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Preface

This volume hopes to fill a growing need for the description of current method-
ology in public health surveillance. Recent advances in syndromic surveillance
and, more generally, in spatial and multivariate surveillance have never been
collected in a single volume. The field of syndromic surveillance now attracts
a wide audience due to the perceived need to implement wide-ranging monit-
oring systems to detect possible health-related bioterrorism activity. In addition,
many computer systems have been, and are being, developed that have the
capability to store and display large volumes of health data and to link dynamic-
ally between different data streams. This capability has not been matched with
extensive statistical research into the properties of the methods used in these
systems. The ability of these systems to correctly sound health alarms when
needed is of paramount importance. It is the task of statisticians to develop and
evaluate the methodologies and to ensure that the correct interpretation is made
of evaluated data. This volume seeks to provide a synopsis of current practice
as well as a starting point for the development and evaluation of methods.
In the production of this volume we have been helped by a great range of

people. First we would like to thank our families who, throughout this venture,
have been a great source of support. In addition we would like to thank the
contributors for their timely submission of interesting articles, as well as our
colleagues in respective departments for helping with evaluation and criticism.
Finally we would like to thank the staff of Wiley Europe for their continual help
during the sometimes fraught stages of production. In particular, we thank
Kathryn Sharples the Statistics sub-editor and Lucy Bryan in production, as
well as Richard Leigh, the copy-editor.

Andrew Lawson (Columbia)
Ken Kleinman (Boston)
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Introduction: Spatial and
Syndromic Surveillance for

Public Health
Andrew B. Lawson and Ken Kleinman

1.1 WHAT IS PUBLIC HEALTH SURVEILLANCE?

The Centers for Disease Control and Prevention (CDC) define public health
surveillance as:

the ongoing, systematic collection, analysis, and interpretation of health data
essential to the planning, implementation, and evaluation of public health practice,
closely integrated with the timely dissemination of these data to those who need
to know. The final link of the surveillance chain is the application of these data to
prevention and control. A surveillance system includes a functional capacity for
data collection, analysis, and dissemination linked to public health programs.

(Thacker, 1994)

It is clear from this that a broad definition of surveillance is implied and that
it relates to a wide range of monitoring methods related to health. From a
statistical point of view it is relevant to consider how statistical methods can be
developed or employed to best aid the task of surveillance of populations. This
will require using all of the relevant data available for analysis. It will certainly
include information about where the data was recorded as well as when it was
observed.

1.1.1 Spatial Surveillance

There is thus a need to combine the thinking in two previously mostly distinct
fields of statistical research, namely surveillance, which generally constitutes

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd



2 Introduction

monitoring statistics for evidence of a change, and spatial techniques, which
are often used to find or describe the extent of ‘clustering’ across a map. While
both endeavors pre-date the formal study of statistics as a discipline, they have
rarely been combined. More often, as in the famous case of John Snow and
cholera in London in 1854, note of an increase in a global statistic has been
followed by a spatial analysis to determine whether the increase is localized
or general. Interest in doing spatial monitoring of data as it accrues has been
greatly enhanced by two developments: the perceived need to quickly detect
bioterrorism after the terrorist dissemination of Bacillus anthracis in October
2001, and the increasing availability of data that contains spatial (geographical
location) information.

1.1.2 Syndromic Surveillance

Another result of the burgeoning availability of data has been the recognition
of a need and an opportunity. The need is for the ability to group symptoms
together in broad groups that combine similar types of complaints – this being
necessary to ensure that two cases attributable to the same cause are not
considered separately due to variable coding practice on the part of health
care providers. Misappropriating from medical nomenclature, these groups of
symptoms are loosely designated as ‘syndromes’. The opportunity presented by
the increasing availability of data is to use, for public health purposes, data
that has not often been recognized as useful in this way. Examples include
information about school absenteeism and over-the-counter sales of remedies
such as anti-diarrheals.
Together, grouping of large numbers of symptoms and data regarding nontra-

ditional sources of information are labeled as ‘syndromic surveillance’. The
putative advantage of syndromic surveillance is that detection of adverse effects
can be made at the earliest possible time, possibly even before disease diagnoses
can be confirmed through unmistakable signs or laboratory confirmation.

1.2 THE INCREASED IMPORTANCE OF PUBLIC
HEALTH SURVEILLANCE

In addition to the CDC definition, we might consider a dictionary definition
of surveillance: ‘the close observation of a person or group, especially one
under suspicion’. In this light we would define public health surveillance as
the monitoring of the health of the public for the onset or outbreak of illness.
The illness surveilled may be rare (plague) or recurrent (influenza), natural or
intentional (bioterrorism).
Since the intentional release of anthrax in the USA in October 2001, there

has been a great deal of interest in establishing systems to detect another such
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attack as early as possible, should it occur. The need for early detection is
motivated by two facts. First, many agents that might be used for such an attack
have a prodromal phase that is relatively nonspecific, with symptoms that often
resemble those of the common cold. This describes anthrax, botulism, plague,
smallpox, and tularemia – all of the CDC class A bioterrorism agents except
for viral hemorrhagic fevers (CDC, 2004). If the attack can be detected while
most victims are in this phase, they may be helped by specialized care, and
future onsets may be prevented by prophylaxis. Second, for contagious diseases,
earlier interdiction can slow down or stop the epidemic curve; the latter might
be impossible if detection were delayed.
A great deal of resources are being expended on mechanical detection of

airborne organisms, such as anthrax spores. We do not discuss such efforts here
and merely observe that from the statistical perspective, detection is finished
once a spore of anthrax has been positively identified. (Determining the locations
in need of treatment or prophylaxis is a separate question). In this book, we focus
on individual human beings, in contrast to disease organisms. While it is true
that a single definitive diagnosis of anthrax or any of the organisms cited above
also ends the statistical interest in detection, the fact of the nonspecific prodrome
opens a window for detection of an attack before a definitive diagnosis has
been made. To wit, since the prodromal symptoms are so common, one might
search for unusual increases in symptoms consistent with the prodrome. Such
an increase could be due either to natural variation in the symptom incidence
or to an attack with some agent that causes those symptoms in the prodrome.
In this context, we are most interested in detecting attacks while they are

ongoing rather than retrospectively. In statistical terms, we might refer to
this as ‘cluster detection’ or ‘incident cluster detection’, where by ‘cluster’ we
mean the occurrence of extra cases in a short time span. In the literature on
surveillance, this is sometimes referred to as ‘on-line’ surveillance (Chapter 3).
Many techniques exist for ongoing monitoring or surveillance of a count; these
come from industrial applications – for example, Shewhart control tables and
cumulative sum (CUSUM) methods (Chapter 2) – as well as from public health
surveillance (Huttwagner, 2003; Sonesson and Bock, 2004).

1.3 GEOGRAPHIC INFORMATION, CLUSTER
DETECTION AND SPATIAL SURVEILLANCE

The increased need for cluster detection has coincided with an increasing avail-
ability of data, especially data on the location of events. This is often obtained
by geocoding the addresses of individual cases. This can be done ‘on the fly’ as
cases are encountered (Beitel et al., 2004) or with static databases that retain
the location of all patients eligible for surveillance (Lazarus et al., 2002). In its
simplest form, geocoding could imply merely obtaining the zip or postal code,
but it may also include finding the exact latitude and longitude of an address
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using geographical information systems (GIS). In statistical jargon, such data
about location is often referred to as ‘spatial’ data.
The value of spatial data for cluster detection is twofold. First, all attacks are

localized at some spatial scale. That is, an attack could conceivably target a
neighborhood, but on a city-wide scale this would be a small area. Alternatively,
an attack could include a whole metropolitan area, but on a national scale this
would be a small region. When surveillance is limited to a single daily count
from a neighborhood or city, even sharp increases in relatively small regional
counts may be hidden within the natural variation found in the count across a
larger area. Spatial surveillance thus promises to increase the power to detect
events that occur in small regions, relative to surveillance of the total count
only. Secondly, if an incident cluster is identified, public health officials will need
to respond. If the data are nonspatial, surveillance can only give vague messages
of the sort ‘there is an excess of cases in the Boston metropolitan region’; this
is unlikely to be of much practical use. In contrast, spatial surveillance would
allow more-specific messages, such as ‘there are excess cases in zip code 02474’.
The job of identifying small regions with extra cases is also referred to as ‘cluster
detection’, where the clustering in this case refers to extra cases in an area on
the map.
The coincidence of suddenly increased need and increasingly available spatial

data has generated new interest in statistical methods for spatial surveillance,
which might be described as the detection of incident clusters in space. The
goal of this book is to provide a snapshot of the state of the nascent art of
incident spatial cluster detection, provided by statisticians involved in tradi-
tional surveillance (of a single statistic), in spatial clustering, and in spatial
surveillance.

1.4 SURVEILLANCE AND SCREENING

An idea related to surveillance is that of screening. The use of screening to allow
the early detection of disease onset is well established, though possibly contro-
versial, in such areas as cervical or mammarian cancer. These examples of
screening involve testing individuals at regular time points to attempt to assess
if onset of a condition has occurred or is likely or imminent. Screening could be
applied to populations as well as individuals, in that changes in public health
might trigger interventions. Such interventions could be designed to redirect
health resources towards attempts to improve the health status of the popu-
lation. However, screening is usually associated with individual assessment or
monitoring, while surveillance is usually carried out at an aggregate population
level.
Surveillance and screening share an implicit temporal dimension: popula-

tions or individuals are assessed (often repeatedly over time) to assess whether
changes have occurred which may warrant action. In general, a change is
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defined as exceeding limits describing the acceptable results of current obser-
vation and actions taken if these limits are passed. In screening individuals,
the limits may be based on a previously observed known or stable abnormal
baseline or on ‘normal’ standards thought to obtain in healthy persons.
In surveillance, the ‘normal’ case is rarely known, and most attention is

directed to detect passing limits based on observed or expected patterns. These
limits may be fixed or may depend on the status of ancillary variables. For
example, incidence of influenza-like illness would be expected to vary seasonally,
so similar numbers of cases would be more or less alarming at different times
of year.
To carry the screening analogy further, the location of the public health

incident is as important as the fact that it occurred. A public health report
indicating only a disease outbreak is comparable to a garbled mammography
report that only indicates a cancer but no suggestion of which breast is affected,
let alone a location in which a biopsy would be appropriate. In population-level
analysis, statisticians use ‘spatial’ statistics to discuss location. Further still,
mammography uses the spatial information to help identify the existence of the
node in the first place.

1.5 OVERVIEW OF PROCESS CONTROL
AND MAPPING

Process monitoring is necessary for quality control in a manufacturing context.
The subject of statistical process control (SPC) has received the most method-
ological attention of all surveillance questions. SPC has formed the basis for
many disease surveillance systems. In this section we describe some basic SPC
methods that could be applied in this context.

1.5.1 Process Control Methodology

A number of methods have been developed for the detection of changes in
populations over time. These methods are characterized by the estimation of
changepoints in a sequence of disease events or a time series of population
rates, or the determination of or application of control limits to the behavior
of a system. In this area there are some simple methods available to assist
in the assessment of change or ‘in control’ behavior. Some of these methods
are derived from SPC, which was developed for the monitoring of industrial
processes over time, and could be applied within a disease surveillance program,
with due care. For example, it is well known that the temporal variation in
count data can be monitored by using a Poisson control chart (C or U chart),
upon which specific limits can be plotted beyond which corrective action should
be taken. These charts are based on normal pivotal approximations.
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An exact interval could be constructed for independent Poisson counts in an
attempt to utilize SPC methods. However, if the counts were correlated even
under the null hypothesis, then some allowance must be made for this correl-
ation in the chart. A further issue, when such methods are to be used within
disease monitoring, is the issue of how to incorporate any changes in the back-
ground ‘at-risk’ population which may arise. One possibility, in the temporal
domain, is to employ relative risk estimates. For large aggregation scales, time-
series methods have been employed which allow temporal dependence (see
Chapter 2 in this volume).
In addition, special types of chart (CUSUM charts) have been developed

specifically to detect changes in pattern over time (changepoints). These are
constructed by cumulative recording of events over time, the accumulation
being found to be sensitive to changepoints in the process under consideration.
Some recent work in the application of these ideas in medical surveillance and
monitoring has been done by Frisén and co-workers (Chapters 3 and 9 in this
volume). These methods require special adaptations to be developed to deal with
the spatial and spatio-temporal nature of geographical surveillance.
The main issues within temporal surveillance which impact on spatial surveil-

lance and spatio-temporal surveillance can be categorized into three classes:
detection of changepoints (mean level, variance), detection of clusters, and the
detection of overall process change. Conventional SPC would use control limits
to detect shifts in single or multiple parameters where the target parameters are
usually constant. However, disease incidence varies naturally in time and so
allowance must be made for this variation in any monitoring system, particu-
larly with variation in population at risk. In addition, particular departures from
the ‘normal’ variation are often of greater interest than simple shifts of para-
meters. Changepoints, where jumps in the incidence occur, could be a focus of
interest. Alternatively, clusters of disease may be important. Finally, there may
be an overall process change, where various parameters change. Any disease
surveillance system is likely to be focused on one or all of these changes. Indeed,
it is the multiple focus of such systems that is one of the greatest challenges for
the development of statistical methodology.

1.5.2 The Analysis of Maps and Surveillance

In the spatial case, there is a wide range of methods that can be applied to a
single map of case events within a fixed time frame/period. Many of the methods
applied in disease mapping, clustering or ecological analysis could be applied
as a surveillance tool. For example, general clustering tests could be applied
or residuals from disease maps fitted in each time period could be examined.
Questions which might be appropriate to answer with these methods are such
as: Is there evidence of unusual variation in incidence in the map? Is there
evidence of ‘unusual’ clustering on the map? Is there a spatial trend on the map
related to, for example, a putative source?
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However, when the question relates to a spatio-temporal pattern or change
in pattern, then there are few methods currently available which are designed
for this purpose. There is a correspondence between the temporal surveillance
foci, and features which are important to detect in the spatial domain. First,
localized discontinuities in mean level or variance of risk could be of concern
(changepoints). Second, spatial clusters of disease could be a focus. Finally,
overall process change could also be envisaged spatially.

1.6 THE PURPOSE OF THIS BOOK

We hope that this book may serve a dual purpose. First, we hope that the
potential users of spatial surveillance – the public health authorities – will use it
as an introduction to the value of spatial data and as guide to analytic methods
competing for scarce resources. Second, we hope that the statistical community
will use it as a spur to further development of techniques and to resolution of
questions unanswered by the chapters which follow.

1.6.1 Statistical Surveillance and Methodological
Development in a Public Health Context

The ongoing aim of public health surveillance, since the time of John Snow, has
been to identify public health problems as they occur and respond appropriately
when they do. Breaking this down into discrete steps, this involves determining
fromwhom to collect data, collecting the data, summarizing the data, evaluating
the summarized data, and taking action if the evaluation warrants it. ‘Action’
can be defined as any additional steps that are not performed on a routine
basis, which might include everything from asking for additional data to the
vigilante removal of a pump handle or launching some other direct interdiction
to prevent further illness.

1.6.2 The Statistician’s Role in Surveillance

As statistical analysts, it is important that we remember that our role in public
health surveillance is in evaluating the summarized data; this may be the main
factor in the decision whether to take action now. This is different from academic
work and most scientific work in several important ways.
First of all, we do not have the luxury of academic distance from the subject.

This means that the case for making the best-supported decision needs to
be made in a way that is powerful and easily absorbed by decision-makers.
These authorities may lack the time, inclination, centralization, or training
to follow complicated arguments or abstract presentations of our evaluations.
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One example of simplifying the evaluation is included in Chapter 5, on modeling,
where we discuss inverting the p-value as a means of making the unusualness
of the result under the null more approachable. A second difference is that the
time available to develop analyses is very brief. In contrast, the motivation to
complete statistical work quickly mainly derives from fear of competition or
career goals. The impact of this difference is that simpler, more easily general-
izable methods have a practical advantage – they can be deployed in practical
situations. Methods tailored to one situation may fit that data better but be
essentially useless when the data changes or when applying the method to a
different situation. Similarly, health departments may never use methods so
complicated that they require the active participation of a Ph.D. statistician.
Finally, in our experience, decision-makers often urgently request results imme-
diately after data becomes available. This is another impetus towards easily
generalizable, easily used methods.
On the other hand, while statistical evaluation may be a key datum informing

a decision, we should also remember that it is not actually the decision itself.
Other data important to decision-makers include financial, political, and organ-
izational feasibility considerations.

1.7 THE CONTENTS OF THIS BOOK

In the initial section (Part I), we provide an introduction and grounding in
traditional temporal surveillance. This includes the current chapter, plus an
overview and an evaluation of methods used in purely temporal surveillance.
The goal of these chapters is to bring a reader unfamiliar with surveillance to
a level that subsequent chapters can be more easily digested. This is necessary
because those chapters may take as read concepts native to traditional temporal
surveillance.
We begin with a discussion of purely temporal surveillance by Yann Le Strat

(Chapter 2). Purely temporal surveillance is commonly used in most public
health departments, and is an area studied little outside the areas of statistical
process control and surveillance. Thus statistical readers may find a review
helpful. The chapter includes an introduction to surveillance as well as a survey
of typical methods. Methods considered include historical (nonstatistical) limits,
process control charts (Shewhart charts, moving average charts, exponentially
weighted moving average charts, CUSUM charts), time-series analysis, combin-
ations of process control and time-series methods, integer-valued autoregressive
processes, Serfling’s method, and log-linear and other parametric models.
We also provide a discussion, by Marianne Frisén and Christian Sonesson

(Chapter 3), of optimality in surveillance, and how detection methods might
be designed with optimality in mind. This includes a discussion of evalu-
ation metrics for surveillance (including false alarms, delay before alarm, and
predictive value of alarms) and optimality criteria (including minimal expected
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delay, minimax optimality, and average run length). The chapter goes on to
discuss the optimality and performance features of several methods described
in Chapter 2. It concludes by discussing several features of the public health
environment that differentiate it from other applications of surveillance.
In Part II of the book, we provide a summary and some development of

statistical approaches currently applied for spatial surveillance. First, Chapter 4
provides an overview of spatial and spatio-temporal health analysis outside of
surveillance. This includes a discussion of disease mapping in the cases where
individual locations of each case are known and alternatively when cases are
aggregated into regions, as well as assessment of maps through residuals and
goodness of fit. Finally, spatio-temporal and surveillance issues are introduced
in the spatial context.
In Chapter 5, a summary of generalized linear models and generalized linear

mixed models, including the use of binomial and Poisson models, is offered.
Another purpose of the chapter is to note advantages that are realized through
Poisson models (including variable-duration cluster signals) and to compare the
surveillance resulting from the various models in an example data set.
In Chapter 6, Peter Rogerson addresses how CUSUM methods can be adapted

to spatial surveillance. This includes a discussion of statistical process control
that can be tailored for use in spatial applications, followed by a demonstration.
Uses include surveillance of multiple local regions as well as of global statistics.
Martin Kulldorff (Chapter 7) discusses how scan statistics can be used in this

context, and recent developments in this approach. The chapter mentions tests
of spatial randomness, then introduces scan statistics. This is followed by a thor-
ough introduction to the practical application of scan statistics for spatial health
surveillance. This includes a discussion of the null and alternative hypotheses
for the test, as well as the power and methods for displaying the suggested
clusters. Finally, some applications in cancer clustering, infectious disease, other
human diseases, veterinary medicine, and plant disease are surveyed.
In Chapter 8, Laura Fosberg and co-workers discuss distance methods for

cluster detection and identification. This includes a motivation and summary of
distance-based methods, the introduction of a new statistic based on distances,
and a simulation-based evaluation of the new statistic. An example of syndromic
spatial surveillance using the statistic is provided.
Next Christian Sonesson and Marianne Frisén (Chapter 9) consider multi-

variate surveillance, what is often described as multiple streams of surveillance
data. This topic addresses the common case where either different data sources
supply information regarding a single syndrome, or where a single data provider
reports on multiple syndromes. The approaches mentioned include a reduc-
tion of dimensionality (to one or a few statistics) for each time point, parallel
surveillance, vector accumulation methods, and simultaneous solution. They
also discuss evaluation in this context.
In Part III, advanced approaches to syndromic and spatial surveillance

are considered, including Bayesian models and data mining techniques.
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In Chapter 10, Neil and co-workers discuss the use of Bayesian networks and
the development of computational algorithms; in Chapter 11 they consider
speeding up spatial processing of large data sets. In Chapter 12, David Madigan
provides an example of Bayesian modeling of temporal surveillance using hidden
Markov models. Finally, in Chapter 13, general issues in the Bayesian analysis
of syndromic data and the model-based detection of spatial and spatio-temporal
clusters as they evolve in time are discussed.
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Introduction to Temporal
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2

Overview of Temporal
Surveillance

Yann Le Strat

2.1 INTRODUCTION

The threat of emerging infections and the increased potential for bioterrorist
attacks have introduced an additional importance for surveillance systems. The
main objective of surveillance is to monitor the incidence or prevalence of
specific health problems over time, within a well-defined population. But a wide
range of objectives can be considered. Among these, detecting or monitoring
outbreaks and monitoring trends represent statistical challenges. Temporal
health surveillance is a vast domain. After a brief and incomplete description
of surveillance systems and attributes, this chapter will focus on a review of
statistical methods for the detection of unusual health events.

2.1.1 Surveillance Systems

Most disease surveillance systems are passive. A passive approach means that
the organization conducting surveillance leaves the initiative for reporting to
potential reporters. Contrary to an active system, the organization does not
regularly contact physicians or hospitals to obtain reports. Surveillance can
be conducted in many ways. To simplify, one can briefly identify two main
approaches: exhaustive reporting and voluntary reporting.
In the former approach, notifiable diseases, essentially infectious diseases, are

designated by public health agencies and by law, and their occurrence must be
reported. In the USA, each state can designate which diseases are reportable by
law. A physician, a laboratory where the diagnosis is made or a hospital where

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd
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the patient is treated may be included in the system. While each case should be
declared, the surveillance system rarely detects every case in practice.
In the voluntary reporting approach, laboratory-based surveillance relies

on clinicians, laboratory staff, microbiologists or infection control personnel
to voluntarily report test results on a standard form to the public health
system. Conventional reporting methods include mail, fax, and telephone. One
advantage of this system is to give detailed information about the results of
diagnostic tests. However, patients having laboratory tests may not be repres-
entative of all persons with the disease. From a statistical point of view, this
can become problematic when inference is made from the sample to the general
population of interest. It is reinforced by the fact that the laboratories do not
represent a random sample and are simply those laboratories that volunteer
to participate. Other specific surveillance networks are developed when more
detailed information is required. Participants of these networks are also volun-
teers. Sampling of sites, hospitals or individuals is more statistically suitable,
but only people interested in the surveillance participate, and the construction
of a sample is generally more time-consuming than identifying volunteer parti-
cipants. As a representative sample cannot be obtained, volunteers should be
as heterogeneous as their patients.
Other approaches are possible. Registries which contain listings of a disease

within a defined area can be used for the surveillance of diseases. Data from
registries such as the national cancer registries include demographic charac-
teristics, exposures, and treatments. Periodic surveys allow the monitoring of
behavior associated with disease. A more detailed description of surveillance
methods can be found in Thacker et al. (1983) or Buehler (1998).

2.1.2 Surveillance Attributes

The success of a surveillance system depends on a number of attrib-
utes, including simplicity, flexibility, acceptability, sensitivity, predictive value
positive, representativeness, and timeliness. Surveillance systems are judged
using these attributes (Centers for Disease Control and Prevention (CDC), 2001).
We will discuss briefly four of these attributes.

• Sensitivity can be assessed by estimating the proportion of cases of a disease
or health condition detected by the surveillance system. Sensitivity can also
be considered as the ability of the system to detect unusual events. If the main
objective of the system is to monitor trends, a reasonably low but constant
sensitivity over time may be acceptable. However, if the objective is to detect
epidemics, high sensitivity is required.

• The predictive value positive (PVP) is, firstly, the proportion of persons identi-
fied as cases who really are cases. Secondly, if the aim is detection, PVP is the
proportion of epidemics identified by surveillance that are true epidemics. A low
value of PVPwill indicate that unnecessary investigations are being made.
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• Representativeness is based on the comparison of the characteristics of
reported events with those, partially unknown, in the target population.
Representativeness of a surveillance system can be judged using knowledge
of characteristics of the population (age, socioeconomic status, geographic
location, etc.) and of the disease (latency period, mode of transmission, etc.).
In most countries, evaluation of notifiable disease surveillance systems has
found that communicable illnesses are underreported.

• Timeliness reflects the delay between steps in the surveillance system, from
information collection to dissemination. One of the most crucial time intervals
is between the onset of the health event and the report of this event to the
public health agency. The control and prevention measures greatly depend
on timeliness. There is a need to make disease surveillance more sensitive,
specific, and timely. The development of automated reporting systems seems
to be a valuable alternative. Electronic laboratory reporting will deliver more
timely notifications than paper-based methods.

2.1.3 Early Detection of Unusual Health Events

Of critical importance to public health practitioners is an ability to rapidly
detect any substantial changes in disease, thus facilitating timely public health
interventions. Over the last 20 years, a number of statistical methods to detect
changes in public health surveillance time-series data have been proposed. All
of these methods look at the occurrence of a health event and test for a depart-
ure from an expected number based on the historical incidence of the event.
Stroup et al. (1993) used the term ‘aberration’ when a change in the occurrence
of a health event was statistically different from historical data.

2.1.3.1 Detection of an outbreak or detection of an aberration?

An outbreak is classically defined by the CDC as (i) a single case of a commu-
nicable disease long absent from a population, or (ii) the first invasion by a
disease not previously recognized in that area requiring immediate reporting
and epidemiologic investigation, or (iii) two or more cases of a disease asso-
ciated in time and place (American Public Health Association, 2000). This
definition is not adapted to the prospective detection of outbreaks because a
statistical alarm must be triggered before any epidemiologic investigation and
thus before the determination of a potential epidemiologic link between cases.
The statistical alarm signals an aberration which can be a potential outbreak
but can also be sporadic cases occurring at the same time or artifacts of the
surveillance system. An aberration is suspected when the number of reported
cases exceeds expected levels derived from historical data. Then a statistical test
determines if, for each time period, the number of reported cases is significantly
higher than the expected values. If the observed number is significantly higher
than the expected number, an aberration is declared and a statistical alarm
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triggered. In a further step, epidemiologic investigations allow the classification
of the aberration as an outbreak or not. Depending on the gravity of the disease,
interventions can be initiated to control and prevent the disease.

2.1.3.2 What information is collected and how is it used?

Surveillance is said to be prospective (or on-line) when the number of cases
of a disease is recorded and analyzed sequentially over time. In contrast to
retrospective surveillance, the time period between the onset of the health event
and the report of this event to the public health agency is crucial when the aim
of surveillance is the outbreak detection. Low reporting delays are essential if
the aim is to detect an increased incidence as quickly as possible. One important
question is how reporting delays can be taken into account in a statistical
detection method. One solution is to consider a correction factor based on the
distribution of reporting delays to impute the dates of onset. This approach has
been successfully used in the epidemiology of AIDS (Brookmeyer and Gail, 1994;
Lui and Rudy, 1989), but it requires that all dates are known. A second solution
is to work with the dates of receipt of the case reports. The use of dates of
receipt may be viewed as more reliable than imputation, but the main drawback
of this approach is the loss of sensitivity and specificity. While the mean of
the reporting delay is a major component of the timeliness of a surveillance
system and consequently of outbreak detection, the variance of reporting delays
(between participants involved in the system) affects its sensitivity (Farrington
and Andrews, 2004).
Recent bioterrorist threats have increased the need for very early detection

of outbreaks and hence the need to reduce the mean and variance of reporting
delays. To this end, funds have been allocated by the US government to various
public health agencies to build innovative surveillance systems. New syndromic
surveillance systems have been designed for the early detection of the first symp-
tomatic cases. These systems use different sources of information (primary care
physician visits, emergency department admissions, infectious disease special-
ists, etc.) and make use of electronic reporting and the internet. The timeliness
of syndromic surveillance is potentially better, but these systems do not use the
same reporting sources and focus on first cases rather than on an increase in
the number of reported cases as in traditional systems.

2.2 STATISTICAL METHODS

2.2.1 Historical Limits Method

State health departments in the USA report weekly the numbers of cases of a set
of notifiable diseases to the CDC National Notifiable Diseases Surveillance System
(NNDSS). Since 1990, these data have been published in graphical format in
the Morbidity and Mortality Weekly Report as shown in Figure 2.1. A bar graph
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Ratio (Log scale)∗
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∗ Ratio of current 4-week total to mean of 15 4-week totals (from previous, comparable,
   and subsequent 4-week periods for the past 5 years). The point where the hatched area
   begins is based on the mean and two standard deviations of these 4-week totals.

Figure 2.1 Selected notifiable disease reports, United States. Comparison of provisional
4-week totals June 19, 2004 with historical data.
Source: Reprinted from Centers for Disease Control and Prevention, Morbidity and
Mortality Weekly Report, 53, 537, June 25, 2004.

Table 2.1 Summary of provisional cases of selected notifiable diseases,
United States, cumulative, week ending June 19, 2004 (24th Week)∗.

Cum. 2004 Cum. 2003

Anthrax — —
Botulism: — —

foodborne 7 7
infant 26 31
other (wound & unspecified) 4 10

Brucellosis† 47 41
Chancroid 14 28
Cholera 2 1
Cyclosporiasis† 59 24
Diphtheria — —
Ehrlichiosis: — —

human granulocytic (HGE)† 41 50
human monocytic (HME)† 29 41
human, other and unspecified 1 8

Encephalitis/Meningitis: — —
California serogroup viral† — —
eastern equine† — 1
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Table 2.1 (continued)

Cum. 2004 Cum. 2003

Powassan† — —
St. Louis† — 3
western equine† — —

Hansen disease (leprosy)† 36 35
Hantavirus pulmonary syndrome† 7 12
Hemolytic uremic syndrome, postdiarrheal† 35 49
HIV infection, pediatric†§ 78 102
Measles, total 16¶ 27∗∗
Mumps 90 111
Plague — 1
Poliomyelitis, paralytic — —
Psittacosis† 3 5
Q fever† 22 35
Rabies, human — —
Rubella 13 4
Rubella, congenital syndrome — 1
SARS-associated coronavirus disease††† — 7
Smallpox†§§ — NA
Staphylococcus aureus: — —

Vancomycin-intermediate (VISA)†§§ 4 NA
Vancomycin-resistant (VRSA)†§§ 1 1

Streptococcal toxic-shock syndrome† 53 109
Tetanus 7 3
Toxic-shock syndrome 49 68
Trichinosis 3 —
Tularemia† 19 11
Yellow fever — —

-:No reported cases.
∗ Incidence data for reporting years 2003 and 2004 are provisional and cumu-
lative (year-to-date).

† Not notifiable in all states.
§ Updated monthly from reports to the Division of HIV/AIDS Prevention— Surveil-
lance and Epidemiology, National Center for HIV, STD, and TB Prevention.
Last update May 23, 2004.

¶ Of 16 cases reported, nine were indigenous, and seven were imported from
another country.

∗∗Of 27 cases reported, 19 were indigenous, and eight were imported from another
country.

†† Updated weekly from reports to the Division of Viral and Rickettsial Diseases,
National Center for Infectious Diseases (notifiable as of July 2003).

§§ Not previously notifiable.

shows, for a set of infectious diseases under surveillance, a comparison between
the number of reported cases in the current 4-week period and a baseline value
(Centers for Disease Control & Prevention, 1988). This baseline is the average of
the reported number of cases for the preceding 4-week period, the corresponding
4-week period and the following 4-week period, for the previous 5 years. Fifteen
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values are obtained and a ratio is calculated by dividing the current 4-week total
by the mean of the 15 values (Stroup et al., 1989). For each disease, the ratio is
displayed on a logarithmic scale. Historical limits of the ratio are calculated as

1± 2�
�

�

where the mean � and the standard deviation � are calculated from the
15 historical incidence values. Kafadar and Stroup (1992) discuss the estim-
ation of the variance of the ratio when surveillance data exhibit correlation.
Three major drawbacks of this method can be noted: (i) it does not incorporate
a trend; (ii) it ignores correlation between counts; and (iii) the underlying
normality assumption is not always verified, in particular for rare health events.
However, this technique provides a weekly synthetic summary of unusually
large numbers of reported cases to epidemiologists, clinicians and other public
health professionals and the method can be applied easily – see, for example,
Birnbaum (1984) for the analysis of hospital infection surveillance data.

2.2.2 Process Control Charts

Assume that the observations x = �x1� � � � � xt� � � � � are a realization of the
stochastic process X = �X1� � � � � Xt� � � � �. Usually, process control charts require
random variables which are independent and normally distributed when the
process is in statistical control. The basic idea of process control charts is to
construct a statistic, denoted by yt. When this control statistic exceeds prede-
termined control limits, the process under study is said to be statistically out of
control. An alarm is then triggered, meaning a statistical aberration, that is, the
existence of an unusual event. As mentioned byWilliamson and Hudson (1999),
the choice of the appropriate control limits is sometimes difficult. However,
upper and lower control limits are usually expressed as a multiple of the process
standard deviation (e.g. ±3 standard deviations).

2.2.2.1 Shewhart chart

The Shewhart chart (Shewhart, 1931) is the simplest form of control chart. An
alarm is triggered for the first time twhen the value of �xt� exceeds predetermined
control limits. This indicates that the process level has shifted from its previous
level, that is, that the process is statistically out of control. The Shewhart
chart is known to be slow in detecting small changes, but it rapidly detects
large shifts in the process (see Chapter 3). An illustration of the Shewhart
chart is given in Figure 2.2. Applied to the monthly poliomyelitis cases in
the USA between January 1970 and December 1983, the Shewhart chart
clearly identified four values above the upper control limit (UCL). The first value
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year
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Number of groups = 168
Target = 1.3333333
Lower limit = 0
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LCL 0
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Figure 2.2 Monthly poliomyelitis reported cases in the USA between January 1970
and December 1983. Application of the Shewhart chart.

corresponds to an outbreak in Texas (1970). The second value corresponds to
an outbreak in Connecticut (1972). The third and fourth values coincide with
a third poliomyelitis outbreak reported in Pennsylvania, Wisconsin, Iowa, and
Missouri (1979). For more details of these outbreaks, see Moore et al. (1982).

2.2.2.2 Moving average charts

An automated warning system was proposed by Stern and Lightfoot (1999),
based on moving averages and applied to surveillance data of enteric pathogens.
The statistic of the moving average (MA) control chart is given by:

yt =
1
m

m−1∑
k=0

xt−k�

where m is the number of past observations used in the moving average.
A statistical aberration is identified when �yt� exceeds control limits. Similar to
the Shewhart chart, control limits are a multiple of the standard deviation of yt.
This chart is more effective than the Shewhart chart in detecting small shifts in
process level. As in the Shewhart chart, only the last observation is taken into
account. In an MA chart, a sensible choice of m determines the suitability of
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the chart. A suitable chart allows a good balance between the false positive rate
(chart fails to indicate a shift in process level) and the false negative rate (chart
indicates a non-real shift). For example, VanBrackle and Williamson (1999)
used m= 2 in their study.

2.2.2.3 Exponentially weighted moving average control chart

The exponentially weighted moving average (EWMA) control chart (Hunter,
1986) gives less weight to data as they get older (less weight to more historical
data, more weight to more recent data). The control statistic is defined by the
following recursive equation:

yt = �1−��yt−1+�xt�

where 0 < � ≤ 1 is the EWMA weighting parameter and y0 = 0. When the
value of � increases, the influence of the data in the more distant past decreases.
A value for � is usually chosen between 0.1 and 0.5, but this value can be
chosen more or less subjectively. The EWMA control chart is less sensitive to the
assumption of an underlying normal distribution, and Williamson and Hudson
(1999) suggest that this method provides a more flexible tool than the Shewhart
control chart for the monitoring of surveillance data.

2.2.2.4 The cumulative sum control chart

Cumulative sum (CUSUM) charts were introduced by Page (1954) and originally
used in manufacturing processes to monitor production defect rates. They have
been used by epidemiologists for the surveillance of congenital malformations
(Gallus et al., 1986), mortality due to respiratory diseases (Rossi et al., 1999)
or nosocomial clusters (Brown et al., 2002). At the CDC, the CUSUM method
is routinely applied to laboratory-based salmonella serotype data to detect
salmonella outbreaks (Hutwagner et al., 1997). Assuming that Xt ∼ N��t��

2
t �,

the control statistic is defined iteratively by:

yt =max
(
0� yt−1+

(
xt−�t

�t

− k

))
�

with y0 = 0 and k > 0.
Extensive statistical literature, including review papers, exists on this topic.

For more details about CUSUM and more generally about process control charts
see, for example, Frisén (2003) and Chapter 3 (this volume). The average
run length (ARL) is a standard measure used in quality control (Wetherill
and Brown, 1990). It is the expected number of the surveillance time units
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(e.g. weeks) before the chart indicates a shift in the process level. It can be used
for the comparison of process control charts.

2.2.3 Time-series Analysis

Public health surveillance data are collected at regular intervals over time.
Thus the surveillance data often exhibit correlation and seasonality. Adapted
methods are required to take into account these specific features and to provide
forecasts of future incidence values. A natural orientation is to consider the
extensive literature concerning the Box–Jenkins (seasonal) autoregressive integ-
rated moving average (ARIMA) models (Box and Jenkins, 1970). Box–Jenkins
models have been used in many applications, including the analysis of surveil-
lance data (Choi and Thacker, 1981; Helfenstein, 1986; Nobre et al., 2001; Reis
and Mandl, 2003; Schnell et al., 1989; Stroup et al., 1989; Watier et al., 1991;
Zaidi et al., 1989). Forecasts estimate the expected incidence values, and these
are compared with the most recently observed disease incidence value. Several
steps are necessary:

(1) Stationarity. The time series must be stationary in terms of both mean
and variance. A stochastic process �Xt	 is stationary if, for all t, the mean
of the process is constant and the covariance between �Xt	 and �Xt−1	
depends only on the time lag k. If the time series has a nonconstant mean,
traditional transformations are required to generate a stationary series from
the nonstationary series. Time lag differencing is used when nonstationary
means are encountered. Square root transformations are applied when
variances depend on time.

(2) Identification and estimation. Identification of an adequate stochastic process
to describe the observed time series is needed. The tools used for identi-
fication are the autocorrelation function (ACF), the partial autocorrelation
function (PACF) and the inverse autocorrelation function (IACF). The PACF
and IACF indicate the order (q) of the autoregressive part, while the ACF
indicates the order (p) of the moving average part. When the orders of the
process are determined, estimation of the parameters is performed by the
maximization of a likelihood function.

(3) Diagnostic checking. Residuals, defined as the difference between the
observed values and the model estimations, have to fulfill three conditions:
(i) the mean of the residuals should not be significantly different from zero;
(ii) the distribution of residuals should be normal; (iii) there should be no
residual autocorrelation. The Kolmogorov–Smirnov test (see Daniel, 1995)
and the Box–Ljung statistic (Ljung and Box, 1978) can be used respectively
to verify the last two conditions. Once the residuals have been analyzed,
the model can be used to forecast one-step-ahead values and their corres-
ponding confidence limits. The forecasts are assumed to be normal in order
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to calculate the 95% forecast interval defined by the forecast plus or minus
the square root of the forcast variance. Box–Jenkins modeling can be carried
out using classical statistical software. In addition, the Statistical Software
for Public Health Surveillance (SSS1) developed by the CDC (Stroup et al.,
1994) provides several methods for analyzing surveillance data, including
the Box–Jenkins method.

2.2.3.1 Combination of process control methods
and Box–Jenkins models

Williamson and Hudson (1999) describe a combination of the Box–Jenkins
models and statistical process control methods. In the first stage, an ARIMA
model is developed as described in the previous section. In the second stage,
the forecast errors assumed to be approximately independent and identically
distributed are tracked in a statistical process control. Their two-stage monit-
oring system was performed on data from the NNDSS. The Shewhart, EWMA
and MA charts were used. Several types of control charts are implemented in
the CDC’s statistical software to monitor the forecasting performance of ARIMA
models.

2.2.3.2 Combination of wavelets and Box–Jenkins models

In a recent paper on the early detection of infectious disease outbreaks asso-
ciated with bioterrorism (Goldenberg et al., 2002), the authors present a set
of tools for the analysis of time series. Their approach is original in the sense
that they avoid public health data in favor of, for example, grocery and phar-
macy data, school attendance records, and web sources. The idea is to detect
infected people through their purchase of medication rather than from medical
or public health sources. The timeliness of the surveillance may be superior if
people pursue self-treatment before seeking medical assistance. From a statistical
point of view, after several layers (denoising filter, decompositions by a discrete
wavelet transform, simple autoregressive model applied to each decomposition),
an upper threshold for the next day’s forecast is computed, based on the addi-
tion of the forecast and an error. As in the traditional methods for detection,
the system flags an alarm when the threshold is exceeded.

2.2.3.3 Integer-valued autoregressive processes

Integer-valued autoregressive (INAR) models represent a class of models for the
analysis of time series. They have been studied theoretically by many authors
(Al-Osh and Alzaid, 1987; Du and Li, 1991; Latour, 1997, 1998) and applied
on time series of infectious disease incidence (Cardinal et al., 1999). This class of
models is an interesting alternative to the real-valued time-series models which
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do not respect the nonnegative integer-valued characteristics of surveillance
values. Real-valued models applied to nonnegative integer-valued observations
may be an inappropriate strategy, especially for the analysis of rare events. An
INAR process of order p is defined by:

Xt =
p∑

i=1


i �Xt−i+�t�

where �Xt	 is a nonnegative integer-valued stochastic process associated with
the observed disease incidence time series. The Steutel and van Harn’s convo-
lution operator (Steutel and van Harn, 1979), denoted ‘�’, is defined by:


�Xt =
X∑

k=1

Yk�

where �Yk� k ∈ N	 is a sequence of identically and independently distributed
random variables which follow a Bernoulli distribution with parameter 
. If we
consider an integer-valued autoregressive process of order 1, the first formula
can be rewritten as

Xt = Y1+Y2+· · ·+YXt−1
+�t

An epidemiologic interpretation of this formula is to consider that Xt is the
prevalence of the disease at time t. The prevalence at time t is the sum of
individuals remaining infected with a probability 
 in the time interval �t−1� t�
and individuals contracting the disease in the same interval (represented by �t).
INAR models are identified using the same tools as for ARIMA models, that is,
the ACF and the PACF. Autoregressive parameters are estimated using either
the Yule–Walker estimation technique or the conditional least-squares method.
Cardinal et al. (1999) concluded that an INAR model provides a smaller relative
forecast error than ARIMA models for meningococcal disease.

2.2.3.4 Serfling’s method

Serfling (1963) proposed a statistical analysis of weekly pneumonia and influ-
enza deaths in 108 US cities. Based on this work, several authors have proposed
a regression model which fits the nonepidemic data and predicts a nonepidemic
level curve. Costagliola et al. (1991) applied Serfling’s method to the French
influenza-like syndrome data collected from a sentinel network from 1984 to
1988. They deleted the cases for the past epidemic periods, defined as periods
above three cases per sentinel general practitioner (SGP). Then they fitted the
following regression equation to forecast the expected nonepidemic level for the
following winter:

yt = 
+�t+�1 cos
2�t
52

+�2 sin
2�t
52

+�3 cos
4�t
52

+�4 sin
4�t
52

+�t�
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where yt is the number of cases per SGP in week t and �t follows a centered
normal distribution. The parameters were estimated by the least-squares
method.
The first main drawback of this approach is that one must define what the

epidemic periods are, that is, at what number of cases per SGP we can consider
that past observed data should be deleted when fitting the model. The second
limitation is that the model imposes both a seasonal period and very specific
terms in the regression equation. This means that the process under study must
be relatively regular over time. Finally, this method cannot be easily applied to
a wide range of time series exhibiting different features in terms of seasonality,
number of cases, etc. However, despite the strong underlying hypotheses of this
method, this approach represents a simple tool to analyze surveillance data for
relatively well-known diseases. This is the case for the detection of epidemics of
influenza-like syndromes or gastroenteritis (Flahault et al., 1995).
Figure 2.3 illustrates Serfling’s method applied to weekly number of

Salmonella paratyphi B infections in France from 1992 to 1996. An aberration
is defined when the number of cases exceeds, for two consecutive weeks, the
expected number of cases represented by the upper 95% confidence limit of the
expected value.
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Figure 2.3 Weekly number of Salmonella paratyphi B infections in France from 1992
to 1996 with the Serfling upper 95% confidence limit.
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2.2.3.5 Log-linear regression model

A regression model was developed by Farrington et al. (1996) and dedicated
to the early detection of outbreaks from reports received at the Communicable
Diseases Surveillance Centre (CDSC). The general formulation is:

log��i� = 
+�ti�

E�Xi� = �i�

V�Xi� = ��i

The baseline count xi, corresponding to baseline week ti, is assumed to be distrib-
uted with mean �i and variance ��i, where � is the dispersion parameter.
Estimates are obtained by a quasi-likelihood method. This model represents one
of the most interesting tools for detection as it includes for the majority of data
characteristics a statistical solution. Trends are incorporated into the regression
by fitting a linear time variable (the first line in the above equation). Seasonality
is handled, as in the historical limits method, by using only observations from
comparable periods in the threshold calculation. Serial correlations between
baseline counts are estimated and included in the threshold expression. The
influence of baseline counts in time periods coinciding with past outbreaks is
reduced by constructing weights based on adequate residuals (Davison and
Snell, 1991). The idea is to associate low weights with large residuals, that is,
high baseline counts. Finally, this log-linear regression, adjusted for overdisper-
sion, is highly sensitive and detects small increases in rare disease reporting, as
well as large excesses in common disease reporting. Since 1996, this method
has been applied to the detection of aberrations for a set of 200–350 different
types of organisms reported from laboratories. Each week, an exceedance score
is given for each organism. If the exceedance score is higher than one, an alarm
is triggered. A part of the algorithm output representing the monthly number of
serologic tests for leptospirosis reported to the French Reference National Centre
is illustrated in Figure 2.4.

2.2.3.6 Other parameter-driven models

Another Poisson log-linear regression model was developed but not applied
to the detection of aberration (Zeger, 1988). In this parameter-driven model
an underlying hidden (unobserved) stochastic process generates the depend-
ence between random variables of the process of interest. This class of models
represents an alternative to observation-driven models described in the previous
sections. In observation-driven models Xt is a function of past observations
Xt−1� Xt−2� � � � . Among parameter-driven models, dynamic linear models, form-
alized by West and Harrison (1989) and methods based on the Kalman
filter (Kalman, 1960) seem to be useful for forecasting time-series values.
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Figure 2.4 Monthly number of serologic tests for leptospirosis reported to the French
Reference National Centre. Application of the CDSC method.

For example, the Kalman filter was applied to the monitoring of AIDS surveil-
lance data (Stroup & Thacker, 1995). Other parameter-driven models called
hidden Markov models (HMMs), have been applied to the monitoring of surveil-
lance data (Le Strat and Carrat, 1999; Rath et al., 2003) and the analysis of
hospital infection data (Cooper & Lipsitch, 2004). The basic idea is to associate
with each Xt an unobserved random variable St that determines the conditional
distribution of Xt. Parameter estimations are obtained by the maximization of a
likelihood function. The most likely sequence of states is reconstructed using a
specific statistical method. Figure 2.5 gives an illustration of the reconstruction
sequence of states by a two-state HMM applied to weekly influenza-like illness
incidence rates in France, between 1984 and 2004. Figure 2.5(a) shows the
weeks classified in one of the Markov states. This state is considered as the
nonepidemic state. Figure 2.5(b) shows the weeks classified in the second
Markov state and interpreted as epidemic weeks. Finally, Figure 2.5(c) repres-
ents the incidence for the totality of the weeks. HMMs provide a very flexible
tool for the analysis of time series of discrete values. Trend, seasonality, and
covariates can be easily introduced into the model and different distributions
can be considered (normal, Poisson, etc.).
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Figure 2.5 Weekly influenza-like illness incidence rates between 1984 and 2004.
Application of a two-state hidden Markov model: (a) nonepidemic state; (b) epidemic
state; (c) both states combined.

2.3 CONCLUSION

The goals of surveillance data analysis are to answer the following classical
questions: Is there a trend and/or a seasonality and/or abrupt change in the
observed incidence/prevalence time series of a disease? It is much more challen-
ging to carry out prospective surveillance and try to forecast future values. The
main objective, in this kind of surveillance, is the early detection of aberrations,
which has become very important following recent bioterrorism threats. The
detection of unusual events involves a combination of a forecasting method and
a decision mechanism which permits a decision to be taken as to whether the
observed value is significantly different from the forecast value. The decision
mechanisms routinely used in surveillance centers are relatively similar, but
forecast methods can have well-marked differences. Their capacity to detect
unusual events with good sensitivity and specificity depends on their ability to
take into account trend, seasonality, correlations between random variables of
the stochastic process, and the disease amplitude in terms of number of cases or
deaths. In addition, the most refined methods allow the weighting of each obser-
vation used in the analyses in order to lessen the influence of past observations
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that correspond to past outbreaks. In this sense, the log-linear regression model
(Farrington et al., 1996) seems to be a more elaborate approach.
A real comparison between all of these models based on a calculation of

the sensitivity and specificity and using different time surveillance series should
be performed. However, the conclusion is likely to be that there is no unique
method which can be applied to all surveillance series of a disease. Each disease
and each surveillance system has its own unique characteristics. Detection is
strongly reliant not so much on the statistical methods as on the characteristics
of the system such as the data collected, the professionalism of the participants
in the surveillance system, the reporting mechanism and its stability over time,
and its reactivity. If the surveillance system itself is not of good quality, it is easy
to produce spurious statistical results. It is, therefore, crucial to be familiar with
the structure of the surveillance system before analyzing the systems data. If
the system is viable and the statistical detection method rigorous, it is possible
for an epidemiologist to use the model results as a statistical aid. The decision
to investigate should be easier when the experience of the epidemiologist is
coupled with a statistical result.
Even if the statistical detection of temporal unusual events is useful, the

spatial component of disease distribution is generally not taken into account.
For a given time period, when the observed number of cases is significantly
different from the expected number, it is natural to look at the spatial distribu-
tion of the cases to make observations concerning the existence or absence of
clusters. As in the detection of temporal aberrations, a spatial statistical method
can sharpen the epidemiologist’s judgment and corroborate (or not) the occur-
rence of a temporal unusual event that indicates the need for an epidemiologic
investigation.
In conclusion, a vast literature on time detection methods exists and several

applications have been described. However, improvements are still needed in
order to suitably incorporate surveillance system features such as reporting
delays, the time evolution of ‘denominators’ (i.e. the population size and the
number of serological tests). Similarly, the inclusion of spatial information,
available in almost all surveillance databases, seems to be essential for the
improvement of the early detection of unusual events.
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Optimal Surveillance
Marianne Frisén and Christian Sonesson

3.1 INTRODUCTION

In public health the timely detection of various types of adverse health events
is an important issue. Kaufmann et al. (1997) stated that a delay of one day in
the detection of and response to an epidemic due to a bioterrorist attack could
result in a loss of thousands of lives and millions of dollars. Thus optimality is
important. Public health surveillance is described by Thacker and Berkelman
(1988) as the ongoing systematic collection, analysis, and interpretation of
outcome-specific data essential to the planning, implementation, and evalu-
ation of public health programs, closely integrated with the timely dissemina-
tion of these data to those responsible for prevention and control. Källén and
Winberg (1969) and Hill et al. (1968) discussed the importance of detection of
an increased birth rate of babies with congenital malformations. This was espe-
cially apparent during the thalidomide tragedy in the early 1960s. Monitoring of
mortality rates in primary care is treated by Aylin et al. (2003). Other examples
include the detection of bioterrorism, outbreaks of infectious diseases and the
spatial clustering of various forms of cancer. In all of these examples quick detec-
tion is beneficial both at an individual level and to society. Examples of different
public health surveillance data sources are given by Stroup et al. (2004).
For spatial surveillance of public health there are many important issues,

such as data collection and data quality, to consider. In Chapter 2 surveillance
systems are classified in different ways, for example according to how the
information is collected. Here, the focus will be on issues of statistical inference.
There is a need for continual observation of time series, with the goal of detecting
an important change in the underlying process as soon as possible after it has
occurred. Statistical methods are necessary to separate important changes in the
process from stochastic variation. Broad surveys and bibliographies on statistical

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd
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surveillance are given by Lai (1995), who concentrates on minimax properties
of stopping rules, by Woodall and Montgomery (1999), who concentrate on
control charts, and by Frisén (2003), who concentrates on optimality properties
of methods. A review of methods for surveillance in public health is given
by Sonesson and Bock (2003). The statistical methods suitable for this differ
from the standard hypothesis testing methods. Surveillance, statistical process
control, monitoring, and change-point detection are different names for methods
with this goal. Also the criteria for optimality differ. In Section 3.2 the important
difference between optimality for a fixed sample and optimality for on-line
surveillance will be discussed.
In Section 3.3 the notation and specification used in the chapter are described.

Most of the theory for surveillance is derived for normal distributions, but
Poisson processes are of special interest in public health surveillance. A biblio-
graphy of surveillance for attribute data is given by Woodall (1997).
In spatial surveillance of public health, evaluations and optimality are very

important in order to choose which surveillance method to use (and parameters
in the method) for the specific aim. The requirements are different for short-
term, high-risk and long-term, low-risk situations. In applied work a single
optimality criterion is not always enough, but evaluations of different properties
might be necessary (Frisén, 1992). These properties are also the base for the
formal optimality criteria. In Section 3.4 we will describe some measures for
evaluations of surveillance methods.
To choose the optimal method you have to specify what ‘optimal’ means in

a surveillance context. Optimality plays an important role both in applied work
and in theoretical research. There are many papers which claim to give the
optimal surveillance method. However, the suggested optimality criteria differ
in important aspects described by Frisén (2003). In Section 3.5 some general
criteria of optimality are described, which are based on the expected delay, the
minimax principle, and the average run length.
Most of the commonly used methods are optimal in some respect. Some

commonly used methods are described in Section 3.6. The correspondences
between the criteria of optimality and methods are examined. The situations
and parameter values for which some commonly used methods have optim-
ality properties are thus determined. Thus, the commonly used methods are
characterized by their optimality properties. One of the methods described is
the full likelihood ratio (LR) method. The LR method corresponds to the use of
the posterior distribution and fulfils important optimality criteria. This method,
which relies on generally accepted principles of inference, can then be used as
a benchmark for the other methods discussed.
Cardinal et al. (1999) describe the problems of using methods for continuous

variables when studying the incidence of a disease which is based on count
data. Methods and evaluation for distributions of special interest for public
health studies are treated throughout the chapter. However, we treat some
subjects separately. In Section 3.7 we describe methods for some more complic-
ated situations of special interest for public health. A discussion of methods
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and optimality is given for gradual changes from an unknown baseline as well
as spatial and other multivariate surveillance situations. Section 3.8 contains
some concluding remarks.

3.2 OPTIMALITY FOR A FIXED SAMPLE
AND FOR ON-LINE SURVEILLANCE

In the comparison of disease patterns in different regions many questions can
be answered by hypothesis tests based on a fixed sample of data. For reviews,
see Lawson et al. (1999) and Lawson and Cressie (2000). In the prospective
surveillance situation repeated analysis of data accumulating over time is used.
Then, there is no fixed data set and not even a fixed hypothesis to be tested.
A decision concerning whether, for example, an incidence has increased or not
has to be made sequentially, based on the data collected so far. The statistics
derived for a fixed sample might be of great value also in the surveillance
case, but there are great differences concerning the system for decisions. In
complicated surveillance problems a stepwise reduction of the problem might
be useful. Then, the statistics derived to be optimal for the fixed sample problem
can be a component in the construction of the prospective surveillance system.
How this can be done is described in the Chapter 9.
Error rates suitable for a fixed decision time can be used as components in

evaluation measures for on-line surveillance. Different error rates and their
implications for a system of decisions were discussed by Frisén and de Maré
(1991). The maximal detection probability for a fixed false alarm probability
for each decision time is a simple criterion. The LR method of Section 3.6.1
satisfies this criterion. Using a constant probability of exceeding the alarm limit
for each decision time means that we have a system of repeated significance
tests. This might work well also as a system of surveillance and is often used.
The Shewhart method described in Section 3.6.2 has this property. This is also
the motivation for using the limits with the exact variance in the exponentially
weighted moving average (EWMA) method described in Section 3.6.5. However,
the probability of exceeding the alarm limit conditional on no earlier alarm is
not constant for this type of EWMA method.
Evaluation by the significance level, power, specificity, and sensitivity which

is useful for a fixed sample is not appropriate in a surveillance situation without
a modification since they have no unique value unless the time period is fixed.
Also, a formulation of an optimality criterion for surveillance must naturally
take into account the delay time in detection, since the aim of a surveillance
method is quick detection.
There are close relations between the methods for a fixed sample and for on-

line surveillance. However, both the methods and the optimality criteria suitable
for on-line surveillance differ from the standard hypothesis testing situation.
The choice of an optimality criterion in on-line surveillance is an interesting
and important issue which will be treated throughout the chapter.
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3.3 SPECIFICATION OF THE STATISTICAL
SURVEILLANCE PROBLEM

We will specify the situation with a change in distribution at a certain change-
point time �. The variable under surveillance could be an age-adjusted incidence
or some other derived statistic depending on the specific situation. We denote
the process by Y = �Y�t� � t = 1�2� � � � �, where Y�t� is the observation made at
time t. The random process that determines the state of the system is denoted
by 	�t�. At each decision time, s, we wish to discriminate between two states of
the monitored system, the in-control and the out-of-control state, here denoted
by D�s� and C�s�, respectively. To do this we use the accumulated observations
Ys = �Y�t�
 t ≤ s� to form an alarm criterion such that if this is fulfilled it is an
indication that the process is in state C�s� and an alarm is triggered. Usually
this is done by using an alarm statistic, p�Ys�, and a control limit, G�s�, where
the time of an alarm, tA, is

tA =min�s
 p�Ys� > G�s���

Different types of in-control and out-of-control states are of interest depending
on the application. The most frequently studied case is when D�s� = �� > s�
and C�s� = �� < s�; see Figure 3.1. The time � of the change is regarded as a
random variable with probabilities ��t�= P�� = t�. These probabilities can also
be regarded as priors. The intensity, �t�, of a change is defined as �t�= P�� =
t�� ≥ t�, which is usually assumed to be constant over time.
The change to be detected also differs depending on the application. Most

studies in literature concerns a step change, where a parameter changes from
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Figure 3.1 Illustration of concepts in evaluation. The first � −1 = 10 observations
Y�−1 = �Y�t�
 t ≤ � − 1� are in state D. The subsequent observations (from t = 11
onwards) are in state C with a higher mean. The alarm time is tA, which might happen
to be 13, in which case the delay would be tA− � = 2.
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one constant level to another constant level. Often, the case of a shift in the
mean of a normally distributed variable from an acceptable value 	0 (say, zero)
to an unacceptable value 	1 is considered, but with the same known standard
deviation � . For clarity, when suitable, standardization to 	0 = 0 and � = 1 is
used and the size of the shift after standardization is denoted by 	. The case
	 > 0 is described here. The case 	 < 0 is treated in the same way. We have
	�t�= 	0 for t = 1� � � � � �−1 and 	�t�= 	1 for t = �� �+1� � � � . Even though
autocorrelated time series are studied by, for example, Schmid and Schöne
(1997), Petzold et al. (2004), and in Chapter 2, processes which are independent
given � are the cases most often studied. This is a simple situation which we
will use to describe general concepts of evaluations, optimality and standard
methods. A sudden sharp increase might be realistic in the case of bioterrorist
attack. Methods optimal for detection of a step change might be good also for
gradual change if the change rate is high. However, other types of changes
are also of interest. Some cases of special interest in the surveillance of public
health are discussed in Section 3.7.
For the detection of an increased incidence rate different assumptions

concerning the underlying process can be made depending on the setting and
the data collected. Often a Poisson process for the cases of disease is assumed.
In some cases the intervals between the adverse events have been of interest.
These intervals can be measured by the continuous time intervals between the
events, which are exponentially distributed, or by using a discrete time scale
measuring the number of acceptable events between adverse events. Neither
of these ways implies any loss of information about the process. The increased
intensity would then be recognized as shorter intervals between the adverse
events and fewer acceptable events between adverse events, respectively. Some-
times only the numbers of events in certain fixed time windows are available.
These numbers are usually assumed to be Poisson distributed. A normal approx-
imation is frequently used. There are also other situations where the normal
distribution is a natural assumption.

3.4 EVALUATIONS OF SYSTEMS FOR SURVEILLANCE

We need some measures for evaluation as a basis for the formal optimality
criteria of the next section. Good properties are quick detection and few false
alarms. When monitoring is used in practice, knowledge about the properties
of the method is important. If an alarm is triggered it is otherwise hard to know
how strong an indication this is of a change. In applied work a single optimality
criterion is not always enough, and evaluation by several measures might be
necessary. In this chapter we will discuss the measures given in Table 3.1.
Computer illustrations of the interpretation of some of the measures mentioned
below are given in Frisén and Gottlow (2003). Formulae for the numerical
approximations of some of the measures are available in the literature.
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Table 3.1 Measures given in Sections 3.4.1–3.4.4 classified by whether they are
adopted for ongoing surveillance or not.

Conventional measures Special measures for ongoing surveillance

False alarms Size �, Specificity ARL0, MRL0, PFA
Detection ability Power, Sensitivity ARL1, MRL1, CED, ED, maxCED
Predictive value PVP, PVN PV�t�= P�tA ≤ ��tA = t�

3.4.1 Measures for a Fixed Sample Situation Adopted
for Surveillance

In the draft guidelines given by the Centers for Disease Control and Prevention
(CDC) for evaluating surveillance systems (Sosin, 2003), timeliness is mentioned
as one very important aspect when evaluating a surveillance system. Some
measures of evaluation are stated, such as the sensitivity and the predicted
value. German (2000) gives a review of the use of suchmeasures in public health
surveillance systems. Guidelines for evaluations of syndromic surveillance are
given by Mandl et al. (2004).
One problem with evaluation measures originally suggested for the study of

a fixed sample of, say, n observations is that the measures depend on n. The
specificity will for most methods tend to zero and the size of the test tend to one
as n increases, as shown in Figure 3.2.
Chu (1995) and others have suggested methods with a size less than one:

lim
n→�P�tA ≤ n�D� < 1�
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Figure 3.2 The size, �, of a surveillance system which is pursued for n time units,
when the probability of a false alarm is 5% at each time point.
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However, Frisén (2003) proved that the detection ability for methods with this
property declines rapidly with increasing values of time � of the change.
The performance of a method for surveillance depends on the time � of the

change. The sensitivity will in general not be the same for early changes as
for late ones. It also depends on the length of time for which the evaluation is
made. Thus there is not one unique sensitivity value at surveillance, but other
measures might be more useful. Thus, conventional measures for fixed samples
should be supplemented by other measures designed for statistical surveillance,
as will be discussed in the following.

3.4.2 False Alarms

The erroneous false alarm is more complicated to control in surveillance than
in hypothesis testing. There are special measures of the false alarm properties
which are suitable for surveillance. The most commonly used measure is the
average run length when there is no change in the system under surveillance,
ARL0 = E�tA�D�. This measure is closely related to the ‘recurrence interval’ and
‘number of alarms per month’ discussed in Chapter 5. In Chapter 5 the average
time to a false alarm, if the alarm limit was the observed value, is calculated
as a measure of how extreme a result is. The relation between ARL0 and the
recurrence interval is thus the same as that between the significance level and
the p-value in an ordinary hypothesis test. Numerical methods to calculate
ARL0 are discussed in Chapter 6. A variant of the ARL is the median run
length (MRL).
Another kind of measure commonly used is the false alarm probability, PFA=

P�tA < ��. This is the probability that the alarm occurs before the change. In
theoretical work, the standard procedure is to assume that � is geometrically
distributed, implying a constant intensity of a change.

3.4.3 Delay of the Alarm

The delay time in detection should be as small as possible. Shiryaev (1963)
suggested measures of the expected value of the delay. Let the expected delay
from the time of change, � = t, to the time of alarm, tA, be denoted by

ED�t�= E�max�0� tA− t��� = t��

ED(t) will typically tend to zero as t increases. The conditional expected delay,

CED�t�= E�tA− ��tA ≥ � = t�= ED�t�/P�tA ≥ t��

is the expected delay for a specific change point �. The expected delay is generally
not the same for early as for late changes. CED will for most methods converge
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to a constant value. This value is sometimes named the ‘steady state ARL’
(Srivastava and Wu, 1993). The summarized expected delay is

ED= E�ED�����

where the expectation is with respect to the distribution of �. To minimize the
expected delay of detection is important in most practical situations. In the
literature on signal detection (see Gustavsson, 2000) the mean time to detection
is used. This is defined as

MTD�t�= E�tA− t�� = t��

This measure is related to CED(t) and ED(t) but the expected value, with respect
to the distribution of �, differs from ED and there is no simple relation to the ED
optimality described in Section 3.5.1.
The most commonly used measure of the delay is the average run length until

detection of a true change (that occurred at the same time as the surveillance
started) which is denoted ARL1 (see Page, 1954; Ryan, 2000). The part of the
definition in the parentheses is seldom spelled out, but is generally used in the
literature. Note that

ARL1 = ED�1�+1�

For some situations and methods the properties are roughly the same, regardless
of when the change occurs, but this is not always true, as illustrated by Frisén
and Wessman (1999). The run length distributions are often very skewed, and
the skewness depends on important parameters. Instead of the average, Gan
(1993) advocates that the median run length should be used on the grounds
that it might be more easily interpreted. However, the main problem is that
only the case � = 1 is considered.
Sometimes there is a limited time available for rescuing action. The probability

of successful detection, suggested by Frisén (1992), measures the probability of
detection with a delay time no longer than d:

PSD�d� t�= P�tA− � < d�tA ≥ � = t��

This measure is a function both of the time of the change and the length of
the interval in which the detection is defined as successful. It has been used by,
for example, Petzold et al. (2004) in connection with a monitoring system for
pregnancies. Also when there is no absolute limit for the detection time it is
often useful to describe the ability to detect the change within a certain time.
In those cases it might be useful to calculate PSD for different time limits d.
This has been done by Marshall et al. (2004) in connection with monitoring of
health care quality. The ability for very quick detection (small d) is important
for surveillance of sudden major changes, while the long-term detection ability
(large d) is more important for ongoing surveillance where smaller changes
are expected.
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3.4.4 Predictive Value

In order to know which action is appropriate at an alarm we need to know if
we should act as if we were sure about a change or just have a vague suspicion.
For a diagnostic test based on a fixed data set, it is common to use the predictive
values of a positive diagnosis (PVP) and a of a negative diagnosis (PVN). For
ongoing surveillance we have corresponding measures. The probability that a
change has occurred when the surveillance method signals was suggested by
Frisén (1992) as

PV�t�= P�tA ≤ ��tA = t��

When you get an alarm �tA = t�, PV tells you whether there is a large probability
that the change has occurred �tA ≤ ��. Some methods have a constant PV.
Others have a low PV at early times but better later. In those cases, the early
alarms will not motivate the same serious action as later alarms. Also the
predictive value of the lack of an alarm at a certain time point might sometimes
be of interest.

3.5 OPTIMALITY CRITERIA

We will now use the measures of the previous section to formulate and discuss
some criteria of optimality for surveillance.

3.5.1 Minimal Expected Delay

Shiryaev (1963) suggested a very general utility function where the expected
delay of a desired alarm plays an important role. He treated the case of constant
intensity of a change where the gain of an alarm is a linear function of the
value of the delay, tA−�. The loss associated with a false alarm is a function of
the same difference. This utility can be expressed as U = E�u��� tA��, where

u��� tA�=
{
h�tA− ��� if tA < ��

a1�tA− ��+ a2� otherwise�

The function h�tA−�� is usually a constant (say, b), since the false alarm causes
the same cost of alerts and investigations, irrespective of how early the false
alarm was given. In this case we have

U = bP�tA < ��+ a1 ED+ a2�

Thus, we would have a maximal utility if we have a minimal (a1 is typically
negative) expected delay from the change-point for a fixed probability of a false
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alarm (see Section 3.4.3). This is termed the ED criterion. The full likelihood ratio
method satisfies this criterion. The ED criterion seems to be a suitable optimality
criterion in a public health setting because of its generality of including changes
occurring at different time points.
Variants of the utility function leading to different optimal weighting of the

observations are suggested by, for example, Poor (1998) and Beibel (2000).

3.5.2 Minimax Optimality

The next criterion concerns the minimax of the expected delay after a change.
It is related to the ED criterion as several possible change times are considered.
However, instead of an expected value, which requires a distribution of the time
of change, the worst value of CED(t) is used.

Moustakides (1986) uses a still more pessimistic criterion , the ‘worst possible
case’, by using not only the worst value of the change time, but also the worst
possible outcome of Y�−1 before the change occurs. This criterion is pessimistic
since it is based on the worst possible circumstances. The cumulative sum
(CUSUM) method, described in Section 3.6.3, provides a solution to the criterion
proposed by Moustakides. The merits of studies of this criterion have been
thoroughly discussed by Yashchin (1993) and Lai (1995). Much theoretical
research is based on this criterion.

3.5.3 Average Run Length

In the literature on statistical process control, optimality is often stated as
minimal ARL1 for a fixed ARL0. ARL1 and ARL0 are expectations under the
assumption that there are equal distributions for all observations under each
of the two alternatives. Statistical inference with the aim of discriminating
between the alternatives that all observations come from one of two specified
distributions should, by the ancillarity principle, not be based on the time of the
observation. However, the ARL criterion does not necessarily have to agree with
generally accepted principles of inference. From the point of view of optimal
decision theory it is hard to motivate a cost function with no cost for a delay of
the alarm when � > 1.
As pointed out by Pollak and Siegmund (1985), the maximal value of CED(t)

is equal to CED(1) for many methods, and with a minimax perspective this
can be a motivation for the use of ARL1 since CED�1�= ARL1−1. However,
this argument is not relevant for all methods. In particular it is demonstrated
by Sonesson (2003) that the maximal value is not CED(1) for the EWMA
method of Section 3.6.5. For this method, there is no similarity between the
solution to the ARL criterion and the minimax criterion, while the solutions
to the criterion of expected delay and the minimax criterion demonstate good
agreement.
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The widespread use of the ARL criterion has been questioned. Consequences
of this criterion which make it unsuitable for many applications were demon-
strated by Frisén (2003). Methods useless in practice are ARL optimal. Thus this
optimality should only be used with care. The ARL can be used as a descriptive
measure and gives a rough impression but is questionable as a formal optimality
criterion.

3.6 OPTIMALITY OF SOME STANDARD METHODS

The optimality of some important methods will now be described. Some methods
are very flexible with several parameters. The parameters can be chosen to
make the method optimal for the specific conditions (e.g. the size of the change
or the intensity of changes) of the application. Many methods for surveillance
are based in one way or another on likelihood ratios. Thus, we will start by
describing the likelihood ratio method as it is a benchmark for other methods.
Commonly used methods are compared with it in order to clarify their optimality
properties.

3.6.1 The Likelihood Ratio Method

The likelihood ratio (LR) method, is optimal with respect to the criterion of
minimal expected delay and also a wider class of utility functions (Frisén and
de Maré, 1991). Several methods can be described by approximations or combin-
ations of likelihood ratios (Frisén, 2003). However, the LR method, with its
relation to the posterior probability, has a special motivation. The full likelihood
is a weighted sum of the partial likelihoods

L�s� t�= fYs
�ys�� = t�/fYs

�ys�D�s���
The alarm set consists of those Ys for which the full likelihood ratio exceeds

a limit. When the event to be detected at decision time s is C�s�= �� < s�, with
the alternative D�s�= �� > s�, the time of an alarm for the LR method is

tA = min

{
s


fYs
�ys�C�s��

fYs
�ys�D�s��

>
P�� > s�

P�� ≤ s�
· K

1−K

}

= min

{
s


s∑
t=1

w�s� t� ·L�s� t� > G�s�

}
�

where K is a constant and G�s� is an alarm limit. The time of an alarm can
equivalently be written as the first time the posterior probability of a change
into state C exceeds a fixed level

tA =min�s
P�C�s��Ys = ys� > K��
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The posterior probability of a change has been suggested as an alarm criterion
by, for example, Smith and West (1983). When there are only two states,
C and D, this criterion leads to the LR method (Frisén and de Maré, 1991).
In cases where several changes may follow after each other, the process might
be characterized as a hidden Markov chain and the posterior probability for
a certain state determined (Harrison and Stevens, 1976; Hamilton, 1989).
Le Strat and Carrat (1999) use hidden Markov models with two states (outbreak
or not) to retrospectively estimate the times for outbreaks of influenza-like
illness and poliomyelitis and found that the times agreed well with other judg-
ments. They also suggested that the method should be used in public health
monitoring. Sometimes the use of the posterior distribution, or equivalently the
likelihood ratio, is termed ‘the Bayes method’. However, it depends on the situ-
ation whether the distribution of � is considered as a ‘prior’, or as an observed
frequency distribution (e.g. from earlier cases in intensive medical care) or just
reflects the situation for which optimality is desired. When the intensity, ,
of a change (see Section 3.3) tends to zero, the weights w�s� t� of the partial
likelihoods do not depend on t and the limit G�s� of the LR method does not
depend on s. Shiryaev (1963) and Roberts (1966) suggested the method, which
is now called the Shiryaev–Roberts method, for which an alarm is triggered at
the first time s, such that

s∑
t=1

L�s� t� > G�

where G is a constant, which is thus the limit of the LR method as  tends
to zero. The Shiryaev–Roberts method can also be derived as the LR method
with a noninformative prior for the distribution of �. Both the LR and the
Shiryaev–Roberts method can be expressed recursively. A valuable property
of the methods is an approximately constant predictive value (Frisén and
Wessman, 1999), which allows the same interpretation of early and late alarms.
For the case of a normal distribution specified in Section 3.3, the LR method

is optimized for the values of the change size 	 and the change intensity,  used
in the alarm statistic, and gives an alarm at

tA=min

{
s


s∑
t=1

P�� = t� exp�t	2/2� exp�	
s∑

u=t

Y�u��

> exp��s+1�	2/2�P�� > s�
K

1−K

}
�

where the constant K determines the false alarm probability.
Stroup and Thacker (1993) discuss the use of likelihood ratios and posterior

probabilities to detect aberrations of public health data. They apply LR stat-
istics to public health surveillance data collected in the USA to detect sudden,
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sustained changes in reported disease occurrence, changes in the rate of change
of health event occurrence, as well as unusual reports or outliers. For the detec-
tion of a changed intensity in a Poisson process. Sonesson and Bock (2003)
derived the LR method based on the exponentially distributed time intervals
between events. The stopping time is

tA =min

{
s


s∑
t=1

P�� = t� · exp
{
�−�1+�0�

s∑
i=t

Y�i�

}
·
(
�1

�0

)s−t+1

> L ·P�� > s�

}
�

for some constant L. Here �0 denotes the baseline intensity and �1 the intensity
after the change. For the same situation, the Shiryaev–Roberts method can be
found in Kenett and Pollak (1996) and gives an alarm at

tA =min

{
s


s∑
t=1

exp

{
�−�1+�0�

s∑
i=t

Y�i�

}
·
(
�1

�0

)s−t+1

> G

}
�

In the case where the observed data consist of the number of events recorded
in fixed intervals of length k, the alarm time for the LR method is derived by
Sonesson and Bock (2003) to be

tA =min

{
s


s∑
t=1

P�� = t� exp��−�1+�0�k�s− t+1�� ·
(
�1

�0

)∑s
i=t Y�i�

> L ·P�� > s�

}
�

and the alarm time for the Shiryaev–Roberts method is

tA =min

{
s
 exp��−�1+�0�k�s− t+1�� ·

s∑
t=1

(
�1

�0

)∑s
i=t Y�i�

> G

}
�

If the counts are recorded for intervals of different lengths, a slight modification
has to be made.
Linear approximations of the LR method are of interest for two reasons. One

is to obtain a method which is easier to use and analyze, but has good properties
similar to the LR method. Another is to get a tool for the analysis of approximate
optimality of other methods, as was done by Frisén (2003) and will be seen in
subsequent sections.

3.6.2 The Shewhart Method

The Shewhart method, which was suggested by Shewhart (1931), is simple and
is certainly the most commonly used method for surveillance. It can be regarded
as performing repeated significance tests. An alarm is triggered as soon as an
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observation deviates too much from the target. Thus, only the last observation
is considered in the Shewhart method. An alarm is triggered at

tA =min�s
Y�s� > L��

where L is a constant. More detailed descriptions can be found in textbooks
such as Ryan (2000). The alarm criterion for independent observations can
be expressed by the condition L�s� s� > G, where G is a constant. The alarm
statistic of the LR method reduces to that of the Shewhart method when the
event to be detected at decision time s is C�s� = �� = s� and the alternative is
D�s� = �� > s�. Thus, the Shewhart method has optimal error probabilities for
these alternatives for each decision time s. For large shifts, Frisén and Wessman
(1999) showed that the LR method and the CUSUM method converge to the
Shewhart method. By several criteria, the Shewhart method performs poorly
for small and moderate shifts. However, by the minimax criterion it is nearly
as good as the LR method for some situations.
Woodall (1997) gave a review of the Shewhart method as applied to attribute

data. The observation is often a proportion or number of objects with a certain
property (e.g. having a certain disease). The p-chart, np-chart, c-chart, and
u-chart are all based on a normal approximation of the binomial distribution
but differ depending on whether numbers or proportions (possibly with varying
sizes of the populations at risk) are used. Shewhart methods have also been
suggested for geometrical, negative binomial, and Poisson data.

3.6.3 The CUSUM Method

The CUSUM method, first suggested by Page (1954), is closely related to the
minimax criterion. Yashchin (1993), Siegmund and Venkatraman (1995),
Hawkins and Olwell (1998), and Chapter 6 of this book give reviews of the
CUSUM method. The alarm condition of the method can be expressed by the
partial likelihood ratios as

tA =min�s
max�L�s� t�
 t = 1�2� � � � � s� > G��

where G is a constant. The method is sometimes called the likelihood ratio
method, but this combination of likelihood ratios should not be confused with
the full LR method.
The most commonly described application of the CUSUM method is to the

case of normally distributed variables as specified in Section 3.3. The CUSUM
statistic in this case reduces to a function of the cumulative sums

Cr =
r∑

t=1

�Y�t�−	�t���



Optimality of some standard methods 45

There is an alarm for the first time s for which

Cs−Cs−i > h+ ki� for some i= 1�2� � � � � s�

where C0 = 0 and h and k are chosen constants. In the case of a step change,
the value of the parameter k is usually k = �	0+	1�/2. Sometimes the CUSUM
alarm statistic is presented recursively by the formula

Ss =max�0� Ss−1+Y�s�− k��

where S0 = 0. This alarm statistic is used with a constant alarm limit.
In the study of events of diseases the case of a Poisson process is of special

interest. Sometimes the exact time of the event is not known or convenience
motivates that only the number of events in fixed intervals are recorded. This
number is usually assumed to be Poisson distributed. To account for possible over-
dispersion, a negative binomial distribution can be used instead (Gallus et al.,
1991). A direct analogue to the cumulative sums for the normal case is the
Poisson CUSUM which compares the recorded number of events in each time
period with the expected number and uses the cumulated sum of deviations to
form an alarm statistic. The value of k can be derived from the likelihood. Ewan
and Kemp (1960) described this and tried different values of k in the formula.
Hill et al. (1968) used this method for monitoring congenital malformations. In
Barbujani (1987) comparisons with earlier methods for this problem are made.
Hutwagner et al. (1997) use the CUSUM method for the case of salmonella
outbreaks. Lucas (1985) described the Poisson CUSUM method and suggested
the value of k derived by analogy to sequential probability ratio tests. This makes
the method agree with the CUSUM as expressed by the likelihood expressions in
the beginning of this section. Different approximations to the Poisson CUSUM
were suggested by Rossi et al. (1999) in order to overcome problems with an
unknown or varying baseline.
When using the continuous, exponentially distributed time between adverse

events the exponential CUSUM can be constructed in the same way as for the
Poisson distribution (see Lucas, 1985; Vardeman and Ray, 1985; Gan, 1992b;
Mathers et al. 1994). In contrast to the Poisson CUSUM, the exponential CUSUM
is not based on an initial reduction of the information. Such reduction of
the information from the interval data should be avoided if possible. Other
types of information reduction include, for example, only recording the time
when a certain number of events has happened or only recording whether the
time between events is larger than a threshold value or not. These types of
reductions are used in the sets method (Chen 1978; Gallus et al., 1986) and
the cuscore method (Radaelli, 1992). Sometimes the time to event is measured
as the number of positive cases (e.g. the number of healthy newborn babies)
between negative ones (e.g. a baby born with congenital malformation). In those
cases the negative binomial distribution might be an appropriate distribution
(Radaelli, 1994) to base a CUSUM method on.
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Different variants of CUSUM methods have been proposed for spatial surveil-
lance by, for example, Raubertas (1989), Rogerson (1997, 2001), and Rogerson
and Yamada (2004).
Closely related to the CUSUM method are the generalized likelihood ratio

(GLR) and mixture likelihood ratio (MLR) methods. For the MLR method,
suggested by Pollak and Siegmund (1975), a prior for the shift size is used in the
CUSUM method. For the GLR method the alarm statistic is formed by maxim-
izing over possible values of the shift (besides the maximum over possible times
of the shift). Lai (1998) describes both GLR and MLR and prove a minimax
result for a variant of GLR suitable for autocorrelated data.
The CUSUM method satisfies the minimax criterion of optimality described in

Section 3.5.2. Also other good qualities of the method have confirmed by, for
example, Srivastava and Wu (1993) and Frisén and Wessman (1999). With
respect to the expected delay, the CUSUM method is almost as good as the LR
and the Shiryaev–Roberts method.

3.6.4 Moving Average and Window-Based Methods

The alarm condition for the moving average method can be expressed by the
likelihood ratios L�s� t� as

L�s� s− d� > G�

where G is a constant and d is a fixed window width. For the standard case
of normally distributed variables described in Section 3.3 this will be a moving
average. It will have the optimal error probabilities of the LR method with
C= �� = s−d�, and will thus have optimal detection abilities for changes which
occurred d time points earlier.
Previously, the Food and Drug Administration (FDA) recommended a

window-based method to detect increased frequencies of adverse events related
to drugs. In this case the number of reported adverse events in a ‘report interval’
was compared to that in a ‘comparison interval’ and reported to the FDA. This
recommendation was revoked in 1997 on the ground that this type of report
had not contributed to the timely identification of safety problems.
The number of events in a moving window of fixed length is compared to

an expected number based on the previous years in a retrospective setting by
Stroup et al. (1989, 1993). For prospective use, Wharton et al. (1993) used
data from the National Notifiable Diseases Surveillance System (NNDSS) for a
4-month period, and Rigau-Perez et al. (1999) applied it to dengue outbreaks
in Puerto Rico. However, window-based methods do not utilize all available
information. Using data recorded in moving windows will reduce the inform-
ation about the observed process. If the window is wide it will smooth over
possible shifts in the process. If, on the other hand, the window is narrow, the
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information lost will be larger since only a small amount of the observations
are used at each time point. One motivation for the use of moving windows is
to overcome the problem of an unknown baseline.
Sometimes, as in Lai (1998), advanced methods such as the GLR method are

combined with a window technique in order to ease the computational burden.

3.6.5 Exponentially Weighted Moving Average Methods

A variant of the moving average method which does utilize all information
is the EWMA method. The alarm statistic is based on exponentially weighted
moving averages,

Zs = �1−��Zs−1+�Y�s�� s = 1�2� � � � �

where 0 < � < 1 and Z0 is the target value, which is normalized to zero. The
EWMA statistic gives the most recent observation the greatest weight, and gives
all previous observations geometrically decreasing weights. If � is near zero, all
observations have approximately the same weight. Note that if � = 1 is used,
the EWMA method reduces to the Shewhart method. The asymptotic variant,
EWMAa, will give an alarm at

tA =min�s � Zs > L�Z��

where L is a constant. For the EWMAe version of the method, the exact standard
deviation (which is increasing in s) is used instead of the asymptotic in the alarm
limit. A comparison between the EWMAa and the EWMAe method is given in
Sonesson (2003), where it is found that the EWMAa version is preferable for
most cases.
The EWMA method was described by Roberts (1959). Positive reports of the

quality of the method are given by Crowder (1989), Lucas and Saccucci (1990),
Domangue and Patch (1991), and Knoth and Schmid (2002). The choice of �
is important, and the search for the optimal value of � has been of great interest
in the literature. Small values of � result in good ability to detect early changes,
while larger values are necessary for changes that occur later.
Most reports on optimal values of the parameter � concern the ARL criterion.

Frisén (2003) demonstrated that there exist methods with equal weights for
all observations which are ARL optimal. This is a reason for choosing equal
weights for the EWMA method. To get equal weights for all observations by the
EWMA method, � should approach zero. Methods which allocate the power to
the first time points will have good ARL properties but worse ability to detect
a change that happens later. In fact, wisely enough, no one seems to have
suggested that � should be chosen to be zero, even though that should fulfill
the ARL criterion.
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The EWMA method can be seen as a linear approximation of the LR method
for a certain value of the parameter of the method,

�∗ = 1− exp�−	2/2�/�1−��

which has a specific value if the change 	 and the intensity of change  are
specified. This was shown by Frisén (2003), and an additional adaptation of the
EWMA method by changing the alarm limits was suggested. This modification
of the EWMA method leads to a method which is approximately optimal with
respect to the minimal expected delay.
Adaptations of the EWMAmethod for binomial and Poisson data are made, for

example, by Gan (1991) and Borror et al. (1998). Public health applications are
considered by Williamson and Hudson (1999) and VanBrackle and Williamson
(1999).

3.7 SPECIAL ASPECTS OF OPTIMALITY FOR
SURVEILLANCE OF PUBLIC HEALTH

Some aspects of public health, such as the kind of processes of special interest,
have been treated throughout this chapter. In this section some special aspects of
optimality which are of concern in spatial and other surveillance of public health
are treated separately. When the states (between which the change occurs) are
completely specified, the LR method, with its good optimality properties, can
be used. Pollak and Siegmund (1985) point out that the martingale property
(for continuous time) of the Shiryaev–Roberts method makes it more suitable
than the CUSUM method (which does not have this property) for adaptation to
complicated problems. On the other hand, Lai (1995, 1998) and Lai and Shan
(1999) argue that the good minimax properties of generalizations of the CUSUM
method make the CUSUM suitable for complicated problems. In complicated
problems it is not always easy to achieve, or even define, exact optimality.

3.7.1 Gradual Changes during Outbreaks of Diseases

Most of the literature on surveillance treats the case of an abrupt change, which
might be caused, for example, by a sudden bioterrorist attack. However, in many
cases of public health surveillance the change is gradual, for example at the
outbreak of a contagious disease. The change is thus more complicated than the
standard situation with a sudden shift from one level to another. A change in
slope of a linear regression is the case most studied. Aerne et al. (1991) and Gan
(1992a) suggest CUSUM methods for the residuals from a known regression.
For the case of an unknown pre-change regression, Krieger et al. (2003) suggest
CUSUM and Shiryaev–Roberts methods based on a statistic which does not
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depend on the unknown parameters. Arteaga and Ledolter (1997) compare
several procedures with respect to ARL properties for several different monotonic
changes. One of the methods suggested in that paper is a window method
based on the likelihood ratio and isotonic regression techniques. In general,
window methods (Section 3.6.4 are inefficient for detection of gradual changes
(Järpe, 2000). Yashchin (1993) discusses generalizations of the CUSUM and
EWMA methods to detect both sudden and gradual changes.
At an outbreak the incidence typically increases gradually and then possibly

declines (Buehler et al., 2003). It might be hard to model exactly the shape of
the rise and the decline, or even to estimate the baseline accurately. The timely
detection of a change in monotonicity is then of interest. The start of an increase
is of course of special interest, but the decline might also be of interest since
influenza-like symptoms after the influenza season might indicate, for example,
a bioterrorist attack.
When the knowledge of the shape of the curve is uncertain, a nonparametric

method is of interest. Frisén (2000) suggested surveillance that is not based on
any parametric model but only on monotonicity restrictions. The surveillance
method was described and evaluated by Andersson (2002). The method is
developed for cyclical processes with the aim of detecting a turn (peak or trough)
as soon as possible. It is a Shiryaev–Roberts variant of the maximum likelihood
ratio method based on the statistic

max fYs
�ys�C�s��

max fYs
�ys�D�s��

using the maximum likelihood over the class of all monotonic (D) or unim-
odal (C) functions. The maximum likelihood estimator of 	 under the mono-
tonicity restriction is described by, for example, Robertson et al. (1988). The
maximum likelihood estimator of 	 under the unimodality restriction was given
by Frisén (1986).

3.7.2 Change between Unknown Incidences

The value of the incidence after a change is seldom known. However, false
alarm properties will remain even if the size of the change is not known. For the
design of methods, it is required only to specify a specific type of change which
the methods should be as optimal as possible in detecting. The Shewhart method
does not involve the size of the shift as a parameter. This is a disadvantage.
Knowledge of the baseline is important. Often the baseline rate is estimated

and used as a plug-in value in the method. The estimated baseline value will
affect the performance of the method. If the baseline rate is underestimated
we will get more false alarms than if the true value is used. The opposite is
true if the baseline rate is overestimated. A ‘self-starting’ technique is described
in Chapter 6. To detect emerging clusters of a disease, Kleinman et al. (2004)
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estimated the baseline by generalized linear mixed models using a history of
naturally occurring disease. The approach was illustrated using data on health
care visits in the context of syndromic surveillance for anthrax. For spatial
surveillance, not only is the baseline level important, but also the baseline spatial
correlation between regions during the in-control period. Rogerson and Yamada
(2004) showed that if the spatial correlation was ignored in the construction of
a multivariate CUSUM method, when there in fact was true spatial correlation
between regions, then ARL0 was worse than anticipated.
One way to avoid the problem of unknown parameters is to transform the

data to invariant statistics. Frisén (1992) and Sullivan and Jones (2002) use the
deviation of each observation from the average of all previous ones. Gordon and
Pollak (1997) use invariant statistics combined by the Shiryaev–Roberts method
to handle the case of an unknown pre-change mean of a normal distribution.
Krieger et al. (2003) use invariant statistics combined by the CUSUM and by
the Shiryaev–Roberts method for surveillance of change in regression from an
unknown pre-change one. In Chapter 5 a model (and corresponding statistic)
which does not require the number of people at risk is demonstrated to be useful.
When both the baseline incidence and the increase at a change are unknown

we aim for the detection of a change to a stochastically larger distribution. Bell
et al. (1994) suggested a nonparametric method geared to the exponential distri-
bution. They apply their method to the detection of a change of the parameter
in a Bernoulli process to an unknown but larger value. Asymptotic efficiency for
their method is reported. The nonparametric method of Section 3.7.1 designed
for detection of a change frommonotonicity also avoids the problem of unknown
values of the baseline and the change by only using the monotonicity properties.
The problem of unknown parameter values can be handled by a statistic

which involves the maximum difference (measured by the likelihood ratio,
for example) between the baseline and the changed level. The GLR method
(Lai, 1995, 1998) uses the maximum likelihood estimator of the value after the
change. Kulldorff (2001) used the same technique for detection of clustering in
spatial patterns.
The MLR method suggested by Pollak and Siegmund (1975) uses priors

for the unknown parameters in the CUSUM method. Priors are also used by
Radaelli (1996) for the sets method. Lawson (2004) used priors for the unknown
parameters to calculate the posterior means in a Bayesian space-time interaction
model.
To control the false alarms is usually more important than to optimize the

detection ability. The unknown parameters can be handled within different
frameworks corresponding to different restrictions on possible optimality.

3.7.3 Spatial and Other Multivariate Surveillance

In many public health surveillance programs measurements are obtained not
only in time but also at various locations. For example, the cases of disease
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reported to the CDC through the NNDSS are collected at various places all
over the USA. Several interesting new approaches for public health surveillance
have recently been developed, such as EARS (described by Hutwagner et al.,
2003), ESSENCE (Lombardo et al., 2003), RODS (Tsui et al., 2003), and WSARE
(Wong et al., 2003) (also described in Chapter 10).
The inferential problems involved in spatial surveillance are multivariate and

such techniques are discussed in this book both in Chapters 6 and 7 on spatial
surveillance and in Chapter 9 on multivariate surveillance. Also, when many
symptoms are considered we have a situation of multivariate surveillance.
When confronted with a problem involving both spatial and temporal

components, which is the case in surveillance of spatial structures, different
approaches can be used. A stepwise reduction of the surveillance problem is
common. One is to perform parallel surveillance for each spatial component
(e.g. location) and sound a general alarm when there is an alarm for any of
the components. This approach was used for different cluster sizes and cluster
locations by Kulldorff (2001).
Another way is to first reduce the information to one statistic which expresses

the spatial pattern, and then monitor this statistic in time. Then usually the
correlations between the variables are used in the transformation. Rogerson
(1997, 2001) uses this approach together with a CUSUM method. One can
alternatively use a vector accumulation approach, where the information is
cumulated in vectors, and for each time point transform these into alarm stat-
istics; see, for example, Rogerson and Yamada (2004). It is also possible to
construct the multivariate method while aiming to satisfy some global optim-
ality criterion. Järpe (1999) suggested an ED optimal surveillance method of
clustering in a spatial log-linear model.
The multivariate methods can be evaluated by the measures and criteria

described above. For example, Frisén and Wessman (1999) suggested a gener-
alization of the ARL measure to allow for the possibility of different change
times for different variables. Control of the false discovery rate is of interest
when conclusions are made about several variables and is used by Wong et al.
(2003). However, optimality is always complicated in multidimensional cases.
No approach will be uniformly optimal for all kinds of changes. The methods
which are optimal for detection of changes at a few prespecified locations are
different from those which are optimal for detection of a change in all or many
locations. This is exemplified by ARL1 in Rogerson and Yamada (2004) for the
case of spatial surveillance.

3.8 CONCLUDING REMARKS

The need for proper statistical evaluation is evident and the importance of
timeliness of on-line surveillance is more and more accepted. It is important to
recognize the sequential type of the decision situation.
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Optimality and evaluation of methods for spatial surveillance of public health
in practice are very important. It is necessary to know the basic properties of a
system before it is implemented. This involves many important aspects. One of
them is the use of proper statistical measures for evaluation which take care of
the special features of a surveillance system. There is a great difference between
surveillance and hypothesis testing in this respect.
The most commonly used formal optimality criterion specially designed for

surveillance is the ARL criterion. The logical drawbacks of this criterion and
the advantages of other ones, such as the minimal expected delay for a fixed
value of the probability of a false alarm, are discussed by Frisén (2003).
For the ED criterion knowledge of the distribution of the time of the change

is used. In practice, some knowledge should be available and should influence
the choice of method. Frisén and Wessman (1999) demonstrated that the LR
method is very robust in this respect.
The lack of need of a distribution for the change time might be seen as an

advantage for the minimax optimality criterion. However, this pessimistic view
might not reflect the situation in public health. Besides, it is not self-evident
that the possibility to optimize a method for a parameter should be seen as a
disadvantage even though it is hard to specify which value is of most interest.
In many applications, including public health surveillance, one measure of

performance alone is not enough. Therefore, one should aim at a complete and
thorough evaluation of proposed systems. We suggest using measures such as
the expected delay, the probability of successful detection and the predictive
value. Another important aspect of a system for surveillance is the robustness
against misspecification.
Knowledge of the properties of a system for surveillance is very important

both for the choice of the appropriate method and for the interpretation of an
alarm.
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Spatial and Spatio-Temporal
Disease Analysis

Andrew B. Lawson

4.1 INTRODUCTION

The representation and analysis of maps of disease incidence data is now estab-
lished as a basic tool in the analysis of regional public health. One of the
earliest examples of disease mapping is the map of the addresses of cholera
victims related to the locations of water supplies, by Snow (1854). In that case,
the street addresses of victims were recorded and their proximity to putative
pollution sources (water supply pumps) was assessed.
The subject area of disease mapping has developed considerably in recent

years. This growth in interest has led to a greater use of geographical or spatial
statistical tools in the analysis of data both routinely collected for public health
purposes and found within ecological studies of disease relating to explanatory
variables. The study of the geographical distribution of disease can have a variety
of uses. The main areas of application can be conveniently broken down into the
following classes: disease mapping; disease clustering; and ecological analysis.
In the first class, usually the object of the analysis is to provide (estimate) the
true relative risk of a disease of interest across a geographical study area (map):
a focus similar to the processing of pixel images to remove noise. Applications
for such methods lie in health services resource allocation and in disease atlas
construction (see, for example, Pickle and Hermann, 1995).
The second class, that of disease clustering, has particular importance in

public health surveillance, where it may be important to be able to assess
whether a disease map is clustered and where the clusters are located. This may
lead to examination of potential environmental hazards. A particular special
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case arises when a known location is thought to be a potential pollution hazard.
The analysis of disease incidence around a putative source of hazard is a special
case of cluster detection.
The third class, that of ecological analysis, is of great relevance within

epidemiological research, as its focus is the analysis of the geographical distri-
bution of disease in relation to explanatory covariates, usually at an aggreg-
ated spatial level. Many issues relating to disease mapping are also found
in this area, in addition to issues relating specifically to the incorporation of
covariates.
In the following, the issues surrounding the first class of problems, namely

disease mapping, are the focus of attention. While the focus here is on statistical
methods and issues in disease mapping, it should be noted that the results of
such statistical procedures are often represented visually in mapped form. Hence,
some consideration must be given to the purely cartographic issues that affect
the representation of geographical information. The method chosen to represent
disease intensity on the map, be it color scheme or symbolic representation,
can dramatically affect the resulting interpretation of disease distribution. It
is not the purpose of this review to detail such cognitive aspects of disease
mapping, but the reader is directed to some recent discussions of these issues:
MacEachren (1995), Monmonier (1996), Pickle and Hermann (1995), and
Walter (1993).

4.2 DISEASE MAPPING AND MAP RECONSTRUCTION

To begin, we consider two different mapping situations which clearly demarcate
approaches to this area. These situations are defined by the form of the mapped
data which arises in such studies. First, the lowest level of aggregation of
data observable in disease incidence studies is the case itself. Its geographical
reference (georeference), usually the residential address of the case, is the basic
mapping unit. This type of data is often referred to as case event data. We usually
define a fixed study area, denoted as W, the study window, within which occur
m case events. We term this a realization of events within W. The locations of
the residences of the cases are denoted by �xi�� i= 1� � � � �m.

The second type of data commonly found in such studies is a count of disease
cases within arbitrarily defined administrative regions (tracts), such as census
tracts, electoral districts or health authority areas. Essentially the count is an
aggregation of all the cases within the tract. Therefore the georeference of
the count is related to the tract location, where the individual case spatial
references (locations) are lost. Denote the counts of disease within p tracts by
�yi�� i = 1� � � � � p. Often the latter form of data is more commonly available
from routine data sources such as government agencies than the first form.
Confidentiality can limit access to the case event realization.
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4.3 DISEASE MAP RESTORATION

4.3.1 Simple Statistical Representations

The representation of disease incidence data can vary from simple point object
maps for cases and pictorial representation of counts within tracts, to the
mapping of estimates from complex models purporting to describe the structure
of the disease events. In this section, we describe the range of mapping methods
from simple representations to model-based forms. The geographical incidence
of disease has as its fundamental unit of observation the address location of
cases of disease. The residential address (or possibly the employment address) of
cases of disease contains important information relating to the type of exposure
to environmental risks. Often, however, the exact address locations of cases are
not directly available, and one must use instead counts of disease in arbitrary
administrative regions, such as census tracts or postal districts. This lack of
precise spatial information may be due to confidentiality constraints relating to
the identification of case addresses or may be due to the scale of information
gathering.

4.3.1.1 Crude representation of disease distribution

The simplest possible mapping form is the depiction of disease rates at specific
sets of locations. For case events, this is a map of case event locations. For
counts within tracts, it is a pictorial representation of the number of events in
the tracts plotted at a suitable set of locations (e.g. tract centroids). The locations
of case events within a spatially heterogeneous population can display a small
amount of information concerning the overall pattern of disease events within
a window. Ross and Davis (1990) provide an example of such an analysis of
leukemia cluster data. However, any interpretation of the structure of these
events is severely limited by the lack of information concerning the spatial
distribution of the background population which might be ‘at risk’ from the
disease of concern and which gave rise to the cases of disease. This population
also has a spatial distribution, and failure to take account of this spatial variation
severely limits the ability to interpret the resulting case event map. In essence,
areas of high density of ‘at risk’ population would tend to yield high incidence
of case events and so, without taking account of this distribution, areas of high
disease intensity could be spuriously attributed to excess disease risk.
In the case of counts of cases of disease within tracts, similar considerations

apply when crude count maps are constructed. Here, variation in population
density also affects the spatial incidence of disease. It is also important to consider
how a count of cases could be depicted in a mapped representation. Counts
within tracts are totals of events from the whole tract region. If tracts are irreg-
ular, then a decision must be made either to ‘locate’ the count at some tract
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location (e.g. tract centroid, however defined) with suitable symbolization, or
to represent the count as a fill color or shade over the whole tract (choropleth
thematic map). In the former case, the choice of location will affect interpret-
ation. In the latter case, symbolization choice (shade and/or color) could also
distort interpretation, although an attempt to represent the whole tract may be
attractive.
In general, methods that attempt to incorporate the effect of background

‘at risk’ population are to be preferred. These are discussed in the next section.

4.3.1.2 Standardized mortality/morbidity ratios and standardization

To assess the status of an area with respect to disease incidence, it is convenient
first to attempt to assess what disease incidence should be locally ‘expected’ in
the tract area and then to compare the observed incidence with the ‘expected’
incidence. This approach has been traditionally used for the analysis of counts
within tracts and can also be applied to case event maps.

Case events Case events can be depicted as a map of point event locations. For
the purposes of assessment of differences in local disease risk it is appropriate to
convert these locations into a continuous surface describing the spatial variation
in intensity of the cases. Once this surface is computed, then a measure of local
variation is available at any spatial location within the observation window.
Denote the intensity surface as ��s�, where s is a spatial location. This surface
can be formally defined as the first-order intensity of a point process (Lawson and
Waller, 1996), and can be estimated by a variety of methods, including density
estimation (Härdle, 1991). To provide an estimate of the ‘at risk’ population at
spatial locations, it is necessary first to choose a measure that will represent
the intensity of cases ‘expected’ at such locations. Define this measure as �0�s�.
Two possibilities can be explored.
First, it is possible to obtain rates for the case disease from either the whole

study window or a larger enclosing region. Often these rates are available only
at an aggregated level (e.g. census tracts). The rates are obtained for a range of
subpopulation categories which are thought to affect the case disease incidence.
For example, the age and sex structure of the population or the deprivation
status of the area (see, for example, Carstairs, 1981) could affect the amount
of population ‘at risk’ from the case disease. The use of such external rates is
often called external standardization (Inskip et al., 1983). It should be noted
that rates computed from aggregated data will be less variable than those based
on density estimation of case events.
An alternative method of assessing the ‘at risk’ population structure is to

use a case event map of another disease, which represents the background
population but is not affected by the etiological processes of interest in the
case disease. For example, the spatial distribution of coronary heart disease
(CHD: ICD code, list A 410–414), could provide a control representation for
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respiratory cancer (ICD code, list A 162) when the latter is the case disease
in a study of air pollution effects, as CHD is less closely related to air pollution
insult. Other examples of the cited use of a control disease would be: larynx
cancer (case) and lung cancer (control) (Diggle, 1990), although this control
is complicated by the fact that lung cancer is also related to air pollution risk;
lower body cancers (control) and gastric cancer (case), where lower body organs
may only be affected by specific pollutants such as nickel (Lawson and Williams,
2000); birth defects (case) and live births (control).
While exact matching of diseases in this way will always be difficult, there

is an advantage in the use of control diseases in case event examples. If a
realization of the control disease is available in the form of a point event map,
then it is possible also to compute an estimate of the first-order intensity of
the control disease. This estimate can then be used directly to compare case
intensity with background intensity. Note that �0�s� can be estimated, equally,
from census tract standardized rates (see, for example, Lawson and Williams,
1994).
The estimates of ��s� and �0�s� can be compared in a variety of ways. First,

it is possible to map the ratio form,

R̂�s�= �̂�s�

�̂0�s�
� (4.1)

as suggested by Bithell (1990). Modifications to this procedure have been
proposed by Lawson and Williams (1993) and Kelsall and Diggle (1995). Care
must be taken to consider the effects of study/observation window edges on the
interpretation of the ratio. Some edge-effect compensation should be considered
when there is a considerable influence of window edges in the final interpret-
ation of the map. A detailed discussion of edge effects can be found in Lawson
et al. (1999) and Vidal-Rodeiro and Lawson (2005).
Apart from ratio forms, it is also possible to map transformations of ratios

(e.g. log R̂�s�) or to map

D̂�s�= �̂�s�− �̂0�s�� (4.2)

The choice of (4.1) or (4.2) will depend on the underlying model assumed for
the excess risk.
In all the approaches above to the mapping of case event data, some

smoothing or interpolation of the event or control data has to be made. The
statistical properties of this operation depend on the method used for estimation
of each component of the map. Optimal choices of the smoothing constant
(i.e. bandwidth) are known for density estimation and kernel smoothing
(Härdle, 1991).
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Tract counts As in the analysis of case events, it is usual to assess maps of
count data by comparison of the observed counts to those counts ‘expected’
to arise given the ‘at risk’ population structure of the tracts. Traditionally,
the ratio of observed to expected counts within tracts is called a standardized
mortality/morbidity ratio (SMR) and this ratio is an estimate of relative risk
within each tract (i.e. the ratio describes the odds of being in the disease group
rather than the background group). The justification for the use of SMRs can
be supported by the analysis of likelihood models with multiplicative expected
risk (see, for example, Breslow and Day, 1987).
Define yi as the observed count of the case disease in the ith tract, and ei as

the expected count within the same tract. Then the SMR is defined as

R̂i =
yi
ei
� (4.3)

The alternative measure of the relation between observed and expected counts,
which is related to an additive risk model, is the difference,

D̂i = yi− ei� (4.4)

In this case it must be decided whether to express the R̂i or D̂i as fill patterns
in each region, or to locate the result at some specified tract location, such
as the centroid. If it is decided that these measures should be regarded as
continuous across regions then some further interpolation of R̂i or D̂i must be
made (see Breslow and Day, 1987, pp. 198–199). Figure 4.1 displays the SMR
map for congenital abnormality deaths for 1990 in South Carolina, USA.
SMRs are commonly used in disease map presentation, but have many draw-

backs. First, they are based on ratio estimators and hence can yield large
changes in estimate with relatively small changes in expected value. In the
extreme, when a (near-)zero expectation is found the SMR will be very large for
any positive count. Also the zero SMRs do not distinguish variation in expected
counts, and the SMR variance is proportional to 1/ei. The SMR is essentially a
saturated estimate of relative risk and hence is not parsimonious.

4.3.1.3 Interpolation

In many of the mapping approaches mentioned above, use must be made of
interpolation methods to provide estimates of a surface measure at locations
where there are no observations. For example, we may wish to map contours
of a set of tract counts if we believe the counts to represent a continuously
varying risk surface. For the purposes of contouring, a grid of surface interpolant
values must be provided. Smoothing of SMRs has been advocated by Breslow
and Day (1987). Those authors employ kernel smoothing to interpolate the
surface (in a temporal application). The advantage of such smoothing is that the
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Congenital abnormality deaths SMR 1990
using 8 year rate

1.51 to 4.1 (9)
1.09 to 1.51 (9)
0.78 to 1.09 (9)
0.5   to 0.78 (9)
0      to 0.5 (10)

Figure 4.1 SMR for congenetial abnormality deaths, South Carolina, 1990.

method preserves the positivity condition of SMRs: that is, the method does not
produce negative interpolants (which are invalid), unlike kriging methods (for
discussion of this issue, see Lawson and Cressie, 2000). Many mapping packages
utilize interpolation methods to provide gridded data for further contour and
perspective view plotting (e.g. ArcView, R, S-Plus). However, often the methods
used are not clearly defined or they are based on mathematical rather than
statistical interpolants (e.g. the Akima or Delauney interpolator).
Note that the comments above also apply directly to case event density

estimation. The use of kernel density estimation is recommended, with edge
correction as appropriate. For ratio estimation, Kelsall and Diggle (1995)
recommend the joint estimation of a common smoothing parameter for the
numerator and denominator of R�s� when a control disease realization is
available.

4.3.1.4 Exploratory methods

The discussion above, concerning the construction of disease maps, could be
considered as exploratory analysis of spatial disease patterns. For example,
the construction and mapping of ratios or differences of case and background
measures is useful for highlighting areas of incidence requiring further consid-
eration. Contour plots or surface views of such mapped data can be derived.
Comments concerning the psychological interpretation of mapped patterns also



62 Spatial and spatio-temporal disease analysis

apply here (Walter, 1993; Ripley, 1981). However, inspection of maps of simple
ratios or differences cannot provide accurate assessment of the statistical signi-
ficance of, for example, areas of elevated disease risk. Proper inference requires
statistical models, and that is the subject of the next section.

4.3.2 Basic Models

In the previous section we discussed the use of primarily descriptive methods in
the construction of disease maps. These methods do not introduce any particular
model structure or constraint into the mapping process. This can be advant-
ageous at an early or exploratory stage in the analysis of disease data but,
when more substantive hypotheses and/or greater amounts of prior informa-
tion are available concerning the problem, it may be advantageous to consider
a model-based approach to disease map construction. Model-based approaches
can also be used in an exploratory setting, and if sufficiently general models
are employed then this can lead to better focusing of subsequent hypothesis
generation. In what follows, we first consider likelihood models for case event
data and then discuss the inclusion of extra information in the form of random
effects.

4.3.2.1 Likelihood models

Denote a realization of n case events within a window W, as �xi�� i = 1� � � � m.
In addition, define the count of cases of disease within the ith tract �Wi�� i =
1� � � � � p, of an arbitrarily regionalized tract map as yi.

Case event data Usually the basic model for case event data is derived from
the following assumptions:

(1) Individuals within the study population behave independently with respect
to disease propensity, after allowance is made for observed or unobserved
confounding variables.

(2) The underlying ‘at risk’ population intensity has a continuous spatial distri-
bution, within specified boundary vertices.

(3) The case events are unique, in that they occur as single spatially separate
events.

Assumption 1 allows the events to be modeled via a likelihood approach,
which is valid conditional on the outcomes of confounder variables. Further,
assumption 2, if valid, allows the likelihood to be constructed with a back-
ground continuous modulating intensity function ��0�s�� representing the ‘at
risk’ population. The uniqueness of case event locations is a requirement of
point process theory (the property called orderliness: see Daley and Vere-Jones,
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1988), which allows the application of Poisson process models in this analysis.
Assumption 1 is generally valid for noninfectious diseases. It may also be valid
for infectious diseases if the information about current infectives were known at
given time points. Assumption 2 will be valid at appropriate scales of analysis. It
may not hold when large areas of a study window include zones of zero popula-
tion (e.g. harbors or industrial zones). Often models can be restricted to exclude
these areas, however. Assumption 3 will usually hold for relatively rare diseases
but may be violated when households have multiple cases and these occur
at coincident locations. This may not be important at more aggregate scales,
but could be important at a fine spatial scale. Remedies for such nonorder-
liness are the use of declustering algorithms (which perturb the locations by
small amounts), or analysis at a higher aggregation level. Note that it is also
possible to use a conventional case–control approach to this problem (Diggle
et al., 2000).
Given the assumptions above, it is possible to specify that the case events arise

as a realization of a Poisson point process, modulated by �0�s�, with first-order
multiplicative intensity:

��x�= 	�0�s��1�s
��� (4.5)

In this definition, �1�s
�� represents a function of confounder variables as well
as location, � is a parameter (vector) and 	 is the overall constant rate of the
process. The confounder variables can be widely defined, however. For example,
a number of random effects could be included to represent unobserved effects, as
well as observed covariates, as could functions of other locations. The inclusion
of random effects could be chosen if it is felt that unobserved heterogeneity
is present in the disease process. This could represent the effect of known or
unknown covariates which are unobserved. The likelihood associated with this
is given by:

L =
[

m∏
i=1

��si�

]
exp

{
−
∫
W
��u�du

}
� (4.6)

For suitably specified f���, a variety of models can be derived. In the case
of disease mapping, where only the background intensity is to be accounted
for, a reasonable approach to intensity parameterization is ��x�= 	�0�s��1�s�.
The preceding definition can be used as an informal justification for the use
of intensity ratios �̂��s�/̂�1�s��, in the mapping of case event data; such ratios
represent the local ‘extraction’ of ‘at risk’ background, under a multiplicative
hazard model. On the other hand, under a pure additive model, ��s�= 	��0�s�+
�1�s
��� say, differencing the two estimated rates would be supported.

Tract count data In the case of observed counts of disease within tracts,
the Poisson process assumptions given above mean that the counts are Poisson
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distributed with, for each tract, a different expectation :
∫
Wi

��u�du, where
Wi denotes the extent of the ith tract. Then the log-likelihood based on a Poisson
distribution is, bar an additive constant only depending on the data, given by

l=
p∑

i=1

{
yi log

∫
Wi

��u�du−
∫
Wi

��u�du
}
� (4.7)

where p is the number of tracts.
Often a parameterization in (4.7) is assumed where, as in the case event

example, the intensity is defined as a simple multiplicative function of the
background �0�s�. An assumption is often made at this point that the integration
over the ith tract area can be regarded as a parameter within a model hierarchy,
without considering the spatial continuity of the intensity. That is, yi ∼ Pois��i�,
where �i is the rate in the ith region.
The mapping of ‘extracted’ intensities for case events or modified SMRs for

tract counts is based on the view that once the ‘at risk’ background is extracted
from the observed data, then the resulting distribution of risk represents a ‘clean’
map of the ground truth. Of course, as the background function �0�s� must
usually be estimated, then some variability in the resulting map will occur by
inclusion of different estimators of �0�s�. For example, for tract count data, the
use of external standardization alone to estimate the expected counts within
tracts may provide a different map from that provided by a combination of
external standardization and measures of tract-specific deprivation (e.g. depriva-
tion indices: see Carstairs, 1981). If any confounding variables are available
and can be included within the estimate of the ‘at risk’ background, then
these should be considered for inclusion within the �0�s� function. Examples
of confounding variables could be found from national census data, particu-
larly relating to socioeconomic measures. These measures are often defined as
‘deprivation’ indicators, or could relate to lifestyle choices. For example, the
local rate of car ownership or the percentage unemployed within a census tract
or other small area could provide a surrogate measure for increased risk, due to
correlations between these variables and poor housing, smoking lifestyles, and
ill health. Hence, if it is possible to include such variables in the estimation of
�0�s�, then any resulting map will display a close representation of the ‘true’
underlying risk surface. When it is not possible to include such variables within
�0�s�, it is sometimes possible to adapt a mapping method to include covariables
of this type by inclusion within �1�s� itself.

4.3.2.2 Random effects and Bayesian models

In the sections above some simple approaches to mapping intensities and counts
within tracts have been described. These methods assume that once all known
and observable confounding variables are included within the g�x� estimation
then the resulting map will be clean of all artifacts and hence will depict the
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true excess risk surface. However, it is often the case that unobserved effects
could be thought to exist within the observed data and that these effects should
also be included within the analysis. These effects are often termed random
effects, and their analysis has provided a large literature both in statistical
methodology and in epidemiological applications; for recent views, see Elliott
et al. (2000) and Lawson (2001). Within the literature on disease mapping,
there has been a considerable growth in recent years in modeling random
effects of various kinds. In the mapping context, a random effect could take
a variety of forms. In its simplest form, a random effect is an extra quantity
of variation (or variance component) which is estimable within the map and
which can be ascribed a defined probabilistic structure. This component can
affect individuals or can be associated with tracts or covariables. For example,
individuals vary in susceptibility to disease, and hence individuals who become
cases could have a random component relating to different susceptibility. This
is sometimes known as frailty. Another example is the interpolation of a spatial
covariable to the locations of case events or tract centroids. In that case, some
error will be included in the interpolation process, and could be included within
the resulting analysis of case or count events. Also, the locations of case events
might not be precisely known or subject to some random shift, which may be
related to uncertain residential exposure. (However, this type of uncertainty
may be better modeled by a more complex integrated intensity model, which
no longer provides an independent observation model.) Finally, within any
predefined spatial unit, such as tracts or regions, it may be expected that there
could be components of variation attributable to these different spatial units.
These components could have different forms, depending on the degree of prior
knowledge concerning the nature of this extra variation. For example, when
observed counts, thought to be governed by a Poisson distribution, display
greater variation than expected (i.e. the variance is greater than the mean), it is
sometimes described as overdispersion. This overdispersion can occur for various
reasons. Often it arises when clustering occurs in the counts at a particular
scale. It can also occur when considerable numbers of cells have zero counts
(sparseness), which can arise when rare diseases are mapped. Furthermore,
in spatial applications it is important to distinguish two basic forms of extra
variation. First, as in the aspatial case, a form of independent and spatially
uncorrelated extra variation can be assumed. This is often called uncorrelated
heterogeneity (Besag et al., 1991). Another form of random effect is that which
arises from a model where it is thought that the spatial unit (case event, tract
or region) is correlated with neighbouring spatial units. This is often termed
correlated heterogeneity. Essentially, this form of extra variation implies that there
exists spatial autocorrelation between spatial units: see Cliff and Ord (1981)
for an accessible introduction to spatial autocorrelation. This autocorrelation
could arise for a variety of reasons. First, the disease of concern could be
naturally clustered in its spatial distribution at the scale of observation. Many
infectious diseases display such spatial clustering, and a number of apparently
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noninfectious diseases also cluster (Cuzick and Hills, 1991; Glick, 1979). Second,
autocorrelation can be induced in spatial disease patterns by the existence of
unobserved environmental or frailty effects. Hence, the extra variation observed
in any application could arise from confounding variables that have not been
included in the analysis. In disease mapping examples this could easily arise
when simple mapping methods are used on SMRs with just basic age–sex
standardization.
In the discussion above on heterogeneity, it is assumed that a global measure

of heterogeneity applies to a mapped pattern. That is, any extra variation in
the pattern can be captured by including a general heterogeneity term in the
mapping model.

4.3.3 A Simple Overdispersion Model

A common assumption made when examining tract counts is that yi ∼ Pois�eii�
independently, and that i ∼ G�����. The latter gamma distribution is often
assumed for the Poisson rate parameter and provides for a measure of over-
dispersion relative to the Poisson distribution itself, depending on the ��� values
used. The joint distribution is now given by the product of a Poisson likelihood
and a gamma distribution. At this stage a choice must be made concerning how
the random intensities are to be estimated or otherwise handled. One approach
to this problem is to average over the values of i to yield what is often called
the marginal likelihood. Having averaged over this density, it is then possible to
apply standard methods such as maximum likelihood. This is usually known
as marginal maximum likelihood (Bock and Aitkin, 1981; Aitkin, 1996b). In
this approach, the parameters of the gamma distribution are estimated from the
integrated likelihood. A further development of this approach is to replace the
gamma density by a finite mixture. This approach is essentially nonparametric
and does not require the complete specification of the parameter distribution
(Aitkin, 1996a). Although the example specified here concerns tract counts, the
method described above can equally be applied to case event data, by inclusion
of a random component in the intensity specification.
It is natural to consider modeling random effects within a Bayesian frame-

work. First, random effects naturally have prior distributions and the joint
density discussed above is proportional to the posterior distribution for the
parameters of interest. Hence, full Bayes and empirical Bayes (posterior
approximation) methods have developed naturally in the field of disease
mapping. The prior distribution(s) for the (�, say) parameters in the intensity
specification 	�0�s��1�s
��, have hyperparameters (in the Poisson–gamma
example above, these were ���). These hyperparameters can also have
hyperprior distributions. The distributions chosen for these parameters depend
on the application. In the full Bayesian approach, inference is based on the
posterior distribution of � given the data. However, as in the frequentist
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approach above, it is possible to adopt an intermediate approach where the
posterior distribution is approximated in some way, and subsequent inference
may be made via frequentist-style estimation of parameters or by computing
the approximated posterior distribution. In the tract count example, approxim-
ation via intermediate prior parameter estimation would involve the estimation
of � and �, followed by inference on the estimated posterior distribution (see
Carlin and Louis, 1996, pp. 67–68).
Few examples exist of simple Bayesian approaches to the analysis of case

event data in the disease mapping context. One approach which has been
described (Lawson et al., 1996) can be used with simple prior distributions for
parameters and the authors provide approximate empirical Bayes estimators
based on Dirichlet tile area integral approximations. For count data, a number
of examples exist where independent Poisson distributed counts (with constant
within-tract rate, �i) are associated with prior distributions of a variety of
complexity. The earliest examples of such a Bayesian mapping approach can be
found in Manton et al. (1981) and Tsutakawa (1988). Also, Clayton and Kaldor
(1987) developed a Bayesian analysis of a Poisson likelihood model where yi has
expectation iei, and found that with a prior distribution given by i ∼ G�����,
the Bayes estimate of i is the posterior expectation

yi+�

ei+�
· (4.8)

Hence, one could map these Bayes estimates directly. Now the distribution
of i conditional on yi is G�yi +�� ei +�� and a Bayesian approach would
require summarization of i from this posterior distribution. In practice, this
is often obtained by generation of realizations from this posterior and then
the summarizations are empirical (e.g. Markov Chain Monte Carlo (MCMC)
methods). Other approaches and variants in the analysis of simple mapping
models have been proposed by Tsutakawa (1988), Marshall (1991) and Devine
and Louis (1994). In the next section, more sophisticated models for the prior
structure of the parameters of the map are discussed.

4.3.4 Advanced Bayesian Models

Many of the models discussed above can be extended to include the specification
of prior distributions for parameters and hence can be examined via Bayesian
methods. In general, we distinguish here between empirical Bayes methods and
full Bayes methods, on the basis that any method which seeks to approximate
the posterior distribution is regarded as empirical Bayes (Bernardo and Smith,
1994). All other methods are regarded as full Bayes. This latter category includes
maximum a posteriori estimation, estimation of posterior functionals, as well as
posterior sampling.
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Full posterior inference for Bayesian models has recently become feasible,
largely because of the increased use of MCMCmethods of posterior sampling. The
first full sampler reported for a disease mapping example was a Gibbs sampler
applied to a general model for intrinsic autoregression and uncorrelated hetero-
geneity by Besag et al. (1991). Subsequently, Clayton and Bernardinelli (1992),
Breslow and Clayton (1993), and Bernardinelli et al. (1995) have adapted this
approach to mapping, ecological analysis, and space-time problems.
This has been facilitated by the availability of general Gibbs sampling

packages such as BUGS (GeoBUGS and WinBUGS) and MLwiN. Such Gibbs
sampling methods can be applied to focused clustering problems as well as
mapping/ecological studies. However, specific variations in model components
(e.g. variation in the spatial correlation structure) cannot be easily accommod-
ated in this general Bayesian package. Alternative, and more general, posterior
sampling methods, such as the Metropolis–Hastings algorithm, are currently
not available in a packaged form, although these methods can accommodate
considerable variation in model specification.
Generalized linear mixed models have as their focus the inclusion of random

effects within the generalized linear modeling framework. This is a general
class of models allowing a range of data likelihoods (including Poisson and
binomial) and the inclusion of uncorrelated and correlated heterogeneity. Often
these models are fitted, after suitable approximations, using general software
packages such as SAS or R. For example, for small area counts within m tracts
a Poisson likelihood can be assumed with a log-linear model for the additive
covariate and (random) effect of heterogeneity:

yi ∼ Pois�eii��

log�i� = xt
i�+ui+ vi�

where xt
i� is a linear predictor of fixed effects, xt

i is the ith row of the covariate
design matrix, and � a parameter vector, vi is an uncorrelated heterogeneity
term, and ui is a correlated heterogeneity term. In a full Bayesian analysis
�� �ui��vi� all have prior distributions. Approximations to the likelihood or
posterior distributions allow the use of SAS or R to fit such models. WinBUGS
can be used to carry out full Bayesian analysis. Chapter 5 examines in more
detail aspects of these models in the surveillance context.

4.4 RESIDUALS AND GOODNESS OF FIT

The analysis of residuals and summary functions of residuals forms a funda-
mental part of the assessment of model goodness of fit in any area of statistical
application. In the case of spatial or spatio-temporal analysis there is no
exception, although full residual analysis is seldom presented in published work
in the area. Often goodness-of-fit measures are aggregate functions of piecewise
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residuals, while measures relating to individual residuals are also available. A
variety of methods are available when full residual analysis is to be undertaken.
Define a piecewise residual as the standardized difference between the observed
value and the fitted model value. Usually the standardization will be based on
a measure of the variability of the difference between the two values.
Within a frequentist paradigm, it is common practice to specify a residual as

r1i = yi− ŷi �4�9�

or

r2i = r1i/
√
var�r1i�

where ŷi is a fitted value under a given model. When complex spatial models
are considered, it is often easier to examine residuals such as �r1i� using Monte
Carlo methods. In fact it is straightforward to implement a parametric bootstrap
approach to residual diagnostics for likelihood models. The simplest case is that
of tract count data, where for each tract an observed count can be compared
to a fitted count. In general, when Poisson likelihood models are assumed
with yi ∼ Pois�eii� then it is straightforward to employ a parametric bootstrap
by generating a set of simulated counts �yij�� j = 1� � � � � J, from a Poisson
distribution with mean eîi. In this way, a tractwise ranking, and hence p-value,
can be computed by assessing the rank of the residual within the pooled set

�yi− eîi
 �yij− eîi�� j= 1� � � � � J��

Denote the observed standardized residual as r2i and the simulated residuals as
�rs2ij�. Note that it is now possible to compare functions of the residuals as well
as making direct comparisons.
The spatial distribution of residuals is also important. For example, in a

spatial context, it may be appropriate to examine the spatial autocorrelation of
the observed residuals. Hence, a Monte Carlo assessment of degree of residual
autocorrelation could be made by comparing Moran’s I statistic for the observed
residuals, say,M��r2i��, to that found for the simulated count residualsM��rs2ij��.

In the situation where case events are available, it is not straightforward to
define a residual. As the data are in the form of locations, it is not possible to
directly compare observed and fitted values. However, by a suitable transform-
ation, it is possible to compare measures which describe the spatial distribution
of the cases. A model which fits the data well should provide a good fit to the
spatial distribution of the cases. It is possible to examine the difference between
a local estimate of the case density, �̂�xi�, and that predicted from a fitted model,
�̂∗�xi�, that is, at the ith location:

ri = �̂i− �̂∗
i � (4.10)

where �i ≡ ��xi�.
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This approach has been proposed in the derivation of a deviance residual for
modulated heterogeneous Poisson process models (Lawson, 1993). This residual
can incorporate estimated expected rates. It is possible to simulate J realizations
of events from the fitted model, and the local density of these realizations could
be compared pointwise with �̂∗

i . Of course, these proposals rely on a series of
smoothing operations. More complex alternative procedures could be pursued.
In a Bayesian setting it is natural to consider the appropriate version of (4.9).

Carlin and Louis (1996) describe a Bayesian residual as

ri = yi−
1
G

G∑
g=1

E�yi��g�i � (4.11)

where E�yi�i� is the expected value from the posterior predictive distribution,
and (in the context of MCMC sampling) �

�g�
i � is a set of parameter values

sampled from the posterior distribution.
In the tract count modeling case, this residual can therefore be approximated,

when a constant tract rate is assumed, by:

ri = yi−
1
G

G∑
g=1

ei
�g�
i � (4.12)

This residual averages over the posterior sample. An alternative possibility is
to average the �

�g�
i � sample, ̂i say, to yield a posterior expected value of

yi, say ŷ̂i = eîi, and to form ri = yi − ŷ̂i. A further possibility is simply to
form r2i at each iteration of a posterior sampler and to average these over
the converged sample (Spiegelhalter et al., 1996). These residuals can provide
pointwise goodness-of-fit measures as well as global goodness-of-fit measures,
and can be assessed using Monte Carlo methods. Surveillance residuals are
based on these constructs (Lawson et al., 2004).

Deletion residuals and residuals based on conditional predictive ordinates
can also be defined for tract counts (Stern and Cressie, 2000). To further
assess the distribution of residuals, it would be advantageous to be able to
apply the equivalent of the parametric bootstrap in the Bayesian setting. With
convergence of a MCMC sampler, it is possible to make subsamples of the
converged output. If these samples are separated by a distance (h) which will
guarantee approximate independence (Robert and Casella, 1999), then a set of
J such samples could be used to generate �yi�j= 1� � � � � J, with yi ← Pois�eîij�,
and the residual computed from the data ri can be compared to the set of J
residuals computed from yi−E�yi�, where E�yi� is the predictive expected value
of yi. In turn, these residuals can be used to assess functions of the residuals and
goodness-of-fit measures. The choice of J will usually be 99 or 999, depending
on the level of accuracy required.
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In the situation where case events are examined it is also possible to derive a
Bayesian residual as we can evaluate E���x��g��� based on the �

�g�
i � posterior

samples. Hence it is possible to examine:

ri = �̂i−
1
G

G∑
g=1

�̂
∗�g�
i

where �̂
∗�g�
i is the fitted model estimate of intensity corresponding to the gth

posterior sample. Further, it is also possible with subsampling for approximate
independence to use a parametric bootstrap approach to residual significance
testing.

4.5 SPATIO-TEMPORAL ANALYSIS

As in other application areas, it is possible to consider the analysis of disease
maps which have an associated temporal dimension (a map evolution). The
sequential analysis of georeferenced data will be discussed in the following
section and elsewhere in this volume. The two most common formats for obser-
vations are: georeferenced case events which have associated a time of diagnosis
or registration or onset, that is, we observe, within a fixed time period T� m cases
at locations �xi� ti�� i= 1� � � � �m; and counts of cases of disease within tracts are
available for a sequence of T time periods that is, we observe a binning of case
events within p×T space-time units yit� i= 1� � � � � p� t = 1� � � � � T .
Figure 4.2 displays an example of space-time count data: a sequence of five

biweekly standardized incidence ratio maps for parishes of Cumbria, UK, for
the foot-and-mouth disease epidemic of 2001. While this is an animal epidemic
example, this does provide a glimpse of the data available and the nature of
space-time variation of infectious disease. Surveillance of animal populations is
also important in the bioterrorism context of course.
In the case event situation, few examples exist of mapping analysis. However,

it is possible to specify a model to describe the first-order intensity of the
space-time process (as in the spatial case). The intensity at time t can be
specified as:

��x� t�= 	g�x� t�f1�x
 x�f2�t
 t�f3�x� t
 xt�� (4.13)

where 	 is a constant background rate (in space × time units), g�x� t� is a modu-
lation function describing the spatio-temporal ‘at-risk’ population background
in the study region, fk are appropriately defined functions of space, time, and
space-time, and x� t� xt are parameters relating to the spatial, temporal, and
spatio-temporal components of the model.
Here each component of the fk can represent a full model for the component,

that is, f1 can include spatial trend, covariate, and covariance terms, and f2 can
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Figure 4.2 Standardized incidence ratio map sequence (five periods) for the UK foot-
and-mouth disease epidemic of 2001. The sequence is rowwise from top (biweekly).

contain similar terms for the temporal effects, while f3 can contain interaction
terms between the components in space and time. Note that this final term
can include separate spatial structures relating to interactions which are not
included in f1 or f2. The exact specification of each of these components will
depend on the application, but the separation of these three components is
helpful in the formulation of components.
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The above intensity specification can be used as a basis for the development
of likelihood and Bayesian models for case events; if it can be assumed that the
events form a modulated Poisson process in space-time then a likelihood can
be specified as in the spatial case.
Note that the above case event intensity specification can be applied in the

space-time case where small area counts are observed within fixed time periods
�lj�� j = 1� � � � � T . In addition, the counts are independent conditional on the
intensity given, and this expectation can be used within a likelihood modeling
framework or within Bayesian model extensions. If a constant rate approxima-
tion is valid then it is straightforward to derive the minimal and maximal relative
risk estimates under the Poisson likelihood model assuming E�yij�= �ij = eijij,
where eij is the expected rate in the required region/period. The maximal model
estimate is ̂ij = yij

eij
, the space-time equivalent of the SMR, while the minimal

model estimate is ̂=
∑

i
∑

j yij∑
i
∑

j eij
. Smooth space-time maps of relative risk estimates

will usually lie between these two extremes.
Development of count data modeling based on tract/period data has recently

seen considerable development. The first example of such modeling was by
Bernardinelli et al. (1995). In their approach, they assumed a Poisson model
with E�yij�= �ij = eijij and log relative risk of the form

log�ij�= �+�i+�tj+�itj (4.14)

where � is an intercept (overall rate), tj is the (suitably defined) time of the
jth interval, �i is an area (tract) random effect, �tj is a linear trend term in
time tj, and �i an interaction random effect between area and time. Suitable
prior distributions were assumed for the parameters in this model and posterior
sampling of the relevant parameters was performed via Gibbs sampling. Note
that in this formulation there is no spatial trend, only a simple linear time trend
and no temporal random effect. The components in (4.13) above allow a range
of effects in each of the spatial and temporal components, however, and this
model could be extended in a variety of directions. A variant of this model is
discussed in Chapter 5 of this volume.
Waller et al. (1997) and Xia and Carlin (1998) (see also Carlin and Louis,

1996) subsequently proposed a different model where the log relative risk is
parameterized as

log�ijkl�= �
�j�
i +�

�j�
i + fixed covariate terms �kl�

where �
�j�
i and �

�j�
i are uncorrelated and correlated heterogeneity terms which

can vary in time. This model was further developed by Xia and Carlin (1998)
who also examined a smoking covariate which has associated sampling error
and spatial correlation. Their model was defined as:

log�ijkl�= �+ �tj+�ij+	pi+ fixed covariate terms �kl�
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where an intercept term � is included with a spatial random effect nested within
time ��ij�, a linear time trend �tj, and pi is a smoking variable measured within
the tract unit. In these model formulations no spatial trend is admitted and all
time-based random effects are assumed to be subsumed within the �ij terms.

To allow for the possibility of time-dependent effects in the covariates included
(race and age), Knorr-Held and Besag (1998) formulated a different model
for the same data set (88 county Ohio lung cancer mortality, 1968–1988).
Employing a binomial likelihood for the number at risk �yijkl� with probability
�ijkl, for the counts, and using a logit link to the linear predictor, they proposed

�ijkl = ln��ijkl/�1−�ijkl���

where

�ijkl = �j+�kj+�lj+�zi+i+�i� (4.15)

Here �j is a time-based random intercept, �kj a kth age group effect at time j� �lj

a gender × race effect for combination l at the jth time, �zi a fixed covariate
effect term where the zi is an urbanization index, and i��i are correlated and
uncorrelated heterogeneity terms which are not time-dependent. No time trend
or spatial trend terms are used, and these effects will (partially) be subsumed
within the heterogeneity terms and the �j+�kj+�lj terms.
More recent examples of spatio-temporal modeling include extensions of

mixture models (Böhning et al., 2000), which examines time periods separately
without interaction, and the use of a variant of a full multivariate normal spatial
prior distribution for the spatial random effects (Sun et al., 2000). Other develop-
ments include the extension the Knorr-Held and Besag model to include different
forms of random interaction terms (Knorr-Held 2000), and the use of covariates
at different levels of aggregation (Zhu and Carlin, 2000). A recent brief review
of this area in relation to fitting models is provided in Lawson et al. (2003).
Overall, there are a variety of forms which can be adopted for spatio-

temporal parameterization of the log relative risk, and it is not yet clear which
of the models so far proposed will be most generally useful. Many of the
above examples exclude spatial and/or temporal trend modeling, although some
examples absorb these effects within more general random effects. Allowing
for temporal trend via random walk intercept prior distributions provides
a relatively nonparametric approach to temporal shifting, while it is clear
that covariate interactions with time should also be incorporated. Interactions
between purely spatial and temporal components of the models have not been
examined to any extent, and this may provide a fruitful avenue for further
developments. If the goal of the analysis of spatiotemporal disease variation is
to provide a parsimonious description of the relative risk variation then it would
seem to be reasonable to include spatial and temporal trend components in any
analysis (besides those defined via random effects).



Surveillance issues 75

Finally, it is relevant to note that there are many possible variants of the two
basic data formats which may arise, partly due to mixtures of spatial aggregation
levels, but also to changes in the temporal measurement units. For example, it
may be possible that the spatial distribution of case event data is only available
within fixed time periods, and so a hybrid form of analysis may be required
where the evolution of case event maps is to be modeled. Equally, it may be the
case that repeated measurements are made on case events over time so that
attached to each case location is a covariate (possibly time-dependent) which is
available over different time periods. In that case a form of spatio-longnitudinal
analysis might be considered. A special case of this might be the analysis of time
to endpoint for georeferenced cases of disease (e.g. death/recovery/remission).
This could be regarded as a spatial survival analysis (Banerjee et al., 2003).

4.6 SURVEILLANCE ISSUES

The above comments concerning spatio-temporal (ST) modeling carry over to
surveillance. Most ST models have been developed for retrospective analysis of
complete data sets. However, a fundamental characteristic of surveillance is that
it is carried out on-line within real time or near-real time and an emphasis is
placed on detection of changes. Hence, although a good ST model may be useful,
there are many new issues relating to model fitting that should be considered.
A brief list of these is as follows:

(1) At a new monitoring point in time, an assessment must be made as to
whether the process has changed (see Chapter 10 of this volume).

(2) Changes are to be detected beyond the ‘normal’ ST behavior of the disease
or diseases.

(3) Multiple diseases may need to be monitored.

(4) As time progresses the data set enlarges, and the parameter space can also
enlarge.

(5) As time progresses the model assumed for the ‘normal’ ST behavior may
deteriorate.

The first and second points require the monitoring of change beyond back-
ground ‘normal’ variation. Hence, a well-designed ST model should include the
‘normal’ variation but must also be capable of allowing detection of changes.
This suggests that the model should be flexible enough to capture normal histor-
ical variation but also should not ‘model out’ changes. A model that is too
sophisticated may absorb the changes in the model fit, and so a balance must
be struck. The second issue relates to the need for multivariate and syndromic
surveillance as often there will be no indication about which disease is to be
targeted with any insults. The previous discussion relates only to single diseases,
although there is recent work on sophisticated models for multiple diseases
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(Carlin and Banerjee, 2003). Of course, single diseases can be monitored in
parallel, but this ignores correlation between the disease incidences that may
contain important clues for the detection of early changes.
The fourth and fifth points relate to difficulties in refitting models with enlar-

ging parameter and data spaces and also the lack of fit which could develop over
time. Often complex spatial models are fitted using computationally expensive
simulation methods. Over time these models will have to be refitted to new
larger data sets with enlarged parameter sets. This could lead to computational
problems. Sliding windows have been proposed to allow for data reduction, but
these also lose information about distant historical data. Filtration can also be
used. Progressive lack of fit of a model is a major problem as model readjustment
could reduce the chance of detecting new events. There is no simple satisfactory
answer for this problem (see Lawson, 2004).
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Generalized Linear Models
and Generalized Linear

Mixed Models for
Small-Area Surveillance

Ken Kleinman

5.1 INTRODUCTION

As outlined in Chapter 1, we are interested in performing surveillance, as a
practical matter, when spatial data are available. Without such data, one of the
methods outlined in Chapter 2 and evaluated in Chapter 3 would be employed.
In addition, it may be valuable to use such methods on a summary statistic (such
as the total count) even when spatial information is available, since they may
have power against alternatives for which spatial methods are not especially
sensitive. Several methods have been proposed for this type of surveillance.
For example, scan statistic methods are summarized in Chapter 7 and spatial
versions of the CUSUM approach are discussed in Chapter 6.
In Kleinman et al. (2004a) we introduced the concept of using generalized

linear mixed models for surveillance when the location of each case and of
potential cases was available to within a small area. We have since dubbed
this the ‘SMART scores’ (Small Area Regression and Testing scores) approach.
That paper also reviews some of the literature of spatio-temporal modeling,
and its usefulness for large-scale surveillance. In essence, the extremely large
size of spatio-temporal surveillance data sets precludes some complex models;
the additional complication of reliable repeated fitting, rather than exploratory
one-off models, also suggests simpler approaches may be particularly valuable
in this context.

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd
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In brief, Kleinman et al. (2004a) treat each small area as if it were an indi-
vidual, and fit a random effect to account for the repeated counts for each
area. This allows variability in the baseline risk of a case in each small area.
We presented this approach using a logistic regression model. In this chapter,
we extend the example provided in Kleinman et al. to use Poisson regression;
this allows models that can be fitted without knowing the number of people at
risk, as demonstrated below. We also evaluate the assertions in Kleinman et al.
(2004a, 2004b) regarding the utility of the random effects, relative to the fixed
effects versions of the models. Finally, we also examine the impact of modeling
the data monthly, as opposed to daily. We do this using an example data set.
We use yst to denote the number of cases observed in a small area s at

time t. We assume here that time is discrete. To concretize, we will refer to
areas s as census tracts or tracts, and to times t as days. Data available in
addition to yst include nst, the maximum number of cases possible in tract s
on day t, and ckt� k = 1� � � � � K, covariates describing day t, such as day of the
week, days since surveillance started, or trigonometric functions of the day
of the year. We refer to nst as the number of people eligible for surveillance.
It is possible that in practice covariates describing the cases and individuals
eligible for surveillance, such as age and gender, may be available. However, as
discussed in Kleinman et al. (2004a, 2004b), these may make model estimation
impractical and actually obtaining surveillance data of this sort may introduce
privacy issues. Therefore, for this discussion, we assume that no covariate data
of this sort will be used.

5.2 SURVEILLANCE USING SMALL-AREA MODELING

We will model the counts yst� s= 1� � � � � S� t= 1� � � � � T , in some historical period
ending on day T . We will use parameter estimates from these models to estimate
the distributional parameters of ys�T+r � s = 1� � � � � S� r > 0, for some future day
T+ r. Using these estimated parameters, we will find the probability of seeing
as many cases as were seen, or more, assuming the distribution and parameter
are accurate. For data of this sort, Kleinman et al. (2004a) propose a generalized
linear mixed model (Breslow and Clayton, 1993). Another approach to small
areas involves conditional autoregressive models (Lawson et al., 2003).

5.2.1 Example

For example, consider the method proposed in Kleinman et al. (2004a). There,
we suggested a logit link on the probability of a case in each tract:

logit�prst�=
prst

1− prst
= �0+

K∑
i=1

cit�i+ bs� (5.1)
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where prst is the probability of a case and bs, the random effect, is assumed
normally distributed with mean 0. We note here that if it seems desirable to
incorporate spatial correlation into the model, it may be conveniently included
via the variance–covariance matrix of the bs. Here, we assume that this is equal
to �2

b I, where I is the identity matrix. Thus, in some sense, the model and
approach in this case is essentially nonspatial – the relative locations of the
small areas do not enter into the model. For comments on this, see Chapters 2
and 9. For the remainder of the chapter, we refer to model (5.1) as the random
effects logistic regression model.
After obtaining estimates �̂ and b̃s, we insert covariate values ck�T+r into the

regression equation, and invert the logit to get

p̂rs�T+r =
e�̂0+

∑
ck�T+r �̂i+b̃s

1+ e�̂0+
∑

ck�T+r �̂i+b̃s

for each tract s. After collecting surveillance data for day T+r, we then calculate
the probability that a binomial random variable with parameters �ns�T+r � p̂rs�T+r�
has a value greater than or equal to ys�T+r;

Prob�Y ≥ ys�T+r�ns�T+r � p̂rs�T+r�

= p̃s�T+r = 1−
ys�T+r−1∑

i=0

(
ns�T+r

i

)
�p̂rs�T+r�

i�1− p̂rs�T+r�
ns�T+r−i�

5.2.2 Using the Model Results

The ordinary use of these probabilities is as p-values assessing the null hypothesis
that the data were drawn from binomial distributions with the parameters
above. A rejection of the null should be taken to mean that the observed cases
may not have a natural origin, and certainly that so many cases appearing
by chance is small, assuming the null is true. However, since S may be large,
there is a reasonable concern about multiple testing. To address this problem,
we suggest reporting the ‘recurrence interval’ of each p-value, calculated as the
expected number of days of surveillance required so that exactly one p-value as
small as the one observed would be expected. This is simply

�p̃s�T+r ×S�−1� (5.2)

though note that this estimate may be conservative (Waller et al., 1994).
One nice feature of the recurrence interval is with respect to classical

inference. Ordinarily, one must perform the mental acrobatics of imagining
repeating the same experiment a large number of times and thinking of the
p-value roughly as the proportion of times the results would be as extreme as
the one you observed in the one experiment you actually did. In contrast, in the
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surveillance setting, you are in the position of actually repeating approximately
the same experiment many times, meaning each day. The recurrence interval
then is the number of such experiments one would have to perform in order to
expect to see a result as extreme as or more extreme than the one you happened
to see today. The mental movement required is simply to think of some period
of days, and imagine only seeing results like these on one occasion.
It also seems that interpretation of small p-values is much simpler through

the recurrence interval. For instance, p-values of 0.001 and 0.0001 both seem
rather small, and similar in that regard. In contrast, the corresponding recur-
rence intervals (assuming S=1) of 100 days (0.27 years) and 1000 days
(2.74 years) seem very different; one might react very differently to the two
recurrence intervals. The advantage is compounded for the modeling approach
discussed here; p̃s of 0.00002 and 0.000002 correspond to recurrence intervals
of 0.27 and 2.74 years if S=500.
In practice, consumers of public health surveillance tend to think in terms

of the number of alarms per month or per year, and this standpoint is easy to
meet with the recurrence interval approach as well. A final boon of this way
of thinking is that any p-value can be presented this way. Thus, a complex
approach to prospective surveillance, such as that presented in Kulldorff (2001)
is not necessary; any spatial clustering test can be performed repeatedly; and the
recurrence interval presentation protects readers from forgetting that a p-value
of 0.05 or smaller should be expected in any 20 (0.05−1, since S=1) day period,
under the null hypothesis.

5.3 ALTERNATE MODEL FORMULATIONS

5.3.1 Fixed Effects Logistic Regression

The fixed effects logistic regression approach is the simpler expression of model
(5.1), with fixed rather than random effects for the small-area base rates. In
theory, estimators incorporating the estimated fixed effects are unbiased but
may be expected to have larger standard errors than estimators incorporating
the estimated random effects estimates, which are biased or ‘shrunken’. The
model may be written as

logit�prst�=
prst

1− prst
=∑

cit�i+�s� (5.3)

where �s denotes an additional fixed effect for each area s.
Analysis proceeds as in model (5.1). Note that differences between analysis

via model (5.1) and model (5.3) should mainly be due to differential amounts
of information contributed by each area s.
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5.3.2 Poisson Regression Models

Assuming a Poisson regression for the counts has a number of extremely
attractive features. First, it will be possible to fit the model without knowing
the number of people eligible for surveillance, opening additional data sources
to the possibility of analysis. This is impossible with the binomial formulation.
Second, the basic probability result that the sum of Poisson variates is Poisson
distributed with parameter equal to the sum of the constituent parameters can
be leveraged to perform multi-day and/or multi-area surveillance. This is also
not possible in the binomial formulation, assuming that there are meaningful
day-to-day changes in prst. These advantages are laid out more explicitly below
in Section 5.3.2.3. Third, the bias involved with fitting logistic regressions with
very small proportions of events can be avoided. However, these advantages are
purchased at cost of depending on the accuracy of the Poisson approximation
to the binomial in a case where typically NP� 5.

5.3.2.1 Fixed effects Poisson regression

This model is represented as

log�E�yst��=
∑

cit�i+�s� (5.4)

where all terms on the right-hand side are as defined in model (5.3).
Analysis of the surveillance data proceeds as in model (5.1) except that the

p-value is calculated from the probability under the Poisson distribution with
parameter 	̂s�T+r = e

∑
ci�T+r �̂i+�̂s that Y ≥ ys�T+r. This is

p̃s�T+r = 1−
ys�T+r−1∑

i=0

�e−	̂s�T+r ��	̂s�T+r�
i

i! �

It is common in Poisson regression applications to include an ‘offset’ when,
for example, differential follow-up times obtain for the individuals. The offset is
simply a covariate, often the log of time, with coefficient constrained to be 1.
In data that are naturally binomial in nature, the offset should be based on the
number of trials. In the present application, however, the number of cases is
typically so small relative to nst that including log�nst� as the offset results in
fitting problems. Instead, we would have to consider models with log�log�nst��
as the offset. In addition, note that the change in nst over time is usually small
in this type of application, relative to the average daily eligible subjects n̄s. This
may lead to nonidentifiability problems with respect to the �s in (5.4). This
occurs because, since an intercept is omitted and a fixed effect is estimated for
every area s, the �, as a group, are almost collinear with a constant; if nst = ns for
each s, it is such a constant. Finally, incorporating nst into the model removes
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one key advantage of the Poisson approach relative to the binomial approach
by requiring the number eligible for surveillance to be known. We thus consider
only model (5.4) as the fixed effects Poisson regression approach, and will not
consider Poisson regression with an offset.

5.3.2.2 Random effects Poisson regression

Here we allow random effects for each tract, while maintaining the Poisson
assumption for the counts:

log�E�yst��= �0+
∑

cit�i+ bs (5.5)

where bs ∼ N�0� �2
b � and with 	̂s�T+r = e�̂0+

∑
ci�T+r �̂i+b̃s . As with the fixed effects

Poisson approach, we do not consider model (5.5) with the inclusion of an
offset.

5.3.2.3 Multi-day surveillance

To concretize the notion of multi-day surveillance, suppose the event we were
surveilling for had a variable onset. Then the most powerful surveillance would
not be to check each day separately, but to check a series of days simultaneously
for an excess of cases. To evaluate three future days for a cumulative deviation
from the expectation, we would simply compare ys�T+r +ys�T+r+1+ys�T+r+2 to a
Poisson distribution with parameter 	̂s�T+r + 	̂s�T+r+1 + 	̂s�T+r+2, where 	̂st is as
defined in Section 5.3.2.1 or the equivalent based on model (5.5).
If a fixed number of days is identified as the ideal and only surveillance

summary period, the recurrence interval can be calculated as in Section 5.2.2.
If the number of days is unknown, then surveillance of different lengths can
be incorporated accurately by multiplying the denominator in the recurrence
interval calculation (equation (5.2)) by the number of different lengths that will
be considered. So if we wanted to surveil for increases over one, two, or three
days, the proper recurrence interval would be �S×3× p̃st′�

−1, where t′ implies
any of the p-values based on one, two, or three days.

5.4 PRACTICAL VARIATIONS

In applying these models, some consideration of real applications is important.
One example is that while there is no theoretical problem in fitting the model
each day and using the results for evaluation of tomorrow’s observations,
this is not so simple in practice. Data sets in this context are typically large
and cumbersome, making repeated analysis time-consuming. In addition, as
discussed in Chapter 4, application of too complex a model too often may result
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in incorporating additional cases from an outbreak into the model and thus
masking the appearance of future outbreak-related cases. Automating the model
fitting is a possibility, but is not recommended, since some models are complex
enough that fitting may fail somewhat frequently. Even getting the data from
a collection point to the desk of an analyst may take several hours.
For all of these reasons, it is worthwhile to consider how much the fit is

improved with each day’s data. If the model could be refitted, say, monthly,
then the time involved in moving the data around daily and in daily analysis
could be avoided. In addition, this would allow model fitting at some central
location; lookup tables with the p-value associated with a range of counts
could be easily produced and could be used with or without computers to
evaluate the surveillance data at the site of data collection. We will compare
the results achieved using daily model fitting with those seen using monthly
fitting. Symbolically, this is a question of the difference between surveillance
when r = 1 for all days or r = 1� � � � �31 depending on the number of days since
the model was fitted.

5.5 DATA

We will evaluate the performance of models (5.1) and (5.3)–(5.5) in a typical
surveillance case, described in some detail here. In Lazarus et al. (2002)
we described the surveillance system that uses the automated electronic
medical record system at Harvard Vanguard Medical Associates (HVMA),
currently a multi-specialty practice group with 14 clinics in the greater Boston,
Massachusetts, area. During the initial period of data collection described below,
HVMA was the staff model division of Harvard Pilgrim Health Care (HPHC).
Briefly, the data set represents the ambulatory medical encounters of a dynamic
population of approximately 250000 individuals, representing about 10% of
the population in a region of eastern Massachusetts.
At each office visit, the clinician entered diagnoses, to which International

Classification of Disease, 9th Revision, Clinical Modification (ICD9) codes were
attached. The computerized record was available for data analysis within a
day. The data set used for this example incorporates all such visits between
January 1, 1997 and December 31, 1999.
In addition, a linked database includes information on all eligible indi-

viduals; this database includes the patients’ billing addresses, ages, genders,
and their dates of eligibility for care. Billing addresses are geocoded, providing
the exact latitude and longitude, as well as the census block group and census
tract.
Census block groups typically are constructed to have 1000 residents; census

tracts are more populous, with approximately 4000 residents. Census regions
are generally to be preferred in surveillance, since the census draws them for
homogeneity as well as roughly consistent population size. In contrast, zip codes
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are drawn solely for the convenience of the Postal Service and are not regular in
size, population, or any other known characteristics. In addition, they change
often and unpredictably. Their only desirable property for surveillance is their
ubiquity.

5.5.1 Developing and Defining Syndromes

Encounters are categorized into syndrome groups by examining all of the ICD9
codes assigned at the time of consultation. The surveillance software considers
each encounter record in turn and merges related ICD9 diagnosis codes into
syndrome groups using a modification of a provisional classification scheme
developed as part of the Department of Defense ESSENCE project (provided to us
by J. Pavlin, Department of Defense Global Emerging Infections System). This
scheme reduces the complexity of the ICD9 into eight syndrome categories –
coma/shock, neurological, upper gastrointestinal, lower gastrointestinal, upper
respiratory, lower respiratory, dermatological, and sepsis/fever.
As an example, we consider lower respiratory infection (LRI). For more

complete information on our definition of this syndrome, see Lazarus et al.
(2001). Briefly, the syndrome incorporates 119 ICD9 codes. These codes include
influenza, pneumonia, bronchitis, and cough; incidence rates are much higher
in the winter than in the summer. Spatial clusters as well as temporal clusters
are expected to occur naturally, because of the contagious nature of illnesses
that contribute a large proportion of the visits associated with this syndrome.
LRI is of particular interest, because one bioterrorism agent it is designed

to detect is anthrax. Typically, inhalational anthrax begins with a nonspecific
prodromal phase in which the sufferer may experience fever, dyspnea, cough,
and chest discomfort. (Intestinal and dermal anthrax are both less lethal and
less acute and are therefore of little interest in this application.) During this
phase neither physical examination nor any widely used diagnostic test will
suggest an unusual illness. Diagnosis usually occurs after two to four days, when
respiratory failure and hemodynamic collapse may ensue. By that time chest
X-rays show an unusual pattern of mediastinal widening (MMWR, 2001). It is
hoped that a victim of an anthrax release would receive a diagnosis in the LRI
category if they visited their health care provider during the prodromal phase.
An individual patient may have multiple encounters associated with a single

episode of illness (for example: initial consultation, consultation one or two days
later for laboratory results, follow-up consultation a few weeks later, and so
on). In order to avoid double counting from this common pattern of ambulatory
care, the first encounter for each patient within any single syndrome group is
reported, but subsequent encounters with the same syndrome are not reported
as new episodes until six weeks or more have elapsed since the most recent
encounter in the same syndrome. (On the other hand, it may be the case
that there is information relevant to bioterrorism in repeat visits; this approach
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ignores that information). We have reported previously that grouping of respir-
atory illness visits into episodes reduces the total number of events by 38% in
this clinical setting.
Between January 1, 1997 and December 31, 1999, there were 133853

lower respiratory infection episodes for which it was possible to determine that
patient’s residence was in one of the 565 census tracts with centroids in the
greater Boston area between longitude 70�85� and 71�4�W and latitude 42�15�

and 42�66�N.

5.6 EVALUATION

We emulated one year of surveillance beginning on January 1, 1999. In other
words, we treated each day of 1999, sequentially, as if it were the day of
surveillance, with no later data being known during the surveillance of that
day. In all, we will analyze the data in five ways. These include the four models
described in equations (5.1) and (5.3)–(5.5), fitted on a monthly basis, plus one
model fitted each day. In the monthly models, we fit the models as if during
the first day of each month, including all data from January 1, 1997, through
the end of the previous month.

5.6.1 Fixed and Random Effects Monthly Models

We fitted 12 models each of the type described in models (5.1) and (5.3)–(5.5),
each time increasing the value of T to include the last day of the previous
month. Covariates describing day t included six indicators for the day of week,
indicators of holiday or day after holiday, sine and cosine functions of the day of
the year, and a linear secular time trend. Each of these covariates is necessary in
this context: ambulatory visits are most common on Mondays, decrease during
the week through Thursday, rise again on Friday, and are scarce on weekends.
Visits are especially rare on holidays, but the day following a holiday typically
has more visits than the same day of the week not following a holiday. (From
this we might infer that even visits for current illnesses tend to be scheduled
by the patient so as not to interfere with social obligations, but that is beyond
our scope here.) Similarly, data exhibit pronounced seasonal trends, as shown
in Lazarus et al. (2001), necessitating the trigonometric functions, and secular
time trends as well.
After fitting the models, we calculated the recurrence intervals associated

with each tract on each day of surveillance. We tabulate the 10 most unusual
days as identified by each model in Table 5.1.
Table 5.1 shows one look at the ultimate effect of using the different models.

The table shows the census tract identifier, date, and count for the 10 tract days
with the largest recurrence intervals. For each of the four methods, the rank
of the recurrence interval and the the recurrence interval itself are reported.
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While the differences between the recurrence intervals assigned by each of the
models may appear large, note that all 10 tract-days that appear in the table
have recurrence intervals greater than 365000 days, or 10000 years, under
each of the models.
In practice, we find that public health authorities do not interpret the recur-

rence intervals as continuous values, but trigger alarms of increasing intensity
if the recurrence interval exceeds increasing thresholds. One set of such alarm
thresholds is 14, 30, 60, 180, 365, 730, and 1825 days. Under any reasonable
set of alarm thresholds all of the events listed in Table 5.1 will generate the
highest possible degree of alarm.
An alternative way to look at this would be to consider not just the most

extreme events, but to consider all tract-day results. We can do this by examin-
ing scatterplots of the recurrence intervals, as shown in Figures 5.1–5.4; we
use the log of the recurrence interval for visual clarity and provide a reference
line for equal values. The images show a remarkable consistency of results from
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Figure 5.1 Pairwise scatterplots comparing recurrence intervals (on the log10 scale)
from models (5.1) and (5.3).
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Figure 5.2 Pairwise scatterplots comparing recurrence intervals (on the log10 scale)
from models (5.1) and (5.5).

the four models. The fixed effect and random effect methods agree well for both
the Poisson (Figure 5.4, Pearson correlation = 0.99996 for untransformed
values) and logistic (Figure 5.1, Pearson correlation = 0.99963) regression
models. Similarly, the Poisson and logistic fixed effects (Figure 5.3, Pearson
correlation = 0.99904) and random effects (Figure 5.2, Pearson correlation =
0.99775) models also agree extremely well. Even the cross-distribution, cross-
method correlations are quite high; models (5.1) and (5.4) correlate at 0.99820
and models (5.5) and (5.3) correlate at 0.99875. The associations are as linear
as those shown in Figures 5.1–5.4. Tract-days with counts of 0 are omitted, as
they are constrained to be equal.
Instead, one might consider the alarm threshold approach to evaluation.

Tables 5.2–5.5 show the agreement between the pairs of models shown in
Figures 5.1–5.4. Each table shows the cross-classification of each tract-day based
on the category of recurrence interval assigned under the various models. For
example, in Table 5.2, we see that there were 14 tract-days that had recurrence
intervals between 14 and 30 days under model (5.3) but 0 to 14 days under
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Figure 5.3 Pairwise scatterplots comparing recurrence intervals (on the log10 scale)
from models (5.3) and (5.4).

model (5.1), while 246 tract-days had recurrence intervals between 14 and
30 days under both models. Again, the degree of consistency is remarkable.
In each table, the percent of exact agreement is at least 99.9%, and only one
tract-day recurrence interval is more than one alarm category different across
all these pairings of methods. This occurs when comparing the two random
effects methods, which would appear to be the least similar theoretically as well
as in this exploration.
The large number of tract-days with small recurrence intervals reflects mostly

the 167885 tract-days on which no cases were observed. We might consider
these to be irrelevant to the amount of agreement betweenmethods. In that case,
a better sense of the agreement might be found by omitting the cell where both
methods assign a recurrence interval of 14 days or less. With that restriction,
there is 90.1% agreement between the two logistic models (Table 5.2), 79.7%
agreement between the two random effects models (Table 5.3), 83.2% agree-
ment between the two fixed effects models (Table 5.4), and 97.4% agreement
between the two Poisson models (Table 5.5).
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Figure 5.4 Pairwise scatterplots comparing recurrence intervals (on the log10 scale)
from models (5.4) and (5.5).

Table 5.2 Recurrence interval (RI) in days, categorized into alarm levels; random
effects logistic regression (model (5.1)) vs. fixed effects logistic regression (model (5.3)).

Random
effects logistic

Fixed effects logistic regression

regression 0–14 14–30 30–60 60–180 180–365 365–730 730–1825 1825+

0–14 204151 14 0 0 0 0 0 0
14–30 12 246 14 0 0 0 0 0
30–60 0 16 159 9 0 0 0 0
60–180 0 0 5 180 3 0 0 0
180–365 0 0 0 5 90 8 0 0
365–730 0 0 0 0 2 55 4 0
730–1825 0 0 0 0 0 2 59 0
1825+ 0 0 0 0 0 0 3 93
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Table 5.3 Recurrence interval (RI) in days, categorized into alarm levels;
random effects logistic regression (model (5.1)) vs. random effects poisson regression
(model (5.5)).

Random effects
logistic

Random effects poisson regression

regression 0–14 14–30 30–60 60–180 180–365 365–730 730–1825 1825+

0–14 204150 15 0 0 0 0 0 0
14–30 40 220 12 0 0 0 0 0
30–60 0 31 140 13 0 0 0 0
60–180 0 1 20 164 3 0 0 0
180–365 0 0 0 18 77 8 0 0
365–730 0 0 0 0 11 46 4 0
730–1825 0 0 0 0 0 13 43 5
1825+ 0 0 0 0 0 0 5 91

Table 5.4 Recurrence interval (RI) in days, categorized into alarm levels; fixed effects
Poisson regression (model (5.4)) vs. fixed effects logistic regression (model (5.3)).

Fixed effects
poisson

Fixed effects logistic regression

regression 0–14 14–30 30–60 60–180 180–365 365–730 730–1825 1825+

0–14 204155 33 0 0 0 0 0 0
14–30 8 232 25 0 0 0 0 0
30–60 0 11 142 23 0 0 0 0
60–180 0 0 11 170 15 0 0 0
180–365 0 0 0 1 78 12 0 0
365–730 0 0 0 0 2 52 11 0
730–1825 0 0 0 0 0 1 48 4
1825+ 0 0 0 0 0 0 7 89

Table 5.5 Recurrence interval (RI) in days, categorized into alarm levels; fixed effects
Poisson regression (model (5.4)) vs. random effects Poisson regression (model (5.5)).

Fixed effects
poisson

Random effects poisson regression

regression 0–14 14–30 30–60 60–180 180–365 365–730 730–1825 1825+

0–14 204186 2 0 0 0 0 0 0
14–30 4 259 2 0 0 0 0 0
30–60 0 6 167 3 0 0 0 0
60–180 0 0 3 192 1 0 0 0
180–365 0 0 0 0 90 1 0 0
365–730 0 0 0 0 0 65 0 0
730–1825 0 0 0 0 0 1 51 1
1825+ 0 0 0 0 0 0 1 95
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5.6.2 Daily Versus Monthly Modeling

Here we compare the daily model (r = 1 for all days) to the monthly model
�r = 1� � � � �31�. Having concluded that Poisson and logistic models as well
as fixed effects and random effects models perform approximately the same
way, we will use fixed effects Poisson models in this section as they are the
most attractive models, as described in Section 5.3.2, as well as the least time-
consuming to fit. Note that the experiment is designed so that the values must
be exactly equal on approximately one-thirtieth of the days – the first of each
month, when both approaches will use data from the beginning of the data set
through the previous day.
As in Section 5.6.1, we show a scatterplot of the recurrence intervals obtained

with each method for each tract-day (Figure 5.5) as well as tabulating the
effect on the various alarm thresholds (Table 5.6). The scatterplot reflects a
correlation of 0.99991. The proportion of complete agreement, as before, is
greater than 99.9%. Omitting the cases where both methods agree that the
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Figure 5.5 Pairwise scatterplots comparing recurrence intervals (on the log10 scale)
from model (5.4) fitted once each month vs. daily.
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Table 5.6 Recurrence interval (RI) in days, categorized into alarm levels; fixed effects
Poisson regression (model (5.4)) fitted once each month vs. daily.

Monthly
models

Daily models

0–14 14–30 30–60 60–180 180–365 365–730 730–1825 1825+

0–14 204184 4 0 0 0 0 0 0
14–30 6 257 2 0 0 0 0 0
30–60 0 7 164 5 0 0 0 0
60–180 0 0 5 189 2 0 0 0
180–365 0 0 0 6 85 0 0 0
365–730 0 0 0 0 1 64 0 0
730–1825 0 0 0 0 0 2 49 2
1825+ 0 0 0 0 0 0 3 93

recurrence interval is at or below 14 days, the agreement is at 95.2%. There
is no tract-day for which the two methods disagree by more than one alarm
category.

5.7 CONCLUSION

In this chapter, I have reviewed the use of generalized linear models and gener-
alized linear mixed models for use in the surveillance of counts from small areas.
In particular, I have reviewed the utility of the Poisson model with respect to
multi-day and multi-area modeling. I have compared results from fixed and
random effect models based on binomial and Poisson distributional assumptions
and also examined the importance of fitting the models each day, as compared
to less frequent modeling.
The main results were that the Poisson models result in very similar recur-

rence intervals to the logistic models in data sets like ours – meaning that in our
practice it matters little which method is used. Thus the Poisson model, which
does not require knowledge of the number of people at risk and which allows
multi-day surveillance, can be used for surveillance with little different effect in
the applications where either model is suitable. Similarly, the fixed effects models
generated results quite similar to those from random effects models in these data.
Thus, in this sort of application, the ‘strength-borrowing’ features of the random
effects seem to make little difference. This means that the more stable, more
computationally efficient, and fully maximum likelihood fittable fixed effects
models may be applied, instead of the generalized linear mixed model, which
with this quantity of data is cumbersome and requires approximate and biased
(McCulloch and Searle, 2001) fitting methods. Finally, the practical question of
whether there is much lost by fitting the model monthly appears also to have
the happy answer that less frequent fitting will generate values that closely
approximate those that could be obtained with more frequent fitting.
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Generalized linear models hold out some prospect of using spatial informa-
tion, be it as coarse as zip codes or as fine as census block groups, to public
health officials who may have previously used only gross time-series or CUSUM
methods. This spatial information may well allow detection of events that would
go undetected by methods that sum across small areas for want of statist-
ical techniques. The models discussed here are simple and easily applied using
commercial statistical software. Until other methods discussed in this book
can be developed further (and made simpler to apply in an automated way),
these models may serve as a first step toward using spatial data in practical
surveillance.
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Spatial Surveillance
and Cumulative Sum

Methods
Peter A. Rogerson

6.1 INTRODUCTION

The methods of statistical process control have a long history of application to
problems in public health surveillance. Hill et al. (1968) and Weatherall and
Haskey (1976) were among the first to propose and implement such systems,
with their applications to the surveillance of malformations. Barbujani (1987)
provides a review of these methods, with particular emphasis on applications to
monitoring birth defects. Farrington and Beale (1998) and Sonneson and Bock
(2003) provide more recent and more general reviews of statistical surveillance
in public health.
Methods of statistical process control (see, for example, Montgomery, 1996;

Hawkins and Olwell, 1998, Chapters 2 and 3) include, but are not limited
to, Shewhart charts, cumulative sum (CUSUM) methods, and exponentially
weighted moving average methods. Shewhart charts are designed to detect large
deviations from the mean of a process; single, outlying observations can trigger
an alarm or signal that the process mean may have changed. CUSUM methods
maintain a running total of the deviations between observed and expected
values; if this total exceeds a predetermined threshold, an alarm is sounded,
again indicating a potential change in the underlying mean of the process. In
this chapter, we give some attention to Shewhart charts, but focus primarily
on the use of CUSUM methods. We will pay particular attention to issues that
arise when there is a desire to carry out surveillance in a multiregional setting.

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd
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In the next section, I first review and illustrate the fundamentals of CUSUM
methods. The discussion is general, and is initially oriented toward variables
that come from normal distributions. Public health data are often not normally
distributed – especially small counts that are collected at frequent intervals, and
data associated with uncommon diseases. Later in the section and chapter, both
transformations to normality and methods designed to handle directly data that
are other than normally distributed are covered. I also point out in the next
section several developments associated with CUSUM methods that have not
been widely used in a public health context, and may ultimately prove to be of
value. More specific treatment of temporal surveillance is covered elsewhere in
this book (see Chapter 2). In Section 6.3, I focus on the use of CUSUM methods
when data are available for multiple regions. At least four separate perspectives
on spatial surveillance with CUSUM methods have been taken, and these four
approaches are summarized. Section 6.4 provides a summary.

6.2 STATISTICAL PROCESS CONTROL

6.2.1 Shewhart Charts

Shewhart charts plot individual observations, or the means of groups of obser-
vations, as they are observed over time. Limits or thresholds are placed on
the charts, and an ‘out-of-control’ signal is sent if an observation is found to
be outside of these limits. When observations come from a standard normal
distribution, the establishment of a threshold of ±3 would imply that while in
control, any observation would cause a signal with probability of 0.0027 (where
this is the area corresponding to the tails of the standard normal distribution).
This in turn implies a false alarm (where significant change is declared when
it in fact has not occurred), on average, every 1/0.0027=370 observations.
If false alarms were more (or less) tolerable, the threshold could be adjusted
accordingly.
Although Shewhart charts are good at detecting large changes in the mean

of a variable, they fare less well (e.g., in comparison with CUSUM methods)
in the quick detection of more subtle changes in the mean. Chapter 3 fully
discussed these optimality issues.

6.2.2 Cumulative Sum Charts

CUSUM methods are designed to detect sudden changes in the mean value
of a quantity of interest; they are widely used in industrial process control to
monitor production quality. The methods rely upon the assumption that that the
variable exhibits no serial autocorrelation. In the most common case, it is also
assumed that the quantity being monitored is normally distributed, although it
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is also possible to monitor observations that come from other distributions (and
some of these will be discussed subsequently).
We first review the case of normally distributed observations. This could

apply, for example, to the number of people with a particular disease in a large
population. In particular, if all individuals have the same probability of disease,
the underlying distribution of disease counts is binomial, but this can often be
approximated by the normal distribution. Without loss of generality, let the
variable of interest be converted to a z-score with mean zero and variance one.
One way to achieve this for Poisson counts is to use z = �O−E�/

√
E, where

O and E represent observed and expected counts, respectively. The CUSUM,
following observation t, is defined as

St =max�0� St−1+ zt− k�� (6.1)

where k is a parameter, and the CUSUM is started at zero (i.e., S0 = 0). A change
in mean is signaled if St > h, where h is a threshold parameter. Signals will
sometimes occur when no actual change has taken place; the expected time until
a false alarm is called the ‘in-control’ average run length, and it is designated
by the notation ARL0.
Note that values of z in excess of k are cumulated. The parameter k in this

instance, where a standardized variable is being monitored, is often chosen to
be equal to 1/2; in the more general case where the variable of interest may not
have been standardized, k is often chosen to be equal to one-half of the standard
deviation associated with the variable being monitored. The choice of k = 1

2
minimizes the average out-of-control run length (i.e., the average number of
observations between the time of change and the time of detection) for a given
value of ARL0, when a true increase of one standard deviation has occurred.
More generally, k is chosen to minimize the time needed to detect a change of
2k standard deviations in the mean.
The threshold parameter h is chosen in conjunction with a predetermined,

acceptable rate of ‘false alarms’; high values of h lead to a low probability of a
false alarm, but also a lower probability of detecting a real change. Most texts
on statistical process control have tables and charts that may be used to find the
value of h that is associated with chosen values of ARL0 and k. When k = 1/2,
an approximation for ARL0 may be derived from:

ARL0 = 2�ea− a−1�� (6.2)

where a = h+ 1�166 (Siegmund 1985). One can make practical use of this
approximation to choose the parameter h by first deciding upon a value of ARL0,
and then solving the approximation for the corresponding value of h. In the
more general situation where a nonstandardized variable is being monitored,
the critical value of the CUSUM is determined by multiplying the value of h by
the standard deviation of the variable being monitored.
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Siegmund’s approximation requires numerical methods to solve for the
threshold parameter h, for a desired and specified value of ARL0. Rogerson
(2004) has shown that Siegmund’s equation may be solved, approximately, for
the threshold parameter as a function of the in-control average run length:

h≈
(
ARL0+4
ARL0+2

)
ln
(
ARL0
2

+1
)
−1�166� (6.3)

When k is not necessarily equal to ½, the more general form of the equation
for h is:

h≈
(
2k2ARL0+2
2k2ARL0+1

)
ln�1+2k2ARL0�

2k
−1�166� (6.4)

6.2.2.1 Illustration

To illustrate how the CUSUM methodology is implemented, and some of
the issues that arise, data were simulated for a nine-region spatial system,
constructed by assuming a three-by-three structure of square regions in a
square study area. Simulated data are in the form of standardized z-scores.
The regions were numbered from 1 to 9, beginning in the upper-left hand
corner, and proceeding row by row, with the lower right region designated as
region 9 (a map of this hypothetical spatial system is not shown). In Table 6.1,
the simulated z-scores are depicted for each region, for each time period. Each
column represents a region, and each row represents a time period. The data
in Table 6.1 were developed by first choosing random variates from a standard
normal distribution for the first 15 time periods, for each of the nine regions.
Beginning in period 16, each region’s mean value increased; the mean increased
by 0.2 in regions 1, 3, 7, and 9; by 0.3 in regions 2, 4, 6, and 8; and by 0.75
in region 5. This corresponds to an increase that is centered on region 5, and
dampens as one goes outward from there.
Now suppose that each region maintains its own CUSUM. If we use k = 0�5,

and assume a desired ARL0 of 100, this leads to a threshold of 2.84 that will
be used in each region:

h≈
(
ARL0+4
ARL0+2

)
ln
(
ARL0
2

+1
)
−1�166= 2�84� (6.5)

Maintaining CUSUMs for each region using equation (6.1) reveals the following
signals: region 1, periods 17–19; region 2, periods 22–23; region 4, periods
17–29; region 5, periods 24–30; and region 9, periods 7–11. Note that one of
the regions (region 9) signals even before the change occurs at period 16. This is
clearly a false alarm. Three other regions (1, 2 and 4) exceed the threshold, but
only for a temporary period. By time period 30, an increased mean is indicated
only in region 5.
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These nine separate surveillance systems might be suitable for each of
nine individual, regional health departments. However, there are a number
of important aspects of surveillance pertaining to the spatial and hierarchical
structure of the study area that merit further discussion. For example:

(1) A state health official desiring an ARL0 of 100 (i.e., an average time of
100 time periods before witnessing an alarm in any of the nine regions)
would have to set the threshold higher than the value of 2.84 found above;
otherwise, alarms would occur too frequently. This is discussed further in
Section 6.3.1.

(2) Regional officials could conceivably miss a change that is spread across
several regions. Note in the example above that small changes have
occurred in each region, but the regional alarms are not necessarily
persistent or timely. In general, the magnitude of the change might be relat-
ively small in any particular region, but if many such small changes across
clusters of counties are viewed in their totality, the change may become
more apparent and detectable. This is discussed further in Sections 6.3.2
and 6.3.3.

6.2.2.2 Cumulative sum charts for Poisson data

Surveillance of public health data often requires methods that are able to handle
the monitoring of rare events effectively. In this case, the approach described
above is not adequate, since frequencies do not have a normal distribution
when the mean count is low. One approach is to use the Poisson CUSUM
(Lucas, 1985). When the variable being monitored has a Poisson distribution,
the CUSUM is

St =max�0� St−1+yt− k�� (6.6)

where yt is the count observed at time t. We now discuss determination of
the parameters k and threshold h. Let ��a� be the mean value of the in-control
Poisson parameter. Following Lucas, the corresponding k-value that minimizes
the time to detect a change from ��a� to the specified out-of-control parameter
(��d�� is

k = ��d�−��a�

ln��d�− ln��a�
� (6.7)

Then the threshold parameter hmay be found from the values of the parameter k
and the desired ARL0 by using either a table (see Lucas, 1985), Monte Carlo
simulation, or an algorithm such as the one provided by White and Keats
(1996), which makes use of a Markov chain approximation. To illustrate, if
��a� = 4, one might desire to detect quickly a one standard deviation increase
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to ��d� = 6; in this case we would first find k = 4�93 from equation (6.7). Then,
if we desired an ARL0 of approximately 420, we could use Table 2 of Lucas to
find h= 10.
If the in-control value of � is larger than about 2, then it is feasible to

transform the counts to a standard normal random variable, z, using the trans-
formation suggested by Rossi et al. (1999),

z = y−3�+2
√
�y

2
√
�

� (6.8)

where y is the observed count and � is the expected count.
As Rogerson and Yamada (2004a) indicate, this transformation can give

misleading results for small values of �. For example, when desired values of
ARL0 = 500 and ARL1 = 3 (where ARL1 is the average time taken to detect
an actual increase) are used in situations where � < 2, simulations show that
using this transformation will almost always yield actual values of ARL0 that
are significantly lower than the desired value of 500. In some cases (e.g.,
� ≈ 0�15), the actual ARL will be lower than 100, indicating a much higher
rate of false alarms than desired. The performance is better when ARL0 = 500
and ARL1 = 7, but use of the transformation will again lead to substantially
more false alarms than desired when � is less than about 0.25. They also note
the instability with respect to similar values of �� �= 0�56 will lead to an ARL0
of around 400, while � = 0�62 is associated with an ARL0 of over 700. This
is also true when ARL1 = 3: with � = 0�96, the transformation has an ARL0
of about 212, while with � = 0�98, the transformed data has a very different
ARL0 of 635.

There is another reason to be cautious when applying the normalizing trans-
formation. As Hawkins and Olwell (1998) point out, the times to detection for
Poisson data will be shortest when the proper Poisson CUSUM procedure is
employed. Using the CUSUM procedure for normal variables on the transformed
data will generally lead to longer (though not usually substantially longer)
detection times.
There have been several applications of Poisson CUSUMs in a public

health context; examples include the surveillance of congenital malformations
(Hill et al., 1968; Weatherall and Haskey, 1976), salmonella outbreaks
(Hutwagner et al., 1997), and lower respiratory infection (Rogerson and
Yamada, 2004a). In the latter, data on the number of visits to clinics made
from each of 287 census tracts are monitored for the first 303 days of 1999,
based upon expectations formed using daily data for the period 1996–1998.
Equations (6.6) and (6.7) were used to form the Poisson CUSUM, with the modi-
fication that the k and � parameters were allowed to vary over time. The tempor-
ally varying parameters reflected the fact that the expectations of daily counts,
which were estimated as a function of month, a dummy weekend/weekday
variable, and a time trend, were not constant.
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Figure 6.1 CUSUM chart for tract 83.

Figure 6.1 shows the Poisson CUSUM for one of the census tracts. During the
base period, this tract had an average of 0.12 cases per day; this rose to 0.135
cases/day during 1999. The CUSUM crosses the threshold of h = 12 in early
August 1999, around the 220th day of monitoring. Cases leading to the alarm
occurred on August 4, 6, and 9 (there were two cases observed on August 9).
These four cases in six days (0.67 cases/day) caused the Poisson CUSUM to rise
above the critical threshold.

6.2.2.3 Cumulative sum charts for exponential data

An alternative approach for monitoring rare events is to use the fact that the
times between Poisson-distributed events are exponentially distributed. Chen
and her colleagues have written a series of papers on the sets method, which
assumes exponential waiting times for events in a homogeneous Poisson process
(Chen, 1978; Chen et al., 1993, 1997). Sonesson and Bock (2003) discuss
extensions to heterogeneous Poisson processes.
Lucas (1985) discusses the exponential (or time-between-events) CUSUM, and

Gan (1994) compares its performance with the Poisson CUSUM. Gan finds that
when there is interest in detecting an increase in the frequency of events, the
exponential CUSUM outperforms the Poisson CUSUM, especially when there are
largechanges in theevent frequency.This isdue to the fact that thePoissonCUSUM
does not signal until the end of the time period; the exponential CUSUM is able to
capitalize on the data it uses by signaling during a period in which the frequency
has increased. Similarly, Wolter (1987) notes that monitoring the gaps between
events is more efficient than monitoring the number of events per time period
when the number of events per period is small. Borror et al. (2003) have recently



Statistical process control 103

shown that the exponential CUSUM is relatively robust with respect to departures
from the assumption that the underlying distribution is exponential.
For an exponential distribution with mean 1/�, given by

f�x�= � exp�−�x��

a potential change from an in-control value of �0 to �1 can be monitored by
first defining

k = �1−�0
ln��0�1�

(6.9)

The CUSUM, designed to detect an increase from �0 to �1 (corresponding to a
decrease in the mean time between events, and an increase in the frequency of
events, and where �1 > �0), is

St =max�0� St−1− kxt+1�� (6.10)

where xt is the time between events t−1 and t. To determine the threshold
associated with the calculated value of k and a desired ARL0, Gan provides
charts (or nomographs). An alternative approach, suggested by Alwan (2000),
is to transform the data to normality by raising the observed x values to the
power 0.2777 (i.e., y= x0�2777). Alwan also gives the expectation and variance
associated with these transformed values:

E�y	= 0�9011�−0�2777
0 �

V�y	= 0�2780�−0�2777
0 �

(6.11)

This allows one to implement the more common CUSUM based on the assump-
tion of normality (along with approximations such as (6.4) for determining the
appropriate threshold).
Hawkins and Olwell emphasize that transformations will adversely affect the

performance of the CUSUM. In this case, the normality transformation will
increase the time to detection when a change has occurred (although Alwan
shows that the effect is not large). It is therefore of interest to determine the
threshold for the exponential CUSUM directly. Without loss of generality, the
problem is transformed into one having an in-control parameter of 1, and an
out-of-control parameter equal to �̃1 = �1/�0. This is achieved by normalizing
the observed values by dividing each by �0. Based on the work of Siegmund
(1985), it is possible to derive

ARL0 ≈
eln��̃1��h+1�33�− ln��̃1��h+1�33�−1

ln��̃1��1− k� � (6.12)

For a desired value of ARL0, equation (6.12) may be solved for the threshold h.
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Using arguments similar to those in Rogerson (2004), this equation may be
solved approximately for the threshold, h, in terms of ARL0:

h≈ q+2
q+1

ln�q+1�

ln��̃1�
−1�33� (6.13)

where

q = ARL0 ln��̃1��1− k�� (6.14)

6.2.2.4 Other useful modifications for cumulative sum charts

One common modification is to start the CUSUM at a value other than zero.
Lucas and Crosier (1982) recommend starting the CUSUM at a value of h/2,
instead of zero. This has the benefit of signaling changes much more quickly if
the series of observations begin out of control. This benefit is achieved at the
cost of a slightly higher rate of false alarms if the usual value of h is used; if
the value of h is raised slightly to maintain the desired ARL0, then the time to
detection is slightly longer than it would have been without using this fast initial
response (FIR) feature. The FIR CUSUM is employed widely because the benefits
of quicker detection that result in out-of-control startup situations generally
outweigh the small costs described above.
Perhaps even more important in the context of public health surveillance is

the fact that the ‘in-control’ parameters are often not known, and are instead
often estimated from recent or historical data. For example, the ‘true’ rate of
malformations in a health authority’s geographical area that is to be used as
a baseline expectation for the future rate of malformations is most often based
upon either recent data for that area or some larger geographic area.
Hawkins and Olwell demonstrate that if a historical sample is used to

estimate an unknown mean, subsequent surveillance can have false alarm rates
that are much higher or much lower than the desired, nominal value of ARL0.
This is because the ‘true’ rate is not known. To account for this, they suggest a
self-starting approach that may be summarized as follows (for a normally distrib-
uted variable; other self-starting approaches also may be devised for variables
with other distributions). As each observation is made, the quantities

Tn =
Xn− X̄n−1

sn−1

(6.15)

are found, where X̄n−1 and sn−1 are the sample mean and standard deviation
based upon the first n−1 observations. The quantity

Vn =
√
n−1
n

Tn (6.16)
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has a t-distribution with n−2 degrees of freedom. This can be transformed into
a quantity that has a standard normal distribution as follows:

Un =
−1�Fn−2�Vn�	 (6.17)

where Fn−2 is the cumulative distribution function for the t-distribution with
n−2 degrees of freedom, and 
−1 is the inverse of the normal distribution. Thus
the Us represent the value from a standard normal distribution that would have
an area equal to the area observed for the quantity Vn under the t-distribution
with n−2 degrees of freedom.

6.3 CUMULATIVE SUM METHODS FOR
SPATIAL SURVEILLANCE

6.3.1 Maintaining a Cumulative Sum Chart
for Each Region

To maintain a desired ARL over a set of m regional charts that are monitored
simultaneously, the threshold for each chart should be adjusted. An approx-
imate adjustment is found by using the product of m and ARL in place of ARL
when the threshold is determined. For the illustrative data in Table 6.1, m= 9
regions; if ARL = 100 for a state official maintaining all nine regional charts,
then h is found by using ARL = 9×100= 900 (using k = 0�5):

h≈ 904
902

ln�451�−1�166= 4�96� (6.18)

This ensures that the average time until the first false alarm over the set of m
charts is equal to ARL.
This method for determining the threshold is an approximation; a more

precise threshold may be found by using the fact that the distribution of run
lengths is approximately exponential (Page, 1954). Then, following Raubertas
(1989), the average run length between false alarms observed over the set of
m charts is

ARL∗0 =
1

1− �1−1/ARL0�m
� (6.19)

This can be rearranged to find the value of ARL0 to be used on each chart, in
terms of the desired value of ARL∗0:

ARL0 =
[
1−

(
1− 1

ARL∗0

)1/m
]−1

� (6.20)

For the example, with ARL∗0 = 100 and m = 9, ARL0 = 895�99. This leads to
h= 4�95, which is very close to the value found in (6.18).
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For the data in Table 6.1, only the CUSUMs for regions 4 and 5 attain this
threshold:

Region Time periods where S > h

4 21−25
5 27−30

6.3.2 Maintaining Cumulative Sum Charts for Local
Neighborhoods around Each Region

The implementation of the CUSUM approach in a regional setting has, to this
point, been rather uninteresting from a spatial context – each region is simply
monitored separately, and there is no explicitly spatial connection between
the temporal evolutions of regions that are near to one another. Raubertas
(1989) suggested that the CUSUM methodology be generalized by maintaining
CUSUMs not for each individual region, but for each individual region and its
surrounding neighborhood.
An extension of the approaches outlined above is to construct ‘local statistics’

in association with each geographic unit. These are defined as a weighted sum of
the region’s observation and surrounding observations, where the weights could
potentially decline with increasing distance from the region. CUSUMs associated
with these local statistics may be monitored. Because the local statistics are
spatially autocorrelated, a Bonferroni adjustment would result in too high a
value of h, making it difficult to detect change when it actually occurs.
We now implement this idea; as a reminder, we desire rapid detection of the

shift from the null hypothesis (where there is no spatial pattern, and all regions
have zero means) to the situation where a set of adjacent regions witnesses a
change from regional means of zero to alternative, higher regional means.
At each location, we construct a local statistic, yit, by using a Gaussian kernel,

represented by a weighted sum of the regional values:

yit =
∑
j

wijxjt�

wij = �
√
���−1 exp�−d2ij /2�

2��

(6.21)

where � is the width of the Gaussian kernel (chosen to coincide with the likely
size of any emergent spatial cluster), and dij is the distance from the centroid in
region i to the centroid in region j. The local statistics constructed at or near
edges will not have as many regional neighbors as other regions. Consequently,
the sum of the squared weights �

∑
j w

2
ij �, and the variance of the local statistic

(which is based on the sum of the squared weights), will be smaller for regions
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near edges than for other regions. To help address these edge effects, it is useful
to use modified, scaled weights in place of the original weights to ensure equal
variances for all local statistics. The modified weights are defined in terms of
the original weights as follows:

w∗
ij =

wij√∑
j w

2
ij

(6.22)

The local statistics, yi, all have normal distributions with mean zero and variance
one (see, for example Siegmund and Worsley, 1995; Rogerson, 2001a).
If there are m regions, one possibility for surveillance would be to monitor

each local statistic individually, as in Section 6.3.1. However, the Bonferroni
adjustment used to determine the threshold is conservative since the local
statistics are correlated (i.e., local statistics that are near to one another in space
are correlated, since there is some commonality in the information they make
use of ).
One alternative for the determination of appropriate thresholds would be

Monte Carlo simulation; a value of s < m could be used in sARL0, and the value
of s that leads to a systemwide average run length of ARL0 could be found via
simulation.
An alternative approach that accounts for the spatial correlation of local

statistics is to use the number of effectively independent regions. Rogerson
(2001a) shows that, for a single test, the effective number of independent tests,
e, when using a Gaussian kernel is approximately

e ≈m/�1+0�81�2�� (6.23)

The following simulation experiments are designed to evaluate whether this is
of use in a monitoring context. The null hypothesis was simulated as follows.
A 16× 16 grid of cells was filled with normal standard deviates for each
successive time period, and then smoothed with a Gaussian kernel using various
values of � . The central 8×8 portion of the grid was then taken as the study
area, to avoid possible edge effects. Cusums were kept for each of the 64 local
statistics (i.e., for each of the yit� i= 1�2�    �64).

Results are shown in Table 6.2. The first two columns give the parameters
chosen for particular simulation runs. For each pair of � and h values shown
in the table, 200 trial runs were carried out, and the time until the first signal
was recorded. To speed the simulations, censoring points were chosen; if the
number of time periods needed for a false alarm exceeded a value of C (where
the value of C was particular to each pair of � and h values), this was noted,
and the ARL0 was estimated using the fact that average run lengths tend to
have an exponential distribution (see Appendix to this chapter).
The third column gives the estimated ARL under the null hypothesis and is

based upon the simulations. The fourth column gives the ARL that would result
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if the corresponding value of h was used in a CUSUM with only one region.
The number of effectively independent tests, as determined from the simulation,
is shown in the fifth column; it is found by dividing column (4) by column (3).
This is to be compared with column (6), which is the estimated number of
independent tests based upon equation (6.23).
In general, columns (5) and (6) are quite similar. For low values of ARL0,

there is a tendency for the estimated number of independent tests to be too high
(i.e., conservative). For large values of ARL0, the opposite is true – the estimated
number of independent tests is too low, and this would result in a somewhat
higher number of false alarms than desired.
This comparisoncanalsobeviewedbycomparingcolumns (2)and (7); the latter

is the value of the threshold h that would be used if one used equation (6.23) to
estimate the number of effectively independent tests, and if one desired an ARL0
equal to that given in column (3). Again low values of ARL0 would result in
the use of thresholds (h) that were conservative; that is, the thresholds would be
too high (in comparison with the h values of column 2, which are the ones that
should be used to achieve the ARLs in column 3). In contrast, for high values of
ARL0, the estimated values of h are lower than the values in column 2 that in
principle should be used to achieve the ARLs in column 3.
One more illustration of monitoring local statistics is now made by recon-

sidering the data in Table 6.1. From (6.21) and (6.22) (with � = 1), the local
statistic constructed for the center square would have weights of 0.2119 for
corner squares, 0.3421 for squares adjacent by rook’s adjacency, and a weight
of 0.576 for the central region (region 5). The results of using a CUSUM based
upon equation (6.21) for this weighted local statistic are shown in Table 6.3.
The CUSUM exceeds the threshold of 2.84 used for a single variable in time

periods 18 and 20–30. It exceeds the conservative threshold of 4.96 associated
with monitoring nine independent local statistics in time periods 23–30.

6.3.2.1 Poisson variables

For Poisson variables, one can monitor the quantities yit =
∑

j wijxjt, where xjt is
the observed count in region j at time t, and wij is a weight associated with,
for example, the distance from region i to region j. These observed quantities
are then compared with their corresponding expectations,

∑
j wij�0�jt (where the

subscript jt refers to region j at time t), and used in a CUSUM for region i.
To determine appropriate critical thresholds for each region, Monte Carlo

simulation of the null hypothesis may be used (where observed counts are real-
izations from Poisson or normal distributions with parameters set equal to the
corresponding expectations). In particular, with a desired average run length of
ARL0, the critical thresholds should be determined using sARL0; the value of s is
less than the number of regions (r), and is determined via simulation to lead to the
desired average run length. The greater the correlation between the local regional
statistics, the lower swill be relative to r (Rogerson and Yamada, 2004a).
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Table 6.3 Cumulative sum for
the local neighborhood statistic of
the center square (region 5) in a
hypothetical nine-region system.

Time Cumulative sum for region 5

1 0�0
2 0�0
3 0�0
4 0�0
5 0�0
6 0�0
7 0�0
8 0�0
9 0�0

10 0�65
11 0�0
12 0�0
13 0�0
14 0�0
15 1�85
16 1�36
17 2�59
18 3�07
19 2�26
20 3�05
21 3�67
22 3�90
23 5�39
24 5�77
25 6�59
26 6�69
27 6�26
28 6�53
29 6�56
30 5�89

6.3.3 Cumulative Sum Charts for Global Spatial Statistics

A strategy for monitoring spatial patterns to detect quickly any deviation from
the expected pattern is to place a global spatial statistic within a CUSUM monit-
oring system. For example, Rogerson (1997) begins by adopting Tango’s (1995)
statistic as a measure of spatial pattern. In principle, other spatial statistics
could also be used. Suppose that Tango’s statistic is found for a particular set
of observations. Then, using the null hypothesis, one is able to compute the
probability that a newly computed Tango statistic, based on one more observa-
tion, will take on a particular value. This leads to calculation of the expected
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value and variance of the Tango statistic after the next observation, condi-
tional upon the current value of the statistic. In turn, the expected value and
variance may be used to convert the Tango statistic that is observed after the
next observation into a z-score. Finally, these z-scores are used in a CUSUM
framework.
Rogerson and Sun (2000) show how a similar approach may be used to

monitor changes in the nearest neighbor statistic, while Rogerson (2001b)
monitors changes in the space-time Knox statistic as new observations are
collected.

6.3.4 Multivariate Cumulative Sum Methods

Monitoring all regions at once, as in Section 6.3.1, is one approach to
multivariate or multiregional surveillance; Woodall and Ncube (1985) were
early advocates of this approach. However, it does not allow for the potential
correlation between variables (in this case, each variable is a region).
Pignatiello and Runger (1990) describe multivariate monitoring in the pres-

ence of a known variance–covariance matrix. Multivariate monitoring begins
by cumulating the differences between the observed and expected number of
cases in each region,

St =
∑

j=t−nt+1

�Oj−Ej�� (6.24)

where Oj and Ej are vectors of observed and expected counts at time j; there are
m elements in each vector, corresponding to entries for each of the m regions.
It is assumed that the vector of observed counts is approximately multivariate
normal. This will necessitate either a sufficiently large number of counts, or
some transformation to normality. The quantity nt is defined as the number of
time periods since the CUSUM was last reset to zero.
The norm of S is a scalar representing the multivariate distance of the cumu-

lated differences from the target:

��St�� =
√
S′
t�

−1St (6.25)

where � is the variance–covariance matrix associated with the m regions. The
quantity monitored is

MC1t =max�0� ��St��− knt�� (6.26)

where

nt =
{
nt−1+1� MC1t−1 > 0�

1� otherwise�
(6.27)
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The value of the parameter k is chosen to be equal to one-half of the multivariate
distance from the target vector to the hypothesized alternative vector. The
parameter k is approximately equal to one-half of the off-target multivariate
distance one would like to quickly detect; this choice is thought to minimize the
time taken to detect such an off-target process. The threshold parameter h is
found by simulating the hypothesis of no change; choosing different values for
h naturally leads to different average times until the threshold is first crossed.
From this simulation, the threshold leading to the desired ARL0 may be chosen.
Crosier (1988) outlines a procedure that is very similar to this.
In a multivariate setting, the actual ARL0s can be less than or greater than

desired because the covariance matrix that captures spatial dependence is typic-
ally assumed or estimated, and is not known exactly. When the covariance
matrix is incorrectly taken to be the identity matrix (i.e., when it is incorrectly
assumed that there is no spatial dependence), the presence of spatial autocorrel-
ation leads to much lower ARL0s in comparison with the nominal ARL0. Thus
premature signals might be caused by spatial autocorrelation, and may not
represent true increases in incidence. Furthermore, the effect on ARL0 is more
serious when k is high than when it is low. Rogerson and Yamada (2004b)
provide additional examples showing that the effects of overestimating spatial
autocorrelation appear to be less serious that the effects of underestimating it.
For the data in Table 6.1, we assume no spatial autocorrelation in the maps

of z-scores that are observed each period, �= I. Setting k = 0�5, simulation of
the null hypothesis of no change in the mean reveals h = 7�95. For the data
in Table 6.1, the multivariate CUSUM exceeds this threshold only for periods
8–11 and 18; the former is a false alarm.
Rogerson and Yamada (2004b) compare Pignatiello and Runger’s

multivariate approach with the multiple univariate approach described in
Section 6.3.1. They find that the multiple univariate approaches is limited by
its lack of ability to account for the spatial autocorrelation of regional data; the
multivariate methods are limited by the difficulty in accurately specifying the
multiregional covariance structure. When the degree of spatial autocorrelation
is low, the univariate method is generally better at detecting changes in rates
that occur in a small number of regions; the multivariate approach is better
when change occurs in a large number of regions.
More extended discussion of multivariate surveillance can be found in

Chapter 9.

6.4 SUMMARY AND DISCUSSION

In this chapter, we have reviewed several aspects of CUSUM methods and their
application to public health surveillance. Although the CUSUM approach has
been widely employed in this context, the majority of applications have been
limited to the most common form of CUSUM, where the normal distribution is
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assumed, and where a single region is monitored. The primary purposes of this
chapter have been, first, to indicate how other developments in statistical process
control allow for improved CUSUM surveillance (e.g., through implementation
of the FIR feature and through the use of CUSUMs designed for statistical
distributions other than the normal), and second, to indicate how these methods
may be extended to a more explicitly spatial context.
Given that the CUSUM accumulates deviations between observed and

expected values, one of the biggest challenges is to model expectations well. If
the model for expectations is poor, errors in the model will eventually cumulate
sufficiently to send a signal, and this signal would have nothing to do with
underlying change in the rate or frequency of health events. It is important
therefore to build any known variability, such as seasonality, into the model for
expectations. One possibility may be to attempt to account for lack of model fit
directly in the construction of the CUSUM; this would be a difficult, but useful
and promising direction for further study.
Signals may be also be a consequence of poor data quality, in addition to

being caused by poor models for expectations. It should not be surprising if
initial applications of CUSUM methods provide more clues on the issues of data
quality and model fit and are less reliable indicators of true change. Only when
these difficult questions are addressed satisfactorily can the methods achieve
their full potential.
Finally, it is important to recognize that CUSUM methods represent just one

approach to sequential decision-making. In Chapter 3, Frisén and Sonesson
describe the desirable optimality of CUSUM and other methods.
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APPENDIX

Suppose one has n uncensored andm censored observations (the latter known to
be greater than some value C) from an exponential distribution with unknown
parameter �. An estimate of the unknown parameter may be found by first
taking the likelihood:

L =
n∏

i=1

�e−�xi

m∏
i=1

e−C�
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After finding the log-likelihood,

lnL = n ln�−�
n∑

i=1

xi−C�m�

one takes the derivative with respect to �. Equating to zero and solving for
� yields

�̂ = n∑n
i=1 xi+Cm

The average of this exponential variable is the average run length of the CUSUM
under the null hypothesis; it is equal to the reciprocal of this estimate:

ARL = 1

�̂
=

∑n
i=1 xi+Cm

n
�
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Scan Statistics for
Geographical Disease

Surveillance: An Overview
Martin Kulldorff

7.1 INTRODUCTION

7.1.1 Geographical Disease Surveillance

Public health surveillance has been defined as ‘the systematic ongoing assess-
ment of the health of a community, based on the collection, interpretation,
and use of health data and information’ (Teutsch and Churchill, 2000). A key
concept is the vigilance for unsuspected relationships, which is in contrast
to most epidemiological studies where the main goal is to evaluate clear and
predefined hypotheses. In geographical disease surveillance, the interest is in the
spatial and/or spatio-temporal distribution of disease. Here are some examples.
Sheehan et al. (2000), Roche et al. (2002), Gregorio et al. (2002), and Thomas

and Carlin (2003) looked at the geographical distribution of the proportion of
late versus early stage breast cancer incidence in Massachusetts, New Jersey,
Connecticut, and Minnesota respectively. Areas with a high proportion of late
stage breast cancer indicate places where public health officials may want
to make special efforts to increase mammography screening and other early
detection efforts.
The geographical distribution of Creutzfeldt–Jakob disease was studied in

Great Britain, and investigators found a small statistically significant cluster
with five cases in Charnwood, Leicestershire, England (p = 0�004). A detailed
local epidemiological investigation identified specific and unusual butcher shop

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd
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practices as the likely cause for the outbreak (Cousens et al., 2001; Bryant and
Monk, 2001).
Viel et al. (2000) did geographical surveillance of soft-tissue sarcoma and

non-Hodgkin’s lymphoma in France, finding statistically significant high incid-
ence rates around a municipal solid waste incinerator with high dioxin emis-
sion levels, a known carcinogen. As a result of the report, additional emission
controls were installed at the incinerator.
In the 1990s, the Washington State Health Department evaluated a glio-

blastoma cancer cluster alarm around Seattle-Tacoma International Airport
that the community was very concerned about. The earliest analyses were
inconclusive as results depended on the geographical boundaries chosen to
define the cancer cluster. There were also problems with pre-selection bias due
to testing for an increased incidence in an area that was chosen because it
had an increased incidence (the ‘Texas sharpshooter effect’, named after the
Texan who first fired his gun at the barn door and then drew the bull’s-eye
around the bullet hole). A geographical surveillance approach incorporating
the county as a whole revealed a nonsignificant cluster around the airport,
adding weight to other evidence that it was probably a chance occurrence
(VanEenwyk et al., 1999).
In New York City, the health department has studied the spatio-temporal

distribution of dead birds reported by the public, with an increase in the number
of reported dead birds from an area used as a signal of increased West Nile
virus activity (Mostashari et al., 2003). This provides information on where
preventive measures such as the use of mosquito larvicides is warranted.
In the fall of 2001, the New York City Department of Health set up a real-

time syndromic surveillance system for the early detection of disease outbreaks.
On a daily basis, they receive information from hospitals about the number
of emergency room visits, broken down by syndrome/symptom (respiratory,
vomiting, fever, diarrhea, etc.) and residential zip code (Heffernan et al., 2004).
Every morning the data is analyzed for unusual patterns to see whether there are
any indications of either citywide or localized disease outbreaks. The rationale
for using syndromes rather than diagnosed diseases is the hope of picking up
an outbreak as early as possible before lab results and other tests can confirm
a particular disease diagnosis.
The geographical distribution of disease varies naturally and many apparent

disease clusters are simply due to random fluctuations. What all these examples
have in common is that they used the spatial and/or space-time scan statistics
to differentiate clusters that are likely chance occurrences from those that
are unlikely to be due to chance. Of course, there are many other types of
geographical disease surveillance of equal importance, for which other statistical
methods should be used. The aim of this paper is to provide a brief overview of
one simple and user-friendly tool that epidemiologists and public health officials
can use in their disease surveillance work: the spatial and space-time scan
statistics.
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7.1.2 Tests for Spatial Randomness

There are different types of statistical methods used to test whether a spatial
or space-time pattern of counts is random or not. Besag and Newell (1991)
distinguished between focused and general tests. Among general tests, Kulldorff
(1998) distinguished between global clustering and cluster detection tests.
Tests for global clustering (Alt and Vach, 1991; Besag and Newell, 1991;

Cuzick and Edwards, 1990; Grimson, 1991; Tango, 1995, 2000; Walter, 1994)
are used when we want to investigate whether there is clustering throughout
the study region, without being interested in the specific location of clusters.
For example, we might want to know if a particular disease is infectious or not,
in which case we would expect cases to be found close to each other no matter
where they occur. The most extreme example of this type of clustering arises
if we have one parent case with all other cases being its closest neighbors, but
more typical is a situation where groups of cases are spread throughout the
region.
Cluster detection tests are concerned with local clusters. They are used when

there is simultaneous interest in detecting the location of clusters and testing
their statistical significance. For disease outbreak detection and the prevention
and control of disease this is critical, since public health officials need to know
the location of an outbreak in order to know where to intervene. The spatial
and space-time scan statistics, described in detail below, are cluster detection
tests.
Focused cluster tests are also concerned with local clusters, but used when

there is a prespecified hypothesis, not generated by the data, about the location
of the cluster (Bithell, 1995; Lawson, 1993; Lawson and Waller, 1996; Stone,
1988; Waller et al., 1992). For example, the hypothesis could be that disease
incidence is high around a specific toxic waste site that is known to leak. If
the location hypothesis was not generated by the data, then a focused test
will have higher statistical power than a cluster detection test. On the other
hand, if the hypothesis is generated from the data, then we will have the ‘Texas
sharpshooter’ type preselection bias if a focused test is used.

7.1.3 Scan Statistics

The scan statistic is a statistical method with many applications, designed to
detect a local excess of events and to test if such an excess may reasonably have
occurred by chance. Scan statistics were first studied in detail by Naus (1965a,
1965b), who looked at the problem in both one and two dimensions. The field
has recently been summarized in two excellent books by Glaz and Balakrishnan
(1999) and by Glaz et al. (2001). In the simplest form of a scan statistic there
is a time period of length T and a number C of events at times ti� i = 1� � � � � C.
A scanning window of fixed length w < T is continuously moved across time,
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and the definition of the scan statistic S is the maximum number of events in
the window as it is scanning the time period. In mathematical notation,

S = max
0<s<T−w

C∑
i=1

I�ti ∈ �s� s+w��� (7.1)

where I�·� is the 0/1 indicator function. The value of S is compared to what
would be expected by chance based on the event times being generated from a
homogeneous Poisson process, either with or without conditioning on the total
number of observed events C. One-dimensional temporal scan statistics have
been used for disease surveillance since the early 1980s (Wallenstein, 1980;
Weinstock, 1981).
Three basic properties of the spatial and other multidimensional scan stat-

istics are the geometry of the area being scanned, the probability distribu-
tion generating events under the null hypothesis, and the shapes and sizes of
the scanning window. In terms of the region being scanned, Naus (1965b),
Loader (1991), Alm (1997, 1998), and Anderson and Titterington (1997) all
considered a two-dimensional rectangle. Alm (1998) also looked at a three-
dimensional rectangular volume. Chen and Glaz (1996) studied a regular grid
of discrete points within a rectangular area. Turnbull et al. (1990) used an irreg-
ular grid, where points may be anywhere within an arbitrarily shaped area.
Under the null hypothesis, Naus (1965b), Loader (1991), and Alm (1997, 1998)
looked at a homogeneous Poisson process, Turnbull et al. (1990) considered
an inhomogeneous Poisson process, while Anderson and Titterington (1997)
considered both types. Chen and Glaz (1996) considered a Bernoulli model. As
for the scanning window, Naus (1965b), Loader (1991), Chen and Glaz (1996),
Alm (1997, 1998), and Anderson and Titterington (1997) all considered rect-
angles. Alm (1997,1998) also looked at circles, triangles, and other convex
shapes. Turnbull et al. (1990) considered a circular window centered at any of
the grid points making up the data. The window is, in all cases, of fixed shape
as well as of fixed size in terms of the expected number of events, with the
exception of Loader (1991), who also considered a variable size window.
Except for Turnbull (1990), all of the above-mentioned authors have had the

aim of mathematically finding the exact or approximate distribution of various
scan statistics. These are very hard probability theory problems even for simple
one-dimensional scan statistics, and a lot of the mathematical work has been
focused on finding lower and upper bounds on the distribution probabilities. In
disease surveillance, the scan statistics needed are much more complex due to
(i) the fact that the population at risk is unevenly distributed geographically,
with higher population density in cities than in the country side, (ii) the need to
use a variable size scanning window, since we do not know the size of potential
disease clusters a priori, and (iii) the need to make adjustments for natural
spatial and temporal variation because of known risk factors.
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7.2 SCAN STATISTICS FOR GEOGRAPHICAL
DISEASE SURVEILLANCE

Based on the likelihood ratio test, Kulldorff and Nagarwalla (1995) and Kulldorff
(1997) presented a general mathematical model for spatial scan statistics that
adjusts for the uneven geographical population density and allows for a variable
size scanning window. These were later generalized to prospective space-time
scan statistics for the early detection of disease outbreaks (Kulldorff, 2001). By
using Monte Carlo hypothesis testing (Dwass, 1957), there is no longer a need
to worry about the very difficult mathematics entailed in finding approximate or
asymptotic solutions. With this approach, random data sets are generated under
the known null hypothesis, and the value of the scan statistic is calculated for
the real data set and compared to its value for the random data sets. Rather than
worrying about complicated probability theory, though, we must now have
efficient algorithms (Kulldorff, 1999). While computer-intensive, the Monte
Carlo approach need not to be overly so, and users routinely use spatial scan
statistics to analyze data sets with more than 10000 geographical locations.

7.2.1 Probability Models

Spatial and space-time scan statistics can be used to analyze incidence,
mortality, prevalence, treatment, survival, survey, and many other types of
data. Depending on the nature of the data, different underlying probability
models should be used. Here we describe when to use the Bernoulli, Poisson
(Kulldorff, 1997) and exponential (Huang et al., 2004) probability models.

When there are ‘cases’ and ‘noncases’ represented by a 0/1 variable, a
Bernoulli model should be applied. The 0/1 variable may represent people with
or without a disease or people with different types of disease such as early and
late stage breast cancer. They may reflect cases and controls from a larger
population, or they may together constitute the population as a whole. Separate
locations may be specified for each case and each noncase, or the data may be
aggregated for states, provinces, counties, parishes, census tracts, postal code
areas, school districts, households, etc., with multiple cases and noncases at
each location. To do a space-time analysis, it is necessary to have a time for
each case and each noncase as well. The analyses are conditioned on both the
total number of cases and the total number of noncases observed.
In many applications, there are not individuals who are either a case or

not a case, but rather a population at risk mass that reflects births, deaths,
and migration of people into and out of an area as they occur over time. It is
then appropriate to use a Poisson probability model where the number of cases
in each location is Poisson distributed. Under the null hypothesis, when there
are no covariates, the expected number of cases in each area is proportional
to the person-time in that area. In most situations, the person-time for each
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location and time interval will be an approximation based on the census, and
the population is therefore usually aggregated into some political entities such as
counties, parishes, census tracts, or zip code areas. To do a space-time analysis,
it is also necessary to have a time for each case. The population in each location
is either constant or changing according to some known temporal trends that
may be different for different locations. The analyses are conditioned on the
total number of cases observed, as well as on the estimated population numbers.
It is also possible to use spatial scan statistics to analyze survival data, looking

for geographical areas with exceptionally short or long survival times, determ-
ining if such areas are statistically significant. In such as setting, we are not
interested in the geographical distribution of individuals diagnosed with the
disease compared to those without, but rather in the distribution of diagnosed
individuals with short survival times compared to diagnosed individuals with
long survival times. Huang et al. (2004) have developed a spatial scan statistic
for survival data that uses the exponential probability distribution to model the
survival times. It is possible to analyze both censored and noncensored data.
Unlike the Bernoulli and Poisson models, where the random data is generated

under the known null hypothesis, that is not possible for survival times. The null
hypothesis is that the survival time distribution is the same across space, but we
almost never know what the actual distribution is, and even if we are willing
to assume the shape of the distribution we do not know the mean or variance
of it. To solve this, the randomization is done by conditioning on the collection
of survival times observed, and then permuting the geographical coordinates
and survival times. When there is censored data, the 0/1 censoring indicator
will be permuted together with the corresponding censoring time as a pair.
This randomization procedure ensures that the statistical inference ( p-value) is
unbiased even when the true survival distribution is not exponential.

7.2.2 Likelihood Ratio Test

Traditionally, scan statistics are simply defined as the maximum number of
cases in the window. In most applications though, the cluster size is not known
a priori, and one should then use a variable window size. It does then not work
to simply use the maximum number of cases, since larger windows will have
more cases just because they are larger. The scan statistics are then based on the
likelihood, and defined as a likelihood ratio test (Loader, 1991; Kulldorff, 1997).
For each location and size of the scanning window, the alternative hypothesis
is that there is an elevated rate within the window as compared to outside.
Under the Poisson model, the likelihood function for a specific window is

proportional to

( c
n

)c
(
C− c

C−n

)C−c

I�c > n�� (7.2)
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where C is the total number of cases, c is the number of cases within the
window, and n is the covariate-adjusted expected number of cases within the
window under the null hypothesis. I�·� is the indicator function. When SaTScan
(see Section 7.8) is set to scan only for clusters with high rates, we use I�c > n�,
which is equal to 1 when the window has more cases than expected under
the null hypothesis and 0 otherwise. When only scanning for clusters with low
rates we use I�c < n� instead. When the program scans for clusters with either
high or low rates the indicator function is removed from the likelihood formula.
For the Bernoulli model the likelihood function when scanning for high

rates is
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where c and C are defined as above, n is the total number of cases and noncases
in the cluster, N is the total number of cases and noncases in the data set. When
scanning for low rates, ‘>’ is changed to ‘<’ in the indicator function, and
when scanning for either high or low rates, the indicator function is removed.
The likelihood function is maximized over all window locations and sizes,

and the one with the maximum likelihood constitutes the most likely cluster.
This is the cluster that is least likely to have occurred by chance. The likelihood
ratio for this window constitutes the maximum likelihood ratio test statistic.
Its distribution under the null hypothesis is obtained by repeating the same
analytic exercise on a large number W of random of replications of the data set
generated under the null hypothesis, conditioning on the total number of cases
and noncases observed. The p-value is obtained through Monte Carlo hypothesis
testing (Dwass, 1957) by comparing the rank of the maximum likelihood from
the real data set with the maximum likelihoods from the random data sets. If
this rank is R, then p = R/�1+W�.

7.2.3 Scanning Window

Whether the data is purely temporal, purely spatial, or space-time, the scanning
window of the scan statistic can be defined as any collection of geographical
‘zones’ (Kulldorff, 1997). Most commonly, the spatial scan statistic imposes a
circular window on the map. The circle is in turn centered on each of several
possible grid points positioned throughout the study region. For each grid point,
the radius of the circle varies continuously in size from zero to some upper limit
specified by the user. In this way, the circular window is flexible both in location
and size. In total, the method creates an infinite number of distinct geographical
circles with different sets of neighboring data locations within them, where each
circle is a possible candidate cluster. Other window shapes have also been used,
such as ellipses (Kulldorff et al., 2004b), rectangles (Chapter 11) and irregular
shapes defined in a nonparametric fashion (Duczmal and Assunçião, 2004;



122 Scan statistics

Patil and Taillie, 2003, 2004). By increasing the number of windows considered
in a given analysis, either through more grid-points, sizes or shapes, the power
increases for detecting clusters conforming to many (but not necessarily all) of
the newly included windows, while the power decreases for detecting clusters
conforming to the originally included windows due to the increased amount of
multiple testing that needs to be adjusted for.
The space-time scan statistic is most often defined by a cylindrical window

with a circular geographic base and with height corresponding to time (Kulldorff
et al., 1998). The base is defined exactly as for the purely spatial scan statistic,
while the height reflects the time period of potential clusters. The cylindrical
window is then moved in space and time, so that for each possible geographical
location and size, it also visits each possible time period. In effect, we obtain
an infinite number of overlapping cylinders of different size and shape, jointly
covering the entire study region, where each cylinder reflects a possible cluster.
The space-time scan statistics may be used for either retrospective or

prospective analyses. In a retrospective analysis, a data set is analyzed once,
scanning for current as well as past space-time clusters (Kulldorff et al., 1998).
This means that both the window start and end dates are flexible within some
limitations specified by the user, such as a maximum temporal cluster size. In
the prospective setting (Kulldorff, 2001), analyses are repeated every day, week,
month, or year, and the interest is only in current clusters. In this case, the start
date of the window is flexible as before, but the end date of the scanning window
is always identical to the last date for which data is available. The prospective
space-time scan statistic is useful for the early detection of disease outbreaks.
It is possible to adjust the inference for the repeated analyses conducted over
time, either by adjusting the p-values (Kulldorff, 2001) or, preferably, by using
reccurrence intervals as proposed by Kleinman et al. (2004) and in Chapter 5,
where a cluster is described as having a strength so that it would occur by
chance only once every X number of days, months or years.

7.2.4 Adjustments

As described above, the spatial and space-time scan statistics adjust for the
unevenness in the underlying population density, taking into account that there
will be more cases per square mile in New York City than in Wyoming, in
proportion to the population. It is often important to adjust for other factors
as well. For example, based on raw population numbers there is higher cancer
mortality in Florida than in other parts of the United States, simply because
older people are at higher risk for cancer and there is a higher proportion of
older people in Florida. For the Poisson model, such adjustments are easily
done by indirect standardization, replacing the raw population number with
the new expected counts (Kulldorff, 1997). For example, let cis and popis be the
number of cases and the population respectively in age group s in location i.
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The mortality rate in age group s is then rs =
∑

i cis/
∑

i popis, and the expected
count for location i is

∑
s popisrs, which replaces n in equation (7.2). The same

method can be used to adjust for other categorical covariates such as gender,
ethnicity or education, as well as for area level covariates such as urbanicity
or socioeconomic neighborhood variables (Kulldorff et al., 1997; Klassen et al.,
2004; Sheehan et al., 2004).

Other types of adjustments may also be of interest. For example, when strata
counts are only available for the denominator, while missing from the numer-
ator, one can use risk estimates from an epidemiological study in place of
the rss above (Kulldorff et al., 1997). The expected counts may also be calcu-
lated through Poisson or other types of regression analysis, as a preprocessing
step, which also allows for the adjustment of continuous variables (Sheehan
et al., 2004), or in a space-time analysis, for purely temporal and purely spatial
variation (Kleinman et al., 2004).

7.3 SECONDARY CLUSTERS

With scan statistics it is also possible to identify secondary clusters in the data
set in addition to the most likely cluster, and then order them according to the
value of their likelihood. There will often be secondary clusters that are almost
identical to the most likely cluster and that have almost as high likelihood
values, since marginally expanding or reducing the size of a medium or large
cluster will not change the likelihood that much. Most clusters of this type
provide little additional information, but their existence means that while it is
possible to pinpoint the general location of a cluster, its exact boundaries must
remain uncertain. There may also be secondary clusters that do not overlap
with the most likely cluster, and they may be of great interest. In Monte Carlo
hypothesis testing, the likelihood of secondary clusters in the real data set should
be compared with the likelihood of the most likely clusters in the simulated data.
A consequence of this is that p-values for secondary clusters are conservative.
While it should be clear how the scan statistic adjusts for the multiple testing

in terms of the multiple window location and sizes evaluated, one could reas-
onably ask whether it also adjusts for the multiple p-values obtained for the
secondary clusters detected. The answer to this is that even though there are
many p-values there is still only one test, but we need to dissect what we are
doing into two parts. The first is whether or not to reject the null hypothesis.
To do this, we only need to know the likelihood from the most likely cluster
in the real data set and compare it with the most likely cluster in each of the
random data sets. Secondary clusters are irrelevant for this. The second part is
pinpointing the specific cluster causing the rejection. The most likely cluster is
clearly causing the rejection, since that was the likelihood that was high when
compared to the ones from the random data sets. But, it is possible that there
is more than one cluster in the real data set that is strong enough to cause
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a rejection of the null hypothesis, so rather than doing multiple tests we are
simply tallying the clusters capable of rejecting the null hypothesis.
One useful way of thinking about it may be if there are two different clusters in

different parts of the map, both with 20 cases when exactly two were expected.
With identical likelihoods, either could be assigned as the most likely cluster,
causing the rejection, and the scan statistic may arbitrarily select one as the
primary and the other as the secondary cluster. In reality though, we should
clearly treat them as equals. For clusters with excess risk, another way to look
at it is that if we take the cases in the most likely cluster and move them to
other locations on the map, either randomly or according to some deterministic
rule, then no matter how they are distributed, we would still reject the null
hypothesis due to the secondary cluster.

7.4 NULL AND ALTERNATIVE HYPOTHESES

7.4.1 The Null Hypothesis

After adjusting for population density and covariates such as age or gender,
scan statistics are based on the null hypothesis of complete spatial randomness.
For most disease data that is not true. Does this mean that the null hypothesis
is wrong?
When accepting the notion of statistical hypothesis testing one must also

accept the fact that the null hypothesis is never true. For example, when
comparing the efficacy of two different surgical procedures in a clinical trial we
know for sure that the efficacy cannot be equal, but we still use equality as
the null hypothesis since we are interested in finding out whether one is better
than the other. Likewise, with geographical data we know that disease risk is
not the same everywhere but we still use it as the null hypothesis since we are
interested in finding locations with excess risk. Hence, the null hypothesis is
wrong in the sense that we know it is not true but it is not wrong in the sense
that we should not use it.

7.4.2 Spatial Autocorrelation

Spatial autocorrelation means that the location of disease cases is dependent on
the location of other disease cases in such a way that there is a tendency for them
to occur close together. It is natural to ask whether spatial scan statistics assume
that there is no spatial autocorrelation in the data. The answer is no. Rather,
it is a test of whether there is spatial autocorrelation or other divergences from
the null hypothesis. In this sense it is equivalent to a test for normality, which
does not assume that the data is normally distributed but tests whether it is.
If one is interested in whether there is spatial autocorrelation in the data, one

should not necessarily use a scan statistic though. If one does not care about
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cluster locations, there are tests for global clustering that have higher power
than the spatial scan statistic and should be used instead (Song and Kulldorff,
2003). As mentioned before, the spatial scan statistic should be used when one
is interested in the detection and statistical significance of local clusters.
In much of spatial statistics, it is of critical importance to adjust for spatial

autocorrelation, but that is typically not done for spatial and space-time scan
statistics, and for good reasons. Whether to adjust for spatial autocorrelation
depends on the question being asked from the data. As an example, let us
assume that we have geographical data on people who get sick due to food
poisoning. In such data there is clearly spatial autocorrelation, since bad food
sold at restaurants or grocery stores is often sold to multiple customers, many of
who will live in the same neighborhood, city, or county. If we are doing spatial
regression trying to determine what neighborhood characteristics – such as the
grocery store chains that are present, the mean income, educational levels, and
ethnic origin – contribute to a higher risk for food poisoning, it is critical to
adjust for the spatial autocorrelation in the data. If not, the risk relationships
will be overestimated with biased p-values that are too small, providing ‘statist-
ically significant’ results when none exist. Here, the null hypothesis should be
that there is spatial autocorrelation and the alternative hypothesis that there
are geographical differences in the risk of food poisoning. On the other hand, if
we are interested in quickly detecting food poisoning outbreaks, we should not
adjust for the spatial autocorrelation since we are interested in detecting clusters
due to such correlation, and if they are adjusted away, important clusters may
go undetected. Here, the null hypothesis is that the food poisoning cases are
geographically randomly distributed (adjusted for population density, etc.) and
the alternative hypothesis is that there is some clustering either due to differ-
ences in underlying risk factors or spatial autocorrelation. Once the location of
a cluster has been detected, it is for the local health officials to determine the
source of the cluster to prevent further illness.

7.4.3 The Alternative Hypothesis

The spatial scan statistic uses a particular alternative hypothesis with an excess
risk in, for example, a circular cluster. Does this mean that it can only be used
to detect such alternative hypotheses?
The answer is no. Many widely used test statistics do not specify an alternative

hypothesis at all. This means neither that they cannot be used for any alternative
hypotheses nor that they are good for all alternatives. Likewise, if an explicit
alternative is defined, as with the spatial scan statistic, that does not mean
that it cannot be used for other alternative hypotheses as well. It is simply a
question of the test statistic having good power for some alternative hypotheses
and low power for others. The advantage of having a well-specified alternative
hypothesis is that it gives some information about the alternatives for which
the test can be expected to have good power.
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7.5 POWER

The statistical power of the spatial and space-time scan statistics has been
evaluated in a number of different settings (Kulldorff and Nagarwalla, 1995;
Kulldorff et al. 2003, 2004a; Huang et al., 2004). For the Poisson and Bernoulli
probability models, the power depends primarily on the total number of cases
in the study, the expected number of cases in the cluster area under the null
hypothesis, and the relative risk (RR). The higher each of these is, the higher is
the power to detect the cluster.
The power depends on other factors as well. By reducing the upper limit on

the window size, the power slightly increases for clusters that are smaller than
the new upper limit, while the power decreases for clusters that are larger.
Moreover, while the circular spatial scan statistic has good power for many
noncircular cluster shapes, the power decreases for less compact clusters.

7.6 VISUALIZING THE DETECTED CLUSTERS

Once a cluster has been detected using the spatial or space-time scan statistic, it
can be depicted on a map in various ways. The easiest is to simply draw the circle
corresponding to the most likely cluster, using the coordinates of its centroid
and the radius. For aggregated data, a more common approach is to color the
census areas within the cluster. Since a census area is either completely inside
or complete outside the cluster, depending on the location of the census area
centroid, such clusters are not perfect circles but have rough edges according
to the boundaries of the census areas included. A third very nice approach
first used by the New York State Cancer Surveillance Improvement Initiative
(New York State Department of Health, 2001), is to use hatching to show the
location of the spatial scan clusters, and overlaying it on top of a regular map
with incidence rates. With hatching, the exact borders are diffuse, accurately
reflecting the imprecise nature of the cluster borders generated by the spatial
scan statistic.
When there are both clusters of high and low rates, it is common to show

them in different colors or shadings.
Boscoe et al. (2003) wrote a paper on the visualization of spatial scan stat-

istic results using nested circles, by which various combinations of overlapping
clusters are used to create a smoothed map of RRs. Walsh and DeChello (2001)
combined the spatial scan statistic with an empirical Bayes smoothing tech-
nique (Clayton and Kaldor, 1987), to construct a map of standardized mortality
rates (SMRs) that shows a mix of scan-based clusters and spatial smoothing.
There is no one right way to map the detected scan statistic clusters. Rather,

different approaches may be used at different times based on the particular
study, and the above variations are great reflections of that.
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7.7 A SAMPLE OF APPLICATIONS

The spatial and space-time scan statistics have been used for a wide variety of
spatial disease surveillance problems, most often for cancer, infectious diseases
and in veterinary medicine. In some studies it was the only statistical method
used, but more commonly it was one of several methods used as part of a
larger research or surveillance project. Here we provide a sample of various
applications.

7.7.1 Cancer Surveillance

In light of many reports of childhood cancer clusters around the world, Hjalmars
et al. (1996, 1999) used the spatial scan statistic to see if there were any child-
hood leukemia or childhood brain cancer incidence clusters in Sweden, finding
none that was statistically significant. As part of their cancer surveillance
initiative, the New York State Department of Health (2001) used the spatial
scan statistic to look at the geographical variation of breast, lung, prostate,
and colorectal cancer incidence in New York State, finding various statistically
significant clusters but no local hotspots with greatly elevated risk. Hsu et al.
(2004) looked at the geographical distribution of breast cancer incidence in
Texas among different ethnic groups, finding significant clusters for some ethnic
groups but not for others. Viel et al. (2000) investigated the geography of soft-
tissue sarcoma and non-Hodgkin’s lymphoma in the département of Doubs,
France. Michelozzi et al. (2002) used the spatial scan statistic to evaluate child-
hood leukemia incidence in Rome, Italy, finding no statistically significant
clusters. Buntinx et al. (2003) used it to confirm a bladder cancer incidence
cluster in Limburg, Belgium (p = 0�0001), that was first found using more
descriptive geographical surveillance methods. VanEenwyk et al. (1999) used
it to evaluate a potential glioblastoma cluster around Seattle-Tacoma Interna-
tional Airport that was of great community concern, finding that it was not
statistically significant, and hence a likely chance occurrence.
Kulldorff et al. (1997) looked at the geographical distribution of breast cancer

mortality in the northeastern USA, finding a statistically significant cluster in
the New York City – Philadelphia metropolitan area (RR = 1�07� p = 0�001).
Jemal et al. (2002) explored the geography of prostate cancer mortality in the
USA, while Fang et al. (2004) investigated brain cancer mortality in the USA
(Figure 7.1). Both of the latter two studies found statistically significant clusters
with very modest RRs, but no localized hotspots with high RRs.
In addition to cancer incidence and mortality, scan statistics can also be used

to evaluate the geographical distribution of cancer stage, treatment or survival.
The interest is then not in whether people are at higher risk to get cancer
in certain areas. Rather, the question is whether there are some geographical
areas where the cancer patients have shorter survival, higher risk of late state
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Figure 7.1 Brain cancer mortality rates by country for adults aged 20 and above
in the USA, 1986–1995, adjusted for age (5-year age groups), gender, and ethnicity
(white, black, other), using indirect standardization. Top: Standardized mortality rates.
Bottom: The result of the spatial scan statistic. Dark clusters are areas of excess mortality,
while the light clusters are areas with lower mortality. Within each category, clusters
are numbered in order of the likelihood ratio, with the lowest number for the highest
likelihood. All clusters except no. 8 are statistically significant at the 0.05 level. The most
likely cluster was around Arkansas and Mississippi (no. 1), with 6251 cases when 5322
were expected (RR=1.18, p = 0�0001). Fang et al. (2004) provide detailed information
about the remaining clusters.

disease or where they get inferior treatment, compared to cancer patients else-
where. In this manner, Sheehan et al. (2000), Roche et al. (2002), Gregorio et al.
(2002) and Thomas and Carlin (2003) looked at the geographical distribution
of late stage cancer in Massachusetts, New Jersey, Connecticut, and Minnesota,
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respectively. In some cases the results led the state health department to increase
mammography screening promotion in areas with a high proportion of late
stage disease. Thomas and Carlin (2003) also looked at the geographical distri-
bution of late stage colorectal cancer. Gregorio et al. (2001) investigated the
geographical variation in breast cancer treatment in Connecticut, finding some
areas lagging behind with the implementation of state-of-the-art treatment
protocols. Huang et al. (2004) evaluated the geographical distribution of prostate
cancer survival in Connecticut.

7.7.2 Infectious Diseases

During the last few years, the spatial and space-time scan statistics have been
used for a number of different infectious diseases. As mentioned in the intro-
duction, Cousens et al. (2001) investigated the geographical distribution of
Creutzfeldt–Jakob disease in Great Britain, and Huillard d’Aignaux et al. (2002)
did the same in France. Saunders et al. (2003) used the space-time scan statistic
to search for human listeriosis clusters in New York State, by different ribotypes
and pulsed-field gel electrophoresis types.
Scan statistics has also been used for vector-borne diseases. Chaput

et al. (2002) used it to evaluate the spatial patterns of human granulocytic ehrli-
chiosis, a newly recognized tick-borne disease, finding a statistically significant
cluster in the towns of Lyme and Old Lyme (RR=2.6, p = 0�001) in southern
Connecticut. Fevre et al. (2001) studied the geographical distribution of early
cases of a sleeping sickness outbreak in eastern Uganda, finding a statistically
significant cluster around a cattle market, which is logical in light of cattle
being an important reservoir for the disease. Mostashari et al. (2003) used it for
a surveillance system based on dead bird reports for the early detection of West
Nile virus outbreaks.

7.7.3 Other Human Diseases

In addition to cancer and infectious diseases, the spatial scan statistic has also
been used for other human disease and health events. In pediatrics, Kharrazi
et al. (1998), Forand et al. (2002), the Colorado Department of Public Health and
Environment (2002), and Boyle et al. (2004) used it to evaluate the spatial distri-
bution of birth defects. George et al. (2001) looked at sudden infant death
syndrome in Sweden, while Sankoh et al. (2001) looked at all types of childhood
mortality in rural Burkina Faso.
In one of the earliest applications of the spatial scan statistic for disease surveil-

lance,Walsh and Fenster (1997) studied systemic sclerosismortality in the south-
eastern USA, reporting a statistically significant cluster for white men in parts
of Tennessee, Kentucky, and Alabama (SMR=1.2, p = 0�0004) and another
for black men around Northampton in North Carolina (SMR=3.9, p = 0�02).
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Sabel et al. (2003) studied the geographical distribution of amyotrophic lateral
sclerosis in Finland. A very interesting aspect of this study is that they analyzed
the data not only by place of death but also by place of birth, to better reflect
geographical variation in genetic and early childhood determinants of the
disease. The results from the two analyses were similar, with both detecting a
statistically significant cluster in southeastern Finland for both the place of death
(RR=1.8, p = 0�00001) and place of birth (RR=1.5, p = 0�00001). Walsh
and DeChello (2001) evaluated the geography of systemic lupus errythematosus
in the USA, finding four clusters with low rates (SMR=0.56–0.68, p < 0�001)
and three strong clusters with high rates (SMR=1.41–1.65, p < 0�0001) and
one weak cluster with a high rate (SMR=1.51, p= 0�02). Enemark et al. (2002)
evaluated the geographical variation in the proportion of different genotypes of
Cryptosoridium parvum parasites in Denmark.
While less common, it also possible to use the spatial scan statistic for preval-

ence data. For example, Green et al. (2003) used it to investigate the geograph-
ical variation of diabetes mellitus prevalence in Winnipeg, Canada, finding
several high- and low-risk areas ( p < 0�001). López-Abente et al. (2003) studied
the geographical distribution of Paget’s disease prevalence in Spain.
The spatial and space-time scan statistics have also been used for other

types of health data not directly related to a particular disease. Hanson and
Wieczorek (2002) used it to evaluate the geographical distribution of alcohol-
related mortality in New York State, finding a number of statistically significant
clusters ( p < 0�01) of either high or low mortality. Yiannakoulias et al. (2003)
studied the geography of fall injuries in the elderly in Edmonton, Canada.
Margai and Henry (2003) evaluated the geographical variation in learning
disabilities in Binghamton, New York. Sudakin et al. (2002) used the space-time
scan statistic to evaluate regional variation in pesticide exposure in Oregon. In
two different criminology research projects, Kaminski and Jefferis (2000) and
Beato Filho et al. (2001) used scan statistics for the spatial analysis of homicides
in the USA and in Belo Horizonte, Brazil, respectively.

7.7.4 Veterinary Medicine

The spatial and space-time scan statistics have been used in a wide variety
of veterinary disease surveillance projects. Studies of domestic animals include
acute respiratory disease outbreaks in Norwegian cattle herds (Norström et al.,
2000), blowfly strike in Australian sheep (Ward, 2001), West Nile virus in
US equids (United States Department of Agriculture, 2001), bovine spongi-
form enephalopathy in Swiss cattle (Doherr et al., 2002), bovine tuberculosis
in Argentinian cattle (Perez et al., 2002), psoroptic sheep scab in Swiss sheep
(Falconi et al., 2002), leptospirosis in North American dogs (Ward, 2002),
Aujeszky’s disease in German pigs (Berke and Grosse Beilage, 2003), and viral
diseases in farmed and wild Swiss salmonids (Knuesel et al., 2003). The scan stat-
istics have also been used for wildlife. For example, Smith et al. (2000) studied
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anthrax outbreaks among animals in Kruger National Park, South Africa;
Berke et al. (2002) looked at Echinococcus multilocularis parasites in red foxes
in Lower Saxony, Germany; Miller et al. (2002, 2004) investigated Toxoplasma
gondii parasites in sea otters in California; Hoar et al. (2003) studied sylvatic
plague and Bartonella vinsonii bacterial infections in coyotes in California;
Olea-Popelka et al. (2002) evaluated the geographical distribution of bovine
tuberculosis in badgers in Ireland; and Joly et al. (2003) investigated chronic
wasting disease in white-tailed deer in Wisconsin.

7.7.5 Plant Diseases

Health is not only important for humans and animals, but also for plants, and
there is no reason why the spatial scan statistic cannot be used for plant disease
surveillance as well. In fact, Coulston and Riitters (2003) used the method to
look at the geographical variation in insect and pathogen indicators on trees in
the Pacific Northwest and forest fragmentation indicators in the southeastern
part of the USA.

7.8 SOFTWARE

Two software products are available for disease surveillance using the spatial
and space-time scan statistics. SaTScan is a free software product that can be
downloaded from www.satscan.org. It includes temporal scan statistics in addi-
tion to the spatial and space-time version, but no other statistical methods. The
EpiAnalyst extension for ArcView GIS, a commercial product from Public Health
Research Laboratories (www.phrl.org), contains a link between ArcView and
SaTScan. ClusterSeer is a commercial software product produced by TerraSeer
(www.terraseer.com) that contains both the spatial and space-time scan stat-
istics together with many other statistical clustering methods.
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Spatial and Spatio-temporal

Surveillance
Laura Forsberg, Marco Bonetti, Caroline Jeffery,

Al Ozonoff and Marcello Pagano

8.1 INTRODUCTION

The emergence of new infectious diseases and the threat of biological attacks
have lead to a growing interest in methods of surveillance, including the accom-
panying statistical methods, for the early detection of an outbreak. Statistically,
what we would like to do is detect the time point at which there is an increase in
the number of infected individuals, an increase that may also be accompanied
by a change in the spatial distribution of these patients, either, or both, of which
might indicate an outbreak of some sort – a disturbance of normalcy. The time
element is critical in that a less than timely detection would make the methods
essentially useless.
The timeliness is an extra consideration that possibly distinguishes the newer

surveillance methods from those in the older literature. The older ones are
often related to such issues as the detection of cancer clusters (see, for example,
Alexander and Boyle, 1996), and sometimes use data that was collected over a
period of years prior to analysis which, parenthetically, makes the existence of
a cluster questionable. This is not meant as a criticism of the classical methods
as the time element is inherent in those methods, too.
When considering spatial methods for cluster detection, no method seems to

be uniformly better than all others, so it is beneficial to review a number of these
methods. Several reviews of statistical methods for the detection of spatial anom-
alies have been written (see, for example, Kulldorff, 1998; Elliott et al., 2000;
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Lawson, 2001; Brookmeier and Stroup, 2004, Chapter 7). Most of the statistical
methods that have been described for the detection of spatial anomalies can be
grouped into two general categories: quadrat methods and distance methods.
Quadrat methods divide the geographical region into smaller areas termed quad-
rats and compare the incidence of events within the quadrat to the incidence in
the remaining study region. The spatial scan statistic is perhaps the most widely
known and used of these methods (Kulldorff, 1997). Distance-based methods,
on the other hand, consider some measure of distance between events. Usually
Euclidean distance is used as the measure of distance between individuals, but
typically any measure of dissimilarity or similarity between events can be util-
ized. We focus on these distance-based methods in this chapter, and discuss two
methods of more modern interest: the maximized excess events test (MEET) and
the M statistic, with particular emphasis given to the latter method. We present
the motivation for using distance-based methods in Section 8.2. In Section 8.3,
we give a review of the MEET statistic and the M statistic, and their utility in
public health surveillance. Section 8.4 introduces a data example to illustrate
the implementation of the MEET and M statistic to detect spatial clusters of
disease. Our focus of attention is a bivariate statistic, which simultaneously
monitors case volume and the spatial distribution of the cases. This bivariate
statistic is introduced to improve the power to detect suspicious patterns in the
data stream. In Section 8.5, we describe and illustrate a method for determining
the location of a cluster, or other spatial aberrations, once the M statistic has
indicated that such an anomaly exists.

8.2 MOTIVATION

Distance-based methods consider the distribution of the pairwise interpoint
distances between all the individuals in the study region. Under the null hypo-
thesis this distribution remains stable. As time progresses, we need to be on the
alert for a disturbance in the distribution. This alternative distribution should
be sensitive to the detection of disturbances in how individuals are located, espe-
cially if individuals are clustered. These disturbances are those we would expect
during an outbreak of a contagious disease or an outbreak resulting from one or
more point source emissions of some bioterrorist agent. This places the problem
in the classical hypothesis testing paradigm, and to pursue this thinking further,
we seek methods that will have power against alternatives that reflect clustering
of individuals. One obvious characterization of clustering is to consider pockets
of individuals who consequently will have smaller average distances between
themselves than they would in the null case. But this is not the only alternative
one can envision; others may impact the second moment of the distribution of
distances, for example.
One method considers a test of the mean of the interpoint distance distribution

(Whittemore et al., 1987). The statistic, usually called the � statistic, is equal to a
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weighted average of the observed distances, and thus tests for shifts in the mean
of the interpoint distance distribution. Subsequent work has shown that this
method is not very powerful at detecting clusters (Bonetti and Pagano, 2004a).
The reason for the lack of power is that the mean is not an efficient summary of
the null distribution, typically because the null distribution of distances is not
normal. Furthermore, dependencies in the distances can often lead to complex
deviations from the null distribution that may not necessarily lead to a shift in
the overall mean. Figure 8.1 illustrates such a scenario arising from real data.
Here the densities clearly differ from one another, but the mean does not lead
to a powerful statistical test for detecting such a deviation.
Dealing with distances between individuals requires some thought since the

usual statistical methods do not apply seamlessly. First, the distances themselves
are not independently distributed. This would seem clear considering that for
every n individuals there are

(
n

2

)
distances. Thus considering the statistical

properties of their joint distribution is not straightforward. Additionally, location
data is often not reported precisely, but rather it is reported in a discretized
manner. For instance, instead of individuals’ home or work addresses we may
only be told the census tract, postal code, or county in which they reside. Thus
the distances can only assume values in a finite grid.
Additionally, the location of spatial aberrations in the study region will impact

the shape that the alternative distribution will assume. For instance, a cluster
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Figure 8.1 Distribution of the distances for a data set with no clusters ��̂= 0�090� �̂ =
0�045� versus a the same data set with clusters superimposed ��̂= 0�083� �̂ = 0�044�.
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placed in the study region will create a larger than expected number of small
distances. However, the cluster will also create other abnormalities in the distri-
bution, but these will depend upon where the cluster is placed, due to the
addition of the distances between the cluster and other points in the region.
This patterning increases the more clusters we have.
Several methods for analyzing distances have been proposed, although no

one statistic seems to completely handle the complexities that distance data
presents uniformly better than any others. K functions are one method that
has been proposed (Ripley, 1976; Diggle and Chetwynd, 1991) for detecting
spatial abnormalities, especially in the ecological literature (Dobbertin et al.,
2001; Couteron and Kokou, 1997). These functions enjoy nice mathematical
properties, but can be cumbersome to implement for purposes of biosurveillance.
Therefore we will direct our attention to two other methods, the MEET statistic
and the M statistic, with particular emphasis on the latter.

8.3 DISTANCE-BASED STATISTICS FOR SURVEILLANCE

8.3.1 MEET Statistic

Tango (1995) describes a method of cluster detection that assumes that the
data is aggregated into m regions according to some spatial boundaries, for
instance by zip code or county. The statistic considers the difference between
the observed rate of cases in each region and the expected rate, and then
weights these differences by a measure of the distance between the regions.
More explicitly, within the ith region, let yi be the observed number of cases and
ei be the expected number of cases. Define the parameter � such that any pair
of cases that are farther than � apart cannot be considered a cluster. Basically,
� can be thought of as some measure of the spatial extent of a cluster. Consider
the vectors r = 	ri
, where ri = yi/

∑m
i=1 yi, and p = 	pi
, where pi = ei/

∑m
i=1 ei.

Then the estimated events test statistic is given by

C� = �r−p�TA����r−p��

where A��� = 	aij���
. One can consider several forms for the aij���. Clearly,
the choice of the form that A��� assumes will have an impact on the efficacy
of this statistic. However, the magnitude of this effect and the sensitivity of
the statistic to A��� have not been studied systematically. In practice the
exponential threshold model has been used (Tango, 2000), such that aij��� is
defined as

aij���= exp

{
−4

(
dij

�

)2
}
�
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where dij is the Euclidean distance between regions i and j. The problem with
this method is that it requires specification of the parameter �. Generally this
is not known a priori, and several values of � are tested, leading to multiple
testing problems. In order to circumvent this problem, Tango (2000) developed
the maximized excess events test (MEET). This statistic searches for the value of
� which gives the smallest p-value of the observed value of C�, denoted c�, as
follows,

P =min
�

Pr	C� > c��H0� �
�

This is implemented by allowing � to assume discrete values near zero up
to about half of the size of the study area and performing a line search over
these values of �. Monte Carlo simulation methods are used to obtain the null
distribution of P.

8.3.2 The Interpoint Distribution Function
and the M Statistic

The M statistic uses the interpoint distance distribution and its empirical cumu-
lative distribution function (ecdf) to perform inference. Consider a spatial distri-
bution P�x� defined over a bounded region of the plane. Let the point distribution
over the region be absolutely continuous, so that for two independent and
identically distributed points x1 and x2 in the region, P�x1 = x2� = 0. For any
such point distribution P, if one defines a nonnegative distance (or dissimil-
arity) function d, then the random variable D = d�x1�x2� has some distribution
PD�d�. We call D the interpoint distance between two independent points. The
cdf F�·� of D is F�d�= EI�d�x1�x2�≤ d�, where I�·� is the indicator function and
E denotes expectation with respect to the P×P distribution.
Extending the usual definition of an ecdf for random samples, one can

define the ecdf of the interpoint distances associated with a random sample
x1� � � � �xn as

Fn�d�=
1(
n

2

) ∑
1≤ i < j≤n

I�d�xi�xj�≤ d��

The quantity
√
n�Fn�d�−F�d��, considered as a stochastic process indexed

by d, converges weakly to a Gaussian process (Silverman, 1976; Bonetti and
Pagano, 2004a). Because of the very definition of a Gaussian process, this
general result implies that for a fixed value d the cdf Fn�d� has

√
n-convergence

to F�d�.
More generally, consider the empirical cdf Fn�q� = �Fn�q1�� � � � � Fn�qk��

computed at a finite number k of fixed values q = �q1� � � � � qk�. The cutoff
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points qj are typically chosen to be the � j/k�100% percentiles of the distribution
of D. If the range of D is unbounded, we set qk = �. Then, the weak
convergence implies that the joint asymptotic distribution of the centered
ecdf

√
n�Fn�q�−F�q��=√

n�Fn�q1�−F�q1�� � � � � Fn�qk�−F�qk�� is asymptotic-
ally multivariate normal with covariance matrix �= 	�a�b
, with

�a�b = E�I�d�x1�x2�≤ qa� d�x1�x3�≤ qb�

−EI�d�x1�x2�≤ qa�EI�d�x1�x3�≤ qb��

A number of standard test statistics can be used to evaluate the distance
between Fn�·� and F�·� for hypothesis testing, but the lack of independence
among observed distances between individuals precludes the use of standard
statistics without using appropriate modifications.
The noted asymptotic normality suggests the following statistic to measure

the distance between Fn�q� and F�q�:

M̃�Fn�q�� F�q��= �Fn�q�−F�q��T�−�Fn�q�−F�q���

a Mahalanobis-like statistic, where �− is a generalized inverse (see Rao and
Mitra, 1971) of the covariance matrix of the vector Fn�q�. For definiteness we
use the Moore–Penrose generalized inverse. In applications we typically use an
estimator of M̃: consider the quadratic form

M�Fn�q�� F�q��= �Fn�q�−F�q��TS−�Fn�q�−F�q���

where S is the estimated covariance matrix, obtained by generating repeated
samples of size n from an assumed null spatial distribution of the individuals over
the region of interest. To calculate S we could also take repeated samples from
historic data, if available. We note that the M statistic can also be computed
when the data consists of counts recorded at a finite number of fixed loca-
tions (see Bonetti and Pagano, 2004a), with minor modifications. If these fixed
locations are a result of a discretization of the individuals addresses, there is
the possibility of a loss of power to detect deviations from the null geographic
distribution.
An alternative definition of M can be given in terms not of the cumulative

distribution function, but of its first differences at the subsequent bin counts
along the distance axis. The ecdf and the cdf of D are therefore summarized by
the observed proportions oj and the expected probabilities ej = j/k within each of
the bins, with j= 1� � � � � k. The variance–covariance matrix in that case needs
to be modified in the obvious manner, since the first differences are a linear
combination of the values of the cumulative distribution functions.
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As an alternative, a consistent estimator for the variance–covariance matrix
� can also be constructed. The covariance matrix can be estimated consistently
by the terms

�̂a�b = 4

{
1(
n

3

) ∑
1≤ i < j<k≤n

h�Xi�Xj�Xk� qa� qb�−
[

1(
n

2

) ∑
1≤ i < j≤n

I�d�Xi�Xj�≤ qa�

]

×
[

1(
n

2

) ∑
1≤ i < j≤n

I�d�Xi�Xj�≤ qb�

]}
�

where

h�Xi�Xj�Xk� qa� qb�= 6−1
∑
�

�I�d�X�1
�X�2

�≤ qa� d�X�1
�X�3

�≤ qb�

is the symmetrized kernel computed over the collection �= 	��1� �2� �3�
 of the
six permutations of the indices �i� j� k� (see Bonetti and Pagano, 2004b). In the
calculation of this estimator, for efficiency the triple sum should be implemented
as a single loop by making use of (fast) matrix multiplications for the inner sums.

8.3.2.1 Example

As an example, consider points uniformly distributed on the unit square �0�1×
�0�1. The distribution of the interpoint distance between two such points
is as described in Bartlett (1964). The approximate quantiles at probabilities
(0.2, 0.4, 0.6, 0.8, 1) from that distribution are (0.2912, 0.4435, 0.5891,
0.7573, 1.4142). Using these as cutoff values, consider the empirical estimator
of that cdf Fn�qh� at the deciles qh� h = 1� � � � �5. Note that q5 = 21/2 is the
largest possible interpoint distance on the unit square, and that the cumulative
distribution function is always equal to one for that value, so that consideration
of Fn�dh� at dh� h= 1� � � � �4 suffices.
Table 8.1 shows the asymptotic variance–covariance matrix ��∗� of

n1/2�Fn�d1�−F�d1�� � � � � Fn�d4�−F�d4��, as estimated from 3000 samples of size
5000.
We then considered four sample sizes n= 100, 250, 500, and 1000. For each

sample size we computed the estimator of the variance–covariance matrix � one
hundred times, as described above. On the left-hand side of Table 8.2 we report,
for each sample size and for each element of the matrix, the relative bias of
the variance–covariance matrix estimator, computed as the difference between
the average of the 100 matrices and �∗, divided by �∗. On the right-hand side
of Table 8.2 we report, also for each sample size and for each element of the
matrix, the coefficient of variation relative to �∗, that is, the ratio between the
standard deviation of each term as computed from the 100 matrices and �∗.

The variance–covariance matrix estimator appears to be centered satisfact-
orily at the true (as estimated by �∗) variance–covariance matrix of the ecdf of
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Table 8.1 Estimated variance–covariance matrix � of√
n times the interpoint distance ecdf. The matrix is based

on 3000 samples of size 5000.

d1 d2 d3 d4

d1 0.011 0.022 0.029 0.027
d2 0.022 0.051 0.068 0.058
d3 0.029 0.068 0.092 0.077
d4 0.027 0.058 0.077 0.060

Table 8.2 Relative bias and coefficient of variation (relative to �∗ in Table 8.1) of
the estimator of �.

Relative bias
n = 100

d1 d2 d3 d4

d1 −0�06 −0�05 −0�04 −0�03
d2 −0�05 −0�05 −0�04 −0�02
d3 −0�04 −0�04 −0�03 −0�02
d4 −0�03 −0�02 −0�02 0�00

n = 250

d1 d2 d3 d4

d1 0�02 0�02 0�02 0�01
d2 0�02 0�01 0�01 0�01
d3 0�02 0�01 0�00 0�00
d4 0�01 0�01 0�00 0�00

n = 500

d1 d2 d3 d4

d1 0�05 0�05 0�04 0�04
d2 0�05 0�03 0�02 0�02
d3 0�04 0�02 0�02 0�02
d4 0�04 0�02 0�02 0�01

n = 1000

d1 d2 d3 d4

d1 0�04 0�04 0�03 0�03
d2 0�04 0�03 0�02 0�02
d3 0�03 0�02 0�02 0�02
d4 0�03 0�02 0�02 0�02

Coefficient of variation
n = 100

d1 d2 d3 d4

d1 0�60 0�45 0�35 0�24
d2 0.45 0.28 0.19 0.13
d3 0.35 0.19 0.12 0.08
d4 0.24 0.13 0.08 0.11

n = 250

d1 d2 d3 d4

d1 0.35 0.29 0.24 0.16
d2 0.29 0.19 0.13 0.09
d3 0.24 0.13 0.08 0.05
d4 0.16 0.09 0.05 0.07

n = 500

d1 d2 d3 d4

d1 0.20 0.17 0.14 0.09
d2 0.17 0.11 0.07 0.05
d3 0.14 0.07 0.04 0.03
d4 0.09 0.05 0.03 0.05

n = 1000

d1 d2 d3 d4

d1 0.13 0.11 0.09 0.06
d2 0.11 0.07 0.05 0.03
d3 0.09 0.05 0.03 0.02
d4 0.06 0.03 0.02 0.03
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the interpoint distance. The relative bias of the estimator is reassuringly small
(less than or equal to 6%) even for the smaller values of n. The variance of the
estimator is such that the relative standard errors only fall below 20% when
the sample size n is at least equal to 500. Lastly, it should also be noted there
tends to be more bias and variability in the estimation of the variances and
covariances that involve the cdf evaluated at small distances compared to larger
distances.

8.4 SPATIO-TEMPORAL SURVEILLANCE: AN EXAMPLE

Although the focus of this chapter is on spatial methods, we may also consider
the temporal aspect of a surveillance data stream, as well as methodology that
integrates the spatial and temporal information for the purposes of surveillance.
This integrated approach is often referred to as spatio-temporal surveillance. In
this section we illustrate the spatial methods described above with a real data
set, and then continue our example with this data set to illustrate the utility of
temporal and spatio-temporal methodology. To simplify the exposition we only
consider the day-to-day behavior of the system and ignore any memory from
one day to the next. Clearly, a real system would have memory beyond a single
day (see Reis et al., 2003).
The data set that we use to illustrate these methods was collected by a large

health provider in Massachusetts. As patients arrive for emergency care, their
cases are geocoded (typically the residential or billing address of the patient), and
this information is centralized electronically on a daily basis. In the interest of
anonymity, in this exposition the spatial data provided has been aggregated by
census tract, with jittering to further conceal the true locations of the individual
patients involved. We consider a subset of these electronic data, consisting
of upper respiratory infections (URIs) arriving at emergency and urgent care
departments for this provider between the dates of January 1, 1996 and October
30, 1999, a stretch of 1399 days or nearly four years of daily data.
This data stream thus provides the temporal patterns of disease in the form of

the number of cases arriving each day, as well as the spatial patterns of disease
produced as the locations of patients change over time. For all further analysis,
we have divided the data into three groups according to the day of the week:
weekends and holidays, days after weekends and holidays, and the remaining
days in the week. This was necessary because some of the locations provided
were closed on weekends and holidays, leading to a stratification of case volume
and spatial patterns on different days of the week.
Since there were no known bioterrorism attacks in Massachusetts during the

period of study, for the purpose of evaluating methods, we chose to augment the
real data with simulated clusters. To this end, we created three new data sets.
For two, we chose six adjacent census tracts in close proximity and added one
additional URI per day per tract, for a total of six additional cases per day. For
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brevity, we call such a simulated signal a ‘cluster’. The two data sets contain
clusters centered around census tracts labeled 477 and 179 respectively, and we
refer to the corresponding data sets accordingly. In a third round of simulations,
we added both clusters of six cases, for a total of 12 additional cases (six each
in the two separate locations; see Figures 8.2 and 8.6).

8.4.1 Temporal Component

Before consideration of the spatial and spatio-temporal surveillance of the
Massachusetts data, we briefly describe an approach to the temporal surveil-
lance of such data. Rather than describe the variety of methods available (see
Chapter 2), we simply describe the modeling approach that we have taken with
these particular data.
Let N�t� denote the daily case volume of URIs across the entire study area,

1≤ t ≤ 1399. The time series N�t� shows several trends which make modeling
challenging. Both the mean and variance of N�t� have strong seasonal and
day-of-week variation (see Figures 8.3 and 8.4). Closure of some locations on
weekends and holidays further complicates modeling and analysis.
In order to construct a model for N�t� we first used standard linear regression

methods to fit a deterministic component for the mean expected case count.
This is essentially the approach described in Brookmeier and Stroup (2004,
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Figure 8.2 Locations of the census tracts with superimposed clusters, relative to the
remaining census tracts in the Massachusetts data set.
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Figure 8.3 The time series N�t� exhibits a seasonal pattern in addition to occasional
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pp. 203–231). The linear model included several harmonic terms for the charac-
teristic seasonal effect on URIs, as well several indicator variables corresponding
to identifiable day-of-week effects. An additional indicator for the months of
December through February (the well-known ‘flu season’) was included to
account for the frequent excess of cases in these months. The day-of-week vari-
ation is exhibited in both first and second moments, so after subtracting the
fitted values from the observed data we divided by the daily standard error in
order to standardize the residuals. Denote by ��t� the time series constructed
from each resulting data point; we can think of ��t� as a standardized residual
departure from the baseline mean.
The residuals ��t� are characterized by a high degree of autocorrelation. Our

goal is to model the residuals, resulting in a predicted value for N�t� that can
be compared to the observed value. Taking a simple approach, we used a first-
order autoregression (AR(1)) to model the autocorrelation. After inclusion of
the autoregressive terms the standard deviation of the residuals was reduced by
nearly 10% from 0.923 to 0.838. Thus the full model is:

N�t� ≡ �0+�1 cos
(

2�
365

)
+�2 sin

(
2�
365

)
+�3I�wkend�

+�4I�Monday�+�5 cos
(
2�
30

)
+�6 sin

(
2�
30

)
+�7I�flu season�+ interaction terms+ ∈ �t��

��t� ≡ ∈ �t�

�
= ���t−1�+��t��

Thus we can view N�t� as a test statistic for temporal surveillance, where we
consider any observed N falling in a critical region to raise an alarm.

8.4.2 Bivariate Test Statistic

In order to fully utilize the available information, we consider using a bivariate
test statistic, composed of the two statistics, the M statistic calculated daily and
N�t�, described above. In an abuse of notation we refer to their daily product
as NM, dropping the reference to time, t.

N�t� allows us to calculate a residual value for the number of cases arriving,
based on the time series prediction for that day, and the residuals are distributed
approximately normally. Simultaneously, log �NM� can be used to evaluate the
deviation of the spatial distribution of cases from normalcy. Theoretical research
(Bonetti and Pagano, 2004a) shows that asymptotically, NM follows a �2 distri-
bution with degrees of freedom not dependent on N. This has two immediate
consequences. First, log�NM� and N are asymptotically independent. Second,
the log of a �2 variable is approximately normal, therefore log�NM� is approxim-
ately normal as well. Due to the independence of N�t� and NM, standard tech-
niques from multivariate analysis are applicable for construction of an elliptical
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or other appropriately chosen rejection region for a bivariate normal population
at prespecified alpha level that we can use to test for deviations from normalcy.
Another approach we can use is to consider bivariate values in the event of a

bioterrorist attack; in this case there is an optimal discriminator (the quadratic
classification rule) between two bivariate normal populations (Johnson and
Wichern, 2002, Section 11.3) in order to decide if an attack has occurred.
This rule defines a classification boundary via a quadratic form (defined by
means and covariances of the training set populations) in order to assign new
observations to one of the existing populations. The two populations in this case
would be the bivariate distribution under the null, and the modeled bivariate
distribution under the alternative of a biological attack. The classification rule is
a quadratic form that, given ��t� and log �NM� on a particular day, assigns
this observation to either the null or alternative population. In Figure 8.5
we illustrate a typical case of the null and alternative populations, together
with the boundary of the discriminator. This rule minimizes the expected error
of misclassification. The false positive rate can be controlled by shifting the
quadratic boundary appropriately, as determined via simulation or resampling
of the historical record.

8.4.3 Power Calculations

With each of 1399 days of data, we added a simulated cluster to each day
and compared the power of temporal, spatial, and spatio-temporal statistics to

4 6 8 10

–2

–1

0

1

2

log(MN)

O
ne

-s
te

p-
ah

ea
d 

re
si

du
al

s

N

N

N

N
N

N
N

N
NN

N NN
N

N
N NN

N
N NN

N

NNNN
N N

NN
N N

N
NN

N

N

N

N
N

N
NNN

NN

N

N

N
N N
N

NNN
N

N

N N
N N

NN
N

N N

NN

NN
N

N

N

N

N
N

N

N

NNN

N

N

N N

N N
N

N N

NN
N

N
N

N
N

N
N

A
A A

A
AA

A

A

A

A
A

A
AA

A
AA

A

A

A
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to train the quadratic discriminator. A portion of the classification boundary is also
shown.
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detect such a signal. Power calculations were performed separately for each of
the three daily categories, since prediction and behavior differ within each of
these categories. We define power as the ratio of daily detections to the total
number of days observed. Using the statistics discussed above, we calculated
power based on the simulated disease signal in our three constructed data sets.
For the univariate test statistic based on time series modeling, we calculated

power to detect a temporal signal in the data. Using the first 1096 days (three
full years) to train the model, power was calculated to detect an additional 6, 9,
or 12 cases added to the case counts of the final 303 days of data. Results are
shown in Table 8.3 (these results are not stratified by location since the statistic
depends only on the number of cases and not the spatial locations). We see
that the power to detect a disturbance increases as the size of the disturbance
increases, as it should.
For the three data sets of clustered data, we calculated values of the two test

statistics on each of the 1399 days available (the code for MEET was provided
by Toshiro Tango) and compared the value of the statistics to their respective
distributions under the null hypothesis of no clustering. These null distributions
are determined using resampling methods with the unaltered historical data.
Results are shown in Table 8.4.
When considering a bivariate statistic we generate a training sample based

on a modeled signal consisting of six cases near location 179, superimposed on
each of the first 1096 days of data. The temporal test statistic is N, and for the
spatial statistic we choose log �NM�. Here, the transformation of the test statistic
M to log �NM� standardizes the distribution for differing numbers of cases, and
the logarithm gives a statistic that is roughly normally distributed.
Following this approach, we generate two distinct bivariate normal popula-

tions of values, consisting of � residuals together with log �NM� calculations for
1096 days of null and alternative training data. For the simulated clusters in the
final 303 days of data, we calculate the corresponding bivariate test statistic and
use the quadratic classification rule to place each day’s simulated cluster into
the null (no signal) population or the alternative (signal present) population.
Power in this case is the number of clusters classified in the alternative over
total number of observations. Results are shown in Table 8.4.
The power of the univariate statistic N�t� which detects deviations from the

predicted number of cases on a daily basis illustrates the difficulties of time
series modeling for public health surveillance. Rather than rely on a simple

Table 8.3 Power to detect temporal clusters.

Hol./wkends
94 days

Wkdays
165 days

Day after hol.
44 days

Overall weighted
average

N+6 0�266 0�248 0�250 0�254
N+9 0�479 0�315 0�318 0�366
N+12 0�755 0�467 0�364 0�541
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Table 8.4 Power to detect various cluster models. Group 1 refers to the cluster centered
at tract 179, with an additional case added to tracts 179, 182, 183, 184, 191, and
192. Group 2 refers to the cluster centered at tract 477, with an additional case added
to tracts 477, 478, 479, 480, 482, and 484.

Wkends/hol.
438 days

Wkdays
749 days

Day after hol.
212 days

Overall
weighted
average

Group 1 MEET 0�813 0�194 0�099 0.373
N+6 M statistic 0�495 0�362 0�250 0.387

Bivariate statistic 0�585 0�394 0�227 0.429

Group 2 MEET 0�769 0�085 0�066 0.296
N+6 M statistic 0�475 0�295 0�222 0.340

Bivariate statistic 0�543 0�358 0�250 0.399

Groups 1 & 2 MEET 0�986 0�427 0�226 0.571
N+12 M statistic 0�568 0�430 0�325 0.457

Bivariate statistic 0�904 0�606 0�386 0.667

autoregression, results could be improved by considering a multivariate periodic
autoregression (Pagano, 1978). For both the MEET and M statistics, power is
consistently higher for weekends and holidays than for other types of days. On
weekends and holidays, mean case volume is much lower at the clinics. This
leads to a higher signal-to-noise ratio in the simulated data and thus a more
detectable spatial aberration when a cluster of fixed magnitude (6 or 12 cases)
is added to the data. The MEET is especially sensitive to this type of aberration,
as adding one case to a region where the expected number of cases is minuscule
greatly inflates the statistic. Although the MEET has especially high power on
weekends and holidays, the power of the MEET statistic declines much more
rapidly than M as the case volume increases.
Both spatial statistics perform quite well in detecting the simultaneous

179/477 clusters. Superior performance on data sets containing multiple
clusters is a characteristic typically shared by distance-based methods of cluster
detection as compared to other spatial methods (Kulldorff et al., 2003; Ozonoff
et al., 2004).
The bivariate statistic shows promise for an effective use of available data.

The power results show that for these simulated clusters, the bivariate approach
outperforms the use of purely temporal or purely spatial information.

8.5 LOCATING CLUSTERS

Having decided that the M statistic indicates that there is a deviation from the
null distribution, the next step is to determine whether this deviation is caused
by an exogenous cluster, or clusters, of individuals, and to locate this cluster or
clusters.
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There are not too many principled guides in the literature for locating clusters,
especially if there is more than one cluster (see Lawson and Denison, 2002,
for discussion of small-area data). Fortunately, the M statistic related methods
based on distances suggest a natural method for locating clusters.
Here we concentrate on the spatial location problem, leaving the time

component to later studies. Let 	si

n
1 be the locations of the individuals, and

D= �dij� be the n×n distance matrix where dij is the distance between si and sj.
In Figure 8.6 we see a distribution of points in a plane with two clusters of points
superimposed. We presume that the null hypothesis about the distribution of
	si


n
1 has been rejected, and we now search to locate the exogenous cluster or

clusters that presumably were the reason for rejection.
Consider each row of the matrix of distances, D. Fixing on row i, the dij� j=

1� � � � � n, are a sample of independent distances from the point si. From the null
distribution, either theoretically or via Monte Carlo, we can determine what the
null distribution of points from si should be. Then we can compare this distri-
bution with the observed distribution of distances from si, and presumably will
be able to discern the points sj that belong to an exogenous cluster. Of course, it
is too much to hope that for a single i we will pick these sj with any confidence,
but if we gather information from all the si, one at a time, we can use the
aggregate information to identify the clusters. This is the intuitive description
of the method we use.
Choose a row i� i = 1� � � � � n, and determine the null distribution of the

distances from si. This may have to be achieved by resampling points from the
null distribution of points. Having determined this distribution, then, for a fixed
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Figure 8.6 Typical distribution of cases for the Massachusetts data set. Superimposed
clusters are denoted by a ‘+’.
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integer k > 1, determine the k equispaced quantiles for the distribution, and
hence create k equiprobable bins to receive the dij. The dij associated with the sj
in exogenous clusters will give rise to bins with excessive counts. These sj from
exogenous clusters will have a similar impact for other i, and so a record can
be kept of the sj which appear in bins that are oversubscribed, as we consider
each row i.
To aggregate over the rows, consider a scoring system. For each row i, let

score(i� j) = 1 if sj belongs to an oversubscribed bin. Then with each point sj
associate the

score�j�=
n∑

i=1

score�i� j��

Subsequently look at these scores to determine which ones are too large. These
are the ones that can be tagged as belonging to the exogenous clusters.
The binning process described above is a traditional way of determining good-

ness of fit. One of its disadvantages is that the underlying distribution of points
is continuous, whereas the binning is inherently discrete. This may manifest
itself in points which are in an exogenous cluster but, because of the discrete
character of the bins, fall just next door to an oversubscribed bin. To overcome
this effect of discretization, we compromise by defining a score function which
takes the value one for an oversubscribed bin, and the value 0.50 for the bins on
either side of the oversubscribed bin. If the oversubscribed bin is on a boundary
(either it is the first or last bin) then it will only have one neighbor.
This scoring system is, of course, one of an infinite number of scoring systems

one can devise.
The only remaining unknown is the definition of what we mean by an

oversubscribed bin. For a fixed i we can consider the n distances dij as a
sample of independent and identically distributed variables. Thus the counts
of the numbers falling into the k bins can be considered as the realization of
a multinomial distribution of size n with equiprobable cells, each with prob-
ability 1/k. We can determine a bin to be oversubscribed if the number of
distances in the bin exceeds n/k by two standard deviations. Other cutoffs can be
entertained.
The last step is then to determine how large score(j) must be before we declare

sj to be a location within a cluster. A cutoff can be determined via Monte Carlo
methods.
This method is exemplified below.
We now return to the example taken from data from a large health care

provider in Massachusetts. We wish to show the efficacy of the above method
in locating clusters in the data. Again, we subset the data by the day of the
week (weekends/holidays, day after weekend/holiday, and weekdays).
As a measure of the adequacy of this method, we borrow from methods used

in diagnostic testing and report estimates of sensitivity and specificity. Suppose
our method tags b regions as a comprising cluster or clusters. In our setting,
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we define sensitivity as the probability of detecting the regions that actually
constitute the cluster(s). Specificity is defined as the probability that the regions
that are not tagged are not in the cluster(s).
Table 8.5 provides a summary of the results of this method applied to the

Massachusetts data. Here we give results for detecting the three cluster models
(region 179, 477, and a cluster in 179 and 477 simultaneously) for the three
different types of days (weekends and holidays, weekdays, and days after holi-
days). We consider three different significance levels for determining the cutoff
for the scores: 0.05, 0.10 and 0.15. Increasing the significance has the effect
of increasing sensitivity and decreasing specificity. However, specificity remains
high in all scenarios.
In the surveillance setting, we would often be satisfied with detecting at least

part of the cluster. Therefore, we can imagine a much more forgiving definition
of sensitivity as the probability of detecting at least one of the cluster regions.
In other words, we are not concerned that we detect all of the regions in
the cluster, as health professionals alerted by the alarm would likely fan out
from investigating that region to surrounding areas that would likely comprise
the cluster. Were we to use this as a measure of efficacy, the method would
undoubtedly appear even better. The last column probably best approximates
the ubiquitous 95% specificity.
On the other hand, a high specificity is also desirable. A typical system may

require a decision each day and missing an outbreak might lead to disastrous
consequences; but, by the same token, too many false positive alarms might lull
the analyst into treating the system with skepticism and subsequently missing
a valid alarm. It is thus comforting to see the high specificities in Table 8.5.

Table 8.5 Sensitivities and specificities for locating the clusters with the Massachusetts
data set. Results are given with the cutoff for the score being determined as the 95th,
90th or 85th percentiles of the empirical distribution of the scores.

95th 90th 85th

Sens. Spec. Sens. Spec. Sens. Spec.

Group 1, N+6
Hol./wkends 0.76 0.99 0.84 0.99 0.89 0.99
Wkdays 0.61 0.98 0.73 0.96 0.89 0.95
Day after hol. 0.59 0.97 0.68 0.95 0.79 0.94

Group 2, N+6
Hol./wkends 0.77 0.99 0.84 0.99 0.88 0.98
Wkdays 0.60 0.98 0.75 0.96 0.82 0.98
Day after hol. 0.63 0.97 0.72 0.95 0.81 0.94

Group 1 and 2, N+12
Hol./wkends 0.45 0.99 0.61 0.99 0.76 0.98
Wkdays 0.45 0.98 0.62 0.96 0.72 0.95
Day after hol. 0.48 0.97 0.63 0.95 0.73 0.93
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8.6 CONCLUSION

Spatial surveillance has as it goal the recognition of deviations from the ‘normal’
distribution of events in a region. We have shown the utility of distance methods
in achieving the stated objectives of spatial surveillance. Distance methods are
characterized as statistical methods that utilize the distances between events in
detecting aberrations in spatial behavior.
Two statistics are immediately applicable for use in spatial surveillance. The

MEET statistic is widely recognized in contemporary literature and practice. It
is only applicable to aggregated data, such that the data consists of counts of
events within each spatial region. The statistic has been shown to have good
power, especially when case volume is low relative to the increase in the number
of cases attributed to a cluster.
Much of the focus of this chapter has been on the M statistic. This statistic

seeks to detect changes in the distribution of the interpoint distances by consid-
ering a statistic that is similar to the Mahalanobis distance. This can be easily
applied to data streams with either aggregated or exact location information.
The M statistic can further be extended to incorporate temporal trends in

the data stream, as exemplified by the bivariate statistic illustrated above. Not
surprisingly, this leads to an increase in power for the detection of anomalies
in the data, as one would expect such a disturbance to represent an increase in
case volume, as well as a disturbance in the spatial distribution.
Spatial surveillance requires not only an alarm to be sounded when a disturb-

ance has occurred, but also some indication of the location and shape of the
disturbance to facilitate further investigation and efficient methods to control
and diffuse the source of the disturbance, inhibiting further spread to the popu-
lation. We have shown an effective method for locating the source of the signal
causing an alarm with the M statistic. Such methods are crucial to the success
and efficacy of a surveillance system.
Distance methods are a natural tool for spatial surveillance. The issues

presented by this problem require methods that incorporate information
extending beyond a simple mean or other traditional statistics that are often
employed when confronted with data on the real line. The increased dimension-
ality and correlation of the data call for methods that can distinguish between
normal and abnormal behavior for an infinite number of scenarios that are not
easily characterized or classified. Distance methods appear to have the potential
to capture the complexity of a spatial distribution. Further, statistics such as M
allow for incorporation of additional information into the data stream, such as
temporal trends.
It would be unfair to fail to recognize the many difficulties that arise when

working with distance data. As has been illustrated above, these methods still
require much refinement and further research. Working with the dependencies
intrinsic in interpoint distances is complicated and requires further rigorous
investigation. Much of these complexities can be circumvented in practical
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implementation via resampling methods. However, to better understand, gener-
alize, and optimize these statistics, greater theoretical understanding is needed.
It has also been shown that theoretical developments can lead to an increase
in efficiency and decreases in computation time. This is exemplified by the
estimation of the variance–covariance matrix for the M statistic.
We advocate the use and further development of distance methods in spatial

surveillance. These methods have been shown to be effective and comple-
mentary when compared to quadrat methods, such as the spatial scan statistic.
Further, the M statistic has great promise in detecting spatial aberrations that
extend beyond simple circular clusters. Ideally, a surveillance system would
make use of multiple statistical methods, coupled with vigilant and timely
epidemiological investigation of alarms raised by these automated methods.
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Multivariate Surveillance
Christian Sonesson and Marianne Frisén

9.1 INTRODUCTION

There are several important multivariate surveillance problems in public health.
Public health surveillance is defined by Thacker (2000) to be the ongoing
systematic collection, analysis, interpretation, and dissemination of health data
for the purpose of preventing and controlling disease, injury, and other health
problems. Spatial public health surveillance is multivariate since several loca-
tions are involved. There are many important spatial surveillance situations.
One concerns the detection of an increased incidence of a disease when there is
a spatial dependency between locations (Lawson, 2004), another the departure
from spatial independence due to disease clusters (Kulldorff, 2001). The case of
child leukemia has been the subject of several retrospective studies. The spatial
information in the data is a vital component for the construction of efficient
surveillance methods. For example, a local change or a spreading disease will
not be detected unless the spatial information is used properly.
In both national and international programs data which are multivariate

for reasons other than spatial are routinely collected in several areas of public
health. One example is syndromic surveillance where several symptoms are
studied (see Lober et al., 2003). Further examples of different public health
surveillance data sources are given by Stroup et al. (2004). The increased interest
in surveillance methodology in the USA in the wake of the 9/11 terrorist attack
is notable. Several new types of data are now being collected, such as nurse
hotline calls, poison center calls and over-the-counter sales. Since the data
collected involve several related variables, this calls for multivariate surveillance
techniques. New types of surveillance systems have also been developed recently.
These include EARS, ESSENCE, RODS and WSARE. A review of some systems
is given by Lober et al. (2002).

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd
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To be able to conduct effective public health surveillance, efficient statistical
techniques must be used. Most of the work on multivariate surveillance can
be found in the general statistical literature or in journals aimed at industrial
applications, although the number of publications in journals on public health
is increasing rapidly. We will focus on some principal approaches taken for the
construction of multivariate surveillance methods. These general approaches
can be applied in a public health context and do not depend on the distribu-
tional properties of the process in focus. Note specially that both continuous
and discrete data can be mixed. Even though all the general approaches
described are valid for all types of processes, some are more natural to use
for mixed data and published formulas are often expressed in terms of specific
processes. Reviews on multivariate surveillance methods can be found in, for
example, Alt (1985), Basseville and Nikiforov (1993), Wierda (1994), Lowry
and Montgomery (1995), and Ryan (2000).
In Section 9.2 we will give some specifications. In Section 9.3 different

approaches to the construction of multivariate surveillance methods are
described and exemplified. We will give several examples of multivariate surveil-
lance methods applied in diverse public health areas, especially spatial ones.
Several types of multivariate counterparts to the univariate Shewhart, expo-
nentially weighted moving average (EWMA) and cumulative sum (CUSUM)
methods have been proposed. In most previous work, a multivariate normal
distribution has been assumed for the vector of random variables. This assump-
tion can be questioned in many public health settings, although it might be
argued that at least the marginal densities can be approximated by a normal
distribution due to large sample approximations. The justification of proposed
methods hinges on the distributional assumption in some, but not all, cases. In
Section 9.4 we discuss the special challenge in evaluating multivariate surveil-
lance methods and also the concept of optimality in a multivariate setting. We
make some concluding remarks in Section 9.5.

9.2 SPECIFICATIONS

The term ‘statistical surveillance’ was defined in Chapter 3, and we state it here
again for the multivariate case. We denoted by Y = �Y�t�� t = 1�2� � � � � the
multivariate process under surveillance. At each time point, t, a p-variate vector
Y�t� = (

Y1�t�� Y2�t�� � � � � Yp�t�
)T

of variables is observed. The components of
the vector might be, for example, the number cases of a certain disease in p
different areas. When the process behaves as earlier and no change has occurred
Y�t� has a certain distribution, for example, with a certain mean vector �0

and a certain covariance matrix �Y . The purpose of the surveillance method
is to detect a deviation to a changed state as soon as possible in order to
take preventive actions. If we denote the current time point by s, we want
to determine whether or not a change in the distribution of Y has occurred
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before s, that is, to discriminate between the events �� ≤ s� and �� > s�, where �
denotes the time point of the change. In order to do so, we can use all available
observations of the process Ys = �Y�t�� t≤ s� to form an alarm statistic denoted
by p�Ys�. The surveillance method triggers an alarm, indicating that the change
has happened in the process, at the first point in time when p�Ys� exceeds an
alarm limit G�s�.

9.3 APPROACHES TO MULTIVARIATE SURVEILLANCE

We will discuss several different approaches to the construction of multivariate
surveillance methods. A discussion in connection with the CUSUM method can
be found in Chapter 6. First we describe some common techniques to reduce
dimensionality. Then we describe the approach of scalar accumulation where
the components of the vector of observations are transformed into a scalar stat-
istic for each time point before the accumulation over time. We also describe the
approach in which parallel univariate surveillance methods are used for each
component variable and an alarm is triggered if any of the univariate methods
triggers an alarm in accordance with the union–intersection principle. Another
approach is the vector accumulation approach. Here the alarm statistics of
the parallel surveillance methods for each component variable are combined
to form a general alarm statistic. In both the vector and the scalar accumula-
tion approaches, usually the correlations between the variables are used in the
transformation. The final approach is to jointly handle the multivariate nature
(e.g. spatial) of the observational vector and the different time points simultan-
eously while aiming to satisfy some global optimality criterion. The notation
adopted in the literature for the various methods is not uniform, but here we
have followed the one most commonly used.

9.3.1 Reduction of Dimensionality

The detection ability of a multivariate surveillance method deteriorates as the
number of variables increases (see Runger et al., 1999). This is true unless some
structure focuses the detection ability. One way to reduce the dimensionality is to
consider the principal components instead of the original variables, as proposed
anddiscussedby, amongothers, Jackson (1985),Mastrangelo et al. (1996),Kourti
and MacGregor (1996) and Scranton et al. (1996). The principal components
consist of linear combinations of the original variables. One attractive feature
of the principal components is the orthogonality among them. However, as
pointed out in Lowry and Montgomery (1995), unless the principal compon-
ents have clear interpretations it might be difficult to draw any reasonable
conclusions from a surveillance method based on them. In Runger (1996) an
alternative transformation, using so-called U2 statistics, was introduced to allow
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the practitioner to choose the subspace of interest (see also Runger et al., 1999).
Another alternative is to use projection pursuit (Ngai and Zhang, 2001; Chan
and Zhang, 2001). After reducing the dimensionality any of the approaches
for multivariate surveillance described below can be used. Hawkins (1991)
suggested a regression adjustment for each of the individual variables and also
suggested how these could be used by the different approaches depending on
whether the aim is general, group or individual conclusions. Rosolowski and
Schmid (2003) use the Mahalanobis distance to reduce the dimensionality of
the statistic, thus expressing the distance from the target of the mean and the
autocorrelation in a multivariate time series.

9.3.2 Reduction to One Scalar Statistic for Each Time

The most radical and most commonly used reduction of the dimension is to
summarize the components for each time point into one statistic. One natural
reduction when dealing with multivariate normal variables is to use the T2

statistic suggested by Hotelling (1947). The Hotelling T2 statistic is defined as

T2�t�= �Y�t�−�0�t��
TS−1

Y�t��Y�t�−�0�t���

where the sample covariance matrix SY�t� is used to estimate �Y . When �Y

is regarded as known, the statistic has a �2 distribution and is referred to as
the �2 statistic. Regression and other linear weighting as a reduction method
is discussed by Healy (1987), Hawkins (1991), and Kourti and MacGregor
(1996). Since the observations at each time point consist of a vector, we can
first transform the vector from the current time point into a scalar statistic,
which we accumulate over time. In Sullivan and Jones (2002) this is referred to
as ‘scalar accumulation’. One example is when, for each time point, a statistic
representing the important aspects of the spatial pattern is constructed from a
purely spatial analysis. This statistic is then used in a surveillance method. The
reduction to a univariate variable can be followed by univariate monitoring of
any kind.
Originally, the Hotelling T2 statistic was used in a Shewhart approach, and

this is sometimes referred to as the Hotelling T2 control chart. An alarm is
triggered as soon as the statistic T2�t� is large enough. When �Y is regarded as
known, one can apply the same procedure to the �2 statistic. How to choose
alarm limits for these methods is discussed by Lowry and Montgomery (1995).
For multivariate binomial data, Lu et al. (1998) proposed a method based on
a weighted sum of the number of adverse units for each of the components
for each time point. The surveillance method used for this weighted sum was
a Shewhart one. Other applications of Shewhart methods are described by
Runger (1996) and Kang and Albin (2000). Note that over time there is no
accumulation of the observation vectors if the Shewhart method is used. Only
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the observations taken at the current time point are used. The lack of use of
previous observations by the Shewhart method applied to the T2�t� statistic (or
any other derived statistic) in the multivariate case will result in an ineffective
method for detecting small and moderate changes in the process, which is also
the case when using the Shewhart method in the univariate setting.
To achieve a more efficient method, all previous observations should be

used in the alarm statistic. There are many suggestions of combinations
of different dimension reductions with different monitoring methods. Crosier
(1988) suggested calculating the Hotelling T variable (the square root of T2�t�)
and using this as the variable in a univariate CUSUM method, making it a scalar
accumulation method. In this case the alarm statistic used is St =max�0� St−1+
T�t�− k�, where S0 ≥ 0 and k > 0, which is combined with a constant alarm
limit.
Rogerson (1997) uses the scalar accumulation approach for spatial surveil-

lance of count data. Amodified version of the Tango statistic (see Tango, 1995) is
calculated for each time point. This statistic is implemented in the CUSUMmethod
to detect changes in the clustering tendency from an otherwise random spatial
pattern. The method was evaluated both using simulations and by application to
data on Burkitt’s lymphoma in Uganda. In Rogerson (2001) the same approach
was used formonitoring point patterns, but here instead a local Knox statistic (see
also Knox, 1964) for space-time interaction was calculated for each time point.
The surveillance methodology used was again the CUSUMmethod.
In public health, nonparametric methods, which do not rely on the assump-

tion of normally distributed variables, are of special interest. A nonparametric
scalar accumulation approach was used in Liu (1995), where the observation
vector for a specific time point was reduced to a univariate index describing the
distance to the center in the multivariate distribution. Here, ranks were used
to get rid of the dependency on the distributional properties of the observation
vector. Several methods were discussed for the surveillance step, including the
CUSUM method. Yeh et al. (2003) suggested a transformation of multivariate
data at each time to a distribution percentile and scalar accumulation versions
of the EWMA method were suggested for detection of changes in the mean as
well as in the covariance.

9.3.3 Parallel Surveillance

If one uses one univariate surveillance method for each of the individual
components in parallel, one can combine these into a single surveillance
procedure in several ways. These are referred to as combined univariate methods
or parallel methods. The most common one is to signal an alarm if any of
the univariate methods signals. This is thus a combination of methods using
the union–intersection principle for multiple inference problems. Sometimes the
Bonferroni method is used to control a false alarm error (see Alt, 1985). General
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references about parallel methods include Woodall and Ncube (1985), Hawkins
(1991), Pignatiello and Runger (1990), Yashchin (1994), and Timm (1996).
The parallel approach is the one most commonly used in public health settings
and also in general (see Stoumbos et al., 2000).

For spatial disease surveillance with data from several different locations,
Raubertas (1989) suggested a parallel version of the Poisson CUSUM method,
where each location is monitored by one Poisson CUSUM. To account for
the positive spatial correlation between nearby locations, the author suggested
pooling within neighborhood observations. To detect emerging clusters of a
disease parallel Shewhart methods were recently used by Kleinman et al. (2004),
where estimates of the expected counts in each region were based on a gener-
alized linear mixed model. Kulldorff (2001) introduced the space-time scan
statistic (see also Chapter 7), which is an extension of the spatial scan stat-
istic suggested in Kulldorff (1997). The space-time scan statistic scans different
circular areas in space which are extended backwards in time to form space-time
cylinders. The scanning is performed for a number of center points in space. All
possible cylinders represent possible clusters in space-time with elevated incid-
ence of a disease. An alarm statistic is formed by considering the cylinder which
deviates most from space-time independence. This represents a parallel method
taken over all possible space-time clusters represented by the cylinders. A discus-
sion of the use of additional data, such as covariates, is found in Burkom (2003).
A form of scan statistic has been proposed by Kulldorff et al. (2003) for the

case where the independent variable can be structured hierarchically. In this
case the spatial distance is exchanged for the distance within the hierarchical
structure. This scan statistic is used in Kulldorff et al. (2003) for an analysis of
the relationship between occupation and death from silicosis. The hierarchical
structure in this case consists of the classification of occupations according to
the Classified Index of Industries and Occupations.
Several methods suitable for the type of nonnormally distributed data

common in public health have been suggested. A generalized linear model was
used in Skinner et al. (2003) to model independent multivariate Poisson counts.
Deviations from the model were monitored by parallel Shewhart methods. For
detection of an increased incidence of congenital malformations, a multivariate
version of the sets method using data of malformations frommultiple sources has
been proposed (Chen, 1978; Chen et al., 1982). In Stroup et al. (1988) a parallel
method was used to detect excess deaths from pneumonia and influenza using
monthly data from five different age groups. Multiple time series techniques were
used to construct simultaneous forecasts which were compared to the actual
data. Large deviations were considered evidence of an excess. In Steiner et al.
(1999) paired binary results from surgical outcomes were monitored using
a parallel method of two individual CUSUM methods based on the outcome
variables. However, to be able to detect also small simultaneous changes in
both outcome variables, the method was complemented with a third altern-
ative, which signals an alarm if both individual CUSUM statistics are above a
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lower alarm limit at the same time. The addition of the combined rule is in
the same spirit as the vector accumulation methods presented in Section 9.3.4.
Parallel CUSUM methods were also used by Marshall et al. (2004) to monitor
the performance in general hospitals in the UK. The false alarms were controlled
by using the false discovery rate from Benjamini and Hochberg (1995). For
evaluation of the detection ability, the probability of successful detection (see
Chapter 3) was used.
Several implementations of parallel methods can be found in newly developed

health surveillance systems. The Early Aberration Reporting System (EARS)
of the Centers for Disease Control and Prevention (CDC) is one example.
Hutwagner et al. (2003) apply CUSUM methods to laboratory-based salmonella
serotype data. There are over 2000 different serotypes and one CUSUM method
is used for each serotype. Another type of surveillance method included in EARS
is the ‘historical limits method’ of Stroup et al. (1993). This is a Shewhart method
currently applied to case data from nine diseases (hepatitis A, hepatitis B, hepat-
itis C/non-A/non-B, legionellosis, meningococcal infections, measles, mumps,
pertussis, and rubella). The method compares the number of cases reported
in the last month to the average of the proceeding 5 years. The Electronic
Surveillance System for the Early Notification of Community-Based Epidemics
(ESSENCE) system has been developed by the US Department of Defense Global
Emerging Infections System. It monitors more than 100 primary care and emer-
gency clinics in the Washington, DC, area and is described by Pavlin (2003) and
Burkom (2003). An extension is the ESSENCE II system described in Burkom
(2003) and Lombardo et al. (2003). New types of data, including over-the-
counter sales and absenteeism, are collected to aid in an earlier detection of
a disease outbreak. Several detection methods are used, including a modified
EWMA method run at county level, making it a parallel method over different
counties. Also included are some of the methods in the EARS system as well
as modified versions of the scan statistic for spatial clustering analysis. The
cluster analysis is performed for one derived statistic for each of seven different
syndrome groups, again using the parallel approach, this time over the different
syndrome groups. The National Bioterrorism Syndromic Surveillance Demon-
stration Program described by Platt et al. (2003) is a nationwide US program
under the auspices of the CDC and several other organizations. Part of the
program is based on the ESSENCE system. One feature is a parallel method
across different areas under surveillance, where in each area signals will be
issued. In Chapter 10 and Wong et al. (2003) the WSARE (What’s Strange
About Recent Events) system is described. The purpose is to search a data-
base of emergency department cases for anomalous patterns by comparing the
events of the current day with the events which occurred exactly 5, 6, 7, and 8
weeks earlier. The method scans the database forming 2×2 contingency tables
containing as columns the current day and previous days respectively and rows
describing some characteristic of the cases in the database. A null hypothesis
of independence of row and column attributes is tested using a �2 test or
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Fisher’s exact test, yielding a score for each of the row–column combinations.
A p-value is obtained from the score via a randomization test. A determination
of which of the p-values are significant is done by using the false discovery
rate. The number of false positives in relation to the total number of tests
is then controlled. In spirit the WSARE algorithm corresponds to a parallel
surveillance method although it is presented in a hypothesis testing framework.
Another surveillance system is the Real-time Outbreak and Disease Surveillance
(RODS) system, which uses as data the main complaints collected (in free-
text form) by nurses at the emergency departments during patient registration.
A Bayesian classifier is used to classify the symptoms into any of eight different
categories. Parallel surveillance methods are used for the different categories in
differentspatial regions(seeTsui et al.,2003).Surveillanceof largedatabases isalso
of interest in pharmacovigilance, where several different adverse drug reactions
are recorded togetherwith thedrugs thepatientshave taken.Severalnewmethods
havebeenproposedunder therubricsofBayesiandatamining (DuMouchel,1999)
andBayesianneuralnetworks (Bate et al.,1998;Orre et al.,2000).What theyhave
in common is the parallel approach over different drug–reaction combinations.
Other examples of Bayesianmethods can be found in Chapters 11 and 12.

9.3.4 Vector Accumulation Methods

In the parallel approach we accumulate the information of each component and
decide at each time point to sound an alarm if any of the alarm statistics exceeds
a limit. Another way to use the accumulated information on each component
is to transform the vector of componentwise alarm statistics into a scalar alarm
statistic and sound an alarm if this statistic exceeds a limit. This is naturally
referred to as ‘vector accumulation’.
Lowry et al. (1992) proposed a multivariate extension of the univariate EWMA

method, which is referred to as MEWMA. This multivariate EWMA method
uses a vector of univariate EWMA statistics Z�t� = �Y�t�+ �I−��Z�t− 1�,
where Z�0� = 0 and � = diag�	1� 	2� � � � � 	p�. An alarm is triggered at tA =
min�t
 Z�t�T�−1

Z�t�Z�t� > L� for some alarm limit, L. In effect, MEWMA is just the
Hotelling T2 control chart applied to univariate EWMA statistics instead of the
original data from only the current time point and is thus a vector accumulation
method. Note that if we use 	1 = � � � = 	p = 1 only the data from the current
time point is used. In Lowry et al. (1992) the MEWMA method was shown
to be an improvement over the Shewhart method applied to the �2 statistic.
Optimal designs of a multivariate EWMA method with respect to the weighting
parameters can be found in Lowry et al. (1992). Methods for computing the
average run length of multivariate EWMA methods have been given in Runger
and Prabhu (1996) using a Markov chain approach. In Bodden and Rigdon
(1999) an integral approach is used. Instead of applying the multivariate EWMA
directly to the original data, a dimension reduction transformation can first
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be used. In Scranton et al. (1996) a subset of the principal components of
the original process variables was used which, for the cases studied, improved
the performance compared to the version with all process variables. The same
approach, but on U-transformed data, was used in Runger et al. (1999). The
application to the simultaneous monitoring of the mean and the variance is
treated in Domangue and Patch (1991).
One natural way to construct a multivariate version of the CUSUM method

would be to proceed as in the MEWMA case and construct the Hotelling
T2 control chart applied to univariate CUSUM statistics for the individual
variables. For the pth variable, the CUSUM statistic for time point t would be
St�p =max�0� St−1�p +Yp�t�− kp�, where S0�p ≥ 0 and kp > 0. The time point of
an alarm for this procedure would be written as tA =min�t
 S�t�T�−1

S�t�S�t� > L�,
where S�t� is a vector containing the individual CUSUM statistics. One
important feature of such a method is the lower barrier of each of the
univariate CUSUM statistics (assuming we are interested in a positive change).
No such method seems to have been suggested previously in the literature.
Instead other approaches to construct a multivariate CUSUM have been taken.
Crosier (1988) suggested the MCUSUM method where a statistic consisting of
univariate CUSUMs for each component is used. This is similar to the MEWMA
statistic, which corresponds to a vector accumulation method. However, the
way the components are used is not the same. The suggestion by Crosier was
to use the following recursive formula:

St =
{
0� if Ct ≤ k�

�St−1+Y�t�−�0�t���1− k/Ct�� if Ct > k�

where S0 = 0� k > 0, and

Ct = ��St−1+Y�t�−�0�t��
T�−1

Y�t��St−1+Y�t�−�0�t���
1/2�

The time of an alarm is then given by tA = min�t
 ST
t �

−1
Y�t�St > L� for some

chosen alarm limit L.
An alternative way to construct a vector-accumulating multivariate CUSUM

is given by Pignatiello and Runger (1990). The methods use different weighting
of the variables. One important feature of these two methods is that the charac-
teristic zero return of the CUSUM technique is made in a way which is suitable
when all the components change at the same time point.
An example of a rank-based CUSUMmethod can be found in Qiu and Hawkins

(2001), where the detection in a multivariate Poisson distribution is used as an
example. Further developments can be found in Qiu and Hawkins (2003).
For spatial surveillance with data consisting of regional counts, Rogerson and

Yamada (2004) constructed a multivariate CUSUM with a covariance structure
corresponding to the spatial autocorrelation between regions. The method was
compared to the use of parallel CUSUMs for each region. Changes in only a
small number of regions were best detected using the parallel approach, while
the opposite was true if the change occurred in many regions.
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9.3.5 Simultaneous Solution

In this section we will approach time and space simultaneously in the analysis
and aim at a total optimal surveillance. This total optimality is not guaranteed
by the approaches described in the sections above. These start with a reduction
either in time or space (or other multivariate setting). Sometimes a sufficient
reduction will result in such a separation of the spatial and the temporal
components. However, such a sufficient separation is not always available.
The use of the sufficient statistic implies that no information is lost. Wessman
(1998) proved that when all the variables change at the same time a sufficient
reduction to univariate surveillance exists.
Healy (1987) analyzed the case of simultaneous change in a specified way

for all the variables. He derived the CUSUM method both for a change in
location and a change in the covariance. The results are univariate CUSUMs for
a function of the variables. For detection of a change in location the solution
is a linear combination of the individual variables. For detection of a change
in covariance it is the T2 statistic. The CUSUM method is minimax optimal.
Thus, the multivariate methods of Healy (1987) are simultaneously minimax
optimal for the specified direction when all variables change at the same time.
Additional discussions of minimax optimality can be found in Lai (1998) and
Lai and Shan (1999).
Another way to achieve a simultaneously optimal solution is by applying

the full likelihood ratio method presented in Chapter 3. This can be used if the
event to be detected is specified. The full likelihood ratio method was used in
the case of clustering in a spatial log-linear model on a fixed lattice by Järpe
(1999). The sufficient reduction of the spatio-temporal pattern resulted in one
statistic to be calculated for each time point. This statistic was only based on
the (spatial) observations for that particular time point. However, in some cases
the sufficient reduction to a univariate statistic for each time point involves
observations from different time points. An example is Järpe (2001), where the
optimal method of detection of an increased radiation level was derived. In
that application the shift process spread spatially with time. Wessman (1999)
examined the case of different change points.

9.4 EVALUATION OF THE PROPERTIES OF
MULTIVARIATE SURVEILLANCE METHODS

As pointed out by Kaufmann et al. (1997), a delay of one day in detection
of and response to an epidemic due to a bioterrorist attack could result in
the loss of thousands of lives and millions of dollars. This is one example of
the importance of using surveillance methods that are as efficient as possible,
if not optimal. Optimality is hard to achieve and even hard to define in the
multivariate surveillance case, as described by Frisén (2003). For a specified type
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of change in the process, general theory can be used to guide in the direction
of optimal methods according to the different optimality criteria presented in
Chapter 3 on optimal surveillance. Consider, for example, the case when we
measure disease incidence in several different areas. If we restrict our attention
to a global increase in the incidence in all areas occurring at the same time,
the multivariate situation is easily reduced to a univariate one. Then we can
proceed as in the univariate case and derive optimal methods. However, for
many applications the specification of a global change is too restrictive. The
problem is how to determine which type of change to focus on and which not
to. The method derived according to the specification of a global change will be
excellent in detecting a global change but will not be capable of detecting, for
example, small clusters of increased incidence. On the other hand, if focusing
on detecting all kinds of clusters which can occur, the detection ability of the
surveillance method for a specific type of cluster will be small. A fundamental
question in multivariate surveillance is what type of changes to focus on. In a
public health setting this issue is crucial. Syndromic surveillance is one example
of almost infinitely many scenarios for a changed pattern which would be of
interest to detect. One way to focus the attention is to consider some type of
dimension reduction transformation (Hawkins, 1991; Runger, 1996).
Timeliness in detection is of extreme interest in public health surveillance, and

in Wagner et al. (2001), Sonesson and Bock (2003), Mostashari and Hartman
(2003), and Aylin et al. (2003) it was pointed out that measures other than
those traditionally used such as the sensitivity, specificity and predictive value
positive are important. Guidelines for the evaluation of surveillance systems are
being developed by the CDC and its collaborators (see Sosin, 2003). In the draft
guidelines it is suggested that surveillance systems are to be evaluated using
naturally occurring outbreaks as well as simulations. This approach to different
means of evaluation can also be found regarding the evaluation of the ESSENCE
system (see Burkom, 2003; Lombardo et al., 2003).
To evaluate the timeliness, different measures such as the average run

length, the conditional expected delay, the expected delay and the probability of
successful detection (see Chapter 3) can also be used in a multivariate setting.
However, the measures of evaluation have to be more precisely defined as the
change in the multivariate case can be in several different directions at different
times.
ARL1 is the most commonly used measure of the detection ability also in

the multivariate case. In some cases the evaluation of ARL1 is performed for
the case where all variables, or a known subset, change. Then the results of
Wessman (1998) can be used to reduce the problem to a univariate one. This
fact seems to have been overlooked in literature. If the comparisons between
methods are made with ARL for the case with the same change point (the first)
for all components, it implies that a better result should be obtained for the
reduction to a univariate surveillance than for vector accumulation. There are
several claims to the contrary in the literature. However, these claims are based
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on different principles for the choice for parameters in the methods compared,
which makes the numerical comparisons difficult to interpret.
For use in a public health setting it is not entirely satisfactory to restrict the eval-

uation of the methods to changes occurring at the same time as the surveillance
starts, since the detection ability depends on when the change occurs. Methods
with short delay times for detection of early changes are often slow in detecting
changes occurring later. There are several examples of this in the univariate case
(Frisén andWessman, 1999; Sonesson, 2003) as well as in themultivariate case.
Qiu andHawkins (2001) take this into account and evaluate their nonparametric
CUSUM by the conditional expected delay CED�t� = E �tA− ��tA ≥ � = t for the
case when the change occurs immediately, CED(1), but also for the case when the
(common) change occurs after 500 time points, CED(500). Large differences in
detection ability, with respect to the time point of the change, were found. Other
examples of evaluations of later changes can be found in Ngai and Zhang (2001)
and Sullivan and Jones (2002). It is important to note that the relative perform-
ances between methods are strongly affected by the measurement of evaluation.
The ranking of the various types of moving average methods studied might be
upset, even reversed, if comparing early and late changes. In the multivariate
setting different change points for different variables are an additional complic-
ation. Thus it is always recommended that a thorough evaluation, involving
changes of different types occurring at different time points, is performed using
several types of evaluations.
Wessman (1999) suggested a generalization of the ARL measure to allow for

the possibility of different change points for different variables. He analyzes the
effect of using the marginal distribution, as by the parallel methods, or the joint
distribution of the variables, as by methods which reduce to one statistic for each
time.The latter approach is very sensitive to the correlationsbetween thevariables
and correlations between the change points for the different variables.

9.5 CONCLUDINGDISCUSSION

Multivariate surveillance is a diverse and difficult areawhich deals with the detec-
tion of changed patterns in multidimensional data. In public health, the nature of
thedata isoftenhigh-dimensionalandcollected intohugedatabases.Theconstruc-
tion of surveillance methods is challenging from many points of view, including
practical, computational as well as purely statistical. It is encouraging to see the
increasing interest in this area of public health. This includes practical issues
involving thecollectionofnewtypesofdata, computationalones suchas the imple-
mentation of automated methods in large-scale surveillance databases, and the
statistical theory on which to base the surveillance methods. In this chapter we
have focused on the statistical aspects of the multivariate surveillance problem.
Wehave given a description ofmethods, characterizing themas scalar accumu-

lating, parallel, vector accumulating or simultaneous. Manymethods first reduce
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the dimension by using transformed variables, such as principal components, and
then use one of the approaches for multivariate surveillance. However, it should
be understood that there is no sharp limit between several of these categories. For
example, what is regarded as a dimension reduction transformation and what is
thought to be a scalar accumulation, sometimes overlap. Fuchs and Benjamini
(1994)suggestmultivariateprofilechartswhich in thesamediagramdemonstrate
both the overall multivariate surveillance and individual ones and thus combine
two of the approaches. Several of the public health systems suggested have flavors
of several of the approaches referred to.
It is important that the typeof changeweaimtodetect iswell specified. Themore

specifically the type of change is stated the better the ability of the surveillance
to detect this change. Hauck et al. (1999) describes different scenarios for how
the change might influence variables and the relation between these. One way to
focus the detection ability is by the specification of a loss function depending on
how important changes in different directions are.Mohebbi andHavre (1989) use
weights from a linear loss function instead of the covariance for the reduction to a
univariate statistic which is monitored by a univariate CUSUM. Tsui andWoodall
(1993) use a nonlinear loss function and a vector accumulation method. This
method is namedMLEWMA. For somemethods the detection ability depends only
on a noncentrality parameter which measures the magnitude of the multidimen-
sional change. Thesemethods are knownas directionally invariant.However, this
is not necessarily a good property, since in many cases one is more interested in
detecting a certain type of change. Preferably, this specification should be motiv-
ated by the application. However, ‘automatic ways’ have also been suggested.
One might raise the question: ‘What multivariate surveillance method is the

best one to use in applications?’ A concise answer to such a general question is,
however, not possible to give. Different methods are suitable for different applica-
tions. Consider, for example, the syndromic surveillance system established by the
New York City Department of Health and Mental Hygiene described in Heffernan
et al. (2004). In this system emergency department visits are categorized into any
of the syndromes: common cold, sepsis, respiratory, diarrhea, fever, rash, asthma
or vomiting. Respiratory and fever syndromes are identified as being of partic-
ular interest for bioterrorism surveillance. Since an anthrax attack will lead to a
simultaneous increase in both respiratory and fever syndromes one should use
a reduction to a univariate surveillance method. For a general surveillance of
any bioterrorist attack leading to either respiratory or gastrointestinal syndromes,
which are not supposed to occur simultaneously, one might instead prefer to use
parallelmethods of the two types. One advantagewith parallelmethods is that the
medical interpretation of alarms will be clearer.
One important problem is the identification of why an alarmwas raised. This is

especially so when no narrow specification of the change to be detected is made.
A simple example is the inability of the Hotelling T2 control chart to distinguish
between a change in the mean vector from a change in the covariance struc-
ture. When using a Hotelling T2 control chart, Mason et al. (1995) provided a
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general approach involving a decomposition of the T2 statistic into independent
components. Among other suggestions is principal component analysis; see
Pignatiello and Runger (1990), Kourti and MacGregor (1996) and Maravelakis
et al. (2002). The steps of epidemiological investigation following an alarm
triggered by a surveillance method are described by Pavlin (2003). The invest-
igation consists of confirmation of the existence of an outbreak, verifications of
diagnosis, estimation of the number of cases, development and evaluation of
a hypothesis about the outbreak, and finally implementation of control meas-
ures and communication of the findings to other public health practitioners.
Several of these steps can be assisted by the alarm system itself and the data
collected. An example is a spatially restricted outbreak. Information about where
the increased number of cases is located will assist the epidemiological investiga-
tion. A multivariate surveillance method does not provide immediate answers to
such a question if the information is pooled across different areas. The importance
of knowledge about where to concentrate the effort after an alarm indicating a
bioterrorist attack is discussed by Mostashari and Hartman (2003).
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Bayesian Network
Approaches to Detection

Weng-Keen Wong and Andrew W. Moore

10.1 INTRODUCTION

Multidimensional data with a temporal component is available from numerous
biosurveillance sources. We would like to tackle the problem of early disease
outbreak detection from such sources. Consider a situation in which we have
a database of emergency department (ED) cases from several hospitals in a
city. Each record in this database contains information about the individual
who was admitted to the ED. This information includes fields such as age,
gender, symptoms exhibited, home location, work location, and time admitted.
(To maintain patient confidentiality, personal identifying information, such as
patient names, addresses, and identification numbers, was not in the data set
used in this research.) Clearly, when an epidemic sweeps through a region,
there will be extreme perturbations in the number of ED visits. While these
dramatic upswings are easily noticed during the late stages of an epidemic, the
challenge is to detect the outbreak during its early stages and mitigate its effects.
Although we have posed our problem in an anomaly detection framework,

the majority of anomaly detection algorithms are inappropriate for this domain.
Typical anomaly detection identifies individual records that have a rare attribute
or rare combination of attributes. As an example, suppose we apply a traditional
anomaly detection technique to ED records. We might then find an unusual
record such as a patient who was over 100 years old living in a sparsely
populated region. This outlier is not at all indicative of a disease outbreak. Outlier
detection succeeds in finding data points that are rare based on the underlying
density, but these data points are treated in isolation from each other. Early
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epidemic detection, on the other hand, hinges on identifying anomalous groups,
which we will refer to as anomalous patterns. Specifically, we want to know if the
recent proportion of a group with specific characteristics is anomalous based on
what the proportion is normally. Traditional outlier detection will likely return
isolated irregularities that are insignificant to the early detection system.
An alternate approach would be to monitor aggregate daily counts of either

a single attribute or a combination of attributes. For instance, we could monitor
the daily number of people appearing in the ED with respiratory problems.
This approach converts multivariate surveillance data into a univariate time
series. Many different algorithms can then be used to monitor this univariate
surveillance data, including methods from statistical quality control such as
CUSUM and EWMA (which are discussed in Chapter 2 of this book), time series
models (Box and Jenkins, 1976), and regression techniques (Serfling, 1963;
Farrington et al., 1996; Lazarus et al., 2002). This technique works well if we
know a priori which disease to monitor since we can improve the timeliness
of detection by monitoring specific features of the disease. For example, if we
were vigilant against an anthrax attack, we can concentrate our efforts on
ED cases involving respiratory problems. In our situation, we need to perform
nonspecific disease monitoring because we do not know what disease to expect,
particularly in the case of a bioterrorist attack. As a result, instead of monitoring
health care data for predefined patterns, we resort to detecting any significant
anomalous patterns in the multivariate ED data. Furthermore, by taking a
multivariate approach that inspects all available attributes in the data, partic-
ularly the temporal, spatial, demographic, and symptom-related features, we
hope to improve the timeliness of detection.
Contrast set mining (Bay and Pazzani, 1999) has the same flavor as the

approach we take except it finds rules with more than two components using
a pruning algorithm to reduce the exponential search space. This optimization
prunes away rules whose counts are too small to yield a valid chi-square test. In
addition, multiple hypothesis testing problems are addressed using a Bonferroni
correction in contrast set mining, while we use a randomisation test.

10.2 ASSOCIATION RULES

Our approach to early disease outbreak detection uses a rule-based anomaly
pattern detector called What’s Strange About Recent Events (WSARE:
Wong et al., 2002, 2003). WSARE operates on discrete, multidimensional data
sets with a temporal component. This algorithm compares recent data against
a baseline distribution with the aim of finding rules that summarize signi-
ficant patterns of anomalies. Each rule takes the form Xi = Vj

i , where Xi is the
ith feature and Vj

i is the jth value of that feature. Multiple components are
joined together by a logical AND. For example, a two-component rule would be
Gender = Male AND Home Region = NW. It is helpful to think of the rules as
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SQL SELECT queries. They characterize a subset of the data having records with
attributes matching the components of the rule. WSARE finds those subsets
whose proportions have changed the most between recent data and the baseline.
Another problem facing detection systems is determining the baseline distri-

bution. This distribution is usually obtained from a period of time in the past
when no epidemics are known to have happened. However, determining this
distribution for early disease outbreak detection is extremely difficult due to the
different trends present in health care data. Seasonal variations in weather and
temperature can dramatically alter the distribution of such data. For example,
the flu season typically occurs during mid-winter, resulting in an increase in ED
cases involving cough and fever symptoms. Disease outbreak detectors intended
to detect epidemics such as SARS, West Nile virus and anthrax are not inter-
ested in detecting the onset of the flu season and would be thrown off by it.
Day-of-week variations make up another periodic trend. Figure 10.1, which
is taken from Goldenberg et al. (2002), clearly shows the periodic elements in
cough syrup and liquid decongestant sales.
Choosing the wrong baseline distribution can have dire consequences for an

early detection system. Consider once again a database of ED records. Suppose
we are presently in the middle of the flu season and our goal is to detect anthrax,
not an influenza outbreak. Anthrax initially causes symptoms similar to those
of influenza. If we choose the baseline distribution to be outside of the current
flu season, then a comparison with recent data will trigger many false anthrax

0

500

1000

1500

2000

07/01/99 10/01/99 01/01/00 04/01/00 07/01/00 10/01/00 01/01/01 04/01/01

S
al

es

Dates

Figure 10.1 Cough syrup and liquid decongestant sales (from Goldenberg et al., 2002).
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alerts due to the flu cases. Conversely, suppose we are not in the middle of
the flu season and that we obtain the baseline distribution from the previous
year’s influenza outbreak. The system would now consider high counts of flu-
like symptoms to be normal. If an anthrax attack occurs, it would be detected
at a very late stage.
There are clearly tradeoffs when defining this baseline distribution. At one

extreme, we would like to capture any current trends in the data. One solution
would be to use only the most recent data, such as data from the previous day.
This approach, however, makes the algorithm susceptible to outliers that may
only occur in a short but recent time period. On the other hand, we would like
the baseline to be accurate and robust against outliers. We could use data from
all previous years to establish the baseline. This choice would smooth out trends
in the data and likely raise alarms for events that are due to periodic trends.
We propose building a Bayesian network to represent the joint distribution

of the baseline. From this joint distribution, we represent the baseline distri-
butions from the conditional distributions formed by conditioning on what we
term environmental attributes. These features are precisely those attributes that
account for trends in the data, such as the season, the current flu level, and
the day of week.

10.3 WSARE

At this point we will provide an overview of the WSARE algorithm. WSARE
operates on a daily basis, in which, for each day, the algorithm treats records
from the past 24 hours as recent events. Using historical data beyond the past
24 hours, WSARE then creates a baseline distribution which is assumed to
capture the usual behavior of the system being monitored under the environ-
mental conditions of the current day. Once the baseline distribution has been
created, the algorithm considers all possible one- and two-component rules
over events occurring on the current day. The rules are scored with a scoring
function that assigns high scores to rules corresponding to subsets of data that
have unusual proportions when compared against the baseline distribution.
The rule with the highest score for the day has its p-value calculated using a
randomization test. If this p-value is lower than a specified threshold, an alert
is raised.

10.3.1 Creating the Baseline Distribution

Learning the baseline distribution involves taking all records prior to the past
24 hours and building a Bayesian network from this subset. During the structure
learning, we differentiate between environmental attributes, which are features
that cause trends in the data, and response attributes, which are the remaining
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features. The environmental attributes are specified by the user based on the
user’s knowledge of the problem domain. If there are any latent environmental
attributes that are not accounted for in this model, the detection algorithm may
have some difficulties. However, as will be described later, WSARE was able to
overcome some hidden environmental attributes in our simulator.
The network structure is learned from categorical data using an efficient

structure search algorithm called optimal reinsertion (Moore and Wong, 2003)
based on ADTrees (Moore and Lee, 1998). Environmental attributes in the
structure are prevented from having parents because we are not interested in
predicting their distributions, but rather, we want to use them to predict the
distributions of the response attributes. The structure search also exploits this
constraint by avoiding search paths that assign parents to the environmental
attributes.
We have often referred to environmental attributes as attributes that cause

periodic trends. Environmental attributes, however, can also include any source
of information that accounts for recent changes in the data. Incorporating such
knowledge into the Bayesian network can aid in detecting anomalies other
than the ones we already know about. For example, suppose we detect that
a botulism outbreak has occurred and we would still like to be on alert for
any anthrax releases. We can add ‘Botulism Outbreak’ as an environmental
attribute to the network and supplement the current data with information
about the botulism outbreak.
Once the Bayesian network is learned, we have a joint probability distri-

bution for the data. We would like to produce a conditional probability
distribution, which is formed by conditioning on the values of the environ-
mental attributes. Suppose that today is February 21, 2003. If the envir-
onmental attributes were Season and Day of Week, then we would set
Season=Winter and Day of Week=Monday. Let the response attributes in
this example be X1� � � � � Xn. We can then obtain the probability distribu-
tion P�X1� � � � � Xn�Season = Winter�DayofWeek = Monday� from the Bayesian
network. For simplicity, we represent the conditional distribution as a data set
formed by sampling 10000 records from the Bayesian network conditioned
on the environmental attributes. The size of this sampled data set has to be
large enough to ensure that samples with rare combinations of attributes will
be present, hence the choice of 10 000 records. We will refer to this sampled
data set as DBbaseline. The data set corresponding to the records from the past
24 hours of the current day will be named DBrecent.

One of the benefits of using a Bayesian network to represent the baseline
distribution is the Bayesian network’s generalization capability, which can be
used to predict the probability of a situation that may not have been encountered
in the past. As an example, suppose we would like to estimate the joint probab-
ility P(X1� � � � � Xn� Season= Spring, Weather= Snow, Day of Week=Monday).
Furthermore, suppose that we have no ED records from snowy springMondays in
our historical data. However, we do have ED records obtained during snow days,
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during Mondays, and during spring. The Bayesian network is able to generalize
from such data to produce an estimate of what the joint probability would be even
though no records from snowy spring Mondays existed in the training data.

10.3.2 Finding the Best One-Component Rule

After the baseline distribution is generated, WSARE proceeds by finding the
best one-component rule. This step requires exhaustively searching over all
feature–value combinations and scoring them. The scoring mechanism estab-
lishes a 2×2 contingency table for each rule. Suppose the rule is Respiratory
Syndrome=True. We set up a contingency table as shown in Table 10.1 with
the cells containing counts for records matching and not matching the rule
for both data sets DBrecent and DBbaseline. Let Crecent be the count for DBrecent and
Cbaseline be that for DBbaseline.
The score of a rule is determined through a hypothesis test in which the null

hypothesis is the independence of the row and column attributes of the 2×2
contingency table. In effect, the hypothesis test measures the difference between
the counts for the recent period and those for the baseline. This test produces
a p-value that determines the significance of the anomalies found by the rule.
This p-value will be referred to as the score in order to distinguish it from
the corrected p-values used below. We use the chi-square test whenever its
assumptions are not violated. Since we are searching for anomalies, the counts
in the contingency table are frequently small numbers and we resort to using
Fisher’s exact test (Good, 2000). Running Fisher’s exact test on Table 10.1 yields
a score of 0.025939, which indicates that Crecent for the rule Home Location =
NW is anomalous when compared to that of Cbaseline.

10.3.3 Two-Component Rules

At this point, the best one-component rule for a particular day has been found.
We will refer to the best one-component rule for day i as BR1

i . The algorithm then
attempts to find the best two-component rule for the day by adding on one extra
component to BR1

i . This extra component is determined by supplementing BR1
i

with all possible feature–value pairs, except for the one already present in BR1
i ,

and selecting the resulting two-component rule with the best score. We resort
to building rules in this greedy manner in order to reduce the computational

Table 10.1 A sample 2×2 contingency table.

Crecent Cbaseline

Home Location = NW 6 496
Home Location �= NW 40 9504
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cost of an exhaustive search. Scoring is performed in exactly the same manner
as before, except that the counts Crecent and Cbaseline are calculated by counting
the records that match the two-component rule. The best two-component rule
for day i is subsequently found and we will refer to it as BR2

i

BR2
i , however, may not be an improvement over BR1

i . We need to perform
further hypothesis tests to determine if the presence of either component has a
significant effect. This can be accomplished by determining the scores of having
each component through Fisher’s exact test. If we label BR2

i ’s components as
C0 and C1, then the two 2×2 contingency tables for Fisher’s exact tests are as
shown in Tables 10.2 and 10.3.
Once we have the scores for both tables, we need to determine if they are

significant or not. We used the standard � value of 0.05 and considered a score
to be significant if it was less than or equal to �. If the scores for the two tables
were both significant, then the presence of both components had an effect. As
a result, the best rule overall for day i is BR2

i . On the other hand, if any one of
the scores was not significant, then the best rule overall for day i is BR1

i .
This greedy approach is an approximation that provides a compromise

between accuracy and computational complexity. Without this greedy
approach, searching for the best n-component rule through an exhaustive
search will require searching over a number of rules that grows exponentially
as n increases. With the greedy approximation, the rule search space only
grows linearly in terms of n. Even with only a maximum of two compon-
ents in a rule, we found empirically that the greedy search was 30 times
faster than the exhaustive search. On the other hand, certain rules will not
be found by this greedy approach, such as a two-component rule in which

Table 10.2 First 2×2 contingency table for a
two-component rule.

Records from recent
matching C0 and C1

Records from baseline
matching C0 and C1

Records from
recent matching C1
and differing on C0

Records from baseline
matching C1 and
differing on C0

Table 10.3 Second 2×2 contingency table for a
two-component rule.

Records from recent
matching C0 and C1

Records from baseline
matching C0 and C1

Records from
recent matching C0
and differing on C1

Records from baseline
matching C0 and
differing on C1
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neither component is found during the single best scoring component stage.
Wong (2004) compared the greedy and exhaustive searches on data from
our simulator described in Section 10.4.1, and the results of WSARE on an
activity monitor operating characteristic (AMOC) curve show no significant
differences.

10.3.4 Obtaining the p-Value for Each Rule

The score produced by the previous step cannot be accepted at face value as a
p-value because of a multiple hypothesis testing problem. Suppose we follow the
standard practice of rejecting the null hypothesis when the p-value is less than
�, where �= 0�05. When only one hypothesis test is performed, the probability
of making a false discovery under the null hypothesis would be �= 0�05. On the
other hand, if we perform 1000 hypothesis tests, one for each possible rule under
consideration, then the probability of making a false discovery could be as bad
as 1−�1−0�05�1000 ≈ 1, which is much greater than 0.05 (Miller et al., 2001).
We need to add an adjustment for the multiple hypothesis tests. This problem

can be addressed using a Bonferroni correction (Bonferroni, 1936), but this
approach can be unnecessarily conservative. Instead, we use a randomization
test (Good, 2000) in which the date is assumed to be independent of the other
features. In this test, the non-date features of both DBrecent and DBbaseline remain
the same but the dates are shuffled between the two data sets, resulting in two
newly randomized data sets RDBrecent and RDBbaseline, respectively. RDBrecent and
RDBbaseline will now both contain records with dates from the original recent
period and from the baseline period. The procedure is described below.

Let UCP = uncompensated p−value �i�e�� the score as defined above�

For j= 1 to 1000

Let DB= DBrecent∪DBbaseline

Produce RDBj
recent and RDBj

baseline from DB

Let RDBj = RDBj
recent∪RDBj

baseline

Let BRj = Best rule on RDBj

Let UCPj = uncompensated p−value of BRj on RDBj

Let the compensated p-value of BR be CPV, that is,

CPV = No. of Rand Tests in which UCPj < UCP

No. of Rand Tests
�

CPV estimates the chance of seeing an uncompensated p-value as good as UCP
if in fact there was no relationship between the date and the other features.
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10.4 EVALUATION

10.4.1 The Simulator

Validation of early outbreak detection algorithms is generally a difficult task for
two main reasons. First of all, ground truth must be established by marking
the start and end of the outbreak periods in the data. Determining the ground
truth is a time-consuming process since a group of epidemiologists must manu-
ally inspect the data and come to a consensus on the outbreak periods. As a
result, labelled outbreak data is scarce. Secondly, in order to make statistically
significant conclusions about a detection algorithm, a large number of outbreak
data sets are needed, each of which must contain a real outbreak. Due to these
limitations, the best available option is to create a simulator which approx-
imates the effects of an epidemic on a population. We evaluated WSARE on
a small-scale city simulator. Although this simulator is not entirely realistic,
the extremely noisy data sets produced by the simulator are still a challenge
for any detection algorithms. Further experimental results, including examples
of output from applying WSARE to Pittsburgh-area ED data, can be found in
Wong et al. (2003).
Our city consists of nine regions, each of which contains a different sized popu-

lation, ranging from 100 people in the smallest area to 600 people in the largest
section. We ran the simulation for a two-year period from January 1, 2002 to
December 31, 2003. The environment of the city is not static, with weather, flu
levels, and food conditions in the city changing from day to day. Flu levels are
typically low in the spring and summer but start to climb during the fall. We
made the flu season strike in winter, resulting in the highest flu levels during
the year. Weather, which only takes on the values hot or cold, is as expected
for the four seasons, with the additional feature that it has a good chance of
remaining the same as it was yesterday. Each region has a food condition of good
or bad. A bad food condition facilitates the outbreak of food poisoning in the area.
We implemented this city simulation using a Bayesian network, as shown in

Figure 10.2. We will use the convention that any nodes shaded black in the
Bayes network are set by the system and do not have their values generated
probabilistically. Due to space limitations, instead of showing 18 separate nodes
for the current and previous food conditions of each region, we summarize

Date

Day of
Week

Weather Flu Level
Region Food

Condition

Previous
Flu Level

Season
Previous
Weather

Previous Region
Food Condition

Previous Region
Anthrax Concentration

Region Anthrax
Concentration

Figure 10.2 City Status Bayesian network.
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them using the generic nodes Region Food Condition and Previous Region Food
Condition, respectively. This same space-saving technique is used for the current
and previous region anthrax concentrations. Most of the nodes in this Bayesian
network have an arity of two to three values. For each day, after the black
nodes have their values set, the values for the white nodes are sampled from
the Bayesian network. These records are stored in the City Status (CS) data set.
The simulated anthrax release was selected for a random date during a specified
time period. One of the nine regions is chosen randomly for the location of the
simulated release. On the date of the release, the Region Anthrax Concentration
node is set to high. The anthrax concentration remains high for the affected
region for a randomly chosen length of time.
The second Bayesian network used in our simulation produces individual

health care cases. Figure 10.3 depicts the Patient Status (PS) network. On each
day, for each person in each region, we sample the individual’s values from
this network. The black nodes first have their values assigned from either a
pre-existing table of values or from the CS data set record for the current day.
The white nodes are then sampled from the PS network. Each individual’s
health profile for the day is thus generated. Nodes such as Flu Level, Day of
Week, Season, Weather, Region Grassiness, and Region Food Condition are
intended to represent environmental variables that affect the upswings and

Heart
Health

Has Heart

Outside
Activity

Immune
System

Actual 
Symptom

Has Anthrax

Has Food 
Poisoning

Disease

Has Sunburn

Has Allergy
Has Cold

Has Flu

REPORTED
SYMPTOM ACTION DRUG

Region
Anthrax

Concentration

DATE

REGION

GENDER

FLU LEVEL DAY OF WEEK SEASON WEATHER

AGE

Region
Grassiness

Region
Food

Condition

Figure 10.3 Patient Status Bayesian network.
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downswings of a disease. Some of these environmental variables will be hidden
from the detection algorithm. The Region Grassiness node indicates the amount
of pollen in the air and thus affects the allergies of a patient. The Disease node
indicates the status of each person in the simulation. A person is either healthy
or they can have, in order of precedence, allergies, a cold, sunburn, the flu,
food poisoning, heart problems, or anthrax. If an individual has more than
one disease, the Disease node picks the disease with the highest precedence.
A sick individual then exhibits one of the following symptoms: none, respiratory
problems, nausea, or a rash. The actual symptom associated with a person may
not necessarily be the same as the symptom that is reported to health officials.
Actions available to a sick person include doing nothing, buying medication,
going to the ED, or being absent from work or school. As with the CS network,
the arities for each node in the PS network are small, ranging from two to
four values. If the patient performs any action other than doing nothing, the
patient’s health care case is added to the PS data set. Only the attributes in
Figure 10.3 labeled with upper-case letters are recorded, resulting in a great
deal of information being hidden from the detection algorithm, including some
latent environmental attributes. The number of cases generated daily by the
PS network is typically in the range of 30 to 50 records. Table 10.4 contains
two examples of records in the PS data set.

10.4.2 Algorithms

We ran four detection algorithms on 100 different PS data sets. Of the four
detection algorithms, three were variations on WSARE which we will describe
below. Each data set was generated for a two-year period, beginning on January
1, 2002 and ending December 31, 2003. The detection algorithms trained on
data from the first year until the current day, while the second year was used
for evaluation. The anthrax release was randomly chosen in the period between
January 1, 2003 and December 31, 2003.

Table 10.4 Examples of two records in the Patient Status
data set.

Region NW N
Age Child Senior
Gender Female Male
Flu Level High None
Day of Week Weekday Weekday
Weather Cold Hot
Season Winter Summer
Action Absent ED visit
Reported Symptom Nausea Rash
Drug None None
Date Jan-01-2002 Jun-21-2002
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Figure 10.4 Daily counts of health care data.

We tried to simulate anthrax attacks that are not trivially detectable.
Figure 10.4 plots the total count of health care cases on each day during the
evaluation period. A naive detection algorithm would assume that the highest
peak in this graph would be the date of the anthrax release. However, the
anthrax release for Figure 10.4 occurred on day 276.

10.4.2.1 Moving average

The first algorithm that we used was a moving average algorithm that predicted
the count for the current day as the average of counts from the previous 7 days.
The window of 7 days was intended to capture any recent trends that might
have appeared in the data. An alarm level was generated by fitting a Gaussian
to data prior to the current day and obtaining a p-value for the current day’s
count. The mean for the Gaussian was calculated using data from 7 days before
the current day, while the standard deviation was obtained using data from
28 days prior to the current day.

10.4.2.2 WSARE 2.0

WSARE 2.0 is a version of WSARE that uses raw historical data as the baseline
distribution. The baseline distribution was obtained using records from 7, 14,
21, and 28 days before the current day. The attributes used by WSARE 2.5
and 3.0 (both of which are described below) as environmental attributes were
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ignored by WSARE 2.0. If these attributes were not ignored, WSARE 2.0
would report many trivial anomalies. For instance, suppose the environmental
attribute Day of Week=Sunday for the current day. If this attribute were not
ignored, WSARE 2.0 would notice that 100% of the records for the current day
had Day of Week=Sunday while only 14.3% of records in the baseline data
set matched this rule.

10.4.2.3 WSARE 2.5

Instead of building a Bayesian network over the past data, WSARE 2.5 simply
builds a baseline from all records prior to the current period with their envir-
onmental attributes equal to the current day’s. In our simulator, we used the
environmental attributes Flu Level, Season, Day of Week and Weather. To
clarify this algorithm, suppose that for the current day we have the following
values of these environmental attributes: Flu Level=high, Season=winter, Day
of Week=weekday and Weather= cold. Then DBbaseline would contain only
records before the current period with environmental attributes having exactly
these values. It is possible that no such records exist in the past with exactly this
combination of environmental attributes. If there are fewer than five records
in the past that match, WSARE 2.5 cannot make an informed decision when
comparing the current day to the baseline and simply reports nothing for the
current day.

10.4.2.4 WSARE 3.0

WSARE 3.0 uses the same environmental attributes as WSARE 2.5 but builds
a Bayesian network for all data from January 1, 2002 to the begining of
the current day. We hypothesized that WSARE 3.0 will detect the simulated
anthrax outbreak sooner than WSARE 2.5 because 3.0 can handle the cases
where there are no records corresponding to the current day’s combination
of environmental attributes. The Bayesian network is able to generalize from
days that do not match today precisely, producing an estimate of the desired
conditional distribution. For efficiency reasons, we allowed WSARE 3.0 to learn
a network structure from scratch once every 30 days. On intermediate days,
WSARE 3.0 simply updates the parameters of the previously learned network
without altering its structure.

10.5 RESULTS

Our evaluation criteria examine the algorithms’ performance on an AMOC
curve (Fawcett and Provost, 1999). The AMOC curve in Figure 10.5 plots
detection time versus false positives over alarm thresholds ranging from 0 to 0.2
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Figure 10.5 Asymptotic behavior of algorithms for simulated data.

in 0.001 increments. The lower alarm thresholds yield lower false positives and
higher detection times, while the converse is true with higher alarm thresholds.
Figure 10.5 fills in the lines to display the asymptotic behavior of the algorithms.
The optimal detection time is 1 day, as shown by the dotted line at the bottom
of the graph. We add a one-day delay to all detection times to simulate reality
where current data is only available after a 24-hour delay. Any alert occurring
before the start of the simulated anthrax attack is treated as a false positive.
Detection time is calculated as the first alert raised after the release date. If no
alerts are raised after the release, the detection time is set to 14 days.
Figure 10.6 plots the receiver operating (ROC) curve for the algorithms.

Producing an ROC curve requires an explanation of the criteria for true
positives, false positives, true negatives, and false negatives. For each of the 100
data sets, we have the date of the outbreak along with its duration, where the
duration is defined as the number of consecutive days after the outbreak in
which at least one reported event is due to anthrax. False positives are defined
as any alerts raised before the outbreak date, where an alert is a p-value that
is less than or equal to the alarm threshold. True negatives are the number
of non-alerts before the outbreak date. Before considering false negatives and
true positives, we need to define the outbreak period. If the outbreak begins on
day i, then the end of the outbreak is on day i + duration. Let the outbreak
period be [i� i + duration). The number of true positives is 1 if an alert is raised
during the outbreak period and 0 if the outbreak is not detected. Finally, we
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Figure 10.6 ROC curves for the algorithms.

count false negatives as the number of days beginning with the outbreak date
and ending on the first alert during the outbreak period. If the outbreak is not
detected, the number of false negatives is set to be the outbreak duration.
Figures 10.7–10.10 depict the histograms of detection times at one false

positive per month for the four algorithms listed. On the x-axis the detec-
tion times range from 0 to 14 days, while the y-axis shows how many of
the 100 simulation files fall into a histogram bin. The detection times at
14 days correspond to simulation files in which the detection algorithm did
not detect the outbreak. Since we do not have an analytic form of the AMOC
curve, we searched for the closest alarm threshold between 0 and 0.2 using
0.0001 increments that would yield one false positive per month for each
algorithm. These alarm threholds were 0.0017, 0.0149, 0.0298, and 0.0224
for the moving average algorithm, WSARE 2.0, WSARE 2.5, and WSARE 3.0,
respectively.
From the results of our simulation, WSARE 2.5 and WSARE 3.0 outperform

the other algorithms in terms of the AMOC curve and the ROC curve. Both the
moving average algorithm and WSARE 2.0 were thrown off by the periodic
trends present in the PS data. We had previously proposed that WSARE 3.0
would have a better detection time than WSARE 2.5 due to the Bayesian
network’s ability to produce a conditional distribution for a combination of
environmental attributes that may not exist in the past data. After checking the
simulation results for which WSARE 3.0 outperforms WSARE 2.5, we conclude
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Figure 10.7 Moving average histogram of detection times at one false positive per
month.
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Figure 10.8 WSARE 2.0 histogram of detection times at one false positive per month.
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Figure 10.9 WSARE 2.5 histogram of detection times at one false positive per month.
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Figure 10.10 WSARE 3.0 histogram of detection times at one false positive per month.
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Figure 10.11 WSARE 3.0 with a randomization test versus WSARE 3.0 with a
Bonferroni correction.

that in some cases our proposition was true. In others, the p-values estimated
by WSARE 2.5 were not as low as those of version 3.0. The baseline distribution
of WSARE 2.5 is likely not as accurate as the baseline of WSARE 3.0 due to
smoothing performed by the Bayesian network. The false positives found by
WSARE 2.5 and WSARE 3.0 are likely due to other nonanthrax illnesses that
were not accounted for in the Bayesian network. Had we explicitly added a
Region Food Condition environmental attribute to the Bayesian network, this
additional information would likely have reduced the false positive count.
In Figure 10.11 we evaluated how WSARE 3.0 would be affected if a Bonfer-

roni correction were used in the place of the randomization test. From the
simulated data results, the Bonferroni correction appears to be a slight improve-
ment over the randomization test. We suspect that as the number of attributes
in the data increases, thereby increasing the number of hypothesis tests, the
Bonferroni correction becomes more conservative and less effective than the
randomization test.

10.6 CONCLUSION

Even with multiple periodic trends and other nonanthrax illnesses present in
the simulated data, WSARE 3.0 has been shown to be successful at detecting
anomalous patterns that are indicative of an anthrax release. WSARE 3.0
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outperformed all the other algorithms evaluated. For a false positive rate of
one per month, WSARE 3.0 detects the simulated anthrax release about 2
days earlier than WSARE 2.0 and about 6 hours earlier than WSARE 2.5.
In addition, the false positive rate for WSARE 3.0 could have been reduced
even further if more environmental attributes capturing the current state of the
system had been added to the Bayesian network.
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Efficient Scan Statistic
Computations

Daniel B. Neill and Andrew W. Moore

11.1 INTRODUCTION

One of the core goals of data mining is to discover patterns and relationships
in data. In many applications, however, it is important not only to discover
patterns, but also to distinguish those patterns that are significant from those
that are likely to have occurred by chance. This is particularly important in
epidemiological applications, where a rise in the number of disease cases in a
region may or may not be indicative of an emerging epidemic. In order to decide
whether further investigation is necessary, epidemiologists must know not only
the location of a possible outbreak, but also some measure of the likelihood
that an outbreak is occurring in that region. More generally, we are interested
in spatial data mining problems where the goal is detection of overdensities:
spatial regions with high scores according to some density measure. The density
measure can be as simple as the count (e.g. number of disease cases, or units of
cough medication sold) in a given area, or can adjust for quantities such as the
underlying population. In addition to discovering these high-density regions, we
must perform statistical testing in order to determine whether the regions are
significant. As discussed above, a major application is in detecting clusters of
disease cases, for purposes ranging from detection of bioterrorism (e.g. anthrax
attacks) to identifying environmental risk factors for diseases such as childhood
leukemia (Openshaw et al., 1988; Waller et al., 1994; Kulldorff and Nagarwalla,
1995). Kulldorff (1999) discusses many other applications, including mining
astronomical data (e.g. identifying star clusters), military reconnaissance, and
medical imaging.
We consider the case in which data has been aggregated to a uniform, two-

dimensional grid. Let G be an N×N grid of squares, where each square sij ∈ G

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd
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is associated with a count cij and an underlying population pij. For example, a
square’s count may be the number of disease cases in that geographical location
in a given time period, while its population may be the total number of people
‘at risk’ for the disease. Our goal is to search over all rectangular regions S ⊆ G,
and find the region S∗ with the highest density according to a density measure
D: S∗ = argmaxS D�S�. We use the abbreviations mdr for the maximum density
region S∗, and mrd for the maximum region density D�S∗�, throughout. We will
also find the statistical significance (p-value) of this region by randomization
testing, as described below.
The density D�S� of a region S can be an arbitrary function of the total count

of the region, C�S�=∑
S cij, and the total population of the region, P�S�=∑

S pij.
Thus we will often write D�C�P�, where C and P are the count and population
of the region under consideration. It is important to note that, while the term
‘density’ is typically understood to mean the ratio of count to population, we use
the term in a much broader sense, to denote a class of density functions D which
includes the ‘standard’ density function D1�C�P� = C/P. For our purposes, we
assume that the density function D satisfies the following three properties:

(1) For a fixed population, density increases monotonically with count

�D

�C
�C�P�≥ 0� for all �C�P��

(2) For a fixed count, density decreases monotonically with population

�D

�P
�C�P�≤ 0� for all �C�P��

(3) For a fixed ratio C/P, density increases monotonically with population

�D

�P
�C�P�+ C

P

�D

�C
�C�P�≥ 0� for all �C�P��

The first two properties state that an overdensity is present when a large count
occurs in a small population. In the case of a uniform population distribution,
the population of a region is proportional to its area, and thus an overdensity
is present when a large count occurs in a small area. The third property states,
in essence, that an overdensity is more significant when the underlying popu-
lation is large. This is true because smaller populations P will typically have
higher variance in densities C/P. For example, assuming that counts are Poisson
distributed with means proportional to P, the variance of C/P is proportional to
P/P2 = 1/P. We also allow D to remain constant as population increases for a
fixed ratio C/P, thus including the standard density function D1 = C/P; we do
not, however, allow functions where D decreases in this case. We will also make
one more assumption involving the second partials of D; this fourth property is
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not strictly necessary but makes our computation easier, eliminating the need
to check for local maxima of the density function. A large class of functions
satisfy all four properties, including Kulldorff’s spatial scan statistic, discussed
in detail below.

11.1.1 The Spatial Scan Statistic

A nonmonotonic density measure which is of great interest to epidemiologists
is Kulldorff’s spatial scan statistic, first presented in Kulldorff (1997), and also
discussed in Chapter 7 of this collection. This statistic, which we denote by
DK, is in common use for finding significant spatial clusters of disease cases,
which are often indicative of an emerging outbreak. Kulldorff’s statistic assumes
that counts cij are generated by an inhomogeneous Poisson process, that is, a
Poisson process with spatially varying parameter. Thus each cij is assumed to
be generated independently from a Poisson distribution with mean qpij, where
q is the underlying ‘disease rate’ (or expected value of C/P) and pij is the
population of that square. We then calculate the log of the likelihood ratio of
two possibilities: that the disease rate q is higher in the region than outside the
region, and that the disease rate is identical inside and outside the region. For
a region with count C and population P, in a grid with total count Ctot and
population Ptot, we can calculate

DK = C log
C

P
+ �Ctot−C� log

Ctot−C

Ptot−P
−Ctot log

Ctot

Ptot

if C/P > Ctot/Ptot, and DK = 0 otherwise. Kulldorff (1997) proved that the spatial
scan statistic is individually most powerful for finding a single significant region of
elevated disease rate: for a fixed false positive rate, and for a given set of regions
tested, it is more likely to detect the overdensity than any other test statistic.

11.1.2 Randomization Testing

Once we have found the mdr of grid G according to our density measure, we
must still determine the significance of this region. Since the exact distribution
of the test statistic is only known in special cases (such as density= C/P, with a
uniform underlying population), in general we must find the region’s p-value by
randomization. To do so, we run a large number R of random replications, where
a replica has the same underlying populations pij as G, but assumes a uniform
disease rate qrep = Ctot�G�/Ptot�G� for all squares. For each replica G′, we first
generate all counts cij randomly from an inhomogeneous Poisson distribution
with mean qreppij, then compute the mrd of G′ and compare this to mrd�G�.
The p-value for the mdr is computed to be �Rbeat +1�/�R+1�, where Rbeat is
the number of replicas G′ with mrd�G′�≥mrd�G�, and R is the total number of
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replications. If this p-value is less than 0.05, we can conclude that the discovered
region is significant (unlikely to have occurred by chance) and is thus a ‘spatial
overdensity’. If the test fails, we have still discovered the maximum density
region of G, but there is not sufficient evidence that this is an overdensity.

11.1.3 The Naive Approach

The simplest method of finding the mdr is to compute the density of all rect-
angular regions of sizes k1 × k2, where kmin ≤ k1� k2 ≤ kmax. (We use kmin = 3
and kmax = N throughout.) For an N×N grid, there are a total of �N− k1+1�
�N− k2+1� regions of each size k1× k2, and thus a total of O�N4� regions to
examine. We can compute the density of any rectangular region S in O�1�,
by first finding the count C�S� and population P�S�, then applying our density
measure D�C�P�. (The count and population can be found in constant time
by using a precomputed matrix of cumulative counts; then we can compute
a region’s count by adding/subtracting at most four cumulative counts, and
similarly for populations.) This technique allows us to compute the mdr of an
N×N grid G in O�N4� time. However, significance testing by randomization also
requires us to find the mrd for each replica G′, and compare this to mrd�G�. Since
calculation of the mrd takes O�N4� time for each replica, the total complexity is
O�RN4�, and R is typically large (we assume R = 1000). As discussed in Neill
and Moore (2004b), several tricks may be used to speed up this procedure for
cases where there is no significant spatial overdensity, but these do not help in
cases when an overdensity is found. In general, the O�N4� complexity of the
naive approach makes it infeasible for even moderately sized grids: we estimate
a runtime of 45 days for a 256×256 grid on our test system, which is clearly
far too slow for real-time detection of disease outbreaks.
While one alternative would be to search for an approximate solution using

one of the variety of cluster detection algorithms in the literature, we present
an algorithm which is exact (always finds the mdr) and yet is much faster
than naive search. The key intuition is that, since we only care about finding
the mdr, we do not need to search over every single rectangular region: in
particular, we do not need to search a set of regions if we can prove (based
on other regions we have searched) that none of them can be the mdr. As a
simple example, if a given region has a very low count, we may be able to
conclude that no subregion contained in that region can have a score higher
than the mrd, and thus we do not need to actually compute the score of each
subregion. These observations suggest a top-down, branch-and-bound approach:
we maintain the current maximum score of the regions we have searched so
far, calculate upper bounds on the scores of subregions contained in a given
region, and prune regions which cannot contain the mdr. Similarly, when we
are searching a replica grid, we only care about whether the mrd of the replica
is higher than the mrd of the original grid. Thus we can use the mrd of the
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original grid for pruning on the replicas, and can stop searching a replica if we
find a region with score higher than this mrd.

11.2 OVERLAP-MULTIRESOLUTION PARTITIONING

Our top-down approach to cluster detection can be thought of as a multiresolu-
tion search of the space under consideration: we search first at coarse resolutions
(large regions), then at successively finer resolutions (smaller regions) as neces-
sary. This suggests that a hierarchical, space-partitioning data structure such as
kd-trees (Preparata and Shamos, 1985), mrkd-trees (Deng and Moore, 1995),
or quadtrees (Samet, 1990) may be useful in speeding up our search. However,
our desire for an exact solution makes it difficult to apply these data structures to
our problem. In a kd-tree, each spatial region is recursively partitioned into two
disjoint ‘child’ regions, each of which can then be further subdivided. The diffi-
culty, however, is that many subregions of the parent are not contained entirely
in either child, but overlap partially with each. Thus, in addition to recursively
searching each child for the mdr, we must also search over all of these ‘shared’
regions at each level of the tree. Since there are O�N4� shared regions even at
the top level of the tree (i.e. regions partially overlapping both halves of grid G),
an exhaustive search over all such regions is too computationally expensive,
and thus a different partitioning approach is necessary.
An initial step toward our partitioning can be seen by considering two divi-

sions of a rectangular spatial region S: first, into its left and right halves (which
we denote by S1 and S2), and second, into its top and bottom halves (which we
denote by S3 and S4). Assuming that S has size k1× k2, this means that S1 and
S2 have size 1

2k1× k2, and S3 and S4 have size k1× 1
2k2. Considering these four

(overlapping) halves, we can show that any subregion of S either is contained
entirely in (at least) one of S1� � � � � S4, or contains the centroid of S. Thus one
possibility would be to search S by exhaustively searching all regions containing
its centroid, then recursing the search on its four ‘children’ S1� � � � � S4. Again,
there are O�N4� ‘shared’ regions at the top level of the tree (i.e. regions
containing the centroid of grid G), so an exhaustive search is infeasible.

Our solution, as in our previous work (Neill and Moore, 2004a, 2004b), is a
partitioning approach in which adjacent regions partially overlap, a technique
we call ‘overlap-multiresolution partitioning’, or ‘overlap-multires’ for short.
Again we consider the division of S into its left, right, top, and bottom ‘children’.
However, while in the discussion above each child contained exactly half the
area of S, now we let each child contain more than half the area. We again
assume that region S has size k1× k2, and we choose fractions f1� f2 >

1
2 . Then

S1 and S2 have size f1k1×k2, and S3 and S4 have size k1× f2k2. This partitioning
(for f1 = f2 = 3

4 ) is illustrated in Figure 11.1. Note that there is a region SC
common to all four children; we call this region the center of S. The size of SC
is �2f1 −1�k1 × �2f2 −1�k2, and thus the center has non-zero area. When we
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S1

S2

S3

S4

SC

S

Any subregion of S :
either a) is contained in
              some Si, i = 1, . . ., 4,
      or b) contains SC.

Figure 11.1 Overlap-multires partitioning of region S.

partition region S in this manner, it can be proved that any subregion of S
either is contained entirely in (at least) one of S1� � � � � S4, or contains the center
region SC. Figure 11.1 illustrates each of these possibilities.
Now we can search S by recursively searching S1� � � � � S4, then searching all

of the regions contained in S which contain the center SC. Unfortunately, at
the top level there are still O�N4� regions contained in grid G which contain its
center GC. However, since we know that each such region contains the large
region GC, we can place very tight bounds on the score of these regions, often
allowing us to prune most or all of them. (We discuss how these bounds are
calculated in the following subsection.) Thus the basic outline of our search
procedure (ignoring pruning, for the moment) is:

overlap-search(S)
{
call base-case-search(S)
define child regions S_1...S_4, center S_C as above
call overlap-search(S_i) for i=1...4
for all S’ such that S’ is contained in S and contains S_C,
call base-case-search(S’)

}

Now we consider how to select the fractions f1 and f2 for each call of
overlap-search, and characterize the resulting set � of regions S on which
overlap-search(S) is called. Regions S ∈� are called gridded regions, and regions
S �� are called outer regions. For simplicity, we assume that the grid G is square,
and that its size N is a power of 2. We begin the search by calling overlap-
search(G). Then for each recursive call to overlap-search(S), where the size of
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S is k1× k2, we set f1 = 3
4 if k1 = 2r for some integer r, and f1 = 2

3 if k1 = 3×2r

for some integer r. We define f2 identically in terms of k2, and then the child
regions S1� � � � � S4 and the center region SC are defined in terms of f1 and f2 as
above. This choice of f1 and f2 has the useful property that all gridded regions
have sizes 2r or 3×2r for some integer r. For instance, if the original grid G
has size 64×64, then the children of G will be of sizes 64×48 and 48×64,
and the grandchildren of G will be of sizes 64×32, 48×48, and 32×64. This
process can be repeated recursively down to regions of size kmin× kmin, forming
a structure that we call an overlap-kd tree. The first two levels of the overlap-kd
tree are shown in Figure 11.2. Note that even though grid G has four child
regions, and each of its child regions has four children, G has only 10 (not 16)
distinct grandchildren, several of which are the child of multiple regions.
Our overlap-kd tree has several nice properties, which we present here

without proof. First, for every rectangular region S ⊆ G, either S is a gridded
region (contained in the overlap-kd tree), or there exists a unique gridded region
S′ such that S is an outer region of S′ (i.e. S is contained in S′, and contains the
center region of S′). This means that, if overlap-search is called exactly once
for each gridded region, and no pruning is done, then base-case-search will
be called exactly once for every rectangular region S ⊆ G. In practice, we will
prune many regions, so base-case-search will be called at most once for every
rectangular region, and every region will be either searched or pruned. The
second nice property of our overlap-kd tree is that the total number of gridded
regions ��� is O��N logN�2� rather than O�N4�. This implies that, if we are able
to prune (almost) all outer regions, we can find the mdr of an N×N grid in
O��N logN�2� time. In fact, we may not even need to search all gridded regions,
so in many cases the search will be even faster.
Before we consider how to calculate score bounds and use them for pruning,

we must first deal with an essential issue in searching overlap-kd trees. Since a
child region may have multiple parents, how do we ensure that each gridded

X X X XXX

Figure 11.2 The first two levels of the overlap-kd tree. Each node represents a gridded
region (denoted by a thick square) of the entire data set (thin square and dots).



196 Efficient scan statistic computations

region is examined only once, rather than being called recursively by each
parent? One simple answer is to keep a hash table of the regions we have
examined, and only call overlap-search(S) if region S has not already been
examined. The disadvantage of this approach is that it requires space propor-
tional to the number of gridded regions, O��N logN�2�, and spends a substantial
amount of time doing hash queries and updates. A more elegant solution is
what we call lazy expansion: rather than calling overlap-search(Si) on all four
children of a region S, we selectively expand only certain children at each stage,
in such a way that there is exactly one path from the root of the overlap-kd tree
to any node of the tree. One such scheme is shown in Figure 11.2: if the path
between a parent and child is marked with an X, lazy expansion does not make
that recursive call. No extra space is needed by this method; instead, a simple
set of rules is used to decide which children of a node to expand. A child is
expanded if it has no other parents, or if the parent node has the highest priority
of all the child’s parents. We give parents with lower aspect ratios priority over
parents with higher aspect ratios: for example, a 48×48 parent would have
priority over a 64×32 parent if the two share a 48×32 child. This rule allows
us to perform variants of the search where regions with very high aspect ratios
are not included; an extreme case would be to search only for squares, as in
our previous work (Neill and Moore, 2004a). Within an aspect ratio, we fix an
arbitrary priority ordering. Since we maintain the property that every node is
accessible from the root, the correctness of our algorithm is maintained: every
gridded region will be examined (if no pruning is done), and thus every region
S ⊆ G will be either searched or pruned.

11.2.1 Score Bounds

We now consider which regions can be pruned (discarded without searching)
during our multiresolution search procedure. First, given some region S, we
must calculate an upper bound on the scores D�S′� for regions S′ ⊂ S. More
precisely, we are interested in two upper bounds: a bound on the score of all
subregions S′ ⊂ S, and a bound on the score of the outer subregions of S (those
regions contained in S and containing its center SC). If the first bound is less
than or equal to the mrd, we can prune region S completely; we do not need
to search any (gridded or outer) subregion of S. If only the second bound is less
than or equal to the mrd, we do not need to search the outer subregions of S,
but we must recursively call overlap-search on the gridded children of S. If both
bounds are greater than the mrd, we must both recursively call overlap-search
and search the outer regions.
The calculation of these bounds involves a series of subcalculations and

geometric proofs that are beyond the scope of this chapter. Full details are
provided in (Neill and Moore, 2004b).
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11.3 RESULTS

We first describe results with artificially generated grids and then real-
world case data. An artificial grid is generated from a set of parameters
(N� k1� k2� �� 	� q

′� q′′) as follows. The grid generator first creates an N×N grid,
and randomly selects a k1×k2 ‘test region’. Then the population of each square
is chosen randomly from a normal distribution with mean � and standard
deviation 	 (populations less than zero are set to zero). Finally, the count of
each square is chosen randomly from a Poisson distribution with parameter
qpij, where q = q′ inside the test region and q = q′′ outside the test region.
For all our simulated tests, we used grid size N = 256, and a background

disease rate of q′′ = 0�001. We tested for three different combinations of test
region parameters (k1×k2, q

′): (7×9�0�01�� �11×5�0�002), and (4×3�0�002).
These represent the cases of an extremely dense disease cluster, and large and
small disease clusters which are significant but not extremely dense. We also
ran a fourth test where no disease cluster was present, and thus q = 0�001
everywhere. We used three different population distributions for testing: the
‘standard’ distribution (� = 104� 	 = 103), and two types of ‘highly varying’
populations. For the ‘city’ distribution, we randomly selected a 10×10 ‘city
region’: square populations were generated with �= 5×104 and 	 = 5×103

inside the city, and � = 104 and 	 = 103 outside the city. For the ‘high-	 ’
distribution, we generated all square populations with �= 104 and 	 = 5×103.
For each combination of test region parameters and population distribution,
runtimes were averaged over 20 random trials. We also ran an additional
90 trials (for a total of 110) to test accuracy, confirming that the algorithm
found the mdr in all cases. We also recorded the average number of regions
examined; for our algorithm, this includes calculation of score bounds as well
as scores of individual regions. Separate results are presented for the original
grid and for each replica; for a large number of random replications (R= 1000)
the results per replica dominate, since total runtime is torig +R�trep� to search
the original grid and perform randomization testing. See Table 11.1 for results.

Table 11.1 Performance of algorithm, simulated data sets, N = 256. For each data
set, we give the time in seconds to search the original grid and each replica grid, as well
as the number of regions searched. The speedup is the ratio of runtimes of the naive and
fast approaches.

test method sec/orig speedup sec/rep speedup regions (orig) regions (rep)

all naive 3864�00 ×1 3864�00 ×1 1.03B 1.03B

7×9, 0.01 fast 5�47 ×706 1�68 ×2300 100K 1.20K
11×5, 0.002 fast 21�72 ×178 12�43 ×311 1.03M 196K
4×3, 0.002 fast 42�96 ×90 40�57 ×95 2.59M 1.87M
no region fast 189�68 ×20 110�25 ×35 27.4M 12.7M
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Our first observation was that the runtime and number of regions searched
were not significantly affected by the underlying population distribution; typic-
ally the three results differed by only 5–10%, and in many cases test regions
were found faster for the highly varying distributions than the standard distri-
bution. Thus Table 11.1, rather than presenting separate results for each
population distribution, presents the average performance over all three popu-
lation distributions for each test. This result demonstrates the robustness of
the algorithm to highly nonuniform populations; this is very different than
our previous work (Neill and Moore, 2004a), where the algorithm was severely
slowed by highly varying populations. The algorithm achieved average spee-
dups ranging from 35× (for no test region) to 2300× (for an extremely dense
test region) as compared to the naive approach. We note that, for the case of no
test region, it is typically not necessary to run more than 10–20 randomizations
before concluding with high probability that the discovered region is not signi-
ficant. For example, if four or more of the first 10 replicas beat the original grid,
we know that this result will only occur 0.1% of the time if the region is signi-
ficant, so we can safely assume that the region is not significant. Thus our true
average ‘worst-case’ results will be closer to the 95× speedup on small, signi-
ficant (but not extremely dense) test regions. Since the naive approach requires
approximately 45 days for a 256×256 grid with R= 1000, this suggests that
our algorithm can complete the same task in less than 12 hours.
We now discuss the performance of the algorithm on various real-world

datasets. Our first test set was a database of (anonymized) emergency depart-
ment (ED) data collected from Western Pennsylvania hospitals in the period
1999–2002. This dataset contained a total of 630000 records, each repres-
enting a single ED visit and giving the latitude and longitude of the patient’s
home location to the nearest 0.005 degrees. These locations were mapped to
three grid sizes: N = 128, 256, and 512. For each grid, we tested for spatial
clustering of ‘recent’ disease cases: the ‘count’ of a square was the number of
ED visits in that square in the last 2 months, and the ‘population’ of a square
was the total number of ED visits in that square. See Figure 11.3 for a picture of
this data set, including the highest scoring region. For each of these grids, our
fast algorithm found the same, statistically significant region (p-value 1/1001)
as the naive approach. The major difference, of course, was in runtime and
number of regions searched (see Table 11.2). Our algorithm found the mdr of
the original grids 22–24× faster than the naive approach; however, much faster
performance was achieved when searching the replica grids. The algorithm
achieved speedups increasing from 450× to 4700× as grid size increased from
128 to 512.
Our second test set was a nationwide database of retail sales of over-the-

counter cough and cold medication. Sales figures were reported by zip code;
the data covered 5000 zip codes across the USA, with highest coverage in the
Northeast. In this case, our goal was to see if the spatial distribution of sales
on a given day (February 14, 2004) was significantly different than the spatial
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Figure 11.3 Emergency department data set. The left-hand picture shows the ‘popu-
lation’ distribution and the right-hand picture shows the ‘counts’. The winning region
is shown as a rectangle.

Table 11.2 Performance of algorithm, real-world data sets. For each data set, we give
the time in seconds to search the original grid and each replica grid, as well as the
number of regions searched. The speedup is the ratio of runtimes of the naive and fast
approaches.

test method sec/orig speedup sec/rep speedup regions (orig) regions (rep)

ED naive 72 ×1 68�0 ×1 62.0M 62.0M
(N = 128) fast 3 ×24 0�15 ×453 5.12M 15.9K
ED naive 1207 ×1 1185�0 ×1 1.03B 1.03B
(N = 256) fast 55 ×22 1�2 ×988 95.9M 74.7K
ED naive 19146 ×1 18921�0 ×1 16.8B 16.8B
(N = 512) fast 854 ×22 4�0 ×4730 1.51B 120K
national OTC naive 71 ×1 77�0 ×1 62.0M 62.0M
(N = 128) fast 2 ×36 0�8 ×96 682K 200K
national OTC naive 1166 ×1 1232�0 ×1 1.03B 1.03B
(N = 256) fast 14 ×96 2�8 ×440 3.24M 497K
regional OTC naive 78 ×1 79�0 ×1 62.0M 62.0M
(N = 128) fast 2 ×39 0�6 ×132 783K 101K
regional OTC naive 1334 ×1 1330�0 ×1 1.03B 1.03B
(N = 256) fast 13 ×103 1�8 ×739 3.10M 168K

distribution of sales a week before (February 7), and to identify a significant
cluster of increased sales if one exists. (Note that the statistic adjusts for increases
or decreases in the total number of sales; clusters are only detected if there
is spatial variation in the amount of increase/decrease.) Thus we used the
sales on February 7 as our underlying population distribution, and the sales
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on February 14 as our count distribution. Slight modifications to Kulldorff’s
statistic were necessary to deal with regions with zero population and nonzero
count (i.e. sales on February 14 but not February 7). We created four grids
from this data, two using all of the national data, and two using only data
from the Northeast (where a greater proportion of zip codes report sales data).
For both ‘national’ and ‘regional’ over-the-counter data, we created grids of
sizes N = 128 and N = 256, converting each zip code’s centroid to a latitude
and longitude. For each of these four grids, our algorithm found the same
statistically significant region (p-value 1/1001) as the naive approach, and
achieved speedups of 96–132× on the 128×128 grids and 440–739× on the
256×256 grids (Table 11.2).
Thus the algorithm found the maximum density region in all of our simulated

and real-world trials, while achieving speedups of at least 20× (and typically
much larger) as compared to the naive approach.

11.3.1 Comparison to SaTScan

It is difficult to evaluate the computational speed of an algorithm in isola-
tion, and thus a comparison to other techniques in the literature is necessary.
We note, however, that none of the prior algorithmic work on scan statistics
allows for the detection of elongated clusters; the detection of compact clusters
(e.g. circles or squares) is a significantly easier computational task, since there
is one less degree of freedom to search over. Thus the most accurate comparison
is to the obvious technique of naively searching all rectangles; this comparison
was done in the previous section. However, since no available software actu-
ally uses this ‘naive rectangles’ approach, we feel that a comparison to other
techniques (though inexact at best) will be useful.
In particular, we focus on Martin Kulldorff’s SaTScan software

(www.satscan.org), also discussed by Kulldorff in Chapter 7 of this collection.
SaTScan represents the current state of the art in cluster detection, and is
widely used in the epidemiological community. We emphasize that this is not
an ‘apples to apples’ comparison: because of the inexactness of this compar-
ison and the inherent differences between the two methods of cluster detection,
it is difficult to draw general conclusions. In particular, there are three main
differences between the methods. First, as noted above, our algorithm searches
for elongated clusters (in particular, axis-aligned rectangles), while SaTScan
searches for compact clusters (in particular, circles). Thus (assuming that M is
the number of distinct spatial locations) our algorithm must search over the
O�M4� possible rectangles, while SaTScan must search over the O�M3� possible
circles. Second, neither our algorithm nor SaTScan actually searches over ‘all’
of the regions of the given type (rectangles or circles). SaTScan searches only
circles centered at one of the data points, reducing the search space to O�M2�
regions. Our method, on the other hand, aggregates the data points to a uniform
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N ×N grid, and searches over the O�N4� gridded rectangular regions. Thus
our method’s runtime is a function of the grid resolution N, while SaTScan’s
runtime is a function of the number of spatially distinct data points M. If each
data point truly represents cases occurring at that precise spatial location, we
are losing some precision by aggregating points to a grid; however, this loss
of precision is minimal for high grid resolutions N. Also, in cases where data
points are derived from regions (e.g. representing a census tract or zip code by
a point mass at the center of that region) then the assumption of discrete data
points is itself somewhat inexact. Finally, both our method and SaTScan use
clever computational techniques to speed up performance: our pruning method
allows us to search only a small subset of the O�N4� gridded rectangular regions,
while obtaining the same results as if we had searched all of these regions.
SaTScan, though it does not use pruning to speed up the search (and thus, must
actually search over all of the O�M2� regions), uses an ‘incremental addition’
technique which allows searching in constant time per region. (We also achieve
constant search time per region, using the ‘cumulative counts’ trick noted in
Section 11.1.3.)
As a simple comparison, we ran both our method and SaTScan on the emer-

gency department data set discussed above. This data set consisted of 630000
records, of which the last 60 000 (recent data) were used as ‘counts’ and
the entire data set was used as population. Since many records corresponded
to identical spatial locations, this gave us approximately M = 17000 distinct
spatial locations. We ran both our method and SaTScan on this dataset, using
the same system (Pentium 4, 1800MHz processor, 1 GB RAM) for each. For all
runs, we used 999 Monte Carlo replications. Our system found the most signi-
ficant rectangular region in 11 minutes for a 128×128 grid and 81 minutes
for a 256×256 grid, computing a p-value of 1/1000 in each case. SaTScan
ran out of memory and thus was unable to find the most significant circular
region for this data set; in comparison, our method requires very little memory
(less than 50MB for grid sizes up to 256×256). Thus we instead ran SaTScan
on one-tenth of the data (60000 records, 10 000 used as ‘count’), containing
M = 8400 distinct spatial locations. In this case, SaTScan found the most signi-
ficant circular region in 4 hours; this suggests that (given sufficient memory)
it would find the most significant circular region for the entire data set in
approximately 16.5 hours.
We note that, for the smaller data set, both methods found very similar

spatial regions. SaTScan found a circle with center coordinates (40�34
N
latitude, 79�82
W longitude) and diameter 18.58 km, with C = 2458,
P= 8443, and a score (log-likelihood ratio) of 413.56. For a 128×128 grid size,
our method found a rectangle with almost the same centroid (40�32
N latitude,
79�82
W longitude), and size 23�6×17�2km. This slightly larger region had
C = 2599� P = 9013, and a score of 429.85. In this case, the most significant
rectangular region has a low aspect ratio, so, as expected, the region and score
are similar to that found by SaTScan. If, on the other hand, the most significant
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rectangular region has a high aspect ratio, we would expect our algorithm to
find a region with significantly higher score.
We emphasize again that this comparison between our method and SaTScan

is both preliminary (testing only on a small sample of data sets) as well as
inexact (because of the differences between the algorithms discussed above).
Thus we do not attempt to draw any general conclusions about the relative
speeds of the two methods; we note only that our ‘fast spatial scan’ is able
to find elongated clusters in times comparable to (and in at least some cases,
significantly faster than) the detection of compact clusters by SaTScan. Since
SaTScan is in wide use in the epidemiological community, this demonstrates
that the runtime of our method is sufficiently fast to be useful for the detection
of significant spatial clusters.

11.4 CONCLUSIONS AND FUTURE WORK

We have presented a fast multiresolution partitioning algorithm for detection of
significant spatial overdensities, and demonstrated that this method results in
significant (20–2000×) speedups on real and artificially generated data sets. We
are currently applying this algorithm to national-level hospital and pharmacy
data, attempting to detect disease outbreaks based on statistically significant
changes in the spatial clustering of disease cases. Our eventual goal is the
automatic real-time detection of outbreaks, and application of a fast partitioning
method using the techniques presented here may allow us to achieve this
difficult goal.
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Bayesian Data Mining
for Health Surveillance

David Madigan

12.1 INTRODUCTION

Data mining concerns the extraction of useful knowledge from data. Statistical
tools and ideas obviously lie at the core of data mining, but since data mining
usually (but not always) focuses on larger-scale data repositories, computing
issues come to the fore. Data mining textbooks, by contrast with statistics
textbooks, describe algorithms and pay careful attention to issues of feasibility
and scale (see, for example, the outstanding text of Hand et al., 2001). By ‘data
mining for health surveillance’ I mean applications of data mining to health-
related, observational, timestamped data. Many applications will additionally
concern spatially referenced data. ‘Surveillance’ performs ongoing monitoring
of such data and discriminates between normal conditions and anomolous
conditions of one sort or another.
The Bayesian approach to statistical analysis and data mining computes

conditional probability distributions of quantities of interest (such as future
observables) given the observed data. Bayesian analyses usually begin with a
full probability model – a joint probability distribution for all the observable and
unobservable quantities under study – and then use Bayes’ theorem to compute
the requisite conditional probability distributions. In fact, the theorem prescribes
the basis for statistical learning in the probabilistic framework. Computing is
the big issue confronting a data miner working in the Bayesian framework.
The computations required by Bayes’ theorem can be demanding, especially
with large data sets. In fact, widespread application of Bayesian data analysis
methods has only occurred in the last decade or so, having had to wait for
computing power as well as breakthroughs in simulation technology. Barriers
still exist for truly large-scale applications.

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd
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The primary advantages of the Bayesian approach are its conceptual simpli-
city and the common-sense interpretation of Bayesian outputs. The ability to
incorporate prior knowledge can also be a boon. Many data mining applications
provide copious data, but for models with thousands if not millions of dimensions
or parameters, a limited amount of prior knowledge, often in the form of prior
exchangeability information, can sharpen inferences considerably. Perhapsmore
commonly though, the available data simply swamp whatever prior knowledge
is available, and the precise specification of the prior becomes irrelevant.
This chapter explores one particular Bayesian approach to surveillance.

Specifically, I consider multivariate temporal probabilistic models. Some vari-
ables in the model represent the true state of the world at a particular time (and
possibly place). Other variables correspond to observables. The state variables
are unobservable and for these we might or might not posit such values as
‘normal’ and ‘abnormal’, or ‘normal’, ‘flu season’, and ‘epidemic’. With a broad
enough definition, the term ‘hidden Markov model’ (HMM) coincides with the
class of models this paper discusses. I use the language of graphical models to
describe these models and focus on Markov chain Monte Carlo (MCMC) to learn
the models from data and to make inferences. In keeping with the data mining
theme, I focus on models that do not require reference or nonepidemic data,
but instead work with all available historical data.
In what follows I consider simple applications and relatively simple models.

Application of the kinds of semi-latent Bayesian methods I discuss here to more
realistic problems, while conceptually straightforward, present computational
challenges. I will return to this at the end.

12.2 PROBABILISTIC GRAPHICAL MODELS

The use of graphs to represent statistical models has a rich history dating back
at least to the 1920s (Wright, 1921). Recently, probabilistic graphical models
have emerged as an important class of models and have impacted fields such
as data mining, causal analysis, and statistical learning. A probabilistic graph-
ical model is a multivariate probabilistic model that uses a graph to represent
a set of conditional independences. The vertices of the graph represent the
random variables of the model and the edges encode the conditional independ-
ences. In general, each missing edge corresponds to a conditional independence.
Graphs with different types of edges – directed, undirected, or both – lead to
different classes of probabilistic models. In what follows we will only consider
acyclic directed models, also known as Bayesian networks. This is somewhat of
a misnomer since there is nothing Bayesian per se about Bayesian networks.
Spiegelhalter and Lauritzen (1990) presented a Bayesian analysis of acyclic

directed probabilistic graphical models, and this topic continues to attract
research attention. Here we sketch the basic framework with a stylized version
of a real epidemiological application.
In Norway, the Medical Birth Registry (MBR) gathers data nationwide on

congenital malformations such as Down’s syndrome. The primary purpose of
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the MBR is to track prevalences over time and identify abnormal trends. The
data, however, are subject to a variety of errors, and epidemiologists have
built statistical models to make inference about true prevalences. For Down’s
syndrome, such a model includes three dichotomous random variables: the
reported Down’s syndrome status, R, the true Down’s syndrome status, S, and
the maternal age, A, where age is dichotomized at 40, say.
Figure 12.1 displays a possibly reasonable model for these variables. This

acyclic directed graph represents the assumption that the reported status and
the maternal age are conditionally independent given the true status. The joint
distribution of the three variables factors accordingly:

Pr�A� S�R�= Pr�A�Pr�S � A�Pr�R � S�� (12.1)

This factorization features a term for every vertex, the term being the condi-
tional density of the vertex given its parents. In general, this factorization implies
that vertices (more correctly, the random variables corresponding to vertices)
are conditionally independent of their nondescendants given their parents
(Lauritzen et al., 1990).
The specification of the joint distribution of A�S, and R in (12.1) requires

five parameters – Pr�R � S��Pr�R � S��Pr�S � A��Pr�S � A�� and Pr�A� – where
A denotes maternal age less than 40 and S denotes the absence of Down’s
syndrome. Once these probabilities are specified, the calculation of specific condi-
tional probabilities such as Pr�R �A� can proceed via a series of local calculations
without storing the full joint distribution (Dawid, 1992).
To facilitate Bayesian learning for the five parameters, Spiegelhalter and Laur-

itzen (1990) and Cooper and Herskovits (1992) make two key assumptions that
greatly simplify subsequent analysis. First, they assume that the parameters
are independent a priori. Figure 12.2 embodies this assumption. For instance,

A S R

Figure 12.1 Down’s syndrome: an acyclic directed graphical model.

A S R

Pr(RS)

Pr(RS)

Pr(SA)

Pr(SA)

Pr(A)

__

Figure 12.2 Down’s syndrome: an acyclic directed Bayesian graphical model.
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Pr�S � A� in Figure 12.2 has no parents. Therefore, it is marginally independent
of, for instance, Pr�A�, since this is not a descendant of Pr�S � A�. Second, they
assume that each of the probabilities has a beta distribution (or Dirichlet distri-
bution for categorical variables with more than two levels). This assumption
results in closed-form expressions for posterior distributions and for the marginal
likelihood. Unforunately, the models I consider below do not yield closed-form
estimates and I resort to MCMC via the BUGS language and software.
BUGS is a useful tool for Bayesian data mining. The UK Medical Research

Council at Cambridge has developed BUGS over the last decade. The program
is avaiable free of charge from: http://www.mrc-bsu.cam.ac.uk/bugs/. There
are versions for Unix, DOS, and Windows (WinBUGS). The BUGS manual
(Spiegelhalter et al., 1999) describes BUGS:

BUGS is a computer program that carries out Bayesian inference on statistical
problems using Gibbs sampling. BUGS assumes a Bayesian or full probability
model, in which all quantities are treated as random variables. The model consists
of a defined joint distribution over all unobserved (parameters and missing data)
and observed quantities (the data); we then need to condition on the data in
order to obtain a posterior distribution over the parameters and unobserved data.
Marginalising over this posterior distribution in order to obtain inferences on
the main quantities of interest is carried out using a Monte Carlo approach to
numerical integration (Gibbs sampling).

Several authors have described MCMC algorithms for HMMs. I refer the reader
to Scott (2002) for an excellent overview.

12.3 HIDDEN MARKOV MODELS FOR SURVEILLANCE:
ILLUSTRATIVE EXAMPLES

Le Strat and Carrat (1999) pioneered the use of hiddenMarkovmodels for surveil-
lance, albeit from a non-Bayesian perspective. Their first application concerned
surveillance of a univariate inluenza-like illness (ILI) time series. The French
Sentinelles Network provided the data. This is a national surveillance system that
includes about 1% of all general practitioners in France. The Network defines ILI
as the combination of a sudden fever of at least 39 �C with respiratory signs and
myalgia. Figure 12.3 shows weekly ILI incidence rates for the same period that
Le Strat and Carrat analyzed. The website at http://www.b3e.jussieu.fr/sentiweb
publishes these data. The figure shows two dynamics – a low-level dynamic
with incidence rates that vary according to a seasonal pattern (the nonepidemic
pattern) and a high-level dynamic in which the incidence rate increases sharply
at irregular intervals (the epidemic dynamic). Le Strat and Carrat state their
primary interest as the timing of ILI epidemics. They define an epidemic as
‘the occurence of a number of cases of a disease, in a given period of time
and in a given population, that exceeds the expected number’. They continue:

This definition thus assumes a mixture of two (or more) dynamics – one for the
‘expected’ number of cases, another for the ‘excess’ cases. Hidden Markov models
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Figure 12.3 The French ILI data. (a) Incidence rates per 1000 inhabitants.
(b) Posterior mean of the hidden state from a Gaussian two-state HMM. The horizontal
line segments in (a) correspond to time periods where the posterior mean of the hidden
state exceeds 0.5.

provide the most natural way of making inferences about such phenomena, by
assigning different probability distrubutions to the two dynamics.

Hidden Markov models represent a subclass of the more general graphical
models, and Figure 12.4 presents an acyclic directed graphical model for the
standard HMM. Each pair of vertices represents a mixture model, that is, a
pair �zt� yt�� t = 1� � � � � n, with zt ∈ �1� � � � � K� and yt�zt ∼ fzt �yt�. Generally the

z1 z2 z3

y3y2y1

Figure 12.4 Standard hidden Markov model.



208 Bayesian data mining for health surveillance

yt are observed and the zt are not. For t ∈ �1� � � � � n�, yt is conditionally inde-
pendent of all the remaining variables conditional on zt. Marginally, the zt form
a first-order Markov chain. The yt can be multivariate. The zt could also, in
principle, be multivariate and/or continuous, but for now we will only consider
the univariate categorical case. Fields such as speech processing, finance, and
bioinformatics make extensive use of this general model structure – see, for
example, MacDonald and Zucchini (1997) and the references therein. Robert
et al. (1993) presented a Bayesian analysis of the standard HMM. Robert et al.
(2000) extended this analysis using a reversible jump algorithm to make infer-
ence about K.
For the French ILI data, Le Strat and Carrat consider models with different

values of K but focus primarily on the case K = 2. For the conditional distribu-
tion of yt given zt, they posit a Gaussian model with state-dependent mean, �j,
and precision, 	j, j = 1� � � � � K. Serfling’s cyclic regression method is a widely
used surveillance method that accounts for seasonality and trend (Serfling,
1963). Le Strat and Carrat incorporate Serfling’s method via a model for �j:

�j�t�= 
j+�jt+�j cos
(
2t
r

)
+ �j

(
2t
r

)
�

Here �j represents a state-specific trend and �j and �j are state specific parameters
associated with an r-period seasonality.
We present a Bayesian analysis of the Le Strat and Carrat model. This requires

prior distributions for the various parameters which we specify as follows for
j= 1� � � � � K:

	j ∼ dgamma�0�001�0�001��


j ∼ dnorm�0�0�10−6��

�j ∼ dnorm�0�0�10−6��

�j ∼ dnorm�0�0�10−6��

�j ∼ dnorm�0�0�10−6��

pj�1�K ∼ ddirch���1 � K��

Here ‘dnorm��� 	�’ represents a normal distribution with mean � and preci-
sion 	, ‘dgamma(���)’ represents a gamma distribution with mean �/� and
precision �2/�, and ‘ddirch’ represents a Dirichlet distribution. p� j�1 � K� denotes
the vector of K transition probabilities from state j� j = 1� � � � � K, and ��1 � K�
is a user-specified hyperparameter vector for p� j�1 � K�’s Dirichlet prior. In our
analyses, � is always a vector of K ones. These various choices for the prior
distributions reflect minimal prior knowledge.
Figure 12.3(b) shows the posterior mean of the state variable z for each time

point. These MCMC results used 11000 iterations and discarded the first 1000.
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These results closely mirror those of Le Strat and Carrat’s Figure 2. Their non-
Bayesian analysis used the Viterbi algorithm to estimate the most likely state
sequence. The hidden state variable clearly picks out the elevated periods in the
original series. Figure 12.5 shows the corresponding posterior distributions of
the parameters. The posterior variances differ sharply between the two hidden
states.
Le Strat and Carrat presented a second application concerning monthly polio-

myelitis cases in the USA from January 1970 to December 1983. These data
are from http://www.maths.monash.edu.au/∼hyndman/tseries. Here we model
the observed counts via mixtures of Poisson distributions with state-specific
parameter �j�t� given by

log��j�t��= 
j+�jt+�j cos
(
2t
r

)
+ �j

(
2t
r

)
�
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Figure 12.5 Posterior distributions for the Le Strat and Carrat model. The right (left)
boxplot in each panel represents the posterior distribution conditional on the hidden
state equal to one (zero).
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(a) Monthly cases of poliomyelitis, US, January 1970–December 1983
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Figure 12.6 The US poliomyelitis data. (a) Total reported monthly cases. (b) Posterior
mean of the hidden state from a Poisson two-state HMM. The horizontal line segments
in (a) correspond to time periods where the posterior mean of the hidden state
exceeds 0.5.

Figure 12.6 shows the data and the corresponding state variable posterior
means.

12.4 HIDDEN MARKOV MODELS FOR SURVEILLANCE:
FURTHER EXPLORATION

The Bayesian approach to HMM analysis combined with MCMC provides a
highly flexible framework for model exploration. This section looks at several
extensions of the basic model.

12.4.1 Beyond Normality

Returning to the ILI example, Rath et al. (2003) note the discordance of
the nonnegativity of incidence rates and the Gaussian assumption. They
propose, analyze, and defend a model with an exponential distribution for the
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nonepidemic incidence rates. Here I consider in addition a more general gamma
model and a lognormal model.
To compare competing models, Le Strat and Carrat use the Bayesian

information criterion (BIC) with a penalty term that counts the number of
free parameters in the model but ignores the hidden state variable. In my
Bayesian MCMC context, model scores that use MCMC output provide a
more convenient alternative. One possibility is to use MCMC to compute the
marginal likelihood, and I discuss this further below. Another possibility focuses
on appropriately penalized simulated log-likelihoods. Scott et al. (2004), for
instance, consider the posterior distribution of penalized log-likelihood values
produced by the MCMC sampler. They use the same penalty term as Le Strat
and Carrat. Spiegelhalter et al. (2002) introduced the deviance information
criterion (DIC),

DIC = D���+ pD

where D��� is the average deviance (i.e., minus twice the log-likelihood) with
respect to the posterior distribution of the parameters, �, and pD is the effective
number of parameters for the model. Celeux et al. (2003) discuss DICs for hidden
Markov and other mixture models. Their analysis suggests that ‘complete DICs’,
where

D���=−2E��z�log p�y� z����y��
outperform other DICs, and this is the approach I adopt here. Concerning the
pD term, I adopt the suggestion of Gelman et al. (2003, p. 182) and set pD equal
to one-half the variance of the simulated deviances. I refer to the resulting
model score as DICV

C . Table 12.1 shows the results for different distributional
assumptions in the two-state K = 2 model.
This analysis suggests that a lognormal distribution provides a better fit

than the other three. However, several modeling directions await exploration.
For example, my analysis assumes that the various state-dependent regres-
sion parameters (
j��j� �j� �j) remain constant over time. Furthermore, I have
only considered models where the distribution of the observed values is the
same for the epidemic and nonepidemic states. The flexibility of the graphical
modeling framework combined with MCMC renders such explorations relatively
straightforward.

Table 12.1 Model scores for different distributional assumptions.

Epidemic state Nonepidemic state D��� s.d.�D���� DICV
C

Gaussian Gaussian 629.0 10.6 685.5
Lognormal Lognormal 122.3 25.2 440.3
Gamma Gamma 405.4 15.3 522.4
Exponential Exponential 476.0 17.6 630.9
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12.4.2 How Many Hidden States?

The DICV
C score can also help evaluate a modest number of different choices for

the size of the hidden state space. Table 12.2 shows results for the ILI data and
the Gaussian model. The three-state model provides the best score. Le Strat and
Carrat’s BIC score favored a five-state model.
In the Le Strat and Carrat surveillance context, models with more than two

states present interpretational challenges and both Le Strat and Carrat (1999)
and Rath et al. (2003) focused exclusively on the two-state model. Figure 12.7
shows the output of the three-state model where I sorted the three states
according to the posterior means of �j� j = 1�2�3. Arguably, the third state
does a better job than the higher state in the two-state model. In particular,
the three-state model does not classify the blip around week 588 as ‘epidemic’.
I return to the model interpretation issues at the end.

12.4.3 Label Switching

Note that the HMM likelihood is invariant under abitrary permutations of the
state labels. As a consequence, when two hidden states are similar to each
other, MCMC draws can swap the labels of these two states. In our analyses,
we imposed the constraint that �k > �j when k > j, and subsequent analyses
showed no evidence of label switching. However, this constraint does alter the
basic model, and we refer the reader to Scott (2002) for a discussion of this issue.

12.4.4 Multivariate Extensions

For univariate time series, the preceding machinery seems rather excessive. In
a multivariate setting, however, the HMM approach becomes more interesting.
Figure 12.8, for example, shows a particular model for three-dimensional obser-
vations. Here the first two components of y depend directly on the hidden
state, while the third component depends indirectly on the hidden state and

Table 12.2 Model scores for different
numbers of hidden states.

K D��� s.d.�D���� DICV
C

1 2729�0 3.0 2733�5
2 629�0 10.6 685�5
3 210�8 20.7 424�0
4 122�5 30.6 589�8
5 122�3 35.0 734�1
6 51�9 43.1 980�3
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(a) ILI weekly incidence, France, January 1985–December 1996
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Figure 12.7 The French ILI data. (a) Incidence rates per 1000 inhabitants.
(b) Posterior mean of the hidden state from a Gaussian three-state HMM. The horizontal
line segments in (a) correspond to the three different states.

z1

y11

y12 y22 y32

y33y23y13
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z2 z3

Figure 12.8 A multivariate hidden Markov model.
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directly on the second component of y. For example, the first component of y
might correspond to school absenteeism, the second to emergency room respir-
atory syndrome counts, and the third to unit sales of over-the-counter cough
medications.
In addition to the modeling issues I discussed above, multivariate models

raise issues such as model space exploration, observations measured at different
times, and lagged observations. In the next section, I explore one particular
issue concerning random observation times.

12.5 RANDOM OBSERVATION TIME HIDDEN MARKOV
MODELS

The standard HMM assumes that observations arrive at equally spaced
timepoints. However, in many surveillance applications, observations arrive at
random times. For example, several US public health departments now carry
out routine surveillance of sales of over-the-counter medications and also chief
complaints at emergency rooms. Both data sources feature irregularly spaced
obsverations. Furthermore, the elapsed times between observations themselves
carry useful information.
More specifically, I consider a situation in which observations yt arrive at

random, state-dependent times. Let �t denote the elapsed time between yt−1 and
yt. Figure 12.9 presents one possible model. One instantiation of this model
makes the following distributional assumptions. First, I model the observed yt’s
as zero-mean normals:

�yt�zt = i�∼ dnorm �0� �2
i �� i= 0� � � � � K−1�

z1

y1 y2 y3

z2 z3

δ2 δ3

Figure 12.9 Random observation time hidden Markov model.
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Second, I assume that the �t are integer-valued and geometrically distributed:

��t�zt−1 = i�∼ geometric �pi�� i= 0� � � � � K−1�

Third, I assume that the zt arise from an underlying continuous-time Markov
chain thatwe denote Z. I have chosen the first two specific assumptions to demon-
strate the methodology; alternative assumptions lead to similar derivations.
We initially consider the case where K = 2. Assume that Z stays in state 0 for

an exponential amount of time having mean 1/�0 before switching to state 1.
Similarly, assume that Z stays in state 1 for an exponential amount of time
havingmean 1/�1 before switching to state 0. Standard continuous-timeMarkov
chain theory (see Ross, 1989, p. 263) then provides the following probabilities:

p�zt = 0�zt−1 = 0� �t = t�= �1

�0+�1

+ �0

�0+�1

exp−��0+�1�t�

p�zt = 0�zt−1 = 1� �t = t�= �1

�0+�1

− �1

�0+�1

exp−��0+�1�t �

For K > 2, I restrict attention to the case where Z is a birth and death process
with reflecting boundaries. That is, when Z is in state i� i ∈ �1� � � � � K−2�, the
only possible transitions are to state i−1 or to state i+1. From state 0, Z can
only transition to state 1. Similarly, from state K−1, Z can only transition to
state K−2. Denote by Q the infinitesimal generator of Z. Q is a K×K matrix
with elements qij� i= 0� � � � � K−1� j= 0� � � � � K−1, defined as follows:

q00 =−�0�

q01 = �0�

qK−1�K−1 =−�K−1�

qK−1�K−2 = �K−1�

qi�i =−�i�

qi�i+1 = �i�i�

qi�i−1 = �1−�i��i = �i�i�

with 0< �i < 1 for 1≤ i≤ K−2. Thus, starting in state i� Z sojourns there for a
duration that is exponentially distributed with parameter �i. The process then
jumps to state j= i+1 with probability �i or to state j= i−1 with probability
1−�i; the sojourn time in state j is exponentially distributed with parameter
�j, and so on (Karlin and Taylor, 1975, p. 134).
The matrix of transition probabilities p�zt = j�zt−1 = i� �t = t� is given by

exp�tQ�.KarlinandTaylor (1975,p.152)andBhattacharyaandWaymire (1990,
p. 315) describe an approach to the computation of these transition probabilities
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viaaneigendecompositionofQ. Specifically, denoteby �0� � � � �K−1� the limiting
probabilities associated with Z. These are given by:

1 =
�0

�1�1

0�

j =
(
�0

�j

)
�1�2 · · ·�K−2

�1�2 · · ·�K−2

0� 2≤ j≤ K−1�

0 = 1−
K−1∑
i=1

i�

Q has K real eigenvalues �0� � � � � �K−1 and corresponding eigenvectors
x0� � � � �xK−1 ∈ R

K . Then

p�zt = j�zt−1 = i� �t = t�=
K−1∑
l=0

xlie
t�lxljj�

As an alternative to this spectral approach, Ross (1989, p. 286) suggests two
approximation methods for the transition probabilities. In situations where
the eigendecomposition is burdensome, Ross’s approach could provide a viable
alternative.
Along standard lines for Bayesian graphical models I assume that the joint

density of the variables mentioned so far factors as follows:

�z�y���p������� = �p����������

{
n∏

i=1

�yi�zi���

}

×
{

n∏
i=2

�zi�zi−1� �i�������i�zi−1�p�

}
�

where �·� denotes a probability density. Prior distributions for p����, and
� complete the model specification:[

�2
i

]∼ Inv-�2��0� �
2
0 �� i= 0� � � � � K−1�

�pi�∼ Beta��p��p�� i= 0� � � � � K−1�

��i�∼ ��������� i= 0� � � � � K−1�

��i�∼ Beta�������� i= 1� � � � � K−2�

An MCMC procedure samples from each of the following conditional densities
in turn:

�zt�−� ∝ �zt�zt−1� �t� �0� �1�
[
zt+1�zt� �t+1� �0� �1

]
× [

�t+1�zt� p0� p1
]
�yt�zt� �0� �1� � (12.2)

[
�2
i �−

] ∝ ��i�
n∏

t=1
zt=i

�yt�zt� �i� � (12.3)
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�pi�−� ∝ �pi�
n∑

t=2
zt−1=i

��t�zt−1� pi� � (12.4)

�����−� ∝ ��� ���
n∏

t=2

�zt�zt−1� �t����� � (12.5)

where, for instance, �zt�−� denotes the conditional density of zt given all the
other unknowns, as well as y and �.
For modest K, sampling from (12.2) is trivial, requiring K calculations and

normalization step.
Since I chose the convenient scaled inverse-�2 prior distribution for � , (12.3)

is available in closed form as

[
�2
i �−

]∼ Inv-�2

(
�0+ni�

�0�
2
0 +nivi

�0+ni

)
� i= 0� � � � � K−1�

where ni =
∑

I�zt = i� and vi = n−1
i

∑
y2t I�zt = i�.

A closed form for (12.4) also exists:

�pi�−� ∼ Beta

(
�p+

n∑
t=2

I�zt−1 = i��

�p+
n∑

t=2

�tI�zt−1 = i�−
n∑

t=2

I�zt−1 = i�

)
� i= 0� � � � � K−1�

I use a Metropolis step to sample values of�≡ �����. Specifically, let q����′�
denote the proposal density for the transition from� to�′. This proposal density
may depend on any or all of z�y���� and p. Then accept �′ with probability

�����′�z���=min


1�

��′�
n∏

t=2
�zt�zt−1� �t��

′�

���
n∏

t=2
�zt�zt−1� �t���

× q��′���

q����′�


 �

An independence Metropolis sampler for (12.5) is straightforward to imple-
ment and is the approach I adopt. For i = 0� � � � � K −1, sample a candidate
�′
i uniformly in the interval ��i − c�� �i + c�� where c� is chosen experiment-

ally. Similarly (when K > 2), sample a candidate �′
i uniformly in the interval

��i − c���i + c�� where c� is chosen experimentally In this case q��′��� =
q����′�= �2c��

−K�2c��
−�K−2�.

Here, in contrast to the DIC approach above, I describe a method to compute
the the marginal likelihood associated with specific values of K. For each
candidate value of k of K, we wish to calculate the associated marginal
likelihood, which we denote mk�y���. Chib and Jeliazkov (2001) describe
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an ingenious approach for calculating marginal likelihoods from Metropolis–
Hastings output. First, note the identity

mk�y���=
�y����∗��∗�p∗���∗��∗�p∗�

��∗��∗�p∗�y��� � (12.6)

where �∗��∗, and p∗ are arbitrary values of ��� and p respectively. I will
compute each of three terms on the right-hand side of (12.6) separately.
��∗��∗�p∗� requries an evaluation of the prior densities for ��� and p and

is straightforward.
�y����∗��∗�p∗� is not available directly, but we use an MCMC approach.

From the Markov properties of the model, and letting �∗ = ��∗��∗�p∗�, I derive
the following:

�y����∗� =
∫
�y����∗� z��z��∗�dz

=
∫
�y��∗� z�����∗� z��z��∗�dz

=
∫ {

n∏
i=1

�yi�zi��∗�

}{
n∏

i=2

��i�zi� zi−1��
∗�

}
�z��∗�dz

=
∫ {

n∏
i=1

�yi�zi��∗�

}{
n∏

i=2

��i�zi−1��
∗�× �zi��i� zi−1��

∗�

}
dz�

In particular, we have used the following facts:

y
∐
��z��∗�

yi
∐
z−i� y−i�zi��∗�

�i

∐
�−i� z1� � � � � zi−2� zi+1� � � � � zn�zi� zi−1��

∗�

zi
∐
z1� � � � � zi−2�zi−1��

∗

where
∐

denotes conditional independence.
The MCMC procedure draws zj� j= 1� � � � �m, as follows. First, set zj1 = z1. Then,
for i= 2� � � � � n, draw zji from �zi��i� z

j
i−1��

∗�. Then for large m,

�y����∗��∗�p∗�≈ 1
m

m∑
j=1

{
n∏

i=1

�yi�zji��∗�

}{
n∏

i=2

��i�zji−1��
∗�

}
�

For the final term, ��∗��∗�p∗�y���, note that

��∗��∗�p∗�y���= ��∗�y�����∗�p∗�y����∗��

By multiplying both sides of the identity

�����∗�z���q����∗����z�y���� � p�= ���∗���z���q��∗�����∗�z�y���� �p�
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by �� �p� z�y��� and integrating with respect to ���� �p� z�, Chib and Jeliazkov
(2001) show that

��∗�y���= E1������∗�z���q����∗��
E2����

∗���z���� (12.7)

where the numerator expectation E1 is with respect to ���� �p� z�y��� and the
denominator expectation E2 is with respect to �� �p� z�y����∗�× q��∗���. We
can estimate each of the expectations in (12.7) via Monte Carlo.
To estimate the numerator, we take the draws ��j�� j�pj� zj�mj=1 from the full

MCMC run and average the quantity �����∗�z���q����∗�. The expectation
in the denominator of (12.7) conditions on �∗. Following Chib and Jeliazkov
(2001), continue the MCMC simulation for a further m′ iterations with the three
conditional densities

���p�y����∗� z�� �p�� �y����∗� z� and �z�y����∗�� �p��

At each iteration of this reduced run, given the values �� j�pj�xj�, draw �j

from q��∗���. Now ��j�� j�pj�xj� is a draw from �� �p� z�y����∗�× q��∗���

and the marginal ordinate can be estimated as

��∗�y���≈ m−1∑m
j=1���

j��∗�zj���q��j��∗�

m′−1
∑m′

k=1���
∗��k�zk��� �

The final step is to estimate ��∗�p∗�y����∗�. Note that the values zk from the
reduced run are marginally from �z�y����∗�. Thus, we have

��∗�p∗�y����∗�≈m′−1
m′∑
k=1

��∗�p∗�y����∗� zk��

Since �
∐

p��y����� z�, ��∗�p∗�y����∗� zk� is available in closed-form as the
product of the two densities (12.3) and (12.4).
To summarize, we represent the marginal likelihood as

mk�y���=
�y����∗��∗�p∗���∗��∗�p∗�
��∗�y�����∗�p∗�y����∗�

�

We estimate �y����∗��∗�p∗� via Monte Carlo. We compute ��∗��∗�p∗� directly.
We estimate ��∗�y��� reusing the draws from the full MCMC run as well as
draws from a ‘reduced run’ that continues a version of the original MCMC run.
Finally, we estimate ��∗�p∗�y����∗� reusing the reduced run draws.
A Perl implementation of this algorithm is available from the author.
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12.6 INTERPRETATION OF HIDDEN MARKOV MODELS
FOR SURVEILLANCE

In an HMM, the observations arise from a mixture model. The hidden state
essentially acts as a switch between the mixture components and also deals with
temporal dependence. This begs a couple of questions: Why should the hidden
state neatly line up with ‘epidemic’ and ‘nonepidemic’ states of the world? What
if a HMM with more than two states provides a significantly better fit?
One alternative approach eschews any semantic interpretation of the hidden

state and focuses instead on prospective anomaly detection. Consider a K-state
HMM and focus on a particular week, say week w of each year. The HMM
can provide the posterior distribution of the hidden state in week w for the
previous years. Suppose there are n previous years and denote these posterior
distributions by f w1 � � � � � f

w
n . This set of distributions captures the typical historical

behavior of week w and might, for example, include an early onset of flu season
in addition to normally low levels. The HMM can also provide the posterior
distribution of the week-w hidden state for the current year, say f wc . If f

w
c differs
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Figure 12.10 The French ILI data. (a) Incidence rates per 1000 inhabitants.
(b) Hidden state-based surveillance statistic starting in week 250. The horizontal line
segments in (a) correspond to time periods where the surveillance statistic exceeds 1.25.
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significantly from f w1 � � � � � f
w
n , then there is evidence that the current week is

anomalous.
Figure 12.10 shows an analysis using the three-state Gaussian model.

Figure 12.10(b) shows a surveillance statistic that simply computes the average
Euclidean distance between f wc and �f w1 � � � � � f

w
n � starting in week 250. This stat-

istic shows somewhat higher levels around week 520. The upper plot has a
vertical line at week 520 and at the corresponding week in each of the other
years. It seems that the statistic is identifying a late flu season.

12.7 DISCUSSION

This chapter has examined Bayesian hidden Markov models as a data mining
method for surveillance. Multivariate surveillance provides the motivation for
this work, but our univariate analyses already raise some interesting issues.
Surveillance of the hidden state distribution seems promising. A key extension
will incorporate a spatial component in the hidden layer of thes model.
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Advanced Modeling
for Surveillance: Clustering

of Relative Risk Changes
Andrew B. Lawson

13.1 INTRODUCTION

Syndromic surveillance of disease spread has, as a fundamental component, the
assessment of the spatial association of incident cases. Not only is there a need
to be able to assess whether a single map of disease for a particular time interval
displays ‘unusual aggregations’ of disease, it is also important to be able to
assess whether these aggregations have a spatially distinct pattern which is in
itself unusual. These effects can be assessed by the use of statistical techniques.

13.2 CLUSTER CONCEPTS

The definition of a cluster or unusual aggregation of incidence can be wide
ranging. Knox (1989) identifies a cluster as ‘a geographically bounded group of
occurrences of sufficient size and concentration to be unlikely to have occurred by
chance’. This is a definition which relies on statistical significance to assess
clustering without recourse to restrictive requirements about shape or extent
of the cluster to be found. If specific shapes are to be expected, and only these
are to be detected, then a different, more restrictive definition would arise.
This might be the case where an infectious agent displayed a characteristic
spread pattern and it was to be distinguished from other types of unusual
aggregations. However, without prior knowledge of such forms, it would be

Spatial and Syndromic Surveillance for Public Health Edited by A.B. Lawson and K. Kleinman
© 2005 John Wiley & Sons, Ltd
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important to be able to detect any unusual aggregations, whatever their form.
This would generally be true in public health surveillance in the bioterrorism
context where there is a strong chance that novel insults are introduced whose
spatial distribution has not been examined before.
One disadvantage of the hypothesis testing approaches to cluster detection

is their need to define alternative hypotheses that restrict cluster form. For
example, SaTScan (http://www.satscan.org) tends to detect circular clusters as
it defines the scanning window as a circular region. Equally the Besag and
Newell test defines essentially circular zones for testing (see Chapter 4 of this
volume for a review). A narrow definition of cluster form can lead to a lack of
sensitivity in this approach. For the purposes of surveillance in real time there is
a need for cluster detection methods to be able to detect unusual aggregations
of disease quickly, without strong restrictions placed on the form of the cluster
to be detected. A model-based approach should allow this flexibility.

13.3 CLUSTER MODELING

Usually we define two forms of data available for cluster studies: case event
data and count data. These data types correspond to individual-level and
aggregate-level analyses, respectively. Case event data usually consist of resid-
ential addresses of incident cases of a disease, whereas count data are usually
collected within predefined small areas (regions such as city blocks, census
tracts, or zip codes) and hence are spatial aggregations of the case event data. For
conventional spatial cluster analysis the usual aim is to analyze a disease incid-
ence map for ‘unusual’ aggregations. To achieve this aim there are a number of
approaches which can be employed. Case event data will be considered initially,
and then counts.

13.3.1 Spatial Modeling of Case Event Data

Case event data can usually be considered to form a point process, albeit one
which arises within a heterogeneous population. Models assumed for such
data are often heterogeneous Poisson process models. In these models the local
intensity (density) of cases at a spatial location s is governed by a first-order
intensity function ��s�. This function can describe the localized variation in
disease risk as well as long-range trend in risk. Usually the population at risk
of the disease locally must be included in the model. This is reasonable as it is
to be expected that higher concentrations of susceptible population will lead to
higher incidence rates. This effect is often captured by the definition:

��s�= �0�s���s�

where �0�s� is a function of the ‘at risk’ population and ��s� is a relative risk
function measuring the excess risk experienced locally. Often the aim is to
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model ��s�. The function �0�s� is a nuisance function and can be conditioned
out or estimated nonparametrically (Lawson, 2001, pp. 42–44). If the spatial
distribution of cases of a control disease is available then it is possible to condition
out the �0�s� function from the analysis. A control disease may be any disease
which is matched to the age–sex risk structure of the case disease but unaffected
by the excess risk agent of interest. For example, in the bioterrorism attack
situation, an anthrax insult may affect respiratory or dermal symptoms but may
not affect intestinal symptoms. Hence the spatial distribution of short-latency
intestinal disease might be a suitable control. The matching of control diseases
can be very difficult and their use is controversial. Resort can be made to
estimation of �0�s� based on the known at-risk population distribution of the
local area (Lawson and Williams, 1994).
Modeling ��s� can be considered in a variety of ways. First, if a nonparametric

estimate of ��s� is required, then it is possible to form the ratio

�̂�s�= �̂�s�

�̂0�s�
� (13.1)

where �̂�s� is estimated from the case distribution (usually via density estima-
tion) and �̂0�s� is estimated from the control distribution (via density estima-
tion). If only expected rates are available for the study region then �̂0�s� may
be obtained by nonparametric regression. Areas of excess risk on the resulting
map of �̂�s� can be assessed for their significance using a Monte Carlo procedure
which leads to a p-value surface (Lawson, 2001, p. 67). Areas of risk which
may be deemed ‘significant’ will appear above, say, the 0.05 contour level on the
p-value surface map. Figures 13.1 and 13.2 display the case event and control
disease distributions for larynx (case) and lung cancer (control) in a study of an
environmental hazard. Figure 13.3 displays the density ratio (extraction map) of
the cases to the control densities for the spatio-temporal frame. The areas of elev-
ated risk (clustering) are clearly displayed in the southeast of the map. A p-value
surface could also be constructed and areas assessed for significance.
While extraction mapping can be instructive when exploring spatial clus-

tering, it has limitations. First, areas of elevated risk must be tested for signific-
ance and the use of p-value surfaces has not so far been evaluated in terms of
power for the detection of clusters of different kinds. The main concern about
these methods is the fact that the density estimates used for the smoothing of the
case or control disease are controlled by smoothing parameters, and these can
be varied to yield different results. Lawson and Williams (1994) noted that the
use of smoothed expected rates yields different inferences compared to control
disease estimates. Optimal smoothing can be achieved by cross-validation but
it is not clear whether these optimal results are appropriate for spatial disease
distributions. For further information on these methods the reader is referred to
Lawson (2001 Chapter 5), and Kelsall and Diggle (1995), and for the inclusion



226 Advanced modeling for surveillance

3.45 3.50 3.55 3.60 3.65

×104

4.12

4.14

4.16

4.18

4.20

4.22

4.24

4.26

4.28

4.30

×104 case density

1.7544e-007

1.7544e-007

1.7544e-007

1.
75

44
e-

00
7 1.7544e-007

1.7544e-007

1.
75

44
e-

00
7

1.7544e-007

1.
75

44
e-

00
7

1.7544e-007

3.5087e-007

3.5087e-007

3.5087e-007
3.5087e-007

3.
50

87
e-

00
7

3.
50

87
e-

00
7

3.
50

87
e-

00
7

3.5087e-007

3.5087e-007

5.2631e-007 7.0174e-007

5.
26

31
e-

00
7

5.2631e-007

5.2631e-007

5.
26

31
e-

00
75.2631e-007

7.0174e-007

7.
01

74
e-

00
7

7.
01

74
e-

00
7

7.
01

74
e-

00
7 8.

77
18

e-
00

7

8.
77

18
e-

00
7

8.
77

18
e-

00
7

8.
77

18
e-

00
72

1.
05

26
e-

00
6

1.
05

26
e-

00
6

1.2281e-006

1.281e-006

Figure 13.1 Larynx cancer case event distribution for a fixed time and spatial frame.
The density estimate contour is superimposed.

of covariates to Kelsall and Diggle (1998). In general, the use of nonpara-
metric clustering methods is limited to exploratory examination and is prone to
sensitivity to the smoothing method used.
The types of clusters found using these methods are known as hotspot clusters

and are the type that are likely to be of interest in a biosurveillance context.
The term hotspot arises from the fact that these clusters are arbitrarily defined
areas of significant excess risk.
To move beyond the arbitrary smoothing and restrictive null and alternative

hypotheses imposed by many hypothesis tests, a modeling approach is often
useful. A modeling approach to clustering is useful when a variety of cluster
forms are possible and also the inclusion of covariates may be required.
There are a range of possible approaches to this type of modeling. One

possibility is to consider a hidden process of cluster centers which describe the
clustering tendency. This arises from considering mixture models for risk.

13.3.1.1 Hidden mixtures

There are different approaches to mixture modeling in this area. One approach
involves the idea of marginal mixtures where the local intensity of cases consists
of weighted components. For example, Fernández and Green (2002) proposed
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Figure 13.2 Lung cancer control distribution for the same space-time period as
Figure 13.1. Density estimate contours superimposed.

a model where the local risk is defined marginally. In essence, this form of
modeling ignores the spatial structure of the risk in the mixture. A logical exten-
sion of the marginal mixture into spatial problems is the use spatial mixtures
where the locations of centers (mixture component locations) is spatially defined
(Lawson 1996, 1995). The hidden center process must be estimated. In general,
these methods rely on the use of reversible jump Markov chain Monte Carlo
(MCMC) for implementation. Unfortunately, the computational complexity and
degree of tuning required by these methods is likely to prohibit their extensive
use within a surveillance context where near-real-time modeling is required.

13.3.1.2 Mixed effect models

It is possible to use mixed effect models where clustering is not specifically
modeled but is determined from the residual process. For example, for a case
event point process �si� i = 1� � � � �m� observed within an area T modeled by a
heterogeneous Poisson process with first-order intensity ��s�, the log-likelihood
conditional on m can be defined with a log-linear link to a linear predictor
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Figure 13.3 Density ratio map (extraction map) of larynx to lung cancer shown in
Figures 13.1 and 13.2. Contour levels close to 1.0 represent null excess risk.

	i = xT
i 
, where xT

i is the ith row of the m× p matrix of covariates and 
 is a
p×1 vector of parameters, as

��si� = �0�si� exp�	i�� (13.2)

l�s�
� =
m∑
i=1

log��si�−m log�

where �= ∫
T
��u�du. The � parameters can be estimated by maximum likeli-

hood and use of standard statistical packages is possible (Berman and Turner,
1992; Lawson, 1992; Baddeley and Turner, 2000). The estimated surface of
intensity �̂�si�= �̂0�si� exp�	̂i� depends on the the � estimates as well as on the
background estimate �̂0�si�. This background can be estimated from a control
disease or other population ‘at risk’ surrogate. Estimates of � will be sensitive
to the estimation of �0�si�. An alternative conditional likelihood can be derived
which avoids this problem (Diggle and Rowlingson, 1994). Residuals can be
defined for this point process (Lawson, 1993) whereby the saturated estimate
of ��si� is compared to the model-based estimate. Define this residual as r�si�=
�̂s�si�− �̂�si�. Areas of significant excess risk could be isolated from the r�si�
surface, assuming that the covariates in x are spatial. A Monte Carlo p-value
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surface could be computed using a variety of possible simulation approaches.
One simple approach is to generate 99 sets of pseudo case event data simulated
under a parametric bootstrap from the estimated model with �̂�si�. A set of
99 saturated estimate surfaces �̂�∗

s �si�� can yield a set of 99 pseudo residual
surfaces, r∗�si�, and then the pointwise Monte Carlo ranking of r�si� among
the �r∗�si�� will yield local probability estimates of excess risk behavior. This
approach would allow the inclusion of (spatial) covariates within the formu-
lation. However any correlation between the covariate and risk excess will be
unidentified.
The above approach can be taken a step further by the inclusion of random

effects in the intensity specification (13.2). In general, it is possible to extend
the basic point process model to one with a stochastic intensity function (a
Cox process). Recent research has placed emphasis on the assumption that
the intensity is a realization of a Gaussian random field (log-Gaussian Cox
process: see Møller and Waagepetersen, 2002). This type of model leads to extra
(correlated) variation in the local intensity of cases. In terms of clustering this
usually implies that there is an overall clustering tendency for the data and
locally there are areas of similar clustering of cases. If the correlation of the
random field is strong then there will be large areas of like intensity. However, if
the correlation is weak then a relatively variable intensity will arise. In the limit,
uncorrelated heterogeneity would remain. In an approximate Bayesian setting,
consider the likelihood for a heterogeneous Poisson process where the intensity
��si� has a prior distribution which is multivariate normal. Any realization of
the ��si� will be multivariate normally distributed for a spatial Gaussian process
(Ripley, 1988). Hence the hierarchy can approximately be viewed as

si ∼ PP���si��� (13.3)

��si� ∼ MVN��si��C�� (13.4)

where C is a covariance matrix that controls the degree of spatial correlation in
the field. The elements of C could be parametrically specified by c���si�� ��sj�� ≡
cij = � exp�−�dij�. Here, dij is the distance between the ijth sites, � describes
the variance at zero distance and � describes the strength of correlation at dij
distance. If no distance effect exists then only an uncorrelated heterogeneity term
would be included. Estimation in this type of model will lead to the recovery of
a smooth surface of risk which depends for its smoothness on the � parameter.
An issue arises here as to where the clustering is to be measured. If clustering is
modeled then clustering effects will appear in the model and any model residual
(for a well-fitting model) should not contain any cluster artifacts. On the other
hand, a parsimonious model for the nonclustering component could be fitted and
the residual examined for excess risk. Inclusion of a global spatial correlation
component (as defined in (13.4) above) in such models may lead to complica-
tions as the clustering behavior may be absorbed by the correlation parameter
within the fitted model. In addition, the smoothing used could reduce the ability
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to observe clusters. In short, global smoothing, via the use of correlation prior
distributions, could lead to smearing of risk and ultimately removal of clusters.
This issue is discussed further in Section 13.4.
Alternative models for clustering focus on the cluster form itself and their

locations. These can be local models or can be global in that parameters control
the overall form of the clustering field. Hidden process models (Lawson and
Clark, 1999; Lawson and Denison, 2002, Chapters 4, 5, 14) seek to estimate a
process of cluster centers underlying the case events. This process has unknown
locations and number of clusters. In these models the random effects are replaced
by random objects (centers). Computational complexity of fitting these models
(e.g. the need for specially tuned MCMC) and others (Gangnon and Clayton,
2000; Green and Richardson, 2002) tend to limit their usefulness especially
when surveillance focuses on the speed of analysis. Instead a more computa-
tionally efficient proposal has been made where a cluster spread parameter is
allowed to vary spatially across a map. This parameter controls the local size of
clusters. It is assumed to have a spatial correlation prior within a hierarchical
Bayesian model (Hossain and Lawson, 2005).

13.3.2 Spatial Modeling of Count Data

The spatial modeling of count data follows in parallel with that of case event
data. (See Chapters 4 and 5 in this volume for discussion of these models.)
Counts arise from aggregation of case events and so it is natural to consider
a Poisson distribution for the counts in small areas. Often the assumption is
made that

yi ∼ Pois�ei�i��

where ei is an expected count within the small area and �i is the relative risk
within the same area. Here �i is modeled as for ��s� in the case event situation.
Often a log-linear form is assumed for log �i, that is, log�i = 	i = xT

i �, where
xT
i is the ith row of the m× p matrix of covariates and � is a p×1 vector of

parameters. The analysis of excess relative risk can proceed with the inclusion
of relevant covariates or confounders (such as deprivation indices). Often a
summary measure is computed from the observed count and expected count in
each small area as a crude estimate of relative risk: the standardized incidence
ratio, �̂i = yi/ei. This measure can be mapped for the purposes of exploratory
assessment of excess risk (as for extraction mapping in the case event situation
(13.1)). The instability of this ratio estimate is well known and use of the
standardized incidence ratio is limited by this feature.
Extensive development of Bayesian models for relative risk has been witnessed

in the last 10 years. This has mainly taken the form of log-linear modeling
with both spatial and nonspatial (uncorrelated) random effects. That is,
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log�i = 	i = xT
i �+ vi+ui, where vi and ui are separate random effects which

have prior distributions. These are examples of generalized linear mixed models
(GLMMs). For these models full Bayesian analysis with posterior sampling is now
commonplace (Besag et al., 1991) due to the availability of software (WinBUGS).
A variant of this approach has been proposed where a full spatial Gaussian
process prior (with parametric covariance function specification) was proposed
(see Diggle et al., 1998; Wikle, 2002). The term clustering has been applied to
the correlated term in this formulation (usually defined to be ui). This is unfor-
tunate as the resulting smooth surface, while correlated, has removed much
of the clustering evidence. On the other hand, if a parsimonious GLMM were
chosen without correlated heterogeneity and the residual from the fitted model
examined for excess risk then this could be useful and computationally efficient
approach in a surveillance context. Thus a parametric bootstrap could be used
to assess clustering. The stages of this approach would be as follows:

(1) Fit a GLMM model as

yi ∼ Pois�ei�i�� with log�i = xT
i �+ vi and vi ∼ N�0� �v��

where vi is uncorrelated heterogeneity and �v is the variance of the v effect,
and any confounders (such as deprivation) are included within xT

i .

(2) Compute

r̂i = yi− ŷi = yi− ei exp�x
T
i 
̂+ v̂i��

(3) Generate 99 sets of synthetic data �y∗ij�� j= 1� � � � �99, from the fitted model
(i.e. simulate from a Poisson distribution with mean ei exp�x

T
i 
̂+ v̂i�).

(4) Compute r̂ij = y∗ij− ŷi.

(5) Rank the r̂i amongst the r̂ij. Denote the rank by Ri.

(6) Compute the p-value for the residual as pi = 1−Ri/100.

(7) Areas of the map with pi < C would be regarded as significant excess risk.
C can be chosen at an appropriate critical level such as 0.05 or 0.01.

The interpretation in step 7 depends on a good model fit and it would be
assumed that the normal variation in risk is accounted for in the fitted linear
predictor �exp�xT

i �̂+ v̂i��. An alternative approach, in a Bayesian model, would
be to use the predictive distribution to provide a probability statement about
the observed data.

13.3.3 Spatio-Temporal Modeling of Case
and Count Data

Spatio-temporal (ST) modeling is of fundamental importance in a surveillance
context. Usually surveillance has an implicit temporal component and sequen-
tial estimation is a key concept. The question ‘What is strange about recent
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events?’ implies that we are looking for a temporal change and need to evaluate
whether it is significant. However, little work has been developed in the area of
spatio-temporal modeling within the surveillance context.
Most work on surveillance methodology has evolved in temporal applications.

These are reviewed by Farrington and Andrews (2004) and in Chapters 2 and 3
of this volume.
For case events a recent proposal has been made by Diggle et al. (2004) where

an ST point process model is employed with an estimated population at risk
defined from a period prior to the infection. In this case the data are incident
cases of GP-reported disease and the focus is on the probability of a new case
at location s and time t. The overall intensity in space-time is

��s� t�= �0�s� t���s� t��

As described above, the excess risk is characterized by

log��s� t�= d�s� t�′�+W�s� t��

In this case the d�s� t�′� term is a linear predictor containing the usual explan-
atory risk factor covariates, and W�s� t� represents anomalous variation. This
is a random component which varies in space and time. They assume a log-
Gaussian Cox process with covariate extension. The correlations in space and
time are assumed to be exponential and separable. Essentially the model fitting
is akin to that used for spatial modeling where a random effect (field) is fitted for
current data and a p-value surface computed for current data. Posterior prob-
ability of excess risk is computed via Monte Carlo. The approach described uses
historical data to estimate an (assumed to be) time-constant spatial background,
�̂0�s� t� = �̂0�s�. This may be a gross assumption given that epidemics could
be at different stages at different times in the surveillance exercise. In addition,
the spatial correlation in the W�s� t� could be smoothed out by inappropriate
choice of correlation parameters. No attempt is made to assess the ability of this
method to correctly signal new alarms in the data.
In the same paper, a count data model is proposed which assumes a binomial

count distribution for cases (yit) out of a population (nit) in space-time units,
that is,

yit ∼ bin�nit��it�� i= 1� � � � �m� t = 1� � � � � T�

and the probability of a case has a logit link to a linear predictor composed of
fixed covariate effects and random effects representing time, season, and spatial
components: 	it = log it��it� = Tt +Dt +Ui. Here Tt is a temporal effect, Dt is
a 7-day seasonal effect and Ui is a spatial effect. Suitable prior distributions
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are assumed for the effects. An autoregressive term based on the number of
previous cases is also considered. The model is fitted to the series of events in
space-time. Although a natural extension of the Poisson process in space-time,
a Poisson distribution with expected counts precalculated was not assumed for
the model. No attempt is made to allow for intermediate clustering in time
and no quantification of alarm behavior is made. Both the above models allow
for spatial and temporal dependence and are extensions of the spatial models
described above. They include smoothing terms in both time and space and
assume that estimated relative risk under the model will yield evidence for
unusual behavior. To what degree this reduces the chance of finding clusters
or different change points is unclear. An alternative cluster modeling approach
has been proposed in space-time by Clark and Lawson (2002), where clusters
are identified within a hidden cluster process. Although a local approach, it
required complex computational procedures.
An alternative approach in space-time is to consider, at each time point, what

should be expected in the spatial unit or location and to consider a residual effect
as evidence for clustering or unusual behavior. This has not been examined
so far for case events, but has been considered for count data. A GLMM for
surveillance data has been recently proposed by Kleinman et al. (2004). In that
work a basic logistic linear model with covariates and extra variation is fitted
and the probability of a someone being a case on any day is estimated �̂pit�. This
probability is estimated from previous time periods only. The tail probability
from a binomial distribution is computed and used to assess the null hypothesis
that the historical data model is adequate. The analysis is applied to HMO
coverage in Massachusetts for lower respiratory infection syndrome. See also
Chapter 5 of this volume.
Some alternative approaches can be conceived for the analysis of clustering

in space-time. First, it is often useful to consider Poisson count models with
expected rates when small-area data are available for time periods. In this case
we have

yit ∼ Pois�eit�it��

and we are interested in how unusual yit+1 is. As in the above case, we could
fit a model to historical data and then we could compare our data with the
model expectation from the historical data. In this case we could examine
whether

E�yit+1�= eit̂�it�

To do this we could examine residuals of various kinds. The simplest residual
could be

r̂it+1 = yit+1− eit̂�it� (13.5)
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and this could be tested as before using a parametric bootstrap. Another
possibility, which turns out to be better at detecting sharp changepoints,
is to compute what are dubbed surveillance residuals (Lawson et al., 2004).
These residuals utilize a Bayesian posterior predictive distribution to derive
predictive values for the current data based on E�yit+1��it�. These residuals
can be computed easily from posterior sample output. In general, there is an
issue about whether a model should contain the current data in its estim-
ation or not. For example, we could calculate (13.5) from the current data
instead:

r̂∗it+1 = yit+1− eit̂�it+1�

In general, it is probably beneficial to use historical data unless considerable
drift has occurred. However, this also raises the issue of what historical period
one should use and to what degree a model should be allowed to follow changes
in the data. For example, if you use a shorter historical period then you will
track short range changes more, whereas if you extend the period you will get
less change in the historical estimates (they will be smoothed out). Short-term
tracking will be anticonservative and longer-term the opposite. The question of
whether you should absorb changes after they occur must also be faced. For
example, if a change point is signalled at day 3, should I include day 3 in the
historical data for day 4? If I do, I will have adapted to the new level. Is this
appropriate?
Another issue is that most models described above include covariates. What

happens if my choice of covariates is poor and my model does not fit well, or
my model progressively fits worse? Do I make on-line adjustments or do I ignore
goodness of fit? These appear to remain open questions. Finally in this section,
it is appropriate to raise the issue of variety of detectable effects. Often what
may be important in surveillance is the ability to detect a variety of changes
as they occur. One might want to detect unusual individual unit changes (as
described above), or the location of clusters, or cluster changes in time, or even
gradual changes in time. In space-time a variety of features might be of interest.
One particular issue is the spread of existing clusters to new areas. Figure 13.4
depicts a simulation of cluster spread that would be difficult to model with
conventional random effect models.
It is surmised that locally adaptive methods must be developed to deal

with this type of change. An example of the use of directional derivatives in
this context is given in Lawson et al. (2004) and Clark and Lawson (2005).
A different approach to multiple feature detection/monitoring in space-time
disease maps is given by Lawson (2004).
In the next section, I examine the issue of multivariate or syndromic surveil-

lance for clustering.
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Figure 13.4 Rowwise from top: sequence of four simulated time periods with
progressive introduction of elevated relative risk. The first period is simulated with
100 uniform locations and log-normal relative risk. Note the cluster spread between
period 2 and 3.

13.4 SYNDROMIC CLUSTER ASSESSMENT

In real public health surveillance situations you may want to make population-
based interventions based on information from multiple data sources. These
sources are often linked, and for interventions to be efficient there should be an
appreciation of the linkages and their meaning. A simple example would be the
evidence of raised numbers of visits to emergency rooms for lower respiratory
tract infections in old people, and also raised incidence of dermal conditions in
old people reported to general practitioners. Both these pieces of evidence support
a potential atmospheric insult (which of course could relate to a bioterrorism
incident) and may be linked by a common cause. This suggests that we need
to consider many streams of data to find associations. Further, if we want
to include mapped data we must also consider multiple space-time analyses.
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This suggests that we might explore data mining techniques for suitable methods
(see Wong et al., 2002; and Chapter 10 in this volume).
Besides multiple disease monitoring (vector monitoring), we might also be

concerned with ways to ensure early detection of an effect by using ancillary
information. This ancillary information could be health-related but not neces-
sarily disease-specific. In fact anything which might suggest that an outbreak of
disease is occurring in a population could be used, for example: pharmaceutical
sales, job absenteeism, or school absenteeism. Breakdowns of sales would be
useful to monitor for specific etiologies. However, indicators can be nonspe-
cific and so the exact etiology may not be estimable at such an early stage.
Another set of information that could be useful is data on early symptoms of a
disease in the population that could indicate the inception of an outbreak. Often
these symptoms are also nonspecific and also not usually recorded by GPs. For
example, if GPs recorded patients reporting cough, wheezing, chest infections,
and related symptoms then at the population level it might be possible to make
early detections of important outbreaks. Syndromic surveillance is discussed
more fully in Chapters 1, 2, and 3 in this volume. The multivariate formulation
is also given in Chapter 9.
If we assume that clustered data are to be detected in space-time then we

can define a Bayesian model formulation that is as follows. Define yit as the
current data (counts usually) for the ith monitored site (could be a small area
or address) and yiT is the cumulative data on the disease up to and including
time t. A parameter vector � is defined. Syndromic variables are also available:
xit is one such variable and sit is the vector of syndromic variables.

Define the complete data and ancillary (syndromic) vector as

Dit =



yit
xi1t
xi2t
xi3t
· · ·

=
{
yit
sit

An example of a typical syndromic situation is described in Figure 13.5. All
reported cases of gastrointestinal disease are of interest, and the syndromic
variable is over-the-counter pharmacy sales. This example has been kindly
supplied by Victoria Edge of Health Canada.

13.4.1 The Bayesian Posterior Distribution

First of all, it must be considered whether we are interested in the joint behavior
of siT and yit, or simply interested in yit given we observed values of siT . If we are
simply interested in early detection it may be more natural to adopt the second
conditional definition. For example, we might ask what is the probability of a
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Figure 13.5 A comparison of weekly aggregate unit sales of over-the-counter
antidiarrheals and antinauseants with the epidemic curve, from January to May 2001
in The Battlefords, Saskatchewan. The epidemic curve indicates the total number of
isolate-confirmed cases and epidemiologically linked cases by reported onset date.

count of anthrax yit given that we saw the vector of syndromic variables siT .
On the other hand, let sit be the vector of other diseases. If we are interested in
monitoring multiple diseases, then we might want to ask what is the probability
that disease 1 has count yit, disease 2 has xi1t, and disease 3 has xi2t together.

13.4.1.1 Conditioning on siT

In a Bayesian model conditioning on siT , the posterior distribution can be
identified as

P���yiT � siT �∝ f�yit��� xiT�P���yiT−1� siT−1��

where P���yiT−1� siT−1� is the posterior distribution up to and including time
T −1. It is assumed that � is not time-dependent nor depends on the spatial
configuration. The equivalent (posterior) predictive distribution is given by

P�yit�yiT−1�=
∫

f�yit��� siT �P���yiT−1� siT−1�d��

Within an MCMC sampler this can be approximated via

≈ 1
G

G∑
g=1

f�yit��g
T−1� siT ��
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where �g
T−1 is the sampled parameter vector for the gth iteration from the

posterior at T−1. This is called recursive Bayesian learning. This implies that
we can predict the data at the �i� t�th point given siT and the value of the average
posterior-sampled � vector. In the case of cluster modeling we would specify a
likelihood model for the space-time behavior of the clusters or clustering and
then substitute this for f�yit��� siT �. For example, assuming yit is a count in a
small area at time t, then we could assume

yit ∼ Pois�eit�it��

log�it = �0+�i+ui+�t+	it+ f�siT �

where �i+ui+�t+	it are spatial, temporal and space-time component random
effects and f�siT � is a function of the history and current values of the syndromic
variables. We could proceed by testing for jumps in the variances of the random
effects (as in Lawson, 2004). This will also allow us to assess whether there are
changes in the spatial, temporal or localized spatio-temporal components. In
addition, we can test whether dependence on syndromic variables is found. In
this case, if we assume dependence only on the last estimated value, the MCMC
sampler would yield a predictive estimate computed as

≈ 1
G

G∑
g=1

Pois�eit�
g
it−1�sit−1���

13.4.1.2 Unconditional multivariate Version

Dt is a vector of count data and syndromic variables at time t. We assume that
discrete variables are monitored only. The posterior given the evolution up to
and including t is

P���DT�∝ f�Dt���P���DT−1��

where f�Dt��� is the new data likelihood which could include correlations
between elements (which could be maps or time series).
The associated predictive distribution is given by

P�Dt�DT−1�=
∫

f�Dt���P���DT−1�d��

where P���DT−1�= f�Dt−1���P���DT−2�.
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13.5 BAYESIAN VERSION OF THE OPTIMAL
SURVEILLANCE ALARM FUNCTION

It should also be noted that there is an optimal surveillance methodology
that is based on likelihood or posterior ratios (see Chapters 3 and 9 of this
volume; Frisén, 2003; Sonesson and Bock, 2003). These methods assume a
definition of optimal to be fast detection time for an effect of interest.
Define a frequentist alarm function for the current time (s) as

P�xs�=
s∑

k=1

�k

s∏
u=k

f�x�u��′�
f�x�u��0�

/ s∑
k=1

�k�

where xs represents data at s and f�x�u�� is the likelihood.
Here the function is designed to detect any change (of 0 to ′) on the range
k = 1� � � � � s� �k is the probability of a jump at k given there has not been
one before. Often for discrete times the geometric distribution is used for �k.
A Bayesian version of this would have

P�xs�=
s∑

k=1

h�k�

∏s
u=k f�x�u��′�g�′�u�∏s
u=k f�x�u��0�g�0�u�

/ s∑
l=1

h�l��

Here h�k� is the probability of a jump at k, and g�′�u� is the conditional prior
distribution of the new  value given the time u. Note that for an alarm which
is simply concerned with the jump at the present time, s (and only then), the
alarm function simplifies down to the Bayes factor:

BF = f�x�s��′�g�′�s�
f�x�s��0�g�0�s� �

Otherwise the alarm function is a weighted product of posteriors for the s−k+1
time points with weights wk = h�k�/

∑s
l=1 h�l�.

13.5.1 Clustering and f�x�u����
The density f�x�u��� can be defined in different ways depending on the surveil-
lance task. For clustering the density could be a function such as

f�x���∝ H�x�x�x���

where H�x� · � ·� relates the data x to data in a neighborhood of x � �x. Local
likelihood models could be assumed where, for example, in the count data case,
we assume that locally the likelihood depends on a scale parameter defining a
neighborhood around a data location. This scale parameter (�x) has a correlated
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prior distribution. This leads to an estimate of relative risk within the neighbor-
hood. For the case of a single time point (Bayes factor) alarm we have a scaled
jump (�) in relative risk (i.e., �′�it = ��0�it�

BFt =
∏

i�e�it�
′
�it
�e

−�e�it �
′
�it

�
g��′�t�∏

i�e�it�
0
�it
�e

−�e�it �
0
�it

�
g��0�t�

= g���0�t�
g��0�t�

∏
i

(
�′�it
�0�it

)
e
−∑

e�it ��
′
�it

−�0�it
�
�

Values of �it would have to be estimated for each region as posterior expected
values. The alarm is conditional on these quantities. A more complex alarm is
found for longer time scales.

13.5.2 A Simple Real-Time Biohazard Model

One scenario where space-time surveillance may be important is when a highly
infectious agent is released within an densely populated area such as a city.
Anthrax spread and related possible bioterrorism attacks can lead to the consid-
eration of a spatio-temporal surveillance of health conditions. First of all, it is
considered that a mobile recording unit (MRU) travels across the study area
and records the conditions at some arbitrary spatio-temporal sample point. The
track of the MRU can be arbitrary, and can be related to previous surveillance
of areas worst affected by the spread of disease/hazard. Figure 13.6 displays a
typical sequence of sample locations.
Around the sample point there will be a detection radius, or more generally a

spatial detection function. This function will be similar to those used in distance

S1,l1

S2,l2

S3,l3

S5,l5

S4,l4

Figure 13.6 Mobile recording unit at five different sampling locations.
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sampling (Buckland et al., 2001). This function defines the probability of
detecting any cases of disease in a given distance and direction of the sample
point. Define the following ingredients: the first-order intensity of the disease
infection process is

��x� t�= �g�x� t�f�x� t��

suitably normalised, this function can be viewed as a probability of becoming
infected at space-time location �x� t�. The parameter � is an overall rate, g�x� t�
is the background population intensity which can vary in space and time, and
f�x� t� is also a function of space-time but is parameterized with functions of
the disease process of interest. These functions could simply be of explanatory
covariates or could be of unobserved effects. They could also be functions of the
number of already infected individuals existing up to the observation time.
In addition to the these disease modeling features there must also be associated

with this intensity a function which determines how easy it will be to detect
any cases of disease in the vicinity of the observation point.
This function is referred to as the detection function. The joint probability of

detection and incidence is

d�s� l�x� t���x� t�e−
∫
��u�v�dxdt�

The resulting likelihood, assuming full knowledge of the history of the disease
infection process, is given, for any time point p, within area A, by

L =
p∏

j=2

∏
k∈�lj−1�lj�

d�sj� lj� xk� tk���xk� tk�e
− ∫ lj

lj−1

∫
A ��u�v�dxdt�

13.5.2.1 Detection functions

A variety of functions could serve as a detection function, depending on the
nature of the detection process and the ease with which the disease in question
can be detected. For example, it may be that during an attack only visual
sightings of cases may be made, and complete ascertainment of the case disease
state may be impossible. Hence, a distance effect may come into play in this
case.
A radial decline detection probability may be appropriate. These could be, for

example, Gaussian in space and exponential in time:

d�s� l�x� t�= 1
2���

�e−
1
2� �

2
x−�t/��

where �x = ��s−x��� �t = l− t� t < l. This would imply a temporal decay in ability
to detect cases. This detection function is separable in space and time and no
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interaction is considered. Of course more complex functions could include also
interaction between space and time.
Other simpler alternatives could be imagined – for example, uniform probab-

ilities in space and time,

d�s� l�x� t�= 1
��2

�I���s−x�� < ��
1
�
�I���l− t�� < ���

where I�·� is the indicator function, t < l� � is a detection radius, and � is a
detection span.
There may also be a need to speed up computation by extending the sampling

idea expressed above to a situation which was not mobile but. which had a
large database which could not be analyzed completely at each time point. In
this case a sampling scheme would need to be adopted. In fact, for clustering it
may be useful to adopt a adaptive sampling scheme where clustering is analyzed
when previous clustering was found in the vicinity. For example, in the case
of counts within small areas {yit} we could introduce a probability which is
dependent on location and time, pit say, that defines how likely an area is to
be sampled for analysis. Hence, a model could be developed for cluster analysis
where, at observation time t, we would have a posterior distribution P��t�yit�.
We assume that samples of �it−1 are available for the regions and write

qi =
pitP��t−1�yit�∑m
j=1 pjtP��t−1�yjt�

�

Then areas can be drawn with probability qi. The definition of the prior distri-
bution for pit would be an interesting issue. In the next section I discuss another
aspect of shrinking the data analysis problem: computational improvements.

13.6 COMPUTATIONAL ISSUES

Many issues arise with the large volume of potential data that needs to be
constantly sifted to allow for optimal surveillance in the sense of coverage of
data. Data mining has developed for analysis of large databases, and many of
the methods used there can be applied here. Inevitably, there is a need for
computational speed-ups, especially if Bayesian methods are used where MCMC
is needed.
MCMC sampler speed-ups can be implemented via particle filtration and

importance resampling (sequential Monte Carlo), the use of windows (sliding
or otherwise), posterior or likelihood approximations and special computational
algorithms (e.g. spatial computational speed-ups). In the first case it is possible
to apply particle filtration via resampling to clustering problems, and the basic
methodology is given in Doucet et al. (2001). The use of short time windows
will also reduce the computational burden at the expense of long-term effects.
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The use of likelihood or posterior approximations would also help, particularly
if multivariate normal approximations could be employed, as they could be
sampled relatively easily. Finally, special algorithms to speed up spatial compu-
tation may be useful (Moore, 1999; Chapter 11 of this volume).

13.7 CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, there is a wide range of possible models for the inclusion of
cluster detection methods in syndromic surveillance systems. In this chapter I
have emphasized modeling issues in cluster detection and have not considered
hypothesis testing. This is considered in Chapters 7 and 8.
The main issue in the information of the cluster model is how the clusters

themselves are represented with the model. At one extreme we could only
examine residuals for evidence of clustering and not include any clustering terms
in the model. At the other extreme we could explicitly include cluster terms (such
as hidden mixture components or cluster variances). If one is little concerned
about the form of clusters then residual analysis may suffice. However, if one
wants to provide great information about the structure and behavior of the
clusters then cluster terms should be used. Note that conventional random effect
models are not really clustering models but can allow for correlated relative risk.
Finally, the need for computational speed-ups within surveillance modeling is
going to be important. The use of sampling, filtration, and approximations could
all have a part to play in this endeavor.
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