al. 2013).

In the digital soil mapping world, the massive increase in spatiotemporal
covariates will require new models. The temporal aspect is particularly interesting:
There is no reason for a soil map to be static. For example, why do we use
generalized soil moisture and temperature regimes, when we are able to give a
detailed model of the soil moisture and temperature status, over depths as well as
across the landscape, at temporal resolutions matching the sensors?

In the soil survey world, increasing emphasis will be on soil functions rather than
properties. For example, (1) soil health and resilience, including soil biodiversity;
(2) soil-related human health risks and benefits; (3) soil functioning within the
hydrosphere and at the earth–atmosphere interface. These may require new con-
cepts and models, but surely will require spatially detailed properties that drive such
models. Some may be directly mapable.

42http://inspire-geoportal.ec.europa.eu/.
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There will be a strong push for harmonized global coverages, especially useful
for global modeling, at increasingly finer spatial resolutions. Examples are
GlobalSoilMap, Pillar 4 of the Global Soil Partnership,43 and the Harmonized
world soil database. It is unclear that the current observation density can support
reliable products at the desired resolutions.

It is unclear how the near future will develop in terms of data access and data
sharing. Many countries still have restrictive laws and do not recognize that primary
data can have a large multiplier effect on the economy and general welfare of the
citizenry, through unanticipated uses. Some institutions struggling with funding still
see primary data as a revenue source, rather than as an advertisement for their
specialist knowledge in aiding interpretations and modeling.
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Chapter 23
Evaluating the Relative Importance
of Legacy Soil Sampling and Spatial
Models in Digital Soil Mapping
Performances: A Case Study
in Languedoc-Roussillon (Southern
France)

Philippe Lagacherie and Kévin Vaysse

Abstract A growing set of real-life applications of digital soil mapping (DSM) is
now available across the planet. These DSM applications need to be thoroughly
analyzed for identifying the corrective actions that will provide the best increase in
performances. In Languedoc-Roussillon, the analysis of performances of three
DSM models applied for mapping 29 soil properties showed that DSM perfor-
mances were mainly driven by the ability of the spatial sampling to capture the
variability of soil properties, itself driven by the sampling density and the intrinsic
scale of the soil property variations. In this region, increasing the sampling density
of soil measurements appeared therefore as the priority instead of looking for a
more efficient DSM model. We recommend the extension of our approach for
analyzing further DSM results.

Keywords Soil map � Random forest � Kriging � Uncertainty � Variogram �
Spatial structure

23.1 Introduction

In recent years, there have been a lot of real-life experiments of digital soil mapping
(DSM) that have covered a great diversity of pedological contexts across the planet.
These experiments have revealed a great variability of DSM performances, with,
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however, a majority of weak soil predictions. A meta-analysis over this set of
experiments should be highly valuable in view of identifying the corrective actions
that could best improve the current DSM performances.

However, it can be difficult to identify which factor is the most limiting with
regard to DSM performances in a given pedological context, especially among
limitations caused by inadequate spatial sampling with regard to the local patterns
and those caused by the use of irrelevant spatial models for representing these
variations. This issue was examined in Languedoc-Roussillon (southern France)
where it can be observed a great diversity of soil property patterns, which mimics a
large range of pedological contexts for DSM applications.

23.2 Materials and Methods

A DSM experiment was conducted over the Languedoc-Roussillon region
(27,236 km2). It used as input soil data a small-scale (1:250,000) soil map and a set of
2024 measured legacy soil profiles (one profile per 13.5 km2). Spatial sets of soil
covariates covering the entire region and available over the whole French territory
were built for accounting of variations in relief (SRTM digital elevation model and
derivatives), climate (WorldClim database layers), lithology (1:50,000 scale geological
map of France), and land use (derived from Landsat 7). Twenty-nine soil properties
selected among those specified in the GlobalSoilMap project (Arrouays et al. 2014)
were considered for predictions [soil depth and clay, silt, sand, organic carbon, pH,
CEC, coarse fragment at (0–5 cm), (5–15 cm), (15–30 cm), and (30–60 cm)]. They
exhibited a large range of spatial structures characterized by the proportion of spatially
structured variance that can be computed from their experimental variogram by the
complement to 1 of the nugget-to-sill ratio.

Three DSM models were tested: area-weighted means from the small-scale soil
map, random forest calibrated from the measured soil profiles, and random forest
plus kriged residuals. Independent validations of DSM were performed over 105
sites of the French soil-monitoring network located at the nodes of a 16 km × 16 km
grid intersecting the study area. More details on DSM models are provided in
Vaysse and Lagacherie 2015.

23.3 Results

The validations showed great variations of performances (from R2 = 0.00
to R2 = 0.79). Variations of performances between soil properties were found
greater than between DSM models. Concerning the latter, random forest and ran-
dom forest with kriged residuals were equally efficient and outperformed
area-weighted means. Concerning the former, the performances of soil properties
predictions were clearly correlated with the proportion of spatially structured
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variance derived from the experimental variograms obtained from the set of
legacy-measured profiles (Fig. 23.1). For soil properties (e.g., coarse fragment
contents) that exhibited the smallest proportion of spatially structured variance (i.e.,
with large proportions of short scale soil variations), all DSM models performed
poorly. The converse was observed for pH that exhibited the greatest proportion of
spatially structured variance. In intermediate situations (e.g., organic carbon),
performances were also intermediate, with increasing contrasts between the DSM
models.

23.4 Conclusions

These results suggest that, in situations of sparse soil sampling like in
Languedoc-Roussillon, DSM performances were mainly driven by the ability of the
spatial sampling to capture the variability of soil properties, itself driven by the
sampling density and the intrinsic scale of the soil property variations. The choice
of the spatial model for mapping the soil property seemed to less impact these DSM
performances. Increasing the sampling density of soil measurements appeared
therefore as the priority instead of looking for a more efficient DSM model.

From this experiment, we recommend (i) to use the proportion of spatially struc-
tured variance as an indicator that can predict a potential level of DSM performances
according to the available (legacy) spatial sampling) and (ii) to complement the
classical evaluations of DSM model performances by a new ratio (R2

spat) that measure
the proportion of spatially structured variance explained by the tested model.

Acknowledgements This research was granted by the French National Institute of Agronomical
Research (INRA) and the French Research and Technology Agency (ANRT). The authors are also
indebted to BRGM (French Geological Survey), Jean-François Desprats for providing geological

Fig. 23.1 Relation between the proportions of spatially structured variances of soil properties
(1—nugget/sill, x-axis) and the proportions of variance captured by digital soil mapping (R2

v , y-axis).
Each dot is a soil property predicted by the one of the three following models: area-weighted mean
(AWM), random forest (RF), and kriging with external drift (KED) modeled by RF
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maps at the 1:50,000 scale and the French Scientific Group of Interest on soils, “GIS Sol,” and the
US INFOSOL (INRA Orléans) for providing soil measurement data from a RMQS survey.
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Chapter 24
Improved Soil Mapping in British
Columbia, Canada, with Legacy Soil Data
and Random Forest

C. Bulmer, M.G. Schmidt, B. Heung, C. Scarpone, J. Zhang,
D. Filatow, M. Finvers, S. Berch and S. Smith

Abstract The need for improved soil inventory information in the province of
British Columbia (BC), Canada, was addressed using a random forest (RF) classifier
that was informed using legacy soil data. RF models were prepared for 110
ecodistrict subdivisions of BC, and predictions were subsequently assembled into a
final soil parent material map mosaic covering the entire province. The ecodistricts
are part of a framework for ecosystem classification in BC and in Canada, and
delineate areas with relatively homogeneous biophysical and climatic conditions.
Training areas for predicting soil parent materials were identified using
single-component polygons from legacy terrain, soil, and ecosystem maps. For
parent material mapping, we intersected training points amalgamated from all legacy
surveys with a suite of 18 topographic covariates derived from a 100-m digital
elevation model (DEM). For each ecodistrict, two versions of the resulting training
dataset were submitted to the RF classifier. A ‘balanced’ dataset contained equal
numbers of training data points for all parent material classes representing all legacy
data derived from single-component polygons. A ‘constrained’ dataset was also
derived where conditions were imposed on selected topographic attributes of the
training points to reflect known geomorphic processes and to ensure consistent
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mapping criteria were applied across multiple legacy soil survey projects. RF pre-
dictions of soil parent material resulted in 100-m gridded class maps for BC that
incorporate expert knowledge extracted from legacy soil inventories.

Keywords Random forest � Soil parent materials � Soil development � Legacy soil
data

List of Abbreviations

BC British Columbia
BEC biogeoclimatic ecosystem classification
DEM digital elevation model
MDA mean decrease accuracy
MDG mean decrease in gini
OOB out-of-bag error
RF random forest

24.1 Introduction

There is a need for improved soil survey information in the Canadian province of
British Columbia (BC). Existing soil databases were derived from soil surveys that
were carried out at various levels of detail over a period of more than 75 years, but
cover less than 50 % of the 945,000 km2 area within the provincial boundary.
Terrain inventories are also available to provide information on soil parent mate-
rials, but large gaps remain in both spatial coverage and detail at a time when the
demands for information on BC’s natural resources are increasing.

Predictive mapping techniques have shown great potential for extending legacy
soil information to new areas (Bui and Morgan 2003) and for increasing the spatial
resolution of existing inventories by generating gridded attribute and class maps
and databases (e.g., Sarmento et al. 2012). In BC, digital mapping techniques have
been used successfully to predict forest ecosystems in the Cariboo region
(MacMillan et al. 2007), parent materials in the lower Fraser Valley (Heung et al.
2014) and soil classes in the Okanagan Valley (Smith et al. 2012). Among the many
choices available for modeling soil landscape relationships and predicting soil
properties, random forest (RF) classification has proven to be a particularly useful
approach (Heung et al. 2014; Stum et al. 2010; Häring et al. 2012; Subberayalu and
Slater 2013). Random forest implements an ensemble of decision trees, with ran-
domized bootstrap sampling and selection of potential predictors for node splitting.
The aggregation of the resulting classifications has successfully predicted outcomes
in a wide variety of applications.

The objective of this study was to develop 100-m gridded soil parent material
and soil development class maps at the order level for the entire province of BC by
capturing knowledge contained in legacy terrain (surficial geology) and soil
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polygon maps. This marks the first-time predictive mapping has been used in BC at
this scale and extent. A global gridded soil class and attribute map product (Hengl
et al. 2014) covers the province but has not yet been regionally validated.

The purpose of this paper is to (1) describe how RF predictions were used to
develop new soil parent material maps for BC, (2) describe the covariates that were
used for the maps and how a collection of individual predictions for landscape
subdivisions was mosaicked into a final map product for parent material, and
(3) discuss some of the challenges of using legacy maps as knowledge sources for
predictive mapping.

24.2 Materials and Methods

24.2.1 Physiography, Soils, and Ecology of British
Columbia

British Columbia occupies the western coast of North America between the 49th
and 60th north parallels, a distance of approximately 1200 km, and extends inland
across the Western Cordillera for more than 750 km. BC’s landscape consists of an
arrangement of mountain systems and plateaus that have resulted from tectonic
forces operating at the leading edge of the North American continental plate over
very long periods of geologic time (Church and Ryder 2010). In the past 2 million
years, glaciation and contemporary geomorphic processes have created predictable
associations of local landform and surficial material that have been superimposed
on the original character of the larger mountain systems, valleys, and plateaus.

Soil development in BC reflects the operation of pedogenic processes mediated
by climate, topography, and vegetation at localized scale. During the ca.
10,000 years BP since glacier ice receded from most of BC, soil processes have
transformed the upper portion of the (surficial) parent material to a depth of
approximately 1 m. BC’s rugged topography is an important factor driving the
tremendous diversity of soil parent materials, climate, and vegetation, and the soil
properties observed today reflect that diversity (Valentine et al. 1978).

Canada’s National Ecological Framework (Ecological Stratification Working
Group 1996) provides an approach for subdividing landscapes into nested ecozones,
ecoregions, ecodistricts, and soil landscapes. Because the ecodistricts of the nested
ecological framework represent contiguous areas with similar physiography and
ecology, their use as rule sheds defining the limits for applying predictions from a
single RF model was considered appropriate for this study. This nested ecological
framework is complemented by BC’s biogeoclimatic ecosystem classification
(BEC) system (Meidinger and Pojar 1991) where climate defines broad ecological
zones expressed through changes in plant species composition and physiognomy, and
local variation is described in relation to changes in vegetation, soil, and topography.
Therefore, the mapping units identified within BEC system provides a useful pre-
dictor of soil development.
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24.2.2 Legacy Soil Surveys and Terrain Mapping

Although some of the first soil surveys in BC were carried out on forested lands
(Anderson and Smith 2011), a major focus for many subsequent soil surveys was to
identify and characterize new areas for settlement and provide improved agricul-
tural opportunities (e.g., Kelley and Spilsbury 1939; Sprout and Kelly 1964;
Luttmerding 1980). As a result, detailed and comprehensive soil information is
currently available for most of the major agricultural valleys and lowlands in BC,
while a patchwork of soil and terrain coverage exists outside those areas (Fig. 24.1).
In addition, the entire province is covered by the generalized Soil Landscapes of
Canada mapping at 1:1,000,000 scale (Schut et al. 2011). Government led soil
survey activity in BC slowed dramatically after 1990, but the legacy soil data and
terrain mapping carried out according to the methods outlined in Province of BC
(2010) embodies a wealth of expert knowledge of landscape patterns of soil parent
material and development that can inform predictive maps.

24.2.3 Digital Data

Geographic information for training data and all model inputs described in this
paper were derived from public sources. Terrain and soil databases were obtained
from Data BC www.env.gov.bc.ca/tei/access_tei.html in shape file format. Terrain

Fig. 24.1 Availability of detailed training data for soil parent materials in British Columbia
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and soil polygons can have from one to three components. Polygons were selected
where a single component occupied more than 90 % of the polygon area, or where
two or more components with the same soil/terrain attributes comprised more than
90 % of the area. A 100-m-resolution digital elevation model (DEM) was obtained
from http://www.hectaresbc.org and preprocessed using the procedure described by
Heung et al. (2014). A 1-km DEM was also prepared by resampling the prepro-
cessed 100-m DEM. Two datasets were used for validating the results. The BC Soil
Information System (Sondheim and Suttie 1983) is an inventory of field mea-
surements incorporating soil site characteristics and was commissioned to track soil
conditions in BC. The BEC point dataset contains a collection of individual point
samples of ecosystem conditions obtained by BC’s BEC inventory program.

Soil Parent Materials
A total of 35 terrain derivatives were prepared from the 100- and 1-km DEMs to
describe 13 different landform classes. Initial modeling results guided the selection
of 18 of the terrain derivatives for use in production of the final predicted map
(Table 24.1). Selection was based on the average (combined) mean decrease in
accuracy (MDA) and mean decrease in Gini (MDG). Reducing the number of

Table 24.1 DEM derivatives used for RF prediction of soil parent material

Terrain
attribute

Min Max Mean Std.
Dev.

Description

C_N_B_L 0 2388 939 434 Channel network base level (masl)

ELEV 0 3628 1118 529 Elevation (masl)

HD_2_CH 0 53480 1976 2441 Horizontal distance to channel (m)

HTNRM_K 0 0.99 0.44 0.29 Normalized height 1-km grid

MB_IND −0.5 1.09 0.004 0.10 Mass balance index (index)

MDSLP_K 0 0.88 0.26 0.15 Midslope position 1-km grid (masl)

MRRTFKM 1.6 8.6 3.0 2.9 Multiresolution index of ridge top flatness
1 km

MRVBFKM 0 8.9 3.2 3.16 Multiresolution index of valley bottom
flatness 1 km

MRVBFHA 0 8.26 0.94 1.68 Multiresolution index of valley bottom
flatness

OPENNEG 0.92 1.63 1.45 0.11 Topographic openness—negative (index)

OPENPOS 0.98 1.65 1.44 0.10 Topographic openness—positive (index)

RHSP_KM 0.02 0.98 0.51 0.27 Relative hydrologic slope position 1-km grid

SL_HT_K 0 1229 241 127 Slope height 1-km grid (m)

SLOPEHT 0 1956 127 154 Slope height (m)

SLOPEUS 0 1.23 0.25 0.22 Slope from unsmoothed DEM (m/m)

V_D_C_N 0 3469 178 233 Vertical distance above channel network (m)

VALLY_D 0 1998 171 186 Valley depth (m)

VY_DP_K 0 1580 259 170 Valley depth from 1-km DEM (m)
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predictors resulted in a small (<1 %) reduction in out-of-bag (OOB) error estimates
compared to models with 35 predictors. Input predictors for parent material were
restricted to topographic information only because parent material is thought to be
highly correlated with landform due to BC’s recent glacial past.

24.2.4 Modeling Approach

Our modeling approach for this study was described in Heung et al. (2014).
Training datasets were prepared by random selection of points within the
single-component polygons from legacy soil and terrain surveys and intersecting
them with a range of topographic climatic and other attributes. Individual RF
models and predictions were prepared for 100 ecodistrict subdivisions of BC where
training data were available. For ten remaining ecodistricts with no training data, a
model from an adjacent ecodistrict was used in the prediction. To incorporate the
influences of training data from neighboring ecodistricts, a 5-km buffer was applied
to each ecodistrict and the training points from neighboring ecodistricts that fell
within the buffered areas were included for the prediction of the centroid ecodistrict.

Two versions of the parent material training dataset were input to the classifier.
The ‘balanced’ dataset contained equal numbers of training data points for all parent
material classes representing all legacy data derived from single-component poly-
gons. The ‘constrained’ dataset also contained equal numbers of points per class,
but with a restricted range of values allowed for selected topographic attributes to
reflect known geomorphic processes associated with specific materials and to
ensure consistent mapping criteria were applied across multiple legacy survey
projects (Table 24.2).

Table 24.2 Constraints applied to topography derivatives for the constrained RF model of parent
material

Parent
material

Required condition Rationale

Colluvium SLOPEUS > 0.25 Movement of material on steep slopes is
primarily driven by gravity

Fluvial SLOPEUS < 0.10 Fluvial materials are deposited in flat
areas

Fluvial MRVBFHA > 0.5 Fluvial materials are deposited in flat
low-lying areas

Fluvial V_D_C_N < 0.0005*VY_DP_K Fluvial materials are associated with the
modern drainage network

Glaciofluvial V_D_C_N > 0.0005*VY_DP_K Glaciofluvial materials occur higher in
the landscape than fluvial

Till SLOPEUS < 0.35 Till is found on gentle and moderate
slopes
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24.2.5 Final Map Preparation

The individual maps for soil parent material were assembled into a final mosaic
after clipping each one to the original ecodistrict boundary. The resulting map can
be thought as an assemblage of buffered patches, allowing for new information or
improvements to be incorporated into a single patch (rule shed), without compro-
mising areas of the map outside of the rule shed boundary. Also, predictions for
further subdivision within ecodistricts could be accomplished by considering the
more detailed soil landscape level as rule sheds, allowing for improved modeling at
finer resolution. There are more than 2500 soil landscape polygons mapped in BC
(Schut et al. 2011).

24.3 Results and Discussion

Constrained models had lower OOB error rates compared to balanced models.
Variability in OOB error rates between ecodistricts (Fig. 24.2) illustrates how
consistently the individual models within the ecodistrict rule shed relate the topo-
graphic derivatives to the parent material class and could reflect (1) differences in
availability, quality, and/or distribution of the training data; and/or (2) differences in
the underlying relationships between the available topographic attributes and parent
material distribution due to unique physiographic conditions within ecodistricts.

Overall, the most important variable for improving node purity was elevation
(Fig. 24.3), highlighting the tremendous topographic diversity in this part of
western North America. The derived indices for multiresolution ridge top and
valley bottom flatness were important determinants of model accuracy. The variable
importance results also illustrate the need to incorporate small-scale landscape
context in modeling parent materials in BC because topographic derivatives

Fig. 24.2 Out-of-bag error rates by ecodistrict for a balanced and b constrained models for soil
parent material
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calculated from the 1-km DEM tended to have higher importance than those same
derivatives calculated from a 100-m grid. Many of the 100-m terrain derivatives we
calculated did not appear in the reduced list of 18 predictors for final map
production.

More than half of the ecodistricts shared very similar suites of important pre-
dictors, but a small number had RF models where only one or two of the five most
important predictors were among the most important provincially (Fig. 24.4).
Ecodistricts with similar variable importance metrics could potentially be combined
into larger rule sheds, but for some ecodistricts, unique physiographic characteristics

Fig. 24.3 Variable importance for parent material classification with balanced RF: average for
100 ecodistricts

Fig. 24.4 Number of the top 5 provincial topographic derivatives that ranked in the top 5 for
individual ecodistricts. Ecodistrict models relying on similar topographic attributes for node purity
and accuracy have higher values
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or other factors contribute to very different models, and possibly very different
relationships between landscape characteristics and parent material distribution.

One of the major challenges in using legacy maps for training models is the
inconsistent or changing concepts and definitions used in creating mapping units.
For example, as a result of an evolving understanding of landscape processes in BC,
different concepts of colluvium were sometimes employed by mappers on adjacent
map sheets with similar topography (Fig. 24.5). The balanced RF model (Fig. 24.6a)
predicted a more continuous distribution of colluvium in this same area. The con-
strained model limited training points for colluvium to those with steeper slopes
(Fig. 24.6b) and also predicted a continuous, but more restricted distribution of
colluvium. These results illustrate the capability of RF classification to produce
consistent results even where the underlying training data were derived from map-
ping projects that were carried out at different times and by different surveyors.

Another challenge in using legacy data was observed in the prediction of classes
with a very specific ecological niche. Organic parent materials, legend class
‘UNDO’ shown in green in Fig. 24.7, are closely associated with the presence of
wetlands, but appeared to be over predicted by approximately 20 % on a provincial
basis for both balanced and constrained RF models (Fig. 24.7a, b). An attempt to

Fig. 24.5 Legacy map polygons for a portion of southern BC, showing different mapping concepts
for colluvium (legend class ‘COLL’). Black lines outline borders of adjacent map sheets. Parental
material abbreviations: COLL = Colluvium, FLUV = Fluvial, GLFL = Glaciofluvial, GLMA =
Glaciomarine, LACU = Lacustrine, MARI = Marine, RKUD = Bedrock, UNDM =Undifferentiated
mineral, TILL = Glacial till, UNDO = Undifferentiated organic, VOLC = Volcanic
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Fig. 24.6 Parent material predictions for colluvium (see legend in Fig. 24.5) employed in adjacent
mapping projects, a the balanced prediction, and b the constrained prediction

Fig. 24.7 Parent material predictions for a portion of ecodistrict 981, showing a balanced RF with
organic parent materials (legend class ‘11_UNDO’), b constrained RF, c constrained RF with
geographically restricted training points, and d organic parent materials forced on to known
wetland locations
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refine the predictions by providing RF with a more geographically focused training
dataset consisting solely of points included within wetland polygons also resulted in
significant over-prediction (Fig. 24.7c). We concluded that the best solution was to
abandon predictive methods and to simply assign the organic materials class to all
grid cells underlying existing wetland boundaries that were previously determined
by landscape classification using aerial photographs (Fig. 24.7d).

We used two independent datasets to validate the results for parent material
(Table 24.4). No ground sampling of the validation points was carried out. Results
were generally similar for balanced and constrained models. The highest agreement
occurred for the till material class, when validated against the BEC points. The
percent correct in this study was consistently lower than values observed by Heung
et al. (2014). The map produced by Heung et al. (2014) was in an area with
consistent coverage of detailed mapping information, training data, and validation
points. Our results reflect in part the inconsistent mapping conventions described
earlier, but could also reflect problems with the validation data. In particular, many
of the BCSIS points were collected decades ago before GPS was widely available
and are known to have poor spatial accuracy. We believe that these results provide a
lower bound on the reliability of the parent material predictions provided by RF.

24.4 Conclusion

The results of this project illustrate that digital soil mapping techniques provide
practical approaches for improving soil information and its use for resource man-
agement in BC. Our approach facilitates improvement of the overall map mosaic as
new data becomes available, or as alternative modeling approaches are tested and
employed.

Although validation with two independent datasets produced some mixed
results, we believe that the RF model provides valuable information for predicting

Table 24.3 Validation results for RF prediction of selected soil parent materials using balanced
(Bal) and constrained (Con) models, expressed as percent correct

BCSIS dataset BEC points dataset

Material Symbol Points Bal % Con % Points Bal % Con %

Colluvium 02_COLL 2299 44.2 21.3 1767 53.0 25.2

Fluvial 05_FLUV 7310 56.2 56.7 1234 47.5 48.2

Lacustrine 06_LACU 834 31.3 31.6 262 3.1 4.2

Till 10_TILL 6264 34.6 45.3 1839 36.4 61.9

Organic 11_UNDO 1403 20.3 19.3 733 27.6 19.2

Marine 15_MARI 7241 35.8 34.8 – – –

Total points (average) 25351 41.1 41.5 5835 41.2 40.0

Fluvial materials were combined with glaciofluvial, and lacustrine was combined with
glaciolacustrine
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soil parent material and development, and with further refinement, it will prove to
be an essential part of our overall goal to improve soil information in BC.

Legacy data contains a wealth of information, but considerable judgment is
required to utilize it in predicting soil properties. For organic materials, simply
mapping known locations of wetland organic deposits proved more efficient and
accurate than predicting them with the covariates we used.

Our results should be considered a first step toward building improved digital
datasets for soils in BC.
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Chapter 25
Disaggregation of Legacy Soil Maps
to Produce a Digital Soil Attribute Map
for the Okanagan Basin, British Columbia,
Canada

Scott Smith, Denise Neilsen, Grace Frank, Eve Flager,
Bahram Daneshfar, Glenn Lelyk, Elizabeth Kenney,
Chuck Bulmer and Deepa Filatow

Abstract The Okanagan Basin is undergoing extensive hydrologic modeling in an
effort to better understand regional water supply and demand issues. To assist in
providing spatially explicit soil data to the modeling effort in this 8000-km2

mountainous watershed in southern British Columbia, a digital soil map based on a
25-m DEM was compiled using a variety of methods. Legacy soil polygon maps
exist for the basin at various scales. Because we lacked a comprehensive set of
point (pedon) data required for geostatistical predictions, our objective was to
disaggregate the legacy maps so as to assign to each grid cell soil class likelihood
values and then soil attributes derived from the Canadian Soil Information System
formatted to follow the GlobalSoilMap.net specifications. To do this, we used
virtual point data generated by sampling homogeneous (single component) soil
polygons and a range of covariates. On the upland where a good knowledge of the
ecological distribution of soil series existed, we used an expert system of fuzzy
logic inference using the ArcSIE software add-on. Predictors for modeling included
high-resolution forest ecological zone maps, surficial geology maps, legacy soil
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maps, and several derived terrain attributes. A limiting factor function was used to
integrate the fuzzy membership values of all covariates to produce a single value for
each soil series for each cell. For the intensively mapped valley floor, it was not
possible to accurately disaggregate soil series from complex map polygons, many
of which were defined based on subtle changes in subsurface soil texture for which
we did not have meaningful predictors. For this region of the basin, we used simple
polygon averaging to generate soil attributes for underlying grid cells. In a final
step, we aggregated the 25-m data to a 100-m grid to provide data at a scale more
suitable for some of the hydrologic modeling requirements.

Keywords Disaggregation � Legacy polygon soil maps � Fuzzy logic � Soil
series � Attributes

25.1 Introduction

Ongoing modeling efforts in the Okanagan Basin of south central British Columbia
require improved soil data. The basin forms the headwaters for the 8200-km2

watershed of the Canadian portion of the Okanagan River system which flows
southward through Washington state where it empties into the Columbia River
(Fig. 25.1). The basin has a large range in elevation with cooler temperatures and
higher precipitation found at higher elevations, and warmer, drier conditions found
at low elevations. The climatic gradient results in the formation of soil types from
grassland (Chernozems) to strongly acidic forest soils (Podzols). These soils are
characterized by having a wide range of soil physical and chemical properties.

Fig. 25.1 Map of the
location of the study area in
mountainous south central
British Columba. The area of
the Okanagan Basin is
highlighted in green
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There are legacy soil maps at scales from 1:20,000 to 1:125,000 available for the
basin. However, in many instances, traditional soil map data have proven to be
difficult to use in environmental modeling applications when most inputs are in
gridded format (Smerdon et al. 2010). In response to this need for improved data
suitable for a variety of modeling efforts, we generated soil information in raster
rather than vector format and organized by specific depth intervals rather than by
soil horizon. Given the lack of reliable soil point data in the study area, disag-
gregation of the legacy soil polygon maps was our best option to provide
raster-based soil class and attribute mapping suitable for modeling input. The
objectives of this project were to (1) use methods tested in earlier research in a
subwatershed (Smith et al. 2012) to produce a basin-wide raster soil class map
using a 25-m digital elevation model (DEM) and selected environmental covariates,
(2) assign attribute values for each soil class from data stored in the Canadian Soil
Information System, and (3) reformat the horizon-based attribute values to a
standardized depth interval for all soils following as closely as possible the
GlobalSoilMap.net specifications (Science Committee 2011).

25.2 Methods

25.2.1 Harmonizing Legacy Soil Maps

When disaggregating multiple legacy soil maps that vary in scale and vintage, it is
first necessary to spatially harmonize these into a seamless map coverage through
polygon edge matching, re-projection, and data correlation. In our study area, we
started with five original soil survey maps (Table 25.1). The spatial harmonization
work and the construction of the soil attribute databases for all soil names (series)
used on the maps were major tasks completed by Kenney and Frank (2010). Based
on information contained in the original soil survey reports and from records in
provincial pedon databases, a representative soil profile with horizon attributes was
generated to characterize each soil series in the study area. While some of these
pedons were sampled from within the study area, they lacked locational information
necessary for their use as part of a geostatistical prediction approach. This compiled
profile information was used to produce records within the British Columbia Soil

Table 25.1 List of legacy soil maps used as the basis for disaggregation

Soil survey name Map scale Projection Vintage

Vernon 1:50,000 Geographic NAD 83 1986

Penticton 1:50,000 Geographic NAD 83 1986

Okanagan/Similkameen 1:20,000 UTM Zone 11 1986

North Okanagan 1:31,680 UTM Zone 11 1960

Tulameen 1:126,720 Geographic NAD 27 1974
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Name Table and Soil Layer Table, standard tables following the specifications of
the Canadian Soil Information System (Schut et al. 2011). The seamless polygon
map and attribute records within the associated tables provided the starting point for
our digital soil mapping efforts.

Even though all of the original maps had been spatially aggregated to produce a
seamless coverage, there still remained the significant task of further correlating all
soil series names used in the legacy mapping within the study area. This correlation
took on two forms; determining the permitted geographic extent of use of names
(how far from its original map origin could we predict a soil to occur) and
examining the full set of names looking for redundancies (often two different soil
series originating from two different soil surveys had almost identical pedological
definitions). We found that within our study area, we had fairly discrete sets of soil
series that covered distinct geographic regions of the basin, and another set of soils
with rather wide use in legacy mapping. For each of these distinct regions, we
selected a set of soil series to use in our predictions that characterized, to the best
extent possible, the range of pedological niches that existed on the landscape
(Table 25.2). We defined four distinct regions as individual ‘rulesheds’. The
boundaries of these rulesheds were defined based on the type and extent of the
legacy map sheets with the exception of ruleshed 1 which is a subwatershed in
which we conducted earlier research and retained the results for this basin-wide
project. Soil series were generally not exclusive to a single ruleshed. A few series
occurred in all rulesheds.

The reconnaissance mapping (Penticton, Vernon, Tulameen sheets) for the
upland portions of the basin had polygon areas averaging 500 ha with up to three
soil series described, often associated with different parent materials or distinct soil
moisture regimes. In these upland areas, which were designated as rulesheds 1–3
(Fig. 25.2), polygon disaggregation was considered feasible given the covariates
available. It is important to note that we did not disaggregate polygons individually,
but rather we made spatial prediction of individual soils from a pool of soil series
selected for a ruleshed.

For the area of detailed mapping (Okanagan-Similkameen, North Okanagan)
covering the valley floor (ruleshed 4) where intensive irrigated agriculture is

Table 25.2 Design of rulesheds and handling of soil series defined on legacy soil survey maps

Physiographic setting Uplands Valley floor

Ruleshed 1 2 3 4

Name Trout
creek

Basin
south

Basin
north

Detailed

Total number of soil series used 24 39 33 118

Unique soil series 4 7 12 112

Shared soil series 20 32 21 6
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practiced, polygons averaged 17 ha in size with 60 % of these represented by a
single soil series. In polygons where more than one series was listed, these often
represented subtle textural variations and lithological discontinuities on a single
parent material. We did not have covariates available to discriminate these differ-
ences, thereby making meaningful disaggregation in this ruleshed unfeasible. There
were over 100 soil series defined in the detailed mapping on the valley floor. The
bulk of these series did not occur in the upland areas.

25.2.2 Extracting Knowledge from Legacy Soil Maps

Several disaggregation methods were tested in the Trout Creek subwatershed
(ruleshed 1) between 2010 and 2012. The project team gained experience with
several statistical techniques including random forest, weights of evidence, logistic
regression, and fuzzy inference (Smith et al. 2012). In this work, we developed a
technique that we subsequently extended for use in rulesheds 2 and 3 whereby we
established virtual sampling points within the soil polygons from the seamless map
coverage to develop relations between individual soil series and sets of environ-
mental covariates (Table 25.3). Polygons composed of 100 % of a single soil series
were selected; where these were not available, polygons were sampled if they
consisted of at least 80 % of that soil series. We spatially refined the sampling by
using defining criteria from the soil survey reports provided for each series—
specifically the ecological zone the series belonged to and the geologic parent

Fig. 25.2 Maps showing rulesheds used to constrain geographic extent and population of soil
names predicted in different regions of the basin. Ruleshed boundaries were largely defined based
on scale and extent of legacy map sheets
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material. High-resolution vector maps of surficial geology and biogeoclimatic zones
were available for the entire basin and used as covariates both in the spatial pre-
diction and in refining the polygon sampling. Within a selected polygon, we only
sampled points that also aligned to our defining criteria. For each soil series, up to
200 training points were generated from the refined polygons. If we could not find
polygons suitable for sampling for a particular soil series, then we were simply not
able to predict its occurrence even if it occupied a distinctive ecological niche.
Fortunately, this occurred in only a few cases.

25.2.3 Predictive Methods

The following covariate map layers were used to enable spatial predictions: A
filtered 25-m DEM generated from provincial 1:20,000 topographic contour map-
ping available from the Geobase Canada Web site, several terrain derivatives,
a 1:20,000 vector surficial geology layer outlining individual soil parent materials,
a 1:20,000 scale map of ecological subzones, and a 30-m raster land cover layer.
The harmonized soil maps and 11 covariate layers were compiled into ArcGIS™
v10.1 for spatial analyses.

For ruleshed 1, we retained the original predictions based on a hybrid method
using outputs from weights of evidence analyses to inform the setting of inference
rule curves in ArcSIE as described in Smith et al. (2012). This method yielded good

Table 25.3 Listing of covariates used in prediction methods

Covariate type Description Reference/source

Digital
elevation
models

Canadian digital elevation data
25 m

http://www.geobase.
ca/geobase/en/data/cded/description.
htmlHectares BC 100 m

Terrain
derivatives
(from 25-m
DEM)

Aspect

Elevation

Topographic position index Jenness (2006)

Slope

SAGA wetness index

LandMapR facet classes MacMillan (2003)

Remotely
sensed

30-m land cover derived from
LandSat and RadarSat imagery

Agriculture and Agri-Food Canada
(2009)

Environmental
maps

1:2,000 surficial geology Filatow and Finvers (2009)

1:50,000 BEC subzones BC Ministry of Forests, land and
resources (2011)

1:100,000 generalized lithology
mapping
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prediction accuracy for soil classes and outperformed all other methods we tried in
the ruleshed.

The boundary between ruleshed 2 and 3 was based on the boundary of two
legacy map sheets (Penticton and Vernon) which used somewhat different soil
legends; hence, different sets of soil series were predicted in the two rulesheds. For
ruleshed 2, we selected some 39 soil series for prediction; for ruleshed 3, we
selected 33 series. Most series occurred in both rulesheds, but there were several
soils that were unique to only one ruleshed (Table 25.2). In both instances, we used
fuzzy inference modeling using the spatial inference engine (SIE) extension within
ARCGIS v.10.1.

ArcSIE©, a program and user interface that uses fuzzy logic to assign a mem-
bership value for individual soil series to each DEM grid cell (Shi 2010), was used
to create the digital soil map in rulesheds 1, 2, and 3. The fuzzy logic model used,
also called a similarity model by Zhu (1997), generates a membership value by
integrating optimality values of environmental features at a location. The optimality
values are defined by a Gaussian-style function curve that represents a rule created
by the user to describe how an environmental feature (covariate) relates to a soil
series. The Gaussian-style curve is defined by the user in the ArcSIE interface by
setting the v, w, and r values of the curve. The v values define the limits of most
optimal values for an environmental covariate, and the w and r values define the
shape of the curve. For details of the curve function, readers are referred to Shi
(2010). In this study, we automated this process to the extent possible and used an
iterative approach in making predictions. We modified curves through expert
knowledge to refine predictions and for some soil series reduced the number of
covariates used in the modeling which improved results. Zhu et al. (2010) discuss in
detail the use of fuzzy logic approaches in digital soil mapping to capture expert
knowledge to produce both a class map and to predict spatial variation of soil
attribute through membership (likelihood) calculations.

The membership values for each environmental covariate for each soil series
were integrated using a limiting factor function within the software, which is the
equivalent of the fuzzy AND operator. This operator chooses the lowest optimality
(membership) value of all environmental features as the overall optimality value for
the location. When the inference is run, a membership grid is produced for each of
the soil series included in the rule base for the ruleshed. The ArcSIE Harden Map
tool was used to generate the ‘hardened’ soil series grid, where each cell of the grid
contains a value that represents the soil series with the highest membership value
for that location. The membership value is not a probability of whether a certain soil
class (series) occurs at a location or not. It is an index which measures the similarity
between the properties of a given soil series and the environmental properties at a
given location. In mathematical terms, the index measures the level to which the
pixel can be considered a member of the set representing the assigned soil.

We undertook no predictive mapping in ruleshed 4, and the area of detailed
mapping on the valley floor where disaggregation was not feasible.
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25.2.4 Linking Soil Attributes to Grid Cells

Predictions result in likelihood (membership) values of every soil series in the
ruleshed. Attributes may be assigned based on the most likely soil series or
weighted by likelihood value for all or some subset (top 3 or 5 series) of series as
was explored by Lelyk et al. (2014). As described earlier, each series is represented
by a set of horizon attributes from the British Columbia Soil Layer Table, a subset
of the Canadian Soil Information System. Horizon attribute data were fit to specific
depth intervals following the concepts of Malone et al. (2009) modified using a
horizon weighted averaging method as described by Lelyk et al. (2014). Examples
of this transformation for attributes for two soils in the study area are given in
Fig. 25.3.

In ruleshed 4, we used simple polygon averaging to generate attribute values for
the 25-m grid cells. In instances where only a single soil series was listed in a
polygon, that series and its attributes were simply assigned to all grid cells spatially
underlying the polygon. Where multiple components were listed, the polygon

Fig. 25.3 Attribute transformation from horizon-based values to specified depth interval-based
values. The upper panels illustrate the pH transformation for the Alleyne soil series (a mid-elevation
forested soil) and the lower panels illustrate the organic carbon transformation for the Armstrong
soil series (a lower-elevation grassland soil). Both soils occur in several rulesheds in the basin
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averaging approach assumes that we are unable to predict the internal short range
variation in any soil property within the polygon and that the best estimate of the
most likely value for a soil property in that map unit is a weighted mean of the
values for all soils in the polygon. The weighting factor is derived from the esti-
mated proportion or extent of each soil component in the polygon. Details of the
polygon averaging method we used are given in Hempel et al. (2012). To create a
soil class map at 25 m resolution for ruleshed 4, we simply assigned the dominant
soil name to all grids underlying the polygon. As stated earlier, two-thirds of the
detailed polygons contained only one soil series.

25.3 Results

25.3.1 Soil Class Maps

Several outputs resulted from our methods. The rulesheds were merged to produce
a single predicted soil class map for every 25-m grid cell in the 8000-km2 watershed
of the Okanagan Basin. The most likely soil series in each cell was used to create
the map and the grid database also contains a confusion index value (Burrough
et al. 1997) based on the ratio of likelihood values for the top two most likely
classes which provides a simple measure of uncertainty for the prediction class.

25.3.2 Soil Attribute Maps

The attributes included were those defined in the GlobalSoilMap specifications
(Science Committee 2011) for primary soil attributes although we report these in
units used in the Canadian Soil Information System. These attributes include soil
pH (in CaCl2), soil organic carbon (%), sand, silt and clay (%), coarse fragment
content (%), electrical conductivity (dS/m), and available water holding capacity (%
vol). The spatial distribution patterns of attributes become clearly evident when the
data are mapped to the 25-m grid cells. For example, soil pH correlates closely to
precipitation. Areas of the basin with highest precipitation, such as the subalpine
forest zone, have the lowest soil pH values as shown in Fig. 25.4. On a more local
scale, the grids provide good spatial resolution of the extent of highly alkaline soils
associated with glaciolacustrine deposits found along the shores of Okanagan Lake
(see inset map, Fig. 25.4). A major limitation to the accuracy of these attribute maps
is the fact that we assign a single attribute value to a soil class based on a national
soil database value and this is represented everywhere that soil class is predicted.
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25.3.3 Scaling-up

Some modeling efforts are better served by data provided at lower resolution.
Several users have requested data at courser resolution. To satisfy this need, 25-m
grid data were scaled up to 100 m resolution. This step, referred to as conflation by
Malone et al. (2013), is a relatively simple process involving the averaging of the
fine-scaled values (25-m grid) to generate an overall mean of the target variable
across a coarse-scale grid (100 m) over the same map extent. With respect to soil
class, we list likelihood values for the most common classes occurring in the 100-m
cell based on the roll-up of the sixteen underlying 25-m class values (Fig. 25.5).
The end result is a product more easily managed by some environmental models
such as the integrated catchment model such as MIKE SHE (Refsgaard et al. 2010)
and other semi-distributed hydrology models used for regional water supply and
demand assessments.

In a similar approach, attribute values for each soil depth interval are generated
for each 100-m cell by weighted averaging values from the underlying 25-m cells.
In this way, a mean and a range of values are reported for each cell giving the user
some sense of the data variability and uncertainty for each cell.

Fig. 25.4 A digital soil pH map for the Okanagan Basin. Regional and local patterns of soil pH
are evident as depicted on a 25-m grid. A total of eight attribute maps were produced. Large
geographic feature in valley bottom is Okanagan Lake
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25.4 Conclusion

Producing digital soil maps entirely from legacy polygon maps presents significant
challenges. The methods used in this project drew heavily on expert knowledge of
local pedological conditions and would be difficult to apply if that knowledge did
not exist. Because of the manual intervention in the creation of many (but not all)
covariate rule curves used in the inference modeling, the disaggregation can be both
labor-intensive and difficult to optimize. These are drawbacks to using this type of
approach as opposed to geostatistical processes that can benefit by simply adding
more point data to the process. Our methods did, however, effectively transform the
legacy class and attribute data from vector to raster format.

We retained the soil class map to facilitate some existing land suitability algo-
rithms used by Agriculture and Agri-Food Canada that draw upon horizon data
contained in the Soil Layer Table. Running these crop suitability modules against
gridded data rather than map polygons greatly enhances the spatial resolution of the
model output. Attribute mapping at both the 25- and 100-m resolutions greatly
facilitates environmental modeling both and resolutions. Ultimately the value of the
Okanagan Basin digital soil map products will be measured by their performance in
effectively delivering soil information to the modeling activities in the region.
Gridded data, suited for some applications, will not replace entirely the use of
polygon maps which have historically been used in a range of land planning and
zoning applications.

A final step remains to field validate both our class predictions and attributes as
given on this digital map. Validation will highlight where we might need to modify
our predictive methods and allow us to inform users of the uncertainties associated
with the values presented.

Fig. 25.5 A 100-m grid
superimposed onto the 25-m
grid. Most of the 100-m cells
are dominated by a single soil
class but not all. Scaling-up
provides a method to better
quantify the range of classes
and attribute values in each
cell
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Chapter 26
Comparison of Different Strategies
for Predicting Soil Organic Matter
of a Local Site from a Regional Vis–NIR
Soil Spectral Library

Rong Zeng, Yu-Guo Zhao, Deng-Wei Wu, Chang-Long Wei
and Gan-Lin Zhang

Abstract Soil spectral libraries were established all over the world to help build
the base for predicting soil properties by proximal soil sensing. Previous studies
indicated that it was important to select optimum subsets when predicting soil
properties of a local site from a large spectral library. Thus, how to determine
optimum subsets from the spectral library becomes crucial. This study compared
different strategies for predicting soil organic matter of a local site from a regional
Vis–NIR soil spectral library. Different calibration subsets and two calibration
models [local and global partial least squares regression (PLSR)] were assessed for
prediction of the target set: (1) different calibration subsets were compared
(Pro_cali, samples in the province; Hb_cali, samples in Huaibei area, geographi-
cally close, and with similar parent material compared to the target set; Local_cali,
samples located in the same county of the target set); (2) the spiking effects were
investigated by selecting different numbers of local samples from Local_cali using
Kennard–Stone algorithm to be spiked with different calibration sets (Pro_cali and
Hb_cali); (3) local PLSR and global PLSR calibrations were compared for pre-
diction accuracy. Model performances were assessed in terms of coefficient
determination between observed and predicted values (R2), root-mean-squared error
for prediction (RMSEP), and the ratio of percentage deviation (RPD). In general,
this study concluded that (1) prediction performances of different calibration sub-
sets indicated that Hb_cali can be a good alternative to replace Local_cali for
prediction, when local samples are not available; (2) the spiking effects depended
on the number of spectra spiked, also it did not always lead to higher prediction
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accuracy; and (3) global PLSR and local PLSR exhibited similar prediction
accuracy in this case study, more research were needed to compare the perfor-
mances of these two models.

Keywords Vis–NIR � Regional spectral library � SOM � Calibration subsets �
Spiking

26.1 Introduction

The development of visible and near-infrared (Vis–NIR) spectroscopy has provided
an alternative to predict soil properties, because it is cost-effective, time-saving, and
nondestructive compared to traditional laboratory analysis (Brown et al. 2006;
Rossel et al. 2006). In order to improve prediction accuracy, Vis–NIR soil spectral
libraries have been built at scales of local, regional, country, continental, and global
(Shepherd and Walsh 2002; Brown 2007; Rossel et al. 2008; Rossel et al. 2009; Shi
et al. 2014). When we need to predict soil properties of a specific local site from a
large spectral library, we need to find the subsample (which could be the whole
library) which will give the best prediction (Araujo et al. 2014; Gogé et al. 2014).
The accuracy achieved by simply calibrating all the spectra data in a large library to
predict for a local site is generally not good (Brown 2007; Wetterlind and Stenberg
2010). Because the library contains information from a wide variety of soils not
similar to those of interest in the local area, using it directly introduces noise with
respect to the local samples and thus reduces prediction accuracy.

There are several methods to localize spectral libraries, among which subset
selection and spiking were reported in recent research to be quite successful
(Guerrero et al. 2010; Kuang and Mouazen 2013). Subset selection is used to select
subsamples from a large spectral library according to different rules, such as dis-
tance proximity and spectral similarity. Local calibration is subset selected based on
distance proximity from the target site, while spiking becomes a compromise
alternative by adding a certain number of local samples into calibration sets because
it is usually not practical to acquire a large number of local samples. Previous
studies have suggested that the use of subset selections and spiking can help extract
useful information from a large library to help explain the variance of a target
property for a specific site (Guerrero et al. 2010; Kuang and Mouazen 2013).
Brown (2007) achieved improved prediction accuracy for soil organic carbon
(SOC) and clay estimation of samples in a 2nd-order Ugandan watershed by
spiking a global Vis–NIR soil spectral library with very few local samples.
Guerrero el al. (2014) investigated the effects of selection and extra-weighting on
the spiking subset, even the addition of only 8 local samples can lead to improved
accuracy of SOC predictions.

In addition, local partial least squares regression (PLSR) has also been suggested
to be a useful method for predicting soil properties of a local site from a large

320 R. Zeng et al.



spectral library (Naes et al. 2002; Fearn and Davies 2003). Because global PLSR
calibration generates one model for the target set while the local PLSR model
generates one model for each sample in the target set. Previous study indicated that
local PLSR model can solve the nonlinearity of a large spectral library and gen-
erally yielded higher prediction accuracy compared to global PLSR model (Sankey
et al. 2008; Gogé et al. 2012; Nocita et al. 2014).

The aim of this study was to compare different strategies for predicting SOM of a
local site from a regional Vis–NIR soil spectral library. The main objectives are as
followed: (1) Compare the prediction performances of different calibration subsets;
(2) Investigate the effect of spiking after adding local samples into calibration
subsets; and (3) Compare the model performances between the method of global
PLSR and local PLSR.

26.2 Materials and Methods

26.2.1 Regional Spectral Library

The regional spectral library was built from 1580 soil samples collected in Anhui
Province, China (Fig. 26.1), supported by previous soil investigation projects.
Sample points almost cover the whole area of Anhui Province, with three counties

Fig. 26.1 Sample
distribution map
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densely (Mengcheng, Dingyuan, and Xuanzhou) sampled. Mengcheng County was
selected as the prediction target area (highlighted in red in Fig. 26.1).

Soil samples were air-dried, ground, and passed through a 100-mesh sieve and
oven-dried for 24 h 350–2500-nm spectra were measured using Cary 5000 under
controlled laboratory conditions.

26.2.1.1 Target Set

Samples located in Mengcheng County (202 samples) was chosen as the target
dataset in this study. This dataset was divided into local calibration (Local_cali, 152
samples) and local prediction (Local_pre, 50 samples) set using Kennard–Stone
algorithm.

26.2.1.2 Calibration Set

In order to evaluate the impacts of different calibration subsets on the model pre-
diction ability, three calibration sets were built: (1) local calibration set: the
aforementioned Local_cali with 152 samples, which are mostly geographically
closer to the target set; (2) Huaibei calibration set (Hb_cali, samples in Mengcheng
County were not included): samples located in the north of Huaihe River, which are
geographically close and have similar parent material compared to the target set;
and (3) province calibration set (Pro_cali): all samples except those in Mengcheng
County.

To investigate the effects of spiking on model performances, different numbers
of spectra were selected from Local_cali using Kennard–Stone algorithm to be
spiked with two other calibration subsets (Hb_cali and Pro_cali).

26.2.2 Spectral Preprocessing

Several spectral transformations were explored on the whole dataset using
cross-validation: absorbance, first derivative, second derivative. Absorbance yiel-
ded the highest prediction accuracy and was used for model calibration and pre-
diction in this study.

26.2.3 Local PLSR Model and Global PLSR Model

PLSR models were used in this study. Local PLSR calibration and global PLSR
calibration were compared. The main difference between local PLSR and global
PLSR is that global PLSR calibrates one model for all samples in Local_pre, while
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local PLSR calibrates one model for each sample in Local_pre. The models were
compared using following steps.

(1) Global model: 300 (different numbers of similar spectra were compared by
cross-validated PLSR models, the highest accuracy was achieved when the
number was 300) most similar spectra compared to Local_pre were selected
from Pro_cali using spectral angle mapper (SAM) to make up the calibration
set. Based on this dataset, a calibration model was constructed and then used
for prediction of Local_pre.

(2) Local model: For each sample in Local_pre, 300 most similar spectra were
selected from Pro_cali using SAM to make up the calibration set, which was
subsequently used for prediction of the aforementioned sample.

(3) Spiking effects: The spiking effects were evaluated by selecting different
numbers of spectra from Local_cali using Kennard–Stone algorithm to be
spiked with the calibration subsets described in (1) and (2).

Global PLSR was performed in Unscrambler 9.3 (Camo Software AS), while
local PLSR was performed using MATLAB R2012a (Mathworks, Massachusetts,
USA). The flowchart of this study is illustrated in Fig. 26.2.

PLSR model accuracy was assessed in terms of coefficient determination (R2)
between observed and predicted values, root-mean-squared error for prediction

Fig. 26.2 Flowchart
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(RMSEP), and the ratio of percentage deviation (RPD), calculated using the fol-
lowing equations:

R2 ¼ ½covðŷi; yiÞ�2
varðŷiÞ:varðyiÞ ð26:1Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi � y_iÞ2
s

ð26:2Þ

where n is the number of sample in the target set, yi is the observed value of sample
i, and y_i is the predicted value of sample i.

RPD ¼ SD=RMSEP ð26:3Þ

where SD is the standard deviation of observed values.

26.3 Results and Discussion

26.3.1 Statistical Summary of SOM Content for Different
Datasets

SOM contents in Pro_cali dataset vary dramatically from 0.03 g kg−1 to
60.14 g kg−1, while the contents in other there datasets are within the range of 0.25–
30.60 g kg−1 (Table 26.1). Similar SOM contents between Hb_cali and Local_cali
can be explained by the proximity in distance and similar parent material. Local_pre
is more or less within the range of the three calibration datasets only except the
maximum value (29.03 g kg−1) is a bit larger than the maximum value
(26.36 g kg−1) of Hb_cali dataset.

Table 26.1 Statistical summary of SOM content for different datasets

Datasets N Min
g kg−1

Max
g kg−1

Mean
g kg−1

SD
g kg−1

CV Skew

Pro_cali 1378 0.03 60.14 12.02 9.93 0.83 1.49

Hb_cali 115 0.25 26.36 8.75 6.13 0.70 1.01

Local_cali 152 0.27 30.60 11.58 7.32 0.63 0.40

Local_pre 50 0.73 29.03 11.64 7.26 0.62 0.39

N number of samples; Min minimum; Max maximum; SD standard deviation; CV coefficient of
variation
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26.3.2 Prediction Accuracy at Different Model Scales

Prediction accuracy were compared among three calibration datasets in terms of
RMSEP, R2

p, and RPD (Table 26.2). Local_cali achieved the highest prediction
accuracy, which is in accordance with most previous studies (Brown 2007;
Wetterlind and Stenberg 2010). “Local” calibration datasets indicate the similarity
or homogeneity between samples for calibration and prediction in many aspects,
such as soil type, parent material, land use, and SOM contents. The similarity
features of local samples can help build models better explain the variance of the
target set.

Pro_cali yielded the lowest accuracy as expected because of its big diversity in
sample distribution, but the accuracy was acceptable (R2

p of 0.77 and RPD of 1.30).
The prediction accuracy of Hb_cali was very similar to that of Local_cali, which
provides a very good alternative for predicting SOM contents of a local site from a
regional, national, or global library, when local samples are not present. Because in
real scenario, local samples are often difficult to acquire considering the limitation
of projects’ budgets, Hb_cali was constructed based on expert knowledge and
legacy data of soil parent materials and land use.

26.3.3 Spiking Effects

26.3.3.1 Pro_Cali Spiked with Local Samples

As previously mentioned, local samples are usually difficult to obtain in large
number for independent model calibration. However, they can still be useful by
spiking with other available datasets. Different numbers of local samples (m = 10–
152) were added into Pro_cali to investigate the spiking effects (Table 26.3). The
prediction accuracy generally increased with m in spite of some fluctuations. But
the accuracy improvement was slightly compared to the models built upon Pro_cali
alone. Furthermore, regardless of the number of local samples added, the accuracy
achieved is always lower than that of Local_cali and Hb_cali. The results of this
study were different from some previous studies; other studies demonstrated

Table 26.2 Prediction
accuracy at different model
scales

Calibration datasets N RMSEP
g kg−1

R2
p RPD

Local_cali 152 3.05 0.83 2.38

Hb_cali 115 3.60 0.82 2.02

Pro_cali 1378 5.54 0.77 1.30

N number of samples; RMSEP root-mean-squared error of
prediction; R2

p coefficient determination of prediction; RPD
ration of percentage deviation
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improved prediction accuracy after adding local samples, even with a small number
(Brown 2007; Guerrero et al. 2014). The reason may be that the number of local
samples added (maximum is 152) is small compared to the size of Pro_cali (1378).
The spiking of local samples only give a small weight on the calibration dataset
(Pro_cali), leading to the slight change of model performances.

26.3.3.2 Hb_Cali Spiked with Local Samples

The spiking effects for Hb_cali were quite different from that of Pro_cali. Model
accuracy decreased gradually when the number of local samples (m) increased
(Table 26.4). This is opposite to what we expected. It seems that spiking does not
necessarily always lead to better prediction accuracy. It also depends on the dis-
tribution and relationship between target set and spiked set.

26.3.4 Comparison of Global PLSR and Local PLSR

The performances of global PLSR and local PLSR were compared in terms of
RMSEP and R2 in Fig. 26.3. For RMSEP of global PLSR, there were some fluc-
tuations as m changed, while for local PLSR, RMSEP increased firstly as local
spectra were added, then decreased and stabilized as m increased from 50 to 152.
As for R2, global PLSR performed slightly better than local PLSR regardless of the
number of added spectra. In general, there was slight difference between these two
models.

Table 26.3 Prediction
accuracy of models based on
Pro_cali spiked with m local
sample from Local_cali

m R2
p RMSEP

g kg−1
RPD

0 0.77 5.54 1.3

10 0.77 4.84 1.5

20 0.77 4.18 1.74

30 0.74 3.81 1.91

40 0.77 4.1 1.77

50 0.76 4.52 1.61

60 0.77 4.72 1.54

80 0.77 3.7 1.96

100 0.74 3.84 1.89

120 0.79 3.95 1.84

152 0.77 3.90 1.86

m number of samples chosen from Local_cali; RMSEP
root-mean-squared error of prediction; R2

p coefficient
determination of prediction; RPD ration of percentage deviation
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26.4 Conclusions

In general, this study showed that (1) Pro_cali-based models achieved the lowest
but reasonable prediction accuracy, while Hb_cali and Local_cali achieved similar
prediction performances. Prediction performances of different calibration subsets
indicated that Hb_cali can be a good alternative to replace Local_cali for prediction,
when local samples are not available; (2) the spiking effects depended on the
number of spectra spiked, also it did not always lead to higher prediction accuracy;
and (3) global PLSR and local PLSR exhibited similar prediction accuracy in this
case study, more research were needed to compare the performances of these two
models.

Table 26.4 Prediction
accuracy of models based on
Hb_cali spiked with m local
sample from Local_cali

m R2
p RMSEP

g kg−1
RPD

0 0.82 3.60 2.02

10 0.77 5.67 1.28

20 0.74 5.8 1.25

30 0.72 5.45 1.33

40 0.72 4.79 1.52

50 0.66 4.44 1.64

60 0.67 4.6 1.58

80 0.64 4.97 1.46

100 0.64 4.64 1.56

120 0.69 4.49 1.62

152 0.66 4.98 1.46

m number of samples chosen from Local_cali; RMSEP
root-mean-squared error of prediction; R2

p coefficient
determination of prediction; RPD ration of percentage deviation

Fig. 26.3 Local PLSR versus global PLSR
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Chapter 27
Variations for the Implementation
of SCORPAN’s “S”

László Pásztor, Annamária Laborczi, Katalin Takács,
Gábor Szatmári, Zsófia Bakacsi and József Szabó

Abstract Development of DSM can be notably attributed to frequent limitations in
the availability of proper soil information; consequently, it has been typically used
in cases featured by limited soil data. Since SCORPAN equation includes other or
previously measured properties of soil, the usage of legacy soil data supports the
applicability of DSM and improves the accuracy of DSM products as well.
Nevertheless, the occurrent abundance of available soil information poses new
demands on and at the same time opens new possibilities in the application of DSM
methods. A great amount of soil information has been collected in Hungary in the
frame of subsequent surveys and assessments. The majority of these legacy soil data
were integrated in various spatial soil information systems. Our paper presents three
approaches for the application of Hungary’s most extended legacy soil data source
in goal-oriented digital soil mapping.

Keywords Disaggregation � Homosoil � Legacy data � Spatial soil information
system � Soil-related map

27.1 Introduction

Heaps of evidence furnish proof that significant amount of soil-related information
has been demanded worldwide (Bullock 1999; Mermut and Eswaran 2000; Tóth
et al. 2008; Sanchez et al. 2009; Baumgardner 2011; Pásztor et al. 2014). Soil maps
were typically used for a long time to satisfy the needs. Presently, both the degree
and the nature of the current demands have changed. Traditionally, primary soil
properties and the agricultural functions of soils were focused on, and areal soil
maps provided the base information. More recently rather secondary soil properties,
various processes, functions and services, furthermore systems related to soils play
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more important role (Omuto et al. 2013), reflecting that information related to other
soil functions also becomes important (Blum 2005). However, this renewed
information requirement might be heavily fulfilled with recent data collections, as
compared to traditional soil mappings (Montanarella 2010). High costs of recent
data collection together with the spreading of geographical information technology
made spatial soil information systems and digital soil mapping the primary source
of spatial soil data taking over the role of traditional soil maps. Notwithstanding,
legacy soil data provide huge pool of appropriate information, which can be
exploited by proper DSM methodologies.

Development of DSM can be notably attributed to frequent limitations in the
availability of proper soil information (Hartemink et al. 2008). The SCORPAN
equation (McBratney et al. 2003) includes other or previously measured properties
of soil, the usage of legacy soil data supports the applicability of DSM and
improves the accuracy of DSM products (Lagacherie 2008). Nevertheless, the
availability of spatial soil information poses new demands on and opens possibil-
ities in the application of DSM methods.

In Hungary, presently soil information demands are serviced with the available
datasets either in their actual form or after certain specific and often enforced,
thematic, and spatial inference (see, e.g., Dobos et al. 2010; Pásztor et al. 2013a;
Sisák and Benő 2014; Szabó et al. 2007; Szatmári et al. 2013; Waltner et al. 2014).
Considerable imperfection may occur in the accuracy and reliability of the map
products, since there might be significant discrepancies between the available data
and the expected information. The DOSoReMI.hu (Digital, Optimized, Soil Related
Maps and Information in Hungary; Pásztor et al. 2015) project was started inten-
tionally for the renewal of the national soil spatial infrastructure in Hungary.

27.2 Materials and Methods

27.2.1 Digital Kreybig Soil Information System,
the Abundant Pool of Kreybig Legacy Soil Data

Digital Kreybig Soil Information System (DKSIS; Pásztor et al. 2010) integrates the
full dataset collected in the frame of Hungary’s most detailed nationwide soil
survey led by Kreybig (1937). DKSIS consists of two types of geometrical datasets.
Soil mapping units (SMU) were defined and delimited based on robustly catego-
rized chemical and physical soil properties of the rooting zone. The mapping did
not regionalize basic characteristics, and soil properties (such as pH, SOM, CaCO3

content) have been available at profile level. Traditionally, the supporting SMU has
been featured by the properties of its representative soil profile. However, the
legacy dataset of soil profiles is much more extended, which can be efficiently used
for the compilation of soil property maps by appropriate DSM methods.
Nevertheless, SMUs themselves can also support the spatial inference, according to
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the results presented in the next subsection. DKSIS covers the whole area of
Hungary. Detailed profile descriptions are available for about 22,000 plots, which is
spatially transferred for further, approximately 250,000 locations. The structure of
DKSIS is presented in details by Pásztor et al. (2010).

27.2.2 Implication of Various DKSIS Components
into DSM

Three basically different approaches for the application of DKSIS legacy soil data
source are put forward in the followings, which are summarized in Fig. 27.1. The
presented methods provide support for different challenges.

Unmapped soil properties of DKSIS, which are available only for profiles, can
be spatially inferred by various DSM techniques applying spatially exhaustive,
auxiliary environmental variables. They can be widely interpreted, that is spatial

Fig. 27.1 Framework of the three presented approaches for the application of DKSIS legacy soil
data source in digital soil mapping. Attributes of DKSIS SMUs: combined texture and water
management categories (TWM), overall soil chemical properties (SCP), shallow soil depth (SSD),
and landscape management soil type (LMST)
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information on independent soil features could also be involved. In Hungary,
spatially the most detailed representation of the soil cover with nationwide coverage
is provided by the soil mapping units of DKSIS. As a consequence, elaboration of
novel countrywide soil property maps may rely on this spatial pattern. DKSIS
SMUs were introduced into regression-kriging (RK), which is widely used for the
spatial inference of quantitative soil properties (e.g., Hengl et al. 2004; Dobos et al.
2010; Illés et al. 2011; Szatmári and Barta 2013) in the form of indicator variable
for the compilation of soil property maps.

Numerous formerly elaborated thematic soil maps are not available in Hungary
in the recently required scale. The original maps were compiled (i) in analogue
environment and (ii) applying hardly identifiable soil–landscape models and
unrecorded rules, so their reproducibility is problematic. Their theme, however,
represents a widely used, embedded information source, which is expected to be
produced in larger scales.

Various possibilities were studied for the solution of the problem. Decision trees
proved to be adequate data mining technique to increase the spatial resolution of
categorical soil maps disaggregating their SMUs. Classification and regression trees
have numerous advantages. They can be applied for the understanding of soil–
landscape models involved in existing soil maps as well as for the post-formalization
of the rules applied during the survey and map compilation (Moran and Bui 2002;
Scull et al. 2005; Bou Kheir et al. 2010; Giasson et al. 2011; Greve et al. 2012). The
relationships identified and expressed in decision rules make the compilation of
spatially refined, disaggregated maps possible using detailed, spatially exhaustive,
ancillary co-variables. Among them, a special role is played by larger scale, spatial
soil information.

The agro-ecological units in the AGROTOPO (1994) database, compiled as a
result of a substantial scientific synthesizing work (Várallyay et al. 1985), were
elaborated dominantly on the basis of mapping units originating from Kreybig soil
maps, applying appropriate spatial and thematic generalization. Consequently, the
Kreybig pattern contains significant and potentially utilizable information on the
heterogeneity of these agro-ecological units, as do the elevation models charac-
terizing the relief features. The availability of AGROTOPO and DKSIS spatial soil
information systems and appropriate digital elevation models for the whole country
has huge potential, which can be exploited in an integrated manner for the disag-
gregation of the thematic soil layers stored exclusively by AGROTOPO.

The third approach is presented with more details in the next session.

27.2.3 Extending the Spatial Validity of Sparse Soil Profile
Data Based on Homosoil Concept

The Homosoil method, introduced recently in DSM literature by Mallavan et al.
(2010), is proposed to be usedwhen it is difficult to obtain soil information or these are
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nonexistent. According to their suggestion, the assumed homology of soil-forming
factors between a reference area and the region of interest can judge the extrapolation
of soil-related information even from distant parts of the globe. The concept of soil
homology, however, was already used during the Kreybig soil survey, based on a
more justifiable manner, considering local and personally identified similarities. The
resemblance in soil profiles was used for their coding within the distinct parts of amap
sheet. If a soil profile with similar geographical position and very similar properties
had already been described, the code of that soil profile was associated with the given
soil profile and no new sampling was carried out. The utilization of this special feature
of the Kreybig legacy soil information in digital soil mapping was first suggested by
Pásztor et al. (2006).

The 1234 observation locations of the Hungarian Soil Information and
Monitoring System (SIMS; Várallyay 2002) are characterized by detailed and
up-to-date quantitative parameters, like particle-size distribution data. The sampling
pattern was, however, not designed for mapping purpose. As a consequence, the
sampling density does not allow the compilation of soil maps with finer scale than
1:1,500,000 (roughly 1500 m grid resolution; Hengl 2006) on the sole interpolation
of SIMS data. To achieve maps with better spatial resolution, the regionalization of
SIMS should be supported by spatially more detailed, auxiliary information. There
are three possibilities: (1) application of widespread DSM procedures using
exclusively auxiliary environmental co-variables; (2) usage of crisp legacy soil
maps (as it was presented in the previous subsection); and finally (3) extension of
the spatial validity of the sparsely available, “top-ranked” soil data, based on the
supplementary soil information. The soil profile dataset of DKSIS proved to be
adequate for this purpose.

The basic idea of our approach is the identification of homologous sampled
locations within a reasonable region, where specific soil properties of a SIMS site
may be predicted to be valid. The profiles of DKSIS in the geographical neigh-
borhood of a given SIMS location were tested according to a simple homology rule.
The sites within the region fulfilling the rule were identified as homosoil sites. The
concept of this spatial inference method is outlined in Fig. 27.2.

For the regionalization of (hydro-)physical soil properties, the thematic rule was
based on the homology of measured physical features. The DKSIS soil profile
database does not contain direct information on particle-size distribution. Physical
soil parameters given by horizons, however, can be used for a raw, two-layer
(topsoil–subsoil) FAO texture classification (Bakacsi et al. 2012). SIMS profiles
were similarly categorized. DKSIS profiles with identical two-layer classes within
the same physiographical unit (Dövényi 2010) in the vicinity of the similar SIM
profile were identified as SIMS homosoil sites. Physiographical units of Hungary
stratify the surface of the country into 230 spatial entities delineating relatively
homogeneous areas concerning terrain and main physiographical features of land.
Vicinity was taken into account by area of influence provided by Thiessen poly-
gons. As a result, “families” of DKSIS profiles form in the neighborhood of SIMS
profiles delineating a wider area where its properties are considered valid
(Fig. 27.3). In the present case finally, roughly 14,000 locations could be used for
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specific spatial inferences of quantitative soil physical parameters, as opposed to the
original 1234 SIMS sites. Basic physical soil properties, such as sand and clay
contents, have been mapped this way with a grid resolution of 0.5 min.

27.3 Results

The results of the application of DKSIS SMUs in regression-kriging for the com-
pilation of soil property maps are discussed in detail by Pásztor et al. (2014); here,
only some relevant statements are put forward.

– Categorical data of DKSIS SMUs can be effectively applied as indicator
variables.

– Usage of larger scale, spatial soil data in the course of RK-based compilation of
SOM maps significantly increases the accuracy as compared to the case, when
only pure environmental co-variables are applied.

Fig. 27.2 Flowchart of the introduced homosoil method
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Fig. 27.3 Formation of DKSIS profile families in the neighborhood of SIMS profiles based on the
applied homosoil rule. Above SIMS and DKSIS profiles are labeled with a two-letter code according
to their topsoil–subsoil FAO texture classification (c coarse, m medium, mf medium fine, f fine, vf
very fine) if the classification was feasible. Down DKSIS profile families (small shapes) form in the
neighborhood of their parent, homologous SIMS locations (bigger, identical shapes); non-related
DKSIS profiles (gray dots) and physiographical units (dark polygons) are also displayed
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– Maps created using models, which also include soil co-variables, are less
smoothed and show more realistic spatial structure.

– Usage of different soil co-variables (even if they originate from the same SSIS)
in a model with identical ancillary variables can result in notable variances in the
final map.

– Application of multiple soil layer does not increase inevitably the mapping
accuracy.

The disaggregation of categorical soil maps with the aid of auxiliary spatial soil
information was carried out in cases with different thematic and spatial extent. The
results have been recently presented in detail by Pásztor et al. (2013b). The dis-
aggregated version of the nationwide, soil productivity map was compiled with the
aid of decision trees using the DEM100 derivatives and the SMUs of DKSIS as
environmental auxiliary co-variables. The refined map has been successfully used
for the delineation of Areas with Excellent Productivity in the framework of the
National Regional Development Plan (http://www.terport.hu/webfm_send/4211).

The other great challenge has been the characterization of the soil cover in terms
of genetic soil types at a scale of 1:50,000–1:25,000, which is required by various
users for different purposes. For the fulfilling of these demands, the genetic
soil-type layer of AGROTOPO was disaggregated for pilot areas based on the
DKSIS SMUs and further environmental auxiliary variables using decision trees
and random forests (Pásztor et al. 2015).

Extension of the spatial validity of sparse soil profile data based on the homosoil
concept was validated as follows. Original SIMS points were excluded from spatial
inference, which was carried out based on solely DKSIS points with transferred
properties. The measured values of SIMS were then used for the validation of the
specific inference results. As an example, Fig. 27.4 presents the case when sand

Fig. 27.4 Validation of the homosoil method. The scatter plot displays sand% of the topsoil
predicted using ordinary kriging at the SIMS locations versus measured in SIMS profiles

338 L. Pásztor et al.

http://www.terport.hu/webfm_send/4211


percentage of the topsoil was interpolated using ordinary kriging for the whole area
of Hungary. The calculated root-mean-squared error (RMSE) of the resulted map
according to the validation with SIMS profiles is 12.5.

27.4 Discussion

The three presented variations for the implementation of SCORPAN’s “S” in
various DSM methods are basically differing approaches for the application of
legacy soil data in the course of spatial inference. They were used and are proposed
to be further applied for solving different challenges.

Application of DKSIS SMUs as indicator variables in regression-kriging was
proposed to involve the expert knowledge incorporating in the delineation of soil
mapping units as well as the inferred spatial stratification of soil cover into the
elaboration of digital soil property maps based on the quantitative data, which is
available for DKSIS soil profiles.

Disaggregation of categorical soil maps with the aid of auxiliary spatial soil
information was proposed to recreate formerly elaborated thematic soil maps with
higher spatial resolution. The earlier maps were compiled in analogue environment
and applying subsequently hardly identifiable soil–landscape models and unrec-
orded rules. If their theme is expected to be produced in larger scales, they are
proposed to be disaggregated using the legacy soil data, which was relied on in the
original map compilation process.

Extension of the spatial validity of sparse soil profile data based on homosoil
concept is proposed in the case when there are sparsely available, “top-ranked” soil
data, which are originating from non-mapping purpose sampling and their spatial
validity should be identified and potentially extended. The mapped soil property
available for sparse profiles could be transferred to more densely sampled sites
using some simple thematic and spatial rules.

27.5 Conclusions

The spatial pattern provided by DKSIS SMUs proved to be an informative
co-variable in the form of indicator variables for spatial inference even in geosta-
tistically dominated DSM methods like regression-kriging.

Further application of disaggregating methods is planned for solving similar
problems, while the lessons and experience gained will also be exploited. It is also
hoped to achieve progress by expanding the pool of environmental co-variables
applied and by testing the performance of further classification methods.

The result of the extension of spatial validity of sparse soil profile data based on
the homosoil concept is promising for the applicability of the concept; however,
further refinements are already considered beyond that evidently, mapping of
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various soil properties may require the application of different homology rules and
can be executed using varied DSM components.

The drawn conclusions are relied on in our countrywide mapping activities in the
frame of the DOSoReMI.hu project.
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Chapter 28
Monitoring Ecological Environment
in Nansi Lake Area Using Remote Sensing

Ling-xia Li, Feng-mei Zhang, Chao Wang and Dong-wei Wang

Abstract Nansi Lake is the biggest lake in Huaibei area of China, which has
relatively complete structure. It is an inland freshwater macrophytic lake, and large
numbers of ecological protection works have been done there. In order to under-
stand this region’s ecological status, we monitored the ecosystem types of Weishan
County, Nansi Lake nature reserve, and its circumjacent area in 2000, 2005, and
2010 using satellite remote sensing technology. The results showed that the
ecosystem protection work of this area has achieved the desired effect. The wetland
ecosystem structure has changed, and the area of lake has increased. We also found
that the artificial surface area has increased. It means more ecosystem protection
works still need to be done by the local government in the future.

Keywords Remote sensing � Ecological status � HJ-1 satellite � Nansi Lake

28.1 Introduction

Ecological environment holds important position in the environmental protection
and natural resources development. However, due to the pressure of survival and
economy and also the poor ecological protection concept, the ecological environ-
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ment has been severely damaged. The traditional way of evaluating a region’s
ecological change is the field investigation, but it requires a lot of human power and
time and the precision is restricted. Remote sensing technology is a kind of
large-scale monitoring method. It can carry out a multiple time period regional
ecological type monitoring. Liu et al. (2007) used the index NDVI for the lower
reaches of Tarim River region, which was calculated based on CBERS-1 satellite
data in 2000, 2002, and 2004, to distinguish different ecological types. And the
transformation matrix of ecological types was used to determine the transformation
probability of different ecological types. Li et al. (2008) did the land-type inter-
pretation using the Landsat TM data of the Yellow River source in 1990, 2000, and
2004 through the method of supervised classification. It correctly reflected the
region’s ecological changes. Zhang et al. (2013) analyzed the ecological types of
the Pubugou Hydropower Station in 2003, 2007, and 2011 through man–machine
combination methods and also demonstrated the region’s ecological environment
changes. These researches show that remote sensing technique is a rapid and
effective method for multiple time period regional ecological type monitoring. In
particular, all the methods are involved in the monitoring of wetland environment.

In order to know the ecological changes of Nansi Lake region from 2000 to 2010
and evaluate the effect of ecological protection, we monitored the ecological types
of this region in 2000, 2005, and 2010 using remote sensing technology.

28.2 Remote Sensing Monitoring of Nansi Lake Area

28.2.1 Study Area

Nansi Lake locates in the south of Jining, Shandong province, and it is a famous
shallow barrier lake. Meanwhile, it is the largest freshwater lake in Shandong area.
Nansi Lake is connected by the following four lakes: Nanyang Lake, Zhaoyang
Lake, Dushan Lake, and Weishan Lake. It is a multifunctional lake that integrated
with flood control, water logging control, water supply, aquaculture industry,
shipping, and touring. It is 126 km long from north to south, 5–25 km wide from
west to east, and 311 km perimeter. The largest water storage area is 1266 km2. The
average water depth is 1.46 m. The highest water level in history is 36.48 m. The
maximum storage capacity is 5.3 billion cubic meters. The total basin area is
31,700 km2 and the basin across 32 counties (cities), 4 provinces. The water system
of Nansi Lake region is very complex, which caused a lot of trouble for the
ecological protection work. Figure 28.1 shows the river system of this area. The
numbers of rivers that in and out Nansi Lake are 53 and 3, respectively.

In order to strengthen the ecosystem protection of Nansi Lake region, governments
built a county-level nature reserve in 1982. And then, city-level and province-level
nature reserves are established in 1996 and 2003 successfully. Meanwhile, the local
government carries out also publicity and educationwork actively. The protection has
been strengthened through ecological conservation projects.
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28.2.2 Data and Methods

In this paper, we used remote sensing method to monitor the ecological change of
Nansi Lake region. The HJ-1A satellite images acquired in 2000, 2005, and 2010
were used. These images that we downloaded from China Centre of Resource
Satellite and Application (CCRSA) are shown in Fig. 28.2. HJ-1A satellite
equipped with a CCD sensor of four bands. We chose B2 (0.43–0.52 µm), B3
(0.52–0.60 µm), and B4 (0.76–0.9 µm) bands to obtain the best band combination
(Wang et al. 2011). The resolution of the CCD sensor is 30 m, which is sufficient
for ecological monitoring.

Fig. 28.1 a The river system of Nansi Lake Region. b The spatial distribution of returning
farmlands to wetlands, lakes, and forest from 2000 to 2010 in Weishan County (the wetland in this
figure includes the entire wetland types except lakes)

Fig. 28.2 The remote sensing images of Nansi Lake region in a 2000, b 2005, and c 2010

28 Monitoring Ecological Environment in Nansi Lake Area … 345



In order to achieve our goals of remote sensing monitoring, we chose
Mahalanobis distance classification method to classify the images. Before per-
forming Mahalanobis distance classification, we conducted a field investigation to
choose the most suitable training samples. The area corresponding to training
samples was measured by investigators with handheld GPS, and then, we generated
vector files including all kinds of ecological types. After imported the vector files
into the ENVI, we generated the training samples which Mahalanobis distance
classification method needed by matching the vector files with HJ-1A images. The
classification system was chose from Ouyang’s paper (2015) for the system based
on medium-resolution remote sensing data. This system included 9 first classes,
21 second classes, and 46 third classes. It was mainly based on the similarity of
ecosystem characteristics and also considering the climate and topography factors.
Because of this, the classification system was adaptive to the ecological classifi-
cation in China area. In this study, we first distinguished between forest, grassland,
farmland, and wetland through the first-level classification. Then, the wetland was
further classified into marsh, lake, reservoirs/swag, river, and canal/water channel.

28.3 Results

The situations of land utilization in natural protection area of Nansi Lake and the
buffer area about 10 km around are analyzed based on statistical analysis results.
The final results are shown in the following.

28.3.1 The Ecological Status of Nansi Lake Nature Reserve

The total area of Nansi Lake Nature Reserve is 1275.47 km2. The mainly ecosystem
type is wetland ecosystem which accounts for more than 80 %. Most of the wetland
types are lakes, reservoirs, and marshes. According to statistical results in 2010, the
above wetland types are accounted for 52.21, 31.98, and 14.86 %, respectively.
During the years from 2000 to 2010, the proportion of lakes is continuously
increasing and the proportion of marshes is continuously depleting. The details are
shown in Table 28.1 and Fig. 28.3.

Table 28.1 The statistic table
of wetland ecosystem area in
Nansi Lake Nature Reserve in
2000, 2005, and 2010

Ecosystem type Area (km2)

2000 2005 2010

Marsh 206.35 169.69 157.06

Lake 521.50 547.67 551.93

Reservoirs/swag 314.21 337.52 338.11

River 8.33 8.58 8.75

Canal/water channel 0.77 0.96 1.38

Total area 1051.16 1064.42 1057.22
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28.3.2 The Ecological Status of Weishan County

The total area of Weishan County is 1766.06 km2. Its main ecosystem type is
wetland ecosystem, and the whole Nansi Lake is in it. The wetland, farmland,
artificial surface, and forest account for 62.97, 25.75, 7.79, and 2.57 %, respectively
in 2010. The grassland and other ecosystem types are less than 1 % in total. The
details are shown in Table 28.2 and Fig. 28.4.

During the years from 2000 to 2010, the farmland area significantly decreased
and the area of wetland and forest obviously increased. A total reduction of
farmland area is 38.42 km2. It is mainly converted into artificial surface, wetland,
and forest. The conversion areas are 29.45, 14.44, and 4.15 km2, respectively.
Meanwhile, the area of wetland that transformed into farmland is 9.37 km2.

28.3.3 The Ecological Status in Nansi Lake
and Circumjacent Areas

The total area of Nansi Lake and buffer areas is 4311.60 km2. The main ecosystem
types are wetland and farmland, which account for 28 and 48 % of the total area,

Fig. 28.3 The distribution of ecosystem of Nansi Lake region in a 2000, b 2005, and c 2010

Table 28.2 The statistic table
of ecosystem area in Weishan
County in 2000, 2005 and
2010

Ecosystem type Area (km2)

2000 2005 2010

Forest 41.30 45.38 45.30

Grassland 14.62 13.24 14.26

Wetland 1105.33 1119.77 1112.16

Farmland 493.26 459.18 454.84

Artificial surface 109.30 126.27 137.53

Others 2.25 2.23 1.96

Total area 1766.06 1766.06 1766.06
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respectively. Table 28.3 describes the area of different ecosystem types in the year
of 2000, 2005, and 2010. During the years 2000–2010, the wetland area presents a
minor increase and farmland area decreased. The area of artificial surface increases
significantly, and the proportion is 18.9 %. The details are shown in Fig. 28.5.

Table 28.3 The statistic table
of ecosystem area in Nansi
Lake and circumjacent areas
in 2000, 2005 and 2010

Ecosystem type Area (km2)

2000 2005 2010

Forest 199.76 204.01 206.97

Grassland 109.94 102.77 107.59

Wetland 1207.48 1225.62 1222.28

Farmland 2215.30 2141.27 2086.44

Artificial surface 575.10 633.93 684.60

Others 4.03 3.99 3.72

Total area 4311.60 4311.60 4311.60

Fig. 28.4 The distribution of ecosystem of Weishan County in a 2000, b 2005, and c 2010

Fig. 28.5 The distribution of ecosystem of Nansi Lake and the surrounding area in a 2000,
b 2005, and c 2010
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28.4 Discussion

The monitoring results showed that wetland, farmland, artificial surface, and forest
are four main ecological types of Weishan County, which account for 99.08 % area
of the county in 2010. The most important ecological type is wetland, which
accounts for 62.97 %. By comparing the monitoring results in 2000, 2005, and
2010, we found that wetland area of Nansi Lake Nature Reserve had increased
slightly, but the subtypes of wetland had changed. For example, the area of marshes
has decreased from 206.35 km2 in 2000 to 157.06 km2 in 2010, and the area of
lakes from 521.50 km2 to 551.93 km2. We also derived the conclusion from our
study that the ecosystem protection work of Weishan County has achieved the
expected results in the 10 years during 2000–2010. The areas of wetlands and
forests have increased 38.42 km2. Although the local government had done large
amounts of work in ecosystem protection, we found artificial surface area has
increased by 18.9 % from 2000 to 2010, which demonstrates that human activity is
still the main threat to local ecosystem. The rapidly increased artificial surface also
shows that much more work is still needed by the local government in the future.
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Chapter 29
Extraction and Integration of Different
Soil Nutrient Grading Systems for Soil
Nutrient Mapping

Shuxia Wu, Weili Zhang, Aiguo Xu and Qiuliang Lei

Abstract These works present a model to integrate and harmonize different
nutrient grading indexes originating from various existing soil polygon maps. The
soil nutrient grading indexes might be different from one national soil survey to
another and even be different for the different counties in the same national soil
survey in China. Soil nutrients mapping in large regions, such as national or
provincial regions, had to be done after the integration of those grading indexes.
The hardcopy of the soil nutrient maps for most of the counties of China was
collected and vectorized. These maps were mostly scaled at 1:50,000–1:500,000
and could be used as the input data for the integration of the grading index. Next, a
model named Soil Nutrient grading system Integration Model (SNI-Model) was
established using ARCGIS10.0 and was written in C#. The SNI-Model did not
change or revise the properties of the spatial soil nutrient maps and saved the
original grading index for every soil polygons. Also, it was designed in a two color
systems for more easy reading. SNI-Model consisted of five modules and could be
easily used to intelligent integrate the soil grading indexes for soil nutrient mapping.
The SNI-Model is a general model and may also be applicable to the environment,
ecology, and other research areas to resolve the similar problems.

Keywords Soil nutrient � Model � Data integration � Mapping � Grading system

29.1 Introduction

From the 2th national soil survey of China, a series of soil nutrient maps (1:50–
100 K) on county level were completed, including soil organic matter, total
nitrogen, available nitrogen, available phosphorus, available potassium content, pH
value, and several soil microelements. These maps could be very useful to study the
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temporal change of soil quality characteristics (Xi et al. 1994; Zhao 1996; Sun et al.
2003; Nyssen et al. 2008; Yuan et al. 2013). The nutrient contents differed a lot
among counties because the climate and topography varied in different regions of
China. That is, the maps from the second soil survey executed in different counties
might have used different grading systems (National Soil Survey Office 1992).
Also, there were differences among each grade’s minimum and maximum value and
ranges. For example, soil total nitrogen content in some counties used five classi-
fication systems and some used a six-grading system (Table 29.1). In some coun-
ties, multi-level compound systems were used, there could be about 9 classification
grades or more. Concluding, (1) the minimum and maximum value and range
between the different grading systems could be different, (2) one system may
contain another, or (3) systems could be intersecting each other (Table 29.2).

Therefore, the soil nutrient mapping in large regions, such as national or
provincial regions, had to be done after the integration of those grading indexes.
When doing the integrating, feature attributes should not be changed and similar
color code should be used for those similar grading indexes, to ensure full con-
sistency mapping in large regions. As the existing GIS mapping software package
failed to provide the required functionality to do this analysis, the purpose of this
study is to build a computer model which should be intelligent, process-oriented,
and easy for human–computer interaction to extract and integrate the different
grading indexes in soil nutrient mapping.

Table 29.1 Examples for the grading system of soil total nitrogen content (%)

Grade National standard Grade Jiangsu, Wujin Grade Jiangsu, Yuhuatai

I >0.2 I >0.2 I >0.15

II 0.15–0.2 II 0.15–0.2 II 0.15–0.125

III 0.1–0.15 III 0.125–0.15 III 0.125–0.1

IV 0.075–0.1 IV 0.1–0.125 IV 0.1–0.075

V 0.05–0.075 V <0.1 V <0.075

VI <0.05

Table 29.2 Examples for compound grading systems of soil total nitrogen (%)

Grade National standard Grade Shanxi, Datong Grade Henan, Mengjin

I >0.2 I >0.2 I >0.2

II 0.15–0.2 II 0.15–0.20 II 0.15–0.20

III 0.1–0.15 III 0.1–0.15 III1 0.125–0.15

III2 0.1–0.125

IV 0.075–0.1 IV1 0.085–0.1 IV1 0.085–0.1

IV2 0.075–0.085 IV2 0.075–0.085

V 0.05–0.075 V1 0.06–0.075 V1 0.06–0.075

V2 0.05–0.06 V2 0.05–0.06

VI <0.05 VI <0.05 VI <0.05
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29.2 Model Construction

29.2.1 Model Design Principles

The Soil Nutrient grading system Integration Model (SNI-Model) was constructed
to extract every grading index from the different nutrient maps, compare and
integrate the different grading systems to one legend, and allocate a color code to
each grading index in a certain large area for mapping. The integrated model was
designed by following the three main principles:

1. The new mapping after integration should keep all of the properties of the spatial
nutrient features of the original maps, and these properties could not be modified
or lost;

2. Legend expression should be normalized and should not cause confusion for
different nutrient classification;

3. Two different levels of boundaries were considered when allocating color codes:
One was considering the whole region such as integrating the different county
maps to a national map or one province map, and the other one was designed as
national standard subdivision maps to ensure the perfection of color under
different mapping purposes.
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Fig. 29.1 Sub-models and their relationships within the SNI-Model
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29.2.2 Construction of the SNI-Model

The SNI-Model consists of five sub-models to achieve the expression of spatial
mapping. The names of sub-models and their relationships were shown in Fig. 29.1,
namely (a) extraction model, (b) discrimination model, (c) location analysis model,
(d) integration model, and (e) color code allocation model.

29.2.3 Function of Sub-models

The “extraction model” was designed to extract every grading system and each
grading index to a database from all of the original county nutrient maps, by setting
the control table and using a human–computer interaction (HCI) technique (Clouard
et al. 2011). The legend of each county’s nutrient map was stored as a grading
system in the database. Next, for each grading system, the grading index was
extracted and the maximum, minimum, mean, and range were calculated. Each of
the grading indexes was assigned a sequence number. A field named GrName was
added to the attribute database, which was used to express the grading index. If
there was only one grading system, then the model run into the integration model;
otherwise, it would run into the “discrimination model.”

The “discrimination model” was applied to compare each two grading indexes.
A table was created to store the comparison results, and the GrName which was
created in the “extraction model” was used as the standard to judge whether the two
grading indexes were the same or not. If the two GrNames were the same, then the
value was stored to the database table. For different GrNames, the values were
sorted by the minimum and mean of the grade index in ascending order and stored
to the database table. The number of the sorted results could be used as the location
of the grading index in the next model.

The “location analysis model” was used to express the location of each grading
index in the legend of whole map or subdivision maps by setting the tolerance value
through the HCI function on the basis of the results of pairwise comparison in “dis-
crimination model.” In this model, the relationship between the grading indexes from
all themapswas revised and re-assigned to a new location ID to express the location of
each grading index and stored to a location result database. The “integration model”
was created to summarize all the results of the “extraction,” “discrimination,” and
“location analysis model” and stored the results to a new result database. Here, each
grading index was recoded with a position number Nr_P, and a standardized
expression of each different grading index was generated in this table for mapping. In
this model, the number of decimal was set for the standardized expression field.

The “color code allocation model” could merge the legends with same grading
systems to one and arrange the different grading systems in parallel from small to
large according to the minimum and mean of the grading index. Two color code
assignment methods were used for perfect visual comfort purpose: One was
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designed for the whole region including all the sample counties, and the other one
was for single subdivision map when the whole region was divided to various
subdivisions. For perfect visual comfort purpose, different equations were used to
assign the color codes (Eqs. 29.1a, b). The color IDs were saved in a parameter
database, the colorID was used by the model for the grading indexes, and certain
color codes were allocated. The final database contained all of the attributes of the
original nutrient maps and was used as the new attribute table, and the field of color
code was used for mapping.

CorNr w ¼ ROUND 1þ
X

CorID
.X

GRw
� �

� Nr Pw� 1ð Þ
h i

ð29:1aÞ

CorNr s ¼ ROUND 1þ
X

CorID
.X

GRs
� �

� Nr Ps� 1ð Þ
h i

ð29:1bÞ

CorNr w or CorNr s The color code which the grading index was assigned for
perfect vision view under the whole region mapping or
single subdivision mapping;

∑CorID The total number of the color IDs in the color database;
∑GRw or ∑GRs The total number of the grading indexes in the whole region

or the single subdivision mapping;
Nr_Pw or Nr_Ps Position number of the grading indexes in the whole region

or the single subdivision mapping;
ROUND Make the value to integer by rounding.

29.2.4 Model Development

The SNI-Model used (1) C# as the programming language in the NET Framework 4
Extended development environment, (2) functions of mapping software (ArcGIS),
(3) database software (Access), and (4) the interface control package (DotNet Bar)
completed the development of the system and the functional modules, according to
the model design.

29.3 Example of SNI-Model Application

Soil organic matter content, an important nutrient in soil survey, is an important
index of soil fertility and is useful to investigate the soil formation, distribution, and
classification. In this example, 17 organic matter maps (1:500 K) on province lever
were used as the input database for SNI-Model to extract, integrate the grading
systems, and allocate color ID to each grading index, on basis of national standard
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subdivision maps (1:1000 K). The 17 provinces were Tianjin, Hebei, Shanxi, Inner
Mongolia, Heilongjiang, Shanghai, Zhejiang, Fujian, Jiangxi, Shandong, Henan,
Hubei, Guangdong, Guangxi, Sichuan, Guizhou, and Shaanxi. Forty national
standard subdivisions (1:1000 K) were covered by these 17 provinces. A province
covered 1–15 subdivisions (1:1000 K) and a subdivision covered 1–6 provinces.
The color table used in SNI-Model consisted of color system, color code number,
and RGB value of each color code. There were 28 color codes in the color system
which was selected to express the grading index in this example in SNI-Model.

SNI-Model was run in stepwise, and then every grading system and grading
index of all the 17 province maps were extracted and integrated in two levels:
national level and subdivision level. And two series color codes were generated for
each subdivision. In Table 29.3, the extraction and integration results from all the
studied 17 provinces were showed. There were 24 grading index in total, and each
one was allocated a place number and color code number. In Tables 29.4 and 29.5,
the extraction and integration results for subdivision G48 and J49 were listed,
respectively, including the grading index extracted and the two levels of color code
for different visual purposes.

Table 29.3 Extraction,
integration, and expression of
organic matter content in the
studied 17 provinces

Nr_Pw Grade index (GRw) CorNrw

1 <0.6 1

2 0.6–0.8 2

3 <1.0 3

4 0.6–1.0 5

5 0.8–1.0 6

6 1.0–1.2 7

7 1.0–1.5 8

8 1.0–2.0 9

9 1.2–1.5 10

10 1.5–2.0 12

11 >2.0 13

12 2.0–2.5 14

13 2.0–3.0 15

14 2.5–3.0 16

15 3.0–3.5 17

16 3.0–4.0 19

17 3.5–4.0 20

18 >4.0 21

19 4.0–4.5 22

20 4.0–7.0 23

21 4.5–5.0 24

22 >5.0 26

23 7.0–10.0 27

24 >10.0 28
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29.4 Discussion

In this study, the SNI-Model was established, and the different soil nutrient grading
systems were extracted, integrated, and allocated color codes through HCI on the
basis of different sub-models, following that attributes of original maps should not be
changed and similar color code should be used for those similar grading indexes. The
characteristics of the integrating technique could be the following: (a) HCI was used
when key issues had to be judged, for example, on whether the two grading system
indexes were the same or not, and to realize the massive data integration of different
grading indexes in a short time; (b) every grading system or grading index of the soil
nutrient maps could be extracted and integrated, and each grading index will be
assigned a color code from the model; (c) two color code assignment methods were
used for perfect visual comfort purpose; and (d) SNI-Model is a general model and

Table 29.4 Extraction, integration, and expression of organic matter content in G48 and Sichuan,
Guangxi, and Guizhou provinces

Nr_Ps Grade index (GRs) CorNrs CorNrw

1 <0.6 1 1

2 0.6–1.0 6 5

3 1.0–2.0 10 9

4 2.0–3.0 15 15

5 3.0–4.0 20 19

6 >4 24 21

Table 29.5 Extraction, integration, and expression of organic matter content in J49 and 5
provinces

Nr_Ps Grade index
(GRs)

Inner
Mongolia

Shaanxi Hebei, Shanxi,
Henan

CorNrs CorNrw

1 <0.6 <0.6 <0.6 <0.6 1 1

2 0.6–0.8 0.6–0.8 3 2

3 0.6–1.0 0.6–1.0 0.6–1.0 5 5

4 0.8–1.0 0.8–1.0 7 6

5 1.0–1.2 1.0–1.2 9 7

6 1.0–2.0 1.0–2.0 1.0–2.0 11 9

7 1.2–1.5 1.2–1.5 13 10

8 1.5–2.0 1.5–2.0 15 12

9 2.0–3.0 2.0–3.0 2.0–3.0 2.0–3.0 17 15

10 3.0–4.0 3.0–4.0 3.0–4.0 3.0–4.0 19 19

11 >4.0 >4.0 >4.0 21 21

12 4.0–7.0 4.0–7.0 23 23

13 7.0–10.0 7.0–10.0 25 27

14 >10.0 >10.0 27 28
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could be also applicable to the environment, ecology, and other research areas and to
resolve the similar problems could also be available to different scale’s mapping.
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