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Preface

Reactive fluids are present in many situations of great importance, such as in
combustion chambers or around spacecraft re-entering the atmosphere. An-
alyzing the flow properties of such fluids represents one of the most difficult
challenges to current technology. Indeed, all of the most difficult aspects of
fluid mechanics appear to be grouped together in this research field! Such
fluids are complex mixtures with compositions that vary rapidly in time and
space. They are not usually at thermodynamic equilibrium, since the reaction
times of the chemical reactions involved may not be negligible in comparison
with the transit time of the fluid. However, the author of this book limits its
scope to typical phenomena that are not very far from local equilibrium but
can nevertheless exhibit the most important types of irreversible processes.
The production of entropy is highly dependent on the chemical reaction path-
way, which is difficult to simplify. Also, most of the classical problems that
characterize fluid mechanics—such as turbulence, the presence of thin bound-
ary layers or shear layers, and the propagation of acoustic waves and shock
waves—are also present, and are much more difficult to analyze and describe
than they are for homogeneous fluids, because reactive mixtures interact with
these phenomena. For example, density is highly dependent on the chemical
pathway since it is determined by the local and instantaneous production of
chemical species, and so its value affects many other quantities through the
equation of state and the balances of mass, momentum, and energy.

This book is a remarkable and quite pedagogical synthesis. It presents all
of these problems in a logical and systematic way, step by step in the differ-
ent chapters, without going into the complexities of the very many particular
classes of them. Indeed, the author pays more attention to general concepts
and to guiding ideas (thus justifying the formulation of a very general the-
ory) than to combining them for particular applications. To be able to follow
the text, the reader should understand mathematics to the level required
for most graduate courses in fluid mechanics. This involves a knowledge of
classical techniques such as multiple-scale analysis and matched asymptotic
expansions, but without the need to dwell on their mathematical justification.



VIII Preface

Dimensional analysis is proposed as a systematic and powerful tool for reduc-
ing the general set of equations to the relevant formulation for a given class
of phenomena, and a list of the most important nondimensional numbers is
given.

It was a true pleasure to look through this text, noting its good organiza-
tion and reading some of the chapters and paragraphs in depth. I am convinced
that readers of the book—it is aimed at graduate students as well as experi-
enced scientists or engineers—will find an abundance of useful resources, and
some will definitely keep it on their desk.

René Moreau
Professeur Émérite à Grenoble INP
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ṁ: mass flow rate
Ma: Bénard–Marangoni number
n: total number of moles
nj: number of moles of species j
N : number of species, or number of molecules per unit volume
N: unit normal vector to an interface
Nu: Nusselt number
p: thermodynamic pressure, or probability density
P: pressure tensor
P : mechanical power
Pr: Prandtl number
Pe: Peclet number
q: parameter, or heat flux
q: heat flux vector
q′: heat flux vector due to temperature gradient
q̇: volume flow rate
Q: heat quantity
Q: caloric power
(q0

f )j : enthalpy of formation per unit mass of species j
(Q0

f )j = (H0
0 )j : molar enthalpy of formation of species j

r: perfect gas constant per unit mass, radius, or caloric power received per
unit volume

R: universal molar gas constant, radius, or number of independent species
in a mixture



XII List of Symbols

rN : rate of nucleation
rT,p: energy of a chemical reaction
Ra: Rayleigh number
Re: Reynolds number
Ri: Richardson number
Rj : mass of j produced by a chemical reaction
Rr: chemical reaction
s: entropy per unit mass, or Arrhenius exponent
S: entropy
S: surface
Sc: Schmidt number
Sh: Sherwood number
Sr: Strouhal number
St: Stanton number
t: time
T : absolute temperature
te: residence time
Ta: Taylor number
T (k): turbulent transfer function
u, v, w: components of the velocity v with respect to x, y, z

u, v: coefficients in the equation of state for a real gas
U, U∞: reference velocity
v: barycentric velocity vector

∑N
j=1 vj

vj : velocity vector of species j
V : velocity, or force potential
V: undefined vector, or composite velocity vector defined for the interface

V = V// + wN
V : volume
(V): manifold of equilibrium states in the thermodynamic space
V i: surface viscosity number
Vj : diffusion velocity of species = vj − v
vr, vθ, vz: components of v in cylindrical coordinates
w: normal velocity of a surface, or velocity vector in phase space
W : work
W: local velocity vector of a discontinuity, or velocity vector of a fictitious

motion
We: Weber number
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1

Introduction

Homogeneous, heterogeneous and reactive flows are important in the aeronau-
tical, space and chemical industries, industrial furnaces, nuclear engineering,
the production of gas and electricity, the automotive industry, and many other
fields. Chemical reactions play a role in many processes. They may be inherent
to the process of interest—as in chemical engineering or combustion, or in the
case of air pollution mechanisms. They can also be a consequence of motion—
for instance, they occur during the atmospheric re-entry of a spacecraft, which
causes intense heating to occur around its exterior, or in supersonic combus-
tion, downstream of intense shock waves.

Reactive flows exhibit heterogeneities and/or variations in concentration,
temperature, speed, and types of transfer phenomena, such as thermal con-
duction, diffusion or viscosity. Since these phenomena occur together (as well
as with convection) in such flows, they are difficult to study. The modeling of
reactive flows progressed in conjunction with the conquest of space, which gave
birth to a new science—aerothermochemistry, and with advances in chemical
and process engineering. The methods employed, the phenomena investigated,
and the aims of such modeling differ from one field to the next; however, in all
cases, the results obtained considerably enrich our knowledge of reactive flows.
Thus, in order to study a given phenomenon, it can sometimes be interesting
and useful to combine the methods of chemical engineering, aerodynamics,
and combustion.

Sixty years ago only specialists in combustion were concerned with chem-
ically reactive flows, and the theoretical models they employed were simple.
For example, in the case of deflagration (Chap. 10), for which speeds are
on the order of meters per second, aerodynamic effects were neglected, so
the burning velocity depended only on the chemical processes involved and
diffusion. In contrast, in the case of detonation, where velocities can reach
several thousands of meters per second, aerodynamics was the predominent
phenomenon, and chemical effects contributed only through the energy of the
combustion reaction. It is only in more recent years that specific research
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2 1 Introduction

on chemically reactive flows utilizing both aerodynamics and combustion has
been conducted.

The combination of three different areas of science—aerodynamics, ther-
modynamics, and chemistry—was inspired by the works of P. Duhem and F.
Jouguet, and amplified by Maurice Roy, who coined the term “aerothermody-
namics,” as well as Theodore von Kármán, who—insisting on the importance
of chemistry—invented the term “aerothermochemistry,” which is still used
today.

We should also mention the more recent contributions to this field of
Hirschfelder [118], Prigogine [213], de Groot [108], Penner [199], and E. Brun
[34], who established the fundamental equations used as the basis for current
research.

Other significant contributions include those of Barrère [7], Williams [290],
Truesdell [278], Rajagopal and Tao [227], Villermaux [283], Slattery [260],
Marble, Crocco, Soo [263], and many others. These authors have (directly or
indirectly) enriched the science of homogeneous and heterogeneous reactive
fluids by improving our knowledge of the thermodynamics of pure and mixed
continuous media, the mechanics of mixtures, chemical reactors, combustion,
interfaces, and multiphase flows.

Fig. 1.1. Theodore von Kármán (1881–1963), CalTech JPL (image from Wikipedia,
http://www.wikipedia.org)

How should we approach the analysis of such flows? Let us take the example of
the coupling between chemical kinetics and convection in a fluid. One hypoth-
esis that comes to mind is to assume a chemical composition at equilibrium at
the local pressure and temperature encountered within the fluid. Another hy-
pothesis is to assume that chemical reactions can be ignored and that, in the
absence of diffusion, the composition is constant. These are the two border-
line cases of flows with chemical reactions. Such situations are characterized
by the first parameter of similarity of Damköhler, the ratio of the mechanical
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timescale to the chemical timescale. When this ratio is much larger than unity,
the reaction speeds up and the equilibrium composition is rapidly approached;
if the ratio is smaller than unity, the composition freezes. If the Damköhler
parameter is on the order of unity, the chemical reaction and convection are
coupled and we have a relaxing flow.

Fig. 1.2. Marcel Barrère (1920–1996), ONERA (image from P. Kuentzmann, private
communication, 2009)

We do not need to know the reaction rate constants in order to calculate the
equilibrium composition; it is sufficient to know the equilibrium constants,
which are thermodynamical quantities that define the probabilities that spe-
cific species will form. In contrast, for a relaxing flow, the details of all of the
reaction pathways and the associated reaction rates must be known. However,
the data on the chemical kinetics are generally sparse and/or uncertain, and
so it is difficult to guess these reaction rates. The expressions that yield the
reaction rates are often complex. If the reaction is unique and reversible, this
rate is the time derivative of a progress variable, an exponential function of
the chemical affinity of the reaction. Because of this exponential term, the
analytical calculations are rather difficult, and linearization is conducted by
assuming that the reactions occur close to equilibrium. If multiple reactions
occur simultaneously in the system, linearization is not always possible. The
complexity of these expressions for the chemical kinetics is another of the
difficulties associated with aerothermochemistry!

For an adiabatic flow, entropy production depends only on the reactive
process, and in the case of a unique reaction it is equal to the affinity term
multiplied by the reaction rate. The borderline cases of equilibrium and fixed
composition correspond to isentropic evolutions. In relaxing flows, entropy
production depends (via the reaction pathway) on the reaction rates, indicat-
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ing that the thermodynamics of a reactive flow are those of an irreversible
process.

The aim of this book is to introduce the reader to a number of basic
concepts and methods that are necessary to study reactive flows and transfer
phenomena. Most of the chapters are based on the notes associated with a
course on the physics of liquids given at the Université Pierre et Marie Curie
(UPMC, Paris VI) and thematic lectures given at the École Polytechnique.
Although the flows considered here generally comply with the principle of
the local state, which means that they are never very far from equilibrium, a
great many cases involving irreversible processes can be considered using this
approach. However, electromagnetic phenomena are excluded, and radiation
problems are only evoked briefly, thus limiting the scope of the book. In spite of
these limitations, the contents of this book should be of interest to students,
researchers and engineers who wish to be introduced to reactive flows and
transfer phenomena.

Chapter 2 provides the equations of state for single- and multicomponent
fluids in which each component is at thermodynamic equilibrium. Both require
the definition of the state variables, the thermodynamic functions, the specific
properties of the mixtures with or without chemical reactions, the conditions
of thermodynamic stability, and finally the effect of surface tension.

In Chap. 3, the complementary or constitutive laws that are needed to an-
alyze irreversible processes are stated. The guiding principles of the thermo-
dynamics and chemical kinetics of irreversible processes are presented, while
the kinetic theory of gases allows the transfer coefficients to be evaluated as
a function of the temperature.

The mass, momentum, and energy balance equations for moving fluid mix-
tures are established in Chap. 4 for discrete systems, continuous media, and
continuous media with simple discontinuities (e.g., shock waves). The addi-
tional use of the second law of thermodynamics then leads to the entropy
balance. Finally, the probabilistic population balance—which is very useful in
chemical engineering situations—is given.

The principles of dimensional analysis are presented and illustrated through
a few practical examples in Chap. 5. The most commonly encountered dimen-
sionless numbers are summarized. Dimensional analysis is then applied to
more complex situations, such as viscous, thermal and chemical boundary
layers, turbulent onset and development, etc., in the following chapters.

Ideal and real chemical reactors are considered in Chap. 6. We begin by
considering the steady and unsteady regimes of an ideal perfectly stirred re-
actor. The concepts of macro- and micromixtures, which are crucial to real
reactors and require the population balances established in Chap. 4, are then
presented.

Coupling and interaction effects between various processes in the laminar
regime are the subject of Chap. 7. Examples relate to chemical relaxation
in a flowing fluid, thermodiffusion, combustion and flames, thermal osmo-
sis, natural thermal diffusion and gravity (Rayleigh–Bénard convection), and
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finally to surface tension and viscosity (the Marangoni effect and the Bénard–
Marangoni instability).

Fig. 1.3. Ilia Prigogine (1917–2003), ULB (image from A. Sanfeld, private commu-
nication, 2009)

The basic concepts of turbulent flows are presented in Chap. 8, initially for
pure incompressible fluids, then for compressible fluids, and finally for reactive
mixtures. Classical theories—Prandtl’s mixing length, Kolmogorov’s spectral
theory, averaged balance equations—are recalled, as well as the models devel-
oped to implement CFD codes: k–ε, probability distribution functions, and
large eddy simulation. Particular attention is paid to the various possible in-
teractions between combustion and turbulence.

Chapter 9 relates to confined or unconfined wall boundary layers and shear
layers between two flowing streams. Steady or unsteady, compressible or in-
compressible, stable or unstable laminar flows, with or without wall blowing
or aspiration, are presented for the case of a single-component fluid. Mass
and energy diffusion phenomena for a moving or stationary flat plate and for
a rotating disc are examined. The Emmons problem—ablative burning of a
plate under a flow of oxidizing gas—is solved. Various cases involving turbu-
lent boundary layers are studied using multiple-scale analysis in association
with dimensional analysis.

Chapter 10 deals with reactive and nonreactive waves. Studying the lin-
ear propagation of a small perturbation in a reactive mixture leads to the
computation of the speed of sound. Continuous and discontinuous waves in
a pure barotropic fluid are treated. We then consider combustion waves and
the structures of detonation waves and spherical waves for small movements
and blast waves.

Chapter 11 tackles interface phenomena. The bulk equations of an interfa-
cial layer in orthogonal curvilinear coordinates are presented, and the general
form of the surface balance law is established. Various types of interface are
studied: simplified interfaces, premixed flames, boundary layers, and (using
the method of virtual power) interfaces that are resistant to crumpling.
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Lastly, some elements relating to multiphase flows are given in Chap. 12.
First, macroscopic balance equations are developed for a simplified two-phase
fluid, and three examples of their application then are provided: vortex flow,
sound propagation, and spray generation. Various other phenomena, including
frictional force, heat exchange, vaporization, and the combustion of spherical
particles, are then studied at the mesoscopic scale.

The author hopes that the contents of this book will provide the reader
with the fundamental equations of reactive flow for the most general cases
involving homogeneous and heterogeneous fluids, along with boundary condi-
tions that specify the transfer of mass, heat, and momentum to the interfaces.
The methods used to solve these equations for general and simplified cases
enable most of the problems encountered in this field to be approached with
a certain degree of confidence.



2

Equations of State

Studying the motions of complex fluid media involves determining how lo-
cal quantities that characterize the behavior of single- or multicomponent,
homogeneous or heterogeneous media evolve over time and space.

The state variables of a mixture are defined in Sect. 2.1. Initially for con-
tinuous media at rest and at equilibrium, we introduce extensive quantities
(i.e., quantities that depend on the size of the system) such as the masses and
volumes of the various constituents of gases and ideal liquid mixtures, as well
as their strains for solids. Specific quantities, such as chemical progress vari-
ables for reacting mixtures, are extensive quantities too. Intensive (i.e., bulk)
quantities such as temperature, pressure, and strains are also presented. More-
over, when the medium is moving, velocity vectors, fluxes, and production rate
terms must also be considered.

Section 2.2 considers thermodynamic aspects, and the notion of entropy
(an extensive quantity) is introduced. Temperature, pressure, and species
chemical potential (all intensive variables) are the conjugates of entropy, vol-
ume, and species mass, respectively. For solids, stresses are the intensive con-
jugates of strains. The laws of state (LOS) that express the relationship be-
tween the state variables for one component in a continuous medium at rest
and equilibrium will remain valid even when the local values of these variables
change (this is known as the local state postulate).

The LOS for mixtures are discussed in Sect. 2.3. Section 2.4 focuses on
reactive mixtures, particularly those at chemical equilibrium.

Temperature, pressure (or stresses), and chemical potentials are introduced
as the first partial derivatives of the internal energy with respect to their
extensive conjugates in Sects. 2.2 to 2.4, while the second partial derivatives of
energy are considered in Sect. 2.5. This leads, together with the second law of
thermodynamics and the concept of stability at thermodynamic equilibrium,
to inequalities involving quantities such as specific heats and characteristic
speeds.

Section 2.6 addresses equilibrium at the fluid interface and the concept of
surface tension, and applies this to the behavior of a bubble in a liquid.

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_2, © Springer Science+Business Media, LLC 2010
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It should be pointed out that the laws of state can only be applied to equi-
librium evolution problems. Other laws are needed to investigate irreversible
processes, and these are described in Chap. 3.

However, the balance equations presented in Chap. 4 are required to com-
pletely solve problems involving complex media in motion, while multiphase
media are addressed in Chap. 12.

2.1 Defining the State Variables of a Mixture

2.1.1 Classical Parameters

The thermodynamical and chemical states of a homogeneous mixture can be
characterized by a certain number of extensive and intensive (bulk) parame-
ters. The more accessible parameters are generally the temperature T (the
absolute temperature in Kelvins), the pressure p, the volume of the consid-
ered system V , and the mass mj or the number of moles nj = mj/Mj of
species j (Mj is the molar mass of species j). The total mass is

m =
N∑

j=1

mj , (2.1)

where N is the number of species in the mixture. The total number of moles
in the control volume V is

n =
N∑

j=1

nj . (2.2)

We also define specific quantities such as the partial density of species j:

ρj = mj/V , (2.3)

the molar concentration per unit volume:

Cj = nj/V , (2.4)

the mean density:

ρ =
N∑

j=1

ρj = m/V , (2.5)

and the total number of moles per unit volume:

C =
N∑

j=1

Cj . (2.6)
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The mean molar mass is equal to

M =
N∑

j=1

njMj/n. (2.7)

The molar and mass fractions of the species are (respectively):

Xj = nj/n, Yj = mj/m, (2.8)

and we have

Yj = ρj/ρ = (MjCj) / (MC) =MjXj/M. (2.9)

We can also write

Yj = ρj/ρ = MjCj/

N∑
j=1

MjCj = MjXj/

N∑
j=1

MjXj . (2.10)

The unit mass of a homogeneous fluid mixture will generally be completely
characterized by the (N +1) variables T, p, Y1, Y2, . . . YN−1. The mass fraction
YN does not appear, since

N∑
j=1

Yj = 1. (2.11)

2.1.2 Chemical Progress Variable

A given chemical reaction can be symbolically represented as

N∑
j=1

ν′jEj →
N∑

j=1

ν”jEj (2.12)

In the absence of mass diffusion, any variations in concentration are caused
by this chemical reaction. In the presence of diffusion, it is not possible to
distinguish the changes in concentration due to diffusion from those due to
the chemical reaction. In this case, the concentrations comply with the balance
laws for chemical species (see Chap. 4).

The changes in concentration due to a chemical reaction are characterized
by a progress variable ξ per unit mass, or ζ per unit volume with ζ = ρ ξ,
such that {

dmj = νjMjdξ, mj = m0
j + νjMjξ

dnj = νjdξ, nj = n0
j + νjξ

(2.13)
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dρj = νjMjdζ, dCj = νj dζ, C = C0 + ν ζ, ν =
N∑

j=1

νj . (2.14)

The expressions for Xj and Yj are then as follows:⎧⎨⎩
Xj =

(
n0

j + νjξ
)
/
(
n0 + νξ

)
Yj =

(
m0

j + νjMjξ
)
/m0,

(2.15)

taking into account the conservation of mass during the reaction
∑N

j=1 νjMj =
0. Xj and Yj can also be written as functions of ζ.

When there are K reactions in total, K progress variables can be used.
Example: The combustion reactions of a H2–O2 mixture are shown below:⎧⎪⎪⎨⎪⎪⎩

H2 → 2H chain initiation
H + O2 → OH + O chain branching
O + H2 → OH + H chain branching
H + OH→ H2O chain breaking

‖νir‖ =

∥∥∥∥∥∥∥∥∥∥∥∥

2 −1 1 1 −1
0 1 −1 0 0
−1 0 −1 −1 0
0 −1 0 0 0
0 1 1 −1 −1
0 0 0 1 1

∥∥∥∥∥∥∥∥∥∥∥∥

H
O
H2

O2

OH
H2O

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
species j

R1 R2 R3 R4 R5︸ ︷︷ ︸
reaction j

2.1.3 Definitions Required to Describe a Reactive Fluid

In contrast to the case for the homogeneous mixture considered in Sects. 2.1.1
and 2.1.2, the properties of a flow are seldom uniform, and so it is not suffi-
cient to simply provide the values of the quantities T, p,Xj. These quantities
vary over space and time. There are, however, local parameters (specific or
intensive) that define the state of the system at any point, so we then have
T (x, t), p(x, t); ρ(x, t), Cj(x, t) (for unit volume) and Yj(x, t), nj(x, t) (for
unit mass). This is the local state postulate.1 Moreover, each (infinitely small)
particle of fluid is also characterized by mechanical parameters. We define N
velocity vectors vj(x, t), j = 1, ... N and also:

• The barycentric velocity: v = (1/ρ)
∑N

j=1 ρj vj (see (2.5) for the definition
of ρ)
1Regarding time, the local state postulate stipulates that the current internal

energy state of a homogeneous system at any point during its evolution does not
depend on the rate of evolution, and that it can be characterized using the same
state variables as those that characterize the equilibrium state.
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• The diffusion velocities: Vj = vj − v
• The species fluxes: Jj = ρj vj

• The total mass flow: J = ρv =
∑N

j=1 Jj

• The diffusion fluxes: J Dj = ρj Vj .

Fig. 2.1. Diffusion of species in a continuous medium

Due to the difference between the specific velocities vj and vi, the domain
common to both species i and j at time t is generally divided into two separate
domains at time t′.

Each chemical species then exhibits its own motion (Fig. 2.1), although
it is generally considered that these are not very different from the average
motion. At time t, and per unit volume of the mixture, the mass of species j
produced by the chemical reaction per unit time is

Ẇj = Ẇj(x, t). (2.16)

In the absence of diffusion (Vj = 0), the following equations are obtained for
only one reaction and for K reactions, respectively:{

Ẇj = νjMj ζ̇,

Ẇj =
∑K

r=1 νjrMj ζ̇r.
(2.17)

2.1.4 The Case for Solids

The state of a solid depends on more variables than the state of a fluid. These
additional variables allow us to characterize its strains and corresponding
stresses, and they are most naturally presented in tensorial notation.
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The thermodynamic state of a one-component solid does not depend only
on the temperature and the specific volume, as is the case for a fluid, but
also on the deformation variables. According to the classical theory for small
deformations, the new variables form a symmetric 2D tensor ε. To define ε,
we must first describe the continuous medium in Lagrange coordinates (a, t),
where a is the material reference position at time t = 0. Any material position
x at time t is defined as a function x = Φ(a, t) = a + X(a, t). For small
deformations we can write x = Φ(a, t) = a + ηx̄(a, t), where η is a small
parameter. The gradient H of X(a, t), the components of which are Hij , can
be decomposed into its symmetric and antisymmetric parts ε and r:

H = ε + r, ε =
1
2
(H + H̃), r =

1
2
(H− H̃).

The thermodynamic state of a deformed solid depends only on the sym-
metric part ε.

The following section briefly reviews the laws of thermodynamics and their
application to one-component fluids and solids; subsequent sections will then
consider composite fluid systems.

2.2 Thermodynamic Functions and Equation of State for
Simple Fluids and Solids

2.2.1 Thermodynamics Reminder

The laws of thermodynamics govern the equilibrium states of closed (i.e., no
mass exchange with the outside), simple, or composite systems [38, 97].

Among those that are possible for such a system, there are a subset of
equilibrium states that form a continuous differential manifold (M). This
manifold (M) can be visually interpreted as a surface or a family of surfaces.
Points on this surface correspond to states of equilibrium, and so the region
beyond this manifold corresponds to nonequilibrium states. Any trajectory
through this space (broken line in Fig. 2.2) between equilibrium states E1

and E2 represents a thermodynamic transformation. If this trajectory occurs
across the surface (continuous line in Fig. 2.2), any intermediate state between
E1 and E2 is a state of equilibrium. Therefore, the continuous line in Fig. 2.2
represents a reversible transformation. The evolution of this line over time
corresponds to the evolution of the equilibrium of this system. The broken
line corresponds to an unspecified transformation and does not occur entirely
within (M).2

On the manifold (M), we allow the existence of two differential forms d̃Q
and d̃W that represent the elementary heat and work added to the system
during the reversible transformation, respectively.

2A reversible transformation from E2 to E1 is also possible along the same line.
This is not generally the case for an unspecified transformation. We will illustrate
this when we discuss adiabatic transformations (second law of thermodynamics).
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Fig. 2.2. Reversible and irreversible transformations

First Law of Thermodynamics

Q and W are the heat and work done by a closed system during an unspecified
transformation between two states of equilibrium E1 and E2. Thus,

E2 − E1 = W + Q, (2.18)

where E is a function called the internal energy that depends only on the
equilibrium state of the system (E depends only on the variables of state and
can be regarded as state variable itself). When Q = 0, the transformation is
said to be “adiabatic.”

For a reversible elementary transformation we have

dE = d̃W + d̃Q, (2.19)

where d̃W and d̃Q are differential forms.
On the other hand, for an elementary (infinitesimal) unspecified transfor-

mation,

δE = δW + δQ (2.20)

(in the general case, δW and δQ simply indicate small quantities rather than
differential forms).

We can extend this to a system at equilibrium in Galilean reference frames
with different velocities in states 1 and 2:

(E2 + K2)− (E1 + K1) = W + Q, (2.21)

where K represents the kinetic energy of the system. For a reversible elemen-
tary transformation, we have
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dE + dK = d̃W + d̃Q. (2.22)

This relation corresponds to the principle of the conservation of energy
(the first law of thermodynamics).

Second Law of Thermodynamics

The second law of thermodynamics is not elaborated in detail here. Only the
Carathéodory statement [97] is recalled below.

Statement of the Principle of Carathéodory for a Closed System:
Consider an equilibrium state for a system. In the vicinity of E0, there is a
state E1 on the manifold (M) that cannot be reached from E0 through an
adiabatic transformation.

This statement implies the existence of a function of state S called the
entropy, such that:

• d̃Q = T dS for an elementary reversible transformation (i.e., this relation
is true on the manifold (V)).

• S2 − S1 ≥ 0 for an unspecified adiabatic transformation. The equal sign
applies if the transformation is reversible, and so in this case

dS = d̃Q/T = 0, S2 − S1 =
∫ E2
E1

d̃Q/T = 0.

Note: It can be shown that, for a simple system (dependent on two variables),
there is always an integrating factor, and so the first part of the second law is always
obeyed.

Extensions: For an unspecified infinitesimal transformation,

δQ = T (δS − δiS), δiS ≥ 0. (2.23)

For an unspecified transformation (not inevitably adiabatic),

S2 − S1 = ΔeS + ΔiS, ΔiS ≥ 0. (2.24)

In the general case, the main difficulty here involves determining the external
variation in entropy ΔeS (the entropy flux from the outside) and the internal
variation ΔiS (the entropy produced). These laws extend to transformations
between nonequilibrium states if we can define (depending on the case) the
functions E and S as well as the temperature T .

2.2.2 Properties of Simple Fluids at Equilibrium

When the fluid undergoes a reversible mechanical transformation, the elemen-
tary work done is equal to
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d̃W = −p dV . (2.25)

Since it is also known that
d̃Q = T dS, (2.26)

we can deduce that, for a closed fluid domain (no mass exchange with the
outside),

dE = T dS − p dV . (2.27)

When the mass m of a one-component fluid is fixed, its internal energy is
a function of S and V . This function has partial derivatives with respect to
S and V that are the temperature T and the negative of the pressure (−p).
The internal energy also depends on the mass or (equivalently) the number
of moles of fluid considered (which is constant for a closed system):

E = E(S, V , m) or E = E(S, V , n), (2.28)

where n is the number of moles. Therefore,

T = ∂E/∂S, −p = ∂E/∂V . (2.29)

We then set

g = ∂E/∂m or μ = ∂E/∂n (2.30)

where μ = Mg, where M is the molar mass. This leads to the Gibbs equation

dE = T dS − p dV + g dm or dE = T dS − p dV + μ dn. (2.31)

Establishing the Gibbs–Duhem Relation:

E(λS, λV , λm) = λE(S, V , m), λ ∈ 	, (2.32)

because E,S,V , and m are extensive quantities. E is thus a homogeneous
function of the first degree in S,V , and m. Using Euler’s theorem and the
preceding definitions of T, p and g, we get

E(S, V , m) = T S − pV + gm. (2.33)

Demonstration:
E(λS, λV, λm) = λE(S, V, m)

(
∂E

∂(λS)
S +

∂E

∂(λV)
V +

∂E

∂(λm)
m) dλ = E(S, V, m) dλ

E(S, V, m) =
∂E

∂(λS)
S +

∂E

∂(λV)
V +

∂E

∂(λm)
m.

If λ = 1,

⇒ E(S, V, m) =
∂E

∂S
S +

∂E

∂V V +
∂E

∂m
m.



16 2 Equations of State

In the same way, we can obtain

E(S, V , n) = T S − pV + μn. (2.34)

Using this relation and the Gibbs equation, we can deduce the Gibbs–Duhem
equation

0 = S dT − V dp + mdg, (2.35)

or

0 = S dT − V dp + n dμ. (2.36)

Other Thermodynamic Functions

The usual thermodynamic functions that are derived from the internal en-
ergy E are the enthalpy H , the Helmholtz free energy F , and the Gibbs free
enthalpy G. We have

H = E + pV , dH = T dS + V dp + g dm. (2.37)

The enthalpy is a function of the variables S, p and m. We can write

H = H(S, p, m), T = ∂H/∂S, V = ∂H/∂p, g = ∂H/∂m. (2.38)

In the same manner, we obtain the following relations for the Helmholtz free
energy: {

F = E − T S = −pV + g m,
dF = −S dT − p dV + g dm,

(2.39)

and for the Gibbs free enthalpy we obtain{
G = E − T S + pV = gm,
dG = −S dT + V dp + g dm.

(2.40)

The partial derivative g is thus the free enthalpy per unit mass, just as μ is
the molar free enthalpy.
For unit mass and ϑ = 1/ρ, we get⎧⎪⎪⎨⎪⎪⎩

e = T s− p ϑ + g = e(s, ϑ), de = T ds− p dϑ, 0 = s dT − ϑ dp + dg,
h = e + pϑ = Ts + g = h(s, p), dh = T ds + ϑ dp,
f = e− Ts = −pϑ + g = f(T, ϑ), df = −s dT − p dϑ,
g = e− Ts + pϑ = g(T, p), dg = −s dT + ϑ dp.

(2.41)
For one mole (indicated by bars above symbols),
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E = T S − pV + μ = E(S, V), dE = T dS − p dV,
0 = S dT − V dp + dμ,
H = E + pV = H(S, p), dH = T dS + V dp,
F = E − TS = F (T, V), dF = −S dT − p dV ,
G = E − TS + pV = μ(T, p), dμ = −S dT + V dp.

(2.42)

For unit volume (ρF = ρ f),

ρE = T ρS − p + μ ρ, dρE = T dρS + g dρ, 0 = ρS dT − dp + ρ dg. (2.43)

The equation E = E(S, V , m), when E(S, V , m) is a known function (orE =
me, e = e(s, ϑ), where e(s, ϑ) is a known function), is the fundamental energy
law for the fluid. If this law is known, all of the thermodynamic properties of
the fluid are also known. This remark also applies to the other thermodynamic
functions expressed in terms of their original variables. On the other hand, it
is not sufficient if only one partial derivative is given; two of them are required,
constituting the laws of state for the fluid.

2.2.3 Examples of Laws of State

Perfect Gases, Standard State

We have pV̄ = RT , the law of state for one mole of a perfect gas [33, 109, 267].
Using the Gibbs equation, noting that p/T = R/V and S = S(E, V), we get{

dS = (1/T )dE + (p/T )dV,
1/T = ∂S/∂E, p/T = ∂S/∂V = R/V .

(2.44)

Note that ∂2S/∂E ∂V = ∂2S/∂V ∂E since E and V are the natural indepen-
dent variables of the problem of interest, or ∂(1/T )/∂V = ∂(p/T )/∂E = 0
because p/T = R/V. Thus T depends only on E, or conversely E is a function
of T alone. The law of state for a perfect gas thus imposes a constraint, but
does not provide the dependence of internal energy on temperature. We need
the second law of state:

E = E
0

T . (2.45)

Therefore, two laws of state are necessary to define the thermodynamic be-
havior of a simple fluid, or an energy law in canonical form (see Eqns. 2.42).
The latter is, for the perfect gas,3

μ = μ0
T + RT ln(p/p0). (2.46)

The pressure p0 is a standard pressure (generally p0 = 105Pa), and

3By deriving μ with respect to T and p, we can deduce the classical laws of state
for a perfect gas: S̄ = −∂μ/∂T = −dμ0

T /dT −R ln(p/p0), V = ∂μ/∂p = RT/p.
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E
0

T = μ0
T − Tdμ0

T /dT −RT. (2.47)

In the same way,

H = H
0

T = E
0

T + RT. (2.48)

Heat capacities: For a reversible elementary transformation, we know that dQ =
TdS. At constant volume, dE = d̃ Q = TdS = CvdT , where Cv is the molar heat
capacity at constant volume. For a perfect gas, Cv is a function of T only, and we

have E = E
0
T = E

0
0 +
∫ T

T0 Cv(T )dT , where E
0
0 is a constant corresponding to the

value of the molar internal energy at some standard temperature T 0.
At constant pressure, we have dH = d̃ Q = TdS = CpdT , where Cp is the molar

heat capacity at constant pressure.

For a perfect gas, Cp is a function of T alone,H = H
0
T = H

0
0+
∫ T

T0 Cp(T )dT ,Cp =

Cv +R, and H
0
0 = E

0
0 +RT .

The molar standard entropy of the perfect gas can be deduced: S
0
T = S

0
0 +∫ T

T0 (Cp(T )/T )dT , where S
0
0 refers to the standard state defined by (T 0, p0). For

the molar entropy we have S = S
0
T − R ln(p/p0), and for the molar standard free

enthalpy μ0
T = H

0
T − TS0

T .

Use of a standard volume V0
: Note that if we use the variables T, V instead

of T, p, a similar form is obtained for the entropy S = S̆0
T + R ln(V/V0

), but this

time S̆0
T = S

0
0 +
∫ T

T0 (Cv(T )/T )dT = S
0
T − R ln(T/T 0). For the internal energy,

we have E = Ĕ0
T , where Ĕ0

T = E
0
T . For the molar Helmholtz free energy, F =

F̆ 0
T −RT ln(V/V0

), where F̆ 0
T = E

0
T − TS0

T +RT ln(T/T0).

The standard thermodynamic functions μ0
T , H

0
T , . . . have been tabulated in other

words. Note that the constants E
0
0, H

0
0 = E

0
0 + RT 0 are considered arbitrary con-

stants if the studied phenomenon involves just one pure gas. This is not the case if
a reactive mixture is of interest, as we will show later.

Real Fluids

The state diagram for a pure substance is represented schematically in Fig.
2.3.

The perfect gas domain corresponds to small pressures and large volumes.
We will discuss this point in more depth in the following with respect to van
der Waals EOS (see Fig. 2.4 and the associated discussion).

Another important observation is the existence of the liquid–vapor critical
point C (see Appendix A.5.1 for the thermodynamic properties of fluids near
the critical point).

Since the law of state is generally given in the form p = p(T, V), where
T is the temperature and V is the molar volume, we will define a standard
molar volume V0

corresponding to the standard state of an ideal gas at the
temperature T 0, where the standard pressure p0 is given by p0V0

= RT 0.
Such a standard state always exists.
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Fig. 2.3. State diagram for a one-component medium

Approximate method for determining thermodynamic functions: Starting
from the equation of state, it is possible to determine the Helmholtz free energy as
a function of T, V, and the other thermodynamic functions using an approximate
method. To do this, we assume that there is a standard reference state defined by

the molar volume V0
such that, for V > V0

, the fluid can be considered a perfect
gas; i.e., pV = RT . As ∂F/∂V = −p(T, V), we can write

F = F̆ 0
T −
∫ V

V0
pdV.

Here F̆ 0
T is the standard value of the molar free energy of the perfect gas at

V = V0
. We write ∫ V

V0
pdV =

∫ V

V0
(p−RT/V)dV +RT ln(V/V0

).

This integral can be written as∫ V

V0
(p−RT/V)dV =

∫ ∞

V0
(p−RT/V)dV +

∫ V

∞
(p−RT/V)dV ∼=

∫ V

∞
(p−RT/V)dV,

since the fluid is considered to be a perfect gas if V > V0
. We then deduce that

F ∼= F̆ 0
T −RT ln(V/V0

)−
∫ V

∞
(p−RT/V)dV.
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van der Waals Fluids

The equation of state for a van der Waals fluid is

(V − b) (p + a/V2
) = RT. (2.49)

This equation of state is the simplest one for real gases and liquids. It takes
into account the minimum distance between the molecules and the interactions
between them. For rarefied gases a/V2 
 p, so V − b ∼= (RT/p)(1 − a/pV2

),
and for a perfect gas (for V � b−aRT/p2V2

) we have V = RT/p. For liquids,
a/V2 � p (a/V2

is a few tens of thousands of atmospheres), so we can often
ignore p, and thus V ∼= V0

T .
Proof: With the reduced variables x = V/VC , y = p/pC , z = T/TC , the van

der Waals state equation can be written as y = 8z/(3x − 1) − 3/x2. Using these
variables, the equation of state for a perfect gas becomes ypft = 8z/3x. The fluid can
be considered a perfect gas if y−ypft � 1. The isobars z = (3x−1)(y+3/x2)/8, y =
const. are shown in Fig. 2.4. It is clear that these curves tend to become straight
lines when the relative volume increases. This proves that, for a van der Waals fluid,
one can define a standard state on any isotherm at a given temperature T provided
that the values of the parameters are chosen in the appropriate region. This result,
which is related to the definition of a perfect gas, does not depend on the fluid
considered. If ε is an arbitrarily small number, we can assume that the pressure in
the van der Waals law is equal to that of a perfect gas with a relative error ε if

(y − ypft)/ypft ≤ ε.

It is easy to see that if x ≥ 1/3ε, we also have z ≥ y/8ε.

We now directly determine the forms of the internal energy, the entropy,
and the molar free enthalpy of a van der Waals fluid. We have

p = RT/(V−b)−a/V2
, dS = dE/T+(p/T )dV = dE/T+[R/(V−b)−a/TV2

]dV

= (1/T )d(E + a/V) + Rd ln(V − b), S = S(E + a/V, V − b).

Therefore, ∂R/∂(E + a/V) = 0 = ∂(1/T )/∂(ln(V − b)). It follows that
E = E

0

T −a(1/V−1/V0
), where V0

corresponds to a standard reference state,
since T is not related to (V − b). We also have S = S

0

T +R ln(V − b)/(V0− b),
with S

0

T = S
0

0 +
∫ T

T 0 dE
0

T /T , since dS = d(E
0

T /T ) + Rd ln(V − b).

Finally, F = F̆ 0
T − a(1/V − 1/V0

)− RT ln[(V − b)/(V0 − b)], F̆ 0
T = E

0

T −
T S̆0

T , μ = E− T S + pV = μ̆0
T − 2a(1/V − 1/V0

)−RT ln[(V − b)/(V0− b)] +
RT
[
V/(V − b)− V0

/(V0 − b)
]
.4

4If we apply the previous approximate method, we obtain the formula F =

F̆ 0
T − ln(V/V0

) − RT ln
[
(V − b)/V

]
− a/V for the Helmholtz free energy, which

differs slightly from the exact one.
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Fig. 2.4. Definition of a standard state: the plot shows isobars of y = p/pc =const.
in the (x, z) plane

Other Laws for Dense Gases and Liquids

The following form is applicable to the van der Waals, Redlich–Kwong, and
Peng–Robinson [44, 210, 233] equations of state:

p =
RT

V − b
− a

V2
+ ubV + wb2

, (2.50)

where u and w are coefficients.
For the Peng–Robinson equation,

u = 2, w = −1, b =
0.07780RTC

pC
, a =

0.45724R2T 2
C

pC

[
1 + fω(1−

√
T

TC
)

]2

,

fω = 0.37464 + 1.54226ω − 0.26992ω2,

where the constant ω, called the acentric factor, has been tabulated for nu-
merous species.5

5In thermodynamics, the acentric factor ω was originally used by Pitzer [204]
as an expression in an equation for the compressibility factor. The term “acentric
factor” was used to imply that the factor roughly charts the deviation of the inter-
molecular potential function from the corresponding function for simple fluids.
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Thus, ∂2p/∂T 2 = −(∂2a/∂T 2)/(V2
+ 2bV − b2).

Reid, Prausnitz, and Poling [233] provided the data needed to obtain the
equation of state p = p(T, V) for some bodies as well as to determine the molar
thermodynamic functions for perfect gases (heat capacities Cp,j J/mol K,
standard enthalpy of formation (Q

0

f )j at 298.2 K in J/mol, and free enthalpy
of formation (μ0

0)j at 298.2K and 1 bar in J/mol.

Dilatable Incompressible Liquids

Liquids are generally not very compressible except when they are near the
critical point.

• In other words, the compressibility coefficient (isothermal) as defined by χ =

− 1

V ( ∂V
∂p

)T is generally small (on the order of 10−4 bar−1). However, while it
is small, neglecting compressibility implies that the speed of sound is infinite,
whereas it is known to be finite (e.g., the speed of ultrasound is on the order of
1000 m/s). The resulting dilatation is characterized by the thermal dilatation

coefficient (isobaric) α = 1

V ( ∂V
∂T

)p.

• Let us start from V = Vr [1− χL(p− pr)] [1 + αL(T − Tr)] for the molar vol-
ume, where pr and Tr are a reference pressure and temperature, and Vr is a
reference molar volume; χL and αL are assumed to be constant. We deduce that
χ = χL/ [1− χL(p− pr)] , α = αL/ [1 + αL(T − Tr)], and so χ ∼= χL, α ∼= αL

provided that χL |p− pr| and αL |T − Tr| � 1. This latter formula corresponds
to the linearization of a more general equation in the vicinity of pr and Tr.

• The corresponding equation of state is

ρ = ρr/ [(1− χL(p− pr))(1 + αL(T − Tr))] .

Let us consider the case of a liquid for which the molar volume is only a
function of the temperature V ∼= V0

T . We will use the function F , meaning
that F = F (T, V) is a function of the temperature alone here; i.e., F = F

0

T .
We deduce from this that

μ = F
0

T + pV0

T . (2.51)

The term μ0
T is often used instead of F

0

T . Then,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ = μ0
T + pV0

T , F = μ0
T ,

S = −dμ0
T /dT − p dV0

T /dT = S
0

T − p dV0

T /dT,

E = μ + TS − pV = μ0
T (T )− T (dμ0

T/dT,

+p dV0

T /dT ) = E
0

T − pT dV0

T /dT,

H = μ + TS = E
0

T − p(T dV0

T /dT − V
0

T ).

(2.52)
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Real Gases: The Virial Formulae

The virial formulae allow us to model real gases relatively accurately. They
make it possible to express V according to p and T or p as a function of V
and T using expansions. Thus, we have

V = RT/p+ B + C′p. (2.53)

Or, conversely,

p =
RT

V (1 +
B

V +
C

V2 + . . .). (2.54)

Coefficients A,B,C . . . are functions of temperature6.
By performing the expansions while assuming that the quantities p and

1/V are small, we find that C = 2B + RTC′. We then obtain the perfect gas
law by canceling the coefficients of the virial B,C . . .

The coefficient B characterizes the first-order molecular interactions.
When V is large (p is small), the van der Waals law becomes p = RT

V ( 1

1−b/V −
a

RTV ), and thus takes the form of a limited virial expansion p = RT

V (1+B/V)
or V = RT/p + B, where B = b − a/RT . By limiting the expansion of the
virial to the coefficient B, we can easily calculate the thermodynamic func-
tions by introducing functions of the temperature to be determined. Since
V = ∂μ/∂p = RT/p+ B, we find that⎧⎪⎪⎨⎪⎪⎩

μ = μ0
T + RT ln(p/p0) + Bp,

S = −(∂μ/∂T )p = S
0

T −R ln(p/p0)− p dB/dT,

S
0

T = −dμ0
T /dT,

(2.55)

where p0 is the standard pressure. Defining the fugacity f via μ = μ0
T +

RT ln(f/p0), we obtain

ln f = ln p + Bp/RT. (2.56)

The molar free energy is a function of T and V. We have p = RT (1+B/V)/V =
−∂F/∂V, which yields

F = F
0

T −RT lnV + RTB/V. (2.57)

Since μ = F + pV, then, starting from μ(T, p), we get

μ = μ0
T + RT ln(RT/p0V) + 2RTB/V, (2.58)

6Other formulae can be found in the literature. So Stephenson [267] gives for
Argon in homogeneous phase, an expansion with seven terms which is slightly dif-
ferent from the virial one.
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which leads to

F = μ− pV = μ0
T + RT ln(RT/p0V) + RTB/V −RT (2.59)

and gives the expression for F
0

T as a function of μ0
T :

F
0

T = μ0
T + RT ln(RT/p0)−RT. (2.60)

The supercritical fluid case is presented in the Appendix (see Sect. A.5.1).

2.2.4 EOS for Solids

The internal energy of a solid is E = E(S, ε,m), which depends on eight
variables (or seven variables if we assume unit mass or consider one mole of
the solid). The simplest equation of state is obtained for elastic solids. For a
fluid, the conjugate of the volume is the negative of the pressure. For a solid,
the conjugate of the strain tensor ε is the stress tensor Σ. In the framework
of the small perturbation theory, the EOS for thermoelasticity is

Σ = λ tr(ε)1 + 2με− 3Kαθ1, (2.61)

where θ = T − T0 is the deviation from the reference temperature T0, and
λ, μ,K = (3λ+ 2μ)/3 are coefficients calculated for isothermal elasticity, and
α is the coefficient of dilatation.

We therefore have

ε =
1 + ν

E
Σ− ν

E
tr(Σ)1 + α θ 1,

where E is Young’s modulus and ν is the Poisson coefficient such that

E = μ
3λ + 2μ
λ + μ

.

A second equation of state is needed to completely define the thermodynamic
behavior. This equation gives the entropy:

ρ0s = 3Kα tr(ε) + 2β θ, (2.62)

where β = ρ0cε/2T0 and cε is the specific heat per unit mass of the solid at
constant strain: cε = (d̃q/dT )ε = T (∂s/∂T )ε. The specific heat per unit mass
of the solid at constant stress can be defined in a similar manner to that for
fluids; i.e., cΣ = (d̃q/dT )Σ = T (∂s/∂T )Σ. We then have cΣ = cε+3Kα2T0/ρ0.
The free energy is

ρ0f =
1
2
(λ (tr(ε)2 + 2με · ε)− 3K αθ trε− β θ2,

and the internal energy can be deduced from the relation e = f + Ts.
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2.3 Properties of Mixtures

2.3.1 General Information

We will only treat gas mixtures and homogeneous liquid solutions here [71,
214, 109, 181]. The preceding arguments remain valid. In particular, for a
closed system at equilibrium, we always have

dE = T dS − p dV = d̃Q + d̃W. (2.63)

If an unspecified component of the mixture is denoted by j, we have

E = E(S, V , nj), j = 1, . . .N. (2.64)

In the same way, we always have

T = ∂E/dS, −p = ∂E/∂V . (2.65)

We define the molar chemical potential μj of species j as

μj = ∂E/∂nj, (2.66)

so that

dE = T dS − p dV +
N∑

j=1

μj dnj , (2.67)

and so, according to the properties of homogeneity,

E = T S − pV +
N∑

j=1

μj nj . (2.68)

We extract from these two equations the Gibbs–Duhem relation

0 = S dT − V dp +
N∑

j=1

nj dμj . (2.69)

Note that, for a closed system in moving equilibrium (reversible transforma-
tion), it is necessarily the case that

N∑
j=1

μj dnj = 0. (2.70)
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However, we will consider cases where this relation is not obeyed for closed
systems. Each component will be regarded as being at equilibrium in the
mixture, but there will not be a mutual equilibrium between the components.
There are irreversible evolutions of chemical origin. In this case, we can always
write δE = δW + δQ, but if δW is always equal to −p δV , δQ will obey

δQ = T (δS − δiS)

with δiS ≥ 0. Thus,

N∑
j=1

μj δnj = −T δiS ≤ 0, (2.71)

where the equals sign corresponds to reversible evolution. The symbol d̃ of
the differential forms and the symbol d are obviously replaced by δ, which is
characteristic of unspecified infinitesimal transformations.

Using the internal energy, we can also define the thermodynamic potentials⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H = E + pV = TS +
∑N

j=1 μj nj = H(S, p, nj),

dH = T dS + V dp +
∑N

j=1 μj dnj ,

F = E − TS = −pV +
∑N

j=1 μj nj = F (T, V , nj),

dF = −S dT − p dV +
∑N

j=1 μj dnj ,

G = E − TS + pV =
∑N

j=1 μj nj = G(T, p, nj),

dG = −S dT + V dp +
∑N

j=1 μj dnj .

(2.72)

The thermodynamic functions for a given mixture cannot generally be de-
duced from the thermodynamic functions for the pure substances. Thus μj ,
the chemical potential of j in this mixture, is different from the thermody-
namic potential μ•j of the pure substance j (μ of the pure substance j).

2.3.2 Partial Molar Quantities

To express the laws of state in the absence of a known fundamental energy
law E(S, V , nj) or H(T, p, nj), one often uses the partial molar quantities.
If ϕ is an extensive thermodynamic function, the partial molar quantities of
this extensive quantity will be

ϕj = (∂ϕ/∂nj)T, p, ni�=j
. (2.73)

Thus,
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Gj = μj ,

Sj = (∂S/∂nj)T, p, ni�=j
= −(∂μj/∂T )p, ni ,

Vj = (∂V/∂nj)T, p, ni�=j
= (∂μj/∂p)T, ni .

(2.74)

Using the Gibbs equation, we find that⎧⎪⎪⎨⎪⎪⎩
Ej = (∂E/∂nj)T, p, ni�=j

= T Sj − pVj + μj ,

Hj = T Sj + μj ,

F j = −pVj + μj .

(2.75)

In the general case, we set

ϕj = njϕj . (2.76)

The extensive quantity ϕ(T, p, nj) is homogeneous to the first degree with
respect to nj . It follows from this that

ϕ =
N∑

j=1

njϕj =
N∑

j=1

ϕj . (2.77)

This result is valid for E,S,V . . . and⎧⎪⎪⎨⎪⎪⎩
S =

∑N
j=1 njSj =

∑N
j=1 Sj ,

V =
∑N

j=1 njVj =
∑N

j=1 Vj ,

E =
∑N

j=1 njEj =
∑N

j=1 Ej ,

(2.78)

and we have7 ⎧⎪⎪⎨⎪⎪⎩
Ej = TSj − pVj + μjnj ,

Hj = TSj + μjnj,

Fj = −pVj + μjnj .

(2.79)

7Initially, it is as if each species j constitutes an autonomous subsystem that
is characterized by its own internal energy Ej and its own variables Sj ,Vj ,nj . If
this was really the case, it would be necessary to obey the Gibbs relation for each
subsystem; i.e., dEj = T dSj − p dVj + μj dnj . However, this is not the case in
general. Indeed, dEj = T dSj − p dVj + μj dnj + Sj dT − Vj dp + nj dμj = T dSj −
p dVj + μj dnj + nj(Sj dT − Vj dp + dμj); i.e., dEj = T dSj − p dVj + μj dnj +
nj

∑
j
(∂μj/∂ni)T, p, nk �=i dni. It would therefore be necessary, to ensure that the

preceding assertion is obeyed, for
∑

j
(∂μj/∂ni)T, p, nk �=i dni = 0. This is not true

for most cases. However, the results are simplified for ideal mixtures.
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2.3.3 Ideal Mixture

If μ•j is the molar thermodynamic potential of the pure substance j, we have
μ•j = μ•j (T, p). We know that Xj = nj/n is the molar fraction of j, where
n =

∑
j nj . A mixture is ideal if

μj = μ•j + RT lnXj . (2.80)

We then find that

Sj = −∂μj/∂T = −∂μ•j/∂T −R lnXj , (2.81)

or

Sj = S
•
j −R lnXj . (2.82)

In the same way, Vj = ∂μj/∂p = ∂μ•j/∂p; that is to say

Vj = V•j . (2.83)

Thus, partial molar volumes of the species j are unchanged compared to
the components in a pure state. In the same way,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ej = TSj − pVj + μj = TS
•
j − pV•j + μ•j = E

•
j ,

Hj = TSj + μj = TS
•
j + μ•j = H

•
j ,

F j = −pVj + μjnj = Ej − TSj = E
•
j − TS

•
j + RT lnXj ,

= F
•
j + RT lnXj .

(2.84)

2.3.4 Mixture Quantities

The mixture quantity associated with the parameter ϕ is the quantity

Δϕm = ϕ−
N∑

j=1

njϕ
•
j . (2.85)

For an ideal mixture,{
ΔGm = RT

∑
j nj lnXj , ΔSm = −R ∑j nj lnXj ,

ΔVm = 0, ΔEm = 0, ΔHm = 0.
(2.86)
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2.3.5 Activity

The activity8 of species j in a mixture is denoted aj , where

μj = μ•j + RT ln aj . (2.87)

For an ideal mixture, aj = Xj . In the general case,

ΔGm = RT
∑

j

nj ln aj . (2.88)

2.3.6 Ideal Mixture of Perfect Gases

For a perfect gas, μ = μ0
T + RT ln(p/p0); therefore,{
μ•j = (μ0

T )j + RT ln(p/p0),

μj = μ•j + RT lnXj.
(2.89)

The partial pressure is defined as follows:

pj = pXj . (2.90)

It follows from this definition that{
p =
∑

j pj ,

μj = (μ0
T )j + RT ln(pXj/p

0) = μj(T, pj)
(2.91)

and

{
Gj = nj μj = nj [(μ0

T )j + RT ln(pXj/p
0)],

dGj = nj [d(μ0
T )j/dT + R ln(pXj/p

0)]dT + nj RT/pj dpj + μj dnj

(2.92)

or

dGj = −Sj dT + V dpj . (2.93)

Recall that

Gj = Gj(T, pj, nj) = μj nj . (2.94)

We can therefore see that the formalism used for simple systems will also
be valid for component j, with the proviso that this component occupies the

8The chemical activity of a species is the active concentration of this species. In
a solution, electrostatic interactions between different species reduce their potential
reactivities. Therefore, the concentration term is corrected by a factor γ (which is
less than unity) called the coefficient of activity. This occurs in the definition of
chemical potential.
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total volume of the mixture with a partial pressure of pj at the temperature
T . The classical relations are thus valid in this case; in particular the Euler,
Gibbs, and Gibbs–Duhem relations:⎧⎪⎪⎨⎪⎪⎩

Ej = T Sj − pj V + μj nj = Ej(Sj , V , nj),

dEj = T dSj − pj dV + μj dnj ,

0 = Sj dT − V dpj + nj dμj .

(2.95)

Here, the total system (mixture) can be regarded as the sum of N subsystems
whose extensive properties are additive:

G =
∑

j

Gj , E =
∑

j

Ej , H =
∑

j

Hj , S =
∑

j

Sj, F =
∑

j

Fj .

Therefore,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E =
∑

j nj(E
0

T )j =
∑

j nj [(E
0

0)j +
∫ T

T 0 Cv, j(T ) dT ],

H =
∑

j nj(H
0

T )j =
∑

j nj [(H
0

0)j +
∫ T

T 0 Cp, j(T ) dT ],

(H
0

0)j = (E
0

0)j + RT 0, Cp, j = Cv, j + R,

S =
∑

j nj [(S
0

T )j −R ln(pXj/p
0)],

(S
0

T )j = (S
0

0)j +
∫ T

T 0 (Cp, j/T ) dT ,

F =
∑

j nj [(F
0

T )j + RT ln(pXj/p
0)],

(F
0

T )j = (F
0

0)j +
∫ T

T 0 [Cp, j(1 − T/T ′)−R− (S
0

0)j ] dT ′,

(F
0

0)j = (E
0

0)j − T (S
0

0)j ,

G =
∑

j nj[(μ0
T )j + RT ln(pXj/p

0)],

(μ0
T )j = (μ0

0)j +
∫ T

T 0 [Cp, j(1 − T/T ′)−R− (S
0

0)j ] dT ′,

(μ0
0)j = (H

0

0)j − T (S
0

0)j .

(2.96)

It is important to note here that, as we mentioned in Sect. 2.2.3, the tabulated
standard thermodynamical functions are not independent of each other.9

A number (equal to the number of elements in the periodic table) of basic
species are defined from which all chemical species can be formed through
chemical reactions. These basic species are generally stable at atmospheric
temperatures, and their enthalpies are zero under standard conditions. How-
ever, the enthalpies of the other species are not zero under standard conditions,
but are instead equal to their heats of formation from basic species (see for
example [10]).

9If we use the variables T, V, Xj instead of T, p, Xj , the Helmholtz free energy
is then F =

∑
j
nj [(F̆

0
T )j +RT ln(V0Xj/V)], (F̆ 0

T )j = (F̆ 0
0 )j +RT ln(T/T 0).
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2.3.7 A Mixture of Real Gases That Obeys the Virial Relation

For one mole of a real gas that obeys the virial relation (limited to coefficient
B), we have ⎧⎪⎪⎨⎪⎪⎩

μ = μ0
T + RT ln(p/p0) + Bp,

S = −dμ0
T /dT −R ln(p/p0)− p dB/dT,

V = RT/p+ B.

(2.97)

Starting from statistical thermodynamics, and considering first-order mole-
cular interactions, it can be shown that

G =
∑

j

nj [RT ln(p/p0) + p
∑
k, l

Bk, lXkXl + (μ0
T )j + RT lnXj ] (2.98)

in a mixture, which leads to the following expression for the chemical potential
of a binary mixture:

μj = μ•j + RT lnXj − pX2
i (B11 − 2B12 + B22), i �= j,

μ•j = (μ0
T )j + RT ln(p/p0) + Bjjp.

For N species,

μj = (μ0
T )j + RT ln(pXj/p

0) + p (2
∑

k

BkjXk −
∑
k, l

BkjXkXl). (2.99)

The Bij coefficients relate to the interactions between molecules of type i and
j, so Bij = Bji. Note that the mixture is ideal, in the binary case, for B12 =
(1/2) (B11 + B22). However, this case is not supported by any experimental
or theoretical justification, so it is a completely arbitrary assumption.

2.3.8 Liquid Solution

Let us consider a mixture of two liquids in the presence of their vapors, con-
stituting an ideal mixture of perfect gases at a given T :

⎧⎨⎩
G = μg

1 n
g
1 + μg

2 n
g
2 + μl

1 n
l
1 + μl

2 n
l
2,

ng
1 + nl

1 = n1 = const., ng
2 + nl

2 = n2 = const.,
dG = −S dT + V dp + (μl

1 − μg
1)dn

l
1 + (μl

2 − μg
2)dn

l
2.

(2.100)

Let us consider a reversible evolution with p and T remaining constant. We
have two differential forms d̃W = −p dV , d̃Q = T dS (see Fig. 2.5), and
dE = T dS − p dV , which leads to dG = −S dT + V dp.

Therefore, for any reversible evolution of the system, with T and p con-
stant, we have μl

1 = μg
1 or μl

1 = (μ0
T )g

1 + RT ln(p1/p
0), and μl

2 = μg
2 or
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μl
2 = (μ0

T )g
2 + RT ln(p2/p

0). The equilibrium of each pure liquid with its va-
por at the same temperature is given by (μ•1)

l = (μ•1)
g = (μ0

T )g
1+RT ln(p•1/p

0)
and (μ•2)

l = (μ•2)
g = (μ0

T )g
2 + RT ln(p•2/p

0), where p•j is the saturated vapor
pressure of species j.

By subtraction,

μl
1 − (μ•1)

l = RT ln(p1/p
•
1), μ

l
2 − (μ•2)

l = RT ln(p2/p
•
2), (2.101)

where the activities a1 = p1/p
•
1 and a2 = p2/p

•
2, as defined by (2.87), and

their physical significances are thus clarified.

Fig. 2.5. Liquid solution in equilibrium with vapor

Our knowledge of the functions ai(T, p, ni) as of μl
i(T ) includes all of the

equations of state for the solution, and we have μi = μ•i + RT ln ai.
For an ideal liquid solution , we have ai = pi/p

•
i (Raoult’s law), and

so

μi = μ•i + RT lnX l
i . (2.102)

Often, one of the components of a solution obeys Raoult’s law, but not nec-
essarily the other. How can we determine a2, knowing that a1 = X1? We can
write the Gibbs–Duhem equation for a given p and T : n1 dμ1 + n2 dμ2 = 0 or
X1 dμ1 + X2 dμ2 = 0. This gives X1 RT dX1/X1 + X2 RT da2/a2 = 0, with
dX1 + dX2 = 0. Then da2/a2 = dX2/X2, and

ln(a2) = ln(X2) + f(T, p). (2.103)

We set a2 = p2/p
•
2 = b(T, p)X2/p

•
2. If b(T, p) = const., we obtain Henry’s

law.
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2.3.9 Mixture of Real Fluids

Just as we did for real pure fluids in Sect. 2.2.3, we can model mixtures of
real fluids that do not obey the virial relation. To do this, we first consider a
standard reference state that is an ideal mixture of perfect gases corresponding
to the low pressure limit (or a large molar volume) of a mixture of real fluids,
and then consider the rules of mixture that govern the equation of state.

Rules of Mixture For a Real Mixture

The rules of mixture are semi-empirical. For van der Waals, Redlich–Kwong,
or Peng–Robinson laws of state, we have [210, 233]

p =
RT

V − bm
− am

V2 + ubm + wb2m
. (2.104)

am =
∑

i, j XiXj
√
aiaj(1 − kij) and bm =

∑
i Xibi for instance. Knowledge

of the correct rules of mixture and the correct coefficients kij (some data are
available) is essential in order to deduce the laws of state.10

Several rules of mixture exist. If Q is a parameter, and Qm is its value for
a mixture, the general van der Waals expression is

Qm =
∑
i, j

XiXjQi, j . (2.105)

Qii = Qi for the pure substance, and Qij where i and j are different corre-
sponds to mixtures. Using this general expression, we can consider the follow-
ing rules:

• Qij = (Qii + Qjj)/2, which gives Qm =
∑

i XiQi

• Qij =
√
QiiQjj , which gives Qm = (

∑
i Xi

√
Qi)2.

More sophisticated rules involve binary interaction parameters ki, j that
are usually independent of temperature, pressure and concentration, such as:

• Qij = ki, j(Qii+Qjj)/2, where for example kii = 1 and kij �=i is determined
experimentally

• Qij = ki, j

√
QiiQjj , with kii = 1.

Unlike a one-component fluid, there is no critical point for a mixture, but
we can define a pseudo-critical state (see the Appendix, Sect. A.5.1).

10For example, the couple naphthalene–CO2 yields n2 am = n2
1 a1 + 2(1 −

k)n1 n2
√
n1 n2 + n2

2 a2, nbm = n1 b1 + n2 b2. The coefficients are: a1 = 0.39608(1 +

0.72782
√
T/304.1), b1 = 2.66545×10−5 , a2 = 4.37138(1+0.81576

√
T/748.4), b2 =

1.19533 × 10−4.
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Expression for the Free Energy of a Real Mixture

Euler’s relation results from the first-degree homogeneous character of the
thermodynamic potentials in the extensive quantities upon which they de-
pend (and from the zero-degree homogeneous character of the thermodynamic
potentials in the intensive quantities upon which they depend, if necessary).
The free energy F of a mixture is expressed in canonical form as a function
of its temperature T , its volume V , and the molar amounts of the species
nj , j = 1 . . . , N . The partial derivatives of F are:

(
∂F

∂T
)V,nj = −S, (

∂F

∂V )T,nj = −p, (
∂F

∂nj
)T,V,ni�=j

= μj , (2.106)

so the Euler and Gibbs relations are (respectively):{
F = −pV +

∑
j μj nj,

dF = −S dT − p dV +
∑

j μj dnj ,
(2.107)

and the Gibbs–Duhem relation is found to be

0 = S dT − V dp +
∑

j

nj dμj . (2.108)

We saw previously that if we know the rule of mixture it is then possible to
express the pressure p of the mixture as a function of the temperature T ,
the volume V , and the molar amounts of the species nj, j = 1 . . .N . These
variables are the canonical variables of the free energy. We have

(
∂F

∂V )T, nj = −p(T, V , nj). (2.109)

Integrating (2.109) with respect to V leads to

F (T, V , nj) = F 0(T, V0, nj)−
∫ V
V0

p dV , (2.110)

where V0 is a standard volume. The standard state is thus characterized by
the values T, V0, nj . One can assume, as described in Sect. 2.2.3 for pure
substances, that it is always possible to find a standard value V0 such that
the mixture is an ideal mixture of perfect gases for values of V ranging between
V0 and infinity. The preceding relation can then be written as

⎧⎨⎩F (T, V , nj) = F 0(T, V0, nj)−
∫∞
V0 p dV −

∫ V
∞ p dV ,

F (T, V , nj) = F 0(T, V0, nj)−
∫ V
∞(p− nRT/V) dV − nRT ln(V/V0).

(2.111)
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F 0(T, V0, nj) is given by the relation{
F 0 =

∑
j nj [(F̆ 0

T )j + RT ln(V0 Xj/V)],
(F̆ 0

T )j = (F
0

0)j + RT ln(T/T 0).
(2.112)

Thus, knowledge of the rule of mixture that gives p as a function of T, V and nj

on the one hand, and the thermodynamic functions of the ideal mixture—i.e.,
mainly the quantities (H

0

0)j , (S
0

0)j , Cp, j(T )—on the other hand, is sufficient
to allow the determination of the free energy of the real fluid mixture.

2.4 Reactive Mixtures

2.4.1 Enthalpy of a Chemical Reaction

Consider a chemical reaction, such as that shown in (2.12) where ξ is the
progress variable, in a homogeneous mixture. We define the energy rT,p re-
leased by this chemical reaction at a given T and p as

rT,p = (
∂h

∂ξ
)T,p. (2.113)

For a mixture of perfect gases we obtain (see [10])

rT,p = ΔH = −
∑

j

νjMj(q0
f )j , (2.114)

where (q0
f )j is the heat of formation per unit mass of the species under stan-

dard conditions, (q0
f )j = (H

0

0)j/Mj , and ΔH is called the enthalpy of reac-
tion.

Recall that, for a perfect gas, the standard enthalpy (H
0

T )j per mole is

(H
0

T )j = (H
0

0)j +
∫ T

T 0
Cp, j(T ) dT .

The quantity ΔH is the energy released by the chemical reaction per mole
for an ideal mixture of perfect gases at constant temperature and pressure.

For a combustion reaction, which is exothermic, ΔH is positive. The quan-
tity

ΔH ζ̇ = −
∑

j

νjMj(q0
f )j ζ̇ (2.115)

is then the heat released during the combustion reaction. For a multireactive
mixture (see Eq. 2.17), the heat released becomes11

11As noted in [206], the full term Ẇ ′
T = −∑

j
Ẇjhj , including the contributions

from sensible heat enthalpy (i.e., the enthalpy due to an increase in temperature)
terms, is also called the ”heat released” by various authors.
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ẆT = −
∑

j

Ẇj(q0
f )j = −

∑
j,r

νjrMj(q0
f )j ζ̇r =

K∑
r=1

ΔHr ζ̇r. (2.116)

2.4.2 Entropy Production in a Homogeneous Reactive Mixture

In Sect. 2.3 we noted that the given laws of state did not imply that the sys-
tem studied (the mixture) was necessarily at equilibrium. Each component j
(which has a chemical potential μj that is a function of T, p, and nj, and can
also depend on ni where i �= j) of the system was considered a subsystem that
was always at equilibrium; however, mutual equilibrium did not necessarily
occur between such subsystems. The system was a homogeneous mixture with
uniform thermodynamic properties, while the subsystem for each component
was comparable to an open subsystem due to the potential for chemical re-
actions. It was apparent from (2.71) that, in all cases, the entropy produced
during an infinitesimal transformation was

δiS = − 1
T

∑
j

μj δnj . (2.117)

For a single chemical reaction (as given by Eq. 2.12, with stoichiometric coef-
ficients νj), in the absence of diffusion (which is the case for a homogeneous
closed system with uniform properties), we have

dnj = νj dξ, (2.118)

where ξ is the progress variable for the reaction. The production of entropy
becomes

δiS = −δξ

T

∑
j

νjμj . (2.119)

The chemical affinity A is defined as

A = −
∑

j

νjμj . (2.120)

In this case,

δiS =
A

T
δξ ≥ 0, (2.121)

where an equals sign would correspond to the equilibrium of the mixture. Two
equilibrium cases are possible:
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• δξ = 0, so the mixture is frozen; i.e., the concentrations of its components
do not change, meaning that the chemical reaction does not take place or
that it is completely inhibited

• The component concentrations can evolve during the reversible transfor-
mation, yielding A = 0; i.e., chemical equilibrium.

Aside from these two cases, equilibrium is not possible—the transformation
is chemically irreversible and

δiS =
A

T
δξ > 0. (2.122)

The Gibbs relation then becomes{
dE = T dS − p dV +

∑
j μjdnj ,

dE = T dS − p dV −Adξ.
(2.123)

The mixture is at equilibrium, or is undergoing a reversible transformation, if

Adξ = 0. (2.124)

We then derive the expression for the second law for reversible transforma-
tions:

dE = d̃Q + d̃W = T dS − p dV .
For a chemically irreversible transformation,

δE = δQ + δW = T (δS − δiS)− p dV , (2.125)

where the term T δiS is equal to Adξ = −∑j μjdnj .

2.4.3 Chemical Reaction at Equilibrium for a Mixture of Perfect
Gases

We know that, for species j in a mixture of perfect gases,

μj = (μ0
T )j + RT ln(pj/p

0), (2.126)

where (μ0
T )j is a function of the temperature alone. The chemical affinity of

a given reaction will be

A = −
∑

j

νj [μ0
T )j + RT ln(pj/p

0)], (2.127)

or, since pj = CjRT ,

A = −
∑

j

νj [(μ0
T )j + RT ln(RT/p0) + RT lnCj ]. (2.128)

By setting
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lnKC = −(1/RT )
∑

j

νj [(μ0
T )j + RT ln(RT/p0)], (2.129)

we therefore obtain

N∏
j=1

(Cj)νj = KC exp(−A/RT ). (2.130)

Note that KC is a function of T alone. When the reaction is at chemical
equilibrium,

N∏
j=1

(Cj)νj = KC(T ). (2.131)

The function KC(T ) is termed the equilibrium constant of concentrations.12

2.4.4 Mixture of Perfect Gases in Chemical Equilibrium

Equilibrium Composition

The results in the previous section were obtained for a given chemical reaction
within the mixture. Let us consider now a multireactive mixture. Suppose that
all of the species in the mixture can be derived from a certain number of basic
species present in the mixture:

Ei =
L∑

l=1

βliAl, i = (L + 1), . . . N. (2.132)

The conservation equations for the basic species are:

nl +
N∑

i=l+1

βli ni = n0
l , l = 1, . . . L, (2.133)

meaning that the ni, i = (L + 1), . . .N , form a system of progress variables,
and the affinities of formation for the reactions are then

⎧⎪⎪⎨⎪⎪⎩
−Ai = μi −

∑L
l=1 βliμl, i = (L + 1), . . . N,

−Ai = (μ0
T )i −

∑L
l=1 βli(μ0

T )l

−RT (
∑L

l=1 βli − 1) ln(RT/p0) + RT ln(
∏

l(Cl/Ci)).

(2.134)

12Note that there is also an equilibrium constant of partial pressures Kp(T ),
defined as lnKp = −(1/RT )

∑
j
νj(μ

0
T )j . The chemical equilibrium relation then

becomes
∏N

j=1
(pj/p

0)νj = Kp(T ).
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By setting

lnKC, i = [
L∑

l=1

βli(μ0
T )l − (μ0

T )i + RT (
L∑

l=1

βli − 1) ln(RT/p0)]/RT, (2.135)

we obtain

L∏
l=1

(Cl/Ci) = KC, i exp(−Ai/RT ), i = (L + 1) . . .N. (2.136)

At equilibrium, Ai vanishes and we get

L∏
l=1

(Cl/Ci) = KC, i, i = (L + 1) . . . N. (2.137)

We can solve the system of equations obtained by noting the relation ρ ni =
Ci, where ni is taken for the unit mass of mixture (ni = Yi/Mi).

Specific Heats and Other Coefficients at Chemical Equilibrium

In order to analyze a fluid mixture flow while assuming chemical equilibrium,
we need to:

1. Calculate the mixture composition at a given pressure and temperature
from the previous equilibrium relations

2. Determine the partial derivatives of the thermodynamic functions.

We will not discuss the numerical methods that can be used to calculate
the mixture composition in detail here (for more on this, see for example [10]).

At constant composition, for a mass m of an ideal mixture of perfect gases
(called a “frozen mixture” or a “mixture with a frozen composition;” m is a
given mass that may be unit mass), we simply have

Cpf = (
d̃Q

dT
)p,nj =

1
T

(
∂S

∂T
)p,nj = (

∂H

∂T
)p,nj =

N∑
j=1

nj C̄p, j, (2.138)

or, for a mixture with unit mass,

cpf = (
d̃q

dT
)p,nj =

1
T

(
∂s

∂T
)p,nj = (

∂h

∂T
)p,nj =

N∑
j=1

Yj C̄p, j. (2.139)

For the isentropic exponent γf and the characteristic speed af , we have
(respectively):
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{
γf = (∂ ln p/∂ ln ρ)s,nj = cpf/cvf = cpf/(cpf − nR),

a2
f = cpf nRT/(cpf − nR).

(2.140)

This type of result makes it possible to determine the variables as functions
of one of them provided the coefficients obtained do not vary too much in the
vicinity of a given state. We then get laws of the form

p T−γf/(γf−1) = const.

At chemical equilibrium, the problem is more complex. The chemical com-
position (the values of nje, j = 1 . . .N) is obtained by noting Ai = 0, i =
L + 1, . . .N . In particular, we must also determine partial derivatives that
characterize the variation in composition:{

DT,j = (∂ lnnj/∂ lnT )p, Dp,j = (∂ lnnj/∂ ln p)T ,

DT = (∂ lnn/∂ lnT )p, Dp = (∂ lnn/∂ ln p)T ,
(2.141)

where n(p, T ) =
∑N

j=1 nj = p/ρRT is the total number of moles of a unit
mass of the mixture (these coefficients DT , Dp vanish for a frozen mixture).13

We then obtain{
cpe = (∂h/∂T )p,nje = cpf +

∑N
j=1 nj H̄j DT,j ,

γe = (∂ ln p/∂ ln ρ)s,nje = cpe/[cpe(1 −Dp)− nR(1 + DT )2].
(2.142)

Note that it is not sufficient to replace cpf with cpe in order to calculate
equilibrium quantities such as γe, ae, or (∂ lnT/∂ ln p)e. For instance, we have
(∂ lnT/∂ ln p)snje = (1+DT )nR/cpe, even when (∂ lnT/∂ ln p)snj = nR/cpf .
Also note that we have not discussed the signs of the different coefficients that
we introduced in this section. Such a discussion needs to take thermodynamic
stability into account; this is addressed in Sect. 2.5.

2.4.5 Unspecified Multireactive Mixtures

Let us assume that the number of reactions K is fixed and that the progress
variables are ξ1, ξ2, . . . ξK . There are then K chemical affinities that vanish
at equilibrium. These reactions are not inevitably independent; i.e., the rank
of the matrix for νjr can be lower than K. If this is the case, we must choose
R independent relations among the K present and thus define a number R of
“reduced” progress variables ξ1, ξ2, . . . ξR.

13The coefficients can be determined by the Jacobian method, as performed by
Barrère and Prud’homme [10].



2.4 Reactive Mixtures 41

2.4.6 Reactive Solutions

This time, consider a reactive liquid solution in equilibrium with its vapor at
a temperature T and pressure p. For each component we have

μi = μ•i + RT ln ai. (2.143)

The entropy production due to chemical irreversibility is

δiS = − 1
T

∑
j

μj δnj . (2.144)

In the case of only one reaction, we set

A = −
∑

j

νjμj , δnj = νj δξ, (2.145)

and we find that

δiS = (A/T ) δξ. (2.146)

This time,
A = −

∑
j

νjμ
•
j −RT ln(aj)νj . (2.147)

Setting

lnKa = −
∑

j

νjμ
•
j , (2.148)

we get

N∏
j=1

(aj)νj = Ka(T, p) exp (−A/RT ), (2.149)

and, at equilibrium,

N∏
j=1

(aj)νj = Ka(T, p). (2.150)

2.4.7 Extension to Nonequilibrium Mixtures

The results obtained above also allow us to consider cases where the chemical
affinities do not cancel. For instance, the rate of entropy production for a
one-reaction mixture will be

δiS = (A/T ) ξ̇. (2.151)

Chemical kinetics (see Sect. 3.4) allows us to obtain the expression for the
reaction rate ξ̇ as a function of the state variables and then to determine the
time evolution of the mixture.
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2.5 Thermodynamic Stability

Sections 2.1 to 2.3 discussed the significance of the first derivatives of the
internal energy with respect to the extensive quantities on which the internal
energy depends. For a mixture of N chemical species [181], we have

E = E(S, V , n1, n2, . . . nN ), (2.152)

and (2.65) and (2.66) lead us to deduce that

T = ∂E/dS, −p = ∂E/∂V , μj = ∂E/∂nj. (2.153)

The chemical potential gj per unit mass was also introduced, where gj =
μj/Mj, and this leads to results similar to those shown above:{

E = E(S, V , m1, m2, . . .mN ),

T = ∂E/dS, −p = ∂E/∂V , gj = ∂E/∂mj.
(2.154)

We see here that the second law of thermodynamics leads, in the case of stable
equilibrium, to conditions on the partial second derivatives with respect to the
extensive variables of the internal energy, and this has consequences for the
usual quantities and relations. This is thermodynamic stability.

2.5.1 The Stability Matrix

We now consider a mixture of N species distributed on both sides of a non-
deformable, adiabatic and impermeable surface inside a container. The walls
of the container are isolated from the outside (see Fig. 2.6a).

Each subsystem is at thermodynamic equilibrium, with fixed concentra-
tions. If we remove the wall (we assume that this requires a negligible amount
of work and that no chemical reaction takes place during the transformation),
the mixture then occupies the entire container and will naturally reach a new
state of equilibrium. This is a characteristic of a medium with thermodynamic
stability (see Fig. 2.6b).

We then obtain the following relations:{
E + E′ = Ef , S + S′ ≤ Sf ,

V + V ′ = Vf , nj + n′j = njf .
(2.155)

Then

E(S, V , nj) + E(S′, V ′, n′j) = E(Sf , V + V ′, nj + n′j). (2.156)

Since T = ∂E/dS ≥ 0,
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Fig. 2.6. A chemical mixture: a in a container with two sections; b after removing
the inner surface

E(Sf , . . .) ≥ E(S + S′, . . .). (2.157)

It follows that

E(S, V , nj) + E(S′, V ′, n′j) ≥ E(S + S′, V + V ′, nj + n′j). (2.158)

The first-degree homogeneous character of the function E = E(S, V , nj) en-
ables us to write

1
2
[E(S, V , nj) + E(S′, V ′, n′j)] ≥ E(

S + S′

2
,
V + V ′

2
,
nj + n′j

2
). (2.159)

This leads us to conclude that E = E(S, V , nj) is a convex function. It is
easy to show that this result implies a positive definite stability matrix:

∥∥∥∥∥∥∥∥∥∥∥∥

∂2E/∂S2 ∂2E/∂S∂V ∂2E/∂S∂n1 . . . ∂2E/∂S∂nN

∂2E/∂V∂S ∂2E/∂V2 ∂2E/∂V∂n1 . . . ∂2E/∂V∂nN

∂2E/∂n1∂S ∂2E/∂n1∂V ∂2E/∂n2
1 . . . ∂2E/∂n1∂nN

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
∂2E/∂nN∂S ∂2E/∂nN∂V ∂2E/∂nN∂n1 . . . ∂2E/∂n2

N

∥∥∥∥∥∥∥∥∥∥∥∥
. (2.160)

In this case of a symmetrical matrix, the necessary and sufficient condition
for this is that all of the principal minors should be positive. Thus,14

14Similar results are obtained if the molar amounts of the species nj are replaced
with the masses of the species mj .
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂2E/∂S2 = ∂T/∂S > 0,

∂2E/∂V2 = −∂p/∂V > 0,

(∂2E/∂S2)(∂2E/∂V2)− (∂2E/∂S∂V)2 > 0,

∂2E/∂n2
j = ∂μj/∂nj > 0, . . .

(2.161)

What are the consequences of this for a mixture of unit mass? We need
to consider the relation

N∑
j=1

Mj nj = 1. (2.162)

This relation does not modify the convexity of the function E, which then
becomes e and depends on N + 1 independent variables instead of N + 2.

This result can be generalized if an additional condition on concentration
variations is given. For a certain number R of independent progress variables,
we have

nj = n0
j +

R∑
r=1

νjrξr, (2.163)

with

N∑
j=1

Mj n
0
j = 1 (2.164)

and

N∑
j=1

Mj νjr = 0. (2.165)

The corresponding chemical affinities Ar are

Ar = −
N∑

j=1

νjr μj , (2.166)

and we have {
e = e(s, ϑ, ξ1, ξ2, . . . ξR),

de = T ds− p dϑ−∑R
r=1 Ar dξr.

(2.167)

Let us now set, according to convention,

∂2e/∂x ∂y = exy. (2.168)

The convexity of the internal energy function results in positive definite char-
acter for the matrix
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∥∥∥∥∥∥∥∥∥∥∥∥

ess esϑ esξ1 . . . esξR

evs eϑϑ eϑξ1 . . . eϑξR

eξ1s eξ1ϑ eξ1ξ1 . . . eξ1ξR

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
eξRs eξRϑ eξRξ1 . . . eξRξR

∥∥∥∥∥∥∥∥∥∥∥∥
. (2.169)

We now examine the consequences of this result.

2.5.2 Case of a Simple Fluid

If the fluid comprises only one component, we can write

ess > 0, eϑϑ > 0, esseϑϑ − e2
sϑ > 0. (2.170)

Specific Heats

{
cv = (d̃q/dT )ϑ = T (∂s/∂T )ϑ = T/ess > 0,

cp = (d̃q/dT )p = T (∂s/∂T )p,
(2.171)

but if p = cte, we have{−dp = 0 = eϑs ds + eϑϑ dϑ,

dT = ess ds + esϑ dϑ = (ess − e2
sϑ/eϑϑ) ds.

(2.172)

The specific heat at constant pressure can therefore be written as

cp = T (ess − e2
sϑ/eϑϑ)−1 > 0. (2.173)

Moreover,

cp − cv = (T/ess)(esseϑϑ/e
2
sϑ − 1)−1 > 0. (2.174)

Characteristic Speed

(∂p/∂ρ)s = −ϑ2(∂p/∂ϑ)s = v2 eϑϑ > 0. (2.175)

We therefore set

c2 = (∂p/∂ρ)s. (2.176)
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2.5.3 Case of a Mixture with One Degree of Chemical Freedom

If the mixture has a frozen chemical composition, the results are similar to
those shown above: {

cvf > 0, cpf > 0, cpf − cvf > 0,

c2f = (∂p/∂ρ)sξ.
(2.177)

If the mixture is at chemical equilibrium, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A = 0,

cve = T (∂s/∂T )ϑA = T (ess − e2
sξ/eξξ)−1 > 0,

cpe > 0, cpe − cve > 0, c2e = (∂p/∂ρ)sA,

c2e = ϑ2(eϑϑ − e2
ϑξ/eξξ) ≤ c2f .

(2.178)

On the other hand, we cannot say anything about the signs of quantities such
as

a = (∂p/∂ξ)sρ = −eϑξ (2.179)

or

b = (∂p/∂A)sρ = eϑξ/eξξ. (2.180)

The b/a ratio, which is equal to (−eξξ), is always negative.

2.5.4 Case of a Mixture with Several Degrees of Chemical
Freedom

The inequalities obtained in this case are the same as those obtained for only
one degree of freedom.

We can also consider thermodynamic states in which some of the ξr are
constant and the Ar corresponding to the other ξr are equal to zero. We can
then define new inequalities, specific heats, and characteristic speeds, such as

c2K = (∂p/∂ρ)s ξ1 ...ξK AK+1 ...AR . (2.181)

2.6 Surface Tension

To a first approximation, the fluid–fluid interface can be considered an au-
tonomous two-dimensional medium that is characterized by thermodynamic
properties, in the same manner as for three-dimensional media (a more precise
theory is presented in Chap. 11). We will first present thermostatic relations
for the one-component case, and then address multicomponent fluids.
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2.6.1 One-Component Fluid–Fluid Interfaces

For a one-component interface with one mole of surface area Σ, a surface
tension σ, and at a temperature T , we can write

Ea = TSa + σΣ + μa = Ea(Sa, Σ). (2.182)

We then obtain the following Gibbs and Gibbs–Duhem relations:15{
dEa = TdSa + σ dΣ,

0 = Sa dT + Σ dσ + dμa.
(2.183)

For the liquid–vapor interface of a pure substance, it is generally assumed
that the surface tension is a function of temperature alone. We then have
σ = σ(T ). The usual thermodynamic properties are easily deduced using the
interfacial free energy Fa. For one mole,{

F a = Ea − T Sa = σΣ + μa = F a(T, Σ),

d F a = −Sa dT + σ dΣ.
(2.184)

Therefore, −∂Sa/∂Σ = dσ/dT is a function of T only. dσ/dT is usually
negative. We deduce from this relation that

Sa = −(dσ/dT )Σ + (S
0

T )a. (2.185)

Then ⎧⎪⎪⎪⎨⎪⎪⎪⎩
dF a = [(dσ/dT )Σ − (S

0

T )a] dT + σ dΣ,

F a = (F
0

0)a + σΣ − ∫ T

T 0(S
0

T )a dT,

(F
0

0)a = const.

(2.186)

Or, setting (F
0

T )a = (F
0

0)a −
∫ T

T 0(S
0

T )a dT ,

F a = (F
0

T )a + σΣ. (2.187)

Due to the evident relation

μa = Fa − σΣ, (2.188)

it follows that

μa = (F
0

T )a, (2.189)

15It is more common to consider unit area, in which case we get ea = T sa + σ +
μana, and then the relations can be deduced from (2.183) and naΣ = 1. However,
we will retain the present formalism, which is also valid.
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where (F
0

T )a is a function of T alone. The internal energy is obtained by
writing Ea = F a + T Sa or Ea = (F

0

T )a + σ Σ + T [(S
0

T )a − (dσ/dT )Σ];
moreover,

Ea = (E
0

T )a + (σ − T dσ/dT )Σ, (2.190)

with

(E
0

T )a = (F
0

0)a + T (S
0

T )a −
∫ T

T 0
(S

0

T )adT. (2.191)

Example: A Vapor Bubble Inside a Liquid

Let us consider, as an example, a vapor bubble inside a liquid under zero-
gravity conditions (see Fig. 2.7). The system is at a uniform constant tem-
perature T and is subjected to a constant pressure p through the use of a
piston.

Fig. 2.7. A vapor bubble inside a liquid under zero-gravity conditions

For each of the three subsystems we have⎧⎪⎪⎨⎪⎪⎩
dEg = T dSg − pg dVg + μg dng,

dEl = T dSl − pl dV l + μl dnl,

dEa = T dSa − σ dΣ + μa dna.

(2.192)

For the whole system we have
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E = Eg + El + Ea, S = Sg + Sl + Sa,

V = Vg + V l, n = ng + nl + na,

dE = T dS − p dV + (pl − pg)dVg + σ dΣ,

+(μg − μl)dng + (μa − μl)dna.

(2.193)

For a reversible transformation we always have dE = d̃W + d̃Q, d̃W =
−p dV , d̃Q = T dS. Therefore, for an unspecified infinitesimal transforma-
tion, δE = T δS − p δV − T δiS, assuming that the piston displacement is
reversible. It follows that

−T δiS = (pl − pg)δVg + (μg − μl)δng + (μa − μl)δna + σ δΣ ≤ 0. (2.194)

Because {Vg = 4/3 π r3, δVg = 4 π r2 δr,

Σ = 4 π r2, δ Σ = 8 π r δr = 2 δVg/r,
(2.195)

and ng and na may be considered independent variables, we then obtain

−T δiS = (pl − pg + 2 σ/r)δVg + (μg − μl)δng + (μa − μl)δna ≤ 0. (2.196)

At equilibrium (i.e., during a reversible transformation),

pg = pl + 2 σ/r, μg = μl = μa. (2.197)

Exercise:

Calculate the saturated vapor pressure of a vapor bubble in a liquid at a pressure
p and temperature T , and then compare it with that obtained for a liquid with a
planar surface (p•).

Solution: For the bubble, pg = pl + 2σ/r, μg − μl = 0, (μ0
T )g + RT ln(pg/p0) =

(μ0
T )l + pl V l

. For the planar surface,

(μ0
T )g +RT ln(p•/p0) = (μ0

T )l + p• Vl
,

RT ln(pg/p•) = (pl − p•)Vl
.

However,
pg = pl + 2σ/r,

RT ln(pg/p•) = (pl − p• − 2σ/r)Vl
.

For small values of r, we get ln(pg/p•) = −(2σ/r)(Vl
/RT ) = −B/r.
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Example of Water at 300K: ln(pg/p•) ∼= −10−9/r, where r is in meters. The vapor
pressure decreases rapidly with the bubble radius, and vanishes when r vanishes.
However, we must take into account the fact that, for a radius that is of the same
order of magnitude as the intermolecular distances within the liquid, the surface
tension is dependent on r. The liquid pressure pl = p is smaller than the vapor
pressure by the quantity 2 σ/r. At equilibrium, p can reach very small values for
very small radii. Therefore, for a pure confined liquid, it will be necessary to apply
significant force to the liquid in order to create a vapor bubble.

Remark: We now invert the above problem by considering a liquid drop suspended
in its vapor [33]. Again using water as an example, we have ln(pg/p•) ∼= 10−9/r for
small values of r, and pl− pg = 2σ/r. For small droplets, the vapor pressure is very
high compared to the saturated vapor pressure of the planar (or weakly curved)
liquid surface. This phenomenon is unstable. There is an equilibrium radius r∗ for
a given vapor pressure pg > p, and any droplet that is smaller than r∗ tends to
evaporate, while any droplet that is larger than r∗ tends to increase.

Finally, we should mention that capillarity influences chemical reactions
in bubbles, as demonstrated by A. Sanfeld et al. This is easily understood by
noting that the concentrations in a gas mixture at equilibrium are sensitive
to the pressure, and that higher pressures occur in small bubbles, as we have
seen. More on this issue can be found in [245].

Cases with a Nonuniform Surface Temperature

When there is a nonuniform surface temperature, we cannot assume that
the system is in complete thermodynamic equilibrium. Examples of motions
induced by nonuniform surface tension due to surface temperature fluctuations
are given in Chap. 7 (Sects. 7.9.1 and 7.9.2). Of course, local equilibrium is
always present, and a simplified equation of state can be obtained by assuming
a constant derivative dσ/dT for the surface tension. However, more detailed
empirical EOS formulae are also available in this case.

2.6.2 Multicomponent Fluid–Fluid Interfaces

For the multicomponent case, we can write an expression for the internal
energy of a given mass of interface as a function of temperature, specific area,
and specific molar amounts of species at equilibrium. We then have⎧⎪⎪⎨⎪⎪⎩

Ea = T Sa + σ Σ +
∑N

j=1 μj nja,

dEa = T dSa + σ dΣ +
∑N

j=1 μj dnja,

0 = Sa dT + Σ dσ +
∑N

j=1 nja dμj .

(2.198)

Numerous expressions for the multicomponent interface EOS can be found in
the literature, but it is difficult to find a general formula. In addition, surface
tension is very sensitive to the presence of surfactants. Fortunately, in some
common cases, we can assume that the derivatives ∂σ/∂nja are constant.
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Transfer Phenomena and Chemical Kinetics

Fundamental physical quantities such as mass, momentum and energy can
be exchanged between portions of a system, or created during transforma-
tions through different processes such as convection, diffusion and chemical
reactions. Convection is a type of mass exchange that is dependent upon the
mean material velocity. Momentum and energy transport are generally associ-
ated with mass transport. Aside from mean material motions, momentum and
energy can also be exchanged through molecular interactions. Indeed, mole-
cular quantities are transferred by collisions between molecules, as explained
in Sect. 3.3.1. Molecular collisions lead to momentum transfer due to viscosity
and to internal energy transfer through thermal conduction. Self-diffusion is
the diffusion of molecules in a one-component medium. Chemical mixtures
involve the diffusion of species, and the mass diffusion flux has already been
defined in Sect. 2.1.3. All of these diffusive fluxes have associated transfer
coefficients.

All of the above is true of laminar flows. However, in turbulent flows trans-
fers are often much more efficient than in laminar flows because convection is
enhanced by random processes at the macroscopic scale. It is convenient to
treat this phenomenon in a similar manner to molecular collisions and thus to
define turbulent fluxes and turbulent transfer coefficients. Chapter 8 describes
the advantages and limitations of such an approach. The important difference
is that molecular transfer coefficients depend only on local quantities such as
temperature, pressure and concentration, which are in fact molecular averages,
while turbulent transfer coefficients are much more complex.

In mixtures that undergo chemical reactions, chemical species are produced
and removed, leading to positive (source) or negative (sink) production terms
in the balance equations. These terms obey the laws of chemical kinetics and
involve specific reaction rates.

We will limit ourselves in this chapter to molecular transfer and laminar
flows.

Section 3.1 considers two examples, each of which involves only one ele-
mentary irreversible process: near-equilibrium chemical relaxation and heat

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_3, © Springer Science+Business Media, LLC 2010
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transfer between discrete systems. In these two cases it is possible to express
the entropy production rate as a product of two terms, one of which can be in-
terpreted as the cause of the process and the other as the effect. The simplest
possible relation between cause and effect is proportionality, and the corre-
sponding proportionality coefficient is called the phenomenological coefficient.

In Sect. 3.2, we then generalize the previous method to tackle phenom-
ena with multiple transfer processes, and entropy production1 allows us to
introduce generalized forces and fluxes that are connected by linear laws with
matrices of phenomenological coefficients.

A simplified kinetic theory of gases is presented in Sect. 3.3.1. This al-
lows us to obtain the transfer coefficients from a molecular-scale analysis and
to determine their dependence on state variables. This analysis particularly
concerns one-component systems.

More discussion of transfer coefficient determination is provided in Sect.
A.6 and, in particular, transfer coefficient formulae that are valid for chemical
mixtures are detailed in Sect. A.6.3.

Finally, Sect. 3.4 is devoted to chemical kinetics.

3.1 General Information on Irreversible Phenomena

The irreversible character of a phenomenon is not associated with the changes
in entropy between the initial and final states of the considered system, but
with the entropy produced. Indeed, we have [213]

ΔS = ΔeS + ΔiS. (3.1)

The transformation of interest will be irreversible if ΔiS > 0. From this point
of view, the simplest systems to study are discrete systems. These systems
consist of subsystems that are each individually at equilibrium, but in mutual
disequilibrium with each other. Thus, the overall system is not in equilibrium,
except in particular situations. It is possible to apply the knowledge gathered
for simple systems at equilibrium to this type of system.

We will also see that similar methods can be applied to systems with
continuous spatial variations due to the local state postulate (see Sect. 2.1.3).
We will initially examine two types of discrete system.

3.1.1 A Chemical Reaction Near Equilibrium

In a monoreactive homogeneous mixture [9, 181, 213], we have

1Note that transfer phenomena—just like chemical production—are necessarily
associated with irreversibility, and they result in increased entropy, as we show in
Chap. 4.
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nj = n0

j + νjξ,

dE = T dS − p dV −Adξ,

A = −∑j νjμj .

(3.2)

The internal energy of the closed system with uniform properties of interest
is thus a function of the three variables S, V , and ξ:

E = E(S, V , ξ). (3.3)

We have

T = ∂E/∂S, −p = ∂E/∂V , −A = ∂E/∂ξ. (3.4)

The entropy production rate is

˙δiS = (A/T )ξ̇ ≥ 0. (3.5)

Two limit cases then appear:

1. A frozen mixture corresponding to ξ̇ = 0
2. A mixture at chemical equilibrium characterized by A = 0.

In the three-dimensional state space, the manifolds (M) are thus the sur-
faces ξ =const. and A = 0 (see Fig. 3.1).

ξ

ν
S

A = 0

Fig. 3.1. Equilibrium surfaces for a mixture
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Any displacement of a point on one of these surfaces involves a reversible
transformation (evolving equilibrium). This is the case for any evolution with
ξ =const. As soon as ξ varies, the evolution is reversible only if the represen-
tative point is on and remains on surface A = 0.

Any point in this space thus appears to be an equilibrium point a pri-
ori. However, the surfaces represented here are not simply loci of equilibrium
points. The surfaces ξ =const. lead to horizontal stratification. If an evolution
takes place on one of these surfaces, the chemical reaction does not take place;
the mixture is inert and behaves like a simple system at equilibrium. Only the
A = 0 surface corresponds to true chemical evolution. Generally, any point
located outside this surface will attempt to approach it through chemical re-
action because of the stability represented by equilibrium (see Sect. 2.5), and
the corresponding phenomenon will be irreversible. However, at the same time
external constraints can tend to move away from equilibrium.

If the A = 0 surface does exist, both the reaction and its opposite need to
exist, so we can write

N∑
j=1

ν′jEj ⇀↽

N∑
j=1

ν′′j Ej . (3.6)

The ratio A/T tends to make the system evolve towards the chemical
equilibrium characterized by A/T = 0. The evolution is characterized by a
production rate ξ̇ that will be positive if A/T > 0 and negative in the opposite
case. At complete equilibrium, ξ̇ is equal to zero and the system does not
evolve for constant values of T and p (or S and V). It can be said that A/T
is a generalized force and that ξ̇ is a generalized flux. We can express the
causality relation by writing that ξ̇ is related to A/T . Close to equilibrium (in
the vicinity of the surface A = 0), we can carry out a Taylor series expansion
of this function. If we limit this to the first order, we obtain:

ξ̇ = LA/T, (3.7)

where L is called the “ phenomenological coefficient.” This coefficient depends
on S, V and ξ (or T, p and ξ), and is positive according to the second law.

If near-equilibrium evolution occurs while maintaining two parameters
constant, for example E and V (isolated system), we can write

A/T = (∂(A/T )/∂ξ)e
E,V (ξ − ξe), (3.8)

where ξe is the equilibrium value corresponding to the given E and V . We
have

ξ̇ = L(∂(A/T )/∂ξ)e
E,V (ξ − ξe). (3.9)

The quantity A/T occurs in the Gibbs relation written in the form
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dS =
1
T
dE +

p

T
dV +

A

T
dξ, (3.10)

and corresponds to the derivative

A

T
= (

∂S

∂ξ
)E,V . (3.11)

Therefore,

(
∂A/T

∂ξ
)e
E,V = (

∂2S

∂ξ2
)E,V . (3.12)

It can be shown (due to the stability associated with chemical equilibrium)
that (∂2S/∂ξ2)E,V is always negative; inversely, (∂2E/∂ξ2)S,V is always pos-
itive (Sect. 2.5). This means that

−L(∂(A/T )/∂ξ)e
E,V = 1/τ. (3.13)

The parameter τ is called the chemical time when E and V are constant. The
evolution equation then becomes

dξ

dt
+

ξ − ξe

τ
= 0 (3.14)

with τ =const. and ξe =const.
Let us now consider a more complex case without two constant parameters

(i.e., constant E and V) but for which it is possible to prove that the system
is close to equilibrium at any time. The type of equilibrium we are referring
to is an evolving equilibrium. The target quantities ξe and τ will be functions
of time on this occasion.

Exercise: Let us simplify matters by assuming that τ is constant. Suppose that
ξ = ξ/ξr and t = t/tr, where ξr and tr are reference values, and that ξe(t) = −t.
We wish to determine the solutions for near-equilibrium evolution. We have

dξ

dt
+
ξ + t

τ
= 0.

The solution is then (see Fig. 3.2)2

ξ = exp−t/τ − t+ τ.

2tr can be thought of as a mechanical time τm that is characteristic of the evo-
lutions of the external (i.e., flow rather than chemical) parameters, τm = |dt/dlnV|e
for example. Close to equilibrium, the chemical time τ is very small compared to
τm. Note that the evolution is always out of equilibrium and tends to proceed at a
constant distance ξ − ξ

e
= τ from the reference evolving equilibrium. There is re-

laxation. The chemical reaction tends to bring chemical equilibrium closer, but the
evolutions of the external parameters (V(t) for example) tend to move the system
away from equilibrium. Similar phenomena are found when the local state postu-
late is applied to flows in propulsion nozzles, where the expansion of gas leads to
chemical freezing.
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Fig. 3.2. A simple example of chemical relaxation at constant E and V, with
linear equilibrium evolution relaxation curves for several initial values of the progress
variable ξ

In this case, the distance from equilibrium increases because the reactions
slow down due to thermal effects, resulting in an increase in the chemical
time τ . The chemical time τ is generally compared with the mechanical time
τm (used as the reference time) in order to evaluate variations from chemical
equilibrium. The ratio Da = τm/τ is the first Damköhler parameter. If Da �
1, the evolution takes place near equilibrium. If Da is much smaller than unity,
the chemical reactions are very slow compared to the mechanical process and
we have frozen chemical evolution (see Sect. 7.2 for more information). An
evolution of this type is shown in Fig. 3.3, where the surfaceA = 0 corresponds
to chemical equilibrium and the surfaces ξ =const. to frozen flows.

3.1.2 Thermal Exchange

In certain situations, heat exchange occurs between two media, such as when
the temperature of each medium is uniform but is a function of time. The heat
transfer occurs in a zone of space between the two media that is comparable to
a nonadiabatic wall P . It is generally assumed that the quantities present in
subsystem P , such as internal energy, mass, entropy, etc., are infinitely small.
However,P is the center of heat transfer and entropy production. Suppose that
two media 1 and 2 are evolving and that the wall P is fixed and nondeformable
(see Fig. 3.4). The laws of thermodynamics give us
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Fig. 3.3. Chemical relaxation in a nozzle: representation of the thermodynamic
path in the (volume, entropy, progress variable) coordinate system

δE1 = δQ1 + δW1 = δQe1 + δQ21 + δWe1, (3.15)

where δQe1 and δWe1 are the elementary heat and work, which we assume
are reversibly received by subsystem 1 from outside, while δQ21 = −δQ is the
heat received from subsystem 2 through the wall. Then{

δE2 = δQe2 + δQ12 + δWe2,

δEP = 0 = δQ12 + δQ21 → δQ21 = −δQ12,
(3.16)

and for the whole system

δE = δE1 + δE2 + δEP = δQe + δWe, (3.17)

where δQe = δQe1 + δQe2, δWe = δWe1 + δWe2. The second law yields⎧⎪⎪⎨⎪⎪⎩
δS1 = (1/T1)(δQe1 + δQ21),

δS2 = (1/T2)(δQe2 + δQ12),

δSP = 0 = δQ21/T2 + δQ12/T1 + δiSP .

(3.18)

Here, the first two relations correspond to reversible transformations, and the
last to an unspecified transformation. Therefore, the entropy production of
the wall is
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Fig. 3.4. Thermal exchange between two parts (1 and 2) of a system through a wall
P

δiSP = δQ(
1
T2
− 1

T1
). (3.19)

For the overall system,

δS =
δQe1

T1
+

δQe2

T2
+ δiS, (3.20)

but we also have

δS = δS1 + δS2 + δSP =
δQe1 + δQ21

T1
+

δQe2 + δQ12

T2
. (3.21)

It then follows that{
δiS = δQ21/T1 + δQ12/T2 = δQ(1/T2 − 1/T1),

= δiSP ≥ 0, δQ = δQ12,
(3.22)

which shows that the wall is indeed the center of the irreversibility. We of
course find that δQ is positive if T1 > T2.

Equilibrium is reached in two cases: if δQ = 0 (adiabatic wall) or if T2 = T1

(mutual thermal equilibrium).
Ignoring these two cases, we introduce an exchange coefficient h(T1, T2)

such that the heat flux Q̇ from subsystem 1 to subsystem 2 is
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Q̇ = δQ/δt = −h(T2 − T1), (3.23)

and so

˙δiS = h(T2 − T1)2/T1T2. (3.24)

The coefficient h is obviously positive.
Cases of irreversible evolution where one of the subsystems cannot ex-

change heat with the outside are easily represented graphically. Let us take
the simple example where media 1 and 2 are nondeformable and where sub-
system 2 is separated from the outside by an adiabatic wall (Fig. 3.5). Suppose
that the heat capacities C1 and C2 are constant. We have

E1 = C1T1, E2 = C2T2, δQ = δQ12 = δE2. (3.25)

We then write dS = dE1/T1 + dE2/T2 or

dS =
dE

T1
+ (

1
T2
− 1

T1
)dE2, S = S(E, E2).

Fig. 3.5. Simplified case corresponding to that of Fig. 3.4 where media 1 and 2 are
nondeformable and where subsystem 2 is separated from the outside by an adiabatic
wall
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E2 is similar to a progress variable for heat exchange between subsystems
1 and 2. The two equilibrium cases are then as follows:

1. δQ = 0 or E2 =const. (frozen exchange)
2. T2 = T1 or E2/C2 = E/(C1 + C2) (thermal equilibrium).

Figure 3.6 highlights the various situations.

Fig. 3.6. Equilibrium situations for the simplified case corresponding to Fig. 3.5

Out of equilibrium, the existence of an exchange coefficient h makes it
possible to write

dE2

dt
+ h(

1
C1

+
1
C2

)(E2 − C2

C1 + C2
E) = 0, (3.26)

and the coefficient

τ−1 = h(
1
C1

+
1
C2

) (3.27)

is like the inverse of a heat exchange relaxation time. Note that the situation
with the chemical reaction is similar, although simpler. At thermal equilib-
rium, we have Ee

2 = (C2/(C1 + C2))E, so that

dE2

dt
+

E2 − Ee
2

τ
= 0. (3.28)



3.2 Coefficients of Transfer via the Thermodynamics of Irreversible Processes 61

E2 can be fixed or variable as a function of time, depending on the case in
question. It is worth noting here that irreversible phenomena do not always
arise in such a simple manner; consider, for example, friction phenomena (solid
friction in particular) and plasticity. However, this treatment will be applicable
to most of the situations evoked in this chapter.

3.2 Presenting the Coefficients of Transfer via the
Thermodynamics of Irreversible Processes

3.2.1 Basic Relations

In this section we generalize the preceding results to the case where there are
several simultaneous irreversible phenomena and to the case where there are
continuous media [108]. In all of the cases in which this theory can be applied,
we can write the entropy production rate per unit volume in the form

ẆS = JSFS + JV · FV + JT : FT , (3.29)

where the F parameters are generalized forces (like the ratio A/T or the
jump of 1/T when crossing an interface, or a gradient of 1/T , . . .) and the J
parameters are generalized fluxes (chemical production, heat flux, . . .). The
exponents S, V, and T denote scalar, vectorial, and second-order tensor here.
These quantities F or J must form a system of independent variables. Table
(3.1) describes the various types of phenomena.

S S V V T

Ratio Volume Temperature Chemical Strain rate
F A/T expansion gradient or potential gradient deviator tensor

∇ · v jump or jump

Chemical Bulk Conductive Mass diffusion Tensor of viscous stress
J production viscosity heat flux flux

ξ̇

Table 3.1. Tensorial order of generalized forces and fluxes

Paradoxically, this theory is seldomly used for chemical irreversibilities.
Chemical kinetics generally provides more precise and nonlinear expressions
for the production rates ξ̇. During reversible evolution, ẆS , the fluxes, and
the forces all vanish. This case aside, the generalized fluxes can be regarded
as functions of the generalized forces. These functions depend on the state
parameters of the system. When the irreversibility is not too strict, we can
define the following linearized relations between fluxes and forces, termed
“phenomenological relations:”
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JS = LSSFS + LSV FV + LSTFT ,

JV = LV SFS + LV V FV + LV TFT ,

JT = LTSFS + LTV FV + LTTFT .

(3.30)

We need to consider the influence of spatial symmetry on these phenomeno-
logical equations. It has been shown that the nondiagonal matrix coefficients
are null. There are only relations between generalized fluxes and generalized
forces of same tensorial order [108]. In addition, there are relations between
the components of the matrix coefficients. These relations are known as On-
sager reciprocal relations.3 In particular, if electromagnetic phenomena do
not occur, the matrix is symmetric.4

3.2.2 Species Diffusion, Heat Conduction, and Viscosity

For multicomponent fluid flows, there are three types of flux that play a role
in transport phenomena:

• The diffusion flux of species j, J Dj = ρjVj

• The heat flux, J E = q
• The viscous momentum flux, JMv = P− p1.

It is apparent that coupling is possible between the diffusion flux and the
heat flux, which share the same tensorial order. No intrinsic coupling will take
place between these fluxes and the momentum flux. The simplest phenomeno-
logical relations, for the case of no coupling between transfer phenomena, are
the following:⎧⎪⎪⎨⎪⎪⎩

JDj = −ρD∇Yj (Fick’s law)

q = −λ∇T (Fourier’s law)

P− p1 = −μ(∇ ⊗ v + ∇̃ ⊗ v)− k∇ · v 1 (Newton’s law).

(3.31)

D is the coefficient of diffusion, λ is the thermal conductivity, μ is the shear
viscosity coefficient, k = η − 2μ/3 where η is the bulk viscosity, and P = −Σ
where Σ is the stress tensor.

It will be shown in Chap. 4 that, in the case of a fluid with a thermo-
dynamic pressure p and a pressure tensor P, the entropy production rate
includes the dissipative (irreversible) term −(1/T )(P− p1):∇ ⊗ v. Since the

3Starting from the microscopic property of the “time reversal invariance” of the
equations of motion for individual particles, which implies that the particles retrace
their former paths if all velocities are reversed, it is possible to derive a macroscopic
theorem, as done by Onsager.

4In the presence of an external magnetic field, the property of “time reversal
invariance” implies that the particles retrace their former paths only if the parti-
cle velocities and the magnetic field are reversed. As a consequence, the Onsager
relations must be modified.
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P tensor is symmetrical, we can replace ∇ ⊗ v with its symmetrical part
(1/2)(∇ ⊗ v + ∇̃ ⊗ v). To highlight the scalar parts of these tensors, they
should be written as follows:

D =
1
2
(∇ ⊗ v + ∇̃ ⊗ v − 2

3
∇ · v 1) +

1
3
∇ · v 1, (3.32)

where the trace of the first tensor, (1/2)(∇ ⊗ v + ∇̃ ⊗ v − (2/3)∇ · v 1), is
equal to zero.

In the same way,

P− p1 = P− π1 + (π − p)1, (3.33)

where

π =
1
3
tr(P), (3.34)

so that tr(P−π1) = 0. The quantity π is the mean normal pressure. Therefore,
the viscosity term for the entropy production becomes

− 1
2T

(P− π1):(∇ ⊗ v + ∇̃ ⊗ v − 2
3
∇ · v1)− 1

T
(π − p)∇ · v, (3.35)

The two phenomenological relations are then{
P− π1 = −μ[∇ ⊗ v + ∇̃ ⊗ v − (2/3)∇ · v 1],

π − p = −k∇ · v.
(3.36)

For diffusion and heat transfer, there is a coupled effect known as thermal
diffusion (see Sects. 7.3 and A.6.3). In addition, the fluxes JDj are not inde-
pendent since their sum is zero. In fact, the corresponding entropy production
term utilizes not ∇Yj but ∇(gj/T ), which also depends on the variation in
the temperature and the pressure gradient. The heat flux q includes the con-
ductive flux and a duffision-related flux. These issues will be addressed again
in Chap. 7. The phenomenological relations are valid for both continuous sys-
tems and discrete systems. In the latter case, the Fourier analysis reduces to
the heat exchange law shown in Sect. 3.1.

Finally, note that the linearized theory of irreversible processes has its
limitations. There are alternative theories, such as that of Jou et al. [130], as
mentioned in Sect. 5.3.

3.3 Other Ways of Presenting the Transfer Coefficients

3.3.1 Presenting the Transfer Coefficients via the Simplified
Kinetic Theory of Gases

The elementary kinetic theory of gases offers a first approximation of the
transfer coefficients [46, 118]. Each molecule of diameter d has a sphere of
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influence of radius d. The volume swept by this molecule, which has an average
velocity of c̄ (average quadratic velocity for all species), is πd2c̄ per unit time
(see Fig. 3.7). The total number of molecules per unit volume is N , and so
the number of collisions per molecule per unit time is thus

νc = πd2c̄N, (3.37)

and the mean free path l is equal to

l = c̄/νc = 1/πd2N. (3.38)

The collision frequency and mean free path were calculated by assuming that
the molecules in the swept volume are motionless. If we account for the move-
ments of the target molecules, we obtain

l = 1/(
√

2πd2N). (3.39)

Fig. 3.7. Volume swept by a molecule

Now let us consider the unit flux density of a property F (f per unit mass)
through a surface at coordinate x0. To simplify matters, we assume that the
molecular movements (agitations) occur parallel to the x axis (see Fig. 3.8).
The molecules coming from x < x0 transport f(x0 − l/2) of the property per
unit mass on average. Only a collision can change f . The molecules coming
from x > x0 transport f(x0+l/2) of the property per unit mass. The modulus
of the molecular flow rate, from the left and from the right, is proportional to
Nc̄.

Thus, in the positive x direction, the flux crossing the surface per unit
area will be proportional to
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Fig. 3.8. Molecular transfer

JF ∝MNc̄[f(x0 − l/2)− f(x0 + l/2)]. (3.40)

This result is valid for a fluid at rest and a surface at rest. However, it is also
appropriate for a fluid moving under the assumption that each component is
in local equilibrium, and the x0 surface then follows the motion with a mean
velocity of v. We then have

JF = aF M N c̄ [f(x0 − l/2)− f(x0 + l/2)]. (3.41)

By expanding the right hand side according to the powers of l to the first
order, we get

JF = −aFMNc̄l(∂f/∂x)x0, (3.42)

or, using the expression for l,

JF = −aF (Mc̄∂f/∂x)/(
√

2πd2). (3.43)

The mean molecular velocity at translational equilibrium (in the case of
monatomic molecules) is Mc̄2/2 = 3kT/2, where k is the Boltzmann con-
stant (r = R/M = k/M). Therefore, c̄2 = 3rT . From these considerations,
we can deduce that

JF = −aF
M

πd2

√
3rT
2

∂f

∂x
. (3.44)

Let us apply these relations successively to the mass of species j, the internal
energy, and the momentum; i.e.,
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f = MjNj/MN = Yj , f = cvT, f = v. (3.45)

We obtain the following relations that are valid for simple cases:⎧⎪⎪⎨⎪⎪⎩
JDj = −aDMNc̄l∇Yj,

q = − − aTMNc̄lcv∇T,

P− p1 = −aμMNc̄l∇ ⊗ v.

(3.46)

Therefore, the transfer coefficients defined in Sect. 3.2 for the diffusion, ther-
mal conduction and viscosity are equal to

D = aD c̄l, λ = aT ρc̄lcv, μ = aμρc̄l. (3.47)

Thus ρD, λ and μ are proportional to
√
T . Since ρ = p/rT , the coefficient

of diffusion D at a given pressure is proportional to T 2/3. For a polyatomic
gas, c̄ can still be considered—to a first approximation—to be proportional
to
√
T .

Three dimensionless numbers are usually used to compare the preceding
effects:

• The Prandtl number Pr = μcp/λ = γaT /aμ with γ = cp/cv. The ratio
aT /aμ is taken to be equal to 2/5, giving Pr = 2γ/5 for monatomic gases.
In the case of polyatomic gases, the Eucken relation gives us λ/μ = cv +
9R/4M, which leads to the expression Pr = 4γ/(9γ − 5). This latter
relation also applies to monatomic gases, for which γ = 5/3, giving the
previous result Pr = 2γ/5 = 2/3.

• The Schmidt number Sc = μ/ρD = aμ/aD. This number is sensitive to the
variation in the molar mass Sc = 0.145M0.556. It is an empirical relation.

• The Lewis number Le = Sc/Pr = aT /γaD; i.e.,

Le ∼= 0.03625
9γ − 5

γ
M0.556.

Note that for numerous gases, these dimensionless numbers are on the order
of 1.

3.3.2 More Precise Estimation of the Transfer Coefficients

A more precise estimate of the transfer coefficients requires an analysis of the
dynamics of the collisions [10, 46, 118]. The theory, which will not be described
here in detail, takes into account the deviations in the molecular trajectories
that are caused by interaction potentials. It implies the experimental determi-
nation of the collision cross-sections and collision integrals that occur in the
Boltzmann gas equation. These considerations are examined further in the
Appendix (see Sect. A.6).
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In Sects. 3.2 and 3.3.1, our discussion of transport coefficients was mainly
limited to single species. While mass diffusion coefficients were introduced,
these coefficients were termed “self-diffusion coefficients” in (3.31), and the
transfer coefficients did not depend on the species concentrations. Again, this
topic is investigated further in the Appendix (see Sect. A.6).

3.3.3 Liquids and Dense Gases

The case for a fluid close to its critical point is presented in the Appendix (see
Sect. A.5.1).

The classical kinetic theory of gases is not valid for liquids because the in-
termolecular distances are of the same order of magnitude as the dimensions of
the molecules. Experimental measurements show substantial differences from
the gas case. Figures 3.9 and 3.10, extracted from the work Molecular Theory
of Gases and Liquids, by Hirschfelder, Curtiss and Bird [118], show how the
pressure and the temperature (divided by their critical values) influence the
viscosity μ and the thermal conductivity λ of carbon dioxide and argon.

Fig. 3.9. Viscosity of CO2 (after [118]; reprinted with the permission of Wiley)

Several theories have been used to determine the transfer coefficients of liquids
and dense gases, including:

• The principle of the corresponding states which gives results only for vis-
cosity
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Fig. 3.10. Thermal conductivity of Ar (after [118]; reprinted with the permission
of Wiley)

• The theory of the activated complex (Eyring) [105], which is appropriate
for plastic flows and liquids, but not for gases

• The theory of Enskog, which is appropriate for real gases
• The rigorous theory, based on Liouville’s equation, which is valid for dense

gases but is very complex, especially when dealing with mixtures.

We might hope that the methods used to describe the liquid state and
the chemical reactivity in a liquid phase, such as those based on Langevin’s
equation, will produce interesting results for reactive mixtures in the presence
of convection.

The similarity parameters are significantly affected by the strong molecular
interactions that occur in liquids. The Prandtl number, for example, can vary
considerably, as shown in Fig. 3.11.

3.4 Elements of Chemical Kinetics

In this section we consider the chemical kinetics of cases where the chemical
process can be divided into a set of elementary reactions [10, 105, 118]. The
chemical production rates are assumed to obey polynomial expressions for the
concentrations.
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Fig. 3.11. Prandtl numbers of various fluids

Consider a mixture that includes N chemical species, each of which is
represented by a different value of the index j. In this case, a chemical reaction
can be represented as

N∑
j=1

ν′jEj
k(T )→

N∑
j=1

ν′′j Ej , (3.48)

where νj is the algebraic stoichiometric coefficient of species j, which was
introduced in Sect. 2.4.2, and

νj = ν′′j − ν′j . (3.49)

The production rate of the species, in mass per unit volume and unit time
is

Ẇj = νjMj ζ̇ , (3.50)

where

ζ̇ = k(T )
N∏

i=1

C
ν′

i
i . (3.51)

The specific reaction rate k(T ) generally takes the form

k(T ) = BT s exp (−Ea/RT ), (3.52)

where B and s are constants and Ea is the activation energy of the reaction.
Such a formula can be established using various theories: the theory of the
activated complex (Eyring), collision theory, etc. The values of B, s, and Ea

are tabulated for many elementary chemical reactions (see, for example, [222]).
Such a simple formula is only valid for elementary reactions. Also, determining
the reactive schemes and thus elucidating all of the elementary reactions is a
not inconsiderable task.
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If the opposite of an elementary reaction also takes place, we can write
the direct (D) and reverse (R) reactions as follows:

N∑
j=1

ν′jEj ⇀↽

N∑
j=1

ν′′j Ej . (3.53)

The production rates are then⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ẇj = νjMj(ζ̇D − ζ̇R),

ζ̇D = kD(T )
∏N

i=1 C
ν′

i

i ,

ζ̇R = kR(T )
∏N

i=1 C
ν′′

i

i .

(3.54)

We then have {
Ẇj = νjMj ζ̇,

ζ̇ = ζ̇D − ζ̇R = ζ̇R (ζ̇D/ζ̇R − 1),
(3.55)

or

ζ̇ = ζ̇R(
kD

kR

∏
i

C−νi

i − 1). (3.56)

We established in Sect. 2.4.3 that, for an ideal gas mixture,

N∏
i=1

(Ci)ν
i = KC exp(−A/RT ), (3.57)

so that

ζ̇ = ζ̇R(
kD

kRKC
exp(A/RT )− 1). (3.58)

At chemical equilibrium, we must have ζ̇D
∼= ζ̇R as well as A ∼= 0. It follows

that

kD

kR
= KC(T ). (3.59)

The specific reaction rates of the direct and reverse reactions are thus con-
nected by a simple thermodynamic equation. We can deduce that

ζ̇ = ζ̇R(exp(A/RT )− 1). (3.60)

Thus, chemical kinetics makes it possible to express ζ̇ in terms of the state
parameters, which completes the results of Sect. 2.4.7.
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Close to equilibrium, the preceding relation can be linearized according
to A. We obtain

ζ̇ = ζ̇R(A/RT ). (3.61)

The entropy production rate

˙δiS = ζ̇(A/T ) = ζ̇R [exp(A/RT )− 1]A/T (3.62)

becomes

˙δiS = ζ̇R(A2/RT 2), (3.63)

and is of course always positive.
This result is in agreement with the classical theory of linearized irre-

versible processes. Chemical affinity can be regarded as a generalized force,
and the rate of reaction ζ̇ can be thought of as the generalized flux that results
from its action. This flux and force are scalars. We can then write

FS = A/T, JS = ζ̇ (3.64)

and { ˙δiS = ẆS = JS FS ,

JS = LFS,
(3.65)

with

L = ζ̇R/R. (3.66)

Note that, close to equilibrium, A/T and ζ̇ are first order and infinitely small,
whereas ẆS is second order and infinitely small and can be regarded as a
negligible quantity in many cases. We can see that it could be interesting to
formulate certain reactive flow problems using the entropy function, which can
be regarded as being constant in cases close to equilibrium. In the next chapter
we find that the same remark remains valid for any transfer phenomenon close
to equilibrium.

Also note that the kinetics of heterogeneous systems are considered in
Sect. 11.4.1.
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Balance Equations for Reactive Flows

The thermodynamic properties of one-component systems and multicompo-
nent fluid mixtures were presented in Chap. 2, although the thermodynamic
systems considered were mainly discrete systems. Flux and production expres-
sions that are important for fluid flows were then given in Chap. 3. Therefore,
we now need to derive the balance equations for these fluid flows.

In order to better understand the derivation of the relevant bulk balance
law equations, in Sect. 4.1 we consider the jump from discrete to continu-
ous systems for the particular case of one-dimensional thermal transfer in a
motionless medium.

Then, in Sect. 4.2, we review the important concepts of the material deriv-
ative and strain in a one-component three-dimensional medium, which are
subsequently applied to multicomponent fluids.

The mass balance for species j in a composite medium is then established
in Sect. 4.3, and the total mass balance is deduced.

In Sect. 4.4 we derive the general balance equation of any property F ,1

initially based on the mean material motion v(x, t), and then based on an
arbitrary continuous nonspecific motion W(x, t) (this approach will be useful
when addressing discontinuities such as shock waves).2

This general balance equation is then applied to the momentum balance
in Sect. 4.5 and to the energy balance in Sect. 4.6.

The flux and entropy production are determined for a discrete system in
Sect. 4.7, before the general balance equation is applied to the entropy in a
continuous medium in Sect. 4.8, and the balance laws of discontinuities in a
continuous medium are considered in Sect. 4.9.

1The variation in a given property F in a control volume V over time is usually
assumed to result from the fluxes through its boundary Σ and internal production.
The local balance equations for the continuous fluid mechanics of mixtures are then
deduced via the fundamental lemma for the mechanics of continuous media.

2Discontinuities with internal properties that have their own balance equations
are treated in Chap. 11.

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_4, © Springer Science+Business Media, LLC 2010
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Finally, other methodologies for deriving the balance laws are discussed in
Sect. 4.10 with an eye on chemical reactors, and the total deterministic and
probabilistic population balances are then written.

Tensor notation is explained in Sect. A.1.
At this point we have the necessary basic equations needed to study con-

tinuous fluid flows with transfer phenomena and chemical reactions; our task
then is to solve the system of equations obtained. We will focus on this task
in the following chapters.

4.1 Passage to the Continuum: Example of Thermal
Transfer in a Continuous Medium at Rest

In this section we consider the first example of a continuous system that has
a nonhomogeneous thermodynamic state and does not comprise a discrete
sum of subsystems. We assume a one-dimensional process in order to simplify
matters (Fig. 4.1). The energy balance equation is3

ρ
∂e

∂t
Σδx = [q − (q +

∂q

∂x
δx)]Σ (4.1)

if we take an average value over the section thickness δx for the internal energy
per unit mass e(x, t). The density ρ is assumed to be constant. The specific
heat c obeys de = c dT , and is taken to be constant.

Therefore, the energy balance becomes

ρ
∂e

∂t
+

∂q

∂x
= 0 or ρc

∂T

∂t
+

∂q

∂x
= 0. (4.2)

The entropy balance equation is determined in a similar way (see Fig. 4.2):

(ρ
∂s

∂t
− ẆS)Σδx = [

q

T
− (

q

T
+

∂(q/T )
∂x

δx)]Σ, (4.3)

where the entropy production rate ˙δiS per unit volume is denoted ẆS . We
then obtain

ρ
∂s

∂t
+

∂(q/T )
∂x

= ẆS . (4.4)

Each section thickness, as small as required, is regarded as a subsystem in
equilibrium. We therefore obtain in this case

de = T ds or
∂e

∂t
= T

∂s

∂t
(Gibbs). (4.5)

This relation makes it possible to eliminate s and e between the energy and
entropy balances. We get

3We ignore energy source terms due to, for example, radiative transfer here.
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Fig. 4.1. One-dimensional energy balance

Fig. 4.2. One-dimensional entropy balance
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ẆS = q
∂(1/T )
∂x

. (4.6)

This relation reveals the generalized flux and force: J = q and F = ∂(1/T )/∂x,
respectively. Here, the principles of irreversible thermodynamics (Sect. 3.2)
give

J = LF or q = L
∂(1/T )
∂x

. (4.7)

By setting λ = L/T 2, we obtain the well-known Fourier law

q = −λ∂T
∂x

. (4.8)

The energy balance becomes

ρ
∂e

∂t
− ∂

∂x
(λ

∂T

∂x
) = 0. (4.9)

Based on the selected assumptions, and assuming that λ is constant, we obtain
the Fourier equation

∂T

∂t
− λ

ρc

∂2T

∂x2
= 0. (4.10)

We generally set λ/ρc = κ, the thermal diffusivity, so that

∂T

∂t
− κ

∂2T

∂x2
= 0. (4.11)

Finally, the entropy production rate becomes

ẆS = L(
∂(1/T )
∂x

)2 (4.12)

or

ẆS =
λ

T 2
(
∂T

∂x
)2. (4.13)

If (∂T/∂x) is an infinitely small first-order quantity, then ẆS is second or-
der and infinitely small as long as (λ/T 2) is a finite quantity. We will see, par-
ticularly in Sect. 4.6, that these results can be generalized to three-dimensional
processes.

4.2 Reminder of the Concepts of the Material Derivative
and Strain in a Simple Medium

The material derivative and strain are essential concepts for analyzing de-
formable moving media such as fluids [96, 99]. Consider a property f(x, t)
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per unit mass of a material particle in a simple continuous medium (i.e., a
medium with only one component). If we follow the motion of this particle,
the time derivative is

df

dt
=

∂f

∂t
+ v ·∇f, (4.14)

where v is the velocity vector of the particle. This quantity4 is called the
material derivative.

Let us now consider an elementary material vector δx that is as short as
required. The ends of the vector are located at x and x + δx at time t. These
ends, and thus the vector itself, are transported by the motion. We have

d(δx)
dt

= K · δx, (4.15)

with
K = ∇⊗ v. (4.16)

We then find that the material volume element δV obeys

d(δV)
dt

= tr(K) δV = ∇ · v δV . (4.17)

∇ · v is the rate of volume dilatation (the bulk dilatation rate). The tensor
∇⊗v can be split into a symmetrical D = 1

2 (K+K̃) part tensor of the strain
rate and an antisymmetric Ω = 1

2 (K− K̃) part tensor of the rate of rotation.

Note About the Velocity Gradient

The preceding formulae are easily proven as follows. Consider the motions x and
x′ of two points (material particles) in a continuous medium that are close to each
other between the times t and t+ dt, where dt is small (Fig. 4.3).

By limiting the Taylor series expansions to the first order, we get x(t + dt) =
x(t)+(dx/dt)dt = x(t)+vdt, x′(t+dt) = x′(t)+v′dt, where x′ = x+δx, v′ = v+δv
⇒ δx(t+ dt) = δx + δvdt; i.e., d(δx)/dt = δv = ∇ ⊗ v · δx.

4This concept of the material derivative is easily introduced if one considers
a shift from Lagrange coordinates to Euler coordinates. Let (x, t) be the Euler
coordinates of a particle, and (a, τ ) be its Lagrange coordinates (a; for example,
the initial position of the particle). We then write x = φ(a, τ ), with a = φ(a, 0).
Let us now formulate the change in coordinates for the elementary quantities: dx =
∂φ/∂a ·da+∂φ/∂τ dτ . Material velocity v is easily defined in Lagrange coordinates;
if a is fixed, dx = (∂φ/∂τ ) dτ = vdτ ; i.e., dx/dt = (∂φ/∂t)a=const. = v.

We define the material derivative of a quantity F (a, τ ) in a similar way: dF =
(∂F/∂a) · da + (∂F/∂τ ) dτ . In Lagrange coordinates, the material derivative of the
quantity considered is ∂F/∂τ . We now have F (a, τ ) = f(x, t) = f(φ(a, τ, t)).
Moreover: df = (∂f/∂φ) · dφ + (∂f/∂t)dt, df/dt = (∂f/∂x) · dx/dt + ∂f/∂t =
∇f · v + ∂f/∂t. Finally, in Euler coordinates, the material derivative is df/dt =
∂f/∂t + v ·∇f and is equal to (∂F/∂t)a=const.. In the case of steady (permanent)
motion, ∂f/∂t = 0, so v = v(x) in Euler variables.
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Fig. 4.3. Motion in a continuous medium

Rate of dilatation: δV = (δx, δy, δz) where δx = δx i, δy = δy j, δz = δz k. It
can be verified that d(δV)/dt = ∇ ·v δV, which is the rate of volume dilatation (the
bulk strain rate). δV is an elementary material volume that follows the motion.

Demonstration: δV = δx δy δz = δx · (δy × δz), d(δV)/dt = (d(δx)/dt) · (δy ×
δz) + . . . = (∇⊗v · δx) · (δy× δz) + . . . For δx = δx i, δy = δy j, δz = δz k, we get
d(δV)/dt = (u,xi+v,xj+w,xk)·i δy δz+. . . = u,x δx δy δz+. . . = (u,x+v,y+w,z) δV =
(∇ · v) δV.

Mass conservation: The mass present in δV is preserved during the motion.
If ρ is the local density, δm = ρδV = const. during the motion. Thus, d(δm)/dt =
dρ/dt δV + ρ d(δV)/dt; in other words,

1

δV
d(δV)

dt
= −1

ρ

dρ

dt
= ∇ · v. (4.18)

4.3 Mass Balance of Species j and Total Mass Balance
in a Composite Medium

The fluid considered here is a chemical mixture of species. It is assumed to
consist of only one phase; multiphase media will be investigated in this con-
text in Chap. 12. Each species in the mixture can be regarded as having the
properties of a continuous fluid, and can exchange quantities with the other
species present in the mixture. The most rigorous method of deriving the mass
balance of the given species j is to consider its motion. A control surface (Σj),
which has an arbitrary initial position and bounds a volume (Vj), is assumed
to follow the motion vj of species j. The material derivative associated with
this motion is denoted dj/dt. Only chemical reactions are likely to modify the
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mass of species j in volume (Vj). This yields the following balance equation
written in integral form [10, 34, 85, 108, 290]:

dj

dt

∫
Vj

ρj dV =
∫
Vj

Ẇj dV . (4.19)

The derivative of the integral implies the evaluation of

dj(ρj dV)
dt

=
djρj

dt
dV + ρj

dj(dV)
dt

. (4.20)

According to the results of Sect. 4.2,{
djρj/dt = ∂ρj/∂t + vj ·∇ρj ,

dj(dV)/dt = ∇ · vj dV .
(4.21)

The balance equation then becomes∫
Vj

(
∂ρj

∂t
+ vj ·∇ρj + ρj∇ · vj − Ẇj) dV = 0 (4.22)

or ∫
Vj

(
∂ρj

∂t
+ ∇ · (ρjvj)− Ẇj) dV = 0. (4.23)

The fundamental lemma of the mechanics of continuous media [99] makes it
possible to use the local balance equation. According to this lemma, if the
preceding equation is valid whatever the initial control volume of the consid-
ered flow, and if the properties and their first derivatives are continuous, the
quantity under the integral sign is equal to zero. We assume these conditions
hold, and so

∂ρj

∂t
+ ∇ · (ρjvj)− Ẇj = 0. (4.24)

Inversely, if Σ delimits a fixed control volume V , the integration of (4.24) leads
to

∂

∂t

∫
V
ρj dV +

∫
Σ

ρjvj · n dΣ =
∫
V
ẆjdV . (4.25)

The various terms present in the mass balance of species j inside the mo-
tionless volume (V) (which is a thermodynamically open system) are clearly
apparent here: the time derivative of the mass of species j in volume (V); the
mass flow Jj = ρjvj through a unit area of surface (Σ); and the chemical
production rate in volume (V). If we carry out a summation of the terms in
the local balance (4.24) over the index j, j = 1, 2 . . .N , we get

∂ρ

∂t
+ ∇ · (ρv) = 0, (4.26)
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where (see Sect. 2.1.3)

ρ =
N∑

j=1

ρj , ρv =
N∑

j=1

ρjvj . (4.27)

The total mass produced is obviously equal to zero, so that

N∑
j=1

Ẇj = 0. (4.28)

It is easily verified that this result is compatible with the laws of the chemical
kinetics given in Chap. 3. Indeed,∑

j

Ẇj =
∑
j, r

νjrMj ζ̇r =
∑

r

ζ̇r

∑
j

νjrMj . (4.29)

However, ∑
j

νjrMj = 0 (4.30)

simply expresses the conservation of mass during reaction r.
The diffusion flux is defined via

JDj = ρjVj = ρj(vj − v), (4.31)

so that the local balance equation for species j becomes

∂ρj

∂t
+ ∇ · JDj + ∇ · (ρjv) = Ẇj . (4.32)

By setting ρj/ρ = Yj , the mass fraction of species j, and by using the conser-
vation equation for the overall mass balance, we deduce that

ρ
dYj

dt
+ ∇ · JDj = Ẇj , (4.33)

where the material derivative d/dt is that of the barycentric motion

dYj

dt
=

∂Yj

∂t
+ v ·∇Yj . (4.34)

4.4 General Balance Equation for a Property F

4.4.1 Balance Equation Based on the Mean Material Motion
v(x, t)

The result (4.33) obtained for a mass fraction Yj—which contains three lo-
cal terms: the material derivative (obtained by following the motion of the
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barycentric velocity v; see Eq. 4.27), the divergence in the unit flux through
a surface due to this motion, and the production rate—formally extends to
any physical property F [10, 99].

If F is an extensive physical property (mass, momentum, energy, ...) of
the fluid (more generally, a continuous medium), and f is its value per unit
mass, then, if we follow a volume (V) during its motion, we get

d

dt

∫
V
ρ f dV +

∫
∂V

J F · n dS =
∫
V
ẆF dV , (4.35)

where n is the external unit vector normal to the closed surface ∂V that
surrounds (and is presumed to be connected to) the volume V . We have (see
Fig. 4.4)

Fig. 4.4. The control volume

d

dt

∫
V
ρ f dV =

∫
V

d(ρ f dV)
dt

=
∫
V

d(ρ f)
dt

dV +
∫
V
ρ f

d(dV)
dt

. (4.36)

Taking into account the strain equation (4.18, i.e., d(dV)/dt = ∇ · v dV), we
deduce that

d

dt

∫
V
ρ f dV =

∫
V
(
d(ρ f)
dt

dV + ρ f ∇ · v) dV . (4.37)

By applying the Stokes–Ostrogradski theorem, we also get∫
∂V

J F · n dS =
∫
V

∇ ·J F dV . (4.38)

The general balance equation thus becomes∫
V
(
d(ρ f)
dt

+ ∇ ·J F + ρ f ∇ · v − ẆF ) dV = 0. (4.39)
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When we apply the fundamental lemma as in Sect. 4.3, where there must
not be any discontinuity within the volume (V) of interest in the flow, this
quantity is zero. The local balance equation of F is thus written

d(ρ f)
dt

+ ρ f ∇ · v + ∇ ·J F = ẆF . (4.40)

In this equation, we can identify the flux term that characterizes the transfer
of F through the unit area on the moving surface (see Chap. 3), as well as the
production rate of F per unit volume. We modify the local balance equation
(4.40) by applying the mass conservation equation (4.26), which then becomes

ρ
df

dt
+ ∇ ·J F = ẆF . (4.41)

Another form of the local balance equation is obtained by introducing the
unit flux through a fixed surface

JF = J F + ρ f v, (4.42)

which gives

∂(ρ f)
∂t

+ ∇ · JF = ẆF . (4.43)

By applying one or the other of these equations to the mass of species j, we of
course derive the results we obtained previously. The forms (4.41) and (4.43)
of the local balance equation for a property F are particular cases of a more
general formula, as we will show.

4.4.2 Balance Equation for a Property F Based on an Arbitrary
Continuous Motion W(x, t)

By analogy to the real motion v, but where v is replaced with W, we obtain
the following integral equation:

dW

dt

∫
V
ρ f dV +

∫
∂V

JWF · n dS =
∫
V
ẆF dV .

The production
∫
V ẆF dV is independent of the field W(x, t). In order to

determine the flux expression JWF , we write⎧⎪⎪⎨⎪⎪⎩
dW(ρf dV)/dt + ∇ · JWF dV = ẆF dV ,
dW(ρf)/dt + ρf ∇ ·W + ∇ · JWF = ẆF ,

∂ρf/∂t + ∇ · (JWF + ρfW) = ẆF ,

(4.44)

where dW/dt = ∂/∂t+ W ·∇.
The flux JWF + ρ f W is independent of W. We therefore have
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JWF + ρ f W = JF = J F + ρ f v. (4.45)

Here, JWF is the flux of F relative to velocity W, JF = J0F is the flux
relative to any motionless surface (i.e., surface at rest), and J F = JvF is
the flux relative to the real velocity v. This latter flux is the only “physical”
quantity.

Finally, the following expression for the flux vector and the corresponding
balance law are obtained:{

JW F = J F + ρ f (v −W),

dW(ρf)/dt + ρf ∇ ·W + ∇ · JWF = ẆF .
(4.46)

This result is particularly useful for establishing the balance laws at disconti-
nuities.

4.5 Momentum Balance

We now associate a velocity vj , a pressure tensor Pj , and an external force
per unit mass f j with each species j. Only the result obtained by summing
the quantities over the index j is shown below:

ρ
dv
dt

+ ∇ ·P =
∑

j

ρjf j . (4.47)

Regarding the quantities introduced in Sect. 4.4.1, we have F = mv; f = ρv is
the momentum per unit volume; J F = P = −Σ is the total pressure tensor,
which is assumed to be symmetric;5 and ẆF =

∑
j ρjf j is the bulk force per

unit volume (applied far from the volume).

4.6 Energy Balance

When extended to moving objects, the first law of thermodynamics (per unit
time) is expressed as follows [99]:

dE

dt
+

dK

dt
= P +Q. (4.48)

dE/dt and dK/dt are the time derivatives of the internal energy and the
kinetic energy of the fluid present in a volume (V) moving at the barycentric

5As mentioned by de Groot and Mazur [108], this assumption is usually made in
hydrodynamics, but strictly speaking it is only justifiable for systems that consist
of spherical molecules or very low density systems. The pressure tensor may contain
an antisymmetric part for other systems.
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velocity v of the mixture. P and Q are respectively the mechanical power and
calorific power supplied to this volume. According to (4.37), the quantity F
present in the volume (V) verifies

dF

dt
=

d

dt

∫
V
ρ f dV =

∫
V
(
∂(ρ f)
∂t

+ ρ f∇ · v) dV , (4.49)

and, taking into account that the total mass is conserved (4.26), we obtain

dF

dt
=
∫
V
ρ
df

dt
dV . (4.50)

Applied to E and K, this result gives

{
dE/dt =

∫
V ρ de/dt dV ,

dK/dt = (d/dt)
∫
V
∑

j ρj (v2
j /2) dV ∼= ∫V d(v2/2)/dt dV , (4.51)

since, ignoring the squared diffusion velocity terms and noting that
∑

j ρjVj =∑
j J Dj = 0, ∑

j

ρjv
2
j =
∑

j

ρj(v + Vj)2 ∼= ρv2. (4.52)

Scalar multiplication of the two sides of the momentum equation (4.47)by v
yields

ρv · dv
dt

= −v ·∇ ·P + v ·
∑

j

ρjf j . (4.53)

Then, taking into account the notation ∇⊗ v : P = ∂vα

∂xβ
Pαβ (see Sect. A.1),

1
2
ρ
dv2

dt
= −∇ · (v ·P) + ∇⊗ v : P +

∑
j

ρjvj · f j −
∑

j

J Dj · f j . (4.54)

It follows that

dK

dt
= −

∫
∂V

(v·P)·ndS+
∫
V

∑
j

ρjvj ·f jdV+
∫
V

∇⊗v : PdV−
∫
V

∑
j

J Dj ·f jdV .

(4.55)
The mechanical power supplied to the system is the power from external
forces:

P = −
∫

∂V
(v ·P) · ndS +

∫
V

∑
j

ρjvj · f jdV . (4.56)

We define the power from internal stresses as follows:
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Pi =
∫
V

∇⊗ v : PdV −
∫
V

∑
j

J Dj · f jdV . (4.57)

We then obtain the kinetic energy theorem

dK

dt
= P + Pi, (4.58)

so the first law of thermodynamics (4.48) becomes

dE

dt
= Q−Pi. (4.59)

The calorific power supplied includes a bulk term corresponding to an energy
contribution per unit volume and a surface term:

Q =
∫
V
r dV −

∫
∂V

q · ndS. (4.60)

Therefore, the internal energy balance becomes

∫
V
ρ
de

dt
dV =

∫
V
r dV −

∫
∂V

q · ndS −
∫
V

∇⊗ v : PdV +
∫
V

∑
j

J Dj · f jdV .

(4.61)
The resulting local internal energy balance is

ρ
de

dt
+ ∇ · q = r −∇⊗ v : P +

∑
j

J Dj · f j . (4.62)

By introducing the strain tensor D, the symmetrical part of the gradient
velocity tensor

D =
1
2
(∇⊗ v + ∇̃⊗ v), (4.63)

and, given that the pressure tensor P (the opposite of the stress tensor Σ) is
a symmetrical tensor, we finally obtain

ρ
de

dt
+ ∇ · q = r −D : P +

∑
j

J Dj · f j . (4.64)

4.7 Flux and Entropy Production in a Discrete System

In this section we consider the following discrete system: a nondeformable
container of volume V that is delimited by an impermeable and adiabatic wall
and separated into two parts by a fixed and porous wall [111, 213]. Initially,
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although both compartments contain the same fluid, the fluid in each com-
partment is at its own equilibrium. We will study a small transformation of
this system following fluid exchange through the porous wall (see Fig. 4.5).

Let us suppose that a small mass δm moves from compartment 2 to com-
partment 1 during a small time increment δt. Consider the system at the time
when the two subsystems have masses and internal energies of (m1 + δm) and
(m2− δm), (e1 + δe1) and (e2 + δe2), respectively. For each part, the first law
of thermodynamics gives

{
(m1 + δm) (e1 + δe1)− (m1 e1 + δm e2) ∼= (p2/ρ2)δm,
(m2 − δm) (e2 + δe2)− (m2 − δm) e2

∼= −(p2/ρ2)δm,
(4.65)

or {
m1 δe1 + δm (e1 − e2) ∼= (p2/ρ2)δm,
m2 δe2

∼= −(p2/ρ2)δm.
(4.66)

By summation,

δ(m1e1) + δ(m2e2) = 0. (4.67)

Relation 4.67 confirms that variations in the internal energy of one subsystem
are compensated for by those of the other subsystem, which we would expect
considering that the overall system is isolated.

Let us now apply the second law of thermodynamics. The entropy varia-
tions for the subsystems are:{

m1 δs1 + δm (s1 − s2),
m2 δs2.

(4.68)

The entropy variation for the total system is thus

δiS = m1 δs1 + m2 δs2 + δm (s1 − s2) ≥ 0. (4.69)

The Gibbs relation (see Eq. 2.31)

δs =
1
T
δe +

p

T
δϑ (4.70)

and the expression for s given by the Euler relation (2.33)

s =
1
T
e +

p

T
ϑ− g

T
(4.71)

lead to the relation

δiS =
δ(m1 e1)

T1
+

δ(m2 e2)
T2

+ δm(
g2

T2
− g1

T1
). (4.72)
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Fig. 4.5. Exchange through a porous wall: T ′i = Ti +δTi, p
′
i = pi +δpi, ρ

′
i = ρi +δρi

By noting that the volume of each compartment is constant, we get{
δ(m1 ϑ1) = m1 δϑ1 + ϑ1δm = 0,
δ(m2 ϑ2) = m2 δϑ2 − ϑ2δm = 0. (4.73)

Then, from relations (4.67) and (4.72), we deduce that

δiS = δ(m1 e1)(
1
T1
− 1

T2
) + δm(

g2

T2
− g1

T1
). (4.74)

Note that, since these equations are additive and the variations in the internal
energy and entropy of the total system are the sums of the variations of its
subsystems, we can derive the same result directly by writing{

δ(m1e1) + δ(m2e2) = 0,
δiS = δ(m1 s1) + δ(m2 s2) ≥ 0. (4.75)

The internal energy flux received by subsystem i per unit time is thus

qi =
.

δ(miei), (4.76)

and the corresponding entropy flux is

.
δeSi=

.
δ(misi) . (4.77)
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The volume flux is

.
δ(miϑi)= 0. (4.78)

In addition,

δ(misi) = mi(
δei

Ti
+

pi

Ti
δϑi) + δmi(

ei

Ti
+

pi

Ti
ϑi − gi

Ti
). (4.79)

Based on this, we find that

˙δeSi =
1
Ti

˙
δ(miei)− gi

Ti

˙
δ(mi), (4.80)

or, for subsystem 1 (removing the index 1),

˙δeS =
1
T

(q − gṁ), (4.81)

where ṁ is the mass flow and q is the received heat flow, as defined by (4.76).
In the presence of several species, we obtain

˙δeS =
1
T

(q −
∑

j

gjṁj), (4.82)

where ṁj is the mass flux of species j through the porous wall. The entropy
production rate will be

˙δiS = −qΔ(
1
T

) +
∑

j

ṁjΔ(
gj

T
), (4.83)

where
Δ(

1
T

) =
1
T2
− 1

T1
, Δ(

gj

T
) =

gj2

T2
− gj1

T1
. (4.84)

Note here that the heat flux (internal energy flux)

q = ˙
δ(me) (4.85)

includes a conductive part and a part resulting from mass diffusion through
the wall. Also note that the fluxes q and ṁj are entering fluxes for the sub-
system of interest. The conduction and the convection of internal energy will
be separated out in Chap. 7 (see Sect. 7.6), where the entropy production
rate will be written in a form that clearly shows the terms resulting from the
jump in temperature (some are present in Δ(g/T )) and those resulting from
the jump in concentration.
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4.8 Entropy Balance in a Continuous Medium

Each element of the surface (dΣ), which has a normal n and follows the
barycentric motion velocity v, is traversed by a quantity of heat q · n dΣ and
by a mass of species j diffused per unit time J Dj · n dΣ. The normal n is
a unit vector, and its orientation is selected such that the energy or mass
contribution is positive in its direction. By extending the formula (4.82), the
corresponding entropy flux vector is thus found to be [10, 85, 108, 111]

J S =
1
T

(q−
∑

j

gjJ Dj), (4.86)

and its scalar product by n dΣ is the quantity of entropy crossing (dΣ).

Note: By applying the Gibbs relation

dS =
1

T
dE +

p

T
dV − 1

T

∑
j

gjdmj (4.87)

to fluxes, we can also formally write (as done by Napolitano [181])

J S =
1

T
J E +

p

T
J V − 1

T

∑
j

gjJ Dj . (4.88)

Since the volume flux J V is zero, and J E is equal to q, we obtain the preceding
formula (4.86).

We have also assumed a bulk energy contribution r, so the external entropy
contribution for the volume (V) is

Ṡe =
∫
V

r

T
dV −

∫
∂V

1
T

(q −
∑

j

gjJ Dj) · ndΣ. (4.89)

According to the second law, we have

Ṡ = Ṡe + Ṡi, Ṡi ≥ 0, (4.90)

where {
Ṡ = (d/dt)

∫
V ρsdV =

∫
V ρ ds/dt dV ,

Ṡi =
∫
V ẆS dV .

(4.91)

The integral equation for the entropy balance is then

∫
V
ρ
ds

dt
dV −

∫
V

r

T
dV +

∫
∂V

1
T

(q −
∑

j

gjJ Dj) · ndΣ =
∫
V
ẆSdV . (4.92)

Using the Stokes–Ostrogradski theorem and the fundamental lemma, we then
get the local equation
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ρ
ds

dt
+ ∇ · (q−

∑
j gjJ Dj

T
) =

r

T
+ ẆS . (4.93)

The Gibbs relation applies to the material derivative; in other words,

ds

dt
=

1
T

de

dt
+

p

T

dϑ

dt
−
∑

j

gj

T

dYj

dT
. (4.94)

By combining these two last equations and taking into account the expres-
sions obtained in the preceding paragraphs for de/dt, dϑ/dt = d(1/ρ)/dt, and
dYj/dT , we find that

ẆS = −∑j(gj/T )Ẇj − [(π − p)/T ]∇ · v + q ·∇(1/T )

−∑j J Dj · [∇(gj/T )− fj/T ]

−(1/2T )(∇⊗ v + ∇̃⊗ v − (2/3)∇ · v1) : (P− π1).

(4.95)

In order to correctly apply the laws of thermodynamics for irreversible
processes, we need to separate out the independent generalized forces in this
expression. This is done in (4.95) for the viscous terms, and will be performed
later for the other terms (see Chap. 7).

4.9 Balance Laws for Discontinuities in Continuous
Media

Various discontinuities can arise in fluid flows: solid walls, surfaces that sep-
arate phases, shock waves or combustion waves, contact surfaces, etc. The
preceding balance equations were derived for the continuous parts of flows,
and so they do not apply to discontinuities. To address discontinuities, we
need to establish the boundary conditions at the surface of the discontinu-
ity and connect the conditions present on both sides of this surface. This is
the objective when deriving balance equations for discontinuities. The surface
considered can be motionless or moving, and deformable or nondeformable. It
may or may not be the focus of production processes or internal fluxes (chem-
ical reactions at the surface, surface tension, etc). The balance equations are
easy to establish for quantities with vanishing interfacial production, which
therefore have no associated internal fluxes (momentum flux, such as surface
tension) or accumulation terms. The fluxes of mass, energy and momentum
relative to the normal of the surface are then conserved as the surface is tra-
versed. It is not the same for the entropy, but we can generally deduce the
entropy production from the other equations, just as we can in the absence of
a discontinuity. We will limit ourselves here to the case of separation interfaces
between fluid zones, although the method is also applicable to surfaces that
separate solids from fluids. We are therefore interested in the quantities that
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exhibit conservative fluxes; i.e., in those whose flux components normal to the
interface with the discontinuity (Fig. 4.6) are preserved upon traversing it:
volume, momentum, and total energy.

Fig. 4.6. Representation of a fluid discontinuity

The balance equation that expresses the conservation of the flux of the
quantity F normal to the interface with the (moving) discontinuity upon
crossing this interface is as follows:

[J F + ρf(v −W)]+− ·N = 0, (4.96)

where W is the local velocity of the discontinuity, N is the normal unit vector
orientated from the (−) side towards the (+) side, and [ϕ]+− is the difference
ϕ+ − ϕ−.6

We now apply this equation to successive cases. For the overall mass F =
m,

[ρ(v −W)]+− ·N = 0. (4.97)

For the species F = mj = mYj ,

[J Dj + ρYj(v −W)]+− ·N = 0. (4.98)

For the momentum F = mv,

[P + ρv ⊗ (v −W)]+− ·N = 0. (4.99)

6When there are also internal processes, it is necessary to add an accumulation
term (for unsteady phenomenona and convection) and a tangential flow term (see
Chap. 11) to the left hand side of the general balance equation. For the right hand
side, we also need a term for the production of the quantity F per unit area, ẆF a,
as generally applied for the entropy in Eq. 4.101.
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For the total energy F = E + K,

[q + v ·P + ρ(e + k)(v −W)]+− ·N = 0. (4.100)

For the entropy, which is not a conservative quantity, we get

[J S + ρs(v −W)]+− ·N = ẆSa ≥ 0. (4.101)

4.10 Other Methodologies for Balance Laws

The local forms of the balance equations have a broad field of application.
However, they are inevitably not suitable for solving all fluid flow problems.
In addition to their complexity, they are difficult to solve. They are too precise
in certain cases and insufficient in others. In chemical engineering for example,
the deterministic total balance is a better option since it allows certain chem-
ical reactors (known as “ideal reactors;” see Chap. 6) to be studied. On the
other hand, turbulent reactive flows and “real” chemical reactors may require
probabilistic balance equations.

4.10.1 Total Deterministic Balance

In theory, in this case, we need only write the preceding balance equations in
integral form. We generally need to take into account the fact that the entry
and the exit points for a chemical reactor consist of pipes along which the
properties of the fluids are relatively uniform. In addition, the reactor, or the
particular reactor element of interest, is assumed to have nondeformable walls
[9]. The weight balance for species j will then be

dmj

dt
= ṁjo − ṁje + Rj , j = 1, 2, . . . N, (4.102)

where mj is the mass of species j present in the reactor, ṁjo is the rate of
mass flow into the reactor, ṁje is the rate of mass flow out of the reactor, and
Rj the mass produced by chemical reactions.

Let us apply the first law of thermodynamics to the open reactor shown
in Fig. 4.7 between the times t and t + δt. We have

(E + δE +
∑

j

ṁjeejeδt)− (E +
∑

j

ṁjoejoδt) =
po

ρo
ṁoδt− pe

ρe
ṁeδt− Q̇(T )δt,

(4.103)
where Q̇(T ) indicates the heat released per unit time through the walls. We
then deduce that

dE

dt
=
∑

j

ṁjohjo −
∑

j

ṁjehje − Q̇(T ). (4.104)
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time t

time t +   tδ

δVe    t

δVo    tmo me 

Fig. 4.7. Mass balance in an open reactor

These N + 1 equations make it possible to solve many problems. Thus, for
an ideal perfectly stirred reactor, we assume that the specific or intensive
quantities are identical in the exit section of the reactor and at any point
inside the reactor. We assume a very turbulent fluid mixture, which leads to
a simple formula (see Chap. 6).

4.10.2 Probabilistic Population Balance

The probabilistic method for the population balance (Danckwerts, 1951) is
applicable to chemical reactors [283]. It is assumed that an entity of fluid at
the position x at time t is characterized by a certain number of quantities
ζ1, ζ2, . . ., combined into a vector ζ. At time t, the number of entities present
in an element of volume dxdζ in this phase space is then, by definition,

ψ(x, ζ, t)dxdζ, (4.105)

and the total number of entities present in a control volume (V) in the phase
space is then

N =
∫
V
ψ(x, ζ, t)dxdζ. (4.106)

The probability that an entity at position x is in the state defined by ζ at
time t is

f = ψ/N. (4.107)
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The population balance is

∂

∂t
(
∫
V
ψdV) +

∫
∂V

ψV · dΣ =
∫
V
GdV , (4.108)

where (∂V) is the motionless closed surface that delimits the volume, and dΣ
is the element of area that is orientated normally to (∂V). The vector V is
the velocity vector of the phase space. The production rate of entities per unit
of volume in this space is G by definition. By setting w = dζ/dt, the local
equation becomes

∂ψ

∂t
+ ∇ · (ψv) +

∑
i

∂(ψwi)
∂ζi

= G. (4.109)

By integrating this equation over the physical volume (Vr) of an open reactor
with a inlet volume flow rate of q̇o and an exit volume flow rate of q̇e, we
obtain

1
Vr

∂(ψ̄Vr)
∂t

+
q̇eψ̄e − q̇oψ̄o

Vr
+
∑

i

∂(ψ̄wi)
∂ζi

= Ḡ, (4.110)

Fig. 4.8. Crystallizer

where the terms for the inlet are indicated by a subscript o and those for the
exit are indicated by a subscript e. This relation also contains the average
quantities per unit volume

ψ̄ =
1
Vr

∫
Vr

ψdV , Ḡ =
1
Vr

∫
Vr

GdV (4.111)

and the average volume flow rates

ψ̄o =
1
q̇o

∫
Ao

ψv · dA, ψ̄e =
1
q̇e

∫
Ae

ψv · dA. (4.112)
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Fig. 4.9. Results for a crystallizer (J. Villermaux, private communication, 1986; see
also [283])

This balance equation can be applied for example to a crystallizer (see
Fig. 4.8). The aqueous solution that enters the reactor is homogeneous, and
the rate of crystal nucleation in the reactor is rN . The crystal size L increases
at a certain speed W = dL/dt = r0L

b, where r0 and b are constants. The
reactor is assumed to be perfectly stirred. In the steady regime and for b = 0,
we obtain a law for W (L), which is the proportion of the total crystallized
mass mT that is smaller than L (see Fig. 4.9), and this law agrees remarkably
well with that observed experimentally. The derivative W ′(L) is

W ′(L) =
m′(L)
mT

=
1

6L0
(
L

L0
)3 exp (−L/L0), (4.113)

where L0 = ϑr0/q̇, and q̇ = q̇o = q̇e are volume flow rates.
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Dimensionless Numbers and Similarity

This chapter presents the principles of dimensional analysis and the similarity
method. Section 5.1 introduces basic aspects of dimensional analysis such as
the definition of Πi ratios and Vashi–Buckingham’s theorem. The practical
utility of dimensional analysis is then emphasized using the determination of
head loss in a cylindrical pipe as an example. Indeed, dimensional analysis is
a necessary step in the analysis of any physical problem [63].

The similarity method is defined in Sect. 5.2 and applied to the case of a
flexible balloon that is subjected to a wind moving at given speed.

The concepts of dimensional analysis can also help us to solve equations
by identifying interesting groups of variables, as illustrated in Sect. 5.3, where
the analytical solutions for a heat transfer problem (self-similar solution) are
obtained.

The dimensionless numbers defined in Sect. 5.4 are the analytically deter-
mined products of various quantities raised to certain powers. These quantities
are specific parameters of the case of interest: a transfer coefficient, the size
of the chemical reactor, the average heat gradient, the characteristic time of
a phenomenon, etc. They must be expressed in a coherent system of units.
These dimensionless numbers are very useful for evaluating the most influen-
tial phenomena in a flow during a preliminary analysis.

However, applications of dimensional analysis extend further than this.
Changes in stability are often characterized by curves or surfaces of a space
that are defined based on such numbers.

It is sometimes possible to study phenomena without the need to resolve
the whole system of equations that govern them, and, based on some assump-
tions, to draw very useful conclusions through the use of dimensional analysis
and dimensionless numbers in conjunction with experimental observations.

A table of some of the dimensionless numbers that are currently used is
provided at the end of this chapter.

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_5, © Springer Science+Business Media, LLC 2010



98 5 Dimensionless Numbers and Similarity

5.1 Elements of Dimensional Analysis: Πi Ratios

5.1.1 Basic Considerations

The solution to a given problem identifies relations between the characteristic
physical quantities F1, F2, . . . , Fn of the medium of interest. These quantities
are measured using a coherent system of units. The basic idea behind dimen-
sional analysis is that the physical relations are independent of the units used
to measure these quantities [2, 34].

Let us consider the final relation of a given problem,

f(F1, F2, . . . Fn) = 0. (5.1)

We know that the form of this relation will not depend on the system units
used to measure these quantities.

If Fi = xi ei in a given system of units ei, then, for another system of units
e′i, we have

x′i e
′
i = xi ei. (5.2)

Any quantity can be expressed, from a dimensional point of view, using three
primary quantities: length L, mass M , and time T . In other words,

[Fi] = [Lαi Mβi T γi ]. (5.3)

For example, pressure can be expressed as [p] = [L−1MT−2].1

We can also consider quantities other than the primary quantities. If⎧⎨⎩
[X ] = [La11Ma12T a13 ],
[Y ] = [La21Ma22T a23 ],
[Z] = [La31Ma32T a33 ],

(5.4)

the dimensional equation for the quantity Fi will be

[Fi] = [Lαi Mβi T γi ] or [Fi] = [Xxi Y yi Zzi ], (5.5)

provided that the matrix of akl is regular. Since these two expressions for [Fi]
are equivalent, ⎧⎨⎩

a11xi + a21yi + a31zi = αi,
a12xi + a22yi + a32zi = βi,
a13xi + a23yi + a33zi = γi,

(5.6)

which makes it possible to calculate the coefficients xi, yi, and zi.

1Certain quantities are defined based on primary quantities and universal con-
stants. The dimensions of these constants are neglected. As an example, for the
temperature θ, we have [θ] = [L2T−2] (note that we use θ to denote temperature in
this chapter for obvious reasons).
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Let us assume that the table of the coefficients αi, βi, γi (the exponents
of L,M, T ) is of rank p (p ≤ 3). There are then n − p dimensionless ratios
(starting from the fundamental p) among n quantities, which are classified in
such a way that

X = F1, Y = F2, . . . (5.7)

The products are thus of the form

Πi =
Fi

F xi
1 F yi

2 . . .
, i = p + 1, . . . , n. (5.8)

5.1.2 Vashi–Buckingham or Π Theorem

A final relation, f(F1, F2, . . . Fn) = 0 between n quantities, can be written
in the form of an equation between n − p ratios, where p is the maximum
number of dimensionally independent quantities in the considered equation.
This is the Vashi–Buckingham theorem (developed in 1890). We therefore have

ϕ(Πp+1, . . . Πn) = 0, (5.9)

or similarly

Πp+1 = ψ(Πp+2, . . .Πn). (5.10)

It is important to note that dimensional analysis does not provide the func-
tions ϕ and ψ here. The forms of these functions can only be obtained exper-
imentally (or through complete mathematical analysis of the problem).

5.1.3 Practical Utility of Dimensional Analysis

Dimensional analysis can be used to

• Reduce the number of variables (this sometimes requires additional as-
sumptions)

• Search for similar solutions
• Present the results in a simplified form
• Search for experimental or numerical solutions.

Procedure: The usual procedure employed for dimensional analysis is as fol-
lows:

1. Initially write down all of the quantities (such as independent variables
and physical constants) that are likely to appear in f , and then eliminate
those that are considered to play a minor role.

2. Choose basic quantities X,Y . . . that are known to vary (i.e., are not
constant).
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3. Form the Πi ratios.
4. Produce the law ϕ(Πp+1, . . .Πn) = 0 (or the law in ψ). This law can

sometimes be written in the form Πα
p+1Π

β
p+2 . . . =const.

5.1.4 Example: Head Loss in a Cylindrical Pipe

The surface roughness is characterized by an average thickness e (see Fig. 5.1).

Fig. 5.1. Head loss in a cylindrical pipe

The dimensions of the active quantities are given in Table 5.1.

Fi D Δl e ρ V Δp μ

L 1 1 1 −3 1 −1 −1

M 0 0 0 1 0 1 1

T 0 0 0 0 −1 −2 −1

Table 5.1. Dimensions of the active quantities

We now follow the previously mentioned steps. First, we choose the basic
parameters: {X,Y, Z} = {D, ρ, V } (the base change matrix is regular). [Δl] =
[D], [e] = [D], [μ] = [L−1MT−1] = [XxμY yμZzμ ]. We find that [μ] = [DρV ].
In the same way, [Δp] = [ρV 2].

The Πi ratios are therefore

ΠΔl = Δl/D, Πe = e/D = ε, ΠΔp = Δp/ρV 2, Πμ = μ/ρV D = 1/Re,

where ε is the relative roughness and Re is the Reynolds number.
We now apply the Vashi–Buckingham theorem:

Δp/ρV 2 = ψ1(Δl/D, ε, Re). (5.11)

Experimental result:

Δp/ρV 2 = (Δl/D)ψ2(ε, Re). (5.12)
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One significant quantity is the head-loss coefficient, Λ = (2DΔp)/(ρV 2Δl).
Therefore, we have Λ = ψ(ε, Re). This result has been verified experimentally
for laminar flow and turbulent flow. In the particular case of laminar flow,2

Λ = 64/Re. (5.13)

Fig. 5.2. Cylindrical symmetry

5.2 Similarity

5.2.1 Definition

In order to simplify the process of analyzing a real phenomenon (relating
to, for example, hydraulic engineering, aeronautics, or engines), we often first
attempt to analyze a reduced-scale model that exhibits a similar phenomenon,
and then extend the results of this analysis to the real phenomenon.

However, before the solution for the model can be extended to the real
phenomenon, there are a number of similarity rules that must be verified.

The principles of dimensional analysis are applicable here because changing
the units of measurement for the quantities Fi is equivalent to considering two
different scales S and S’ for the same physical problem, where the homologous
parameters are xi and x′i (both of which use the same units). When all of the
similarity conditions are verified, there is said to be perfect similarity between
the model and real systems, although this is often difficult to achieve in prac-
tice. A scale factor λi is associated with each parameter. For perfect similarity,

2Reminder of Poiseuille flow in the laminar regime. We suppose that
u = w = 0, ρ =const., and the regime is steady (see Fig. 5.2). ∇ · v = 0 gives
∂u/∂x = 0 or u = u(r). Therefore, in turn, we have:

• Momentum equations: ∂p/∂x = μΔu(r) (Laplacian), ∂p/∂r = 0, from which we
get p = p(x)

• Solution of (μ/r)(d/dr)(r du/dr) = dp/dx: dp/dx =const. = −Δp/Δl, u =
(Δp/4μΔl)(D2/4− r2)

• If U is the mean velocity of the flow, πD2U/4 =
∫
urdrdθ, yielding Δp/Δl =

32μU/D2, Λ = 2DΔp/ρU2Δl = 64μ/ρUD = 64/Re.



102 5 Dimensionless Numbers and Similarity

we must have both f(F1, F2, . . . Fn) = 0 and f(λ1F1, λ2F2, . . . λnFn) = 0. The
Πi ratios must take the form

Πi = Fi/F
xi

1 F yi

2 . . . = λiFi/λ
xi

1 F xi

1 λyi

2 F yi

2 . . . , i = p + 1, . . . , n

to obey the Vashi–Buckingham theorem and ensure the invariance of the re-
lations ϕ(Πp+1, . . . Πn) = 0. We will then have

λi/λ
xi

1 λyi

2 = 1, i = p + 1, . . . , n (5.14)

Moreover, it will be necessary to make sure that usual simplifications are still
valid for the model (for example, the viscosity may be negligible in one case
but not in the other).

5.2.2 Example: Similarity of a Flexible Balloon Subjected to a
Wind

The following problem was handed to students to solve as part of the course
given by J. Bouttes at École Polytechnique [29].

We would like to produce a reduced-scale model of a large balloon; the
model should possess the same skin tension as the large balloon (see Fig. 5.3a).

Fig. 5.3. a Large balloon; b model in a wind tunnel

Various phenomena are involved here. First, we consider the surface ten-
sion due to the hydrostatic pressure. This pressure Δp ∝ ρgh, so the surface
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tension σ ∝ RΔp (where R is the radius of the balloon). To obtain the same
tension in both the skin of the balloon and the skin of the model, we must
have RΔp = R′Δp′ (where R′ is the radius of the model) or Rρh = R′ρ′h′;
i.e., ρ′/ρ = Rh/R′h′ ∼= (R/R′)2 = λ2.

Since the model is much smaller than the balloon, ρ′ must be much larger
than ρ. However, this means that the model exhibits different behavior to that
of the balloon in a wind tunnel.

We can solve this problem by filling the balloon with a liquid of density
ρL. The preceding results remain valid if the model is positioned upside down
in the tunnel (see Fig. 5.3b): ρL/ρ = (R/R′)2 = λ2. If the liquid used is water,
λ2 = 1000 and so R/R′ = λ ≈ 30, which is a reasonable value.

Now, if ρ′ is the density of the air around the model, the aerodynamic
pressure for an incompressible flow (Mach number M < 0.25, which we assume
has been verified) is Δp ∝ ρV 2. Since the induced skin tensions need to be
equal, we have ρV 2R = ρ′V ′2R′, and so R/R′ = ρ′V ′2/ρV 2.

Assuming that the air has the same density in the atmosphere and the
wind tunnel, we get V ′/V =

√
λ. If we use water in the model, this implies

that the wind speed needs to be 5–6 times larger in the tunnel.
We now consider the viscous stress. The Reynolds number Re is used for

the viscous stress:

Re′

Re
=

ρ′V ′R′

μ′
μ

ρV R
,

where R′/R = 1/λ.
If the temperature and pressure in the wind tunnel are the same as those

in the atmosphere, ρ and μ are also the same for both the atmosphere and the
wind tunnel, and so Re′/Re = V ′R′/V R = 1/

√
λ. In this case, the Reynolds

numbers for the atmosphere and the wind tunnel are very different.
In order to obtain similarity, we could increase the pressure at a constant

temperature (so that ρ ∝ p):

Re′

Re
= 1 =

ρ′V ′R′

ρV R
=

√
p′

p

√
ρ′V ′2

ρV 2

R′

R
=

√
p′

p

1√
λ
.

We therefore require p′/p = λ (for water, p′ ≈ 30p).
We could also decrease the temperature (i.e., use a cryogenic wind tunnel):

Re′

Re
= 1 =

√
ρ′√
ρ

√
ρ′V ′2

ρV 2

√
R′

R

√
T

T ′
,

because ρ ∝ p/T and μ ∝ √T . If we impose p = p′, we find that T ′/T = 1/
√
λ.

For water, which must be heated so that it does not turn into ice, we get
T ′ ≈ T/5.
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5.3 Analytical Search for the Solutions to a Heat
Transfer Problem (Self-Similar Solution)

Fig. 5.4. Heat transfer in a semi-infinite medium

The equation for heat transfer in a continuous quiescent medium was estab-
lished in Sect. 4.1. For evolution along a plane section, we have (see Eq. 4.10)

∂θ

∂t
− κ

∂2θ

∂x2
= 0. (5.15)

The solution to a given problem takes the form θ = f(x, t, κ). We look
for the solutions that, if λ, μ, ν need to be determined, give f(x, t, κ) =
f(λx, μt, νκ), ∀ {x, t, κ}; i.e., the self-similar solutions. In other words, the so-
lution f(x, t, κ) must be invariant upon scaling. We know that θ = f(x, t, κ)
can be written in the form of a dimensionless ratio. Indeed, Table 5.2 gives us
Πκ = κt/x2, so θ = ϕ(x2/κt).

Since x2/κt = λ2/μν x2/κt, then λ2 = μν.

Fi x t κ

L 1 0 2

M 0 0 0

T 0 1 −1

Table 5.2. Dimensions

We therefore look for solutions of the preceding form. These do exist under
some circumstances (i.e., when the initial data and the boundary conditions
allow it).

Let us now consider the exact problem of heat transfer in a semi-infinite
medium (see Fig. 5.4) [147]. For t < 0, we have θ = θ0 for x < 0 and θ = θ1

for x > 0, (adiabatic wall at x = 0 for t < 0). For t > 0, we always have
θ = θ0 for x < 0, as well as θ = θ0 at x = 0. For infinite t, we have θ = θ1, ∀x.
Setting η = x/

√
κt, the equation to solve becomes
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d2θ

dη2
+

η

2
dθ

dη
= 0.

The solution takes the form θ = A erf(η/2) + B for t > 0, x ≥ 0, where
erf(s) = 2√

π

∫ s

0 e−u2
du, erf(∞) = 1. The initial condition t → 0 gives us

η →∞, so A+B = θ1. The boundary condition x = 0 gives η = 0, θ = θ0 for
t > 0, and so B = θ0. Thus,

θ = θ0 + (θ1 − θ0) erf(x/
√

4κt). (5.16)

This solution always leads, when x → ∞ (η → ∞), to θ = θ1. When t → ∞,
we obtain θ = θ0 for finite x (see Fig. 5.5). Note that, as soon as t > 0, the
disturbance arising from the contact temperature at t = 0 exists throughout
the half-plane x > 0. The propagation is thus instantaneous. Actually, in-
stantaneous propagation does not occur, but this model of linear irreversible
thermodynamics does not make it possible to take this into account. Thus,
to analyze propagation phenomena, it is important to consider nonlinear ir-
reversible thermodynamics, as done for example by Jou et al. [130].

Fig. 5.5. Temperature evolution in a semi-infinite medium

5.4 A Few Dimensionless Numbers

In fluid mechanics, similarity reflects the relationship between several types
of forces that arise during flows [2, 110]. In most flows, inertial forces (which
are required to change the motions of the fluid particles) have the greatest
magnitude. We successively compare them with the other types of forces—
gravity, viscosity, surface tension, and compressibility—which allows us to
derive the Froude, Reynolds, Weber and Mach numbers, respectively.

The value of the Froude number reflects the relative importance of inertial
forces compared to buoyancy forces. Froude similarity reflects the relationship
between inertial forces and gravitational forces; it is important in cases where
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the positions and the motions of the fluid particles can be influenced by these
two types of forces, especially in the case of flow in the presence of a free
surface.

The Reynolds number characterizes the relative importance of inertial
forces and viscous forces. The Reynolds similarity respects the ratio of these
forces and is most important in cases of laminar flow and turbulent flow. It is
important to note the general result that, in any problem that involves both
viscous forces and gravity, a study based on similarity—which is often the
only kind possible—will require the use of both the Froude number and the
Reynolds number. In such cases, we must often assume approximate similarity
by preserving only one of these two numbers.

The Grashof number is presented in the form of the square of a particular
Reynolds number associated with the speed induced by the buoyancy forces:
VG =

√
LgΔρ/ρ.

The Weber number characterizes the relative importance of inertial forces
and forces related to surface tension. Weber similarity need only be respected
if there is a free surface where surface tension phenomena can occur.

The Mach number characterizes the relative importance of the inertial
forces and the elastic compressive forces of the fluid (c =

√
(∂p/∂ρ)s). Mach

similarity should only be respected in problems where there is wave propaga-
tion in a compressible medium.

Most dimensionless numbers can be defined as ratios of characteristic
times. We have already seen that the Reynolds number is the ratio of the
momentum diffusion time divided by the viscosity L2/ν to the momentum
convection time L/V . The Peclet number is the ratio of the thermal diffu-
sion time L2/κ to the convection time L/V . Similarly, the Prandtl number
Pr is the ratio of the thermal diffusion time to the viscous diffusion time,
the Schmidt number Sc is the ratio of the molecular diffusion time for the
species to the viscous diffusion time, the Lewis number is the ratio of the
molecular diffusion time of the species to the thermal diffusion time, while
the Mach number M is the ratio of the acoustic time L/c to the convection
time. The first Damköhler parameter Da is the ratio of the mechanical time
to the chemical time. We can also define the Marangoni number Ma as the
ratio of the thermal diffusion time to a capillary time corresponding to the
velocity induced by spatial variations in the surface tension Vσ = Δσ/μ.

Some dimensionless numbers can be defined as products of other dimen-
sionless numbers, and others as ratios of fluxes (as in the case of the Nusselt
number Nu). The Hickman number appears in the case of a flat, horizontal
evaporation surface for rapidly evaporating liquids (for example those in a
vacuum). The liquid is then unstable to local variations in the vaporization
rate; local surface depressions are produced by the force exerted on the surface
(vapor recoil) by the rapidly departing vapor, while sustained liquid flows are
driven by the shear exerted on the liquid surface by the vapor [94].

Table 5.3 provides a list of some of the dimensionless numbers that are
encountered in fluid mechanics. There are many dimensionless numbers that
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are not included in the table, such as the Rossby number, which makes it
possible to compare the effect of inertial forces to the effect of Coriolis forces;
the Stanton (or Margoulis) number St, which is the ratio of a convection
coefficient to the product ρ cpV ; the Strouhal number Sr, which is used in
Sect. 8.2.1 and is the convection time divided by a characteristic swirl emission
time; and the Taylor number Ta, which occurs in Taylor–Couette instability
theory (see Sect. 9.2.3).

Each dimensionless number has its own range of validity, and its rele-
vance depends on the problem of interest. They allow complex problems to
be solved without the need to solve all of the equations associated with each
problem, they can provide self-similar solutions, and they allow experiments
to be performed on models by applying the similarity principles.

Listing all known dimensionless numbers here would be unrealistic, as
every type of problem has its own associated dimensionless numbers.

Name of the Associated Expression for the
dimensionless number phenomena dimensionless number

Bond number Superimposed fluids Bo = σ/gL2Δρ
with surface tension

Crispation Viscosity, thermal diffusion, Cr = μκ/σ∗δ
number and surface tension (Sect. 11.4.1)

First Damköhler Chemical reaction in a Da = τmec/τch

parameter flow (Sect. 7.2)

Euler number Static and dynamic Eu = p/ρV 2

pressure

Froude number Inertia and gravity Fr = V 2/gL

Grashof number Thermal or chemical Gr = ΔρgL3/ρν2

buoyancy and viscosity

Hickman number Vapor recoil over Hi = ( dṁ
dT

)∗ ṁ∗βδ2μV
ρLκLσ∗

a flat liquid surface (1/ρV − 1/ρL) [94]

Lewis number Heat diffusion and mass Le = Sc/Pr = κ/D
diffusion

Mach number Convection and elastic M = V/c
compressive forces

Marangoni number Gradient of surface
(chemical) tension, species Mach = σCGCδ

2/Dμ
diffusion, and viscosity

Marangoni number Gradient of surface
(thermal) tension, thermal Math = σTGT δ

2/κμ
diffusion, and viscosity (Sect. 7.9.2)

Nusselt number Convection coefficient Nu = αL/κ
and thermal conduction (Sect. 12.4.2)

Peclet number Convection and heat Pe = V L/κ
conduction

Prandtl number Viscosity and heat Pr = ν/κ
diffusion
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Rayleigh number As for Grch but with Rach = GrchSc
(chemical) mass diffusion = ΔρchgL

3/νD

Rayleigh number As for Grth but with Rath = GrthPr
(thermal) thermal diffusion = ΔρthgL

3/νκ

Reynolds number Convection and viscosity Re = ρV L/μ

Richardson number Superimposed flows Ri = (ρL − ρG)gδG

and mixing layers /ρG(VL − VG)2 [94]

Schmidt number Viscosity and species Sc = ν/D
diffusion

Sherwood number Convection coefficient Sh = αCL/D
(Nusselt for conc.) and species diffusion

Surface viscosity number Surface viscosity and V i = (κa + εa)/μD
bulk shear viscosity (Sect. 11.4.1)

Weber number Inertia and surface tension We = ρ V 2 L/σ

Table 5.3. Dimensionless numbers. Here, σ designates the surface tension, g is the
acceleration due to gravity, L is a characteristic length, ρ is the density, Δρ = ρ∗−ρ,
μ is the viscosity, ν = μ/ρ is the kinematic viscosity, κ is the thermal diffusivity,
τmech is a mechanical time, τch is the chemical time, p is the pressure, V is the
velocity, ṁ is the unit mass flow rate of vaporization, (∗) denotes a reference state,
(G) denotes a gas, (V ) denotes a vapor, (L) denotes a liquid, δ is the thickness
of a layer or boundary layer, (−β) is the thermal gradient in a thermal boundary
layer of thickness δ, D is the mass diffusivity, c is the speed of sound, σC = dσ/dC,
σT = dσ/dT , GT is the temperature gradient, GC is the concentration gradient, α is
a heat transfer coefficient, αC is a mass transfer coefficient, (ch) denotes a chemical
effect, (th) denotes a temperature effect, and κa and εa are surface viscosities
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Chemical Reactors

Chemical engineering is a very important field with its own specific methods.
Classical methods of analyzing and modeling aerodynamics and combustion
are often not the most suitable methods for solving problems associated with
chemical reactors, the subject of this chapter. For example, the deterministic
and probabilistic population balance equations given in Sect. 4.10 are used
instead of the general balance equation of Sect. 4.4. The latter is too refined
for such problems, and it can be difficult to use to interpret experimental
results.

The differences between ideal and real reactors are underlined in the first
section of this chapter. Then, in Sect. 6.2, the behavior of one well-known type
of ideal reactor—a homogeneous perfectly stirred reactor in either the steady
or unsteady regime—is described. Paradoxically, there are some similarities
between the stability properties of this type of chemical reactor and those of
a premixed flame reaction zone, and we will make use of this observation in
Chap. 8.

The residence time distribution is studied in Sect. 6.3. The basic residence
time distribution equations are derived and then applied to ideal reactors—a
homogeneous perfectly stirred reactor in the steady regime, a piston reactor,
Poiseuille flow—and finally to real reactors.

6.1 Ideal and Real Reactors

In the broadest sense, a chemical reactor is a zone where chemical transforma-
tions can occur. This definition covers a very wide range of situations found
in the chemical industry, aircraft engines, rockets, chemical engines, etc.

The configuration of a particular reactor depends on many factors related
to the nature of the chemical transformation that takes place there: whether
the reaction is homogeneous or heterogeneous, deviation from equilibrium,
whether a catalyst is present, turbulence, thermodynamic state (pressure,
temperature, etc.).

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_6, © Springer Science+Business Media, LLC 2010
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The study of real reactors requires the development of experimental tech-
niques and theoretical investigative tools. The residence time of the chemical
species in a reactor is a significant concept, and studying the residence time
distribution often makes it possible to comprehend the process in all of its com-
plexity. Studying extreme cases—i.e., ideal reactors—is a very useful approach
because they are relatively simple and are often a good approximation to real
cases. It is often unrealistic to attempt to solve the local balance equations
without using simplifying assumptions. Total balances that take the principal
characteristics of the reactor into account are generally preferred. For exam-
ple, in some cases we can ignore transfer phenomena (thermal conduction,
diffusion, viscosity). Sometimes (in the case of an isothermal reactor), only a
species balance equation is used [9]. For one type of ideal reactor known as
a “perfectly stirred” reactor, we only need to distinguish between the inlet
conditions and those of the whole reactor, which are also the exit conditions.
This assumption is not valid for a “piston” reactor, where the flow is assumed
to evolve through successive sections until it reaches the exit. Lastly, in most
of the cases considered in this chapter, the effects of pressure variations and
viscosity are neglected, which means that the momentum equation cannot be
used.

We now consider various types of ideal reactors in turn (see Fig. 6.1). We
study their steady regimes and sometimes their transient states, as well as the
stabilities of their working regimes.

Fig. 6.1. Various types of ideal reactors
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6.2 Homogeneous Perfectly Stirred Chemical Reactors

In this section, we will study perfectly stirred reactors. After presenting the
basic equations for such reactors, we study their steady regimes and their
stability and stabilization conditions.

Note that a similar study (not presented here) can be performed for tubular
reactors1 (see for instance [196]) assuming plug flow (see Sect. 6.3.3).

Simplified chemical reactor concepts are not relevant for combustion waves.
They are studied in Chap. 10 by solving the general balance equations of
reactive fluid flows involving transfer phenomena.

6.2.1 Basic Equations of Perfectly Stirred Reactors

We apply the total balance equations (see Sect. 4.10.1) to an open homoge-
neous perfectly stirred reactor [5, 9, 283]:

dmj

dt
= ṁjo − ṁje + Rj , (6.1)

dE

dt
=
∑

j

ṁjohjo −
∑

j

ṁjehje − Q̇(T ). (6.2)

“Perfectly stirred” means that the thermodynamic and chemical parameters
are the same at any point in the reactor, once the inlet section has been
traversed. In particular, Te = T, hje = hj , Cje = Cj . In the case considered
here, we assume that the pressure p is roughly constant, so that, if Vr is the
volume of the reactor, dE/dt = dH/dt where H = Vr

∑
j ρjhj . Finally the

mass flow rates ṁj are assumed to be proportional to the densities, so that,
if q̇ is the volume flow rate,

ṁj = ρj q̇. (6.3)

By setting the crossing time

τ = Vr/q̇ (6.4)

equal to the average residence time, we have{
τ dρj/dt = ρjo − ρj + τẆj ,

τ d(
∑

j ρjhj)/dt =
∑

j(ρjohjo − ρjhj)− Q̇/q̇,
(6.5)

given that Rj = VrẆj .

1In a tubular reactor, the feed enters at one end of a cylindrical tube and the
product stream leaves at the other end. The long tube and the lack of provision for
stirring prevents complete mixing of the fluid in the tube, so the properties of the
flowing stream will vary in both the radial and the axial directions.
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When only one chemical reaction is involved,

Ẇj = νjMj ζ̇ , (6.6)

where νj is the stoichiometric coefficient and ζ̇ is the reaction rate in moles
per unit time. We also have

dρj = νjMjdζ, (6.7)

where ζ is the progress variable of the reaction such that

ρj = ρjo + νjMjζ. (6.8)

The species balance equation is therefore

τ dζ/dt = −ζ + τ ζ̇. (6.9)

For the energy equation, we note that

hj = (q0
f )j +

∫ T

T 0
cp, jdT, (6.10)

where (q0
f )j is the heat of formation and cp, j the specific heat at constant

pressure per unit mass of species j; thus

d(
∑

j

ρjhj)/dt =
∑

j

(hjdρj/dt + ρjcp, jdT/dt). (6.11)

We have ∑
j hjdρj/dt =

∑
j hj [(ρjo − ρj)/τ + Ẇj ]

=
∑

j hj [(ρjo − ρj)/τ + νjMj ζ̇]

=
∑

j hj(ρjo − ρj)/τ + ζ̇
∑

j νjMjhj .

(6.12)

If ΔH is the average molar enthalpy of reaction then

ΔH =
∑

j

νjMjhj (6.13)

and by setting

ρcp =
∑

j

ρjcp, j (6.14)

we obtain

∑
j

(ρjo − ρj)hj − τΔHζ̇ + ρcpτdT/dt =
∑

j

(ρjohjo − ρjhj)− Q̇/q̇. (6.15)
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Simplifying and setting

∑
j

ρje(hjo − hj) =
∑

j

ρjo

∫ Te

T

cp, jdT ∼= ρcp(To − T ) (6.16)

yields

τdT/dt = To − T + Δ∗τ ζ̇ −Q∗ (6.17)

with

Δ∗ = ΔH/ρcp, Q
∗ = Q̇/ρcpq̇. (6.18)

The system governing the behavior of the reactor is thus{
τ dζ/dt = −ζ + τ ζ̇,

τdT/dt = To − T + Δ∗τ ζ̇ −Q∗.
(6.19)

Let us now study the case for a first-order reaction:

A
k(T )→ B (6.20)

where

k(T ) = k0 e
−Ta/T . (6.21)

We have

ζ̇ = k0 e
−Ta/TCA = k0 e

−Ta/T (CAo − ζ). (6.22)

By setting X = ζ/CAo, we find that

ζ̇ = CAo k0 e
−Ta/T (1−X). (6.23)

Let us assume that the law of heat exchange is

Q∗ = K(T − T0) (6.24)

where T0 is the outside temperature, and set{
f(X, T ) = k0 (1−X)e−Ta/T ,
T ∗ = Δ∗CAo.

(6.25)

The balance equations (6.19) then take the form{
τ dX/dt = −X + τ f(X, T ),

τdT/dt = To − T + τ T ∗f(X, T )−K(T − T0).
(6.26)
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6.2.2 Steady Regimes of Perfectly Stirred Reactors

The steady mode (index s) is characterized by the following two equations in
the plane (Ts, Xs) (see Fig. 6.2):

Xs = τ k0 e
−Ta/Ts/(1 + τ k0 e

−Ta/Ts), (6.27)

Xs = (K + 1)Ts/T
∗ − (To + KT0)/T ∗. (6.28)

Fig. 6.2. Steady regime (Eqs. 6.27 and 6.28): a Influence of τk0, which is similar
to the first Damkölher parameter Da = τ/τchim. For a given Ts, increasing τk0

(a faster reaction or a slower flow) increases Xs. b Influence of the heat exchange
coefficient K for a given T0 and To (here T0 < To). c Influence of the exchanger
temperature for a given K

The solutions correspond to the intersections of the curves for Eqs. 6.27 and
6.28 (see Fig. 6.3).

We can also represent the solutions in the plane (Xs, fs), where

fs = f(Xs, Ts) = k0 (1−Xs)e−Ta/Ts . (6.29)

The two following equations are then obtained:
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Fig. 6.3. Various solutions for Ta with various values of T0 and for a given τk0 and
K

{
fs = Xs/τ,

fs = k0 (1−Xs)e−Ta(1+K)/(To+KT0+T∗Xs).
(6.30)

Fig. 6.4. Steady solutions in the (XS , fS) plane

Here, the influence of the crossing time defined by (6.4) is highlighted by the
slope 1/τ of the straight line that crosses the origin (see Fig. 6.4). We have one
or three operating points, or exceptionally two, and the points Aj correspond
to very weak reaction rates. It may be useful to make Xs as large as possible
and the crossing time τ quite low. A runaway reaction can be obtained by
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decreasing the mass flow rate (and thus 1/τ) or by increasing the temperature
of the exchanger.

6.2.3 Stability Analysis of a Perfectly Stirred Reactor

It is important to assess the operating point stability. To do this, we study
the evolution over time after a deviation from the steady mode:

x1 = (X −Xs)/(1−Xs), x2 = (T − Ts)/Ts. (6.31)

We then obtain

{
dx1/dθ = −x1 − a1[1− (1 − x1) exp (a2x2/(1 + x2))],

dx2/dθ = −a3x2 − a4[1− (1− x1) exp (a2x2/(1 + x2))],
(6.32)

with {
θ = t/τ, a1 = τk0e

−Ta/Ts , a2 = Ta/Ts,

a3 = 1 + K, a4 = T ∗(1 −Xs)a1/Ts.
(6.33)

After linearizing the right hand sides, we obtain{
dx1/dθ = −(1 + a1)x1 + a1a2x2,

dx2/dθ = −a4x1 + (a2a4 − a3)x2.
(6.34)

The characteristic equation for the system is

λ2 − Sλ+ P = 0, (6.35)

with {
S = −(1 + a1 + a3 − a2a4),
P = (1 + a1)a3 − a2a4.

(6.36)

The roots are real and distinct if

Δ = (1 + a1 − a3)2 + 2a2a4(1 − a1 − a3) + a2
2a

2
4 > 0. (6.37)

Conjugate imaginary roots occur when Δ < 0, and a double root occurs when
Δ = 0.

First case: real nonzero roots (Δ > 0):

There is stability (λ1 < 0, λ2 < 0) provided that P is positive and that S
is negative. Any low-amplitude variation around the steady state tends to be
damped according to an exponential law. If only one of the roots is negative
or if both of the roots are positive there is instability.



6.2 Homogeneous Perfectly Stirred Chemical Reactors 117

Second case: conjugate imaginary roots (Δ < 0)

Here we have P > 0 in all cases. The real part of each root λ is equal to S/2.
Stability will thus be assured if S < 0 and the oscillatory solution is then
damped. If S is positive there is instability. The oscillatory solution is not
damped for vanishing S.

Third case: double roots (Δ = 0):

The solution is stable if S < 0.

Fourth case: one of the roots is equal to zero (P = 0):

There is asymptotic stability. The variation tends to stabilize towards a
nonzero value when θ →∞.

In brief, the stability of the linearized system is only ensured for P > 0
and S < 0. One of these conditions can be represented graphically. Indeed,
in the plane (Ts, Xs), if p1 is the slope of the curve Xs = τk0e

−Ta/Ts/(1 +
τk0e

−Ta/Ts) and p2 is the slope of the straight line Xs = (K + 1)Ts/T
∗ −

(To + KT0)/T ∗, differentiation yields

1− p1/p2 = [(1 + a1)a3 − a2a4]/a3(1 + a1) = P/a3(1 + a1). (6.38)

Thus, P will be positive if the slope of the straight line is higher than that
of the curve, and P will be negative in the opposite case. Thus, there are
sufficient conditions for instability when p2 < p1, which only occurs between
the points A and B. The arc of curve AB is therefore a zone of unstable
stationary modes with respect to small disturbances (Fig. 6.5).

Fig. 6.5. Unstable steady modes
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We can only completely describe the unsteady behavior of the reactor
and elucidate the response to large disturbances by studying the nonlinear
equations {

τ dX/dt = F (X, T ),
τ dT/dt = G(X, T ). (6.39)

Following Admundson and Bilous [18], we can track the evolution by dividing
the plane (T, X) into areas according to the signs of F (X, T ) and G(X, T )
and carrying out a representation in this plane. Figure 6.6 qualitatively shows
the result of doing this when there is only one steady state [219].

Fig. 6.6. Case for a single steady state. The path AS indicates a steady state with
oscillating stability

For three steady states, we obtain a boundary line xy (see Fig. 6.7).

Fig. 6.7. Case for three steady states
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These figures are obtained for a reversible reaction A ⇀↽ B; slightly differ-
ent from the preceding scenario.

Aris and Amundson [5, 6] obtained the numerical solutions for an irre-
versible reaction A → B with three steady states (see Fig. 6.8, as well as
[219]).

Fig. 6.8. Numerical solutions for three steady states (after [6])

In Fig. 6.8, note that all of the unsteady evolutions on the left side of the
boundary line xy converge towards the steady state S1. For example, if we
wish to obtain the stable steady state S3, which is the only interesting one,
we will have to preheat the reactor (as mentioned above).

There are two problems with this type of reactor:

• The time needed to reach a stable steady state
• The existence of unstable steady states.

These problems can be solved by adjusting the conditions of the reactor
appropriately, which makes it possible to accelerate towards the steady state
or to stabilize a naturally unstable operating point.

We can, for example, adjust the flow rate of the external cooling fluid
according to the exit temperature of the reactor. This makes it possible to
modify the exchange coefficient K, which becomes K + m.
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The stability conditions of the linearized system thus become{
1 + a1 + a3 + m− a2a4 > 0
(1 + a1)(a3 + m)− a2a4 > 0 (6.40)

Note that if m is sufficiently large it will be always possible to stabilize the
operating point.

However, such control is difficult to achieve in reality. We can also obtain
stabilization, but only in certain situations, by using the concentration as the
signal instead of the temperature of the reactor. In this case, the heat flux
with the exchanger becomes a function Q(T, X). Linearization then gives us{

dx1/dθ = −(1 + a1)x1 + a1a2x2,
dx2/dθ = −(a4 + μ)x1 + (a2a4 − a3)x2,

(6.41)

where μ characterizes the influence of the concentration on Q, which is pre-
sumed to be linear. The stability conditions become{

1 + a1 + a3 − a2a4 > 0,
(1 + a1)a3 − a2a4 + μa1a2 > 0. (6.42)

It is seen that adjusting the concentration only influences the second condition;
i.e., P . We can only stabilize points where the first condition is obeyed.

Fig. 6.9. Stabilization and limiting cycles (after [5])
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Aris and Amundson (see [5, 6], as well as [219]) studied the nonlinear
system numerically with increasing values of T for this reactor. They observed
the stabilization of the steady state S2 and, for intermediate values of μ, the
onset of limiting cycles for increasing values of the control parameter μ (see
Fig. 6.9).

6.3 Residence Time Distribution

6.3.1 Basic Equations

For real chemical reactors, we can make use of the probabilistic balance equa-
tion described in Chap. 4. For a reactor of constant volume Vr, and with entry
and exit volume flow rates of q̇o and q̇e, this equation becomes [283]:

∂ψ̄

∂t
+

q̇eψ̄e − q̇oψ̄o

Vr
+
∑

i

∂(ψ̄wi)
∂ζi

= Ḡ, (6.43)

where ψ is the distribution function of the phase space

ψ = ψ(x, ζ, t). (6.44)

The averages ψ̄, ψ̄o and ψ̄e are defined as

ψ̄ =
1
Vr

∫
Vr

ψ dV , ψ̄o =
1
q̇o

∫
Ao

ψ v · dA, ψ̄e =
1
q̇e

∫
Ae

ψ v · dA, (6.45)

where v is the velocity vector and Ao and Ae are the entry and exit sections
of the chemical reactor, respectively.

Various models have been elaborated by choosing the parameters ζj and
the corresponding wj as well as the average production Ḡ.

At the experimental level, we can use the concepts of age and residence
time of the molecules in the reactor. To do this, we neglect the effects of chem-
ical reactions on the flow, which is considered to be an inert fluid. We define
the age (α) distribution I(α) such that I(α) dα is the fraction of the molecules
in the reactor that have ages of between α and α+dα. The residence time (te)
distribution E(te) is defined such that E(te) dte represents the fraction of the
molecules in the exit flow that have been in the reactor for times ranging from
te to te +dte. The residence time distribution can be obtained experimentally
by measuring the concentration or flow rate of a tracer at the exit section. If
a tracer impulse is introduced at time t = 0 (the time profile for the impulse
is a Dirac delta function) at the inlet, and C(xe, te) is the concentration of
tracer at the exit section, we have

E(te) =

∫
Ae

C(xe, te)v(xe, te) · dA∫∞
te=0

∫
Ae

C(xe, te)v(xe, te) · dAdte
. (6.46)
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The crossing time τ is equal to the average residence time; i.e.,

τ = t̄e =
∫ ∞

0

teE(te) dte. (6.47)

We now give three examples of well-defined reactors.

6.3.2 Homogeneous Well-Stirred Reactor in Steady Mode

In the absence of any chemical reactions in a well- (or perfectly) stirred reactor,
we have

dC/dt = (Co − C)/τ (6.48)

for t > 0, where τ is the crossing time (equal to Vr/q̇). Given that Co(t) =
C0 δ(t), where δ(t) is the Dirac delta function, the solution to this is

C = C0 e
−t/τ , t > 0. (6.49)

Therefore, ∫
Ae

C udA = C0e
−t/τ

∫
Ae

u dA = C0 q̇ e
−t/τ , (6.50)

where u is the velocity, so that

E(te) = e−te/τ/

∫ ∞
0

e−te/τ dte = e−te/τ/τ. (6.51)

6.3.3 Piston Reactor

A “piston” reactor (or “plug flow” reactor) is an ideal tubular reactor in
which the flow is carried in planar sections where the parameters are uniform
(complete mixing in the radial direction, a uniform velocity profile across the
radius) and there is no mixing in the axial direction (i.e., the direction of flow,
assuming plug flow). An impulse injection of dye at the entry section, in the
absence of diffusion, will give the same signal at the exit section when the
crossing time τ has elapsed, so that

E(te) = δ(te − τ). (6.52)

6.3.4 Poiseuille Flow

In Poiseuille flow, the velocity profile is given by (see Sect. 5.1.4 for definitions)

u(r) =
Δp

4μΔl
(R2 − r2), R = D/2. (6.53)
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The residence time is thus related to r:

te = Δl/u(r) = Δl/a(R2 − r2), a = Δp/4μΔl. (6.54)

The flow between te and te + dte is

u(r) 2πr dr = 2πar(R2 − r2) dr, (6.55)

and the total flow is given by integrating between 0 and R:

2πaR4/4. (6.56)

Thus,

E(te) dte = 4πu(r) dr/aR4 = 4(R2 − r2)r dr/R4. (6.57)

As

dte =
Δl

a

2r dr
(R2 − r2)2

, r ∈ [0, R], (6.58)

we find that {
E(te) = τ2/2t3e, te ∈ [τ/2, ∞[,

E(te) = 0, te ∈ [0, τ/2[,
(6.59)

where

τ = te = 2Δl/aR2. (6.60)

The solutions for these three examples are shown in Fig. 6.10, together with
the shape of the residence time distribution for a real reactor.

6.3.5 Real Reactor

A correlation between the age distribution and the residence time distribution
can be obtained using the population balance. The age α then characterizes
a particle of fluid, so that ζ = α and w = dα/dt = 1 in steady flow. We then
have

q̇eψ̄e/Vr + ∂ψ̄/∂α = 0, α > 0. (6.61)

However, the age distribution is equal to ψ̄/N , where N =
∫∞
0

ψ̄ dα, and
the residence time distribution is given by ψ̄e/N . Writing τ = Vr/q̇e, and
assuming an incompressible fluid, we then obtain

dI(α)/dα + E(α)/τ = 0. (6.62)

For example, in the perfectly stirred case, we find
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Fig. 6.10. Residence time distributions of chemical reactors

I(α) = E(α) = e−α/τ/τ. (6.63)

In the general case, we have

τ I(t) = 1−
∫ t

0

E(te) dte. (6.64)

This relation is easy to interpret if we imagine that dye is injected into an
incompressible fluid according to the Heaviside function. Integration yields

Vr

∫ t

0

I(α) dα =
∫ t

0

q̇dt′
∫ ∞

t′
E(te) dte, (6.65)

where
∫∞

t′ E(te) dte represents the fraction of the exit flow that is older than
t′, and therefore colorless. We then write a balance relation at time t > 0: the
quantity of colored fluid in the reactor at time t is equal to the quantity of
colorless fluid which has exited the reactor since the beginning the injection
(t = 0).

The residence time distribution characterizes the macro mixture; i.e., the
relative displacement of the fluid particles.

The micro mixture is related to the interactions and content exchanges
that occur between the aggregates2 and their environment (see Sect. 8.1). The
micro mixture strongly depends on the small-scale turbulence present, and so
it is difficult to study. Chemical engineers have used a different approach to
model development compared to fluid mechanists.

2Every real fluid is partially segregated, since it consists of aggregates of mole-
cules formed by shear effects arising from mechanical agitation and friction. These
aggregates exchange matter with one another through diffusion [276].
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In the IEA (interaction, exchange with the average) model, for example,
the concentration C of a chemical aggregate conforms to the equation

dC/dα = h(C − C̄) + Ċ(C), (6.66)

where h is the frequency of exchange and C̄ is the average concentration

C̄ =
∫ ∞

0

I(α)C(α) dα. (6.67)

The average production rate ¯̇C is equal to

¯̇C =
∫ ∞

0

I(α) Ċ(C(α)) dα. (6.68)

This leads to the integro-differential equation

dC/dα = h(C −
∫ ∞

0

I(α)C(α) dα) + Ċ(C). (6.69)

To solve this, we must know the initial concentration probability density.



7

Coupled Phenomena

Basic equations for fluid flows with chemical reactions and transfer phenom-
ena were described in Chaps. 2 to 4, and initial tools for the analysis of these
flows were given in Chap. 5. In Chap. 6, the basic equations were applied
to relatively simple problems involving no transport phenomena. This chap-
ter presents and solves more complex examples, and particular attention is
directed towards the concepts of coupling and interaction. The goal of this
chapter is to examine problems of increasing complexity, in the knowledge
that even more difficult cases will be adressed in subsequent chapters.

Section 7.1 deals with the various kinds of phenomena encountered in fluid
flows; some simple examples are provided.

In Sect. 7.2, we study a flow without molecular transfer—more complex
than the one described in Chap. 6—that involves coupling between a chem-
ical reaction and a compressible flow. A monodimensional analysis of a sub-
sonic/supersonic nozzle flow is presented, along with an analysis of the tran-
sonic throat zone that utilizes an asymptotic expansion method (the corre-
sponding bidimensional analysis is performed in Sect. 10.3).

Section 7.3 deals with the interaction between heat and mass diffusion,
which has the same tensorial order as in the Onsager theory. Particular at-
tention is paid to defining convenient phenomenological coefficients.

When multiple transfer phenomena are coupled with chemical reactions—
as is often the case in combustion—the problem is more complex, and we
need approximations such as the classical Shvab–Zel’dovich approximation
presented in Sect. 7.4.

Section 7.5 examines the case of a mixture with an interface at which
vaporization occurs.

Thermal osmosis provides us with the opportunity, in Sect. 7.6, to in-
troduce an interesting property that was discovered by I. Prigogine: coupled
systems evolve so as to minimize their entropy production.

In Sect. 7.7, we consider laminar flames resulting from interactions between
chemical kinetics and dissipative flow. Reference is also made to Chap. 11,
where there is an explanation of stretched flames.

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_7, © Springer Science+Business Media, LLC 2010
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Instabilities are often caused by coupled phenomena. In this chapter we
present two types of instability that are of historical interest. One of these was
first observed by Henry Bénard, and was then the subject of half a century
of discussions. This type of instability occurs due to buoyancy forces when a
fluid layer between two horizontal walls is heated from below. It is known as
the Rayleigh–Bénard instability, and is presented in Sect. 7.8.

If the upper wall is removed, the buoyancy forces are then placed in
competition with the forces generated by surface tension gradients resulting
from local temperature fluctuations on the free surface. This leads to the so-
called Bénard–Marangoni instability (Sect. 7.9.2). Note that the occurrence of
Bénard–Marangoni instability, or any other type of instability (some of which
are presented in Chaps. 8 and 9), can lead to the onset of turbulence (see
Chap. 8).1

Also note that the elementary knowledge of surface tension provided in
Chap. 2 is sufficient to be able to study the problems described in Sect. 7.8.
However, we will treat more complex surface phenomena in Chap. 11.

7.1 General Information

7.1.1 Types of Coupled Phenomena

The parameters associated with a fluid flow (velocity, temperature, density,
concentrations, etc.) conform to thermodynamic relations, such as laws of
state and constitutive relations, and obey balance equations. The latter con-
tain various kinds of terms.

Thus, the local balance equation of a property F (f per unit mass) is
written

ρ
df

dt
+ ∇ ·J F = ẆF . (7.1)

Using the global form, and following the particle motion, leads to

d

dt

∫
V
ρfdV +

∫
∂V

J F · ndS =
∫
V
ẆFdV . (7.2)

On the left hand side, the first term is the rate of variation of F if we follow
the motion velocity v, while the second term is the outgoing relative flux.
The right hand side contains the internal production. The so-called material
derivative df/dt (or Lagrangian derivative) is equal to ∂f/∂t + v ·∇f and
comprises a nonstationary term and a convection term.

The nonstationary part and the convective flow both appear in the global
balance for a volume limited by a fixed surface (∂V):

1We know that instability and turbulence evolve differently in confined systems
at rest in the reference configuration and in open systems where there is a reference
flow.
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∂

∂t

∫
V
ρfdV +

∫
∂V

ρfv · ndS +
∫

∂V
J F · ndS =

∫
V
ẆF dV , (7.3)

just like the flux term and the production term. In theory, a knowledge of the
laws of state (Chap. 2), the complementary laws (Chap. 3: phenomenological
relations, laws of chemical kinetics), and the balance equations (Chap. 4)⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ dv/dt = ∇ · v
ρ dYj/dt + ∇ ·J Dj = Ẇj ,

ρ dv/dt + ∇ ·P =
∑

j ρjf j ,

ρ de/dt + ∇ · q = r −D : P +
∑

j J Dj · f j .

(7.4)

is sufficient to solve this problem when the boundary conditions and initial
conditions are well specified. An examination of the entropy production rate
highlights the dissipative terms, which are sources of irreversibility:

ẆS = −∑j(gj/T )Ẇj − (1/T )D : (P− p1) + q ·∇(1/T )

−∑j J Dj · (∇(gj/T )− fj/T ).
(7.5)

Note in particular that the fluxes J Dj and q induce dissipation (mass diffusion
and heat conduction), whereas the momentum flux P includes a nondissipative
part p1 and a dissipative part P− p1 (viscosity). The chemical kinetics only
result in entropy production out of equilibrium.

We know that many couplings will take place in a flow: between parame-
ters; between dissipative or nondissipative phenomena. These couplings can
result from the balance equations, the state relations, and the phenomeno-
logical relations. They can also come from the boundary conditions of the
problem. We now provide some elementary examples of coupled phenomena
in fluids. More complex interactions are examined in subsequent sections and
chapters.

7.1.2 Incompressible Nonviscous Fluid

An incompressible fluid conforms to

∇ · v = 0, (7.6)

ρ
dv
dt

+ ∇ ·P = ρf . (7.7)

If f = −∇V , where V is a potential, and if ∇ × v = 0 (irrotational flow)
initially, then v = ∇φ at any time, where φ is the velocity potential. The
velocity vector can therefore be obtained from the potential φ(x, t), which
conforms to
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Δφ = 0. (7.8)

The velocity field is thus independent of the other fields. The pressure can
be deduced from the modulus v of the velocity vector using the Bernoulli
equation

∂φ

∂t
+

v2

2
+

p

ρ
+ V = C(t), (7.9)

which results from the momentum equation in this irrotational case. Only
boundary conditions relating to p can make the field depend on the velocity
of the pressure field and thus induce pressure–velocity coupling.

Fig. 7.1. Vessel with a hole in the bottom

We will highlight such an interaction using an example. Let us consider
a cylindrical vessel of cross-section S that has a hole in the bottom of cross-
section s. A liquid is fed into the vessel and steadily runs out through the hole
such that the level of liquid in the vessel is constant (see Fig. 7.1).

When s
 S, the velocities are written

V ∼=
√

2(s2/S2)(gh + (P − p)/ρ), SV = sv,

where P is the pressure at the level of the free surface and p is the external
pressure. Speed and pressure thus interact if p �= P . At the limit, V = 0 if
P = p− ρgh.
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7.1.3 Incompressible Viscous Fluid

In the case of an incompressible viscous fluid (Eq. 7.6 remains valid), the
momentum equation indicates that there is a direct interaction between the
inertial terms and the viscous terms,

ρ
dv
dt

+ ∇p = μΔv, (7.10)

in the absence of external forces. The relative importance of the inertial com-
pared to the viscous terms is characterized by the Reynolds number:

ReL = ρV L/μ, (7.11)

where L is a characteristic length. Moving a plate horizontally at a certain
speed induces motion in the fluid (which is initially at rest), whereas this
motion is nonexistent in a perfect fluid. Real fluids—unlike perfect fluids—
are viscous, and this viscosity transmits the motion of the plate to the fluid
(Fig. 7.2).

Fig. 7.2. Velocity profile in an unsteady boundary layer

Let us now consider 2D flow over a flat plate. We have

⎧⎪⎨⎪⎩
∂u/∂x+ ∂v/∂y = 0,
ρ(∂u/∂t + u∂u/∂x+ v∂u/∂y) = μ(∂2u/∂x2 + ∂2u/∂y2),
ρ(∂v/∂t + u∂v/∂x+ v∂v/∂y) = μ(∂2v/∂x2 + ∂2v/∂y2),

(7.12)

with the boundary conditions

t ≤ 0 : u = v = 0; t ≥ 0, y = 0 : u = V, v = 0. (7.13)
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The solutions for v = 0 can be written as

u(y, t) = V (1− erf(y/
√

4νt))

where ν = μ/ρ. This solution is analyzed in more detail in Sect. 9.1.1.2

7.1.4 Reactive Incompressible Viscous Flow

Let us assume that Newton’s viscosity law and Fick’s diffusion law hold. If
the temperature is constant, like D and μ, we have⎧⎪⎨⎪⎩

∇ · v = 0,
ρ dv/dt + ∇p = μΔv,

ρ dYj/dt = ρDΔYj + Ẇj .

(7.14)

In this case, the velocity field is independent of the chemistry, but it influences
the chemistry via the convection term ρv ·∇Yj . In other cases, the reverse
interaction also occurs. Recall that the relative effects of the diffusion and
viscosity are characterized by the Schmidt number

Sc = μ/ρD. (7.15)

7.2 Coupling Between Chemical Kinetics and
Nondissipative Flow: Compressible Reactive Fluid

Let us suppose that the dissipative fluxes J Dj , P− p1 and q are negligible,
like r and f i. The entropy production rate is then

ẆS = −
∑

j

gj

T
Ẇj . (7.16)

A knowledge of the laws of chemical kinetics allows us, as described in Chap.
3, to avoid having to use linearized laws to express the chemical production
rate. An assumption that chemical evolution occurs near equilibrium is thus
not necessary, and the balance equations provide the means to solve problems
related to flows that are not in chemical equilibrium.

2In particular, we see in this section that, in this case, the Reynolds number
associated with the thickness of the resulting unsteady boundary layer is a function
of time: Reδ = V δ/ν with δ = O(

√
νt).
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Basic Equations for a Relaxing Flow

The balance equations become

ρ
dϑ

dt
= ∇ · v, (7.17)

ρ
dYj

dt
= Ẇj , (7.18)

ρ
dv
dt

+ ∇p = 0, (7.19)

ρ
de

dt
= −p∇ · v. (7.20)

The elimination of ∇ · v between (7.17) and (7.20) gives us

de

dt
+ p

dϑ

dt
= 0, (7.21)

or, according to the Gibbs relation,

ρ
ds

dt
+
∑

j

gj
dYj

dt
= 0. (7.22)

Consider a steady flow: we have d/dt = v · ∇. The equation for the total
energy becomes

d(h + v2/2)
dt

= 0 (7.23)

or

h + v2/2 = h0. (7.24)

If, moreover, the chemical process involves only one reversible reaction; for
example

A2 + M ⇀↽ A + A + M, (7.25)

where M is a neutral species or any of species A or A2, then

ẆA = 2MA(ζ̇D − ζ̇R), (7.26)

ẆA2 = −MA2(ζ̇D − ζ̇R), (7.27)

where

MA2 = 2MA, ζ̇D = kD(T )CA2C, ζ̇R = kR(T )(CA)2C, C =
∑

j

Cj . (7.28)
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Let us set

dYj = νjMjdξ. (7.29)

The result is

ρ
dξ

dt
= ζ̇D − ζ̇R. (7.30)

The set of equations to be solved then becomes

∇ · (ρv) = 0, (7.31)

ρ
ds

dt
−A

dξ

dt
= 0, (7.32)

ρ
dξ

dt
= ζ̇D − ζ̇R, (7.33)

h + v2/2 = h0, (7.34)

A = −
∑

j

νjMjgj. (7.35)

We obviously need to take into account the equations of state

p = p(T, ρ, ξ), h = h(T, ρ, ξ), s = s(T, ρ, ξ). (7.36)

The simplest case is that of flow in planar sections (quasi-one-dimensional
flow) [31, 217]. It is assumed that the parameters are uniform in each cross-
section of the stream tube studied. This leaves only one variable: the coor-
dinate x along the average streamline. If Σ(x) is the cross-sectional area, we
obtain the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρvΣ(x) = ṁ,

ρ ds/dx−Adξ/dx = 0,

ρv dξ/dx = ζ̇D − ζ̇R = ζ̇(T, ρ, ξ),
h + v2/2 = h0,

p = p(T, ρ, ξ),
h = h(T, ρ, ξ),
s = s(T, ρ, ξ).

(7.37)

This system can be solved numerically, and the solution highlights the coupling
between the flow and the chemistry present.
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Subsonic–Supersonic Flow in a Nozzle

In a rocket propulsion nozzle, the flow is generally initially subsonic and then
supersonic (see Fig. 7.3).

Fig. 7.3. A de Laval rocket nozzle

The temperature, pressure and concentration YA are decreasing functions
of the abscissa x, whereas the concentration of A2 increases because of the
recombination process that occurs when the temperature decreases. The chem-
ical production rates ζ̇D and ζ̇R take the forms shown in Fig. 7.4.

Fig. 7.4. Chemical production rates in a rocket nozzle

• For x < a, chemical equilibrium is obtained and A ∼= 0. The flow is rela-
tively slow, and at high temperature the gradients are weak: ds/dx ∼= 0.

• For a < x < b, the evolution is clearly out of equilibrium, but the tem-
perature is still high enough for the reactions to unfold, although they are
slower than for x < a, ds/dx > 0.

• For x > b, the reaction rates are weak, but the tendency of the species
A2 to recombine remains stronger than its tendency to dissociate. We
have ζ̇D/ζ̇R

∼= 0 and ρv dξ/dx ∼= −ζ̇R: very weak. The flow is frozen and
ds/dx ∼= 0.
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In all cases, the entropy production rate (Fig. 7.5) is equal to

ẆS = ζ̇RA(eA/RT − 1)/T. (7.38)

(See Sect. 3.4.)

Fig. 7.5. Entropy production rate

In some cases, when the irreversible zone ab is confined, we can consider the
evolution to take the form of a flow at chemical equilibrium and then a frozen
flow. There is abrupt freezing at point a, where the rate ẆS can be considered
a Dirac peak: ẆS = ẆSaδ(x − a). Chemical irreversibility (chemical relax-
ation) limits the recombination of the species A in the flow; since the reaction
is exothermic, the energy released by recombination is thus smaller than at
equilibrium. Therefore, the thrust of the rocket engine decreases due to re-
laxation. In order to evaluate the importance of the chemical irreversibility in
advance, we make use of the first Damköhler parameter before we numerically
resolve this system (see Sect. 3.1.1).

Near-Equilibrium Transonic Flow in a Nozzle

Singularities are often present in the throat zones of subsonic–supersonic noz-
zle flows.

In the case of a nonreactive flow, it is easy to see that the throat itself is a
singular point, and that the condition that continuous flow must not present
a velocity gradient of zero results from the fact that the flow velocity is equal
to the characteristic speed there, c = (∂p/∂ρ)1/2

s (speed of sound, see Chaps.
2 and 10). System (7.37) then becomes (with ϑ = 1/ρ)

vΣ = ṁϑ, s = s0, h + v2/2 = h0.
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Assuming an ideal gas, we obtain

(
ϑ

ϑ∗
)2 = (

Σ

Σ∗
)2[

γ + 1
γ − 1

− 2
γ − 1

(
ϑ

ϑ∗
)1−γ ],

where the superscript (∗) indicates critical conditions, and γ denotes the (pre-
sumably constant) isentropic coefficient.

The mass flow rate then reaches a critical value that cannot be exceeded in
the steady regime, whatever the exit conditions (i.e., stagnation conditions).

We now use the subscript (0) to denote the parameters of a basic uni-
form flow, which is assumed to be very similar to a real transonic flow. We
divide the quantities relating to the real flow by the corresponding quantities
relating to the uniform basic flow (ϑ0, v0 = c0, s0, Σ0, ṁ0) to obtain dimen-
sionless quantities. If the notation used for the dimensionless parameters is
not changed, the equations for the latter system remain the same. Using the
small parameter ε, which characterizes the order of magnitude of the variation
in nozzle cross-section in the vicinity of the throat, and n, a strictly positive
number that needs to be determined, the expansions of the various parameters
are then

Σ = 1 + εΣ1, ṁ = 1 + εnṁ1 + ε2nṁ2 + . . . , s = 1 + εns1 + ε2ns2 + . . . ,

ϑ = 1 + εnϑ1 + ε2nϑ2 + . . . , v = 1 + εnv1 + ε2nv2 + . . .

It can be shown that the only interesting choice is n = 1/2. By assuming a
sonic basic flow (v0 = c∗0), we then obtain

γ + 1
2

v2
1 −Σ1 + ṁ2 = 0, ϑ1 = v1, s1 = 0, ṁ1 = 0. (7.39)

The nozzle profile is given by Σ1 = Σ∗1 +ax2, meaning that (γ+1)v2
1/2−ax2 =

Σ∗1 − ṁ2. In this case, the solutions form a family of hyperbolae. The critical
mass flow rate is that which cancels out the right hand side; this corresponds
to continuous subsonic–supersonic (or supersonic–subsonic) evolution. If the
mass flow rate is lower than the critical mass flow rate, continuous evolution
still occurs, but the regime (subsonic or supersonic) does not change (see Fig.
7.6).

In reactive flow, the singular point moves downstream from the throat. It
is possible to study the throat zone analytically using the method of small sin-
gular disturbances if the cross-section of the nozzle does not vary too quickly
and if the mixture is close to chemical equilibrium [218]. We will also assume
one condition relating to the partial second derivatives; this condition results
in the fact that the “frozen” speed of sound and the “equilibrium” speed
of sound are very close to each other: c2f/c

2
e − 1 = e2

ϑξ/(eϑϑeξξ − e2
ϑξ) 
 1

(see Sect. 2.5.3). Let us now indicate by the subscript (0) the parameters of
a basic uniform flow at chemical equilibrium that is very similar to a real
transonic flow. We divide the quantities relating to the real flow by these
quantities: ϑ0, v0 = cf0, s0, Σ0, ṁ0. We introduce the reference quantity
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Fig. 7.6. Transonic behavior of a simple compressible fluid in a nozzle

ξr = −(∂ξ/∂ϑ)0sA as a progress variable. We also introduce the chemical time
τc = (τsϑ)0 and the ratio θ = τr/τc, where τr is a reference time, a reference
length lr = v0τr, and a chemical length lc = v0τc. Without changing notation,
the dimensionless system (7.37) becomes

vΣ = ṁϑ, Tds/dx−Adξ/dx = 0, vdξ/dx = θLA, h + v2/2 = h0.

Fig. 7.7. Transonic behavior of a chemically reactive compressible flow in a nozzle:
velocity

The phenomenological coefficient L results from the linearization of the chem-
ical production rate in the vicinity of chemical equilibrium. The expansions of
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the various parameters considered are obtained as they were previously; for
the additional parameters, ξ = ξ0 +εnξ1+ε2nξ2+ . . . , A = εnA1+ε2nA2+ . . ..

Fig. 7.8. Transonic behavior of a chemically reactive compressible flow in a nozzle:
chemical progress variable

The other thermodynamic parameters yield expansions similar to those ob-
tained previously. Then, knowing the fundamental energy law e = e(s, ϑ, ξ),
we can deduce A1 = −eξs0s1 − eξϑ0ϑ1 − eξξ0ξ1, A2 = −eξs0s2 − eξϑ0ϑ2 −
eξξ0ξ2 + Ass0

2 s2
1 + Aϑϑ0

2 ϑ2
1 + Aξξ0

2 ξ2
1 + Asϑ0s1ϑ1 + Asξ0s1ξ1 + Aϑξϑ1ξ1.

We will characterize the ratio θ by a number δ such that θ = τr/τc = εδn,
and we also introduce an arbitrary number α that makes it possible to change
the x-coordinate scale at will. Thus, x̄ = εαnx = εαnx+/lr = ε(δ−α)nx+/lc,
where x+ indicates the natural abscissa. We will not write the system to be
solved in the general case; we will restrict ourselves to presenting the results
obtained. Applying the least degeneracy principle leads us to choose n =
1/2, δ = α, and so: x̄ = x+/lc. The system to be solved is then:

Zξ1 =
Γ + 1

2
v2
1 −Σ1 + ṁ2,

dξ1
dx̄

+ ξ1 + ϑ1 = 0, ϑ1 = v1, s1 = 0, (7.40)

where Γ = hϑϑ0, c
2
f0/c

2
e0 = Zε1/2, v0 = cf0 = ϑ0 = 1, and τc = (τsϑ)0.

The preceding system can be solved. By eliminating ξ1, we obtain a nonlin-
ear differential equation in v1. The right hand side of this equation depends on
the throat profile and mass flow rate data. Figures 7.7 and 7.8 [218] provide
examples of solutions obtained with a parabolic cross-section and for fixed
values of ṁ2 and ṁ2e: ṁ2 = Σ∗1 + 1.25, ṁ2e = Σ∗1 + 0.25.
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7.3 Thermal Transfer and Mass Diffusion

Aside from couplings between transfer phenomena, inertial terms or external
forces, intrinsic couplings can occur between transfer phenomena. For exam-
ple, we have seen that there are intrinsic relations between generalized fluxes
and generalized forces of the same tensorial order. This occurs in particular
for species diffusion and thermal transfer [108]. We will initially study this
phenomenon in a continuous medium.

Consider a continuous medium in which the only irreversible processes are
thermal transfer and species diffusion. The entropy production rate is

ẆS = q ·∇(
1
T

)−
∑

j

J Dj ·∇(
gj

T
) (7.41)

(the forces f j are neglected here, which is a valid approach when only gravity
has an effect, for example, because f j = g,

∑
j J Dj · f j = (

∑
j J Dj) · g = 0).

We rearrange the right hand side of (7.41) to reveal the heating effects present
in the term ∇(gj/T ). We know that gj = μj/Mj. For one mole of component
j in the mixture, we have

dμj = −S̄jdT + V̄jdp +
∑

j

(∂μj/∂nj)T,pdnj (7.42)

or

dμj = −S̄jdT + (dμj)T . (7.43)

We then have

d(
μj

T
) =

1
T

(dμj)T − μj + T S̄j

T 2
dT. (7.44)

The partial molar quantities S̄j and H̄j conform to the relation (see Chap. 2)

H̄j = μj + T S̄j. (7.45)

It follows that

d(
μj

T
) =

1
T

(dμj)T − H̄j

T 2
dT (7.46)

or, by introducing the partial enthalpy per unit mass h̄j = H̄j/Mj,

d(
gj

T
) =

1
T

(dgj)T − h̄j

T 2
dT. (7.47)

Therefore, the entropy production rate becomes

ẆS = q′ ·∇(
1
T

)−
∑

j

J Dj · (∇(
gj

T
))T (7.48)
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where

q′ = q−
∑

j

h̄jJ Dj . (7.49)

Let us now consider a binary mixture. We assume that the barycentric velocity
is equal to zero and that the pressure is uniform. It follows that (∇gj)T =
(∇gj)T, p in this case. The Gibbs–Duhem equation leads to

Y1(dg1)T, p + Y2(dg2)T, p = 0. (7.50)

Given that Y1 + Y2 = 1 and J D1 + J D2 = 0, we find that

J D1 · (∇(g1/T ))T + J D2 · (∇(g2/T ))T = (∇(g1)p, T /T Y2) ·J D1. (7.51)

There is only one independent concentration variable here, so

(dg1)T, p = g11 dY1 (7.52)

We then obtain

ẆS = −q′ · ∇(T )
T 2

−J D1 · ( g11

T Y2
∇Y1). (7.53)

Thus, the phenomenological relations are{J D1 = −L11(g11/T Y2)∇Y1 − L12∇T/T 2

q′ = −L21(g11/T Y2)∇Y1 − L22∇T/T 2,
(7.54)

and we have Onsager’s symmetry relation L21 = L12 and the conditions

L11 > 0, L22 > 0andL11L22 − L2
12 > 0. (7.55)

Let us now set ⎧⎨⎩L11 = ρY2TD/g11,
L22 = λT 2,
L21 = L12 = ρY1Y2T

2DT .
(7.56)

We are therefore highlighting the coefficients of thermal conductivity λ, species
diffusion D, and thermal diffusion DT . The expressions for q′ and J D1 reveal
the coupling via the coefficient DT :{J D1 = −ρD∇Y1 − ρY1Y2DT ∇T,

q′ = −λ∇(T )− ρY1g11TDT∇Y1.
(7.57)

A heat flux due to a concentration gradient, also know as the Dufour effect,
occurs in the first equation. The thermal diffusion process occurs because a
variation in temperature gives rise to a diffusive flux (the Soret effect). These
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coupling effects are not always negligible. These results are generalized to the
case of N species with some restrictive assumptions in the Appendix (see Sect.
A.6.3).

7.4 Shvab–Zel’dovich Approximation

The Shvab–Zel’dovich approximation leads to a simplified form of the balance
equations for the flow [290]. It is used to solve many problems, some of which
are treated in this work, such as the one-dimensional propagation of a planar
premixed flame (Sect. 10.5), a boundary layer with chemical reactions above a
planar plate (Emmons problem: Sect. 9.4.2), and the combustion of a droplet
(Sect. 12.4.3). Within the framework of this approximation, the following
assumptions are permitted:

• There is steady flow in a suitably chosen reference frame
• There is no thermal diffusion; DT = 0
• External forces are negligible
• Viscosity is negligible
• To a first approximation, the static pressure is constant
• Fourier’s law holds for thermal conduction
• Fick’s law holds for diffusion, and there is a single diffusion coefficient for

all species
• The Lewis number is close to unity
• There is only one chemical reaction
• A mixture of N perfect gases is present.

Mass conservation is then

∇ · (ρv) = 0. (7.58)

The species chemical balance is given by

∇ · (ρjvj) = Ẇj , j = 1, . . . , N. (7.59)

Given that

Ẇj = νjMj ζ̇ , (7.60)

and by setting

βj = Yj/νjMj, (7.61)

we obtain

∇ · (ρvβj − ρD∇βj) = ζ̇ . (7.62)
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The energy balance is

∇ · (ρve + q) = −p∇ · v. (7.63)

Noting the assumptions listed above, we have

q = −λ∇T +
∑

j

h̄jJ Dj ,

and so

∇ · (
∑

j

ρjvj h̄j − λ∇T ) = 0. (7.64)

We have (see Sect. 2.4.1)

h̄j = (q0
f )j +

∫ T

T 0
cp, jdT, (7.65)

so that

∑
j

∇ · (ρjvj)(q0
f )j + ∇ · (

∑
j

ρjvj

∫ T

T 0
cp, jdT − λ∇T ) = 0 (7.66)

or

(
∑

j νjMj(q0
f )j)ζ̇ + ∇ · (ρv∑j Yj

∫ T

T 0 cp, jdT

−ρD∑j ∇Yj

∫ T

T 0 cp, jdT − λ∇T ) = 0.
(7.67)

Upon noting that ∑
j

νjMj(q0
f )j = −ΔH, (7.68)

the enthalpy of the reaction defined by (2.114), and setting

βT =
∑

j

Yj

∫ T

T 0
cp, jdT/ΔH, (7.69)

we obtain

∇ · (ρvβT − ρD
∑

j

∇Yj

∫ T

T 0
cp, jdT/ΔH − λ∇T/ΔH) = ζ̇. (7.70)
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Differentiating βT yields

∇T/ΔH = (∇βT −
∑

j

∇Yj

∫ T

T 0
cp, jdT/ΔH)/cp, f (7.71)

where

cp, f =
∑

j

Yjcp, j . (7.72)

Finally,

∇ · (ρvβT − λ∇βT /cp, f + ρD(Le− 1)
∑

j

∇Yj

∫ T

T 0
cp, jdT/ΔH) = ζ̇ . (7.73)

The assumption

Le = λ/ρDcp, f
∼= 1 (7.74)

leads to the final equation

∇ · (ρvβT − λ/cp, f∇βT ) = ζ̇, (7.75)

which is identical in form to the species balance equation (7.62) (note that we
obtain the same result if Le �= 1 but cp, j is independent of j). N +1 equations
with the right hand side obtained in this way can therefore be replaced with
N equations with zero right hand sides in (βi−βj) or (βj−βT ). There is then
only one equation with a right hand side of ζ̇, which is the most difficult to
solve considering the nonlinear character of this function of βj and βT .

7.5 Phase Change of a Pure Constituent in a Gaseous
Mixture

Let us now consider a surface of discontinuity for a phase change between a
pure substance H and its vapor in a gaseous mixture. The general balance
equations at an interface were established in Sect. 4.9.

The following assumptions are allowed:

• There is no thermal diffusion; DT = 0
• Viscosity is negligible
• Fourier’s law holds for thermal conduction
• Fick’s law holds for diffusion, and there is a single diffusion coefficient for

all species
• A mixture of perfect gases is present
• There is only one species (H) in the condensed phase
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• The density of the gaseous mixture is smaller than that of the condensed
phase

• There are no vapor recoil phenomena,3 so relative velocity squared terms
can be neglected

• There is no surface tension.

Let us define the relative velocity component normal to the interface as u =
(v−W) ·N. The balance equations at the discontinuity can then be written
successively for the total mass, species, momentum and energy as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[ρu]+− = 0, or ρ+u+ = ρ−u− = ṁ,

[JDj⊥ + ṁYj ]
+
− = 0,

[p + ṁu]+− = 0,[
q⊥ + v⊥p + ṁ(e + v2/2)

]+
− = 0.

(7.76)

The momentum equation can be written

[p]+− = −ṁ[u]+− = −[ρu2]+− ∼= 0.

The pressure does not vary across the interface: p+ = p−. On the other hand,
the energy equation gives

[q⊥ + ṁ(h + v2/2) + wp]+− = 0,

and we have the identity v2/2 ≡ (w2 + u2)/2 + wu, which is valid for [ ]+−.
Therefore, the energy equation can be rewritten as

[q⊥ + ṁ(h + u2/2)]+− = 0.

Ignoring terms in u2/2, we obtain

[q⊥ + ṁh]+− = 0.

From (7.49), we can deduce that

q⊥ = −λ ∂T

∂N
+
∑

j

JDj⊥hj.

3Vapor recoil results from the presence of velocity squared terms in the mo-
mentum equation. If such terms are non-negligible, a pressure jump occurs across
the evaporation surface, even for a flat interface without mass, and the pressure is
stronger on the side with the greater mass density (see [194, 94]). This phenomenon
can occur when the pressure is much smaller than the saturating vapor pressure,
leading to large evaporation rates. It can also occur near the saturation vapor pres-
sure in slightly subcritical fluids.
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Finally, the balance equations at the interface are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ+u+ = ρ−u− = ṁ,

J +
Dj⊥ = ṁ(Y −j − Y +

j ),

p+ = p−,

−λ+( ∂T
∂N )+ + λ−( ∂T

∂N )− = ṁ(h−H − h+
H) = −ṁl,

(7.77)

where l is the latent heat of the phase change per unit mass of species H .

7.6 Thermal Osmosis: Minimum Entropy Production

Let us return to the example of Sect. 4.7 for the case of a mixture and a discrete
system (see Fig. 7.9). The fluxes through the porous wall into subsystem 1
are the mass flux ṁj of the species j, the internal energy flux q, and the
entropy flux ˙δeS = (q −∑j gjṁj)/T . By setting Δϕ = ϕ2 − ϕ1, the entropy
production rate at the level of the porous wall for an unspecified parameter
ϕ becomes

˙δiS = q ΔT/T 2 +
∑

j

ṁj Δ(gj/T ), (7.78)

where we assumed that the variations Δ are relatively small.

Fig. 7.9. Thermal osmosis

Just as we did previously (see Eq. 7.47), we can write

Δ(
gj

T
) = Δ(

gj

T
)T − h̄j

T 2
ΔT, (7.79)
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so that

˙δiS = q′ΔT/T 2 +
∑

j

ṁj(Δ(gj/T ))T (7.80)

with

q′ = q −
∑

j

h̄jṁj . (7.81)

For a binary mixture, and assuming that a device that equalizes pressures p1

and p2 is present, we also obtain the following from (7.57):

˙δiS = q′ΔT/T 2 + (g11/TY2) ṁ1ΔY1. (7.82)

By setting

q′ = Jth, ΔT/T 2 = Fth, ṁ1 = Jm, (g11/TY2) ṁ1ΔY1 = Fm, (7.83)

we obtain the phenomenological relations{
Jm = L11 Fm + L12 Fth,

Jth = L21 Fm + L22 Fth,
(7.84)

where ⎧⎪⎪⎨⎪⎪⎩
L12 = L21,

L11 > 0, L22 > 0,

L11 L22 − L2
12 > 0.

(7.85)

The entropy production rate then becomes

˙δiS = Fth Jth + Fm Jm = L11F
2
m + 2L12FmFth + L22F

2
th. (7.86)

The coupling coefficient L12 leads, for a given Fth = ΔT/T 2, to a species flux
even when ΔY1 = 0. This is known as thermal osmosis.

The steady state (out of equilibrium, with a given Fth) corresponds to
ṁ1 = Jm = 0. We will now show that, if the coefficients Lij are constant,
this steady state corresponds to a minimum in the entropy production per
unit time. If T1 and T2 are maintained constant, it is enough to consider two
evolutions that are close to one another, with differences that are characterized
by δJth, δJm, δFth, δFm. In this case, we obtain

δ( ˙δiS) = 2L12Fth δFm + 2L11Fm δFm. (7.87)

Thus, δ( ˙δiS)/δFm = 0 in the steady state characterized by Jm = 0. We also
find that δ2( ˙δiS)/(δFm)2 = 2L11 > 0. It is thus a minimum (see Fig. 7.10).
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Fig. 7.10. Minimum entropy production

This is known as Prigogine’s theorem [213], which is applicable to coupled
systems with constant phenomenological coefficients.4
Note: Thermal osmosis leads to concentration changes due to temperature differ-
ences. It can therefore be used as separation process in chemical engineering. Another
process is based on a difference in pressure across a porous wall rather than a differ-
ence in temperature. To illustrate this, assume that the pressure p is relatively high
(a few atmospheres) on the left hand side of the wall, and so thermal equilibrium is
ensured by Brownian motion (see Fig. 7.11).

For each gas species,

1

2
M1c̄

2
1 =

3

2
kT,

1

2
M2c̄

2
2 =

3

2
kT, (7.88)

so that

c̄1/c̄2 =
√
M2/M1. (7.89)

There is a vacuum on the right hand side of the wall, so Brownian collisions do not
dominate the molecular motions, which are characterized by a mean velocity Ū ′.
The conservation of species fluxes yields

4In the presence of only one gas species, a jump in temperature across a wall
produces a difference in pressure. This is another coupled effect, and is called ther-
momolecular pressure. It is similar to thermal osmosis because it depends on three
independent phenomenological coefficients. Prigogine’s theorem is also applicable
here.
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Fig. 7.11. Separation process in a rarefied medium

N1c̄1 = N ′1Ū ′, N2c̄2 = N ′2Ū ′. (7.90)

Eliminating c̄1, c̄2 and Ū ′ between these relations gives

N ′1/N
′
2 =
√
M2/M1 N1/N2 (7.91)

or, with the usual notation,

X ′1/X
′
2 =
√
M1/M2 X1/X2. (7.92)

Thus, when the two species cross the porous wall, the lighter species will be enriched
compared to the other species (i.e., this phenomenon can be used to separate out
species). Note that separation is not possible if the molar masses of thee species are
equal.

7.7 Coupling Between Chemical Kinetics and Dissipative
Flow: Laminar Flames

In this section we examine phenomena where the chemical kinetics is coupled
with the flow, and dissipative processes occur (in contrast to the case treated
in Sect. 7.2). Flames are particular examples of exothermal chemical reactions
where the pressure is nearly uniform. The flame is localized in a relatively thin
zone (the higher the activation energy of the reaction, the thinner the flame).

The case where the fuel and the oxidizer are initially premixed should
be distinguished from the case where the combustible and the oxidizer are
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initially separated. The first case is termed premixed combustion, and the
second case is known as a diffusion flame.

Several examples of these types of combustion are treated in this book.
Premixed flames are examined in Chap. 10 (Sects. 10.4 and 10.5), and several
diffusion flame examples are given in Chaps. 9 and 12 (see Sects. 9.4.2 and
12.4.3 for example). We can also get triple flames, which are a combination
of diffusion flames and premixed flames [183].

Laminar premixed flames result from interactions between chemical
processes and the phenomena of mass diffusion and thermal diffusion. For
deflagration waves with high activation energies, we find in Sect. 10.5 that
the burning velocity is an eigenvalue of the problem involving interactions
between diffusion processes and chemical kinetics.

Diffusion flames develop at the contact surface between fuel and oxidizer.
The burning velocity results from the diffusion of the active components at
this contact surface. The contact surface between the two components is very
important, and the larger surface, the more intense the combustion.

7.7.1 Example of a Laminar Premixed Flame: The Bunsen Thin
Flame

The coupled problem of a normal planar premixed flame with a high activation
energy is solved in Sect. 10.5, where the mass flow rate and the burning speed
sL in the laminar steady regime are expressed.

Let us now consider a thin flame over a plane 2D burner. We assume that
the main part of the flame is a dihedron (or a cone in the case of a cylindrical
Bunsen burner), the axis of which is the axis of the burner. The base of the
flame is near the lip of the burner and the flame tip is smooth. Upstream, the
density and velocity of the unburned fresh fluid are uniform (see Fig. 7.12).
The change in velocity upon crossing from one side of the thin flame to the
other obeys interfacial condition (4.97). Downstream, the heat released means
that the burned gases are hotter Tb > Tu and less dense ρb < ρu. The normal
component vuN for the unburned gases is equal to the burning speed s0

L,
which is deduced from the constant coefficient Λ, as defined by (10.166) and
calculated by via (10.170). Thus, the normal velocity of the burned gases can
be deduced using the gas density ρb; we have vbN = (ρu/ρb)vuN = (ρu/ρb)s0

L.
For constant, uniform pressure, the momentum equation (4.99) leads to

the conservation of the tangential velocity: vbT = vuT . Consequently, the flow
velocity of the burnt gases is known, except at the flame tip, where the profile
of the flame deviates from a planar (or conical) profile, becoming smooth.
Along the axis of symmetry, the normal speed is vu, which is higher than the
previous burning speed vuN = sL. The increase in the normal velocity from
sL to vu is due to the curvature of the front, which stretches the flame (as
described in Chap. 11); note that linear relations such as (10.177) are not valid
for high values of curvature (see [207, 206] for the solution to this complex
problem).
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Fig. 7.12. Velocities for a steady oblique premixed flame

Figure 7.13 shows a real bunsen flame (seeded with oil particles that are
vaporized at the diffusion zone boundary; the upper luminous surface corre-
sponds to the reaction zone) sliced by a laser. The increased diffusion thickness
is due to the low pressure (3× 104 Pa).

Fig. 7.13. A laser tomogram of a methane–air premixed flame at low pressure
(photo from the Laboratoire d’Aérothermique du CNRS, private communication,
1985)
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Note that the calculated downstream flow will depend on the physical
hypotheses made, such as whether gravitational effects [142] (buoyancy forces)
are present. Gravity results in deviations in the streamlines in the burned gases
(Fig. 7.14), as well as flame flickering [77] due to Kelvin–Helmholtz instabilities
produced by friction between the external air flow and the internal flow of the
burned gases due to buoyancy forces. Gravity also acts on air–propane flame
stability, as shown in [76].

Fig. 7.14. Trajectories of particles through the inner cone of a flame

Indeed, premixed flames are very sensitive to the thermodynamic condi-
tions present. In particular, temperature variations have a significant influence
on the reactive zone because of their effects on the exponential factor of the
reaction rate. Temperature and concentration fluctuations can induce insta-
bilities, as shown in Sect. 8.2.1.

Other Examples of Laminar Stretched Premixed Flames

Examples of laminar stretched premixed flames are given in [206]. Figure 7.15
shows two of these flames: 1) a planar flame in front of a stagnation plane in
the case of two steady flows directed towards each other (fresh gas directed
towards combustion products); 2) an unsteady spherical flame (see Sect. 10.7.2
and [128] on cellular instabilities of spherical premixed flames).

The G-Equation

The G-equation introduced by Williams [291] is applicable to thin-flame
structures that propagate with a well-defined burning velocity. Consider the
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Fig. 7.15. Two examples of laminar stretched premixed flames: 1 a planar steady
flame in front of a stagnation plane in the case where a fresh gas flow is directed
towards an oncoming flow of combustion products); 2 an unsteady spherical flame

isoscalar surface5 defined by an implicit equation analogous to (A.1) in the
Appendix, with no chemical reactions,

F(x, t) = G(x, t)−G0 = 0.

The unburnt mixture corresponds to G(x, t) < G0 and the burnt gas to
G(x, t) > G0. The normal to the flame front in the direction of the unburnt
mixture is defined as (see Eq. A.2):

n = −∇G/ |∇G| . (7.93)

If vf is the flow velocity at the front and sL is the burning velocity in the
normal direction, the flame velocity wf is then

wf = vf + sLn

5In combustion, the state of the mixture depends on the velocity vector v(x, t) as
well as the mass fractions Yj of the species and temperature T , which are scalars. In
a reactive mixture, these scalars obey balance equations that account for chemical
production, and they are called reactive scalars. If there is no chemical reaction,
or if we consider combinations of scalars that obey balance laws with no chemical
production, such as βi − βj or βT − βj in Sect. 7.4, we term them nonreactive or
passive scalars.
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and so the quantity G obeys the following balance equation:

∂G/∂t+ vf ·∇G = sL |∇G| , (7.94)

which is called the G-equation.
This equation plays an important role in premixed turbulent combustion,

just as the “Z-equation” (presented in Sect. 7.7.2) does for nonpremixed tur-
bulent combustion.

7.7.2 An Example of a Laminar Diffusion Flame

A simple example of a diffusion flame is given by the Burke–Shumann [37]
problem. This models a diffusion flame that occurs between two coaxial flows
with equal velocities, where one is a fuel flow and the other an oxidizer flow
(see [142, 290]). The chemical reaction is of the form

ν′F F + ν′O O → ν′′P P

The following assumptions are made:

• The Schvab–Zel’dovich approximation is valid (see Sect. 7.4).
• At the level of the outlets of the coaxial ducts, the velocities of the fuel and

the oxidizer6 (air for example) flows are equal (vz) and uniform. We can
change the proportion of fuel and air in the downstream flow by varying
the radii of the tubes and the molar fuel ratio.

• The diffusion in the axial direction is negligible compared to that in the
radial direction: ∂2Yj/∂r

2 
 ∂2Yj/∂z
2.

• Mixing is caused by diffusion only, and the radial velocity component is
equal to zero: vr = 0.

• The reaction takes place at the surface of the flame, where the equivalence
ratio is equal to unity.

The equations for this problem are deduced from (7.62), where the defin-
ition of βj is given by (7.61). The reaction rate is eliminated by utilizing the
variable β = βF − βO. In cylindrical coordinates, the equation to solve is

∂β/∂z − (D/vzr) ∂(r∂β/∂r)/∂r = 0, (7.95)

with the boundary conditions⎧⎪⎪⎨⎪⎪⎩
z = 0, 0 ≤ r ≤ rF : β = βF0 = −YF |z=0/ν

′
FMF ,

z = 0, rF ≤ r ≤ rO : β = βO0 = −YO|z=0/ν
′
OMO,

r = 0, rF , z > 0 : ∂β/∂r = 0.

(7.96)

At this point it is convenient to define the dimensionless coordinates
6An oxidizer is a chemical needed by a fuel to burn.
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Fig. 7.16. Diffusion flame shapes for coaxial cylindrical tubes: I, underventilated;
II, overventilated

ξ = r/rO ; η = Dz/vrr
2
O

and the reduced parameters

C = rF /rO; ν = βF0/βO0; γ = −β/βF0.

We then make use of the separation of variables method, and the ξ-dependent
part of the solution involves the Bessel functions J0 and J1. We obtain (see
[142] for detailed calculations)

γ = (1 + ν)C2 − ν + 2(1 + ν)C
∞∑

n=1

1
φn

J1(Cφn)
[J0(φn)]2

J0(φnξ)e−φ2
nη, (7.97)

where the φn are the successive roots of the equation J1(φ) = 0 (with the
ordering convention φn > φn−1; φ0 = 0).

We assume that the reaction occurs at the flame surface (so we also assume
an infinitely fast reaction leading to a thin flame). The flame profile η = f(ξ)
can be deduced from setting β = 0 and so γ = 0 in (7.97). The flame height
is then obtained by setting ξ = 0. Neglecting all of the terms except n = 1,
the following approximation is obtained for the dimensionless flame height of
an underventilated flame:
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η = (1/φ2
L) ln 2(1 + ν)CJ1(Cφ1)/[ν − (1 + ν)C2]φ1J0(φ1). (7.98)

The flame height and flame shapes obtained in this manner by Burke and
Schumann (Fig. 7.16) are in good agreement with those obtained experimen-
tally.

In contrast to the case for a thin premixed flame, the flame shape is found
without using the energy equation. This equation would, however, be used if
we wanted to find the temperature field.

The Z-Equation

Z is the mixture fraction variable. It is a combination of the mass fractions
of the fuel and of the oxidizer, and its stoichiometric value Zst corresponds
to the flame position in the same manner as in the previous Burke–Shumann
flame problem. For the single reaction

ν′F F + ν′O O→ ν′′P P,

the variations in YF and YO due to chemistry are dYF /ν
′
FMF = dYO/ν

′
OMO.

If there are two flows 1 and 2 with mass flow rates ṁ1 and ṁ2, where the
first flow contains the species F (mass fraction YF,1) along with a diluent and
combustion products but without species O, and the second flow contains the
species O (mass fraction YO,2) along with a diluent and combustion products
but without species F, we have

Z = ṁ1/(ṁ1 + ṁ2).

Defining the stoichiometric ratio as

rst = ν′OMO/ν
′
FMF , (7.99)

we have
Z =

rstYF − YO + YO,2

rstYF,1 + YO,2
. (7.100)

At the flame level, rstYF − YO = 0 and Z = Zst = (1 + rstYF,1/YO,2)−1.
For one binary diffusion coefficient only, the mixture fraction is a nonreactive
scalar that obeys the conservative balance equation

ρ∂Z/∂t+ ρv ·∇Z = ∇(ρD∇Z), (7.101)

which is called the Z-equation. Just as the G-equation (7.94) does for premixed
combustion, this equation plays an important role in nonpremixed turbulent
combustion.
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Fig. 7.17. An example of a laminar strained diffusion flame

An Example of a Laminar Strained Diffusion Flame: The Planar
Counterflow Diffusion Flame

Figure 7.17 shows a counterflow diffusion flame for gaseous fuels. A constant
diffusion coefficient is assumed. For dilute mixtures, such a flame is relatively
simple to model because the density can be assumed to be constant and there
is no effect of the flame on the velocity field of the strained flow considered
[206]. If y is the coordinate along the flow axis (i.e., normal to the flame), the
velocity components of the fluid flow are

u = ax, v = −ay
on the flame side, which we assume to be located in the y > 0 half plane a
priori, as shown in Fig. 7.17. The Z-equation can be written (we also assume
that Z do not depends on x and z)

−ay∂Z/∂y = D∂2Z/∂y2. (7.102)

Setting η = y
√
a/D, we obtain

∂2Z/∂η2 + η∂Z/∂η = 0,

and the solution

Z = (1/2)(1− erf(η/
√

2)). (7.103)
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The flame location is given by Zst = (1/2)(1 − erf(ηf/
√

2)). It is apparent
that for Zst < 1/2 the flame is located on the oxidizer side of the stagnation
plane (the studied case), and conversely for Zst > 1/2 the flame is located on
the fuel side of the stagnation plane.

When density variations occur due to heat release, we also obtain a planar
flame with a strained rate a that is imposed by the flow (but this is far
more complex to demonstrate, so we will not do it here) and the following
approximate value for the mixture fraction variable [202]:

Z = (1/2)(1− erf(η/
√

2)) (7.104)

where this time η =
√
a/D∞

∫ y

0 (ρ/ρ∞)dy, assuming that ρ2D = ρ2∞D∞.

7.8 Coupling Between Heat and Momentum Transfer in
the Presence of Gravity

7.8.1 Historical Considerations

The Couette flow of a compressible flow and the structure of a shock wave are
examples of situations where coupling occurs between heat and momentum
transfer (see Chaps. 9 and 10) [99, 262]

For buoyancy-driven flows, the Boussinesq approximation is traditionally
applied: the fluid is assumed to be incompressible, but dilation effects appear
only on the right hand side of the momentum equation, through the gravity
term, with temperature depending on density [27, 165].

Heat and momentum transfer coupling often causes instability. Two ex-
amples of such instabilities in liquids are presented in Sects. 7.8.2 and 7.9.2.
The first involves gravity and the second the dependence of surface tension
on temperature.

The first quantitative experiments on natural convection were performed
by Henri Bénard around year 1900 [12]. Bénard studied the stability of a thin
fluid layer that was open to the air and permitted a vertical temperature
gradient. He accurately determined properties such as the spatial periodicity
of the hexagonal convection cell pattern, how this pattern varied, and the
profile of the interface. Later, in 1916, Lord Rayleigh [230] developed a com-
plete linear stability analysis assuming stress-free conditions for the velocity
and good heat-conducting plates. This mechanism was considered to explain
Bénard’s results until the role of the thermal Marangoni effect was pointed
out, in particular by Pearson [197]. In this effect, a temperature fluctuation
at the surface induces tangential stresses that can be amplified by hot fluid
arriving from the interior [165].7

This theory is presented in Sect. 7.9.2.
7Later, Nield studied the influences of both gravity and the surface tension gra-

dient on a fluid layer heated from below [186]. Scriven and Sternling [250] added the
effect of free surface deformations to the Pearson theory.
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Fig. 7.18. Henri Bénard, Professor in Paris (1874–1936), here when he left ENS
and started his thesis on convection cells (E. Wesfreid, private communication, 2009;
see also [287])

7.8.2 Rayleigh–Bénard Instability

Consider a fluid layer heated from below. This layer is confined between two
horizontal planes at constant and uniform temperatures, where the tempera-
ture at the bottom is higher than the temperature at the top (see [43] for an
extensive study of this problem). The bulk equations are those described in
Chap. 4 with Boussinesq’s approximation and with constant viscosity, specific
heats, and thermal diffusivity. We have⎧⎪⎪⎨⎪⎪⎩

∇ · v = 0,

ρ1(∂v/∂t+ v ·∇⊗ v) + ∇p− μΔv = ρg,

∂T/∂t+ v · ∇T − κΔT = 0,

(7.105)

where g = −gk and ρ = ρ1[1+α(T1−T )] (α is a constant). The constants T1

and ρ1 refer to the bottom (z = 0), and T2 is used for the upper boundary.
The boundary conditions are as follows for a rigid upper wall:8{

z = 0, T = T1, z = h, T = T2, T2 < T1,

z = 0, z = h, u = v = w = 0.
(7.106)

The reference configuration is motionless and corresponds to a purely con-
ductive situation. Denoting reference quantities with the subscript “0”, we
easily obtain

8For a free horizontal upper boundary, the condition u = v = 0 at z = h is valid
assuming zero horizontal friction (P− p1) · k = 0.
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{
T0(z) = T1 −Gz, G = (T1 − T2)/h,

p0(z) = p1 − ρ1 g(z + αGz2/2).
(7.107)

We want to study the fluid motion resulting from an experimentally observed
instability. It is appropriate to study the linearized problem in this case, set-
ting

T ′ = T − T0(z), ρ′ = ρ− ρ0(z), p′ = p− p0(z), v′ = v. (7.108)

The small perturbation equations are (neglecting second-order perturbations):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u/∂x+ ∂v/∂y + ∂w/∂z = 0,

ρ1(∂u/∂t+ ∂p′∂x) = μ(∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2),

ρ1(∂v/∂t + ∂p′∂y) = μ(∂2v/∂x2 + ∂2v/∂y2 + ∂2v/∂z2),

ρ1(∂w/∂t + ∂p′∂z) = μ(∂2w/∂x2 + ∂2w/∂y2 + ∂2w/∂z2)− ρ1gαT
′,

∂T ′/∂t = κ(∂2T ′/∂x2 + ∂2T ′/∂y2 + ∂2T ′/∂z2) + wG.
(7.109)

The boundary conditions are

z = 0, h : T ′ = 0, u = v = w = 0. (7.110)

This linear problem is solved using the normal mode method,9 where the
perturbation f ′ of the f function is given in the form

f ′ = F (z, t) exp(iKxx + iKyy + λt)

and the solution that gives marginal stability (i.e., λ = 0) is controlled by
the Rayleigh number, which was introduced in Chap. 5 as Rath = Grth Pr,
with Pr = ν/κ and Gr = Δρg L3/ν2. The present Rayleigh number can be
written

Ra = αGg h4/κν,

with ν = μ/ρ1.
This leads to a marginal stability curve of Ra as a function of K, where

K is the horizontal wavenumber modulus K =
√
K2

x + K2
y . This curve (see

Fig. 7.19), which characterizes the limits of the Rayleigh–Bénard instability,
presents a minimum that defines the critical values RaC and KC . For Ra <
RaC , we have the purely conductive mode, and for Ra ≥ RaC we have the
unstable regime. Their actual values are RaC = 1707.76, hKC = 3.12 for our

9We will not give the complex, detailed calculations that can be found in several
cited works here.
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Fig. 7.19. Marginal stability curve for the Rayleigh–Bénard problem

case of no-slip boundary conditions and isothermal plates. Other cases10 have
been studied by several authors [43].

This example shows the complexity of heat and momentum transfer cou-
pling under the action of gravity.

7.9 Surface Tension and Viscosity

Liquid/gas surface tension is a function of the temperature, which we will
assume to be the same at equilibrium and during the motion of the fluid.

7.9.1 Marangoni Effect in a Highly Conducting Fluid Layer

We now consider a horizontal liquid layer of thickness h and length l � h,
with a free upper limit.

A constant temperature gradient is imposed on the liquid/gas interface
[159] (see Fig. 7.20), where dT/dx = (T2 − T1)/l = G. This is possible if the
movements induced by the surface tension gradient do not affect the tempera-
ture field of the liquid. This is the case for small values of the Prandtl number
(for liquid metals for example).

10For stress-free velocity upper boundary conditions and for no slip at the lower
boundary conditions as well as for isothermal plates, we get RaC = 1100.65 and
hKC = 2.68.
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Fig. 7.20. Marangoni effect for a fixed temperature gradient

We propose to determine the velocity field and the pressure field by neglect-
ing the vertical component of the velocity and by assuming steady motion.
By assumption, we have

σ = σ(T1) + σTGx, σT = dσ/dT < 0. (7.111)

We set

−σTG = −T2 − T1

l

dσ

dT
= a. (7.112)

a is negative if T2 < T1. The equations for the liquid give⎧⎪⎪⎨⎪⎪⎩
∂u/∂x = 0, so u = u(y), v = 0,

∂p/∂x = μ∂2u/∂x2,

∂p/∂y = 0.

(7.113)

We then find that ∂p/∂x is constant and that{
p = (dp/dx)x + p0,

u = (dp/dx)y2/2μ+ Ay + B.
(7.114)

At the bottom of the container u = 0, so

u = (dp/dx)(y2 − h2)/2μ + A(y + h). (7.115)
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At the surface of the liquid, there is equality between the surface tension gra-
dient and the viscous stress. Now, the balance of the forces must be evaluated
for a surface element with negligible mass, which therefore does not have any
inertia (see Fig. 7.21). In this case, the tensor for the viscous pressures is

N

σ     + (      /   x)   xδσ σ∂ ∂

δ F

δ x

Fig. 7.21. Forces at the surface of the liquid

P− p1 =
∥∥∥∥ 0 −μdu/dy
−μdu/dy 0

∥∥∥∥ . (7.116)

The viscous force δF exerted on the element is thus

δF = (P− p1) ·Nδx =
∥∥∥∥ −μdu/dy0

∥∥∥∥ , (7.117)

or, along x (i.e., along the surface),

δF = −μ(du/dy) δx. (7.118)

The force due to the surface stresses is σ(x+ δx)−σ(x); i.e., (∂σ/∂x)δx if we
neglect the second-order term. The sum of these forces is zero, so
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∂σ/∂x− μdu/dy = 0 for y = 0. (7.119)

However,

∂σ/∂x = σTG = −a. (7.120)

We therefore obtain

du/dy = −a/μ for y = 0. (7.121)

This condition makes it possible to deduce the integration constant

A = −a/μ. (7.122)

The flow velocity field is thus

u = (dp/dx)(y2 − h2)/2μ− a(y + h)/μ. (7.123)

The pressure gradient is determined by writing a conservation condition for
the total mass. It is assumed that, for any x-coordinate, the flow rate vanishes;
i.e., ∫ 0

−h

u dy = 0. (7.124)

Fig. 7.22. Marangoni effect for a fixed temperature gradient (when T2 > T1; i.e.,
σ2 < σ1): velocity profile far from the extremities

This assumption leads to the results (see Fig. 7.22, from [159])
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dp/dx = −3a/2h,

u = −a(3y2 + 4hy + h2)/4μh = −a(3y + h)(y + h)/4μh.
(7.125)

This treatment of the motion of the surface layer and of the liquid is open
to criticism: the motions of the liquid at the ends of the container have been
ignored, and the assumptions lead to a thermodynamic pressure gradient that
does not vanish at the surface, whereas in theory the pressure of the gas phase
is uniform. These defects come from our simplifying assumptions. However,
the main aspects of the phenomenon are well described.

7.9.2 Bénard–Marangoni Instability

The effect observed in Sect. 7.9.1 appears as soon as a longitudinal heat gra-
dient is imposed, however small it is. This is no longer the case in the pres-
ence of a single transverse gradient when the liquid is not very conductive
(the Prandtl number is then not small like it was in Sect. 7.9.1). When this
transverse temperature gradient is lower than a threshold value, the regime
is purely conductive. Above the critical gradient, an instability known as the
Bénard–Marangoni instability occurs; fluctuations due to Brownian motion
tend to develop, which give rise to convective swirls. Those can be coupled to
the Rayleigh–Bénard convective structures associated with gravity and ther-
mal dilation. In the absence of gravitational effects (a thin layer), with no
curvature of the free surface [197], and assuming a two-dimensional config-
uration, the motion is controlled by the following equations (see Fig. 7.23):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u/∂x+ ∂v/∂y = 0,

ρ∂u/∂t+ ρ(u∂u/∂x+ v∂u/∂y) + ∂p/∂x = μ(∂2u/∂x2 + ∂2u/∂y2),

ρ∂v/∂t+ ρ(u∂v/∂x+ v∂v/∂y) + ∂p/∂y = μ(∂2v/∂x2 + ∂2v/∂y2),

∂T/∂t+ u∂T/∂x+ v∂T/∂y = κ(∂2T/∂x2 + ∂2T/∂y2),
(7.126)

with the boundary conditions{
y = −h → u = v = 0, T = T1,

y = 0 → σT∂T/∂x− μ∂u/∂y = 0, ∂T/∂y + Λ(T − T0) = 0,
(7.127)

if we assume a linear law with a coefficient Λ for the heat exchange between
the free surface and the gas above. The purely conductive solution is

u = v = 0, T = T1 − Λ(T1 − T0)
1 + Λh

(y + h) = T1 + G(y + h). (7.128)

We then set T = T1+G(y+h)+T ′, p = p0+p′, u = u′, v = v′, with the distur-
bances considered to be small. Substitution into the preceding system leads
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y

x

p0, T0 at ∞ 

v = 0,
          + Λ(T – T∞) = 0 

∂σ/∂x – μ∂u/∂y = 0
∂T/∂y

u = v = 0, T = T1

or ∂T/∂y = 0

O

–h

Fig. 7.23. Boundary conditions for the Marangoni instability problem

us to the desired system of equations for small disturbances. Perturbations p′

and u′ are then eliminated by successive differentiation, and we set

v′ = V (y, t) cosKx, T ′ = θ(y, t) cosKx, (7.129)

where K is an unknown constant wavenumber. The following system is ob-
tained:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂/∂t)(∂2V/∂y2 −K2V )− ν(∂4V/∂y4 − 2K2∂2V/∂y2 + K4V ) = 0, ν = μ
ρ ,

∂θ/∂t− κ(∂2θ/∂y2 −K2θ) + GV = 0,

y = −h, V = 0, ∂V/∂y = 0, θ = 0 or ∂θ/∂y = 0,

y = 0, V = 0, μ ∂2V/∂y2 + σTK
2θ = 0, ∂θ/∂y + Λθ = 0.

(7.130)

The steady solutions are of the form⎧⎪⎪⎨⎪⎪⎩
V = (Ay + B) exp (Ky) + (Cy + D) exp (−Ky),

(4κK/G)θ = [Ay2 + (2B −A/K)y − E] exp (Ky)

+[Cy2 − (2D + C/K)y − F ] exp (−Ky).

(7.131)
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In the conducting case, respecting the boundary conditions leads to

σTGh
2

κμ
=

8Kh(Kh coshKh+ Λh sinhKh)(Kh− sinhKh coshKh)
(Kh)3 coshKh− sinh3 Kh

.

(7.132)
The left hand side of this equation is known as the Marangoni number:

Ma = σTGh
2/κμ, (7.133)

and the critical value Mac (i.e., the minima of Ma as a function of α, as
shown in Fig. 7.24 for several values of the Nusselt number Nu) [197]. We
will not give a more detailed analysis of this problem here; we will limit
ourselves to the traditional techniques used for instabilities in fluids. Also
note that (i) dimensional analysis can give the Marangoni number directly;
(ii) in reality, this phenomenon is generally three-dimensional; and (iii) these
couplings between the surface tension and the fluid flow also occur in the
presence of concentration gradients, and a similar treatment is justified in
such cases.

6
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0 100 200 300 400
Ma

Nu = 0
Nu = 2 Nu = 4 Nu = 6

8α2

α

Fig. 7.24. Neutral stability curves for an isothermal bottom (reprinted, with per-
mission, from [197]). Here, α = Kh and Nu = Λh

Finally, it is possible to account for the surface deformation, which was
previously assumed to be planar [94]. Scriven and Sternling [250] have stud-
ied the Marangoni instability in this more complex situation, taking into
account surface deformations and interface viscosity coefficients κa and εa
(see Eq. 11.41).



8

Turbulent Flow Concepts

This chapter deals with turbulent flow, as opposed to laminar (nonchaotic)
flow. The reference is always a laminar flow, and this can become turbulent
flow as a result of external destabilization. Turbulent flows are characterized
by high complexity. Turbulent processes can be modeled using a variety of
numerical simulations associated with computational fluid dynamics (CFD).

In Sect. 8.1, we present experimental evidence of turbulent flows occurring
in tubes (an experiment performed by Reynolds in the nineteenth century) or
close to solid walls. We show that friction coefficients are significantly modified
by the onset and development of turbulence. Aerodynamicists were among the
first to calculate friction coefficients in turbulent conditions, where they were
used to investigate and design airplane wing profiles. Specifically, they were
applied to assess changes in drag and lift, as well as the onset of aerodynamic
stall (stall can be suppressed but cannot be avoided completely).

Section 8.2 deals with turbulence onset and decay. We investigate—
analytically, if possible—examples of laminar flow destabilization, which can
lead to random chaos and turbulence if the constraints applied to the system
of interest are increased. We describe Rayleigh–Taylor, Kelvin–Helmholtz and
shear flow instabilities, as well as the von Kármán vortex street.1 Once the
onset of unstable eddies occurs, the process leading to their possible decay by
dissipation at small scales is initiated.

Classical turbulence theory (Reynolds-averaged Navier–Stokes or “RANS”
theory) is discussed in Sect. 8.3, mainly for single-component flows. We in-
troduce the mean values of all quantities (dilatable and compressible fluids
require the use of Favre averaging), and turbulent transfer coefficients (by
analogy with molecular transfer coefficients). Statistical modeling (using the
well-known k–ε method for example) and spectral analysis, which have long
been the main tools for analyzing (often incompressible and nonreactive) tur-
bulent flows, are then presented.

1Other types of instability will also be addressed in subsequent chapters.

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_8, © Springer Science+Business Media, LLC 2010
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A new approach to investigating compressibility and chemical reactivity
is presented in Sect. 8.4 in relation to RANS simulations. Studies of com-
bustion reveal the existence of nonlinear chemical production terms. Regime
diagrams are presented for premixed and nonpremixed flames. Some turbulent
combustion models are introduced in varying levels of detail.

The difficulties encountered when using statistical methods and the contin-
ual growth of computer power have resulted in a temptation to treat turbulent
flows through direct numerical simulation (DNS). Indeed, for most phenom-
ena, turbulent flows are governed by the same equations as laminar flows, but
they are characterized by fluctuations in velocities and state variables in space
and time.2

As a result, the costs of DNS calculations and the times required for them
quickly become prohibitive. An attempt was made to solve this problem by
combining direct numerical simulation (for large eddies) and statistical mod-
eling (for smaller vortices). This combination of approaches is called the large
eddy simulation (LES) method, and it is described in Sect. 8.5. Although the
LES method was initially developed for incompressible flows, it is now also
being applied to combustion.

8.1 Experimental Evidence for Turbulence

One characteristic of turbulent flows is rapid and random fluctuations in the
measured quantity f (see Fig. 8.12) as a function of time, whereas the same
quantity gives a more regular, quieter signal in laminar flows. There is known
to be a threshold above which certain flows present significant and disordered
fluctuations over time, and we now present several cases of flows that are
laminar in an upstream zone but become turbulent downstream.

We pay attention to the fact that this change in flow regime has an im-
portant effect on the coefficients that characterize the forces acting on the
surfaces of a body. We start this section by discussing Reynolds’ experiment
regarding the turbulent transition in a duct, and then consider viscous flow
over a flat plate. Finally, we investigate the effect of micromixtures on chemical
processes.

2“The Navier–Stokes equations, combined with a proper set of initial and bound-
ary conditions, are deterministic in that they are believed to possess a unique so-
lution. However, at high Re, the solution is strongly sensitive throughout most of
the flow field to the initial and boundary conditions, and in reality the conditions
cannot be specified accurately enough to obtain the deterministic solution, either
theoretically or experimentally. It then becomes reasonable to introduce statistical
methods and to seek only probabilistic aspects of the solutions, that is, to treat
turbulence as a random process.” [290].
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Fig. 8.1. Professor Osborne Reynolds (1842–1912). Reprinted, with permission,
from [121]

Reynolds’ Experiment

This experiment, performed by Reynolds in 1883 [236], relates to water run-off
in a tube with a circular cross-section [249].

The turbulence is visualized using a dye. As long as the Reynolds number
Re = ρV D/μ is lower than 2000, the flow is laminar, and we have already
seen (see Sect. 5.1.4) that the head-loss coefficient is then

Λ =
D

ρV 2

Δp

Δρ
=

64
Re

. (8.1)

After a transition zone, increasing the Reynolds number leads to an other
relation for Λ, even in the absence of surface roughness (see Fig. 8.2, based
on data from Schlichting [249]):

Λ ∼= 0.3164Re−1/4. (8.2)

For turbulent flow, the velocities of interest are averaged values of the mea-
sured instantaneous velocities (see Sect. 8.3).

A more satisfying formula is provided by Schlichting [249] (curve 3 of Fig.
8.2):

1/
√
Λ = 2 log[(V D/ν)

√
Λ]− 0.8. (8.3)

The experiment performed by Reynolds was the first to clearly show the
occurence of two flow regimes (laminar and turbulent flow). It showed that
there was a correlation between the random velocity fluctuations in the flow
and the macroscopic effect on the head-loss coefficient as a function of the
Reynolds number.
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Fig. 8.2. Laminar–turbulent transition in a tube. Curve 1, laminar experimental
results and formula (8.1). Curve 2, turbulent experimental results and empirical
formula (8.2). Curve 3, experimental results and relation (8.3)

Viscous Flow Over a Smooth, Flat Plate

In the case of a planar plate and a parallel flow of mean velocity V, a boundary
layer develops (see Sects. 9.3 and 9.6), starting from the leading edge of the
plate. Beyond this layer above the plate (such as far upstream of the leading
edge), the flow remains inviscid [34, 62]. We define the coefficient of local
friction on the wall via

Cf (x) = 2 τ(x)/ρ V 2, (8.4)

where τ(x) is the local friction stress, and the coefficient of the average friction
between x = 0 (the leading edge) and x = L (downstream of the leading edge)
is

Cfm =
1
L

∫ L

0

Cf (x)dx.

Between the abscises x = 0 and xT , the boundary layer is laminar, and
we find that Cfm = 1.328(Re)−1/2, where Re = ρV L/μ. Beyond xT , the
boundary layer becomes turbulent (see Sect. 9.6 for the theory behind this).
Actually, there is no precise abscise xT , but rather a laminar–turbulent tran-
sition zone.3

3The order of magnitude of xT is given by Re = ρV xT /μ ≈ 2× 105.
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In the case of a smooth wall and for a uniform pressure, and for the onset
of turbulence at abscise xT , the following empirical law can be used:

Cfm = 0.074(Re)−0.2 − (xT /L)[0.074(ReT )−0.2 − 1.328(ReT )−0.5], (8.5)

where ReT = ρV xT /μ (if the boundary layer was turbulent downstream of
the leading edge, we would have Cfm = 0.074(Re)−0.2). The results differ
because of the width of the transition zone and the uncertainty in the value of
xT . In addition, for high Reynolds numbers, the formula with (Re)−0.2 does
not remain valid; instead, we get the Schultz–Grunow law that depends on
(lnRe)2.584 for the coefficient of local friction, so the most suitable formula
is that of Prandtl–Schlichting, Cfm = 0.455(lnRe)−2.58− 2A(Re)−1, which is
valid up to Re ∼= 109. The coefficient A depends on the Reynolds number of
transition ReT as shown in Table 8.1 [91].

ReT 1× 105 3× 105 5× 105 1× 106 3× 106

A 150 525 850 1650 4350

Table 8.1. Dependence of the coefficient A on ReT

Effect of the Rugosity of the Flat Plate

For a rough plate where the roughness is homogeneous and has a thickness
of e, the relative roughness εδ will be εδ = e/δ, where δ is the thickness of
the boundary layer. According to Brun et al. [34], for a relative roughness of
less than 1/3, the wall is aerodynamically smooth; it can be considered rough
if εδ < 6; and it is semi-rough for intermediate values. Since the boundary
layer thickness δ increases with the distance x from the leading edge, it then
follows that the plate will be rough at the beginning but will then be able
to appear smooth. In the rough zone, we can use Droblenkov’s law, Cf =
0.0139(ε)1/7, ε = e/L.

The boundary layer problem is studied in detail in Chap. 9. Other devel-
opments in relation to this problem are given in [249] (p. 529).

Effect of Micromixing on Chemical Reactions

Turbulence affects chemical reactions. Turbulence at small scales is responsible
for what is known as micromixing in chemical engineering. The following
example shows the importance of micromixing in chemical reactions. Consider
the precipitation of barium sulfate by H+ ions from a stable complex in a basic
medium. There are two concurrent reactions:
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Fig. 8.3. Effect of micromixing: a Efficient micromixing at a molecular scale at the
point when a drop of B is injected into liquid A. Species B is always in contact with
A, but not with R. The precipitate S cannot form. b Imperfect micromixing. B is
surrounded by R, R reacts with B to form the precipitate S

{
A + B −→ R (very fast)
R + B −→ S ↓ (fast). (8.6)

Here, species A and B are liquids, as is the intermediate product R, while
species S is barium sulfate.

A drop of B is injected into liquid A. Figure 8.3 indicates the two extreme
situations that can occur depending on the quality of the turbulent stirring
of liquid A [283].

The quantity of S produced makes it possible to measure the segregation
index for the mixing. This index increases as the micromixing becomes more
imperfect. Turbulence at large scales does not act directly on the reaction,
but does influence the residence time of the species in an open reactor (see
Chap. 6), leading to a residence time distribution E(te).

8.2 Turbulence Onset and Damping

8.2.1 Turbulence Onset Mechanisms: Laminar Flow Instabilities

Many situations can lead to laminar flow instabilities. It is known that
Rayleigh–Bénard rolls start to fluctuate at high Rayleigh numbers [43], and
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that this gradually leads to a chaotic regime upon increasing the Rayleigh
number further [82, 110]. This instability was presented in Sect. 7.8, and
another type of instability that occurs in a fluid that was initially at rest
was introduced in Sect. 7.9.2.4 Random fluctuations also occur at the bi-
furcation point between two stable modes. There are many sources of such
instabilities. In the following sections we consider, for simple fluid flows, the
Rayleigh–Taylor and Kelvin–Helmholtz instabilities, the Strouhal instability
(which gives rise to von Kármán vortex streets and to the onset of turbulence
at high Reynolds numbers), shear flow instability, and finally wrinkled flame
instability (to illustrate the reactive case).

Rayleigh–Taylor and Kelvin–Helmholtz Instabilities

Two kinds of instability are presented here as particular cases of the more
general problem of two superposed fluids with a planar surface of separation.
The first, called the Rayleigh–Taylor instability, derives from the specific char-
acter of the equilibrium of the planar interface between two heavy fluids with
differing densities in the presence of gravity. The second type of instability,
called the Kelvin–Helmholtz instability, arises when two superposed fluids
flow over one another with a relative horizontal velocity [43]. Surface tension
has a stabilizing effect by reducing the domain of unstable wavelengths. For
inviscid fluids of density ρ1 and velocity U1 for the lower fluid and ρ2, U2 for
the upper fluid, and for constant surface tension σ, the amplification factor ωi

is obtained by analyzing the disturbance as a set of normal modes [94, 145]:

ω2
i =

σ

ρ1 + ρ2
k3 +

ρ1ρ2

(ρ1 + ρ2)2
(U1 − U2)2k2 + g

ρ2 − ρ1

ρ1 + ρ2
k, (8.7)

where k is the wavenumber and g is the acceleration due to gravity.5

4Note that we presented a linear analysis for these instabilities. This cannot be
done for stronger instabilities, which require (generally numerical) nonlinear system
resolution.

5The previous result was obtained by assuming inviscid fluids and semi-infinite
layers. The velocity potential φ obeys the Laplace equation. The potential perturba-
tion φ′ can be decomposed into normal modes. The integration constants are deter-
mined using the interfacial conditions. The equation for the interface is obtained by
assuming small perturbations near the planar reference surface, characterized by a
function η. The boundary conditions at the interface (the Laplace law for the pres-
sure jump due to surface tension and the impermeability conditions) are linearized,
and the equations of motion for the fluids can be expressed via the Bernoulli laws.
We obtain an homogeneous system of perturbation equations involving time and
space derivatives of φ′ and the interfacial function η. Finally, after eliminating the
functions, we get the dispersion equation

(ω − k ρ1U1 + ρ2U2

ρ1 + ρ2
)2 =

σ

ρ1 + ρ2
k3 − ρ1ρ2

(ρ1 + ρ2)2
(U1 − U2)

2k2 − g ρ2 − ρ1

ρ1 + ρ2
k.
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Rayleigh–Taylor Instability

A Rayleigh–Taylor instability can occur for σ = 0, U1 = U2 and ρ2 > ρ1. The
planar surface is then unstable at any wavenumber (i.e., at any propagation
velocity).

In contrast, if σ �= 0, U1 = U2 and ρ2 > ρ1, stability analysis gives a cut-off
value kc, where

k2
c = g(ρ2 − ρ1)/σ,

and stability is ensured for small wavelengths (k > kc). The maximum ωi

appears for a particular value km of the wavenumber (see Fig. 8.4) given by
[94].

k2
m = g(ρ2 − ρ1)/3σ.

Fig. 8.4. Growth curves for the Rayleigh–Taylor instability in inviscid fluids when
U2 = U1

Kelvin–Helmholtz Instability

A Kelvin–Helmholtz instability can occur for g = 0 and σ = 0. Instability can
occur for any value of k. If σ �= 0 and g = 0, a cut-off value (kc) appears, and

For real values of the wavenumber k, we set ω = ωr + ωi. The real value ωr =
k(ρ1U1 + ρ2U2)/(ρ1 + ρ2), and the imaginary part is given by (8.7).



8.2 Turbulence Onset and Damping 177

we get the maximum perturbation growth rate for a particular wavenumber
km (see Fig. 8.5) [94]. We have

kc =
ρ1ρ2

(ρ1 + ρ2)2
(U1 − U2)2

σ
; km =

2
3

ρ1ρ2

(ρ1 + ρ2)2
(U1 − U2)2

σ
.

Fig. 8.5. Growth curves for a simple Kelvin–Helmholtz instability when g = 0

The Kelvin–Helmholtz instability gives rise to “rolled up” structures such as
those shown in Fig. 8.6a.

It is possible to determine a convective speed Uc for the large structures
observed. The streamlines of the flow observed in a reference frame moving at
the speed Uc are represented in Fig. 8.6b, and exhibit a “neck” structure [195]
similar to those seen for the planar counterflow diffusion flame of Fig. 7.17 and
the planar stretched premixed flame of Fig. 7.15. This justifies the local use
of these Lagrangian structures when studying and modeling turbulent flames.

To determine the speed Uc of a continuous flow of a compressible fluid, we
note that the dynamic pressures p0 of the two flows are equal at the stagnation
point; i.e., the ratios p0/p = [(γ − 1)M2/2 + 1]γ/(γ−1), where p is the static
pressure, γ is the isentropic coefficient and M is the Mach number, are the
same. If the Mach numbers are not too high, and assuming isentropy, we
obtain

ρ1(U1 − Uc)2 = ρ2(Uc − U2)2
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Fig. 8.6. a Example of the Kelvin–Helmholtz instability phenomenon that causes
“rolling up” at the interface. b Convective frame and streamlines in this reference
frame

if U1 is the highest velocity, and we deduce

Uc = U1
1− U2/U1

√
ρ2/ρ1

1 +
√
ρ2/ρ1

. (8.8)

This formula is no longer valid if the flow does not stay isentropic (shock
waves attached to the structures can appear at high velocities). For Mc > 0.6,
the experimentally observed mixing layer becomes turbulent and exhibits 3D
structures.

Kármán Vortex Streets

A Kármán vortex street is a repeating pattern of swirling vortices caused by
the unsteady separation of flow over bluff bodies. They are named after the
engineer and fluid dynamicist Theodore von Kármán.

If we consider a long circular cylinder,6 the frequency of vortex shedding
is given, for the range 250 < Re < 2× 105, by the empirical formula

6This case illustrates the Strouhal instability and the particular type of wake
known as the Karman vortex street. This is a succession of eddies that are created
close to the cylinder and break away alternately from both sides of the cylinder.
Vortices are emitted regularly and rotate in opposite senses.
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fd/V = 0.198(1− 19.7/Re),

where f is the vortex-shedding frequency, d is the cylinder diameter, V is the
flow speed, and Re = V d/ν is the Reynolds number (ν = μ/ρ is the kine-
matic viscosity). The dimensionless parameter fd/V is known as the Strouhal
number.

Up to the critical Reynolds number (about 40), the oscillations are so
strong that one of the two vortices breaks away from the cylinder. This is the
Strouhal instability. The second vortex is shed while the first is reshaped. The
vortices appear and are shed alternately at a constant frequency (see Fig. 8.7
and [281]). At a Reynolds number of about 200, the structure of the Karman
vortex street becomes three-dimensional. When the Reynolds number moves
above 400, turbulence develops and the Karman vortex street disappears.

Fig. 8.7. Vortex street behind a circular cylinder at Re = 138. Hydraulic analogy vi-
sualization in the ONERA hydrodynamic tunnel. (ONERA, private communication,
2009)

The Shear Flow Instability

Let us now consider cases where the viscous terms are in competition with
the inertial terms, and where the reference laminar flow is bidimensional with
parallel stream lines.
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The Orr–Sommerfeld Equation

We suppose that the laminar flow is characterized by the velocity profile (with
no disturbances) u = U(y), the velocity component v is zero, and the flow is
2D planar. In this case, the pressure P is a linear function of the abscises x,
and that it obeys

dP

dx
= ν

d2U

dy2
. (8.9)

The disturbed flow will be ⎧⎨⎩
u = U(y) + u′,
v = v′,
p = P (x) + p′.

(8.10)

The fluid is assumed to be incompressible, so the mass conservation equation
leads to

u′ = ∂ψ/∂y, v′ = −∂ψ/∂x. (8.11)

Let us study disturbances of the type

ψ = φ(y)eik(x−ct). (8.12)

The momentum equation becomes

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂2ψ/∂t∂y + U(y) ∂2ψ/∂x∂y − (∂ψ/∂x) dU/dy + (1/ρ) ∂p′/∂x

= ν ∂(Δψ)/∂y,

−∂2ψ/∂t∂x− U(y) ∂2ψ/∂x2 + (1/ρ) ∂p′/∂y

= −ν ∂(Δψ)/∂x.

(8.13)

After eliminating p′, we have

∂(Δψ)
∂t

+ U(y)
∂(Δψ)
∂x

− ∂ψ

∂x

d2U

dy2
= νΔ(Δψ). (8.14)

As

Δψ = (
d2φ

dy2
− k2φ)eik(x−ct), (8.15)

we obtain

φ(4) − 2k2φ′′ + k4φ =
ik

ν
[(U − c)(φ′′ − k2φ)− U ′′φ]. (8.16)

This is the Orr–Sommerfeld equation (see, for example, Landau and Lifschitz
[147]).
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The Nonviscous Shear Flow Case

Studying the same problem for a perfect fluid (ν = 0) leads to Rayleigh’s
equation:

(U − c)(φ′′ − k2φ)− U ′′φ = 0. (8.17)

We can show that one requirement for the development of instability in a
perfect fluid is that the velocity profile U(y) presents a point of inflection.

Fig. 8.8. Stability diagram for the Orr–Sommerfeld equation

Demonstration for a particular case: In the case of a flow between two parallel
flat surfaces, we have {

k ∈ �, c = cr + ici, φ = φr + iφi,

ψ = φ ekcit eik(x−crt).
(8.18)

Instability occurs if ci > 0. We define the real and imaginary parts of the quantity
(U − c)−1:

(U − c)−1 = γr + iγi, γr =
U − cr

(U − cr)2 + c2i
, γi =

ci
(U − cr)2 + c2i

, (8.19)

φ′′ − k2φ− U ′′φ(γr + iγi) = 0. (8.20)

Separating the real and imaginary parts, we have:
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{
φ′′r − k2φr − U ′′(φrγr − φiγi) = 0,

φ′′i − k2φi − U ′′(φrγi + φiγr) = 0.
(8.21)

By combining these equations, we obtain φiφ
′′
r − φrφ

′′
i + U ′′(φ2

i + φ2
r)γi = 0, or

d

dy
(φiφ

′
r − φrφ

′
i) + U ′′(φ2

i + φ2
r)γi = 0

Integration leads to

[φiφ
′
r − φrφ

′
i]

+h
−h +

∫ +h

−h

U ′′(φ2
i + φ2

r).γi dy = 0 (8.22)

As v = −∂ψ/∂x = −ikφ(y) ekcit eik(x−crt), and with φ(h) = φ(−h) = 0, the jump
[φiφ

′
r − φrφ

′
i]

+h
−h is zero. Also,∫ +h

−h

U ′′(φ2
i + φ2

r)γi dy = 0. (8.23)

If ci > 0, so γi > 0, this integral is only canceled out if the sign of U ′′ changes
between y = −h and y = +h. Therefore, the velocity field U(y) must present an
inflection point.

The General Case for Viscous Shear Flow

The problem becomes trickier to tackle when ν �= 0 (the Orr–Sommerfeld
equation). For a flow between two parallel planes, we can proceed analytically
or numerically for each value of ν and k. We obtain the condition ci = F (k, ν),
meaning that there are no trivial solutions that obey u(±h) = v(±h) = 0.

The sign of ci is thus that of �(F (k, v)). We find that there is always
stability for Re = 2Ūh/ν < 5800, where Ū is the mean velocity of the flow
(Fig. 8.8). Instabilities are possible for certain wavenumbers with large values
of Re. Lastly, stability is obtained for infinite Re (the two branches meet),
which proves the limits of this linearized theory.

Instability of a Premixed Laminar Flame

Premixed flame instability is easily obtained by varying the equivalence ratio
of the flame of Bunsen burner. Beyond a critical value of the chemical com-
position of the mixture, the cone is instantly transformed into a polyhedron.
The spontaneous appearance of cells is only observed for mixtures that are
rich in heavy hydrocarbons (propane) or that have only a small fraction of
light combustibles (hydrogen); i.e., when the species that limits the reaction
is the lightest one. Indeed, the flame can exhibit several types of instability
(see for instance [198]).

We present two types of instability in a laminar premixed flame below:
hydrodynamic instability and thermodiffusive instability.
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Hydrodynamic Instability of a Planar Laminar Premixed Flame

The hydrodynamic instability of a planar laminar premixed flame is known as
the Darrieus–Landau instability [22, 147]. Here, we investigate the stability
of a planar flame front with respect to infinitesimal disturbances. The flame
of interest is reduced to a discontinuity, as described in Sect. 10.4, and it is a
deflagration wave.

We assume the plane of discontinuity to be the yz-plane, with unperturbed
gas velocities in the positive x-direction: v1 for the unburned gas and v2 for
the burned gases. We have ρ1v1 = ρ2v2 and ρ1 > ρ2 (due to the heat release),
as well as p1 = p2 (squared velocity terms are negligible).

Fig. 8.9. A planar flame front with infinitesimal disturbances

The perturbation equations on each side (1 and 2) of the discontinuity are
those of incompressible nonviscous fluids:

∇v′ = 0, ∂v′/∂t + (v ⊗∇) · v′ + ∇p′/ρ = 0. (8.24)

The perturbed flame surface is defined by x = η(y, t) (2D case, Fig. 8.9). On
the surface of discontinuity (i.e., for x =0), the following conditions must be
satisfied:

• The pressure continuity equation, p′1 = p′2
• The condition that the velocity component tangential to the surface is

continuous, v′1y + v1∂η/∂y = v′2y + v2∂η/∂y
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• The condition that the gas velocity normal to the surface of discontinuity
is unchanged, v′1x − ∂η/∂t = v′2x − ∂η/∂t.

In the region x < 0 (the unburned gas, region 1), the solution to (8.24) is

{
v′1x = A exp (iky + kx− iωt), v′1y = iA exp (iky + kx− iωt),

p′1 = Aρ1(iω/k − v1) exp (iky + kx− iωt).
(8.25)

In the region x > O (the combustion products, region 2), we can write [147]

⎧⎪⎪⎨⎪⎪⎩
v′2x = B exp (iky − kx− iωt) + C exp (iky + iωx/v2 − iωt),

v′2y = −iB exp (iky − kx− iωt)− (ω/kv2)C exp (iky + iωx/v2 − iωt),

p′2 = −Bρ2(iω/k + v2) exp (iky − kx− iωt).
(8.26)

Setting
η(y, t) = D exp (iky − iωt), ω = ωr + iωi, (8.27)

an unstable solution will give ωi > 0.
We obtain four homogeneous equations for the coefficients A,B,C,D. A

simple calculation gives the condition that allows these equations to be com-
patible; i.e., the following dispersion equation:

ω2
i (v1 + v2) + 2ωikv1v2 + k2v1v2(v1 − v2). (8.28)

Here v1 < v2 because ρ1 > ρ2 (on account of the considerable heating during
combustion) and ρ1v1 = ρ2v2; however, the roots are real and have opposite
signs, and the original motion is unstable.

Thermodiffusive Instability of a Premixed Laminar Flame

Let us now consider a reactive mixture of species A and B diluted in a neutral
gas, where the composition is far from being stoichiometric, and the lightest
species A is also the rarest [52]. In this case, the course of the reaction only
affects species A appreciably. The coefficient of diffusion is therefore large
(see Chap. 3) because of the low molar mass, and so the Lewis number LeA =
λ/ρcpDA is small compared to the Lewis number of (the heavier) species B.
The thermal diffusivity κ = λ/ρcp is independent of the proportions of A and
B because of the strong dilution of the mixture.

The combustion velocity of a planar premixed laminar flame is well defined
(Sect. 10.5). Locally, a stable Bunsen flame is comparable with such a planar
flame. Let us suppose that a local disturbance induces a deformation that
results in hollows and swells (Fig. 8.10). The transverse diffusion of species A
tends to decrease the concentration CA at a point M on the reaction surface,
which is located in a hollow. In contrast, heat from the burned gases diffuses
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towards the interior. However, in this case, where LeA is small, the effect of
the diffusion of species A dominates, and the reaction rate decreases even
though the temperature rises in M , leading to a drop in the speed of the
combustion wave; i.e., the celerity of the flame relative to the fresh gases. The
zone considered will become increasingly hollow. The opposite occurs at point
N along the cut y′y. There is flame instability.

If the Lewis number was greater than 1, the effects of thermal conduction
would be stronger than those of molecular diffusion, resulting in stability.
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Fig. 8.10. Thermodiffusive instability of a laminar flame

These instability effects give rise to thermodiffusive autoturbulence through
the amplification of defects. If the flow upstream of the fresh gases is already
turbulent, the two phenomena will interact.

Motion studies of turbulent wrinkled flames were a focus of research thirty
years ago [288]. Clavin and Joulin [53] showed that, within the framework of
certain assumptions, just one scalar that measures the stretching of the flame
front controls the form and dynamics of the flame locally (Sect. 11.4.2). This
scalar consists of two terms that represent the contribution of the flame geom-
etry (the curvature of the front, advancing with a prescribed normal velocity)
and that of the inhomogeneity of the flow, as characterized by the tensor of
the strain rates. Law, Jomaas and Bechtold [128, 152] recently studied the
appearence of cellular instabilities in expanding spherical flames.

8.2.2 Turbulence Decay Mechanisms: Vortex Dissipation

In Sect. 8.2.1, we presented some instability mechanisms that can give rise to
turbulent structures. In the following sections, we will see that the turbulent
structures evolve by exchanging energy. These exchanges can be more or less
inertial in nature, and dissipation can occur.

The small structures are generally damped by molecular diffusion. For
pure fluids, we can compare them to small eddies where the rotation is slowed
by the viscosity. Species diffusion also intervenes in reactive flows, just as it
does in chemical reactions.
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Viscous Damping of a Vortex

To illustrate the viscous dissipation of turbulent small structures, we now
present the classical study of the viscous dissipation of a vortex. The laminar
character assumed for the flow is justified by the fact that at scales smaller
than the Kolmogorov scale introduced in Sect. 8.3.4, the rotation is damped
by molecular viscosity in the same manner as in laminar flow.7 Consider the
flow of pure, incompressible, viscous fluid. The momentum balance equation
is

dv
dt

+
1
ρ
∇p = νΔv + f , (8.29)

which can also be written

∂v
∂t

+ ∇(
v2

2
) + (∇ × v)× v +

1
ρ
∇p = νΔv + f . (8.30)

Applying the operator ∇× to each side of this equation gives

∂ω/∂t + ∇× (ω × v) = νΔω, (8.31)

where ω = 1
2∇×v, and where we have assumed that f derives from a potential.

If the fluid is nonviscous, (8.31) reduces to

∂ω/∂t + ∇× (ω × v) = 0. (8.32)

In 2D planar flow, where ω is parallel to the Oz axis (ω = ωez), we have

∂ω

∂t
=

ν

r

∂

∂r
(r
∂ω

∂r
), (8.33)

and, for an inviscid flow,

∂ω/∂t = 0. (8.34)

In this latter case, we know the solution, which is generally presented in the
complex plane:

vr = 0, vθ = Γ/2πr. (8.35)

This corresponds, for v �= 0, to irrotational flow (ω = 0). This refers to an
irrotational (or free) vortex that has a singularity at its center O. The stream
lines are concentric circles. This solution is also a particular solution of (8.31)
for the viscous fluid.

7Note that the concept of a turbulent eddy is definitely not reducible to that of
free vortex. Turbulent eddies are more or less coherent and interacting structures
that are frequently used in turbulence theory in relation to spectral analysis, as we
will see later.
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Let us now search for a more general solution [96] to (8.31) where the
stream lines are still concentric circles and which is identical to the free vortex
at time t = 0. For a self-similar solution, we can choose the variable η such
that

η = r2/4νt, ω = f(η), (8.36)

using a similar approach to that employed in Chap. 5 for the problem of
thermal transfer (Sect. 5.3). The equation

dω/dη = (A/η)e−η (8.37)

is obtained, where A is an integration constant.
The function

ω(r, t) = (A/t)e−η

obeys (8.37), and the corresponding velocity vθ is

vθ = (4νA/r)(1 − e−r2/4νt). (8.38)

As the time t tends to zero, we must obtain an irrotational vortex. The in-
tegration constant A is thus equal to A = Γ/8πν. The (presumably single)
solution to this problem is thus8

vθ = (Γ/2πr)(1 − e−r2/4νt). (8.39)

The coherent structure to choose for modeling depends on the type of tur-
bulent flow being studied (i.e., mixing layer or some other type), and is not
always easy to identify [126].

Growth of a Flame in a Vortex Field

To illustrate the coupling between eddies and chemical reactions and species
diffusion through the use of examples, we will now consider a vortex damped
by viscosity at the same time that it is introduced at the interface between a
fuel and an oxidizer, where a diffusion flame is burning.

For the planar injection of parallel jets, one of fuel F and the other of
oxidizer O, the shear flow gives rise to a swirling alley (Kelvin–Helmholtz
instabilities, Sect. 8.2.1). By following the motion of the center of the vortex
(Fig. 8.6), we note that a rolled-up layer gradually develops, as a double spiral

8In turbulence, vortices are generally three-dimensional, and so a more appropri-
ate model to explain the evolution is Burgers’ vortex [36]. Moreover, we use Burgers’
vortex sheets to model turbulent dissipation. Burgers’ vortex is defined by the equa-

tions: vr = −σr, vθ = (Γ/2πr)(1− e−σr2/2ν), vz = 2σz, where σ denotes the strain

and Γ represents the circulation of the vortex. The quantity δ =
√
ν/σ characterizes

the core size of the vortex.
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that contains alternate layers of the fluids F and O. These layers become
increasingly thin, which contains burnt gases produced by the diffusion flame
(the chemical reaction is assumed to occur infinitely quickly). A core of burnt
gases is then formed, and the diameter of this core increases over time.

This process, which occurs at the same time as and interacts with viscous
damping, was studied by Marble and Broadwell [168], Marble [166], and by
Karagozian and Marble [132].

Fig. 8.11. Viscous and burnt gas cores for a diffusion flame that is initially hori-
zontal but gradually rolls up into a vortex for Re

√
Sc > 50

Modeling the initial irrotational vortex with (8.35), we find that the viscous
core radius is derived from (8.32):

r∗ ≈ √νt,
and for 1 < Re = Γ/2πν < 103 the radius of the diffusion core (which is filled
with burned gases in the case of a fast reaction with an initially horizontal
flame) rb can increase more rapidly than the viscous core. For example, if
Re
√
Sc > 50, we have the asymptotic law

r∗b ≈
√
Γ 2/3 D1/3 t,

where Γ is the circulation of the vortex for large radii, and reactant con-
sumption is enhanced by a factor proportional to Γ 2/3 D1/3 [168] (see Fig.
8.11).
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Premixed flames that roll up into vortex structures have also been studied
[149], and the dynamics of flame/vortex interactions were studied by Renard
et al. [234]. The liquid case has also been examined [167].

8.3 Classical Turbulence Theory

8.3.1 Turbulent Transfer Coefficients and Chemical Kinetics
(Simplified Statistical Theory, Incompressible Case)

Averaged Quantities

Let us now consider the fluctuating parameter f(x, t) (which could be pres-
sure, temperature, velocity, concentration, ...) of a turbulent flow [117], as
shown in Fig. 8.12. We can define the time average as

f̄(x, t) =
1
T

∫ t+T/2

t−T/2

f(x, τ) dτ, (8.40)

where T is the sampling time, which is chosen to be large enough for f to be
independent of it. The parameter f then comprises an average value of f̄ and
a random part f ′.

Fig. 8.12. Instantaneous turbulent quantity f versus time

We now suppose that the following Reynolds axioms [10] hold, where
k =const.
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f = f̄ + f ′, f̄ ′ = 0,

kf = kf̄ ,

fg = f̄ ḡ + f ′g′,

∂f/∂s = ∂f̄/∂s,
∫
f ds =

∫
f̄ ds.

(8.41)

For two points M1 and M2 separated by ξ = |ξ|, where the velocity is u1(x)
and u2(x + ξ) at time t, respectively, we can define a correlation coefficient

R(ξ) = u′1u
′
2/

√
u′21

√
u′22 (8.42)

and a correlation length L that gives the average eddy size:9

L =
∫ ∞

0

R(ξ) dξ. (8.43)

If R(ξ) is independent of the direction of M1M2 and the position x, the
turbulence is known to be homogeneous and isotropic (see Sect. 8.3.2).

Coefficients of Turbulent Exchange

Turbulence results in new flux terms that must be added to fluxes of the
various quantities that have an effect following transfer processes between
molecules. For the incompressible case, the balance equation

∂(ρf)/∂t +∇ · (ρfv + J F ) = ẆF (8.44)

becomes, by taking the average,

ρ∂f̄/∂t + ρ∇ · (f̄v) +∇ ·J F + ρ∇ · f ′v′ = ẆF . (8.45)

Thus, the momentum equation yields the Reynolds tensor

ρv′ ⊗ v′, (8.46)

which is added to the viscous pressure tensor (the opposite of the viscous
strain tensor) to give the sum of the molecular and turbulent viscosities

−2μD + ρv′ ⊗ v′. (8.47)

We must now express the additional terms that appear in the averaged
balance equations. This is the closure problem. This initially focuses on the
Reynolds tensor, and more generally the tensors ρ f ′v′, which, as we will see
below, can be interpreted as turbulent fluxes. They are then the production
terms ẆF . For chemical production, these latter terms are not equal to those
computed using the averages of the quantities on which they depend.

9We assume that the basic turbulent structures are eddies.
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A simplifying assumption (the Boussinesq hypothesis) is to assume that
the turbulent fluxes are proportional to the corresponding generalized forces
(first gradient closure). We then have

ρ u′v′ = −Ku∂u/∂y, (8.48)

where Ku is a coefficient of turbulent exchange. In contrast to molecular
transfer coefficients, coefficients of turbulent exchange depend not only on the
local state of the fluid but also the flow characteristics. We can only rarely
assume them to be constant. For a turbulent Poiseuille flow, we can assume
for example that Ku is related to y. This leads to semi-empirical coefficients
that generally have very restricted ranges of validity, but which have the
advantages of ensuring the closure of the system of equations and providing
qualitative information. For the quantity F , we can introduce coefficient KF

such that

ρ f ′v′ = −KF ∂f̄/∂y. (8.49)

We therefore define the three coefficients of turbulent exchange μt, λt/cp and
ρ̄Dt, where10 ⎧⎪⎪⎨⎪⎪⎩

(ρv)′ ⊗ v′ = −μt∇⊗ v̄,

(ρv)′h′ = −λt/c̄p∇h̄,

(ρv)′Y ′j = −ρDt∇Ȳj .

(8.50)

We can then introduce turbulent Schmidt and Prandtl numbers:

Sct = μt/ρDt, P rt = μtc̄p/λt. (8.51)

By analogy with the kinetic theory of gases, we can now define the “mean
length of the mixture” (similar to the mean free path). As an example, consider
the transfer of a quantity F in direction y. We assume that the transfer is
performed by random jets of length l′F in the Oy direction, and that these
jets have an average value f̄(y − 1′F ). After this free path, there is a sudden
change, with the average value becoming f̄(y). Therefore, at coordinate y, the
fluctuations f ′ will be (Fig. 8.13){

f ′ = f̄(y − l′F )− f̄(y),

f ′ ∼= −l′F ∂f/∂y.
(8.52)

By accounting for all possible random jets and taking the average we get

(ρv)′f ′ = −(ρv)′l′F ∂f/∂y. (8.53)

10These relations, in which counter-gradient diffusion occurs (see Sect. 8.4.4), are
also valid for compressible fluids provided that the Favre averages of Sect. 8.3.2 are
used.
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Fig. 8.13. The turbulent fluctuations

Therefore,

KF = (ρv)′l′F . (8.54)

Let us suppose that ρ is constant and that the fluctuations u′ are of same
order of magnitude as the fluctuations v′. By setting f = u, we get{

u′ ∼= −l′u ∂ū/∂y ∼= v′,

Ku = μt = (ρv)′l′u = ρ l′2u ∂ū/∂y,
(8.55)

or Ku/ρ = L2
P ∂ū/∂y if we set L2

P = ρ l′2u . LP is the Prandtl mixing length.
It can be interpreted as the most effective eddy size for mixing.

Turbulence and Chemical Kinetics

Now let us now study the turbulent terms resulting from the chemical kinetics.
We consider the chemical reaction A + B → C. The production rates of the
species are

Ẇj = νjMj kρ
2 YAYB/MAMB = ±kjYAYB, (8.56)

where the sign is (+) for j = C and (−) for j = A or B, and the specific
reaction rate k is given by (3.52). The corresponding averaged formula is

ẆA = −k̄1 (ȲAȲB + Y ′AY
′
B)− ȲA k′1Y

′
B

−ȲB k′1Y ′A − k′1Y ′AY
′
B.

(8.57)
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We note that, even when k′1 is negligible,11 the average production rate is the
sum of two terms and can therefore be very different from the production rate
calculated from the average concentrations:

ẆA = −k̄1 (ȲAȲB + Y ′AY
′
B). (8.58)

By introducing a characteristic diffusion time τD and a chemical time τc, it
can be shown that
a) If τD 
 τc (i.e., if the reactions are slow or the system is perfectly stirred),
the turbulent chemical term is negligible compared to the turbulent diffusion
term. Therefore Y ′AY

′
B
∼= 0 and

ẆA = −k̄1 ȲAȲB. (8.59)

b) If τc 
 τD, the chemical reaction is much faster than the diffusion phe-
nomenon. The species are slightly stirred and in the extreme case they do not
meet. Any particular point in space sees the species A or B alternately, but
never both at the same time. This means that the production rate vanishes,
which leads to

ȲAȲB = −Y ′AY ′B . (8.60)

c) Between these extreme cases, the correlation modulus |Y ′AY ′B | takes values
ranging between 0 and 1.

Note that this very simplified presentation of turbulent chemically reacting
mixtures focuses on mixing processes and do not takes the heat release effects
that generally occur during combustion into account. This approach is justified
for dilute gaseous mixtures. To study turbulent combustion, we will use the
Favre average defined below. The averaged balance equation (8.45) that was
established for the incompressible case is no longer valid in this case, and will
be replaced by an other, as shown in Sect. 8.4.1.

8.3.2 Some Definitions Relating to Turbulence

Statistical Processing

The statistical processing of turbulence is generally more sophisticated than
described in Sect. 8.3.1 [2]. The statistical average of a random function f(x, t)
is obtained starting from N events fj(x, t) so that

〈f〉 (x, t) = limN→∞(
1
N

N∑
i=1

fi(x, t)). (8.61)

11This is possible if the temperature fluctuations are negligible, which is obviously
not the case in combustion, where temperature changes due to heat release are
generally significant. If k′1 is neglected, we are especially interested in the mixing
effects.
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More generally, we introduce a probability density P (f |x, t), and the average
becomes

〈f〉 (x, t) =
∫ +∞

−∞
f(x, t)P (f |x, t) df. (8.62)

This is the ensemble average. For pairs of random variables, we also use the
density P (f |x, t|x′, t′), which gives access to the correlations. When the prob-
ability at a point P (f |x, t) does not depend explicitly on time, the turbulence
is steady. When it does not depend on spatial position, it is homogeneous.
There is isotropy when there is invariance upon translation or rotation, and
when there is symmetry about any arbitrary plane. In experiments, we have
only one configuration along with variable times or positions. We must there-
fore recourse to space-time averages rather than ensemble averages. If the
weight function is denoted by φ(x, t), we get

〈f〉 (x, t) =
∫
x, t

f(ξ, τ)φ(x − ξ, t− τ) dξ dτ, (8.63)

with ∫
x, t

φ(ξ, τ) dξ dτ = 1. (8.64)

The ensemble averages and the space-time averages are equivalent provided
that the assumption of ergodicity holds. According to the principle of ergod-
icity, an infinitely repeated experiment with a single drawing is equivalent—
statistically speaking—to a single experiment with an infinite number of draw-
ings.

We also introduce space-time averages at two points for couples between
random variables.

Ergodicity was implicitly assumed in Sect. 8.3.1, where time averages were
used. In this case, the average value of an unspecified function ϕ was 〈ϕ〉 = ϕ.

Favre Averages

For flows with large changes in density (e.g., in flows of compressible fluids or
for combustion), we generally use density-weighted Favre averages [83], [84].
The Favre average f̃ of the quantity f is defined based on the classical average
of ρf :

ρ̄f̃ = ρf. (8.65)

Splitting f(x, t) into f̃(x, t) and f ′′, we have f̃ ′′ = 0 and ρf ′′ = 0.
The use of the Favre average makes it simpler to formulate some products

that depend on density. The classical average of the triple product ρuf then
yields four terms:



8.3 Classical Turbulence Theory 195

ρuf = ρ̄ ū f̄ + ρ̄ u′f ′ + ρu′ f̄ + ρf ′ ū + ρ′u′f ′, (8.66)

and the Favre average of the same product gives

ρuf = ρ̄ ũ f̃ + ρ̄ ũ′′f ′′, (8.67)

which has the same formal structure as the conventional average of uf for
constant density flows:

uf = ūf̄ + u′f ′. (8.68)

Difficulties that arise with Favre averaging in viscous and diffusive transport
terms are relatively unimportant, since these terms are usually neglected for
high Reynolds number turbulence [202].

The Taylor Hypothesis

The assumption called the Taylor hypothesis is valid only for weak rates of
turbulence: ν′iν

′
j

1/2 
 (ν̄iν̄j)1/2. It is the assumption that, in the homoge-
neous case, the turbulent field is frozen and the fluctuations are transported
by the motion with a mean velocity v that is presumed to be locally constant.
This assumes a unique advection velocity, which is not possible in the case
of compressible flows (for example in acoustics), or for shear flows where ū is
scale dependent. We therefore obtain a relation between the space and time
dependencies. Based on this assumption, it is therefore sufficient to experi-
mentally measure the temporal fluctuations using a fixed probe. The spatial
fluctuations can then be deduced using

f(t) = f(x/ū)⇐⇒ d

dt
∼= ū

∂

∂x
. (8.69)

Scales of Turbulence

The integral scale � characterizes large turbulent structures. We will see
in Sect. 8.3.4 that the turbulent kinetic energy is distributed according to
wavenumber. In the homogeneous case, the spectral distribution obtained by
Fourier transformation is E(k) per unit mass and wavenumber. It can be
shown that the integral scale is equal to

� =
π

2
E(0)
u′2

, (8.70)

where E(k) is the one-dimensional spectral distribution.
The small structure scale can be defined as the size at which the structures

are strongly affected by the viscosity (dissipative area). We thus obtain the
Kolmogorov microscale �K described in Sect. 8.3.4.
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The Taylor microscale λ is intermediate between the integral scale and the
Kolmogorov microscale. This makes it possible to connect the variances of the
velocity fluctuation gradients to the variances of the velocity fluctuations, and
we can define the Taylor microscale via

λ = (u′2/(∂u′/∂x)2)1/2. (8.71)

Spectral analysis shows that it can be deduced from the energy spectrum
E(k):

λ2

∫ ∞
0

k2E(k) dk =
∫ ∞

0

E(k) dk. (8.72)

8.3.3 k–ε Modeling (Closing the Transfer Terms)

We now present a turbulence model for the Navier–Stokes equations, which
is first applied to the case of constant density flow, and then to the case of
variable density. This model is frequently used in engineering design.

k–ε Modeling of Incompressible Fluids

Here, we will only study the case of an nonreactive incompressible fluid with
a constant viscosity coefficient. Recall that [2]

{∇ · v = 0,
∂v/∂t+ ∇ · (v ⊗ v) + ∇ · v′ · v′ + ∇p/ρ0 −∇ · (2ν D) = 0,

(8.73)

where ν = μ/ρ, and where the definition of D is given by (3.32). System
closure is obtained when we know the coefficient of turbulent transfer μt and
the average kinetic energy of turbulence. We can write (more precisely than
in the preceding section)

v′ · v′ − (1/3)v′21 = −2νtD̄ (8.74)

in the case of isotropic turbulence, where the tensor on the left hand side is the
tensor for turbulent stresses, which has zero trace. The coefficient νt = μt/ρ̄
can be evaluated starting from the Prandtl mixing length LP . However, a more
sophisticated theoretical approach connects it to the average kinetic energy
of turbulence per unit mass

k̄ = v′2/2 (8.75)

and to the average rate of turbulence dissipation

ε̄ = ν(∇⊗ v′ + ˜∇⊗ v′):∇⊗ v′. (8.76)
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We then have

νt = v′l′u ∼= avL
√
k̄ (8.77)

where av is a constant coefficient and L is a mixing length that can be dif-
ferent from LP . It can be shown that, for high Reynolds numbers, the rate of
dissipation is connected to L and k̄ by the relation

ε̄ = c1k̄
3/2/L. (8.78)

It follows that

νt = cμk̄
2/ε̄, (8.79)

where cv = avc1 is constant. By utilizing the local balance equations for mass
and momentum, multiplying appropriately by v′j and its derivatives, and tak-
ing the average, we obtain two balance equations in k̄ and ε̄ that reveal a
series of second- or third-order correlation terms and their derivatives. System
closure is obtained by neglecting some of these terms and by providing ap-
proximations for the others. Neglecting molecular viscosity, the result (which
will not be proven here) is as follows:

{
∂k̄/∂t + v̄ ·∇k̄ = ∇ · (νt∇k̄/σk) + P̄ (k)− ε̄,

∂ε̄/∂t + v̄ ·∇ε̄ = ∇ · (νt∇ε̄/σε) + cε1(ε̄/k)P̄ (k)− cε2ε̄
2/ρ0k̄.

(8.80)

On the right hand sides of these equations, the first terms are flux terms, σk is
the Prandtl number for turbulent energy, while σε is the Prandtl number for
turbulent dissipation. The other terms are production and destruction terms.
We have

P̄ (k) = −νt v′ ⊗ v′:∇⊗ v̄, (8.81)

where νt obeys (8.79).
The constants have been evaluated in many experiments (in the at-

mosphere and in oceans), and good choices appear to be12

cμ = 0.09, σk = 1, σε = 1.3, cε1 = 1.44, cε2 = 1.92 (8.82)

The equations obtained do not then contain the correlations but simply the
gradients of the average quantities. They are coupled with the average balance
equations, and the whole system can be solved by numerical methods, taking
into account suitable initial conditions and boundary conditions.

12These values are associated with a particular model of isotropic turbulence.
Other models give different coefficients. For instance, Turpin [279] uses cv =
0.09, σk = 1, σε = 1.7, cε1 = 1.5, cε2 = 1.82 in a study of an axisymmetric Masri
flame.
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k–ε Modeling of Variable Density Fluids

Neglecting the buoyancy terms and the bulk viscosity, the averaged Navier–
Stokes equations can be written as

{
∂ρ̄/∂t+ ∇ · (ρ̄ṽ) = 0,

∂(ρ̄ṽ)/∂t + ∇ · (ρ̄ṽ ⊗ ṽ) + ∇ · (ρ̄ ˜v′′ · v′′) + ∇p̄−∇ · (2ρ̄ν D̃) = 0.
(8.83)

This time, we have

ρ̄ ˜v′′ ⊗ v′′ = −ρ̄νt(2D̃− (2/3)∇ · ṽ) + (2/3)ρ̄k̃1 (8.84)

and
k̃ = ˜v′ · v′/2, νt = cμk̃

2/ε, cμ = 0.09. (8.85)

The k–ε system of equations is then

{
ρ̄∂k̃/∂t + ρ̄ṽ ·∇k̃ = ∇ · (ρ̄νt∇k̃/σk) + P̃ (k)− ρ̄ε̃,

ρ̄∂ε̃/∂t+ ρ̄ṽ ·∇ε̃ = ∇ · (ρ̄νt∇ε̃/σε) + cε1(ρ̄ε̃/k̃)P̃ (k)− cε2ρ̄ε̃
2/k̃,

(8.86)

with the same coefficient values as in (8.82), and

P̃ (k) = −ρ̄ νt
˜v′ ⊗ v′:∇⊗ ṽ. (8.87)

Comments Regarding k–ε Modeling

k–ε models do have their weaknesses. For example, they give a trivial solution
in the homogeneous (without an average velocity) and isotropic case.

One of their most important limitations is connected to the viscosity-
related decrease in the kinetic energy of homogeneous and isotropic turbu-
lence.13 To treat this case, we must use spectral dynamics (this topic is ad-
dressed to some degree in Sect. 8.5.4), which takes into account the interac-
tions between energy modes. Solution methods such as the k–ε method are
based on a “one-point” formalism and so do not contain as much spectral
information as those based on a two-point formalism [2, 158].

However, k–ε models are frequently utilized, including for reactive flows,
where we must also determine the average chemical production terms Ẇj .
They give good results for inhomogeneous flows, such as some flows of engi-
neering interest, boundary layers, jets, wakes, and mixing layers.

13It should be noted that the k–ε model is not compatible with the energy decay
laws of the spectral theory (see Sect. 8.3.4, [2]). In this case, the k–ε model reduces
to ∂k/∂t = −ε̄; ∂ε̄/∂t = −cε2ε̄2k, which leads to ∂2k/∂t2 = cε2/h(∂k/∂t)

2 or
k = (At+ B)−1/(cε2−1). In the k–ε model, the energy decreases as t−αe , where the
superscript αe does not depend on the shape of the initial spectrum, in contrast to
what is actually observed.
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8.3.4 Spectral Analysis and Kolmogorov’s Theory

Applying the Fourier transformation to any function f(x):

f(k) =
1

8π3

∫
	3

f(x)e−ik·x dx (8.88)

makes it possible to study the energy spectrum for turbulent structures. The
inverse of the wavenumber k defines the turbulence scale; i.e., the eddy size.

We will only outline the spectral theory here. Note, however, that energy
spectra are easily obtained experimentally these days. We will assume here
that the turbulence is homogeneous and isotropic (in particular, 〈v〉 = 0)
and that the fluid is incompressible and viscous. Moreover, the evolution is
unconstrained, and the effects of the walls are neglected. Finally, we assume
that the initial conditions are random.

It can then be shown that the spectrum of turbulent energy E(k) includes
two distinct zones separated by a transition zone (Fig. 8.14):

• A zone with low values of k; i.e., a zone of large eddies (size k−1
e ) where en-

ergy is steadily fed in (by instabilities, interaction with the average motion,
external forces, etc.) at a rate ė1 and concentrated

• A zone of small structures of size 1/kd (kd is the Kolmogorov wavenumber)
where energy is dissipated by the viscosity at a rate of ė2

• A transition or inertial zone between the two other zones where the ad-
vection terms in ∂(uiuj)/∂xj ensure the transfer of energy between the
different scales in a conservative way.

If the transfer zone has a non-negligible extent, then kd � ke, which implies
that there is a condition on the Reynolds number. We define a Reynolds
number for turbulence starting from the eddy size k−1 and a speed based on
the energy E(k) (which is the energy of the velocity fluctuations per unit mass
and unit wavenumber). The quantity (k E(k))1/2 is thus the mean velocity of
structures of size k−1. Its associated Reynolds number is

Re = (1/νk)(k E(k))1/2. (8.89)

For k = kd, the dissipative phenomena are around the same order of magni-
tude as the inertial phenomena, so that (Re)d ≈ 1.

(Re)d = (1/νkd)(kd E(kd))1/2. (8.90)

For large structures, we obtain (Re)e = (1/νke)(ke E(ke))1/2 with E(ke) >
E(kd) and ke 
 kd. It follows that

(Re)e � (Re)d ≈ 1. (8.91)

This inequality summarizes the condition required for the existence of a trans-
fer zone where the motions are independent of large energy scales, sources of
turbulence, and the viscosity.
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Fig. 8.14. Characteristic zones of the spectrum of turbulent energy

Kolmogorov’s theory postulates: 1) the existence of small scales, and 2)
the existence of an inertial zone (the “eddy cascade hypothesis”).14

This makes it possible to determine the E(k) spectrum there using dimen-
sional analysis. We assume a quasi-steady regime; the rates ė1 and ė2 then
have a common value ε that is the energy produced per unit mass per unit
time (dimensions: L2T−3). We can relate ε directly to the turnover velocity
and the length scale � of integral-scale eddies:

ε ≈ v′3/�. (8.92)

In the same manner, the turnover velocity vn of any inertial-range eddy is
related to its size �n by

ε = vn
3/�n (8.93)

where the rate ε is the same as before. We can take k, ε̄, ν, E(k) as character-
istic parameters of the problem. It is useful to replace ν with a combination
of ε̄ and ν that has the dimensions of length:

�k = (ν3/ε̄)1/4. (8.94)

14It is possible to define, as done by Peters [202], a discrete sequence of eddies
within the inertial subrange by �n = �/2n ≥ �K .
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This is known as the Kolmogorov length.15

We then choose k and ε̄ as basic quantities. The following Π ratios are
then obtained from Table 8.2:

k ε̄ �K E(k)

L −1 2 1 3

M 0 0 0 0

T 0 −3 0 −2

Table 8.2. Dimensions of the quantities of interest

{
Πl = k�k,
ΠE = k5/3 ε̄−2/3 E(k).

(8.95)

The Vashi–Buckingham theorem gives us

ΠE = Ψ(Πl) (8.96)

or

E(k) = ε̄ 2/3 k−5/3 Ψ(k �K). (8.97)

In the inertial zone, viscosity does not intervene, and we have Ψ(k �K) = cK ,
the Kolmogorov constant, and

E(k) = cK ε̄2/3 k−5/3. (8.98)

This law has been confirmed experimentally for the nonreactive media.16 The
constant cK is on the order of 1.5. Figure 8.15 relates to the one-dimensional
spectrum, but a similar law applies in the three-dimensional case, although
with the constant (48/55) cK.

The inertial zone is limited by the wavenumber kd, which, since Red ≈ 1,
is equal to

kd ≈ E(kd)/ρν2. (8.99)

Therefore, in the inertial zone, for k = kd, we have

15The Kolmogorov eddy size and turnover velocity obey the relation ε = vK
3/�K ,

similar to (8.93) and (8.92).
16In the presence of chemical reactions, and in particular combustion, the k−5/3

law does not always hold. This is undoubtedly due to the fact that the turbulence is
not homogeneous and isotropic in this case. In addition, other parameters come into
play in addition to those accounted for in dimensional analysis, in particular terms
related to chemical production, diffusion and thermal transfer, as well as geometric
parameters. Heat release leads to a drop in the Reynolds number and then flow
relaminarization [235].
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Fig. 8.15. One-dimensional energy spectrum showing the universality of the Kol-
mogorov law

kd ≈ ε̄ 2/3k
−5/3
d /ν2 (8.100)

or

k4
d ≈ ε̄ ν3 = �−4

K , k�K = k/kd. (8.101)

It follows from this and (8.97) that in the dissipative zone

E(k) = ε̄2/3 k−5/3 Ψ(k/kd). (8.102)

In addition, the Reynolds number for large eddies is{
(Re)e = (1/νke) (ke E(ke))1/2,

(Re)e ≈ (k−4/3
e /ν) ε̄ 1/3 = (kd/ke)4/3 � 1.

(8.103)

8.4 Turbulent Combustion

We can distinguish between several types of combustion that are laminar or
turbulent a priori [8, 206].

A distinction was made between premixed flames (where the fuel and
the oxidizer are initially premixed) and diffusion flames (where the fuel and
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oxidizer are initially separated) in Sect. 7.7. Several sections in this book refer
to these types of flames.

Another distinction is based on the rapidity of the chemical kinetics of
the reactions. This leads to two cases: infinitely fast chemistry and finite-rate
chemistry.

A lot of models have been developed to study turbulent combustion. A
classification of turbulent combustion models in terms of chemistry and mixing
is provided by Peters [202]:

1. For infinitely fast chemistry and premixed combustion, we have the Bray–
Moss–Libby model and the “coherent flame model;” for infinitely fast
chemistry and nonpremixed combustion we have “conserved scalar equi-
librium model”

2. For finite rate chemistry, we have the “pdf transport equation model”
and the “linear eddy model” in the premixed and the nonpremixed cases,
as well as the “flamelet model based on the G-equation” for premixed
combustion and the “flamelet model based on the mixture fraction” and
“conditional moment closure” for nonpremixed combustion.

Turbulence generally increases the contact surface between the fuel and
the oxidizer and that between the unburned and burned gases through stretch-
ing and crumpling. The combustion of a homogeneous mixture can also begin
in the bulk when the temperature and pressure are sufficient to cause self-
ignition and the explosion of the mixture (as in diesel engines). Turbulence
supports premixed combustion by increasing the flame surface (but excessive
stretching can also result in extinction) and by supporting diffusive phenom-
ena (turbulent transfer is often more effective than molecular transfer).

We will not go into all of these models in detail, but we will delve into some
of them. For more information on them, refer to the books on combustion (or,
more precisely, turbulent combustion) cited at the end of Chap. 8.

8.4.1 Averaged Balance Equation for Turbulent Combustion

In turbulent combustion, the equations relating to the velocity can be sepa-
rated from those relating to the scalar quantities: the mass fractions of the
species and temperature. An important assumption is that the cascade hy-
pothesis of Sect. 8.3.4 remains valid. Before we study the scaling of and present
regime diagrams for turbulent premixed combustion and nonpremixed com-
bustion, and investigate some combustion models, we will first establish the
balance equations for reactive scalars. This method will lead us to consider
the Favre scalar dissipation rate and closure problems.

Let us again consider the balance equation (8.44) of a property F (assumed
to be a scalar: mass fraction Yj or temperature). Suppose that the flux J F

corresponds to only one diffusion coefficient D. The balance equation becomes
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ρ ∂f/∂t+ ρv ·∇f = ∇ · (ρD∇f) + ẆF . (8.104)

This time, we consider a variable density ρ and make use of Favre averaging:
f = f̃ + f ′′. Setting ẆF = ρSF , we obtain

ρ̄ ∂f̃/∂t + ρ̄ṽ ·∇f̃ = ∇ · (ρD∇f)−∇ · (ρ̄ṽ′′f ′′) + ρ̄S̃F . (8.105)

At high Reynolds numbers, the molecular diffusion term ∇ · (ρD∇f) is neg-
ligible.

The source term is proportional to ST = B(Tb−T ) exp(−Ea/RT ) and can
be written

ST (T ) = ST (T̃ )(1− T ′′/(Tb − T )) exp(Ea)T ′′/RT̃ 2. (8.106)

This causes enhanced fluctuations of the chemical source term around its mean
value (see Sects. 10.5 and 11.4.2.)

For nonreacting scalars, it is possible to write ṽ′′f ′′ = −Dt∇f̃ [202]. Let
us now write the balance equation for f̃ ′′2,

ρ̄ ∂f̃ ′′2/∂t+ρ̄ṽ·∇f̃ ′′2 = −∇·(ρ̄ ˜v′′f ′′2)−2ρ̄ṽ′′f ′′·∇f̃−ρ̄χ̃F +2ρ̄ ˜f ′′S′′F , (8.107)

along with the Favre scalar dissipation rate associated with the scalar F ,

χ̃F = 2D ˜(∇f ′′)2. (8.108)

We define an integral scalar timescale τF = f̃ ′′2/χF . In the nonreactive case,
τF is proportional to the time τ = k̃/ε̃: τ = cχτF , with cχ ≈ 2, so χF =
cχ(ε̃/k̃)f̃ ′′2. As production = dissipation (quasi-steady regime of the inertial
cascade), we have

−2ρ̄ṽ′′f ′′ ·∇f̃ = ρ̄χ̃F

and

−2ṽ′′f ′′ ·∇f̃ = cχ(ε̃/k̃)f̃ ′′2.

Multiplication of both sides of this equation by Dt ∝ k̃2/ε̃ leads to

−Dtṽ′′f ′′ ·∇f̃ ≈ cχk̃f̃ ′′2.

Assuming isotropy, and thus a proportionality between these two quantities,
we deduce the validity of the gradient transport assumption:

˜−v′′f ′′ ≈ c−1
χ Dt∇f̃ . (8.109)

This property is also valid for linearly reacting scalars (see [202]).
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8.4.2 Turbulent Regimes for Premixed Combustion

The classification shown in Fig. 8.16, provided by Peters [202], relates to pre-
mixtures. This classification supposes that the turbulence presents the inertial
range described in Sect. 8.3.4, and that the flames are thin; i.e., they have de-
flagration wave structure (see Sect. 10.5 and Sect. 11.4.2 for stretched flames),
and that the reaction has a high activation energy.

Fig. 8.16. Peters’ regime diagram for premixed turbulent combustion. (Redrawn
after [202]; reprinted with the permission of Cambridge University Press)

In Fig. 8.16, the lines of separation between the domains are defined based
on characteristic quantities and dimensionless numbers. Some of these quan-
tities are related to classical turbulence, such as:

• �: the integral scale defined previously in Sect. 8.3.2
• v′ =

√
u′2: the intensity of the turbulence

• �K : the Kolmogorov length scale defined by (8.101).

Other quantities are related to the combustion:

• �f = D/sL: the flame diffusion thickness; for scaling purposes, it is as-
sumed that the diffusion coefficient is the same for all species and that the
Schmidt number Sc = ν/D = 1

• �δ = δ�f : the flame reaction thickness; for a chemical reaction with a high
activation energy, we have δ 
 1, as in Sect. 11.4.2 (see also Sect. 10.5)
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Fig. 8.17. Premixed turbulent combustion regimes. a Typical premixed flamelet
structure: �δ � �f . b Broken reaction zone: Kolmogorov eddies can break up the
reacting zone, �K � �δ. c Thin reaction zone: reactive layers are included in the
Kolmogorov eddy, �δ � �K . d Corrugated and wrinkled flamelets: flamelet inside a
Kolmogorov eddy, �f � �K

• sL: the normal combustion velocity, which is also deduced from the theory
of laminar deflagration waves (see Sect. 10.5).

The Gibson scale �G = s3
L/ε is a quantity that couples turbulence and com-

bustion.
The dimensionless numbers are:

• Re = v′�/sL�f : the turbulent Reynolds number, related to the flame thick-
ness

• Da = sL�/v
′�f : the turbulent Damköhler number

• Ka = �2f/�
2
K : the first Karlovitz number; we have Re = Da2Ka2

• Kaδ = �δ
2/�2K = δ2Ka: the second Karlovitz number.

We must now describe the different regimes of Fig. 8.16. Just before we
do, it is important to explain the flamelet concept, as discovered by Williams
[289], which is currently used in all types of turbulent combustion (we should
also mention Peters, Kuznetsov and Bray for their extensions of this concept).
Flamelets are thin reactive–diffusive layers embedded within an otherwise non-
reacting turbulent flow field. Poinsot and Veynante [206] give a less restrictive
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definition of the flamelet regime that corresponds to a continuous flame front
without quenching,17 and where no reference is made to thin flames.

The laminar domain is limited to the region where Re 
 1. The other
regions of the diagram can be explained by comparing the previously defined
scales, especially the Kolmogorov length scale �K and the characteristic thick-
nesses of the premixed flamelet, as can be seen in Fig. 8.17. In the cases (b)
and (c), the reaction zone can be considered a well-stirred reactor (see Fig.
6.5 in Sect. 6.2): the combustion starts when the upper branch is obtained
under the effect of heating; extinction can occur if their is too little heating.
In case (d), the zone of corrugated flamelets is distinguished from the zone of
wrinkled flamelets using the Gibson scale, where the flame speed s0

L is equal
to the turbulent velocity v′ (see [202]). For v′ < sL, the flamelet shape is rel-
atively undisturbed: the speed of the turbulent motion is too low to wrinkle
the flame front sufficiently to allow flame interactions. For v′ > sL, turbulent
motions are able to wrinkle the flame front up to flame interactions, leading
to the formation of pockets of fresh and burnt gases; this is the “thin flame
regime with pockets” or the “corrugated flamelet regime.”

Some deficiencies in the previous classification of premixed flame regimes
were pointed out by Poinsot and Veynante, who used the results of direct
numerical simulations (DNS) and experimental results to justify modifying
combustion diagrams [206]. They provided several arguments for their refine-
ments to Peters’ regime diagram:

• The analysis assumes homogeneous and isotropic turbulence that is unaf-
fected by the heat release defined by (2.116)

• Regime limits are based only on order-of-magnitude estimations, not on
precise derivations

• The Kolmogorov scale �K is too small or has insufficient velocity to affect
the flame front

• Kolmogorov vortices are effective at inducing strain, but they have short
lifetimes due to viscous dissipation, and are probably unable to effectively
quench the flame

• Scales smaller than �f induce local curvature and then thermodiffusive
effects that may counteract the influence of strain

• The interaction between a given vortex and a flame front is essentially
unsteady.

The modified combustion diagrams take these considerations, as well as the
heat loss due to radiation, large flame stretching due to the action of pairs of
vortices, and so on, into account. They are not given here, but are shown in
[206].

17Flame quenching occurs when a flame front is submitted to external perturba-
tions such as heat losses or aerodynamic stretching that is strong enough to decrease
the reaction rate to a negligible value, and in some cases to completely suppress the
combustion process.
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An Example of a Wrinkled Flame

As an example of a wrinkled flame, we can cite the case of a premixed Bunsen
flame under the influence of gravity. The flame is obtained using a burner that
provides relatively low rates of turbulence. In certain situations a rippled flame
is observed. The turbulence of the upstream flow (fresh gas) is modified when
the flame crosses it. If we measure the fluctuation velocity at various points
using a laser anemometer, we can deduce the turbulent energy spectrum E(k)
by treating the signal appropriately. The integral scale corresponds to small
values of the wavenumber k, and can be deduced directly from the energy
spectrum at each point.

The following result shows the complexity of the phenomenon: we observe
a strong increase in the integral scale �z (Sect. 8.3.2), where z is the vertical
distance from the burner exit, at the level where the flame crosses. This phe-
nomenon originates with the fluctuations in the position of the unstable flame
front (Sects. 10.4 and 10.5). Thus, the passage of the deflagration wave in the
zone of measurement is observed. The observed effect is the intermittency of
the flame, not the turbulence of the flow (which is incompressible upsteam
and downstream of the flame). Downstream, the integral scale returns to its
initial value, and then grows under the effect of turbulence damping at small
scales, accelerated by the increase in viscosity ν, which is related to the rise
in temperature.

8.4.3 Turbulent Regimes for Nonpremixed Combustion

The scaling is more complex in the case of nonpremixed combustion than it
was for premixed combustion. Indeed, there is no simply defined flame thick-
ness as described in Sect. 8.4.2, and turbulent scales are evaluated partially
within the space of the mixture fraction Z introduced in Sect. 7.7.2. We have:

• A flame thickness �D =
√
Dst/a, defined as the ratio of the diffusion

coefficient taken at the location of the flame when Z = Zst and the strain
rate a.

• ΔZf = |∇Z|st �D, the corresponding diffusion thickness in the mixture
fraction space. This diffusion thickness can be rewritten as a function of
the strain rate a and the instantaneous local value of the scalar dissipation
rate of (8.108) for a stoichiometric mixture, χst = 2Dst |∇Z|2st. Thus, we
have ΔZf =

√
χst/2a.

• A reaction thickness ΔZR = εΔZf that is equal to the oxidation layer
thickness, which is proportional to χ

1/4
st for a four-step methane–air diffu-

sion flame [202]. Finally, we obtain ΔZR = εq(χst/χq)1/4ΔZf , where εq
and χq are values corresponding to the extinction limit.

• For turbulent diffusion flames, ΔZf and ΔZR must be compared to the
mixture fraction fluctuation intensity Z ′ = (Z̃ ′′2)1/2, and more precisely
to Z ′st = (Z̃ ′′2st )1/2 at the flame location where Z̃(x, t) = Zst.
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Fig. 8.18. Simplified Peters’ regime diagram for nonpremixed turbulent combus-
tion. (Redrawn after [202]; reprinted with the permission of Cambridge University
Press)

The coordinates chosen for the Peters diagram (Fig. 8.18) [202] are then
χq/χst and Z ′st/ΔZf . We observe four regions in this diagram:

• A flame extinction zone for χq/χst < 1.
• A zone of separated flamelets for Z ′st/ΔZf > 1.
• Two connected combustion zones separated by a straight line of slope

(−1/4) in logarithmic coordinates, corresponding to Z ′st = ΔZf . For Z ′st >
ΔZf , the fluctuations of the mixture fraction are sufficient to separate
the diffusion zones surrounding the reaction zone; for Z ′st < ΔZf , the
fluctuations of the mixture fraction are small and there is intense mixing.

8.4.4 Combustion Models

Authors such as Peters [202] and Poinsot and Veynante [206] have presented
the main turbulent combustion models (TCMs). For infinitely fast chemistry,
the Damköhler parameter (defined based on a characteristic turbulence time
τt and the chemical time τchim) Da = τt/τchim � 1, and combustion is
controlled solely by the turbulent stirring. However, as soon as finite-rate
chemistry is introduced, the composition of the mixture is no longer solely
dependent on the flow variables; it depends on the Damköhler number too.
Some of these models are presented hereafter.
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The Bray–Moss–Libby Model

The Bray–Moss–Libby (BML) model applies to a premixed flame with a very
high reaction activation energy. Thus, the flame thickness is infinitely small,
and the turbulence and combustion are separated. It combines a statistical
approach using the probability density function with physical analysis of the
flamelet regime.

Let us consider the progress variable c, which can be

c = (T − Tu)/(Tb − Tu) or c = YP /YP,b. (8.110)

We assume that the normalized probability density function of c is defined by
two Dirac delta functions{

P (c;x, t) = α(x, t)δ(c) + β(x, t)δ(1 − c),∫ 1

0 P (c;x, t)dc = 1.
(8.111)

Thus, we have
α(x, t) + β(x, t) = 1 (8.112)

As the pressure is constant and uniform to a first approximation, and the
mean molar mass is the same for fresh and burnt gases, we can write

ρ/ρu = Tu/T = (1− γ)/[1− γ(1− c)]; γ = 1− ρb/ρu. (8.113)

The following results can be deduced for the average values of ρ and c:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ̄/ρu =
∫ 1

0

∫ 1

0
(ρ/ρu)P (c;x, t)dc = 1− β(x, t)γ,

c̃ = ρc/ρ̄ = (ρu/ρ̄)
∫ 1

0 ρcP (c;x, t)dc = β(1 − γ)/(1− β(x, t)γ),

c̄ =
∫ 1

0 cP (c;x, t)dc = c̃/[1− γ)(1− c̃)],

ρ̄/ρu = (1 − γ)/[1− γ(1− c̃)].

(8.114)

Let us now consider a velocity component u in addition to c. We obtain

⎧⎪⎪⎨⎪⎪⎩
P (u, c;x, t) = α(x, t)δ(c)P (uu;x, t) + β(x, t)δ(1− c)P (ub;x, t),∫ 1

0
P (u, c;x, t)dudc = 1,

ũ(x, t) = (1− c̃)ūu(x, t) + c̃ūb(x, t).

(8.115)

For the Favre correlation ũ′′c′′ = ρ(u− ũ)(c− c̃)/ρ̄, we get

ũ′′c′′ = c̃(1− c̃)(ub − uu). (8.116)
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This relation can be compared with (8.50) obtained by applying classical
gradient theory to the Favre correlation (Sect. 8.3.2) and to (8.109), which
can be written

ũ′′c′′ = −Dt∂c/∂x. (8.117)

Note that, for a steady planar turbulent flame, there is a contradiction be-
tween (8.116), which is experimentally verified, and (8.117), where the gradi-
ent ∂c/∂x takes the place of the jump (1− c̃). Indeed, as ub > uu, then (8.116)
indicates that ũ′′c′′ > 0, and this leads to a negative concentration gradient
in (8.117). This result is called countergradient diffusion. Actually, it consists
of two combined phenomena:

• Turbulent mixing
• Gas expansion

The countergradient diffusion is due to the expansion of gas at the flame
front (see [282] for a more refined analysis of this problem). We must now
calculate the turbulent source term arising from the chemical reaction, which
appears in the averaged balance equation of c:

ρ̄(∂c̃/∂t + ṽ ·∇c̃) + ∇ · (ρ̄ṽ′′c′′) = ˜̇W c. (8.118)

The scalar dissipation rate ˜̇W c is determined using the flame crossing fre-
quency concept or via flame surface density models [202, 206].

Averaged G-Equation

We introduced the G-equation for laminar premixed flames in Sect. 7.7.1.
This equation is convenient when studying the corrugated flamelet regime for
example [202].18 Let us now define the probability density function P (G;x, t)
and define the Favre average of G and its variance:⎧⎨⎩ ρ̄ G̃ =

∫ +∞
−∞ ρGP (G;x, t)dG,

ρ̄ G̃′′2 =
∫ +∞
−∞ ρG′′2 P (G;x, t)dG.

(8.119)

Peters gives the balance equations for the mean value of G and for the
variance. After analyzing the different terms of these equations and making
approximations in order to establish the required relation closure, he obtains
the following system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̄(∂G̃/∂t+ ṽ ·∇G̃) = (ρ̄s0

T )|∇G̃)| − ρ̄Dtκ̃|∇G̃)|,

ρ̄(∂G̃′′2/∂t + ṽ ·∇G̃′′2) = ∇// · (ρ̄Dt∇//G̃′′2) + 2ρ̄Dt(∇G̃)2,

−csρ̄(ε̃/k̃)G̃′′2,

(8.120)

18This method is called the “level set approach” by Peters.
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where s0
T is the turbulent burning velocity, κ̃ the mean curvature of the front,

Dt is the turbulent diffusivity, and cs is a modeling constant (Peters suggests
that this should be assigned a value of 2.0). The turbulent flame speed is not
a well-defined quantity,19 and it depends on the turbulent combustion regime
in particular. An interesting review of the theoretical 20 and empirical results
and formulae associated with this topic is given in [202].

Eddy Break-Up Models

In an eddy break-up (EBU) model, chemistry does not play any explicit role;
turbulent motions control the reaction rate. The reaction zone is considered a
collection of fresh and burnt gaseous pockets transported by turbulent eddies.
This model was originated by Spalding [265]. The k–ε model is used to describe
the turbulence. The mean rate of consumption of fuel F in the premixed
turbulent flame is expressed as

˜̇WF = −CEBU ρ̃
ε

k

√
Ỹ ′′2F , (8.121)

where CEBU is a constant that is adjusted according to the considered mix-
ture.

For diffusion flames, we model the term
√ ˜(Y 2

F )′′ with√
Ỹ ′′2F = min(ỸF , ỸO/rst), (8.122)

where rst is the stoichiometric mass ratio, defined by rst = νOMO/νFMF .
For premixed flames, we can use any of the reduced variables defined in

(8.110), such as c = (T − Tu)/(Tb − Tu), in place of YF . The corresponding

averaged production rate is then ˜̇Wc = −CEBU ρ̃ (ε/k)
√˜(c′′2). Estimating the

fluctuation ˜(c′′2) for an infinitely thin flame leads to ρ ˜(c′′2) = ρ(c− c̃)2 =
ρ [(̃c2)− c̃2] = ρ c̃(1− c̃) because temperature can only take either of the two
values c = cu = 0 and c = cb = 1, and the mean reaction rate is then [206]

˜̇Wc = −CEBU ρ̃
ε

k
c̃(1 − c̃). (8.123)

19Having noted that this formulation is not particularly well suited to closing
Favre-averaged transport equations, certain authors consider it to be more appro-
priate for large eddy simulations [206].

20Damköhler was the first to present theoretical expressions for the turbulent
burning velocity [61]. Starting from the equivalence between the mass flux of the
laminar flow through the instantaneous flame surface AT and the mass flux of the
turbulent flow through the cross-sectional area A, he derived the following relation
between the laminar and turbulent combustion velocities for a steady premixed flame
in a duct: ṁ = ρusLAT = ρ̄usTA.
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This model, which has been compared to the Arrhenius model, is sometimes
combined with it in industrial codes. Some adjustments of the constant CEBU

have been suggested in order to incorporate certain features [243].

Passive Scalar Models

When combining the balance equations to eliminate the chemical production
term (see Sect. 7.4), we introduce a parameter φ = rstYF − YO (called the
Shvab–Zel’dovich variable), or the corresponding reduced variable21

Z =
φ− φmin

φmax − φmin
. (8.124)

We get back to concentrations by using the concept of the probability density
function (we will discuss this function further shortly):

ỸF =
∫ 1

0

YF (φ)P (φ)dφ. (8.125)

Models derived from this include the CRAMER model [75] and an extension
of it, the CLE model [229].

Coherent Flame Model

The coherent flame model utilizes the concept of flame stretch (Sect. 11.2.1)
as applied to the flame area density [162]. Marble and Broadwell originated
this model, which has been adapted to diffusion flames [40]. It is called the
flame surface density model in [206] (p. 224). Let us write the production term
of (8.118), valid for a thin premixed flame, as [202]

˜̇Wc = ρu s0
L I0 Σ, (8.126)

where ρu is the fresh gas density, s0
L is the laminar burning velocity, Σ is the

flame surface density (the flame surface per unit volume), and I0 is a stretch
factor. I0 can be deduced from the formula [206]

I0 =
1
s0

L

∫ ∞
0

sc(κ) p(κ) dκ.

The stretch factor I0 is on the order of 1, sc is the consumption speed, κ
is the stretch rate, and the probability p(κ) is assumed (in most practical
implementations) to be a Dirac function, p(κ) = δ(κ− κ̄).

21The reason for considering Z rather than φ is that Z always lies between 0 and
1. In the case of a ramjet configuration with an air inlet and a (nonpremixed) fuel
inlet, φmin and φmax are the values of φ in the air inlet and fuel inlet, respectively.
Thus, φmin = −YO, air inlet = −0.233, φmax = rstYF, fuel inlet [279].
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A convenient formulation (that gives satisfying results in comparison to
the results from DNS) for the balance surface density equation is [277]

∂Σ

∂t
+ ∇ · (ṽΣ) = ∇ · (Dt∇Σ) + C1

ε

k
Σ − C2s

0
L

Σ2

1− c̄
. (8.127)

Arrhenius Model

The simplest way to take the chemical production terms into account is to
write them as we did for a perfectly stirred reactor (see Sect. 6.2), where we
considered average values for the concentrations and the temperature, as in
(8.59). We then have

˜̇c = −B ρ̃ (1− c̃) exp(− Ta

Tu + (Tb − Tu)c̃
). (8.128)

This model is only relevant for low turbulent Damköhler numbers; i.e., if
τt/τch 
 1.

Production Terms and the pdf

The chemical production terms are nonlinear. We cannot treat them in a sim-
ilar manner to turbulent transfer coefficients, and they cannot be interpreted
simply via Prandtl-type theories. The probability density function (pdf) is de-
fined for a phase space that includes the state parameters of the flow T, v, Yj

as well as the time and space coordinates [2]. If ζ is a vector that has these
parameters as its components, we can define the pdf as

P (ζ, x, t) (8.129)

in a similar way as was done in Sect. 4.10.2.
The average quantities become

ϕ̄(x, t) =
∫
V
ϕP dζ (8.130)

where we know that ∫
V
P dζ = 1. (8.131)

Knowing the pdf, we can deduce (for example) the average species production
rate: 〈

Ẇ
〉

=
∫
V
Ẇ (ζ)P (ζ, x, t) dζ. (8.132)
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ζ will have the concentrations and the temperature as components, but for
turbulent diffusion fluxes it will be necessary to use a pdf that depends on the
concentrations and velocity components.22

The pdf obeys a balance equation in the phase space that is similar to
population balance (see Sect. 4.10.2).

To obtain the closure conditions, which are needed to solve the equations of
turbulent flow, we must know the pdf balance equation or provide a suitable
form for the pdf in advance (this is known as the presumed pdf method).
Among the various pdf balance equations we could choose, we will select the
simplest, where the phase space includes only one concentration coordinate
and does not depend on x:

∂P (C, t)
∂t + α[P (C, t)− P0(C, t)] + ∂

∂C [Ẇ (C)P (C, t)] =

2β[
∫
P (C ′, t)P (C′′, t) δ(C′+C′′

2 − C) dC′ dC′′ − P (C, t)].
(8.133)

The first term on the left hand side is the nonsteady variation of P ; the second
corresponds to the convection; α is the inverse of the average residence time;
and P0 is the pdf at the reactor inlet. The third term corresponds to the
chemical production; it is a flux term in the phase space. Finally, the right
hand side accounts for the interactions between fluid particles by assuming
that two particles of concentration C′ and C′′ meet to form a third particle
of concentration (C′ + C′′)/2 with a coalescence–redispersion frequency of β
(presumed constant). This equation, where we assume that ρ =const., does
not take inhomogeneities into account.

Other models are more sophisticated. Some of them utilize the “two-point
pdf.” In these cases, we need to find good closure conditions for the pdf balance
and then solve the equation.

The pdf can be measured. In combustion involving a mixture of burned
gas and fresh gas, the pdf of temperature will generally be bimodal, but it
can evolve in form during the reaction.

Example: Complete Solution of a Turbulent Reactive Flow
Problem

Such a problem can only be solved numerically with the aid of approximations.
For example, Peters [201] treated the case of a premixed flame by assuming a
single reaction

ν′A A + ν′B B −→ C (8.134)

22In theory, the pdf is used to calculate the chemical production terms in par-
ticular, whereas turbulent flows require other closing methods (k–ε methods for
example). However, we can also determine the fluxes using this method so long as
we know the corresponding pdf.
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with a high activation energy. If Tu is the temperature of the fresh gases
and Tb is that of the burned gases under conditions of complete adiabatic
combustion, we set

ε = RT 2
b /Ea(Tb − Tu) 
 1 (8.135)

where Ea is the activation energy for the reaction. The reduced temperature

c = (T − Tu)/(Tb − Tu) (8.136)

is written in the form

c = 1− εy, (8.137)

and all of the terms that depend on T are expanded asymptotically as a
function of the small parameter ε. As the flow is compressible, Favre averages
are used. Therefore, for the c variable defined by (8.110), we have

c = ρ c̃, (8.138)

where c indicates the classical average and c̃ the Favre average, weighted by
the mass. Thus {

c = c̃ + c′′, ρ c′′ = 0

ρ = ρ̄ + ρ′, ρ̄′ = 0.
(8.139)

The energy equation for Le = 1 (see Chap. 6) becomes

ρ
∂c

∂t
+ ρv ·∇c−∇ · (ρD∇c) =

ΔH

Cp(Tb − Tu)
ζ̇ (8.140)

with

ζ̇ = k(T )Y ν′
A

A Y
ν′

B

B = B Y
ν′

A

A Y
ν′

B

B exp−Ea/RT. (8.141)

We can show that for Le = 1, YA and YB are linear functions of c. We set
S = ν′AMA ζ̇/ρ, J1α = ṽ′′αc′′, J2α = ˜v′′α(c′′)2, and define A as the rate of fuel
consumption, yielding

ρ̄ṽα∂c̃/∂xα = ∂/∂xα(−ρ̄J1α) + ρ̄[−ΔH/ν′AMACp(Tb − Tu)]S̃,

ρ̄ṽα∂ ˜(c”)2/∂xα = ∂/∂xα(−ρ̄J2α) + 2ρ̄J1α∂c̃/∂xα,

−2ρ̄ε̃c + 2ρ̄[−ΔH/ν′AMACp(Tb − Tu)]c̃′′S′′.

(8.142)

The flux terms are modeled as follows:{
J1α = −Dt∂c̃/∂xα,

J2α = −Dt∂ ˜(c′′)2/∂xα,
(8.143)

and the dissipation is given by
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ε̃c =
c1
2
ρ ˜(vt,f )2

ρ2Dt

, (8.144)

where ˜(vt,f )2 is the square of the turbulent flame speed and c1 is assumed
to be constant. The production terms S̃ and c̃′′S′′ are calculated using the
following probability density P (x), which takes the form of a β function:

Fig. 8.19. Example of turbulent reactive flow (after Peters; reprinted with permis-
sion from [201])

P (x) = xα−1(1− x)β−1 Γ (γ)
Γ (α)Γ (β)

. (8.145)

This pdf has the advantage of evolving in both α and β, and it is compatible
with experimental observations. In addition, α and β are related to the average
x̄ and the variance x′2:⎧⎨⎩

α = γx̄, β = (1 − x̄)γ,
γ = α + β = x̄(1− x̄)/x′2 − 1,
α, β, γ > 0.

(8.146)

We then have {
S̃ =

∫ 1

0
S(c)P̃ (c) dc,

c̃′′S′′ =
∫ 1

0
cS(c)P̃ (c) dc− c̃S̃,

(8.147)
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with

P̃ =
Γ (γ)

Γ (α)Γ (β)
(1− α̂y)(εy)β−1, α̂ = (α − 1)ε. (8.148)

These terms are calculated via asymptotic expansions in ε.
Numerical calculations make it possible to solve the equations associ-

ated with this problem with respect to the boundary conditions. Figure 8.19
presents the solution in c(ξ), where ξ is a dimensionless space variable that is
normal to the flame (which is assumed to be planar). This figure shows how
the pdf evolves up to the flame crossing.

Flamelet Models

As previously noted (see Sect. 8.4.2), flamelets are thin reactive–diffusive lay-
ers that are embedded within an otherwise nonreacting turbulent flow field
[202]. This concept focuses on the location of the flame surface: the flame front
for premixed flames and the stoichiometric surface for nonpremixed flames.
Scalar quantities are considered in both cases.

The balance equations for these quantities are the G-equation (7.94) for
premixed flames and the Z-equation (7.101) for nonpremixed flames. These
equations were presented in Sects. 7.7.1 and 7.7.2.

We now present a model equation for the premixed flame surface area ratio.
The flame surface area ratio σ̄ is the mean gradient defined by the relation

(ρ̄s0
T )|∇G̃| = (ρs0

L)σ̄, (8.149)

where s0
T is the turbulent burning velocity described at the end of the section

devoted to the averaged G-equation. It can be proven that the surface area
ratio is proportional to the wrinkled flame front defined by the area G = G0

after filtering (see [202]). As derived by Rutland et al. [240], assuming constant
values for the density ρ, laminar combustion speed s0

L and diffusion coefficient
D, we have

∂σ/∂t + v ·∇σ = −n ·∇⊗ v · n + s0
L(κ + ∇2G) + D n ·∇(κσ) (8.150)

where n is defined by (7.93). The first term on the right hand side accounts
for flow field strain, which represents flame surface area production. The next
term is a kinematic restoration term. The last term is a scalar dissipation term
(see the variance equation for G (8.120)). At large Reynolds numbers, and for
large values of v′/sL, it is possible to write σ̄ = |∇G̃| + σ̄t. The equation
obtained by Peters is written

ρ̄∂σt/∂t + ρ̄ṽ ·∇σt = ∇// · (ρ̄Dt∇//σt)− c0ρ̄ ˜v′′ ⊗ v′′:∇⊗ ṽσt/k̃

+c1ρ̄Dt(∇G̃)2σt/ ˜(G′′2)− c2ρ̄s
0
Lσt

2/( ˜(G′′2))1/2 − c3ρ̄Dσt
3/ ˜(G′′2). (8.151)
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The constants c1, c2, c3 were determined by Wenzel and Peters: c1 = 4.63, c2 =
1.01, c3 = c1.

The relation between σ and Σ has been discussed by Candel and Poinsot
[39].

8.5 Concepts of Large Eddy Simulation

The direct numerical simulation (DNS) method, which involves numerically
solving the balance equations for the flows, is most exact. It is particularly
appropriate for the flows with low Reynolds numbers. However, it becomes
prohibitive for large Reynolds numbers because current levels of computing
power are not sufficient (even in the case of parallel computing).

Fig. 8.20. Cut-off wavenumber

The inaccuracies of averaged methods and the inability to use DNS for
flows with large Reynolds numbers has resulted in the use of a mixed method,
large eddy simulation (LES), since the 1960s [261].

The aim of large eddy simulation is to explicitly compute the largest tur-
bulent structures of the flow field (typically structures that are larger than the
computational mesh size), while the effects of the smallest ones are modeled
instead.

We will not give a complete account of this method—which is used in
many modeling studies—here, since it is beyond the scope of this book (for
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a discussion of this method in relation to incompressible fluids, refer to [241];
for the combustion field, refer to Poinsot and Veynante [206]). We will only
provide some guidelines below.

8.5.1 Filtering

In LES, variables are filtered in spectral space or in physical space. In spectral
space, we consider a cut-off wavenumber kc in the turbulent kinetic energy
spectrum E(k) (Fig. 8.20).

The aim is to treat, as much as possible, small scales of turbulence (or
unresolved scales, or subgrid scales, or those modeled in LES, as defined by
k > kc) in a statistical way. We then establish equations that are valid for
large scales (or resolved scales, or those computed in LES ) and solve these
equations directly.

We must take into account the interactions between modes at various scales
and try to re-introduce the concept of turbulent viscosity. The first task is to
establish a system of equations that are to be solved for the various scales and
are based on the classical balance laws.

We call G = G(x, t) a filter in physical space. When applied to an unspec-
ified quantity f(x, t), this filter provides the resolved part f̄(x, t):23

f̄(x, t) =
∫
	3

f(x, t)G(x− ξ, t− t′)dt′ d3ξ, (8.152)

or, symbolically, f̄ = Gf . Conversely, the unresolved part will be f ′ = (1 −
G)f .
Transposed into Fourier space, these definitions give

f = G(k)f̄ , f ′ = [1−G(k)] f

where G(k) = G(k, ω) and f = f(k, ω) this time.
Let us now present three common filters used in LES (the shapes of these

filters in physical space and in spectral space are shown in Fig. 8.21):

• In spectral space, the sharp cut-off filter has G(k) = 1, |k| ≤ kc, G(k) =
0, |k| > kc, with kc = π/Δ (Δ is the filter size; the filter keeps length scales
larger than 2Δ). In physical space, the corresponding filter is G(x) =
sin(kcx)/kcx.

• A box (or top-hat) filter has G(x) = 1/Δ for |x| ≤ Δ/2 and 0 otherwise.
It becomes Ĝ(k) = sin(kΔ/2)/kΔ/2 in spectral space. In the present case,
this filter corresponds to averaging over a one-dimensional box of size Δ.

23In the absence of ambiguity, we will retain the same notation for used filtered
quantities defined in (8.152) and for classically averaged quantities (see Sect. 8.3.1).
This will also be true of the Favre-filtered quantities defined by (8.153).
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Fig. 8.21. Filter examples (after [241]): a cut-off filter in physical space; b cut-off
filter in spectral space; c box filter in physical space; d box filter in spectral space

• A Gaussian filter G(x) = (γ/πΔ2)1/2 exp(γx2/Δ2) in physical space,
where γ is a constant, gives another Gaussian filter G(k) = exp(−Δ2)k2/4γ
in spectral space.

All of these filters are normalized:
∫ +∞
−∞ G(x) dx = 1 in the 1-D case. Favre

averaging can also be defined for turbulent flows with variable density via

ρ̄ f̃(x, t) =
∫
	3

(ρf) (x, t)G(x− ξ, t− t′)dt′ d3ξ. (8.153)

We now quote the properties, as stated by Ghosal and Moin [103], which
indicate that a filter is acceptable in the homogeneous one-dimensional case:
(1) it is symmetrical; (2) the constants are conserved; (3) it decreases rapidly;
(4) it exhibits quasi-locality in physical space.

Note also that [206]:

• In contrast to RANS averaging, the filtered value of a LES perturbation
is not zero: f̄ ′ �= 0. Thus, filtered and double-filtered values are generally
not equal: ¯̄f �= f̄ . Also, f ′′ = f − f̃ , f̃ ′′ �= 0, and ˜̃

f �= f̃ .
• To derive balance equations for the filtered quantities it is necessary to

exchange filter and derivative operators.



222 8 Turbulent Flow Concepts

8.5.2 Filtered Balance Equations

Filtered NS Equations for a Nonreactive Incompressible Fluid

After filtering, the Navier–Stokes equations for a nonreactive incompressible
fluid with constant viscosity become

{
∂ūi/∂t+ ∂uiuj/∂xj = −∂p̄/∂xi + ν(∂xj)(∂ūi/∂xj + ∂ūj/∂xi),

∂ūi∂xi = 0.
(8.154)

Unlike in (8.45), f̄ are averages of filtered quantities this time.

Filtered Balance Equations for Combustion

The equations of (8.154) are not valid for combustion. We must consider
compressible flows and use Favre averaging, as well as introduce concentration
variables, chemical production rates, and the heat released. The resulting
equations are formally similar to (8.83) for mass and momentum and to (8.105)
for scalar quantities. We will write them (as Poinsot and Veynante [206] do)
in the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ̄/∂t + ∇ · (ρ̄ṽ) = 0,

∂(ρ̄ṽ)/∂t + ∇ · (ρ̄ṽ ⊗ ṽ) + ∇p̄ = −∇ · [Π̄ + ρ̄( ˜v ⊗ v − ṽ ⊗ ṽ)],

ρ̄∂Ỹj/∂t + ρ̄ṽ ·∇Ỹj = ∇ · (ρDj∇Yj)

−∇ · [ρ̄(ṽYj − ṽỸj)] + ¯̇Wj , j = 1, . . .N,

ρ̄∂h̃s/∂t + ρ̄ṽ ·∇h̃s = ∂p̄/∂t+ v ·∇p + ∇ · (λ∇T )

−∇ · (ρ̄[ṽhs − ṽh̃s]−Π:∇⊗ v −∇ · (ρ∑N
j=1 VjYjhs,j) + ¯̇WT ,

(8.155)

where hs,j =
∫ T

T 0 cp, jdT and hs = h −∑N
j=1 Yj(q0

f )j . The quantity hs is the
sensible enthalpy corresponding to the quantity βT of Sect. 7.4 if we assume
only one chemical reaction: hs =

∑
j Yj

∫ T

T 0 cp, jdT = ΔHβT . We will assume
the approximation v ·∇p ∼= ṽ · ∇p̄. Filtered molecular diffusion fluxes are
neglected or modeled through a simple gradient assumption such as

ρDj∇Yj = ρ̄ D̄j ∇Ỹj , λ∇T = λ̄∇T̃ . (8.156)

LES is utilized for the determination of various flows—compressible or incom-
pressible, more or less confined and homogeneous [64, 73, 269]. Some combus-
tion problems can then be solved, as done in France by the CERFACS team
[238, 252]. Poinsot and Veynante [206] provide simple closures for chemical
production rates that are assumed to apply to both premixed and diffusion
flames.
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8.5.3 Closure Relations for Filtered Balance Equations

We will now summarize the main approaches for modeling the unresolved
transport terms (unresolved Reynolds stresses T = ˜v ⊗ v− ṽ⊗ ṽ, unresolved
scalar fluxes ṽYj − ṽỸj and ṽhs − ṽh̃s), then the filtered laminar diffusion
fluxes, and after that the filtered chemical reaction rates ¯̇Wj . The subsequent
models can only be validated by comparison with DNS analysis and experi-
mental data (if possible).

Models for unresolved Reynolds stresses were first presented in [206], where
constant density was assumed for the sake of simplification.

Models for Unresolved Reynolds Stresses

We will use Poinsot–Veynante symbols and tensorial notation (see Sect. A.1).

Smagorinsky’s Model

Just as for classical averaging, the turbulent fluxes are assumed to be propor-
tional to the turbulent forces. This leads to the introduction of a turbulent
subgrid scale viscosity νt that is different from the turbulent viscosity defined
by (8.79).

Writing

T − 1
3

tr(T )1 = −νt ∇⊗ v = −2νtS, (8.157)

where S is the symmetric part of the ∇⊗ v tensor, we have

νt = C2
S Δ4/3 �2/3 |S̄|, (8.158)

where � is the integral scale of the turbulence, CS is a constant, and S̄ =
(2S:S)1/2 is the resolved shear stress. Equation 8.158 is simplified by assuming
that the integral scale is on the order of the grid size; i.e., � ≈ Δ.

Scale Similarity Model

The scale similarity model is based upon a double-filtering approach and on
the idea that unresolved stresses are mainly controlled by the largest unre-
solved structures (see Fig. 8.22a), which are similar to the smallest resolved
structures. The subgrid tensor is then evaluated using

T = v̄ ⊗ v̄ − ¯̄v ⊗ ¯̄v. (8.159)

Since this closure is insufficiently dissipative, it is generally combined with an
eddy viscosity model such as Smagorinsky’s model, producing a mixed model
[158].
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Fig. 8.22. Scale similarity and the Germano dynamic model

Germano’s Dynamic Model

A test filter that is Δ̂ larger than the LES filter (size Δ̄) is now introduced
[100] (see Fig. 8.22b)). For the unresolved momentum fluxes, we have

T = v ⊗ v − v̄ ⊗ v̄, (8.160)

and for the unresolved fluxes at the test level we have

T̂ = v̂ ⊗ v − ̂̄v ⊗ ̂̄v. (8.161)

We then introduce the double-filter “bar hat:”

T = ̂v ⊗ v − ˆ̄v ⊗ ˆ̄v. (8.162)

Now we consider the following resolved turbulent stress corresponding to the
test filter applied to the field v̄:

L̂ = ̂̄v ⊗ ̂̄v − ˆ̄v ⊗ ˆ̄v. (8.163)

Adding (8.163) and (8.161) yields, via (8.162),

L̂ = T− T̂ , (8.164)

which is called Germano’s identity. The Reynolds stress tensors T and T can
be estimated from the Smagorinsky model (Eqs. 8.157 and 8.158 with � = Δ):



8.5 Concepts of Large Eddy Simulation 225

{T − 1
3 tr(T )1 = −2CΔ̄2|S̄|S̄ = −2Cα,

T− 1
3 tr(T)1 = −2CΔ̄2|̂̄S|̂̄S = −2Cβ,

(8.165)

where C is a parameter that needs to be determined. The Germano identity
(8.164) is then rewritten as

L− 1
3

tr(L)1 = 2C(α̂− β). (8.166)

To determine C = C(x, t), we also have—in the incompressible case—the two
mass conservation equations tr(S̄) =tr(̂̄S) = 0. Determining C computation-
ally leads to instability, so a least squares approach is used to minimize the
error.

This model has also been extended to compressible turbulence [177]. It is
a very efficient model for a large number of applications.

Structure Function Models

These models are based on a theoretical analysis of turbulence in spectral
space and on the concept of subgrid-scale viscosity. The subgrid-scale dynamic
viscosity is

νt(x, Δ) = 0.105 c−3/2
K Δ

√
F2(x, Δ), (8.167)

where cK = 1.4 is the Kolmogorov constant (see Eq. 8.98) and F2 is the
structure function

F2(x, Δ) = [v̄(x + r)− v̄(x)]2, with Δ = |r|.
A high-pass filter is used to eliminate the large eddies (which cause high

dissipation) with the corresponding filtered structure function F̄2. The result-
ing subgrid viscosity is then

νt(x, Δ) = 0.0014 c−3/2
K Δ

√
F̄2(x, Δ). (8.168)

Unresolved Scalar Flux Models

The simplest model for LES unresolved species flux is a gradient relation, as
in classical turbulence theory with (8.50) and (8.51)

ṽYj − ṽỸj = − νt

Scj
∇Ỹj (8.169)

Filtered Reaction Rate Closure Models

We describe two simple models for the LES filtered reaction rate that are
assumed to apply to all types of flames. More specific models that are required
for premixed flames and for nonpremixed flames will not be presented here;
they are described in [206].
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Arrhenius Model for Filtered Quantities

This model corresponds to the Arrhenius model of Sect. 8.4.4, but filtered
quantities are considered here. Perfect mixing is assumed at the subgrid-scale
level and subgrid-scale fluctuations are neglected. It is assumed that τt 
 τc,
where τt is the turbulent subgrid timescale and τc is the chemical timescale.
We then have, for a second-order chemical reaction,

¯̇W j = ν′j Bρ̄2ỸF ỸO T̃ s exp(Ta/T̃ ), (8.170)

where B and s are the constant coefficients in Arrhenius law (3.52) and Ta =
Ea/R is the activation temperature of the reaction.

If the fuel and the oxidizer are not perfectly mixed at the subgrid
level, we can write the following formula with a segregation factor ( ˜YFYO −
ỸF ỸO)/ỸF ỸO:

¯̇W j = ν′j Bρ̄2ỸF ỸO T̃ s exp(Ta/T̃ )

[
1 +

˜YFYO − ỸF ỸO

ỸF ỸO

]
. (8.171)

Reaction Rate Modeling with Scale Similarity Assumptions

Scale similarity assumptions have been extended to reaction rate modeling
[101].

8.5.4 Spectral Analysis and LES

In this section we briefly present an approach based on the concepts of spectral
eddy viscosity and spectral eddy diffusivity. We will work in Fourier space and
use the sharp cut-off filter defined in Sect. 8.5.1 [158, 176]. We will also only
consider incompressible fluids.

Aspects of Spectral Dynamics

In the two-point formalism [2], we must account for the interactions between
modes of energy using triads of wavenumber vectors (k,p,q), such as k +
p + q = 0. We then write the evolution equation of the energy spectrum for
isotropic turbulence using the Fourier transformation defined by (8.88):

(
∂

∂t
+ 2νk2)E(k) = T (k) (8.172)

(see [158], p. 172), where T (k) is the transfer term corresponding to triple-
velocity correlations arising from nonlinear interactions of the NS equations,
which are often divided into two parts ([158], p. 234):
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T (k) = TNL(k) + TL(k), (8.173)

where the indices NL and L refer to nonlocal (due to triad interactions) and
local transfers, respectively.

In spectral space, the filtered NS equations lead to the energy transfer
equation for resolved scales:

(
∂

∂t
+ 2νk2)Ēr(k, t) = T̄ (k), (8.174)

with the decomposition

T̄ (k) = T̄r(k) + T̄sg(k).

The terms on the right hand side represent energy exchanges between the
mode k and all of the other modes associated with the calculable terms,
respectively, starting from the resolved modes and the subgrid terms.

E(k) is the energy present in a sphere of radius k; Ēr(k) = Ĝ2(k)E(k)
is the kinetic energy of the resolved modes (this is different from the filtered
portion of the kinetic energy [241]). The conservation of kinetic energy for
inviscid fluids (in the case of zero viscosity) implies that∫

	3
(T̄r(k) + T̄sg(k))d3k = 0.

Models of Effective Viscosity

There are many ways to model the transfer terms. As an example, we now
present a method that utilizes an “effective viscosity” that depends on the
wavenuumber and the cut-off wavenumber [241]. It involves modeling the di-
rect energy cascade process. The spectral models utilize an effective viscosity.
They are derived from the analysis of Kraichnan [139]. Let us now summarize
one of the most recent [158, 176]. Let us assume fully developed, isotropic,
homogeneous turbulence and focus initially on the subgrid term T̄sg(k) by
assuming that k 
 kc and E(kc)� E(k). We have

(
∂

∂t
+ 2νk2)Ē(k, t) = T̄<kc(k, t) + T̄sg(k, t) (8.175)

where T̄sg(k) = −2ν∞t k2Ē(k, t). The other term T̄<kc(k) corresponds to triad
interactions involving small wavenumbers (i.e., large wavelengths/sizes). This
term will be calculated directly by LES. Nonlocal transfers from large scales
to subgrid scales are considered negligible due to the assumptions used.

For an inertial zone that exhibits a k−5/3 law, we find that

ν∞t = 0.441c−3/2
K [E(kc)/kc]1/2, cK ≈ 1.4, (8.176)

where cK is the Kolmogorov constant.
For a spectrum that exhibits a k−m (m ≤ 3) dependence,
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ν∞t =
1

15a1

5−m

m + 1
√

3−m[E(kc)/kc]1/2. (8.177)

If a1 is close to 1, we get the preceding result for m = 5/3.
For m > 3, we get ν∞t ∝ E(kc)/kc.
If k is close to kc, we define νt(k|kc), so that

T̄sg(k) = −2νt(k|kc)k2Ē(k, t), (8.178)

where νt(k|kc) = K(k/kc)ν∞t , K ∼= 1, except for k = kc.
The modeling above can be extended to the case of a passive scalar—the

temperature here. For k
 kc and E(kc)
 E(k), the equations then become⎧⎪⎪⎨⎪⎪⎩
(∂/∂t + 2νk2)ĒT (k, t) = T̄ T

<kc
(k, t) + T̄ T

sg(k, t),

T̄sg(k) = −2ν∞t k2Ē(k, t),

m ≤ 3 : κ∞t = ν∞t /Pr(t); Pr(t) = 0.18(5−m),

(8.179)

and for k close to kc they are{
T̄ T

sg(k) = −2κt(k|kc)k2Ē(k, t),

κt(k|kc) = C(k/kc)κ∞t , C ∼= 1 except for k = kc.
(8.180)

8.6 Conclusion

The discussions of turbulence provided in this chapter illustrate the complex-
ity of the problem. Fluid turbulence is currently regarded as one of the most
difficult problems to solve. “One does not know, for instance, how to predict
the critical Reynolds number of transition to turbulence in a pipe, nor how to
compute precisely, the drag of a car or an aircraft, even with today’s largest
computers” (Lesieur’s foreword in Sagaut’s book [241]).

We have only introduced some of the methods used in this field: spectral
analysis; modeling in k–ε; pdf; LES. There are others. Current research often
focuses on improving the existing models and comparing theoretical results
to experimental measurements. Other research relates to the behavior of the
large stable or unstable structures in the flow. Lastly, the interaction between
dynamic and chemical effects has not been completely clarified yet. Neverthe-
less, much of our current knowledge in this field is put to practical use, and
even if there is still much progress to be made, we are now able to accurately
model many practical situations.

A comparison can be made between the computational approaches used for
turbulent combustion. Poinsot and Veynante distinguish three levels: RANS,
LES and DNS (see Sect. 4.4 in [206]; also note the section “Comparing Large
Eddy Simulation and Experimental Data” on p. 175 of that work). For DNS,
in order to calculate all of the scales of the Kolmogorov cascade, we must
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have Ret < N4/3, where Ret is a turbulent Reynolds number defined using
the integral scale of turbulence � and the Kolmogorov scale �K such that
Ret = (�K/�)4/3. There is a less restrictive condition for LES: Ret < (q N)4/3

with q = lc/�K > 1, where �c is the cut-off length scale. Therefore, in terms of
cost, LES is definitely more expensive than RANS, but it is also more precise.
On the other hand, it is less expensive than DNS.

This chapter uses ideas and results from recent books, such as [158, 241,
192, 242] for general turbulence-related methods, and [22, 23, 142, 150, 202,
206, 290] for combustion.
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Boundary Layers and Fluid Layers

The presence of bodies and walls in a fluid flow results in the transfer of mass,
momentum and heat, which occurs in addition to convection. These processes
sometimes develop next to the wall in a layer (called the “boundary layer”)
which has a thickness that is much smaller than the characteristic size of the
obstacle. The boundary layer can be either laminar or turbulent. Moreover,
each transfer process can have its own particular boundary layer thickness.
Chemical reactions can take place in the bulk of the fluid phase (in a flame
for example) or at the wall (in heterogeneous reactions).

In certain situations we can assume that the presence of diffusion and
chemical reactions does not disturb the viscous flow, which can therefore be
determined separately. In other situations, such as in the Emmons problem
for example, strong coupling effects exist due to the sublimation of a wall.

In Sect. 9.1 we will look at unsteady laminar flows with balance equations
that have exact solutions, including a laminar viscous boundary layer that
develops on a flat plate moving through an incompressible fluid at rest, and
diffusion boundary layers caused by heat conduction or mass diffusion in a
semi-infinite space limited by a wall.

Section 9.2 is devoted to the steady flow of a viscous incompressible fluid
between two rotating coaxial cylinders. In the laminar case there is a classical
Couette flow velocity profile rather than a boundary layer. After we show the
effects of wall blowing and aspiration on the Couette flow, we investigate how
it is destabilized by increasing the relative rotational velocity of the cylinders.
This leads to Taylor–Couette instability.

In subsequent sections, we consider flow situations where approximations
are required. The classical problem of the steady incompressible laminar
boundary layer above a flat plate is the subject of Sect. 9.3. Self-similar so-
lutions are obtained for the basic approximated equations, and the effects of
wall blowing and aspiration on the flow are also studied.

Section 9.4 deals with steady laminar boundary layers with chemical reac-
tions above a flat plate. Assuming that the diffusion processes do not modify
the velocity profile of the incompressible flow, the concentration profile is

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_9, © Springer Science+Business Media, LLC 2010
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found to be dependent on the Schmidt number. Next we study the Emmons
problem, which is a steady compressible boundary layer with a diffusion flame
that is induced by the sublimation of a flat plate of a solid combustible in a
flow of oxidizer. Here, we find the velocity, temperature and concentration
profiles and the mass flow rate of sublimation with respect to the Shvab–
Zel’dovich approximation. Microgravitational behavior and the role of soot in
this context are discussed.

Laminar and turbulent boundary layers and the diffusion of species across
the chemically reacting wall of a rotating disc are studied in Sect. 9.5.

Finally, Sect. 9.6 is devoted to the turbulent boundary layer over a flat
plate. The transition from laminar to turbulent flow is discussed with the aid
of multiple-scale dimensional analysis.

9.1 Unsteady Boundary Layers

9.1.1 Viscous Boundary Layer in the Laminar Flow of an
Incompressible Fluid

The problem of a viscous boundary layer in the laminar flow of an incompress-
ible fluid was discussed in Sect. 7.1.3 in order to illustrate coupled phenomena.
It will now be treated in more detail.

The momentum equation (4.47) is written

ρ
dv
dt

+ ∇ ·P =
∑

j

ρjf j . (9.1)

In the case of an incompressible pure fluid with a constant viscosity coefficient
and no gravitational effects, this equation becomes

ρ
dv
dt

+ ∇p = μΔv. (9.2)

Let us now study the case of a plane flow with rectilinear and parallel trajec-
tories with respect to the direction Ox. The mass balance shows that, in this
case, the only nonzero velocity component is a function of only y and t:

u = u(y, t), v = w = 0. (9.3)

The momentum equation gives{
∂u/∂t+ (1/ρ)∂p/∂x = ν∂2u/∂y2,

∂p/∂y = 0, ν = μ/ρ.
(9.4)

It follows that

∂u/∂t− ν∂2u/∂y2 = (1/ρ)∂p/∂x = C′(t) (9.5)
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where C(t) is an arbitrary function of time and C′(t) = dC/dt. We obtain
p = −ρ(C′(t)x + D(t)), where D(t) is an arbitrary function of time resulting
from the integration of the second equation of (9.5), and setting U(y, t) =
u(y, t)− C(t) yields

∂U/∂t− ν∂2U/∂y2 = 0. (9.6)

We restrict the search to self-similar solutions and then write

η = y/
√
νt, U = f(η). (9.7)

The partial differential equation (9.6) thus becomes a differential equation in
f(η):

ηf ′(η) + 2f ′′(η) = 0. (9.8)

The integration of this differential equation gives

f(η) = A erf(η/2) + B, (9.9)

where A and B are constants. The velocity field is thus

U(y, t) = A erf(y/
√

4νt) + E(t), E(t) = B + C(t). (9.10)

This class of solutions allows us to treat the case of a flow that is initially at
rest in the half-plane y > 0 above an infinite plate that is located at y = 0
and moves along Ox at a constant velocity V .
The boundary conditions

u(∞, t) = 0 ∀t, u(0, t) = V, t > 0 (9.11)

lead immediately to the solution (see Fig. 9.1)

u(y, t) = V (1− erf(y/
√

4νt)). (9.12)

The velocity u only has a significant value in a layer of thickness δ, where

δ = O(
√
νt). (9.13)

More precisely, by fixing the layer boundary at η = η0 = O(1), we have

δ = 2η0

√
νt. (9.14)

Note that [99]:

• The thickness of the boundary layer grows with time as
√
νt.

• As soon as t > 0, the disturbance due to the motion of the plate exists
throughout the half-plane y > 0. The propagation is thus instantaneous.
In reality, propagation does not occur instantaneously, but this model of
incompressible fluid cannot take this into account. An analogous remark
was made in Sect. 5.3 about thermal propagation.
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Fig. 9.1. Velocity of an unsteady boundary layer

• When ν tends to zero for given values of y > 0 and t > 0, the velocity
u also tends to zero, but the fluid velocity remains nonzero and equal to
V at y = 0. However, we find that u = 0 for y > 0, ∀t in the case of a
nonviscous fluid. This contradiction indicates singular behavior, which is
characteristic of a boundary layer.

9.1.2 Diffusional Boundary Layers

The same phenomenon can be observed at rest when thermal conduction is
present (see Chap. 5). In this case, we have a thermal boundary layer (Fig.
9.2) of thickness

δT = 2η0

√
κt (9.15)

with a thermal diffusivity of κ = λ/ρ cp. In the same way, the diffusion of
a substance A through a substance B according to Fick’s law will provide a
boundary layer thickness of

δC = 2η0

√
Dt. (9.16)

Imagine a planar porous wall that is normal to x′x at point O (Fig. 9.3). The
part x < 0 contains liquid A at a concentration of YA = 1, which is kept
constant over time since there is an adequate supply of A. A diffuses through
the motionless part x > 0 in such a way that YA(0, t) = 1 and YA(∞, t) = 0.
The obtained solution is then, for x > 0,

YA = 1− erf(x/
√

4Dt). (9.17)
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Fig. 9.2. Unsteady thermal boundary layer

Fig. 9.3. Configuration of a boundary layer of concentration

9.2 Steady Flow of a Viscous Incompressible Fluid
Between Two Coaxial Cylinders

9.2.1 Laminar Couette Flow

Two coaxial cylinders with radii of R1 and R2, respectively, where R2 > R1,
are rotated with angular velocities of ω1 and ω2, respectively, where ω2 �= ω1

[43].
Between these two infinitely long cylinders (the results remain valid at a

sufficient distance from the extremities of cylinders that are sufficiently long
compared to R2) is an incompressible viscous fluid.
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Assuming a zero axial velocity vz, we look for solutions that give a zero
radial velocity vr. It is assumed that μ =const. The continuity equation shows
that the tangential velocity vθ is solely a function of the distance r to the
common axis of the cylinders (see Fig. 9.4).

Fig. 9.4. Rotating coaxial cylinders

The momentum equation gives the relations⎧⎪⎪⎨⎪⎪⎩
−v2

θ/r
2 + (1/ρ) ∂p/∂r = 0,

(1/ρr) ∂p/∂θ = ν[(1/r) (∂/∂r)(r∂vθ/∂r)− vθ/r
2],

∂p/∂z = 0,

(9.18)

with the boundary conditions

r = R1 : vθ = ω1 R1; r = R2 : vθ = ω1 R2. (9.19)

We will also assume that ∂p/∂θ = 0. We now apply the identity

(1/r) (∂/∂r)(r∂vθ/∂r)− vθ/r
2 = (∂/∂r)[(1/r) ∂(rvθ)/∂r]

to the right hand side of the second equation of (9.18) in order to deduce the
solution, which takes the form vθ = Ar + B/r. The integration constants A
and B are calculated from the boundary conditions. We finally obtain

vθ =
ω2R

2
2 − ω1R

2
1

R2
2 −R2

1

r +
R2

1R
2
2(ω1 − ω2)
R2

2 −R2
1

1
r
. (9.20)

The velocity profile obtained does not depend on the viscosity coefficient,
which is logical since the equation involving vθ is simply Δvθ = 0. There is an
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analogy here with steady thermal conduction, which gives ΔT = 0 and does
not depend on the thermal diffusivity κ.

Thus, there is no laminar viscous boundary layer that we can define di-
rectly starting from the velocity profile and μ. Calculating the shear stress
gives

τrθ = 2μ
R2

2(ω2 − ω1)
R2

2 −R2
1

R2
1

r2
. (9.21)

Therefore, τrθ decreases as 1/r2 from r = R1 to r = R2. The shear stress is the
greatest at the wall of the inner cylinder. The rotation vector ω is constant
and equal to

ω =
ω2R

2
2 − ω1R

2
1

R2
2 −R2

1

. (9.22)

The flow is irrotational if

ω2R
2
2 = ω1R

2
1. (9.23)

Such a system permits the viscosity coefficient μ to be measured at a given
temperature. To do this, we only need to know the torque required to rotate
one of the cylinders, and to apply the formula that yields τrθ. If C1 is the
torque exerted on the cylinder of radius R1 and height h, we obtain (neglecting
the edge effects, R1 < R2 
 h)

μ = C1
R2

2 −R2
1

4πhR2
1R

2
2ω1

. (9.24)

9.2.2 Blowing and Aspiration at the Walls

The previous problem also has an exact solution in the presence of uniform
blowing or aspiration at the walls. We still assume p = p(r), vθ = vθ(r) and
vz = 0, but now vr = vr(r). In this case, the continuity equation

∂ρ

∂t
+

1
r

∂ρrvr

∂r
+

1
r

∂ρvθ

∂θ
+

∂ρvz

∂z
= 0 (9.25)

gives

rvr = Q, (9.26)

where 2π hQ is the volume flow rate for a porous cylinder of height h. The
momentum equations are

{
dvr/dt− v2

θ/r + (1/ρ) ∂p/∂r = ν [Δvr − (2/r2) ∂vθ/∂θ − vr/r
2],

dvθ/dt + vrvθ/r + (1/ρr) ∂p/∂θ = ν [Δvθ + (2/r2) ∂vr/∂θ − vθ/r
2].
(9.27)
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Converting the expressions into cylindrical coordinates:

df/dt = ∂f/∂t+ vr ∂f/∂r + (vθ/r) ∂f/∂θ + vz ∂f/∂z,

Δf = (1/r) ∂(r ∂f/∂r)/∂r + (1/r2) ∂2f/∂θ2 + ∂2f/∂z2,

and using our assumptions, we obtain

{
vr ∂vr/∂r − v2

θ/r + (1/ρ) ∂p/∂r = ν[(1/r) ∂(r ∂vr/∂r)/∂r − vr/r
2],

vr ∂vθ/∂r + vrvθ/r = ν[(1/r) ∂(r ∂vθ/∂r)/∂r − vθ/r
2].

(9.28)
The first momentum equation gives p(r) if vr and vθ are known. The second
equation, which takes into account the conservation of the mass flow rate,
gives us

Q

r
(
∂vθ

∂r
+

vθ

r
) = ν

∂

∂r
(
∂vθ

∂r
+

vθ

r
) (9.29)

or

∂

∂ ln r
(
1
r

∂(rvθ)
∂r

) =
Q

ν
(
1
r

∂(rvθ)
∂r

). (9.30)

The solution takes the form{
vθ = Ar1+Q/ν + B/r, Q/ν �= −2

vθ = A ln r/r + B/r, Q/ν = −2.
(9.31)

Boundary conditions specifying that the velocity vθ is equal to ω1R1 on the
inner cylinder and ω2R2 on the external cylinder provide the solution (setting
Q/ν = α)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vθ = [(R2
2ω2 −R2

1ω1)/(Rα+2
2 −Rα+2

1 )] rα+1

+[R2
1R

2
2(R

α
2ω1 −Rα

1ω2)/(Rα+2
2 −Rα+2

1 )] r−1, α �= −2

vθ = [(R2
2ω2 −R2

1ω1)/(ln R2 − ln R1)] ln r/r

+[(R2
1ω1 ln R2 −R2

2ω2 ln R1)/(ln R2 − ln R1)] r−1, α = −2.

(9.32)

Note that, in the presence of blowing (α > 0) or aspiration (α < 0), the
solution depends on the viscosity through the coefficient

α = Q/ν = rvr/ν, (9.33)

which is simply a Reynolds number associated with the radial motion.
The flow rotation vector, which is collinear with Oz, has a component

along this axis of
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω = (1/2r)∂(rvθ)/∂r

= ((α + 2)/2)[(R2
2ω2 −R2

1ω1)/(Rα+2
2 −Rα+2

1 )] rα, α �= −2

ω = [(R2
2ω2 −R2

1ω1)/2 ln(R2/R1)] r−2, α = −2.

(9.34)

Therefore, for any α, we have

ω(r)/ω(R1) = (r/R1)α. (9.35)

Figure 9.5 shows the evolution of ω(r)/ω(R1) for various values of α.

Fig. 9.5. Swirl as a function of the distance from the axis

For α > 0, the flow becomes increasingly rotational when r increases from
R1 to R2. This is the case for blowing. The opposite occurs for α < 0. The
aspiration tends to limit the rotational zone to the vicinity of the inner cylin-
der.

A boundary layer appears when |α| is large; i.e., when the Reynolds num-
ber is large. In the case of aspiration, for example, we can define a boundary
layer thickness δε in the vicinity of the inner cylinder by writing

r/R1 = 1 + δε/R1, δε/R1 
 1, (9.36)

and, for a given value of ε
 1, using one of the vθ expressions given in (9.32):

|vθ/R1ω1| ≤ ε. (9.37)

The uniform injection of a species A through the wall of the external cylinder,
which leads to the chemical reaction
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A k→ B,

and the aspiration of the mixture by the inner cylinder are described by the
equation

∂

∂r
(r
∂YA

∂r
)− Q

D

∂YA

∂r
− k

D
r YA = 0. (9.38)

The concentration profile does not therefore depend on the rotational motion
of the cylinders, only on the injection flow rate Q. The result would be the
same with motionless cylinders.

9.2.3 Taylor–Couette Instability

In the absence of aspiration and blowing, the solution described in Sect. 9.2.1
gives

vr = vz = 0, vθ = Ar + B/r. (9.39)

This is the only possible solution that gives v = v(r). It is stable as long as
|B| /ν is small.

The Taylor–Couette instability occurs for a sufficiently large value of |B| /ν
and gives rise to a new solution involving parallel rolls (see Fig. 9.6a).

In turn, these Taylor vortices, which correspond to the solution v =
v(r, θ, z) or v = v(r, z), become unstable when |B| /ν is further increased
by increasing the relative speed of rotation of the cylinders. We then obtain
undulating vortices corresponding to a time-periodic mode (see Fig. 9.6b)
[129].1

These instabilities are rather complex to study. We can consider steady
solutions with axial symmetry for the linearized equations in u, v, w, where
these quantities are defined like Couette flow velocity disturbances:

p = p(r) + p(r, z), vr = u(r, z), vθ = vθ(r) + v(r, z), vz = w(r, z). (9.40)

After linearization, the equations of the steady regime become⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1/r) ∂(ru)/∂r + ∂w/∂z = 0,

(1/ρ) ∂p/∂r = ν L(u) + 2(A+ B/r2)v,

2Au = ν L(v),

(1/ρ) ∂p/∂z = ν [(1/r) ∂(r ∂w/∂r)/∂r + ∂2w/∂z2],

(9.41)

with
1Spiral vortex flow and traveling waves can also be observed. The type of flow

observed depends on the initial disturbance [104]. Moreover, turbulence appears for
high values of the relative angular velocity of the cylinders.
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Fig. 9.6. Taylor–Couette instability

L(f) =
∂

∂r
(
1
r

∂(rf)
∂r

) +
∂2f

∂z2
). (9.42)

By eliminating w and p, we get

2(A+ B/r2)∂2v/∂z2 + ν L2(u) = 0, 2Au = ν L(v) (9.43)

with the boundary conditions

r = R1, R2 : u = ∂u/∂r = v = 0. (9.44)

We then seek solutions of the type

u(r, z) = û(r) cos(kz), v(r, z) = v̂(r) cos(kz). (9.45)

The preceding system becomes

ν L2(û) = 2(A + B/r2)k2v̂, ν L(v̂) = 2Aû (9.46)

with

L(f̂) =
d

dr
(
1
r

d(rf̂ )
dr

)− k2 (9.47)

and

r = R1, R2 : û = dû/dr = v̂ = 0. (9.48)
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According to Chandrasekhar [43], when the radii R1 and R2 are similar we
can set

d = R2 −R1, μ = ω2/ω1, ζ = (r −R1)/d, k = a/d, α = μ− 1, D = d/dζ
(9.49)

and

T = −4Aω1d
4/ν2, û = 2d2ω1a

2Û/ν. (9.50)

We then obtain ⎧⎪⎪⎨⎪⎪⎩
(D2 − a2)2 Û = (1 + αζ)v̂,

(D2 − a2) v̂ = −Ta2 Û ,

Û = DÛ = v̂ = 0 for ζ = 0, 1.

(9.51)

The solution to this system can be found by expressing v̂ in the form

v̂ =
∞∑

m=1

Cm sinπmζ. (9.52)

After a rather complex calculation, and with the aid of an approximation, we
find that the first Taylor–Couette rolls appear as soon as T exceeds the cutoff
value

Tc = 3430/(1 + μ) (9.53)

obtained for a = 3.12.
The main reason that this problem is difficult to solve is that the first

equation of system 9.51 includes a 1+αζ term. A similar solution is found by
replacing this term with (μ + 1)/2 (we set r = (R1 + R2)/2).

The differential system is then linear with constant coefficients. There are
also known solutions to this problem for very different radii R1 and R2.

As mentioned previously, other instabilities such as undulating vortices
can appear above the critical value.2 These do not have axial symmetry, and
in this case the velocity field, like the pressure field, depends on r, θ, z, t.
Figure 9.7 (after [129]) gives the limits of stability deduced from the lin-
earized theory (and corresponding to the experimental results) in the plane
(ω1R

2
1/ν, ω2R

2
2/ν).

We will limit our study here to flows between two coaxial cylinders in rota-
tion. Various authors have also treated the case of an axial flow between such
cylinders. In the presence of a radial flow, we can also envisage the existence

2According to Squire’s theorem [62], 2D instabilities always occur before 3-D
instabilities (this has also been established for a liquid film streaming across a plane
plate under the action of gravity). This is the famous cascade of instabilities that
leads to turbulence.
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of instabilities that give rise to vortices. Unlike in Poiseuille flow (studied in
Sect. 9.2.2), in this case the differentiated rotational motion influences the
chemical processes beyond the stability threshold.

Fig. 9.7. Results for R2/R1 = 1.135

In the following sections, we will shift our focus away from the onset of
instabilities and the laminar–turbulent threshold. We will calculate a fully
laminar or a fully turbulent boundary layer. Approximations will be required
to determine the motion close to walls with or without chemical reactions.
Also note that certain results in relation to turbulent flows in the vicinity of
a plane plate have already been given in Chap. 7.

9.3 Steady Incompressible Laminar Boundary Layer
Above a Flat Plate

9.3.1 Basic Equations of the Boundary Layer

The equations of flow are as follows [10, 34, 249]:

∇ · v = 0, ρv ·∇⊗ v + ∇p = μΔv. (9.54)

Let us consider a 2D flow with a velocity U∞ at infinity upstream, which
evolves above a semi-infinite plate of equation y = 0 for x > 0 (Fig. 9.8).
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Fig. 9.8. Configuration of laminar boundary layer above a flat plate

We assume the presence of a boundary layer of thickness δ(x) (this is an
experimental fact), and study what occurs inside this boundary layer; in other
words, for y = O(δ(x)). Outside of the boundary layer, y/δ(x) → ∞, u =
U∞, w = 0. This problem has no solutions with streamlines parallel to Ox.
Let us suppose that we have

v/u ≈ δ/x
 1 (9.55)

inside the boundary layer (we will see the consequences of this assumption for
the Reynolds number later), and that the first and second derivatives of the
quantities have the same order of magnitude as the ratios of these quantities.
Thus,

∂2u/∂x2 ≈ u/x2, ∂p/∂z ≈ p/δ, . . . (9.56)

These assumptions mean that the terms in ∂2/∂x2 can be ignored in compar-
ison with those in ∂2/∂y2. The equations thus become⎧⎪⎪⎨⎪⎪⎩

∂u/∂x+ ∂v/∂y = 0,

u∂u/∂x+ v∂u/∂y + (1/ρ)∂p/∂x = ν∂2u/∂y2,

u∂v/∂x+ v∂v/∂y + (1/ρ)∂p/∂y = ν∂2v/∂y2.

(9.57)

According to the last equation, the term (1/ρ)∂p/∂y ≈ (p/ρ)/δ is of order
(u2/x+νu/δ2)δ/x, so (1/ρ)∂p/∂x ≈ (u2 +νu/δ2)(δ/x)2 is much smaller than
the other terms in the second equation of system (9.57).

These assumptions thus allow us to ignore the pressure gradient, which
leads us to the simplified system



9.3 Steady Incompressible Laminar Boundary Layer Above a Flat Plate 245

{
∂u/∂x+ ∂v/∂y = 0,

u∂u/∂x+ v∂u/∂y = ν∂2u/∂y2.
(9.58)

A More Rigorous Approach

We can establish (9.58) more rigorously via the asymptotic expansion method.
The first step is to introduce dimensionless coordinates by dividing x and y
by a reference length L. We now take ε, the inverse of the Reynolds number
Re∞, to be a small parameter:

ε = (Re∞)−1 = ν/U∞L
 1. (9.59)

We then have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u = U∞[δ1(ε)u1 + δ2(ε)u2 + . . .] = O(U∞),

v = U∞Δ(ε)[δ1(ε)v1 + δ2(ε)v2 + . . .] = O(U∞Δ(ε)),

p = p∞[δ1(ε)p1 + δ2(ε)p2 + . . .],

Y = y/d(ε),

(9.60)

where the quantities ui, vi and pi are unknown functions of x and y, and
the gage functions δi(ε), Δ(ε), d(ε) are unknown functions of ε. These gage
functions δi also obey the condition

limε→0[δi(ε)/δi−1(ε)] = 0. (9.61)

The quantities ui, vi, pi and their derivatives with respect to x and Y are
assumed to be O(1). For Y →∞ (or y � δ) we have u→ U∞, so we will take
δ1(ε) = 1. The continuity equation becomes

∂u1/∂x+ O(δ2) + (Δ(ε)/d(ε))(∂v1/∂Y + O(δ2)) = 0. (9.62)

We then obtain a first order nontrivial equation provided that

Δ(ε) = d(ε). (9.63)

It follows that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u = U∞[u1 + δ2(ε)u2 + . . .],

v = U∞d(ε)[v1 + δ2(ε)v2 + . . .],

p = p∞[p1 + δ2(ε)p2 + . . .],

Y = y/d(ε).

(9.64)
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The momentum equations can then be written

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u1∂u1/∂x+ v1∂u1/∂Y + (p∞/ρU2∞)∂p1/∂x+ O(δ2)

= (ε/d2)(∂2u1/∂Y
2 + O(δ2)),

u1∂v1/∂x+ v1∂v1/∂Y + (1/d2)[(p∞/ρU2
∞)∂p1/∂Y + O(δ2)]

= (ε/d2)(∂2v1/∂Y
2 + O(δ2)).

(9.65)

The first-order equations depend on our choice of the function d(ε), which
characterizes the scale of analysis in y.

For d(ε) = 1 : x = O(1), y = O(1), we obtain the nonviscous equations⎧⎪⎪⎨⎪⎪⎩
Y = y, ∂u1/∂x + ∂v1/∂Y = 0,

u1∂u1/∂x+ v1∂u1/∂Y + (p∞/ρU2
∞)∂p1/∂x = 0,

u1∂v1/∂x+ v1∂v1/∂Y + (p∞/ρU2∞)∂p1/∂y = 0.

(9.66)

This system is valid outside the boundary layer when y and x are of the same
order of magnitude. The solution is known to be:{

u1 = 1, v1 = 0, p1 = 1, or

u = U∞, v = 0, p = p∞.
(9.67)

For d(ε) = ε1/2 : x = O(1), y = O(ε1/2), we have

⎧⎪⎪⎨⎪⎪⎩
Y = y/

√
ε, ∂u1/∂x+ ∂v1/∂Y = 0,

u1∂u1/∂x+ v1∂u1/∂Y + (p∞/ρU2∞)∂p1/∂x = ∂2u1/∂Y
2,

u1∂v1/∂x+ v1∂v1/∂Y + ε−1(p∞/ρU2
∞)∂p1/∂y = ∂2v1/∂Y

2.

(9.68)

The last equation shows us that

∂p1/∂y = 0, p1 = p1(x). (9.69)

However, for y = O(1) (i.e., Y →∞), we know that p = p∞, so p1(x)=const.=
1. The system reduces to{

∂u1/∂x+ ∂v1/∂Y = 0,

u1∂u1/∂x+ v1∂u1/∂Y = ∂2u1/∂Y
2.

(9.70)

These equations are those of the boundary layer obtained previously (system
9.58), and the thickness of this boundary layer is

δ = Ld(ε) = Lε1/2 = (νL/U∞)1/2. (9.71)
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As x is assumed to be first order, the corresponding dimensional length x is
of order L. It follows that the boundary layer thickness actually varies as

δ = (νx/U∞)1/2. (9.72)

The assumption δ/x
 1 thus results in

(ν/U∞x)1/2 = (Rex)−1/2 
 1 or Rex � 1, (9.73)

and is only valid for rather large Reynolds numbers.

9.3.2 Self-Similar Solutions

We have {
∂u/∂x+ ∂v/∂y = 0,

u∂u/∂x+ v∂u/∂y = ν∂2u/∂y2.
(9.74)

The self-similar solutions (see Chap. 5) will be such that

u2/x ≈ νu/y2. (9.75)

This suggests that the quantity

η = y(U∞/νx)1/2 (9.76)

should be introduced. We find that the steady boundary layer thickness is

δ = (νx/U∞)1/2. (9.77)

Let us seek a solution of the type

u = u(η). (9.78)

The continuity equation enables us to introduce the stream function ψ such
that

u = ∂ψ/∂y, v = −∂ψ/∂x, (9.79)

so that ∂ψ/∂y = u(η). Taking x and η as new variables, we obtain ψ = ψ(x, η)
and

u(η) =
∂ψ

∂y
=

∂ψ

∂η

∂η

∂y
+

∂ψ

∂x

∂x

∂y
= (U∞/νx)1/2 ∂ψ

∂η
, (9.80)

or, by integration,

ψ(x, η) = (νx/U∞)1/2

∫
u(η) dη + C(x). (9.81)
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Let us set u(η) = U∞f ′(η), where f ′(η) is the derivative of an unknown
function f(η) that can be shifted by any constant value. We then find that

ψ(x, η) = (νxU∞)1/2f(η) + C(x). (9.82)

Here, the velocity component v becomes

v = (νU∞/x)1/2(ηf ′(η)− f(η))/2− C′(x). (9.83)

From the wall condition

f ′(0) = 0, v = 0, (9.84)

we deduce that

v = 1/2 (νU∞/x)1/2(f(0) + ηf ′(η) − f(η)) (9.85)

and that

C′(x) = 1/2 (νU∞/x)1/2f(0). (9.86)

The definition of f(η) enables us to choose the constant f(0) so as to cancel
out C(x). We can do this by taking f(0) = 0. Thus,⎧⎪⎪⎨⎪⎪⎩

ψ(x, η) = (νxU∞)1/2f(η),

u = U∞f ′(η),

v = 1/2 (νU∞/x)1/2(ηf ′(η)− f(η)).

(9.87)

Putting these expressions into the momentum equation, we obtain the classical
equation of Blasius:3

2f ′′′ + f f ′′ = 0 (9.89)

with

f(0) = f ′(0) = 0, f ′(∞) = 1. (9.90)

Figure 9.9 gives the solutions obtained for the components of the velocity
vector [34].

3η = y(U∞/2νx)1/2 is usually chosen instead, so that Blasius’ equation becomes

f ′′′ + f f ′′ = 0 (9.88)

with f(0) = f ′(0) = 0, f ′′(∞) = 1. We also have ψ(x, η) = (2νxU∞)1/2f(η), u =
U∞f ′(η), v = (νU∞/2x)1/2(ηf ′(η)− f(η)).
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Fig. 9.9. Reduced velocity components as functions of the similarity variable

9.3.3 Blowing and Aspiration at the Wall

The preceding solutions of the Blasius equation also make it possible to de-
scribe the situation where there is blowing or aspiration of fluid through a wall.
However, there are particular cases in this situation. Choosing f(0) �= 0 results
in a nonzero velocity component in the direction normal to the wall [249].

Moreover, the other conditions f ′(0) = 0 (zero tangential velocity) and
f ′(∞) = 1 remain valid. The mass flow rate for blowing at the wall will be

ṁ = (ρv)W = −(ρμU∞/2x)1/2f(0). (9.91)

Blowing occurs for f(0) < 0 and aspiration in the opposite case. However,
this result is limited to cases where the injected or aspirated flow varies as
x−1/2, which limits its applicability. In particular, the assumption of similarity
cannot be applied during uniform injection. To study the general case, we can
take [161, 266] ξ = νx and have η as a variable upon which the velocity
component u depends, so that

u(ξ, η) = U∞f ′(ξ, η) = U∞∂f/∂η (9.92)

if we retain the same notation for successive derivatives of f with respect to
η, which become partial derivatives here.

The Blasius equation (9.88) is then replaced with

f ′′′ + f f ′′ = 2ξ(f ′∂f ′/∂ξ − f ′′∂f/∂ξ), (9.93)

with the boundary conditions{
f ′(ξ, 0) = 0, f ′(ξ, ∞) = 1,
(f + 2ξ∂f/∂ξ)η=0 = −ṁ(2ξ/U∞)1/2/μ.

(9.94)
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Setting

χ = (2ξ)1/2, G = ∂f/∂χ, (9.95)

we obtain, by neglecting the terms in ∂G/∂χ,{
f ′′′ + f f ′′ = χ(f ′G′ − f”G),

G′′′ + fG′′ + f ′′G = 2(f ′G′ − f ′′G),
(9.96)

with {
f(χ, 0) = −χ/2, f ′(χ, 0) = 0, f ′(χ, ∞) = 1,

G(χ, 0) = −1/2, G′(χ, 0) = 0, G′(χ, ∞) = 0.
(9.97)

This system is solved numerically. This is the two-equation model.
If a new differentiation is carried out, we can introduce a new function H ,

and an additional differential equation is added as well as the corresponding
boundary conditions for H . In this case, we ignore the χ∂2(f ′G′ − f”G)/∂ξ2

term and we must then integrate a system of three ordinary differential equa-
tions. Thus, we have the three-equation model. Calculations show that the
results become increasingly precise if we increase the number of equations for
the model, ignoring terms that are increasingly small. Note that the results
are already excellent with the two- or three-equation models (Fig. 9.10).

Also note that, in the case of aspiration, there is an exact solution for
the boundary layer equations if the aspiration is uniform [249]. Consider the
uniform aspiration speed vW < 0. Now suppose that u and v are independent
of the x-coordinate. We obtain, starting from the continuity equation

∂u/∂x+ ∂v/∂y = 0, (9.98)

the result

v = vW = const. (9.99)

The momentum equation

u∂u/∂x+ v∂u/∂y = ν∂2u/∂y2 (9.100)

becomes

d2u/dy2 − (vW /ν)du/dy = 0, (9.101)

which only permits a valid solution only if vW < 0. We obtain

u = U∞[1− exp (vW y/ν)]. (9.102)
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Fig. 9.10. Evolution of f ′′(χ, 0) according to f(χ, 0) in the case of uniform blowing
at the wall, or tension from friction at the wall according to the unit mass flow rate
of injection

The boundary layer thickness is then constant and equal to

δ = ν/vW . (9.103)

The solution, which is valid for an infinite planar plate, is only asymptotically
suitable in the case of a semi-infinite plate (x > 0) or in the case of a plate of
finite length.

9.4 Steady Laminar Boundary Layers with Chemical
Reactions Above a Flat Plate

9.4.1 Boundary Layers with Diffusion

Let us assume that the diffusion does not modify the velocity profile of the
flow [159]. If it has a Blasius profile, we have⎧⎪⎪⎨⎪⎪⎩

u = U∞f ′(η), η = y(U∞/2νx)1/2,

v = (νU∞/2x)1/2(ηf ′(η)− f(η)),

f ′′′ + f f ′′ = 0, f ′(0) = f(0) = 0, f ′(∞) = 1.

(9.104)

The following four cases can be distinguished depending on the Schmidt
number Sc = ν/D:
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If Sc � 1

Suppose that the diffusion initially takes place very close to the wall and that
the diffusional boundary layer thickness is δC 
 δ. In this zone, we have

u ∼= U∞ηf ′′(0). (9.105)

The species balance equation is

u∂Y/∂x+ v∂Y/∂y −D∂2Y/∂y2 = 0 (9.106)

in the case of Fick’s law with only one coefficient of diffusion and if we can
ignore ∂2Y/∂x2 = O(1/x2) in comparison with ∂2Y/∂y2 = O(1/δ2

C).
The first and the last terms are of the same order of magnitude, so that

u/x ∼= D/δ2
C (9.107)

or

U∞f ′′(0)(δC/x)(U∞/2νx)1/2 ≈ D/δ2
C . (9.108)

Since we have

δ ≈ (2νx/U∞)1/2, (9.109)

we deduce that

δC/δ ≈ (D/2νf ′′(0))1/3 = O(Sc−1/3), (9.110)

where the Schmidt number Sc = μ/ρD. It is clear that this case corresponds
to Sc� 1.

Let us now assume that a very fast chemical reaction A → B, correspond-
ing to wall catalysis, is occurring. For y = 0 (η = 0), we have

YA = 0, YB = 1, (9.111)

and for y = ∞ (η = ∞) we have

YA = 1, YB = 0. (9.112)

In the vicinity of the wall, y = O(δC) and{
u = U∞ηf ′′(0),

v = (1/2)(νU∞/2x)1/2f ′′(0) η2.
(9.113)

Let us write YB = Y (η). We obtain

d2Y/dη2 + (νf ′′(0)η2/2D)dY/dη = 0. (9.114)
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The solution to this equation is

Y = 1− I(η)/I(∞), (9.115)

with

I(η) =
∫ η

0

e−f ′′(0)Scξ3/6dξ. (9.116)

Of course, we find that the order of magnitude of the thickness of the boundary
layer of concentrations δC/δ = O(Sc−1/3).

If Sc � 1

Let us now suppose that the Schmidt number is small. The diffusion occurs in
a layer of thickness δC � δ, and the concentrations hardly vary in the viscous
boundary layer, so that we have u = U∞ almost everywhere. The diffusion
equation becomes

U∞∂Y/∂x−D∂2Y/∂y2 = 0, (9.117)

and the thickness δC is thus

U∞/x ≈ D/δ2
C , (9.118)

which gives

δC/δ ≈ (D/2ν)1/2 = O(Sc−1/2), Sc
 1 (9.119)

For the abovementioned reaction, we obtain the solution

Y = 1− erf(
√
Sc/2 η). (9.120)

If Sc = 1

If the Schmidt number is equal to one, we have{
u∂u/∂x+ v∂u/∂y − ν∂2u/∂y2 = 0,

u∂Y/∂x+ v∂Y/∂y − ν∂2Y/∂y2 = 0,
(9.121)

since D = ν. The viscous and diffusion thicknesses of the boundary layer are
the same, and in the particular case of a fast reaction at the wall, we obtain
the self-similar solution

u/U∞ = 1− Y = f ′(η), (9.122)

where f(η) is the solution of the Blasius equation with f ′(0) = f(0) =
0, f ′(∞) = 1.
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If Sc = O(1)

Finally, if Sc is of the same order of magnitude 1 but is not exactly equal to
1, the solution is not easily found (except in the case of a fast reaction). It is
then necessary to solve the diffusion equation knowing the velocity profile.

Note that we have only considered here, as an example, a situation where
diffusion controls the chemical process. In reality, there are very often inter-
actions between the diffusion, the chemical kinetics and the thermal transfer.
The following example illustrates such interactions.

9.4.2 The Emmons Problem

An ablative plane plate is sublimated with a latent heat ΔL in a combustive
gas flow [80, 290]. The combustible plate has a density ρs and releases the
gas H through sublimation (see Fig. 9.11). The chemical exothermic reaction
H + O → P, in the region of contact with the oxidizer O. In this case, the
standard heat of reaction is (see Eq. 2.114 of Sect. 2.4.1)

ΔH = −
∑

j

νjMj(q0
f )j . (9.123)

The phenomenon includes thermal conduction as well as the diffusion of the
species involved and viscosity. Gravitational effects are neglected (Fig. 9.12). It
is also assumed that the pressure gradient is negligible and that the Schvab–
Zel’dovich approximation can be applied (see Sect. 7.4). The flow is two-
dimensional planar and steady. It is easily shown that the terms in ∂2/∂x2

are negligible compared to the terms in ∂2/∂y2 because of the thinness of the
layer: δ(x) 
 x for sufficiently large x (i.e., located sufficiently far from the
leading edge, but with the flow remaining laminar).

Using the notation of Sect. 7.4, the equations for compressible and reactive
fluid flow are as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂(ρu)/∂x+ ∂(ρv)/∂y = 0,

ρu∂u/∂x+ ρv∂u/∂y − (∂/∂y)(μ∂u/∂y) = 0,

ρu∂βj/∂x+ ρv∂βj/∂y − (∂/∂y)(ρD∂βj/∂y) = ζ̇ ,

ρu∂βT /∂x+ ρv∂βT /∂y − (∂/∂y)((λ/cp, f )∂βT /∂y) = ζ̇ .

(9.124)

The conditions at the wall are obtained by applying the discontinuity balance
equation (Sect. 4.9)

[J F + ρf(v −W)]+− ·N = 0 (9.125)

(with side (−) corresponding to the solid wall and side (+) to the fluid) to
mass, momentum, chemical species (there is no surface reaction), and total en-
ergy. We get (va: ablation velocity, τxy: unknown friction stress, s: solid phase
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Fig. 9.11. The Emmons problem: the thin flame case

assumed to be homogeneous in both density, ρs W = ρs, and in concentration,
βj s W = βj s):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ρv)W = ρsva,

τxy = (μ∂u/∂y)W ,

−(ρD∂βj/∂y)W + (ρv)W βj W = ρsva βj s,

−((λ/cp, f )∂βT /∂y)W + (ρv)W βT W = −ρsva l/ΔH.

(9.126)

The gaseous medium is compressible. This difficulty is easily overcome by
performing the Howarth variable change:

ξ =
∫ x

0

ρ μ dx, (9.127)

which gives dξ = ρ μ dx if we assume that the quantity ρ μ depends only on
the x-coordinate4

ζ =
∫ y

0

ρ dy or dζ = [
∫ y

0

(∂ρ/∂x) dy] dx + ρ dy. (9.128)

Finally, we set

4This assumption (that ρμ does not vary across the boundary layer) is often
reasonable for gases; if changes in the average molecular weight are negligible, then—
because the pressure is constant—the ideal gas law implies that ρ ∝ 1/T , in which
case the constant nature of ρμ leads to μ ∝ T : a dependence that is close to the
predictions of kinetic theory [290].
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g = (1/ρμ)[ρv + u

∫ y

0

(∂ρ/∂x] dy). (9.129)

The resulting equations are then

Fig. 9.12. Experimental observations of a diffusion flame under normal gravity and
under microgravity (G. Legros, private communication, 2009)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u/∂ξ + ∂g/∂ζ = 0, dψ = u dζ − g dξ,

u∂u/∂ξ + g∂u/∂ζ − ∂2u/∂ζ2 = 0,

u∂βj/∂ξ + g∂βj/∂ζ − (∂/∂ζ)(Sc−1∂βj/∂ζ) = ζ̇/ρ2μ,

u∂βT/∂ξ + g∂βT/∂ζ − (∂/∂ζ)(Pr−1∂βT /∂ζ) = ζ̇/ρ2μ,

(9.130)

with the following system applicable at the wall:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ρμg)W = ρsva

τxy = ρμ(∂u/∂ζ)W

−Sc−1(∂βj/∂ζ)W + g (βj − βjs) = 0

−Pr−1(∂βT /∂ζ)W + g l/ΔH = 0

(9.131)

(see Sect. 4.9 for the general equations for discontinuities, and Sect. 7.5 to
determine the precisions of the first and the last two equations). For ξ = ∞,
we have

u = U∞, βH = 0, βO = βO∞, βT = βT∞. (9.132)
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The system of two equations in u and g is identical to that of the incompress-
ible boundary layer, and permits self-similar solutions. The thickness of this
boundary layer in the direction ζ is

δ(ξ) = (ξ/U∞)1/2, (9.133)

and we set

η = ζ(U∞/2ξ)1/2. (9.134)

The velocity components can be written

u = U∞ f ′(η), g = (U∞/2ξ)1/2(ηf ′(η)− f(η)), (9.135)

and the stream function becomes

ψ =
√

2ξU∞ f(η). (9.136)

The conditions on the wall give{−ρμ√U∞/2ξ f(0) = ρs va,

τxy = ρW μW

√
U∞/2ξ f ′′(0).

(9.137)

Note that the speed of ablation depends on ξ−1/2. The value of f(0) will be
determined by the other conditions relating to βj and βT . Moreover, we have

f ′(∞) = 1, f ′(0) = 0. (9.138)

When the Schmidt and Prandtl numbers are both equal to one, the quantity
(βj − βT ) obeys the same equation as u. The only solution to the problem is
the linear relation of Crocco:

βT − βO =
βT∞ − βTW − βO∞

U∞
u + βTW . (9.139)

At the wall, we have

(∂βT /∂ζ)W = g(0) l/ΔH = −
√
U∞/2ξ f(0) l/ΔH, (9.140)

so

(∂βT /∂η)W = −f(0) l/ΔH. (9.141)

Crocco’s relation gives

(∂βT /∂η)W = (βT∞ − βTW − βO∞) f ′′(0), (9.142)

because βOW = 0 if it is assumed that all of the oxidizer is consumed inside
the flame.

Let us now define the Spalding parameter:
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Fig. 9.13. The quantity −f(0) as a function of B

B = (βT∞ − βTW − βO∞)ΔH/l. (9.143)

The three boundary conditions

f ′(∞) = 1, f ′(0) = 0, f(0) = −B f ′′(0) (9.144)

enable us to solve the Blasius equation f ′′′ + f f ′′ = 0.
The value of B (Fig. 9.13) thus provides the speed at which the fuel re-

gresses:

va = −
√
U∞/2ξ f(0) (ρμ)W /ρH , (9.145)

where ρH = ρs is the density of solid fuel, the friction stress on the plate

τxy = U∞
√
U∞/2ξ f ′′(0) (ρμ)W , (9.146)

and the temperature gradient to the wall

(dβT /dη)W = −f(0) l/ΔH. (9.147)

These results are independent of the chemical kinetics and the position of the
flame.

If the flame is thin (Fig. 9.11), the chemical production rate ζ̇ van-
ishes everywhere except on the locus defined by the value ηf (which pro-
vides a parabola ζ2 = η2

f 2ξ/U∞), where the mixture is stoichiometric; i.e.,
(YO/YH)f = rst.5 We then have

5The stoichiometric ratio rst is defined by (7.99), where the combustible is de-
noted F.
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Fig. 9.14. Schematic view of the numerical domain (G. Legros, private communi-
cation, 2009; see also [157])

{
YO = YO∞(f ′(ηf )− f ′(η))/(f ′(ηf )− 1), η > ηf ,

YH = f(0)(f ′(ηf )− f ′(η))/(f(0)f ′(ηf )− f ′′(0)), η < ηf .
(9.148)

The value of ηF is then determined by the equation YO∞/rst = f(0)[f ′(ηf )−
1]/[f(0)f ′(ηf ) − f ′′(0)], and the concentration and temperature profiles can
be deduced. The coefficient of local friction is

CF = τxy/(ρU2
∞/2) = (2μ∞/ξU∞)1/2f ′′(0) = (2/B)ρsva/ρ∞U∞. (9.149)

To be applicable, this theory requires the use of the Shvab–Zel’dovich assump-
tion. However, two factors act very strongly on the flames:

• Gravity (Fig. 9.12), which makes hot gases rise
• The presence of soot, which induces radiative losses.

Heat is also lost at the wall. Torero et al. [275], who studied the flames
associated with fires in space vehicles, proposed a modified mass transfer
number in the absence of gravity, and this has been corroborated by many
experiments performed under microgravity. This number is given by

BT =
(1− χ)ΔHc YO2∞ + cp∞(Tf − T∞)

ΔHp + Q
, (9.150)

where χ is the radiative loss to the surroundings, related to the radiative
flow from the flame to the surface; ΔHc is the enthalpy of combustion per
unit mass of consumed oxygen; YO2∞ is the mass fraction of oxygen under
ambient conditions; cp∞ is the heat capacity at constant pressure per unit
mass under ambient conditions; Tf is the temperature of the flame; T∞ is
the temperature of the ambient gas; ΔHp is the enthalpy of pyrolysis per
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unit mass of pyrolyzed fuel; and Q is the total surface enthalpic loss per unit
mass of pyrolyzed fuel. This loss includes heat conduction across the ablative
plate, re-emission from the ablative surface (which can be estimated from the
temperature of pyrolysis), and radiative flux feedback from the flame.

In theory, we can evaluate χ and Q by simply juxtaposing the analytical
solution of Emmons with the experimental profile.

Diffusion flame modeling is the subject of many theoretical, numerical
(Fig. 9.14), and experimental studies [86]. One of the most difficult problems
to model is the interaction of soot with the whole flow [285]. One mechanism
of soot formation was provided by Bockhorn in 1994 [19]. It involves the
following consecutive steps: a molecular stage containing fuel, oxidizer and
reaction products (characteristic entity size: 0.5 nm); a particulate stage that
can be subdivided into particle inception, surface growth, and coagulation
(characteristic entity size: 50 nm).

To simplify the experimental configuration, we often utilize gaseous fuel
injection through a porous square [156], and the two-dimensional assumption
can be evaluated experimentally in order to assess its validity [155]. More
recent studies of soots (numerical and experimental) were published by Legros
et al. [157]; the authors integrated new and existing numerical modeling and
experimental observations to provide a consistent explanation for observed
flame lengths and soot volume fractions for laminar diffusion flames.

9.5 The Rotating Disc

This problem is of interest in the field of electrolysis, where a rotating electrode
is commonly used [13, 159].

9.5.1 Viscous Boundary Layer in Laminar Flow

Let us study the steady velocity profile in a liquid above a disc rotating around
the Oz axis. By assuming axial symmetry, the components u, v, w of the
velocity vector in cylindrical coordinates are solutions of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(ru)/∂r + ∂(rw)/∂z = 0,

u ∂u/∂r + w ∂u/∂z − v2/r = −(1/ρ) ∂p/∂r+ ν (∂2u/∂r2

+∂(u/r)/∂r + ∂2u/∂z2),

u ∂v/∂r + w ∂v/∂z + uv/r = ν (∂2v/∂r2 + ∂(v/r)/∂r + ∂2v/∂z2),

u ∂w/∂r + w ∂w/∂z = −(1/ρ) ∂p/∂z + ν (∂2w/∂r2

+(1/r) ∂w/∂r + ∂2w/∂z2),
(9.151)
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and the boundary conditions{
u = w = 0, v = rΩ for z = 0

u = v = 0 for z = ∞.
(9.152)

We will assume an infinite disc, but the results will also be valid for a disc
with a finite diameter because we can generally ignore edge effects in most of
the flow.

Fig. 9.15. The coordinate system

The boundary layer thickness δ is evaluated as done previously. Locally, the
centrifugal force is ρrΩ2δ dr ds. The frictional force has components of (see
Fig. 9.15 for definitions){

τrθ sin θ dr ds = ρr Ω2δ dr ds,

τrθ cos θ dr ds = μrΩ/δ dr ds.
(9.153)

Therefore,

τrθ = ρr Ω2δ/ sin θ ∼= μr Ω/δ cos θ, δ2 ∼= ν tan θ/Ω. (9.154)

If we assume that the sliding direction close to the wall does not depend on
r, we obtain

δ ∼=
√
ν/Ω. (9.155)

Therefore, we will now introduce the variable ζ = z/δ =
√
Ω/ν z.

We also introduce the von Kármán functions [133] to describe the velocity
and pressure fields:
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{
u(r, z) = rΩF (ζ), v(r, z) = rΩG(ζ),

w(z) = (νΩ)1/2H(ζ), p(z) = −ρνΩP (ζ).
(9.156)

We can deduce the following set of equations and boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

H ′ + 2F = 0

F ′′ −HF ′ − F 2 + G2 = 0,

G′′ −HG′ − 2FG = 0,

H ′′ −HH ′ + P ′ = 0,

F (0) = H(0) = F (∞) = G(∞) = 0, G(0) = 1.

(9.157)

We can also deduce

P (ζ) = P0 + H2/2−H ′ (9.158)

and, after eliminating F between the remaining equations,⎧⎪⎪⎨⎪⎪⎩
G′′ −HG′ + H ′G = 0,

H ′′′ −HH ′′ + H ′2/2− 2G2 = 0,

H(0) = H ′(0) = H ′(∞) = G(∞) = 0, G(0) = 1.

(9.159)

Let us set H(∞) = −c with c > 0 and introduce Cochran’s variable change
[13] λ = e−cζ. We will also set G(ζ) = c2 g(λ), H(ζ) = −c+ c h(λ). This gives⎧⎪⎪⎨⎪⎪⎩

λg′′ + hg′ − h′g = 0,

λh′′′ + 2λ2h′′ + λ2hh′′ + λhh′ − λ2h′2/2 + 2g2 = 0,

c2g(1) = 1, g(0) = h′(1) = 0, h(1) = 1.

(9.160)

The following expansions in powers of λ:

g(λ) =
n∑

i=1

ai λ
i, h(λ) =

n∑
j=1

bj λ
j , (9.161)

as introduced by Benton, have the advantage of converging more quickly than
traditional expansions in ζ. Recurrence relations are found between the ai and
the bj .

⎧⎪⎪⎨⎪⎪⎩
a2 = 0, b2 = −(b21 + 4a2

1)/8,

a3 = (a1b2 − a2b1)/6, b3 = −(3b1b2 + 4a1a2)/18,

a4 = (a1b3 − a3b1)/6, b4 = −(7b1b3 + 4a1a3 + 2b22 + 4a2
2)/48.

(9.162)
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It is then necessary to determine a1 and b1 in order to satisfy the boundary
conditions h(1) = 1, h′(1) = 0. The results obtained are a1 = 1.53678 and
b1 = 2.36449, for which c = 0.88447.

We can therefore determine the functions F, G, H and P − P0 and the
derivatives F ′ and G′ for all of the values of ζ with a high degree of accuracy
by taking n = 25 (see Table 9.1 [13] and Fig. 9.16 [159]).

ζ F G H F′ G′ P−P0

0.0 0.0000 1.0000 0.0000 0.5102 -0.6159 0.0000
0.5 0.1536 0.7076 -0.0919 0.1467 -0.5321 0.3115
1.0 0.1802 0.4766 -0.2655 -0.0157 -0.3911 0.3955
1.5 0.1559 0.3132 -0.4357 -0.0693 -0.2677 0.4066
2.0 0.1189 0.2033 -0.5732 -0.0739 -0.1771 0.4020
2.5 0.0848 0.1313 -0.6745 -0.0612 -0.1153 0.3970
3.0 0.0581 0.0845 -0.7452 -0.0455 -0.0745 0.3939
3.5 0.0389 0.0544 -0.7932 -0.0319 -0.0480 0.3924
4.0 0.0257 0.0349 -0.8251 -0.0216 -0.0309 0.3917
∞ 0.0000 0.0000 -0.8845 0.0000 0.0000 0.3911

Table 9.1. Functions of the rotating disc

Fig. 9.16. F, G, H as functions of ζ

The results are displayed in Fig. 9.17. Traces can be obtained on the disc
with an acid solution [159].
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Fig. 9.17. Streamlines in planes (r, z) and (r, θ)

9.5.2 Diffusion in the Vicinity of a Rotating Disc

Let us now assume that a heterogeneous reaction occurs on the surface of the
disc. This time, the liquid is an aqueous solution of concentration C (recall
that Cj = ρYj/Mj). Since chemical reactions do not occur in the liquid, the
chemical species balance equation reduces to

u
∂C

∂r
+

v

r

∂C

∂θ
+ w

∂C

∂z
= D(

∂2C

∂r2
+

1
r

∂C

∂r
+

1
r2

∂2C

∂θ2
+

∂2C

∂z2
) (9.163)

We will assume cylindrical symmetry. If C∞ is the concentration at z = ∞
and C0 is its value at z = 0 (presumed constant and determined by the surface
reaction), let us assume that ∂C/∂r is negligible, and we will set

X = (C∞ − C)/(C∞ − C0). (9.164)

We then obtain

w(z)dX/dz = Dd2X/dz2, X(∞) = 0, X(0) = 1. (9.165)

The solution is (see Fig. 9.18)

X(z) = 1− I(z)
I(∞)

(9.166)
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where
I(z) =

∫ z

0

e
1
D

∫ τ

0
w(η)dη

dτ.

Let us study the case where the Schmidt number Sc is very large:

Sc = μ/ρD = ν/D � 1. (9.167)

Diffusion only takes place on the inside of a thin layer of thickness δC in the
vicinity of the disc:

δC 
 δ. (9.168)

The integrals are calculated by noting that

{− for z < δ, H(1)(ζ) ∼= −0.510 ζ2 + ζ3/3− 0.616 ζ4/4 + . . .

− for z > δ, H(2)(ζ) ∼= −0.88.
(9.169)

Then

I(∞) =
∫ δ

0

e
1
D

∫ τ

0
w(1)(η)dη

dτ +
∫ ∞

δ

e
1
D

∫ τ

0
w(2)(η)dη

dτ. (9.170)

The last integral is zero to a first approximation. The first, calculated starting
from series (1) of (9.169) and valid for z < δ, is practically equal to∫ ∞

0

e
1
D

∫
τ

0
w(1)(η)dη

dτ ∼= 1.61D1/3ν1/6Ω−1/2. (9.171)

This I(∞) integral has the dimensions of length and is used as the definition
of the concentration boundary layer thickness; i.e.,

δC = I(∞). (9.172)

We can calculate I(z) for z < δ using the same process (Iz>δ = I(∞)):

I(z) ∼= 0.6D1/3ν1/6Ω−1/2

∫ (0.51Ω3/2/3Dν1/2)z3

0

e−ηη−2/3 dη. (9.173)

By more precisely defining the viscous thickness of boundary layer δ as the
value of z for which G(ζ) = 0.05, we find that δ = 3.6

√
ν/Ω and

δC/δ = 0.45Sc−1/3. (9.174)

The flux JD = −(JDj)z/Mj of the solute towards the disc is, at z = 0,

JD = D(
∂C

∂z
)0 = −D(C∞ − C0)(

∂X

∂z
)0 ∼= D(C∞ − C0)/δC . (9.175)
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Fig. 9.18. Concentration profile

If the solute is consumed at the surface by a very fast reaction, we obtain

JD lim = DC∞/δC . (9.176)

If the solute is rejected at the surface (in a very fast reaction), we have another
limiting flux,

JD lim = −DC0/δC . (9.177)

For a disc of radius R, the total flux is

J = πR2D(C∞ − C0)/δC , (9.178)

and the Nusselt number for diffusion NuC (or the Sherwood number Sh) is

NuC = JR/D(C∞ − C0) = 0.62Sc1/3Re1/2, Re ∼= ΩR2/ν. (9.179)

The convection coefficient is

αc = ρJ/(C∞ − C0) = −πR2JDj/(Yj∞ − Yj0). (9.180)

Increasing the angular velocity Ω of the disc while the other quantities remain
unchanged causes δ and δC to decrease and the mass fluxes to increase.

9.5.3 A Rotating Disc in Turbulent Flow

The tangential friction stress in laminar flow is

τzθ = μ(∂v/∂z)0 = rρν1/2Ω3/2G′(0). (9.181)



9.6 Turbulent Boundary Layer and Dimensional Analysis 267

For a disc of radius R, the torque is

M =
∫ R

0

rτzθ2πr dr ∼= −0.3πρν1/2Ω3/2R4 (9.182)

and the corresponding friction coefficient is

CM = −M/(ρΩ2R5/2) ∼= 1.885Re−1/2. (9.183)

This result corresponds rather well to reality for Reynolds numbers of less
than 3× 105. Beyond this approximate value, the mode becomes turbulent.

Based on experimental results, von Kármán [133] derived the following
formulae for the turbulent velocity profiles:{

u = αrΩ(z/δ)1/7(1 − z/δ),

v = rΩ(1 − (z/δ)1/7),
(9.184)

where α is a constant coefficient. The obtained boundary layer thickness is

δ = 0.525r(ν/ΩR2)1/5. (9.185)

The turbulent boundary layer thickness thus depends on the distance r to the
disc axis. The corresponding torque coefficient (Fig. 9.19) is given by the von
Kármán formula [133, 249]

CM = 0.146Re−0.2. (9.186)

Landau and Levich [146] proposed an ideal model with several layers. The
friction stress can be written as

τ̄zθ = (μ + Ku)∂v/∂z. (9.187)

We then have:

• Ku � μ and Ku ≈ ρz “far” from the disc
• Ku ≈ ρzm with m = 4 closer to the disc
• A laminar mode very close to the disc (laminar underlayer): Ku 
 μ.

9.6 Turbulent Boundary Layer and Dimensional Analysis

9.6.1 Turbulent Boundary Layer on a Flat Plate

We will now assume a smooth planar plate and determine the velocity profile
in the vicinity of the wall using dimensional analysis for a simplified case.
Let us suppose that the mean velocity of the flow is parallel to the plate in
turbulent flow. We will also assume that the pressure is uniform, as in the
laminar case [2]. Lastly, let us suppose that turbulence is homogeneous in the
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Fig. 9.19. Torque coefficient (turning moment) on a rotating disk in the laminar
and turbulent regimes

directions parallel to the plate (i.e. that the correlations do not depend on x
and z but on the normal distance y).

The continuity equation gives, with v̄ = w̄ = 0,

∂ū/∂x = 0. (9.188)

Since the average flow is two-dimensional planar, we have

ū = ū(y), (9.189)

so that dū/dt is equal to zero.
We then obtain the following for the momentum (ρ is assumed to be con-

stant): {
∂u′v′/∂y = ν ∂2ū/∂y2,

∂v′2/∂y = ∂v′w′/∂y = 0.
(9.190)

On the wall, the velocity vector vanishes, so v̄ and v′ vanish like ū, u′v′, v′2
and v′w′. Consequently, at any point

v′2 = v′w′ = 0. (9.191)

With these assumptions, the first momentum equation gives

ν ∂u/∂y − u′v′ = const. (9.192)

This constant has the dimensions of the square of a velocity that we will call
the speed of friction u∗, so that
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ν ∂u/∂y − u′v′ = u∗2 = ν(∂u/∂y)y=0. (9.193)

We will also define the length of friction based on u∗ and the viscosity coeffi-
cient ν:

y∗ = ν/u∗ (9.194)

The solution to the problem depends on y, y∗ (or ν), u∗ and ū. There are two
Π ratios, ū/u∗ and y/y∗. According to the Vashi–Buckingham theorem (Sect.
5.1.2), we have

ū/u∗ = ψ(y/y∗). (9.195)

Very close to the wall, molecular flux dominates compared to turbulent fluxes,
so that

ρν∂ū/∂y � ρu′v′. (9.196)

We therefore obtain

ν ∂ū/∂y = u∗2, (9.197)

for which the solution is

ū = u∗ y/ν =⇒ ū/u∗ = y/y∗. (9.198)

Thus, in this simplified case, the boundary layer includes a part with laminar
character of thickness δv, which is on the order of magnitude of y∗. We can
set

δv = αv y
∗, (9.199)

where αv is determined experimentally. In this zone,

ψ = y/y∗. (9.200)

Farther from the wall, turbulent fluxes become more significant than molecular
fluxes, so that

ρ u′v′ � ρ ν ∂ū/∂y (9.201)

We then obtain

−u′v′ = u∗2. (9.202)

In this zone, the velocity variations do not now depend on the molecular
viscosity (i.e., on ν or y∗). The law ū/u∗ = ψ(y/y∗) must be such that dū/dy
does not depend on y∗.

We have
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∂ū

∂y
=

u∗

y∗
ψ′(

y

y∗
). (9.203)

The only solution is ψ′ = 1/(ky/y∗), where k is a constant. Thus, dū/dy =
u∗/ky. The solution to this equation is

ū/u∗ = (1/k) ln(y/y∗) + const. (9.204)

This is the logarithmic sublayer obtained for y � δl > δv, with δl = αly
∗.

After obtaining αl experimentally, we can use it to deduce the value of the
constant as a function of ū(δl). Setting α0 = αle

−kū(δl)/u∗
, we then obtain

ū/u∗ = ψ(y/y∗) = (1/k) ln(y/α0y
∗). (9.205)

This is therefore a model with two sublayers, a viscous sublayer for 0 < y < δv

and a logarithmic sublayer for δl < y.
The coefficient k can be interpreted using the Prandtl turbulence model.

We have

ρ u′v′ = −Ku ∂ū/∂y (9.206)

with the turbulent viscosity coefficient

Ku = μt = ρL2
P ∂ū/∂y. (9.207)

We deduce

u′v′ = −L2
P (∂ū/∂y)2. (9.208)

However, in the logarithmic sublayer,

u′v′ = −u∗2, ∂ū/∂y = u∗/ky. (9.209)

It obviously follows that the Prandtl mixing length obeys the following ex-
pression close to the wall:

LP = ky. (9.210)

9.6.2 Method of Multiple Scales and Dimensional Analysis

The following method [239] makes it possible to find relations between di-
mensionless numbers that are valid for laminar flow and for turbulent flow.
It applies to flows that can exhibit diffusion or thermal conduction. We will
apply it to fluid layers.

We generally define the heat exchange coefficient α in the vicinity of a wall.
Temperature changes are limited to a relatively thin layer through which the
heat flow exchanged between the wall (of temperature TW ) and the undis-
turbed flow (of temperature T∞) is given by the expression
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q = α (TW − T∞). (9.211)

At any point of the layer, we have

qy = −λ∂T/∂y. (9.212)

The Nusselt number is defined as

Nu = αL/λ, (9.213)

where L is a reference length.
In the presence of diffusion, the mass exchange between the wall (due to

a chemical reaction, to dissolution...) and the flow will be

JD = βρ (YW − Y∞), (9.214)

where YW is the concentration at the wall and Y∞ is the concentration in the
main flow.

The diffusion flux of species j is

JDj = −ρD ∂Yj/∂y, (9.215)

with a single diffusion coefficient D. We define the Sherwood number as

Sh = βL/D. (9.216)

In both cases, L is a characteristic dimension of the system.
Relations between Nu, Re, Pr and between Sh, Re and Sc are found ex-

perimentally of the form {
Nu = ARemPrn,

Sh = A′Rem′
Prn′

,
(9.217)

where A, A′, m, m′, n and n′ are constants. Here, the method of multiple
scales makes it possible, via modified dimensional analysis, to determine the
values of m, m′, n and n′ in different zones corresponding to laminar and
turbulent modes. We will also see that this method can be extended to other
problems.

In classical dimensional analysis, the three universal basic quantities are
length, mass and time.6 In multiple-scale dimensional analysis, we will assume
that there are two basic length quantities: L characterizes the macroscopic
scale and l relates to molecular processes. In the same way, we have a macro-
scale time T and a micro-scale time t.

In exchange via diffusion (the same reasoning is valid for thermal transfer)
close to a wall, the parameters are: a characteristic length d (tube diameter
for example), the flow velocity U∞, ν, D and β. Table 9.2 shows the table of

6As explained in the footnote in Sect. 5.1.1, we do not consider temperature a
primary quantity from a dimensional point of view.
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dimensions for these parameters. β depends on four quantities but has the
global dimension of a velocity:

β = Lu l1−u/T v t1−v. (9.218)

d U∞ ν D β

L 1 1 0 0 u

l 0 0 2 2 1− u
T 0 −1 0 0 −v
t 0 0 −1 −1 v − 1

Table 9.2. Dimensions of a diffusive boundary layer

By taking d, U∞ and ν as the basic quantities (there are three basic indepen-
dent quantities here), we can build the following ratios Π :{

ΠD = D/ν,

Πβ = β/du−vUv
∞ν1−v,

(9.219)

with the relation

v = (1 + u)/2 =⇒ u = 2v − 1, (9.220)

due to the implicit dimensionless character of Πβ .
The theorem of Vashi–Buckingham gives us

Πβ = ψ(ΠD) (9.221)

or

β = du−v Uv
∞ ν1−v ψ(D/ν). (9.222)

Let us assume a power law for ψ: ψ = A(D/ν)w . Then, taking into account
the relation between u and v, we have

β d/D = A (U∞d/ν)v (ν/D)1−w (9.223)

or

Sh = ARev Sc1−w. (9.224)

The macro scales participate to the greatest extent in the turbulent mode.
In extreme cases, for high Reynolds numbers, the micro scales do not intervene
at all, and this fixes the exponents in the expression of β: u = v = 1.

The micro scales show the greatest participation in the laminar mode (al-
though the macro scales still intervene), which can result in v = 0, u = −1
but also u = 0, v = 1/2.
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Reality is not so definite, and in fact some zones of the plane (u, v) are
valid in laminar flow and turbulent flow, as shown in Fig. 9.20.

Fig. 9.20. Laminar and turbulent modes in the plane (u, v)

The exponent w is independent of the nature of the flow. We therefore find
that u < 0 and v < 0.5 in laminar mode, and 0.5 < u < 1 and 0.75 < v < 1
in turbulent mode.

These results, and in particular the jump in the exponent v at the threshold
of the transition from the laminar to the turbulent mode, have been confirmed
experimentally.

The exponent w is the same in laminar flow and turbulent flow. It has
been found that (1− w) is equal to 1/3 in the vicinity of a solid wall and to
1/2 at the fluid/fluid interface.

9.6.3 Turbulent Diffusion and First-Order Chemical Reaction in
the Vicinity of a Wall

Let us suppose that the process of diffusion takes place very close to the wall,
so the thickness of the boundary layer of diffusion is low compared to that of
the viscous boundary layer. In this case, we can say that

∂ū/∂y ∼= (∂ū/∂y)0. (9.225)

The velocity fluctuation u′ is such that

u′ = −l′u ∂ū/∂y (9.226)

where l′u is the characteristic turbulent length associated with u. We assume
that this length (as well as its quadratic average LW ) is proportional to the
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distance y to the wall (see Sect. 8.1). Thus the fluctuation u′ is proportional
to y.

The continuity equation then tells us that v′ is proportional to y2. By def-
inition, the turbulent diffusion coefficient KD = ρDt is equal (with ρ=const.)
to

KD = ρ v′l′D. (9.227)

Let us also assume that l′D is proportional to y. It follows that KD/ρ = Dt is
proportional to y3; that is to say

Dt = γy3. (9.228)

Now we consider the concrete case of a wall that is slowly dissolving in a
turbulent liquid flow in a tube in the presence of a first-order chemical reaction
A −→ B.

Since the phenomenon is occurring in the immediate vicinity of the wall,
we can neglect any effect of curvature, so that the mass balance of species A
is

d

dy
[(D + Dt)

dY

dy
] = kY, (9.229)

where k is the specific rate of the reaction. The boundary conditions are{
Y = YS in y = 0,

Y = Y∞ in y →∞.
(9.230)

Evaluating the terms of the preceding equation gives

d

dy
(D

dY

dy
) ∼= DYS/δ

2, (9.231)

where δ is the thickness of the corresponding boundary layer,{
(d/dy)(Dt dY/dy) ∼= γ δYS ,

k Y ∼= k YS .
(9.232)

The final linear relation will be of the type

AD/δ2 + Bγδ = k. (9.233)

We propose to determine A and B and then to deduce a valid relation for
laminar and turbulent flows.

For γ = 0, the solution to the diffusion equation is

Y = YS exp (−
√
k/D y), (9.234)

which gives the following relation for the thickness of the boundary layer δ:
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δ =
√
D/k. (9.235)

We also have

AD/δ2 = k. (9.236)

Thus A = 1. Let us call δ1 the thickness of the boundary layer in the absence
of a chemical reaction (k = 0). We then have

D/δ2
1 + B γ δ1 = 0, (9.237)

which gives B as a function of δ1, D and γ.
We finally obtain

(δ1/δ)2 − δ/δ1 = k δ2
1/D. (9.238)

This result, which is valid in laminar as well as turbulent flows, provides the
ratio of boundary layer thicknesses with and without a chemical reaction. If
we introduce the corresponding mass exchange coefficients β and β1, we get

(β/β1)2 − β1/β = kD/β2
1 . (9.239)

This relation is in good agreement with the exact solution of the differential
equation. Establishing linear algebraic relations between the orders of magni-
tude of the terms that appear in the differential equations (or in the partial
differential equations) of a given problem frequently enables us to find very
interesting experimentally accessible global relations. This method is a great
aid in the study of turbulent flows.
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Reactive and Nonreactive Waves

In this chapter, we will tackle various questions by referring to the thermody-
namic discussions of Sect. 2.5.

We start in Sect. 10.1 with the notion of shock waves and their propagation.
Nonreactive compressible media can exhibit macroscopic discontinuities of
differing intensities. Thus, a supersonic fluid flow can give rise to shock waves,
leading to a sharp increase in pressure.

Small disturbances near chemical equilibrium will be considered in Sect.
10.2, where we address the propagation of weak waves.

Then, in Sect. 10.3, situations associated with small stationary distur-
bances are examined, such as transonic flows near equilibrium.

Section 10.4 introduces both detonation and deflagration via the theory
of Rankine–Hugoniot. Detonation and deflagration are combustion phenom-
ena, which involve chemical reactions that are assumed to be exothermic.
The distinction between the two types of wave is conveniently defined using
the Clapeyron diagram. Detonation waves (which are a form of compression
wave) can occur in a mixture of fuel and oxidizer.1 Deflagrations are discon-
tinuities that lead to weak decreases in pressure but to significant variations
in concentration and temperature.

The structures of planar and curved deflagration waves will be studied
successively in Sect. 10.5. The structure of a planar detonation wave will then
be studied in Sect. 10.6.

We investigate various spherical wave scenarios in Sect. 10.7: the small
movement case;2 spherical deflagration; and finally blast waves that result
from an explosion occurring at a particular point in space.

1Remember that when the fuel and the oxidizer are not premixed, there are
significant concentration changes at the location of the flame, resulting in a so-called
diffusion flame (see for example Sects. 7.7.2 and 9.4.2).

2Also consider the case of a shock wave crossing a mixture that is initially at
chemical equilibrium, where the increase in internal energy does not derive from the
heat released by the reaction (which is the case for detonation) but by the temper-
ature jump of the shock wave. This causes the shock and the chemical reactions to

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_10, © Springer Science+Business Media, LLC 2010
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10.1 Continuous and Discontinuous One-Dimensional
Waves in a Barotropic Medium

10.1.1 Basic Equations of One-Dimensional Waves

Let us consider a gas moving in an adiabatic rectilinear tube, and assume
nonstationary one-dimensional evolution. The variables are the abscissa x
along the tube and the time t. Suppose that irreversible phenomena can only
take place inside surfaces of discontinuity normal to the x-axis [42, 99].

In the continuous zone, which can vary in extent over time, the motion
equations are the mass balance

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (10.1)

the momentum balance

∂u

∂t
+ u

∂u

∂x
+

1
ρ

∂p

∂x
= 0, (10.2)

and the entropy balance (isentropic evolution)

∂s

∂t
+ u

∂s

∂x
= 0. (10.3)

Equation 10.3 indicates that the entropy of each particle of fluid which has its
motion followed is constant. Thus, if the entropy is uniform in the medium at
a given initial time, it will remain uniform at later times. The state of the gas
can be described by just one state variable: pressure or density or temperature
or so on. This type of evolution is called barotropic evolution.

We define the characteristic speed c via the equality

c2 = (∂p/∂ρ)s. (10.4)

It is known that (∂p/∂ρ)s is always positive (see Eq. 2.175).
Thus, for the flow studied here, we simply have

dp = c2 dρ. (10.5)

The mass balance becomes

1
c2

∂p

∂t
+

u

c2
∂p

∂x
+ ρ

∂u

∂x
= 0, (10.6)

and the momentum balance can be rewritten as follows:

∂u

∂t
+ u

∂u

∂x
+

c

ρc

∂p

∂x
= 0. (10.7)

interact. Such interaction issues also arise with detonation if it is generated by the
passage of a shock wave.
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The function P (see [99]) defined such that

dP = dp/ρc (10.8)

can be used to replace p, so that we have{
∂P/∂t+ u∂P/∂x+ c∂u/∂x = 0,

∂u/∂t+ u∂u/∂x+ c∂P/∂x = 0.
(10.9)

By combining these two equations, we obtain{
∂(u + P )/∂t + (u + c)∂(u + P )/∂x = 0,

∂(u− P )/∂t + (u− c)∂(u− P )/∂x = 0.
(10.10)

These equations mean simply that:

• The quantity u+P is constant if we follow the motion velocity u+ c (i.e.,
u + P = α) when dx = (u + c)dt on the line (α)

• The quantity u−P is constant if we follow the motion velocity u− c (i.e.,
u− P = β) when dx = (u− c)dt on the line (β).

The lines (α) and (β) are called characteristic lines.3

3Note about the theory of characteristics: The concept of a characteristic can be
presented in a more mathematical and general manner than was done here. This
is achieved by considering the problem of determining the partial derivatives in a
situation governed by a known system of equations.

Let us consider as an illustration the case of the previous unsteady one-dimensional
evolution. This is governed by the following system of partial differential equations
with two variables t and x and two functions p and u:{

(1/c2) ∂p/∂t+ (u/c2) ∂p/∂x+ ρ ∂u/∂x = 0,

∂u/∂t + u ∂u/∂x+ (1/ρ) ∂p/∂x = 0.
(10.11)

Now consider the determination of the partial derivatives ∂p/∂t, ∂p/∂x, ∂u/∂t and
∂u/∂x knowing dt, dx, dp and du. We can add the following equations to the previous
two: {

∂p/∂t dt+ ∂p/∂x dx = dp,

∂u/∂t dt+ ∂u/∂x dx = du.
(10.12)

The set of systems (10.11) and (10.12) forms a linear system of four equations
with four unknowns. Solving this system (when possible) gives the four unknown
partial derivatives by simple matrix inversion. The impossible cases are those that
correspond to a vanishing determinent; i.e.,

(dx− u dt)2 − c2 (dt)2 = 0. (10.13)

We then obtain the characteristic lines found previously.
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At any point, the state and the motion of the fluid are perfectly defined
by the thermodynamic state variable P and the material velocity u. The
quantities u+P and u−P provide information about the fluid. Simultaneous
knowledge of them at the same point of space completely defines the state
of the fluid at this point at the time considered. The information u + P is
preserved along the characteristic (α) and is propagated at a speed of u + c.
The information u−P is preserved along (β) and is propagated at a speed of
u−c. Based on these observations, we can interpret the characteristic speed c;
in a medium initially at rest, a small disturbance will propagate at speeds of c
and −c. The quantity c is thus the speed of sound in the medium considered.

10.1.2 Piston Moving in an Infinite Cylinder

Let us consider the classical problem of a piston moving in an infinite cylinder,
starting from a position at rest (Fig. 10.1). We propose to initially describe
the motion graphically in the reference plane (x, t) for the case of an ideal gas
at rest. The piston motion is given by X = X(τ), with d2X/dτ2 ≥ 0.

Fig. 10.1. Piston in an infinite cylinder

At times close to t = 0, two characteristic lines are arriving at a given point
M . Provided that one is sufficiently far from the curve x = X(t) characterizing
the piston motion, these characteristic lines cross the axis Ox directly. We then
have {

u + P = P0 (α)

u− P = −P0 (β)
(10.14)
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at M . We deduce that the state of the gas at M is the same as that of the
fluid at rest u = 0, P = P0, c = c0. In this zone, the characteristic lines are
straight lines with slopes of{

dt/dx = c−1
0 (α),

dt/dx = −c−1
0 (β).

(10.15)

This region corresponding to fluid particles at rest is delimited on the right
hand side by a characteristic (α0), and on the left of the curve x = X(t)
by a characteristic (α0), as indicated in Fig. 10.1, where we assume that
(dX/dt)−1 > c−1

0 .
Apart from the zones of zero velocity (zones I and IV), it is easily shown

that the characteristic lines (α) are straight lines in area II, and that it is the
same for the characteristic lines (β) in area III. The diagram shown in Fig.
10.2 demonstrates a step that allows the conditions at an unspecified point N
in area II to be determined.

Fig. 10.2. The characteristic lines at a given point N in area II: u + P = un +
Pn (α), u− P = −P0 (βN ), un − Pn = −P0 (βn), u = dX/dt = Ẋ

It follows that {
u + P = 2Ẋ + P0 (α)

u− P = −P0 (βN )
(10.16)

at point N , and that {
u = Ẋ,

P = P0 + Ẋ.
(10.17)
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At point N , the conditions u and P are entirely determined by P0 and Ẋ ,
which is the speed of the piston at point n (i.e., at a previous time τ). These
conditions remain identical at the considered characteristic (α). It follows that
c is also constant at (α) and so the slope (u + c)−1 of this characteristic is
constant. The characteristics (α) are thus straight lines in area II. This is also
true of the characteristics (β) in area III.

In the case of an ideal gas, it is easy to show that

P = 2c/(γ − 1). (10.18)

Therefore, at point N in area II, we have{
u = Ẋ,

c = c0 + γ−1
2 Ẋ.

(10.19)

Consequently, the slope of the characteristic (α) is defined by

dt

dx
= (c0 +

γ + 1
2

Ẋ)−1. (10.20)

This slope is a decreasing function of time τ if Ẋ(τ) is an increasing func-
tion of τ , which corresponds to the case shown in Fig. 10.1. In this case, the
characteristics (α) of area II form a convergent bundle of straight lines. Con-
versely, the characteristics (β) of area III form a divergent bundle of straight
lines. As soon as Ẋ becomes constant (uniform piston motion), the lines be-
come parallel. There is a contradiction in zone II. The lines are cut at a finite
distance. This means that there are several velocities at a point, which is not
correct. This occurs in a zone of the plane (x, t) between (α0) and the hull
(e) of characteristics (α) in area II (Fig. 10.3).

For example, for Ẋ = Γτ (uniformly accelerated piston motion), the equa-
tion for hull (e) is

x =
1

2γΓ
(
γ + 1

2
Γt− c0)2 + c0t. (10.21)

This contradiction can only be overcome if a shock wave starts in front of the
piston at time

tc = 2c0/(γ + 1)Γ. (10.22)

Before the onset of the shock, the system evolves as shown in Fig. 10.3.
For uniformly accelerated piston motion with zero initial acceleration, hull

(e) exhibits the shape indicated in Fig. 10.4.
If we now compel the piston to have a speed VP =const. from the initial

moment onwards, the shock immediately appears because the zone of accel-
eration is concentrated at the origin.4

4The preceding theory is valid to the left and right of the piston, and on both
sides of the shock. We still need to determine the motion of the shock wave. We
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Fig. 10.3. Onset of a shock

Fig. 10.4. Case of zero initial acceleration

10.1.3 Speed of a Normal Shock Wave Generated by a Piston

The balance laws through a surface of discontinuity were established in Sect.
4.9. We assume here that the fluid is nonviscous and barotropic5 on both sides

will limit our study to the cases where the piston speed is constant, Ẋ = VP > 0.
Experiments also show that the shock has a constant speed w > VP .

5The state of a barotropic fluid depends on a single thermodynamic variable:
the pressure. Fluids that can be considered incompressible and fluids undergoing
isentropic evolution are then barotropic. In such cases we have s =const. on both
sides of the shock wave.
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of this surface and that the problem is one-dimensional. In the absence of the
accumulation or production of wave energy and momentum, we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[ρ(u− w)]+− = 0,

[p + ρu(u− w)]+− = 0,[
pu + ρ(e + u2/2)(u− w)

]+
− = 0,

ẆaS = [ρs(u− w)]+− ≥ 0.

(10.23)

If indices 1 and 2 correspond to states immediately upstream and downstream
of the shock, respectively, and ṁ is the unit mass flow rate through the shock,
we get

⎧⎪⎪⎨⎪⎪⎩
ρ1(u1 − w) = ρ2(u2 − w) = ṁ,

p1 + ρ1u1(u1 − w) = p2 + ρ2u2(u2 − w),

p1u1 + ρ1(e1 + u2
1/2)(u1 − w) = p2u2 + ρ2(e2 + u2

2/2)(u2 − w).

(10.24)

By setting v = u− w, we can easily show that

ρ1v1 = ρ2v2 = ṁ, (10.25)

p1 + ρ1v
2
1 = p2 + ρ2v

2
2 , (10.26)

p1v1 + ρ1(e1 + v2
1/2)v1 = p2v2 + ρ2(e1 + v2

2/2)v2, (10.27)

which is the same as being placed in a reference frame associated with the
wave at the time considered.

If we factorize the unit mass flow rate ρv = ṁ, the energy equation is

h1 + v2
1/2 = h2 + v2

2/2. (10.28)

In the following, we will assume that the fluid considered is an ideal gas. We
then have

h = cpT = c2/(γ − 1) (10.29)

since

c2 = γrT = γp/ρ, (10.30)

so that the energy equation (10.27) is

c21
γ − 1

+
v2
1

2
=

c22
γ − 1

+
v2
2

2
=

γ + 1
2(γ − 1)

c∗2, (10.31)

where c∗, the critical normal relative velocity, is defined by the two left hand
sides by making c1 = v1 = c∗ or c2 = v2 = c∗. This relation is Hugoniot’s
equation. The momentum equation (10.26) gives us



10.1 Continuous and Discontinuous 1-D Waves in a Barotropic Medium 285

p1/ρ1v1 + v1 = p2/ρ2v2 + v2 (10.32)

after dividing by ṁ = ρ1v1 = ρ2v2. This equation can also be written

c21/γv1 + v1 = c22/γv2 + v2. (10.33)

Let us replace c1 and c2 by their values in terms of v1, v2 and c∗ deduced
from the double Hugoniot equation (10.31). After simplifying, we obtain

v1v2 = c∗2. (10.34)

This is the Prandtl relation.
These relations will enable us to calculate the speed w of a shock crossing

a medium that is initially at rest. To do this, we assume that the velocities are
uniform on both sides of shock. We will show then that the result obtained is
coherent with the case of the uniformly moving piston. Here we have{

v1 = −w
v2 = u2 − w.

(10.35)

From the relations of Hugoniot (10.31) and Prandtl (10.34), we can deduce
that

c21
γ − 1

+
v2
1

2
=

γ + 1
2(γ − 1)

v1v2 (10.36)

or, if we denote the upstream state by the index (0),

c20
γ − 1

+
w2

2
= − γ + 1

2(γ − 1)
w(u2 − w). (10.37)

This expression provides the sought-after relation between u2 and w. It is also
written

u2 =
2

γ + 1
w2 − c20

w
. (10.38)

For a constant piston speed, the result can be represented as in Fig. 10.5.
Areas I and IV are at rest. In area II, velocity is constant and equal to

the piston speed VP . The speed w is determined by the previous equation by
making u2 = VP :

VP =
2

γ + 1
w2 − c20

w
. (10.39)

The characteristics (α) are straight lines, and the slopes of these lines can be
determined knowing c2. The formulae obtained for continuous isentropic flow
cannot be used to find this slope because the flow is not isentropic during the
crossing of a shock. The slope of (α) is of course given by
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dt/dx = (c2 + VP )−1. (10.40)

The Hugoniot equation and the Prandtl relation provide the value of c2:

c22 = (w − VP )(w +
γ + 1

2
VP ). (10.41)

In area III, we obtain an expansion centered at the origin.

Fig. 10.5. Characteristics for a piston with constant velocity

When the speed of the piston is low compared to c0, we obtain

⎧⎪⎪⎨⎪⎪⎩
w = c0 + γ+1

4 VP ,

c2 = c0 + γ−1
2 VP ,

dt/dx = π−1 = (c0 + γ−1
2 VP )−1 (slope of the characteristics).

(10.42)

We can deduce from this that the speed of the weak shock wave is equal to
half of the sum of the speed of sound c0 and the inverse of the slope of the
characteristics after the shock. In the coordinate system of (x, t), we can also
write6

π−1 + c−1
0

2
∼= w−1. (10.43)

6If we ignore the first-order terms in VP/c0, we can see that the shock wave
propagates at the speed of sound, so its intensity is very low and it is not then
useful to regard it as a discontinuous phenomenon. In the following, we will study
these weak waves, and consider the case of a reactive mixture that is at rest and
chemical equilibrium in the reference state.
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Thermoconvective Wave Near the Critical Point

There is another phenomenon that is relatively similar to a planar disconti-
nuity wave. It occurs during the transport of heat in a pure fluid near the
critical point. This phenomenon, called the “piston effect,” which includes
wave propagation at a certain scale, is presented in Sect. A.5.2.

10.2 Small Motions of a Fluid in Linearized Theory

10.2.1 Case of a Nonreactive Fluid

Let us establish the linearized equations of a moving nonreactive fluid (we
will apply the same method to the near-equilibrium reactive mixture in Sect.
10.2.2 and study sound propagation in this case). We will set

v = εv1, p = p0 + εp1, ρ = ρ0 + ερ1, s = s0 + εs1, (10.44)

where ε
 1. Since the flow is isentropic (ideal fluid), we have

s1 = 0, (10.45)

so

p1 = c20 ρ1, (10.46)

where c0 is the characteristic speed in the reference state indicated by the
index (0). The linearized balance equations are as follows:{

∂ρ1/∂t + ρ0∇ · v1 = 0,

ρ0∂v1/∂t+ ∇p1 = 0.
(10.47)

We can set (if ω1 = 1
2∇× v1 = 0 at time t = 0)

v1 = ∇ϕ1 (10.48)

and eliminate p1 and v1 between these equations. We then obtain

∂p1/∂t = −ρ0c
2
0Δϕ1, (10.49)

ρ0∇(∂ϕ1/∂t) + ∇p1 = 0. (10.50)

Equation 10.50 gives us

p1 = −ρ0∂ϕ1/∂t. (10.51)

By replacing p1 with its value in (10.51), we obtain

∂2ϕ1/∂t− c20Δϕ1 = 0. (10.52)
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Solving this linear partial differential equation enables us to determine the
evolution for the case of small motions.

We can take the general solution of this equation to be the sum of elemen-
tary solutions of the type

f = f̂ exp i(K · x− ωt). (10.53)

If we assume that ω is a real quantity, we find that K, the wavenumber vector,
is also a real quantity. We obtain

−ω2ϕ̂1 + c20K
2ϕ̂1 = 0; (10.54)

that is to say,

K2 = ω2/c20. (10.55)

The length K of the real vector K is equal to ω/c0. However, ω/K is by
definition the propagation velocity of the wavy phenomenon. Checking it once
more, the wavy phenomenon propagates at the characteristic speed c0.

Let us now consider the particular case of one-dimensional motion where
the velocity of the piston has a small amplitude:

dX(t)/dt = εdX1(t)/dt = εVP1. (10.56)

We study the right part of the cylinder x > X(t), presumed to be infinite.
The equation to solve is

∂2ϕ1/∂t− c20∂
2ϕ1/∂x

2 = 0. (10.57)

Its general solution is

ϕ1 = f(x− c0t) + g(x+ c0t). (10.58)

Setting

ξ = x− c0t, η = x + c0t, (10.59)

we have ⎧⎪⎪⎨⎪⎪⎩
ϕ1 = f(ξ) + g(η),

u1 = ∂ϕ1/∂x = df/dξ + dg/dη,

p1 = −ρ1∂ϕ1/∂t = ρ0c0(df/dξ − dg/dη).

(10.60)

We therefore note that{
u1 + p1/ρ0c0 = α =const. for ξ =const.= x− c0t,

u1 − p1/ρ0c0 = β =const. for η =const.= x + c0t.
(10.61)

Our analysis of the motion then proceeds as in Sect. 10.1.
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Fig. 10.6. Small periodic motion of a piston around x = 0

The characteristic lines (α) are now parallel straight lines of slope c−1
0 (see

Fig. 10.6). When x > c0t, t > 0, we find that ϕ1 = 0, u1 = p1 = 0, and for
c0t > x > X(t) we obtain

εϕ1 = −c0X(t− x/c0), εu1 = (dX/dt)(t− x/c0) (10.62)

and

p1 = ρ0c0u1. (10.63)

10.2.2 Case of a Monoreactive Fluid

The chemical reaction considered here is assumed to be reversible and near
to equilibrium [10, 78]. If ξ is its progress variable, then, in the absence of
diffusion, we have

ρ dξ/dt = LA, (10.64)

where A is the chemical affinity and L is the phenomenological coefficient (see
Sect. 3.4).

The other equations of this problem are⎧⎪⎪⎨⎪⎪⎩
dρ/dt + ρ∇ · v = 0,

ρ dv/dt + ∇p = 0,

ρ ds/dt = LA2/T.

(10.65)

It is necessary to add to this system the equations of state for the mixture or
its fundamental energy law (Chap. 2), for example in the form
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e = e(s, ϑ, ξ), ϑ = 1/ρ. (10.66)

The reference state is characterized by

ρ = ρ0, p = p0, v = 0, s = s0, A = 0, ξ = ξ0, (10.67)

and the slightly disturbed state by{
ρ = ρ0 + ερ1, p = p0 + εp1, v = εv1,

s = s0 + εs1, A = εA1, ξ = ξ0 + εξ1.
(10.68)

The linearized theory then gives us

ρ0 ∂ξ1/∂t = L0 A1, (10.69)

∂ρ1/∂t + ρ0∇ · v1 = 0, (10.70)

ρ0 ∂v1/∂t + ∇p1 = 0, (10.71)

s1 = 0. (10.72)

Before transforming these equations, it is useful to develop p1 as a function
of ρ1 and ξ1, and then as a function of ρ1 and A1. By choosing s, ρ and ξ as
thermodynamic variables, we have

p1 = c2f0 ρ1 + a0ξ1, (10.73)

where cf = (∂p/∂ρ)1/2
s, ξ is the local speed of sound of the medium, which

has a fixed composition. The speed cf is identical to the speed c of a non-
reactive fluid. Moreover, as defined by (2.179), quantity a = (∂p/∂ξ)sρ is a
thermodynamic quantity.

If we now take s, ρ and A to be variables, we have

p1 = c2e0 ρ1 + b0 A1, (10.74)

with ce = (∂p/∂ρ)1/2
sA , where ce is the speed of sound in a mixture at chemical

equilibrium (this is defined by A = 0), and where b = (∂p/∂A)sρ is defined
by (2.180).7

7It is known that cf and ce are positive real numbers. We do not know the signs
of a and b a priori, but we do know that the ratio b/a is negative (see Eqs. 2.179
and 2.180). If we consider a chemical reaction occurring at constant volume, close
to equilibrium we have the relations: ρ0 ∂ξ1/∂t = L0 A1, p1 = a0 ξ1, p1 = b0A1,
yielding ∂ξ1/∂t − (L0a0/ρ0b0)ξ1 = 0. Thus, τv0 = −ρ0b0/L0a0 > 0 represents the
characteristic time of the reaction. In the same way, for a reaction occurring at
constant pressure, we have τp0 = −ρ0b0c

2
f0/L0a0c

2
e0 > 0.
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We can deduce from (10.71) that

v1 = ∇ϕ1, p1 = −ρ0∂ϕ1/∂t. (10.75)

The continuity equation (10.70) gives us

(cf0)−2 (∂p1/∂t− a0∂ξ1/∂t) + ρ0∇ · v1 = 0, (10.76)

or, since ρ0(∂ξ1/∂t) is given by (10.69),

(cf0)2 Δϕ1 − ∂2ϕ1/∂t
2 = L0a0A1/ρ

2
0. (10.77)

Let us differentiate the two sides of (10.77) with respect to t. We get

(∂/∂t)[(cf0)2 Δϕ1 − ∂2ϕ1/∂t
2] = (L0a0/ρ

2
0b0)(∂/∂t)(p1 − c2e0ρ1) (10.78)

or

(∂/∂t)[(cf0)2 Δϕ1 − ∂2ϕ1/∂t
2]− (L0a0/ρ0b0)[(ce0)2 Δϕ1 − ∂2ϕ1/∂t

2] = 0.
(10.79)

Based on our previous discussion, this equation, which governs the motions
of small disturbances, can be written in one of the two equivalent forms

{
τv0(∂/∂t)[∂2ϕ1/∂t

2 − (cf0)2 Δϕ1] + ∂2ϕ1/∂t
2 − (ce0)2 Δϕ1 = 0,

τp0(∂/∂t)[(cf0)−2 ∂2ϕ1/∂t
2 −Δϕ1] + (ce0)−2 ∂2ϕ1/∂t

2 −Δϕ1 = 0.
(10.80)

The partial differential equation in ϕ1 is linear. We can seek elementary solu-
tions of the type

f = f̂ exp i(K · x− ωt), (10.81)

representing free planar waves of frequency ω/2π. We then obtain the following
equation for K and ω:

iωτv0(c2f0K
2 − ω2)− (c2e0K

2 − ω2) = 0, (10.82)

or

K2 =
ω2(1− iωτv0)
c2e0 − iωτv0c2f0

. (10.83)
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Fig. 10.7. Speed and attenuation of the wave

When there are two finite values of ωτv0, there is relaxation.8 The exponent
i(K ·x−ωt) is also written iω(K ·x/ω− t). If we decompose the wavenumber
vector K into a real part Kr and an imaginary part Ki, the exponent of
(10.81) becomes

−Ki · x + iω(Kr · x/ω − t). (10.84)

Thus, Ki characterizes the space damping of the wave and Kr/ω is the inverse
of its propagation velocity c. The damping of the wave and its speed will be
functions of the pulsation ω. These functions are only easily determined if the
characteristic speeds cf and ce are close to each other. According to (2.178),
cf is always greater than ce. The condition is thus written

c2f0 = c2e0(1 + ε′). (10.85)

Let us write

K = Kr + iKi, Kr/ω = 1/c(ω), Ki/ω = γ(ω). (10.86)

After linearizing in ε′ and separating the real and imaginary parts, we obtain

8Two borderline cases are interesting. When ωτv0 is close to zero (very slow
vibration or a very fast chemical reaction), evolution is slow compared to the chem-
ical reaction, and chemical equilibrium can be attained at any time. We then find
that ω2/K2 ∼= c2e0, and the speed of propagation of the small motions is equal to ce,
which accurately reflects the speed of sound at chemical equilibrium. When ωτv0 is
large (very fast vibration or a very slow reaction), the chemical reactions are frozen,
and we find that ω2/K2 ∼= c2f0, as in the nonreactive case.
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1/c2 − γ2 = (ce0)−2 [1− ε′ω2τ2

v0/(1 + ω2τ2
v0)],

2γ/c = ε′ (ce0)−2 ωτv0/(1 + ω2τ2
v0).

(10.87)

Solving this system by ignoring the ε′2 terms gives us{
c2(ω) = (c2e0 + ω2τ2

v0c
2
f0)/(1 + ω2τ2

v0),

γ = [(cf0 − ce0)/c2e0] [ωτv0/(1 + ω2τ2
v0)].

(10.88)

The attenuation of the wave per unit wavelength is

2πcγ ∼= 2π
cf0 − ce0

ce0

ωτv0

1 + ω2τ2
v0

. (10.89)

The expression of c(ω) is compatible with the limits found for small ωτv0 and
infinite ωτv0. The curves in Fig. 10.7 summarize these results [140].

In conclusion, the small motions of a reactive fluid are propagated at a
speed that depends on the frequency of the (single-frequency) plane wave
considered. They attenuate in space, with the attenuation coefficient per unit
wavelength being a function of the frequency according to the laws indicated
above.

Fig. 10.8. Small perturbations in a mixture

Let us apply this result to a piston performing small motions around the
position x = 0 (Fig. 10.8) with a frequency of ω/2π. We obtain the same
diagram as for a nonreactive fluid, but there is attenuation of the wave along
the characteristics of slope dt/dx = 1/c(ω). The amplitude of the wave varies
as e−Kix and, if (c2f0/c

2
e0) 
 1, Ki is equal to

Ki =
(cf0 − ce0)ω2τv0

c2e0(1 + ω2τ2
v0)

. (10.90)
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For a given frequency, the attenuation depends on τv0. This is maximum at
τv0 = 1/ω for a given abscissa. It is proportional to x, the distance to the
origin.9

This theory has been extended to the multireactive case. Interested readers
can refer to [179] and [216] for more on this subject.

10.3 The Case of Small Stationary Disturbances

We will limit our study here to continuous flows. Some problems can be ana-
lyzed by the linearized theory of small disturbances, as described in Sect. 10.2.
On the other hand, the study of transonic flows utilizes the method of small
singular disturbances. In this section we discuss stationary two-dimensional
planar flows where the reference flow proceeds along the axis Ox with velocity
v0 = U0i.

10.3.1 Linearized Theory

The basic equations are similar to those of Sect. 10.2, with the difference that
the temporal partial derivative ∂/∂t terms are replaced by terms in v ·∇ =
U0 ∂/∂x. The order of magnitude of the small disturbance is now that of
the velocity component normal to the direction of the uniform reference flow
velocity v0 = U0i. Let us examine the consequences of this change for a
fluid without a chemical reaction, and then for a fluid mixture with a single
reaction.

Nonreactive Fluid

Let us write

v = U0 i + εv1, p = p0 + εp1, ρ = ρ0 + ερ1, s = s0 + εs1.

The isentropy of the flow gives s1 = 0 and p1 = c20 ρ1. The linearized equations
become {

U0 ∂ρ1/∂x+ ρ0∇ · v1 = 0,

ρ0v0 ·∇⊗ v1 + ∇p1 = 0,
(10.91)

and we can set v1 = ∇ϕ1. Eliminating the quantities ρ1, p1, v1 leads to the
result

9It should be noted that Ki → 0 for ω → 0 (equilibrium), and that Ki →
ε′/2ce0τv0 when ω →∞ (freezing). The low-frequency waves are less attenuated and
slower (speed ce0), whereas the high-frequency waves undergo the most attenuation
at fixed τv0. In the presence of small motions of the piston at a single frequency, there
is a set of these waves, and the amplitude of each wave depends on its frequency.
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U2
0 ∂

2ϕ1/∂x
2 − c20 Δϕ1 = 0, (10.92)

which replaces (10.52) and can be written

M2
0 ∂

2ϕ1/∂x
2 −Δϕ1 = 0 (10.93)

where M0 is the Mach number of the unperturbed flow. For a two-dimensional
planar flow, the system of characteristic equations for the components u1 and
v1 of the velocity vector are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(M2
0 − 1)u1,x − v1,y = 0,

v1,x − u1,y = 0,

u1,xdx + u1,ydy = du1,

v1,xdx + v1,ydy = dv1.

(10.94)

Canceling the determinant gives the characteristic directions, which obey the
equation

(M2
0 − 1)(dx)2 − (dy)2 = 0. (10.95)

These characteristic lines of the hyperbolic potential equation (10.93) are thus
real, but only for supersonic flows. In particular, this theory makes it possible
to study flows in the vicinity of thin aircraft wing profiles.

Fluid With One Chemical Reaction

Here, the reference flow is at chemical equilibrium, and we set

v = U0i + εv1, p = p0 + εp1, ρ = ρ0 + ερ1,

s = s0 + εs1, A = εA1, ξ = ξ0 + εξ1.

The linearized equations become⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U0 ∂ρ1/∂x+ ρ0∇ · v1 = 0,

ρ0U0 ·∇⊗ v1 + ∇p1 = 0,

ρ0U0 ∂ξ1/∂x = L0 A1,

s1 = 0,

(10.96)

where L0 is the unperturbed value of the phenomenological coefficient L in
(10.64).

Using the same arguments as in Sect. 10.2, we derive the equation

τp0U0
∂

∂x
(M2

f0

∂2ϕ1

∂x2
−Δϕ1) + M2

e0

∂2ϕ1

∂x2
−Δϕ1 = 0. (10.97)

Here, Mf0 = U0/cf0 and Me0 = U0/cf0 are the “frozen” and “equilibrium”
Mach numbers.
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10.3.2 Small Singular Disturbances and Transonic Flow

Connecting the subsonic and supersonic zones of a flow with or without a
chemical reaction is not possible directly in linearized theory. Indeed, the
equations obtained are different for M < 1 (elliptic equation for the potential
perturbation ϕ1) and M > 1 (hyperbolic equation for the potential perturba-
tion ϕ1). To achieve this connection, for example in the vicinity of the throat
of a de Laval nozzle with adapted flow, we turn to the method used for small
singular disturbances of the “asymptotic expansion” type. This technique was
discussed in Chap. 7 for a quasi-one-dimensional flow (Sect. 7.2); we apply it
here to two-dimensional planar flow.

The order of magnitude of the small parameter is always that of the ve-
locity component v, with the velocity component u being close to U0. We
set

u = U0 + εnu1 + ε2nu2 + . . . , v = ε(v1 + εnv2 + . . .)

and consider different scales for x and y. If lr is the mechanical reference
length of the flow and x+ and y+ are dimensional coordinates, we can set

x̄ = εαnx+/lr, ȳ = ε(α−1)ny+/lr. (10.98)

Nonreactive Fluid

The basic equations are those of an isentropic steady flow of a compressible
inviscid fluid: ⎧⎪⎪⎨⎪⎪⎩

dρ/dt + ρ∇ · v = 0,

d(v2/2)/dt + (1/ρ) dp/dt = 0,

ds/dt = 0 ⇒ s = s0 ⇒ dp = c2dρ.

(10.99)

By eliminating ρ and p between these equations, we obtain

d(v2/2)
dt

− c2∇ · v = 0, (10.100)

and, in the case of a two-dimensional flow,

(u2 − c2)
∂u

∂x
+ (v2 − c2)

∂v

∂y
+ uv (

∂v

∂x
+

∂u

∂y
) = 0. (10.101)

We choose reference quantities such that lr = vrtr, hr = Trsr = prϑr = v2
r .

Equation 10.101 retains the same form with dimensionless variables.
In the linear case, x and y have the same order of magnitude, and we set

u = U0 + εu1, v = εv1, c
2 = c20 + ε(c2)1 as we did in Sect. 10.3.1.

We then obtain (U2
0 − c20) ∂u1/∂x− c20 ∂v1/∂y + ε [(2u0u1 − (c2)1) ∂u1/∂x

−(c2)1 ∂v1/∂y + U0 v1 (∂v1/∂x+ ∂u1/∂y)] = 0.
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To the first order, we obviously obtain (10.93) from Sect. 10.3.1:
M2

0 ∂
2ϕ1∂x

2 −Δϕ1 = 0.
This last result does not remain valid in the vicinity of the sonic flow, for

which M0 = 1. To study this configuration, we use the following coordinates
and physical quantities:10

x = x̄, y = εn−1ȳ u = U0 + εnu1 + ε2nu2 + . . . ,

v = ε(v1 + εnv2 + . . .), c2 = c20 + εn(c2)1 + ε2n(c2)2 + . . .

Inserting these expressions in the basic equation (10.101), the following result
is obtained:

[U2
0 − c20 + εn(2U0u1 − (c2)1)

+ε2n(u2
1 + 2U0u2 − (c2)2)]εn (∂u1/∂x̄+ εn ∂u2/∂x̄)

+(−c20 − εn(c2)1 + ε2v2
1 + 2ε2+nv1v2)(ε2−n ∂v1/∂ȳ + ε2 ∂v2/∂ȳ)

+(U0 + εnu1 + ε2nu2)ε2(v1 + εnv2) [∂u1/∂ȳ + ∂v1/∂x̄

+εn (∂u2/∂ȳ + ∂v2/∂x̄)] = 0.

(10.102)

Taking U0 = c0 , we have

ε2n(2U0u1 − (c2)1)
∂u1

∂x̄
+ O(ε3n)− ε2−nc20

∂v1

∂ȳ
+ O(ε2) = 0. (10.103)

For 2n = 2− n (i.e., n = 2/3), the following nontrivial result11 is obtained:

[2U0u1 − (c2)1]
∂u1

∂x̄
− c20

∂v1

∂ȳ
= 0. (10.104)

For an ideal gas, equation h + v2/2 = h0 can be rewritten as c2/(γ − 1) +
v2/2 = (γ + 1)c2∗/2(γ − 1). It follows that (c2)1 = (1 − γ)U0u1, so that
(γ+1)U0u1 ∂u1/∂x̄−c20 ∂v1/∂ȳ = 0, and, considering that U0 is the reference
velocity,

(γ + 1)u1
∂u1

∂x̄
− c20

∂v1

∂ȳ
= 0. (10.105)

This result can be written as a function of the potential ϕ1:

(γ + 1)ϕ1,x̄ϕ1,x̄x̄ − ϕ1,ȳȳ = 0. (10.106)

10In this case we set α = 0 in (10.98).
11Other cases are presented in [217] and [218]. They lead to trivial solutions.
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Fluid with a Single Near-Equilibrium Reaction

The basic equations for a steady flow of a compressible inviscid fluid with a
single near-equilibrium reaction are as follows:⎧⎪⎪⎨⎪⎪⎩

dρ/dt + ρ∇ · v = 0,

d(v2/2)/dt+ (1/ρ) dp/dt = 0,

ρ dξ/dt = LA, Tds/dt−Adξ/dt = 0,

(10.107)

where L is the phenomenological coefficient of (10.64). The reference quantities
chosen are such that lr = vrτr, hr = er = Trsr = prϑr = v2

r = Arξr, ξr =
−(∂ξ/∂ϑ)0sA. We do not change the notation of the dimensionless parameters.
The frozen velocity of sound is defined by

c2f = (
∂p

∂ρ
)s,ξ = − 1

ρ2
(
∂p

∂ϑ
)s,ξ =

1
ρ2

eϑϑ.

We have
−dp = eϑϑ dϑ + eϑξ dξ.

We deduce directly from this relation that

−1
ρ

dp

dt
= c2f∇ · v + ϑeϑξ LA

and so we can write

d(v2/2)
dt

− c2f∇ · v = ϑeϑξ LA. (10.108)

The next steps involve differentiating the two sides of this equation with re-
spect to time (we assume that the coefficient of A is constant to a first ap-
proximation) and expressing the time derivative of affinity as a function of
the velocity vector. For the affinity, we have

A = −eξ, −dA = eξsds + eξϑdϑ + eξξdξ,

and since Tds− Adξ = 0,

−dA = (eξξ − A

T
eξs)dξ + eξϑdϑ

so
−dA

dt
= (eξξ − A

T
eξs)LϑA+ eξϑ

dϑ

dt
.

Equation 10.108 gives the affinity and the continuity equation gives the time
derivative of the volume as functions of velocity. We obtain

−dA

dt
=

eξξ − A
T eξs

ϑeϑξ

d

dt
(
d(v2/2)

dt
− c2f∇ · v) + ϑeϑξ∇ · v.
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By differentiating the two sides of (10.108) with respect to time, we get

d

dt
(
d(v2/2)

dt
− c2f∇ · v) + D(

d(v2/2)
dt

−K∇ · v) = 0, (10.109)

with D = Lϑ (eξξ −Aeξs/T ) and K = c2f − ϑ2e2
ϑξ/(eξξ −Aeξs/T ).12

We will now derive the final transonic equation from these relations using
the asymptotic expansion method [180, 218].

By assuming that the dimensionless terms u1, v1, s1, ϑ1, ξ1, like x̄ and ȳ,
are on the order of 1, we deduce the following result from (10.109):

∂
∂x̄ [(M2

f0 − 1)∂u1
∂x̄ − ε2−n ∂v1

∂ȳ + εn((M2
f0 − 1)∂u2

∂x̄ +
2U0u1−(c2

f )1

(c2
f
)0

∂u1
∂x̄ ) + . . .]

+ε(δ−α)n D0
U0

(c2)e0
(c2)f0

[(M2
e0 − 1)∂u1

∂x̄ − ε2−n ∂v1
∂ȳ + εnG + . . .] = 0,

(10.110)
with

G = (M2
e0 − 1)

∂u2

∂x̄
+

2U0u1 −K1

(c2)e0

∂u1

∂x̄
+

D1

D0
(M2

e0 − 1)
∂u1

∂x̄
.

τp is the chemical time (at constant pressure), and vr = U0 is the reference
speed. u and v are expressed as functions of the potential ϕ1 for velocity
disturbances (it is possible to introduce ϕ1 since ∇× v vanishes for the first
order). Moreover, we have

s1 = 0, γf = (
∂ ln p
∂ ln ρ

)sξ =
ρ

p
c2f , γe = (

∂ ln p
∂ ln ρ

)sA =
ρ

p
c2e,

and we assume that the speeds of sound ce and cf are close, which makes
it possible to write c2f0/c

2
e0 − 1 = Zεn. If we choose to impose n = 1 and

δ − α = 0, we obtain the linearized equations that we have already derived,
and which do not enable us to study the transonic zone correctly. By making
n = 2/3, we obtain satisfactory equations for the transonic zone with the
borderline cases of frozen flow and equilibrium flow. For δ − α = 0 and with
γ = γe0 we obtain13⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[(γ + 1)ϕ1x̄ϕ1x̄x̄ − Zϕ1x̄x̄ − ϕ1ȳȳ]x̄
+(γ + 1)ϕ1x̄ϕ1x̄x̄ − ϕ1ȳȳ = 0,

ξ1x̄ + ξ1 + ϕ1x̄ = 0,

x̄ = x, ȳ = ε1/3y, ϑ1 = u1.

(10.111)

12Note that, for A = 0, these coefficients are simply D = Lϑeξξ = τr/τsϑ =
τr/τc = θ and K = c2f −ϑ2e2ϑξ/eξξ = c2e. We set θ = εδn as in Sect. 7.2, and so, using

(10.98), we obtain x̄ = ε(α−δ)nx+/lc, ȳ = ε(α−δ−1)ny+/lc.
13Note that other cases can be derived from (10.110) and are presented in [218].

These cases will not be studied here.
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Solving the Transonic Equations

The near-equilibrium transonic monodimensional equations of Sect. 7.2 are
easily solved. On the other hand, the flow is now two-dimensional, and the
main task is to analytically solve the partial differential equations, which are
nonlinear. We will try to find particular solutions.

In each case, we need to find a solution ϕ1(x, y) and ξ1(x, y) of the par-
tial differential equations that satisfies certain boundary conditions, one of
which is obtained by developing equation (10.108). Once the solution ϕ1(x, y)
is known, it is possible to determine ξ1(x, y) by solving a linear first-order
differential equation.

Only symmetrical solutions with respect to the axis Ox are applicable
to a de Laval nozzle with an axis of symmetry. We will limit our study to
these solutions of (10.111) and determine particular lines: the two sonic lines
corresponding to the speeds of sound ce and cf , which we will call (Se) and
(Sf ), respectively, and the throat line (H) (corresponding to the points where
the tangent to the streamlines is parallel to the axis Ox and the characteristic
lines).

The polynomial solution corresponding to a symmetrical flow with respect
to the Ox axis is [217, 218]

ϕ1 =
m

2
x̄2+(

γ + 1
2

m2ȳ2+α0)x̄+
(γ + 1)2

24
m3ȳ4+α0

γ + 1
2

mȳ2+β0, (10.112)

where m, α0, β0 are constant coefficients,14 and we have

{
u1 = mx̄ + (γ + 1)m2ȳ2/2 + α0,

v1 = (γ + 1)m2x̄ȳ + (γ + 1)2)m3ȳ3/6 + α0(γ + 1)mȳ.
(10.113)

We distinguish two particular points on the Ox axis: the equilibrium sonic
point E where v = ce (i.e., the point xE = −α0/m), and the frozen sonic
point F at fixed ξ1 where v = cf (i.e., where u1 = Z/(γ + 1) and xF =
−(α0 − Z/(γ + 1))/m).15 In this case, the condition (10.108) results in the
equation

[(γ + 1)ϕ1x̄ϕ1x̄x̄ − ϕ1ȳȳ]i = −Z(
eξξ0

eϑξ0
ξ1 + u1)i,

where the index i indicates an initial position. At x = 0, this condition be-
comes

m =
eξξ0

eϑξ0
(ξ1)x̄=0 + α0.

14m and α0 can be deduced from the values of the sonic points xE and xF that
are defined shortly and determined by a monodimensional calculation, as mentioned
in Sect. 7.2. β0 is an arbitrary constant.

15Z = ε−n(c2f0/c
2
e0− 1) is a first-order coefficient that depends on the given value

of ε� 1 and the choice of n.
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Fig. 10.9. Particular lines for a “nozzle solution”

The sonic lines are
γ + 1

2
mȳ2 + x̄− x̄E = 0, (Se)

γ + 1
2

mȳ2 + x̄− x̄F = 0, (Sf )

The throat line has the equation

γ + 1
6

mȳ2 + x̄− x̄E = 0, (H)

and passes through the point E.
Characteristic lines are obtained using the equation

[(γ + 1)u1 − Z](dȳ)2 − (dx̄)2 = 0, (10.114)

where x̄ and ȳ are the coordinates of the current point on the curve. Those
that cross the point F obey the following equations:

γ + 1
4

mȳ2 + x̄− x̄F = 0, (C1),

−γ + 1
2

mȳ2 + x̄− x̄F = 0, (C2).

(C1) and (C2) are the characteristics of the singular point and play a fun-
damental role in the flow analysis. The progress variable ξ1 is given by the
relation

ξ1 = m− u1, (10.115)

with eξξ0/eϑξ0 = 1. These solutions are represented in the physical plane (x, y)
by the curves of Fig. 10.9.



302 10 Reactive and Nonreactive Waves

10.4 The Rankine–Hugoniot Relations

We observe two types of flame propagation in a mixture of fuel and oxidizer
[124, 290]. When the propagation is slow (a few centimeters per second), we
observe deflagration; on the other hand, fast propagation (some km/s) yields a
detonation wave. For example, in a sufficiently long tube filled with a mixture
of fuel and oxidizer, if we ignite the mixture at one end, a deflagration flame
is generated that starts to travel at a constant speed. When this flame has
covered a distance of about ten times the diameter of the tube, the flame
accelerates and quickly changes into a detonation wave moving at constant
speed. Here, we will only study planar waves traveling in the normal direction;
in this case, the fluid motion can be regarded as steady and one-dimensional
in the reference frame associated with the wave. We will thus eliminate the
transitional zone from our study.

Fig. 10.10. System of axes: a, related to the wave; b, the wave travels into the fresh
mixture

If we use a system of axes linked to the wave, the phenomenon can be con-
sidered to unfold as follows (Fig. 10.10a):

• Upstream of the wave (x < 0), the mixture of fresh gas moves at a constant
velocity v1

• With the crossing of the wave (x = 0), the fluid undergoes a discontinuity
• The mixture of burned gases downstream of the wave (x > 0) is moving

at a uniform velocity of v2.

If, on the other hand, we consider a system of axes linked to the motionless
fresh gases, the wave would move into the fresh mixture (Fig. 10.10b).
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The discontinuity equations for mass, momentum and energy, respectively
(see Sect. 4.9), are as follows:

ρ1v1 = ρ2v2 = ṁ, (10.116)

p1 + ρ1v
2
1 = p2 + ρ2v

2
2 , (10.117)

h1 + v2
1/2 = h2 + v2

2/2. (10.118)

We need to add the equations of state for the gas mixture to these equations.
We have two equations in the case of an ideal mixture of perfect gases:{

p1/ρ1 = n1RT1, p2/ρ2 = n2RT2,

h1 = h1(Yj1, T1), h2 = h2(Yj2, T2).
(10.119)

In state (1), the concentrations are those of the fresh gases, and the temper-
ature is too low to start the chemical reactions. The mixture is chemically
frozen. In state (2), we are dealing with the gas mixture in chemical equilib-
rium. The enthalpy h2 thus refers to a different gas from gas (1). The difference
in the enthalpies corresponds to the energy released by the reaction and to
the enthalpy needed to heat the gas from T1 to T2. After simplifying, and
assuming that the specific heat does not vary,16 we get

h2 − h1 = −Δh + cp(T2 − T1). (10.120)

By eliminating v1 and v2 between the continuity equation and the momen-
tum equation, we obtain

p2 − p1 = ρ1v
2
1 − ρ2v

2
2 = −ṁ2(

1
ρ2
− 1

ρ1
) (10.121)

or

(p2 − p1)/(
1
ρ2
− 1

ρ1
) = −ṁ2. (10.122)

Relation 10.122 corresponds to the “line of mass flow rate” of slope (−ṁ2) in
the (1/ρ, p) plane.

Proceeding in the same way with the energy equation, we get

h2 − h1 = −ṁ2

2
(

1
ρ2
2

− 1
ρ2
1

), (10.123)

and by replacing ṁ2 with its value (found in Eq. 10.122) we obtain

h2 − h1 =
1
2
(

1
ρ2

+
1
ρ1

)(p2 − p1). (10.124)

16If we consider the crossing of a shock without combustion, we simply have
h2 − h1 = cp(T2 − T1).
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Relation 10.124 corresponds to the “adiabatic of detonation” in the (1/ρ, p)
plane. Relations 10.122 and 10.124 are known as the Rankine–Hugoniot rela-
tions.

If quantities ρ1 and p1 are given, ρ2, p2 are the unknown quantities of the
problem.

We saw that (h2−h1) can be expressed as a function of a thermodynamic
quantity (for example T ). If the selected variables are p and ρ, (10.124) is
represented by a curve that does not pass through the point (1/ρ1, p1); indeed,
if for example we make T2 = T1, we do not obtain h2 = h1, which contrasts
with the case of a shock wave.

The solution is given by the intersection of the adiabatic defined by
(10.124) and the straight line for the mass flow rate of slope −ṁ2 defined
by (10.122); see Fig. 10.11.

Fig. 10.11. Intersection of the adiabatic with the staight line for the mass flow rate

We will solve the problem for the simplified case already mentioned. We will
also assume that the molar mass does not change during the crossing of the
wave, so that

T2

T1
=

ρ1

ρ2

p2

p1
. (10.125)

Let us now set

ρ1/ρ2 = ϑ, p2/p1 = p, τ = Δh/cp T1. (10.126)

We then obtain, according to (10.122),

p− 1
ϑ− 1

= − ṁ2

ρ1p1
, (10.127)



10.4 The Rankine–Hugoniot Relations 305

and according to (10.124),

pϑ− 1− τ =
p1

2ρ1cpT1
(ϑ + 1)(p− 1). (10.128)

Taking into account the expression for the Mach number,

M1 = v1/c1 = v1/
√
γp1/ρ1 = ṁ/

√
γp1ρ1, (10.129)

and the state law for perfect gases, we have

p− 1
ϑ− 1

= −γM2
1 , (10.130)

p =
(1− γ)ϑ + 1 + γ + 2γτ

(1 + γ)ϑ + 1− γ
. (10.131)

Equation 10.131 provides the adiabatic of Fig. 10.12.

Fig. 10.12. The adiabatic curve: detonation and deflagration

The forbidden area corresponds to M2
1 < 0.

The part of this curve where ϑ < 1 corresponds to an increase in pressure—
often a significant one. This is the detonation region. When τ = 0 (i.e., in the
absence of combustion), it simply reduces to a shock wave. In this case, by
applying the second law of thermodynamics, we can show that the shock wave
must be a compression wave. Thus, there cannot be a discontinuity wave in a
one-component fluid with increasing density and decreasing pressure. This is
not the case for combustion, where τ is positive.

The region corresponding to p < 1 is that of deflagration.17

17Generally speaking, the variation in pressure is so small here that it can be
ignored. That is why we can assume a uniform pressure in our study of deflagration
in Sect. 10.5.
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Therefore, we have two quite distinct regions, the first corresponding to
detonations and the other corresponding to deflagration waves. We can see
that the discontinuity condition

[J S + ρs(v − W)]+− ·N = ẆaS ≥ 0 (10.132)

from Sect. 4.9, which gives

ρ2s2v2 − ρ1s1v1 = ẆaS ≥ 0, (10.133)

imposes more limitations on the domain in which these waves occur.
Let us initially define the two particular points where the straight line

starting from the point (1, 1) is tangential to the adiabatic. First of all, in the
vicinity of these points, we can derive the equations{

dp = −γM2
1 dϑ,

[(1 + γ)ϑ + 1− γ]dp + p(1 + γ)dϑ = (1− γ)dϑ.
(10.134)

By eliminating dp, we have

−γM2
1 [(1 + γ)ϑ + 1− γ] + p(1 + γ)− 1 + γ = 0. (10.135)

Replacing M2
1 with its value in terms of p and ϑ yields

p[(1 + γ)ϑ− γ]− ϑ = 0. (10.136)

Eliminating p gives the equation for the ϑ-coordinates of what are known as
the Chapman–Jouguet points [45, 131]:

ϑ2 − 2(1 + τ)ϑ + 1 + 2γτ/(1 + γ) = 0. (10.137)

We will now show that these Chapman–Jouguet points correspond to the
extrema of entropy production.

The entropy s2 is given by the intersection of the line drawn from the point
(1, 1) and the adiabatic; therefore s2 depends on the ratio (p−1)/(ϑ−1), which
is (as shown previously) proportional to the square of the Mach number M2

1 ,
where M1 is the upstream Mach number.

Let us calculate the extrema of (s2 − s1) (i.e., the extrema of the energy
production through the wave). We have

ẆaS/ṁ = s2 − s1 = cv ln(p2/p1)− cp ln(ρ2/ρ1) = cv ln p+ cp lnϑ. (10.138)

The extremum corresponds to

d(s2 − s1)/cv = d ln p + γd lnϑ. (10.139)

Let us replace p with its value
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Fig. 10.13. Entropy production throughout the combustion wave and through the
shock wave (curve corresponds to τ = 0, with a horizontal tangent at the inflection
point for ϑ = 1)

1
cv

d(s2 − s1)
dϑ

=
1− γ

(1− γ)ϑ + 1 + γ + 2γτ
− 1 + γ

(1 + γ)ϑ + 1− γ
+

γ

ϑ
(10.140)

or

ϑ2 − 2(1 + τ)ϑ + 1 + 2γτ/(1 + γ) = 0. (10.141)

Note that the extrema correspond to the Chapman–Jouguet points. In partic-
ular, the detonation corresponds to the minimum entropy production at the
Chapman–Jouguet points.

We can state that the detonation wave thus obtained is stable.18 The study
of (s2 − s1)/cv as a function of ϑ gives the curve shown in Fig. 10.13.

When τ = 0, we obtain the case of a shock wave that is characterized by
a point of inflection with a horizontal tangent at ϑ = 1.

Branch T1T2 of the curve of entropy production corresponds to detona-
tion, while branch F1F2 corresponds to deflagration. The Chapman–Jouguet
points are at points T and F. Only point T has any particular significance: it
corresponds to Chapman–Jouguet detonation.19

This curve is shown on a (ϑ, p) plot in Fig. 10.14.
The speed of the detonation wave D is equal to the relative velocity of the

fresh gases v1. We can calculate this speed at point T in particular. We have

18However, the stability of the detonation wave generally depends on other factors
too, such as the characteristics of the walls, and a thorough study is necessary to
determine the zones of stability. We will not perform such a study here.

19The Chapman–Jouguet condition, which states that the detonation proceeds at
a velocity such that the reacting gases only just attain sonic velocity (in the frame
of the lead shock) when the reaction is finished, holds approximately in detonation
waves.
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Fig. 10.14. Observed and unobserved waves

ϑ = 1 + τ −
√
τ2 + 2τ/(γ + 1). (10.142)

We replace ϑ with this value in the expression for p and use the equation

M2
1 = − 1

γ

p− 1
ϑ− 1

(10.143)

to calculate M1, which allows us to deduce v1 = D, since

v1 = M1c1. (10.144)

c1 is the speed of sound in fresh gases, which is presumably known if they are
at rest (u1 = 0 = v1 −D).

The downstream Mach number M2 = v2/c2 relative to the wave is such
that

M2
2 =

v2
2

c22
=

ρ2
1v

2
1/c

2
1

ρ2
2c

2
2/c

2
1

=
ρ2
1M

2
1

ρ2
2(p2/p1)(ρ1/ρ2)

=
ϑ

p
M2

1 . (10.145)

From this result, we can easily deduce the velocity v2.
At Chapman–Jouguet point T, we obtain

M2T = 1. (10.146)

A simple way to prove this is to express M2
1 as a function of ϑ and p, as we

did previously, and to use the following relation that is independent of τ and
valid at the Chapman–Jouguet points:

p[(1 + γ)ϑ− γ]− ϑ = 0. (10.147)

The fact that M2 is equal to 1 in this case provides an element of stability for
the detonation wave. Indeed, the acoustic waves cannot travel through the flow
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Zone of the M2 Type of wave Conditions of Remarks
diagram observation

T2T < 1 Strong Special M1 > (M1)T

detonation

T = 1 Chapman–Jouget Usual Wave travels into
detonation fresh gases at

supersonic speed

TT1 > 1 Weak Special M1 > (M1)T

detonation

F1F < 1 Weak Usual M1 < (M1)F < 1
deflagration Wave travels into

fresh gases at
subsonic speed

F = 1 Not observed

FF2 > 1 Not observed

Table 10.1. Combustion waves

downstream to reach the detonation wave, and any deceleration of this wave
will result in nonstationary phenomena. The summary presented in Table 10.1
provides some theoretical and experimental information on combustion waves.

10.5 Deflagration Waves

10.5.1 Steady Propagation of an Adiabatic Planar Flame

We now study the one-dimensional propagation of a planar premixed flame as-
suming that the Shvab–Zel’dovich approximation (see Sect. 7.4) holds [290].20

Taking into account these assumptions, we obtained the following single
forms of the species balance and energy balance equations:{∇ · (ρvβj − ρD∇βj) = ζ̇ ,

∇ · (ρvβT − λ/cp, f∇βT ) = ζ̇ ,
(10.148)

where

βj = Yj/νjMj , βT =
∑

j

Yj

∫ T

T 0
cp, jdT/ΔH. (10.149)

20Recall that the following assumptions are made in this approximation: there
is steady flow in a suitably chosen reference frame; there is no thermodiffusion
process (DT = 0); external forces and viscosity are negligible; there is constant
static pressure to a first approximation; Fourier’s law of thermal conduction applies;
Fick’s law holds for diffusion and there is a single coefficient of diffusion for all
species; the Lewis number is close to 1; a mixture of perfect gases is present; there
is only one chemical reaction. For multireactive mixtures, see for example [142].
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Let us now use this approximation to consider the plane of the deflagration
flame in a reference frame associated with this wave. All of the parameters
depend on just one variable, x (see Fig. 10.15).

As previously mentioned, a deflagration flame can be obtained experimen-
tally in a long tube filled with a mixture of fuel and oxidizer that we ignite
at one end. Thus, we can consider a tubular reactor supplied with fresh gas
in such a way that the flame is fixed.21

Fig. 10.15. Fresh gases and burned gases in the case of a thin flame

We denote unit mass flow rate by ṁ:

ṁ = ρv, (10.150)

and we make g the common value of the transfer coefficients:

g = ρD = λ/cp, f . (10.151)

We now introduce the position variable η such that

dη/η = ṁ dx/g. (10.152)

Let us consider the second-order chemical reaction

A + B −→ P, (10.153)

and, to simplify, we assume that before the reaction a mole of A is associated
with a mole of B in a unit mass of the mixture:

21Note that deflagration (p =const.) is not the only possible mode (see Sect. 10.4);
under certain conditions a very rapid detonation wave—a surface of discontinuity
analogous to a shock wave—can occur.
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β0
A = β0

B = −1, x = −∞ (η = 0), (10.154)

where the right hand side is in moles per unit mass. The equations are then
as follows: ⎧⎪⎪⎨⎪⎪⎩

η2 d2βj/dη
2 = −gζ̇/ṁ2,

η2 d2βT /dη
2 = −gζ̇/ṁ2,

ζ̇ = ρ2BT se−Ta/TβAβB.

(10.155)

Let us eliminate ζ̇ between the equations in βA and βB ; we then obtain a
linear relation that gives βA − βB as a function of η. The solution is assumed
to have a finite value for x = +∞ (η = ∞). We find that

βA = βB = −β. (10.156)

Let us now eliminate ζ̇ between the βA equation (or βB) and the βT one. This
yields

d2(β + βT )/dη2 = 0, (10.157)

and a new linear relation is obtained:

β + βT = aη + b. (10.158)

We have {
η = 0 : β = 1, βT = 0 =⇒ b = 1,

η = ∞ : β = 0, dβ/dη = a.
(10.159)

At η =∞, the reactions have completed and variations in βT are only provided
by heat exchange with the outside, which is characterized by a, the degree of
adiabacity of the reactor.

Let us study the case of an adiabatic tube (a = 0). We thus find that

β + βT = 1. (10.160)

We must now solve the differential equation

η2 d2βT /dη
2 = −(g/ṁ2)ρ2BT se−Ta/T (1− βT )2. (10.161)

Let us denote as Tad the temperature obtained at the end of the adiabatic
combustion:

Tad = T0 +
∑

j

νjMj(q0
f )j/cp. (10.162)

We then have roughly
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βT
∼= (T − T0)/(Tad − T0). (10.163)

By assuming that the perfect gas law holds for the mixture, we have

ρ = M̄p/RT, (10.164)

where M̄ is the mean molar mass, and so we obtain

η2 d2βT /dη
2 = −Λω(βT ) (10.165)

with

{
Λ = gT sBM̄2p2/ṁ2R2 ∼= const.

ω(βT ) = [T0 + βT (Tad − T0)]−2(1 − βT )2e−Ta/[T0+βT (Tad−T0)].
(10.166)

Numerical integration of this differential equation presents some difficulties.
We obtain a suitable solution in the case of a thin reaction zone (Fig. 10.15)
in η = 1 by considering a thickness equal to 2ε. In the vicinity of η = 1, we
can use the approximation

η2 d2βT /dη
2 ∼= d2βT /dη

2. (10.167)

Multiplying the two sides by (dβT /dη)dη and integrating gives

[(dβT /dη)2/2]1+ε
1−ε

∼= −Λ
∫ 1

0

ω(βT )dβT . (10.168)

Λ is an eigenvalue of the problem that provides the mass flow rate of the
steady regime.

At the boundaries 1 + ε and 1− ε, we have22{
η = 1 + ε : T = Tad, dβT /dη = 0,
η = 1− ε : dβT /dη = 1. (10.169)

Thus

Λ = (2
∫ 1

0

ω(βT ) dβT )−1. (10.170)

The integral is calculated through the use of approximations. For ω(βT ), we
assume an expression of the form (1− βT )n−1βp−1

T , so that∫ 1

0

ω(βT ) dβT = Γ (n)Γ (p)/Γ (n + p). (10.171)

This approximation, which is valid for Ta > 6Tad, was made by Rosen.
22η < 1− ε corresponds to a nonreactive zone with dβT /dη =const. The constant

is equal to 1 since βT = 0 for η = 0 and βT = 1 for η = 1.
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Fig. 10.16. Temperature and concentration profiles in a deflagration wave. Dashed
and continuous lines: thin-flame assumption; dash-dot line: real curves

Figure 10.16 shows the profiles of βT and β that are obtained for laminar
planar premixed flames.

Using the value found for Λ and (10.166), we can deduce the mass flow
rate

ṁ = (M̄p/R)
√
gT sB/Λ

and thus the combustion velocity of the planar adiabatic laminar flame

s0
L = ṁ/ρu, (10.172)

where ρu is the density of the unburnt mixture (the fresh gases of Fig. 10.15).

10.5.2 Curved Nonadiabatic Flames

For curved and/or nonadiabatic flames, the theory is more complex. Just as in
Sect. 10.5.1, the flame structure (Fig. 10.17) consists of four regions (although
the shape of the flame is not planar and we must characterize curvature effects
in particular):

• The fresh gases
• The preheating zone or the diffusion zone of thickness �f , where convection,

mass diffusion and thermal conduction are the most significant processes
• The reactive zone of thickness �δ, where diffusion, conduction and the

chemical reaction are predominant, and which is represented by a jump23

• The burnt gases.

23For a reactive zone of thickness �δ, another small parameter β = Ta/Tad is
introduced, where Ta and Tad are respectively the activation temperature and the
adiabatic combustion temperature. 1/β is the same order of magnitude as �δ/�f .
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Fig. 10.17. The structures of planar and curved flames

A multiscale asymptotic expansion method with two small parameters ε and
1/β can be applied to the three-dimensional flow. Reference quantities are
introduced: ρ− = ρu for density, Tad for temperature, s0

L (the combustion
velocity of the planar laminar adiabatic flame) for velocity, ρusL for mass
flow rate, and p− = pu for pressure. The Lewis number Le is assumed to be
different from 1, but an analysis by Clavin and Joulin [53] has shown that the
difference must be on the order of 1/β (i.e., Le = 1 + l/β, where l = O(1)) to
ensure analytical coherence. For the assumed reaction A −→ B, which has a
rate of order one, and at the scale �f , the reactive layer is replaced by a jump
and the obtained dimensionless reaction rate per unit volume is [163, 219, 223]

W = δ(N) expβ((T+ − 1), (10.173)

where δ(N) is the Dirac delta function, and where the reduced temperature
T+ of the burnt gas just downstream of the reaction zone can be different
from 1 (which is, by definition, the value for an adiabatic laminar planar
flame; note that the same symbols are used for dimensional and dimensionless
parameters). We have the following relation between the species and energy
source terms and the dimensionless reaction rate per unit volume [219]:

W = −εẆY = εẆT (1 − T−). (10.174)

In (10.174), the reduced source terms are ẆY for the concentration of A
and ẆT for the temperature. The reduced temperature of the fresh gas is
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Tu. Equations 10.173 and 10.174 are valid for both incompressible [223] and
compressible [219] flows. Equation 4.46 can be applied to total mass, mass of
species A, temperature, and momentum. A corresponding equation can also
be written for the same quantities for the fresh gases, without any flame.

In the following, we will consider excess quantities ρ(f − f−) instead of
ρf .24 The obtained reduced excess quantities are thus: ρ(ϑ − 1) for volume,
ρ(Y − 1) for mass fraction, ρ(T − T−) for temperature, and ρ(v − v−) for
momentum. The space derivatives are decomposed into a normal part d/dN
and a tangential part (1−N⊗N) ·∇ using (11.18).

The material velocity v, the composite velocity V = (1−N⊗N) ·v+wN
as defined in (A.43) (see Sect. A.4 for the definition of w), and the relative
normal velocity u⊥ = (v−V) ·N are used. We also use the variable n, where
dN = εdn, for the normal coordinate instead of N .

With some assumptions about the orders of magnitude (the mean normal
curvature ∇ ·N of the surfaces—see Sect. A.3—and the time derivatives are
assumed to be of order 1, ...), and using (10.174), we obtain the balance
equations for excess quantities by subtracting between the balance equations
written for the fluid mixture and the reference unburned gas:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂(1− ρ)u⊥/∂n = ε[dV(1− ρ)/dt + (1− ρ)∇// ·V]
= ∂(u⊥ − u−⊥)/∂n + ε(ρ u⊥ − u−⊥)∇ ·N,

∂[−(1/Le)∂Y/∂n+ ρ(Y − 1)u⊥] + ε[dVρ(Y − 1)/dt + ρ(Y − 1)
∇// ·V] + ε[−(1/Le) ∂Y/∂n+ ρ(Y − 1)u⊥]∇ ·N = −W,

∂[−∂T/∂n+ ρ(T − T−)u⊥] + ε[dVρ(T − T−)/dt + ρ(T − T−)
∇// ·V] + ε[−∂T/∂n+ ρ(T − T−)u⊥]∇ · N = (1− T−)W,

∂[(p− p−)N + ρ(v − v−)u⊥]/∂n+ ε [dVρ(v − v−)/dt
+ρ(v − v−)∇// ·V] + ε [(p− p−)N + ρ(v − v−)u⊥]∇ · N
= −ε [(ρ− 1)dV(v−)/dt + (ρv − v−) · ∇⊗ v−].

(10.175)

Note that, since the upstream flow is not taken to be uniform a priori,
partial derivatives of the corresponding physical quantities are present in the
equations. This was not the case in Sect. 10.5.1.

This system is analyzed [219] using the method of matched asymptotic
expansions with two small parameters ε and 1/β. The model is derived from
that of Clavin and Joulin [53]. The expansions are performed to the first order
of magnitude.

The results for zeroth order are the density, temperature and concentration
profiles of species A. The momentum balance equation has a production term
of order ε and gives

24This is necessary to ensure the convergence of integration across interfacial zones
(see [94]).
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⎧⎨⎩ [p(0)]+− + ṁ(0)[v(0)
⊥ ]+− = 0

[v(0)
// ]+− = 0

(10.176)

to zeroth order. We observe that the velocity component parallel to the flame
front is constant across the deflagration wave.

To the first order, after analyzing the expansions and after some rather
involved calculations [219], we obtain the reduced temperature T+ and the
following dimensionless mass flow rate ṁ− = (ρu⊥)−, which exhibit the in-
fluence of the interfacial stretch ∇// ·V to zeroth order:

ṁ− = 1−ε[
ln(1/T−)
(1− T−)

−l
T−

2

∫ 1−T−
T−

0

ln(1 + x)
x

dx] ∇// ·V(0)
S +O(ε2) (10.177)

where VS is the mean velocity field (see Eq. 11.4). This is the main result of
three-dimensional analysis. The detailed analysis, including the intermediate
results, is not shown here. It can be found in the abovementioned papers. In
Chap. 11 (Eq. 11.54), we give the expression for the combustion velocity sL

deduced from (10.177), as well as an alternative classical form of sL in (11.55).

10.6 Structure of the Planar Detonation Wave

When the detonation wave is caused by a shock generated by an external
source, the resulting heating of the gas causes the chemical reactions to start,
which then continue downstream of the shock wave25 The final point is on
the adiabatic of detonation (Sect. 10.4). The final point is on the adiabatic of
detonation (Sect. 10.4).

The wave is thus a layer of finite thickness along which the energy of reac-
tion is gradually released. Throughout the process, the mass and momentum
conservation equations are valid and the mass flow rate does not change. In
other words, we remain on the line of constant mass flow rate (Michelson):
(p − 1)/(ϑ − 1) = −γM2

1 . In the Clapeyron diagram, the path is as follows
[302] (Fig. 10.18):

• Point before the shock: I
• Shock: IN
• Combustion wave: line segment Na.

Point b cannot be reached in this manner, and only the points on branch T2T
in Fig. 10.14 correspond to this type of description.

25The structure of simple planar normal shock waves were studied in particular
by Smolderen [262]. See also [94] for shock waves structure in a dusty gas.
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Fig. 10.18. Clapeyron diagram: detonation initiated by a shock

This result remains valid as long as the shock wave is the process that
triggers combustion; the detonation wave does not necessarily have to be due
to a shock wave, as was explained in Sect. 10.4, and the structure of a stable
and steady detonation wave depends on all of the internal processes that occur
inside the wave. Such processes include transfer phenomena.

Initially we regarded a combustion wave as a simple surface of disconti-
nuity, which enabled us to determine the parameters on both sides knowing
M1. The speed of the wave was calculated for Chapman–Jouguet detonation,
where M1T > 1 and M2T = 1.

In the same way as we studied the structure of the deflagration wave
(see Sect. 10.5), we will now analyze the structure of a Chapman–Jouguet
detonation wave. Despite the sharp gradients that arise in detonation waves,
we will assume that the linear phenomenological relations that give transfer
fluxes as functions of the gradients remain valid.

A detonation wave is not as difficult to analyze as the deflagration wave
of Sect. 10.5: it is much faster and introduces significant pressure gradients;
indeed, we cannot apply the Shvab–Zel’dovich approximation to it. In addition
(and this is at least true of the most stable waves), its speed relative to
the fresh gases is known—it is determined by the values of p and ϑ at the
Chapman–Jouguet point T .

Our study of the structure of the detonation wave will thus proceed directly
from the equations for steady one-dimensional flow.

In the reference frame associated with the wave, we have

d(ρv)/dx = 0, and ρv = ṁ. (10.178)
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We will assume that the reaction is of the type A −→ B to simplify matters.
For such a reaction, and assuming that Fick’s law holds, the species balance
equation is d

dx (ρvYj − ρD
dYj

dx ) = νjMjk CA.
Taking YB as the main unknown variable, we obtain (for ρD =const.)

ṁ
dYB

dx
− ρD

d2YB

dx2
= ρk(1− YB) (species). (10.179)

We cannot ignore the pressure gradient in this case. The momentum equation
is obtained after expressing the pressure tensor

P = p1− 2μD = p1− 2μ[
1
2
(∇⊗ v + ∇̃⊗ v)− 1

3
∇ · v1];

in other words, P = p1− 4
3μ

dv
dx here, and so we obtain

ṁ
dv

dx
+

dp

dx
− 4

3
d

dx
(μ

dv

dx
) = 0 (momentum). (10.180)

The energy equation can then be written as follows:

d
dx [ṁ(

N∑
j=1

Yjhj − p

ρ︸ ︷︷ ︸
internal energy

+
v2

2︸︷︷︸
kinetic energy

)− λ
dT

dx︸ ︷︷ ︸
conductiveflux

+ ρ

N∑
j=1

YjhjVj︸ ︷︷ ︸
heatfluxdue to mass diffusion

+ pv︸︷︷︸
work associatedwith the normal pressure

− 4
3
μv

dv

dx︸ ︷︷ ︸
energydissipatedby the viscosity

] = 0.

The Schmidt and Prandtl numbers are assumed to be equal to 3/4. We
then find that the preceding equation becomes

d

dx
(

N∑
j=1

ρjvjhj) + ṁ
d

dx
(
v2

2
)− g

d2

dx2
(cpT +

v2

2
) = 0,

where g is defined by (10.151) and is equal to 4μ/3, so

d

dx
(

N∑
j=1

ρjvj

∫ T

T0

cp, j) +
N∑

j=1

(q0
f )jẆj + ṁ

d

dx
(
v2

2
)− g

d2

dx2
(cpT +

v2

2
) = 0.

Thus, we have

⎧⎨⎩ (d/dx)(
∑N

j=1 ρjvj

∫ T

T0
cp, j) ∼= ṁ d(cpT )/dx,∑N

j=1(q
0
f )jẆj = [(q0

f )B − (q0
f )A] ρk(1− YB) = −Δhρk(1− YB),

(10.181)
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where Δh = ΔH/M is the enthalpy of reaction per unit mass of the mixture
(ΔH = −∑j νjMj(q0

f )j was defined in Sect. 2.4.1 and utilized in Sect. 7.4),
and M = MA =MB is the molar mass of (both) species A and B.

Finally,

ṁ
d

dx
(cpT +

v2

2
)− g

d2

dx2
(cpT +

v2

2
) = Δhρk (1− YB). (10.182)

By setting

Θ = (cpT + v2/2)/cpT1, τ = Δh/cpT1, (10.183)

where Θ is a reduced stagnation temperature, we obtain an energy equation
similar to that found for diffusion:

ṁdΘ/dx− gd2Θ/dx2 = τρk(1− YB) (energy) (10.184)

with the boundary conditions{
x→ −∞ : YB = YB1 = 0,

x→ +∞ : YB = YB2 = 1.
(10.185)

The similarity between YB and Θ/τ leads us to the linear relation

YB = (Θ −Θ1)/(Θ2 −Θ1). (10.186)

We now set

⎧⎪⎪⎨⎪⎪⎩
dξ = ṁ dx/g (reduced abscissa),

G = dΘ/dξ (gradient of reduced stagnation temperature),

U = v/c1 (reduced velocity),

(10.187)

and obtain

dΘ/dξ − d2Θ/dξ2 = gτρk(1− YB)/ṁ2. (10.188)

dΘ/dξ can be replaced with G, ρ = ṁ/c1U and k = Be−Ta/T can be expressed
as functions of Θ and U , and YB can be expressed as a function of Θ. A
differential equation in G, Θ and U is then obtained for the energy equation

dG

dΘ
= 1− gτ

Gṁ2
f(Θ, U), (10.189)

where

f(Θ, U) =
Bṁ

c1U

Θ2 −Θ

Θ2 −Θ1
exp [−Ta

T1
(Θ − γ − 1

2
U2)−1]. (10.190)
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Fig. 10.19. Detonation in the Rayleigh diagram

The momentum equation (10.180) has a first integral and becomes

ṁv + p− 4
3
μ
dv

dx
= ṁv1 + p1 (10.191)

by assuming that motionless fresh gases are present at infinity upstream.

Fig. 10.20. Solution to the differential system

This equation becomes

dU

dξ
=

p1

ṁc1
(
p

p1
− 1) + U − U1.
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Using the relation

p

p1
=

ρ

ρ1

T

T1
=

U1

U
(Θ − γ − 1

2
U2)

leads to the following equation:

dU

dξ
=

1
U

(
Θ

γ
+

γ + 1
2γ

U2)− 1
U1

(
Θ1

γ
+

γ + 1
2γ

U2
1 , ) (10.192)

and, by eliminating ξ, and because dU/dξ = GdU/dΘ, the momentum
equation can be written in the form

dU/dΘ =
Θ − g(U)
γUG

, (10.193)

with

g(U) =
U

U1
(Θ1 +

γ + 1
2

U2
1 )− γ + 1

2
U2. (10.194)

We must therefore solve the system of two differential equations (10.189) and
(10.193), where the variable is the reduced stagnation temperature character-
ized by Θ, and where the functions are the reduced velocity of the flow U and
the reduced stagnation temperature gradient G.

The Rayleigh curve makes it possible to visualize the structure of the deto-
nation wave (Fig. 10.19). It corresponds to the absence of a velocity gradient,
which gives

dU/dΘ = 0 (10.195)

or

Θ = g(U). (10.196)

The initial and final points (infinity upstream and downstream) are located
on the Rayleigh curve. The top of this curve corresponds to the Chapman–
Jouguet point, and provides the final conditions. Indeed, at the top of the
parabola, we have

d g(U)
dU

=
1
U1

(Θ1 +
γ + 1

2
U2

1 )− (γ + 1)U, (10.197)

so

U =
Θ1

(γ + 1)U1
+

U1

2
. (10.198)

Moreover, at infinity downstream, we have

U2 =
v2

c1
=

v2

c2

c2
c1

= M2

√
T2

T1
= M2

√
Θ2 − γ − 1

2
U2

2 (10.199)
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or

(1− γ − 1
2

M2
2 )U2

2 = M2
2 Θ2 = M2

2 g(U2). (10.200)

With M2 = 1 we thus obtain

U2 =
Θ1

(γ + 1)U1
+

U1

2
. (10.201)

This calculation shows that the top of the parabola corresponds well to the
Chapman–Jouguet point.26

Fig. 10.21. Situation in the Clapeyron diagram

The detonation wave travels from I to T , following a curve which crosses
the Rayleigh curve at a point with a vertical tangent, since the gradients
dU/dΘ vanish along this curve. In an extreme case, the path followed would
be INT , and the horizontal part would correspond to Θ =const. (i.e., to a
shock without a chemical reaction), and path NT to the chemical reaction.

We can solve the differential system and determine the evolution of G as
a function of Θ, just like that of U as a function of Θ; the curve shown in Fig.
10.20 is obtained. Figure 10.21 shows the situation in the Clapeyron diagram.

26In the Clapeyron plane, the Rayleigh curve corresponds to the equation p/p1−
1 = γU2

1 (1 − ρ1/ρ), or (p/p1 − 1)/(ϑ/ϑ1 − 1) = −γM2
1 . This is the straight line

that passes by the initial point (p/p1 = ϑ/ϑ1 = 1). To perform this calculation we
must simply replace U with M1ϑ/ϑ1 and Θ with ϑp/ϑ1p1 + ((γ − 1)/2)M2

1ϑ
2/ϑ2

1 in
(10.196).
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10.7 Spherical Waves

10.7.1 Case of Small Movements

Let us assume, as in Sect. 10.2.2, that the reference configuration is chemical
equilibrium in a one-reaction mixture. The motion is governed by the equation
in ϕ1, which, in the case of spherical symmetry, becomes

τv0
∂

∂t
[
∂2ϕ1

∂t2
− c2f0

r2

∂

∂r
(r2 ∂ϕ1

∂r
)] +

∂2ϕ1

∂t2
− c2e0

r2

∂

∂r
(r2 ∂ϕ1

∂r
) = 0. (10.202)

By simply setting

ϕ1 = ψ1/r, (10.203)

we obtain a planar wave equation in the potential ψ1

τv0
∂

∂t
(
∂2ψ1

∂t2
− c2f0

∂2ψ1

∂r2
) +

∂2ψ1

∂t2
− c2e0

∂2ψ1

∂r2
= 0. (10.204)

The monochromatic solutions are of the form

ϕ1 =
1
r
ϕ̂ exp [−ωγ(ω)r] exp [iω(

r

c(ω)
− t)], (10.205)

where ϕ̂ is a constant.
When ce and cf are close to each other, we have⎧⎪⎨⎪⎩

ωγ(ω) = cf0−ce0

c2
e0

ω2τv0
1+ω2τ2

v0

c2(ω) =
c2

e0+ω2τ2
v0c2

f0

1+ω2τ2
v0

,

(10.206)

where γ(ω) and c(ω) are the attenuation and the speed of the wave, respec-
tively. In addition to chemical damping, characterized by ωγ(ω), there is geo-
metrical damping that behaves as 1/r. The density disturbance ρ1 will take
the same form as ϕ1:27

ρ1 =
1
r
ρ̂ exp (−ωγr) exp [iω(

r

c
− t)]. (10.207)

Let us apply this result to the following experimental situation (Fig. 10.22,
after [286]). Consider a container with two compartments, one on top of the
other. The shock wave generated by a bullet moving at supersonic speed V0 in
the top compartment meets a series of small, equidistant holes located along
a straight line x′x in the wall separating the two compartments. The passage

27Wegener et al. [286] note that, for a medium with a number of nonequilibrium
processes, the wavefront will still decay as r−(n−1)/2 exp (−r/λ) with n = 1, 2, 3 for
plane, cylindrical, and spherical waves, respectively.
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Fig. 10.22. Schematic of the Wegener, Chu and Klikoff experiment

of the shock wave above each small hole generates a wave with spherical
symmetry in the lower container, which was initially in chemical equilibrium
[286].

The spherical wave has an upper limit on its speed of cf0, which is damped
as (1/r)e−iKir, where

Ki = lim(γω)ω→∞ = (cf0 − ce0)/τv0c
2
e0. (10.208)

It also has a lower limit on its speed ceo < cf0, which is damped as 1/r.
The hull of the upper limit on the speed is a half-cone with a vertex half-

angle of αf such that sinαf = cf0/V0. The hull of the lower limit on the speed
is a half-cone with the same top and the same axis, but with a half-angle of
αe such that sinαe = ce0/V0 (Fig. 10.22).

The schlieren photographic technique highlights the geometrical and chem-
ical damping of these waves and makes it possible to experimentally deduce
the chemical time τv0. A good way to do this is to observe the damping
along the external cone and to compare it with what occurs in a nonreactive
medium.

10.7.2 Spherical Flames

Spherical diffusion flames are discussed in Chap. 12 in relation to droplet
combustion. Spherical premixed flames can be ignited in a mixture of fuel
and oxidizer by a spark. Formulae for the propagation of such a flame have
been reported by several authors, and they avoid the complications associated
with thermodiffusive instabilities [51, 202, 206]. We will only present a result
from recent work on spherical deflagration wave instability here.
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Fig. 10.23. Sequence of schlieren images for typical flame propagation, showing the
transition from a smooth (t = 1375 μs, R = 1.95 cm) to a cellular (t = 1750 μs,
R = 2.47 cm) spherical premixed flame (G. Jomaas, private communication, 2009;
reprinted with permission from [128])

The linear stability of an unsteady spherical flame was studied analyti-
cally by Bechtold and Matalon [11], and in a recent paper Jomaas, Law and
Bechtold [128] successfully compared theoretical results to experimental ones.
The basic (corrected) formula for the instability threshold is:

Pec = Rc/�f = Pe1(σ) + Ze(Le− 1)Pe2(σ), (10.209)

where Pec is the critical Péclet number for transition to cellularity, Rc is
the flame radius at transition, �f is the laminar flame thickness, Ze =
Ea(Tad − Tu)/RT 2

ad is the Zel’dovich number, Ea is the overall activation
energy, Tad is the adiabatic flame temperature, and σ is the ratio of the den-
sity of the burned mixture to that of the unburned mixture. Pe1 provides the
contribution from hydrodynamic instability, and Pe2 the additional influence
of diffusional-thermal instability (see Sect. 8.2.1). Cellular instability (Fig.
10.23, after Jomaas et al. [128]) can appear during the growth of the flame
radius, and the study shows the influence of each source of instability when
a near-equidiffusive fuel (acetylene) or nonequidiffusive fuels (hydrogen and
propane) are used.
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10.7.3 Blast Waves

Let us consider a local explosion of energy E0 in a motionless atmosphere
characterized by ρ1 and p1 (Fig. 10.25). The wave is assumed to be very strong,
so that the ratio p2/p1 of the pressures of the downstream and upstream flows
is infinite [159, 251, 302]. For a shock wave, this corresponds to M1 →∞. We
will assume an ideal gas (with constant γ).

The classical balance relations at discontinuity are valid on both sides of
the spherical shock wave obtained.

Fig. 10.24. Yakov Borisovich Zel’dovich, Soviet physicist (1914–1987) (image from
the website Wikipedia)

Using Hugoniot’s relation (10.31)

v2
1

2
+

c21
γ − 1

=
γ + 1

2(γ − 1)
c∗2

and Prandtl’s relation (10.34) v1v2 = c∗2, and taking conservation of the mass
flow rate into account, we get

v2

v1
=

ρ1

ρ2
=

2
γ + 1

M−2
1 +

γ − 1
γ + 1

; (10.210)

i.e., for a strong wave,

ρ1

ρ2
=

γ − 1
γ + 1

=
v2

v1
. (10.211)

The absolute velocity downstream of the spherical shock wave is thus
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Fig. 10.25. Blast wave

u2 =
2

γ + 1
D. (10.212)

We also have (Hugoniot’s relation)

v2
2

2
+

c22
γ − 1

=
v2
1

2
+

c21
γ − 1

, (10.213)

which, after dividing by c21, gives

c22
c21

=
T2

T1
= 1 +

2(γ − 1)
(γ + 1)2

1
M2

1

(M2
1 − 1), (γM2

1 + 1) (10.214)

and, for very large Mach numbers,

T2

T1

∼= 2γ(γ − 1)
(γ + 1)2

M2
1 . (10.215)

Finally,

p2

p1
=

ρ2

ρ1

T2

T1
, (10.216)

which gives

p2

p1

∼= 2γ
γ + 1

M2
1 (10.217)

for large M1, or

p2
∼= 2ρ1v

2
1/(γ + 1) = 2ρ1D

2/(γ + 1). (10.218)
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Let us seek self-similar solutions, with the only parameters being E0, ρ1, r
and t (since p1, which is much lower than p2, can be ignored).

The single Π ratio is

Πρ = ρ1r
5t−2/E0, (10.219)

and the problem thus depends on the single dimensionless variable

ξ = r(ρ1/E0t
2)1/5. (10.220)

We denote the value of ξ for the wavefront as ξ0, and its distance from the
center will be (for constant ξ0)

R(t) = ξ0(E0/ρ1)1/5 t2/5. (10.221)

The speed D of the wave will be equal to

D = dR(t)/dt = 2/5 ξ0(E0/ρ1t
−3)1/5 = 2R/5t (10.222)

or

D = 2/5 ξ
2/5
0 (E0/ρ1)1/2R−3/2. (10.223)

Therefore, just downstream of the wave (inside a sphere of radius R(t)) we
have ⎧⎪⎪⎨⎪⎪⎩

u2(t) = 4
5(γ+1) ξ0 (E0

ρ1
)1/5 t−3/5,

p2(t) = 8ρ1
25(γ+1) ξ

2
0 (E0

ρ1
)2/5 t−6/5,

ρ2 = γ+1
γ−1 ρ1.

(10.224)

These relations provide the variations in u2, p2 and ρ2 just downstream of the
wave as functions of time.

We can also express these quantities as follows (taking into account Eq.
10.222): ⎧⎪⎪⎨⎪⎪⎩

u2(t) = 4
5(γ+1)

R
t ,

p2(t) = 8ρ1
25(γ+1)

R2

t2 ,

ρ2 = γ+1
γ−1 ρ1 = const.

(10.225)

The self-similar solutions will be such that the ratios u/u2, p/p2 and ρ/ρ2 are
functions of ξ only. Let us then write (as done by Landau)⎧⎪⎪⎨⎪⎪⎩

u(t) = 4
5(γ+1)

r
t u
′,

p(t) = 8ρ1
25(γ+1)

r2

t2 p′,

ρ = γ+1
γ−1 ρ1 ρ

′.

(10.226)
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For self-similar solutions, the new parameters u′, p′ and ρ′ are indeed functions
of the single variable ξ, since we have

r(t)/R(t) = ξ/ξ0. (10.227)

For ξ = ξ0 (i.e., just downstream of the wave), we of course obtain u′ = p′ =
ρ′ = 1. Taking into account the spherical symmetry of this case and the fact
that we have an inviscid fluid in adiabatic evolution, the classical mass and
entropy balance equations that are valid inside the spherical wave give

∂ρ

∂t
+

1
r2

∂(r2ρu)
∂r

= 0, (10.228)

∂(p/ργ)
∂t

+ u
∂(p/ργ)

∂r
= 0. (10.229)

We then obtain

(u′ − γ + 1
2

)
d ln ρ′

d ln ξ
+

du′

d ln ξ
= −3u′ (continuity) (10.230)

d ln(p′/ρ′γ)
d ln ξ

=
5(γ + 1)− 4u′

2u′ − γ − 1
(entropy) (10.231)

with the new parameters. The entropy equation is still

(u′ − γ + 1
2

)(
d ln(p′/ρ′γ)

d ln ξ
+ 5) = 3u′. (10.232)

Combination with the continuity equation yields

(u′ − γ + 1
2

)(
d ln(p′/ρ′γ−1)

d ln ξ
+ 5) +

du′

d ln ξ
= 0. (10.233)

This relation is easily integrated and gives

p′

ρ′γ−1
(2u′ − γ − 1) = −(γ − 1)(

ξ0
ξ

)5. (10.234)

The energy equation (or the one for momentum) must be added to the pre-
ceding relations. However, it is more useful to obtain another first integral
directly. To do this, we note that the conservation of total energy inside the
sphere of radius R(t) (corresponding to ξ0) and the similarity of the problem
imply that energy is preserved inside any sphere of radius r(t) corresponding
to ξ =const.

Consider r, the radius of a sphere of parameter ξ at time t; at time t+ dt,
this radius becomes

r(t + dt) ∼= r + (dr/dt)dt, (10.235)
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where dr/dt will be considered at constant ξ

dr/dt = 2r/5t. (10.236)

Investigating the energy balance between spheres of radii r and r(t+dt) leads
us to conclude that the total energy contained in this volume, 4πr2ρ(e +
u2/2)(dr/dt)dt, is derived solely from the flow that crosses a sphere of radius
r : 4πr2 ρu (h + u2/2) dt. This leads to the relation

Fig. 10.26. Blast wave: evolutions of the reduced parameters (redrawn after [147])

u(h + u2/2) = (e + u2/2) 2r/5t. (10.237)

Since e = p/(γ − 1)ρ and h = γp/(γ − 1)ρ, we have

p

ρ
=

γ − 1
2

u2 2r/5t− u

γu− 2r/5t
, (10.238)

and by shifting to the parameters u′, p′, ρ′, we get

p′

ρ′
= u′2

γ + 1− 2u′

2γu′ − γ − 1
. (10.239)

This adiabaticity relation does not depend on ξ.
Relations 10.230, 10.234 and 10.239 allow us to solve this problem com-

pletely, taking into account the boundary conditions. Equations 10.234 and
10.239 permit us to express ρ′ and p’ according to u′ and ξ. By introducing
the value obtained for ρ′ into (10.230), we can obtain a differential equation
in u′ and du′/d ln ξ that can easily be integrated.
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Thus, knowing u′, ρ′ and p′ as functions of ξ and ξ0, we can then determine
ξ0 by writing the conservation of total energy in a sphere of radius R(t):∫ R(t)

0

ρ(p/(γ − 1)ρ + u2/2) 4πr2dr = E0.

This integral is expressed as a function of ξ0. Calculations carried out for
ambient air(γ = 7/5) lead to the value ξ0 = 1.033.

Landau and Lifschitz [147] (see also [219]) give the evolutions of u/u2,
ρ/ρ2 and p/p2, obtained numerically, as functions of r/R (equal to ξ/ξ0; see
Fig. 10.26).
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Interface Phenomena

This chapter is devoted to interfaces of various kinds. In addition to interfaces
that separate two immiscible pure fluids at mechanical and thermodynamic
equilibrium, we consider moving surfaces with surface tension and internal
viscosity. Heat and mass transfer can also occur through and along inter-
faces, and this can induce evaporation and condensation processes, chemical
and thermal Marangoni effects, etc. Chemical reactions may also take place.
Various miscibility scenarios can be considered too.

Some general information on interfaces is given in Sect. 11.1, which
presents several types of interfaces along with an analysis of scales. Some
thermodynamic aspects are also discussed.

The basic equation that characterizes the balance for a quantity F is estab-
lished in Sect. 11.2 with the aid of specified assumptions. Choosing appropriate
coordinates and an appropriate reference frame enables us to integrate—as far
as we can—the three-dimensional equations for the interfacial layer in order
to obtain the two-dimensional equations for material surfaces.

Simple interface balance laws are obtained in Sect. 11.3 for surface vari-
ables that obey the Gibbs relation.

The problem of closure relations is studied in Sect. 11.4. In some cases,
constitutive relations are deduced directly from linear irreversible thermody-
namics for two-dimensional interfaces. In other cases, it is necessary to perform
integration through the interfacial layer to obtain closure relations.

In Sect. 11.5 we use the method of virtual power to obtain the momentum
equation when the interface shows a certain degree of resistance to the strain,
particularly when bending moments are applied to it.

Finally, in Sect. 11.6 we provide some background on second-gradient the-
ory, which in particular allows us to link surface tension to a bulk coefficient
called the capillarity coefficient.

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_11, © Springer Science+Business Media, LLC 2010
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11.1 General Information About Interfaces

11.1.1 Interfaces and Interfacial Layers

Interfaces are material media that are similar to surfaces at the macroscopic
scale. However, interfaces are not simply geometric surfaces. At a finer scale,
down to the microscopic scale, the interface becomes an “interfacial layer”—
a three-dimensional medium where the variations of some properties in the
direction normal to the interface are definitely more significant than those in
the direction tangential to it [94]. Thus, an “interface” and an “interfacial
layer” differ in terms of scale length; the thickness of an interfacial layer is
always small compared to a macroscopic reference length. Figure 11.1 shows
the evolution of a quantity f across an interfacial layer and across a corre-
sponding interface. For example, this quantity could be the density in a system
consisting of a liquid and a gas separated by an interface, a solid plate, or a
shell which has one of its surfaces in contact with the liquid and the other in
contact with the gas. In such cases there are clear physical discontinuities at
the macroscopic scale. However, fluid boundary layers or combustion waves
can also be considered interfaces (and we will do so here), because parame-
ters such as velocity, temperature or concentration vary strongly over a short
distances across them.

Interface modeling is very often a complex problem. In theory, it involves
reducing what occurs inside the thickness of the “interfacial layer” to a de-
scription of surface quantities and jumps in bulk properties. It is easy to see
that such an approach can lead to errors, either because we lose too much
information by doing so or because describing the suface properties of the
medium is even more complicated than describing its bulk properties. There-
fore, we will largely limit ourselves here to situations where it is known that
this approach is appropriate, although we will seek to study cases that are as
generally applicable as possible; i.e., we will assume moving and deformable
interfaces. We will also extend the method to some other less familiar cases.
The main task will be to establish the balance equations and their closure
relations.

Some types of interface are presented in Sect. 11.1.2. Surface geometry
and surface motions are described in Sects. A.3 and A.2 of Appendix A.
Thermodynamic definitions are given in Sect. 11.1.3.

11.1.2 Types of Interfaces

In the field of physics, we can distinguish between three types of interface:

• The interface is the surface that separates two media with different natures
or physical states. The most traditional of these is an interface that sepa-
rates phases. One example is the surface of a moving liquid with surface
tension.
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Fig. 11.1. From an interfacial layer to an interface

• The interface is a film (flexible or not) of matter that is in contact with
fluids or solids on both of its surfaces. A membrane separating two fluids
is a typical example. A deformable solid shell is another example (see Sect.
11.5).

• The interface is an interfacial zone of a single material medium that ex-
hibits a strong gradient. This is the case for boundary layers of various
types, contact surfaces, combustion waves and shock waves. For waves,
a large amount of matter continuously crosses the interfacial zone so the
transverse flow is important, while the transverse flow is weak in other
cases (diffusion layers).

In all cases, we can consider exchanges of mass, momentum, heat and
energy in the form of work inside the interface and between the interface and
the bulk.

We will take a special interest in situations where the interfacial layer
can be regarded as a continuous medium; i.e., where its analysis does not
require shifting to the molecular scale. We will thus describe the medium at an
intermediate scale, called sometimes a “mesoscopic” scale, which is sufficiently
small but is still larger than the intermolecular distance (for gases, larger than
the mean free path), using the classical equations of continuous media. The
balance laws for the interface will be obtained by integrating these equations
along a normal coordinate through the interfacial layer. In all cases, we will
assume that the geometry of the interfacial layer is described by layers of
surfaces (S) between limiting surfaces (S−) and (S+), at which the properties
hardly vary (Fig. 11.2).

This integration will be facilitated by employing certain assumptions relat-
ing to the internal velocity field. It is generally more convenient to introduce
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a velocity field V that does not vary very much as the interfacial layer is
crossed.

Let us refer to the jump equations to determine the most suitable velocity
field. The momentum equation (4.99) given in Sect. 4.9 leads to two quite
distinct situations. In the first, the normal flow is zero (this is called a contact
surface). Here, the pressure does not vary and the normal component of the
relative velocity of the surface is zero. In the second, the normal flow is nonzero
(this is called a shock wave in the case of a simple compressible fluid). Here,
the tangential velocity does not vary as the surface is crossed, but the speed
in the normal direction does, and its variation is dependent on the pressure
jump.1

The following velocity fields are thus possible for the interfacial layers:

1. For boundary layers (Chap. 9) and shear layers:

V = v⊥ (11.1)

2. For shock waves, premixed flames, and evaporating surfaces (see Fig. 11.2
and Chap. 10):2

V = v// + w. (11.2)

11.1.3 Thermodynamic Definitions

The thermostatic relations between internal energy, entropy, density and
chemical concentrations obtained in Chap. 2 for three-dimensional media are
valid for the bulk materials in contact with the two sides of the interfacial
layer. They are also valid inside the interfacial layer for some types of inter-
faces.

1If the surfaces (S) follow the motion of the material (the local barycentric
motion for a fluid mixture ), we can consider the simplest case, where the velocity
is constant as the interfacial layer is crossed. When modeling the interfacial layer,
each point P on surface (S) is then characterized by a single velocity V = v that
only depends on the position of P on the surface.

2In this case where the interface is crossed by the fluid, in addition to the material
velocity field v (the barycentric velocity for a mixture), it will be necessary to
consider the velocity field V at point P . V is a continuous field with a component
normal to S that is the displacement velocity of S in the normal direction (i.e., w;
see Sect. A.2; the component normal to (S+) is the displacement velocity of (S+) in
the normal direction, i.e., w+; and the component normal to (S−) at any point on
(S−) is the velocity of (S−) in the normal direction, w−). Moreover, the tangential
component of V is equal to that of v. If we move from (S−) to (S+) through a
continuous family of nonsecant surfaces (S) , each of these surfaces will have a local
normal velocity w.
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Fig. 11.2. Definition of the velocity vector inside an interfacial layer (2D represen-
tation)

They are not sufficient, however, to describe capillary interfacial layers.
In this case, we need other thermostatic relations where the internal energy
and the other thermodynamic potentials depend upon the density gradient
too (see Sect. 11.6).

If f is the quantity F per unit mass and ρ is the density of the mixture,
we define the mass per unit area of the surface (see Sect. A.2) as

ρa =
∫

C3

ρ dN =
∫ N+

N−
ρ dN = ε

∫ n+

n−
ρ dn, (11.3)

where dN = ε dn with ε = δ/L 
 1; L is the hydrodynamic length and δ
is a reference length that characterizes the variation of the internal physical
process across the interface. The quantity n designates a measured length at
the scale of the thickness δ of the interfacial layer, whereas N is the same
length at the hydrodynamic scale.

We define the mean surface quantity per unit mass fS at any point of the
interface (Figs. 11.1, A.2):

ρafS =
∫ N+

N−
ρfdN = ε

∫ n+

n−
ρfdn. (11.4)

Mathematically, a change of scale is very important because it can transform
finite values (at a large scale) into infinite ones (at smaller scales). In partic-
ular, the convergence properties of integrals can be modified. In some cases it
may be suitable to introduce excess quantities. If the interface is located on
average at n = 0, and f− and f+ are the values of f in the bulk media on
each side of the interface, then the excess quantity defined by
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ρa ΔfS = ε

∫ 0

−∞
(ρf − ρ−f−) dn + ε

∫ ∞
0

(ρf − ρ+f+) dn (11.5)

has a finite value in general [94]. Excess quantities will not be considered
in the following section, but it is necessary to consider them when studying
stretched premixed flames such as those in Sect. 11.4.2 [94], for instance.

Thermostatic relations between the internal energy eS , the entropy sS ,
the density ρa and the chemical concentrations YjS are not evident a priori.
They result from the integration of thermostatic relations through the three-
dimensional interfacial layer. In some cases (see Sect. 11.3), simplified relations
analogous to those for the bulk can be assumed (see Eqs. 11.28).

For interfacial media with internal capillarity, we must integrate equations
of the type (11.89) that are valid for such media.

11.2 General Form of Interface Balance Laws

The aim of the concept of an interface is to reduce what occurs in a interfacial
layer to a description relating to a material surface [65, 85, 95, 102, 259]. This
requires the introduction of surface state parameters as well as flux densities
and production rates. These new quantities obey constitutive relations that
need to be determined in each case. Very often, this means that it is necessary
to study the bulk of the interfacial layer, which explains why we previously
proceeded to transform the bulk equations.

11.2.1 Appropriate Form of Bulk Equations

The equations of a continuous medium (single-component or mixed) can be
written in the integral form

dV

dt

∫
V
ρf dV +

∫
∂V

[J F + ρf(v −V)] · ndS =
∫
V
ẆF dV, (11.6)

where v(x, t) is the material velocity field of the continuous medium, and
where V(x, t) is an arbitrary velocity field that is continuous and differen-
tiable. The derivative dV/dt means that we follow the motion velocity V of
the closed volume (V). n is the normal external to the closed surface (∂V)
surrounding the related volume (V). As in Chap. 4, f is the quantity F per
unit mass, J F is the flux density of quantity F , and ẆF is the production
rate of F . In local form, this equation becomes

dV(ρf)
dt

+ ρf∇ ·V + ∇ · [J F + ρf(v−V)] = ẆF . (11.7)
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Let us choose to describe the interfacial layer in an orthogonal curvilinear
reference frame such as that defined by Eq. A.6, with the surfaces (S) corre-
sponding to x3 =const. If the velocity at point P on (S) is v, its projection
on the plane that is tangent to (S) at P is written

v// = (1−N⊗N) · v, (11.8)

where N is the unit normal to (S) at P , oriented in a direction chosen in
advance.

Moreover, the normal component of v is

v⊥ = N · v. (11.9)

If w is the speed of displacement of surface (S) in the normal direction, we
can choose the field V(x, t) such that

V ·N = w ·N⇒ V⊥ = w. (11.10)

The relative velocity is

u = v −V (11.11)

and its normal component becomes

u⊥ = v⊥ − w. (11.12)

Also let us note that

∇ ·V = ∇// ·V + ∇⊥ ·V, (11.13)

with

∇⊥ ·V =
1
h3

(w,3 + V1
h3,1

h1
+ V2

h3,2

h2
). (11.14)

Since the interface is defined physically, let us choose to describe the inter-
facial layer as a set of parallel surfaces (S). This supposes that the order of
magnitude of the interfacial thickness does not vary in space. It is a restric-
tive assumption. The set of surfaces (S) become deformed in time, but these
surfaces remain parallel. h3 then depends only on x3, and the relations (A.63)
are valid. If we also assume that the velocity w is uniform along a common
normal N, we find that

∇⊥ ·V = 0, ∇ ·V = ∇// ·V. (11.15)

The divergence of vector V represents the stretching rate for each surface
(S), the points of which have the velocity V. To ensure that this stretching
rate is realistic, it is sufficient to choose V in such a manner that V// is
equal to v//.
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Let us now consider an unspecified field of vectors ϕ(x, t). We have

∇ ·ϕ = ∇ ·ϕ// + ϕ⊥∇ ·N +
∂ϕ⊥
∂N

(11.16)

according to (A.21).
However, according to the assumptions given in Sect. A.4,

∇⊥ · ϕ// = 0, (11.17)

so that we finally obtain

∇ · ϕ = ∇// ·ϕ// + ϕ⊥∇ ·N +
∂ϕ⊥
∂N

. (11.18)

Equation 11.7 then becomes

dVρf/dt+ ρf∇// ·V + ∇// · [J F// + ρfu//]

+(JF⊥ + ρfuF⊥)∇ ·N + (∂/∂N)(JF⊥ + ρfuF⊥) = ẆF .
(11.19)

Thus, by setting

JVF = J F + ρfu, (11.20)

we obtain the following final relation:

dVρf

dt
+ ρf∇// ·V + ∇// · JVF + ∂JVF⊥/∂N = ẆF , (11.21)

where

∇// · JVF = ∇// · JVF// + JVF⊥∇ ·N. (11.22)

We need to make assumptions in order to solve the balance equations
inside the interfacial layer. The principal assumption relates to the orders of
magnitude of the gradient components: for some quantities (depending on
the problem), the order of magnitude of the normal gradient (i.e., gradient
in the normal direction) is higher than that of the tangential gradient. Thus,
for a medium with constant density, the normal density gradient is zero. In
the same way, for interfaces of the wave type, the normal gradient of the
tangential velocity is small. For a flame for example, the pressure gradient is
negligible, whereas the temperature and reactant concentration gradients are
high. For a capillary surface, the pressure gradient is high, as is the density
gradient.3 Pressure and temperature gradients are high for a shock wave or a
detonation wave. These examples illustrate the wide range of situations that

3An interfacial layer is a capillary medium; see Sect. 11.6
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are possible, and we cannot hope to solve the most general problem without
addressing physical considerations a priori.

In addition, we defined the interfacial layer as a set of parallel surfaces
(S), which enabled us to obtain (11.21). However, an interface is not always a
layer that is delimited by two parallel surfaces (S−) and (S+). It follows that
by dictating that the surfaces are parallel, we will see some normal gradients
that vary in order of magnitude from one point to another. Nevertheless, we
will limit ourselves here to cases where this is not the case.

Certain terms that are not normal gradients can be of a similar order of
magnitude to them. This is the case for certain production rates (chemical or
volume for example), and for the stretching rate of a planar flame in front of
a stagnation plane (see Sect. 7.7).

The radius of curvature of the interface will always be assumed to be very
large compared to the interfacial thickness. This is one of the conditions that
makes it possible to consider the medium (the interfacial layer) as a surface.
Zones with a small radius of curvature require special study, and this will
not be performed here (see [206] for how to solve this complex problem for
premixed flames).

In spite of these difficulties, we will see that a number of interfaces are
accurately described by surface balance equations.4

11.2.2 General Balance Equation of an Interface

Equation 11.21 is easily integrated into the crossing of the interfacial layer
if the velocity V and the differential operator ∇// are conservative along
normal curves; i.e., they do not change if x3 changes between x3− = N− and
x3+ = N+ for a given x1, x2, t (see Sect. A.3). We can set5

V = VS , ∇// = ∇S . (11.23)

Let us also set (see Eq. 11.20 for the definition of JVF )⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρafS =

∫ N+

N−
ρf dN,

JVFa =
∫ N+

N−
JVF dN,

ẆFa =
∫ N+

N−
ẆF dN.

(11.24)

4Finally, note that, whenever the interface exhibits a certain degree of resistance
to pleating, it is necessary to establish momentum balance equations that relate to
not only resultants of forces but also to torque moments. The preferable approach
in this case is to use the virtual power method. This is presented in Sect. 11.5.

5Note that integrating the bulk equations without this latter restrictive hypoth-
esis leads to the same form (11.25) of balance equation for the property F of an
interface [94]. The result is obtained as an approximation, taking into account the
thinness of the interfacial layer in particular. Also note that, in the cited work, a ma-

terial velocity vector vS is introduced for the interface such that ρavS =
∫ N+

N−
ρvdN .
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We obtain, with the aid of the previous assumptions (in particular the fact
that the thickness N+ −N− is constant and uniform6),

dS (ρafS)
dt

+ ρafS ∇S ·VS + ∇S · JVFa + [JVF⊥]+− = ẆFa. (11.25)

Here, the quantity ρafS is the surface density of F (the quantity F per unit
area), JVFa is the vector density of flux of F per unit length, and ẆFa is the
surface production rate of F . The jump [JVF⊥]+− is also equal to

[JF⊥ + ρf u⊥]+− = [(J F + ρf(v −V)) ·N]+−. (11.26)

If, instead of deducing (11.25) from the bulk equation (11.21), we postulate
the existence of interfacial quantities, we can also obtain (11.25) directly.
We initially perform an integral balance of the property F on the portion of
surface (Σ) bounded by the curve (C) (Fig. 11.3). We then deduce the local
equation with the aid of some mathematical transformations (see [10, 217]).

Fig. 11.3. The portion of surface (Σ)

Equation 11.25 is advantageous if we can solve the resulting system of
equations that we deduce for mass, species, momentum and energy directly,
using initial and boundary conditions.

This implies that—with the aid of an appropriate choice for the velocity V
that obeys (11.10)—we know constitutive relations for the interface. In some
cases, these constitutive relations are obtained experimentally (for example

6In particular, in this cases, if we set dVS/dt = dS/dt to simplify the notation,

we have dS (
∫ N+

N−
ρfdN)/dt =

∫ N+

N−
[dV(ρ f)/dt] dN because dV(dN)/dt vanishes.
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surface tension); in other cases, they result from the asymptotic analysis of
the system deduced from (11.21) (e.g., premixed flames; see Sect. 10.5.2, etc.).

The equations for the bulk in contact with the interface will have also
to be determined. In certain cases, the jump [JV F⊥] also obeys a constitutive
relation that can be determined a priori (adsorption–desorption). We will now
provide some examples to illustrate these remarks.

11.3 Interface Balance Laws When Surface Variables
Obey Classical Thermodynamic Relations

Generally, the thermodynamic states of a two-dimensional interface depend
not only on the thermodynamic variables of the surface but also on those of
the volumes in contact with it [65]. This is what we find when we integrate the
bulk variables along the normal coordinateN , as in the first relation of (11.24).
For the interfaces considered in this section, the surface variables obey ther-
modynamic laws that are similar to those obeyed by the bulk variables [260].
This assumes that these interfaces behave, at equilibrium, like autonomous
systems. This is the case for some real interfaces, and it is important to know
how to study them. We initially write down the laws of state by regarding
the interface variables as being autonomous with respect to the bulk vari-
ables. The complementary constitutive relations are then obtained from the
expression for the surface entropy production rate.

11.3.1 Classical Thermodynamic Relations

Thus, the laws of state obey7{
ρs = (1/T ) ρ e+ p/T −∑j(gj/T ) ρj,

dρs = (1/T ) d(ρ e)−∑j(gj/T ) dρj

(11.27)

in the bulk volumes in contact with the interface, and{
ρasS = (1/T ) ρaeS + σ/TS −

∑
j(gjS/TS) ρja,

dρasS = (1/T ) dρaeS −
∑

j(gjS/TS) dρja

(11.28)

at the interface.8

7ρf is the density of F ; i.e., the value of F per unit volume. ρafS is the surface
density of F as defined by (11.24).

8Thermodynamic relations were given in Sect. 2.6, but for molar quantities,
denoted F̄a. The two types of relations obtained are similar, but (11.28) is better
suited to the following study of interface balance laws.
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11.3.2 Interface Balance Laws for Species, Mass, Momentum and
Energy

If VS = vS , the surface material velocity vector, the balance equations are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSρa/dt + ρa∇S · vS + [ρu⊥]+− = 0 (surface mass),

dS(ρaYjS)/dt + ρaYjS∇S · vS + [Jj⊥ + ρju⊥]+− + ∇S ·J ja

= Ẇja (surface mass of the species),

dS(ρavS)/dt + ρavS∇S · vS + [P ·N + ρvu⊥]+− −∇S · σ
=
∑

j(ρaYjS)f jS (surface momentum),

dS(ρaeS + ρakS)/dt + (ρaeS + ρakS)∇S · vS

+[q⊥ + v ·P ·N + ρ(e + k)u⊥]+− + ∇S · (qa − vS · σ)

=
∑

j(ρaYjS)vjS · f jS (total surface energy),

(11.29)

with

{
ρakS = ρa v

2
S/2,

dS (ρafS)/dt = dvS
(ρafS)/dt = ∂(ρafS)/∂t + vS ·∇(ρafS).

(11.30)

Multiplying the momentum equation by va yields the kinetic energy balance

⎧⎪⎪⎨⎪⎪⎩
dS(ρakS)/dt + ρakS∇S · vS + [v ·P ·N
+ρKu⊥]+− −∇// · (vS · σ) =

∑
j ρjavS · f jS

−σ: ∇// ⊗ vS + [12ρ(v − vS)2u⊥ + (v − vS) ·P ·N]+−.

(11.31)

Subtracting from the energy equation leads to

⎧⎪⎪⎨⎪⎪⎩
dS(ρaeS)/dt + ρaeS∇S · vS + [q⊥ + ρeu⊥]+−
+∇S · qa =

∑
j J ja · f jS

+σ: ∇S ⊗ vS − [12ρ(v − vS)2u⊥ + (v − vS) ·P ·N]+−.

(11.32)

11.3.3 Interfacial Entropy Production

Taking into account the state relations, we can write
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da(ρasS)/dt = (1/TS) da(ρaeS)/dt−∑j(gjS/TS) dSρja/dt,

J Sa = (1/TS)qa −
∑

j(gjS/TS)J ja,

J S = (1/T )q−∑j(gj/T )J j .

(11.33)

The entropy balance is

dS (ρasS)
dt

+ ρasS∇S · vS + [JS⊥ + ρSu⊥]+− + ∇S ·J Sa = ẆSa. (11.34)

Finally, using all of the preceding relations and eliminating the entropic vari-
ables yields the surface entropy production rate:

ẆSa = (1/TS)σv: ∇S ⊗ vS + qa ·∇S(1/TS)

−∑j J ja · [∇a(gjS/TS)− (f jS/TS)]−∑j(gjS/TS) Ẇja

+[(q⊥ + ρhu⊥)(1/T − 1/TS)

−∑j(Jj⊥ + ρju⊥)(gj/T − gjS/TS)

−(1/TS) [(v − vS) ·Π ·N− (1/2) ρ(v− vS)2u⊥]+−,

(11.35)

where the enthalpy density ρ h = ρ e + p, the viscous pressure tensor Π =
P− p1, and the viscous surface stress tensor σv = σ − σ(1−N⊗N).

The first four terms of the right hand side represent the respective effects of
the surface viscosity, thermal transfer, species diffusion, and surface chemical
reactions[16].

The jump term [ ]+− relates, as in Sect. 4.9, to exchanges between the
interface and the volumes in contact with it (successively: energy, mass, mo-
mentum, and kinetic energy exchanges).

The last term, which is third degree in the relative velocity, is generally
negligible. It must be neglected in a theory that does not take into account
terms with the diffusion velocity squared. The term (v−va) is like a diffusion
velocity of the fluid relative to the interface, and so the square of this term
must vanish in the entropy production expression.

11.4 Constitutive Relations of Interfaces

11.4.1 Constitutive Relations Deduced Directly from Linear
Irreversible Thermodynamics for Two-Dimensional Interfaces

Generalities

Generalized fluxes and forces are apparent in the expression for ẆSa given in
Sect. 11.3 (Eq. 11.35). These must be rearranged to highlight the phenomena
that are actually independent.
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σv is a symmetric tensor such that the contracted product of it with N
(on the left or on the right) vanishes. The velocity gradient tensor can be
replaced with that for the deformation rates (or the strain rate tensor)

DS =
1
2
[(∇S ⊗ vS) · 1// + 1// · ˜(∇S ⊗ vS)]. (11.36)

We will separate the terms in the gjS/TS gradient that depend on temperature
from those that do not depend on temperature. The terms that do depend
on temperature will be gathered together with the second term of ẆSa in
∇S(1/TS) to highlight thermal conduction. Such a rearrangement is similar
to that performed for the entropy production in bulk (see Sect. 7.3). For the
jump term, we will also gather the factor of 1/T − 1/TS in gj/T − gjS/TS

together with the term of thermal transfer.
At equilibrium, the generalized fluxes and forces vanish. The generalized

forces are DS/TS, ∇S(1/TS), (∇S(gjS/TS)−fjS/TS), surface chemical affini-
ties, (1/T − 1/TS), (gj/T − gjS/TS), and −(1/TS)(v − vS).

The constitutive relations are obtained (except in the case of chemical
kinetics) by writing linear relations between fluxes and forces which assume
that the forces are of low intensity.

The simplified theory provided here, where interfaces are assumed to be au-
tonomous, applies rather well to capillary surfaces, to adsorption–desorption
phenomena, to some membranes, to elastic and viscoelastic films, to evapo-
rating surfaces, etc. To solve it, the laws of state must be known in each case,
as well as the constitutive relations and their transfer coefficients.

Note that some parts of a given interfacial medium can be regarded as
simplified interfaces while others cannot. This is the case for an evaporating
layer with diffusion: the surface of the liquid is often considered a simplified
interface, but we cannot consider the diffusion layer above it in this way.

Constitutive Relations for Momentum

Surface Stresses

Let us consider a liquid surface in contact with a gas that neither evaporates
nor condenses, so the only exchanges that occur involve momentum. The
surface mass and the surface momentum are negligible, so the terms in ρa fS

disappear. The relative normal velocity u⊥ = v⊥−w vanishes and the surface
stress tensor σ is such that

σ ·N = 0, (11.37)

where the direction of the normal N is unchanged from one side of the interface
to the other. We then obtain the following for the momentum:

[P ·N]+− −∇S · σ = 0. (11.38)
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The pressure tensor P incorporates the thermodynamic pressure and the vis-
cous tension. The tensor σ includes the thermodynamic tension and possibly
a surface viscosity (see later).

In the equilibrium case, P = p1 and σ = σ(1−N⊗N) = σ 1//, so that

[p]+− N−∇Sσ + σ∇ ·N N = 0. (11.39)

By projecting onto the tangent plane we can see that ∇Sσ is equal to zero
(so σ =const. at rest), and by projecting onto the normal plane we observe
that

[p]+− + σ∇S ·N = 0. (11.40)

This is the Laplace relation. This relation was obtained through thermostatic
considerations in Sect. 2.6 and used to study a vapor bubble inside a liquid
under zero-gravity conditions. Equation 11.38 was used with σ = σ(1−N⊗N)
and a temperature-dependent surface tension in Sect. 7.9, in the study of the
Marangoni effect and the Bénard–Marangoni instability.

Surface Viscosities

In the presence of surface viscosities, we have σv = σv// = σ − σ 1// for
the viscous part of the interfacial stress tensor, which is not equal to zero. We
assume (just as Slattery did) that σv is a linear function of the gradient ∇S⊗
vS (Boussinesq fluid surface; see [260]). Requiring objectivity and isotropy
yields

σv// = [(κa − εa)∇S · vS ]1// + 2εaDS , (11.41)

where 1// corresponds to the point considered on the interface, κa is the
surface dilatational viscosity, εa is the surface shear viscosity, and DS is a
surface strain tensor defined by (11.36). This tensor is such that 1// ·DS ·1// =
DS . The surface viscosity coefficients are functions of interface state variables.
In a more sophisticated theory, we can imagine that surface viscosities are
functions of the tensorial invariants of DS ; i.e., ∇S · vS and tr (DS ·DS)
[260].

The surface viscosity term for the entropy production, which is present in
(11.41) and (11.36), is

{
σv: ∇S ⊗ vS = [(κa − εa)∇S · vS ]1// + 2εaDS :∇S ⊗ vS

= (κa − εa)(∇S · vS)2 + 2εaDS:DS .
(11.42)

It is positive or zero for the entire vS field. By writing DS = 1
2 (∇S ·vS)1// +

ΔS , where ΔS is a 2D tensor with zero trace, we obtain

κa ≥ 0, εa ≥ 0.
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Relation 11.41 is an example of a constitutive relation that includes surface
viscosities. The viscosity coefficients are functions, in particular, of the stretch
∇S · vS .

Scriven and Sternling [250] studied the Marangoni instability in a more
complex situation than Pearson [197] did (see Sect. 7.9), taking into account
surface deformations and interface viscosity coefficients. Here, the unit vector
N is normal to the surface and oriented from the liquid phase to the gas phase,
and the interface boundary conditions at z = f(x, y, t) are more complex than
in (7.127): ⎧⎨⎩

∇ ·N = ∂f/∂t, N ·∇T + Λ(T − T∞) = 0,

[P]+− −∇S · σ(1−N⊗N)−∇S · σv = 0.
(11.43)

In addition to the Nusselt and Marangoni numbers, other dimensionless num-
bers are also used: the surface viscosity number Vi = (κa + εa)/μ d, and the
capillary (or crispation) number Cr = μκ/σ∗δ (see Table 5.3).

Neutral stability curves obey the relation

Ma =
8α(α coshα + Nu sinhα)[α − sinhα coshα + (Vi/2)α (α2 − sinh2 α)]

α3 coshα− sinh3 α− 8Crα3 sinh
.

(11.44)
This result can be compared to Pearson’s; see (7.132). The neutral stability
curves of Scriven and Sternling [250], which represent neutral stability with
respect to stationary disturbances, differ from those of Pearson. For example,
in contrast to what is observed for a planar surface, there is no longer a critical
Marangoni number in the case of an isothermal bottom, whatever the Nusselt
number, except at the limit of Cr = 0 (an example is given in Fig. 11.4). If
V i = 0 and Cr = 0, the planar surface case of Fig. 7.24 is obtained again. The
same conclusion (i.e., that there is no critical Marangoni number for Cr �= 0)
remains valid in all cases with an isothermal or isolated bottom.

Surface Reactions, Adsorption–Desorption, and Evaporation

A succinct discussion of surface reactions, adsorption-desorption and evapo-
ration phenomena is now presented.

Surface Chemical Reactions

Many types of surface chemical reactions are possible. In [94], coupling in-
volving the catalytic surface reaction A2 −→ 2A is considered. The fluid in
the bulk, which consists of A2 and A, is in contact with a catalytic planar
interface. The reaction is not athermal and results in the release of heat, and
thus heat transfer. Viscosity is ignored. The medium under the interface is
assumed to be impermeable, adiabatic and at rest (v = 0). At the interface
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Fig. 11.4. Neutral stability curves obtained for a free surface with Nu = 2 and an
isothermal bottom: a in the case of a planar surface (Cr = 0); b in the case of a
free surface (Cr = 10−4)

the temperature is TS and vS = VS = 0. In this case, the general expression
(11.35) for the production at the interface, ignoring surface mass diffusion
and terms involving the square of the velocity, involves five generalized forces:
the affinity of the chemical reaction AS , the jump in the inverse temperature
between the fluid and the surface (1/T − 1/TS), the jumps (gA

S /TS − gA/T )
(this term relating to the interaction between the bulk and the surface corre-
sponds to the adsorption–desorption phenomena presented in a moment) and
(gA2

S /TS − gA2/T ), and the surface gradient ∇S(1/TS). The corresponding
generalized fluxes are the reaction rate, the surface heat flux, and the normal
components of the heat flux, the diffusion flux of A and the diffusion flux of
A2 from the fluid.

When it is possible to use linear relations (i.e., near equilibrium), the flux–
force relations are deduced by developing the matrix L of phenomenological
coefficients. The transport coefficients satisfy the symmetry relations of On-
sager (Lαβ = Lβα) and are such that L is positive.

Thus, we show the dependence of the reaction rate on not only the chem-
ical affinity AS but also on the temperature jump and the surface chemical
potential jump. Coupling between the chemical reaction and the heat transfer



350 11 Interface Phenomena

along the surface is still forbidden. These conclusions are quite general and
should apply to any surface reaction.

Adsorption–Desorption

Adsorption is a process in which atoms or molecules move from a bulk phase
onto a solid or liquid surface.9 In the reverse process, called desorption, atomic
and molecular species leave the surface and enter the surrounding gas or
vacuum.

The surface quantity here is the number of moles j adsorbed per unit area.
On a solid surface at rest in the absence of surface diffusion, V = 0 and

∂nja/∂t+ [Jj⊥]+− = 0, (11.45)

with [Jj⊥]+− = J+
j⊥ for exchanges between the interface and the region above

it. The adsorption flow J+
⊥ is generally provided by a adsorption kinetics law.

If A is the gaseous species, S is a vacant site on the surface, and AS is the
adsorbed species, we have the following adsorption reaction (physisorption in
this case):

A + S kad.→ AS

where kad. is the specific adsorption rate, which can generally be written in
the Arrhenius form:

kad. = Aad. exp (−Ead./RT ),

where Aad. =const. and Ead. is the activation energy of adsorption. If CA

is the number of moles of A per unit volume, CSa is the number of moles
of active sites S per unit surface area, and CAa is the number of moles of
occupied sites AS, the flux of the adsorbed species is then

J+
A⊥ ad. = −MAkad. CA CSa. (11.46)

For the reverse reaction (desorption), AS kde.→ A + S, we obtain J+
A⊥ de. =

MAkde. CAa, where kde. = Ade. exp (−Ede./RT ).
For an adsorption–desorption process, we have J+

A⊥ = MA(kde. CAa −
kad. CA CSa).

At adsorption–desorption equilibrium, we obtain J+
A⊥ de.

∼= −J+
A⊥ ad., so

CA CSa/CAa = kde./kad. = Keq, where Keq is the equilibrium constant.

9Weak interactions analogous to those that occur between molecules in liquids
give rise to what is called physical adsorption or physisorption. Strong interactions
(> 40kJ/mol) similar to those found between atoms within a molecule give rise
to chemical adsorption or chemisorption. The adsorbed molecule remains intact in
physisorption, but in chemisorption the molecule can be broken into fragments on
the surface, in which case the process is called dissociative chemisorption.
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In the general case we must consider reactions of the type

N∑
j=1

ν′jAj +
M∑

j=N+1

ν′jSj ⇀↽

N∑
j=1

ν′′j Aj +
M∑

j=N+1

ν′′j Sj.

Evaporation–Condensation

Evaporation–condensation problems are also considered in [94]. Some of these
problems (in the case of evaporation–condensation at equilibrium) are ad-
dressed in Sect. 7.5, and in Sects. 12.4.3 and 12.4.4.

When the interface is not too far from equilibrium, it is possible to deduce
linear constitutive relations from the linear thermodynamics of irreversible
processes. Far from equilibrium, nonlinear rates of evaporation must be con-
sidered. A kinetic theory of evaporation–condensation has been developed
using several approaches [170, 182, 296].

A Hertz–Knudsen law is generally written to express the evaporation mass
flow rate of a liquid under reduced pressure in the case of a pure substance.
The mass flux through a vapor–liquid interface is determined via the kinetic
theory and the Boltzmann equation, using an equilibrium distribution func-
tion corresponding to local pressure and temperature. In front of the inter-
face, a Knudsen layer with a typical thickness of approximately one mean
free path separates the vapor–liquid interface and the bulk. In the classical
Hertz–Knudsen theory, it is assumed that all vapor molecules interacting with
the interface have the distribution of the bulk vapor, while those leaving the
interface have a distribution associated with the interface. In reality, these
two different molecular streams interact in the Knudsen layer, which alters
the distributions of both and consequently modifies the evaporation and con-
densation mass flow rates. The following generalized Hertz–Knudsen equation
is thus obtained [20]:

ṁ = (
M

2πR
)1/2(αv

psat

(TS)1/2
− αc

p+

(T+)1/2
), (11.47)

where αv is the evaporation coefficient, αc is the condensation coefficient, M is
the molecular weight of the liquid, R is the universal gas constant, psat is the
equilibrium vapor pressure at the surface temperature TS, which is equal to
the temperature T− of the liquid at the evaporation interface level, while p+

and T+ are the pressure and temperature of the gas phase above the liquid.
For a mixture, the evaporation rate is a function of both the surface tem-

perature and the composition. Bose and Palmer [25], who studied vapor recoil
(a phenomenon that can lead to Hickman instability, see Sect. 7.5), used a
modified form of the classical Hertz–Knudsen equation for the case where there
are two species. This modified equation has a single evaporation–condensation
coefficient α and assumes that there is no interaction between species A
and B:
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ṁA = α ( MA

2π R )1/2(Y −
A

p•
sat,A

(TS)1/2 − Y +
A

p+

(T+)1/2 ),

ṁB = α ( MB

2π R )1/2(Y −
B

p•
sat,B

(TS)1/2 − Y +
B

p+

(T+)1/2 ).

(11.48)

Here, ṁA and ṁA are the mass evaporative fluxes of species A and B, MA

and MB are the molecular weights of the respective species, p•sat,A and p•sat,B

are the pure-component vapor pressures of these species at the surface tem-
perature TS , and YA and YB are the mass fractions of the species.

11.4.2 Constitutive Relations for Interfaces Deduced by Applying
Irreversible Thermodynamics to Three-Dimensional Interfacial
Layers

In contrast to the case shown in Sect. 11.4.1, we will deduce contitutive re-
lations by integrating the bulk equations across the interfacial layer, thus
following the method described in Sect. 11.2.2. Whereas most of the mat-
ter flow crosses the interface when waves are considered (flames, shock waves
or combustion waves), most of the flow occurs parallel to the interface for
boundary layers and shear layers.

Premixed Flames

One-dimensional deflagration waves with high activation energy chemical re-
actions (thin flames) were presented in Sect. 10.5. The main result of this
theory is the determination of the laminar mass flow rate and subsequently
the combustion velocity.

These results are modified in the case of curved and unsteady two-
dimensional flames. For deflagration waves with weak stretching rates and
low curvatures, the parallel velocity vector of the fluid v// is preserved at the
crossing of the interface to a first approximation. Therefore, we will take the
velocity defined by (11.2) as the velocity V: V = v// + w.

The quantity ∇S ·VS is then the stretching rate of the flame (see Sect.
A.4).

We assume that

J VFa = 0 and JVF⊥ = JVF⊥ + ρ f u⊥, (11.49)

where u = v −VS .
Moreover, to avoid problems with integral divergence (occurring with fS),

we will use the excess quantity ΔfS , such that

ρaΔfS = ε

∫ 0

−∞
ρ(f − f−), dn
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where f− is any specific quantity of the unburned fresh gases.10 We then have
the following for the general interface balance equation of quantity F :

dS (ρaΔfS)
dt

+ ρaΔfS ∇S ·VS + [JVF⊥ + ρ (f − f−)u⊥]+− = ẆFa, (11.50)

where u⊥ is the relative laminar flame velocity.
Constitutive relations can be found for curved premixed flames. This prob-

lem was studied via the formalism of interface theory in [94, 219, 223], and
has been the subject of numerous research works in the field of combustion
(see [51, 53, 135, 163, 171, 258]).

The three-dimensional flame structure consists of four regions, as described
in Sects. 10.5 and 10.5.2:

• The fresh gases
• The preheating or diffusion zone of thickness �f , where convection, mass

diffusion and thermal conduction are the most significant processes
• The reactive zone of thickness �δ, where diffusion, conduction and chemical

reaction are predominant, and which is represented by a jump
• The burnt gases.

The second and third regions constitute the interfacial layer.
As specified at the beginning of this section, here we consider the flame

to be an interface with properties that are deduced from the previous three-
dimensional theory [53] by integrating across the interfacial region.

From the detailed three-dimensional analysis summarized in Sect. 10.5.2,
and for the single chemical reaction A −→ B,11 we can deduce (see [219]) the
following interfacial source terms (which are included among the constitutive
relations for the interface) for volume, mass fraction of A and temperature,
respectively, in dimensionless variables:⎧⎪⎪⎨⎪⎪⎩

ẆVa = [v⊥],

ẆY a = − exp [β(T+ − 1)/2],

ẆTa = (1− T−) exp [β(T+ − 1)/2].

(11.51)

10Here ε = �f/L where �f = κ/u⊥ (the thickness of the flame deduced from
the form of the energy equation applied to the diffusion zone), and where L is the
hydrodynamic length. Moreover, dN = εdn (n = 0 at the flame front where the
reaction occurs).

11This is a first-order chemical reaction, and the reactive layer is replaced at the
scale δ with a jump. The dimensionless reaction rate per unit volume obtained is
(see [163, 219, 223]) ẆR = δ(N) exp[β(T+ − 1)/2], where δ(N) is the Dirac delta
function, and where the reduced temperature of the burnt gas T+ can differ from
unity (which is, by definition, the value for an adiabatic laminar planar flame; note
that the same symbols are used for dimensional and dimensionless parameters).
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The following interfacial equations of state (which are also included among
the interfacial constitutive relations) are also derived from this analysis:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρaΔTS = T−ρaΔϑS = εT− ln (1/T−)/ṁ,

ρaΔYS = −[εT−/ṁ(1− T−)] [ln(1/T−)

−(Le− 1)[T−/(1− T−)]
∫ (1−T−)/T−

0 xLe−2 ln(1 + x)dx].

(11.52)

If we apply the series expansion ϕ = ϕ(0] + εϕ(1) + ε2ϕ(2) + O(ε3) to any
parameter of (11.51), (11.50) becomes [219] the approximate balance equation
for a flame considered to be an interface.

Finally, asymptotic analysis yields (10.177) of Chap. 10:

ṁ− = 1− ε [ln(1/T−)/(1− T−)− l (T−/2)

∫ (1−T−)/T−

0 ln(1 + x)/x dx] ∇// ·V(0)
S + O(ε2).

(11.53)

This result shows that the mass flow rate differs from the mass flow rate of the
adiabatic plane laminar flame by a factor that is proportional to the stretch
∇// ·V(0)

S , and that the Lewis number plays a very important role.
Since ṁ− = u−⊥/u

−, we obtain the following for the combustion velocity
u−⊥ = v−⊥ − VS⊥ (denoted sL below):

sL

s0
L

∼= 1− ε [
ln(1/Tu)
(1− Tu)

− β
Tu

2

∫ 1−Tu
Tu

0

ln(1 + x)
x

dx] ∇// ·VS . (11.54)

In this formula, which is valid for a stretched flame with a high activation
energy and a Lewis number that is close to unity, s0

L is the planar adia-
batic laminar combustion speed,12 ε is the diffusion flame thickness divided
by a reference hydrodynamic length, Tu is the reduced temperature of the
unburnt gases (i.e., the temperature of the unburnt gases divided by Tad),
β = Ta/Tad � 1, and ∇// ·VS is the surface strain rate.

Equation 11.54 can be written in an alternative form [54, 53, 173, 202]:

sL/s
0
L
∼= 1− L(κ + S/s0

L), (11.55)

where the term ∇// ·VS of (11.54) has been decomposed into two terms: κ and
S/s0

L, where κ is the mean curvature of the flame surface, S = −N ·∇⊗v ·N
is the strain rate of the flow in the flame region, and L the Markstein length
with respect to the unburnt mixture, as defined by

12This combustion speed must be calculated for the actual chemical reaction
A −→ B, in contrast to the case in Sect. 10.5, where the chemical reaction was
A + B −→ P. The determination of s0L is not very different, as shown for example
in [94].
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L
�f

=
1
γ

ln
1

1− γ
+

Ze(Le− 1)
2

1− γ

γ

∫ γ
1−γ

0

ln(1 + x)
x

dx, (11.56)

where �f is the flame thickness, γ = (ρu − ρb)/ρu, and the Zel’dovich number
Ze = Ea(Tb − Tu)/RT 2

b .
Moreover, note that the quantities ρaΔfS are always proportional to the

jump conditions [f ]+− and to the inverse of the combustion unit mass flow rate
ṁ, with an appropriate coefficient. We then have

ρaΔfS = Lε
cp

λ
D̄

[f ]+−
ṁ

, (11.57)

where L is a proportionality coefficient and D̄ is a diffusion coefficient (ρD or
λ/cp). In the cases considered, the coefficient L is assumed to be constant.

Using the appropriate constitutive relations and the reaction rate given in
system (11.51), this two-dimensional interface theory yields the same results
as the classical three-dimensional theory [219] when applied to a premixed
stretched flame with a high activation energy.

Boundary Layers

The discussion of boundary layers presented below does not actually produce
any new results beyond those given in Chap. 9; we include it here to show
how boundary layers can be interpreted with respect to interfaces.

Balance Equation for Boundary Layers

The velocity V as defined by (11.2) is not now conservative throughout the
interface, and thus we find ourselves in the situation corresponding to case
1 of Fig. 11.2. For boundary layers above a rigid blunt body, we choose the
local velocity of the surface of this blunt body v− (see Fig. 11.5) as V; this
velocity is zero in the reference frame associated with the body.

Here, we consider the excess quantity ρaΔfS = ε
∫∞
0

ρ(f − f+)dn (see Eq.
11.5). The specific quantity f+(x, t) will refer to the external flow (i.e., at the
(+) side of the interface).

Therefore, in the reference frame associated with the obstacle (V = v−),
(11.25) becomes

dV(ρaΔfS)/dt + ∇S · JVFa + [JVF⊥]+− = ẆFa. (11.58)

If the normal convective terms are negligible, [JVF⊥]+− reduces to [J VF⊥]+−,
and the convective part of JvFa reduces to∫ N+

N−
ρF v// dN. (11.59)

We now provide some examples to illustrate this potential description of
boundary layers in terms of interfaces.
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Fig. 11.5. Velocity profile in a boundary layer for v− = 0

Steady Boundary Layer Above a Flat Plate

Let us assume an incompressible fluid and planar two-dimensional flow with
constant pressure. The x-component of the velocity at infinity is U∞, and the
plate occurs at y = 0 and x > 0. We have

∂u

∂x
+

∂v

∂y
= 0, (11.60)

∂ρu(u− U∞)
∂x

+
∂ρv(u− U∞)

∂y
− μ

∂2u

∂y2
= 0. (11.61)

The self-similar solution is well known (see Sect. 9.3). Recall that if we write
η = y

√
U∞/2νx, ν = μ/ρ, we find that

u = U∞f ′(η), v = (νU∞/2x)1/2(ηf ′(η)− f(η)), (11.62)

where f obeys the Blasius equation f ′′ + f f ′′ = 0, with the boundary condi-
tions f(0) = f ′(0) = 0, f ′(∞) = 1.

Integrating (11.61) with respect to y gives the equation sought:

∇S · Jua + [Ju⊥]+− = 0, (11.63)

where, for excess longitudinal convective flow and friction stress at the wall,13

13The friction stress τ+ is zero.
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∇S · Jua = ∂Jua/∂x,

Jua =
∫∞
0

ρu(u− U∞) dy,

[Ju⊥]+− = [τ ]+− = −τ−.

(11.64)

The flux Jua can be written

Jua = −μ
√

2xU∞
ν

U∞f ′′(0), (11.65)

where f ′′(0) = 0.4696.
Relation (11.65) can be interpreted via dimensional considerations.
Indeed, if ρ, U∞ and x are selected as basic quantities, two dimensionless

ratios (see Sect. 5.1.2) appear: Πμ = μ/ρU∞x = Rex and ΠJ = Jua/ρU
2
∞x =

−Kuψ(Πμ).
Therefore, we find that

Jua = −KuρU∞x[u]+−ψ(μ/ρU∞x). (11.66)
Result (11.65) shows that the function ψ must be a square root. The dimen-
sionless phenomenological coefficient Ku is then equal to Ku =

√
2f ′′(0) ∼=

0.665. Ku will not be constant in other boundary layers. Finally, we can use
relations of this type to express any flux JFa as a function of the jump [f ]+−
with the dimensionless coefficient KF .

Unsteady Boundary Layer

Another classical phenomenon is that represented by a medium and a flat
plate that are both initially at rest. At time t = 0, and for t > 0, the plate
moves at a constant velocity V along Ox.

The momentum equation for the interface is then

∂(ρaΔuS)
∂t

− [τ ]+− = 0. (11.67)

Classical calculation makes it possible to determine that

ρaΔuS =
∫ 0

−∞
ρu dy =

√
4νt/π ρV.

We can see that ρaΔuS is proportional to the momentum jump [ρ u]+− =
ρ V . Moreover, dimensional considerations allow us to envisage the form of
(ρaΔuS). Since time t and viscosity ν are the basic parameters, the momentum
transfer thickness (the thickness of the boundary layer) is du =

√
νt.

By introducing the dimensionless phenomenological coefficient Lu, we find
that

ρaΔuS = Luρ[u]+−du = −Lu

√
νtρV, (11.68)

which gives Lu = −√4/π here.
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Boundary Layer with Diffusion

Boundary layers with diffusion were analyzed in particular in Sects. 9.4.1 and
9.6.2. Here, for flow over a flat plate in steady mode, the equation for the
interface is

∂JY a

∂x
+ [JY⊥]+− = ẆY a, (11.69)

where JY a =
∫∞
0

ρu(Y − Y +)dy.
Dimensional analysis enables us to write a formula that is similar to

(11.66): JY a = −KY ρU∞x[Y ]+−ψ(ρU∞x/μ, μ/ρD). The function ψ is gen-
erally a product of powers, so that

JY a = −KY ρU∞x[Y ]+−Re
a
x Sc

b. (11.70)

In laminar flow, a is equal to (−1/2), and the power b varies according to
whether the Schmidt number is small or large compared to 1.

For example, if the Schmidt number is small, the boundary layer of dif-
fusion is very thick compared to the viscous layer, so that velocity can be
regarded as being constant in the diffusion zone. b is then (−1/2).

Thus, if Y + = 0 and Y − = 1, we obtain

JY a = −KY ρU∞
√
Dx/U∞. (11.71)

Exact calculations give the same result, with KY =
√

4/π.
If the Schmidt number is large, the power b becomes equal to (−2/3).

These results are linked to those already obtained for the exchange coefficient
and the Sherwood number. By calculating ∂JY a/∂x, we immediately obtain
the expression for the Sherwood number, Sh = (KY /2)Re1/2

x Scb+1, which is
valid for laminar boundary layers. This result gives the physical significance
of coefficient KY .

11.5 Interfaces with Resistance to Wrinkling

The study of interfaces that have a certain degree of stiffness, particularly in
response to bending, is linked to shell and plate theory [136, 189, 272].

In order to study this type of interface, we can consider the case where
the velocity field is provided by kinematic torsors [14]14

14In the preface of the English version of his book, J.-M. Berthelot noted that:
“The development of this textbook is based on a generalized use of the concept of
‘torseur’ (in French). We think that this concept is not really used in the English
textbooks. We will call this concept as ‘torsor.’ In the textbook, the English formu-
lation was thus transposed from the French formulation [15].” P. Germain utilizes
the term “distributeur” instead of “torseur cinématique” [99].
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{C} =
{

ω
vP

}
. (11.72)

When the velocity field is given by the kinematic torsor field C, the velocity
of a point M (such that PM is collinear with the normal N to (S) at point
P ) in the interfacial layer is given by

vM = vP + ω ×PM. (11.73)

The motion of the segment P ′P ′′ (Fig. 11.6) is locally the motion of a rigid
body, and ω and vP are solely functions of the space coordinates of P in (S)
and of time.

Fig. 11.6. Interfacial layer in the case of a kinematic torsor

We then have

dvM = dvP + ω × dPM + dω ∧PM. (11.74)

This expression will allow us to determine ∇ ⊗ vM ; its symmetrical part is
the tensor of the strain rates of the medium. We can that dvM corresponds
to the torsor

{dC} =
{

dω
dvP + dP× ω

}
, (11.75)

Note that the product of a kinematic torsor {C} with the torsor of forces [F ]
applied to a rigid body gives the power developed by these forces during the motion:
P = {C} · [F ].

We will utilize fields of torsors (because the torsors considered depend on the
position on the surface) and Germain’s formalism here.
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where dP is such that N · dP = 0.
As ω is tangent at P to (S), we introduce the vector l such that

l = ω ×N, ω = N× l (11.76)

to simplify calculations. Thus,

dP× ω = (dP · l)N = dP · (l⊗N). (11.77)

The strain rate torsor will therefore be defined as

{Dij} =
{ S(ωj,i)
S(vPj,i + ljNj)

}
(11.78)

(S: symmetrical part). However, since ω and vP are only defined on the
surface, we must consider

{Dij} =
{ S[(δi,j −NiNk)ωj,k]
S[(δi,j −NiNk)vPj,k + ljNj]

}
. (11.79)

As we did previously, we indicate the tangential gradient on the surface (S)
by the symbol ∇//. Thus, the the strain rate torsor can be written

{D} =
{ S(∇// ⊗ ω)
S(∇// ⊗ v + l⊗N)

}
=
{

χ
η

}
. (11.80)

To obtain the momentum equations, it is convenient to use the method
of virtual power, which gives results that are applicable to deformable solid
interfaces. The virtual power principle is expressed in the following terms.
In a Galilean referential and for an absolute time, the virtual power of the
acceleration quantities A∗ of any part V of a material system V0 (V ⊂ V0)
is equal to the sum of the virtual powers P∗(i) and P∗(e) of the internal and
external forces for any virtual motion defined on V and belonging to V∗.15
Moreover, the virtual power of the internal forces is an objective quantity;
i.e., it is zero for all rigid virtual motion [97, 98, 99]:

P∗(i) + P∗(e) = A∗. (11.81)

P∗(i) is obtained by multiplying D∗ by a field of stress torsors with the reduction
elements γ and μ, which are both symmetrical tensors, so that

P∗(i) = −
∫

Σ

(γ: η∗ + μ: χ∗)dΣ. (11.82)

15The elements of V∗ are vector fields v∗ defined on V0. The space V∗ is taken
to be linear and normal. In addition, all of the fields V∗ associated with the rigid
motions defined on V0 are in V∗. The different expressionsA∗, P∗(i) and P∗(e) are linear
forms defined on V∗. Depending on the space V∗ chosen and on the expressions for
A∗, P∗(i) and P∗(e) selected, we obtain different theories for the continuous medium
[97].
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This expression is transformed to give the virtual velocities v∗ and ω∗. Using
the Stokes–Ostrogradsky theorem, we finally obtain [219]⎧⎪⎪⎨⎪⎪⎩

P∗(i) = − ∫
Σ

[v∗ · (∇// · σ + ∇// · (N⊗ g))

+ω∗ · (∇// ·M + ∇// · (N⊗m)−N× g)]dΣ

− ∮c[v ∗ ·σ + gv∗ ·N + ω∗ ·M] · ηds.
(11.83)

The virtual power of the external forces is written in a similar form:

P∗(e) =
∫

Σ

(p · v∗ + ϕ · ω∗)dΣ +
∮

c

(T · v∗ + φ · ω∗)ds. (11.84)

The virtual power of the acceleration quantities is

A∗ =
∫

Σ

ρa
dva

dt
· v∗ dΣ. (11.85)

Thus, the equations of motion [99] are derived directly from the virtual power
principle: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇// · σ + ∇// · (N⊗ g) + p = ρa dva/dt,

∇// ·M + ∇// · (N⊗m)−N× g + ϕ = 0,

(σ + N⊗ g) · η = T,

M · η = φ.

(11.86)

Here, p is the surface density of forces; ϕ is the surface density of torques,
ϕ ·N = 0; T is the density of forces per unit length; and φ is the density of
torques per unit length, φ ·N = 0. The tensor σ is the tensor of tensions (or
the membrane stress tensor). The vector g is the shear-forces vector. M and
m characterize the bending moments.

We could have separated the normal part v∗⊥N from the tangential part
v∗// of the virtual velocity vector. This would have allowed us to distinguish
the normal constraints from the tangential constraints. We can also perform
this decomposition starting from the equations of motion.

We will not proceed any further with the description of this theory. Thin
shells have been studied in many papers with varying degrees of specialization,
several of which have been cited in this section. The preceding equations
also apply to plates (in this case, it is sufficient to make N = e3; ∇// =
eα∂/∂xα, α = 1, 2).

We can also treat the case of cylindrical shells around an axis e3, where
there are forces normal to the axis. In the planar case, we again obtain the
equations for planar curvilinear media.

All of the moments vanish for flexible interfaces (membranes). We find that
N × g = 0; i.e., that g is null, just like T⊥. Obviously, there is no shearing
action.



362 11 Interface Phenomena

Fig. 11.7. Representation of the forces acting on the surface

Fig. 11.8. Paul Germain, professor at the Pierre and Marie Curie University in
Paris (1920–2009) (M.-H. Debost, private communication, 2009; see also [174])

The equations become

ρa dSvS/dt−∇// · σ + [P + ρ(v − vS)⊗ (v − vS)]+− ·N = ρafS , (11.87)

where fS is the surface force (due to gravity for example). Equation 11.87
can be deduced directly from (11.29) when it is applied to a single-component
medium.

In this section, we focused on the momentum equations of interfaces that
are resistant to wrinkling. To study such interfaces in more depth, we need
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to establish the balance equations for mass, species, energy and entropy, just
as we did for flexible interfaces. We also need the constitutive relations and
laws of state. One well-known case in this regard is that of elastic shells,
where linear relations are obtained between strains and stresses. However,
much more work is needed for the other constitutive relations. Some of the
relations that were established for flexible interfaces can be used to this end.

11.6 Concepts of Second-Gradient Theory

Thermodynamic Relations

Let us now consider the case of 3D interfacial fluid layers with internal capil-
larity, and assume a one-component fluid for simplicity. For a volume V with
a small thickness Δξ around a coordinate surface, the internal energy E of a
stratified layer is a first-order homogeneous function of the quantities S, V , ξ,
the mass m and a complementary extensive variable S (which is homogeneous
to area but is not equal to the area of the part of S3 present in the considered
volume). We then have S =

∫
V(1/ϑ)|dϑ/dξ| dV , and the internal energy per

unit mass becomes e = e(s, ϑ, |dϑ/dξ|). We can write⎧⎪⎪⎨⎪⎪⎩
e = T s− p ϑ + Λ |dϑ/dξ|+ g,

de = T ds− p dϑ + Λd|dϑ/dξ|,
0 = s dT − ϑ dp + |dϑ/dξ| dΛ + dg.

(11.88)

More usually, we would write [94, 256]

e = e(s, ρ, |∇ρ)|2, de = T ds− p d(
1
ρ
) + λ(∇ρ) · d(∇ρ), (11.89)

where λ is the capillary coefficient.

3D Closure Relations

In simple cases, it is possible to relate the surface tension σ to the capillarity
coefficient λ [256] by writing

σ = −
∫ N+

N−
p∗(ξ) dξ ∼=

∫ N+

N−
λ|∇ρ)|2 dξ, (11.90)

where p∗ is the effective pressure defined by

p∗ = p− ρ∇ · (λ∇ρ). (11.91)
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This description can be extended to fluid mixtures with internal capillarity
and mass diffusion [94]. In this case, the effective pressure becomes

p∗ = p−
N∑

j=1

N∑
i=1

ρi∇ · (λji∇ρj). (11.92)

A fluid can also exhibit capillarity near a wall. This is considered in some
wetting problems [208, 257].

11.7 Conclusions Regarding Interface Equations

The utilization of interface equations often leads to discontinuities, and it is of-
ten difficult to solve such problems numerically. Therefore, some authors have
even tried to obtain continuous equations for discontinuous situations. Phase
field models have been described for the solidification of alloys. The interface
is considered a transition region where averaged local quantities weighted by
the liquid and solid volume fractions are introduced. An enthalpy method has
been used at the macroscopic scale [79], whereas balance equations are de-
duced by minimizing the free energy in functional analysis at a smaller scale
[205]. Jamet et al. [123] use a second-gradient method with an artificially
thickened interface, and Jamet and Petitjeans [122] apply phase field models
to diffusion interfaces. Research into phase field methods for fluid interfaces
would certainly prove useful.
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Multiphase Flow Concepts

Multiphase flows can be gas flows with solid and/or liquid particles, or liq-
uid flows with vapor bubbles, solid and/or liquid particles [138]. Exchanges
between phases, chemical reactions, and particle disintegration and agglomer-
ation can occur within them. The example of a gas-droplet multiphase flow1

illustrates their complexity. In this chapter, we will attempt to obtain a com-
plete set of equations, if possible, with closure relations that allow the ana-
lytical or numerical solution of such a flow.

Section 12.1 deals with the generation of a two-phase flow, especially in
the case of droplets. The atomization of a liquid is needed in combustion
engines for example. We do not study the problem of dust generation here,

1As an example of this complexity, consider (as Young does [295]) a multiphase
medium consisting of a neutral carrying gas (mass mG), steam (mass mV ), and
liquid drops of the same composition as the steam and that are of mass class i (each
mass class mi consists of presumably spherical drops of radius ri). A control volume
Vm contains a mass mm of the multiphase medium, and so mG +mV +Σimi = mm.
In this control volume, the respective volumes of the gas phase (we assume an ideal
gas mixture) and the particles of class i are V and Vi, and we have ΣVi+V = Vm. Let
us now define g = mG/mm and yi = mi/(mV +Σimi) and y = Σiyi. The following
specific densities are then introduced: ρGs = mG/V, ρV s = mV /V, ρis = mi/Vi,
ρs = (mG +mV )/V = ρGs + ρV s, ρm = mm/Vm.

1. We can easily show that g+(1− g)(1−y)+(1− g)y = 1, according to the basic
relation mG +mV +Σimi = mm.

2. We can show that 1/ρm = (g+ (1− g)(1− y))/ρs + [Σi(1− g)yi]/ρis, according
to the basic relation ΣiVi + V = Vm.

3. The mass fractions in the gas are YG =, YV =, YG+YV = 1. The partial densities
are ρG = ερGs, ρV = ερV s, ρi = εiρis, ρ = ρG + ρV = ερs. Note that if the
particles are all composed of a single species with a constant specific density,
then εi = εp for any i and we have ρi = εpρis, ρi = (1− ε)ρis, ρp = (1− ε)ρps.

ε is expressed as a function of the preceding quantities: ε = (g + (1 − g)(1 −
y))ρm/ρGs. We also have ε = (g + (1− g)(1− y))ρm/ρs.

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2_12, © Springer Science+Business Media, LLC 2010
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but it is important to recognize that it is a significant challenge to generate a
homogeneous suspension of solid particles [30].

In Sect. 12.2 we will deal with simplified macroscopic balance equations
for two-phase flows using the method described in Chap. 4. We assume that
the medium can be considered a continuum. The only exchanges considered
are those of momentum and energy, and all of the particles are the same
size. The forms of the constitutive relations are deduced from the principles
of irreversible thermodynamics (Chap. 3). The simplified equations obtained
are then applied to two standard problems that can be solved without using
a computer: the study of small-perturbation propagation in the vicinity of a
motionless reference state (i.e., linearized sound propagation), and the motion
of a vortex in a dilute suspension.

In Sect. 12.3 we investigate the balance equations of a flow with evapo-
rating droplets. The spray considered is always assimilated into a continuum.
These equations are applicable to the study of spray flame propagation with
a minimal model for instance.

Problems addressed at the particle scale are presented in Sect. 12.4. The
description of fluid–particle exchange is a problem in itself, and particle-scale
(mesoscopic scale) modeling is needed to determine (for example) friction
effects, the regression rate of a droplet during combustion, etc. Four examples
of such problems are then studied at the particle scale. The first two relate to
an inert particle exchanging momentum and energy. The third problem is that
of the steady combustion of a fuel droplet in a combustive atmosphere that
is at rest and has uniform properties at infinity; i.e., far from the droplet (the
volume of the atmosphere is assumed to be at rest, uniform, and infinitely
large). The theoretical results obtained are interpreted and compared with
those obtained experimentally. Finally, the fourth problem is the transient
vaporization of a droplet.

In each case, the respective exchange coefficients that specify the con-
stitutive relations are determined. We calculate the regression coefficient for
evaporating droplets, and we determine the cut-off frequency that delimits
the area of instability for transient vaporization.

The results obtained at the particle scale must then be inserted as closure
relations into the balance equations for the multiphase mixture obtained in
Sect. 12.2, or into more complex balance equations.2

Of course, the types of equations obtained in this chapter and the methods
used have their limits. As long as the flow regime is quite continuous and reg-
ular, similar to the laminar flow of a homogeneous fluid, the balance equations
obtained will be valid if we make certain assumptions (in particular that the

2Various methods are used to establish the balance equations starting from the
properties at the particle scale. We will mention those that start from a probabilistic
balance equation similar to that of Chap. 4 and apply this equation to the various
quantities [10, 140]. Readers interested in this problem should refer to the works of
Faeth [81] (on sprays with evaporation and combustion) and Yang et al. [294] (on
propellant vaporization and combustion).
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volume fraction of particles is low). However, under external constraints such
as mass flow rate variations, significant agglomerations can appear, as can
fluid pockets. Medium stirring can become very strong, reducing the ability
of the equations established to accurately reflect the situation. In addition,
this chapter does not treat cases where the particle size or concentration is
large. It is worth noting that many of the problems associated with this field
are still unsolved, although research into them is underway. This means that
our ambitions are limited. However, the cases treated in this chapter highlight
their complexity and show which cases are easy to solve.

12.1 Formation of a Two-Phase Flow: Droplet
Generation

Fogs and sprays are created from liquids for domestic and industrial use.
The process of forming droplets is termed “atomization.” One of the most
interesting uses of sprays occurs in combustion. The engines of ground, sea,
air or space vehicles often utilize the burning of droplets. These droplets are
generated using injectors, the characteristics of which vary according to the
conditions.

Fig. 12.1. Influence of the liquid viscosity on the distortion of a swirling conical
sheet (photos from CORIA). The viscosity of the liquid increases from a to c. (C.
Dumouchel, private communication, 2009; see also [74])
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Examples are given in Figs. 12.1, 12.5 and 12.13. In Fig. 12.1, a swirling,
conical thin liquid sheet injected into an environment at rest is destabilized
to produce a droplet cloud.3 A review of some droplet generation problems
has recently been published [221].

The process of primary atomization is shown in Fig. 12.2 for the case of
a liquid planar sheet that is subjected to an external flow. When the drops
formed initially are shattered, the process is called secondary atomization.

Fig. 12.2. Successive mechanisms leading to droplet formation

To study the destabilization of the liquid sheet before it breaks up, we can
carry out a linearized study. We consider the case of a layer of viscous liquid
(L) of thickness h (planar in the reference state) in the presence of a gas flow
(G), which occurs on both sides of the liquid layer and parallel to it with the
same relative velocity U (see Fig. 12.3).

In the reference frame of the liquid layer, the small disturbance of the flow
parameter f can be written in the form

3If we compare Fig. 12.1a and b, it is clear that increasing the viscosity of the
liquid does not modify the processes of distortion and atomization, but it does
increase their characteristic length scales. Figure 12.1c shows that the behavior
exhibited at very high values of viscosity is totally different: atomization can occur
even when there is no perturbation to deform the interface; the mean liquid flow
ensures that the liquid–gas interface increases until surface tension forces oppose
this increase by rearranging the flow into ligaments and drops.
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Fig. 12.3. Sinuous undulations y = ±h/2 + η(x, t) of the planar liquid sheet

f = f̂(y) exp i(kx− ωt),

and the dispersion equation that links the wavenumber k to the pulsation ω
[58, 56] can be written

tanh(kh/2)(Ω+2)2−4 tanh(mh/2)
√
Ω + 1+ρ(Ω+i Re)2+Oh−2 = 0, (12.1)

where Ω = −i ω ρL/μL k2, ρ = ρG/ρL, m2 = k2 (Ω + 1), and in particular
the Reynolds number Re = ρL U/μL k and the Ohnesorge number Oh =
μL

√
k/ρL σ. We have Oh−2 = Re2/We, with We = ρL U2/σ k (see Table

5.3).
Knowing that ω = ωr + iωi, we then trace the curves that give the growth

rate ωi as a function of k (an example is given in Fig. 12.4 for h = 3 mm,
U = 10 m s−1, ρ = 1.29 × 10−3 kg m−3, σ = 0.075 N m−1). The effective
wavenumber will be that which corresponds to the maximum growth rate.

The linearized method applies to many other liquid layer configurations
in the presence of gas flow (see in particular [94, 145, 220]). The disruption
of a liquid sheet by sinuous waves or dilation waves has been studied by
Dombrowski and Hooper [70] and more recently by [114] for the case of a
viscous liquid sheet in a high-speed viscous gas.

The shattering of a liquid ligament by the Rayleigh mode4 has been de-
scribed in particular by Raynal [232].

4The Rayleigh instability involves deforming and then breaking a liquid cylinder
into spherical droplets under the effects of surface tension.
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Fig. 12.4. Dispersion diagrams for several values of viscosity coefficient (C. Du-
mouchel, private communication; see also [58])

In the coaxial atomizer depicted in Fig. 12.5, a liquid (such as the liq-
uid oxygen, “LOx,” in the cryogenic engine of an Ariane rocket) is injected
through a tube into a cylindrical flow of gas (gaseous hydrogen in this case)
at high speed.

The resulting atomization process is complex, three-dimensional, and
involves the formation of filaments (or ligaments, or fingering), as shown in
Fig. 12.6.

As one can imagine, these processes are not easy to model theoretically
or numerically. Transport processes, interface phenomena such as capillary
tension, and the various instability phenomena characterized by dimensionless
numbers (such as the Weber number We = ρG(UL − UG)2δG/σ, where the
subscripts L and G denote “liquid” and “gas,” respectively, U is the speed, δG

is the boundary layer thickness, and σ is the surface tension) must be taken
into account.

There are several methods that can be used to experimentally study
droplet formation from ligaments. We will mention in this regard the recent
study by Antkowiak et al. [3], who carried out and analyzed “Pokrovski’s ex-
perience” of the generation of a liquid column due to the impact of a tube
containing a liquid with a concave free surface (resulting from the meniscus,
or a bubble) on a horizontal solid surface under the influence of gravity. This
column fragments from the top (Fig. 12.7).
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Fig. 12.5. The physical phenomena involved in the flame from a cryotechnic coaxial
injector (extracted from the ONERA website)

Fig. 12.6. Formation of digitations by the liquid jet of a coaxial injector (after
Marmotant and Villermaux 2004; reprinted, with permission, from [172])
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Fig. 12.7. Liquid column fragmenting from the top (A. Antkowiak, private com-
munication, 2009; reprinted with permission from [3])

Several methods are used to obtain the distribution of the droplet diameters
in a spray.

In numerical methods such as VOF (Volume-of-Fluid), the space divided
into domains, each of them containing possibly any liquid gas interface. This
method is developed in particular by Zaleski [297].

The method of maximum entropy is efficient to predict the distribution
of the diameter of droplets in the spray of a thin liquid layer in a quiet at-
mosphere. We use the Shannon entropy with a set of constraints written on the
basis of classical conservation laws, namely, conservation of mass, energy, and
momentum. In a variant, these constraints are replaced by a theoretical mean
diameter, calculated from the wavelength of the most amplified disturbance
obtained by linearized analysis. Various cases of linear analysis of surface dis-
turbances can be envisaged, inviscid or viscous. Extending the method to the
case of thick layers in the presence of fast flow is complex but a method of
resolution can be sketched.

The distribution function in size and velocity of spray droplets can be
predicted using a theoretical formulation based on the principle of maximum
entropy [247, 125]. The Shannon entropy for the subsystems of possible states
1, 2, ..., n with probabilities p1, p2, ..., pn, is written:

S(p1, p2, ..., pn) = −k
n∑

i=1

pi ln pi
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In the continuous formulation and when only the reduced diameter occurs,
the entropy becomes:

S = −k
∫ ∞

0

f(d) ln f(d)d d

In classical models, the associated distribution function — discrete [50]
or continuous [50], [153], [253] — is determined taking into account the con-
straints of speed, flow momentum and kinetic and surface energy [220]. This
formalism requires the definition of a control volume [50], [153], [246] and ex-
perimental information such as average diameters measured in drops. Distri-
butions are calculated and in fairly good agreement with experimental results
for injectors producing liquid sheets flat, cylindrical or conical [280].

Cousin et al. [59] have developed a method giving the distribution of
droplet size from a formalism based on the maximization of entropy in which
the required information is derived mainly from theoretical considerations.

12.2 Simplified Model of a Flow with Particles

Here, we will assume that only one type of rigid isothermal particle is present,
and that there are no changes in mass or adsorption or desorption reactions.
The fluid is an inert gas comparable to a nonviscous fluid, except very close
to the particles, where it exerts a frictional force F, and to which it transfers
an amount Q of heat per unit time and unit volume [140].

Apart from these exchange terms, each component behaves like a fluid. The
gas and the (pseudo) fluid of particles have respective velocities of vg and vp.
The densities are defined per unit volume of the mixture. The particles do not
interact with each other and so there is no interparticle pressure.

12.2.1 Variables That Characterize Two-Phase Flow

At the macroscopic scale, each “mixture particle” 5 is a composite system. It
includes two components: a fluid phase (gaseous or liquid) and a condensed
phase (which can be liquid or solid)—a system of very small particles compa-
rable to a fluid. In this section we consider a fluid phase consisting of a gas,
and any quantities referring to this gas will be have a subscript of g. However,
the general balance equations that we will establish will also be valid for a
liquid fluid phase so long as the state law is not specified. The condensed
phase will be indicated by the subscript p.

We initially define specific quantities for each “fluid:”

ρps =
mp

Vp
=

μp

(4/3 πR3)
. (12.2)

5Not to be confused with the condensed particles contained in the two-phase
flow.
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Fig. 12.8. Control volume of a mixture

Here, μp is the mass of a condensed particle and R is its radius if it is spheri-
cal,6 mp is the total mass of the condensed species in a small control volume,
and Vp is the volume of the condensed species (Fig. 12.8). Similarly, for the
fluid phase we have

ρgs =
mg

Vg
. (12.3)

We will denote the total volume of mixture particles as V = Vg + Vp. Thus,
the partial densities are

ρp =
mp

V = εpρps = (1− ε)ρps, ρg =
mg

V = εgρgs = ερgs, (12.4)

and the average density of the mixture is ρ = ρg + ρp.
The porosity of the mixture is then εg = ε = Vg/V = ρg/ρgs. We also

define εp = Vp/V = 1− ε, and assume in what follows that ε is close to unity
(εp 
 1).

On average, in a mixture particle, the condensed phase will have an average
velocity vp and the uncondensed phase will have a velocity vg.

The thermodynamic state of the condensed phase will be defined only
by the temperature Tp, whereas that of the fluid phase will be defined by
Tg and ρgs. Therefore, the internal energies per unit of mass (note that ρps is
assumed constant) are

eps = eps(Tp), deps = Tp dsps = cc dTp, (12.5)

6In this simplified model, the particles are assumed to be spherical and have a
single diameter and physical state.



12.2 Simplified Model of a Flow with Particles 375

where cc is the specific heat of the condensed phase per unit mass, and (with
ρgs

∼= ρg because ε ∼= 1)

egs = eps(Tg, ρg), degs = Tg dsgs − p d(1/ρg). (12.6)

If a perfect gas is considered, the fundamental energy law is deduced from the
following laws of state:

p = ρgrgTg, deg = cvdTg. (12.7)

There are two types of exchanges between the condensed phase and the fluid
phase when the condensed particles are rigid and do not evaporate: exchanges
of frictional force F and heat Q from the fluid to the particles per unit volume
of mixture. Since each component has its own velocity, we can define the
material derivatives

dp/dt = ∂/∂t+ vp ·∇, dg/dt = ∂/∂t + vg ·∇. (12.8)

12.2.2 Balance Equations

Particle Balance

For the pseudo-fluid of particles, if there are no interactions between the
condensed particles the specific pressure does not intervene. The temperature
is the average temperature of the condensed particles, which are assumed to
have uniform temperatures. Locally, each particle has the same temperature.

By following the motion of a connected domain (Vp) in this fluid of parti-
cles, we obtain

dp

dt

∫
Vp

ρpdV = 0, (12.9)

which leads to (as in Chap. 4)

dpρp

dt
+ ρp∇ · vp = 0 (mass). (12.10)

The momentum balance will be

dp

dt

∫
Vp

ρpvpdV =
∫
Vp

FdV . (12.11)

Taking the mass balance into account, we deduce that

ρp
dpvp

dt
= F (momentum). (12.12)

For energy, it is necessary to take into account the heat flux from the gas to
the condensed species and the power of the force F :

dp

dt

∫
Vp

ρp(eps + v2
p/2)dV =

∫
Vp

(Q+ F · vp)dV . (12.13)
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We can then deduce the local equation:

ρp

dp(eps + v2
p/2)

dt
= Q+ F · vp (energy). (12.14)

By taking the scalar product of the two sides of the momentum equation by
vp and by subtracting this equation term-by-term from the energy equation,
we obtain

ρp
dpeps

dt
= Q (internal energy). (12.15)

Note that F and Q, which were introduced as exchanges between the gaseous
and condensed species, should in fact be regarded as production terms for the
mixture.

Gas-Phase Balance

Establishing the balance equations for the gas involves following the motion
of a domain (Vg) of the gas. The equations obtained are then, locally,

dgρg

dt
+ ρg∇ · vg = 0 (mass), (12.16)

ρg
dgvg

dt
+ ∇p = −F (momentum), (12.17)

ρg

dg(egs + v2
g/2)

dt
+ ∇ · (pvg) = −Q−F · vg (energy), (12.18)

ρg
dgegs

dt
+ p∇ · vg = −Q−F · (vp − vg) (internal energy), (12.19)

since the heat fluxes are equal in size but opposite in sign, and the point at
which the force is applied moves with the condensed phase.

Entropy Balance and Phenomenological Relations

The expression for the entropy production rate of the mixture is important
for determining the constitutive relations that provide the expressions for F
and Q.

Since there are no irreversible processes in either the particles or the gas,
the only irreversibility is associated with exchanges between the gas and the
particles. Therefore,

ρp
dpsps

dt
+ ρg

dgsgs

dt
= ẆS ≥ 0. (12.20)
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The thermodynamic laws lead to⎧⎪⎪⎪⎨⎪⎪⎪⎩
dsps = 1

Tp
deps, deps = ccdTp,

dsgs = 1
Tg
degs + p

Tg
d( 1

ρg
), degs = cvdTg,

ρgs
∼= ρg.

(12.21)

By using these Gibbs relations and the balance equations, we thus obtain

ẆS = (
1
Tp
− 1

Tg
)Q+

1
Tg

F · (vg − vp). (12.22)

The principles of the thermodynamics of irreversible processes (see Sect. 3.2)
allow us to consider the following linear laws when the generalized forces are
not too large:

Q = L1 (
1
Tp
− 1

Tg
), F = L2

1
Tg

(vg − vp), (12.23)

where L1 and L2 are coefficients of proportionality that are known as “phe-
nomenological coefficients.” The internal energy and momentum balances of
the (pseudo) fluid of particles then give us{

ρpccdpTp/dt = (L1/TpTg)(Tg − Tp),

ρpdpvp/dt = (L2/Tg)(vg − vp).
(12.24)

Two characteristic times τT and τv can be defined:

τT = ρpccTgTp/L1, τv = ρgTg/L2, (12.25)

which are the thermal and friction relaxation times, respectively. Finally, we
have {

dpTp/dt = (Tg − Tp)/τT ,

dpvp/dt = (vg − vp)/τv.
(12.26)

Note that the ratio τT /τv is similar to a Prandtl number.
The balance equations can therefore be written in their final forms, which

leads to the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dpρp/dt + ρp∇ · vp = 0,

dgρg/dt + ρg∇ · vg = 0,

ρp dpvp/dt + ρg dgvg/dt + ∇p = 0,

ρp dp(eps + v2
p/2)/dt + ρg dg(egs + v2

g/2)/dt+ ∇ · (pvg) = 0,

dpvp/dt = (vg − vp)/τv,

dpTp/dt = (Tg − Tp)/τT .

(12.27)
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The entropy production rate becomes

ẆS =
ρpcc

τTTgTp
(Tg − Tp)2 +

ρp

τvTg
(vg − vp)2 ≥ 0. (12.28)

We will now consider two borderline cases.
At gas–particle equilibrium, the generalized forces cancel, which means

that Tg = Tp and vg = vp. The particles, which are very small, are carried by
the gas and have the same temperature as it. The balance equations for the
mixture are identical to those of a nonviscous fluid of velocity v = vg = vp,
of density ρ = ρg + ρp, of pressure p, and of temperature T = Tg = Tp. The
laws of state obtained differ from those of the gas.

We deduce from the equations for the particles and the gas that (since
v = vg = vp)

dρp/ρp = dρg/ρg

for each particle of the mixture. It follows that

ρp = κρg.

If the coefficient κ is uniform for all particles and for an ideal gas, the
classical relations

p = ρ
rg

1 + κ
T = ρr̄T, e =

eg + κep

1 + κ
= c̄vT

are obtained.
These results show that, in this case, the mixture behaves like an ideal gas

of specific heat
c̄v = (cv + κcc)/(1 + κ)

and of molar mass

M̄ = (1 + κ)Mg.

Another situation that leads to ẆS = 0 occurs when the generalized fluxes
Q and F vanish, which in turn leads, according to (12.12) and (12.15), to
Tp =const. and vp =const. The particle motion is not influenced by that of
the gas; exchanges with the gas are, to some extent, frozen. This is the case
for very large particles.

These two extreme cases aside, it is necessary to take all of the equations
of the problem into account, and the relaxation times τT and τv intervene.

12.2.3 Application to the Study of Small Disturbances

The reference configuration is that of gas–particle equilibrium at rest. It is
thus characterized by

vg0 = vp0 = 0, T0, ρp0 = κρg0, p0 = ρg0rgT0
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(the ideal gas is already assumed). The subscript “0” refers to average quanti-
ties in this linearized theory. Disturbances are indicated by the subscript “1,”
leading to [140]

vg = vg1, vp = vp1, Tg = T0 + Tg1, Tp = T0 + Tp1,

ρg = ρg0 + ρg1, ρp = κρg0 + ρp1, p = p0 + p1.

The equations that describe the small motions are thus

∂ρg1/dt + ρg0∇ · vg1 = 0, (12.29)

∂ρp1/dt + κρg0∇ · vp1 = 0, (12.30)

ρg0
∂vg1

dt
+ κρg0

∂vp1

dt
+ ∇p1 = 0, (12.31)

ρg0 ∂egs1/dt + κρg0 ∂ep1/dt + p0∇ · vg1 = 0, (12.32)

∂vp1/dt = (vg1 − vp1)/τv, (12.33)

∂Tp1/dt = (Tg1 − Tp1)/τT , (12.34)

p1 = rg T0 ρg1 + rg ρg0 Tg1, (12.35)

egs1 = cv Tg1 = cp/γ Tg1, (12.36)

eps1 = cc Tp1 = β cp Tp1, β = cc/cp. (12.37)

Equation 12.30 is the only one that contains ρp1. Equation 12.32 can be rewrit-
ten with the aid of (12.36) and (12.37) as

∂Tg1

∂t
+ κβγ

∂Tp1

∂t
+ (γ − 1)T0∇ · vg1 = 0. (12.38)

Combining this with (12.29), we obtain the first integral

Tg1 + κβγ Tp1 +
(γ − 1)T0

ρg0
ρg1 = 0. (12.39)

Then, combining this last equation with (12.35) yields

p1 = γ rg T0 ρg1 − rg ρg0 κβγ Tp1. (12.40)

The entropy production rate given in Sect. 12.2.2 is equal to zero except at
second order. It follows that
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κ
∂sp1

∂t
+

∂sg1

∂t
= 0 (12.41)

or

κsp1 + sg1 = 0. (12.42)

Since {
sg = cv lnTg − rg ln ρg + const.,

sp = cc lnTp + const.,
(12.43)

we have

κ sp1 + sg1 = κβ cp Tp1/T0 + cv Tg1/T0 − rg ρg1/ρ0 = 0, (12.44)

which again gives the first integral (12.39) and nothing more than this.
Equations 12.34 and 12.39 give us

∂Tp1

∂t
=

1
τT

(−κβγ Tp1 +
(γ − 1)T0

ρg0
ρg1 − Tp1). (12.45)

The system to be solved is thus

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂ρg1/dt + ρg0 ∇ · vg1 = 0,

ρg0 ∂vg1/dt + κρg0 ∂vp1/dt + γ rg T0∇ρg1 − rg ρg0 κβγ ∇Tp1 = 0,

∂vp1/dt = (vg1 − vp1)/τv,

∂Tp1/∂t = (1/τT ) [(γ − 1)T0 ρg1/ρg0 − (1 + κβγ)Tp1.]
(12.46)

Let us eliminate ρg1 and vg1. We are left with⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∂/∂t) [τT∂Tp1/∂t+ (1 + κβγ)Tp1]

+(γ − 1)T0∇ · (τv ∂vp1/dt + vp1) = 0,

(∂/∂t) [τv ∂vp1/dt + (1 + κ)vp1]

+γ rg/(γ − 1)∇[τT ∂Tp1/∂t+ (1 + κβ)Tp1] = 0.

(12.47)

Let us now write, for a one-dimensional wave,

Tp1 = T̂p e
i(ωt−K·x), vp1 = v̂p e

i(ωt−K·x), (12.48)

where ω is the wave pulsation and K the wavenumber vector. The system has
a single solution if the following complex equation is verified:
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K2

ω2
c20 =

(1 + κβγ + iωτT )(1 + κ + iωτv)
(1 + κβ + iωτT )(1 + iωτv)

, (12.49)

where the square of the speed of sound in gas

c20 = γrgT0. (12.50)

The complex number K is such that

K/ω = 1/c(ω) + iγ(ω), (12.51)

where c is the speed of the wave and ωγ(ω) is the degree of damping per unit
length (see Sect. 10.2.2).

When the frequency is close to zero, we obtain the real value

c20
c2e

=
(1 + κβγ)(1 + κ)

(1 + κβ)
. (12.52)

The disturbance is sufficiently slow so that the mixture has time to return to
equilibrium. The speed c is the equilibrium speed ce.

When ω tends towards infinity, we obtain the real value

c = c0. (12.53)

The disturbance is so fast that the particles do not have enough time to react.
This is the frozen case, and the speed of sound is that of the gas.

The shape of the curve c(ω) depends on the respective orders of magnitude
of τT and τv. Note that c0 > ce because γ > 1.

For very small and light particles and for finite values of the frequency, the
speed of sound will be close to ce. For large particles, which are more difficult
to move, it will be closer to c0.

Figure 12.9 gives the results for particular coefficient values when the
Prandtl number is equal to 2/3, which corresponds to τT = βτv .

We have just studied the propagation of sound in a dilute suspension using
simplified balance equations. In particular, we assumed a linear law for the
expression of the force exerted by the fluid on the particles. We will see in Sect.
12.4.1 that other terms should also be taken into account. The propagation
of sound can be studied while accounting for these other terms [69] (see Eq.
12.138).

12.2.4 Application to the Study of a Vortex in a Dilute Suspension

Basic Equations for a Given Gaseous Velocity Field

In contrast to the preceding case, here we will assume that the particles in
dilute suspension do not act on the carrying fluid (which has a given field
velocity vg). We will not take heat exchange into account; thus, the only
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Fig. 12.9. Dispersion and absorption curves for a dilute suspension (P. Kuentz-
mann, private communication, 2009; see also [140])

exchanges considered are those of momentum. We only take into account the
Stokes force (12.128), so the equation to solve is as follows:

dpvp

dt
=

vg − vp

τv
, (12.54)

where vp is the particle velocity, dpvp/dt is the particle acceleration, and τv

is the particle/gas relaxation time, which is assumed to be constant.
The issue of the influence of other forces was investigated by several au-

thors in different situations such as the propagation of small periodic pertur-
bations [69], and the effect of vortex motion [273, 274] with or without heat
or mass transfer. The influence of gravity has been investigated, over the last
few years in particular, by Ganan-Calvo and Lasheras [92]; Tio et al. [273],
[274]; and Lasheras and Tio [148]. These authors have found several stable and
unstable structures, closed orbits and attractors for particles whose specific
densities are generally larger than the density of the fluid.

Marcu et al. [169] have studied the effect of gravity on particles that move
inside a Burgers vortex. Burgers vortex-like structures appear to be important
in turbulence (see Chap. 8). In the case of zero gravity, there is a critical value
of the Stokes number below which the particle is driven by the flow towards
the center of the vortex. Gravity effects lead to more complex situations and
one or three equilibrium points appear away from the center depending on
the Stokes and Froude numbers. In the vicinity of these equilibrium points,
changes in stability are observed as functions of terminal velocity and the
strain parameter. Nodes, foci, closed trajectories, and saddle points are ob-
tained.
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The particle trajectories will be determined, in the two-dimensional case,
as the motions in the (x, y), the (r, t) and (θ, t), the (r, vpr) and (r, vpθ), or the
(r, θ) planes, preferably after having made the equation terms
dimensionless.

The analysis of particle motion in a force field is nothing new for those
who study mechanics or particle physics, since they are continually confronted
with this type of problem. The present section focuses on vortex movements
and solutions of (12.54) with a view to applying the results when studying
suspensions.

The problems examined at the particle continuum scale are multiple (we
consider this a macroscopic scale as opposed to the microscopic scale of the
particle and the molecular scale internal to the particle or gas).

First, the velocity field will be investigated. This can be defined in Eulerian
coordinates or Lagrangian coordinates. In the case of suspensions with uniform
concentrations at t = 0, some very simple and characteristic situations are
of great interest in order to understand the phenomenology of the motion.
Generally, Eulerian coordinates can then be used to clearly define what is
understood by a rotationally invariant solution near the center of the vortex
and by a steady or unsteady solution. These results have to be converted to
Lagrangian coordinates to take advantage of the knowledge gained from the
analysis of the motion of an isolated particle. In addition, questions will be
asked concerning the continuity of the solutions and the physical assumptions
made in relation to the continuum approach.

In cylindrical (or two-dimensional polar) Eulerian coordinates, it is always
assumed that the radial and angular components of the velocity vector depend
only on the radial coordinate r and the time (the velocity field is invariant
upon rotation at time t):

vpr = vpr(r, t), vpθ = vpθ(r, t). (12.55)

In Lagrangian coordinates, due to the rotational invariance of the initial po-
sitions, we can write7

r = r(a, τ), a = r(a, 0), t = τ, dr =
∂r

∂a
da +

∂r

∂τ
dτ, dt = dτ ;

i.e., by inversion,

da =
dr − (∂r/∂τ)dτ

∂r/∂a
.

The Eulerian partial derivatives ∂vr/∂t, ∂vθ/∂t are then given in terms
of Lagrangian coordinates, yielding

7We will retain the notation r instead of rp for the position of the particle when
there is no ambiguity.
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∂vθ

∂t
=

r

∂r/∂a
(
∂θ̇

∂τ

∂r

∂a
− ∂θ̇

∂a

∂r

∂τ
), (12.56)

∂vr

∂t
=

1
∂r/∂a

(
∂ṙ

∂τ

∂r

∂a
− ∂ṙ

∂a

∂r

∂τ
). (12.57)

The terms on the right hand side are zero for a steady velocity field, leading
to the double condition

∂θ̇/∂τ

∂θ̇/∂a
=

∂ṙ/∂τ

∂r/∂a
= b(a), (12.58)

where b(a) is the initial radial velocity as a function of a.
Condition (12.58) must be verified for any rotationally invariant steady

flow. It should be noted that r depends only on a and τ , but that the polar
angle θ depends on the initial polar angle too:

θ = θ(a, α, τ) = θ(a, α, 0),

whereas θ depends only on a and τ . This means that

θ = α + θ0(a, τ), θ0(a, 0) = 0. (12.59)

Condition (12.59) is always satisfied for any rotationally invariant flow, re-
gardless of whether it is steady or not.

The particle concentration ρp (defined as the mass of condensed phase per
unit volume of the mixture) for a rotationally invariant flow depends only on r
and t in Eulerian variables, and therefore on a and τ in Lagrangian variables.
In Eulerian variables, it obeys the equation

∂(rρp)
∂t

+
∂(vprrρp)

∂r
= 0, (12.60)

and in Lagrangian variables

∂

∂τ
(rρp

∂r

∂a
) = 0,

yielding

ρp(a, τ) =
aρp(a, 0)
r(∂r/∂a)

. (12.61)

It should be noted that a steady velocity field—which thus obeys the double
equation (12.58) if it is rotationally invariant—can give an unsteady density
distribution, as demonstrated by the following examples.
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Vortex with Concentrated Vorticity

The two-dimensional fluid flow is irrotational beyond a singularity located at
one point. The circulation Γ is constant on any closed curve surrounding the
center of the vortex. The gas velocity vector components in polar coordinates
are therefore

vgr = 0, vgθ = Γ/2πr. (12.62)

This velocity field verifies the momentum and continuum equations for
constant-density fluid flows (ρg is constant). From a practical standpoint, this
type of vortex is the idealization of the flow created by an infinitely thin rod
rotating at high velocity around itself in a fluid at rest at infinity. If the rod
is removed, the vortex becomes free, and—assuming that its center remains
steady—the vortex is damped by viscosity (see Sect. 8.2.2) according to

vgr = 0, vθ =
Γ

2πr
(1− e−

r2
4νt ), (12.63)

where ν = μ/ρ is the kinematic viscosity. The vorticity is no longer concen-
trated but extends to a viscous core with a radius that increases as

√
νt.

Analysis of Particle Motion

The reference time tref is the relaxation time τv involved in the particle mo-
mentum equation. It is the relaxation time needed for the particle to reach
the same velocity as the fluid. The given circulation Γ is then used to define
reference length and velocity such that

lref = rv =
√
Γτv/2π, vref =

√
Γ/2πτv. (12.64)

The chosen reference length rv is the distance from the center of the vortex
at which the fluid travels 1/2π radians in a time τv, and the corresponding
angular velocity component is then the reference velocity. Reference time and
length decrease with decreasing particle density and radius and with increasing
viscosity. Reference length decreases with Γ . When made dimensionless in this
way, and considering (12.62), (12.54) becomes

dpvp

dt
=

1
r
eθ − vp. (12.65)

For simplicity, the same symbols are used in (12.65) and the following equa-
tions for dimensionless parameters. If θ and r are the dimensionless angular
and radial coordinates of the particle, we then have (along θ and r, respec-
tively)
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Fig. 12.10. Example of path determined for a2 β = 2, b = 0 [224]. Reprinted with
the permission of the International Journal of Multiphase Flow

{
(1/r) d(r2θ̇)/dt = 1/r − rθ̇,

r̈ = rθ̇2 = −ṙ,
(12.66)

where ṙ, r̈, θ̇ are the time derivatives of the position variables of the particle.
The solution to this system of equations depends on four integration constants
that are the values at time t = 0:

r(0) = a, θ(0) = α, ṙ(0) = b, θ̇(0) = β. (12.67)

First integration of (12.66) and substitution yield [263]

{
r2θ̇ = 1 + (a2β − 1)e−t,

r̈ + ṙ = [1 + (a2β − 1)e−t]2/r3.
(12.68)

Solving (12.68) with (12.67) gives the particle trajectories and the particle
position as a function of time.8

8We have not made use here of a characteristic hydrodynamic length that is
independent of the characteristics of the vortex and particle. If such a hydrodynamic
length L were to be introduced, there would be no characteristic dimensionless
number, and a characteristic time T = 2πrL2/Γ could be defined that corresponds
to the time taken for the fluid to travel 1/2π radians of the circle of radius L. A
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The asymptotic behavior of this system (12.68) was studied in [224], and
the results obtained compared favorably with the numerical results. An exam-
ple is presented in Fig. 12.10, which shows two trajectories that, after initally
moving away from each other, tend to converge in a spiral that is a common
asymptote.

Before examining a particle continuum, we will recall the physical assump-
tions involved. For an individual particle in the vortex:

• The particle size must be small compared with the distance to the center
of the vortex.

• The Reynolds number of the particle must be sufficiently small to verify
Stokes’s theory.

• The conditions must be satisfied for the other drag terms to be negligible
compared with the Stokes terms. In particular, this means that the gas
density must be very small compared with the particle density and that
the accelerations must not be too large.

For the continuum (two-phase medium), the assumptions regarding dilute
suspensions are assumed to hold. In particular, the volume occupied by the
particles must be negligible compared with the volume of gas. This assumption
does not hold for high particle concentrations, ρp. We will see that there
are cases where the particles tend to concentrate in certain regions. If the
interparticle distance becomes too small, the theory of suspensions without
particle interactions will no longer be valid; indeed, if this distance becomes
very small and high gradients are present, even the continuum hypothesis may
no longer be valid, in which case shocks can occur.

Analysis of the Motion of the Particle Continuum

The above analysis naturally leads us to consider the particle continuum that
comprises the suspension in terms of Lagrangian coordinates. In effect, the
above equations and results are valid, but the question of continuity arises
and discontinuity waves may occur. We will then examine this description
using Eulerian coordinates, assuming a uniform particle size.

Stokes number St could then be introduced by comparing the two times τv and T :
St = τv/T = r2v/L

2.
The advantage of this approach is that the variations in τv and rv with the pa-

rameters of the particle and vortex are directly determined by the Stokes number.
However, the advantage of the approach we actually used is the simplicity of the
equations obtained. The usual discussion concerning the value of St is replaced with
a discussion of the orders of the dimensionless variables r and t (small values of St
mean that times that are over τv and radii that are larger than rv are considered;
conversely, high values of St correspond to small times and distances from the vor-
tex center). As we will see later, the immediate consequence is that if r � lref , the
particle will respond quickly to the changing flow direction and the radial inertial
drift outwards will be weaker. If r � lref , the inertia has a strong impact on the
particle’s trajectory.
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The particle continuum obeys (12.54), which takes the form of (12.65)
for a gas vortex with concentrated vorticity and yields (12.66) in Lagrangian
coordinates, with⎧⎪⎪⎨⎪⎪⎩

r = r(a, τ), ṙ = dr/dτ, a = a(r, 0), b = ṙ(a, 0),

θ = α + θ0(a, τ), θ̇ = ∂θ/∂τ,

0 = θ0(a, 0), β = θ̇(a, 0),

(12.69)

assuming that the solutions are rotationally invariant, as in (12.59). However,
considering a continuum also means that we must specify the functions

b = b(a), β = β(a). (12.70)
The forms of these functions determine whether or not the particle flow is a
continuum and the steady or unsteady nature of certain solutions.

ṙ

4
r + r = a+b

r + r = a+b

r = 1/r2

r

2

0

–2
1 2 3

asymptotes

Fig. 12.11. A single system of curves for K = 1 (redrawn from [224]; reprinted
with the permission of the International Journal of Multiphase Flow)

Instances of the general case where the product a2β is considered constant
and equal to K are very interesting; (12.68) then becomes{

r2θ̇ = 1 + (K − 1)e−t,

r̈ + ṙ = [1 + (K − 1)e−t]2/r3.
(12.71)

For K = 1, the particles have the same angular component of velocity as
the fluid, but their radial velocity differs from the fluid due to the centrifugal
effect. We get
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{
rθ̇ = 0 ⇒ vpr = 1/r,

r̈ + ṙ = 1/r3.
(12.72)

We can change variables and use r instead of t for given values of a and b;
i.e., for a given trajectory. Setting ṙ = v(a, b, r) yields the following result for
the second part of (12.71):

v
∂v

∂r
+ v =

1
r3

[1 + (K − 1) exp(−
∫ r

a

dr

v
)]. (12.73)

This equation is simplified considerably when K = 1. Only one system of
curves is obtained. For a given trajectory, different initial conditions will lead
to the same trajectory, as demonstrated in Fig. 12.11 for b = 0 and b = −2
after computation using (12.72).

4

ṙ

r

2

b = –2

b = 0

0

–2
1 2 3

asymptote
ṙ = 1/r2

Fig. 12.12. Influence of b on the path for K = 2 (redrawn from [224]; reprinted
with the permission of the International Journal of Multiphase Flow)

In contrast to the K = 1 case, the K = 2 case (for instance) shows that
the trajectories obtained with b = −2 after computation are different from
those plotted with b = 0. If a starting point of b = −2, a = 1.7 is chosen, the
result from this new initial point is a new trajectory (Fig. 12.12). In addition,
the locus of the maxima of vpr is not unique.
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12.3 Flow with Evaporating Droplets

After injecting them into an atmosphere or combustion chamber, the droplets
form a two-phase flow with the surrounding gaseous mixture. This flow con-
tains droplets of diverse sizes, and these sizes vary over time if vaporization
and combustion occur, as shown in Fig. 12.13).

Fig. 12.13. Formation and combustion of a spray of liquid oxygen droplets in
gaseous hydrogen (L. Vingert, private communication, 2005)

The balance equations obtained are more complex than the previous ones
obtained with no mass source terms, and it is of course much more compli-
cated to solve them analytically and numerically than those described in the
previous section [55, 72, 188, 263, 290, 295]. These difficulties increase if there
are interdroplet interactions and the flow is turbulent.

12.3.1 Flow Variables

We will assume that the two-phase medium is a suspension of very thin
droplets. For a monodisperse suspension (droplets with the same radius r),
we can represent the spatial repartition of the droplet and the fluid schemat-
ically, as shown in Fig. 12.8, and the variables that characterize the flow are
the same as in Sect. 12.2.1.

In the case of a polydisperse suspension, it is usual to consider particle size
classes. If we follow (in the Lagrangian sense) the motion of the particles of the
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mixture (i.e., of the suspension), the size associated with a class of droplets
will be defined for instance in the injection zone, and will evolve further under
the effect of vaporization, but will stay in the same class until they completely
disappear.

We generally consider classes of particles, and we introduce the local par-
ticle number of each class. Each class (m) satisfies a conservation equation.
The particles of a given class are such that, for example, at the initial time
t = 0 (at the injection point or at the inlet of a pipe), their radii are between
r(m) and r(m) + δr(m). It is assumed that, for t ≥ 0, the radii of the particles
decrease under the effect of vaporization, but that they stay in their class
during their motion and do not disappear. If germination occurs or droplets
disappear, we must introduce specific terms. We will assume here that there is
only one class of particles, and that the droplets do not germinate, disappear,
coalesce or break up.

12.3.2 Balance Equations for the Flow

Droplet Balance

The method of obtaining balance equations is in this case similar to described
in Sect. 12.2.2. In addition, we must take the mass source term due to particle
vaporization into account (one-component liquid droplets), write the balance
equation for the number of particles, and to consider that the gas phase is this
time a gaseous mixture with transfer fluxes and possible chemical reactions.
Let us consider the number n of particles per unit volume. The particle number
n(x, t) is assumed to obey the integral conservation equation

dp

dt

∫
Vp

ndV = 0. (12.74)

The time derivative dp/dt means (as described in Sect. 12.2.1) that the volume
Vp follows the particle motion everywhere. It can be deduced that∫

Vp

dp

dt
(ndV) =

∫
Vp

dpn

dt
dV +

∫
Vp

n∇ · vp dV = 0.

Therefore,

∂n

∂t
+ ∇ · (nvp) = 0. (12.75)

To obtain the mass balance we write

ρp = nM,
dp

dt

∫
Vp

ρpdV =
dp

dt

∫
Vp

nMdV =
∫
Vp

n
dM

dt
dV ,

where M is the droplet mass. dM/dt = −Ṁ , and we deduce the local mass
balance equation
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dpρp

dt
+ ρp∇ · vp = Ẇp (mass), (12.76)

where Ṁ is the vaporization rate of each droplet and Ẇp = −nṀ is the
droplet production rate9 per unit volume of the mixture due to vaporization.
For momentum, we know that Mdpvp/dt = F. Thus,

dp

dt

∫
Vp

ρpvpdV =
∫
Vp

ẆpvpdV +
∫
Vp

ρp
dpvp

dt
dV ,

or

∂(ρpvp)/dt + ∇ · (ρpvp ⊗ vp) = Ẇpvp + F .

Rearranging via (12.76), we find

ρp
dpvp

dt
= F (momentum), (12.77)

which is identical to (12.12), which was found without vaporization. Note
that this equation can be deduced directly by multiplying the two sides of
the equation Mdpvp/dt = F by n. However, in both methods, considering a
droplet continuum implies that the time derivative d/dt becomes a material
derivative dp/dt.

For internal energy we have

dp

dt

∫
Vp

ρpēpdV =
∫
Vp

ẆpēpdV +
∫
Vp

ρp
dpēp

dt
dV .

The local form of this equation is deduced as

dp(ρpēp)
dt

+ ρpēp∇ · vp = Ẇpēp +Q+ Ẇp(hS − h̄p).

Combining with (12.76), we obtain

ρp dpēp/dt = Q+ Ẇp(hS − h̄p) (internal energy). (12.78)

Here, the subscript S means “at the droplet surface,” and the bar indicates an
average quantity for the liquid droplet. It is only when the droplet temperature
is uniform that the enthalpy term is equal to the the latent heat l at the droplet
temperature Tp.

The kinetic energy equation is deduced from momentum balance (12.12):

ρp
dpkp

dt
= F · vp, (12.79)

and the total energy equation for the particles of the spray becomes

ρp
dp(ēp + kp)

dt
= Q+ Ẇp(hS − h̄p) + F · vp (energy). (12.80)

9This quantity is negative when vaporization prevails; it is the opposite of the
gas-phase production rate.
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Gas-Phase Balance

Here, we first write the equations for the mixture (the spray), and then we
establish the equations for the gaseous phase by subtracting them from those
for the particles. The method used to establish the equations is the same as
that employed previously, and takes into account that there is conservation
of total mass, momentum (if there are no external volume forces), and total
energy in the mixture. The gas itself is a mixture of reacting species and is a
viscous fluid. We only give the results here.

For the gas phase we obtain

dgρg

dt
+ ρg∇ · vg = −Ẇp (mass), (12.81)

ρg
dgvg

dt
+ ∇p = −F − Ẇp[vp − vg] (momentum), (12.82)

ρgdg(egs + v2
g/2)/dt+ ∇ · (q + vg ·P) =

−Ẇp(hS − p
ρps

+ kp − eg − kg)−Q−F · vp (energy),
(12.83)

ρgdgegs/dt + ∇ · q = −∇⊗ vg : P− Ẇp(hS − p/ρps + kp − eg

−(vp − vg)2/2)−Q−F · (vp − vg) (internal energy),
(12.84)

since the heat flows are equal in size and of opposite signs, and the point of
application of the force moves with the condensed phase.

The chemical species balance must be

⎧⎨⎩
ρgdgYv/dt + ∇ ·J Dv = Ẇv − (1− Yv)Ẇp (vapor of droplets),

ρgdgYj/dt + ∇ ·J Dj = Ẇj + YjẆp (other species),
(12.85)

where the subscript v designates the gaseous species that forms the vapor of
the one-component droplet, and j (for j = 2, . . . N) corresponds to the other
species.

Entropy Balance Law for the Spray and Phenomenological
Relations

Here, the entropy balance equation has additional terms compared to (12.20).
It can be written

ρp
dps̄p

dt
+ ρg

dgsg

dt
− Ẇp(sg − s̄p) + ∇ · q−

∑
j gjJ Dj

Tg
= ẆS ≥ 0. (12.86)
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Just as we did for the inert particle case of Sect. 12.2.2, we use the basic
thermodynamic laws for the gas (which is a chemical mixture this time) and
the particles. The final expression for the entropy production rate is as follows:

ẆS = Q(1/Tp − 1/Tg) + F · (vg − vp)/Tg + q ·∇ (1/Tg)

−∑j J Dj ·∇ (gj/Tg)− (1/Tg)Π : ∇⊗ vg −
∑

j(gj/Tg)Ẇj

−Ẇp[(hvS − h̄p)/Tp − (1/Tg)(hvS − pg/ρps − eg + (vp − vg)2/2

−pg/ρg −
∑

j gjYj − gv + Tg(sg − s̄p))],

(12.87)

where Tp is the local temperature of the pseudo-fluid of droplets and Π =
P− p1. We again find the usual terms for reacting gaseous mixtures and for
suspensions with no mass exchange, but we also find a term in (−Ẇp). This
term is

−Ẇp [(
1
Tg
− 1

Tp
)hvS + (

ḡp

Tp
− gv

Tg
)− pg

Tgρps
+

1
Tg

(vp − vg)2

2
].

Neglecting the relative kinetic energy and the term in 1/ρps, we obtain the
following for the gas–droplet exchange term in the entropy production rate:

Ẇ g−p
S = (

1
Tp
− 1

Tg
)(Q+ ẆphvS) + F · vg − vp

Tg
− Ẇp(

ḡp

Tp
− gv

Tg
). (12.88)

The present phenomena have three origins:

• The temperature difference
• The chemical potential difference
• The velocity difference.

Between the generalized fluxes Q+ ẆphvS , F , Ẇp and the conjugate gener-
alized forces in the last relation, we can write—if the generalized fluxes and
forces are sufficently small—linear phenomenological relations that follow the
laws of TIP (see Sect. 3.2). Couplings can appear with other terms in (12.87).
If there are no couplings, we have:

{Q+ ẆphvS = L1 (1/Tp − 1/Tg), F = (L2/Tg)(vg − vp),

Ẇp = L3(gv/Tg − ḡp/Tp),
(12.89)

where L1, L2 and L3 are phenomenological coefficients. These coefficients
can be deduced from analyzing the problem at the particle scale (which is the
subject of the following section). Very often vapor and liquid are in equilibrium
at the droplet surface, and the droplet mass flow rate is given directly by a
formula such as (12.173).
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To discern a possible liquid–vapor disequilibrium at the droplet surface,
it is possible to rearrange the formula giving the entropy production rate.10

Finally, (12.88) becomes

Ẇ g−p
S = (1/Tp − 1/Tg)Q̄+ F · (vg − vp)/Tg − Ẇp(gpS − gvS)/Tp,

where Q̄ = Q+Ẇp(hvS− h̄v). New phenomenological relations can be written
in which vaporization disequilibrium appears through the relation

Ẇp = L′3
gvS − gpS

Tp
.

12.3.3 Application to the Study of Spray Flame Propagation

Modeling a Spray of Small Droplets

Let us now consider a spray flame propagating through a fresh mixture con-
sisting of small fuel droplets, fuel vapor, and air. We will first study the steady
1-D solution to the problem, and we will then summarize the theory of Nicoli,
Haldenwang and Suard [184] for analyzing the linear stability of the flame
obtained.

The configuration is similar to that of Sect. 10.5, except that this time the
fresh mixture contains small fuel droplets that form a dilute suspension. We
consider a single reaction with a high activation energy. This leads to a thin
premixed flame. Droplet vaporization is assumed to occur inside the preheat-
ing zone, and the reaction occurs in the gaseous phase. This configuration is
shown in Fig. 12.14 for the 1-D spray flame. The following assumptions are
made:

• The combustion and spray scales are well separated, so �d 
 �f , where
�d is the inter-droplet distance and �f the reactive-diffusive length. It can
be proven that this condition is equivalent to Da 
 1, where Da is the
Damköhler parameter (equal to the ratio of a characteristic vaporization
time τvap to the chemical time τchem). Indeed,

Da = τvap/τchem = (�d/�f)2.
10The difference between the ratios of chemical potential to temperature (i.e.,

ḡp

Tp
− gv

Tg
) in (12.88) can be decomposed into three terms. The first term corresponds

to droplet internal exchanges. It vanishes if droplet quantities such as temperature
are uniform, which we will assume hereafter. In the opposite case, we must take
into account internal droplet relaxation. The second term relates to vaporization–
condensation at the droplet surface. It is equal to zero at evaporation equilibrium.
The last term is related to exchanges between the droplet surface and the bulk of
the gaseous phase. Part of this term can be regrouped with Q.

In other words, we have gvS/TS−gv/Tg
∼= h̄v(1/TS−1/Tg), where h̄v is the average

local enthalpy per unit mass of the vapor between TS , at the droplet surface, and
Tg in the bulk.
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• The medium is thus considered to be a continuum consisting of three
species: air, gaseous fuel, and liquid fuel. The diffusion of liquid droplets
in this continuum is ignored.

• We will assume that the latent heat vanishes here.
• We will also make the following assumptions for the gas phase: there is

no thermal diffusion process (DT = 0); external forces and viscosity are
negligible; we have a constant, static pressure to a first approximation;
the Fourier law holds for the thermal conduction; Fick’s law holds for the
diffusion, and there is a single coefficient of diffusion for all species; the
Lewis number is equal to 1; there is only one chemical reaction; a mixture
of perfect gases is present.

Scales related to the gaseous premixed flame of Zel’dovich and Kamenet-
skii (see [301]), hereafter termed the “ZFK flame,” are used. We introduce
θ(x, y, t) = (T −Tu)/(Tb−Tu) for the temperature,11 and fuel mass fractions
Yl and Yg divided by the initial overall fuel mass fraction (Ylu + Ygu). The
time and length units are, respectively, (Dth)b/U

2
ZFK and (Dth)b/UZFK , with

UZFK =

√
2Leλρ2

bYO2B

Cpρ2
uZe

2
exp (− Ea

2RTb
).

We finally obtain the balance laws in a nondimensional form:⎧⎪⎪⎨⎪⎪⎩
∂Yl/∂t + v ·∇Yl = −Ẇvap,

∂Yg/∂t + v ·∇Yg = ΔYg + Ẇvap − Ẇchem,

∂θ/∂t + v ·∇θ = Δθ + Ẇchem,

(12.90)

with {
Ẇchem = (Ze2/2)Yg exp[−Ze (1− θ)],

Ẇvap = (Yl/Da)H(θ − θv),
(12.91)

where H is the Heaviside function.

Steady 1-D Analysis of a Spray Flame

This analysis proceeds in a relatively similar fashion to that in Sect. 10.5.1,
but with a transition spray gas. An asymptotic method will be applied, based
on the four zones shown in Fig. 12.14. The results for each zone are given
below.
Zone I = (−∞ < x ≤ xv), where xv is such that θ(xv) = θv (i.e., this is
where the vaporization starts):

11θ is similar to c in (8.110) or βT in (10.163).
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Fig. 12.14. 1-D spray flame configuration of Nicoli et al. [184]. Zone I, with xv,
is where the vaporization starts. Zone II is where the vaporization is assumed to
occur. Zone III is the the asymptotically thin reaction zone. Zone IV is where the
burnt gas is in equilibrium

{
θ = exp(USF x) < θv, Yl = Ylu = 1,

Yg = Ygv exp(USF x).
(12.92)

Zone II = (xv ≤ 0−):⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ = exp(USF x) > θv, Yl = exp (x− xv)/Da,

Yg = 1 + [−1 + exp (xv/Da)/(1 + 1/DaUSF )] exp(USF x)

− exp [(x− xv)/Da]/(1 + 1/DaUSF ),

(12.93)

{
θ = exp(USF x) < θv, Yl = Ylu = 1,

Yg = Ygv exp(USF x),
(12.94)

where USF is the spray flame speed.
Zone III = (0− ≤ 0+) (see Eq. 10.173 in Sect. 10.5.2):

{
θ− = θ+ = 1, (Yl)− = (Yl)+ = 0, (Yg)− = (Yg)+ = 0,

dθ/dx|− = 1, dθ/dx|+ = 0, dYg/dx|− = −1, dYg/dx|+− = 0.
(12.95)

Zone IV = (0+ < x <∞) (where θ = 1).
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Fig. 12.15. Steady spray flame structure with Da = 0.1, θv = 0.1 (P. Haldenwang,
private communication, extracted from [184])

When θ
1/Da
v 
 1, which is obtained for Da < 1 and 0 < θv < 1 and ensures

the quasi-complete vaporization of the droplets upstream of the reaction zone,
the spray flame speed is found to be identical to the ZFK gaseous flame speed.
The results are shown in Fig. 12.15. Numerical confirmation of the latter result
can be found in [184, 268].

Linear Stability Analysis

Equations are rewritten in the perturbed frame, which is moving at the speed
of the perturbed flame:⎧⎪⎪⎨⎪⎪⎩

ξ = [x− xSF (y, t)]USF /Dth,

η = y USF /Dth,

τ = t U2
SF/Dth.

(12.96)

The flow parameters are written in the form f = f̄ + ε f̂(ξ) exp (ωτ + ikη),
where ε is the (infinitely small) dimensionless amplitude of front corrugation.
An asymptotic analysis was performed by Nicoli, Haldenwang and Suard [184],
who studied the stability of the spray flame in the 1-D and 2-D cases. Thresh-
old data are then obtained for pulsating flat spray flames (k = 0) and for
pulsating wrinkled spray flames (k �= 0). The analytical method used is that
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employed for matched asymptotic expansions. Four domains are considered,
as in the preceding study of steady planar flames.

We obtain a dispersion relation that takes the following simplified form
for θ1/Da

v 
 1:

(1−2r−

Ze
)
[ω + r− + Da (ω2 − k2)] exp (−2r−ξv)

(k Da)2 −Da− (ωDa + 1)2
+

2r−

Ze
(r−−r+) = 0, (12.97)

where r± = (1/2) [1±√1 + 4(ω + k2)].
The theoretical and numerical investigations allowed the authors to in-

terpret their results physically. The advanced instability mechanism complies
with the following sequence: (a) assume that the flame accelerates for some
reason; (b) the preheating zone then shortens; (c) vaporization consequently
occurs closer to the reaction zone; (d) gaseous fuel enhancement therefore oc-
curs in the reaction zone, and; (e) the flame speeds up because the heat release
is enhanced. Step (e) is the feedback stage that is essential for instability.

In a recent paper [185], the authors compare the stabilities of the flames
obtained with gas fuel and spray fuel in lean mixtures. Their conclusion is as
follows:

“Our stability analysis supplies the stability diagram in the plane {Le, δ}
for various Ze values12 and shows that, for all Le, the plane front becomes
unstable for high liquid loading. At large or moderate Lewis number, we show
that the presence of droplets substantially diminishes the onset threshold of
the oscillatory instability, making the appearance of oscillatory propagation
easier. Oscillations can even occur for Le < 1 when sufficient spray substitu-
tion is operated. The pulsation frequency occurring in this regime is a tunable
function of δ. At low Lewis number, the substitution of a spray for a gas leads
to a more complex situation in which two branches can coexist: the first one
still corresponds to the pulsating regime, while the other is related to the
diffusive–thermal cellular instability.”

12.4 Problems at the Particle Scale

In Sect. 12.2 we deduced the expressions for the force F and heat flowQ acting
on the particles per unit volume of the mixture from phenomenological laws.
Two characteristic times (τT and τv) appeared, although we were not able to
specify their values. We can obtain these values by studying the problem at the
scale of the condensed particle (known as the mesoscopic scale). This theory
provides expressions that are generally corrected by empirical formulae.

If we ignore the simplifying assumptions of Sect. 12.2 to some extent, we
are confronted with the presence of many phenomena that will be evoked
thereafter. One of these is the variation in particle mass due to evaporation or

12δ is the spray liquid loading: the ratio of liquid fuel mass to overall fuel mass.
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Fig. 12.16. Neutral curve of the oscillatory instability of a spray flame for various
Damkhöler numbers (P. Haldenwang, private communication, 2009; see also [184])

condensation. We will study the case of a drop in the presence of a diffusion
flame. In each of these problems the particle will be assumed to be spherical.

12.4.1 Force Exerted by a Fluid on a Spherical Particle

The fluid will initially be assumed to be incompressible, and several situations
will be studied before we arrive at a realistic formula [90, 96].

Case of an Incompressible Perfect Fluid

A sphere located in a steady flow of a nonviscous fluid moving with an irrota-
tional velocity at infinite U∞ is only subjected to the Archimedes force. The
motion of the fluid does not induce any other force. If R is the radius of the
sphere, the force is thus directed vertically upwards and has a value of

F =
4
3
πR3 ρgs g. (12.98)

Induced Inertial Force

The flow can be described using the stream function ψ or the velocity potential
φ, which are both harmonics. Variables x, y (orthonormal coordinates) and r
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are defined in Fig. 12.17. This solution is valid only in the case of cylindrical
symmetry (where the axis of symmetry is Ox). The stream function ψ obeys
the equation

∂2ψ

∂x2
+

∂2ψ

∂y2
− 1

y

∂ψ

∂y
= 0. (12.99)

A doublet of intensity K = −2πU∞R3 yields

ψ =
K

4π
sin2 θ

r
=

K

4π
y2

r3
, (12.100)

and a uniform flow gives

ψ = U∞
r2 sin2 θ

r
= U∞

y2

2
. (12.101)

By superposing these two equations we get

φ = U∞x− K

4π
x

r3
, ψ = U∞

y2

2
+

K

4π
y2

r3
. (12.102)

Fig. 12.17. Cylindrical symmetry configuration. The Cartesian frame (x1, x2, x3 =
x) is attached to the center (A) of the sphere. Fluid motion does not depend on Φ
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If, instead of being motionless in a uniform flow at infinity,13 the sphere ex-
hibits uniform motion with a translational velocity of VA in a motionless
atmosphere at infinity, the result is the same in a reference frame associated
with the sphere. If VA is not constant, the field of the flow is determined at
any time in a similar way, but the intensity of the doublet is variable over
time, resulting in the existence of a force arising from the sphere’s acceler-
ation. That force, which is proportional to the acceleration γA, utilizes an
induced mass. To obtain its value, it is necessary to shift from the reference
frame, in which the motion of the sphere is observed, to the reference frame
related to the sphere (Fig. 12.18).

Fig. 12.18. System of axes related to the sphere

We then have

φ(X1, X2, X3, t) = ϕ(x1, x2, x3, t). (12.103)

We note that, at any point on the sphere’s surface, the relative normal velocity
of the flow is zero; i.e.,

(v −VA) · n = 0 (12.104)
13The symmetry of the pressure field acting on the sphere’s surface leads to the

flow exerting a net force of zero on the sphere. However, this zero drag directly
contradicts observations of substantial drag on bodies moving relative to fluids.
This peculiar result is known as “d’Alembert’s paradox.”
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or

∂ϕ/∂r = VA cos θ. (12.105)

The potential

ϕ = − R3

2r2
VA cos θ (12.106)

obeys this condition. At any point M , and for any vector AM, we thus obtain

φ = R3 VA ·AM
2AM3

. (12.107)

Let us note that

∂AM/∂t = −VA. (12.108)

The application of the unsteady Bernoulli equation makes it possible to cal-
culate the forces exerted on the sphere. Only the term ∂φ/∂t gives a nonzero
result, in addition to the Archimedes force that has already been evoked. We
have

∂φ

∂t
= −R2

2
(
γ ·AM

r3
− V2

A

r3
+ 3

VA ·AM
r5

). (12.109)

The last two terms disappear from the expression for the force due to sym-
metry, and integration over the sphere’s surface (Σ) gives

F′ = − ρ

2R

∫
Σ

(γ ·AM)AMds = −2
3
πρR3γA = −m′γA. (12.110)

The induced mass m′ is equal to half the mass the sphere would have if it was
filled with the external fluid. The induced inertial force F′ also exists in the
presence of a viscous fluid, but with a different expression.

Case of an Incompressible Viscous Fluid

Archimedes Force

The particles of a two-phase flow are swept along by the carrier fluid, mainly
under the influence of viscous friction forces [107]. In most cases, the Reynolds
number (calculated using the relative gas–particle velocity and the particle
radius or diameter) is very low. In the vicinity of the particle, the inertia
of the fluid is weak compared to viscous forces, so nonlinear terms of the
momentum equation are neglected. Thus, to a first approximation, the system
that describes the steady flow is
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∇ · v = 0.
(12.111)

These equations are at the heart of Stokes’ theory, which enables the friction
force to be calculated accurately. On the other hand, the flow obtained is not
satisfactory, since the streamlines remain very disturbed far from the sphere
and there is no wake, which contradicts experimental observations. To obtain
a better description far from the sphere, we must use Oseen’s theory, which
takes into account the convection induced by the velocity at infinity: U∞. We
can then write the system{

ρU∞ ·∇⊗ v + ∇p = μΔv,

∇ · v = 0,
(12.112)

which amounts to linearizing the inertial terms.
Let us first establish the complete system of equations for the general case,

without ignoring the nonlinear terms and for axisymmetric flow. The variables
used are those of the preceding section. In order to eliminate the pressure, we
consider the curls of the two sides of the momentum equation, which then
becomes

∂ω

∂t
+ ∇× (ω × v) = νΔω, (12.113)

where ω = 1/2 ∇× v, ν = μ/ρ. The continuity equation becomes

∂(yu)
∂x

+
∂(yv)
∂y

= 0, (12.114)

which gives the stream function ψ such that

u =
1
y

∂ψ

∂y
, v = −1

y

∂ψ

∂x
. (12.115)

We show that ω is collinear to the k vector of the standard basis {i, j k} of
the three-dimensional Cartesian coordinate system (see Fig. 12.19)
and that its algebraic value along Oz is

ω = − 1
2y

(
∂2ψ

∂x2
+

∂2ψ

∂y2
− 1

y

∂ψ

∂y
) (12.116)

The equation in ω then becomes

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− ωv

y
=

ν

y
[
∂2(ωy)
∂x2

+
∂2(ωy)
∂y2

− 1
y

∂(ωy)
∂y

]. (12.117)

The last two equations (12.116) and (12.117) enable us to study the flow. Let
us now introduce dimensionless quantities, which are obtained by dividing
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Fig. 12.19. The swirl ω in space

the time, the velocity, the length, the stream function, and the swirl by the
reference quantities R/U∞, U∞, R, U∞R2, and U∞/R, respectively.

Without changing the notation, the previous equations give the following
dimensionless relations:

∂2ψ

∂x2
+

∂2ψ

∂y2
− 1

y

∂ψ

∂y
= −2ωy, (12.118)

∂2(ωy)
∂x2

+
∂2(ωy)
∂y2

− 1
y

∂(ωy)
∂y

= Re y (
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
− ωv

y
), (12.119)

where Re = U∞R/ρ is the Reynolds number.
For Stokes’ theory, the convective terms of the right hand side of (12.119)

vanish (Re→ 0), and it becomes

∂2(ωy)
∂x2

+
∂2(ωy)
∂y2

− 1
y

∂(ωy)
∂y

= 0. (12.120)

This is the same equation as (12.99), which is obeyed by the stream function
of an irrotational, incompressible, nonviscous fluid: ψ is replaced simply by
ωy. We therefore know a particular solution: the doublet of the form

ωy =
K sin2 θ

2r
. (12.121)

Using this solution, (12.119) gives

∂2ψ

∂r2
+

1
r2

∂2ψ

∂θ2
− cos θ

r2 sin2 θ

∂ψ

∂θ
= −K sin2 θ

r
. (12.122)
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By writing

ψ = f(r) sin2 θ, (12.123)

we obtain

f”(r)− 2
r2
f(r) = −K

r
. (12.124)

We immediately obtain the solution. By considering the boundary conditions
at the level of the surface of the sphere where v = 0, we see that

ψ(1, θ) = 0,
∂ψ

∂r
(1, θ) = 0, (12.125)

and by accounting for the conditions at infinity, where ψ = y2/2, we obtain
K = −3/2 for the doublet intensity and the solution

ψ = (r2 − 3r
2

+
1
2r

)
sin2 θ

2
. (12.126)

The terms in r2 and 1/2r are identical to those of an irrotational flow of a
perfect fluid. The solution is the superposition of a uniform flow and a doublet.
The term (−3r/4 sin2 θ) is sometimes called a stokeslet.

Since the velocity field is known, we can calculate the forces acting on the
sphere by writing, for example [96], that their power is equal to the power
dissipated by the viscosity:

U∞F = 4μ
∫
V
ω2 dV . (12.127)

We obtain Stokes’ force (in dimensional variables)

F = 6πμU∞R. (12.128)

The corresponding force per unit mass is then

F
ρp

=
F

4/3 πR3ρps
=

9
2
μU∞
R2ρps

, (12.129)

or, if we replace U∞ by vg − vp,

F = ρp
vg − vp

τv
, (12.130)

where

τv = 2R2ρps/9μ. (12.131)

This is the expression for the friction relaxation time given by Stokes’ theory.

In Oseen’s theory, the dimensionless system to be solved becomes
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{
∂2ψ/∂x2 + ∂2ψ/∂y2 − (1/y) ∂ψ/∂y = −2ωy,

∂2(ωy)/∂x2 + ∂2(ω y)/∂y2 − (1/y) ∂(ωy)/∂y = Re y u ∂ω/∂x.
(12.132)

Oseen’s solution for a sphere is as follows:

ψ = (r2 +
1
2r

)
sin2 θ

2
− 3

2
1 + cos θ

Re
[1− e−

Re r
2 (1−cos θ)]. (12.133)

We obtain terms for uniform flow and the doublet, as well as a final term that
is sometimes called an oseenlet.

The resulting force is more difficult to calculate. We will therefore only
quote the following expressions [107, 215]:

F = 6πμU∞R (1+
3
8
Re− 19

320
Re2 +

71
2560

Re3− 30179
2150400

Re4 + . . .) (12.134)

and

F = 6πμU∞R(1 +
3
8
Re+

9
40

Re2 lnRe + O(Re2)). (12.135)

We will not comment on these results here.
It is common to use empirical formulae that include a corrective coefficient

as well as the Stokes relaxation time (τv)St:

(τv)emp =
1
Cv

(τv)St. (12.136)

For example, Carlson and Hoglund [41] give Cv as a function of the Mach
number and the Reynolds number based on the diameter of the sphere, ReD =
2Re:

Cv =
(1 + 0.15Re0.687)(1 + exp(0.427M−4.63 − 3Re−0.88

D ))
1 + MReD(3.82 + 1.28 exp(−1.25ReDM−1))

. (12.137)

There are other empirical formulae too.
Accelerating the particles modifies the force. The following is obtained for

condensed particles in a gas using Stokes’ theory (see [55, 57, 117, 175, 271]):

F = 6πμU∞R(vg − vp) + 2
3πR

3ρgs(dpvg/dt− dpvp/dt)

− 4
3πR

3∇p + 6R2√πρgsμ
∫ 0

t
(dpvg/dt

′

−dpvp/dt
′)/
√
t− t′ dt′ + 4

3πρpsg.

(12.138)

Note that in this case we generally have (except at the critical point)
ρgs 
 ρps, and the nonstationary additive terms (Basset–Boussinesq forces)
are negligible [69].
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12.4.2 Heat Exchange

The convective terms are neglected in Stokes’ theory. If we attempt to study
thermal transfer in the same way, we end up determining the heat flux for a
moving spherical particle (Fig. 12.20).

In the case of a sphere at rest with a temperature T0 that is plunged into
a motionless fluid atmosphere of temperature T∞ a long distance from the
particle, the only phenomenon present is thermal conduction in the fluid. The
equation for this problem reduces to

∇2T = 0; (12.139)

i.e., in spherical coordinates,

∂

∂r
(r2 ∂T

∂r
) = 0. (12.140)

Fig. 12.20. Thermal exchange of a sphere

For a sphere of unit radius, the solution is

T = T∞ +
T0 − T∞

r
. (12.141)

The heat flow through a sphere of unspecified radius r is constant and equal
to

Q = −4πr2λ
∂T

∂r
= 4πλ(T0 − T∞). (12.142)
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This refers to the heat flow from the inside towards the outside of the sphere.
In the case of a moving sphere, a surface exchange coefficient α per unit

area is introduced, and the Nusselt number Nu is defined by

Nu = 2Rα/κ, (12.143)

where 2R is the diameter of the sphere, κ = λ/ρcp is the thermal diffusivity,
and α is the heat exchange coefficient per unit area. In the limiting case of a
sphere at rest, we obtain the classical result

Nu = 2. (12.144)

If we take into account the fluid flow, dimensional analysis (Sect. 9.6.2) gives
us

Πκ = κ/ν, Πα = α/(2R)u−vUv
∞ν1−v, (12.145)

where

u = 2v − 1, (12.146)

and, according to the Vashi–Buckingham theorem,

Πα = ψ(Πκ). (12.147)

To account for the fact that Nu = 2 must be true for U∞ = 0, it is necessary
to use α − 2κ/D instead of α in the definition of Πα. With a power law for
ψ, we then obtain

Nu = 2 + ARevPr1−w. (12.148)

In laminar flow v = 1/2, and for solid spheres 1− w = 1/3.
The formula of Carlson and Hoglund, which is more precise, takes into

account the Mach number and gives

Nu = 2
1 + 0.230Re0.55

1 + 6.84MRe−1(1 + 0.230Re0.55)
= 2CT . (12.149)

Other formulae are given by Clift et al. [55] for Nu, as well as for Sh, which
is similar to Nu but applies to mass diffusion (Sh = 2RαC/ρD; see Sect.
5.4). It is also worth referring to [1, 151] if vaporization is present. Knowing
the exchange coefficient per unit area, we can calculate the heat flux per unit
volume of particle:

Q =
3α
R

(Tg − Tp), α =
κ

R
CT . (12.150)

According to (12.2.2), we then have
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Q =
ρpscc

τT
(Tg − Tp). (12.151)

We thus deduce the expression for τT :

τT =
R2ρpscc

3κCT
. (12.152)

12.4.3 Steady Combustion of a Fuel Drop in a Combustive
Atmosphere at Rest

Let us now consider a spherical, homogeneous fuel drop that yields a vapor
H in an atmosphere of an oxidizer O [106, 264, 290]. Combustion takes place
according to the one-step reaction

H + O −→ P

The stoichiometric coefficients are assume to be equal to one for simplification
purposes, but the following theory does not change if we use other stoichio-
metric coefficients. We assume a spherical symmetry. The liquid fuel is termed
LH and its vapor is termed H. The concentration of the combustion product
P around the droplet depends on the distance from the droplet at which the
species mix with the combustion products.

We consider two situations:

• The chemical reaction and the subsequent flame occur around a cloud of
droplets (we will assume that the droplets do not interact with each other).
We will then have to study the evaporation of a drop.

• Combustion occurs around each droplet.

Quasi-steady evolution is assumed in each situation (i.e., the flow is steady
in the gaseous phase, where the radius of the droplet is assumed to be con-
stant compared to the timescale for diffusion). However, droplet evolution is
unsteady at a longer timescale, and an important aim of our calculations is
to determine the law for the droplet diameter as a function of time.

Evaporation of a Droplet

Here, the flame occurs around thousands of droplets. Each droplet evaporates,
forming a fog.

The d2 Law for a One-Component Liquid Droplet in its Vapor

Let us initially treat the general case of a drop at uniform and constant
temperature and density that is present in its vapor in quasi-steady mode. This
corresponds to the case where the mixing of the species with the combustion
products occurs very far from the droplet. The surroundings of the droplets



12.4 Problems at the Particle Scale 411

consist purely of fuel vapor. We assume that the physical coefficients of the gas
(thermal conductivity λ and specific heat cp) are functions of the temperature.
The pressure and the temperature at infinity are given constants. The quasi-
steady equations are reduced to mass conservation and energy conservation:14

Ṁ = 4πr2ṁ, ṁ = ρu, Ṁcp
dT

dr
− 4π

d

dr
(λr2 dT

dr
) = 0. (12.153)

At the liquid–vapor interface r = rs, we have

T = Ts, 4πr2
sλ(Ts)(

dT

dr
)r=rs = Ṁ l(Ts), (12.154)

and, at infinity,

T = T∞. (12.155)

Upon performing the first integration of (12.153), we deduce that

Ṁ

∫ T

Ts

cp(T )dT = 4π[λ(T )r2 dT

dr
− λ(Tl)r2

s(
dT

dr
)r=rs ]. (12.156)

Taking into account (12.154), the latter relation is

dr

r2
=

4πλ
Ṁ

dT∫ T

Ts
cp(T )dT + l(Ts)

, (12.157)

which gives, after integration,

1
rs(t)

− 1
r

=
4π

Ṁ(t)

∫ T

Ts

λ(θ)dθ∫ θ

Ts
cp(θ)dθ + l(Ts)

. (12.158)

Applying (12.158) at infinity and using (12.155) yields

Ṁ(t) = 4πrs(t)
∫ T∞

Ts

λ(θ)dθ∫ θ

Ts
cp(θ)dθ + l(Ts)

. (12.159)

As

Ṁ(t) = −dM/dt = −4πr2
sρLdrs/dt, (12.160)

we can deduce the d2 law:

d2 = d2
0 −Kt, (12.161)

where

d = 2rs, K =
8
ρL

∫ T∞

Ts

λ(θ)dθ∫ θ

Ts
cp(θ)d + l(Ts)

.

14The pressure is constant, as assumed in the Shvab–Zel’dovich approximation
(Sect. 7.4).
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Case of a One-Component Liquid Droplet in a Gaseous Mixture with
Constant Physical Coefficients

This is the case when the species mix with the combustion products around the
droplet or a group of droplets but the flame occurs far from the droplet(s).
Thus, the vaporization of the droplet of pure fuel occurs in a mixture of
gaseous fuel H and combustion products P.

The equations for quasi-steady gas flow are as follows:

Ṁ = 4πr2ṁ, ṁ = ρu, (12.162)

Ṁ
dYj

dr
− 4πρDr

d2(rYj)
dr2

= 0, (12.163)

Ṁcp
dT

dr
− 4πλr

d2(rT )
dr2

= 0, (12.164)

with the following boundary conditions:

• At infinity (r =∞):

Yj = Yj∞, T = T∞ (12.165)

• At the droplet surface (r = rs):

Yjs, 4πρDr2
s(
dYj

dr
)r=rs = −Ṁ(YjL − Yjs) (12.166)

Ts, 4π
λ

cp
r2
s(
dT

dr
)r=rs = −Ṁ l

cp
. (12.167)

Therefore, the solution to the diffusion equation is

Yj = aj + bje
−ξM , ξM = Ṁ/4πρDr. (12.168)

Two boundary conditions are sufficient to determine the coefficients aj and
bj . As we have seen, three conditions need to be satisfied: one condition at
infinity (r = ∞, ξM = 0) and two at the interface (rs, ξMs). We set

BM =
Yjs − Yj∞
YjL − Yjs

. (12.169)

Note that the Spalding parameter BM = (YHs − YH∞)/(1 − YHs) does not
depends on j. This yields ξMs = ln(1 + BM ), and thus

Ṁ = 4πρD rs ln(1 + BM ), (12.170)

from which we deduce the d2 law



12.4 Problems at the Particle Scale 413

d2 = d2
0 −Kt, (12.171)

where d = 2rs, Ṁ = −dM/dt = −4πρr2
sdrs/dt.

On the other hand, the solution to the conduction equation is

T = aT + bT e
−ξT , ξT = Ṁcp/4πλr. (12.172)

Again, three conditions need to be satisfied to determine the two temperature
constants, and we get

Ṁ = 4π
λ

cp
rs ln(1 + BT ), (12.173)

where BT = cp(T∞−Ts)/l this time. The parameters BT and BM depend on
the boundary conditions, not all of which are known. Thus, it is necessary to
determine the temperature and the concentration at the surface. To do this,
two relations are needed.

The Spalding parameter for heat exchange BT is related to the Spalding
parameter for mass exchange BM by the equation

Ṁ = 4π
λ

cp
rs ln(1 + BT ) = 4πρDrs ln(1 + BM ). (12.174)

So BT is a function of BM , which depends on the mass fraction of gaseous
fuel at the droplet surface (if the Lewis number Le is equal to unity, we have
BT = BM ). This gives

MHYP∞XHs

MPXP∞(1−XHs)
=

cp(T − Ts)
l

.

The mass fraction YHs is related to the temperature Ts by the equilibrium
relation μHL = μH . When μHL, the molar chemical potential of the liquid fuel
is a function of T only. For an ideal gas mixture, this leads to pXHs = psat(Ts).
According to Lefebvre and Chin [49, 154], the equilibrium law is then

psat(Ts) = exp[a− b/(Ts − c)],

where a, b and c are constant coefficients.
We can then relate YHs to the surface molar fraction XHs, and the surface

mass fraction YHs is found to be a function of the surface temperature Ts and
the total pressure p, which is assumed to be uniform and constant: YHs =
f(Ts, p). Thus, BT is function of Ts only.

The latent heat itself is a function of the temperature at the surface of
the droplet. Indeed, from the Clapeyron relation, we have (per mole of pure
substance):

L =
RT 2

p
(
dp

dT
)sat.
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This relation, which is applied here to a unit mass of H (see Sect. 7.5), becomes

l = bRT 2
s /(Ts − c)2.

Consequently, we obtain the surface temperature and concentrations and thus
the value of the regression coefficient K of the droplet:

K = 8(λ/cp) ln[1 + cp(T∞ − Ts)/l].

Combustion of a Droplet with a Flame at a Finite Distance from
the Droplet

We now study the case of vaporization where a diffusion flame is at a finite
distance from the droplet. This diffusion flame can be maintained in a quasi-
steady mode. We will assume spherical symmetry. The drop consists of the
single pure substance H. This problem is similar to the Emmons problem
of Chap. 9, but here the configuration is spherical and there is no forced
convection. The energy provided by the reaction at the flame level diffuses
towards the droplet surface, thus causing surface evaporation and the release
of gaseous fuel (i.e., gaseous H). The pressure is assumed to be constant and
the temperature of the droplet is assumed to be uniform and constant (this
temperature is that of saturating vapor, Ts). At infinity the temperature is
T∞ and the mass fraction of the oxidizer is YO∞. Here, in contrast to the
Emmons problem, the momentum equation is not taken into account.

Fig. 12.21. Combustion of a droplet with a flame at a finite distance from it

Figure 12.21 illustrates the particular case where combustion takes place
inside a concentric spherical flame. This is the case treated below, with sim-
plifying assumptions [290]. If the density of the condensed phase is ρL and
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the radius of the drop is rs, the mass flow of the gas through a sphere of
radius rs is given by (12.160). If we assume that Ṁ is related to rs, we can
deduce the evolution of the radius of the droplet as a function of time by
simple integration.

Experimental observations and the theory provided below show that there
is a linear relation between the mass flow rate Ṁ and the droplet diameter
d = 2rs.

We can then deduce, as was done in Sect. 12.4.3, that the square of the
droplet diameter is a linear function of time (Eq. 12.161). This linear decrease
in r2

s over time can also be observed in experiments.
For the theoretical analysis, we use the Shvab–Zel’dovich approximation

presented in Sect. 7.4.
Recall that the two following equations were obtained:

∇ · (ρvβj − ρD∇βj) = ζ̇ ,

∇ · (ρvβT − λ/cp f∇βT ) = ζ̇,

where βj is a concentration variable and βT is a temperature variable: βj =
Yj/νjMj, βT =

∑
j Yj

∫ T

T 0 cp, jdT/ΔH .
We will assume that the Lewis number is equal to 1, so λ/cpf = ρD = g,

where g is assumed to be constant.
The boundary conditions (surface of the drop) are similar to those of the

Emmons problem. The following system is thus obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

4πr2ρv = Ṁ ∼= const.,

dβj/dr − d/dr[(4πr2g/Ṁ)dβj/dr] = 4πr2ζ̇/Ṁ,

dβT /dr − d/dr[(4πr2g/Ṁ)dβT /dr] = 4πr2ζ̇/Ṁ,

−g(dβj/dr)r=rs = −(ρv)l(βjs − βjL),

−g(dβT /dr)r=rs = −(ρv)l l/ΔH.

(12.175)

Let us write

ξ = Ṁ/4πgr. (12.176)

For the quantity βT − βO, we obtain

d2(βT − βO)/dξ2 + d(βT − βO)/dξ = 0. (12.177)

Integration leads to

βT − βO = AT + BT e−ξ. (12.178)
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At the limit r = ∞, ξ = 0, we have15

−βO∞ = YO∞/MO = AT + BT . (12.179)

At r = rs, the boundary condition is

(d(βT − βO)/dξ)r=rs = l/ΔH (12.180)

or

−BT e
−ξs = l/ΔH. (12.181)

At r = rs, we also have

βTs = AT + BT e−ξs (12.182)

since βOs = 0; the oxidizer is completely consumed at the level of the flame.
The temperature T (and thus βT ) is known. We can therefore deduce the
values ⎧⎪⎪⎨⎪⎪⎩

AT = βTs + l/ΔH,

BT = −(βO∞ + βTs + l/ΔH),

(l/ΔH)eξs = βO∞ + βTs + l/ΔH,

(12.183)

which lead to

Ṁ = 4πgrs ln((βO∞ + βTs)ΔH/l + 1). (12.184)

The mass flow rate is then proportional to the droplet radius, and the d2 law

d2 = d2
0 −Kt (12.185)

can be deduced, where

K =
8g
ρL

ln[(βO∞ + βTs)ΔH/l + 1]. (12.186)

The variable βT − βO evolves according to the law

βT − βO = βTs + l/ΔH − (βO∞ + βTs + l/ΔH)e−ξ. (12.187)

Studying βH − βO will give us the position of the flame. We will assume that
the flame is thin and that combustion is stoichiometric: βH = βO.

We find of course that

βH − βO = A + Be−ξ. (12.188)

15Note that BT is an integration constant here that should not be confused with
the Spalding parameter for heat exchange.
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The constants A and B are obtained by writing the conditions at infinity and
at the droplet surface level:⎧⎪⎪⎨⎪⎪⎩

−βO∞ = A + B,

βHs = A + Be−ξs ,

d(βH/dξ)s + βHs + 1/MH = 0.

(12.189)

From these three relations we deduce that

A = −1/MH , B = 1/MH − βO∞, (12.190)

and the value of the mass fraction YHs at the surface of the drop is deduced
from

βHs = −1/MH + (1/MH − βO∞) e−ξs . (12.191)

The location of the spherical thin flame is given by

βH − βO = 0 = −1/MH + (1/MH − βO∞) e−ξf . (12.192)

We then obtain

rf

rs
=

ln[1 + (βO∞ + βTs)ΔH/l]
ln(1−MHβO∞)

. (12.193)

The concentration and temperature profiles are obtained as follows.
For rs < r < rf , βO = 0 and ζ̇ = 0, so{

βH = A + Be−ξ,

βT = AT + BT e
−ξ,

(12.194)

(the four coefficients were determined previously).
When rf < r, we always have ζ̇ = 0 as well as βH = 0. Thus,{

βO = −A−Be−ξ,

βT = AT −A + (BT −B)e−ξ.
(12.195)

We can see that, with the assumption of a reactive thin flame and an infinitely
fast reaction, the evolutions are controlled by the processes of convection
and diffusion. The chemical reaction only plays a role through the energy it
provides. It would not be the same with a premixed flame obtained with a
droplet of mixture, for example, because the combustion speed would then
also depend on the chemical kinetics, as we saw in the study of deflagration
waves (Chap. 10).

The obtained theoretical profiles with respect to e−ξ (ξ = Ṁ/4 π g r) are
shown in Fig. 12.22.

The results of this theory were compared with those of experiments carried
out earlier by Kumagai [141] (see also [219]) under satisfactory microgravity
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Fig. 12.22. Temperature and mass fraction profiles of a burning droplet

conditions (gravity must be close to zero to ensure that spherical symmetry
is respected at least).

There is good agreement with the linear law for the regression of the radius
of the drop squared as a function of time according to (12.185) and (12.186).
However, this is not the case for the ratio rf/rs of the radius of the flame to
that of the droplet: (12.193) indicates that the rf/rs ratio is constant, whereas
experimental results show that this ratio is not.

More elaborate calculations that take into account the unsteady character-
istics of the process and the variations in the transfer coefficients as functions
of temperature [178, 248] lead to results that are in better agreement with
the experimental results. Note that the values of rs and rf/rs have a very
significant influence on the performance of a rocket motor in which the flow
includes condensed drops during combustion. The evolution of the droplet
radius as a function of time yields the combustion time and the length of
the combustion chamber. The ratio rf/rs indicates the possible interactions
between the drops undergoing combustion in the flow (see Borghi and Lacas
[24, 68]).

The preceding theories only apply in the absence of interactions. The ef-
fects of coupling between the flow and the individual process that the drop
undergoes during combustion are much more difficult to evaluate.
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Droplet Combustion with Condensation of the Burned Products

When dealing with a drop of liquid oxygen burning in an atmosphere of
hydrogen (which is the case in a cryogenic rocket engine), we can use the
same treatment as employed in the preceding section for a drop surrounded
by a flame and the chemical reaction H + O → P (or, more realistically,
νHH + νOO → νP P). This time, in this simplified model with a single chemi-
cal reaction, the oxidant O is gaseous oxygen (O2), the reducer H is gaseous
hydrogen H2, and the combustion products can be summarized as water vapor
(H2O). Figure 12.22 remains valid provided we replace H with O, and vice
versa.

Fig. 12.23. Mass flow rates for a scenario where a flame surrounds a droplet of O
and where the burned product P condenses

In reality, this scenario presents several issues. Apart from the fact that
the Lewis number is different from 1, the conditions are often transcritical (see
Sect. 12.4.5). On the other hand, water vapor turns into ice near the liquid
oxygen droplet, which has a temperature of around 90 K. The latter problem
has been studied [144]. The assumptions of simplified analytical theory (we
assume in particular that the ice occupies negligible volume and is thus a
mass sink for the gaseous species) are illustrated in Fig. 12.23 in relation
to the fluxes of the gaseous species. A more complete theory where we take
the diffusion into account, and where the condensed species is considered a
gaseous species, confirms the fact that water has a concentration of zero in the
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extreme vicinity of the liquid oxygen droplet, and therefore can not dissolve
in it [144].

12.4.4 Transient Vaporization of a Droplet

In liquid propellant engines, combustion instabilities occur due to coupling
between the combustion process and the acoustics of the chamber. The phe-
nomenon of evaporation is a possible mechanism for combustion instability.
Thus, let us now study the dynamic response of a vaporizing droplet in the
field of an acoustic disturbance, by assuming local liquid–vapor equilibrium
at the droplet surface [225].

According to Delplanque and Sirignano [67, 231], “the criterion of Rayleigh
stipulates that a small pressure disturbance could grow if the considered
process adds energy in phase (or with a small variation of phase) with the
pressure.” To quantify this criterion in studies of droplet evaporation, a re-
sponse factor has been defined as follows:

N =
∫

V,t

q′(V, t)p′(V, t)dt dV/
∫

V,t

(p′(V, t))2dt dV, (12.196)

where p′ = (p − p̄)/p̄ is the relative pressure disturbance and q′ = (q − q̄)/q̄
is the relative disturbance of the heat or mass flow rate. We consider a drop
located in a velocity node in a cavity. It is easily shown that, for sinusoidal
oscillations with the same period, the response factor is N = |q̂| cos θ/ |p̂|,
where |q̂| , |p̂| are the moduli and θ is the difference in phase between q′ and
p′. The quantities N and θ are functions of the oscillation frequency.

If N > 0, evaporation has a destabilizing effect, whereas it has a stabilizing
effect for N < 0. The separation between the two domains corresponds to the
cut-off frequency.

The Heidmann and Wieber Model

Here, we consider that a stationary drop (such as that presented by Heidmann
[115]) represents the average situation in a combustion chamber.

This drop is spherical and has a radius rs. It is continuously supplied in
liquid form by injectors (a hypodermic syringe would simulate this well) in a
flow equal to the flow corresponding to the stationary mode of reference (Fig.
12.24).

We limit ourselves to the linearized theory and consider the small relative
disturbances of the unspecified parameter f to be sinusoidal functions of time
(just as we did above for p and q) such that f ′ = (f − f̄)/f̄ , f ′ = f̂ eiωt.

We then proceed to solve this problem as follows: we initially establish the
perturbation equations for the system; we then write the equations in f̂ ; and
finally we deduce the response factor and dephasing:

N = 	( ˆ̇M/p̂), θ = arg( ˆ̇M/p̂).
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Fig. 12.24. A vaporizing drop continuously supplied by a steady flow rate

The model of Heidmann and Wieber [116] makes the assumption that the
liquid phase has an infinite thermal conductivity in the steady and unsteady
regimes (i.e., there is a uniform temperature inside the drop). These assump-
tions can influence the response of the drop.

In order to evaluate the response factor and the cut-off frequency more
accurately, it is possible to extend the model of Heidmann by taking the
thermal evolution inside the droplet in the unsteady regime into account.16 We
will, however, retain the assumption of an average droplet in the established
regime. With regard to the gas phase, we use the approach of Spalding [264],
which assumes a quasi-steady mode.

Linearized Equations of the Gas Phase

We assume that the vapor phase is an ideal mixture of perfect gases in sta-
tionary evolution, and that, the gaseous mixture behaves as an ideal gas in
isentropic evolution far from the droplet (note that the subscript “∞” will be
replaced by the subscript “c” for the combustion chamber here). The drop
is at rest in an atmosphere that is also at rest an infinite distance from the
droplet. According to Sect. 12.4.3, we therefore obtain the following system
of equations for the gas:

16As well as the motion of the liquid inside the droplet if there is a velocity
disequilibrium.
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M = 4/3 ρLr
3
s , Ṁ = 4πρDrs ln(1 + BM ),

BM = (YHs − YHc)/(1− YHs),

YH = MHXH/(MHXH +MPXP ),

pCXHs = exp [(a− b)/(Ts − c)],

dM/dt = −Ṁ + Ṁ,

(12.197)

⎧⎪⎪⎨⎪⎪⎩
BT = cp(T∞ − Ts)/(l + QL/Ṁ), Tc/p

(γ−1)/γ
c = const.,

4πλ/cp rs ln(1 + BT ) = 4πρDrs ln(1 + BM ),

Le = 1 ⇒ BM = BT , l = bRT 2
s /[MH(Ts − c)2].

(12.198)

In the first equation of system (12.198), the quantity QL is the heat flux
accumulated by the droplet, which in turn causes its temperature to change.
The other part of the heat flux arising from the gas phase, Ṁl, is used to
vaporize the droplet.

Now the two systems are linearized. For system (12.197) we have

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

r′s = M ′/3, Ṁ ′ = M ′/3 + B̄M

(1+B̄M ) ln(1+B̄M )
B′M ,

B′M = YHsYP c

(ȲHs−ȲHc)(1−ȲHs)
MH

MHXHs+MP XP s
X ′

Hs, X
′
Hs = b̄T ′s − p′c,

τ̄v
dM ′
dt = −Ṁ ′,

(12.199)

where b̄ = bT̄s/(T̄s − c)2, τ̄v = M̄/ ¯̇M = ρLcpr̄
2
s/3λ ln(1 + B̄T ). Finally, sys-

tem (12.199) gives the following equation after eliminating the intermediate
quantity:

dṀ ′

dt
+

Ṁ ′

3τ̄v
= α(b̄

dT ′s
dt
− dp′c

dt
), (12.200)

where

α =
B̄M

(1 + B̄M ) ln(1 + B̄M )
ȲPcȲHs

YPs(ȲHs − ȲHc)
MH

MHXHs +MPXPs
.

If we now introduce the form f ′ = f̂ exp(iωt) for each disturbance f ′, (12.200)
gives

ˆ̇M = α
iu

1 + iu
(b̄T̂s − p̂c), (12.201)

where the dimensionless reduced frequency u = 3ωτ̄v.
For system (12.198), we deduce that
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ΔQL = QL − Q̄L = − ¯̇Ml̄( T̄s

T̄c−T̄s
T ′s − T̄c

T̄c−T̄s
T ′c + B′T + l′),

B′T = B′M , l′ = − 2c
T̄s−c

T ′s.
(12.202)

System (12.202) gives the equation

ΔQL = ¯̇Ml̄(āp′c − μ̄T ′s), (12.203)

where ⎧⎪⎨⎪⎩
ā = T̄c

T̄c−T̄s

γ−1
γ + ϕ, μ̄ = T̄s

T̄c−T̄s
− 2c

T̄s−c
+ b̄ϕ,

ϕ = ȲP cȲHs

ȲP s(ȲHs−ȲHc)
MH

MHX̄Hs+MP X̄P s
.

(12.204)

Writing ΔQL = ΔQ̂L exp (iωt), we then deduce from (12.203) that

ΔQ̂L = ¯̇Ml̄(āp̂c − μ̄T̂s). (12.205)

Linearized Equations of the Liquid Phase

To solve this problem, we must also obtain equations for the liquid phase.
These equations and the resulting expression for ΔQL depend on the as-
sumptions made regarding thermal exchange inside the droplet. In the theory
of Heidmann and Wieber, the droplet temperature is uniform. We thus have

McL
dTs

dt
= QL (12.206)

and the linearized equation

ΔQL = M̄cLT̄s
dT ′s
dt

. (12.207)

We deduce from (12.207) that

ΔQ̂L = M̄cLT̄siωT̂s. (12.208)

Transfer Function of the Heidmann and Wieber Model

The elimination of ΔQ̂L between the equations (12.205) and (12.208) affords
the following equation in T̂s and p̂c:

(λ̄ iu/3 + μ̄)T̂s = āp̂c, (12.209)

where λ̄ = cLT̄s/l̄.
In order to study the stability of the drop during the course of evapora-

tion, we must eliminate T̂s between (12.201) and (12.209). This leads to the
following expression for the transfer function Z0:
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Fig. 12.25. The transfer function Z0 for a droplet with a uniform temperature
in a gaseous mixture for arbitarily chosen coefficient values: A = 10, B = 100. a
Z0 in the complex frame for u = 0–150; b N/α = �(Z0); c the imaginary part of
Z0, �(Z0), as a function of the reduced frequency u; d dephasing (in radians) as a
function of the reduced frequency u

Z0 =
ˆ̇M
αp̂c

=
iu

1 + iu

A− iu

B + iu
, (12.210)

which can be used to deduce the response factor, the cut-off frequency and
the dephasing (see Fig. 12.25 and [226] for more realistic cases). In (12.210),
A and B are constant coefficients:17⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A = 3(āb̄−μ̄)

λ̄
= 3l̄

cLT̄s
( b̄T̄c(γ−1/γ)−T̄s

T̄c−T̄s
+ 2c

T̄s−c
),

B = 3μ̄
λ̄

= 3l̄
cLT̄s

( T̄s

T̄c−T̄s
− 2c

T̄s−c

+b̄ ȲP cȲHs

ȲP s(ȲHs−̄Y Hc)
MH

MHX̄Hs+MP X̄P s
).

(12.211)

17According to the Heidmann interpretation, the term (A− iu) is related to the
heating dynamics of the droplet, even when the term (B+iu) is rather characteristic
of interactions between the chamber pressure and the droplet temperature.
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Model with Nonuniform Temperature Inside the Droplet

Equations of the Gas Phase

We assume quasi-steady evolution in the gas phase. Thus, the perturbation
equations are the same as (12.201) and (12.205) in Sect. 12.4.4.

Equations of the Liquid Phase

The Heidmann droplet of Fig. 12.24 can be fed in various ways with fuel at
an average temperature of T̄s and an average mass flow rate of ¯̇M . The total
mass balance for the droplet is dM/dt = ¯̇M − Ṁ . In steady mode, Ṁ =
¯̇M, dM/dt = 0, M = M̄ . If the thermal conductivity of the drop is infinite,
the drop has a uniform temperature that is equal to its surface temperature
Ts, whatever the process used to feed the drop with fuel.

This is not the case if the drop has a finite thermal conductivity. Two
characteristic times should be taken into account: a residence time τv = M̄/ ¯̇M
in the reactor (the drop), and a time for transfer by thermal diffusion τ̄T =
r̄2
s/κL, where the thermal diffusivity of the liquid is κL = λL/ρLcL. We can

estimate that the conduction mode will dominate if τ̄T 
 τ̄v. The case where
the droplet has infinite thermal conductivity returns in this configuration
with uniform temperature (Sect. 12.4.4). On the other hand, for τ̄T � τ̄v,
the convection of fuel will dominate. In extreme cases, a thermally insulating
drop will have a uniform temperature of T̄s. The two thermal transfer modes
will coexist if τ̄T ≈ τ̄v.18

The equations of thermal transfer for the liquid phase are (for a sufficiently
small θ−1){

∂Tl/∂t− (κl/r)∂2(rTl)/∂r2 = 0, (∂Tl/∂r)r=0 = 0,

4πr2
sλl(∂Tl/∂r)r=rs = QL, Tl(rs, t) = Ts.

(12.212)

In the case of small disturbances, these equations are

18If we wanted to consider the mass supplied to the drop in more detail, we
could introduce a local rate of mass supply, such as ω̇, without taking thermal
dilation into account. This gives, in spherical symmetry, ∂(r2ρlvl)/∂r = r2ω̇, with

the condition 4π
∫ r̄s

0
ω̇r2 dr = 4πr̄2sρlvl = ¯̇M . A simple theoretical case is that of a

point source placed at the center of the droplet. Taking into account the induced

motion, the equations for the drop are as follows: ¯̇M = 4πr2ρlvl =const., ∂Tl/∂t +
vl∂Tl/∂r−κl/r ∂

2(rTl)/∂r
2 = 0, 4πr2sλl(∂Tl/∂r)r=rs = QL = Q−Ṁl, Tl(rs, t) = Ts,

Tl/(0, t) = T0, vl(0, t) =∞. Therefore, at any point in the liquid, vl = ¯̇M/4πr2 ρl, so

that r∂Tl/∂t+
¯̇M/4πr ρl∂Tl/∂r−κl ∂

2(rTl)/∂r
2 = 0. Writing θ = 9λLτ̄v/ρLcLr̄

2
s =

τ̄v/τ̃T , we can see that ¯̇M/4πr ρl = (κl/(3θ)(rs/r). Thus, the convective term is
negligible for sufficiently high values of θ.
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∂T ′l /∂t− (κl/r)∂2(rT ′l )/∂r

2 = 0, (∂T ′l /∂r)r=0 = 0,

4πr2
sλlT̄s(∂T ′l /∂r)r=rs = ΔQL, T

′
l (rs, t) = T ′s.

(12.213)

We seek solutions of the type T ′l (r, t) = T̂l(r)eiωt. We must take into account
the fact that r = rs means r = r̄s(1 + r′). In addition, the solutions will have
to obey the condition that the minimum occurs at the center of the sphere.
We then obtain

iω(rT̂l)− κL ∂2(rT̂l)/∂r2 = 0. (12.214)

The general solution of the equation above is T̂l = C+ es0r/r + C− e−s0r/r.
Feeding this solution into the equation above yields the characteristic equation
s2 = iω/κL, which has solutions of s = ±s0, s0 = (1 + i)

√
ω/2κL. To ensure

that the general solution remains finite in the center, C+ +C− = 0 must hold,
giving rT̂l = C(es0r + e−s0r).

In the vicinity of the center of the sphere, T̂l = C
r (es0r +e−s0r) = 2s0r(1+

s2
0
6 r

2 + o(r2)), dTl

dr = 2s0C( s2
0
3 + o(r)), and the condition that the fradient is

zero at the center is automatically obeyed.
On the surface of the droplet, we can consider r = r̄s except for second-

order terms. Indeed, the temperature disturbance develops as follows: T ′l (rs, t) =
T ′l (r̄s(1 + r′), t) = T ′l (r̄s, t) + (∂T ′l /∂r)r=r̄s r̄sr

′
s + . . ..

We assume that T ′l and its successive partial derivatives with respect to r
are on the same order as r′s. Ignoring the second order, T ′l (rs, t) ∼= T ′l (r̄s, t).
We therefore find that T̂l(r̄s, t) = T̂s.

The condition on the temperature gives r̄sT̂s = C(es0 r̄s + e−s0r̄s), which
provides the constant for the problem, C = r̄sT̂s/(es0r̄s + e−s0r̄s), and gives
the following temperature profile:

rT̂l = T̂s
r̄s

r

es0r + e−s0r

es0r̄s + e−s0r̄s
. (12.215)

Let us now examine the condition on the heat flux. We easily find that

ΔQ̂L = −4πr̄sλLT̄sE(u)T̂s, (12.216)

where

{
E(u) = 1− s0rs coth(s0rs), with s0rs = (1 + i)

√
3u/2θ,

θ = 9λLτ̄v/ρLcLr̄
2
s = τ̄v

τ̃T
.

(12.217)

The time τ̃T is almost equal to the characteristic thermal diffusion time inside
the droplet.

The three fundamental equations of the problem are thus (12.201), (12.205)
and (12.216).

After eliminating ΔQ̂L and T̂s between these equations, we deduce the
expression for the new transfer function Z:
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Fig. 12.26. The reduced response factor N/α as a function of the reduced frequency
u for increasing values of θ and for arbitarily chosen values of the coefficients A =
10, B = 100. The reduced cut-off frequencies uc are obtained for N/α = �(Z) = 0

Z =
ˆ̇M
αp̂c

=
iu

1 + iu

A+ θE(u)
B − θE(u)

, (12.218)

where A and B are defined by (12.211).
Note that Z(0) = Z0(0) = 0. Also, for u → ∞ or for high values of θ,

θE ≈ −iu and Z ≈ Z0. We can see that the cut-off frequency and then the
instability domain are smaller in the model with a temperature gradient inside
the droplet than in the model with no temperature gradient (see Fig. 12.26
and [226] for more realistic cases).

12.4.5 Other Cases of Droplet Vaporization and Combustion

If we are interested in obtaining not only analytical solutions to these prob-
lems relating to droplet evaporation and combustion but numerical solutions
too (in order to calculate real flows), we cannot use some of the simplifying
assumptions that we employed previously. Important assumptions of the pre-
ceding section can then be examined, and we must then perform a study to
determine a system of equations that will lead to the solution.

We assumed for example that there was no translational motion of the
droplets relative to the fluid. In practical situations, in particular in the vicin-
ity of the injectors of an internal combustion engine, there is actually a relative
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velocity between the droplets and carrying gas. This induces relative motion
and friction and modifies heat exchange. The liquid phase itself exhibits in-
ternal motions [127]. Readers interested in this particular topic can consult
many works on it [1, 48, 60].19

The combustion process depends on the chemical composition of the in-
jected propellants, the injector design, and the injection conditions. The initial
diameter distribution of the droplets is an important parameter of this prob-
lem. Interactions between droplets play a role [24, 68, 228, 284], and cannot
be ignored for dense clouds. Droplets are often considered to be spherical,
but this assumption may not be valid, in particular for cases with low gas–
liquid surface tension in the presence of a nonzero relative velocity. Pope et al.
[209] studied numerically transient combustion regimes for moving droplets
and suspended droplets; for a moving droplet, the Reynolds number decreases
over time (due to both the relative velocity and reduction in droplet size) but
the Damköhler number increases with time; for a suspended droplet, both the
Reynolds number and the Damköhler number decrease over time due to the
reduction in droplet size.

In cryogenic engines, the pressure is supercritical and the droplets are in-
jected at a subcritical temperature into a high-temperature combustion cham-
ber. Thus, transcritical conditions are encountered. This case can also arise
with diesel engines.

These circumstances have led to several recent studies on, for instance,
the expansion of a droplet at the vapor–liquid critical point [4, 212]) (the
expansion of a droplet of critical fluid is presented in Sect. A.5.2), or the
vaporization of liquid droplets at supercritical conditions [47, 66, 67, 112,
143, 187, 293, 294].

The subjects of reactivity and phase change are of fundamental interest,
and there are a vast range of potential applications of supercritical fluids, from
the space launcher industry to organic waste processing.

19The Hill vortex. One example of an analytical model for the internal motions
of the liquid phase is the Hill vortex. If the radius of the droplet is rs, the stream
function of the Hill vortex is defined, in spherical coordinates in the case of cylindrical
symmetry about the Oz axis, by

ψ = Us(r
2 sin2 θ/2)(1− r2/r2s), r ≤ rs, ψ = Us(r

2 sin2 θ/2)(1− r3/r3s), r ≥ rs,

where Us is the velocity at the droplet surface. Writing dψ = −rUθ sin θ dr +
r2 Ur sin θ dθ, the velocity components of the liquid are then

Ur = Us(1− r2/r2s) cos θ, Uθ = −Us(1− 2r2/r2s) sin θ.

The stream surfaces are toroidal, and have Oz as their axis of symmetry.
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Appendix

A.1 Tensor Notation

In oriented three-dimensional Cartesian space, only orthonormal frames of
the same orientation are considered. Dyadic notation is used systematically.
The components of tensors of order 1 (i.e., vectors), 2, 3, ... are denoted by
the indices α, β, γ, ..., ori, j, k, ... that take the values 1, 2, 3, ... The Einstein
convention is used for the summation.

Tensors

The following notation is adopted for tensors and their components:

• Vector: V, (V)α = Vα

• Second-order tensor: P, (P)αβ = Pαβ

• Second-order unit tensor: 1, (1)αβ = δαβ , where δαβ is the Kronecker
symbol such that δαβ = 0 for α �= β, and δαβ = 1 for α = β

• Third-order tensor: B, (B)αβγ = Bαβγ , and so on.

Tensor Products

The tensor product is denoted by the symbol ⊗ .1 For example,

(V ⊗P)αβγ = VαPβγ , (P⊗V)αβγ = PαβVγ , (P⊗P′)αβγδ = PαβP
′
γδ.

Contracted Products

A dot (“·”) is used for contracted products of two tensors where the summation
is made on two neighboring indices. For example,

V ·V′ =
∑
α

VαV
′
α = VαV

′
α, (V ·P)β = VαPαβ ,

1This symbol is sometimes omitted when ambiguous interpretation is not possi-
ble.

R. Prud’homme, Flows of Reactive Fluids,
DOI 10.1007/978-0-8176-4659-2, © Springer Science+Business Media, LLC 2010
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(P ·V)α = PαβVβ , (P ·P′)αδ = PαβP
′
βδ.

In particular, we have 1 ·P = P · 1 = P.
In the same way, two dots (“:”) are used for double-contracted tensor

products. We perform a summation after equalizing the nearest indices (not
summed beforehand) of the once-contracted product. Then

P : P′ = PαβP
′
βα =

∑
αβ

PαβP
′
βα =

∑
α

(P ·P′)αα.

In matrix language, the contracted product of two second-order tensors
is equivalent to the product of the corresponding matrices, and the double-
contracted product is equal to the trace of this product. In particular,

P : 1 = 1 : P = trP = Pαα.

The triple-contracted product of two third-order tensors gives B:̇B′ =
BαβγB

′
γβα, and so on.

These are classical rules, and the corresponding notation is unambiguous.
This is not the case for tensor derivatives. The following rules are used in this
book:

• Gradient of a scalar a: (∇a)α = ∂a/∂xα = a,α.
• Gradient of a vector V: (∇⊗V)αβ = ∂Vβ/∂xα = Vβ,α.
• If we consider ∇ to be a vector, (∇)α = ∂xα, then we can simply apply

the rules of tensor products, for example (∇ ⊗ V)αβ = (∇)α(V)β =
(∂/∂xα)Vβ = Vβ,α. The same is true of the other operations, as we can see
below.

• Divergence of a vector V: we have ∇ ·V = ∂Vα/∂xα = Vα,α.
• Divergence of a second-order tensor P: we have2 (∇ ·P)γ = ∂Pαγ/∂xα =

Pαγ,α, which is obtained by contracting (∇ · P)αβγ on the two indices α
and β.
For the expansion of ∇ · (V ·P), we get (V ·P)β = VαPαβ , ∇ · (V ·P) =
∂(VαPαβ)/∂xα = (∂(Vα)/∂xβ)Pαβ + Vα(∂Pαβ/∂xβ), and so

∇ · (V ·P) = ∇⊗V : P + V · (∇ ·P),

with (P̃)αβ = (P)βα.

2Note that different notations are used for second-order tensor divergence. Some
authors write (∇ ·P)α = ∂Pαγ/∂xγ . A simple transposition of the tensor P makes
the distinction between the notations. Both results are similar when P is a symmetric
tensor.
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A.2 Motion and Field of Deformation of an Interfacial
Layer

At a small scale, an interfacial layer is a particular three-dimensional medium
that is delimited by two surfaces (S−) and (S+), one of which can be sent to
infinity if the scale of analysis is very small.

Fig. A.1. The family of surfaces for an interfacial layer (2D representation)

We assume that (S−) and (S+) belong to a family of nonsecant surfaces
(S) with forms that vary in a continuous way (Fig. A.1). The forms of this
family of surfaces depend on time and, at a given moment, can be described
by an orthogonal curvilinear frame of reference.

We will examine the situation where the family consists of parallel surfaces
(S) (see Eq. A.61). This is aside from the choice that will be made in Sect. 11.2
to establish the balance equations. We are initially interested in an element
(S) of this family for which we will give an implicit equation and then a
description in orthogonal curvilinear coordinates. The various differentiation
operations for tensors of order 0 to 2 with respect to space variables and time
will be expressed in these coordinates.3

All of the results established here will be used to establish the balance
equations by the classical method and the method of virtual power.

Geometry and Kinematics of a Surface in Intrinsic Coordinates

Consider a surface (S) that is defined in implicit form by the equation

3The corresponding field of deformations is established in Sect. 11.5 for the case
of the velocities of a field of kinematic torsors.
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F(x, t) = 0. (A.1)

The unit normal N at a point x on this surface at time t is

N = ±∇F/ |∇F| . (A.2)

Here, we have assumed that F has all the necessary properties of continuity
and differentiability. The orientation of the normal can be chosen arbitrarily.
The orientation of the normal can be changed by using the function −F to
define the same surface.

The relations (A.1) and (A.2) define the unit normal at a given point, and
by choosing the sign (+),

N = ∇F/ |∇F| (A.3)

defines a vector field that covers the whole defined space of F(x, t).
According to (A.1), we have, while following the motion of surface (S),

∇F · dx +
∂F
∂t

dt = 0, (A.4)

so that the normal velocity of the surface becomes

w = −∂F
∂t

/ |∇F| , (A.5)

which depends on the orientation of N. However, the normal velocity vector
w = wN does not depend on this orientation.

w(x, t) defines a field of vectors and w(x, t) a field of scalars in the defined
field of F(x, t).

A.3 Geometry of Interfaces and Interfacial Layers in
Curvilinear Coordinates

Orthogonal Curvilinear Coordinates

Equation A.1 does not make it possible to specify the motion of a particular
point on surface (S) other than by its normal speed. If we want to charac-
terize this motion (in order to study the motion of the continuous medium
inside an interfacial layer), it is necessary to obtain the velocity field at any
point. Orthogonal curvilinear coordinates provide a convenient description of
the motion and characteristics of surfaces. While the expressions obtained are
sometimes complex, it is often instructive to use orthogonal curvilinear coor-
dinates to carry out some investigations, even if we must then return then to
using more condensed formulae.
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Denoting Cartesian coordinates by x, y and z and orthogonal curvilinear
coordinates by x1, x2 and x3, we can then write the following coordinate
change formulae: ⎧⎨⎩

x = x(x1, x2, x3, t),
y = y(x1, x2, x3, t),
z = z(x1, x2, x3, t).

(A.6)

We will denote the vector of components x,j , y,j , z,j (where ,j means ∂/∂xj)
as hj , and assume that none of the vectors hj (j = 1, 2, 3) are zero vectors.
The curvilinear coordinates are orthogonal if the trihedron {h1, h2, h3} is
orthogonal. We will assume that this is the case by definition. At each point
in space, we can define the basis {e1, e2, e3} such that

hj = hj ej (A.7)

(see Fig. A.2). The differentiation formulae at a fixed time t can then be
written in the matrical form∥∥∥∥∥∥

dx
dy
dz

∥∥∥∥∥∥ =
∥∥h1e1 h2e2 h3e3

∥∥ ∥∥∥∥∥∥
dx1

dx2

dx3

∥∥∥∥∥∥ . (A.8)

If we set

dXj = hj dxj , (A.9)

the correspondence between (dX1, dX2, dX3) and (dx, dy, dz) is obtained by
a change of Cartesian coordinates.

Fig. A.2. Reference basis for orthogonal curvilinear coordinates at the current point
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At any time t, the curves (C1), (C2), (C3) that pass through the point P
are defined by fixed pairs of variables xj . Thus, (C1) is defined by its fixed
values of x2 and x3. A surface can be defined by keeping just one of the
variables xj constant, as illustrated by system (A.6).

We will make x3 constant in order to define surface (S). Therefore, the
normal N to (S) at the point P is simply the vector e3.4

Expressions for vector or tensor curvilinear partial derivatives are needed
for practical applications. Exterior calculus enables them to be easily obtained,
and will be used in some of the demonstrations that follow. For example, a
differential volume element can be written as

dx ∧ dy ∧ dz = h1h2h3 dx1 ∧ dx2 ∧ dx3. (A.10)

Gradient of a Scalar

Let us now consider a scalar function a(x1, x2, x3, t). The gradient of a is
deduced using the differential form ω = a:

∇a =
a,1

h1
e1 +

a,2

h2
e2 +

a,3

h3
.e3 (A.11)

The parallel gradient is5

∇//a =
a,1

h1
e1 +

a,2

h2
e2, (A.12)

and the gradient of the normal to (S) becomes

∇⊥a =
a,3

h3
e3. (A.13)

Gradient and Divergence of a Vector Field

Suppose that we have a vector V = Vxi + Vyj + Vzk, where {i, j,k} is a
Cartesian basis. In orthogonal curvilinear coordinates,

V = v1e1 + v2e2 + wN, (A.14)

where w is the component v3 along the normal e3 = N to surface (S).

4In some cases, the surface motion is such that (A.6) do not depend explicitly
on time. The points of (S) will then obey the relations x = x(x1, x2, x3), y =
y(x1, x2, x3), z = z(x1, x2, x3), x3 = φ(t). This is the case, for example, when (S)
is always a sphere centered on O that only varies in its radius: x3 = R(t). However,
this simplification is not valid for the general case.

5Projection operators can be used to obtain normal and parallel components of
vectors and tensors [94]. We define 1⊥ = e3 ⊗ e3 and 1// = 1 − 1⊥. A vector V
then has two components V⊥ = 1⊥ ·V = V⊥e3 and V// = 1// ·V, and we have:
V = V⊥ + V//.
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The differential dV utilizes the vectors dej . We have [10]:⎧⎨⎩de1 = dω2N− dω3e2,
de2 = dω3e1 − dω1N,
dN = dω1e2 − dω2e1,

(A.15)

where the differential forms dωj are given by⎧⎪⎪⎨⎪⎪⎩
dω1 = h2,3

h3
dx2 − h3,2

h2
dx3,

dω2 = h3,1
h1

dx3 − h1,3
h3

dx1,

dω3 = h1,2
h2

dx1 − h2,1
h1

dx2.

(A.16)

Thus,

dV = (∇⊗V) · dx. (A.17)

In curvilinear coordinates,

dx = h1 dx1 e1 + h2 dx2 e2 + h3 dx3 N. (A.18)

These results lead us, after some calculations, to the expression for the tensor
gradient ∇ ⊗V in orthogonal curvilinear coordinates, which is provided by
the following matrix:

∥∥∥∥∥∥∥∥
1

h1
( ∂v1

∂x1
+ v2

h2

∂h1
dx2

+ w
h3

∂h1
∂x3

) 1
h2

( ∂v1
∂x2

− v2
h1

∂h2
∂x1

) 1
h3

( ∂v1
∂x3

− w
h1

∂h3
∂x1

)

1
h1

( ∂v2
∂x1

− v1
h2

∂h1
∂x2

) 1
h2

( ∂v2
∂x2

+ w
h3

∂h2
dx3

+ v1
h1

∂h2
∂x1

) 1
h3

( ∂v2
∂x3

− w
h2

∂h3
∂x2

)

1
h1

( ∂w
∂x1

− v1
h3

∂h1
∂x3

) 1
h2

( ∂w
∂x2

− v2
h3

∂h2
∂x3

) 1
h3

( ∂w
∂x3

+ v1
h1

∂h3
dx1

+ v2
h2

∂h3
∂x2

)

∥∥∥∥∥∥∥∥ .
(A.19)

Moreover, we define the parallel gradient of V (parallel to (S); i.e., when the
point P varies along a curve, x3=const.), ∇// ⊗V, as follows:

∥∥∥∥∥∥∥∥∥
1
h1

( ∂v1
∂x1

+ v2
h2

∂h1
dx2

+ w
h3

∂h1
∂x3

) 1
h2

( ∂v1
∂x2

− v2
h1

∂h2
∂x1

) 0
1
h1

( ∂v2
∂x1

− v1
h2

∂h1
∂x2

) 1
h2

( ∂v2
∂x2

+ w
h3

∂h2
dx3

+ v1
h1

∂h2
∂x1

) 0
1
h1

( ∂w
∂x1

− v1
h3

∂h1
∂x3

) 1
h2

( ∂w
∂x2

− v2
h3

∂h2
∂x3

) 0

∥∥∥∥∥∥∥∥∥ . (A.20)

The divergence of V is the trace of the tensor gradient.6 This is expressed as
follows:

∇ ·V = 1
h1

( ∂v1
∂x1

+ v2
h2

∂h1
dx2

+ w
h3

∂h1
∂x3

) + 1
h2

( ∂v2
∂x2

+ w
h3

∂h2
dx3

+ v1
h1

∂h2
∂x1

)

+ 1
h3

( ∂w
∂x3

+ v1
h1

∂h3
dx1

+ v2
h2

∂h3
∂x2

),
(A.21)

6We can also use the differential form ω = Vxdy ∧ dz + Vydz ∧ dx + Vzdx ∧ dy,
written in orthogonal curvilinear coordinates, to provide our demonstration.
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and the parallel divergence of V becomes

∇// ·V =
1
h1

(
∂v1

∂x1
+
v2

h2

∂h1

dx2
+

w

h3

∂h1

∂x3
)+

1
h2

(
∂v2

∂x2
+

w

h3

∂h2

dx3
+
v1

h1

∂h2

∂x1
). (A.22)

Curvature

The curves (C1), (C2) and (C3) are generally nonplanar curves. The curvature
of (C1), for example, is provided by ∂e1/∂x1:

∂e1

∂X1
=

1
h1

∂e1

∂x1
=

1
h1

(
∂ω2

∂x1
N− ∂ω3

∂x1
e2); (A.23)

in other words,

∂e1

∂X1
= − 1

h1
(
h1,3

h3
N +

h1,2

h2
e2). (A.24)

To define the mean normal curvature of a surface (S) at a point P , it is
necessary to consider two orthogonal planes that contain the vector e3 = N.
We then add the curvatures obtained in each plane. For a coordinate surface
(S) that is normal to e3, we obtain

1
R

=
1
R1

+
1
R2

=
h1,3

h1h3
+

h2,3

h2h3
. (A.25)

This quantity is also equal to ∇ ·N according to (A.21). However, ∇ ·N is
invariant at the considered point P and does not depend on the curvilinear
coordinates used to describe (S) [5]. It follows that (A.25) remains valid in
the curvilinear system defined by (A.6), and that we always have

1
R

= ∇ ·N =
h1,3

h1h3
+

h2,3

h2h3
. (A.26)

Note that, according to (A.22), if v1 = v2 = 0 and w = 1 then

∇ ·N = ∇// ·N. (A.27)

Divergence of a Second-Order Tensor

We limit ourselves here to a “parallel” tensor; i.e., a tensor such that

P// = P11e1 ⊗ e1 + P12e1 ⊗ e2 + P21e2 ⊗ e1 + P22e2 ⊗ e2.

We then find, according to (A.15), that
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dP// = dω1(−P12e1 ⊗N− P21N⊗ e1

−P22N⊗ e2 − P22e2 ⊗N) + dω2(P11N⊗ e1 + P11N⊗ e1

+P12N⊗ e2 + P21e2 ⊗N) + dω3(−P11e2 ⊗ e1 − P11e1 ⊗ e2

−P12e2 ⊗ e2 + P12e1 ⊗ e1 + P21e1 ⊗ e1 − P21e2 ⊗ e2

+P22e1 ⊗ e2 + P22e2 ⊗ e2) +
∑

i, j dPij ei ⊗ ej .

(A.28)

By expressing dωj with the aid of (A.16), we thus obtain the components of
∇ ·P//:

∇ ·P// ={
1

h1h2h3
[(P11h2h3),1 + (P12h3h1),2] + 1

h1h2
[P2,1h1,2 − P22h2,1]

}
e1

+
{

1
h1h2h3

[(P21h2h3),1 + (P22h3h1),2] + 1
h1h2

[P12h2,1 − P11h1,2]
}

e2

−( 1
h3h1

P11h1,3 + 1
h2h3

P22h2,3)N.

(A.29)

The vector ∇// ·P// is obtained from

∇// ·P// =
∂P//

∂X1
· e1 +

∂P//

∂X2
· e2, (A.30)

which leads to

∇// ·P// =[
P11,1

h1
+ P12,2

h2
+ h1,2

h1h2
(P12 + P21) + h2,1

h2h1
(P11 − P22)

]
e1[

P21,1
h1

+ P22,2
h2

+ h1,2
h1h2

(P22 − P11) + h2,1
h2h1

(P12 + P21)
]
e2

− 1
h3

(P11h1,3
h1

+ P22h2,3
h2

)N.

(A.31)

In the case of a “cylindrical” tensor

P// = P (e1 ⊗ e1 + e2 ⊗ e2) (A.32)

or

P// = P (1−N⊗N), (A.33)

we obtain

∇// ·P// =
P,1

h1
e1 +

P,2

h2
e2 − P

h3
(
h1,3

h1
+

h2,3

h2
)N. (A.34)

In other words,

∇// ·P// = ∇// ·P− P ∇ ·N N. (A.35)
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Calculation of ∇// · (V · P//)

We have

∇// · (V ·P//) = 1
h1

[
(v1P11 + v2P21),1 + h1,2

h2
(v1P12 + v2P22)

]
+ 1

h2

[
(v1P12 + v2P22),2 + h2,1

h1
(v1P11 + v2P21)

]
.

(A.36)

Moreover,

P//:(∇// ⊗V) = P11
h1

(v1,1 + v2
h1,2
h2

+ w
h1,3
h3

)

+P21
h2

(v1,2 + v2
h2,1
h1

) + P12
h1

(v2,1 − v1
h1,2
h2

)

+P22
h2

(v2,2 + w
h2,3
h3

+ v1
h2,1
h1

),

(A.37)

and

V · (∇// · P//) = [P11,1
h1

+ P12,2
h2

+ h1,2
h1h2

(P12 + P21)

+ h2,1
h1h2

(P11 − P12)]v1 + [P21,1
h1

+ P22,2
h2

+ h1,2
h1h2

(P22 − P11)

+ h2,1
h1h2

(P12 + P21)]v2 − 1
h3

(P11
h1,3
h1

+ P2
h2,3
h2

).

(A.38)

It is easy to prove that

∇// · (V ·P//) = P//:(∇// ⊗V) + V · (∇// · P//). (A.39)

Laplacian of a Scalar

The expression for the Laplacian in orthogonal curvilinear coordinates is as
follows:

∇2a = Δa = 1
h1h2h3

[(h2h3a,1
h1

),1 + (h3h1a,2
h2

),2]

+ (h1h2),3
h1h2h3

a,3
h3

+ 1
h3

(a,3
h3

),3

(A.40)

or

∇2a = ∇ · (∇//a) + ∇ ·N ∂a

∂N
+

∂2a

∂N2
. (A.41)

If the normal gradients ∂/∂N are very large compared to the tangential gra-
dients, and ∇ ·N is on the order of 1 at the scale considered,

∇2a ∼= ∇ ·N ∂a

∂N
+

∂2a

∂N2
. (A.42)
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A.4 Kinematics of Interfaces and Interfacial Layers

Strain Rate of a Surface

Suppose that point P on (S) is given a velocity

V = v// + wN, (A.43)

where v// is present in the plane tangent to (S) at point P :

v// ·N = 0. (A.44)

If we follow the motion of velocity V, the material derivative of the volume
element dV is (see Sect. 4.2)

dV(dV)
dt

= ∇ ·V dV , (A.45)

where ∇ ·V is given by expression (A.21).
Let us now set, in curvilinear coordinates,

dN = h3dx3 = dX3, dΣ = h1h2dx1dx2 = dX1dX2. (A.46)

Thus,

dV = dΣdN,
dV(dV)

dt
=

dV(dΣ)
dt

dN +
dV(dN)

dt
dΣ. (A.47)

Consider the vector element dP = N dN :

dV(NdN)
dt

= (∇ ⊗V) ·NdN =
1
h3

∥∥∥∥∥∥∥∥
v1,3 − w

h3,1
h1

v2,3 − w
h3,2
h2

w,3 + v1
h3,1
h1

+ v2
h3,2
h2

∥∥∥∥∥∥∥∥ . (A.48)

Thus,

N · dV(NdN)
dt

=
dV(dN)

dt
=

1
h3

(w,3 + v1
h3,1

h1
+ v2

h3,2

h2
) = ∇⊥ ·VdN. (A.49)

Consequently,

dV(dΣ)
dt

=
1

h1h2h3
h3[(v1h2),1 + v2h1),2] + w(h1h2),3dΣ. (A.50)

We recognize that the right hand side contains the expression for the parallel
derivative of V (i.e., ∇// ·V, as given by Eq. A.22).

Thus, the surface strain rate (or the “flame stretch”) is
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dV(dΣ)
dt

= ∇// ·V dΣ. (A.51)

The following formulae are easily validated:

∇// ·V = ∇// · v// + ∇// · (wN), (A.52)

∇// · (wN) = w∇// ·N = w∇ ·N. (A.53)

Material Derivative of a Local Quantity

If v is the material velocity of a point M and a(M, t) is a quantity that
depends on position and time, and we follow the motion velocity v, we get

da

dt
=

∂a

∂t
+

v1

h1
a,1 +

v2

h2
a,2 +

v3

h3
a,3. (A.54)

Speed of a Surface

Surface (S) obeys (A.1). In parametric form, it is defined by system (A.6)
with x3 = c, which gives ⎧⎨⎩x = x(x1, x2, c, t)

y = y(x1, x2, c, t)
z = z(x1, x2, c, t)

(A.55)

or

P = P(x1, x2, c, t). (A.56)

During the motion, the quantities x1 and x2 vary, so

dP = h1e1dx1 + h2e2dx2 +
∂P
∂t

. (A.57)

We therefore obtain

w = N · dP
dt

= N · ∂P
∂t

(A.58)

for the normal velocity that characterizes the surface motion.
Moreover, the tangential velocity components of point P are equal to{

v1 = h1
dx1
dt + e1 · ∂P

∂t ,

v2 = h2
dx2
dt + e2 · ∂P

∂t .
(A.59)

We thus find that

V = v1e1 + v2e2 + wN (A.60)

represents the velocity of point P attached to the deforming surface.
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Motion of an Interfacial Layer

The interfacial layer is delimited by two surfaces (S−) and (S+) that corre-
spond to x3 = c− and x3 = c+ when the medium is described in orthogonal
curvilinear coordinates.

We can distinguish several cases that will give rise to assumptions corre-
sponding to actual situations.

If the surfaces (S) are parallel between (S−) and (S+), the normal to a
surface (S0) at any point P is also normal to all of the surfaces (S) of the
interfacial layer. Thus,

∂e3

∂x3
= 0 (A.61)

or

−h3,2

h2
e2 − h3,1

h1
e1 = 0; (A.62)

i.e., h3 depends only on x3. This leads to{
∂e2/∂x3 = −(h3,2/h2)N = 0,

∂e1/∂x3 = −(h3,1/h1)N = 0.
(A.63)

The basis {e1, e2, e3} is thus invariant for given values of x1, x2 and t.
Therefore, if N −N− indicates the distance from (S−),{

N −N− =
∫ c

c−
h3(x3, t) dx3,

N+ −N− =
∫ c+

c−
h3(x3, t) dx3.

(A.64)

The last result shows that the interfacial zone has a uniform thickness.
If, moreover, the velocity component w does not depend on x3, the thickness

of the interface is constant. Thus, ∂e3/∂x3 = 0 and ∂w/∂x3 = 0 lead to

∇⊥ ·V = 0 (A.65)

according to (A.49). This relation signifies a constant and uniform thickness.
The thickness of the interfacial layer corresponds to the distance along

which certain physical parameters vary in a significant way. If we divide the
lengths by a hydrodynamic scale L, we get (without changing the notation)

N+ −N− = ε
 1, (A.66)

where the normal coordinate N is dimensionless this time.
Let us assume that the dimensionless radius of curvature R of the surface

is O(1). Without assuming parallel surfaces, but supposing that h1h2 is O(1),
we can set

dN = ε dn, (A.67)
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where the thickness n+ − n− is O(1) this time.
The variations of h1h2 are then O(ε) in the interfacial zone, so

d(h1h2) =
h1h2

R
h3 dx3 =

h1h2

R
dN ; (A.68)

i.e.,

d(h1h2) = ε
h1h2

R
dn. (A.69)

Thus, at the location (c− + dx3) we have

h1h2
∼= (h1h2)−(1 +

ε

R
dn), (A.70)

dΣ ∼= (dΣ)−(1 +
ε

R
dn). (A.71)

Equation A.71 gives the order of magnitude of the variation in (dΣ) across
an interfacial layer.

A.5 Supercritical Fluids

A.5.1 Thermodynamic Properties of Supercritical Fluids

Thermostatics of a One-Component Fluid Near the Critical Point

At the liquid–vapor critical point C (Fig. 2.3), the first and second partial
derivatives of pressure with respect to volume at constant temperature vanish:

(∂p/∂V)T = (∂2p/∂V2
)T = 0,

and some physical quantities diverge according to (A.72).
The coordinates of the critical points for some chemical species [93] are

listed in Table A.1.

Body Critical temperature Critical pressure Critical density
TC (K) pC (MPa) (kg m−3)

Water 647.1 22.06 322.2

Carbon dioxide 304.14 7.378 467.8

Oxygen 154.58 5.043 436.2

Nitrogen 126.24 3.398 313.9

Ammonia 405.4 11.1 235

Helium 3.316 0.114 41.45

Table A.1. Critical point coordinates for some species [93]
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Fig. A.3. From the subcritical (a) to the supercritical (b) state, using the example
of CO2 (reprinted with the permission of C.M. Rayner, A.A. Clifford and K.D.
Bartle, Department of Chemistry, University of Leeds, UK)

If sufficient pressure is applied to a one-component fluid, the usual menis-
cus that separates the liquid phase from the gaseous phase vanishes, resulting
in one continuous “supercritical” fluid phase (SCF) (Fig. A.3).

Supercritical fluids, which are very compressible and dilatable in the vicin-
ity of the critical point but are also very dense, are sensitive to gravity,
meaning that experimentation in microgravity is often necessary to under-
stand and to model their behavior [35, 32, 187, 17]. Moreover, at the critical
point, some physical properties diverge (such as the isothermal compressibility
KT = (∂ ln ρ/∂p)T and the specific heat cp at constant pressure).

Classical laws (for example that of van der Waals) often use mean field
theory [237]. The term “mean field” is applied to such models because they
all assume that any given molecule in a system participates in the average
molecular interaction for the whole system; i.e., the location of the molecule
with respect to its neighbors is not accounted for. It is common to ignore the
spatial distribution of molecules in an analysis of molecular interactions in the
field of statistical physics. Such an approach leads to analytical expressions
that are easy to use but not very accurate in the vicinity of the critical point.

Thus, the conditions (∂p/∂V)T = (∂2p/∂V2
)T = 0 at the critical point lead

to the relations VC = 3b, TC = 8 a/27Rb, pC = a/27 b2, which yield a =
9/8RTCVC , b = VC/3 and pC = 3RTC/8VC . This last relation is not obeyed
in reality. Thus, for a van der Waals fluid, the isothermal compressibility
KT = (∂ ln ρ/∂p)T becomes KT = −4 (VC)2

9 R TC
(T−TC

TC
)−1; a law that is also not

obeyed in reality.
On the other hand, “renormalization group theory” makes it possible to

deduce correct values close to the critical point [255]. If we denote a physical
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quantity by ϕ, we can then consider evolution according to a given thermo-
dynamic path (for example at constant density that is equal to the critical
density ρC). The physical quantity is then only a function of the relative
temperature T/TC . Formulae of the form

ϕ

ϕr
∝ (

T

TC
− 1)s (A.72)

are obtained, where s is a universal constant coefficient that is valid for a
given type of critical transformation, and ϕr is a reference value for ϕ.

If s is positive, the quantity considered tends towards zero when the tem-
perature tends towards its critical value. This is the case for the surface ten-
sion, which vanishes at the critical point (s = 1.5 is found using the mean
field theory [237] and experiments give s ≈ 1.25).

If s has a negative value there is a divergence at the critical point. This is
the case for the heat capacity at constant pressure, which is also a divergent
quantity.

Some examples of the results obtained for several quantities using the two
theories (renormalization group and mean field) are given below [255]:

• Isothermal compressibility at critical density KT = Γ |T−TC

TC
|−γ . Mean

field: γ = 1. Renormalization group: γ = 1.239± 0.002.
• Specific heat capacity at constant volume and critical density cv =

A|T−TC

TC
|−α. Mean field: α = 0. Renormalization group: α = 0.110±0.003.

• Pressure evolution along the critical isotherm p − pC ∝ |ρ−ρC

ρC
|δ. Mean

field: δ = 3. Renormalization group: δ = 4.8± 0.02.

Pseudo-critical State

We can even define a pseudo-critical state for a fluid mixture. This pseudo-
critical state results from the assumption that the mixture behaves like a pure
substance in the vicinity of a certain temperature TC and pressure pC ; i.e.,
such that (∂p/∂V)TC = 0, ∂2p/∂V2

)TC = 0. The coordinates of this pseudo-
critical point are obtained from empirical rules. We can for example assume
the following rule:⎧⎨⎩

TCm =
∑

j XjTCj,

pCm = R(
∑

j XjZCj)TCm/
∑

j XjVCj ,

ωm =
∑

j Xjωj .

(A.73)

Here, ωj is the acentric factor,7 and ZCj = pCjVCj/RTCj for each species.
Other rules are possible, such as TCm =

∑
i, j XiXjTCij with TCii =

TCi, TCi�=j = k∗i, j or TCij =
√
TCiTCj(1 − ki, j). Specific ki, j values are

provided for many pairs of species for each law.
7ω occurs in (2.50), the expression for the coefficients a, for constituents that

obey the Peng–Robinson law of state; here, ωm corresponds to the acentric factor
of the mixture near the pseudo-critical state.
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Transfer Coefficients at the Critical Point

The Theoretical Approach

Two different theoretical approaches are widely used to comprehend the sin-
gular behavior of the transfer coefficients at the critical point [164].

The dynamic renormalization group theory, first formulated by Halpering
et al. [113], is an extension of the ideas of the static renormalization group
theory of Wilson and Fisher [88, 292] to dynamic critical phenomena. Its
strength lies in its predictions of the asymptotic critical behavior of transport
coefficients and its elucidation of phenomenological concepts such as dynamic
scaling and dynamic universality [119].

Mode coupling theory, on the other hand, originated from the idea of Fix-
man [89] that the critical anomalies of transport coefficients can be understood
as being due to nonlinear coupling between the hydrodynamic modes of the
system. One advantage of mode coupling theory [134] is that it can readily
be applied outside the near-critical region. Starting with the work of Olchowy
and Gelbart [193], mode coupling calculations and the relative decoupled mode
theory of Ferrell and Perl [87, 200] have been employed to provide expressions
for transport coefficients that are valid outside the asymptotic critical region
[254].

Thermal Diffusivity

Thermal conductivity tends to infinity at the critical point, but the thermal
diffusivity κ = λ/ρcp vanishes as it approaches the critical point, so heat trans-
fer by conduction becomes almost impossible. Another heat transfer mode
termed the “piston effect” (see Sect. A.5.2) also occurs near the critical point.

Evolution at Constant Pressure

In order to study droplet evaporation and the combustion of supercritical
fluids in rocket engines (i.e., cryogenic engines), where the pressure is nearly
constant (Sect. 12.4.5), we need formulae that are valid for isobaric evolution.

In the usual formulae, the fluid density that is generally considered is the
critical density ρC , so the physical quantities ϕ that are studied are only
functions of the relative temperature T/TC. This yields formulae of the form:

KT = Γ |T − TC

TC
|−γ , Cv = A|T − TC

TC
|−α, ξ = ξ0|T − TC

TC
|−ν ,

where ξ is the correlation length. We also obtain the relation ρL − ρG =
2B|T−TC

TC
|−β along the liquid–vapor coexistence curve.

Near the critical point, the pressure is related to the density by p− pC ∝
(|ρ − ρC |/ρC)δ (see Sect. A.5.1). For isobaric evolution at p = pC , we can
write [4]
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ρ− ρc

∼= −ρ0[(T − TC)/TC ]1/δ, cp = c0|[(T − TC)/TC ]|−γ/βδ,

λ ∼= ρ0c0κ0|[(T − TC)/TC ]|−(γ−ν)/βδ.
(A.74)

The following expression for the thermal conductivity, which is valid at a
constant pressure and contains three terms that each vary in importance de-
pending on the distance from the critical point, was provided by Arias-Zugasti
et al. [4]:

λ = λgas(T ) + λE(ρ) + λC(T ). (A.75)

Here, λgas(T ) is the limit at low density, λE(ρ) is the excess thermal con-
ductivity, and λC(T ) is the critical divergence. λgas(T ) = λ∞T/T∞ (a linear
dependence on temperature), or λgas(T ) = λ∞

√
T/T∞ (as given by the ki-

netic theory of gases). λE(ρ) = λ1ρ/ρC (a linear dependence on density),
λC(T ) = λ0|T−TC

TC
|1/3 (average field theory).

A.5.2 Supercritical Fluid Flows

The Piston Effect

We will now provide a qualitative description of the piston effect (P.E.) [28].
Thermal diffusivity tends towards zero at the liquid–vapor critical point (Sect.
A.5.1), so we would expect that heat is transported very slowly around the
critical point. In fact, as shown by experiments performed in space, this is not
the case [190]. (Microgravity experiments are needed to investigate phenom-
ena in critical fluids because the significant dilatability of these fluids results
in large variations in density, which generates intense convective motions, hin-
dering precise observations.) In 1990, three independent teams [26, 191, 298]
provided the explanation for this phenomenon. Onuki showed that the classi-
cal heat transfer equation

∂T

∂t
− κ∇2T = 0

is not relevant for a fluid maintained in a fixed volume. A change of entropy
at any point in the fluid bulk causes a change of pressure, which generates
an adiabatic change in temperature over the whole volume. This phenomenon
had already been described in the literature, but as it is negligible for fluids
with usual values of compressibility, it was unfortunately overlooked when
studying fluids close to their critical points.

In an incompressible fluid, variations in internal energy are only due
to temperature variations arising from the heat flow imposed on the fluid,
whereas the adiabatic variations in temperature and density due to temporal
variations in pressure must also be considered for a compressible fluid [26].

These adiabatic effects predominate in a fluid close to its critical point due
to the divergence of its compressibility. A new mechanism for heat transfer
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within supercritical fluids was highlighted: the piston effect, which acts when
a cell filled with critical fluid is subjected to local heating. The French team
[298] primarily applied singular perturbation methods to the Navier–Stokes
equations for a van der Waals fluid.

When a wall is heated, the P.E. mechanism proceeds as follows (see also
Fig. A.4):

1. A thin layer of the fluid is heated by conduction from a heat source (Fig.
A.4a)

2. The fluid subjected to this heating dilates strongly and compresses the
remainder of the fluid in an isentropic way (Fig. A.4b)

3. The fluid then undergoes a homogeneous temperature increase (Fig. A.4c).

The dilated fluid in the boundary layer acts like a piston, since a system
of compression waves is created that propagates throughout the whole fluid,
and the first response of the system to a thermal disturbance in a thin layer of
the fluid is mechanical. The passage of the continuously produced sound field
throughout the fluid causes the fluid volume to slowly move, and it compresses
the whole volume.

Thus, through a purely dynamic mechanism, a fluid that diffuses heat very
poorly can nevertheless transport thermal energy at very high speeds. This

Fig. A.4. The piston effect is due to a three-step thermomechanical couple



448 A Appendix

means that temperature relaxation speeds up in a perfectly isobaric cell as
the critical point is approached. This phenomenon, which contrasts with the
deceleration of the diffusion process near the critical point, is named critical
acceleration (or “critical speeding up”).

When a temperature gradient is resorbed in a cell, density gradients are
generated, and these are also resorbed, but over a longer timescale (on the
order of the diffusion time). Heat transport thus takes place on P.E. timescale,
but more time is required for the fluid to become homogeneous again and to
reach equilibrium through diffusion.

The results of the numerical simulations presented in [299] make it possible
to rule out the false assumption that the P.E. disappears in the presence of
gravity. This study shows that the P.E. is not inhibited by natural convection;
in contrast, it remains the fastest temperature relaxation mechanism—faster
than natural convection.

Expansion of a Droplet of Critical Fluid

Distinct liquid and vapor phases do not exist in pure substances at supercriti-
cal pressures: the whole field is monophasic. The density relaxation of a dense
cluster in a isobaric atmosphere at a higher temperature is nevertheless simi-
lar to the process of vaporizing a subcritical liquid droplet, provided that the
thermal diffusivity of the liquid pocket is lower than that of the surrounding
atmosphere.

A zone with high density gradients and diffusion times isolates the dense
cluster from the surrounding atmosphere [212, 244]. The dense cluster is thus
called a supercritical “droplet” and the zone with a high density gradient
is like a thick “interface.”8 For a critical cluster (i.e., a cluster at critical
density and critical temperature) introduced into a hotter atmosphere at the
critical pressure, the previously mentioned diffusivity condition is valid for all
atmospheric temperatures due to the critical divergence of the diffusivity in
the critical pocket.

At pressures that are clearly supercritical, this state of diffusivity is more
restrictive, and requires (assuming an ideal fluid) that T∞ � Ti, where T∞
is the temperature of the atmosphere and Ti is the initial temperature of the
dense cluster.

Since the “interface” is thick, two limits must be selected to define the
reference boundary of the supercritical “droplet.” We first choose an isodensity

8At the critical point there is no surface tension. Thus, in principle, the “droplet”
does not remain spherical. Indeed, we know that the cluster can maintain a certain
coherence, just as a cold liquid drop does when present in the same liquid at a
higher temperature [137]. This phenomenon can be explained by the existence of an
effective surface tension resulting from a zone with a high temperature gradient. This
was noted for a pure heated supercritical fluid in a numerical study of interfacial
layer instability [300]. The same phenomenon can also be observed for miscible fluids
[203].
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ρm located at the end of the zone with a high density gradient in the fluid
pocket. Note that this surface located at the end of the zone with a high
density gradient is the sphere (r = rm) where the unit mass flow rate is
maximal. The second limit is the reference isochore ρs for the beginning of
the zone with a strong density gradient at r = rs.

Between these two limits (i.e., in the transition zone or interfacial layer), we
consider the reduced radial coordinate X = (r− rs)/(rm− rs), with distances
then being divided by the interfacial layer thickness. Quasi-steady evolution
is then assumed for this new reduced coordinate. Outside this transition zone,
the parameters are constant for r < rs (interior zone), and the evolution is
quasi-steady in natural coordinates for r > rm (external zone).

These considerations permit an analytical solution. Without changing the
notation, we now consider dimensionless time and length. The reference time
is the lifetime of the drop, and the reference length is the initial droplet
diameter (i.e., at time t = 0). If dm is the diameter of the domain limited
by the isodensity r = rm and d is the diameter of the domain limited by the
isodensity ρs, it can be shown [211, 212] that the diameter dm obeys a d2 law:

d2
m = 1− τ.

The diameter d obeys the approximate relation

dβ − βd = (1 − β)
√

1− τ . (A.76)

The parameter β is approximately 1 when the pressure is slightly sub- or
supercritical: the d2 law is not obeyed for such pressures, as shown by the
(A.76). When the pressure definitely becomes subcritical, β becomes large
and we again obtain the classical d2 law.

Since dividing the diameter d by the initial diameter of the droplet gives
a dimensionless variable, d(τ) ≤ 1 and, for high values of β, the preceding
equation becomes d2 = 1 − τ to the first order. Thus, the d2 law is again
observed at pressures that are clearly subcritical.

Numerical solution is based on a finite volume method for a geometry with
spherical symmetry. We used the algorithm SIMPLER to solve the equations,
which are filtered to eliminate acoustic waves. The analytical results are in
very good agreement with the numerical ones.

A.6 More on Transfer Coefficient Determination

A.6.1 Collision Integrals and Cross-sections

Let us now consider two molecules j and k and their trajectories in the collision
plane (Fig. A.5). The molecular velocities are Cj , Ck before collision and
C′j , C′k after collision [10, 46, 118].



450 A Appendix

Fig. A.5. Collision between two molecules j and k: trajectories of the centers of
the moving molecules

This two-body problem can be solved as a one-body problem with the
reduced mass Mjk = MjMk/(Mj +Mk) and the relative velocity g = Cj−Ck

(where g is the modulus). Let us denote the distance between the two parallel
trajectories as b, the deviation angle as χ, the intermolecular force as F =
−dϕ(r)/dr, the distance between the molecules as r, and the potential function
as ϕ(r). The deviation χ is

χ = π − 2b
∫ ∞

rm

1
r2

(1 − ϕ(r)
Mjkg2/2

− b2

r2
)−1/2dr. (A.77)

Distance rm, which corresponds to the minimum distance between the two
centers of the molecules, is the solution to the following equation:9

ϕ(rm) = Mjkg
2(1− b2/r2

m)/2. (A.78)

The post-collisional relative velocity g′ occurs in the solid angle dΩ (Fig.
A.5), and the collisional cross-sections σ(g, χ) are defined such that the num-
ber of collisions per unit volume and unit time is NCjNCk

gσ(g, χ)dΩ, where

9Example of potential: for a potential ϕ = ar−α, the intermolecular force

is F = αar−(α+1), so χ = π − 2
∫ b/rm

0
[1 − (b/r)2 − (2/α)(b/βr)α]−1/2d(b/r),

where β = b(Mjkg
2/αa)1/α and rm is the solution to the equation 1 − (b/rm)2 −

(2/α)(b/βrm)α = 0.
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NCj = Nf(Cj)dVCj , NCk
= Nf(Ck)dVCk

. The function f(C) is the Boltz-
mann function, and dVC = dC1 dC2 dC3 is the volume element of the velocity
space.

In other words, if we consider an initial flux of molecules Φj , the number
of molecules with deviations that fall within the solid angle dΩ per unit time
is proportional to Φj and dΩ:

dNj

dt
= Φjσ(g, χ)dΩ.

The collision integral for the Boltzmann equation is thus[
∂(Nf)
∂t

]
coll.

=
∫ +∞

−∞

∫ 4π

0

N2[f(C′j)f(C′k)−f(Cj)f(Ck)]gσdΩdVCk
. (A.79)

The total collisional cross-section is defined by10

σT =
∫ 4π

0

σdΩ = 2π
∫ π

0

σ sinχdχ.

The momentum jump during a collision in the direction of relative motion
is proportional to 1 − cosχ = 2 sin2(χ/2), and the corresponding collisional
cross-section σM is

σM =
∫ 4π

0

(1− cosχ)σdΩ = 2π
∫ 4π

0

σ(1 − cosχ) sinχdχ.

The cross-section σM is important for diffusion phenomena.11 The defini-
tion of viscosity uses the cross-section σμ, defined by:

σμ =
∫ 4π

0

sin2 χσdΩ = 2π
∫ 4π

0

σ sin3 χdχ.

If we introduce the cross-sections

σ
(l)
j, k(g) = 2π

∫ ∞
0

(1− cosl χ)b db, (A.80)

the collision integrals can be written in the form

Ω
(l,s)
j,k =

√
kT/2πMjk

∫ ∞
0

e−γ2
γ2s+3σ

(l)
j, k(g) dγ, (A.81)

where γ2 = 1/2 Mjk g
2/kT . s = l = 1 for diffusion, and s = l = 2 for viscosity.

The collision integrals depend on the ϕ(r) potential chosen; if the Lennard–
Jones potential ϕ(r) = 4ε[(d/r)12 − (d/r)6] is used, the collision integral is

10For elastic spheres, σel.sph. = d2/4, σTel.sph. = πd2.
11In the case of elastic spheres, σMel.sph. = πd2 and σμel.sph. = 2/3 πd2.
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a function of the reduced temperature T ∗ = kT/ε. These collision integrals
have been tabulated as functions of T ∗ [118].

These collision cross-sections and integrals are often compared to those
obtained with the elastic sphere assumption, and the ratios obtained have
also been tabulated [118]. Let us set G(l) = 1− (1/2) (1 + (−1)l)/(1 + l). The
cross-section ratio is then

σ(l)∗ =
σ(l)

σ
(l)
el.sph.

=
σ(l)

π d2 G(l)
, (A.82)

and the collision integral ratio is

Ω(l,s)∗ =
Ω(l,s)

Ω
(l,s)
el.sph.

=
Ω(l,s)

√
2 πMjk/k T

π d2 G(l)(s + 1)!/2
. (A.83)

A.6.2 Transfer Coefficients for Pure Gases

Diffusion

The diffusion of chemical species intervenes in system (3.46) and the equations
(3.47), which correspond to the simplified theory of gases. The diffusion co-
efficient introduced is more a self-diffusion coefficient than a multicomponent
diffusion coefficient (see Sect. A.6.3). The corresponding value obtained in a
more precise estimation is

D =
3
16

k T

N M Ω1,1
. (A.84)

Viscosity

An approximate expression for the shear viscosity coefficient was given in
system (3.31): μ = M C̄/2

√
2 π d2 (assuming that the radius of the sphere

of influence of a molecule is equal to the diameter d of the molecule). The
diameter of the sphere of influence deff is given by the relation

d2
eff = d2 [1− 4

m
(

1
g2

)
∫ ∞

d

F (r) dr],

where g is the relative velocity of the molecules, (1/g2) is the mean value of
1/g2, and F (r) is the intermolecular force at r. As (1/g2) is proportional to
1/T , we have

d2
eff = d2 (1 + S/T )

such that the relation that gives the viscosity coefficient divided by a reference
value at a reference temperature is
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μ/μref =
√
T/Tref (1 + S/Tref )/(1 + S/T ).

This is known as the Sutherland relation [270].
If we write C1 = μref (Tref+S)/(Tref )3/2, the following values are obtained

for air: μref = 1.716 × 10−5 kg m−1 s−1, Tref = 273.15 K, S = 110.4 K,
C1 = 1.458× 10−6 kg m−1 s−1 K−1/2.

A more precise kinetic theory using collision integrals [118, 290] leads to

μ =
5
8

k T

Ω(2,2)
=

5
16

√
πM k T

π d2 Ω(2,2)∗ , (A.85)

or, with μ in g cm−1 s−1, M in g/mol, d in Angströms, and T ∗ = kT/ε,

μ = 2.669× 10−5

√MT

d2 Ω(2,2)∗ (T ∗)
.

Bulk Viscosity

For perfect monatomic gases, the bulk viscosity coefficient η is zero. It is
nonzero for polyatomic gases in the case of relaxing flows. Assuming that
there are i modes of internal motion that lead to relaxation, η is defined by
the relationship

η =
∑

i

ηi = (N N0 k
2T/C2

v)
∑

i

Cvi τi,

where Cv is the specific heat at constant volume, and ηi, Cvi, τi are the volume
viscosity coefficient, specific heat and relaxation time corresponding to mode
i, respectively. The thermal energy of rotation per unit volume, defined by
ρ eCv rot/Cv, is an important influence on η; Lighthill has shown that η = (γ−
1)2ρ e (Cv rot/Cv)τrot. The bulk viscosity coefficient η intervenes, for example,
in studies of sound propagation.

Thermal Conduction

The heat conduction coefficient is

λ =
25
32

cv

√
πM k T

π d2 Ω(2,2)∗ , (A.86)

or, with λ in cal cm−1 s−1 K−1, d in Angströms, and T ∗ = kT/ε,

λ = 1.989× 10−4

√
T/M

d2 Ω(2,2)∗ (T ∗)
=

15
4

R

M μ.
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A.6.3 Transfer Coefficients for Gas Mixtures

Mass Diffusion in a Mixture

We define the reduced mass of the interacting species j, k as

Mjk = Mj Mk/(Mj + Mk).

By analogy with the definition of the coefficient of binary diffusion D12 =
X1 X2 p/M12 ν12, a coefficient of species diffusion in a mixture of more than
two species can be defined as Djk = Xj Xk p/Mjk νjk, where νjk is the total
number of collisions per unit volume and time for molecules i and j. We
then have ν12 = N1 N2 σ12 C12 = X1X2N

2 σ12 C12 if there are two species
(binary diffusion). Assuming the Maxwell distribution C12 =

√
8kT/πM12,

the diffusion coefficient can be written

D12 = X1 X2 p/M12 ν12 =
√

2πk3T 3/M12/4p σ12,

and with a more accurate theory we find that

D12 =
3
16

k T

N M12 Ω
1,1
12

=
3
16

√
2πk3T 3/M12

p πd2
12Ω

(11)∗
12

, (A.87)

or, if the molar masses Mj are in g/mol, p is in atm, T is in K, and dij is in
Angströms, we obtain

D12 = 2.628× 10−3

√
T 3(M1 +M2)/2M1M2

p d2
12 Ω

(11)∗
12 T12∗

(in cm2 s−1), where d12 = (d1 + d2)/2 and T12∗ = kT/
√
ε1ε2. Some ε and d

values are given in Table A.2.

Species d (Angströms) ε/k (K)

N2 3.681 91.5
O2 3.433 113.0
H2 2.968 33.3

CO2 3.996 190.0
CO 3.590 110.0
NO 3.470 119.0
OH 3.110 93.8
O 3.068 102.2
H 2.497 99.8
Ar 3.418 124.0

Table A.2. Some ε/k and d values

First approximations of d and ε can be obtained from the critical data
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ε/k ∼= 0.77Tcr, d ∼= 0.833V1/3
cr ,

where Tcr and Vcr are the critical temperature and molar volume, respec-
tively. The self-diffusion coefficient is deduced by making i = j, and (A.84)
can also be written as [120]

Dj = 2.628× 10−3

√
T 3/Mj

p d2
j Ω

(11)∗ T ∗j
.

Viscosity of a Mixture

The coefficient of viscosity of a mixture in an environment with many species
can be deduced from the following relation:

μ =
N∑

j=1

X2
j

X2
j /μj + 1.385

∑N
k=1, k �=j XjXkkT/pMjDjk

.

For a binary mixture, the following relation was proposed:

1/
√
μ = X1/

√
μ1 + X2/

√
μ2.

However, for most applications that do not require extreme precision, we can
use the relation

1/μ =
N∑

j=1

Yj/μj .

Thermal Flux

Based on the phenomenological relations of Onsager (3.30), the calculation
for q contains a sum of three terms:

1. Heat conduction in the gas, which is given by flux −λ∇T , where λ is the
thermal conductivity. The thermal conductivity can be readily expressed
in terms of viscosity coefficients. This is one reason why it is computa-
tionally efficient to start by evaluating the latter.

2. The energy supplied by the molecular diffusion of species j, which is equal
to the product of the diffusion flux JDj = ρj Vj and the enthalpy per unit
mass of species j. This term for all species becomes

∑N
j=1 ρj Vj hj .

3. A term corresponding to the Dufour effect, which is a coupling term result-
ing from concentration, pressure and temperature gradients. This term is
RT
∑N

j=1

∑N
k=1(XkDT,j/MjDjk)(Vj −Vk).



456 A Appendix

Thermal Conduction of a Mixture

For each species j we have the relationship λj = (15R/4Mj)μj .
The determination of the coefficient of thermal conduction for a mixture is

extremely complex, and different relations have been proposed. The simplest
calculation that is an adequate approximation is based on the extension of Eu-
cken’s relation to mixtures. A preliminary calculation that determines the vis-
cosity of the mixture μ, the specific heat at constant pressure cp = (∂h/∂T )p,
and the molecular weight M =

∑N
j=1 YjMj leads to the relationship

λ = μ(cp +
5
4
R

M).

Thermal Diffusion

The coefficients of thermal diffusion DTj can be obtained via a complex cal-
culation from the exact kinetic theory [118], and they depend on the pressure,
temperature and concentrations. They can be written in the nondimensional
form of a thermal diffusion ratio kTj = DTj/ρDjk. The first approximation
for the thermal diffusion ratio of a binary gas mixture is given by the following
expression:

kT1 = (6C∗12 − 5)(X1X2/6[λ12]1)(X1S
(1) −X2S

(2))(Xλ + Yλ), (A.88)

where

S(1) = (M1 +M2)[λ12]1/2M2[λ1]1 − (15/4A∗12)(M2 −M1)/2M1 − 1,

S(2) = (M1 +M2)[λ12]1/2M1[λ1]2 − (15/4A∗12)(M1 −M2)/2M2 − 1.

Here, X1 and X2 are the mole fractions of species 1 and 2;M1 andM2 are the
molar weights of species 1 and 2; [λ1]1 and [λ1]2 are their thermal conductiv-
ities; [λ12]1 = (25/32)(3k/2)

√
πkT/2M12/πd12Ω

(22)∗
12 T ∗12; A∗12 = Ω22∗

12 /Ω11∗
12 ;

C∗12 = Ω12∗
12 /Ω11∗

12 ; and Xλ and Yλ are defined in [118] (p. 535).
kT1 is generally on the order of 10−1, so thermal diffusion is ignored in

many applications involving mixtures of gases.
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2. André, J.-C., Barrère, M.: Turbulence fluide (cours d’option), Ecole Polytech-
nique, Paris, 1980

3. Antkowiak, A., Bremond, N., Le Dizès, S., Villermaux, E.: Short-term dynam-
ics of a density interface following an impact, J. Fluid Mech., 577, 241–250
(2007)
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27. Boussinesq, J.: Théorie analytique de la chaleur, vol. 2, Gauthier-Villars, Paris,
1903, p. 172

28. Boutrouft, K.: Instabilités thermoconvectives de type Rayleigh Taylor dans les
fluides supercritiques (doctorat). ENSAM, Angers, 2006
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60. Crespo, A., Liñan, A.: Unsteady effects in droplet evaporation and combustion,
Combust. Sci. Technol., 11, 9–18 (1975)
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62. Darrozès, J.S., François, C.: Mécanique des fluides incompressibles, Springer,
Berlin, 1982

63. Darrozès, J.S., Monavon, A.: Analyse phénoménologique des écoulements
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ONERA–Faculté des Sciences de Paris, Paris, 1969
218. Prud’homme, R.: Analysis of transonic flow with chemical reactions by the

small perturbation method. The one and two-dimensional problem, Astronaut.
Acta, 15, 575–586 (1970)
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liquide gaz (thèse). Université Joseph Fourier (Grenoble 1), Grenoble, 1997
233. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The properties of gases and liquids,

4th edn., McGraw-Hill, Boston, 1987
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Orléans, France, 22–27 July 1990, pp. 621–627

241. Sagaut, P.: Large Eddy simulation for imcompressible flows (Scientific Compu-
tation), Springer, Berlin, 2001

242. Sagaut, P., Deck, S., Terracol, M.: Multiscale and multiresolution approaches
in turbulence, Imperial College Press, London, 2006

243. Said, R., Borghi, R.: A simulation with a “cellular automaton” for turbulent
combustion modelling. In: Proc. 22nd Symp. on Combustion, Seattle, WA,
14–19 Aug. 1988, pp. 569–577

244. Sanchez-Tarifa, C., Crespo, A., Fraga, E.A.: Theoretical model for the com-
bustion of droplets in super-critical conditions and gas pockets, Astron. Acta,
17, 685 (1972)



468 References

245. Sanfeld, A., Sefiane, K., Benielli, D., Steinchen, A.: Does capillarity influence
chemical reactions in drops and bubbles? A thermodynamic approach, Adv.
Colloid Interf. Sci., 86, 153–193 (2000)

246. Sankagiri, N., Ruff, G.A.: Extension of spray nozzle correlations to the pre-
diction of drop size distribution using principles of maximum entropy. 31st
Aerospace Science and Exhibit, 11-14 jan., Reno NV (1993).

247. Schannon, C.E.: A mathematical theory of communication. Bell System Tech.
J., 27, 379-423 / 623-659 (1948).

248. Scherrer, D.: Combustion d’une goutte en milieu réactif avec décomposition
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Kolmogorov eddy size, 201
Kolmogorov length scale, 205
Kolmogorov microscale, 195
Kolmogorov wavenumber, 199
Kolmogorov’s theory, 199
Kumagai’s experiments, 417

Lagrangian coordinates, 383
laminar premixed flames, 150
laminar steady regime, 150
laminar stretched premixed flame, 152
Laplace relation, 347
Laplacian of a scalar, 438
large eddy simulation, 219
law of state, 17
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laws of thermodynamics, 12
Lewis number, 66, 413
linearized nonreactive steady flows, 294
linearized nonreactive wave, 287
linearized reactive steady flows, 295
linearized reactive wave, 289
liquid, 22, 67
liquid solutions, 25
local balance equation, 79, 82
local internal energy balance, 85
local state, 52
local state postulate, 10

Mach number, 106
Marangoni instability, 348
Marangoni number, 106, 348
Margoulis, 107
Markstein length, 354
material derivative, 77, 440
mean field theory, 443
mean free path, 64
mean molar mass, 9
mechanical time, 56
membrane stress tensor, 361
mesoscopic scale, 335, 399
method of virtual power, 360
microgravity, 259
micromixing, 173
mixture at chemical equilibrium, 53
mixture of perfect gases, 37
mixture of two liquids, 31
mixture quantity, 28
mixtures of real fluids, 33
mode coupling theory, 445
models of turbulent combustion, 209
molar concentration per unit volume, 8
momentum, 83, 363, 375, 382, 385, 403
monoreactive transonic flow, 298
motion of an interfacial layer, 441
multicomponent interfaces, 50
multiple-scale dimensional analysis, 270

near-equilibrium evolution, 54
nonadiabatic flames, 313
nonreactive transonic flow, 296
normal combustion velocity, 206
normal shock wave, 283
number of moles, 15
Nusselt number, 106, 348, 409

Ohnesorge number, 369
one-dimensional spectrum, 201
one-dimensional waves, 278
Onsager coefficient, 62, 349, 394
Onsager reciprocal relations, 62
Orr–Sommerfeld equation, 180
orthogonal curvilinear coordinates, 432
oscillatory solution, 117
Oseen’s theory, 404, 406

parallel tensor, 436
partial molar quantities, 26
particle balance, 375
particle-scale problems, 399
passive scalar models, 213
Peclet number, 106
Peng–Robinson, 21
perfect gas, 17
phase space, 214
phenomenological coefficient, 54, 349,

377, 394
phenomenological relations, 63, 393
piston effect, 445, 446
piston moving in a cylinder, 280
piston reactor, 110, 122
planar detonation wave structure, 316
planar premixed flames, 150
pockets, 207
Poiseuille, 122
Poiseuille flow, 101
population balance, 123
Prandtl number, 66, 106, 377
Prandtl relation, 285
Prandtl’s mixing length, 192
premixed flames, 352
Prigogine’s theorem, 148
probability density function, 214
production rate, 61, 70
progress variable, 9
pseudo-critical state, 33, 444
pseudo-fluid of particles, 375

quenching, 207

Rankine–Hugoniot relations, 302
Raoult law, 32
Rayleigh criterion, 420
Rayleigh curve, 321
Rayleigh equation, 181
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Rayleigh–Bénard instability, 160
Rayleigh–Taylor instability, 176
reaction thickness, 208
reactive liquid solution, 41
real chemical reactor, 121
Redlich–Kwong, 21
regression slope, 416
relaxation, 292, 378
relaxation time, 385
renormalization group theory, 443
residence time, 110
resolved scales, 220
reversible transformation, 14, 54
Reynolds axioms, 189
Reynolds number, 106, 369, 405
Reynolds tensor, 190, 224
Reynolds’ experiment, 170
rocket propulsion nozzle, 135
Rossby number, 107
rotating disc, 260
rough flat plate, 173
rugosity, 173
rules of mixture, 33

saturated vapor pressure, 32
scale similarity assumptions, 226
scale similarity model, 223
Schmidt number, 66, 106, 358
self-similar solution, 104, 247
separated flamelets, 209
sharp cut-off filter, 220
shear viscosity, 452
shear-forces vector, 361
shells and plates, 358
Sherwood number, 266, 358
Shvab–Zel’dovich approximation, 142,

415
similarity conditions, 101
simplified model, 373
Smagorinsky’s model, 223
small singular disturbances, 296
small stationary disturbance, 294
smooth flat plate, 172
solid, 12, 24
Soret effect, 141
sound propagation in a nonreactive

fluid, 287
sound propagation in a reactive fluid,

289

sound propagation in a suspension, 378
space-time average, 194
Spalding parameter, 257, 413
species diffusion, 141
species flux, 11
species mass fractions, 9
specific heat, 45
specific reaction rate, 69
spectral analysis, 196, 199
spectral analysis and LES, 226
spectral dynamics, 226
speed of sound, 280, 381
spherical premixed flames, 324
spherical waves, 323
spray flame propagation, 395
spray flame stability, 398
stability, 116
stability matrix, 43
stable steady state, 119
standard pressure, 17
standard state, 34
Stanton, 107
state diagram, 18
state of a solid, 11
state variables of a mixture, 8
statistical average, 193
steady combustion of a fuel droplet, 410
steady laminar boundary layer above a

flat plate, 243
steady mode, 114
steady spray flame, 396
stoichiometric coefficient, 69
stoichiometric ratio, 156, 212
Stokes number, 382
Stokes’ force, 406
Stokes’ theory, 404, 406
Stokes–Ostrogradsky theorem, 361
stokeslet, 406
Strouhal instability, 179
Strouhal number, 107
structure function models, 225
subgrid scales, 220
subgrid viscosity, 225
supercritical fluid, 443
surface density of forces, 361
surface density of torques, 361
surface reaction, 348
surface speed, 440
surface strain rate, 439



476 Index

surface stretch, 439
surface tension, 47, 161
surface viscosities, 347
surface viscosity number, 348
Sutherland relation, 452

target molecules, 64
Taylor hypothesis, 195
Taylor microscale, 196
Taylor number, 107
Taylor–Couette instability, 240
tensor notation, 429
tensor product, 429
test filter, 224
thermal conduction, 66
thermal conduction in a mixture, 456
thermal conductivity, 141, 446
thermal diffusion, 63, 141, 456
thermal transfer, 104
thermodiffusive instability, 184
thermodynamic functions, 16
thermodynamic relations, 343
thermodynamic stability, 42
thermodynamic state, 12
thermodynamic transformation, 12
three-dimensional spectrum, 201
torsor, 358
transfer coefficient determination, 449
transfer coefficients, 66, 445
transfer coefficients of a mixture, 454
transient vaporization of a droplet, 420
transonic equation solution, 300
transonic flow, 296
triads, 226
turbulence above a rotating disc, 266
turbulence decay, 185
turbulence onset, 174
turbulence scale, 199
turbulent boundary layer, 267
turbulent burning velocity, 212
turbulent chemical kinetics, 192
turbulent combustion, 202
turbulent Damköhler number, 206

turbulent diffusion, 273
turbulent Prandtl number, 191, 197
turbulent regimes for nonpremixed

combustion, 208
turbulent regimes for premixed

combustion, 205
turbulent Reynolds number, 206
turbulent Schmidt number, 191
turbulent transfer coefficients, 190
turbulent viscosity, 223
turnover velocity, 200
two-phase flow variables, 373

unresolved Reynolds stresses, 223
unresolved scalar fluxes, 225
unresolved scales, 220
unstable steady states, 119
unsteady boundary layer, 232

van der Waals fluid, 20
vapor bubble, 48
vapor recoil, 106, 351
Vashi–Buckingham, 99, 269, 409
virial, 23, 31
virtual velocity, 361
viscosity, 66
viscosity of a mixture, 455
viscous dissipation of a vortex, 186
viscous momentum flux, 62
vortex in a dilute suspension, 381

wave near the critical point, 287
Weber number, 106, 370
weight function, 194
well-stirred reactor, 122, 207
work, 13
wrinkled flame, 208
wrinkled flamelets, 207

Z-equation, 156
Zel’dovich number, 325, 355
zone of large eddies, 199
zone of small structures, 199
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