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Preface

The remarkable advances in computing and networking have sparked an enormous
interest in deploying Automatic Speech Recognition on Mobile Devices and Over
Communication Networks, and the trend is accelerating. This yields an abundance of
practical systems, operational algorithms and scientific publications. There is, how-
ever, no integrated book available that portrays the whole picture of this area. Our
primary impetus for editing this book is to fill this gap by providing a comprehensive
and unified introduction to the field.

The prevalence of mobile devices, coupled with the proliferation of wireless net-
works, creates new opportunities for speech recognition technology. Mobile devices
are small in size and are used while on the move, both of which make speech-
enabled user interfaces attractive in comparison with other interaction modes like
keypad and stylus. The opportunities come along with challenges as well. For in-
stance, it is not an easy task to port state-of-the-art speech recognition systems onto
computationally limited devices such as mobile phones, PDAs and automobiles
where they are highly desirable. Fortunately, the barriers are being removed because
of increasingly powerful embedded platforms and pervasive network connections. Still,
however, the accompanying research and engineering issues are many: computational
constraints and power limitations on the devices, speech coding and transmission
deteriorations over the networks, diverse operating systems and hardware configura-
tions, to name just a few. To address these issues requires a wide scope of knowledge
and experience.

This book brings together leading researchers and practitioners from academia
and industry to provide an in-depth review of methods and standards, share working
knowledge, and present state-of-the-art systems and applications. We cover network
speech recognition, distributed speech recognition and embedded speech recognition,
which are expected to co-exist in the coming years.

Organization and Features

The book begins with an overview chapter and is then divided into four parts: net-
work speech recognition, distributed speech recognition, embedded speech recogni-
tion, and systems and applications.
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Chapter 1 gives a comprehensive overview of network, distributed and embedded
speech recognition and discusses the pros and cons of the presented approaches. This
chapter sets the scene for the entire book.

Part I, Network Speech Recognition, focuses on remote speech recognition that
uses conventional speech coders for the transmission of speech from a client device
to a recognition server where feature extraction and recognition decoding take place.
This part consists of three chapters.

Chapter 2 first describes the commonly used speech coding standards for mobile
and [P networks, and then investigates the effect of speech codecs on speech and
speaker recognition performance, with or without packet loss. Chapter 3 addresses
issues related to speech recognition over mobile networks, and presents solutions to
the performance degradation caused by speech coding algorithms, transmission errors
and environmental noise. Chapter 4 reviews robustness techniques against packet
loss in the context of voice over [P-based network speech recognition, and introduces
a CELP-type speech coder optimized for speech recognition over IP networks.

Part II, Distributed Speech Recognition, makes a thorough presentation of
speech recognition that adopts the client-server architecture by placing feature ex-
traction in the client and recognition decoding in the server. It begins with a review
of distributed speech recognition standards. The subsequent four chapters cover the
major blocks of distributed speech recognition.

Chapter 5 provides a comprehensive overview of the industry standards for dis-
tributed speech recognition developed in ETSI, 3GPP and IETF in addition to a
summary of substantial performance testing and comparisons to AMR coded speech.
Chapter 6 presents techniques for feature extraction and back-end speech reconstruc-
tion from the MFCC features on the basis of voicing and fundamental frequency
information either transmitted from the client device or predicted from the received
features. Chapter 7 describes a series of schemes for quantizing the MFCC features,
including scalar quantization, vector quantization and block quantization, where the
optimization objective is to maximize recognition accuracy. Chapter 8 presents a
survey of error recovery methods for transmitting the quantized features over error-
prone channels, including both forward error control coding that adds redundancy to
the feature stream and interleaving that creates spread in it. Client-side error recovery
cannot completely prevent the occurrence of residual bit errors or packet loss. Chap-
ter 9 therefore concentrates on sever-side error concealment to reduce the detrimental
effect induced by transmission errors.

Part 111, Embedded Speech Recognition, addresses the main problems in realiz-
ing a speech recognition system fully on a mobile device. The problems are ap-
proached from both algorithm and arithmetic sides through three dedicated chapters.

Chapter 10 presents an overview of algorithm implementations and optimizations
aimed at a speech recognition system with a low computational complexity and thus
suitable for deployment on embedded platforms. To complement this, Chap. 11 pri-
marily targets a low memory footprint and emphasizes on techniques for compress-
ing HMMs by removing redundancies from HMMs through parameter tying and
state- or density-clustering and by quantizing HMMs. Chapter 12 reviews problems
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concerning the fixed-point arithmetic implementation of speech recognition algorithms
and presents fixed-point methods that give the same recognition accuracy as that of
floating-point algorithms.

Part IV, Systems and Applications, introduces practical work and knowledge. It
starts with the introduction to architecture considerations in a network environment.
The succeeding three chapters present speech recognition systems and applications
tailored for mobile phones, PDAs and automobiles, respectively. The last chapter
presents energy-aware speech recognition for mobile devices.

Chapter 13 examines software architectures for mobile speech applications from
an industrial viewpoint with a thorough comparison between embedded and dis-
tributed speech engines and a highlight on supporting multimodal user interaction.
Chapter 14 presents applications of speech recognition for mobile phones and puts
the focuses on multilinguality, noise robustness, and footprint and complexity reduc-
tion. Chapter 15 presents a two-way free-form speech-to-speech translation system
that includes a large vocabulary continuous speech recognizer, a translation module
and a multi-language speech synthesis system and is completely hosted on a PDA.
Chapter 16 describes the development of speech technology components for various
automotive applications and reviews issues and challenges related to automotive
platforms. With a concern that battery technology significantly lags behind semicon-
ductor technology, Chap. 17 investigates the system-level energy consumption from
both computation and communication of distributed speech recognition on a wireless
device and presents a set of optimization algorithms that can increase the battery
lifetime by an order of magnitude.

A comprehensive index is provided at the end of this book. Index words are
highlighted in the text by using italic font.

While chapters are complemented to each other and are presented in a unified
manner with a clear flow from chapter to chapter, each chapter is written to be self-
contained and can be read and understood independently. As such, certain redun-
dancy is kept in the book. The book contains chapters of a tutorial nature as well as
chapters on research advances and practical applications.

Target Audiences

The book is primarily intended for students, engineers and scientists working in
speech processing and recognition. This book can also be a reference for practitio-
ners and researchers involved in user interface and application design for mobile
devices, speech communication over networks, Internet and wireless communica-
tions, and data compression.

Supplementary Materials

For more information about software, databases, literature and related links, please
refer to the book’s Web site, http://asr.es.aau.dk.
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Network, Distributed and Embedded Speech
Recognition: An Overview

Zheng-Hua Tan and Imre Varga

Abstract. As mobile devices become pervasive and small, the design of efficient user
interfaces is rapidly developing into a major issue. The expectation for speech-centric inter-
faces has stimulated a great interest in deploying automatic speech recognition (ASR) on
devices like mobile phones, PDAs and automobiles. Mobile devices are characterised as
having limited computational power, memory size and battery life, whereas state-of-the-art
ASR systems are computationally intensive. To circumvent these restrictions, a great deal of
effort has therefore been spent on enabling efficient ASR implementation on embedded
platforms, primarily through fixed-point arithmetic and algorithm optimisation for low com-
putational complexity and memory footprint. The restrictions can also be largely bypassed
from the architecture side: Distributed speech recognition (DSR) splits ASR processing into
the client based feature extraction and the server based recognition. The relief of com-
putational burden on mobile devices, however, comes at the cost of network deteriorations and
additional components such as feature quantisation, error recovery and concealment. An
alternative to DSR is network speech recognition that uses a conventional speech coder for
speech transmission from client to server. Over the past decade, these areas have undergone
substantial development. This chapter gives a comprehensive overview of the areas and dis-
cusses the pros and cons of different approaches. The optimal choice is made according to the
complexity of ASR components, the resources available on the device and in the network and
the location of associated applications.

1.1 Introduction

Computing is penetrating every corner of our life: Mobile devices bring computers
all over the place and networks connect everywhere to computing resources. Today
masses of mobile devices are being used as digital assistants, for communication
or simply for fun. Examples are PDAs, mobile phones, MP3 players, GPS devices,
digital cameras and the like. With mobile phones alone, the number of subscriptions
exceeded 2.7 billion by the end of 2006 according to Informa’s report, Mobile
Market Status 2007 (http://www.informatm.com). The number is expected to hit
3.5 billion by 2010. On the networking side, the goal has long been to achieve network
access anywhere, anytime and from any devices. Besides the fast development of
various network forms such as 3G, wireless LAN, Bluetooth and IP networks, the
concept of free wireless connection for the public is widely accepted and in many
places, has been implemented or is under serious considerations.
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In this ubiquitous computing environment, the use of keypad, stylus and small
screen is inconvenient and speech-centric user interface is foreseen to be a desirable
interaction paradigm where automatic speech recognition (ASR) is the enabling
technology. This has led to the growing interest in deploying speech recognition on
mobile devices.

As ASR technology has been optimised primarily for general computers in a
centralised architecture, specific care is required when incorporating the technology
into mobile devices and communication networks, both of which place significant
constraints on the use of ASR to its full potential. In comparison with contemporary
desktop computers, mobile devices are inherently featured with compromised com-
puting power, reduced CPU (central processing unit) clock, limited-speed memory
access, small memory size and limited battery life. Fortunately, the ‘always-on’
network connectivity for mobile devices opens up new opportunities to circumvent
these constraints by delivering some of the ASR computing tasks into remote ser-
vers. The price to pay, however, is the effect of limitations enforced by networks
themselves, which for instance are not always reliable or even not available for some
periods or locations. ‘Always-on’ usually means connectivity with some drop-outs,
hence over less than 100% of time. In fact, placing ASR in the remote server is an
efficient option for network based applications which can tolerate natural drop-outs
in radio network connectivity. In other cases, placing ASR in the mobile devices
represents the only possibility.

Due to the existence of means of interaction, the user expects perfection from
speech interfaces, presenting a significant challenge for both academia and indus-
try. While efforts have been put in all aspects of ASR technology to meet the
expectation, in the attempt of utilising the resources available from devices and
networks and addressing the accompanying hindrances, three approaches have been
devised: network speech recognition (NSR), distributed speech recognition (DSR) and
embedded speech recognition (ESR).

In NSR, speech signal, in most cases encoded by a conventional speech coder, is
transmitted to the server where feature extraction and recognition decoding are
conducted (Kim and Cox 2001). The apparent and major advantage of the NSR
approach is that numerous commercial applications are developed on the basis of
speech coding. This enables a plug and play of ASR systems at the server side while
no changes are required for the existing devices and networks. It further shares all
the advantages of server based solutions in terms of system maintenance and update
and device requirements. In addition to network dependency, the downside of NSR
is that speech coding and transmission may degrade the recognition performance due
to such factors as data compression, transmission errors, training-test mismatch, pro-
duction model oriented parameterisation and transcoding (Euler and Zinke 1994;
Lilly and Paliwal 1996; Peinado and Segura 2006). Among the factors, effect of
information loss over transmission channels has shown to be the most significant.

The curse of dimensionality is a well-known problem in pattern recognition. In
ASR, feature extraction process is applied to the speech signal to obtain a
representation with a low dimension and less redundant information. The generated
features are therefore well suitable for compression and transmission. DSR directly
quantises these features and transmits them through networks (Pearce 2004; Tan et al.
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2005). In the server the features are decoded and used for recognition. With recent
advances in source coding, channel coding and error concealment, this approach
both achieves a low bit rate and avoids the distortion introduced by speech coding.
To provide the possibility for human listening, effort has also been put into the re-
construction of speech from ASR features with or without supplementary speech
features such as pitch information and the results are quite encouraging (Milner and
Shao 2007). The key barrier for deploying DSR is that it lacks foundation in the
existing devices and networks that NSR has. Stronger motivation and more effort
will be needed to make DSR grow in visibility and importance.

In ESR, all ASR processing is conducted in the target device (Varga et al. 2002).
Such fully embedded ASR is independent of network connectivity and has the
advantage of not introducing extra distortion to speech signals. However, the re-
quirements to the client are high in terms of computing, memory and power con-
sumption. Also, when the ASR involves large databases residing in networks, e.g.
for compiling application specific grammars, bandwidth requirement and security
concern turn out to be nontrivial. Update of the ASR engine is also inconvenient due
to the widespread, numerous devices. In many cases ASR is merely an integrated
part of user interfaces, so ASR is not supposed to consume a large proportion of
computational resources and scarce battery. Fixed-point arithmetic and algorithm
optimisation are therefore required to realise ASR in embedded platforms (Lam et al.
2003). The hope lies in the continuous advance in semiconductor technology
implying a rapid evolution of computing speed and memory size so the complexity
of ASR is expected to become less and less of a bottleneck in the future.

This chapter presents an overview of the various ASR areas and discusses the
pros and cons of different approaches. The remainder of this chapter is organised as
follows. Section 1.2 presents the basics of ASR and limitations of mobile devices
and networks. Sections 1.3, 1.4 and 1.5 sequentially present network, distributed and
embedded speech recognition. This chapter is ended with discussions.

1.2 ASR and Its Deployment in Devices and Networks

1.2.1 Automatic Speech Recognition

Automatic speech recognition converts a speech signal to a word sequence (Deller
et al. 1999). Modern ASR systems are firmly based on the principles of statistical
pattern recognition, in particular the use of hidden Markov models (HMMs). Given
the observation data ¥, which are feature vectors extracted from the speech signal,
the most likely sequence of words W is found through the following Bayesian de-
cision rule:

A

W =argmax P(W |Y) =argmax P(W)P(Y | W) (1.1)
w w

where P(W) is the a priori probability of observing some specified word sequence
W and is given by a language model, and P(Y | W) is the probability of observing
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speech data ¥ given word sequence W and is determined by an acoustic model, often
an HMM.

The architecture of a typical ASR system, depicted in Fig. 1.1, shows a
sequential structure of ASR including such components as speech signal capturing,
front-end feature extraction and back-end recognition decoding. Feature vectors are
first extracted from the captured speech signal and then delivered to the ASR
decoder. The decoder searches for the most likely word sequence that matches the
feature vectors on the basis of the acoustic model, lexicon and language model (LM).
The output word sequence is then forwarded to a specific application.

The partition between the ASR components is sharp, enabling flexible
architectures when deploying it on the device and in the network. Speech is always
captured in the client and the application can reside either in the client or in the
server. The decision on where to place the remaining ASR components distinguishes
three approaches: NSR, DSR and ESR, as shown in the bottom panel of Fig. 1.1. The
choice of approaches is driven by a number of factors including complexity of
components, resources available on the device and in the network, and location of
the application.

»(0) Y W
Akl —iy| Feature > ASR 3| Application
FEFETTT Extraction Decoder
A |
Speech v
. LM
Signal » Language Model
Acoustic Lexicon Language Generation
Model Model
Text
Front-End Back-End
NSR CLIENT SERVER
DSR CLIENT SERVER
ESR CLIENT

Fig. 1.1 Architecture of an ASR system

Although the acoustic model is as well related to and may adapt to application,
the language model has much stronger dependency on it, especially when the model
is constructed from rule-based context-free grammars. Grammar based LM often
dynamically changes along the application dialogue flow and necessitates data from
application and databases. Stochastic language models, such as data-driven n-gram
trained from text corpora, however, are less dependent on individual applications and
can be generated offline. The data location, the size of grammar and the frequency of
change in the grammar are among the decisive factors in choosing embedded or
remote ASR, see Chap. 13.

The next factor to consider is the complexity of various ASR components. In
general, the front-end processing is less resource demanding. Nevertheless, the
HMM based back-end is much more computationally intensive than the front-end
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and has a high demand for memory and CPU resources. First, the acoustic model
normally consists of several millions of parameters and the system usually has a
large lexicon and language model to store and access. Secondly, decoding word
sequences takes a substantial amount of CPU resources due to the needs for
calculating observation likelihood and for searching over a huge space. The storage
of intermediate results brings in further demand for memory. During the decoding,
memory is frequently accessed making memory access speed an important factor.
Finally, it consumes a significant amount of energy. When implemented in embed-
ded platforms, these demands for resources appear to be a considerable obstacle and
optimisation is therefore necessary to pursue.

In the following we discuss the constraints of mobile devices and communication
networks.

1.2.2 Resources and Constraints of Mobile Devices

Key concerns with mobile devices are computing power, fixed-point arithmetic,
memory size, memory access speed and power consumption (or battery lifetime).
These factors are common for all low-cost consumer electronic devices including
PDAs, mobile phones, car kits and game devices. Although resources are generally
scarce on consumer devices, we have to carefully distinguish between various scen-
arios. The basic aspect is the targeted speech recognition application in relation-
ship to the available resources: The needs of e.g. digit dialling, keyword spotting or
continuous dictation are largely different and a specific device will be able to run
speech recognition up to a certain complexity level.

From an ASR implementation point of view, mobile devices and car kits may
be classified into at least two classes: high-end and low-resourced platforms. It is
important to mention that as of today, computing power, memory size and speed in a
consumer product are usually chosen according to the requirements of the main
functionality of the device. Speech recognition software is part of the handset soft-
ware infrastructure hence ASR based applications are considered as well although no
driving forces when determining the actual resource level of a platform. The con-
sequence is that we have to choose the actual speech recognition solution according
to the capabilities of the given platform. Examples for high-end devices are PDAs,
featured car kits and smart phones, and plain mobile phones for low resourced
platforms. For discussion purpose, it is as well interesting to somehow touch one
more class of consumer devices—any other unit with a microphone including tele-
phone and home electronic appliances.

Typically, users of high-end devices expect the support of advanced features, for
example, video telephony, audio-video streaming or mobile TV, messaging service,
interactive content delivery—all these applications already require a (relatively)
high-resourced platform. Speech recognition based applications may make benefit of
the availability of those resources. Command-and-control by speech assists the user
in a more comfortable user interface. Furthermore, some advanced features like key-
word spotting may be offered as well, in addition to name and digit dialling. The
resources on mobile phones or game devices are still limited today to support a large
vocabulary continuous speech-to-text dictation application. However, resources of
high-end devices, such as PDAs, smart phones and eventually car kits, have reached
the level to support full-featured dictation useful for SMS and email. As smart phones
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and PDAs are more and more enriched by new features, we may expect a positive
effect on speech recognition based applications as well.

On the other hand, plain mobile phones basically used for telephony are no ideal
platform for sophisticated speech recognition yet. They still may be equipped by
speech recognition based applications: Isolated-word digit dialling is the best
example although name dialling using a combination of speaker independent and
speaker dependent training fits simple phones well. Good progress has been demon-
strated in this area over the last years as continuous digit dialling becomes available
as well. Nevertheless, the wish of having enriched ASR applications in plain phones
presents opportunities for DSR and NSR, which require a thin client only.

Battery lifetime (around 3-5h in a mobile phone when talking) represents a
major constraint in addition to limited computing power and memory size since
robust signal processing algorithm computing, large storage with fast access and
increased CPU speed imply increased power consumption. In addition, power
consumption further increases when a video screen is present e.g. for video
telephony, video streaming and mobile TV applications. The impact is even less
power for ASR applications. Although high power drain of video applications urges
manufacturers to improve the battery situation, this circumstance does not imply
necessarily more power for speech recognition applications. Chapter 17 is dedicated
to managing and optimising battery lifetime for mobile devices through techniques
like energy aware speech recognition.

After elaborating the impacts of scarce resources onto the feasibility of speech
recognition applications in mobile devices, let us take a closer look at the platform
constraints themselves. A major constraint is the available memory: In a consumer
device like a mobile phone, game device, car kit, the typical size is 4-16 MB for
RAM memory with slow access and up to 32 kB for cache. So the amount of signal
processing algorithms that can run simultaneously is limited and they also limit the
size of language and acoustic models. The result is a compromised performance.
Computing power of the CPU is limited which implies the use of suboptimal methods
in speech recognition and hence performance degradation. In addition, the CPU runs
on fixed-point arithmetic, which implies the need for fixed-point algorithm code, or a
floating-point arithmetic that is emulated on the CPU’s fixed-point hardware. The
second approach allows the implementation of floating-point code but at a reduced
speed, further decreasing the available computing power. Moreover, there is no low-
level access to the operating system by the programmer of signal processing algo-
rithms; high-level programming is more comfortable but results in a less efficient
code. Resource scarcity is even worse when using the device in adverse acoustic
environments, which is usually the case for mobile phones, PDAs or car kits. Car
noise, street noise, office noise and reverberant speech all represent major impair-
ment factors to the input speech commonly referred as adverse acoustic conditions.
Sophisticated signal processing algorithms are needed to cope with the negative
effect of the adverse acoustic environment—their implementation is not always
possible in highest quality due to memory and speed constraints.

Besides physical resource situation, it is worth drawing our attention to further
aspects of properties of mobile device platforms with respect to speech recognition
applications. Speech input has to compete with existing and well-accepted user interface
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methods, for all of command-and-control, dialling or text input. The existing meth-
ods, like typing on a keypad or pushing buttons on a phone, pointing with stylus,
use of touch screen, are all well established. New users seem to learn typing of
buttons on a phone quickly and especially young people are fast when typing
SMS text. However, there are some limiting factors of conventional user interface
methods in consumer devices. One of them is that due to potentially increased risk of
accidents, law prohibits the use of hand-held devices while driving in a number of
countries. Furthermore, the size of consumer device keypads is becoming smaller
and smaller in the course of miniaturisation. Use of tiny keypads is neither com-
fortable for some people nor reliable enough. Finally, as high-end devices are
enriched by more and more features, their handling becomes increasingly sophisti-
cated. Indeed, handling of phones is computer-like today already and it does not
resemble that of conventional phones in any respect. Navigation in complex menu
structures seems inevitable although not manageable for everyone. All these factors
strengthen the need for an alternative user interface—the most natural solution is the
use of speech recognition.

1.2.3 Resources and Constraints of Communication Networks

Networking facility is becoming a standard component on mobile devices; wired
and wireless network accesses are broadly available, though not ubiquitous yet.
Furthermore, network service is gradually moving towards a flat-rate subscription-
based business model in which the user pays a certain fee for unlimited connection.
Variants usually differ in service grades like basic-enhanced-premium services. All
these factors together assure an ‘always-on’ networking and the quality of con-
nections in relationship with costs, rather than network connectivity, becomes the
major concern. From this viewpoint, we may distinguish between circuit-switched
and packet-switched types of networks as detailed in the following.

Circuit-switched networks set up a dedicated circuit (or channel) between the two
parties for the duration of a communication and this gives a constant delay and a
constant throughput. In contrast, packet-switched networks break data into small
packets and based on the destination address in each packet, route them through
nodes and data links that are shared with other traffic. Note that the previously
mentioned data may refer to any type of information, such as text of an email or
segments of digitised speech signal in telephony service. Once all the packets con-
stituting a message arrive at the destination, they are reassembled in the proper order
to restore the original message.

Circuit-switched networks are ideal for communications that require data to be
delivered to its destination in real-time and in its original order. Example com-
munications are speech conversation (telephony) and video telephony. Packet-
switched networks are rather oriented to non-real time data transfer, and they are
more efficient and robust if some amount of delay is tolerable. Nowadays, packet-
switched networks are also used for speech conversation (named VoIP) although this
service lacks the quality common for circuit-switched telephony and suffers from
large call latency. Extensive efforts are made on the QoS area and on speech coding
so that quality of VoIP based service improves steadily. Due to overall advantages in
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terms of flexibility and costs, packet-switched IP networks are the development
trend and will be the dominating network form in the future.

Landline telephone networks are circuit-switched and are considered reliable,
whereas radio channels cannot be considered as always reliable because fading and
interference introduce errors into transmitted data. Specifically, in circuit-switched
wireless channels, transmission impairments arise in the form of bit errors. In packet-
switched networks, the impairment is in packet errors: Packets are queued or
buffered in each network node, and due to congestion at the nodes, packets can be
lost or get delayed and thus have to be declared as lost by real-time applications.
Packet-switched networks implement packet loss concealment mechanisms to
improve the subjective quality of the speech signal in the presence of packet losses.
Bit error and packet loss are two different types of channel noises, but one thing in
common is that both tend to be burst-like, making error recovery and concealment a
challenging task.

Lossless transmission schemes are applied for data transmission, so that channel
noise is reflected as delays rather than deterioration of data quality. For real-time
services such as speech conversation and remote speech recognition, delay above a
certain threshold is not acceptable. As a result, transmission errors inevitably remain
in the data and degrade ASR performance. Techniques for error recovery and con-
cealment must be applied and take effect within certain range of time for both NSR
and DSR.

Although network capacity has been expanded dramatically, more and more new
applications are constantly deployed. Thus, bandwidth is obviously a concern and
data compression is always welcomed for transmission of speech information. Low-
bit-rate compression in NSR is a source of performance degradation, though not as
severe a source as transmission errors. In contrast, the effect of data compression on
DSR is often negligible.

1.2.4 Architectural Solutions for ASR in Devices and Networks

Through the discussions above, we get a picture about ASR and its deployment
environments. From the system architecture point of view, ESR may be considered
as the simplest approach since all recognition related processing is performed in the
client and no signal or data is sent from the client device to a remote server based
engine. This simplicity is conditioned on that the ASR related application is em-
bedded on the device, or the communication between the ASR and the application
(if network based) is restricted to merely the recognition results. Otherwise security
concern and data dependence may favour a remote ASR solution. Furthermore, due
to the limitations of embedded system platforms, the implementation of ESR
requires customised fixed-point conversion and algorithm optimisation to reduce its
consumption of memory, computation and power (Novak 2004). Finally, porting and
update of ESR systems are up to the user.

The downsides of ESR exactly represent the benefits of a remote ASR, and vice
versa. The rule of thumb for data-intensive computing is to place computation where
the data is, instead of moving the data to the point of computation (Bryant 2007).
When the ASR acquires more data from the network than from the microphone,
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a network based ASR may be preferable. Another favourable scenario for network-
based ASR is when the ASR computation is a big burden for the device. The
network based approaches also offer some opportunities that ESR cannot offer. For
example, humans can assist the ASR in the background to provide semi-automatic
speech transcription service.

In remote ASR, speech signals are transmitted from the device to the server as
either coded speech (NSR) or as ASR features (DSR), both of which can be effi-
ciently compressed to a bit rate of several kbps. Speech signal quality and (noise and
channel) robustness are important parameters for choosing DSR while the wide
deployment of high-quality speech coders makes NSR a favourite.

Due to the pros and cons of the three different approaches, they are expected to
co-exist in the years to come.

1.3 Network Speech Recognition

In NSR, speech encoded by conventional speech coders normally used for telephony
voice conversation is transmitted to the server in which ASR is conducted. At
the server side, there are two ways to extract ASR features from the bitstream of
the coded speech. One is to reconstruct speech signal first and extract features
subsequently; in this case, NSR is essentially the concatenation of a conventional
speech coding and decoding (codec) system and a speech recognition system. The
other way is to estimate features directly from the bitstream without decoding
(reconstructing) the speech; this method has demonstrated a superior performance to
the former in terms of both computational complexity and recognition accuracy
(Kim et al. 2001; Peldez-Moreno et al. 2001).

The ubiquitous presence of speech coding on mobile devices largely leverages
the deployment of NSR as this enables a plug and play of ASR systems at the server
side without touching the massive clients. For some devices such as for a telephone
which have no computing power for basic front-end processing, NSR represents the
only possibility to have an ASR-driven interface.

The disadvantages of NSR are network dependency and distortion introduced by
speech transmission specifically by low bit-rate coding and error-prone channels.
Coding distortion occurs mainly since speech coders are optimised for receiver-side
reconstruction and human listening rather than for computer recognition. For
instance, parameterisation of speech coding is mainly based on a speech production
model and thus the use of linear prediction coding (LPC) coefficients while speech
recognition widely employs Mel-frequency cepstral coefficients (MFCCs) that
are extracted on the basis of human perception. This difference can be overcome
by directly estimating features from the bitstream of coded speech without re-
constructing the speech, see Chap. 3. In Kim et al. (2001), for a connected digit
recognition task, the word error rate (WER) for wireline speech is 3.83% and it is
5.25% for 1S-641 coder at 7.4 kbps. Their proposed bitstream-based front-end achie-
ved a WER of 3.76%. However, techniques of this kind are tailored for each specific
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coder. Recently Kim further proposed a CELP-type speech coder that uses MFCCs
to represent the spectral envelop, see Chap. 4.

As end-users of an NSR system may use various speech coders, the resulting
mismatch between training and test is a source of degradation as well. In Euler et al.
(1994), it is found that with matched training and test conditions, WERs for a
speaker independent isolated word recognition task for 64 kbps A-law speech
and for 4.8kbps CELP speech are 1.48% and 2.57%, respectively. When acoustic
models trained on 64 kbps A-law data are used for testing the 4.8 kbps CELP speech,
the WER for it increases to 3.96%. Nevertheless, this observation is in contrast with
that in Hirsch (2002) where training using PCM speech (no coding) generally gives
better performance. For example, the weighted WER for PCM Aurora-2 speech is
26.77% and it is 29.84% for AMR (Adaptive Multi-Rate) 4.75 mode when training
and testing the recogniser by using the same coder. When using PCM speech for
training and AMR 4.75 for testing, the WER is 28.17%, which is better than the
matched coding condition. In contrast with the above moderate drops in ASR
performance, certain audio codecs, such as the MPEG layer-2 8 kbps codec, can
substantially degrade the ASR performance, or even result in almost random ASR
output, see Chap. 2. The degradation becomes gradually less significant with better
speech coding quality. That is achievable by using more sophisticated coding
algorithms or increasing the bit rate and enlarging the audio bandwidth (wideband
speech at 16 kHz sampling frequency). For example, it was shown (Fingscheidt et al.
2002) when using the EFR or AMR codec in GSM at 12.2 kbps, the impact of
speech coding itself is negligible on ASR performance while radio channel errors
were found to be the main source of impairment. Overall, one firm conclusion is that
low-bit-rate speech coding and transmission decreases ASR performance while
transmission of >10 kbps coded speech over good channels has a negligible effect.

The effect of packet loss on NSR has been extensively investigated in (Mayorga
et al. 2003). The authors reveal that packet loss may imply substantial degradation of
recognition performance. In contrast, speech coding is a less severe problem, but
when coupled with packet losses, it can make ASR out of function. One of the
reasons is that speech coders usually exploit inter-frame correlation to achieve high
compression ratio so that one frame loss affects subsequent frames—the pheno-
menon of error propagation (Pearce 2004). Lately some frame-independent coders
have been developed. Furthermore, in a low-bit-rate coder, one packet contains a
large amount of information making the effect of packet loss even more severe.

Various applications have been developed on the basis of NSR. For instance, it is
used in interactive voice response (IVR) systems to accomplish complex transac-
tions that are difficult for touch tone based interaction to handle if a complicated
application menu structure is to be avoided. A significant move in this direction is
the introduction of the W3C’s standard VoiceXML, which enables voice applica-
tions to be developed in a similar way to HTML based web applications. It aims ‘to
bring the advantages of web-based development and content delivery to interactive
voice response applications’ (http://www.voicexml.org).
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1.4 Distributed Speech Recognition

The high complexity of an ASR decoder makes it tempting to adopt a client-server
architecture: placing the front-end in the client and the computation-intensive back-
end in the server. Since feature extraction is located in the client, the process of
speech coding and decoding is eliminated. Instead, the feature vectors are directly
compressed and sent to the server for recognition decoding. As data transmission
may take place via heterogeneous networks, the use of a DSR codec further avoids
the problem of transcoding.

To optimise DSR performance over adverse transmission channels, considerable
efforts have been made ranging from front-end processing, source coding/decoding,
channel coding/decoding, packetisation to error concealment (EC) (Tan et al. 2005).
A diagram of a typical DSR system is shown in Fig. 1.2. The major building blocks
are introduced briefly in this section and are extensively covered by Chaps. 6, 7, 8
and 9 in addition to a review of DSR standards in Chap. 5.
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Fig. 1.2 Diagram of a DSR system

1.4.1 Feature Extraction

The extraction of discriminative and reliable features is a key issue in speech
recognition. Over the years, MFCCs (Davis and Mermelstein 1980) have become the
de facto standard features and are therefore used in DSR systems as the primary
choice.

For human listening purpose an interesting exploration consists in speech
reconstruction from MFCC features (Milner et al. 2007). This effort together with
the attempt of using MFCC features for speech coding (Chap. 4) imply a convergence
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of speech coding and DSR feature extraction where the DSR codec becomes
one member of the speech coding family. The difference lies in that the optimisation
criterion for speech coding is primarily perceptual quality whereas it is recognition
performance for DSR feature extraction.

The other features that have been investigated are the PLP (perceptual linear
predictive) features, which have the advantage of being efficiently coded into as low
as 0.3 kbps while providing recognition accuracy comparable to the unquantised
system (Bernard and Alwan 2002). It, however, lacks the possibility for speech
reconstruction.

Acoustic environments in which mobile devices operate are typically noisy. In
hands-free mode a far field microphone further decreases the signal-to-noise ratio of
speech. Noise robustness in adverse conditions is therefore a key issue to deal with.
Since many robustness techniques are applied in the time and frequency domains
and features sent to the DSR server are in the Mel-frequency domain, those
robustness (speech enhancement) techniques must be implemented in the front-end
at the client side.

1.4.2 Source Coding

Source coding is applied to compress speech features for transmission over bandwidth-
limited channels. Techniques include scalar quantisation, vector quantisation (VQ)
and transform coding (So and Paliwal 2006). In general lossy coding is applied for
DSR.

The widely used Split VQ partitions each feature vector into sub-vectors and
quantises each sub-vector independently by using its own codebook. Digalakis et al.
(1999) have extensively evaluated the use of split VQ and scalar quantisation for
compressing MFCC features. As compared with full VQ and scalar quantisation,
split VQ has a better trade-off between storage and computation requirements and
quantisation performance. It was found that 2 kbps is sufficient for 13-dimentional
MFCCs.

Speech features contain a substantial amount of redundant information. In
transform coding, the redundant information or correlation in the features are
removed by transforming them, and thereafter quantisation is applied in the
transformed domain. This is also known as block coding. An example is the two
dimensional discrete cosine transform (2D-DCT) (Hsu and Lee 2004; Zhu and
Alwan 2001).

Tan and Lindberg (2007) presented a scalable coding scheme based on a variable
frame rate analysis where the target bit rate is met by adjusting frame rate. Prior to
recognition in the server, frames are repeated so that the original frame rate is
restored to fit the frame rate with the applied HMM models.

The ETSI-DSR front-end compresses speech source into a bit rate of 4.4 kbps
and gives a WER of 0.95% on the Aurora 2 database (Hirsch and Pearce 2000). The
2D-DCT achieves a bit rate of 1.45 kbps and a WER of 1.58% (Hsu et al. 2004). The
run-length coding method obtains a WER of 0.89% at a bit rate of 1.40 kbps and a
WER of 1.15% at a bit rate of 1.06 kbps. The performance of run-length coding is
dependent on the amount of steady regions in the signal, so does transform coding.
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Source coding also plays a role in robustness against transmission errors. Error-
resilient source coding techniques should be effective to prevent error propagation
and minimise distortions. When inter-frame correlation is exploited, the resulting
inter-frame dependency will make the coder more sensitive to transmission errors.
Some coders are considered joint source-channel coding such as layered coding
(Srinivasamurthy et al. 2006) and multiple description coding (Tan et al. 2007a)
which are used for DSR as well.

Histogram-based quantisation (HQ) was recently proposed for feature com-
pression (Wan and Lee 2006), which performs the quantisation of a feature
parameter based on the histogram or order statistics of that feature parameter within
a moving segment. This method needs no fixed codebook and eliminates the
mismatch between the corrupted feature vectors and the fixed codebook. Another
recent scheme applies the group of pictures concept (GoP) from video coding to
DSR to achieve a variable bit rate compression scheme (Borgstrom and Alwan
2007).

1.4.3 Channel Coding and Packetisation

Channel coding aims at protecting information from channel related errors through
adding redundancy to the data (Bossert 2000). Channel coding techniques are mea-
sured by, among others, error detection capability and error correction capability.
In applying techniques known as backward error correction (BEC), errors are de-
tected but not corrected; upon detection of errors, a retransmission is requested.
Retransmission is not deployed for DSR since speech interaction is considered a real
time application so that Real-time Transport Protocol (RTP) is used. Retransmission
mechanism further relies on duplex communication. Instead, server-side EC can
be used in combination with BEC. The other type of techniques, known as forward
error correction (FEC), aims at not only detecting errors but also recovering the
message from errors without referring back to the client. For instance, Boulis et al.
(2002) applied Reed-Solomon codes to DSR to cope with packet erasure. In general,
channel coding techniques trade bandwidth for redundancy and thus error resilience.

FEC and EC techniques are efficient in handling randomly distributed errors, but
inefficient when errors are burst-like. Therefore, they are better used in connection
with appropriate packetisation, which redistributes errors or erasures. For example,
interleaving is such a technique that is able to randomise transmission errors though
at the cost of delay (James and Milner 2004).

Though being efficient, client-driven techniques have drawbacks like increased
bandwidth, additional delay, computational overhead and weak compatibility.

In applying channel coding to DSR, error detection is more important than error
correction (Bernard et al. 2002) as error detection in combination with EC is quite
effective for speech recognition. This is further supported by a frame based CRC
(cyclic redundancy check) for error detection, which shows a significant perform-
ance improvement with a marginal bandwidth increase (Tan et al. 2005).
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1.4.4 Error Concealment

The final stronghold for error robustness is error concealment. The prerequisite for
EC is error detection, which can be done in two ways. One is to apply channel
coding including simple BEC techniques (e.g. parity check, checksum, CRC) and
more sophisticated FEC ones where the amount of errors may extend beyond their
capability of error correction. The other is to exploit the redundancy in the speech
signal. Due to the real-time constraint, detection of errors does not result in a request
for retransmission to the client, but in a server-based EC.

EC first aims at feature reconstruction through repetition, interpolation, splicing,
or substitution among which repetition usually gives a superior performance. Sub-
vector based EC is a repetition at the sub-vector level which uses speech correlation
to identify consistent, thus potentially correct, features within erroneous vectors (Tan
et al. 2007a). This is proved to be quite effective and well suitable for combining
with ASR-decoder EC such as weighted Viterbi decoding.

To benefit from a priori information about speech features, statistical techniques
exploit the statistical information about speech for feature reconstruction (Gomez
et al. 2003). Reliability information from channel decoding can also be used either
for feature reconstruction or for ASR decoding, resulting in a class of soft-feature
decoding based techniques (Peinado et al. 2003).

Since we have a computer (speech recogniser) as destination rather than a person,
the quality of feature reconstruction can be deployed in the ASR, resulting in ASR-
decoder based EC. At the ASR decoding stage, the reliability of the channel decoded
features is integrated into the recognition process by using modified Viterbi de-
coding algorithm such that contributions made by observation probability associated
with features estimated from erroneous features are decreased. The concept of un-
certainty decoding has also been applied for EC in DSR (Ion and Haeb-Umbach
2006; Wan et al. 2006).

Server-based EC has a good compatibility e.g. with the ETSI-DSR standards.

1.4.5 DSR Standards

A number of DSR standards have been produced by the STQ Aurora DSR working
group in ETSI. The first standard was published in 2000 that defines a feature-
extraction processing and a source and channel coding scheme (FE) (ETSI ES 201
108 2000). It aims to handle the degradations of ASR over mobile channels due to
lossy speech coding and transmission errors.

As mobile devices often operate in adverse acoustic environment and denoising
techniques are applied in the front-end, ETSI upgraded the basic front-end by
including a noise robustness component to the advanced front-end (AFE) in 2002
(ETSI ES 202 050 2002). The bit rate for both FE and AFE is 4.8 kbps of which
4.4 kbps is used for source coding and 0.4 kbps for channel coding.

A further update is to respond to the needs for server-side speech reconstruction
and for tone language ASR. This is done by including fundamental frequency
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information in the feature stream and has led to the extended versions of the two
issued DSR standards: XFE and XAFE (ETSI ES 202 211 2003; ETSI ES 202 212
2003). The bit rate for extended front-ends is 5.6 kbps where 5.1 kbps is for source
coding.

Extensive industrial tests have been organised by the 3rd Generation Partnership
Project (3GPP) and the results justified the superior performance of the DSR XAFE
to adaptive multi-rate codecs (3GPP TR 26.943 2004). As compared to AMR 4.75
mode, XAFE obtained a 36% reduction in WER. The gain with using XAFE is even
more significant in the presence of transmission errors due to the frame inde-
pendency in DSR codecs. Consequently 3GPP chose the XAFE as the codec for
speech enabled services and published a new specification that provides a fixed-point
implementation of XAFE (3GPP TS 26.243 2004). The significance of the selection
by 3GPP is that we can look forward to the widespread deployment of DSR in future
GSM and 3G mobile devices (Pearce 2004).

In the Internet Engineering Task Force (IETF), the RTP payload formats have
also been defined for these DSR codecs (Xie and Pearce 2004).

The introduction of front-end standards enables interoperability over networks
and gets rid of transcoding, which often is needed for speech transmission over
heterogeneous networks.

1.4.6 A Configurable DSR System

Based on the ETSI XAFE (3GPP TS 26.243 2004) and the SPHINX IV speech
recogniser (Walker et al. 2004), a configurable DSR system is implemented in (Xu
et al. 2006). The system supports simultaneous access from a number of clients each
with its own requirements to the recognition task. The recogniser allows multiple
recognition modes including isolated word recognition, grammar based recognition
and large vocabulary continuous speech recognition (LVCSR). The client part of the
system is realised on a H5550 IPAQ with a 400 MHz Intel® XScale CPU and
128 MB memory. Evaluation shows that conversion from floating-point AFE to
fixed-point AFE reduces the computation time by a factor of 5 and most of the com-
putation comes from the noise reduction algorithm deployed in the front-end and the
MFCC calculation itself is computation light. With regard to memory consumption
in the client, the size of the client DLL library file is only around 74 kB, and the
maximal memory consumption at run-time is below 29 kB.

1.5 Embedded Speech Recognition

Commonly, embedded speech recognition (ESR) refers to a technique in which all
speech recognition processing is located in the target mobile or handheld consumer
device. That is the case if no network connection is available and also for certain
speech recognition applications even when a communication link is available, while
others may use NSR and DSR methods. Example consumer devices are PDAs,
mobile phones, car kits, game devices.
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1.5.1 ESR Scenario

From a system architecture point of view, embedded speech recognition may be
considered as the simplest approach when implementing speech recognition. In
contrast to network or distributed speech recognition, there is no signal or data sent
from the client device to a remote server based engine. Hence the application is
always ready to use, irrespective of radio link existence and conditions.

Given that, it becomes immediately clear there is a price to be paid for the
architecture simplicity: The complex speech recognition algorithm has to run on a
generically low-resourced consumer device. In fact, we are forced to develop special
techniques to cope with limited resources in terms of computing speed (MIPS) and
memory on the platform. The result of the efforts is that consumer platforms are
generally able to accommodate some kind of ASR based applications. The limits
today are best demonstrated by the availability of LVCSR recognisers (dictation)
only on the most powerful consumer platforms, on the latest PDAs (Zhou et al.
2004). Also, all maintenance and upgrading activity falls on the user or service of the
consumer device.

Fortunately, continuous advance in semiconductor technology implies a rapid
evolution of computing speed of microprocessors and improvement of power con-
sumption of memory devices. So the complexity of speech recognition algorithms is
expected to become less and less of a bottleneck in the future when implemented in
an embedded manner. Nevertheless, server-based speech recognition will always
have an advantage in terms of available resources. The result of increasing compu-
ting resources and at the same time, more sophisticated methods to cope with low
resources may be expected to be a convergence of embedded and remote recognition
in terms of application: The border between applications realised by these techniques
will disappear which allows for advanced features like the use of natural language
understanding instead of simple command-and-control system.

Resource scarcity limits the available applications; on the other hand it forces the
algorithm designer to optimise techniques in order to guarantee sufficient speech
recognition performance even in adverse conditions and on limited platforms, and to
optimise memory usage.

1.5.2 Applications and Platforms

Mobile phones, PDAs, game devices, car Kits are all attractive target products for the
application of speech recognition. Typical applications in car environment are
continuous digit dialling and name dialling with hands-free car kits, and command-
and-control for menus and navigation systems. Mobile phones implement speaker-
dependent (trained) name dialling and digit dialling, also command-and-control
functionality. Games benefit from command-and-control feature. Next, mobile phones
will offer speaker-independent dialling and simple dictation features for SMS.
Command-and-control applications will extend to interactive man-machine interfaces.
Chapters 14, 15 and 16 are dedicated to speech recognition in mobile phones, PDAs
and car kits, respectively.
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Embedded speech recognition may be implemented on a general purpose
processor available in the consumer device already, or on a specialised IC in the
device designed to run speech recognition only. While the former approach allows a
higher degree of customisation, the latter one is of benefit in terms of cost reduction
if a very large quantity can be produced. An example for a general purpose processor
in mobile phones is the ARM family: ARM7/ARM9/ARMI11 offer 50-600 MHz
processing speed usable on proprietary or common (Windows CE, Linux, Symbian)
OS. Car kits often apply a DSP of 50-200 MIPS (TriCore, OMAP, Blackfin, C55) or
a RISC processor.

1.5.3 Fixed-Point Arithmetic

Use of fixed-point processors is the key for low cost and for low power consump-
tion, which are important aspects for consumer devices. Moreover, the higher
computational power of fixed-point devices as compared to floating-point processors
may make the integration of complex speech recognition, for example of LVCSR,
possible at all on consumer devices.

Whether a general purpose hardware platform or a specific one (custom IC) is
used for ESR influences the applied optimisation criteria and techniques which
include software level optimisation and custom hardware architecture design. In the
following discussion, we address both cases.

A convenient way to develop the ASR software is using C or C++ language in
floating-point in order to have a reference code. The next step is to convert it to
fixed-point. The fixed-point C code serves then as the basis for assembler imple-
mentation on the target CPU. A basic requirement is that the numeric precision of
the fixed-point code should not be worse than that of the floating-point reference
code otherwise the performance may suffer.

Fixed-point data types must be used in the fixed-point version and the
corresponding fixed-point operations have to be defined. A convenient approach has
been introduced in ITU-T and ETSI for speech codec specification with the use of
basic operators which model the instruction set of a hypothetical but characteristic
16 bit fixed-point DSP. The basic operators are defined as ANSI-C functions for
typically used arithmetic (addition, subtraction, multiplication, division and shift)
and other operations (logarithm, square root etc.). All speech codecs of the last
decade are specified in ITU-T and ETSI using the set of 16 bit basic operators.
Following this practice, the DSR extended advanced front-end was defined using the
ETSI 16 bit fixed-point basic operators in 3GPP TS 26.243 (2004). This method may
be suitable for ESR implementations but apparently this approach has not been
followed yet.

The Very Smart Recogniser (VSR) presented in Varga et al. (2002) addresses a
method to imitate the mantissa-and-exponent representation of a floating-point data
type by fixed-point one. This is realised by shifting the value to a range where the
data is optimally used and storing the shift level in a second variable. Exact imita-
tion is not possible unfortunately because data types are CPU and implementation
dependent. In addition, often a code of complex modules (division, FFT) are pro-
vided by the DSP manufacturer specially optimised for the given DSP but use of
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these modules cannot be recommended for general fixed-point reference C code
purposes. In VSR feature extraction due to MFCC logarithm, the feature values can
easily be compressed into a signed 8 bit type which is used in both floating-point and
fixed-point versions. As shown, more than 96% of the features are identical in the
fixed-point and floating-point versions and less than 0.01% have a numerical
difference of more than +1. This high accuracy ensures no degradation of the
recognition performance of fixed-point software using floating-point trained HMMs.
The compressing nature of the logarithm and the smoothing nature of linear
discriminant analysis (LDA) help to reduce numeric differences. In addition, the
complexity is not high.

For the development of a customised VLSI IC for an embedded isolated word
recognition system, a purely software level optimisation method was proposed in
(Lam et al. 2003) in a way to optimise for chip area. All floating-point operations are
replaced by fixed-point routine calls (for arithmetic operations) or look-up table
implementations (for cosine and logarithm functions). For that, a C++ class named
Fixed was developed. They first find a minimum word length implementation for
each operand and then they optimise for a minimum circuit area of arithmetic
operations by further fraction size optimisation. After optimisation of fraction size
in the whole isolated word recogniser, the fraction size of LPC processor, VQ and
HMM decoder is optimised subsequently. Minimisation of fraction size for LPC
processor showed the most significant effect. Not just the same accuracy can be
achieved by fixed-point. For the same speech recognition accuracy as with floating-
point, they even show a circuit area improvement of 29.7% with fixed-point arith-
metic, with training in floating-point.

Direct hardware level optimisation is achieved by the introduction of a low
complexity custom arithmetic architecture based on high-speed lookup tables (Li
et al. 2006). At the price of a small additional 59 kB of lookup table memory, a
speed improvement of at least three times is expected.

Chapter 12 reviews methods for fixed-point implementation of ASR systems,
focusing on introduction of a practical approach to the implementation of the
frame-synchronous beam search Viterbi decoder, N-grams language models, HMM
likelihood computation and Melcepstrum front-end. The fixed-point recogniser is
shown as accurate as the floating-point recogniser in several experiments with
different types of acoustic front-ends and HMM’s. This allows highly accurate
LVCSR algorithms with the same performance on the device as on the server.

1.5.4 Optimisation

The complexity constraint in consumer devices is in fact a major challenge for signal
processing algorithm design. Section 1.2.2 presented the resources and constraints
on mobile devices. As pointed out, signal processing design has to be such to cope
with the effects of reduced computing power (CPU speed) and limited amount of
memory. Next we address some optimisation techniques, which aim to overcome
these difficulties in order to get satisfactory performance of embedded speech recog-
nition and optimise memory usage.
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For small vocabulary ASR applications most resources concerning memory and
computing power are needed for HMM parameter storage and for calculating the
emission probabilities. VSR (Varga et al. 2002) has to be able to run on a platform
with 50 MHz processing power and a memory of less than 64 kB. VSR uses the
properties of the LDA, discriminative training and HMM parameter coding. Dis-
criminative training is used to achieve high recognition rate with a moderate amount
of Gaussians. Here a performance measure like the minimum word error (MWE) is
applied for training. After Viterbi based maximum likelihood training, 10 iterations
of MWE based training were performed. HMM parameters are coded using Sub-
space Distribution Clustering HMMs (SDCHMMs) where the Gaussians are re-
presented by pointers to a codebook. The VSR uses Continuous Densities HMMs
(CDHMMs). The WERs show that discriminative training is most effective for small
model sizes: In case of single density modelling the error rate on the test set is
almost reduced by 50%. The experiments show that the use of discriminative
training allows high performance HMMs with limited costs in terms of memory. The
emission computation is highly processing power consuming. The SDCHMM allows
computing emission probabilities very effectively. For each frame and every code-
word the stream likelihoods can be pre-calculated once. The log likelihood is then
computed as the sum of the pre-calculated stream log likelihoods. The results have
shown that it is possible to reduce the memory requirement of HMM-parameters by
a factor of three.

In Chap. 10, speech recognition optimisation techniques are presented that are
especially suitable for ESR. Focus is on front-end, feature extraction and search.
Specific algorithmic improvements are discussed while the best solution can be
achieved by a dedicated combination of particular improvements depending on plat-
form and speech recognition task.

The treatment of Chap. 11 focuses on long-term memory requirements and on
acoustic model compression in which redundancy in data and parameter represen-
tation accuracy limits are exploited. Considering data redundancies specific to HMM
based acoustic models, parameter tying and state or density clustering algorithms are
presented with cases like semi-continuous HMMs (SCHMMs) and SDCHMMs.
Regarding parameter representation a simple scalar quantised representation is
shown for the case of quantised HMMs (qHMMs).

1.5.5 Robustness

Noise robustness is an important requirement since the acoustic environment in
mobile usage is quite different from laboratory: Adverse acoustic environment is
common when using the device in a car or on the street. Although enrichment of
application portfolio would require so, direct transfer of speech recognition solutions
designed for high-resourced platforms like PCs to handheld consumer products is
usually not possible—dictation is still too complex even for relatively high-powered
consumer appliances and the acoustic environment in mobile usage, especially
hands-free, is much more difficult.

Experience with early speaker dependent digit dialling shows a big difference
between the attractiveness of say keyword spotting in the lab as compared to using
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speaker dependent name dialling on the phone in a car or on the street. That is true
both from handling point of view (need for training in speaker dependent case,
comfort with keyword spotting) and from an accuracy point of view (ideal in lab,
impaired in real mobile environment).

Robustness means a set of multiple requirements: robustness against adverse
acoustic conditions, background noise, Lombard reflex, gender, different pronun-
ciations, non-native talker, spontaneous speech. The front-end has to adapt to these
conditions and also so-called robust HMM models are of advantage. In VSR (Varga
et al. 2002), a maximum likelihood channel adaptation is used in feature extraction
and a suitable database representing mobile usage is applied for training resulting
in robust HMM models. VSR includes a spectral attenuation and a frame dropping
algorithm. The spectral attenuation algorithms regard noise as an additive noise
superimposed on undisturbed speech where the noise is regarded as statistically
independent of the undisturbed speech. The goal of the algorithms is to create a time-
varying filter function based on estimates of the short-term power spectrum of noise
to attenuate the noisy spectrum. A Wiener filter is calculated for every spectral bin as
the attenuation function in the first stage called short-time spectral attenuation. In the
second stage of this basic spectral subtraction scheme, the noise power spectrum is
estimated by the minima of the smoothed power spectrum within a moving interval.
The advantage is that no explicit detection of non-speech segments is needed. For
every frequency bin the noise estimate is subtracted from the noisy speech signal
where flooring is employed.

1.6 Discussion

This chapter presented an extensive overview on speech recognition on mobile
devices and over communication networks.

We analyzed the system architecture and requirements of speech recognition,
the resource situation and constraints on various targets like mobile devices and
networks, and presented the characteristics of three main solutions in detail: network
speech recognition, distributed speech recognition and embedded speech recog-
nition. These are different solutions addressing how to provide speech recognition
based applications when using them on a mobile device.

Improved noise robustness and recognition accuracy in conjunction with
algorithm complexity reduction for low-resourced consumer platforms represent the
major challenge of embedding speech recognition in mobile devices. Increasing
resources and optimisation techniques will certainly facilitate the deployment of
embedded systems although resources will remain scarce for all consumer devices in
near future for high-complexity applications like dictation systems. For such applica-
tions, use of distributed architecture is promising since this structure efficiently
divides the system into two parts with a robust data link between them. Moreover,
use of network based speech recognition is an excellent solution as well for
sophisticated applications like large-vocabulary continuous dictation because high-
quality speech transmission can be achieved from mobile phone to server due to
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high-quality speech codecs that are being used in the network for speech trans-
mission. That is especially true if wideband (16 kHz sampling) speech will become
widely deployed. Still the drawback of effect of packet losses remains, which will
imply the need for implementation of effective packet loss concealment algorithms.
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Network Speech Recognition
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Speech Coding and Packet Loss Effects on Speech
and Speaker Recognition

Laurent Besacier

Abstract. This chapter is related to the speech coding and packet loss problems that occur in
network speech recognition where speech is transmitted (and most of the time coded) from a
client terminal to a recognition server. The first part describes some commonly used speech
coding standards and presents a packet loss model useful to evaluate different channel degra-
dation conditions in a controlled fashion. The second part evaluates the influence of different
speech and audio codecs on the performance of a continuous speech recognition engine. It is
shown that MPEG transcoding degrades the speech recognition performance for low bit rates
whereas performance remains acceptable for specialized speech coders like G723. The same
system is also evaluated for different simulated and real packet loss conditions; in that case,
the significant degradation of the automatic speech recognition (ASR) performance is ana-
lyzed. The third part presents an overview of joint compression and packet loss effects on
speech biometrics. Conversely to the ASR task, it is experimentally demonstrated that the
adverse effects of packet loss alone are negligible, while the encoding of speech, particularly
at a low bit rate, coupled with packet loss, can reduce the speaker recognition accuracy con-
siderably. The fourth part discusses these experimental observations and refers to robustness
approaches.

2.1 Introduction

Today in the context of industry and telecommunication, speech technologies are
ever increasingly used for several tasks, including speech and speaker recognition.
In this framework, a widely used architecture is client-server based where a distant
speech or speaker recognition server is remotely accessed by a client. Compression
of the speech signal is then generally necessary to reduce transmission delays and to
respect bandwidth constraints. Many problems can appear with this kind of architec-
ture, particularly when the transmission is made via the internet or wireless net-
works:

« First, transcoding (the process of coding and decoding) modifies the spectral
characteristics of the speech signal, and thereby can adversely affect the system
performance;
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* Secondly, transmission errors can occur on the transmission line: thus, data
packets can be lost (for example with UDP transport protocols over the Internet
which do not implement any error recovery);

* Finally, the time response of the system is increased by coding, transmission
and possible error recovery processes. This delay (termed “jitter” as used in
the domain of computer networks) can be potentially very disturbing. For ex-
ample, in some applications (e.g. man-machine dialogue), speech recognition
is only one subsystem amongst a number of other subsystems. In such cases,
the effective operation of the whole system depends heavily on the response
time of the individual subsystems.

This chapter presents an overview of the speech coding and packet loss problems
that occur in network speech recognition. Section 2.2 describes some commonly used
speech coding standards and presents a packet loss model useful to evaluate diffe-
rent channel degradation conditions in a controlled fashion. Section 2.3 evaluates
the influence of different speech and audio codecs on the performance of a continuous
speech recognition engine. A common ASR system is also evaluated for different
simulated and real packet loss conditions. Section 2.4 presents an overview of joint
compression and packet loss effects on speech biometrics. Section 2.5 discusses
these experimental observations and concludes this chapter.

This chapter is not dedicated to the proposal of robust methods to speech com-
pression and packet loss. While these issues have been addressed by the author of
this chapter, for instance, in (Mayorga et al. 2003), they will be deeply discussed
in other chapters of this book (notably Chaps. 3 and 4).

2.2 Sources of Degradation in Network Speech Recognition

2.2.1 Speech and Audio Coding Standards

Different human-machine interfaces use speech recognition technology. For in-
stance, voice servers (used to obtain information via the telephone) are more and
more developed. Nowadays, access to a voice server is not only made through the
conventional telephone network, but voice can also be transmitted through wireless
networks (with mobile phones or mobile devices) or through /P networks (through
H323 videoconferencing standard for instance). Nowadays, the number of standard
and proprietary coders developed to compress speech and audio data has been
quickly increased. It is thus impossible to present a detailed view of all of them in
this chapter. For more details on speech coding standards and algorithms, the inter-
ested reader may refer to (Goldberg and Riek 2000) or to international organizations
websites like ITU (www.itu.int) or ETSI (www.etsi.org).

As a consequence, we decided to present, in this section, only the coders that are
used in the experiments further described in this chapter. Theses coders are neverthe-
less widely used in different applications: GSM (used in European mobile wireless



Speech Coding and Packet Loss Effects on Speech and Speaker Recognition 29

communication), G711 and G723 (used in some VoIP protocols) and MPEG (used
for audio compression).

2.2.1.1 GSM (Global System for Mobile Communications) Coders

There exist different GSM speech coders; among them, we find the full rate, half rate
and enhanced full rate coders. Their corresponding European telecommunications
standards are the GSM 06.10, GSM 06.20 and GSM 06.60, respectively. These cod-
ers work on a 13-bit uniform PCM speech input signal, sampled at 8 kHz. The input
is processed on a frame-by-frame basis, with a frame size of 20 ms (160 samples). A
brief description of these coders follows.

Full Rate (FR) Speech Coder

The FR coder was standardized in 1987. This coder belongs to the class of Regular
Pulse Excitation-Long Term Prediction—Ilinear predictive (RPE-LTP) coders. In the
encoder part, a frame of 160 speech samples is encoded as a block of 260 bits,
leading to a bit rate of 13 kbps. The decoder maps the encoded blocks of 260 bits
to output blocks of 160 reconstructed speech samples. The GSM full rate channel
supports 22.8 kbps. Thus, the remaining 9.8 kbps are used for error protection.
The FR coder is described in GSM 06.10 down to the bit level, enabling its verifi-
cation by means of a set of digital test sequences which are also given in GSM
06.10. A public domain bit exact C-code implementation of this coder is available
(http://kbs.cs.tu-berlin.de/~jutta/toast.html).

Half Rate (HR) Speech Coder

The HR coder standard was established to cope with the increasing number of sub-
scribers. This coder is a 5.6 kbps VSELP (Vector Sum Excited Linear Prediction)
coder from Motorola (Gerson and Jasiuk 1993). In order to double the capacity of
the GSM cellular system, the half rate channel supports 11.4 kbps. Therefore, 5.8
kbps are used for error protection. The measured output speech quality for the HR
coder is comparable to the quality of the FR coder in all tested conditions, except for
tandem and background noise conditions. The normative GSM 06.06 gives the bit
exact ANSI-C code for this algorithm, while GSM 06.07 gives a set of digital test
sequences for compliance verification.

Enhanced Full Rate (EFR) Speech Coder

The EFR coder was standardized later. This coder is intended for utilization in the
full rate channel, and it provides a substantial improvement in quality compared
to the FR coder (Jarvinen 1997). The EFR coder uses 12.2 kbps for speech coding
and 10.6 kbps for error protection. The speech coding scheme is based on Algebraic
Code Excited Linear Prediction (ACELP). The bit exact ANSI-C code for the EFR
coder is given in GSM 06.53 and the verification test sequences are given in GSM 06.54.
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2.2.1.2 G711 and G723.1 Coders

Nowadays some popular speech coders in voice transmission over /P (VolP) are:
G.723.1, G.729, G.728, G.726/7 and G.711. This set of coders is also used in video
transmission and is part of the standard H323. There are several software packages
for videoconferencing which can also be used for voice transmission on the Internet,
for example Microsoft’s NetMeeting uses H323. Recently, some VoIP softwares like
Skype, for instance, use private standards. We will use in our experiments the H323
audio codec which has the lowest bit rate: G723.1 (6.4 and 5.3 kbits/s), and the one
with the highest bitrate: G711 (64 kbits/s: 8 kHz, 8 bits) while we also transmitted
PCM speech without any compression.

While G711 coder is very low complexity (it basically corresponds to a speech
stream downsampled to 8 kHz with 8 bits per sample only), G723 is from the
ACELP family (ETSI Consortium 1998). The Mean Opinion Score (MOS) which
measures the perceptual quality of a coder is 3.9 for G723.1 whereas it is above 4 for
G711.

2.2.1.3 MPEG Audio Coders

Unlike GSM and G7XX which are specific speech coders, MPEG coders can com-
press any audio signal. In fact, MPEG audio coding is generally not used for trans-
mission of speech data but for compression of audiovisual data (TV programs for
instance). Another application of speech recognition is the transcription of broadcast
news and TV programs or films for archiving and retrieval. It is thus interesting to
test the influence of MPEG audio coding algorithms on speech recognition perform-
ance. Moreover, MPEGI audio coding supports a variable bit rate (from 8 to
64 kbits/s), which allows us to test speech recognition on more and more com-
pressed speech. For the experiments on MPEG transcoded speech, we used a
PCX11+ specialized board for layers 1, 2 and 3 of MPEG I and for different bit
rates. The perceptual quality of these coders is similar to the one of ITU coders with
similar bit rates. MPEG4 implements a specific speech coder that can operate below
2 kbits/s but it is not considered in our experiments.

2.2.2 Packet Loss

While “live transmission” of a complete database over the network seems to be the
best approach to evaluate packet loss and ASR degradation in real conditions (Metze
et al. 2001), it is most of the time difficult to obtain a large range of degradation
conditions with this method, which also needs numerous and time consuming con-
nections between distant sites. Another possibility is to simulate how the packets are

lost on the network. In the experiments further reported in this chapter, we will use
both real and simulated approaches which are more deeply described in the follow-
ing sections.
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2.2.2.1 Packet Loss Simulation: The Gilbert Model

If we suppose that the speech packets are transmitted over the Internet, the process of
audio packet loss can be characterized with the Gilbert model (Yajnik et al. 1999) of
two states, as we can see in Fig. 2.1. One of the states (state 1) represents a packet
loss; the other state (state 0) represents the case where packets are correctly transmit-
ted. In this model p is the probability of going from state 0 to state 1, and g the prob-
ability of going from state 1 to state 0. This model is then characterized by two
parameters, p and ¢, which indicate the probability of transition from either state.
The different values of p and g define different packet loss conditions that may
occur on the Internet. The probability that at least n consecutive packets are lost is
p(l—q)" ' If (I —q) > p, the probability of losing a packet is greater after having
already lost one packet than after having successfully received a packet; which is
generally the case on Internet data transmission where packet losses occur in bursts.
Note that p + g is not necessarily equal to 1. When p and g parameters are fixed, the
mean number of consecutive packets lost depends on p/q. The higher the quantity is,
the stronger the degradation should be. For our experiments, this model was applied
to obtain five different degraded versions of an existing database (Table 2.1).

Table 2.1 Different packet loss conditions

Condition 1 2 3 4 5

p 0.10 0.05 0.07 0.20 0.25

q 0.70 0.85 0.67 0.50 0.40

r/q 0.14 0.06 0.10 0.4 0.62
P

HeONEN O o)t
no loss packet loss

q

Fig. 2.1 Gilbert Model

2.2.2.2 Packet Loss in Real Transmission (Over IP)

In order to observe what happens in real transmissions, the speech signals of the
same database can be passed through different coders and different network conditions
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on the Internet as well. For our experiments, we decided to play and record our test
database at both points of an /P connection with NetMeeting™ software. We did this
by playing our speech database into a computer setup for videoconferencing. We
initiated a transatlantic connection with videoconferencing software but we replaced
the microphone (on the emitting site) by a computer playing the test database. These
connections were established at different times of the day and at different days of the
week in order to investigate a large variety of real-life network conditions. Finally,
the packet loss rate (always found to be very high for the transatlantic connections)
was measured for each codec and each connection, and the speech or speaker recog-
nition performance was evaluated (results will be presented in Sects. 3 and 4 of this
chapter).

2.3 Effects on the Automatic Speech Recognition Task

2.3.1 Experimental Setup

Our continuous French speech recognition system uses the Janus-III toolkit from
CMU (Finke et al. 1997). The context dependent acoustic model (750 CD code-
books, 16 Gaussians each) was learned on a corpus, which contains 12 h of continu-
ous speech of 72 speakers extracted from Bref 80 database (Lamel et al. 1991). The
system uses 24-dimensional LDA features obtained from 43-dimensional acoustic
vectors (13 MFCC, 13 AMFCC, 13 AAMFCC, E, AE, AAE, zero-crossing parame-
ter) and extracted every 10 ms. The vocabulary contains nearly 5,500 phonetic vari-
ants of 2,900 distinct words; it is specific to the tourist reservation and information
domain. The trigram language model that we used for our experimentation was com-
puted using an interpolation between two LMs trained on task specific docu-
ments and on more general documents gathered from the Internet, as described in
(Vaufreydaz et al. 1999).

We conducted a series of recognition experiments with 120-recorded sentences
focused on reservation and tourist information task. The database was duplicated
into several versions, according to the degradation methodology described in Sect. 2
(database either transcoded or passed through a packet loss process).

2.3.2 Degradation Due to Simulated Packet Loss

The first experiment was performed to show the influence of the degradation condi-
tions (described in Table 2.1) of the Gilbert model, on speech recognition perform-
ance for different audio packet sizes (10, 20, 30 or 60 ms). In Fig. 2.2, the results for
each packet size and for each condition are shown (for the degradation, we assumed
that PCM wave signals were transmitted on the simulated network, without any
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codec applied). These word error rate (WER) measurements were done without
applying any reconstruction. It can be observed that the WER tends to be relatively
independent of the packet size (it only increases very slightly when the packet size
increases). From this figure, we can observe that the most severe condition is the
condition 5, followed by the condition 4, then condition 3 and 1, and the least severe
one is the condition 2. As expected, the performance is correlated with the p/g ratio
(Table 2.1). This figure also shows that the ASR degradation can be very significant
in strong adverse conditions (high packet loss rate).
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Fig. 2.2 Degradation by packet size and by condition (baseline performance without deg-
radation is 14.4% WER) (From Mayorga and Besacier 2003, © 2003 IEEE)

2.3.3 Degradation with Real Transmissions

A second experiment was performed to show the influence of the degradation due to
real transmissions over /P, transmitting different audio bitstreams: G723 (low bit
rate codec), G711 (high bit rate codec) and PCM (no codec). The speech recognition
performance was assessed and we show a summary of the results in Table 2.2. For
each series of experiments (several connections were performed for each type
of audio bitstream), the mean packet loss rate (PLR), the mean word error rate
(WER) and the correlation coefficients between both series of PLR and WER were
measured.

In real VoIP conditions, there are three additional problems: (1) noise due to our
experimental transmission protocol (we noticed that playing our speech database
into a computer setup for videoconferencing, as explained in Sect. 2.2.2.2, sometimes
introduced signal degradation which is not quantified here), degradation due to (2)
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Table 2.2 Results of WER and Packet Loss Rate (PLR) in real VoIP conditions (10 transmis-
sions/audio bitstream); baseline = 14.4% WER

Audio bitstream G723 G711 PCM
Mean PLR 31.8 29.8 30.5
Mean WER 81.8 62.9 53.5
Correlationcoeff.

(WER,PLR) 0.28 0.49 0.64

speech compression, and (3) lost packets. Comparable average PLR’s are found for
the three bitstreams: 31.8% for G723, 29.8% for G711 and 30.5% for PCM, which
means that the same quantity of signal is lost on average. But, as we can see in Table
2.2, the highest WER is for G723, with an average of 81.8%, then 62.9% for G711,
and 53.5% for PCM. Thus, for a same packet loss rate, the higher the compression
level is, the higher the value of WER will be. This difference may be due to the
effect of the compression itself, but also to the fact that in the case of real transmis-
sions with G723 (the highest compression degree), one packet lost represents a big-
ger quantity of consecutive speech information lost, compared to the case where
G711 codec or no codec (PCM) is used. In other words, lost information occurs
dramatically as long bursts for G723 whereas it is more spread for G711 and PCM
data transmitted. If we compare this with results in Fig. 2.2, it may be found surpris-
ing that packet size does not matter much in the simulated case: one explanation of
this might be that, in this case, the packet size only varied from 10 to 60 ms (factor 6
maximum) whereas the ratio between PCM (256 kbits/s) and G723 (5.3 kbits/s)
packets is much more important (50). The correlation between WER and PLR was
also measured and the results show that the real conditions do not really lead to the
same ideal and predictable results obtained in simulated conditions. In the simulated
case, a correlation value of 0.98 was obtained whereas in the real conditions, the
correlation between WER and PLR is smaller (0.64 for PCM instead of 0.98) and
tends to decrease with additional factors like speech compression (0.28 and 0.49 for
G711 and G723 respectively).

2.3.4 Degradation Due to Speech and Audio Codecs

The results are presented in Table 2.3 where the MPEG codecs were all applied on
16 kHz speech signals while the test database was downsampled to 8 kHz before the
use of G711 and G723 codecs (which are generally applied on telephonic signals).
Consequently, the acoustic model used in the last two lines of this table, was also
trained on a downsampled version of our training database.

Results in Table 2.3 show that above 32 kbits/s bit rate, no significant degrada-
tion of speech recognition performance is observed, whereas below this threshold,
performance starts to decrease dramatically. Moreover, performance is better for
MPEG layer 3 than for MPEG layer 2 which is again better than MPEG layer 1.
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These results are in correspondence with the known perceptual speech quality of the
different MPEG layers. The results of this table also show that G711 and G723
transcoding alone do not significantly degrade the speech recognition performance.
Moreover, we do not see much difference between G711 and G723 performance
whereas G723 is a very low bit rate coder (5.3 kbits/s) compared to G711 coder
(64 kbits/s). This result and the result from the previous section lead us to think that
packet loss is certainly the biggest source of degradation for ASR whereas speech
compression, if not too drastic, does not have such a big influence on the perform-
ance.

Table 2.3 Effect of different audio and speech codecs on speech recognition performance
(same test database” transcoded with different codecs) (From Besacier 2001 © 2001 IEEE)

Coder for test Word error rate
None (16 kHz sig.) 7.7%
MPEG Lay3 64 kbits/s 7.8%
MPEG Lay3 32 kbits/s 7.9%
MPEG Lay3 24 kbits/s 8.4%
MPEG Lay3 16 kbits/s 14.6%
MPEG Lay3 8 kbits/s 66.2%
MPEG Lay?2 64 kbits/s 7.5%
MPEG Lay?2 32 kbits/s 7.7%
MPEG Lay?2 24 kbits/s 29.4%
MPEG Lay?2 16 kbits/s 41.7%
MPEG Lay?2 8 kbits/s 93.8%
MPEG Layl 32 kbits/s 27.0%
G711 (model 8 kHz) 8.1%
G723 (model 8 kHz) 8.8%

*But different LM used compared to previous experiments which explains the
different baseline performance.

2.4 Effect for the Automatic Speaker Verification Task

This part presents the same methodology for evaluating the speaker verification
performance over compressed speech and packet loss. The idea is to duplicate an
existing and well-known database used for speaker verification by passing its speech
signals through different coders and different network conditions representative of
what can occur over the Internet or wireless networks. First section is dedicated to
the effect of joint speech compression and packet loss over /P networks on
speaker verification while the second section evaluates the effect of GSM speech
coding on speaker verification (SV) performance.
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2.4.1 Speaker Verification Experiments Over Compressed Speech
and Packet Loss

2.4.1.1 Experimental Setup

In acquiring the XM2VTS database (Messer et al. 1999), 295 volunteers from the
University of Surrey visited a recording studio four times at approximately one
month intervals. On each visit (session) two recordings (shots) were made. The first
shot consisted of speech while the second consisted of rotating head movements. The
experiments described in this chapter were made on the speech part of this database
where the subjects were asked to read three sentences twice. The three sentences
remained the same throughout all four recording sessions and a total of 7,080 speech
files were made available on 4 CD-ROMs. The audio, which had originally been
stored in mono, 16 bit, 32 kHz, PCM wave files, was down-sampled to 8 kHz. This
is the input sampling frequency required in the speech codecs considered in this
study. As previously, we used in our experiments the codec which has the lowest
bit rate: G723.1 (6.4 and 5.3 kbps), and the one with the highest bit rate: G711
(64 kbps).

The speaker verification system used here is based on the ELISA framework
(The ELISA Consortium 2000; Magrin-Chagnolleau et al. 2001). It is a GMM-based
system including audio parameterization as well as score normalization techniques
for speaker verification.

For the purpose of this investigation, the Lausanne protocol (configuration 2) is
adopted. This has already been defined for the XM2VTS database (Messer et al.
1999). There are 199 clients in the XM2VTS DB. The training of the client models is
carried out using full sessionl and full session2 of the clients part of XM2VTS. 398
client test accesses are obtained using full session4 (x2 shots) of the clients part.
111,440 impostor accesses are obtained using the impostor part of the database (70
impostors x 4 sessions x 2 shots x 199 clients = 111,440 impostor accesses). The 25
evaluation impostors of XM2VTS are used to develop a World Model. The text
independent speaker verification experiments are conducted in matched conditions
(same training/test conditions).

The speaker verification system on XM2VTS is similar to the one presented in
(Meignier et al. 2002). The speaker verification system uses 32 parameters (16
LFCC + 16 DeltaLFCC). Silence frame removal is applied as well as Cepstral Mean
Subtraction. For the world model, 128 Gaussian component GMM was trained using
Switchboard II phase I data (8 kHz landline telephone) and then adapted [MAP
(Gauvain and Lee 1994), mean only] on XM2VTS data (25 evaluation impostors
set). The client models are 128 Gaussian component GMM developed by adapting
(MAP, mean only) the previous world model. Decision logic is based on using the
conventional log likelihood ratio (LLR). No LLR normalization is applied here
before the decision process.
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2.4.1.2 Results

The speaker verification performance with the simulated degraded versions of
XM2VTS is presented in Table 2.4. Based on these results, it can be concluded that
the degradation due to packet loss is negligible regarding the one due to compression
for text-independent speaker verification, even with bad network conditions. Com-
paring these results with those for speech recognition detailed in Sect. 3, it can be
said that the speaker verification performance is far less sensitive to packet loss. It is
probably due to the fact that the modeling is GMM which considers every frame as
an independent entity. Then GMMs are not sensitive to temporal breakdown induced
by packet loss and the only consequence is a reduction of the amount of signal data
available for taking a decision. To our feeling, conclusions would be very different
in a text-dependent mode where temporal information is important.

Table 2.4 EER (Equal Error Rate) of speaker verification results using degraded XM2VTS

No packet loss Clean G711 G723
(128kbits/s) (64kbits/s) (5.3kbits/s)
0.25% 0.25% 2.68%
Average Clean G711 G723
Network cond. (128kbits/s) (64kbits/s) (5.3kbits/s)
p=0.1;q=0.7 0.25% 0.25% 6.28%
Bad Clean G711 G723
Network cond. (128kbits/s) (64kbits/s) (5.3kbits/s)
p=0.25; q=0.4 0.50% 0.75% 9%

On the other hand, Table 2.4 shows that the speaker verification performance is
adversely affected when the speech material is encoded at low bit rates (e.g. using
G723.1).

2.4.2 Speaker Verification Experiments Over GSM Compressed Speech

Table 2.5 shows speaker verification experiments reported in (Besacier et al. 2003)
where the used database (TIMIT in this paper) was downsampled from 16 kHz to
8 kHz and transcoded using the three GSM speech coders. All the experiments were
carried out under matching conditions (i.e. training and testing are both made using
the same database) and a GMM-based speaker verification system was used. For
more details on this experiment see (Besacier et al. 2003).

The results of Table 2.5 show a significant performance degradation when using
GSM transcoded databases, compared to the normal and downsampled versions of
TIMIT. The results obtained are in correspondence with the perceptual speech qual-
ity of each coder. That is, the higher the speech quality is, the higher the measured
recognition performance is.
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Table 2.5 EER of speaker verification results for original and GSM transcoded speech

Original GSM transcoded
16 kHz 8 kHz FR HR EFR
1.1% 5.1% 73%  7.8% 6.6%

2.5 Conclusion

This chapter presented an overview on the effect of speech coding and packet loss on
two different tasks: automatic speech recognition and speaker verification. Concern-
ing ASR, the effect of packet loss was first assessed. For this, two scenarios were
considered: the simulation of lost audio packets, and the real audio transmission
through /P networks. In the simulation case, a strong correlation between word error
rate and packet loss ratio was obtained. This is less clear in real conditions where
additional problems like speech compression may increase the degradation. In both
cases, it was shown that packet loss can hurt the ASR performance very signifi-
cantly. In a second experiment, it was shown, on the contrary, that the effect of
transcoding alone is not a big issue for ASR since we have observed that the speech
recognition performance remains acceptable for specialized speech coders like G723
or reasonable bit rates of MPEG (above 24 kbits/s). To treat the critical degradations
due to packet loss, packet recovering strategies can be used, like in (Mayorga et al.
2003). Some chapters of this book are more specifically dedicated to this issue: com-
pensation for channel errors (Chaps. 3 and 4), distributed speech recognition archi-
tectures (Chap. 5), error recovery by channel coding (Chap. 8).

Concerning speech biometrics, the experiments have shown that the degradation
due to packet loss is negligible regarding the one due to compression for text inde-
pendent voice person authentication. It is probably due to the GMM models used
which consider every frame as an independent entity. This is in contrast with the
automatic speech recognition experiments where packet loss was found to reduce the
accuracy significantly. However, a degradation of the speaker verification perform-
ance is observed when low bit-rate speech compression is applied to the speech
signal (GSM and G723.1 codecs). In this case, packet loss can increase the degrada-
tion.
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Speech Recognition Over Mobile Networks

Hong Kook Kim and Richard C. Rose

Abstract. This chapter addresses issues associated with automatic speech recognition (ASR)
over mobile networks, and introduces several techniques for improving speech recognition
performance. One of these issues is the performance degradation of ASR over mobile net-
works that results from distortions produced by speech coding algorithms employed in mobile
communication systems, transmission errors occurring over mobile telephone channels, and
ambient background noise that can be particularly severe in mobile domains. In particular,
speech coding algorithms have difficulty in modeling speech in ambient noise environments.
To overcome this problem, noise reduction techniques can be integrated into speech coding
algorithms to improve reconstructed speech quality under ambient noise conditions, or speech
coding parameters can be made more robust with respect to ambient noise. As an alternative
to mitigating the effects of speech coding distortions in the received speech signal, a bit-
stream-based framework has been proposed. In this framework, the direct transformation of
speech coding parameters to speech recognition parameters is performed as a means of im-
proving ASR performance. Furthermore, it is suggested that the receiver-side enhancement of
speech coding parameters can be performed using either an adaptation algorithm or model
compensation. Finally, techniques for reducing the effects of channel errors are also discussed
in this chapter. These techniques include frame erasure concealment for ASR, soft-decoding,
and missing feature theory-based ASR decoding.

3.1 Introduction

Interest in voice-enabled services over mobile networks has created a demand for
more natural human-machine interfaces (Rabiner 1997; Cox et al. 2000; Lee and Lee
2001; Nakano 2001), which has in turn placed increased demands on the perform-
ance of automatic speech recognition (ASR) technology. It is interesting that the
evolution of mobile networks has fostered increased interest in ASR research (Chang
2000; Mohan 2001). This is because the performance of ASR systems over mobile
networks is degraded by factors that are in general not important in more traditional
ASR deployments (Euler and Zinke 1994; Lilly and Paliwal 1996; Milner and Semnani
2000). These factors can be classified as device-oriented noise and network-oriented
noise.

Mobile communication technologies provide access to communications networks
anytime, anywhere, and from any device. Under this framework, communications
devices like cell phones and PDAs are becoming increasingly smaller to support
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various levels of mobility. Furthermore, different combinations of microphone tech-
nologies including close talking device mounted microphones, wired and wireless
headsets, and device mounted far-field microphones may be used with a given device
depending on the user’s needs. All of these issues can result in a large variety of
acoustic environments as compared to what might be expected in the case of a plain
old telephony service (POTS) phone. For example, a handheld device can be consid-
ered as a distance-talking microphone, where the distance might be continually
changing and thus background noise could be characterized as being time-varying
and non-stationary. The issues of ASR under such a device-oriented noise condition
have been discussed in the context of feature compensation and acoustic model com-
bination under a background noise condition (Dufour et al. 1996; Rose et al. 2001)
and acoustic echo cancellation (Barcaroli et al. 2005), distance speech recognition,
and multiple-microphone speech recognition (Wang et al. 2005).

Network-oriented sources of ASR performance degradation include distortion
from low-bit-rate speech coders employed in the networks and the distortions arising
from transmission errors occurring over the associated communication channels.
Even though a state-of-the-art speech coder can compress speech signals with near
transparent quality from a perceptual point of view, the performance of an ASR
system using the decoded speech can degrade relative to the performance obtained
for the original speech (Euler and Zinke 1994; Lilly and Paliwal 1996). One of the
major reasons is that the parameterization of speech for speech coding is different
from that for speech recognition. For example, speech coding is mainly based on a
speech production model, which represents the spectral envelope of speech signals
using linear predictive coding (LPC) coefficients. However, feature representations
used for speech recognition like, for example, Mel-frequency cepstral coefficients
(MFCC), are usually extracted on the basis of human perception. In addition to
speech coding distortion, mobile networks can introduce a range of transmission
errors that impact speech quality at the speech decoder (Choi et al. 1999). Transmis-
sion errors are generally represented using measures like the carrier-to-interference
(C/) ratio or the frame erasure rate.

There are three general configurations used for extracting feature parameters for
ASR over mobile networks; the decoded speech-based approach, the bitstream-based
approach, and the distributed speech recognition (DSR) approach (Gallardo-Antolin
et al. 1998; Milner and Semnani 2000; Kim and Cox 2001).

The decoded speech-based approach involves extracting speech recognition
parameters from the decoded speech after transmission over the network. This corre-
sponds to conventional ASR performed without explicitly accounting for the com-
munication network.

The bitstream-based approach obtains speech recognition parameters for ASR
directly from the transmitted bitstream of the speech coder. It exploits the decompo-
sition of speech signals into spectral envelope and excitation components that is
performed by the speech coder. The two components are quantized separately where
the spectral envelope is represented as an all-pole model using LPC coefficients.
Deriving ASR feature parameters directly from the bitstream is primarily motivated
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by the fact that ASR feature parameters are based on the speech spectral envelope
and not on the excitation. Moreover, the distortion that is introduced by convolution
of the spectral envelope with the quantized excitation signal while reconstructing
speech in the decoder represents another source of performance degradation in ASR.
Bitstream approaches avoid this source of degradation. It will be shown in this chap-
ter that a bitstream based approach applies a feature transformation directly to the
LPC-based spectral representation derived from the transmitted bitstream.

The DSR approach involves extracting, quantizing, and channel encoding the
speech recognition parameters at the client before transmitting the channel encoded
feature parameters over the mobile network. Thus, ASR is performed at the server
using features that were quantized, encoded, and transmitted over a protected data
channel. The general framework for DSR will be discussed in Chap. 5. For all three
of the above configurations, approaches for compensating with respect to sources of
spectral distortion and channel distortion can be applied both in the ASR feature
space and in the acoustic model domain.

In this chapter, we focus on the techniques that can be applied to the bitstream-
based approach and to overcoming network-oriented and device-oriented sources of
ASR performance degradation. Following this introduction, Sect. 3.2 describes the
techniques in more depth. Section 3.3 explains the bitstream-based approaches in
detail. The transformation of spectral parameters obtained from the bitstream into
MFCC-like parameters for the purpose of improving ASR performance is discussed
in Sect. 3.4. We introduce compensation techniques for cellular channels, speech
coding distortion, and channel errors in Sect. 3.5. Summary and conclusion are pro-
vided in Sect. 3.6.

3.2 Techniques for Improving ASR Performance Over Mobile
Networks

This section addresses the general scenario of ASR over mobile networks. Figure 3.1
shows a series of processing blocks applicable to ASR over mobile networks. There
are two processing paths: one is for the decoded speech-based approach and the other
is for the bitstream-based approach. The processing blocks dedicated to the decoded
speech-based approach include the speech decoding algorithm itself, enhancing the
quality of the decoded speech in the signal domain, and extracting ASR features.
Processing blocks such as spectral feature decoding and feature transformation from
speech coding features to ASR features are used for the bitstream-based approach. In
addition to these processing blocks, common processing blocks include: 1) frame
loss concealment, 2) compensating for ASR features in communication channels, 3)
adapting acoustic models to compensate for spectral distortion or channel errors, and
4) Viterbi decoding incorporating ASR decoder-based concealment.

It is assumed that all robust ASR techniques discussed in this chapter can be applied
to the cases where ASR parameters are extracted either from speech reconstructed by
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Fig. 3.1 Scenarios for the implementation of robust feature analysis and feature and model com-
pensation for ASR over mobile networks

the decoder or directly from the transmitted bitstream. Previously-developed tech-
niques for robust ASR in the conventional ASR framework can also be applied to the
decoded speech-based approach by considering the effects of the mobile network to
be similar in nature to the effects of an adverse environment. However, there are
several techniques that will be presented here, which are strictly relevant to the bit-
stream-based approach. These include feature transformations from the feature rep-
resentations used in the speech coding algorithm to the feature representations used
in ASR and techniques for feature compensation in the bitstream domain. Moreover,
the existence of network-oriented noise sources such as speech coding distortions
and channel transmission errors has led to the development of compensation tech-
niques in the signal space, feature space, and model space. A brief summary of the
techniques developed for the bitstream-based approach and the network-oriented
noise compensation is provided here.
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In the decoded speech-based approach, the decoded speech is used directly for
feature extraction on the receiver side of the network. There has been a great deal of
work devoted to exploring the effect of speech coding on ASR performance and to
training or improving ASR acoustic models to compensate for these effects. In (Euler
and Zinke 1994; Lilly and Paliwal 1996; Nour-Eldin et al. 2004), it was shown that
ASR performance degraded when the input speech was subjected to encoding/decoding
from standard speech coding algorithms. One approach used to mitigate this problem
was to train the model with the equivalence of the multi-style training of a hidden
Markov model (HMM) by using utterances that are recorded over a range of com-
munication channels and environmental conditions. This approach was followed
successfully for ASR over cellular telephone networks in (Sukkar et al. 2002), who
noted the severe impact of the acoustic environment in mobile applications on the
ASR word error rate (WER). Another approach was to improve the average transmit-
ted speech quality by adjusting the trade-off between the number of bits assigned to
coded speech and the number of bits assigned to channel protection based on an
estimate of the current network conditions. To this end, Fingscheidt et al. (Fingscheidt
et al. 2002) investigated the effect of coding speech using the adaptive multi-rate
(AMR) coder for ASR over noisy GSM channels. It was shown that the effects of
communication channels on ASR WER could be significantly reduced with respect
to WER obtained using standard fixed rate speech coders.

Bitstream-based techniques for robust ASR obtain speech recognition parameters
directly from the bitstream transmitted to the receiver over digital mobile networks.
The difference between bitstream-based techniques and techniques that operate on
the decoded speech is that bitstream-based techniques avoid the step of reconstruct-
ing speech from the coded speech parameters. In this scenario, the transformation of
speech coding parameters to speech recognition parameters is required to improve
ASR performance (Pelaez-Moreno et al. 2001). Since each mobile network relies on
its own standardized speech coder, the bitstream-based approaches are dependent
upon the characteristics of the mobile network. Moreover, each speech coder has a
different spectral quantization scheme and different levels of resolution associated
with its spectral quantizer. Therefore, dedicated feature extraction and transform
techniques must be developed for each speech coder. Such techniques have been
developed and published for GSM RPE-LTP (Huerta and Stern 1998; Gallardo-
Antolin et al. 2005), the TIA standard 1S-641 (Kim and Cox 2001), the ITU-T
Recommendation G.723.1 (Peldez-Moreno et al. 2001), and the TIA standard IS-96
QCELP and IS-127 EVRC (Choi et al. 2000).

Frame loss concealment refers to a technique used to reconstruct ASR features
even if the bitstream associated with a given transmitted frame is lost (Tan et al.
2005). In general, a frame loss concealment algorithm is embedded in the speech
decoder. It allows the parameters of lost frames to be estimated by repeating those of
the previous uncorrupted frame (ITU-T Recommendation G.729 1996). Conse-
quently, the estimated parameters can be directly used for extracting ASR features in
the bitstream-based approach. Otherwise, in the decoded speech approach, speech is
reconstructed using the estimated parameters and ASR can be performed with this
decoded speech. Furthermore, the frame erasure rate of the network or the indication
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of the lost frames can be used for ASR decoder-based error concealment (Bernard
and Alwan 2001D).

Feature and model compensation techniques can be implemented without consid-
eration of the speech coding algorithm used in the network. The approaches empha-
size the development of robust algorithms for improving ASR performance without
any explicit knowledge of the distortions introduced by the speech coder. These
robust algorithms can be realized in the feature domain, the HMM model domain,
and through modification of the ASR decoding algorithms. In the feature domain,
spectral distortion is considered to be a nonlinear noise source, distorting the feature
parameters in a variety of ways. Current methods compensate for these distortions by
applying linear filtering, normalization techniques, or some other nonlinear process-
ing applied to the feature parameters (Dufour et al. 1996; Kim 2004; Vicente-Pena
et al. 2006). In addition, speech coding parameters can be directly enhanced in the
coding parameter domain to compensate for speech coding distortion and environ-
mental background noise (Kim et al. 2002). In the HMM model domain, model com-
pensation or combination techniques can be applied by incorporating parametric
models of the noisy environment (Gomez et al. 2006). In the ASR decoder, the effect
of channel errors can be mitigated by incorporating probabilistic models that charac-
terize the confidence associated with a given observation or spectral region. These
techniques have been implemented under the headings of missing features and “soft”
Viterbi decoding frameworks (Gémez et al. 2006; Siu and Chan 2006).

3.3 Bitstream-Based Approach

This section describes how ASR feature analysis can be performed directly from the
bitstream of a code-excited linear predictive (CELP) speech coder, as produced by
the channel decoder in a mobile cellular communications network. First, spectral
analysis procedures performed in both CELP speech coders and ASR feature analy-
sis procedures are compared. Then, techniques for taking coded representations of
CELP parameters and producing ASR feature parameters are described.

It is important to understand the similarities and differences between the speech
analysis performed for speech coding and that for speech recognition. In general,
speech coding is based on the speech production model shown in Fig. 3.2. The re-
constructed speech, §(n), is modeled as an excitation signal, u(#n), driving an all-
pole system function, 1/A(z), which describes the spectral envelope of the vocal tract
response. The spectral envelope can be represented by LPC or equivalent parameter
sets, including line spectral pairs (LSP), immitance spectral pairs (ISP), and reflec-
tion coefficients. The model in Fig. 3.2 for CELP-type speech coders represents the
excitation signal as a combination of: 1) periodic information, g x,(n), which in-
cludes parameters such as pitch or long-term predictor (adaptive codebook) lag and
gain value; and 2) random source information, g c(n), which is represented by the
indices and gain coefficients associated with a fixed codebook containing random
excitation sequences.
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Fig. 3.2 General structure of code-excited linear prediction speech coding

The block diagram in Fig. 3.3 compares the steps that are typically involved in
feature extraction for ASR and CELP speech coding. Figure 3.3(a) shows a typical
example of frame-based ASR feature analysis. The speech signal is pre-emphasized
using a first-order differentiator, (1-0.95z-1), and the signal is then windowed. In the
case of LPC-derived cepstral coefficient (LPCC) analysis, a linear prediction poly-
nomial is estimated using the autocorrelation method. Then, the shape and the duration
of the analysis window are determined as a trade-off between time and frequency
resolution. Typically, a Hamming window of length 30 ms is applied to the speech
segment. The Levinson-Durbin recursion is subsequently applied to the autocorrela-
tion coefficients to extract LPC coefficients. Finally, LPCCs are computed up to the
12 order, and a cepstral lifter can be applied to the cepstral coefficients. This analysis
is repeated once every 10 ms, which results in a frame rate of 100 Hz.

Figure 3.3(b) shows the simplified block diagram of the LPC analysis performed
in the IS-641 speech coder (Honkanen et al. 1997). In this analysis, undesired low
frequency components are removed using a high-pass filter with a cutoff frequency
of 80 Hz. Because of delay constraints that are imposed on the speech coder, an
asymmetric analysis window is used, where one side of the window is half of a
Hamming window and the other is a quarter period of the cosine function. Two addi-
tional processes are applied to the autocorrelation sequence; one is lag-windowing,
and the other is white noise correction. The former helps smooth the LPC spectrum
to remove sharp spectral peaks (Tohkura et al. 1978). The latter gives the effect of
adding white noise to the speech signal and thus avoids modeling an anti-aliasing
filter response at high frequencies with the LPC coefficients (Atal 1980). Finally, the
Levinson-Durbin recursion is performed with this modified autocorrelation se-
quence, and LPC coefficients of order ten are converted into ten LSPs. The speech
encoder quantizes the LSPs and then transmits them to the decoder. Of course, the
LSPs recovered at the decoder differ from the unquantized LSPs by an amount that
depends on the LSP spectral quantization algorithm.

The windowed spectral analysis procedures in Figs. 3.3(a) and 3.3(b) are similar
in that they both extract the parameters of the spectral envelope filter 1/A(z), as
shown in Fig. 3.2. However, there are two differences that are important when apply-
ing the procedure in Fig. 3.3(b) to obtain the ASR features. The first is that the frame
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Fig. 3.3 Comparison of feature extraction for (a) ASR and (b) speech coding (After Kim and
Cox 2001)

rate used for the LPC analysis in the speech coder is 50 Hz, as opposed to the 100 Hz
frame rate used for ASR. This lack of resolution in time-frequency sampling can be
mitigated by using an interpolation technique (Kim and Cox 2001), duplicating the
frames under such a low frame rate condition, or reducing the number of HMM
states (Tan et al. 2007). The second difference is the spectral quantization that is
applied to the LSPs, where the distortion resulting from this LSP quantization cannot
be recovered.

Figure 3.4 shows a procedure for extracting cepstral coefficients from the bit-
stream of the IS-641 speech coder (Kim and Cox 2001). The figure displays the
parameters that are packetized together for a single transmitted analysis frame. The
bitstream for a frame is largely divided into two classes for vocal tract information
and excitation information. 26 bits are allocated per frame for the spectral envelope
which is represented using LSP quantization indices. 122 bits per frame are allocated
for excitation information which includes pitch, algebraic codebook indices, and
gains. The procedure shown in the block diagram begins with tenth order LSP coef-
ficients being decoded from the LSP bitstream. In order to match the 50 Hz frame
rate used for LPC analysis in the speech coder with the 100 Hz frame rate used in
ASR feature analysis, the decoded LSPs are interpolated with the LSP coefficients
decoded from the previous frame. This results in a frame rate of 100 Hz for the ASR
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front-end (Peldez-Moreno et al. 2001; Kim and Cox 2001). For the case of LPCC-
based ASR feature analysis, cepstral coefficients of order 12 are obtained from the
conversion of LSP to LPC followed by LPC-to-cepstrum conversion. The twelve
liftered cepstral coefficients are obtained by applying a band-pass lifter to the cep-
stral coefficients. Lastly, an energy parameter is obtained by using the decoded exci-
tation, u(n), or the decoded speech signal, §(n), which is equivalent to a log energy
parameter of the conventional MFCC feature (Davis and Mermelstein 1980).
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Fig. 3.4 A typical procedure of feature extraction in the bitstream-based approach (After Kim
and Cox 2001)

Figure 3.4 also depicts the process of extracting MFCC-based ASR features from
the IS-641 speech coder bitstream. As shown in Fig. 3.3(a), MFCC feature analysis
can be performed for ASR by applying a 512-point fast Fourier transform (FFT) to
compute the magnitude spectrum of the windowed speech signal. The magnitude
spectrum is subsequently passed through a set of triangular weighting functions that
simulate a filterbank defined over a Mel-warped frequency scale. For a 4 kHz band-
width, 23 filters are used. The filterbank outputs are transformed to a logarithmic
scale, and a discrete cosine transform (DCT) is applied to obtain 13 MFCCs. In order
to obtain MFCC-based ASR features from the bitstream, the MFCCs can be obtained
directly from the decoded LSPs. This LSP-to-MFCC conversion will be described in
the next section.
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There has been a large body of work on the bitstream-based approach in the con-
text of a variety of standard speech coding algorithms. This work falls into two gen-
eral categories. The first includes procedures for deriving ASR features from the
bitstreams associated with standard speech coding algorithms. Pelaez-Moreno et al.
(2001) compared ASR WER using ASR features derived from the bitsream of the
ITU-T G.723.1 speech coding standard with the WER obtained using reconstructed
speech from the same coding standard and found that the bitstream derived parame-
ters resulted in lower ASR WER. Additional work has been reported where ASR
features were derived from the bitstream of the LPC-10E coder (Yu and Wang
1998), the Qualcomm CELP coder (Choi et al. 2000), and the continuously variable
slope delta modulation (CVSD) waveform coder (Nour-Eldin et al. 2004). In all of
these cases, the WER obtained by deriving ASR features from the bitstream was
lower than that obtained by deriving features from the reconstructed speech. The
second category of work on bitstream-based approaches includes techniques for
compensating bitstream-based parameters to improve ASR robustness. Kim et al.
(Kim and Cox 2002) proposed the enhancement of spectral parameters in the LSP
domain at the decoder by estimating the background noise level. Yu and Wang
(2003) proposed an iterative method for compensating channel distortion in the LSP
domain, where the ITU-T G.723.1 coder was used for their experiments.

3.4 Feature Transform

Though bitstream-based ASR is known to be more robust than that using decoded
speech, the spectral parameters used for speech coding are not adequate for ASR
(Choi et al. 2000). Most speech coders operating at moderate bit-rates are based on a
model of the type used in code-excited linear prediction as is illustrated in Fig. 3.2.
In these coders, LPCs are further transformed into LSPs to exploit the coding effi-
ciency, simple stability check for synthesis filters, and superior linear interpolation
performance enjoyed by the LSP representation. There have been several research
efforts focused on using LSP coefficients as feature representations for ASR (Paliwal
1988; Zheng et al. 1988). Signal processing steps that are thought to emulate aspects
of speech perception including critical band theory and non-linear amplitude com-
pression have been found to have a far greater impact in ASR. For example, LPC
coefficients based on perceptual linear prediction (PLP) analysis are known to pro-
vide significantly better ASR performance than LPCs (Hermansky 1990). As such,
one of the research issues associated with a bitstream-based ASR front-end is to
obtain more robust parameters for ASR by transforming the spectral parameters that
are used by the speech coder (Fabregas et al. 2005; Peldez-Moreno et al. 2006).
Figure 3.5 illustrates several ways for obtaining feature parameters from the bit-
stream, where it is assumed that LSPs are the bitstream-based spectral parameters
transmitted to the speech decoder. Note that there are three main approaches to trans-
forming LSPs. The first is to convert LSPs into LPCs followed by a further transfor-
mation to obtain MFCC-type parameters. The second approach is to obtain the spectral
magnitude from LSPs or LPCs and to apply conventional Mel-filterbank analysis and
DCT to obtain MFCC parameters. The last approach is to directly convert LSPs into
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approximate cepstral coefficients, which are called pseudo-cepstral coefficients
(PCEPs). Of course, a frequency-warping technique can be applied to LSPs prior to
the pseudo-cepstral conversion, which results in a Mel-scaled PCEP (MPCEP).

LPCC
LSP-to-LPC LPC-to-CEP Bilinear
™ . ] . —> MLPCC
Conversion Conversion Transform
Bitstream Magnitude Mel-Filterbank g
Spectral ] Spectrum ] Analysis DCT = LP-MFCC
— Parameter [
Decoding
Pseudo-Cepstrum
™ . —> PCEP
Conversion
L, Frequgncy _’Pseudo-Cep-strum_’ MPCEP
Warping Conversion

Fig. 3.5 Feature transforms from LSPs to ASR feature parameters

3.4.1 Mel-Scaled LPCC

Mel-scaled LPCCs (MLPCCs) can be derived using the following three steps: the
conversion from LSP to LPC, the conversion from LPC to LPC cepstrum, and the
frequency warping of LPC cepstrum using an all-pass filter. For a given set of LSP
coefficients of order M, w,---,w, , where typically M = 10, the LPC coefficients,
a,a, ,can be obtained by using the following equations
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Next, the real valued cepstrum for the spectral envelope can be defined by the in-
verse z-transform of the log spectral envelope represented by In[l1/A(z)]. In other

words,

Inf1/4(z)] = icnz”’ (3.4)

where ¢, is the n-th LPCC, and obtained from the recursion described in (Schroeder
1981). That is,

1ozt
-a,—-—>kea,,, 1<n<M

¢ = n i . 3.5)

n 1 M
-—>ke,a, ., n>M
n k=1

It is common to truncate the order of LPCCs to 12-16 for ASR by applying a
cepstral lifter (Juang et al. 1987; Junqua et al. 1993). This obtains a reasonable bal-
ance between spectral resolution and spectral smoothing and also largely removes
the affects of the vocal tract excitation from the cepstrum.

In order to obtain MLPCCs, a bilinear transform is applied to the frequency axis
of LPCCs (Oppenheim and Johnson 1972). Here, the n-th MLPCC, ¢, is ob-
tained from the LPCCs {c,} by filtering the LPCCS with a sequence of all-pass filters
such that

chree - $° %k://MCA, n>0 (3.6)

. =
k=0

where lkx//nvk is the unit sample response of the filter
n

- [ —a |
H,,(z)f—(liml)2 Lazl} ,n>0. (3.7)

In Eq. 3.7, the degree of frequency warping is controlled by changing «;a typi-
cal value of « for speech sampled at 8 kHz is 0.3624 (Wo6lfel and McDonough 2005).

3.4.2 LPC-Based MFCC (LP-MFCC)

A procedure for obtaining MFCC-type parameters from LSPs begins with the com-
putation of the magnitude spectrum from LSPs. The squared magnitude spectrum of
A(z) evaluated at frequency w is given by

(e’

2=2A{sir12(6z)/2) H(cosa}—cosa)i)2+cosz(a)/2) 1_[((:osa)—cosa),.)2 - (38

=24 M i=1,3,--,M~1
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Thus, the n-th MFCC-type parameter, ¢ ,f PiMFCC, can be obtained by applying a

conventional Mel-filterbank analysis (Davis and Mermelstein 1980) to the inverse of
Eq. 3.8 and transforming the filterbank output using the DCT.

3.4.3 Pseudo-Cepstrum (PCEP) and Its Mel-Scaled Variant (MPCEP)

Pseudo-cepstral analysis has been proposed by (Kim et al. 2000) as a computation-
ally efficient approach for obtaining ASR parameters from LSPs. Using this analysis,
the n-th pseudo-cepstrum (PCEP), ¢/“", is defined by

creEr :%(Pr (,1)”)+%gcos(fza}k ), n=1. (3.9)

It was shown that the spectral envelope represented by PCEPs is very similar to
that represented by LPCCs, but can be computed with lower computational complex-
ity. As such, PCEP can be further transformed to accommodate the characteristics
of frequency warping. First, each LSP is transformed into its Mel-scaled version
by using an all-pass filter (Gurgen et al. 1990), and then the i-th Mel-scaled LSP
(MLSP), »™, can be obtained by

L asinw.
a)‘.M” =, +2tan 1(—‘

j, 1<isM (3.10)

l1-acosw,

where « controls the degree of frequency warping and is set as « =0.45 (Choi et al.
2000). Finally, a Mel-scaled version of PCEP or Mel-scaled (MPCEP) can be ob-
tained by combining Egs. 3.9 and 3.10 such that

cMreEr :%(1 +(—1)”)+%§‘1cos(nw:”"’), n>1. (3.11)

n

MPCEP required lower computational resources than MLPCC but the ASR per-
formance using MLPCC was better than that obtained using MPCEP. However, the
two Mel-scaled ASR features, MPCEP and MLPCC, provided comparable ASR
performance when the transmission errors of the network were under certain levels
(Fabregas et al. 2005). In addition, when used in combination with techniques that
will be described in the next section, the transformed ASR features obtained from
LSPs, PCEP, and MPCEP have the potential to further improve ASR performance.

3.5 Enhancement of ASR Performance Over Mobile Networks
3.5.1 Compensation for the Effect of Mobile Systems

In performing ASR over cellular networks, ASR WER can be improved by applying
techniques that have been developed for noise-robust ASR. For example, HMMs can
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be trained using a large amount of speech data collected from a range of different
communications environments (Sukkar et al. 2002). This is similar to a kind of
HMM multi-condition training. An alternative set of approaches is to train separate
environment-specific HMMs and combine the models during ASR decoding (Karray
et al. 1998). This approach can also incorporate dedicated models of specific non-
stationary noise types, like impulsive noise or frame erasures, which can be trained
from labeled examples of occurrences of these noise events in training data. Karray
et al. (1998) proposed several examples of this class of approach, each differing in
the manner in which the environment specific HMM models were integrated during
search. Finally, the most widely discussed class of approaches for robust ASR in the
cellular domain is the application of feature compensation techniques to ASR fea-
tures. One of many examples is the work of Dufour et al. (1996) involving compen-
sation for GSM channel distortion by applying non-linear spectral subtraction and
cepstral mean normalization to root MFCCs.

Finally, HMM models can be adapted or combined with models of environmental
or network noise to improve the performance of ASR over mobile networks. Linear
transform-based adaptation methods such as maximum likelihood linear regression
(MLLR), Bayesian adaptation, and model combination have been shown to be useful
for compensating for the non-linear characteristics of mobile networks (Kim 2004;
Zhang and Xu 2006). In particular, Kim (2004) exploited the relationship between
the signal-to-quantization noise ratio (SQNR) measured from low-bit-rate speech
coders in mobile environments and the signal-to-noise ratio (SNR) in wireline acous-
tic noise environments. This was motivated from the insight that the quantization
noise introduced by the speech coder can be characterized as a white noise process.
In order to obtain HMM acoustic models for use on decoded speech, a model combi-
nation technique was applied to compensate the mean and variance matrices of
HMMs that were trained using uncoded speech. As a result, the ASR system using
this compensation approach achieved a relative reduction in average WER of 7.5—
16.0% with respect to a system that did not use any compensation techniques. More-
over, explicit knowledge of the characteristics associated with the mobile system can
be used to improve the performance of model compensation procedures (Zhang and
Xu 2000).

3.5.2 Compensation for Speech Coding Distortion in LSP Domain

In order to further improve the performance of ASR over mobile networks, we can
also apply feature enhancement or model compensation in the speech coding pa-
rameter domain, i.e., LSP domain. Kim et al. (2002) proposed the enhancement of
spectral parameters in the LSP domain at the decoder by estimating the level of
background noise. Figure 3.6 shows the block diagram for feature enhancement in
the LSP domain. Note that the objective of a speech enhancement algorithm is to
obtain a smaller spectral distortion between clean speech and enhanced speech than
that obtained between clean speech and noisy speech. Likewise, the purpose of the
proposed feature enhancement algorithm is to obtain enhanced features that are close
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to the features obtained from clean speech. In the figure, the estimate of clean speech
LSP, o, is updated from the LSP decoded from the bitstream, «,, using two LSPs.
The first is the LSP, w,,, , obtained from the enhanced version of the decoded speech
signal, s,.,, and the other is the LSP, o,,,, obtained from the LPC analysis of the
decoded speech, s, . The decoded speech is assumed to include background noise
and speech coding distortion. The update equation for the estimated clean speech
LSPs is

A

a)w.:a)n’i+y(a)q+e,i—a)n+q,i), 1<isM (3.12)

where u is the step size for the adaptive algorithm of Eq. 3.12 and is set to
u=1/M —¢ . In practice, u was setto 0.2.

To prevent the enhanced LSPs from being distorted by the feature enhancement
algorithm, the update to the estimated LSPs in Eq. 3.12 is only applied at moderate
SNR levels. The SNR of the decoded speech signal is estimated from the ratio be-
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Fig. 3.6 Block diagram of the feature enhancement algorithm (After Kim et al. 2002)
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tween the decoded speech, s, , and its enhanced version, s,_,,. Eq. 3.12 is modified
as so that it is only applied when the estimated SNR does not exceed a threshold

A {w +u(w,,,;—®,.,,;), i Estimated SNR<SNR, (3.13)
D .= ’ ' ’ ’

o, ., otherwise

n,i

where SNRy, is empirically determined according to the amount of SNR improve-
ment by the speech enhancement and is set to 40 dB in Kim et al. (2002).

The performance of the proposed feature enhancement algorithm was evaluated
on a large vocabulary word recognition task recorded by both a close-talking micro-
phone and a far-field microphone and processed by the IS-641 speech coder. The
twelve LP-MFCCs described in Sect. 3.4.2 were obtained for the bitstream-based
front-end, and the log-energy obtained from the excitation information described in
Sect. 3.3 was appended to the feature vector. The difference and second difference of
this feature vector were concatenated with the static features to construct a 39-
dimensional feature vector. It was subsequently determined that the bitstream-based
front-end provided better performance than the front-end approach that extracted
MFCCs from the decoded speech for the close-talking microphone speech recogni-
tion but not for the far-field microphone speech recognition. However, incorporating
the feature enhancement algorithm into the bitstream-based front-end significantly
improved ASR performance for far-field microphone speech recognition.

3.5.3 Compensation for Channel Errors

In speech coding, channel impairments can be characterized by bit errors and frame
erasures, where the number of bit errors and frame erasures primarily depends on the
noise, co-channel and adjacent channel interface, and frequency selective fading.
Fortunately, most speech coders are combined with a channel coder so that the most
sensitive bits are strongly protected by the channel coder. Protecting bits unequally
has an advantage over protecting all the transmission bits when only a small number
of bits are available for channel coding. In this case, a frame erasure is declared if
any of the bits that are most sensitive to channel error are in error (Sollenberger et al.
1999). The bits for LSPs and gains are usually classified as the most sensitive bits
(Servetti and de Martin 2002; Kataoka and Hayashi 2007), and they are strongly
protected by the channel encoder. However, a method needs to be designed to deal
with channel bit errors because ASR is generally more sensitive to channel errors
than it is to channel erasures (Bernard and Alwan 2001b). The ASR problem regard-
ing bit errors is usually overcome by designing a frame erasure concealment algo-
rithm, whereas the ASR problem of frame errors is overcome by using sofi-decoding
in a Viterbi search for HMM-based ASR.

Frame erasure concealment algorithms can be classified into sender-based algo-
rithms and receiver-based algorithms, based on where the concealment algorithm is
implemented. Typically, sender-based algorithms, e.g., forward error correction
(FEC), are more effective than receiver-based algorithms but require additional bits
used for detecting or correcting errors in the decoder (Wah et al. 2000). Conversely,
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receiver-based algorithms such as repetition-based frame erasure concealment and
interpolative frame erasure concealment (de Martin et al. 2000) have advantages
over the sender-based algorithms since they do not need any additional bits, and thus
we can use existing standard speech encoders without any modification. Likewise,
such a receiver-based algorithm can be used for ASR, enabling the reconstruction of
speech signals corresponding to the erased frames prior to the extraction of ASR
features.

Gomez et al. (2006) proposed a linear interpolation method between feature vec-
tors obtained from the first and last correctly received frames to reconstruct feature
vectors for the erased frames. However, instead of using linear interpolation, Milner
and Semnani (2000) introduced a polynomial interpolation method. Since delay was
not critical for speech recognition, this interpolation method could provide better
feature vectors, even under burst frame erasure conditions, than an extrapolation
method. Moreover, Bernard and Alwan (2002) proposed a frame dropping technique
that removes all feature vectors from the erased frames or any suspicious frames due
to channel errors. The frame dropping technique worked reasonably well for random
erasure channels, but provided poor performance when the channel erasure was
bursty. It was also shown in Kim and Cox (2001) that the performance of bitstream-
based front-end approaches employing frame dropping was better than that of the
decoded speech-based front-end that included a frame erasure concealment algorithm.

Channel errors or frame erasures can be addressed by modifying the ASR de-
coder. The Viterbi algorithm can be modified to incorporate a time-varying weight-
ing factor that characterizes the degree of reliability of the feature vectors (Bernard
and Alwan 2001a; Siu and Chan 2006). The probability of a path terminating in

HMM state j at time ¢, &,(j), in the Viterbi algorithm can be written to include a
reliability measure

5,.()=max[s,_,()a,] [b,(0)]" (3.14)

where y, = P(o, | y,) is a time-varying weighting factor, and y, is a received bitstream.
Note that y, =1 if the decoded ASR feature is completely reliable, and y, =0 if it is
completely unreliable. On the other hand, Siu and Chan (2006) proposed a robust
Viterbi algorithm, where corrupted frames by impulsive noise would be skipped for
the Viterbi path selection. This was implemented by expanding the search space of
the Viterbi algorithm and by introducing a likelihood ratio threshold for the section.

3.6 Conclusion

This chapter has presented the major issues that must be addressed to facilitate robust
automatic speech recognition over mobile networks. It has summarized new ap-
proaches for minimizing the impact of distortions introduced by speech coders,
acoustic environments, and channel impairments. Obtaining ASR features directly
from the bitstream of standardized speech coders was originally developed as a new
paradigm for feature extraction over mobile communications networks. It was found
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that optimal ASR feature representations could be obtained by transforming spectral
parameters transmitted with the coded bitstream. It was also found that feature pa-
rameter enhancement techniques that exploited the bitstream-based spectral parameters
could result in more noise robust ASR. More recently, bitstream-based techniques
have been applied to network-based ASR applications using many standard speech
coding algorithms.

As mobile networks and the mobile devices that are connected to these networks
evolve, it is likely that automatic speech recognition robustness over these networks
will continue to be a challenge. With enhanced mobility and increased connectivity,
the characteristics of future mobile networks are likely to be different from those
existing today. They are also likely to lend themselves to new paradigms for novel
distributed implementation of robust techniques that better configure ASR algo-
rithms for these mobile domains. The work presented in this chapter contains several
examples of new methods for implementing robust ASR processing techniques that
exploit knowledge of the communications environment. This class of techniques will
only become more important with time.
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Speech Recognition Over IP Networks

Hong Kook Kim

Abstract. This chapter introduces the basic features of speech recognition over an IP-based
network. First of all, we review typical lossy packet channel models and several speech coders
used for voice over IP, where the performance of a network speech recognition (NSR) system
can significantly degrade. Second, several techniques for maintaining the performance of NSR
against packet loss are addressed. The techniques are classified into client-based techniques
and server-based techniques; the former ones include rate control approaches, forward error
correction, and interleaving, and the latter ones include packet loss concealment and ASR-
decoder based concealment. The last part of this chapter is devoted to explaining a new
framework of NSR over IP networks. In particular, a speech coder that is optimized for auto-
matic speech recognition (ASR) is presented, where it provides speech quality comparable to the
conventional standard speech coders used in the IP networks. In addition, we compare the
performance of NSR using the ASR-optimized speech coder to that using a conventional
speech coder.

4.1 Introduction

The Internet is a worldwide publicly-accessible network of interconnected computer
networks that transmits data by packet switching using standard Internet protocols
(IP) (http://en.wikipedia.org/wiki/Internet). Currently, voice data is seen as one of
the more important types of data, and the transfer of voice conversations over IP
networks, referred to as voice over IP (VoIP), has significantly grown in recent
years. In addition to the convergence of voice and traditional data, there has also
been considerable convergence of IP networks with cellular/wireless networks such
as GSM, WiMAX, WiFi, Bluetooth, etc. (Chandra and Lide 2007). This trend to-
wards convergence has created quite a number of challenges associated with the
architecture and implementation of automatic speech recognition (ASR) in conver-
gent network environments.

In this chapter, we present issues related to ASR over IP networks in a frame-
work of network speech recognition (NSR). In this framework, it is basically as-
sumed that speech must be encoded for transmission at a client. However, an ASR
server can make use of decoded speech or the bitstream prior to ASR decoding, as
shown in Figs. 4.1a and b, respectively (Milner and James 2006; Kim and Cox 2001).
Furthermore, when compared to ASR over mobile networks, speech transmitted over
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IP networks is subject to degradation from sources based on the characteristics and
limitations inherent to IP networks and end-to-end environments. In other words, in
addition to speech coder distortion and acoustic environmental noises, IP networks
primarily distort speech quality by network-oriented impairment factors such as jitter
and packet loss.

Speech Speech »  Speech
Encoder Decoder Output

—>» ASR

(@

Speech Speech Speech
— —
Encoder Decoder Output
A 4
ASR
Feature ———>  ASR
Extraction

(®)

Fig. 4.1 Architecture for network speech recognition (NSR): (a) decoded speech based NSR
and (b) bitstream-based NSR (After Kim and Cox 2001)

One can improve the quality of speech in an NSR framework by detecting jittered
or lost packets and then recovering or concealing them. For this end, techniques for
maintaining NSR performance against jitter or packet loss can be classified into
either client-based techniques or server-based techniques. The former includes lay-
ered coding, forward error correction, and interleaving, among others. The latter
includes techniques based on packet loss concealment and ASR decoder-based con-
cealment. Since a number of these techniques are commonly used for ASR over
mobile networks and/or distributed speech recognition (DSR), we only focus on the
techniques dedicated to ASR over IP networks.

Due to limitations in bandwidth, a low-bit-rate speech coder is also applied in IP
networks to compress speech. However, when compared to mobile networks, several
speech coders can be selectively used in IP networks though a speech coder is exclu-
sively standardized for mobile networks. Moreover, there is flexibility in delivering
voice through the development of a new speech coder in IP networks. This implies
that NSR performance would be significantly improved if a speech coder could be
designed to optimize ASR performance rather than speech quality for speech com-
pression. Of course, the speech coder should provide speech quality comparable to
conventional speech coders currently used in IP networks.
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Following this Introduction, Sect. 4.2 will briefly discuss the relationship be-
tween ASR performance and speech quality affected by IP network-oriented im-
pairment factors including jitter and packet loss. Section 4.3 will classify robust
techniques against such network-oriented impairment factors into client-based tech-
niques and server-based techniques, and discuss the techniques dedicated to ASR
over IP networks. Section 4.4 will explain such a speech coder and then show the
effect of the new speech coder on ASR performance and speech quality in an NSR
framework. Finally, this chapter is concluded in Sect. 4.5.

4.2 Speech Recognition and IP Networks

The deployment of ASR services over IP networks has been realized in several
forms of architectures. Of these architectures, NSR using either the decoded speech
or the bitstream of the encoded speech does not require any constraints to a client
that supports VoIP. It, however, is well known that the performance of NSR over IP
networks degrades due to sources of IP distortion, which include low-bit-rate speech
coding, packet loss, and jitter. Among them, jitter can be ignored if the jitter buffer
size of IP networks is allowed to be sufficiently large such that no speech packets are
lost due to delay, which is a condition that does not harm overall ASR performance.

This chapter further discusses the two key points: speech coding distortion and
packet loss. There have been many research previous works that have investigated
the effect of IP networks on ASR performance (Milner and Semnani 2000; Milner
2001; Pelaez-Moreno et al. 2001; Van Sciver et al. 2002; Falavigna et al. 2003; Mayorga
et al. 2003; Mayorga and Besacier 2006). This section briefly summarizes some of
these works, especially in terms of motivation for the development of the new
speech coder described in Sect. 4.4.

4.2.1 Relationship Between ASR Performance and Speech Quality

There are several processing blocks required prior to successfully transmitting
speech over IP networks. Fig. 4.2 shows the processing steps in VoIP at the client
and at the server (Chandra and Lide 2007), where each processing block can be seen
to contribute to the quality of speech. In this way, the conversation quality of speech
becomes a function of factors such as distortion, loudness, delay, and echo. Actually,
distortion is mainly caused by speech coding distortion and packet loss, which de-
fines the listening quality of speech commonly measured in the mean opinion score
(MOS) (Takahashi et al. 2004).

In general, it is known that the listening quality of speech degrades depending on
the bit-rate of the speech coder used in an IP network and the condition of packet
loss. Sun et al. (2004) demonstrated that ASR performance of noisy speech could be
predicted using an objective speech quality measure, i.e., the perceptual evaluation
of speech quality (PESQ) defined as ITU-T Recommendation P.861 (ITU-T Rec-
ommendation P.862 2001). This result provides evidence that ASR performance is
highly associated with speech quality since PESQ can be used as a measure of esti-
mating the quality of decoded speech even under a packet loss condition. Moreover,
Hooper and Russell (2000) described the relationship between ASR performance and
speech quality in VolP, where speech quality was represented in terms of speech
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coder type, packet size, and packet loss rate (PLR), and concluded that ASR might
be a viable quantitative measure of speech quality. Therefore, in order to improve
ASR performance, we need to improve the quality of the decoded speech or develop
a method that compensates for factors that can potentially degrade speech quality.

» Receive [UDP/RTP] Packet
from the IP network

Sampling
l [UDP/RTP] Decoder
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De-Jitter
. o :
Echo Cancellation Packet Loss Fig. 4.1(a) E
l—b Tone Detection Concealment
ASR Server
Speech Voice Activity
Encoding Detection Speech
l Decoding
Signal %
[UDP/RTP] Packetization Generation
Equalization
T l . Speech output
ransmission .
over the IP network 2 Fig. 4.1(b)

Fig. 4.2 Processing steps in VoIP and NSR scenarios; the first scenario of NSR, denoted as
Fig. 4.1a, can be seen to include the use of the bitstream before or after the packet loss con-
cealment block, and the second scenario, denoted as Fig. 4.1b, includes the application of a
conventional ASR front-end to the speech output (From Chandra and Lide 2007)

4.2.2 Impact of Speech Coding Distortion

Speech is commonly transmitted over IP networks by one of the speech coders de-
scribed in Table 4.1 (Walker and Hicks 2004). As shown in the table, the real band-
width required by VoIP communications is higher than that of the speech coder. For
example, speech is compressed by the G.729 coder with a bit-rate of 8 kbit/s, but the
actual bitstream over IP is 32.2 kbit/s when the packet size is twice the analysis
frame size of G.729. This size increase is due to the fact that headers are accumu-
lated before the actual speech data, such as the real time protocol (RTP) header of
12 bytes, the user datagram protocol (UDP) of 8 bytes, the IP header of 20 bytes,
and the Ethernet header of 18 bytes. Of course, the total overhead of 58 bytes per
packet can be reduced by enlarging the packet size. However, it increases subsequent
delays, and as a result the VoIP system is apt to be fragile to packet loss because
single packet loss corresponds to a large number of consecutive frame losses (Hooper
and Russell 2000).
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Table 4.1 Five common speech coders used in VoIP (From Walker and Hicks 2004)1

Coder Data Typical  Packetization = Bandwidth ~ Maximum
Rate Packet Delay (ms) (kbit/s) MOS
(kbit/s)  Size(ms)

G.711 64.0 20 1.0 87.2 441

G.726 32.0 20 1.0 55.2 422

G.723.1 5.3 30 67.5 20.8 3.69

G.723.1 6.3 30 67.5 21.9 3.87

G.729 8.0 20 25.0 31.2 4.07

There have also been many works investigating the effect of speech coding on
ASR performance in terms of two different scenarios, as shown in Fig. 4.1 (Gal-
lardo-Antolin et al. 1998; Milner and Semnani 2000; Kim and Cox 2001). In Van
Sciver et al. (2002), the ASR performance of four different coders was compared
based on the first scenario of Fig. 4.1a, where the coders were 6.3 kbit/s G.723.1,
6.4 kbit/s G.729D, 8 kbit/s G.729, and 11.2 kbit/s G.729E. Through this comparison,
it was found that the performance of ASR over IP networks was always worse than
that using uncoded speech at the client. Furthermore, the performance was more
degraded when a lower bit-rate coder was used for speech coding, for whatever
packet loss rate incurred in the recognition experiments. This coincides with the
result suggesting that ASR performance is closely related to the decoded speech
quality. From an ASR point of view, the reason why speech quality degrades with a
low-bit-rate coder is that decoded speech can be distorted by the quantization distor-
tion of spectral parameters in combination with excitation distortion (Peldez-Moreno
et al. 2001). However, this problem can be overcome by using a bitstream-based
approach, as shown in Fig. 4.1b.

On the other hand, the primary cause of performance degradation is the different
frame rate of speech coding from that of ASR. In Falavigna et al. (2003), by obtain-
ing speech recognition features with a frame rate of 7.5 ms from the bitstream of the
G.723.1 speech coder, ASR performance was significantly improved compared to
when they were obtained with a frame rate of 30 ms. For this end, Tan et al. (2007)
investigated the relationship between ASR frame rate and the number of HMM
states and showed that ASR performance was improved by matching the two factors
such as by duplicating the frames under a low frame rate condition or by reducing
the number of HMM states.

4.2.3 Impact of Network Channel Distortion

The effect of packet loss on ASR performance has been investigated in two NSR
scenarios. In order to simulate the behavior of transmission models with memory,

1

Walker/Hicks, TAKING CHARGE OF YOUR VOIP PROJECT, p. 86 Table 3-3
Default Attributes for Six Common Codes, © Cisco Systems, Inc. Reproduced by
permission of Pearson Education, Inc. All rights reserved.
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the Gilbert-Elliott channel model (Peldez-Moreno et al. 2001; Falavigna et al. 2003;
ITU-T Recommendation G.191 2000) can be used for random and burst packet
losses, as shown in Fig. 4.3a. A three-state packet loss model, shown in Fig. 4.3b,
was further introduced to simulate the burst-like nature of packet loss with an inter-
mediate state between packet loss free and burst packet loss (Milner 2001).

These models can be used to generate a packet loss pattern, and the received
packet is declared either lost or not according to a binary number in the pattern. The
probability of packet loss, i.e., the PLR, in the Gilbert-Elliot model is determined by

pLR=1i1>,+li ) (4.1)

where P, and P, are the probabilities of staying at the good and bad state, respec-
tively, P, and P, are the transition probabilities from the good state to the bad state
and vice versa, respectively, and y =1-(P, + P) controls the burstiness of packet loss.
In Fig. 4.3b, PLR and burstiness are determined by P, and P, , respectively.

0’ —no loss
‘1’ — packet loss

(@) (b)

Fig. 4.3 Packet loss models: (a) Gilbert-Elliot model and (b) three-state burst-like packet loss
model (From Milner 2001)

This packet loss pattern should reflect the characteristics of real voice traffic in
IP networks. It was shown from the results reported in Borella (2000) that PLR was
about 0.5-3.5% with a mean number of packets lost in a single burst of about 6.9,
where around 90% of the bursts consisted of three packets or less for the G.723.1
coder, corresponding to a speech interval of 90 ms. Under this condition, the per-
formance of NSR using the bitstream was always better than that using speech de-
coded by the coder for all PLRs and burstiness (Peldez-Moreno et al. 2001; Van
Sciver et al. 2002; Mayorga and Besacier 2006), though it was significantly lower
than that without any packet loss. This result is the basis of the motivation for en-
couraging the further development of techniques robust to packet loss.
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4.3 Robustness Against Packet Loss

In this section, we address techniques associated with preventing, recovering, or
concealing packet loss to improve ASR performance. Note that some techniques
(Tan et al. 2005, 2007) are dedicated for application in other speech recognition
scenarios, such as the ASR over mobile networks described in Chap. 3 and distrib-
uted speech recognition described in the following chapters. This section solely
focuses on the techniques used for ASR over IP networks based on the NSR frame-
work; Fig. 4.4 shows the basic taxonomy of error robust techniques applicable to
NSR (Perkins et al. 1998; Tan et al. 2005).

| Client-based technique | Server-based technique
Rate Control Forward error Interleaving Error ASR-decoder
correction concealment concealment
Rate shaping — Media-independent — Insertion
Layered coding |— Media-specific — Interpolation
— Unequal error protection — Statistical
'— Multiple description coding — Soft decoding

Fig. 4.4 Robustness techniques against packet loss for NSR

4.3.1 Rate Control

Maintaining a high quality of speech at the client is important for reliable ASR per-
formance in an NSR framework. To this extent, speech quality can be improved by
controlling QoS in the Internet via adaptive packet size or jitter buffer length and by
optimizing network resources in active or passive ways. Rate shaping techniques are
an active method of optimizing network resources and attempt to adjust the rate of
speech encoding according to current network conditions. Seo et al. (2001) reported
that the network condition was monitored based on the arriving time difference be-
tween a pair of packets by using the timestamp in an RTP header. As the time differ-
ence decreased, a higher rate of the adaptive multi-rate (AMR) coder (3GPP TS
26.090 1999) was preferred. As a result, the AMR coder could improve overall
speech quality by trading off PLR and the bit-rate of the speech coding PLR, as
compared to a fixed rate coder. A similar approach was proposed in Ruggeri et al.
(2001) by modifying the G.729 coder into a multi-mode and multi-rate coder for rate
shaping. In addition, Fingscheidt et al. (2002) used the AMR coder for rate shaping
over GSM and showed that the performance of NSR using rate shaping of the AMR
coder was comparable to that of DSR.
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Layered encoding encodes speech into several layers, where a reasonable quality
of speech can be obtained with the base layer. Then, when the network transmits
layered speech, it can drop the higher layers in the event of network congestion;
recently, the G.729 coder was extended with such a layered coding scheme (Ragot
etal. 2007).

4.3.2 Forward Error Correction

Forward error correction (FEC) is a method by which the encoder sends extra in-
formation to help the decoder recover from packet loss. For example, media-
independent channel coding is realized by using parity codes, cyclic redundancy
codes, and Reed-Solomon codes, which enables the decoder to accurately repair lost
packets without knowing the type of content. However, it requires additional delays
and bandwidth (Shacham and McKenney 1990).

On the other hand, a media-specific FEC sends the same or similar contents in
multiple packets. If a packet is lost, the packet may be recovered using a duplicate
packet. For example, in Hardman et al. (1995) a current speech frame was basically
encoded by the 13.2 kbit/s GSM coder and also encoded by a 4.8 kbit/s low-bit-rate
LPC vocoder for a media-specific FEC. The actual information transmitted was
composed of the 13.2 kbit/s GSM bitstream of the current frame and the 4.8 kbit/s
LPC vocoder bitstream of the previous frame, thus speech could be decoded by
using the LPC vocoder bitstream for the lost previous frame.

Another kind of media-specific FEC that attempts to make the decoder robust to
bit error is unequal error protection (UEP), which protects only a part of the bits in
each packet (Swaminathan et al. 1996). The bits are judged based on a bit sensitivity
analysis (Servetti and De Martin 2002; Kataoka and Hayashi 2007).

4.3.3 Interleaving

The technique of interleaving aims at distributing the effects of the lost packets in
such a way that the overall packet loss effects are reduced. For instance, burst packet
loss affects the speech bitstream or speech quality as if it were a random packet loss.
Moreover, compared to FEC techniques, interleaving does not increase the network
load. For example, in Mayorga et al. (2003), each packet was divided into several
units for PCM transmission. However, each packet of the bitstream of a speech coder,
e.g., the G.729 or G.723.1 speech coder, consisted of 2—4 frames in an attempt to
reduce the network overhead caused by the RTP/UDP/IP header (Mayorga and
Besacier 2006). In this case, the unit corresponds to a single frame of the speech
coder. Units are then combined in a different sequential order that is generated by a
speech coder and rearranged into their original order at the decoder. Thus, packet
loss results in the loss of several units distributed in the other packets. The error
concealment (EC) techniques described in the next subsection will be applied to
reconstruct the lost frames.

Multiple description coding (MDC) is an alternative to FEC for reducing the ef-
fects of packet loss by splitting the bitstream into multiple streams or paths, though
this technique consumes a wider bandwidth (Anandakumar et al. 2000). To overcome
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the increased bandwidth demand, zero redundancy MDC can be designed by exploit-
ing the characteristics of a CELP-type coder (Wah and Lin 2005). In other words,
spectral parameters, LSPs in CELP-type coding, are temporally correlated such that
LSPs can be interleaved in MDC while excitation is replicated along multiple de-
scriptions in the interleaved units.

4.3.4 Error Concealment and ASR Decoder-Based Concealment

There have been a number of research works associated with EC based on insertion-
based, interpolation-based, and statistical approaches reported in a DSR framework
(Tan et al. 2005; Milner and James 2006). These approaches are further discussed in
other chapters; here, we only discuss EC with respect to NSR.

In insertion-based EC techniques, lost frames are replaced with silence, noise, or
estimated values. In general, the parameters of a lost frame are estimated by extrapo-
lating those of a previous good frame. That is, the parameters of lost frames are
estimated by repeating a down-scaled version of previous ones (/7U-T Recommen-
dation G.729 1996). In particular, the specific steps taken for reconstructing a lost
frame in G.729 are: (1) repeating the synthesis filter parameters, (2) attenuating the
adaptive and fixed codebook gains, followed by attenuating the memory values of
the gain predictor, and (3) randomly generating the excitation. This approach works
well for speech communication, where delay is an essential issue as there is no time
to wait for future good frames at the decoder.

Assuming that in a VoIP system a future good packet will be available in the
playout buffer just after a series of lost packets, interpolation-based EC techniques
can be applied (de Martin et al. 2000). This assumption can yield additional delays in
speech decoding, though such delays do not affect ASR if the average time delay
caused by burst packet loss is less than 100 ms as mentioned in Sect. 4.2.3. The
interpolation-based EC algorithm has the potential to reconstruct a lost frame by
applying a linear or polynomial interpolation technique between the parameters of
the first and last correct speech frames before and after the burst packet loss. Such an
interpolation-based EC algorithm has been successfully implemented for NSR
(Mayorga et al. 2003; Gémez et al. 20006).

A novel approach was proposed in Mayorga et al. (2003), where different
weights of the language model with respect to the acoustic model were assigned
depending on PLR. From the NSR experiment using decoded speech from the
G.723.1 coder, it was shown that the average word error rate could be relatively
reduced by around 20% by changing the weight of the language model for a con-
tinuous French database when PLR was 10%.

4.4 Speech Coder for Speech Recognition Over IP Networks

In this section, a high-quality speech coder for NSR over IP networks is described,
which has been proposed in Yoon et al. (2007). From the view of speech quality and
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speech recognition performance, the proposed speech coder is based on the useof
Mel-frequency cepstral coefficients (MFCCs) for spectral envelope parameters
instead of linear prediction coefficients (LPCs). In other words, MFCCs are directly
transmitted to the decoder and used for ASR, where they are converted to LPCs for
speech coding. Therefore, one of the major concerns in the proposed speech coder is
how to efficiently compress or quantize MFCCs in terms of both speech coding and
speech recognition.

4.4.1 MFCC-Based Speech Coder

We propose a CELP-type speech coder, where the spectral envelope is represented
as MFCCs to maintain speech recognition performance at the server. In conventional
CELP speech coders, the spectral envelope is represented as LPCs, and then the LPCs
are quantized for transmission. However, since the proposed speech coder extracts and
quantizes MFCCs, a conversion procedure from MFCCs to LPCs is required, as shown
in Fig. 4.5. Since NSR can be performed with quantized MFCCs on the decoder side, the
performance of MFCC quantization is closely related to NSR performance. Thus, we
develop an efficient MFCC quantization method having a smaller number of bits, while
maintaining speech recognition performance.

The proposed speech coder was developed by making use of the structure of the
ITU-T Recommendation G.729 (1996). Here, the frame size is 10 ms, and each
frame is divided into two subframes for long-term prediction and excitation model-
ing. However, it should be noted that MFCC extraction, MFCC-to-LPC conversion,
and MFCC quantization are all different from G.729.

Figure 4.6 shows the procedure for obtaining MFCCs from the input speech. As
can be seen from the figure, the speech signal is high-pass filtered with a cut-off
frequency of 140 Hz, and then scaled down by a factor of 2 in the pre-processing
block. Next, the pre-processed signal is windowed by an asymmetric window identi-
cal to the window used in G.729. Then, each frame is zero-padded to form an ex-
tended frame of 256 samples. A 256-point fast Fourier transform (FFT) is then
applied to compute the magnitude spectrum of the windowed signal. The magnitude
spectrum is subsequently passed through 23 triangular mel-filterbanks, and each
mel-filtering output is transformed into a logarithmic scale. Finally, a discrete cosine
transform (DCT) is applied to obtain the 13 MFCCs, ( ¢,,c;,+,c; )-

Figure 4.7 shows the procedure for obtaining LPCs from MFCCs. Note that the
13 MFCCs are first zero-padded to make 23 MFCCs. Then, an inverse DCT (IDCT)
followed by the inverse logarithm is applied to these MFCCs, resulting in 23 fre-
quency samples. Next, the 23 frequency samples are linearly interpolated to make
256 frequency samples. The power density spectrum is then computed by the square
of the interpolated 256 frequency samples. A 256-point inverse FFT (IFFT) is ap-
plied to compute the autocorrelation coefficients, and the autocorrelation coefficients
are subsequently smoothed by the application of a lag window. Finally, 10 LPCs can
be obtained by using the Levinson-Durbin recursion.
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Fig. 4.5 Encoding structure of the proposed MFCC-based speech coder (From Yoon et al.
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Fig. 4.7 Procedure for converting MFCCs to LPCs for CELP-type speech coding

4.4.2 Efficient Vector Quantization of MFCCs

In this section, we propose a vector quantizer (VQ) based on predictive VQ (PVQ) to
reduce the bit-rate of the proposed speech coder by using the interframe correlation
of MFCCs (Ramaswamy and Gopalakrishnan 1998). In addition, a safety-net PVQ is
introduced to mitigate the effect of frame erasure on speech quality and speech rec-
ognition performance by minimizing error propagation (Eriksson et al. 1999).

Our proposed structure is based on the following investigation. First of all, we
measure the interframe correlations to justify the use of PVQ, which are defined by

N-1-k
Zci,n ci,n+k
n=0

N-l-k ) N-l-k )
Z Ci‘n Z Ci.n+k
n=0 n=0

where 7 is the quefrency index, k& is the frame interval, N is the total number of
frames, and c,, is the i-th MFCC of the n-th frame. Figure 4.8 shows the interframe
correlations of each MFCC according to a different number of intervals, where we
used 3,200 frames collected from the utterances spoken by 2 males and 2 females.
As shown in the figure, the MFCC of each frame was highly correlated with that of
the previous frame. Moreover, it was found that ¢, had the highest correlation

R(i,k) = (4.2)

among all the MFCCs, with a correlation coefficient greater than 0.95. Accordingly,
we divided MFCCs into two subvectors for quantization: a 1-dimensional vector C,,

[¢,], and a 12-dimensional vector C,, [¢,,---,¢,]".

Second, a safety-net PVQ is introduced by combining a PVQ with a memoryless
VQ, where the memoryless VQ plays a role in reducing the error propagation due to
the prediction structure of the PVQ (Eriksson et al. 1999). For a given MFCC vector,
selecting either PVQ or the memoryless VQ in the safety-net PVQ is required. To
this end, we use the Euclidean distance measure to select one of the VQs; PVQ is
selected if the distance from PVQ is smaller than that from the memoryless VQ, and
vice versa.



Speech Recognition Over IP Networks 75

1.0
0.9
Cﬂ
0.8
£ 07 c
‘&; 1
= @
E 2
o 0.6 g‘
s
C(w
0.5 C,
C7
0.4 ) gm
9
“ACH
0.3
1 2 3 4

Interval of frames

Fig. 4.8 Intraframe correlations of MFCCs (From Yoon et al. 2007, ©2007 IEICE)

Figure 4.9 shows the proposed VQ used in this paper. Here, an input MFCC vec-
tor of the n-th frame is split into two subvectors as

CO
Clnl= LC:_[[Z]J | @ 4.3)

c12

where C,[n] and C,[n] are, respectively, a 1-dimensional subvector and a 12-
dimensional subvector, as described above. Then, each subvector is quantized by its
corresponding safety-net PVQ, where a selector chooses between either PVQ or the
memoryless VQ depending on the Euclidean distance measure. In PVQ, the predic-
tion is based on the quantized MFCC vector of the previous frame, such that

C,[n=aC [n-1] (4.4)

where ¢, is the prediction coefficient of the previous frame of the i-th subvector in
Eq. 4.3. Specifically, we construct the memoryless VQ and PVQ for C, with a
multi-stage VQ, as it is generally known to be efficient in the search and training of
VQ for high dimensional vectors (Juang and Gray 1982). Finally, the number of bits
assigned to each quantization index is as described in Table 4.2.
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Fig. 4.9 Structure of a safety-net MFCC VQ combining PVQ and a memoryless VQ (From
Yoon et al. 2007, ©2007 IEICE)

In order to select the optimal numbers of bits for i,, i, and i;, we divide the
speech database into two parts. The first one, consisting of 172,800 American English
and Korean frames, is used for training the proposed VQ; the other, consisting of
48,400 frames, is used for the evaluation of VQ. Typically, the number of bits for
PVQ is closely related to the value of «,. In fact, we first select an optimal «,, and
then assign the proper number of bits to each index when PVQ works with the se-
lected optimal ¢, .

Table 4.2 Bit allocation for the MFCC VQ

Index No. of bits Description

i 1 Prediction selector for C,

i, 1 Prediction selector for C,

i 5 VQ index for C,

i 11 First stage VQ index for C,

i 7 Second stage VQ index for C,

Total 25
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As a criterion for selecting «, and assigning the number of bits, we use the fol-
lowing Euclidean distance measure

D(C,C) :%Vz; /Kzol(c ¢, f (4.5)

where K is the dimension of a subvector and is set as 1 for C, and 12 for C,, N is
the total number of frames, and ¢,, and ¢,, are the i-th elements of unquantized and
quantized subvectors of the n-th frame, respectively. Table 4.3 and Fig. 4.10 present
the performance comparison measured from Eq. 4.5 by varying the prediction coeffi-
cient and the number of bits for C,and C,, respectively. Note that as compared to the

distance of SVQ, the proper number of bits for C, should be set to 5 or more
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Fig. 4.10 Performance comparison by varying ¢, and the number of bits for C,, where (a,b)
in the x-axis represents the number of bits for the first and second stage, respectively (From
Yoon et al. 2007, ©2007 IEICE)

Table 4.3 Performance comparison of the Euclidean distance according to different values of
the prediction coefficient and the different number of bits assigned for C,

a, Safety-net PVQ SVQ
4 bits 5 bits 6 bits 8 bits

1.0 0.72 0.36 0.18

0.95 1.18 0.71 0.42 0.41

0.90 1.54 0.88 0.51
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Table 4.4 Bit allocation for the MFCC-based speech coder

Subframe

Parameter e id Frame
MFCC - 25
Adaptive codebook index 8 5 13
Pitch parity 1 - 1
Fixed codebook index 13 13 26
Fixed codebook sign 4 4 8
Conjugate codebook gain 7 7 14
Total 87

when ¢, = 1. However, when ¢, is less than 1, we need to assign more bits to PVQ
for C,. For this reason, we set o, =1, and assign 5 bits to i,, as shown in the third
row of Table 4.2. Similarly, the proper number of bits for C, is determined to be 18
when «, is between 0.75 and 0.95, with «, = 0.85 giving the best result. Exhaustive
experiments confirm that the best performance can be achieved using 18 bits, where
18 bits are split into 11 bits for i, and 7 bits for i, . As a result, the 13 MFCCs are
quantized with 25 bits, which is a reduction of 19 bits when compared with the SVQ
quantizer. Finally, we summarize the bit allocation of the proposed speech coder
with a bit-rate of 8.7 kbit/s, as shown in Table 4.4.

4.4.3 Speech Quality Comparison

We evaluated the performance of the proposed speech coder using the perceptual
evaluation of speech quality (PESQ) measure (ITU-T Recommendation P. 862 2001).
The experimental data consisted of 64 sentences spoken by four male and four fe-
male speakers. Each sentence was sampled with a rate of 8 kHz, and then filtered by
the modified IRS filter (ITU-T Recommendation G.191 2000) to simulate the condi-
tion as if the recording were done through mobile devices.

Table 4.5 shows the mean opinion score (ITU-T Recommendation P. 862 2001)
when the performances of the 8 kbit/s G.729 and the 8.7 kbit/s MFCC-based speech
coders were evaluated under packet loss free conditions. It also shows the MOS
score of the proposed speech coder according to different values of the prediction
coefficient «, for C,. Note that the prediction coefficient for C, was fixed as 1, as
described in Sect. 4.4.2. The MOS score of the MFCC-based speech coder was about
0.02 higher than that of G.729 when «, was between 0.85 and 0.95. That is, by
selecting an appropriate setting for «,, the MFCC-based speech coder had a better
performance than G.729. Fig. 4.11 and Table 4.5 further imply that 0.85 was the best
choice for «, under a packet loss free condition.

In practice, it is essential for a coding scheme to cope with packet loss. For this
reason, in order to evaluate the performance of the proposed speech coder under
packet loss conditions, we used the error insertion algorithm defined by the ITU-T
Recommendation G.191 (2000) to generate error patterns. Then, when a frame was
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erased, the proposed speech coder reconstructed the speech by using an extrapolation
technique from a previous good frame, which is similar to the interpolation-based
EC in G.729. Fig. 4.11 shows the MOS scores according to «, and frame erasure
rate (FER), where FER is identical to PLR if each packet is composed of a single
frame. Note that for the FER from 0% to 10%, it was found that the more «, de-
creased, the more robust the coder was to packet loss. Then, by considering the re-
sults shown in Table 4.5 and Fig. 4.11, it was concluded that «,=0.85 was again the
best selection for the MFCC-based speech coder.

Table 4.5 Comparison of PESQ scores of G.729 and the MFCC-based speech coder with
different o, with o, =1

G.729 MFCC-based speech coder ( «, ) (8.7 kbit/s)
(8 kbit/s) 0.75 0.80 0.85 0.90 0.95
3.828 3.836 3.837 3.848 3.843 3.848

3.7

PESQ (MOS)

33

2.9 T T T T

Frame Erasure Rate (%)

Fig. 4.11 PESQ scores under packet loss conditions obtained by varying the frame erasure
rates against a, for C, when o, =1 (From Yoon et al. 2007, ©2007 IEICE)

4.4.4 ASR Performance Comparison
A. ASR Baseline and Task

We evaluated the performance of NSR using the MFCC-based speech coder. As a
comparative experiment, a conventional client-based ASR, DSR, and another NSR
using G.729 were also evaluated in this subsection. For the client-based ASR system,
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we used the ETSI DSR front-end (ETSI Standard ES 201 108, 2003) to extract
MFCCs from the input speech signals but did not apply SVQ quantization to them;
conversely, we used the ETSI DSR compression algorithm to quantize MFCCs for
DSR. For the other NSR system using G.729, speech signals decoded by G.729 were
used for the ETSI DSR front-end.

The Aurora 4 database (Hirsch 2002) was derived from the Wall Street Journal
5000-word closed-loop task (WSJ0) to evaluate the performance of large vocabulary
continuous speech recognition (LVCSR). The database was divided into training and
test sets, where all utterances were sampled at a rate of 8 kHz. The training set was
constructed by adding six different noises (cars, babble, street traffic, train station,
restaurant, and airport) to the 7,138 utterances recorded by a Sennheiser close talking
microphone and several far talking microphones. Here, we performed the multi-
condition training for acoustic models. In the Aurora 4 database, fourteen test sets
were defined in order to evaluate speech recognition performance under the different
microphone and noise conditions. For this evaluation, we selected seven test sets,
where each set was composed of 330 utterances recorded by the Sennheiser close-
talking microphone under one clean and six different noise conditions. The average
signal-to-nose ratio (SNR) for the test utterances under noise conditions was meas-
ured at around 10 dB.

B. Loss-Free Condition

Table 4.6 shows the word error rates (WERs) of the ASR systems classified by three
configurations. The second and third columns show the WERs of the ASR system
under the client-based configuration and under the DSR configuration, respectively.
The WERs of the NSR systems using the MFCC-based speech coder and G.729 are
shown in the last two columns. As shown in Table 4.6, the client-based ASR system
provided the best ASR performance. The client-based ASR system, however, is
impractical for LVCSR because of the low power inherent in the small client devices.

Table 4.6 Comparison of the average word error rate (%) of different ASR configurations for
the Aurora 4 database under multi-condition training

ASR configuration NSR
Client-
based DSR G.729 MFC
coder C-based
Test set coder
Clean (Set 1) 18.21 18.92 19.39 18.87
Car (Set 2) 20.34 20.81 22.98 22.70
Babble (Set 3) 29.63 30.79 30.97 36.52
Restaurant (Set 4) 31.70 33.22 33.03 36.82
Street (Set 5) 32.51 32.71 34.19 36.41
Airport (Set 6) 28.21 28.73 29.93 32.36
Train station (Set 7) 32.84 33.79 35.36 37.18

Average WER 27.63 28.42 29.41 31.55
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A report regarding the complexity of ASR conducted by ETSI on the Aurora 4
database Parihar and Picone (2001) showed that the computational amount was 85
times longer than real-time on an 800 MHz dual processor Pentium III with 1 GB
RAM. This implies that the ASR system required a CPU time of 850 s to recognize
an utterance if the utterance was 10 s long. In addition, it was further reported in
Parihar and Picone (2001) that a memory size of around 300 MB to 650 MB was
required to process the Aurora 4 database. This indicates that a client-based ASR
approach is not yet realizable in terms of real-time processing, whereas the DSR
approach is more desirable for small computing devices due to the heavy computing
requirement of ASR. Thus, it was determined that our target performance should be
that of the DSR system, especially if we take into consideration the feasible imple-
mentation of the LVCSR system. When compared to the DSR system, it was found
that the average WER of the NSR system using G.729 significantly increased by
11.0%. On the other hand, contrary to the NSR system using G.729, the average
WER of the NSR using the MFCC-based speech coder only increased by about 3.5%.
Moreover, the relative WER of the NSR using the MFCC-based speech coder de-
creased by 6.8% compared with that of the NSR system using G.729.

C. Packet Loss Condition

We further evaluated the performance of ASR front-ends under packet loss conditions
The experimental setup for simulating the packet loss condition was identical to
that used for speech quality, as shown in Fig. 4.11. Figure 4.12 then shows the ave-
rage WERs of the three front-ends according to different frame erasure rates. It can
be seen in the figure that NSR using the MFCC-based speech coder provided a
more robust ASR performance than NSR using G.729, and it had comparable per-
formance to DSR for all frame erasure rates.
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Fig. 4.12 Comparison of average word error rates (%) of each ASR configuration under
different packet loss conditions (From Yoon et al. 2007, ©2007 IEICE)
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4.5 Conclusion

In this chapter, we summarized the issues regarding ASR over IP networks in a
framework of NSR. In this framework, it is basically assumed that speech must be
encoded for transmission at a client and an ASR server can make use of decoded
speech or the bitstream prior to speech decoding. Moreover, when compared to ASR
over mobile networks, speech transmitted over IP networks is subject to degradation
from sources inherent to the characteristics and limitations of IP networks and end-
to-end environments. We then discussed methods for improving speech quality and
the feature parameters for NSR according to speech coder distortion and packet loss.
It was suggested that there was no single unique method to compensate for all the
factors that could potentially degrade ASR performance, resulting in the combination
of several techniques to solve such problems.

Next, we proposed a CELP-type speech coder using MFCC for NSR, where the
spectral envelope was represented as MFCCs for speech recognition and speech
reconstruction on the decoder side. To efficiently quantize MFCCs with a low bit-
rate and make the proposed speech coder robust to packet loss, we then proposed a
safety-net scheme that combined predictive VQ and memoryless VQ. Through the
results of our experimental analysis, 25 bits per frame were assigned to MFCCs, and
an 8.7 kbit/s speech coder was developed by using the proposed quantization. In
addition, it was shown from the PESQ tests that the proposed MFCC-based speech
coder provided slightly better speech quality under both packet loss free and packet
loss conditions compared to the 8 kbit/s G.729 speech coder. Moreover, since the
proposed speech coder directly transmitted MFCC, the word error rate of NSR using
the proposed speech coder was relatively decreased by 6.8%, as compared to that of
NSR using G.729.
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Distributed Speech Recognition Standards

David Pearce

Abstract. This chapter provides an overview of the industry standards for Distributed Speech
Recognition developed in ETSI, 3GPP and IETF. These standards were created to ensure
interoperability between the feature extraction running on a client device and a compatible
recogniser running on a remote server. They are intended for use in the implementation of
commercial services for speech and multimodal services over mobile networks. In the process
of developing and agreeing the standards substantial performance testing was conducted and
these results are also summarised here. While other chapters provide more general information
about feature extraction and channel error processing for DSR this chapter focuses on intro-
ducing the specifics of the standards.

5.1 Introduction

It is estimated that in 2007 there are over 2 billion mobile phone subscribers worldwide
and the numbers continue to grow. The market was originally fuelled by person-to-
person voice communications and this remains the dominant “application.” Recently
we have seen increasingly sophisticated devices packed with many new features
including messaging, cameras, browsers, games and music. Alongside device devel-
opments the mobile networks have improved, giving increased coverage and wide-
spread availability of the 2.5G packet data such as General Packet Radio Service
(GPRS). There are also many new deployments of 3G networks, bringing much larger
bandwidths to mobile users. The 2.5G and 3G data capabilities provide the opportu-
nity to deliver a range of different audio and visual information to the user’s device
and enable access to “content” while on the move. The user interface for these devices
has certainly improved but the small keypad remains a barrier to data entry. Reliable
speech input holds the potential to help greatly. Alongside pure speech input and
output, the benefits of a multimodal interface are well appreciated. The ability to
combine alternative input modalities (e.g., speech and/or keypad) with visual (e.g.,
graphics, text, pictures) and/or audio output can greatly enhance the user experience
and effectiveness of the interaction.

For some applications it is best to use a recogniser on the device itself (e.g., inter-
facing to the phone functions and voice dialling using personal address book) while
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for others it will be preferable to connect to a remote recognition server (e.g., directory
assistance, voice search, information access). Although the computational power of
these devices is increasing, the complexity of large vocabulary speech recognition
systems is beyond the memory and computational resources of many devices. Also
the associated delay to download speech data files (e.g., grammars, acoustic models,
language models, vocabularies) may be prohibitive or be confidential (e.g., a corpo-
rate directory).

Server-side processing of the combined speech input and speech output can over-
come many of these constraints by taking full advantage of memory and processing
power as well as specialised speech engines and data files. New applications can also
be more easily introduced, refined, extended and upgraded at the server.

So, with the speech input remote from the recognition engine in the server, we
are faced with the challenge of how to obtain reliable recognition performance over
the mobile network. In addition we would like to have an architecture that can pro-
vide a multimodal user interface. These have been two motivators that have led to
the creation of the standards for Distributed Speech Recognition (DSR):

1. Improved recognition performance over wireless channels

The use of DSR avoids the degradations introduced by the speech codec and
channel transmission errors over mobile voice channels:

(a) By using a packet data channel (for example GPRS for GSM) to transport the
DSR features, instead of the circuit switched voice channel that is normally
used for voice calls, the effects of channel transmission errors are greatly re-
duced and consistent performance is obtained over the coverage area.

(b) By performing the front-end processing in the device directly on the speech
waveform, rather than after transcoding with a voice codec, the degradations
introduced by the codec are avoided.

(c¢) In addition the DSR Advanced Front-end is very noise robust and halves the
error rate in background noise compared to the Mel-Cepstrum front-end, giv-
ing robust performance for mobile users who are often calling from environ-
ments where there is background noise.

2. Ease of integration of combined speech and data applications for multimodal inter-
faces.

In multimodal interfaces, different modes of input (including speech or keypad)
may be used and different media for output (e.g., audio or visual on the device
display) are used to convey the information back to the user. The use of DSR en-
ables these to operate over a single wireless data transport rather than having sepa-
rate speech and data channels. As such, DSR can be seen as a building block for
distributed multimodal interfaces. See the chapter on “Software Architectures for
Networked Mobile Speech Applications” for a detailed discussion on multimodal
architectures.
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5.2 Overview of the Set of DSR Standards

A comprehensive set of DSR standards has been developed and agreed within the
international standards bodies (Pearce 2000). These cover the feature extraction algo-
rithms with their floating point specification and software, their fixed-point specifi-
cation and software, and the protocols and formats for feature transmission between
client device and remote recognition server. A summary of the set of DSR related
standards is given in Table 5.1.

Table 5.1 Summary list of the set of DSR standards

Standard no. Description Standards body
ES 201 108 Mel-Cepstrum Front-end ETSI STQ-Aurora
ES 202 050 Advanced Front-end (AFE) ETSI STQ-Aurora
ES 202 211 Extended Mel-Cepstrum Front-end (XFE) ETSI STQ-Aurora
ES 202 212 Extended Advanced Front-end (XAFE) ETSI STQ-Aurora
TS 26.243 Fixed point specifications for ES 202 050 3GPP
and ES 202 212
Rfc3557 RTP payload format for ES 201 108 IETF
Rfc4060 RTP payload formats for ES 201 050, ES 202  IETF

211 and ES 202 212

The feature extraction algorithms were developed and standardised within the
ETSI STQ Aurora DSR working group (more commonly referred to as “Aurora”).
The Mel-Cepstrum front-end was in widespread use for speech recognition systems
but with many variations using different parameters in their implementations. So the
first activity was to agree the specific parameters for a standard and to develop a
feature compression algorithm to reduce the transmission bandwidth to 4.8 kbit/s.
This resulted in the creation of the first ETSI Standard ES 201 108 2000 for the Mel-
Cepstrum front-end, its compression and its circuit switched transmission format.

For mobile environments where there is often background noise it was desired to
have a feature extraction standard that was more noise robust. So a new work item
was created with the goal of halving the word error rate in background noise compared
to the Mel-Cepstrum front-end standard. To compare the performance of different
candidate algorithms a set of evaluation databases, and back-end HMM recogniser
configurations together with an associated selection criteria were developed. A com-
petitive selection process was organised that eventually resulted in agreement on the
algorithms for the DSR Advanced front-end (AFE) (ETSI Standard ES 202 050 2002).

ETSI Aurora also saw the need in some applications to be able to reconstruct the
speech signal and to have a fundamental frequency feature to assist with tonal lan-
guage recognition. Rather than having a competition to develop this capability it was
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created by collaboration between the two companies that had candidate technologies.
This produced the extended front-end standards. One standard (ETSI Standard ES 202
211 2003) provides the extension of the Mel-Cepstrum front-end while the other (ETSI
Standard ES 202 212 2003) provides this functionality for the Advanced front-end.

For each of these ETSI standards, the algorithm is specified in floating-point
form, and a reference implementation in C forms part of the specification.

At the time of the Aurora work, the wireless industry was also introducing packet
data network capabilities, so in addition to the circuit switched payload formats
specified in ETSI Aurora, appropriate protocols and payload definitions needed to
be standardised for the DSR features. The IETF already had a framework to support
many different payload types for applications like Voice over IP and streaming video
within their Real Time Protocols (RTP), so this was a natural place to standardise the
format and create a MIME type for DSR. An activity was therefore started in the
IETF AVT working group to define the payload format for DSR in RTP and after
following the appropriate processes in the IETF two specifications were published:
the first being rfc3557 for ES 201 108 and the second, rfc4060, for the AFE and the
two extended front-ends.

With the DSR front-end standards created in ETSI Aurora it was anticipated that
these would be adopted and referenced within the specifications for the different
wireless and wireline networks (for example 3GPP, 3GPP2 and ITU). By each net-
work using the same DSR standard it would improve implementation efficiency and
interoperability providing ubiquitous access to voice servers over different data trans-
port networks.

The 3GPP (3rd Generation Partnership Project) is the body responsible for the
GSM and UMTS standards, and it was the first to consider the use of DSR for their
requirement to support of “Speech Enabled Services.” Before adopting DSR, the SA4
working group that looks after the specification of codecs wanted to be sure of the
performance advantages and to compare with any other alternatives. So a lot more
additional testing was performed within 3GPP working with commercial recognition
vendors, IBM and Nuance (Speechworks at the time), using their commercial recog-
nisers and testing with many larger speech databases (both public and private). The
result of this process was the selection of the DSR Extended Advanced Front-end as
the recommended codec for speech enabled services in 3GPP release 6. The fixed-
point version of the AFE and XAFE were also specified as standards to ensure inter-
operability by having bit-exact implementation of the standard. This is published as
standard 3GPP TS 26.243 (2004) which has the fixed-point C code specification
software included. There are also a set of test vectors specified for testing bit-
exactness to the standard (3GPP TS 26.177 2004).

Further details about each of these standards and their performance are given the
sections that follow.

5.3 Scope of the Standards

Figure 5.1 shows a block diagram of the processing stages of a DSR system. These
are split into the terminal (or client) side processing and the server side processing.
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Transmission between the client and server could be over either a wireless or a wireline
communication network or a combination. While the standards are not restricted to
this case it is anticipated that implementations will most likely use packet data proto-
cols to support the end-to-end connectivity. The general principle that was applied
when setting the standards was to specify the minimum to allow interoperability
between client and server. Where there are blocks in the processing chain that vendors
can further optimise in proprietary ways to obtain better overall performance then
these are not mandated but left open for service providers to implement as they
choose. For example, the standards only cover as far as the regeneration of static Mel-
Cepstrum features and it is left to the ASR vendor to select which features to use in
the recogniser and how to generate any derivative features as input to the decoder.

In the section below we progress through each of the blocks in the processing
chain and the last digit of the section numbers used below correspond to the num-
bered blocks in Fig. 5.1. The grey filled boxes in the processing chain are those
covered by the standard while the white filled ones are not.

Client Side Processing

2
- Speech Detection or
External control signal

[ 1 1
1Ay 3 4 B[ s 6

=| Electro-acoustics == Pre-processing 1=| Parameterisation == Compression & —pt Formatting [,
1 1 error protection

Server Side
Processing
——————— -
[ 8 C Ir 9 1 10 D
—] Error'd'etec'tlon& b—p| Decompression |y Server side FE [N Feature
mitigation | Post-processing | Derivatives
1

Fig. 5.1 Terminal/client side DSR processing chain

5.3.1 Electro-Acoustics

This block refers to everything that occurs during the conversion of the sound pressure
waveform to a digitised signal. These include the microphone transducer, analogue
filtering, automatic gain control, analogue to digital conversion.

The characteristics of the input audio parts of a DSR terminal will have an effect
on the resulting recognition performance at the remote server. Developers of DSR
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speech recognition servers can assume that the DSR terminals will operate within the
ranges of characteristics as specified in GSM 03.50 (GTS GSM 03.50). DSR terminal
developers should be aware that reduced recognition performance might be obtained
if they operate outside the recommended tolerances.

Sampling frequencies of 8, 11 and 16 kHz are supported in the original ETSI
Aurora DSR standards but for 3GPP only sampling rates of 8 and 16 kHz were stan-
dardised.

5.3.2 Speech Detection or External Control Signal

In many applications a function performed at the terminal side will determine when
the speech is to be processed and the DSR parameters transmitted over the network
to the server. Three alternative ways in which this transmission control can be per-
formed are:

1. speech detection—the input speech signal is used to determine when there is
speech activity

2. push-to-talk—a user controlled button indicates when processing and trans-
mission are to occur

3. a signal coming from another software module.

Speech detection is not part of the DSR front-end standard that is mandated. The
AFE standard does include a Voice Activity Detector (VAD) that can be used in con-
junction with the AFE and has been extensively tested but its use is not mandated.

5.3.3 Pre-Processing

This block is optional and in most implementations it will be absent. It is not part of
the DSR standard. Implementers may apply proprietary pre-processing stages ahead
of the DSR standard. When doing so it is a manufacturer’s responsibility to ensure
that any pre-processing does not degrade performance of a DSR service. The desired
result of any pre-processing is to give a signal as if it had been recorded at a higher
signal to noise ratio and it should not result in spectral distortion or clipping of the
speech signal. The output of this stage should remain within the constraints of GSM
03.50.

5.3.4 Parameterisation

The frame based speech processing algorithm generates the feature vector represen-
tation (B). This is specified in the front-end processing part of the DSR standard. In
the case of both the Mel-Cepstrum Front-end and the AFE it is the specification of
the front-end feature vector extraction that produces the 14-element vector consisting
of 13 Cepstral coefficients and log energy.

After further processing stages the corresponding feature vector is recreated at
the server side (point C in Fig. 5.1).
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5.3.5 Compression and Error Protection

The feature vector is compressed to reduce the data rate and error protection bits are
added. This stage is specified as part of the DSR standards. In the DSR standards a
split vector quantisation algorithm is used and error detection bits are added to each
frame pair.

5.3.6 Formatting

The compressed speech frames are formatted into a bitstream for transmission. Both
circuit data and packet data transmission are supported. The format is defined for a
pair of 10 ms speech frames consisting of the quantised cepstral parameters. For
circuit switched transmission a multiframe format with associated header and syn-
chronisation bits is defined while for packet data a payload consisting of any number
of frame pairs is specified in the IETF real-time protocol (RTP) payloads. The same
frame pair format is used in both cases.

5.3.7 Error Detection and Mitigation

The formatted bitstream is received and unpacked at the remote server. Depending
on the particular transmission channel the number and type of transmission errors
will vary but for an unreliable channel (e.g., without retransmission) there will be
errors in the received payload. For mobile channels these are often have burst char-
acteristic. The standard therefore specifies a method for error detection and mitigation
of these errors although there are situations where these may not be needed.

5.3.8 Decompression

Decompression is often performed in conjunction with the error mitigation using the
quantisation tables to look up the corresponding cepstral features and recover the
static feature vector.

5.3.9 Server Side Post Processing

This block is optional and often not present. It is to allow vendors the freedom to
further process the received cepstral features and deliver any chosen representation
(or subset of the features) to their back-end recogniser.

5.3.10 Feature Derivatives

It is common practice in speech recognition systems to extend the static cepstral
feature parameters by adding derivative features (velocity and acceleration) before
passing them to the back-end decoder. These have been found to give better recogni-
tion performance and it is usual to use 12 cepstral coefficients and either the log
energy or CO plus as the static features plus their first and second order derivatives to
make a feature vector of dimension 39. Nevertheless, since this part of the processing
is entirely at the server side and does not impact interoperability, it is left open to the
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implementer to choose whatever processing is most appropriate for their recognition
system. Vendors may also choose whether or not to use the voice activity detection
(VAD) bit in the AFE to drop non-speech frames between utterances and not pass
these to the recogniser.

5.4 DSR Basic Front-End ES 201 108

The goal of the first standard was to agree the details of the processing for the widely
used Mel-Cepstrum front-end features and produce a DSR standard relatively
quickly while acknowledging it had weaknesses in background noise. The process of
obtaining agreement on the details was based on starting with a software implemen-
tation proposed by one of the Aurora participants (Nokia) and then modified based
on discussion and inputs from other organisations. Each change was justified by
demonstrating performance gains on the Aurora-1 database (a predecessor to Aurora-
2 database based on noisy connected digits recognition task—see below) and a pub-
licly available and widely used recognizer called HTK (Hidden Markov Model Tool
Kit) (http://htk.eng.cam.ac.uk) at that time produced by the company Entropic (and
currently distributed by Cambridge University, UK).

5.4.1 Feature Extraction

Figure 5.2 shows a block diagram of the processing for the Mel-Cepstrum feature
extraction algorithm. After pre-emphasis and windowing the short term spectrum is
obtained by an FFT. This linear spectrum is then warped into a non-linear spectral
distribution of 24 bins using triangular weighting filters on a Mel-scale. The 12 cep-
stral coefficients are obtained by retaining the 12 lowest quefrency coefficients after
taking the cosine transform of the logarithm of the 24 Mel-spectrum bins. The chosen
frame rate is 10 ms. The total energy of each frame is also computed before the pre-
emphasis filter. The final output feature vector consists of 12 cepstral coefficients
(C1-C12), log Energy and CO.

5.4.2 Compression

The requirement set for the target bit-rate was 4.8 kbit/s. The feature compression
method selected uses split vector quantisation (SVQ). The 14 coefficients are split into
7 subvectors each consisting of a pair of cepstral coefficients. Ci and Ci+1, i=1,3...11
are quantised using a codebook size of 64 (6 bits) while the CO and logE pair uses a
larger codebook size of 256 (8 bits). The larger codebook was needed for CO and logE
to cover wider dynamic range without recognition performance degradation due to
quantisation. The 7 subvectors at 6 bits each plus the one codebook with 8 bits gives a
total of 44 bits per 10 ms frame. The chosen SVQ scheme provides a reasonable com-
promise between coding efficiency, computational complexity and error resilience.
While other published papers have shown that it is possible to achieve greater
compression without performance loss, the design requirement of 4.8 kbit/s was
met and the small subvectors allow flexibility in alternative error mitigation strategies.
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Fig. 5.2 Block diagram of the Mel-Cepstrum front-end algorithm

5.4.3 Error Detection and Mitigation

To assist with the detection of transmission errors 4 bits of error detection bits in the
form of a Cyclic Redundancy Code (CRC) are added to each pair of speech frames
(i.e., 44 bits for the first frame + 44 bits for the second + 4 bits of CRC).

The algorithm for error mitigation consists of two stages:

1. Detection of speech frames received with errors
2. Substitution of parameters when errors are detected.

To detect the speech frames received with errors the 4 error detection bits on
each pair of frames are used first. Since errors may be missed due to overloading of
the CRC a heuristic algorithm that looks at the consistency of the parameters in the
decoded frames is also used. It measures the difference between cepstral coefficients
for adjacent frames and flags them as errored if the difference is greater than ex-
pected for speech. The thresholds used are based on measurements of error free
speech. If this algorithm was to run continuously then the number of misfirings could
be too high, therefore it is only applied in the vicinity of detected CRC errors.

When a frame is flagged as having errors then the whole frame is replaced with a
copy of the cepstral parameters for the nearest good frame received (occurring before
or after the frame under consideration) (Pearce 2004b).
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5.5 DSR Advanced Front-End ES 202 050

5.5.1 Feature Extraction

The AFE uses 10 ms frames and produces an output feature vector consisting of 12
cepstral features, CO and log energy. Keeping the frame rate and parameters the same
as for the Mel-Cepstrum front-end standard makes it relatively easy for server recogni-
tion engines to integrate the new robust DSR features without needing to change
substantial aspects of the rest of the system. In most cases it is sufficient to retrain
the recognition models from the source speech data and perhaps reoptimise a few
control parameters.

The noise robustness of the AFE comes from the combination of a set of process-
ing stages all of which contribute to the overall performance. At the heart of the algo-
rithm are two stages of Wiener filtering that are performed first in the frequency
domain before converting back to the time domain for a stage of waveform processing
noise reduction. Finally, the cepstral features are computed and blind equalisation is
applied to these. This stage helps to reduce the variability in the features and has a
similar motivation to cepstral mean normalisation techniques.

The details of the algorithms are presented in the standard documents themselves
(ES 202 050 2002) and readers may also find the explanations in the book by
Peinado and Segura (Peinado and Segura 2006) helpful gaining a better understanding
of the techniques used in the standard.

5.5.2 VAD

Compared to the DSR Mel-Cepstrum standard, one further enhancement coming
from the Advanced Front-end is the inclusion of a bit in the bitstream to allow the
communication of VAD. The VAD algorithm marks each 10 ms frame in an utter-
ance as speech/non-speech so that this information can optionally be used for frame
dropping at the server recogniser. During recognition, frame dropping reduces inser-
tion errors in any pauses between the spoken words particularly in noisy utterances
and can be used for end-pointing for training. It has been found that performance is
particularly helped by model training with end-pointed data. The VAD information
can also be used to reduce response time latencies experienced by users in deployed
applications by giving early information on utterance completion.

5.5.3 Compression

The compression algorithm for the cepstral features uses the same split vector quan-
tisation scheme as the earlier standard but with the quantiser tables retrained for the
Advanced Front-end. To allow the VAD bit to be transmitted for each frame within
the same payload size of 44 bits per 10 ms frame, the codebook size for the pair of
highest order cepstral coefficients (C11 and C12) was reduced from 64 to 32. The
frame pair transmission format is therefore very similar to that of the Mel-Cepstrum
DSR standard with the only difference being that for each frame the 6 bit codebook
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for C11 and C12 in ES 201 108 is replaced by the 5 bit codebook for C11 and C12
plus the one bit for the VAD flag for the frame.

5.6 Recognition Performance of the DSR Front-Ends

5.6.1 Aurora Speech Databases and ETSI Performance Testing

Between 1999 and 2002 ETSI Aurora conducted a competitive selection process to
create an Advanced DSR front-end standard that would provide improved robustness
compared to the Mel-Cepstrum front-end. To support this, a new performance
evaluation process and associated speech databases were created to allow the com-
parison between candidates. Three sets of noisy database were used for these per-
formance evaluations:

1. Aurora-2 connected digits with simulated addition of noises (Hirsch, Pearce
2000)

2. Aurora-3 connected digits from real-world data collected in vehicle (5 lan-
guages)

3. Aurora-4 large vocabulary 5000 word Wall Street Journal dictation with simu-
lated noise addition.

These databases have been made available for public distribution through the
European Language Resource Association (ELRA) (www.elra.info) and are widely
used in the speech research community to assess and compare new algorithm per-
formance.

For the ETSI Aurora evaluations a reference back-end recogniser was defined for
each database so that comparisons between different candidate front-ends could be
made with the same fixed recogniser. For Aurora-2 and Aurora-3 the publicly avail-
able HTK was used with an agreed specific configuration for the model training
and testing (number of states and mixtures per model, training iterations etc). For
Aurora 4 an HMM recogniser framework suitable for this large vocabulary task was
commissioned and prepared by the University of Mississippi. In each case the Mel-
Cepstrum front-end in ES 201 108 provided a reference recognition performance on
each database by which to measure the performance improvements from the alterna-
tive candidates. The performance was measured using word error rate.

A scoring procedure was agreed that gave appropriate weight to the results from
each of the databases. The winning candidate that became the AFE standard gave an
average of 53% reduction in word error rate compared to the DSR Mel-cepstrum
standard (ES 202 108). Details of the Aurora-3 performance results are given below,
while results on the other databases can be found in Macho et al. (2002).

5.6.2 Aurora 3: Multilingual SpeechDat-Car Digits—Small Vocabulary
Evaluation

The purpose of the Aurora-3 tests was to evaluate the performance of the front-end on
a database that has been collected from speakers in a real-world noisy environment.
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It tests the performance of the front-end both when the training and testing conditions
are well-matched as well as in mismatched conditions as often encountered in de-
ployed DSR systems. The database also served to test the front-end on a variety of
languages: Finnish, Italian, Spanish, German, and Danish. It is a small vocabulary
task consisting of the digits selected from a larger database collection called
SpeechDat-Car obtained from users in the real-world noise environment of the car.
The databases each have 3 experiments consisting of training and test sets to measure
performance with:

1. Well matched training and testing—Train and test with the hands-free micro-
phone over the range of vehicle speeds with the training and test sets covering
a similar range of noise conditions.

2. Moderate mismatch training and testing—Model training is performed on only
of a subset of the range of noises present in the test set. The hands-free micro-
phone for lower speed driving conditions is used for training and hands-free
microphone at higher vehicle speeds for testing.

3. High mismatch training and testing—Model training is performed with
speech from the close-talking microphone and tested with the data from the
hands-free microphone at range of vehicle speeds.

The results are presented below for the five languages making up the Aurora 3
database and using the HTK recogniser in its “simple” configuration i.e., 3 mixtures
per state. The overall performance was computed as a weighted average of the dif-
ferent conditions i.e., 40% weight given to the well matched (W), 35% weight given
to the medium mismatch (M) and 25% given to the high mismatch (H) results. These
are shown in the row in the tables of results labelled “0.4W-+0.35M+0.25H.” Table
5.2 shows the absolute performance for the DSR Mel-Cepstrum Front-End as word
accuracy, which then serves as a baseline for the performance comparisons with the
Advanced Front-end.

Table 5.2 Baseline word accuracy performance of the Mel-Cepstum front-end ES 201 108 on
the Aurora 3 database

Absolute performance

Training mode Italian ~ Finnish  Spanish ~ German  Danish  Average
Well matched 92.39%  92.00%  92.51%  91.00%  86.24% = 90.83%
Medium mismatch 7411%  78.59%  83.60%  79.50%  64.45% = 76.05%
High mismatch 50.16%  35.62%  52.30%  72.85%  35.01% = 49.19%

0.4W+0.35M+0.25H  75.43%  73.21%  79.34%  82.44%  65.81%
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The top half of Table 5.3 shows the absolute performance that is obtained when
the speech is processed by the DSR Advanced Front End. The bottom half of the
table shows the relative performance when compared to the Mel-Cepstrum baseline
shown above in Table 5.2. The relative improvement is computed as the percentage
reduction in the word error rate. On the Aurora 3 database the Advanced front-end
provides an average improvement of 56%.

Table 5.3 Word accuracy performance of the Advanced front-end (ES 202 050) on the
Aurora 3 Database

Absolute performance
Training mode Italian  Finnish  Spanish ~ German  Danish  Average
Well matched 96.90%  95.99%  96.66%  95.15%  93.65% = 95.67%

Medium mismatch 93.41%  80.10%  93.73% 89.60%  81.10%  87.59%
High mismatch 88.64%  84.77%  90.50% 91.30%  78.35%  86.71%

0.4W+0.35M+0.25H  93.61%  87.62%  94.09%  92.25%  85.43%

Performance relative to Mel-Cepstrum Front-End

Training mode Italian ~ Finnish  Spanish ~ German  Danish  Average
Well matched 59.26% 49.87%  55.41%  46.11%  53.85% = 52.90%
Medium mismatch 74.55%  7.05% 61.77%  49.27%  46.84%  47.89%
High mismatch 7721%  76.34%  80.08%  67.96%  66.69%  73.66%

0.4W+0.35M+0.25H  69.10%  41.50%  63.80%  52.68%  54.60%

5.7 3GPP Evaluations and Comparisons to AMR Coded Speech

3GPP is the body that sets the standards for GSM and UMTS mobile communications.
In 2002 3GPP conducted a study and produced a technical report on the feasibility of
speech enabled services. The technical report (3GPP TR 22.977 2002) provides an
overview of the speech and multimodal services envisaged and a new work item called
Speech Enabled Services (SES) was started. The SA4 codecs group within 3GPP was
the working group with responsibility for the selection and recommendation of the
codec for SES. Following the usual process SA4 first agreed a selection procedure
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consisting of “design constraints” to set requirements on the SES front-end, “test
and processing plan” to specify how to test and evaluate the performance of the can-
didates and “recommendation criteria” to define in advance what criterion would be
used to select and recommend a “codec” standard for SES. Two candidates for the
SES codec were considered: AMR and AMR-WB (being the existing voice codecs
for 3GPP) and the DSR Extended Advanced Front-end. DSR would need to demon-
strate substantial performance gains compared to the existing voice codec to justify
the introduction of a new codec for SES services. Rather than using HTK for the
performance evaluations it was decided that it would be best to use the talents of
major server recognition vendors for the evaluations. By using commercial recognis-
ers results would be indicative of what could be obtained from deployed commercial
services. IBM and SpeechWorks (now Nuance) were the two ASR vendors who
volunteered to undertake the extensive testing. The performance evaluations were
conducted over a wide range of different databases some of which were brought in
from 3GPP but also large proprietary databases owned by the ASR vendors. Testing
covered many different languages (German, Italian, Spanish, Japanese, US English,
Mandarin), environments (handheld, vehicle) and tasks (digits, name dialling, and
place names). In addition, the codecs were tested under block transmission errors.

The results were reported at the SA4 meeting in February 2004 in Malaga and are
summarised in Tables 5.4, 5.5 and 5.6. The average absolute performances are given
as the percentage word error rates and the relative improvement as the reduction in word
error rate provided by DSR compared to the AMR speech codec. Note that the results
from both the ASR vendors have been averaged to preserve anonymity the source.

The comparisons between the AMR and DSR performances were made at two
different categories of transmission bit rates. Speech enabled services need to operate
over a variety of different packet data channels and consideration of these determined
that it was appropriate to compare at a low data rate and at a high data rate. For ex-
ample, the lowest bit rate was determined by considering the conversational class of
service on a GPRS single slot uplink channel (coding scheme CS-1) the maximum
source data rate is 5.6 kbit/s. The AMR narrow band speech codec can operate at a
range of bit rates from 4.8 kbit/s to 12.2 kbit/s but to limit the number of experiments
to a practical number it was decided to test at these two rates. Thus for the low data
rate comparison, AMR 4.75 was compared to DSR (5.6 kbit/s). For the high data rate
comparison, AMR 12.2 was compared to DSR (5.6 kbit/s). Evaluations were also
made at higher sampling rate of 16 kHz; for this comparison the AMR wideband
codec (AMR-WB) at 12.65 kbit/s was compared to 16 kHz DSR (5.6 kbit/s).

A detailed summary of the selection process followed, the testing procedures and
the results can be found in the 3GPP Technical Report reference (3GPP TR 26.943
2004). The results are reproduced in the tables below. These results show a substantial
performance advantage for DSR compared to AMR both at 8 kHz and at 16 kHz.
DSR also shows particularly good robustness to channel errors with no degradation
at 3% block error rate (BLER) and a further result obtained at 10% BLER also shows
consistent performance for DSR whereas AMR performance falls substantially.

Based on these results DSR was selected as the recommended codec for Speech
Enabled Services by SA4 and subsequently approved by 3GPP SA in June 2004
(Pearce 2004a).
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Table 5.4 3GPP WER performance comparisons between DSR and AMR-NB 4.75

8 kHz No. of AMRA4.75 DSR Average
databases average average improvement
tested absolute absolute (%)
WER WER

Digits 11 13.2 7.7 39.9
Sub-word 5 9.1 6.5 30.0

Tone confusability 1 3.6 3.1 14.8
Channel errors 4 6.1 2.4 52.8
Weighted average 36

Table 5.5 3GPP WER performance comparisons between DSR and AMR-NB 12.2

8 kHz No. of AMRA4.75 DSR Average
databases average average improvement
tested absolute absolute (%)
WER WER

Digits 11 10.9 7.7 27.6
Sub-word 5 7.1 6.5 14.5

Tone confusability 1 3.8 3.1 19.7
Channel errors 4 5.5 2.4 40.9
Weighted average 25

Table 5.6 3GPP performance comparisons at 16 kHz between DSR and AMR-WB 12.65

16 kHz No. of AMRA4.75 DSR Average
databases average average improvement
tested absolute absolute (%)
WER WER
Digits 8 9 5.6 35
Sub-word 5 8.2 59 23.5
Channel errors 4 6.1 34 422

Weighted average 31
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5.8 ETSI DSR Extended Front-End Standards ES 202 211 and ES
202 212

ES 202 211 is an extension of the Mel-Cepstrum DSR Front-end standard ES 201
108. In a similar way, ES 202 212 provides the extension of the DSR Advanced
Front-end ES 202 050 to allow reconstruction for the AFE. The front-ends provide
the features for speech recognition but these are not available for human listening.
The purpose of the extension is to allow the reconstruction of the speech waveform
from these features so that they can be replayed for human audition. The front-end
feature extraction part of the processing is exactly the same as for ES 201 108. For
speech reconstruction additional fundamental frequency (perceived as pitch) and
voicing class (e.g., non-speech, voiced, unvoiced and mixed) information is needed.
This is the extra information that is provided by the extended front-end processing
algorithms at the device side that is compressed and transmitted along with the front-
end features to the server. This extra information may also be useful for improved
speech recognition performance with tonal languages such as Mandarin, Cantonese
and Thai. The compressed extension bits need an extra 800 bps on top of the
4800 bps for the Mel-Cepstral features, as shown in Fig. 5.3.

One of the main use cases for the reconstruction is to assist dialogue design and
refinement. During pre-deployment trials of services it is desirable to be able to lis-
ten to dialogues and check the overall flow of the application and refine the vocabu-
lary used in the grammars. For this and other applications of the reconstruction the
designer needs to be able to replay what was spoken to the system at the server (off-
line) and understand what was spoken. To test the intelligibility of the speech two
evaluations were conducted. The first is a formal listening test for intelligibility
called the Diagnostic Rhyme Test (DRT) that was conducted by Dynastat listening
laboratories. The results of this are shown in Table 5.7. For comparison the MELP
codec used for military communications was chosen as a suitable reference. The
DSR reconstruction performs as well as MELP in the DRT tests giving confidence
that the intelligibility is good. The franscription task is closer to the situation that
would occur in an actual application. To measure and compare the transcription
accuracy, a professional transcription house was used to transcribe sentences sourced
from the Wall Street Journal that had been passed through the DSR reconstruction
and the LPC-10 and MELP reference codecs. As well as clean speech, car, street and
babble noises were added to the source sentences. Afterwards the number of errors
was measured by counting the number of missed, wrongly transcribed or partially
transcribed words. Table 5.8 shows the results of this assessment and the average
percentage transcription error for each coder. The DSR reconstruction gave less than
1% transcription errors and fewer errors than for either LPC-10 or MELP reference
codecs.

In ETSI Aurora, the pitch feature was also tested for tonal language recognition of
Mandarin and Cantonese and shown to give better performance than proprietary
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Fig. 5.3 Extended DSR front-ends

Table 5.7 Intelligibility listening tests using Diagnostic Rhyme tests (conducted by Dynastat
listening laboratory)

Unprocessed 95.7 95.5 92.4 93.8
XFE reconstruction 93.0 88.8 85.0 87.1
XAFE reconstruction 92.8 88.9 87.5 87.9
LPC-10 86.9 81.3 81.2 81.2
MELP 91.6 86.8 85.0 85.3

Table 5.8 Listening test transcription task results: The list numbers in each cell of the table
show the number of missed/wrongly transcribed/partially transcribed words

Uncoded (original) 1,1,2 1,0,1 02,4 393 0.4,1 0.6
XFE reconstruction 1,6,1 0,3,6 29,4 5,92 1,4,5 1.0
XAFE reconstruction  0,6,2 0,5,4 0,4,3 3,52 1,6,5 0.8
LPC-10 coder 8,18,6 62,26,7 67,227 47,123 18,109 5.5
MELP coder 0,3,1 1,6,3 4,6,2 16,103 19,5 1.2
No. of words in 1166 1153 1155 1149 1204 Total:
message

5827
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pitch extraction algorithms available at the time. Further information about the ex-
tension algorithms and their performance can be found in Ramabadran et al. (2004)
and Sorin et al. (2004).

5.9 Transport Protocols: The IETF RTP Payload Formats
for DSR

In addition to the standards for the front-end features themselves, protocols for the
transport of these features from the device to the server are also needed. The IETF
Real Time Protocol (RTP) is a well established mechanism for the transport of many
different media types including video, VoIP, and music. Associated with RTP are
also the SIP protocols for session initiation and codec negotiation. By defining a
RTP format for the DSR features, services benefit from all of the added functionality
of this set of protocols, as well as the support of other media types for multimodal
applications. Formats for the RTP payloads for all the DSR standards have been
published as at the /ETF (IETF Xie 2003; IETF Xie and Pearce 2005).

Within these payloads any number of frame pairs may be sent within a packet.
For the front-end features on their own this takes 12 bytes per frame pair and with
the extension it takes 14 bytes per frame pair. The format allows an arbitrary number
of frame pairs to send in each RTP payload. This allows the system designer flexibil-
ity with the choice depending on the latency and bandwidth of the channel available.

The total overhead for the protocol headers in the stack is quite high as shown in
Table 5.9.

Table 5.9 RTP Protocol header sizes for packet data transport

Data Size (bytes)
RTP 12
UDP 8
1P 20
Total 40

For low data rate channels such as GPRS it is appropriate to use multiple
frames (DSR uplink or coded speech on downlink) per RTP payload to reduce the
total bandwidth and therefore latency (e.g., four to ten). For higher data rate channels
perhaps with residual packet loss such as UMTS a smaller number of frames per
packet can be used (e.g., one or two). In testing a prototype implementation it has
been found that even on GPRS the latencies are quite acceptable (less than two sec-
onds) and for higher speed channels much less.
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5.10 Conclusion

This chapter has presented the DSR standards that were created within ETSI, 3GPP
and the IETF to enable the implementation of speech and multimodal services with
the best possible performance. In particular they target services using remote speech
recognition over narrow bandwidth mobile channels. For mobile device users access-
ing such services, the speech recognition performance in background noise, the ro-
bustness to channel errors and the response time are all important factors impacting
the usability and quality of the user experience. As the capabilities of mobile speech
services such as voice driven search progress, the enhanced performance from DSR
can only help grow the take-up and popularity of these services and the satisfaction
of users.
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Speech Feature Extraction and Reconstruction

Ben Milner

Abstract. This chapter is concerned with feature extraction and back-end speech reconstruction
and is particularly aimed at distributed speech recognition (DSR) and the work carried out by
the ETSI Aurora group. Feature extraction is examined first and begins with a basic imple-
mentation of mel-frequency cepstral coefficients (MFCCs). Additional processing, in the form
of noise and channel compensation, is explained and has the aim of increasing speech recogni-
tion accuracy in real-world environments. Source and channel coding issues relevant to DSR
are also briefly discussed. Back-end speech reconstruction using a sinusoidal model is explained
and it is shown how this is possible by transmitting additional source information (voicing and
fundamental frequency) from the terminal device. An alternative method of back-end speech
reconstruction is then explained, where the voicing and fundamental frequency are predicted
from the received MFCC vectors. This enables speech to be reconstructed solely from the
MEFCC vector stream and requires no explicit voicing and fundamental frequency transmission.

6.1 Introduction

To perform automatic speech recognition from a terminal device, three architectures
can be considered. The first is an embedded architecture where all speech processing
is performed on the terminal device itself. Processing power limitations make this
suitable only for small-scale speech recognition applications such as voice dialling.
Part IIT of this book examines embedded speech recognition. The second architecture
is network speech recognition (NSR) where the speech signal is encoded by a codec
and transmitted to a remote speech recogniser for decoding. This is currently the most
frequently used method of performing speech recognition from mobile devices. Part
I of this book examines network speech recognition. Finally, the third method is
distributed speech recognition (DSR), where feature extraction (or front-end process-
ing) is performed on the terminal device and decoding (or back-end processing) is
performed remotely. Figure 6.1 illustrates example architectures for NSR and DSR
to highlight their differences.

The main difference between NSR and DSR is the location of feature extraction
and the format of speech data that is transmitted from a terminal device to a remote
recogniser. In NSR a speech codec is used to encode and decode speech for trans-
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mission across the network to the remote recogniser, whereupon feature extraction is
applied. In DSR, feature extraction takes place on the terminal device and a stream of
feature vectors is transmitted to the remote recogniser, as opposed to an encoded
audio signal as in NSR. Chapters 2 and 5 provide detailed discussions into NSR and
DSR architectures and examine their advantages and disadvantages.

In both NSR and DSR, the feature extraction components are often identical, as
both have the task of transforming a time-domain speech signal into a series of feature
vectors. With NSR, the input to feature extraction will have been compressed by a
low bit-rate speech codec that will have distorted the speech in some way. In DSR,
the original time-domain signal forms the input to the feature extraction, although
both source coding and channel coding of the speech feature vectors must be applied
in preparation for transmission to the remote recogniser. This leads to one of the
problems of DSR which is that only parameterised speech feature vectors are re-
ceived by the remote recogniser back-end. As no time-domain signal is received
playback of the speech signal is not straightforward. This has been identified as a
particular problem with DSR architectures, although several methods have been
proposed to enable back-end speech reconstruction.

Recognition Recognition
decoding speech decoding
speech f ¢ ?
Tempqral Feature Temporal
derivatives extraction derivatives
Feature Compression Uncompress
extraction
v 1 v *
Speech codec Speech codec Packetisation Unpack
(encoding) (decoding)
{ Network f { Network ?
codec parameters feature vectors
a) b)

Fig. 6.1 Comparison of (a) network speech recognition (NSR) and (b) distributed speech
recognition (DSR) architectures

The aim of this chapter is to first explain the operation of feature extraction,
whether it be implemented for NSR or DSR. Some consideration is given to DSR
applications where compression and error protection of the speech features is impor-
tant. Practical issues such as robustness to acoustic noise and channel distortion are
also examined. The discussion on feature extraction is strongly biased towards mel-
frequency cepstral coefficients (MFCCs) as they are probably the most widely used
speech feature in current speech recognition technology (Davis and Mermelstein
1980). They have also been adopted as the standardised speech feature for DSR by
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the ETSI Aurora group (ETSI 2003a,b, 2007). The second part of the chapter describes
how a speech signal can be reconstructed at the back-end of a DSR system. Two
methods to achieve this are explained with the first discussing the implementation
proposed by the ETSI Aurora group which utilises the received MFCC vectors and
additional source information (ETSI 2003b). The second method is an alternative
that requires no additional information other than the MFCC vector stream itself
(Milner and Shao 2007).

6.2 Feature Extraction

Feature extraction is the first stage of automatic speech recognition and transforms
the input audio signal into a form suitable for classification. This typically involves
several processing stages that output a stream of feature vectors which encode the
spectral and temporal evolution of the speech signal. Some of the more successful
feature extraction methods incorporate perceptual properties of human hearing and
human speech production. For example, feature extraction methods such as Mel-
frequency cepstral coefficients (MFCCs) and perceptual linear prediction (PLP) in-
corporate properties of human hearing at several stages of the feature extraction process
(Davis and Mermelstein 1980; Hermansky 1990). Most feature extraction algorithms
also consider properties of speech generation to maximise the discrimination between
different speech sounds. For speech recognition, vocal tract information is considered
more useful than source information. As a result, many feature extraction methods
apply cepstral processing to separate vocal tract information from source information
(Oppenheim and Schafer 1989).

Of all features proposed for speech recognition, MFCCs have been proved to be
the most effective and widely used. Their use has been further re-enforced by their
adoption by the ETSI Aurora group as the standard for DSR (ETSI 2003a). Due to
their widespread deployment in DSR, MFCC features form the basis of the discus-
sions into feature extraction in this section. A basic implementation of MFCC-based
feature extraction is described first, which is suitable for clean, undistorted speech.
Consideration is then given to the practical deployment of feature extraction which
needs to take into account the undesirable affects of acoustic noise and channel dis-
tortion. The last stages of feature extraction, which take place on the server side,
such as computation of temporal derivatives, are finally discussed.

6.2.1 Basic Terminal-Side Feature Extraction

Terminal-side feature extraction transforms the input audio signal into a stream of
static feature vectors that are subsequently compressed and packetised for transmission
to the recogniser back-end located on a remote server. This section describes basic
MFCC feature extraction as specified in the first version of the ETSI Aurora DSR
standard (ETSI 2003a). Figure 6.2 shows the processing stages for transforming a
speech signal, s(n), into MFCC vectors, ¢*.
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Fig. 6.2 ETSI Aurora standard for computing MFCC vectors

Pre-Emphasis

Feature extraction begins by pre-emphasising the speech signal using a high-pass
filter. Speech signals tend to be low-pass in character and the application of high-
pass filtering serves to spectrally balance the signal. Given an input speech signal,
s(n), the pre-emphasised output speech signal, x(n), is computed,

x(n)=s(n)-as(n-1) (6.1)

a is the filter coefficient and a suitable value, as used in the ETSI Aurora standard, is
a= 0.9. In practice the precise choice of « does not have a significant effect on
recognition accuracy.

Hamming Window

A Hamming window, /(n), is applied to the pre-emphasised speech signal to extract
short-duration frames, x;(n), which will subsequently be transformed into feature
vectors, where i indicates the frame number,

x(n)=x(n+Siih(nl 0<n<W-1 (6.2)

where the Hamming window, /(n), is defined,

h(n)=0.54—0.46cos [W) (6.3)

The time duration of the Hamming window varies for different feature extraction
algorithms, but is typically in the range 10 ms to 50 ms which gives W= 80-W= 400
samples for 8 kHz sampled speech. This represents a time duration over which the
speech can be assumed stationary, although for some sounds the speech remains
stationary for much longer. A stream of short-duration frames of speech is extracted
by sliding the Hamming window along the speech signal by S samples and output-
ting a new window of samples. For the ETSI Aurora standard, the window width is
25 ms and the window slide is 10 ms to give a frame rate of 100 frames per second.
Another commonly used frame slide is half the duration of the window. Many other
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windowing functions exist, such as Hanning, Bartlet and Kaiser, but for speech rec-
ognition applications the Hamming window is generally preferred.

Power Spectrum

The time-domain frames of speech are now converted to a power spectral representa-

. 2. . .
tion, |X (f )| , using a discrete Fourier transform,

—Jj2nfn 2

w-1
> x,—(n)e w
n=0

()| = (6.4)

Transforming the speech to a spectral representation reveals more structure in the
speech signal, which is important for classification. In some implementations of
MFCC extraction a magnitude spectrum is used rather than a power spectrum although
this makes very little difference to classification accuracy. In practice the DFT is
replaced by a fast Fourier transform (FFT) which gives considerable reductions in
computation time, particularly for longer duration windows (Cooley and Tukey 1965).

Mel-Filterbank

The spectrally detailed power spectral representation is now non-linearly quantised
in frequency through the application of a mel-scaled filterbank. The non-linear fre-
quency spacing of the filterbank channels reflects the non-linear frequency sensitivity
of human hearing and places a greater density of filterbank channels at low frequen-
cies than at higher frequencies. Implementation of the mel-filterbank can take several
forms although in this chapter a matrix transformation is adopted. A K-dimensional
vector of mel-filterbank channel energies, m7, is computed as,

m;} =Mp; (6.5)

where pj is a column vector containing the V% dimensional power spectrum of Eq.

6.4. The rows of matrix M are the frequency responses of the K channels in the mel-
filterbank. For illustration, the frequency response of a K=23 mel-filterbank is shown
in Fig. 6.3.

The mel-spacing of filterbank channels defines MFCCs, but other non-linear fre-
quency scales exist, such as the Bark scale which is used in PLP feature extraction
(Hermansky 1990). No strict rules exist for the number of filterbank channels or their
spectral shape. In the ETSI Aurora MFCC standard, the number of filterbank channels
is 23 and their shape is triangular. For 4 kHz bandwidth speech the lowest frequency
channel is centred at 125 Hz and spans 125 Hz, while the highest frequency channel
is centred at 3657 Hz and spans 656 Hz.
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Fig. 6.3 Frequency responses of the 23 mel-filterbank channels

Log

Applying a log to the filterbank channel energies reduces their sensitivity to both
very loud and very quiet sounds and models the non-linear amplitude sensitivity of
human hearing. The effect on speech recognition accuracy is significant and without
the log, recognition accuracy is severely reduced.

Discrete Cosine Transform

The final stage in extracting MFCC feature vectors, c7, is to apply a discrete cosine
transform (DCT) to the K log filterbank channel energies,

()= im;‘(k)co{wj (©6)

K

The DCT serves two purposes. First, the DCT performs the final part of a cep-
stral transformation which separates the slowly varying spectral envelope (or vocal
tract) information from the faster varying speech excitation. Lower-order coefficients
represent the slowly varying vocal tract while higher-order coefficients contain exci-
tation information. For speech recognition, vocal tract information is more useful for
classification than excitation information. Therefore, to create the final MFCC vec-
tor, the output vector from the DCT is truncated to retain only the lower-order coef-
ficients. In the ETSI Aurora standard, the lower 13 coefficients are retained— ¢; (0)

to ¢j(12).



Speech Feature Extraction and Reconstruction 113

The second purpose of the DCT is to decorrelate the elements of the feature vec-
tor. Elements of the log filterbank vector exhibit correlation due to both the spectral
characteristics of speech and the overlapping nature of the filterbank. For statistical
classifiers, such as HMMs, to accurately model correlated feature vectors requires full
covariance matrices which are both computationally expensive and require large amounts
of training data. To optimally decorrelate, or diagonalise, the log filterbank features
requires a Karhunen-Loeve transform (KLT) which needs to be estimated from a set
of training data. However, a good approximation to the KLT for log filterbank features
is the DCT. This means that applying the DCT serves to decorrelate the elements of
the feature vector, making it suitable for diagonal covariance matrix statistical classifiers.

Frame Energy

Including a measure of the energy of each frame of speech gives significant increases
in speech recognition accuracy. The zeroth MFCC, ¢;(0), is the sum of the log ener-
gies from each filterbank channel and can be considered a geometric measure of
frame energy. A common alternative is to compute the log energy, InE;, of the time-
domain frames of speech without pre-emphasis being applied. In practice these
energy measures are similar and only one needs to be included in the feature vector.
In the ETSI Aurora standard log energy is computed on the terminal device and
transmitted to the back-end in addition to the 13 MFCCs. Rather than including both
energy measures in classification, it is usual to select just one or to combine them
through an appropriate weighing.

To illustrate the operations in MFCC feature extraction, Fig. 6.4 shows the trans-
formation of both a voiced speech frame (left-hand column) and an unvoiced speech
frame (right-hand column). Time-domain frames of speech are shown in the top
panels and below are shown the resulting power spectra. For the voiced speech, har-
monic structure is clearly visible and the fundamental frequency is seen to be ~250 Hz.
The third row shows the resulting mel-filterbank feature. The effect of the non-linear
spacing of filterbank channels is evident when examining the position of the spectral
harmonics seen in the power spectrum of the voiced speech. In the mel-filterbank the
first two harmonics (at frequencies ~250 Hz and 500 Hz) occur in channels 4 and 7
which shows the stretching of frequency in these lower channels made by the non-
linear frequency spacing of the mel-scale. The bottom panels show the output of the
DCT—for clarity the zeroth coefficient is not shown as its amplitude is very large.
By considering the basis functions of the DCT, some spectral meaning can be given
to the MFCCs. The basic function associated with MFCC 0 is a constant and as pre-
viously discussed represents the energy of the filterbank. The first basis function of
the DCT is a half cosine wave which means that the first MFCC indicates the spec-
tral slope. This is evident in the figure where the voiced filterbank shows signifi-
cantly more energy at low frequencies than at higher frequencies and has a strongly
positive value for MFCC 1. The unvoiced filterbank has an opposite spectral slope
and has a strongly negative value for MFCC 1. This analysis can be continued—for
example the second basis function is a full cosine wave and hence MFCC 2 indicates
the proportion of mid-band spectral energy to outer-band spectral energy.
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Fig. 6.4 Example of MFCC feature extraction for voiced speech (left-hand column) and un-
voiced speech (right-hand column). Top row shows original frames of speech, then power
spectrum followed by filterbank and finally DCT output

For the MFCC extraction described above, it is assumed that the speech is sam-
pled at 8 kHz. However, speech sampled at other sampling frequencies can also be
parameterised through appropriate modifications to the feature extraction algorithm.
For example, at a sampling frequency of 16 kHz the ETSI Aurora standard specifies
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a Hamming window width of 400 samples and a frame slide of 160 samples, which
retains the same duration frame width and slide as with 8 kHz sampled speech.

6.2.2 Advanced Terminal-Side Feature Extraction

The feature extraction algorithm described in the previous section is a basic method
of extracting MFCC vectors and should give satisfactory performance in clean envi-
ronments. However, to achieve good recognition accuracy in more realistic environ-
ments, where both acoustic noise and channel distortions are present, it is necessary
to include extra processing. This includes noise reduction and channel equalisation
stages. A later version of the ETSI Aurora standard, namely the Advanced Front-End
(AFE), includes such processing (ETSI 2007).

Noise Reduction

Acoustic noise can severely corrupt the feature vectors produced by the front-end
and cause large reductions in classification accuracy. Noise is usually considered
additive in the time-domain and therefore has an additive effect in the power spectral
domain and subsequent filterbank domain. Depending on the spectral character of
the noise, the amplitudes of filterbank channels will be increased, leading to a distor-
tion of the resulting MFCC vector. Even if the noise is narrowband, it will effect all
elements of the MFCC vector as the DCT has the effect of smearing out the noise.

Many algorithms have been developed to reduce additive noise from the speech
feature vectors. Most of these make an estimate of the contaminating noise during
speech inactive periods and then remove this noise estimate during periods of speech
activity. A reasonably successful noise reduction technique is spectral subtraction,
which subtracts noise estimates in either the spectral domain or filterbank domain
(Boll 1979). Performing noise reduction in the filterbank domain can take advantage
of the spectral averaging made by the filterbank channels which reduces processing
distortion resulting from excessive noise removal. Many extensions to spectral sub-
traction have been made since it was first proposed and these have reduced its sensi-
tivity to noise type and power (Wu and Chen 2001). The spectral subtraction class of
algorithms represent just one type of noise reduction method. Many other noise re-
duction methods for speech recognition have also been proposed and have varying
levels of success. For example, in the ETSI AFE noise reduction is carried out during
a pre-processing stage that is implemented before feature extraction. This is based on
a two-stage Wiener filter which outputs a noise reduced speech signal that is input
into feature extraction (ETSI 2007).

Blind Equalisation

Channel distortion, such as from a microphone in a handset, may cause a significant
reduction in speech recognition accuracy. As such channel equalisation can play an
important role in achieving robust speech recognition accuracy. For cepstral-based
features, such as MFCCs, channel distortion is additive in the cepstral-domain. For
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example, consider a speech signal, x(n), that is convolved with a channel distortion,
g(n), to give a channel distorted signal, y(n). In the frequency domain this distortion
becomes multiplicative, i.e. Y(f)=X(f)G(f). After the log and DCT operations the

channel distortion becomes an additive offset,
i (N)=ci ()+<i () (6.7)
where ¢'(j), ¢f(j) and c£(j) represent the j MFCC of the distorted speech, clean

speech and channel, respectively, at time frame i. If the channel distortion is stationary
its time index can be ignored to give a constant offset distortion,
i ()=ci )+ () (6.8)
Equalising the distortion becomes a process of removing the offset from the signal
and several approaches have been developed to achieve this. A simple method is
cepstral mean normalisation (CMN) (also known as cepstral mean subtraction
(CMS)) which computes a mean cepstral vector from the stream of input vectors and
subtracts it from the input vectors (Rosenberg 1994). This not only removes the
channel but also removes the mean of the speech, although this has been found to be
beneficial in terms of speech recognition accuracy. An alternative equalisation
method is the RASTA filter (Hermansky and Morgan 1994). This uses a highpass
filter to remove stationary and slowly time-varying components of the cepstral features
which includes the channel distortion. The RASTA filter also includes a lowpass
filter component which removes fast varying components of the cepstral vectors that
improves robustness to noise. In the ETSI Aurora AFE, channel equalisation is
achieved by least mean square (LMS) filtering, with a reference signal equal to the
cepstrum of a flat spectrum (ETSI 2007).

6.2.3 Quantisation and Packetisation

Feature extraction generates a stream of static feature vectors that must be transmitted
to the remote back-end for recognition. Before transmission they must first be com-
pressed and formatted with the inclusion of appropriate error protection.

In the ETSI Aurora standard, 13 dimensional MFCC vectors and a log energy
term are created at a rate of 100 vectors per second. Assuming the number represen-
tation used by HTK (4 byte floats for each element) this represents a bit rate of
44,800 bits per second, which is too high in terms of channel capacity for most ap-
plications (HTK 2007). Instead, source coding must be applied to reduce the bit-rate
of the feature vector stream to an acceptable level. In the ESTI Aurora standard split
vector quantisation is applied to pairs of coefficients to reduce the storage for each
feature vector to 43 bits. A 1 bit voice activity detection (VAD) flag is also allocated
to each frame which gives a source coded bit rate of 4400 bps for the MFCC feature
vector stream. Chapter 7 describes the source coding of speech feature vectors in
more detail.

The compressed feature vectors are next placed in an agreed framing structure
and suitable error protection applied. In the ETSI Aurora front-end, pairs of feature
vectors are grouped together and a 4-bit cyclic redundancy check (CRC) computed
and included for error protection. Multiframes, which represent 240 ms of speech,
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are then formed by grouping together 12 pairs of feature vectors. The multiframe
includes 48 bits of header information with the result that the final bit rate is
4800 bps. Chapter 8 discusses these channel coding methods and framing in more
detail.

6.2.4 Server-Side Processing

At the recogniser back-end on the remote server the received feature vectors are
unpacked and uncompressed. In the event that some feature vectors have either be-
come lost or corrupt due to adverse network conditions, error concealment tech-
niques can be applied. These may estimate the value of missing vectors or modify
the decoding process of the speech recogniser to take into account the unreliability of
parts of the feature vector stream. This is discussed in detail in Chap. 9.

Following any error correction, the unpacked stream of static feature vectors are
augmented by their temporal derivatives (Furui 1986; Hanson and Applebaum 1990).
Including temporal derivatives in the feature vector stream partially overcomes the
assumption in HMM-based speech recognisers that the feature vectors are independ-
ent and identically distributed and gives substantial increases in recognition accuracy.

Velocity derivatives, Acj, are computed as,

D
d
Acj =2 E(C?m’ - C’}C—d) (6.9)
d=1
Similarly, acceleration derivatives, AAc], are computed as,

A
=32 (AT, — AcT
AAcl-—aZ::lA (betra Acl_a) (6.10)

D and A specify the number of vectors used in computing the velocity and accel-
eration derivatives. Typical values range from D=2 and A=1 to D=4 and A=4, with
the latter used in the ETSI Aurora standard.

6.3 Speech Reconstruction

In network speech recognition the time-domain speech signal is transmitted to the
speech recogniser where feature extraction and classification take place. As the time-
domain signal itself is transmitted to the speech recogniser, playback of speech on
the server is straightforward. However, in distributed speech recognition only the
speech feature vectors are received at the remote server. As no time-domain signal is
transmitted, no readily available time-domain signal can be used for playback at the
server. While this is not a problem for speech recognition, it may be desirable to
listen to the speech. This is particularly true for automated services that are used for
financial services. For example, a speech recognition error could lead to unwanted
transactions in which case there may be a need to listen to the speech input to confirm
what was actually said. Providing a back-end playback facility is a legal requirement in
the US.
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This section begins by examining the speech information present at the back-end
through a received stream of MFCC vectors. This reveals the spectral envelope to be
present but not source information needed for speech reconstruction. The method
used in the ETSI Aurora extended front-end (XFE) for speech reconstruction is then
discussed whereby source information is supplied to the back-end through additional
feature extraction and data transmission from the terminal device (ETSI 2003b).

6.3.1 Analysis of Received Speech Information

The MFCC feature extraction process discards too much information to allow the
features to be simply inverted back into a time-domain signal. Examining the MFCC
extraction process of Fig. 6.2, shows some of the processing stages to be invertible
while others are not. The effect of the pre-emphasis filter is invertible and can be
equalised by a suitably designed lowpass filter. The log operation can also be in-
verted by a simple exponential operation. However, several stages in feature extrac-
tion are not invertible. Applying a magnitude operation to the complex frequency
spectrum of the Fourier transform discards phase information which makes inversion
of the power spectrum to a time-domain signal not possible. The quantisation of the
power spectrum by the mel-filterbank loses spectral detail which cannot be recovered
during inversion. Further spectral detail is also lost by truncating the DCT coeffi-
cients when forming the MFCC vector. Of course, for speech recognition purposes,
these losses of spectral detail and phase are beneficial, but for playback their loss is
serious.

The received MFCC vectors can provide a smoothed estimate of the speech
power spectrum which encodes vocal tract information. Starting with an MFCC
vector, an estimate of the mel-filterbank can be computed by zero padding the
MFCC vector to the dimensionality of the filterbank and applying an inverse DCT
followed by an exponential operation. A W/ dimensional power spectrum can be
estimated from the K mel-spaced filterbank channels (where V% >>K) using interpo-

lation techniques (Vaseghi 2006). However, at this stage it is important to note that
the resulting power spectrum is subject to high frequency tilt which arises from both
the effect of pre-emphasis and the increasing mel-filterbank channel bandwidths. As
was the case for channel distortion, discussed in Sect. 6.2.2, these effects are multi-
plicative in the frequency domain and can be equalised in the cepstral domain by
subtracting their cepstral equivalents from the MFCC vector.

The area, and hence energy, wy, of each filterbank channel increases with channel
number due to the widening of channel bandwidths—see Fig. 6.3. Given a vector, w,
that comprises the areas, wy, of the K mel-spaced triangular filterbank windows, the
resulting cepstral representation, ¢, can be computed through log and DCT opera-
tions. Similarly the cepstrum, ¢, of the pre-emphasis filter can be computed by pass-
ing its impulse response through the MFCC extraction algorithm.

An equalised MFCC vector, ¢}, can be estimated by subtracting the filterbank
and pre-emphasis cepstra from the unequalised MFCC vector, ¢!, produced by the

feature extraction process,
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¢i=c/-c"-cf (6.11)

The MFCC vector can be inverted to provide an equalised power spectrum esti-

A2
mate, |X (f )| . Figure 6.5 illustrates the effectiveness of recovery by showing the log

power spectrum (dotted line) of a frame of 200 speech samples and the log power
spectra recovered from MFCC vectors extracted from the same 200 speech samples.
The spectrum recovered from a non-truncated 23-D MFCC vector (solid line) closely
follows the spectral envelope of the original speech. When the inversion is applied to
a truncated 13-D MFCC vector a similar spectral envelope (dashed line) is produced
but the truncation of higher order cepstral coefficients removes some of the spectral
detail that was retained in the 23-D MFCC. In particular, the 13-D MFCC-derived
spectrum is unable to resolve the high frequency spectral peak at 3 kHz into two
separate formants as the 23-D MFCC-derived spectrum can.
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Fig. 6.5 Power spectrum reconstruction—the dotted line is the original log power spectrum
while the solid and dashed lines show the reconstructed log power spectrum from non-
truncated and truncated MFCC vectors, respectively

6.3.2 Speech Reconstruction

To reconstruct an audio speech signal the spectral envelope alone is insufficient as
important source information such as voicing and fundamental frequency (for voiced
speech) are missing. The ETSI Aurora extended front-end (XFE) addresses this
problem by estimating the voicing and fundamental frequency on the terminal device
and transmitting them to the back-end along with the MFCC vectors. This approach
delivers sufficient source information to the back-end to enable speech reconstruc-
tion but increases terminal-side processing and also increases bit-rate requirements
of the communication channel. This method of providing source information at the
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back-end for speech reconstruction is discussed in the next section. An alternative to
explicitly transmitting source information for back-end reconstruction has recently
been proposed whereby the source information is predicted from the received MFCC
vector stream (Milner and Shao 2007). This approach is discussed in Sect. 6.4.

Terminal-Side Voicing and Fundamental Frequency Estimation

Many algorithms for estimating the voicing and fundamental frequency of speech
have been proposed in the last 40 years. These vary in many ways and operate in the
time-domain, frequency-domain or cepstral-domain (de Cheveigne and Kawahara
2001). The fundamental frequency estimator used in the ETSI XFE operates in the
frequency-domain and searches for spectral peaks that correspond to the fundamental
frequency. The search begins in an upper band (200 Hz—420 Hz) and if no suitable
fundamental frequency is found, the search moves to a middle band (100 Hz—
210 Hz) and then to a low band (52 Hz—120 Hz). In implementation, the algorithm
contains many processing stages that minimise estimation errors. A detailed discus-
sion of these is can be found in (ETSI 2003b).

Once voicing and fundamental frequency have been estimated on the terminal
device they must be transmitted to the back-end. In the ETSI Aurora XFE the fun-
damental frequency is converted into a fundamental period. This is measured in
samples and is constrained to be in the range 19 samples to 140 samples which cor-
responds to fundamental frequencies from 57 Hz to 421 Hz. Even numbered frames
are allocated 7 bits to represent the period while odd numbered frames are allocated
5 bits and represent the difference in period. The voicing class of each frame is also
encoded and takes one of four different values—non-speech, unvoiced speech, mixed
voiced speech and fully voiced speech. For non-speech and unvoiced speech, the
7 bit period value, or 5 bit differential period value, are set to zero and an additional
single bit is used to identify non-speech or unvoiced speech. Mixed voiced and fully
voiced speech are indicated by non-zero period values with the single bit indicating
whether the frame is mixed or fully voiced.

For each pair of frames, 12 bits are used to represent the fundamental period and
another 2 bits provide information to determine the voicing class. These 14 data bits
are protected by a 2 bit CRC. Therefore, with 50 frame pairs per second, the trans-
mission of voicing and fundamental frequency requires 800 bits per second of chan-
nel capacity. This is in addition to the 4800 bits per second used by MFCC vector
transmission which give an overall bit rate for the ETSI XFE of 5600 bps.

Sinusoidal Modelling of Speech

The MFCC vectors, voicing and fundamental frequency provide sufficient informa-
tion to enable back-end speech reconstruction. Several models of speech production
have been developed that are suitable for reconstructing, or synthesising, a speech wave-
form. These include the linear predictive (LP) model, the sinusoidal model and the har-
monic plus noise (HNM) model (Rabiner and Schaeffer 1978; McAulay and Quatiery
1986). The ETSI Aurora XFE speech reconstruction is based on the sinusoidal
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model. The principles of sinusoidal model speech reconstruction from MFCCs are
presented next and specific implementation details can be found in (ETSI 2003b).
The sinusoidal model synthesises a speech signal, x(n), as a sum of L sinusoids with
amplitudes, 4,, frequencies, f;, and phases, 6,

L
x(n)=2_4; cosz f;n+6;) (6.12)
=1

The sinusoid frequencies are selected to be equal to the fundamental frequency
and its harmonics. Given only the fundamental frequency, the frequencies of the
sinusoids, f;, can be approximated as multiples of the fundamental frequency, f;,

Ji=11o (6.13)

The amplitude, 4,, of each sinusoid can be estimated from the smoothed spectral
envelope provided by inverting the MFCC vector, at frequency, f;,

4 =|X(h) (6.14)

The phase offset, 6, is calculated as the sum of phase components from the
speech excitation, ¢, and the vocal tract, ¢,

0,=p;+¢ (6.15)

The excitation phase component at the fundamental frequency is estimated using
a linear phase model and maintains continuity of the phase at frame boundaries. The
phases at harmonic frequencies are calculated by multiplying the harmonic number
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Fig. 6.6 Illustration of sinusoidal modelling of a frame of speech. Panel (a) shows the original
log power spectrum of a frame of speech, (b) shows its spectral envelope and (¢) a set of
harmonically spaced sinusoids and (d) the sinusoidal model of log power spectrum



122 Ben Milner

with the phase at the fundamental frequency. The phase from the vocal tract is
calculated by assuming a minimum phase system. This allows the phase at each har-
monic frequency to be computed from the spectral envelope using a Hilbert transform.

To illustrate speech reconstruction, Fig. 6.6a shows the log power spectrum of a
25 ms segment of phoneme /u/. Figure 6.6b shows the spectral envelope of the same
frame of speech and Fig. 6.6¢c shows a series of sinusoids that are placed at harmon-
ics of the fundamental frequency (in this example the fundamental frequency is
240 Hz). These provide the vocal tract and excitation information needed for speech
reconstruction and multiplying the two results in the synthesised log power spectrum
shown in Fig. 6.6d. For comparison, the original log power spectrum is shown as the
dashed line which reveals the assumption of harmonicity in the excitation signal to
be valid.
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Fig. 6.7 Spectrograms showing (a) original and (b) reconstructed speech of the sentence “On
May evenings the rooks were busy building nests in the birch tree”

From each MFCC vector and fundamental frequency estimate, a frame of recon-
structed speech can be generated. For unvoiced speech the sinusoid frequencies are
chosen randomly to provide a wideband excitation source. Continuous speech is
reconstructed by extending the duration of each frame of speech by a half at both
sides with a triangular windowing function. This allows the overlap-and-add algo-
rithm to combine frames of speech and smooth discontinuities at frame boundaries
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(George and Smith 1992). To demonstrate the effectiveness of sinusoidal model-based
reconstruction, Fig. 6.7a shows a spectrogram of the utterance “On May evenings the
rooks were busy building nests in the birch tree.” The spectrogram of the same utter-
ance, but reconstructed from its MFCC vector representation and estimates of voicing
and fundamental frequency is shown in Fig. 6.7b.

Comparing the two spectrograms shows the MFCC-based reconstruction to
be highly effective in reproducing the original speech signal. The reconstructed
harmonic tracks follow closely the original harmonics which is due to the accuracy
of fundamental frequency estimation. Similarly, formant frequencies tend to be well
preserved and these are provided by the MFCC vectors.

6.4 Prediction of Voicing and Fundamental Frequency

This section describes how speech can be reconstructed solely from the MFCC
vector stream without explicitly transmitting voicing and fundamental frequency
(Milner et al. 2007; Shao and Milner 2004). This is achieved by predicting the voic-
ing and fundamental frequency of each frame of speech from the received MFCC
vectors. Prediction of fundamental frequency is based on forming a model of the
joint density of MFCCs and fundamental frequency. This model can then be used to
predict the fundamental frequency associated with an MFCC vector. Similarly, the
voicing associated with an MFCC vector is predicted from two models, one model-
ling voiced speech and the other modelling unvoiced speech and non-speech.

6.4.1 Fundamental Frequency Prediction from MFCC Vectors

Fundamental frequency is predicted from MFCC vectors using a model of the joint
density of MFCC vectors and fundamental frequency. To begin, a joint feature vec-
tor, y;, is defined which comprises the MFCC vector, x;, and the fundamental fre-
quency f;, of frame i,

vi=[x; i’ (6.16)

For unvoiced frames the fundamental frequency is set to zero.

Phoneme-Independent Prediction of Fundamental Frequency

A simple method to model the joint density of MFCC vectors and fundamental fre-
quency is to use a single model for all voiced speech sounds, making no distinction
between different phonemes. Using a training data set, Z, joint vectors corresponding
to voiced speech can be pooled into a voiced vector set, Q" (the superscript v indi-
cates voiced speech),

Q'={y;eZ:f;#0} (6.17)

Expectation-maximisation (EM) clustering can be applied to this data to create a
Gaussian mixture model (GMM), @, that models the joint density of MFCC vectors
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and fundamental frequency using a set of K" clusters that localise the correlation
between MFCCs and fundamental frequency in the joint feature vector space,

KV
Py:)=0"(v:)= Lo N(y: :ni.Z}) (6.18)
k=1

Each cluster is represented by a prior probability, «;, and a Gaussian probability

density function (PDF), N, with mean vector, p}, and covariance matrix, ). The

mean vector comprises two components, the mean vector of the voiced MFCC vec-
tors in cluster £ and the mean of the fundamental frequency in cluster & Similarly,
the covariance matrix comprises four components; the covariance matrix of the
MFCC vectors, the variance of the fundamental frequency and the covariances of the
MFCCs and fundamental frequency. This allows the mean and variance associated
with the " cluster to be decomposed as,

3 v zv,xf
koK } (6.19)

b .
pk=|: N .:land Zk:[ P
ukf zk,f zk,.ff

Knowledge of the joint density of MFCCs and fundamental frequency in the GMM
can be used to predict the fundamental frequency of a frame of speech from the

MFCC vector representing that frame. From the k" cluster in the GMM, 4}, a MAP
prediction of fundamental frequency, f,-k , from MFCC vector x; can be made,

]A”ik = argmax (p(f|x,-,¢,t )) (6.20)
/
This leads to the prediction of the fundamental frequency in terms of the statistics
of the ¥ GMM cluster as,

VAT +>:Vf"(z”")( - ) (6.21)

The predicted fundamental frequencies from all of the GMM clusters can be
combined according to the posterior probability of the MFCC coming from that
cluster, 2,(X;),

Ji = th(x (ukf L2 E) (v -u;ﬁ"‘)) (6.22)

where the posterior probablllty, hi(X;), 1s given as,

e, )—M (6.23)

Phoneme-Dependent Prediction of Fundamental Frequency

An alternative to using a single GMM to model the joint density of MFCCs and
fundamental frequency over all speech sounds is to allow a phoneme-dependent
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prediction. With this method phoneme-specific models of the joint density of
MFCCs and fundamental frequency are created and subsequently used to provide
phoneme-specific fundamental frequency predictions. This method is more complex
than the phoneme-independent method, as a phoneme decoding for the MFCC vec-
tors is required, but does provide more detailed modelling of the joint density.

The first stage in phoneme-dependent prediction of fundamental frequency is to
train a set of phoneme HMMs that will be used to decode the input MFCC stream
into a phoneme sequence. Assuming a set of /¥ phonemes in the vocabulary (a typi-
cal value is W = 44 phonemes), then a set of HMMs, A= { A, A,,.., Aw}, must be
trained using the MFCC component, x, of the augmented feature vector, y.

The next stage in training is to use the phoneme HMMs to supply a model and
state allocation to the MFCC vectors in the training data to allow phoneme-
dependent GMMs to be trained. The resulting GMMs provide more localised model-
ling of the joint density of MFCCs and fundamental frequency. The state-dependent
GMMs are created by force aligning the training data vectors to the correct sequence
of HMM s using Viterbi decoding. The correct sequence of HMMs can be taken from
phoneme-level annotations of the training database that may be created manually or
automatically through forced word-level decoding with an appropriate pronunciation
dictionary. This provides for each training data utterance X =[xy, ..., Xj, ..., Xm] @
model allocation, m = [my, ..., m;, ..., my], and a state allocation, q = [¢;, ..., ¢, - .-,
qul, for each MFCC vector. This indicates the state, ¢,, and model, m;, that the i
MFCC vector, x;, is allocated, where m; € {1, .., W} and ¢; € {1, .., S, } where S,
indicates the number of states in model m;,. This provides sufficient information to
allow state-dependent clustering of the voiced vectors to take place. Voiced vectors
allocated to each state, s, of each model, w, are pooled to form state and model de-

pendent subsets of voiced feature vectors, Qy,,,

QL ={v,eZ:f;#0,q;=s,m;=w} 1<s<S, 1<w<W (6.24)

Unvoiced vectors allocated to each state of each model can also be pooled to
form subsets of unvoiced vectors, Qg,,,

Qf,={y;eZ:f;=0,q;=s,m;=w} 1<5<8, 1<w<W (6.25)

At this stage the state-dependent unvoiced vectors pools are not used but they
will be used later for voicing prediction.

The state and model specific joint densities of MFCCs and fundamental fre-
quency can now be modelled by applying EM clustering to the voiced vector pools.

This creates a set of model and state-dependent voiced GMMs, @y, that are repre-
sented by mean vectors, uj ., , covariance matrices, X}, , and prior probabilities,

@} 5> corresponding to the K" cluster of the GMM associated with state s of model w.

To predict the fundamental frequencies associated with a stream of MFCC vec-
tors their model and state sequence must first be determined. These are obtained by
decoding the MFCC vectors into a model and state sequence, m = [my, ..., m;, .
my] and q =[qy, ..., Gi, .., qm], using the set of HMMs trained previously together
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with an appropriate grammar. For unconstrained speech input the grammar should be
an unconstrained phoneme grammar, while for specific tasks a more constrained
grammar may be appropriate. For each MFCC vector the decoding provides a state

and model specific GMM, @, ,, , from which fundamental frequency can be pre-
dicted. Utilising the MAP prediction, as applied previously, yields a state and model
specific fundamental frequency prediction, f;, from MFCC vector, x;, as,

. K : :
fi = Zhigm, (x,-)[u,tzéi,w,. st @) (o —uz:’;l.,w,)] (626)
k=1

where the posterior probability, 4, ., (x;), of the MFCC vector in cluster & of state

) i)
kéak’qi’wi p( . j

) is the marginal distribution of the MFCC vector in the #” cluster

q: and model w; is given as,

akqi,w p(

(6.27)

where p(
OfGMM ¢k,q,,m,- .

6.4.2 Voicing Prediction from MFCC Vectors

Fundamental frequency should be predicted only from MFCC vectors corresponding
to voiced speech. To classify MFCC vectors as voiced or unvoiced a prior voicing
probability is first computed from voicing information present in the states of the
HMMs used for fundamental frequency prediction. The prior voicing probability can
then be incorporated into a posterior voicing probability which classifies the MFCC
vectors as being either voiced or unvoiced.

Prior Voicing Probabilities

The phoneme HMMs that provide localisation for fundamental frequency prediction
contain useful prior voicing information. From the number of MFCC vectors allo-
cated to the voiced and unvoiced vector pools in each state, s, and model, w, a prior
voicing probability, vy, can be computed,

(QM) 1<s<S

T B

where the function n(.) returns the number of vectors in the set. To examine the prior
voicing probabilities for different phonemes, Table 6.1 shows the prior voicing prob-
abilities for the 3 states of phonemes /ow/, /uw/, /s/ and /1.

1<w< W (6.28)
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Table 6.1 Prior voicing probabilities of 3-state phoneme HMMs for models (a) /ow/, (b) /uw/,
(c) /s/, (d) 1T/

Phoneme State 1 State 2 State 3
Jow/ 0.84 0.98 0.96
fuw/ 0.81 0.97 0.95
/s/ 0.39 0.04 0.06
/f/ 0.37 0.07 0.09

Voiced phonemes (/ow/ and /uw/) have very high prior voicing probabilities
while the unvoiced phonemes (/s/ and /f/) have very low probabilities. The first state,
and to a lesser extent the final state, are not as strongly voiced or unvoiced as the
centre state. The first and last states are transitional states and minor errors in state
alignment contribute to this effect.

Posterior Voicing Probabilities

A simple method of determining the voicing is to select the voicing class (voiced or
unvoiced) in the state that the MFCC vector is allocated to that has the highest prior
voicing probability. For states that are strongly voiced or strongly unvoiced this
gives satisfactory results, but for states with less strong voicing or for MFCC vectors
with inaccurate state alignment, this method is likely to introduce voicing classifica-
tion errors. A better solution is to compute the posterior voicing probability for an

MFCC vector allocated to a particular state. In Sect. 6.4.1, state-dependent voiced

v
S,Wo

GMMs, @, were trained from the sets of voiced augmented vectors, Q¢ , within

S,W
each state and model. For voicing classification a further set of GMMs, @g,,, (the

superscript u indicates unvoiced) each comprising K” clusters, can be trained from
the sets of unvoiced vectors, Q¢ , associated with each state of each model.

u
S,W0

This produces a set of unvoiced means, . covariances, Xy, and priors,
aj.s» associated with each cluster, £, state, s, and model, w. The probability of an
MFCC vector, x;, allocated to state, g;, and model, m;, belonging to the voiced GMM,
(oM can be computed as,

qism; >
K"
VX VX
zak,(h S p(xl q>qz S )

p(voiced|x,»): k=1 p(x )
1

Similarly the probability of the MFCC vector belonging to the unvoiced GMM,

u
@q”m‘ , can be computed,

(6.29)

D Hr )
q;>m;

K
u,x
Zak,q;,m; p(xi

p(unvoicedlxi): k=1 p(x )
1

(6.30)
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Using these two probabilities the voicing of an MFCC vector allocated to state,
qi, of model, m;, can be determined,

o voiced p(voiced |x ,-)2 p(unvoiced |x ,-)
voicing; =

6.31
unvoiced p(voiced |X ,-) < p(unvoiced |X ,-) ( )

For the purposes of the voicing prediction, the probability of the MFCC vector,
p(X;), can be ignored in Egs. 6.29 and 6.30.

6.4.3 Speech Reconstruction from Predicted Fundamental Frequency
and Voicing

The predicted voicing and fundamental frequency can be applied to the sinusoidal
model based speech reconstruction described in Sect. 6.3.2. In this case the speech is
reconstructed solely from the MFCC vector stream and uses no explicit fundamental
frequency or voicing information. Figure 6.8 shows the spectrogram of the sentence

On May evenings the rooks were busy building nests in the birch tree” recon-
structed solely from 13-D MFCC vectors.
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Fig. 6.8 Spectrogram of sentence “On May evenings the rooks were busy building nests in the
birch tree” reconstructed solely from a stream of 13-D MFCC vectors

Comparing Fig. 6.8 with Fig. 6.7b (which shows speech reconstructed from esti-
mated fundamental frequency and voicing) reveals very little difference between the
two speech signals. This suggests that the MFCC vectors contain source information
which has traditionally not been thought the case. The presence of fundamental fre-
quency information in the MFCC features is also highlighted in Fig. 6.4. Examining
the mel-filterbank shows that the first two harmonics shown in the power spectrum
are preserved by the relatively close spacing of filterbank channel.
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6.5 Conclusion

This chapter has examined the feature extraction and speech reconstruction compo-
nents associated with distributed speech recognition and has placed emphasis on the
standards specified by ETSI Aurora DSR group. The first ETSI front-end standard
(FE) provided a basic MFCC feature which was superseded by the advanced front-
end (AFE) that included noise reduction and channel equalisation. An extended
front-end (XFE) was also standardised and provided voicing and fundamental fre-
quency information to enable back-end speech reconstruction.

An examination of back-end reconstructed speech shows it to be a good ap-
proximation of the original speech in both its harmonic and formant structure. An
alternative to the XFE is to predict the fundamental frequency and voicing from the
MFCC vectors themselves. This approach has also led to a good approximation of
the original speech although not quite as good as in the XAFE. However, the predic-
tion method has the significant advantage that no source information needs to be
transmitted to the back-end which saves 800 bps and allows speech reconstruction
solely from the MFCC vector stream.
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Quantization of Speech Features: Source Coding

Stephen So and Kuldip K. Paliwal

Abstract. In this chapter, we describe various schemes for quantizing speech features to be
used in distributed speech recognition (DSR) systems. We analyze the statistical properties of
Mel frequency-warped cepstral coefficients (MFCCs) that are most relevant to quantization,
namely the correlation and probability density function shape, in order to determine the type
of quantization scheme that would be most suitable for quantizing them efficiently. We also
determine empirically the relationship between mean squared error and recognition accuracy
in order to verify that quantization schemes, which minimize mean squared error, are also
guaranteed to improve the recognition performance. Furthermore, we highlight the importance
of noise robustness in DSR and describe the use of a perceptually weighted distance measure
to enhance spectral peaks in vector quantization. Finally, we present some experimental results
on the quantization schemes in a DSR framework and compare their relative recognition
performances.

7.1 Introduction

With the increase in popularity of wireless devices such as personal digital assistants
(PDAs) and cellular phones, there has been a growing interest in incorporating auto-
matic speech recognition (ASR) technology into mobile communication systems.
Speech recognition can facilitate consumers in performing common tasks, which
have traditionally been accomplished via buttons and/or pointing devices.

Distributed speech recognition (DSR) is a mode of client-server-based ASR,
where speech features are extracted on the client device and then transmitted to the
server, which performs the recognition task, as shown in Fig. 7.1. Let us calculate the
bitrate that is required to transmit uncoded feature vectors. If feature vectors of 13
Mel frequency-warped cepstral coefficients (MFCCs) are extracted at a frame rate of
100 Hz and that each MFCC is represented as a 32 bit floating point value, then the
required bitrate is 41.6 kbps. As we shall see later on, current state-of-the-art quanti-
zation schemes used in DSR can operate at bitrates as low as 300 bps.

In this chapter, we are interested in the lossy coding of feature vectors for DSR
applications. The ultimate aim is to quantize feature vectors using the least amount of
bits, while maintaining a recognition performance that is as close as possible to that
of ASR. Note that when we use the term ASR performance, we are referring to the
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Speech ! fegtsu}?es b 3 Decoded ASR |
C ! Feature Feature | Bitstream, Feature features 3

| Extraction Encoder | | ! Decoder |
T ! Recognition |

! result |

Fig. 7.1 Block diagram of a typical distributed speech recognition system (From So and
Paliwal 2006)

recognition performance achieved when no lossy coding has been applied to the
feature vectors, as opposed to DSR performance, where feature vectors have been
coded in a lossy fashion. It is reasonable to assume that, using the same features,
DSR performance will generally be less than and upper bounded by the ASR per-
formance, hence the latter serves as a useful baseline for evaluating quantization
schemes.

This chapter is divided into four sections. In the first section, we will review some
basic concepts of source coding and quantization as well as outline some quantization
schemes that will be evaluated later in the chapter. In the second section, we examine
the statistical properties of the MFCC feature vectors as well as determine the rela-
tionship between mean squared error and recognition accuracy. In the third section,
we present a brief review of the literature on the topic of quantizing feature vectors.
Following this, we will present some results of recent quantization schemes that we
have investigated in our laboratory (So and Paliwal 2005, 2006). We then conclude
the chapter in the final section.

7.2 Quantization Schemes

7.2.1 Brief Introduction to Quantization Theory

Source coding schemes can be broadly classified into two categories: lossless and
lossy coding. While lossless coding incurs no loss of information (that is, the decoded
output data is exactly the same as the input data), the amount of compression is lim-
ited by the Shannon entropy of the data (Gersho and Gray 1992). Examples of loss-
less coding schemes (often referred to as entropy coders) include Huffman coding,
arithmetic coding and runlength encoding.

It is common for an entropy coder to be cascaded on the output of a lossy coder
to further reduce the bitrate (Gray and Neuhoff 1998). An example of this is in the
JPEG image coder, where the output coefficients of the lossy scalar quantization
stage are coded using a runlength encoder and a Huffman coder (Wallace 1991).
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While it is possible to apply entropy coding on the output of the quantization
schemes discussed in this chapter to reduce the bitrate further, various complications
arise, such as the resulting bitrate being variable over time. Therefore, buffering is
often required to handle the variable bitrates, which adds to the complexity of the
overall DSR system.

On the other hand, lossy coding schemes have no constraints on the amount of
compression that can be achieved, hence they are often more useful in scenarios
where channel capacity is low and limited. The bitrate of lossy coding schemes can
be made fixed, thus removing the requirement for buffering. The challenge with
lossy coding schemes is minimizing the distortion given a fixed bitrate, or given an
allowed and fixed distortion, minimizing the bitrate required—this is often referred
to as the rate-distortion trade-off.

Quantization is a fundamental process for information reduction in lossy coding
schemes and is generally the source of information loss. It is defined as the mapping
of individual (scalar) or a vector of input samples to a codebook of a finite number of
codewords. Each codeword has a unique binary word or index associated with it so
each input sample is substituted with this binary word before transmission. The map-
ping is done in such a way that the distortion incurred by substituting the input sample
by its corresponding codeword is minimized. The input samples may be quantized
individually (referred to as scalar quantization), or as vectors (referred to as vector
quantization). Figure 7.2 shows where the quantization scheme ‘fits’ in the DSR
feature encoder.

The rate-distortion (RD) efficiency of any quantizer is influenced by the properties
of the signal source, such as statistical dependencies (otherwise known as memory)
and the probability density function (PDF) (Makhoul et al. 1985). Furthermore, it has
been shown that vector quantizers always have a better RD efficiency than scalar
quantizers, and therefore are optimal quantizers (Lookabaugh and Gray 1989). The
properties of the speech features used in DSR will be discussed in the following
subsections. However, before we move further, we will present popular distortion
measures that have been used in speech processing as well as describe the quantization
schemes that will be evaluated later in the chapter.

Input Indices
samples Scheme Encoder
(speech features)

I
I
:
I
! Quantizaton | | Binary —L——= Bitstream
I
I
I
I
I
I

Feature Encoder

Fig. 7.2 Block diagram of the ‘Feature encoder’ in Fig. 7.1, showing the quantization scheme
and binary encoder
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7.2.2 Distortion Measures for Quantization in Speech Processing

It is important to define the distortion measure to be used in quantizers as different
applications may require the minimization of an error calculation that incorporates
some signal-based or perceptual properties in order to improve the overall fidelity.
The simplest distortion measure that is commonly used in the coding literature is
mean squared error (MSE), dysg, which is defined below:

dyer (X, %) = E[(x - %)" (x - X)] (7.1)

In this equation, E[e] is the expectation operator, x and x are the input vector and
quantized vector, respectively, and e’ is the transpose operator. The error contribu-
tion of each vector component is weighted the same.

Weighted distortion measures are often used to perform quantization noise shap-
ing, which can improve the overall fidelity by exploiting signal-based properties. For
example, in speech coding applications, line spectral frequency (LSF) vectors can be
quantized using a weighted mean square error, where the error contributions of each
LSF are non-uniformly weighted based on the relative spectral power at that particu-
lar frequency (Paliwal and Atal 1993). For components that have a higher weighting,
the quantization error will be less. This weighted mean squared error (WMSE) can
be expressed as:

dyse (%,%) = E[(x = %)’ W(x—3%)] (7.2)

In this equation, W is a square diagonal weighting matrix whose diagonal elements
consist of the relative weightings of each vector component.

Another common distortion measure that is used for evaluation in speech coding
is the logarithmic spectral distortion (this is often simply referred to as spectral
distortion). It is defined as the root mean squared error between the log power spec-
tral density estimates of the original and quantized frame of speech:

K

dyp = \/FL [ 1010g,, P()~10l0g,, P(/)Pdf (7.3)

In Eq. 7.3, F; is the sampling frequency, P(f) and 13( 1) are the power spectral den-
sity estimates of the input and quantized speech frame, respectively. It can be shown
that the MSE distortion measure in the cepstral domain is equivalent to the spectral
distortion (Rabiner and Juang 1993).

Other distortion measures that have been used in speech processing include the
Itakura-Saito distortion, Itakura distortion, COSH distance, etc. (Rabiner and Juang
1993). For distributed speech recognition, the quantization distortion measure should
be somewhat correlated to the desired performance metric—recognition accuracy. We
will discuss this further in Sect. 7.3.4. Because of their relatively low computational
complexity, we will mostly focus on MSE-based distortion measures as these need to
be computed multiple times in quantization schemes such as VQ.
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Fig. 7.3 Block diagram of scalar quantization of vectors, with mean removal, variance nor-
malization and bit allocation

7.2.3 Scalar Quantization

The simplest quantizer is the scalar quantizer (SQ), where input samples are mapped
individually to scalar codewords, which are also referred to as code-points or repro-
duction values (Gersho and Gray 1992). The number of reproduction values or
quantization levels, n, is given by n =2°, where b is the number of bits.

For input samples that have a non-uniform probability density function, such as
Gaussian or Laplacian, it has been shown that non-uniform scalar quantizers incur less
distortion than uniform scalar quantizers, where quantization levels are uniformly
spaced (Max 1960). The quantization levels for Gaussian and other arbitrary distri-
butions (with zero-mean and unity variance) have been reported in the coding litera-
ture (Max 1960; Paez and Glisson 1972; Lloyd 1982). The input samples should
have zero-mean and normalized variance before quantization, as shown in Fig. 7.3.

When quantizing a vector of input samples using scalar quantizers, we need to allo-
cate the bit budget among the individual SQs. For example, if the vector dimensionality
is n and the bitrate is fixed at b bits/sample, then a total of nb bits need to be allocated
to the n SQs. The objective is to determine the best bit allocation such that the
quantization distortion is minimized. We discuss two methods for bit allocation in
scalar quantization: high resolution-based optimization (HRO) and the greedy-based
heuristic algorithm.

In HRO bit allocation, which was first presented in relation to block quantization
(Huang and Schultheiss 1963), the average distortion incurred by the overall scalar
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quantization scheme is expressed in terms of the high resolution approximation of
the non-uniform scalar quantizer:

d,, = lZK o2 (7.4)

nig

In this equation, 7 is the vector dimensionality, K is a constant which varies for
different PDFs (for Gaussian PDFs, K = ”T‘B), 0',-2 is the variance of the ith vector

component, and b; is the number of bits allocated to the ith scalar quantizer. This
expression is to be minimized using the fixed bitrate constraint,

b, = Zn:bi (7.5)
i=1

We are then left with the following bit allocation formula (for the full derivation,
see Huang and Schultheiss 1963):

b. :&+llog2—’ (7.6)

Let us consider an example of scalar quantizing vectors of dimension 4 using a
total of 20 bits, given the following variances: o-i2 ={2,30,10,52} . Using Eq. 7.6,
we calculate a bit allocation of b; = {3.634,5.587,4.7948, 5.984} bits. We note that,

firstly, more bits have been allocated to vector components with higher variances;
and secondly, the formula gives fractional (and even negative in some cases) bit
allocations. One may truncate these fractional bit allocations though this generally
leads to a total bitrate that is less than the target. A method is presented in Paliwal
and So (2005) for handling fractional bit allocations so that more of the bit budget is
utilized. A further constraint that enforces the b; to be always positive may also be
applied to the optimization process (Segall 1976).

The greedy-based heuristic algorithm for allocating bits is simpler than the HRO
algorithm and is more readily applicable to vectors with non-standard PDFs, where
deriving closed-form expressions may be difficult or impossible. Allocation is per-
formed one bit at a time for each vector component, with the one resulting in the
largest drop in quantization distortion to be selected to receive the bit. The process
continues until all bits have been allocated, where the resulting solution may only be
locally optimal. Greedy-based heuristic bit allocation has been investigated in DSR
in the literature (Digalakis et al. 1999).
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7.2.4 Block Quantization

In block quantization, also known as transform coding, an orthogonal linear trans-
formation P, whose columns consist of the basis vectors, is applied to a zero-mean
input vector, x, before scalar quantization (Huang et al. 1963):

y=P'x (7.7)

where y is the transformed vector containing the transform coefficients, {y,}"_, . The
inverse linear transformation is expressed as:

x=Py (7.8)

The covariance matrix of the transformed vectors is given by:

Z, =Elw']
=E[PTx(P"x)"]
=P E[xx" 1P
-pP'x P

When scalar quantizing input samples, the statistical dependencies between these
samples are not exploited and this leads to wasted bits and thus inefficient quantiza-
tion. In block quantization, the linear transformation serves to decorrelate the samples
before scalar quantization, which will improve the coding efficiency. The correlation
is ‘added’ back in the decoding stage via the inverse transformation of Eq. 7.8.

The decorrelating transformation also tends to pack the energy or variance into
the first few coefficients. When using the HRO bit allocation formula of Eq. 7.6, the
skewed variance distribution of the transformed coefficients will cause more bits to
be allocated to the scalar quantizers of the first few coefficients. Typical transforma-
tions used in coding include the Karhunen-Loéve transform (KLT) and the discrete
cosine transform (DCT).

7.2.5 Vector Quantization

The basic definition of a vector quantizer Q of dimension n and size K is a map-

ping of a vector from n dimensional Euclidean space, R”, to a finite set, C, containing
K reproduction codevectors:

0:R" > C (7.9)
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where C ={y;;iel} and y, € R". Associated with each reproduction codevector is a
partition of R”, called a region or cell, S ={S,;iel}.

The most popular form of vector quantizer is the Voronoi or nearest neighbour
vector quantizer (Gersho et al. 1992), where for each input source vector x, a search

is done throughout the entire codebook to find the nearest codevector y;, which has
the minimum distance:

y, =0[x] ifd(x,y,)<d(x,y,) foralli=j (7.10)

where d(x, y) is the distortion measure between the vectors, x and y. Generally, the
most common distortion measure used in vector quantizers is the MSE.

The VQ codebook is designed using a large number of training vectors, which
are representative of the set of vectors that will be quantized by the VQ. The iterative
Linde-Buzo-Gray (LBG) algorithm (Linde et al. 1980) is applied to the training
vectors and the resulting K centroids or codevectors constitute the VQ codebook.
The bitrate of the vector quantizer is log, K bits/vector.

Though the unconstrained VQ (that is, the VQ codebook has no structural con-
straints) is theoretically the optimal quantizer that one can design, its computational
complexity and memory requirements may become prohibitive at high bitrates. Fur-
thermore, designing a high bitrate VQ codebook requires a large amount of training
data. Therefore, the application of unconstrained VQ is often constrained to low
bitrates, while structurally constrained forms, such as multistage, split, and tree-
structured VQ are used when higher bitrates are required. Constrained VQs sacrifice
rate-distortion performance for lower computational and memory requirements.

7.2.6 GMM-Based Block Quantization

The GMM-based block quantizer (Subramaniam and Rao 2003) is an improved
version of the Gaussian block quantizer (Huang et al. 1963). Rather than assume the
PDF of the input vectors to be Gaussian, Gaussian mixture models (GMMs) are used
to approximate the PDF and each mixture component is quantized using a Gaussian
block quantizer. These modifications result in better RD performance as the GMM-
based block quantizer is designed to match the PDF more closely, assuming that
there is minimal overlap between the mixture components.

Compared with vector quantizers, the GMM-based block quantizer has the
Advantages of: fixed computational and memory requirements that are independent
of the bitrate; and bitrate scalability, where any bitrate can be used without the need
to redesign the codebook (Subramaniam and Rao 2003). Bitrate scalability is a desirable
feature in DSR applications, since one may need to adjust the bitrate adaptively,
depending on the network conditions (So and Paliwal 2006).

This quantization scheme can be broken down into three stages: PDF estimation,
bit allocation and minimum distortion block quantization. Each stage will be de-
scribed in the following subsections.
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Fig 7.4 PDF estimation and bit allocation from training data (From So and Paliwal 2006)

PDF Estimation using Gaussian Mixture Models

The PDF model and Karhunen-Loé¢ve transform (KLT) orthogonal matrices are the
only static and bitrate-independent parameters of the GMM-based block quantizer.
These only need to be calculated once during the training stage and stored at the
client encoder and server decoder. The bit allocations for different bitrates can be
calculated ‘on-the-fly’ using the common PDF model stored on both client and
server. The PDF estimation procedure is shown in Fig. 7.4.

The PDF model, G, as a mixture of multivariate Gaussians, N(x;u,2"), can be
expressed as:

G(x|M)=> e N(x;m;, X)) (7.11)
i=1
M =[m,cp,csCppy By e By s 2150 2 ] (7.12)
. 1 =) =7 (x-p)
N(xa.uaz)zﬁe } (713)
@)’ |z

where x is a source vector, m is the number of mixture components, and 7 is the
dimensionality of the vector space. ¢;, g 2 are the weight, mean, and covariance
matrix of the ith mixture component, respectively.

The parametric model, M, is initialized by applying the LBG algorithm (Linde
et al. 1980) on the training vectors where m mixture components are produced, each
represented by a mean or centroid, g, a covariance matrix, 2, and a mixture compo-
nent weight, c. These form the initial parameters for the GMM estimation procedure.
Using the expectation-maximization (EM) algorithm (Dempster et al. 1977), the
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maximum-likelihood estimate of the parametric model is computed iteratively and a
final set of means, covariance matrices, and weights are produced.

An eigenvalue decomposition (EVD) is calculated for each of the m covariance
matrices. The eigenvectors form the rows of the orthogonal transformation matrix, K,
of the KLT.

Bit Allocation

Assuming there are a total of by, bits available for quantizing each vector, these need
to be allocated to each of the block quantizers of each mixture component in an op-
timal fashion. Using Lagrangian minimization (Subramaniam et al. 2003), the fol-
lowing formula is derived:

(cA)™
m

DA™
i=1

2% = Db fori=12,...m (7.14)

A, = {Hzl (7.15)

In Egs. 7.14 and 7.15, 4, ; is the jth eigenvalue of mixture component i and b; is the
number of bits allocated to the block quantizer of mixture component i.

Once bits have been allocated to the block quantizer of each mixture component,
these need to be further allocated to the scalar quantizers within the block quantizer.
The bit allocation was presented in Sect. 7.2.3 and the formula for allocating bits is
given by Eq. 7.6.

min

Fig. 7.5 Minimum distortion block quantization (BQ, block quantizer) (From So and Paliwal
2006)
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Minimum Distortion Block Quantization

Figure 7.5 shows the minimum distortion block quantization stage, whose operation
is described in more detail in Subramaniam et al. (2003). At first glance, it can
be seen to consist of m independent block quantizers, BQ;, each with their own

orthogonal matrix, K;, and bit allocations, {bl-, j};’-:l . A vector, x, is quantized m times

and the kth block quantizer is chosen such that it incurs the least distortion.

k =argmind(x, X;) (7.16)

1

7.3 Quantization of ASR Feature Vectors

7.3.1 Introduction and Literature Review

So far, we have only discussed quantization and the various schemes in general with
no reference made to quantizing ASR feature vectors. In this section, we discuss the
task of quantizing ASR feature vectors as well as examine some statistical properties
that may affect the quantization and recognition performance. We will also examine
the performance of the DSR system in the presence of background noise. Unless
otherwise specified, we will be mostly focusing on Mel frequency-warped cepstral
coefficients (MFCCs) (Davis and Mermelstein 1980) as the ASR feature set.

Various schemes for quantizing the ASR features have been proposed in the
literature. Digalakis et al. (1999) evaluated the use of uniform and non-uniform
scalar quantizers as well as product code vector quantizers for coding MFCCs at
rates of between 1.2 and 10.4 kbps. They used the greedy-based bit allocation algo-
rithm for the scalar quantizers, where the component, which resulted in the largest
improvement in recognition performance, was chosen to receive the allocated bit.
They concluded that split vector quantizers achieved word error rates (WER) similar to
that of scalar quantizers while requiring fewer bits. A bitrate of 2 kbps was the re-
quired bitrate for split vector quantization to achieve ASR recognition performance.
Also scalar quantizers with non-uniform bit allocation performed better than those
with uniform bit allocation.

In Ramaswamy and Gopalakrishnan (1998), the authors investigated the applica-
tion of tree-searched multistage vector quantizers (MSVQ) with first-order linear
prediction operating at a bitrate of 4 kbps. The current MFCC feature vector was
subtracted from the previous quantized frame to give a residual vector. The first 12
coefficients of the residual vector were then quantized using a two-stage MSVQ,
while the last coefficient, ¢y, was scalar quantized. Their system achieved near iden-
tical recognition performance as the ASR recognition performance, with only minor
degradation.

Transform coding, based on the DCT, was investigated in Kiss and Kapanen
(1999) at a bitrate of 4.2 kbps. In this scheme, feature vectors of dimension 14 (13
MFCC:s plus the energy coefficients, ¢, and log E) were processed. For each cepstral
coefficient, eight temporally consecutive coefficients were grouped together and
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processed by the DCT, which exploited temporal correlation. The energy coefficient
was encoded separately.

In Zhu and Alwan (2001), 12 successive MFCC frames were stacked together to
form a block of 12 x 12 and a two-dimensional DCT was applied. Zonal sampling
was performed, where a fraction of the lowest energy components was set to zero and
the remaining coefficients were scalar quantized and entropy coded. The advantage of
this scheme compared to that of Kiss and Kapanen (1999) is that both within-frame
and across-frame correlation is exploited by the 2D-DCT. Noise-robust feature sets,
such as peak isolated MFCCs (MFCCP) (Strope and Alwan 1997) and variable
frame-rate peak isolated MFCCs (VFR_MFCCP) (Zhu and Alwan 2000) were also
tested. Their results showed that, firstly, the DSR recognition performance always
performed slightly worse than the ASR recognition performance at all signal-to-
noise (SNR) levels. Secondly, the quantized noise-robust features at 624 bps resulted
in recognition accuracies that even surpassed the ASR performance at low SNRs.

The ETSI DSR standard (2003) uses split vector quantizers to compress the
MFCC vectors at 4.4 kbps. Feature vectors of dimension 14 (13 MFCCs and log E)
are split into pairs of subvectors, with the energy parameters, ¢, and log E belonging
to the same pair. A weighted MSE distortion measure is used for the energy parame-
ter subvector.

In Srinivasamurthy et al. (2006), correlation across consecutive MFCC features
was exploited by a differential pulse coded modulation (DPCM) scheme followed by
entropy coding. Their scheme is a scalable one, where the bitstream is embedded.
That is, a coarsely quantized base layer is transmitted. If higher recognition perform-
ance is required, the client can transmit further enhancement layers, which are
combined with the base layer by the server to obtain higher quality features.

7.3.2 Statistical Properties of MFCCs

The statistical properties of the MFCC vectors have a direct influence on the rate-
distortion performance of any quantization scheme. According to Makhoul et al.
(1985), these properties are:

linear dependency (i.e. correlation);

non-linear dependency;

probability density function shape; and

dimensionality (i.e. quantizing vectors is more efficient than scalars).

We will investigate properties 1 and 3 of MFCC vectors in the following sub-
section. In particular, the correlation across successive vectors will be examined as
this property is exploited by interframe schemes such as multiframe/matrix and pre-
diction-based quantizers.

Correlation within MFCC Vectors (Intraframe Dependencies)

We examine the amount of correlation between cepstral coefficients within a feature
vector by computing the covariance matrix of MFCCs from the training speech set of
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the Aurora-2 database (Hirsch and Pearce 2000). The MFCCs consist of 13 cepstral
coefficients, {c,-}}-io . The log energy coefficient log E, which is often concatenated
with the MFCC feature set in ASR, has not been included. Rather than presenting a
13 x 13 matrix of coefficients, we have plotted the absolute value of the covariance
coefficients in Fig. 7.6. Because of the large difference in magnitude of the variance
of ¢y compared with those of the other cepstral coefficients, we have applied a square
root operation to the covariance coefficients to compress the dynamic range. There-
fore, the coefficients on the diagonal represent the standard deviation of each cepstral
coefficient rather than the variance.

We can see that a large percentage of the energy is contained in the zeroth cep-
stral coefficient, ¢y. Recall that the final stage of MFCC computation comprises a
discrete cosine transform (DCT), which tends to compact most of the energy into the
zeroth cepstral coefficient or DC component. In addition, most of the off-diagonal
covariance coefficients have low magnitude, which indicates that the cepstral coeffi-
cients are weakly correlated with each other—apart from c¢,, where the cross-
variance with the other cepstral coefficients appears to be higher. This suggests that

the other cepstral coefficients {C[}Zl contain some information of the zeroth cepstral

coefficient. Hence, in most speech recognition systems, c¢q is not included in the
feature set.

Standard deviation of [

Standard deviation of c

Standard deviation of c,

Square root of covariance coefficient

13 1 Column number of covariance matrix

Fig. 7.6 Graphical representation showing the absolute value of the covariance coefficients of
MFCCs within a single vector with compressed dynamic range (log energy is not included)
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Because the efficiency of scalar quantization is generally optimal when the vector
components are not correlated (which is the basis of block quantization), the covari-
ance statistics of MFCCs (shown in Fig. 7.6) suggest that directly scalar quantizing
the MFCCs may not be optimal. In which case, a further transform (such as the KLT)
may be required to remove the remaining correlation and henceforth improve the
rate-distortion performance.

This improvement will be become apparent when comparing the results between
the scalar quantizer and the block quantizer.

Correlation across Successive MFCC Vectors (Interframe Dependencies)

In order to examine the correlation across successive MFCC vectors, we concatenate
these vectors to form higher dimensional vectors and compute the covariance matrix
of this new vector set. Any linear dependencies between MFCCs in successive vec-
tors will be shown by large off-diagonal coefficients in the corresponding rows and
columns of the covariance matrix. Figure 7.7 is similar to Fig. 7.6, where the covari-
ance matrix is graphically represented in a three dimensional representation. We also
present the graphical covariance matrix representation for two, three, four, and five

Fig. 7.7 Graphical representation showing the coefficients of the covariance matrix of MFCCs
within a multiple successive vectors with compressed dynamic range: a two vectors, b three
vectors, ¢ four vectors, and d five vectors
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concatenated MFCC vectors in order to show the amount of correlation between
MFCCs across these successive vectors. As before, the log energy coefficient has not
been included and an absolute value followed by a square root operation has been
applied to all covariance coefficients in order to compress the dynamic range.

Looking at Fig. 7.7a, where two vectors have been concatenated together, we
notice a large number of off-diagonal covariance coefficients that have a large
magnitude, which indicates a high degree of correlation between the MFCCs across
successive frames.

This is to be expected, as the speech frames used to compute the MFCCs are
highly overlapped. When we look at the covariance coefficients for three, four, and
five vectors, in Fig. 7.7b—d, we notice greater numbers of off-diagonal elements with
large magnitude. Therefore, it is expected that quantization schemes, which exploit
memory across multiple successive, will be more efficient in the rate-distortion
sense, than memoryless schemes.

We should point out that this method of vector concatenation does not capture all
of the dependencies. For example, if we represent four successive MFCC vectors as
X1, X2, X3, X4, then concatenating them will produce: [x;, x,], [x3, x4]. The covariance
matrix will capture the dependencies between MFCCs in both x; and x, and between
MFCCs in both x5 and x4, but not the dependences between x, and x;.

06—
05—

0.4

Prediction coefficient

0.3

0.2~

01

i g 10
Cepstra| coefficient o Q'g’

Fig. 7.8 Graphical representation showing the prediction coefficients from a single-step linear
prediction of MFCC vectors (¢o and log E are represented as cepstral coefficient 13 and 14,
respectively)
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Fig. 7.9 Probability density function estimates of MFCCs
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As a further method of capturing the correlation that exists across successive
frames, we apply a single-step backward prediction analysis using the covariance
method over the MFCC feature vector set to compute prediction coefficients. Both
the energy coefficients, ¢y and log E have been included. Up to 10 past vectors were
used in the analysis. The closer the prediction coefficients are to unity, the higher the
degree of correlation between any MFCC vector and a past vector. Figure 7.8 shows
a graphical representation of the prediction coefficients for each cepstral coefficient.
We can see that consecutive vectors (past vector number equal to one) are highly
correlated as is shown by the prediction coefficients being closest to unity. The coef-
ficients decrease in value as vectors further away in the past are used to predict the
current vector, with some MFCCs decreasing faster than others. It is interesting to
point out that the energy coefficients across 10 frames are highly correlated. This
observation suggests that the energy coefficients could be efficiently quantized using
prediction-based schemes.

Probability Density Functions of MFCCs

The probability density function (PDF) of MFCCs are particularly important when
we consider scalar quantization-based schemes. Figure 7.9 shows the probability den-
sity function (PDF) estimates of the MFCCs in addition to the log E coefficient.

The PDFs of the MFCCs, apart from ¢, and log E, resemble unimodal Gaussians,
which suggests that they are amenable to non-uniform scalar quantization optimized
for Gaussian sources as well as block quantization. This is to be expected as the
MFCCs were formed from linear combinations of vector components during the
DCT operation. According to the central limit theorem, as the dimension of the vec-
tors increases, the distributions of the transform coefficients approach a Gaussian
(Chen and Smith 1977). In contrast, the ¢, and log E coefficients possess a bimodal
distribution, which suggests that custom-designed scalar quantizers would be needed
here.

We conclude this section on the statistical properties of MFCCs by noting the dif-
ferences in the statistics of the energy coefficients (cq and log E) when compared
with those of ¢,...c|,, in terms of the correlation and PDF. It is for this reason that
the energy coefficients are often quantized independently from the rest of the cepstral
coefficients. Because of this, the issue of bit allocation arises. That is, how much of
the bit budget should be allocated for quantizing energy coefficients in order to
maximize the recognition performance? The majority of the quantization schemes
reported in the literature have arbitrarily allocated bits to the energy coefficients,
rather than utilising a formula obtained from constrained minimization. The problem
is that it is not entirely clear how much impact quantization errors in the energy
coefficients have on the recognition performance, compared with errors in the other
cepstral coefficients. In order to isolate the uncertainty associated with energy coeffi-
cient quantization as well as to present a simple and consistent bit allocation frame-
work, we have performed all DSR experiments where the energy coefficients are not
included as part of the MFCC feature set. For the Aurora-2 recognition task, the ASR
performance dropped from 99% to 98% as a result of not including the energy coef-
ficients.
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7.3.3 Use of Cepstral Liftering for MFCC Variance Normalization

The variances of each MFCC are shown in Fig. 7.10. The variances of ¢, and log E
(not shown in Fig. 7.10), are 2,530 and 260, respectively. The non-uniform variance
distribution of the MFCCs is a result of the energy-packing characteristics of the
discrete cosine transform. It is also well known that the lower order cepstral coeffi-
cients are particularly sensitive to undesirable variations caused by factors such as
transmission, speaker characteristics, vocal efforts, etc. (Juang et al. 1987).

According to the HRO bit allocation formula for scalar quantization in Eq. 7.6,
bits are allocated to vector components on the basis of variance, in order to minimize
the mean squared error. This can be seen in the first row of Table 7.1, which shows
the number of bits that are allocated to each MFCC, using HRO bit allocation. Be-
cause ¢ has the highest variance, it has been allocated the most number of bits.

120

100 b

Variance
L

5

8

6 7
MFCC number

Fig. 7.10 Variances of MFCCs (c( and log E are not included)

Table 7.1 Number of bits allocated to each MFCC with and without the application of cepstral
liftering (computed using Eq. 7.6)

Total )

bits Ci C €G3 €4 €4 C¢ C7 Cg C9 Cio Ci1 Ci2
V_Vlth_out 15 31 24 19 16 13 1.1 09 07 07 06 04 0.3
liftering
With

lifteri 15 24 23 22 22 20 18 15 13 1.0 05 -04 -2
iftering
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From a quantization point of view, where the mean squared error between the
original and reconstructed MFCC vectors is minimized, finely quantizing the first
few MFCCs makes sense since they have higher variance. As will be shown in the
next section, the relationship between MSE and recognition accuracy is monotonic
and non-linear. However, if the operating bitrate is low, there may be a shortage of
bits to allocate to the important middle-order MFCCs.

700

IS
S
S}

Variance

300

MFCC number

Fig. 7.11 Variances of MFCCs after cepstral liftering (¢ and /log E are not included)

Fig. 7.12 Lifter window function of Eq. 7.16
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If the shortage of bits that is due to a low operating bitrate, is found to cause a
performance degradation, then one may normalize the variances of the MFCCs so
that the bit allocation is not too highly skewed. This normalization can be done via
the use of /iftering, which performs ‘filtering’ in the cepstral domain. Cepstral lifter-
ing was a technique that was investigated in the literature to improve the recognition
performance (Paliwal 1982), where cepstral coefficients were linearly weighted.
Another method of cepstral liftering (Juang et al. 1987) uses the following sinusoidal
lifter window function:

L .| #zn
w(n) =1+ Esm[T} (7.16)

where L is the dimensionality of the MFCCs. This window function is plotted in Fig.
7.12, where we can see an emphasis on the middle order cepstral coefficients. The
effect of the liftering operation on the MFCC variances and the bit allocation are
shown in Fig. 7.11 and Table 7.1, respectively, where bits are allocated more uni-
formly to the middle order MFCCs. In our experiments, we have used cepstral liftering
for the purpose of variance normalization. Further work is needed to determine the
benefits that it may provide to the recognition performance as well as noise-robustness
in a DSR scenario. This is in light of the results presented in Paliwal (1999), where
cepstral liftering on MFCCs was shown to improve the noise robustness for dynamic
time warping-based speech recognizers, which use Euclidean distance measures.

7.3.4 Relationship Between the Distortion Measure and Recognition
Performance

All quantization schemes attempt to minimize the error between the original and
quantized samples. For instance, the HRO bit allocation formula of Eq. 7.6 for scalar
quantizing vector components was obtained from a constrained minimization of the
average MSE. In vector quantization, the codebook vector that minimizes the distor-
tion is selected.

The direct application of these quantization schemes to distributed speech recog-
nition readily assumes that decreasing the MSE between the original and quantized
MFCC features will guarantee that the degradation in recognition performance due to
the quantization decreases as well. We will validate this assumption by applying
unconstrained vector quantization on MFCCs at varying bitrates, measuring the
average MSE and recognition rates for each bitrate. Figure 7.13 shows the average
recognition rate plotted against the average MSE incurred by the vector quantizer.

We can see from Fig. 7.13 that the recognition rate appears to decrease mono-
tonically as the average MSE increases. Therefore, this shows that a quantization
scheme that minimizes the MSE is also guaranteed to improve the recognition accu-
racy. Furthermore, we note that it is a non-linear relationship, where if the average
MSE was large, a decrease in quantization distortion leads to a larger improvement
in recognition rate than if the MSE were low.
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7.3.5 Improving Noise Robustness: Perceptual Weighting of Filterbank
Energies

Noise-robustness is an important consideration in DSR since the user at the client
end will mostly be immersed in various environmental sounds. It is well known in
the ASR literature that noise has a detrimental effect on the recognition performance
when using conventional MFCC features. Much of the current work in ASR research
involves finding speech features that are robust to the effects of noise. These speech
features can be used in DSR as well.

Using a two-dimensional discrete cosine transform coder, Zhu and Alwan (2001)
improved the robustness of DSR to noise by using peak-isolated MFCCs (MFCCPs).
MFCCPs are derived by applying half-wave rectification to the spectrum reconstructed
from a bandpass liftered cepstral vector (Strope and Alwan 1997). They are robust
to noise because of the preservation and emphasis of power spectral peaks, whose
frequency locations are known to be important for the discrimination of vowels. The
idea is that accuracy in the location of spectral peaks is more important than the
location of spectral valleys.

Another method of exploiting this idea is to quantize the logarithmic filterbank
energies (LFBEs) (see Fig. 7.14) rather than the MFCCs themselves (So and Paliwal
2005). The advantage of working with LFBE:s is their correspondence with the power
spectrum. That is, a strong peak in the power spectrum would generally lead to a large
LFBE coefficient in the same critical band. On the other hand, the frequency location
information of this spectral peak is not readily available in the MFCC representation as
each MFCC consists of a linear combination of all LFBEs. By quantizing the LFBEs,
we can apply noise-shaping techniques to quantize LFBEs that correspond to spectral
peaks more finely than those that correspond to spectral valleys. The disadvantage of
using LFBE vectors is that they have a higher dimensionality than MFCC vectors.

In order to achieve quantization noise shaping, we apply a perceptually-weighted
distance measure to vary the emphasis of the quantization, which can easily be in-
corporated into a vector quantizer (So et al. 2005). The weighted distance measure

d,(E E ) between the original LFBE vector E and the LFBE E is defined as:

d,(E,E)= Zn)[wi(Ei -E)P (7.17)

i=1

V\ihere n is the vector dimensionality, w; is the weight of the ith component, E; and
E; are the ith component of the original and code-vector, respectively. In order to
emphasize a vector component, E;, such that it is quantized more finely, the weight
w; should be made larger. In the LFBE vector quantizer, it is desirable to emphasize
the LFBEs that represent the spectral peaks. Therefore, w; is set to be a scaled ver-

sion of the FBE, eli:
w, =[5 ] (7.18)

1

Through experimentation, we have found 0.5 to be a good value for 7.
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7.4 Experimental Results

7.4.1 ETSI Aurora-2 Distributed Speech Recognition Task

The purpose of the ETSI Aurora-2 experiment is to provide a common framework
for evaluating noise-robust speech recognition systems. It consists of a clean speech
database, a noise database, a standard MFCC-based frontend, and scripts for per-
forming the various training and test sets. The recognition engine that is used is the
HMM Toolkit (HTK) software (Young et al. 2002).

The TIDigits database (Leonard 1984) forms the basis of the clean speech data-
base, where the original 20 kHz speech was downsampled to 8 kHz and filtered
using the frequency characteristic of ITU G.712 (300-3,400 Hz). Aurora-2 also pro-
vides a database of eight background noises, which were deemed to be commonly
encountered in real-life operating conditions for DSR. These noises were recorded at
the following places (Hirsch and Pearce 2000):

Suburban train (subway)
Crowd of people (babble)
Car

Exhibition hall (exhibition)
Restaurant

Street

Airport

Train station

This noise is added to the filtered clean speech at various SNRs to simulate noise
corruption.

There are two training modes: training with clean speech only and training with
clean and noisy (multicondition) speech. In multicondition training, the noises added
are subway, babble, car, and exhibition. When training with clean speech only, the
best recognition performance is achieved in matched conditions, i.e. when testing
with clean speech as well. However, when the speech to be tested has background
noise, then multicondition training is desirable, as it includes the distorted speech in
the training data.

For the testing, there are three test sets, known as test set A, B, and C. In test set
A and B, 4,004 test utterances from the TIDigits database are divided into four sub-
sets of 1,001 utterances each and four different types of noises are added to each
subset at varying levels of SNRs (o0, 20, 15, 10, 5, 0, =5 dB). Therefore, there are a
total of 4 x 7 =28 recognition accuracies reported in test set A and B. In test set C,
only two subsets of 1001 utterances and two noises are used, giving a total of 14
recognition accuracies.

In test set A, the subway, babble, car, and exhibition noises are added to each
subset and these are the same noises used in multicondition training, hence test set A
evaluates the system in matched conditions. In test set B, the other four noises,
namely restaurant, street, airport, and train station, are used instead. Because these
noises were not present in the multicondition training, then test set B evaluates the
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system in mismatched conditions (mismatched noise). Test set C contains two utter-
ance subsets only (of the four) with the noises, subway and street, added. Both the
speech and noise are filtered using the MIRS frequency characteristic before they are
added, hence test set C evaluates the system in mismatched conditions (mismatched
frequency characteristic).

Whole word HMMs are used for modelling the digits with the following pa-
rameters:

16 states per word (with 2 additional dummy states at beginning and end);
left-to-right topology without skips over states;

3 Gaussian mixtures per state; and

diagonal covariance matrices.

7.4.2 Experimental Setup

We have evaluated the recognition performance of various quantization schemes
version 3.2.1 of the HMM Toolkit (HTK) software. Training was done on clean data
only (no multicondition training) and testing was performed using test set A. In order
to see the recognition performance as a function of bitrate, we focus on the results of
testing on clean speech, where the four word recognition accuracies for each type of
noise are averaged to give the final score for the specific quantization scheme. In
addition to this, the effect of different types of noise at varying levels of SNR on the
recognition performance is also investigated at the bitrates of 1.2 kbps and 0.6 kbps
for each quantization scheme.

The ETSI DSR standard Aurora frontend (2003) was used for the MFCC feature
extraction. MFCCs are extracted at a frame rate of 100 Hz. As a slight departure
from the ETSI DSR standard, we have used 12 MFCCs (excluding the zeroth cep-
stral coefficient, ¢y, and logarithmic frame energy, log E) as the feature vectors to be
quantized. We have applied the cepstral liftering technique (Juang et al. 1987) to the
MFCC vectors. Cepstral mean subtraction (CMS) is applied to the decoded 12
MFCC features, which are concatenated with their corresponding delta and accelera-
tion coefficients, giving the final feature vector dimension of 36 for the ASR system.
The HTK parameter type is MECC_D A 7. The baseline average recognition accu-
racy or ASR accuracy using unquantized MFCC features derived from clean speech
is 98.0 %.

7.4.3 Non-Uniform Scalar Quantization Using HRO Bit Allocation

For the scalar quantization experiment, each MFCC was quantized using a non-
uniform Gaussian Lloyd-Max scalar quantizer whose bit allocation was calculated
using the HRO bit allocation formula of Eq. 7.6. We have chosen this method over
the WER-based greedy algorithm (Digalakis et al. 1999) because of its computa-
tional simplicity and this allows us to scale any bitrate with ease. Table 7.2 shows the
average recognition accuracy of the non-uniform scalar quantizer. It can be seen that
the accuracy decreases linearly in the range of 4.4 to 1.2 kbps and drops rapidly
below this range.
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Table 7.2 Average DSR word recognition accuracy as a function of bitrate for non-uniform
scalar quantizer (ASR accuracy = 98.0%)

Bitrate (kbps) Average recognition accuracy (in %)

0.6 38.2
0.8 72.3
1.0 86.7
1.2 93.3
1.5 95.5
1.7 96.2
2.0 97.0
2.2 97.2
2.4 97.4
3.0 97.8
4.4 98.0

7.4.4 Unconstrained Vector Quantization

An unconstrained, full-search vector quantizer was used to quantize single MFCC
frames. The distance measure used was MSE. In terms of minimizing quantization
distortion, the vector quantizer is considered the optimum coding scheme, hence it
will serve as an informal upper recognition bound for single frame quantization. Table
7.3 shows the average recognition accuracies at several bitrates.

Table 7.3 Average DSR word recognition accuracy as a function of bitrate for the uncon-
strained vector quantizer (ASR accuracy = 98.0%)

Bitrate (kbps) Average recognition accuracy (in %)

0.4 76.9
0.6 91.8
0.8 95.7
1.0 96.9
1.2 97.0

When comparing with Table 7.2, we can see that the superior rate-distortion effi-
ciency of the vector quantizer translates to better recognition rates as well. For ex-
ample, at 600 bps, which corresponds to 6 bits in total for quantizing 12 coefficient
MFCC vectors, the recognition rate for the vector quantizer is 53.6% higher than that
for the scalar quantizer. With such a small bit budget, the scalar quantizer cannot
allocate bits to some MFCCs, thus in the decoding, they would simply be replaced
by the mean value. On the other hand, the vector quantizer codebook, which contains
64 code-vectors, exploits linear and non-linear dependencies between the MFCCs,
matches the joint PDF, and uses optimal quantization cell shapes (Lookabaugh and
Gray 1989).
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7.4.5 GMM-Based Block Quantization

Table 7.4 shows the average recognition accuracies for the GMM-based block quan-
tizer with 16 mixture components. We can see that for this quantization scheme, the
recognition accuracy decreases gracefully to about 800 bps. Comparing it with Table
7.2, we notice higher recognition accuracies in the GMM-based block quantizer,
which may be attributed to better PDF matching as well as the use of a decorrelating
transformation. At 600 bps, the GMM-based block quantizer is 49.4% better than the
scalar quantizer. However, it is not as high as the recognition performance achieved
with the vector quantizer at 600 bps (Table 7.3). This is consistent in the rate-
distortion sense since the vector quantizer should be the optimum single-frame quan-
tizer. However, in practice, the vector quantizer suffers from high computational
complexity, while the GMM-based block quantizer has fixed requirements as well as
possessing the feature of bitrate scalability.

7.4.6 Multi-frame GMM-Based Block Quantization

The multi-frame GMM-based block quantizer is similar to the matrix quantizer (Tsao
and Gray 1985). Five successive MFCC frames are concatenated to form a vector of
dimension 60 and these larger vectors are then quantized. Table 7.5 shows the aver-
age word recognition accuracy of the 16 mixture component, five frame multi-frame
GMM-based block quantizer for different bitrates.

It can be observed that this quantizer achieves an accuracy that is close to the
unquantized, baseline system at 1 kbps or 10 bits/frame, which is half the bitrate of
the single-frame GMM-based block quantizer. For bitrates lower than 600 bps, the
performance gradually rolls off.

In terms of quantizer distortion, the multi-frame GMM-based block quantizer
generally performs better as more frames are concatenated together because inter-
frame memory can be exploited by the KLT. Furthermore, because the dimensionality
of the vectors is high, the block quantizer operates at a higher rate.

Compared with the results of the single frame GMM-based block quantizer in
Table 7.4, the multi-frame scheme does not suffer from a dramatic drop in recogni-
tion accuracy at low bitrates. Unlike the single frame scheme, where there was a
shortage of bits to distribute among mixture components, the multi-frame GMM-
based block quantizer is able to provide enough bits, thanks to the increased dimen-
sionality of the vectors. For example, at 300 bps, a 16-mixture component, single
frame GMM-based block quantizer has a total bit budget of 3 bits. On the other hand,
a 16-mixture component, five-frame scheme has a total bit budget of 15 bits. There-
fore, the multi-frame GMM-based block quantizer can operate at lower bitrates while
maintaining good recognition performance.

The multi-frame GMM-based block quantizer also outperforms the vector quan-
tizer since the latter is only a single frame scheme. As we have seen previously,
successive MFCC frames are highly correlated with each other so it is expected that
quantization schemes that exploit multiple frame dependencies will perform much
better in the rate-distortion sense. The disadvantage of this scheme is the inherent
delay that is introduced.
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Table 7.4 Average DSR word recognition accuracy as a function of bitrate for the GMM-
based block quantizer with 16 mixture components (ASR accuracy = 98.0%)

Bitrate (kbps) Average recognition accuracy (in %)

0.3
0.4
0.6
0.8
1.0
1.2
1.5
1.7
2.0
2.2
2.4
3.0
4.4

8.1
233
87.6
93.7
95.5
96.4
97.2
97.3
97.6
91.7
97.9
97.8
98.0

Table 7.5 Average word recognition accuracy as a function of bitrate for the multi-frame
GMM-based block quantizer with 16 mixtures and 5 frames (ASR accuracy = 98.0%)

Bitrate (kbps) Average recognition accuracy (in %)

0.2
0.3
0.4
0.6
0.8
1.0
1.2
1.5
1.7
2.0

82.9
93.0
95.4
96.8
97.5
91.7
97.9
97.8
98.0
98.0

7.4.7 Perceptually-Weighted Vector Quantization of Logarithmic

Filterbank Energies

We can see from Fig. 7.15 that the proposed perceptually weighted vector quantiza-
tion scheme operating on logarithmic filterbank energies (PWVQ-LFBE) is more
robust to noise than the unweighted vector quantization of MFCCs (VQ-MFCC). At
SNRs of 10 and 15 dB, the PWVQ-LFBE scheme achieves up to 6 to 10% improve-
ment over VQ-MFCC. This may be attributed to the use of the weighted distance
measure to emphasize the spectral peaks. However, for low SNRs, the PWVQ-LFBE
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Fig. 7.15 Word recognition accuracy for speech corrupted with noise at varying SNRs (in dB)
at 1.2 kbps using the perceptually weighted vector quantizer on LFBEs (PWVQ-LFBE) (solid
line represents the ASR accuracy; squares represent PWVQ-LFBE and crosses represent VQ-
MEFCC): a corrupted with subway noise, b corrupted with babble noise, ¢ corrupted with car
noise, d corrupted with exhibition noise

scheme fails to improve the noise robustness, when compared with VQ-MFCC. Fur-
thermore, this quantization scheme appears to be bounded by the ASR recognition
accuracy (shown as the solid line in Fig. 7.15). We should point out that higher
bitrates were not investigated due to computational constraints.

7.5 Conclusion

In this chapter, we have described a series of quantization schemes for coding MFCC
feature vectors that are to be used for distributed speech recognition. These include
the scalar quantizer, vector quantizer, perceptually weighted vector quantizer and
GMM-based block quantizer. These quantization schemes have been described in
detail in the coding literature but their application to quantizing MFCC feature vectors
has been a relatively recent development. It is important to note that the objective
measure in DSR that is to be optimized is the recognition accuracy, rather than the
mean squared error. Therefore, quantization in the context of DSR deserves further
investigation.

We have discussed the statistical properties of MFCCs that are relevant to quanti-
zation. In particular, we have shown that successive MFCC vectors are highly corre-
lated with each other. Because of this property, multi-frame and predictive quantization
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schemes should perform more efficiently. In relation to the energy coefficients
(co and log E), which were shown to possess different statistical properties, we con-
cluded that they should be quantized independently from the rest of the cepstral
coefficients. We have also shown via empirical results that the recognition rate in-
creases monotonically as MSE decreases. That is, optimizing quantizers to minimize
the MSE, in general, should guarantee an improvement in recognition rate. However,
the relationship is a non-linear one.

Next, we presented a brief review of the distributed speech recognition literature,
where various schemes for quantizing MFCCs were investigated. The Aurora-2
database used for evaluating the performance of our MFCC quantization schemes as
well as the parameters for the recognition task were described in detail. Following
this, we presented our results on MFCC quantization in a DSR framework using non-
uniform scalar quantization with HRO bit allocation, vector quantization, and single-
frame as well as multi-frame GMM-based block quantization. For clean speech, the
multi-frame GMM-based block quantizer achieved the best recognition at lower
bitrates, exhibiting a negligible 1% degradation (word error rate of 2.5%) in recogni-
tion performance over the ASR accuracy at 800 bps and 5% degradation (word error
rate of 7%) at 300 bps. Unlike vector quantization schemes, the multi-frame GMM-
based block quantizer is scalable in bitrate and has a complexity that is independent
of bitrate.

We also looked at the performance of vector quantization of MFCCs derived
from noise corrupted speech at various SNR levels and compared this with the per-
ceptually-weighted vector quantizer (PWVQ). Rather than quantizing MFCCs, the
PWVQ works with logarithmic filterbank energies (LFBEs). The non-linearly
weighted distance measure allows for the shaping of quantization noise, putting more
emphasis on spectral peaks so that they are quantized more finely. We showed that
this scheme improves noise-robustness for medium SNRs (10-15 dB) over the vector
quantization of MFCCs.
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Error Recovery: Channel Coding and Packetization

Bengt J. Borgstrom, Alexis Bernard and Abeer Alwan

Abstract. Distributed Speech Recognition (DSR) systems rely on efficient transmission of
speech information from distributed clients to a centralized server. Wireless or network com-
munication channels within DSR systems are typically noisy and bursty. Thus, DSR systems
must utilize efficient Error Recovery (ER) schemes during transmission of speech information.
Some ER strategies, referred to as forward error control (FEC), aim to create redundancy in
the source coded bitstream to overcome the effect of channel errors, while others are designed
to create spread or delay in the feature stream in order to overcome the effect of bursty channel
errors. Furthermore, ER strategies may be designed as a combination of the previously de-
scribed techniques. This chapter presents an array of error recovery techniques for remote
speech recognition applications.

This chapter is organized as follows. First, channel characterization and modeling are
discussed. Next, media-specific FEC is presented for packet erasure applications, followed by
a discussion on media-independent FEC techniques for bit error applications, including gen-
eral linear block codes, cyclic codes, and convolutional codes. The application of unequal
error protection (UEP) strategies utilizing combinations of the aforementioned FEC methods
is also presented. Finally, frame-based interleaving is discussed as an alternative to overcom-
ing the effect of bursty channel erasures. The chapter concludes with examples of modern
standards for channel coding strategies for distributed speech recognition (DSR).

8.1 Distributed Speech Recognition Systems

Throughout this chapter various error recovery and detection techniques are dis-
cussed. It is therefore necessary to present an overview of a complete experimental
DSR system, including feature extraction, a noisy channel model, and an automatic
speech recognition engine at the server end (Fig. 8.1).

The feature extraction and source coding algorithms implemented for this chapter
are similar to those described by the ETSI standards (ETSI 2000), whereby split
vector quantization (SVQ) is used to compress the first 13 Mel-Frequency Cepstral
Coefficients (MFCCs) as well as the log-energy of the speech frame. The SVQ then
allocates 8 bits to the vector-quantization of the log-energy and the Oth cepstral coef-
ficient pair, and 6 bits to each of the following 6 pairs. The vector quantizers were
trained using the K-means algorithm, and quantization was carried out via an exhaus-
tive search.
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Fig. 8.1 Overview of the complete distributed speech recognition system

Two types of communication channels are studied, wireless circuit-switched and
IP packet-switched. Although these channels are inherently different, they do share
the characteristic that errors, whether they are flipped bits or packet erasures, tend to
occur in bursts. Thus, similar models are used to simulate the effects of noisy chan-
nels in the wireless and IP network scenarios. Channel degradation and modeling are
discussed in further detail in Sect. 8.2.

The server-end speech recognition engine is implemented using the HTK toolkit
(Young et al. 2000). The training process uses an implementation of the forward-
backward algorithm, and the recognition process uses an implementation of the
Viterbi algorithm. The speech database used for experiments is the Aurora-2 data-
base (Hirsch and Pearce 2000), which consists of connected digit strings, spoken by
various male and female speakers. During the recognition process, 16-state word
models were used, with each state comprised of 3 mixtures. 8,440 digit utterances
were used for training, and 1,001 utterances were used for testing (500 males, 501
females for a total of 3,257 digits).

8.2 Characterization and Modeling of Communication Channels

Distributed speech recognition systems face the challenge of processing signal noise
induced by communication channels. Such systems transmit extracted speech fea-
tures from distributed clients to the server, and typically operate at lower bitrates
than traditional speech communication systems.

8.2.1 Signal Degradation Over Wireless Communication Channels

Signal degradations caused by wireless channels are highly dependent on the spe-
cific physical properties of the environment between the transmitter and receiver, and
it is a difficult task to accurately generalize performance results of communication
over a wireless channel (Sklar 1997; Bai and Atiquzzaman 2003).
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There are three general phenomena that affect the propagation of radio waves in
wireless communication systems:

1. Reflection: Radio waves are reflected off smooth surfaces which are large
in comparison to the wavelength of the wave.

2. Diffraction: Radio waves propagate around relatively large impenetrable
objects when there exists no line of sight (LOS) between the transmitter and
receiver. This effect is also referred to as “shadowing”, since radio waves
are able to travel from the transmitter to the receiver even when shadowed
by a large object.

3. Scattering: Radio waves are disrupted by objects in the transmission path
whose size is smaller than the wavelength of the radio wave.

These propagation phenomena cause fluctuations of the amplitude, phase, and
angle of incidence of wireless signals, resulting in multipath propagation from the
transmitter to the receiver. Multipath propagation leads to fading characteristics
in the received signal. Large-scale fading occurs when the mobile receiver moves
to/from the transmitter over large distances. Small-scale fading occurs when the
distance between the receiver and transmitter changes in small increments. Thus, the
speed of the mobile client has a great effect on the resulting channel behavior. When
no dominant path exists, the statistics for the signal envelope can be described by a
Rayleigh distribution, and when a dominant LOS path exists, the statistics of the
signal envelope can be described by a Ricean distribution.

Since wireless communication systems are generally built upon circuit-switched
networks, corrupted data occur as bit errors in the modulated bitstream. Furthermore,
due to the fading nature of wireless channels, bit errors tend to occur in bursts. The
probability of occurrence and expected duration of bit error bursts are dependent
upon the time varying channel signal-to-noise ratio (SNR).

8.2.2 Signal Degradation Over IP Networks

IP networks rely on packet-switching, wherein packet loss and delay are caused
mainly by congestion at the routers, and individual bit errors rarely occur (Tan et al.
2005). Specifically, packet losses may appear if the input flow of data is higher than
the processing capacity of the switching logic, or if the processing capacity of the
switching logic is higher than the output flow speed (Kurose and Rose 2003).

Similar to the occurrence of bit-error bursts in wireless networks, packet losses in
packet-switched IP networks tend to occur in bursts (Jiao et al. 2002; Bolot 2003).
Probability of occurrence and expected duration of the packet loss bursts are depend-
ent on the congestion of the network.

8.2.3 Modeling Bursty Communication Channels

A common method for simulating a bursty channel in a communication system is the
two-state Gilbert-Elliot (GE) model (Elliot 1963), which has been widely used for
DSR studies. The GE model includes a good state, S,, which incurs no loss, and a
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bad state, S,, which assumes some probability of loss, as is illustrated in Fig. 8.2.
Here, p represents the probability of transitioning from S, to S, whereas g represents
the probability of transitioning from S to S,. To completely characterize the model,
the parameter h, which represents the probability of loss while in state S, is used.

1-p 1-q

Fig. 8.2 The Gilbert-Elliot Model for simulating bursty channels: S, and S, represent the goodand
bad states, respectively, and p and ¢ represent transitional probabilities

8.2.3.1 Bit-Level Channel Models

Throughout this chapter, specific bit-level channel conditions are used for simula-
tions and the probability of transition from S, to S, is set to p =0.002. The noise
incurred in S, is additive white noise at a level of 2 dB, corresponding to an error
probability of P,,,[S, = 0.157, whereas the noise incurred in S, is at a level of 20 dB,
corresponding to an error probability of P,,,|S; = 0.00. Thus, the remaining variable
is the transitional probability g. The conditions to be used, similar to those described
in (Han et al. 2004), are shown in Table 8.1.

Table 8.1 Channel conditions used for bit-level simulations

Channel P q BER (%)
condition

Clean 0.000 1.000 0.00

1 0.002 0.019 1.50

2 0.002 0.009 2.87

3 0.002 0.0057 4.10

4 0.002 0.003 6.32

5 0.002 0.002 7.90
6 0.002 0.0013 9.58

7 0.002 0.0009 10.90

8.2.3.2 Packet-Level Channel Models

An efficient method to simulate errors introduced by IP networks is to apply the GE
model on the packet level, and thus the GE model iterates at each packet. Further-
more, the loss incurred in S, represents a packet erasure.
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Throughout this chapter, specific packet-level channel conditions will be used for
simulations. These conditions, as described in Han et al. (2004), are shown in Table
8.2. Note that for simulating packet-level channels, the probability of packet loss
while in S, is assumed to be 1.0. In Fig. 8.2, the average burst duration can be deter-
mined as 1/¢g, and the percentage of packets lost can be calculated as 100[p/(p + ¢)]%.

Table 8.2 Channel conditions used for packet-level simulations

Channel p q Packets Average

condition lost burst
(%) duration

Clean 0.000 1.000 0.0 0.00 frames

1 0.005 0.853 0.6 1.17 frames
2 0.066 0.670 9.0 1.49 frames
3 0.200 0.500 28.6 2.00 frames
4 0.250 0.400 38.5 2.50 frames
5 0.300 0.300 50.0 3.33 frames
6 0.244 0.200 55.0 5.00 frames

8.3 Media-Specific FEC

Media-specific FEC involves insertion of additional copies of speech features into
the DSR datastream prior to transmission. The additional copies, referred to as repli-
cas, are coarsely quantized in order to reduce the additional required bandwidth.
Furthermore, due to the bursty nature of both wireless and IP-network transmission,
speech feature replicas are inserted into the source-coded bitstream at certain frame
intervals away from the original features.

In (Peinado et al. 2005a) the authors introduce a media-specific FEC method
compatible with the E7SI DSR source coding standards (ETSI 2000). The media-
specific FEC algorithm creates speech feature replicas by using B,4-bit vector quan-
tization applied to the entire 14-element feature vector of each speech frame.
Additionally, the VQ replicas are inserted into the bitstream at intervals of i,
frames away from the original speech feature, with the aim of overcoming the effects
of clustered packet erasures characteristic of bursty channels. In general, optimal per-
formance of media-specific FEC can be expected if T, is chosen to be at least as long
as the expected burst duration. Figure 8.3 illustrates an example of media-specific FEC
packetization for Tt = 4. Here, the source-coded frames are shown along the top, and
the FEC replicas are shown along the bottom. Note the separation between coded
frames and corresponding vector quantized replicas. Additionally, Fig. 8.4 shows
word-accuracy results obtained for various values of B, for Ty, = 6 frames, and for
various channel conditions described in Table 8.2.

As can be concluded from Fig. 8.4, media-specific FEC provides improved per-
formance for DSR systems in the case of bursty channels, as compared with trans-
mission without VQ replicas. However, the recognized speech at the server can be
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packet #4 packet #5 packet #6 packet #7

Features 7 8 9 10 11 12 13 14

VQ Replicas | 3 12 5 14 7 16 9 18

Fig. 8.3 Example of Media-Specific FEC packetization using vector-quantized replicas with
Tt =4 (Based on Peinado et al. 2005a)

100

WAcce (%)

7] A— I I I

3 4
Channel Condition

Fig. 8.4 Word-accuracy results obtained using the Aurora-2 database with Media-Specific
FEC using B,¢-bit VQ replicas and packetization with Ty, = 6

delayed by up to Tf. frames, which may introduce problems for delay-sensitive
applications.

8.4 Media-Independent FEC

Media-independent FEC techniques are applied within DSR systems with the aim of
correcting transmission errors or predicting reliability of transmitted speech features,
especially with wireless transmission. These techniques include the use of linear block
codes, cyclic codes, or convolutional codes. It has been shown in (Bernard and Alwan
2002a, Bernard 2002) that packet losses or erasures degrade the word-accuracy perform-
ance of DSR much less than incorrectly decoded packets. Specifically, it is shown that
while channel errors have a disastrous effect on recognition accuracy, the recognizer
is able withstand up to 15% of randomly inserted channel erasures with negligible
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loss of accuracy. Therefore, it may at many times be enough for the overall DSR
system to simply detect packet errors, as opposed to attempting to decode unreliable
data. Thereafter, lost speech features can be estimated at the server through various
Error Concealment (EC) methods, which are discussed in Chap. 9.

8.4.1 Combining FEC with Error Concealment Methods

There exist numerous error concealment methods to deal with packet erasures in
DSR systems which estimate lost speech features before speech recognition. The
simplest of such methods include frame dropping and frame repetition. These meth-
ods involve low complexity, although they may produce poor recognition accuracy
as error burst durations increase (Bernard and Alwan 2002a). Other algorithms to
estimate lost speech features include various interpolation techniques, such as linear
interpolation or polynomial interpolation, which provide better performance for
longer error bursts (Peinado and Segura 20006).

More successful EC methods, however, are based on minimum-mean-square-
error (MMSE) algorithms. In Peindao et al. (2005b), the authors successfully apply
the Forward-Backward MMSE (FB-MMSE) algorithm to determine the maximum
likelihood lost or erroneous observations given the most recent correct observation
and the nearest correct future observation. However, due to the high complexity of
the FB-MMSE algorithm (Peinado et al. 2005b) introduce simplified versions which
greatly decrease the computational load without significantly reducing the perform-
ance.

There also exist recognizer-based EC methods which involve soft-feature Viterbi
decoding at the server (Bernard and Alwan 2001), known as weighted viterbi decod-
ing. In such techniques, channel decoding is performed to determine a measure of
reliability of the current received packet. The reliability measure is then passed to the
recognition engine, which applies corresponding weights to speech features during
the Viterbi algorithm within the recognition process.

8.4.2 Linear Block Codes

For wireless communication channels, the transmitted bitstream generally becomes
degraded due to reasons discussed in Sect. 8.2. An option for providing the detec-
tion or correction of transmission errors is through the use of linear block codes.
Linear block codes are especially attractive for the problem of error-robust wire-
less communication due to their low delay, complexity, and overhead.

The aim of block codes is to provide m = n —k redundancy bits to a block of &
dataword bits, resulting in a block of n codeword bits prior to transmission. Such a
code is referred to as a (n,k) block code.

Let D= {d,,d,...,d} represent the set of all possible k-dimensional datawords,
where d, e R™* . Also, let C= {c},¢3,...,co} represent the set of all possible n-
dimensional codewords, where c; € R" . Thus, block codes can be represented in
matrix form as ¢, =d,G where the matrix G € R*" is referred to as the generator
matrix.
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Furthermore, a code is defined as systematic if each dataword is contained within
its corresponding codeword (Blahut 2004). For systematic codes, the generator ma-
trix must be in the form

G=|1 Pl (8.1)

where P e R*"™ is referred to as the parity matrix, and I is the kxk identity

matrix. The parity-check matrix, H € R""*" | which is used in the decoding proc-
ess, is then defined as:

H=[-P"1 ] (8.2)

An important parameter to measure the effectiveness of a specific linear block
code is the minimum distance, d,,;;. The minimum distance of a code with codeword
set C represents the minimum Hamming distance between any two codewords
¢;,c; eC, for i # j. It can be shown that the d;, of a systematic code can be de-
termined by finding the minimum Hamming weight of any nonzero codeword in C:

d_. = min w(c), (8.3)

min
ceC,c#0

where the function w(-) represents the Hamming weight, i.e. the number of 1’s in a
given binary vector.
A linear code with a minimum distance of d,,;, is able to detect no more than

. 1
d ;. —1 errors, or is able to correct no more than LE (dpin — I)J errors.

min

Table 8.3 Systematic linear block codes for channel coding of speech features (From Bernard
and Alwan 2002a, © 2002 IEEE)

(n,k) m P Ainin
(12,10) 2 [L1,12223333] 2
(12,9) 3 [1,2,3,3,4,5,5,6,7] 2
(12,8) 4 [3,5,6,9,A,D,E,F] 3
(10,8) 2 [1,1,1,2,2,3,3,3] 2
(12,7) 5 [07,0B,0D,0E, 13,15,19] 4
(10,7) 3 [1,2,3,4,5,6,7] 2

In Bernard and Alwan (2002a), the authors provide analysis of the performance
of systematic linear block codes for the application of DSR over wireless channels.
In this work, good codes are determined through exhaustive searches by maximizing
dumin for various values of n and &, and minimizing the corresponding weights. Table
8.3 shows the resulting optimal codes. Note that the parity matrix P is given in hexa-
decimal form.
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8.4.2.1 Hard vs. Soft Decoding

Linear block code theory discussed in the previous section builds on arithmetic over
Galois Fields (Blahut 2004), most commonly over GF(2), i.e. binary data with
modulo-2 operations. However, the input data stream at the receiver is in the form of
demodulated bits with superimposed channel noise. That is, the received data vector
is in the form y = x + n, where x is the transmitted codeword and » is the channel
noise vector. Binary decisions must be made for each received noisy bit, y(i), before
channel decoding of the block can be performed, resulting in the approximated bit-
stream y, where V(i) € {0,1} . There exists two classical methods of decoding noisy
data into a binary bitstream: hard-decision decoding and soft-decision decoding,
which will be denoted as y, and y_, respectively.

Hard-decision decoding maps each received noisy data vector to an approxi-
mated transmitted bitstream by the following relationship:

¥, (i) = argmind (b, y(i)), (8.4

be{0.1}

where d,(-,) represents the Euclidean distance, and b corresponds to possible bit
values.

As can be interpreted from Eq. 8.4, hard-decision decoding simply entails round-
ing to the nearest modulated bit. The resulting approximated bitstream, y,, is then
used to find the estimated transmitted codeword by minimizing the Hamming dis-
tance between itself and all possible true codewords. Thus, the detected codeword
chosen for channel decoding, denoted as }Zpt , 1s determined as:

v =argmind,, (3 ,.d,), (8.5)
d;eD

where d,,(-,-) represents the Hamming distance (Bernard and Alwan 2002a).

Since the mapping function described by Eq. 8.5 is not one-to-one, hard-decision
decoding can lead to scenarios in which distinct transmitted codewords may be ap-
proximated as the same received codeword. That is, there may exist x; and x;, for
i# j,suchthat d,(y,",x,)=d, (5", x ;) . In such situations, the decoder can
detect an error, but cannot correct the error, since multiple distinct codewords could
have been transmitted.

Figure 8.5a shows an example of hard-decision decoding. In this example, a (2,1)
linear code with a generator matrix G = [1,1] was used to transmit the dataword
d=[1]. The next most likely dataword in this example is [-1]. In Fig. 8.5a, the re-
gion labeled CD corresponds to the region in which the received noisy data vector y
would have been correctly decoded. Conversely, UE (undetected error) corresponds
to the region in which y would have been incorrectly decoded. Furthermore, the
regions labeled ED (error detected) refer to the regions in which y could not have
been decoded, and an error would have been declared.
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C

Fig. 8.5 Examples of (a) hard-decision decoding, (b) soft-decision decoding, and (c¢) A-soft-
decision decoding: This scenario represents a transmitted dataword of d=[1], with G=[1,1].
Also, CE represents the region corresponding to a corrected error, UE corresponds to the region
of an uncorrected error, and DE represents the region corresponding to a detected error (From
Bernard and Alwan 2002a, © 2002 IEEE)

An alternative to the previously discussed hard-decision decoding is sof-decision
decoding, which minimizes the Euclidean distance between the received noisy data
vector and all possible codewords. The approximated bitstream obtained through

soft-decision decoding, denoted by ;S , can be determined as:

y & = arg min dé(di,y). (8.6)
d;eD

Figure 8.5b illustrates an example of soft-decision decoding for the same channel
coding scheme explained for Fig. 8.5a. Once again, CD denotes the region corre-
sponding to a correctly decoded transmitted dataword, and UE denotes the region
corresponding to an incorrectly decoded transmitted dataword. Note that for soft-
decision decoding, all received data vectors must be decoded, and thereis no region
for error detection (ED).
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For AWGN channels, soft-decision decoding typically shows a 2 dB gain relative
to hard-decision decoding in terms of the bit error rate (BER). However, for the
specific application of DSR, the authors of (Bernard and Alwan 2002a) show the
negative effect of incorrectly decoded transmission errors on word recognition re-
sults.

8.4.2.2 J-Soft Decoding

The adaptive A-soft decoding algorithm presented in Bernard and Alwan (2002a)
provides the error-correcting advantage of soft-decision decoding with the error
detecting capabilities of hard-decision decoding by recreating an “error detection”
region based on the confidence in the decoding operation.

In order to accept a soft-decision decoded codeword as correct, the A-soft decod-
ing algorithm compares the likelihood of that transmitted codeword relative to the
next most likely codeword. Let y represent the received codeword, and let x; and x,
represent the first and second most probable transmitted codewords. The ratio of
likelihoods of x; and x;, can be expressed as:

P(y|x:x1)_exr{a’E(y,xz)—ahg(y,xl)]:eXI{D2 dz_dlj (8.7)

P(y|x=x,) N, N, D

o

where d, and d, represent the distances from the orthogonal projection of the re-
ceived codevector y to the line joining x; and x,, and D represents the distance be-
tween x; and x,. Note that d, +d, =D . Also, N, is a constant related to the noise
level of the channel.

. . . dy,—d, . . . .
The important factor in Eq. 8.7 is 4 = # , since it relates the relative proximity

of the received codeword to the two possible transmitted codewords. Note that if 4 ~ 0,
the codevectors x; and x, are almost equiprobable, the soft-decision decoded code-
word should be rejected, and an error should be declared. Conversely, if A ~1, the
soft-decision decoded codeword is highly likely. Thus, the region corresponding to
error detection (DE) grows as A increases.

For a system implementing the A-soft decoding algorithm, parameter 4, is prede-
termined to perform soft-decision decoding with error detection capability. For re-
ceived codewords resulting in 4> A,, soft-decision decoding is utilized, and for
A< A,, an error is declared. Recognition accuracy results for hard, soft, and A-soft
decoding are shown in Table 8.4. Here, the A-soft parameter is set as 4, =0.16, and
the linear block codes used are described in Table 8.3. Note that A-soft decoding
significantly outperforms both hard and soft decoding by reducing the word error
rate.
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Table 8.4 Word accuracy results using hard-, soft-, and A-soft decoding over Rayleigh fading
channels (From Bernard and Alwan 2002a, © 2002 IEEE)

Code (n,k) SNR (dB) Hard (%) Soft(%) i-Soft (%)

(10,10) 19.96 94.71 94.71 98.32

(10,9) 13.87 97.31 96.35 98.12

(10,8) 10.69 94.47 95.03 97.82

(11,8) 8.80 87.24 95.62 97.43

(12,8) 6.29 67.25 93.17 97.04

(12,7) 4.53 40.48 91.31 95.88
8.4.3 Cyclic Codes

Cyclic codes are a subclass of linear block codes, for which a shift of any codeword
is also a codeword (Blahut 2004). That is, if C is a cyclic code, then whenever
c= [co,cl,...,cn_l]re C, this guarantees that ¢ = [cn_l,co,...,cn_z]re C. A convenient
way to represent cyclic codes is in polynomial form. Thus, the codeword ¢ can be
described as:

n—1
c=c(x)=co +ex+te, x" =Zij". (8.8)
=0

The generator matrix can also be written in polynomial form as:

g=3 g7 (89)

Since a cyclic code is specific to its generator polynomial, a cyclic code can
therefore be defined as all multiples of the generator polynomial g(x) by a polyno-
mial of degree k — I or less. Thus, for any polynomial a;(x) of degree d <k — 1, the
corresponding codeword polynomial is given by:

¢;(x)= glx)a,(x). (8.10)

Cyclic codes are often used for DSR applications. Specifically, three types of cy-
clic codes are very useful: cyclic redundancy codes (CRCs), Reed-Solomon (RS)
codes, and Bose-Chaudhuri-Hocquenghem (BCH) codes.

8.4.4 Convolutional Codes

A convolutional code is a channel coding technique which encodes the input bit
stream as a linear combination of the current bit and past data in mod-2 arithme-
tic, and the encoder can be interpreted as a system of binary shift registers and
mod-2 addition components. Similar to linear block codes, convolutional codes
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are characterized by their protection rate: a rate-k/n encoder processes 7 output bits
for every k input bits. A major difference between linear block codes and convolu-
tional codes is the fact that convolutional codes contain memory.

Although there exist various ways to decode convolutional coded data, the most
common is the Viterbi algorithm (Viterbi 1971), due to its relatively low computa-
tional load. The goal of the Viterbi algorithm is to find the most likely transmitted
bitstream by minimizing the total error between the entire received noisy datastream
and potential transmitted bitstreams. The Viterbi algorithm accomplishes this mini-
mization by iterating through a trellis, for which the number of states and possible
paths within the trellis are determined by the structure of the given encoder (Wesel
2003).

Viterbi decoding of convolutional codes can be performed on hard or soft data.
That is, the minimization discussed can be carried out on the hard-decision decoded
bitstream, which can be determined from the received datastream through Eq. 8.5, or
it can be carried out directly on the received soft data. Typically, soft-decision de-
coding outperforms hard-decision decoding by approximately 2 dB.

Convolutional codes also provide added flexibility to adjust the final protection
rate through puncturing. Puncturing entails deleting certain outputs bits according to
a specific pattern to obtain a lower final bitrate. For example, a rate-1/2 encoder can
be punctured by deleting every 4th bit, and the resulting code will be rate-2/3. By
puncturing bits in convolutional codes, the channel coding rate can be varied instan-
taneously, allowing for rate compatible punctured codes (RCPC) (Bernard et al.
2002b). Word recognition results for error protection schemes based on convolution
codes are shown in Fig. 8.6.
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Fig. 8.6 Word recognition results tested on the Aurora-2 database for error protection using
convolutional codes (Simulation details are given in Sect. 8.1.)
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8.5 hegal Error Protection

Performance of media-independent FEC codes, with respect to the level of redun-
dancy inserted, can be enhanced by providing for each bit in the bitstream the ade-
quate level of protection against channel errors. The bits comprising the transmitted
datastream of DSR systems do not have equal effect on the word recognition per-
formance of the overall system (Boulis et al. 2002; Weerackody et al. 2002). For
example, in the case of scalar quantization of extracted speech features, the most
significant bits (MSBs) generally provide more information for the recognizer than
the least significant bits (LSBs). Furthermore, in some source coding algorithms,
various speech features affect the system performance differently. For example, in
ETSI (2000), the log-energy and 1st MFCC are considered to play a greater role in
speech recognition than higher order MFCCs.

In bandwidth-restrictive systems, it may therefore be beneficial to use Unequal
Error Protection algorithms to provide more protection for certain bits, while pro-
viding less protection for others. Cyclic codes provide an efficient tool for construct-
ing UEP schemes, due to their flexibility regarding protection rate.

For example, in Boulis et al. (2002), the authors present an UEP scheme for DSR
systems utilizing shortened RS codes. The proposed source coding scheme extracts
the first 5 MFCCs, and quantizes the 1st, 2nd, and 4th coefficients using 6 bits, while
allocating 4 bits each to the 3rd and 5th coefficient. Also, 20 adjacent windowed
frames are packetized, and corresponding bits are grouped across time to form 20 bit
symbols. Furthermore, these symbols are allocated to different streams, each of
which is protected by a separate RS code. Table 8.5 illustrates the UEP scheme pro-
posed in Boulis et al. (2002), where integers represent the MFCC corresponding to
the given symbol, and F’ denotes an error correction symbol. In this example, streams
1 and 2 are protected with (12,4) RS codes, stream 3 is protected with a (12,6) code,
and stream 4 is transmitted without protection.

Convolutional codes can be used for UEP schemes to provide various amounts of
error protection for bits within a data block. In Weerackody et al. (2002), the authors
propose two different UEP schemes for DSR applications based on convolutional codes.
The source coding used in the study involves the extraction of the frame energy and the
first 11 cepstral coefficients, either obtained through Mel Filterbank analysis or through
Linear Prediction analysis.

Table 8.5 Unequal error protection scheme utilizing cyclic codes: integers represent
the MFCC corresponding to the given symbol, and F denotes an error correction sym-
bol (From Boulis et al. 2002, © 2002 IEEE)

Stream Symbols (1-12)

1 1 2 3 4 F F F F F F F F
2 5 1 1 3 F F F F F F F F
3 5 1 2 2 3 4 | F F F F F F
4 4 5 4 1 1 4 3 4 2 2 2 2
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The source coder allocates 6 bits each to the frame energy and the first 5 cepstral
coefficients, while allocating 4 bits each to the remaining coefficients, resulting in a
payload bitrate of 4.8 kbps.

The UEP algorithms presented in Weerackody et al. (2002) groups the total
60 bits of each block into 4 different levels of importance. Each level is then encoded
into a separate bitstream using a distinct channel coding scheme, and the total bitrate
for each case is 9.6 kbps. Let e' (1) represent the ith bit of the frame energy value at
block n, and let ¢’; (n) represent the ith bit of the jth cepstral coefficient for block n.
Tables 8.6 illustrates the bit allocation and channel coding scheme involved in the
UEP scheme proposed in Weerackody et al. (2002), referred to as UEP,. The corre-
sponding results reported for Rayleigh fading channels are provided in Table 8.7.

Table 8.6 Unequal error protection scheme UEP; utilizing convolutional codes (From
Weerackody et al. 2002, © 2002 IEEE)

Level Speech feature bits Error protection

1 e’(n),e'(n),c"1(n),c’2(n).c’5(n).c"4(n),’s(n) ~ rate-1/2 Convolutional
code

2 (n),c"1(n),c5(n),c'5(n),c'4(n).c's(n) rate-1/2 convolutional
code

3 en).e'(n),c1(n),c*1(n),c*(n),c A (n),. . rate-1/2 convolutional

o). o(m).5(n). (). (n) ©0de F puncturing
4 & (n),c*1(n),¢"1(n).¢*s(n),s(n), No code

czé(n),c36(n),c27(n),c37(n), R ,Czl 1(”)7031 l(n)

Table 8.7 Word accuracy results for unequal error protection scheme utilizing convolutional
codes: “dec. type” refers to the type of data used, i.e. hard-decision decoded data (Hard) or soft-
decision decoded data (Soff) (From Weerackody et al. 2002, © 2002 IEEE)

UEP Dec. type SNR

scheme 15 dB 10 dB 7 dB 5dB
UEP, Hard 92.6% 89.8% 82.7% 71.7%
UEP, Soft 92.7% 91.3% 87.1% 80.1%

8.6 Frame Interleaving

It is known that for speech recognition purposes, errors that occur in groups are more
degrading to word-accuracy performance than errors which occur randomly. Frame
interleaving is a technique aimed at countering the effects of such bursty channels,
through the addition of delay but no redundancy.

Frame interleaving aims to reorder speech frame packets within the transmitted
bitstream so that frames which are adjacent with respect to the original speech signal
are separated within the transmitted signal. Thus, grouped errors in the interleaved
signal will result in scattered errors in the de-interleaved signal.
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Two parameters commonly used to measure the effectiveness of an interleaver
are the delay, J, and the spread, s. The delay of an interleaver is defined as the
maximum delay that any packet experiences before being transmitted. That is, for the
interleaving function described by j == (i), where j is the original packet position
and 7 is the resulting packet position for transmission, the delay can be determined
as:

§=ml_ax (ﬁ"(i)—i) (8.11)

An interleaver is said to have a spread of s if for any packet positions, p and p,,
within the original ordering:

|”(p1)_”(p2)|<5 = |p1_P2|ZS. (8.12)

In James and Milner (2004), three classes of interleavers are discussed for the use
of DSR: optimal spread block interleavers, convolutional interleavers, and decorre-
lated block interleavers. They are successfully shown to provide improved results for
DSR systems.

8.6.1 Optimal Spread Block Interleavers

A defining parameter of a block interleaver is the degree d. A block interleaver of
degree d operates on a set of d * packets by reordering them prior to transmission. A
pair of interleaving functions, 7,(-) and 7,(-), of degree d are considered optimal

with respect their spread if, and only if:

r(i-d+j)=(d-1-j)d +i, (8.13)
and

m,(i-d+j)=j-d+(d-1-i), (8.14)

for 0<i, j<d—1.Note that z,(-) and r,(-) are inverse functions, i.e. 7, (7, (i))=i.

Furthermore, it is shown in (James et al. 2004) that optimal spread block interleaver
function pairs can be interpreted as 90° clockwise and counter-clockwise rotations of

d x d packet matrices. Figure 8.7 illustrates the d = 3 case.
It can also be concluded that for optimal spread block interleavers,

s . =d—d, (8.15)
and
=d. (8.16)
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Fig. 8.7 Example of an optimal spread block interleaver with d = 3. Note that the interleaving
function can be interpreted as a 90° counter-clockwise rotation of the d x d block
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Fig. 8.8 Word recognition results tested on the Aurora-2 database using optimal spread block
interleavers and decorrelated block interleavers of various degrees: dy refers to the degree of the
optimal spread interleaver (Simulation details are given in Sect. 8.1)

The performances of optimal spread block interleavers of various degrees are
shown in Fig. 8.8.

8.6.2 Convolutional Interleavers

A convolutional interleaver can be interpreted as a multirate device operating on a
stream of packets. It involves an input multiplexer, followed by a group of shift reg-
isters in parallel, and finally an output multiplexer. A convolutional interleaver of
degree d = 4 is illustrated in Fig. 8.9.
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Input ’_E Output
stream stream
Input Output

e

Fig. 8.9 Example of a convolutional interleaver with degree d =4

The interleaving function of the convolutional interleaver with degree d is given
by:

7 eomy (i) = i~ (i mod d ). (8.17)

It is also shown in (James et al. 2004) that the maximum delay and spread are
given by:

=d’-d, (8.18)

and
s =d-1. (8.19)

conv

8.6.3 Decorrelated Block Interleavers

The optimal spread block interleaver and convolutional interleaver previously dis-
cussed utilize the maximum delay and spread parameters to measure the effective-
ness of specific interleaving functions. However, there exist other parameters by
which the performance of an interleaving function can be measured.

For example, in James et al. (2004), the authors introduce a decorrelation meas-
urement given by:

) a2 2 |;;(i)—7r(j)|
D—;;—P_j' : (8.20)

The decorrelation measurement D shows the ability of an interleaving function to
spread the input feature stream. In order to illustrate this, 2000 interleaving functions
with degree d = 4 were randomly created, and the corresponding decorrelation values
were determined. Additionally, the chosen interleavers were tested on a bursty
packet-level channel with parameters p = 0.75 and ¢ = 0.75. Note that the given

channel parameters produce an average burst duration of Eb =4 without interleav-
ing. The average burst lengths of the de-interleaved feature streams were then plotted
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against the corresponding decorrelation values in Fig. 8.10. The final decorrelated
block interleaving function chosen for each degree is determined through an exhaus-
tive search of randomly created permutations by minimizing D.
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Fig. 8.10 Average burst durations of de-interleaved feature streams as a function of the corre-
sponding decorrelation values

As can be concluded from Fig. 8.10, there is a strong correlation between the D
values of interleaver functions and the resulting burst durations.

8.7 Examples of Modern Error Recovery Standards

There exist a number of standards for DSR and speech recognition systems currently
in use, for which a main contributer is the European Telecommunications Standards
Institute (ETSI). ETSI has developed error protection and packetization standards for
both low bitrate DSR systems (ETSI 2000), and for full rate NSR systems (ETSI
1998). The channel coding schemes described by these systems are summarized in
the following sections.

8.7.1 ETSI DSR Standard (ETSI 2000)

The ETSI DSR standard describes a low bitrate speech recognition system intended for
DSR applications. The compression algorithm implemented by the given standard
extracts the frame energy, as well as the first 13 MFCCs, for every window of speech,
at a windowing frequency of 100 Hz. A total of 44 bits is allocated to the extracted
speech data through a split vector quantization (SVQ) system, resulting in a data bitrate
of 4.4 kbps.
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The packetization scheme in (ETSI 2000) includes a multiframe format in order to
reduce the overhead required for synchronization and header information. Thus, speech
feature data from 24 adjacent speech frames are grouped with one synchronization se-
quence and one header field.

The information contained in the header field is considered to be critical for de-
coding purposes, and thus a great deal of error protection is allocated to this data.
The header field is protected by an extended (31, 16) systematic cyclic code, with the
addition of an overall parity check bit. The cyclic code has a minimum distance of
dmin = 8, and can therefore support correction of up to 3 channel errors or detection of
up to 7 channel errors.

The 24 frames included with the header field and synchronization sequence are
grouped into 88 bit pairs. Each pair of frames is then protected with a 4-bit CRC
code. The resulting error protection and packetization scheme requires a data rate of
4.8 kbps.

8.7.2 ETSI GSM/EFR Standard (ETSI 1998)

The ETSI GSM Enhanced Full Rate (EFR) system, described by (ETSI 1998), is
intended for speech transmission, and thus operates at a higher rate than the system
described by (ETSI 2000). The GSM/EFR speech coding algorithm compresses
20 ms windows of speech signal into 244-bit blocks of data, which corresponds to a
preliminary data rate of 12.2 kbps. The channel coding algorithm presented by (ETSI
1998) is a UEP scheme involving CRC cyclic codes, convolutional codes, and inter-
leaving.

The first step in the channel coding and packetization scheme described for the
GSM/EFR system is an expansion of the 244-bit blocks into 260-bit blocks, which
results in 16 redundancy bits. Of these 16 redundancy bits, 8 are repetition bits, and 8
correspond to a CRC code.

Each 260-bit expanded data block is then grouped into two classes of bits. The
first 50 bits of class 1, referred to as class 1a, are protected with three parity check
bits generated with a shortened cyclic code. Both class 1a and class 1b bits are pro-
tected with a rate-1/2 convolutional code and interleaved with a bit-level interleaving
function. Class 2 bits are transmitted without protection, and thus the resulting bitrate
of the GSM/EFR system after channel coding and packetization becomes 28.4 kbps.
The UEP scheme described in (ETSI 1998) is illustrated in Table 8.8.

Table 8.8 UEP Scheme for channel coding in ETSI GSM/EFR system (Based on ETSI 1998)

Class Original bits Channel coded bits Error protection

la 50 106 Cyclic code +
rate-1/2 convolu-
tional code
1b 132 264 rate-1/2 convolu-
tional code
2 78 78 No code
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8.8 Summary

This chapter focused on error recovery (ER) methods for transmission of speech
features over error-prone channels in remote speech recognition applications. Such
systems tend to be bandwidth-restrictive and often delay-sensitive, and thus channel
coding schemes must be efficient. We discussed both FEC techniques, which add
redundancy to the source coded data stream prior to transmission, as well as frame-
based interleaving, which creates spread in the data stream prior to transmission to
overcome the effect of bursty errors. Table 8.9 summarizes the discussed ER methods.

The individual ER techniques discussed in this chapter, and summarized in Table
8.9, serve as useful tools in providing protection against channel noise or packet
erasures within DSR systems. However, channel coding strategies can be enhanced
by combining these techniques and offering more error protection to those bits in the
bitstream which provide more utility to the overall system, as in UEP schemes. This
chapter concludes with example standards of channel coding for modern DSR and
speech recognition systems.

Table 8.9 Summary of discussed error recovery techniques

Error pattern

FEC technique application Advantages Disadvantages

Media-specific FEC: coarsely quantized feature replicas are inserted into the datastream with the aim
of reconstructing lost packets

Media-specific FEC (Sect.

8.3) Packet erasures

Low complexity Introduces delay

Media-independent FEC: redundancy is added to blocks of data in order to detect or correctly decode
corrupted data in the presence of bit-level errors

Complexity increases
for soft and A-soft
decoding

Linear block codes (Sect.
8.4.2)

Bit errors or Low delay, low over-
additive noise head

Low delay, efficient
for decoding bursty
channels

Restrictive in terms of
block length

Bit errors or
additive noise

Cyclic codes (Sect. 8.4.3)

Complexity increases
for soft-decision
decoding

Bit errors or
additive noise

Convolutional codes
(Sect. 8.4.4)

Low delay, flexible in
terms of block length

Frame interleaving: frames are interleaved prior to transmission so that bursty packet losses in the
transmitted stream may become scattered packet losses in the de-interleaved stream

Optimal spread block

interleavers (Sect. 8.6.1) Packet erasures

No required additional
bandwidth

Introduces delay

Convolutional inter-

leavers (Sect. 8.6.2) Packet erasures

No required additional
bandwidth

Introduces delay

Decorrelatedinterleavers

(Sect. 8.6.3) Packet erasures

No required additional
bandwidth

Introduces delay,
requires extensive and
complex training
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Error Concealment

Reinhold Haeb-Umbach and Valentin Ion

Abstract. In distributed and network speech recognition the actual recognition task is not
carried out on the user’s terminal but rather on a remote server in the network. While there are
good reasons for doing so, a disadvantage of this client-server architecture is clearly that the
communication medium may introduce errors, which then impairs speech recognition accu-
racy. Even sophisticated channel coding cannot completely prevent the occurrence of residual
bit errors in the case of temporarily adverse channel conditions, and in packet-oriented trans-
mission packets of data may arrive too late for the given real-time constraints and have to be
declared lost. The goal of error concealment is to reduce the detrimental effect that such errors
may induce on the recipient of the transmitted speech signal by exploiting residual redun-
dancy in the bit stream at the source coder output. In classical speech transmission a human is
the recipient, and erroneous data are reconstructed so as to reduce the subjectively annoying
effect of corrupted bits or lost packets. Here, however, a statistical classifier is at the receiving
end, which can benefit from knowledge about the quality of the reconstruction. In this book
chapter we show how the classical Bayesian decision rule needs to be modified to account for
uncertain features, and illustrate how the required feature posterior density can be estimated in
the case of distributed speech recognition. Some other techniques for error concealment can
be related to this approach. Experimental results are given for both a small and a medium
vocabulary recognition task and both for a channel exhibiting bit errors and a packet erasure
channel.

9.1 Introduction

In a client-server speech recognition system the client, e.g. a cellular phone, captures
the speech signal, codes it and sends it via a digital communication link to the re-
mote recognition server. At the server side, the received signal is decoded and for-
warded to the speech recognition engine, which outputs the decoded word string.
Depending on the type of data transmitted, one distinguishes between distributed
(DSR) and network speech recognition (NSR). In DSR speech recognition features,
such as Mel-Frequency Cepstral Coefficients (MFCC), are computed, coded and
transmitted (Pearce 2000), while in NSR a typical speech codec, such as the adaptive
multi-rate (AMR) codec is employed (Fingscheidt et al. 2002).

Compared to a realization of the recognizer on the client, the client-server architec-
ture has many obvious advantages, such as ease of maintainability of the application data
on the server and avoidance of resource-intensive tasks on the client. However, the price



188 Reinhold Haeb-Umbach and Valentin Ion

to pay is an additional processing delay due to transmission and the potential corrup-
tion of the digitized speech data due to channel-induced errors. Here we are con-
cerned with the latter and show how error concealment techniques help mitigate the
negative effects of transmission errors on the speech recognition accuracy.

Two channel models exhibiting different error types are considered in the fol-
lowing: a channel characterized by bit errors and a packet erasure channel. Channel
degradations at the bit level are for example typical of cellular circuit-switched
transmission, where noise, multi-path fading and interference from neighboring
stations are frequent error causes. Packet loss is a typical phenomenon of packet-
based transmission of data with real-time constraints over the internet. The combina-
tion of both error types is an approximate model for communications over a wireless
packet network, or communications that involve both a wireless and a (packet-
based) wireline link (Lahouti and Khandani 2007).

To mitigate transmission errors researchers have proposed several different ap-
proaches. One category is comprised of methods that perform error or packet-loss
concealment techniques at the receiving end. Another class of techniques requires
certain coordination with the transmitter side, e.g. forward error correction or diver-
sity schemes based on multiple description coding. A third category requires a certain
degree of support from the network, such as using packets with different priorities.
The schemes rely on the network to drop the packets with low priority during con-
gestion periods. Currently, this support, however, may only be available in proprie-
tary networks and in the next generation of the Internet Protocol (IPv6) (RFC 2460,
1998).

In this contribution we restrict ourselves to purely receiver (server) based tech-
niques which leave the transmitter (client) side untouched, since they have the
striking advantage that they are fully compatible with the current European Tele-
communications Standards Institute (ETSI) standards for distributed speech recog-
nition (ETSI Standard ES 202 050, 2002; ETSI Standard ES 201 108, 2003a) and
can be readily applied in current networks. Actually, the frame repetition scheme
proposed in the ETSI standard is an example of such an error concealment method.

The term error concealment denotes techniques which aim to reduce or even
eliminate the effect of uncorrected transmission errors on the quality as perceived by
the consumer of the transmitted data. For data transmission with no latency con-
straints a virtually error-free transmission can be achieved by a combination of for-
ward and backward error correction. This no longer holds for speech, audio or video
transmissions, which typically have to adhere to real-time constraints.

The detrimental effect of transmission errors can be concealed by exploiting re-
sidual redundancy still present at the output of the (in the Shannon sense) imperfect
source coder. One might argue that, since low-bit rate source coding has been an
issue since the early days of digital speech transmission, it is unlikely to find enough
residual redundancy in the output bit stream of the speech coder to be exploited for
error concealment. But even for the low-rate codes used in GSM successful error
concealment based on exploiting the non-uniform bit pattern probabilities and the
correlation between successive frames has been demonstrated (Fingscheidt et al.
2007).
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Error concealment has been studied extensively in the field of mobile communi-
cations and, more recently, for voice or other real-time data transmission over the
internet protocol (IP). In cellular systems standards such as GSM error concealment
algorithms are proposed as non-mandatory recommendations (GSM 06.11 Recom-
mendation, 1992), and very sophisticated techniques have been developed in recent
years (Vary and Martin 2006). In Voice-over-IP packet loss is a frequent phenome-
non, which is addressed, among others, by replacing the missing segments of speech
with estimates constructed form previous or future available speech segments. For
example, a waveform substitution algorithm based on pitch detection has been pro-
posed for G.711 pulse code modulation speech coding standard (ITU-T Recommen-
dation G.711 Appendix I, 1999). Packet loss concealment methods for code excited
linear prediction (CELP)-based coders often replace the missing parameters with the
corresponding parameters of the previous frame (Cox et al. 1989) and use scaled-
down gains. Methods that interpolate between previous and future frames can also
be employed.

Similar techniques have been proposed for distributed speech recognition (DSR),
where speech recognition related parameters, such as MFCCs (Davis and Mermel-
stein 1980) are computed in the user’s terminal and then transmitted to the remote
speech recognition engine (Tan et al. 2005). Feature reconstruction techniques range
from quite simple methods such as substitution (with silence, noise or source-data),
repetition or interpolation (Boulis et al. 2002; Milner and Semnani 2000) to more
elaborated schemes, such as repetition on a subvector level (Tan et al. 2004) and
minimum mean square error (MMSE)-based reconstruction which models inter-
frame correlation by a first-order Markov model (Peinado et al. 2003; James et al.
2004; Haeb-Umbach and Ton 2004). However, in DSR we can do even considerbly
more.

In a DSR scenario we would like to alleviate the effect that transmission errors
have on the consumer of the data, the automatic speech recognition (ASR) decoder.
Unlike a human recipient, the recognizer not only benefits from a good reconstruc-
tion of lost or corrupted data but also from knowledge about the quality of the recon-
struction. The ASR decoder is then modified such that features deemed unreliable
are deemphasized (Bernard and Alwan 2001, 2002) or completely excluded from
consideration in the recognizer (Weerackody et al. 2002; Endo et al. 2003). How-
ever, it is not an easy task to identify corrupt features or even quantify the degree of
corruption, at least on a channel exhibiting bit errors. While in Haeb-Umbach and
Ion (2004) the availability of a soft-output channel decoder was assumed, in Ion and
Haeb-Umbach (2005) a technique was proposed which estimates bit error probabili-
ties based on a priori knowledge of plausible bit patterns.

Actually, the close connection between feature reconstruction and modification
of the decoding engine becomes apparent once the problem of speech recognition in
the presence of unreliable feature vectors is cast in a Bayesian framework. Here,
results form noisy speech recognition can be borrowed, where so-called Uncertainty
Decoding has been investigated already for a couple of years (Morris et al. 1998;
Morris et al. 2001; Arrowood and Clements 2002; Droppo et al. 2002; Kristjansson
and Frey 2002). Let the speech be corrupted by additive noise or by transmission
errors, in either case the original clean or uncorrupted speech feature vector is not
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observable, but rather a distorted version of it. Traditionally, the goal of speech
feature enhancement is to obtain a point estimate of the clean speech feature, such as
the MMSE estimate. This estimate is then “plugged into” the Bayes decision rule
and used in the ASR decoder as if it were the true clean speech feature.

However, one can do better if one takes the reliability of the estimate into ac-
count. In one formulation of uncertainty decoding the probability density function of
the corrupted speech feature vector, conditioned on the unobservable clean speech
feature vector, is computed and averaged over the observation probability of the
clean speech (Liao and Gales 2004). In another formulation the front-end delivers
uncertain observations, expressed as a posteriori density of the clean speech feature
vector, given the observed noisy vector. It is well known, that the mean of the poste-
rior is exactly the MMSE estimate. Its variance is a measure of the uncertainty about
this estimate. In the case of jointly Gaussian random variables, it is even equal to the
variance of the estimation error. This frame-level uncertainty can be incorporated in
the decoding process by using a modified Bayesian decision rule, where integration
over the uncertainty in the feature space is carried out. Under certain assumptions
this can be accomplished by a simple modification of the means and variances of the
observation probabilities.

In the context of distributed speech recognition the concept of uncertainty decod-
ing has been proposed for the first time in Haeb-Umbach and Ion (2004). Here,
inter-frame correlation has been identified as a major knowledge source which helps
in reconstructing lost or corrupted features.

This volume chapter is organized as follows. In the following section we present
the probabilistic framework of speech recognition in the presence of corrupted ob-
servations. In Sect. 9.3 this concept is applied to distributed speech recognition,
where we consider channels characterized by either bit errors or packet loss. Experi-
mental results, both for a small and a medium vocabulary recognition task, are given
in Sect. 9.4, followed by some conclusions drawn in Sect. 9.5.

9.2 Speech Recognition in the Presence of Corrupted Features

9.2.1 Modified Observation Probability

The Bayesian decision rule is at the heart of statistical speech recognition. Given the
sequence of T (uncorrupted) feature vectors x| = (xl,...,xT) extracted from an
utterance, the goal is to find the sequence of words W from of a given vocabulary,
which maximizes the probability P(W | x| ) Using the Bayesian theorem for condi-
tional probabilities this can be expressed more conveniently as maximizing the
product between observation probability p(xlT | W) and word sequence probability
P(W):

W = arg»rvnax{p(x{ | W) P(W)} 9.1
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Introducing the hidden state sequence s, = (s,,s,,...,5;) we obtain

plxl W)= Z,P(XIT,SIT W)= ZP(XIT s P(sT ). 9.2)

where the sum is over all state sequences within W . As there is exactly one word
sequence corresponding to a state sequence, the condition on W can be left out.

A common assumption employed in speech recognition is the so-called condi-
tional independence assumption, which states that x, is conditionally independent
of neighboring feature vectors, given the HMM state s,:

ol 157)=T T ol 15675, )=

t=1 t:

p(x,|s,). 9.3)

T
=
Using this in Eq. 9.9.2 we obtain

Pl W)= Zﬁp(x, 15,)P(sT), 9.4)

Often we are unable to observe the uncorrupted feature vector sequence x| . We
observe a corrupted sequence y, = (yl,...yr), which may differ from x| . In DSR,
transmission errors are the reason for this difference. The speech recognition prob-
lem thus amounts to solving

A

W= arg‘tvnaX{p(y{ |W)-P(W). ©.1)

In solving this we need to find an efficient way to compute p(ylr |s/ ) To this
end we introduce the (hidden) uncorrupted feature sequence:

A 157)= [olo7 15Dl 157 )] ©2)
Using Eq. 9.9.3 and noting that
T T !
pT 1x7)=TTp 1x,) 9.3)
(=1
we obtain

P 1T )= [TT by, 1x)p(x, 15)ax] =TT [y, 1x)p(x, |5,)dx, 9.4)

X 1=l =l
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i.e. it is possible to interchange the product and the integral since the terms inside the
integral only depend on ¢.
Often it is more convenient to express p(yt | xt) via a posterior probability

ply, Ix,)= % 9.5)
plx,

If inter-frame correlation among the feature vector sequence is to be taken into
account, p(xt \yt) has to be replaced by p(x, |yl ), i.e. the a posteriori density of

the clean feature sequence, given all observed corrupted features. This posterior is,
from an estimation theory point of view, the complete solution to the problem of
estimating the clean feature vector, given all observations. In Sect. 9.3 we will show
how this posterior can be efficiently estimated in a distributed speech recognition
scenario.

Since we are eventually only interested in the word (state) sequence which
maximizes Eq. 9.9.4, the probability of the noisy features p(y,) can be disregarded.
Further, replacing p(xt |yt) by p(xt |le) in Eq. 9.9.5 and using it in Eq. 9.9.4 we

arrive at
p(Y1T|S1T):HJ-p( t(”; ) (Xt|S,)dX[. (9.6)

Replacing p(xlT |slT) by p(le ‘SIT) in Eq. 9.9.2 and using Eq. 9.9.6 we finally

arrive at

(y1 |W ZH IM (x,]s,)dx, P(sl). 9.7)

sit=1 X,

The only difference to the standard ASR decoder is that the observation probability
p(xt | st) has to be replaced by the modified observation probability:

T
pls,15)> ;A;(l_y)l)p(x, 5 )dx
X, t

(9.8)

It is instructive to consider the extreme cases of an error-free transmission and a
completely unreliable transmission. In case of an error-free transmission there is

y, =X, , and the a posteriori density p(x, | ylr) reduces to a Dirac delta-impulse. As

a result, the modified observation probability, Eq. 9.9.8, reduces to the standard
observation probability (the denominator is then a constant and can be neglected as
it does not influence the maximization in Eq. 9.9.1).

In the other extreme case the channel does not transmit any information, which

can be expressed by p(x, \le):p(x,) for all #+=1,..,T. In this case the modified
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observation probability evaluates to one and Eq. 9.9.1 reduces to W = arg max{p(W)}.

W
As the observed features are uninformative, the recognizer has to rely solely on the
prior word probabilities.

The key element of the novel decoding rule is the posterior density p(x, |le).
The processing of the corrupted features in front of the recognizer has to produce a
posterior density instead of a point estimate. It is well-known from estimation the-
ory, that the posterior density comprises all information about the parameter to be
estimated, here x,, that is available from the observations, here y! . Optimal point
estimates, such as MMSE or maximum a posteriori (MAP) can be obtained as the
mean or mode of this density. Further, the (co)variance of the posterior is a measure
of reliability of the point estimate. For this reason the posterior has sometimes been
called soft feature (Haeb-Umbach and Ion 2004).

Related decoding rules can be found e.g. in Morris et al. (1998, 2001), Arrowood
and Clements (2002), Droppo et al. (2002), Kristjansson and Frey (2002), Liao and
Gales (2004). However, in most cases past and future observed feature vectors are
not taken into account for the estimation of the posterior density of the current un-
corrupted feature vector, i.e. p(xt \le) is replaced by p(xt |yt). In doing so inter-
frame correlation is neglected for the posterior estimation. In Sect. 9.3, however, we
will show that inter-frame correlation is a powerful knowledge source to be utilized
for transmission error-robust speech recognition.

9.2.2 Gaussian Approximation

Still, the modified observation probability given in Eq. 9.9.8 looks intimidating. The
computation of the observation probabilities is the single most time consuming
processing step in speech recognition. Replacing the evaluation of a mixture density
by the numerical evaluation of an integral may increase the computational burden
beyond the limits of practical interest. Fortunately, the integral can be solved ana-
lytically, if we make the following assumptions:

1. The observation probability is a Gaussian mixture density:
M
p(xt | S/): Zc.&‘,mN(Xt;us,m’Zs,m) (99)
m=1

2. The a priori density of the uncorrupted feature vector can be modeled by a
Gaussian density:

p(x,)=N(x;p,.Z,) (9.10)

3. The a posteriori density of the uncorrupted feature vector, given the se-
quence of received feature vectors, can be approximated by a Gaussian
density:

p(xt |Y1T>z pN(Xt ‘le):N(Xl;l"x,\y’Zx,\y) .11



194 Reinhold Haeb-Umbach and Valentin Ion

Further we assume that all Gaussians, Eqs. 9.9.9-9.9.11, have diagonal covari-
ance matrices. Since the individual elements of a diagonal-covariance Gaussian are
independent, the densities can then be factorized over the feature vector elements.
Let u,,,, u, and u, . denote the means and o:,. 0. and Uf_/‘y the corresponding
variances of the Gaussians of an individual vector component of the observation,
prior and posterior density, respectively. Then the integral present in Eq. 9.9.8 can
be solved analytically (Droppo et al. 2002; Ion and Haeb-Umbach 2006¢), where for
each dimension we obtain the following:

2

jfcs,mN(xt;us,m,aim)N(x’;” %) dy, =Y e, AN(usu 0%, +02)  912)

m=1 N xt;/ux:o-f m=1 o
where
He _ Hop My
U: O-f,\y O-f
v
63 O-,f,\y O'f (9.13)
. 2
_ N(O’lux,\y ’O-X,Iy)
if o> o"f/Iy. Equation 9.9.12 states that the variance of the original observation

probability of the uncorrupted features is to be increased by o and that it is to be
evaluated at x, and weighted by 4.

The assumption of Eq. 9.9.9 is the standard model for observation probabilities.
Further, the prior density of the feature vector p(x[) can be reasonably well ap-
proximated by a Gaussian density. The most critical assumption seems to be Eq.
9.9.11. We often observed a multi-modal shape of the posterior density. However,
the Gaussian approximation was adopted due to computational complexity reasons.

9.3 Feature Posterior Estimation in a DSR Framework

The decoding rule derived in the last section requires knowledge of p(x, lyl ),the
a posteriori density of the transmitted feature vector, given all received feature
vectors. In this section we show how this term can be estimated in the case of dis-
tributed speech recognition, where coded MFCCs are transmitted over an error-
prone channel. We first describe the ETSI DSR standard to the extent necessary for
understanding the subsequent derivation. Subsection 9.3.2 quantifies the redundancy
present in the output bit stream of the source coder. The two channel models under
consideration are explained in Subsects. 9.3.3, and 9.3.4 shows how the feature
posterior density can be computed from a priori and “transmission probabilities”.
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This section is concluded by relating other approaches for error concealment to the
one presented here.

9.3.1 ETSI DSR Standards

The ETSI distributed speech recognition standards define two feature extraction
schemes, standard front end and advanced front end processing, together with the
source coding, packet construction, and the backend source decoding scheme (ETSI
Standard ES 202 050, 2002; ETSI Standard ES 201 108, 2003a). For the purpose of
error concealment we need to consider the source coder in more detail.

A source coder is a mapping of the N-dimensional Euclidian space into a finite
index set J of 2" elements. It consists of two components: the quantizer and the
index generator. The quantizer maps the N-dimensional parameter vector x to a N-
dimensional codeword (centroid) cin the finite codebook C. This codeword repre-
sents all vectors falling in this quantization cell. The index generator then maps this
codeword ¢ to an index (bit pattern) b in an index set J.

The source coder of the ETSI DSR standard employs a split vector quantizer
(VQ) for the quantization of the static MFCC parameters. The input to the quantizer
is the N =14 dimensional parameter vector, consisting of the thirteen-dimensional
MFCC feature vector and as a fourteenth component the logarithmic frame energy
(log E). The parameter vector is split into seven subvectors, each of dimension two,
which are quantized with bit-rates (6,6,6,6,6,5,8) bits, respectively. Including one bit
for voice-activity information this sums to 44 bits per frame. Before transmission
two quantized frames are grouped together creating a frame pair. A 4-bit cyclic
redundancy check (CRC) is calculated for each frame pair, resulting in a total of
92 bits per frame pair.

In our notation we will not distinguish between individual subvectors in the fol-
lowing, since the same operations are performed for all subvectors. We even do not
make a distinction between the complete vector and any of the subvectors in our
notation. Which interpretation is used should become clear from the context.

9.3.2 Source Coder Redundancy

The key to error concealment is the exploit the residual redundancy present in the
source coder output bit stream. Let x, denote any of the real-valued MFCC subvec-
tors at time frame ¢ produced by the front-end. The source coder quantizes the sub-
vector to a codeword ¢, and maps the codeword to a bit pattern b, = (b, (0),..5,(M - 1)
of M bits, which is transmitted over an equivalent discrete-time channel.

Table 9.1 gives the entropies H(b,) and mutual information / (b,;bH) of the
individual subvectors. The values have been obtained on the training set of the
Aurora 2 database (Hirsch and Pearce 2000) using the ETSI advanced feature ex-
traction front-end. Here, subvector 1 denotes the bit pattern corresponding to the
first and second mel-frequency cepstral coefficient, subvector 2 the third and fourth,

and so on. Subvector 7 comprises the zero-th cepstral coefficient and log E . M is



196  Reinhold Haeb-Umbach and Valentin Ion

the number of bits used to code a subvector, i.e. the length of the bit pattern b, .
Comparing M with the entropy H(bt) of the bit pattern, one can observe that for all

subvectors the two values are fairly close to each other. This indicates that the bit
pattern has almost a uniform distribution. Not much redundancy is left within a
subvector which could be utilized for error concealment.

Table 9.1 Entropies and mutual information among the subvectors produced by the ETSI
advanced DSR front-end (measured on Aurora 2 training database)

Subvector 1 2 3 4 5 6 7
M 6 6 6 6 6 5 8
H(b,) 5.8 5.8 5.8 5.8 5.8 4.8 7.7
I(b,;b, ) 2.6 2.1 1.6 1.4 12 1.0 3.4
l(b,; (b,_l, Ab, ,,A%b, )) 3.0 24 1.9 1.7 1.5 1.3 4.5

The mutual information [ (bt;bt_l) indicates how much information about the
current bit pattern b, is already present in the previous b, ,. The larger the mutual
information the better a bit pattern following in time can be predicted from the one
of the previous frame. Obviously, strong inter-frame correlation exists.

The last line of the table gives the mutual information between the current bit
pattern and the bit pattern (bt_l,Abt_],Ath_]) of the previous frame, which consists
of the coded static MFCC components b, ; and the coded dynamic features. For this
experiment a D, =3 bit vector quantizer was used for the delta (velocity) and just a
D, =1 bit quantizer for the delta-delta (acceleration) parameter. Obviously, the
dynamic parameters of the previous frame provide additional knowledge about the
static parameters of the current frame, since the measured mutual information is
larger than the one observed between b, and b, . This comes to no surprise, as the
dynamic features capture the trend present in the feature trajectory.

Obviously, the key to successful error concealment is the exploitation of the
strong inter-frame correlation of MFCC feature vectors. In specifying the inter-
frame correlation models of different complexity may be chosen. A good compro-
mise between modeling accuracy and complexity is to assume that the source vector
sequence b, , 1 =1,2,... is a homogeneous first-order Markov process, whose “transi-
tion probabilities” P(bi") \bfj)), i,j=1,..,2" are independent of time. With this
model, however, long-term dependencies e.g. on the phone level cannot be captured.

9.3.3 Channel Models

Let us now consider the transmission model of Fig. 9.1. At the channel output a bit
pattern 'y, :( ,00),..y,(M —1) is observed. Due to transmission errors y, and b,
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are not identical. Please note that y, is a discrete random variable here, while we
assumed y, to be a continuous random variable in Sect. 9.2. We prefer this abuse of
notation to more easily link the DSR case considered in this section to the more
general theory presented in Sect. 9.2.

In the following we use a superscript if we want to denote a specific bit pattern,

i.e. b indicates the bit pattern corresponding to the i-th codebook centroid ¢!,

€ {1,...,2M }

Source Coder

Speech Feature X, N ¢, Index b,
—> ) Quantization .
Extraction Generation
Equivalent

Discrete

Channel
Words p(x |yl ) y
ASR e 1J Source Decoder & ¢

Decoder Posterior Computation

Fig. 9.1 Block diagram of distributed speech recognition system

We consider two channel models:
a) Time-variant binary symmetric channel (TV-BSC)

The TV-BSC is an equivalent discrete channel which models the effects of addi-
tive white Gaussian noise on the transmitted bit sequence. While one usually as-
sumes constant bit error probability in a BSC, we want to allow here the bit error
probability p, to be time-variant. This model can be used to characterize wireless
circuit-switched transmission, where the bit error rate varies, e.g. due to time-variant
multi-path fading.

As the channel is assumed to be memoryless, the probability of a received bit
pattern given the sent can be expressed as

M-1

Ply, 16)=TT Py, 0m) 15 (m)) 9.18)

m=0

where

—p(m)  y,(m)=b"(m)

pmy Ty m) = b0 () ©-19)

Py, (m) |6 (m)) = {1
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Here, p,(m) is the (instantaneous) bit error probability of the m-th bit of the #-th
bit pattern. This probability can either be obtained from a soft-output channel de-

coder or can be estimated from consistency checks applied to the received bits (Ion
and Haeb-Umbach 2006a).

b) Packet erasure channel

In this channel model, a data packet is either completely lost or received without
any bit error. It models the random loss of data packets, e.g. due to network conges-
tion. Most real communication channels exhibit packet losses occurring in bursts.
Such channels can be modeled by a 2-state Markov chain, known as Gilbert model,
see Fig. 9.2. In the figure p is the probability that the next packet is lost, provided
the previous one has arrived; ¢ is the probability that the next packet is not lost,
given that the previous one was lost. The parameter g can be seen as controlling the
burstiness of packet losses. This channel model is often described in terms of the
mean loss probability mlp = p/(p + q), the average probability of loosing a packet,
and conditional loss probability clp =1-q, i.e. the probability of loosing a packet,
conditioned on the event that the previous packet was lost.

p

I-p 1-¢q

Fig. 9.2 Gilbert model

It is important to model the bursty nature of packet losses. It was shown that the
word error rate of a DSR system depends strongly on the burstiness of the channel:
Frame losses of up to 50% hardly have an effect on the word error rate, provided the
average burst length is one packet (i.e. one frame pair), while the word error rate
dramatically increases for longer average burst lengths (Gémez et al. 2007).

For a packet erasure channel model the probability of the received bit pattern,
given the sent, is as follows:

i)
5(y, —b; ) packet received

Ply, |b? )= 1 i
(YI b ) —r i packet lost (9.20)
2

Here o () denotes the Kronecker delta impulse.

Note that in practice often a combination of both error types is present. Commu-
nications that involve both a wireless and a packet-based wireline link may exhibit
both packet losses and bit errors. Packets with bit errors are discarded by the User
Datagram Protocol (UDP). While this is reasonable for many payloads, for DSR or
speech transmission it would make more sense to deliver packets with bit errors, as
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it allows for more effective error concealment. UDP-Lite (RFC 3828, 2004) is a
transport protocol that allows the application to receive partially corrupted packets.

9.3.4 Estimation of Feature Posterior

At the receiving end we are given the sequence y| =y,,...y,, and our goal is to
carry out speech recognition by employing the modified observation probability
given by Eq. 9.9.8.

To this end we need to compute the a posteriori probability density p(xt |le).
Figure 9.3 illustrates the different processing steps. Note, that the input to the ASR
decoder is no longer a feature vector, but a probability density function.

(
Equivalent | Y| ,Transition" Py, 16, )" A Posteriori plx, 1y7 Gaussian By 2y ASR
Discrete [—*  Prob. Prob. " Aoorox " Decoder
Channel Computation Estimation PProx.
p.m) Pb? b?)
Channel A Priori
Quality Probabilities

Fig. 9.3 Block diagram of posterior estimation and uncertainty decoding

Introducing the hidden (unobservable) sent bit pattern, we can express the poste-
rior density as follows:

oM

plx, 1v7)=3 plx, 160 )P(b |y7) 9.14)

i=1

The computation of the posterior probability P(bi") |y{) can be accomplished
using the Forward-Backward (FB) algorithm (Bahl et al. 1974; Peinado et al. 2003):
() B0
; a
Pl v )= P .
St g (9.15)
=

where
a” = Pb",y,y,.y,)

; ; (9.16)
,Bt( ) = P(YHI’YHZ""yT ‘ b; ))

Both a” and B are computed recursively.

Using the FB algorithm the a posteriori density can be computed for either of the
two channel models outlined in Sect. 9.3.3 and either of the two source models con-



200  Reinhold Haeb-Umbach and Valentin Ion

sidered in Sect. 9.3.2. In the case of a packet erasure channel a very efficient realiza-
tion of the recursions can be found exploiting the property of Eq. 9.9.20 (Ion and
Haeb-Umbach 2006b).

Although the dynamic vector components are not transmitted, error concealment
can benefit from the superior prediction quality of a source model including static
and dynamic vector components. For the source model which models the sequence
of bit patterns corresponding to the static MFCC vectors only as a first-order

Markov model, there are 2 bit patterns b"”, i e {1,...,2M } per subvector, and the
inter-frame correlation is captured by a 2" x2" matrix, whose (i, j)th element is
P(bii) \bf”). On the other hand, for the source model which considers a feature

vector including dynamic components, inter-frame correlation is captured by a
MDDy o D MEDED: matrix, where M, Dy, and D, are the number of bits used to code
the subvector of static, first-order and second-order differential coefficients. The
matrices are estimated beforehand on clean training data. Since only the bits corre-
sponding to the static MFCC vector are actually transmitted, the “transition prob-
ability” is independent of the bits corresponding to the dynamic part of the feature
vector: P(y, \b,,Ab,,Azb,):P(y, |b,). In Sect. 9.4 we compare the two source
models w.r.t. speech recognition accuracy obtained on an error-prone channel. To
simplify notation we will assume the source model of static components only in the
remainder of this section.

Note that the FB algorithm needs to be performed only inside isolated erroneous
regions (error bursts), i.e. when P(y, |b§”) is not a Delta impulse. Then the FB
recursions are initialized using the last uncorrupted feature vector before and the
first uncorrupted feature vector after the error burst. Detecting the presence of an
uncorrupted feature vector is trivial in the case of a packet erase channel, but it is not
that trivial in the case of a time-variant BSC. In the latter case erroneous bit patterns
can be detected based on consistency checks among subsequent bit patterns and on
cyclic redundancy check failure (Ion and Haeb-Umbach 2006a).

The other term needed in Eq. 9.9.14, p(xt b ), is the probability density func-
tion (pdf) of the feature vector, given the i-th centroid. This VQ cell-conditioned pdf
is modeled as a Gaussian p(xt |b§”): N(x,;cf”,Zj”), where ¢! is the VQ centroid
corresponding to b” . The within-cell covariance matrix = can be estimated on
the training data.

In order to simplify subsequent processing, the feature posterior, Eq. 9.9.14, is
approximated a Gaussian density p, (xt lyl)]=N X5l 2y )5 se€ Eq. 9.9.11. The
parameters p, .2, of this Gaussian can be obtained by finding that Gaussian
which has the smallest Kullback-Leibler divergence to the original non-Gaussian

posterior p(xt |yl ) This results in the following estimates:

2.’\/1
ty = 2 PBY 1y])e? (9.24)
P
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oM

Sy = 3P0 1y e - e -y ) 20 ©.17)

i=l

This result makes intuitively sense: The mean p,  of the Gaussian is equal to
the mean of the original posterior, and the covariance is the sum of the between-VQ-
cell covariance and the within-VQ-cell covariance. For high resolution, i.e. suffi-
ciently large M, as is e.g. the case for the vector quantizer used in the ETSI DSR
standard, the within-cell variance is negligibly small, such that Eq. 9.9.17 simplifies
to

2"

oy 2 PbO v ) —n e —nyy ) (9.18)
i=0

The posterior probability is the complete solution to the problem of estimating
the uncorrupted features from the corrupted ones. The mean of the posterior given in
(9.24) is the MMSE estimate of the feature vector x, . If one were only interested in
the reconstruction of the uncorrupted feature vector, one could, for example, use this
estimate. The maximum of the posterior is the maximum a posteriori estimate of the
feature vector, another estimate commonly used in various estimation problems. The
covariance matrix of the posterior, Eq. 9.9.17, is a measure of reliability of the re-
constructed features. If the parameter to be estimated and the observation are jointly
Gaussian, it equals the covariance matrix of the MMSE estimation error.

9.3.5 Related Work

Several server based error mitigation schemes proposed for distributed speech rec-
ognition can be related to the framework presented in this article.

Peinado et al. (2003) employ the MMSE estimate, Eq. 9.9.24, to reconstruct cor-
rupted feature vectors on a channel exhibiting bit errors. A crucial issue, however, is
the determination of the instantaneous bit error probability p,(m) needed in Eq.
9.9.19. It may either be obtained from the soft-output of the channel and SNR esti-
mation (Peinado et al. 2003) or a soft-output channel decoder (Haeb-Umbach and
Ion 2004). If the soft-output is not available the bit error probability can be estimated
from consistency checks applied to the received bit patterns (Ion and Haeb-Umbach
2006a).

Marginalization reformulates the classification to perform recognition based on
the reliable features alone (Endo et al. 2003). On a packet erasure channel there is a
straightforward association of packet loss with unreliable data. However on a chan-
nel characterized by bit errors it is difficult to decide whether a feature is reliable or
not, even if the instantaneous bit error probability of all bits making up the represen-
tation of the feature is available. In Endo et al. (2003) a threshold was experimentally
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determined. If the bit error probability was larger than the threshold the corresponding
feature was marginalized.

Marginalization can be obtained in the presented framework, if the (simpler) fea-
ture posterior p(xt ly, ) , which is only conditioned on the received data correspond-
ing to the current frame, is used instead of p(xt Iyl ) in the modified observation
probability of Eq. 9.9.8. If a feature is declared lost, then p(xt |yt): p(xt). Using
this in Eq. 9.9.8, the integral evaluates to one, i.e. the corresponding frame is mar-
ginalized.

The binary reliability measure used in marginalization can be replaced by a con-
tinuous confidence measure y, taking values between zero and one. Weighted
Viterbi (WV) decoding takes into account the confidence about a feature vector by
raising the observation probability to the power of y (Bernard and Alwan 2001).
Obviously, for the correctly received feature vectors there is y =1, and no changes
to the observation probability occur. For a lost feature vector the maximum uncer-
tainty is expressed by y =0, resulting in an observation probability evaluating to
one and being independent of the state. Thus with binary weighting WV is equiva-
lent to marginalization. However, raising the observation probability to some power
y anywhere between zero and one lacks a probabilistic interpretation. Moreover,
determining an optimal value for y is not an easy task. The methods proposed to
determine the confidence measure y are rather empirical, and the optimal value
depends on the recognition task (Cardenal-Lopez et al. 2006).

The effect of raising the observation probability to some power between zero and
one is to deemphasize the contribution of this frame to the ASR decision. The same
effect is achieved with the observation probability of Eq. 9.9.8 proposed in this
paper, if the feature posterior is not a Dirac delta impulse.

9.4 Performance Evaluations

In this section we present experimental results for distributed speech recognition
employing the proposed error concealment techniques. We first describe the experi-
mental setup and then give speech recognition results for the two channel models
outlined in Sect. 9.3.3 and for two recognition tasks, a small vocabulary and a me-
dium vocabulary task.

9.4.1 Experimental Setup

We consider a setup which is compatible to the ETSI standards for DSR. The whole
front-end processing, consisting of feature extraction, source coding and packetiza-
tion is carried out according to the ETSI advanced front-end (ETSI 2002) standard.
As an example for a channel exhibiting bit errors the GSM data channel was consid-
ered. A realistic simulation of the GSM physical layer processing was carried out includ-
ing channel coding/decoding, interleaving/deinterleaving, modulation/demodulation. The
channel coding was TCH/F4.8 described in (ETSI 2003b) which uses convolutional
coding at a rate 7 =1/3. The channel decoding employed the FB algorithm (Bahl et al.
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1974) which is able to provide the instantaneous bit error probability p,(m) . We pre-
ferred this full channel simulation, since if we had used merely GSM error patterns, the
instantaneous bit error rate would not have been available.

We have chosen a channel model approximating a “typical urban” profile speci-
fied by COST 207 (COST 1989). The model is characterized by 12 propagation
paths, delay spread of 1.03 ps and Rayleigh fading. The terminal was assumed to be
moving at 50 km/h. Various Carrier-to-Interference (C/I) power ratios were simu-
lated, ranging from 10 dB to 2.5 dB. Note that C/I=2.5 dB is a very poor channel,
where the bit error rate is as high as 3.6%.

For the packet erasure channel we adopted the Gilbert model to model that
packet losses occur in bursts. In the literature often four channel conditions are
evaluated, with C1 corresponding to mildly bad and C4 to very poor channel condi-
tions. Table 9.2 gives the conditional and mean loss probabilities of the four condi-
tions (Boulis et al. 2002). In our simulations we transmitted one frame pair per
packet.

Table 9.2 Packet erasure channel test conditions

Condition Cl C2 C3 C4
clp 0.147 0.33 0.50 0.60
mlp 0.006 0.09 0.286 0.385

Different error concealment techniques were applied at the receiving (server)
side and compared in terms of achieved word error rate obtained on two databases.

The small vocabulary task is the clean test set of the Aurora 2 database, which
consists of 4004 utterances from 52 male and 52 female speakers distributed over
four subsets. The sampling rate is 8 kHz. The acoustic models used in the recognizer
were those described in (Hirsch and Pearce 2000): 16 states per word, 3 Gaussians
per state.

The medium vocabulary task is the Wall Street Journal WSJO Sk Nov. ’92
evaluation test set (Paul and Baker 1992) comprising 330 utterances of 4 male and
4 female speakers, summing up to 40 min of speech. Here, the sampling rate is
16 kHz. Recognition experiments were carried out on this test set using a closed
vocabulary bigram language model. The acoustic model consisted of 3437 tied
states. The parameters of the 10-component mixture densities were trained on the SI-
84 set of the WSJ corpus using the HTK toolkit (Young et al. 2004).

9.4.2 Results on GSM Data Channel

Figure 9.4 gives an illustrative example of the reconstruction achieved by employing
the a posteriori density. The figure shows how the feature log £ is reconstructed in
the presence of bit errors during transmission. The continuous solid line labeled x,
is the sent (“true”) value of the parameter over the frame index 7. 4, is the MMSE
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estimate, and 4, to,, the MMSE estimate plus/minus one standard deviation of

xly
the a posteriori density. The interval given in this way can be interpreted as confi-
dence interval for the MMSE estimate. The curve NFR shows the reconstruction by
nearest frame repetition, which is the error concealment strategy proposed in the
ETSI standard. The grey areas show intervals in which transmission errors occurred.
We used two grey scales to distinguish between regions where transmission errors
occurred in the bit pattern carrying the log £ component (dark grey) and regions
where the bit patterns corresponding to other subvectors of the same frame were
affected by errors (light grey). It can be seen that the log £ component is not af-
fected by transmission errors in other subvectors. This can be attributed to the fact
that the a posteriori computation operates on a per-subvector basis. Uncorrupted
parts are forwarded to the recognizer without modification. A subvector-based error
concealment, such as this or the one proposed by Tan et al. (2004) is superior to a
frame-based scheme, such as NFR, where a complete frame is modified, even if only
one subvector is degraded by transmission errors. But even if the illustrated log £
component is affected by transmission errors, much better feature reconstruction is
achieved with the proposed method compared to NFR.

20

,7Xt
o NFR
. p‘xtIY
p’x iGXIY
t t

5)31 233 235 237 239 241 243 245 24 249

Fig. 9.4 Example of feature reconstruction. The figure shows the trajectory of the log E
feature over time (labeled x,) and its reconstructions, either by nearest frame repetition
(NFR) or by the proposed scheme. The shaded areas indicate regions where bit errors oc-
curred during transmission, either in the log £ component (dark grey) or another component
of the feature vector (light grey)

Figures 9.5 and 9.6 present word error rates for different Carrier-to-Interference
(C/T) power ratios for the Aurora 2 and WSJO database, respectively. In these fig-
ures, the performance of the proposed scheme, termed uncertainty decoding (UD), is
compared with marginalization (M), nearest frame repetition (NFR) and Weighted
Viterbi decoding (WV). For WV, the confidence y was computed as in Potamianos
and Weerackody (2001), however using the instantaneous bit error probability
from the channel decoder. For UD, we employed the source model based on the
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correlation of static features only. It can be seen, that UD outperforms all other
schemes. Speech recognition accuracy is hardly affected for C/I-values as low as
2.5 dB. Figure 9.5 also shows the bit error rate (BER) at the output of the channel
decoder. It is interesting to note that BER increases by almost three orders of magni-
tude when C/I is reduced from 10 dB to 2.5 dB, while the word error rate achieved
by UD is only mildly affected. This underscores that uncertainty decoding makes the
ASR decoder very robust towards degraded channel conditions.
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Fig. 9.5 Word error rates for transmission over GSM TCH/F4.8 channel using different error
concealment schemes; Aurora 2 task. The dash-dotted line indicates the bit error rate (BER) at
the output of the channel decoder
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Fig. 9.6 Word error rates for transmission over GSM TCH/F4.8 channel using different error
concealment schemes; WSJO task
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As the two are closely related, the frame error rate increases similarly to BER,
from 0.08% at C/I =10 dB to 60% at C/I =2.5 dB. As a consequence marginalization
and nearest frame repetition, which operate on a vector rather than a subvector basis,
perform poorly.

9.4.3 Results on Packet Erasure Channel

For the experiments on the packet erasure channel we used the channel conditions
C1 to C4, specified in Table 9.2. Figures 9.7 and 9.8 display the word error rates of
different error concealment techniques for the Aurora 2 and WSJO task, respectively.
In the figures we included a condition CO as a reference, which corresponds to an
error-free transmission. Results are presented for two variants of the proposed
scheme: uncertainty decoding employing an a priori model of the source which
captures correlation among the static MFCCs alone (UD) and the one utilizing the
correlation among the full (static and dynamic) feature vector (UD-dyn). It can be
seen, that UD outperforms marginalization (M) and nearest frame repetition (NFR).
The performance of Weighted Viterbi (WV) decoding comes close to UD. For the
WYV curve the lost features were reconstructed by NFR, and their confidence ;/(t)
was chosen dependant on the relative position (7 ) within an error burst. It equals
one at the start and end of the burst and decreases exponentially according to
;/(tm,, + r) = }/(tm, + r): o’ towards the middle (Cardenal-Lopez et al. 2006). Here,
.. and t,, denote the starting and ending time of the error burst. The optimal

value of o was experimentally found to be « =0.7 for this task.
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Fig. 9.7 Word error rates for packet erasure channel using different error concealment schemes;
Aurora 2 task
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Fig. 9.8 Word error rates for packet erasure channel using different error concealment schemes;
WSJO task

9.5 Conclusion

Error concealment is concerned with mitigating the detrimental effect that transmis-
sion errors may have on the recipient of the signal by exploiting residual redundancy
in the bit stream of the source coder output. In distributed speech recognition (DSR)
the recipient is the ASR decoder, which, unlike a human listener, can take advantage
of both the optimally reconstructed transmitted data and information about the reli-
ability of the reconstruction. The Bayes decision rule therefore has to be reformu-
lated to account for a corrupted or unreliable feature vector sequence. This results,
under certain assumptions, in just a modification of the observation probability
computation, while the structure of the decoder, which is based on the Viterbi
search, remains unchanged. Crucial to the performance of this modified decoding
rule is the accuracy of the a posteriori probability density estimate of the uncor-
rupted feature vector, given all the received corrupted ones. For DSR we were able
to find an efficient estimation method, both for channels characterized by bit errors
and channels exhibiting packet losses. The key was to exploit the high inter-frame
correlation of MFCC feature vectors. Using these techniques high recognition accu-
racy can be maintained over a wide range of channel conditions.

It should be noted that server-based error concealment techniques, as the ones
described in this contribution, are fully compatible with the ETSI standards for dis-
tributed speech recognition.
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Algorithm Optimizations: Low Computational
Complexity

Miroslav Novak

Abstract. Advances in ASR are driven by both scientific achievements in the field and the
availability of more powerful hardware. While very powerful CPUs allow us to use ever more
complex algorithms in server-based large vocabulary ASR systems (e.g. in telephony applica-
tions), the capability of embedded platforms will always lag behind. Nevertheless as the popu-
larity of ASR application grows, we can expect an increasing demand for functionality on
embedded platforms as well. For example, replacing simple command and control grammar-
based applications by natural language understanding (NLU) systems leads to increased vo-
cabulary sizes and thus the need for greater CPU performance. In this chapter we present an
overview of ASR decoder design options with an emphasis on techniques which are suitable
for embedded platforms. One needs to keep in mind that there is no one-size-fits-all solution;
specific algorithmic improvements may only be best applied to highly restricted applications
or scenarios. The optimal solution can usually be achieved by making choices with respect to
algorithms aimed at maximizing specific benefits for a particular platform and task.

10.1 Introduction

While systems for dealing with large vocabulary recognition in real-time ASR have
been available for many years, deployment on platforms with limited resources pre-
sents new challenges with respect to many aspects of the overall ASR system design.
There is an obvious tendency to utilize any new beneficial technique over the wide
spectrum of ASR applications and platforms. But in numerous respects embedded
platforms lag behind the state of the art in speech recognition with respect to general
CPU architectures. The limitations of the embedded platforms affecting this state of
affairs includes: lower CPU clock speeds, limited or missing ability to process float-
ing point operations, and restricted memory capacity both with respect to speed and
size having implications to all levels of caching. Those constraints are bad enough,
but added to this is the relatively restricted capability of tools/platforms tailored
specifically to embedded systems development, which results in many important
language features (e.g., templates in the C++ case) not being fully supported.

Hence any new algorithm targeting embedded platforms must therefore be evalu-
ated in light of the above restrictions. Possible actions that one needs to consider
taking may include finding more efficient implementation of a given algorithm, fin-
ding and applying an even more efficient algorithm with the same or similar results,
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or resorting to the use of approximations applied to the algorithm or simply reducing
the overall model complexity, while at the same time striving to ensure an acceptable
trade-off between accuracy and efficiency.

10.2 Common Limitations of Embedded Platforms

In comparison to a typical workstation used for large vocabulary ASR, the embedded
platforms are limited both in terms of CPU power and memory. While the work-
station market for desktop and server applications is dominated by a single platform
(i.e. 32-bit or more recently 64-bit Intel), the situation for embedded devices is much
more diverse (a variety of chips ranging from 8 to 32 bit architectures are fairly
common), which makes the development of one-size-fits-all implementation all the
more difficult if not completely impossible.

10.2.1 Memory Limitations

Memory (not only the amount available but, more importantly, its speed) seems to be
the most pronounced limiting factor. It is well known that a fast CPU is not very
helpful when it is used in combination with slow memory — especially when a very
small memory cache is used.

There is a popular belief that in the implementation of many algorithms, speed
can be improved by using more memory. Caution is advised with embedded systems
however because the use of more memory can often lead to a higher cache miss rate
and an overall degradation in performance. Algorithmic improvements developed on
a large computer do not always translate to improvements on systems with limited
resources.

Most embedded CPUs have small instruction and data caches (typically in the 4-
32 kB range). Also, slow RAM is often used due to constraints on the hardware cost
and power consumption. Simple CPUs sometimes even have no data cache. Instead
they use a block of fast scratchpad memory and content must be managed by the
application software and DMA transfers. Porting more complex code to such archi-
tectures can be extremely difficult.

Embedded systems that use memory management (i.e. logical to physical address
translation) usually have only simple memory management units (MMUs),which
have only a limited number of Translation Lookaside Buffer (TLB) entries (typically
16-64). Moreover, they rely on software handling of TLB faults by the operating
system that cost hundreds of CPU cycles per fault. As most systems use a memory
page size of 4 kB, the memory size that can be handled without TLB faults is only
64-256 kB. Any task accessing a large amount of memory will be slowed down by
expensive handling of TLB fault interrupts.

One of the impacts of slow memory access is the high cost of heap allocation
routines, often observed on embedded systems. In addition, memory allocation fail-
ures are much more common than on desktop or server systems due to limits of the
memory size and runtime environment.
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These memory limitations must be kept in mind during the implementation of any
ASR algorithm. One goal is to maximize the locality of memory access by organizing
data structures so that concurrently accessed elements are always close to each other.
Another goal is to maximize the use of any model data when it is accessed. A typical
task encountered in ASR algorithms requires some type of evaluation of a data stream
against model data in memory. This model can occupy a significant amount of memory
so it is beneficial to process several samples of the data stream when a particular part of
the model is accessed and loaded into the memory cache. A typical example of such an
approach involves the evaluation of a Gaussian mixture component on a sequence of
several feature vectors as opposed to the evaluation of all components during each time
frame.

10.2.2 CPU Limitations

Typical embedded CPUs often lack hardware support for floating point operations.
Although software emulation is usually available, it is often prohibitively expensive.
Hence, many algorithms need to be redesigned in order to work efficiently in situa-
tions involving integer arithmetic and for specific word lengths (32 or 16 bit). The
ASR front end requires several multiplication steps applied to each feature vector so
proper scaling is essential. To avoid the overhead of dynamic scaling, the scaling
factors are typically precomputed offline. To maximize use of the limited dynamic
range, a separate scaling factor can be estimated for each step.

Proper application of architecture knowledge can significantly improve the exe-
cution efficiency of the code. Many embedded CPUs are RISC load-store architec-
tures, often with limited number of general-purpose registers (GPRs). This constrains
the number of local variables that can be efficiently accessed. For example, on a
CPUs with 16 GPRs (e.g. ARM), usually only about 5 local variables can be stored
in registers. Other local variables must be located on the stack and using them in
operations is more expensive. This can have a serious performance impact, for ex-
ample on code performing various iterative computations.

Modern CPUs use sophisticated branching prediction methods, which are usually
not available on embedded CPUs. For example, insertion of a conditional statement
inside of a loop has an adverse effect on the instructions cache and can significantly
slow down execution of the code, even if it were intended to avoid unnecessary com-
putations. In such situations performing more operations can be faster, as long as the
code does not contain branches.

10.3 Overview of an ASR System

A block diagram of an ASR decoder is shown in Fig. 10.1. It contains three major
components:

e  Feature extraction (front end)
e  Observation model (labeler)
e Search
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While this is a very simple diagram which does not show the complex interac-
tions in ever more complex modern ASR designs, these fundamental blocks can be
found in basically any decoder implementation.

feature observation ! buffer | Viterbi output
waveform
[ }' extraction > model _" 7’ search ‘{ text }

acoustic search
model graph

Fig. 10.1 ASR block diagram

The waveform is converted into a sequence of feature vectors by the front end.
Each feature vector represents a short segment of the utterance corresponding to an
acoustic event which is assumed to be stationary. These vectors are statistically mod-
eled as a set of acoustic classes (acoustic model), each having its own probability
density function. These classes typically model phoneme parts in a specific acoustic
context (e.g. tri-phones). The observation model provides the means to efficiently
compute probabilities of a particular feature vector. These are called “emission” or
“output” probabilities because they are used as state output probabilities of Hidden
Markov Model (HMM) states in the search graph network representing all possible
utterances. The role of the search module is to find the best matching path through
this network. Often it is required to find the N- best matching paths, or a word lattice
representing alternative hypotheses in a compact form.

10.4 Front End

The role of the front end is to convert the input waveform into a sequence of acoustic
feature vectors. Each feature vector describes a portion of the waveform, called
frame (typically 10-15 ms). FFT (Fast Fourier Transform) followed by MEL band
filtering or similar technique is applied on each frame to produce a feature vector.
The vector elements are converted to cepstral coefficients by computing their loga-
rithms and applying Discrete Cosine Transformation (DCT). The DCT has a de-
correlating effect facilitating use of diagonal Gaussian models in the observation
model. Dynamic features are captured either by computing double-delta feature vec-
tors or by splicing several vectors together and applying a linear discrimination analy-
sis (LDA) transformation. The transformation more expensive but usually leads to
higher accuracy and the vector dimension can be reduced with a minimal impact on
overall accuracy.

The final dimension of the feature vector typically varies from 13 to 60. Choice
of the dimensionality entails making a tradeoff between CPU cost and recognition
accuracy. Eventually, a transformation for runtime adaptation (usually unsupervised)
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can be applied to compensate for channel and/or speaker mismatch (Feature space
Maximum Likelihood Linear regression fMLLR) (Gales 1997).

The computational cost of the front end is relatively small in comparison to the
rest of the decoder. There are two main operations utilized by the front end:

e  FFT computation
e  Matrix multiplication

Efficient implementations of these algorithms for specific platforms have been
extensively covered in the literature and a more detailed description in beyond the
scope of this chapter.

If feature space adaptation is employed, it is preferable to use algorithms that do
not require matrix inversion (which can cause instability), particularly in integerized
implementations. (Balakrishnan 2003) proposes stochastic gradient based estimation,
which also significantly reduces the computational cost from O(n’) to O(n’) and
memory use from O(n’) to O(n®) , where n is the vector dimension, in comparison to
the originally proposed method (Gales 1997).

10.5 Observation Model

10.5.1 Model Organization

The observation model computes the likelihoods of acoustic model classes (typically
context dependent sub-phonetic units). The CPU cost of the observation likelihood
computation is often the dominating one. The models are almost exclusively based
on Gaussian Mixture Models (GMM) of some form (untied or tied) such that each
acoustic class is modeled by one Gaussian mixture. In a tied system, the Gaussian
components can be shared across classes.

Proper design of the observation model is essential for the performance of the
ASR system. The main design criteria include:

e Number of acoustic classes
e  Number of components in each mixture
e  Size of the phonetic context

The theoretical upper limit on the number of Gaussian components is given by
the amount of training data available for reliable estimation of their parameters
(means, variances and weights). In practice, this limit is determined by the amount of
both CPU resources available for the Gaussian likelihood computation and the
memory for their storage. Lowering the number of Gaussians to reduce the CPU cost
is effective up to a certain degree. If the observation model is less accurate, the search
tends to get wider (i.e. more states becoming active) and thus slower.

The Bayesian Information Criterion (BIC) has been successfully used to assign
the number of Gaussian components to each state (Deligne et al. 2002). The objec-
tive function for GMM estimation is extended by a factor which imposes a penalty
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for the number of parameters in the final model. This way, new Gaussians are added
during the model building only if they significantly contribute to the likelihood increase.

Further improvement in accuracy can be achieved by using gender dependent
models. To avoid the memory cost of having two models, (Olsen and Dharanipragada
2003) propose a method which uses only one set of Gaussians but adjusts the mix-
ture weights adaptively in accordance with the automatically detected gender of the
speaker.

The size of phonetic context information used to create context dependent models
is also a very important factor. The wider the context, the better is the coarticulation
modeling at the expense of a more complex model. The effect is twofold: the number
of acoustic classes increases and the complexity of the search increases. The latter is
particularly evident when the phonetic context is modeled across word boundaries.
Often the phonetic context is modeled only within each word and not across word
boundaries to reduce the complexity of the resulting search graph. Use of word
internal context modeling also significantly simplifies the construction of the graph.

The dynamic range of the observation likelihood is very large. To have the capabil-
ity to process the likelihood in integer arithmetic, logarithms are employed. Computa-
tion of logarithms is very expensive but can be avoided by using the best Gaussian
approximation where only the component within the mixture of a particular context-
dependent state with the highest likelihood is used. The likelihood of one diagonal
Gaussian mixture model A with M components for a given D-dimensional feature
vector x can be computed as:

ou(btr] ) =toa( 3 p —— e 1S
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10.5.2 Efficient Computation Strategies

Regardless of the particular scheme, the number of Gaussians in the model needed
for good accuracy will likely be much greater than the number that can be evaluated
at every time frame. Since there are only a limited number of states active in any
given time frame, it is clear that not all Gaussians are always needed. There exist
two basic approaches to reducing Gaussian evaluation:

e  On-demand computation
e  (aussian selection

In the on-demand scheme only those mixtures corresponding to active states in
the search are computed. This approach does not scale well. As the search space
grows, the number of active mixtures grows as well. As the number of components
in a mixture grows, the on-demand computation is even less effective since only a
few components contribute significantly to the mixture likelihood.
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Another disadvantage of the on-demand approach is that the likelihoods must
be computed synchronously with the search, i.e. it is more difficult to efficiently
evaluate the likelihood of one state several frames ahead (some form of a fast match
is needed).

In the selection-based schemes, the goal is to evaluate only a limited number of
Gaussian components chosen either completely independently of the active states or
in some other manner which will achieve reasonable active state coverage. Popular
techniques are those which create a shortlist of components; some form of an inex-
pensive metric is used to partition the feature space and to create an active shortlist(s)
given the feature vector. Bocchieri (1993) uses vector Quantization (VQ). Ortmanns
et al. (1997) compare space partitioning schemes, projection search, Hamming dis-
tance, and VQ pre-selection. Fritsch and Rogina (1996) propose the Bucket Box
Intersection method, which partitions the space into rectangular regions, each defined
as a bounding box around the Gaussian component within which the likelihood is
greater than a fixed threshold.

Novak et al. (2002) reduce the memory overhead associated with the Gaussian
selection implementation by using non-overlapping shortlist and an n-ary search tree.
These non-overlapping lists can be represented much more efficiently in memory.
The structure of the tree can be seen in Fig. 10.2. At each level of the tree, one Gaus-
sian is used to represent each shortlist at the next level. The Gaussians in the top tree
level are evaluated first. Only the top N scoring Gaussians are then processed. To
reduce the cost for the top N search, the likelihood of the best Gaussian is found and
all Gaussians with likelihood less the maximum minus a certain threshold are dis-
carded first. Each Gaussian represents a shortlist in the next tree level. These
shortlists are combined and evaluated. Subsequently, the top N list is created and
expanded to the next level until the final level is reached. In this level, a contribution
of each Gaussian component is added to its corresponding HMM state likelihood. In
the selection scheme, the state likelihood computation can be completely decoupled
from the search and be performed on blocks of feature vectors. This can significantly
improve the memory cache utilization.

There are also hybrid schemes Saon et al. (2005) combining the advantages of the
on-demand and selection schemes. The higher levels of the tree are evaluated as in
the selection scheme for several frames at a time and the shortlists are stored. During
the search, state likelihoods are computed on demand by using the precomputed
shortlists.

Bahl et al. (1994) use an alternative method for state likelihood computation
based on rank likelihoods. Rather than using the likelihood of the Gaussian mixture
directly, the probability of the rank of the mixture can be used instead. The observa-
tion model distribution represents the probability that a given state will have a certain
rank when all states are sorted by their likelihoods. The concept of rank distribution
was originally introduced in an asynchronous stack decoder implementation and its
main purpose was to normalize the likelihood range. It has been shown that its
use has advantages in the Viterbi decoder as well. A likelihood value from the tail of
the rank distribution provides a robust estimate for states which are not evaluated in
the Gaussian selection scheme. While the direct use of mixture likelihoods yields a
slightly lower error rate when all or a large portion of Gaussians are evaluated, the
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rank-based likelihoods are more robust against underestimation when only a small
fraction is computed. In such cases the use of rank likelihoods leads to a smaller
accuracy loss due to the limited number of evaluated Gaussians.

- active nodes Root

Level 1

Parent-of-leaf level

QO QO O
Leaf level
ONONONONORORO

HMM state level

OO

Fig. 10.2 Multilevel Gaussian evaluation scheme

The difference in performance can be seen in Table 10.1. String error rates are
measured on a grammar containing 30 thousand stock names using an acoustic
model with a total of 150k Gaussians. Each line shows the error rate when only the
top N Gaussians were used in each frame. It can be seen that while the mixture like-
lihoods eventually lead to better accuracy, the rank-based system is much less af-
fected when the number of evaluated Gaussians is significantly reduced.

Table 10.1 String error rate comparison of rank and mixture likelihood

Number of evaluated Rank likelihoods Mixture likelihoods
Gaussians

1000 8.51 9.13

1500 8.21 8.43

2000 8.19 8.10

3000 8.10 8.05

The use of a rank distribution also has an effect on the state transition probabili-
ties. While many believe that transition probabilities do not play a significant role
due to the huge dynamic range of mixture likelihoods in comparison to the range of
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Fig. 10.3 Search memory organization

transition probabilities, the rank distribution brings the dynamic range of the obser-
vation likelihoods closer to that of transition probabilities. It has been observed that
the use of transition probabilities can improve the recognition accuracy, particularly
when the language model is weak, and in a presence of noise.

10.6 Search

Search is often the most computationally expensive part of the decoder, depending
on the vocabulary and /anguage model size. While the search implementations pre-
dominantly use Viterbi search, there are many variations in the implementation de-
tails. An excellent overview of search techniques is presented by Aubert (2002).

Several comparisons (Kanthak et al. 2000; Dolfing 2002) have shown that the use
of finite state transducers (FST) (Mohri et al. 2002) to produce a minimized static
graph is the most computationally efficient design for Viterbi based decoders on
unrestricted platforms. The search graph is prepared offline and use of global mini-
mization guaranties that the smallest possible graph is searched. Embedded system
memory restrictions put a limit on the size of the usable acoustic and language
models. Large models may require a dynamic scheme, e.g. (Ortmanns et al. 1998),
but there is a significant computational overhead association with dynamic composi-
tion of the search graph.
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10.6.1 Viterbi Search Implementation

The details of a Viterbi search implementation can vary significantly. It is difficult to
objectively compare the various techniques found in the literature as the speed of the
decoder results from the mutual interaction of many factors, such as type and speed
of CPU, C compilers, amount and speed of memory, task complexity, etc.

We will focus our comparison mainly on memory organization, since it is a pri-
mary factor affecting the efficiency on embedded platforms. Memory usage in a Viterbi
decoder can be divided into three classes:

e static representation of the HMM states—graph space (search graph),
e memory for active states, updated at each time frame—search space,
e tracebck information (tokens).

All information related to the graph space can possibly be stored in read-only
memory, while both the search space and traceback inherently require read-write
memory to evaluate likelihoods for each frame and to propagate the traceback in-
formation. The search can be implemented in three distinct ways:

Combination of the static graph space and static search space Fig. 10.3a
represents the most efficient implementation from the search point of view. Here all
memory is allocated before the search starts with a one-to-one correspondence be-
tween the graph state and search state, i.e. the position of each state of the search
space is fixed during the search. This arrangement minimizes overhead during the
search. To improve locality of access on platforms with enough RAM to store the
search graph, states of the search graph and search space can be placed next to each
other. The static search space can be represented in a very compact form using local
properties of the network, e.g. linear sequences of HMM states can be stored very
efficiently without the need for explicit connections between states. The code for
evaluation of these linear segments can be very compact and efficient; Deligne at al.
(2002) found that faster decoding can be achieved by avoiding full minimization of
the graph to preserve longer linear state sequences.

This method is very efficient for small tasks, but does not scale well to systems
with large vocabularies. As the size of the network grows, a significant portion of the
search space memory is wasted since only a small portion of it will be used. In this
scenario, it is more difficult to take advantage of more complex memory reduction
techniques such as graph factoring (Mohri at al. 2002).

Static graph space with dynamic search space Fig. 10.3b is a more memory ef-
ficient option. The amount of search space memory corresponds to the number of
active states at each time frame. This also gives the option to limit the amount of
state space memory, e.g. by top N active state pruning. There is some runtime and
memory overhead associated with the mapping between the graph and search spaces
which changes for each time frame. On the other hand the improved locality of the
memory access due to a much smaller search space can significantly improve the
search speed.

Graph factoring can be used to reduce the memory needed for the search graph,
where reoccurring linear state sequences are referenced by a single index. Expansion
of these indices back to state sequences creates some runtime overhead, so for the
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most efficient search space implementation (i.e. the dynamic assignment of the
search memory to the corresponding states in the graph space), the graph representa-
tion needs to be simple, i.e. without factoring. The efficiency of this approach has
been demonstrated on LVCSR in the context of the DARPA Switchboard 1xRT
evaluation (Saon et al. 2003).

Dynamically built graph Fig. 10.3¢ offers the most memory efficient de-

coder, but there can be a significant cost associated with the graph construction.
The advantage is obvious — only the part of the graph which is searched is constructed
in memory, with possibly significant memory savings in comparison to static graph
methods. Another advantage is that grammar can be quickly modified (e.g. adding
new pronunciations). The drawback is a higher computational cost, which can be con-
strued as having two main parts. The first part is associated with the overhead of the
on-the-fly HMM network construction. Secondly, the less obvious cost is caused by
the loss of the minimal property of the dynamically built graph. This leads to dupli-
cate evaluations of some graph parts, which is eliminated by global minimization in
the static graph approach.
The memory savings, i.e., the ratio between the expected number of states visited
during the search and the static graph size, depends on many factors (e.g. vocabulary
size, number of alternative pronunciations, specific structure of the grammar) and is
not easily predictable. This is the technique of choice when the static graph size is
too large or when it is not possible to build the full graph. On systems with limited
memory this approach clearly offers benefits, but the dynamic graph building algo-
rithm needs to be carefully designed to limit its overhead cost.

Recent methods for on-the-fly composition employ the finite state transducer
framework (Caseiro and Trancose 2006). Techniques which try to combine advan-
tages of the static and dynamic methods have been proposed. (Willet and Katagiri
2002) statically compile only the part of the graph corresponding to the unigram
language model, and Dolfing (2002) proposes an incremental application of a factor-
ized language model to the search graph.

®ruoing

The most critical part of any search implementation is the pruning of active
states. Proper application of the pruning algorithm always involves a tradeoff be-
tween the efficiency and admissibility of the search. There are two main approaches
to pruning: beam pruning and rank pruning.

In the beam pruning approach, at each time frame the state with the highest like-
lihood is found and then only those states are kept whose likelihood lie within a
certain threshold from this maximum. This is an inexpensive and very efficient
method; there exist variations of this approach which utilize multiple thresholds, e.g.
for word internal states and for inter-word transitions.

Rank based pruning can be used in addition the beam pruning on larger tasks by
keeping only top N active state at each time frame. One disadvantage of the beam
pruning is that the number of active states can vary significantly. The ambiguity is
usually much higher at the beginning of an utterance, in particular on grammars
representing large list of choices. Application of a uniform pruning threshold may
cause the search to be too slow in the beginning and have too many search errors at
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the end of the utterance. In such a case, the search cost can be reduced by selecting
the top N active states. This is clearly a more expensive algorithm and its effect
should be evaluated specifically for each task.

10.6.1.2 Lattice Generation

The implementation of the Viterbi search becomes much more complex when
alternative hypotheses to the best path are required. The alternative paths are typi-
cally represented as a word lattice. Word lattices can be used for many purposes
including multiple-pass search algorithm, computation of a confidence measure and
N-best list generation. Exact lattice generation that would consider all possible state
sequences is too expensive for practical use, but approximations can be used with
only a small degradation in the lattice quality (Schwartz and Austin 1993).

Finding the best path only requires storage of one traceback record for the best
path at each word end in each time frame. The traceback record contains the score of
the path, identification of the word and a pointer the previous record. For lattice
generation, significantly more memory is needed to store the traceback records for
the alternative paths as well. There are two alternative approaches to this problem.
The first approach is illustrated in Fig. 10.4a on a segment of an HMM network. For
simplicity, HMM states shown in the figure are either word end states (white circles)
or internal states with path merges (black circles). In this approach, multiple hy-
potheses (shown as gray wide lines) are propagated through the HMM network seg-
ment towards the next word end. Their new traceback records are created for each
hypothesis. These records are then used during the lattice generation to create links
between word ends (dotted lines). This approach increases the cost of the search,
since some HMM states are effectively evaluated multiple times.
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Fig 10.4 Lattice generation methods
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In the second approach, shown in Fig. 10.4b, a new traceback record is created
for each alternative path at each word internal merge state. Lattice links are created
by concatenating connections between these records, considering all alternative re-
cords in each state.

This approach does not increase the cost of search but is more memory demand-
ing. Application of global minimization on the search graph actually aggravates this
problem, since it creates merges of word internal states. One possible way to reduce
the runtime memory overhead is to use a non-minimal graph in which alternative
paths can merge at word ends only.

Novak (2005) proposes a method that saves the runtime memory by adding auxil-
iary information to the search graph, which can be used to recover alternative paths
even when traceback records are created at word ends only. It can be seen in Fig.
10.4¢ that only one lattice link can be created between states 1 and 5. Under the
assumption that only internal states of the same words are merged, i.e. the state 5
represents an end state of a unique word, links of the alternative paths can still be
recovered (with some approximation).

For example, a link between states 5 and 2 can be created since there is a valid
record b in state 2. The score of this link is assumed to be the same except for the
difference between language model scores of the path from state 1 to 5 and from
state 2 to 5. To be able to calculate this difference, information about possible word
links and their language model scores for each word end state is added to the static
search graph during the offline graph compilation.

10.6.2 Search Graph Construction

In comparisons of the static graph scenario with that of dynamic decoders, the time
needed to construct the graph is usually not considered as a run-time cost. But the
assumption that the search graph never changes is clearly not practical. Having an
efficient method for the search graph compilation is desirable for several reasons.
Even if the static graph scenario is used, there may exist a need to quickly compile
the graph using the limited resources of the particular platform before the search
starts (e.g., when the grammar is constructed dynamically in response to a certain
dialog state). The ability to customize the system by the user also requires that the
graph be built locally.

The use of finite state transducers (Mohri et al. 2002) has become popular in the
speech recognition community. It provides a solid theoretical framework for the
operations needed to create a search graph. In general, the search graph is the result
of a composition:

CoLoG (10.2)
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where G represents the language model as a finite state acceptor (FSA), L represents
the pronunciation model and C converts the context independent phones to context
dependent HMMs.

Language models fall into two distinct categories: n-grams and grammars. Each
has different properties from the graph construction point of view. For n-gram
models, the back-off model type is widely preferred for use in a Viterbi decoder. A
straightforward approximate method can be used to construct the FSA representation
of an n-gram back-off model using non-emitting (null) arcs representing the back-off
transitions. If the back-off symbol is treated as a part of the vocabulary, G can be
considered deterministic. It would be impractical — and even impossible — to deter-
minize the n-gram model by removing the null arcs. Each state represents a unique
history and the graph is usually close to being minimal.

Grammars represent a way to define a set of (possibly infinite) allowed sen-
tences. Most of the systems use a formal syntax based on Context Free Grammars
with regular expression construct extensions to enable more compact representations.
By allowing only right recursion, regular languages can be generated and a corre-
sponding FSA can be found. The task of a grammar compiler is to convert the
grammar definition (e.g. written in BNF language) into a (weighted) WFSA. The
first step of the compiler usually produces a nondeterministic WFSA. The next step
is determinization, usually the most expensive part of the process (possibly with
exponential cost). In some situations determinization can significantly increase the
number of states and arcs. The final compilation step finds a minimal form of the
deterministic WFSA. The complexity of minimization is O(NA log(N)) where N is
the number of states and 4 is the average branching factor. For acyclic FSA much
faster (O(N+A)) minimization algorithms exist.

Various schemes have been proposed for more efficient search graph compila-
tion of grammars. A common idea is to avoid full expansion of the search graph and
compile only those parts used at search time by exploiting properties of a particular
grammar.

The concept of Recursive Transition Networks and a late binding scheme is used
by Schalkwyk et al. (2003). The grammar is factored into several parts that are com-
piled into separate search graphs, and which are composed together at the runtime.
This approach allows fast modification of the final search graph, e.g. by using a user
specific address list as one of the parts. Zheng and Franco (2002) propose hierarchi-
cal non-deterministic grammar compilation to avoid graph size increases caused by
the determinization step in some situations.

Instead of working with transducers, it is possible to use acceptors. An acceptor
has only one label on each arc and can be constructed by taking a union of the input
and output alphabets. Both determinization and minimization are simpler and faster
when performed on finite state acceptors. By not using transducers, the full advan-
tage of minimization by pushing the output labels is not utilized. However, if such
minimization is used, the word labels are no longer attached to actual word ends.
Keeping the placement of word labels at the word ends simplifies the decoder de-
sign, since the proper time alignment is preserved. Novak and Bergl (2004) uses a
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graph construction method that performs all operations (composition, determiniza-
tion, minimization and weight pushing) in a single step, applied incrementally to
each state of G (and for each context class for cross-word context models) one at
a time. The resulting graph is fully minimized (as an acceptor) with no intermediate
step requiring more memory than the final graph. In other words, during the compilation
the graph never has more arcs or states than the final one. An important advantage of
the incremental construction is that it does not require use of a general minimization
procedure; rather, a much more efficient local acyclic graph minimization is used.

10.6.3 Fast Match

Search cost can be reduced by the use of a fast match. The idea is to use inexpensive
models to look into the near future to decide which paths can be pruned. The effec-
tiveness of the fast match increases with the accuracy of the approximate models and
the amount of look-ahead time and decreases with the computation costs, so a trade-
off needs to be found. In an asynchronous stack decoder (Gopalakrishnan et al. 1995)
a fast match can be used very efficiently with a look-ahead of whole words. In a
synchronous scheme, that is difficult to do. Hence, the most popular schemes, e.g.
(Ortmanns et al. 1997), are usually limited to predicting the next active phone. In this
instance, most of the time savings comes from the elimination of the observation
likelihood computation for the states not selected by the fast match. In the Gaussian
selection scheme, where the Gaussian computation is independent of the search, the
short term fast match is less effective.

Long-term fast match can be used in certain tasks (Novak et al. 2003). When the
utterances are relatively short and the grammar can be effectively expressed as a
tree, then a two pass method can be used with inexpensive phonetic models used in
the first pass to find the N-best list of paths to be rescored in a second pass.

10.6.4 Alternative Decoding Schemes

A decoding strategy based on building HMM networks covering the entire search
space (either statically or dynamically) has limitations. Memory use is certainly an
issue for static graphs, but even for dynamically build graphs the expansion of the
active space may be too memory intensive. Direct incorporation of both the acoustic
and the language models into the search graph may not be the most optimal ap-
proach in all situations. The context affecting the acoustic search (several phones) is
typically much shorter than the context affecting the language model (several words).
The acoustic search space can be much smaller (or significantly reduced) without the
application of the language model.

This idea is utilized in multi-pass decoding schemes, where a more complex
model is applied at each pass. For example, only the uni-gram language model is
applied in the first pass and bi-gram and tri-gram parts are applied on the N-best list
of paths found in the first pass. The multi-pass approach has several disadvantages,
in particular the inherent latency, which makes it less attractive for use in interactive
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systems. To compute the top N choices, additional memory is needed to store sig-
nificantly large amount of traceback information over that required by the single best
path search. Finally, the two pass approach is not necessarily faster since the lower
n-gram model is less discriminatory and more paths need to be explored by the
search.

The time conditioned search (Ortmanns and Ney 2000) can be seen as a method
which performs acoustic search independently of the language model in a single pass
decoding scheme. Acoustic scores for words are evaluated for all possible starting
times and then combined with the language model to find the best hypothesis. The
advantage of this approach is that both the acoustic scores of each word and a par-
ticular start time are computed only once regardless of the number of language
model contexts it appears in. A significant advantage was not found when a 3-gram
model was used, as the cost of recombination with the language model reduced the
efficiency of the method. One can expect that for much more complex language
models the benefits would be more apparent.

Another alternative to the Viterbi search, an asynchronous decoding scheme, can
be considered (Gopalakrishnan et al. 1995). This approach is best suited (in combi-
nations with a fast match) for dynamic search cases where acoustic and language
model decoupling is desired. Renals and Hochberg (1999) use synchronous acoustic
search and asynchronous search for the language model part. In an asynchronous
decoder, Novak and Picheny (2000) reported a significant speed improvement by
reusing (with some approximations not affecting the accuracy) acoustic scores of
words in multiple language model contexts. Unfortunately, the asynchronous de-
coder implementation is significantly more complex in comparison to the Viterbi
search and less robust, i.e. it requires many more parameters which need to be care-
fully tuned.

10.7 Conclusion

We have presented several ASR algorithm implementations aimed at achieving high
efficiency, which make them suitable for deployment on embedded platforms. This
is a very wide area and we tried here to cover only the most commonly encountered
issues. The reader should refer to the extensive list of reference for specific details.
As one might expect, this area is constantly evolving. As more and more powerful
embedded hardware devices become available, we can certainly expect more com-
plex algorithms being deployed.
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Algorithm Optimizations: Low Memory Footprint

Marcel Vasilache

Abstract. For speech recognition algorithms targeting mobile devices the memory footprint is
a critical parameter. Although the memory consumption can be both static (long-term) and
dynamic (run-time) in this chapter we focus mainly on the long-term memory requirements
and, more specifically, on the techniques for acoustic model compression. As all compression
methods, acoustic model compression is exploiting redundancies within the data as well as the
limits for the parameter representation accuracy. Considering data redundancies specific for
hidden Markov models (HMMs), parameter tying and state or density clustering algorithms
are presented with cases like semicontinuous HMMs (SCHMMs) and subspace distribution
clustered HMMs (SDCHMMs). Regarding parameter representation a simple scalar quantized
representation is shown for the case of quantized HMMs (qHMMs). The effects on computa-
tional complexity are also reviewed for all the compression methods presented.

11.1 Introduction

In practical speech recognition systems, especially when targeting the mobile or
embedded environment, complexity considerations play a major role when selecting
the type of algorithms employed. Computational and storage complexity limits often
require making performance compromises in order to meet the implementation con-
straints. Fortunately, there are numerous techniques which aim at minimizing the
loss of performance with respect to the complexity savings.

In the following the focus will be on reducing the memory footprint of the
acoustic models as they usually represent the most significant memory expenditure
of the classifier. Since a large body of literature targeting this area exists and a com
prehensive presentation of specific algorithms would require a book of its own,
in this chapter we aim at offering an overview of the main design factors, a few
selected methods and links to relevant references. With this goal we first proceed in
revising the fundamentals of hidden Markov models (HMMs) based classification
and stating the optimization problem. Following this, a few model selection
criterions are presented. In Sect. 11.4 are presented the main levels of parameter
tying for the continuous density HMMs and next, in Sect. 11.5, we illustrate the main
options for parameter representation. We then examine some of the methods
frequently used for model size reduction like quantized parameters HMMs in



234 Marcel Vasilache

Sect. 11.6 and subspace distribution clustering HMMs in Sect. 11.7. The computational
complexity implications are briefly mentioned in Sect. 11.8. Finally, some practical
implementation aspects are revealed and a few concluding statements are made.

11.2 Notations and Problem Statement

In speech recognition the input audio waveform is transformed into a sequence of
observation vectors o, = 0,,0,,...,0, which is often modeled as a Ist order Markov

chain using hidden Markov models (HMM).
An HMM (Rabiner 1989; Jelinek 1998) consists of:

e aset of states
S={s |iel,N}
¢ the initial probability distribution for the states
r={r |iel,N,x,=P(s(0)=s,)}
e a matrix of state transition probabilities
A={a |icl,N,jel,N,a = P(st+1)=s,|s(t) =)}

e a set of state dependent probability distributions or probability density func-
tions (pdf) for observation vectors

B=1{b(0)|i€1,N,b(0) = Plo]s,)}
More compactly, the parameters for such a model can be grouped into a set
A={x,A4,B}.
HMMs allow us to effectively compute
P(oy, | 4)

which is the probability that an observation sequence o,, was generated by the model

A . In addition, the set of parameters A can be optimized such that the previous
probabilities are maximized for observation sequences of selected acoustic classes.
For a majority of the current practical systems the observation vectors form
a continuous space therefore the set B consists of probability density functions
and the resulting HMMs are named continuous density hidden Markov models
(CDHMMSs). For a simpler parameter estimation the functions B are formed as

1 s() being a function denoting the temporal state sequence.
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mixtures of log-concave or elliptically symmetric densities, very frequently
Gaussians or Laplacians using the following formula

M
bi (0) = zcinG(o’ luin > O-lfl) (1 1 . 1)

n=1

where G denotes, for instance, the Gaussian pdf parameterized by the mean vector
u and variance vector o and the mixture coefficients c,, >0 satisfy the normaliz-

. .. M
ing condition anlcin =1.

When having a set of words from a given vocabulary

W ={w|weVocab}

the recognition problem consists in finding the word with the maximum a-posteriori
probability given the current observations

W, = argmax P(w|oy,) = argmax P(o,,, | w)P(w).
welW welW
To compute the probabilities above, a set of HMMs can be used, each one represent-
ing one word and having its parameters A, optimized after a training process. With

this, the recognizer’s job consists in the evaluation of the expression below

Wiee = argmax P(oy, | 4,)P(w).

Acoustic model compression aims, in essence, at maximizing the recognition
performance when the memory complexity is upper bounded by practical
implementation limits.

With an HMM based speech recognizer the memory complexity is directly
dependent on the total parameter space

A={4, ={r,A,B,}|weVocab}.

W

Consider we have a set of modeling options indexed by m with the corresponding
parameter spaces denoted by A,, and memory cost and performance functions denoted

with I' and O, respectively. The indexing m covers only the model structure and it is
not dependent on the parameter values. For optimality, in general, the parameters for
each m have to be chosen as

A*m =argmax ®(m,A,))
Am

This results in finding the optimum model set m" within the memory constraints
Mem as
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m*=arg max ('*)(m,A*m)

{m|I"(m)<Mem}

The direct, exhaustive search approach for solving this under the assumption that
" does not depend on actual parameter values® can be summarized as:

Step 1. Generate all possible model sets within the limit I'(m) < Mem .

Step 2. For each of them find the optimal parameter values, A", .
Step 3. Pick the best set.

Enumerating all possible model structures at step 1 can be a very difficult task.
The combinatorial explosion due to the multiple distinct modeling parameters
(feature vector dimension, number of states, mixture sizes, sparsity of transition
matrices, ...) quickly results into an intractable size for the search space. Even if the
modeling search space is severely pruned, the optimization at step 2 is very
expensive for nearly all practical cases. Each of the typical objective functions:
maximum likelihood (Rabiner and Juang 1986, 1993; Huang et al. 1990), minimum
classification error (Juang et al. 1997; Katagiri et al. 1998), maximum mutual infor-
mation (Bahl et al. 1986; Normandin et al. 1994), largest classification margin (Hui
et al. 2006), require expensive optimization procedures usually performed on very
large training databases.

In practice, the usual alternatives are:

1. Gradually grow a model structure folowing a set of transformation rules until
either its performance does not improve or the memory limits are reached.
The typical transformations consist of model, state or mixture density
splitting.

2. Start with a model set which has good classification performance but it is over
the imposed memory limit. Apply then a set of compression transformations
which, while minimally degrading the objective function €2, allow for the
complexity to fit within the imposed limit. In this case the key operations are
parameter pruning, tying, clustering and quantization.

Most frequently, from a simple set of models increasingly more complex ones are
created by iterating type 1 transforms until the performance saturates or a modeling
performance/complexity criterion is maximized. At this point, the type 2 transforms
are used to bring the models within more acceptable complexity limits.

An illustration is provided in Fig. 11.1 where all the possible model con-
figurations are bounded by an optimal performance/complexity curve. The required
maximal complexity limit is marked by the vertical dotted line. The ideal
configuration is the highest performing model on the left side of the limit line which,

21f T depends on the parameter values but a lower bound for it exists, then generat-
ing all models which have this lower bound below the imposed memory limit is
sufficient to guarantee that the optimal model is included in the search space.
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in this case, is the one closest to the intesection point (marked with a black circle).
With arrows are shown model evolutions when procedures of type 1 or 2 are used.
Also visible is a typical sequence of complexity and performance growing
transforms followed by a complexity reduction stage.

A |
Performance !

Complexity

L

Fig. 11.1 Model structures in the performance/complexity space

11.3 Model Complexity Control

As introduced in the previous section, the total parameter set is
A=1{A,={x, ,A,,B, }|weVocab}

Controlling this set involves the selection of model sizes (number of states), model
topology (i.e., 4 matrices), and the degree of accuracy in modelling the state pdfs
(B functions). For most practical situations the dominant number of parameters is
formed by the B functions for which the total number of states and number of
mixture densities are the key elements.

A fundamental problem in pattern recognition is having the parameter set of
“adequate” complexity given the classification task at hand. To address this objective
one can use either direct or indirect methods.

The direct method consists in selecting a representative validation set for the
targeted use case and then monitoring the classification performance on it for increa-
singly complex models in order to find the complexity point from where the
performance is no longer improved.

Since a direct method can be costly to implement the indirect approaches aim at
estimating how a model behaves on unseen data given its performance on the
training set. In the following, we denote by O the concatenation of all observation
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vectors in the training set, by W,

g the corresponding sequence of words of the

correct transcription and we index by m all the model structures under evaluation.

11.3.1 Akaike’s Information Criterion

For addressing the issue of model selection, Akaike’s Information Criterion (AIC)
was proposed in a pioneering work (Akaike 1973, 1974). AIC has the form shown in
Eq. 11.2 below and it has to be maximized by the optimal model.

*

log PO A, W)= N(A,) (11.2)

Here with N(A,)) is denoted the number of parameters for model m and with A’
the maximum likelihood parameters.

This criterion was derived starting with the relative entropy (Kullback-Leibler
divergence) between the true pdf and the modelled one and linking it to the
maximum likelihood. Akaike found that the maximum likelihood value is a biased
estimate of the model dependent part of the relative entropy and that a bias cor-
rection term in the form of the number of parameters must be included. With such
correction minimizing the expected divergence more closely amounts to maximizing
Eq. 11.2 hence resulting in a much simpler model selection rule.

11.3.2 Bayesian Information Criterion

In a Bayesian framework the optimal model is the one maximizing the evidence
integral over the parameter space for the training data. The best model is hence
found as in the following formula

argmaxP(m) ?(O ‘ AmﬂVVSeq)P(VVseq)P(Am)dAm

In practice it is not feasible to use the previous expression therefore approxi-
mation schemes are derived.
A commonly used 1st order approximation near the maximum likelihood para-

meters ( A") is the Bayesian Information Criterion (BIC) (Schwartz 1978). Under the
assumption of uninformative priors for the models this transforms the previous
formula into the maximization of the expression below

log P(O| A, .., =2 N(A,)log N(O)
where N(O) denotes the size of the training data. Here 7 is a tuning parameter
which allows the original value of 1 to be better adapted to the specific task (Chou

and Reichl 1999). Other practical examples of using this criterion can be seen in
Chen and Gopalakrishnan (1998) and Mak (2004).
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11.3.3 Second Order Approximation

In the previous cases the model parameters are equally treated irrespective of their
impact on the likelihood function. A 2™ order Laplace approximation of the evidence
integral can be made with an assumption of a local Gaussian curvature for the likeli-
hood function at the maximum point in the parameter space. This results in maximiz-
ing

. N(A,) 1 2
log P(O| Am,Wﬁ,q)+Tlog2ﬂ—510g‘—vAm:A; log P(O| A, W)
where in the final term is the determinant of the Hessian matrix for the log-likelihood
function computed at the ML point.
This criterion, however, is far more demanding in practical use since for large

systems the Hessian becomes intractable and approximations are needed (Roberts
et al. 1998)

11.3.4 Other Measures

A different perspective over the problem based on information and coding theory, is
offered by Minimum Description Length (MDL) (Barron et al. 1998) and Minimum
Message Length (MML) (Wallance and Boulton 1968). Although using different
premises, form a practical perspective, all these model selection criteria can be
viewed as penalizing the likelihood with a method specific term which has linear or
near linear variation on the number of model parameters. In Yang and Barron (1998)
a multitude of such measures is presented while excellent historical perspectives with
a closer examination of the various criteria can be found in Lanterman (2001) and
Burnham and Anderson (2002, 2004). More recent approaches based on discrimina-
tive or predictive methods which are directly targeting the speech recognition do-
main can also be found in Padmanabhan and Ban (2000), Chien and Furui (2005),
and Liu and Gales (2007).

11.4 Parameter Tying

The main conclusion concerning the measures introduced in the previous section is
that when having model sets giving identical performance on the training set, for
better performance on unseen data, it is best to select the set with the minimum num-
ber of parameters. In addition, a reduced number of parameters allows in most cases
more reliable estimates of their values, especially when the training data does not
cover extensively the multitude of acoustic events which the models are expected to
encounter.

Parameter tying is an effective approach for reducing the number of model
parameters with immediate gains in terms of memory and computational complexity
savings. Due to this, the subject has received a good deal of attention (Huang and
Jack 1989;Young 1992).
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Parameter tying can be implemented on several levels as briefly described next
and illustrated in Fig. 11.2. However, this is not a complete coverage of the tied
structures as also other possibilities exist [e.g., for Gaussian mixtures tying the
covariance matrices with particular cases such as global variance or semi-tied

covariances Gales (1999)].

11.4.1 Model Level

If we consider the totality of words in the recognition vocabulary as forming the
parameter space for the classifier, the basic model level tying consists in building
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each word as a concatenation of smaller units shared for the whole recognition lexi-
con. These units are often a set of allophones or even syllables (Ganapathiraju et al.
2001) which allow for the complete representation of the words in the recognition
lexicon.

Even with the relatively smaller number of allophones, further tying is some-
times demanded, especially in the context of multilingual speech recognition where
phonetic similarities across languages can be exploited (Harju et al. 2001). Although the
tying decisions can be phonetically motivated, data-driven methods or combinations
are also being used (Vihola et al. 2002).

11.4.2 State Level

The next level of tying involves individual HMM states. This type of tying is often
done when a large number of HMM units are used for capturing contextual informa-
tion. The typical cases are biphones or triphones models in large vocabulary speech
recognition systems for which the middle states are shared among the models corre-
sponding to the same allophone.

The selection of the tying structure can be done top-down when using phonetical
rules and decision trees or bottom-up with data driven clustering procedures (Nock
et al. 1997; Young et al. 1994; Junqua and Vassallo 1996).

11.4.3 Density Level

Semicontinuous HMMs (SCHMMs), also known as tied-mixture HMMs, implement
tying at the level of the mixture density of the state emission functions (Huang and
Jack 1989; Huang 1992). In SCHMMs all states share the same set of densities. For
Gaussian densities the state pdf has nearly the same form as in Eq. 11.1 with the
difference that now the mixture components are indexed over a global codebook and
only the mixture weights c,, are still state dependent.

M glob

bi(o) = Z Ci)zG(Of Il’ln’o-j) (1 1.3)
n=1

With this structure and by allowing a sparse representation of the mixture
weights we can observe that, in fact, SCHMMs offer a generalization for the mixture
based CDHMM. Following this a more general framemork for mixture tying is
created as presented in Digalakis et al. (1996) and Willett and Rigoll (1997) where
algorithms for automatic sharing the mixture components among states are proposed.

11.4.4 Subspaces

When going below the density level the natural approach is to examine the models
from the perspective of the feature space. As this is usually of moderately high di-
mensions, splitting it into disjoint orthogonal subspaces allows for a new level of



242 Marcel Vasilache

tying where each density is split into several components as given by its projections
into the selected subspaces. The number of densities in each subspace can be signifi-
cantly reduced using a clustering procedure which replaces the initial densities with
the corresponding cluster representatives. For each subspace a density codebook is
therefore formed and a tying structure induced. The likelihood for a full space den-
sity is a product of likelihoods of its corresponding subspace densities. This model
structure is named Subspace Distribution Clustering HMM (SDCHMM) (Mak 1998;
Mak and Bocchieri 2001b).

SCHMMs also have an extension to multiple subspaces as a parallel concept to
multi-stream HMMs (Rabiner and Juang 1993). In multi-stream HMMs the state
emission score is given by

K
b,(0) = Hbik (0)™
k=1

where we considered K streams (subspaces) and the stream weights w, are all
positive.” For SCHMMs, in each subspace the functions b, (0) have a similar form
as in Eq. 11.3 where the densities are all shared from a subspace specific codebook.
It is now visible that, even with unity stream weights, SDCHMMSs will be equivalent
to SCHMM s only when each substream‘s pdf consists of a single density. In all other
cases the difference consists in having mixture weight parameters on all subspaces
for SCHMMs, while only allowing for a single set, at state level, in the case of
SDCHMMs.

At the limit, when the subspaces are of unitary dimension and if considering only
the mean values of the distributions, a feature level tying can be obtained, as
presented in Takahashi and Sagayama (1995b) The additional effect of tying vari-
ance values is examined in Takahashi and Sagayama (1995a). If both mean and variances
are scalar quantized then the quantizers can also be seen to introduce an implicit
tying as in Vasilache (2000). However, in this latter case, the tying is not explicit
since parameter changes (e.g., due to model adaptation) do not preserve the original
tying structure in the model updates.

11.4.5 Clustering

Of fundamental importance for pattern recognition in general, data clustering is
playing a significant role in the selection of the tied structures presented earlier.
Aiming at creating optimal partitions for a set of objects, the clustering can be done
with hierarchical or partitional types of algorithms.

The hierarchical algorithms which are further divided into divisive (top-down)
and agglomerative (bottom-up) methods create the partition with a succession of
splits, respectively, unions of the clusters until a termination criterion is valid. Typi-
cally, in the first case we start with all the elements placed into a single class while
in the second case we start with each element forming a class of its own.

* The unity summation condition is frequently relaxed since the value of this sum is
effectively balancing the impact on recognition scores of the 4 matrix of transition

probabilities against the state score values B.
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In partitional algorithms the number of clusters and initial cluster memberships
are given at start. These types of algorithms are then changing the element member-
ships until an optimality criterion is reached. The K-means algorithm is repre-
sentative for this case (Duda et al. 2001, Chap. 10).

When evaluating the optimality of a given clustering an appropriate distortion
measure is required. In speech recognition such measures usually take advantage of
the statistical nature of the components of the classifier from the perspective of their
corresponding generating distributions. Frequently used are the Bhattacharyya dis-
tance (Kailath 1967; Rigazio et al. 2000) and the Kullbak-Leibler divergence
(Myrvoll and Soong 2003; Li et al. 2005). For both measures optimal centroid algo-
rithms exist (for Gaussian densities the previous references provide full details).

Considering two pdfs, p and ¢, these measures have the form

Dy (po0) = o (g (x)ax

p(x)

d
a0

Dy (p0)= [p(x)log

where a symmetrical version is often desirable for the divergence
DsKL(p7q) = DKL(p’q)+DKL(qsp)'

As example, for Gaussian densities G, (o, ,u[,o;z),i =1,2, they have the closed

form expressions below while the symmetrized KL can also be written as in the last
equation.

2 +2,
1 4z ! 1 2
DBhat(Gl’G2)__(:u1_lu2)T|:l 2} (M_ﬂz)"‘_ln
8 2 2 Iz s,
1 > B _
D (G,.G,) = E(Iog%m(z;xl D) 1) 5 (1 - 1)
1

1 , _ _ _
Dy, (G,G,) = ET’”{(Z11 +221)(,u1 — 1) _ﬂz)T +21221 +22211 _2[}

11.5 Parameter Representations

Model parameters can be represented in three distinct forms: floating point, fixed
point or quantized.

11.5.1 Floating Point Representation

Without special requirements on computation or storage, the floating point formats
are, by far, the most frequently used. ANSI/IEEE Standard 754-1985 defines the two
most commonly used floating point representations which require 32 bits of storage
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for single precision numbers and 64 bits for double precision. Both formats offer
adequate range for storing any of the HMMs parameters provided that minor precau-
tions are made (i.e., “well behaved” range for the input feature vectors, logarithm
representation for transition likelihoods mixture weights and state emission likeli-
hoods constants).

For most systems already the single precision format offers a more than adequate
range for representing all types of model parameters. However, even if for density
means and variances a more restricted floating point representation would have
worked (for instance with only 16 bit size) such data type is not available in general,
therefore fixed point representations are needed for a smaller memory footprint.

11.5.2 Fixed Point Representation

When using fixed point numbers a larger variety of such representations exist. The
fixed point arithmetic makes use of integer numbers for which standard data types
are available. For them the memory requirements are of 8, 16, 32 and 64 bits giving
more storage options but also much stronger dynamic range constraints (please check
Chap. 12 for more details).

The drawbacks to the increased storage flexibility are the additional processing
and careful data normalization demanded by the fixed point computation mode.
If a high performance floating point unit is also available then it is possible to
avoid converting the whole recognizer into fixed point and only add a module for
packing/unpacking the acoustic model data into the floating point format. However,
these operations must be done efficiently and carefully scheduled within the data-
flow of the classifier such as not to significantly increase its run-time complexity
requirements.

11.5.3 Quantization

For parameter representations below 8-bits and/or for non-linear representations of
the parameter values, quantization schemes are needed (Gersho and Gray 1992; Gray
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and Neuhoff 1998). In this case most of the memory expense is taken by indices in
quantization codebooks. Considering typical model structures most of the parameters
are represented by the mean and variance vectors from the mixture densities. As a
result, all the quantization procedures focus on either a vector (subvector) or a scalar
quantization of these values.

More complex model structures having Gaussians with full covariance matrices
can also be addressed if first partitioning the densities, possibly at subspace level,
into a reduced set of rotation classes (Gales 1999). In essence, the procedure aims at
tying the covariance matrices among the densities within a class and forming the
classes such that a minimal impact is seen on the model performance function ®.
For each such class an orthogonal transform is used which brings the associated
densities into diagonal form, simplifying the quantization task as well as reducing the
complexity for the likelihood computation.

In quantization the conventional procedure is to start with a set of CDHMMs
optimized for the given recognition task, quantize the parameters by replacing them
with index values into the newly constructed quantization codebooks and then
append these codebooks to the model data. Retraining the models is seldom effective
or even needed unless also a tying structure is introduced.

From a scalar quantization perspective, as example, typical distributions for u

and o' parameters can be seen in Fig. 11.3.

11.6 Quantized Parameters HMMs

11.6.1 Scalar Quantization

The simplest form of parameter quantization is a scalar quantizer. For this case the
main design decisions consist on how many quantizers to employ, at what rates and
how to partition the data into these quantization classes.

For diagonal covariance densities, a natural approach is to separately consider the
dimensions of the parameter space and create a mean and a variance quantizer for
each. Although for low quantization rates the memory overhead of storing so many
quantizers is manageable we can exploit the fact that classifiers based on Gaussian
mixtures are invariant to invertible affine transformations of the observation vector
space. If observation vectors are affine transformed

o=Ao+b

and the matrix A is invertible, we obtain an equivalent classifier if mean values and
covariance matrices are also transformed as

=Au+b

“
T =A4%4"
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We can use such a transformation to bring the model parameters into an
optimized range, aiming at sharing the scalar quantizers among all the feature vector
dimensions. With diagonal covariance matrices the matrix A4 should also be
diagonal allowing then for the optimization of only two values for each feature
dimension d. These are the scale a,, and the shift b,. An acceptable optimization
criterion aims for a maximal overlap of the parameter distributions for each
dimension. This, in practice, allows for sharing of a single mean and a single
variance quantizer for all model dimensions. The sharing comes at a cost of storing
two additional D dimensional vectors (the diagonal of 4 and the shift ) while
saving the memory expense of D —1 mean and variance quantizers.

The quantizers themselves are of Lloyd-Max type and use an Euclidean distance
measure for # and o' (the means and the inverse standard deviations are the
quantization values). An example of how such scalar quantizers are maped over the 2
dimensional space of mean and variances can be seen on Fig. 11.4 while more details
can be found in Vasilache (2000) and Vasilache and Viikki (2001).

Previously we have assumed that the same quantization rate is required for all
feature vector components. In practice, not all the feature vector dimensions have
similar impact on the classification performance therefore for the components with
lower discriminating power we can assign lower rate quantizers as well. As example,
if looking again at Fig. 11.4, half rate quantizers can be created by a selection of
values from the full rate scalar quantizers (the full circles in the figure). A selection
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procedure which worked well in practice consisted in building an independent half
rate scalar quantizer for the corresponding feature components and then replacing the
quantizer values with the closest ones from the full rate quantizer (Vasilache in
preparation).

11.6.2 Vector Quantization

When aiming for the highest possible compression, vector quantization becomes a
necesity. From Fig. 11.4 it can be seen that the scalar quantizers are wasting a
significant number of combination values. For this example a 2 dimensional vector
quantizer might have done a better quantization job although at the expense of larger
memory requirements for the quantizer codebook.

As before, the design decisions consists in how to split the parameter space into
subspaces, what type of distortion measure to employ,* how many quantizers and at
what rates. There are, therefore, many possibilities with some of them covered in the
literature (Ravishankar et al. 1997; Pan et al. 2000; Lahti et al. 2003).

11.7 Subspace Distribution Clustering HMM

This type of models is created by partitioning the feature vector space into
orthogonal subspaces. Under the assumption of statistical independence for these
subspaces the likelihood for each density becomes a product of the subspace likeli-
hoods. In this case, the state likelihood has the expression below

M; ok
b,(0) = Zcin HG(ok > Miin» o'/?m )

n=1 k=1
where we considered K subspaces each one with dimension d, such that
K
4 =D.

SDCHMM are formed by allowing density sharing at the subspace level. A tying
structure is therefore created, the density components being formed by indexing
within these subspace level codebooks.

When the tying structure is known it is possible to directly train SDCHMMs with
the advantage of good performance even for smaller training set sizes (Mak and
Bocchieri 2001a). However, most often SDCHMMs are obtained by converting a set
of CDHMMs. The conversion process consists in two stages: subspace partitioning
and density clustering.

* Especially if dealing with different types of parameters in the same quantizer (e.g.,
means and variances).
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11.7.1 Subspace Partitioning

The problem of optimal partitioning the D dimensional feature space into subspaces
does not have a direct solution. From combinatorial analysis it is known that the
number of all possible partitions is the Dth Bell number. As example, when D = 39,
which is a typical case in practice, there are about 7.4 x 10 partitions.

In most cases the subspaces are empirically formed by grouping related
dimensions of the feature stream. For instance, when the feature vector contains time
derivatives the subspaces can each contain a static component together with its
accociated time derivatives. Another option, as a limit case, is to create 1 dim
ensional subspaces. For such setup good results have been reported in practice
(Leppanen and Kiss 2005).

When forming each subspace the objective is to achieve a very effective
clustering with a minimal distortion induced to the original models. As we have seen,
enumerating the subspaces and doing a clustering process for each case is not
feasible therefore indirect approaches are required.

A possible approach consists in using as heuristic the measure of correlation
between the feature space dimensions. Such a measure can be created based on the
correlation for 2 dimensions

O

pij = ) R(l’ ]) = pyz
0.0,
which is then extended to & dimensions as
1 P2 P Pu
P L py o oy
R(1,2,...k)=1-|py, Py, 1 - pyu
Pa P P o1

where o, o, are variances and o is the covariance for the feature dimensions i
and ;.

Using this measure with a greedy algorithm it is possible to generate a subspace
partitioning by repeatedly extracting the most correlated group of dimensions from
the set of dimensions still available (Mak and Bocchieri 2001b).

Focusing now on the model parameters themselves, another measure used in
subspace partitioning is their entropy. The target is now the formation of subspaces
with minimal joint entropy and, as before, a set of greedy algorithms can be used
(Filali et al. 2002, 2005).
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11.7.2 Density Clustering

Once the subspaces are created the density clustering can be done following the same
general principles as introduced in Sect. 11.4.5. A series of algorithms have been
proposed in the literature (Mak and Bocchieri 2001b) or even been patented (Acero
and Plumpe 2004).

Finally, we must emphasize again the fundamental difference between subspace
vector quantized HMMs and SDCHMMs. When building these models the clustering
and quantization procedures are, arguably, similar. However, although in both cases
the densities are formed using a set of subspace densities taken from codebooks, in
quantization the parameters are not tied while for SDCHMMs the tied structure is
part of the model.

11.8 Computational Complexity Implications

A reduced set of parameters directly translates into significant computational gains
as well. For SCHMMs the reduced number of densities, which is shared by all states,
allows precomputing their likelihoods hence substantially reducing the costs of the
state level computation from Eq. 11.3.

Subspace distribution clustering presents a similar advantage. In this case the
density likelihoods are first computed for the subspace codebooks. For each of the
full-space densities its score is then obtained by summing up the precomputed values
using its associated subspace indexes. Even these summations can be significantly
reduced by exploiting indexing similarities for groups of subspaces among the
densities of the model. Savings of up to 50% in the number of additions have been
reported (Aiyer et al. 2000).

The computational advantage of scalar quantization follows directly from
the possiblity of tabulating the most expensive computational part, the evaluation
of state emission likelihoods. For instance, for states with mixtures of Gaussian
densities the state emission log-likelihood formula is

K b s
X — .
logh(x) = log ) exp{log| ¢, — _Z( 120/?,) \
i-1

where K represents the number of densities in the mixture and D is the dimension
of the feature vector space.

The term containing the mixture weight and the Gaussian normalization factor is
a constant with respect to the observed features therefore the most costly operation is
the computation of the second term, the Mahalanobis distance.
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2
. . . . X, — .
With quantization, for any given feature vector, each of the terms M can

O,
take a limited range of values. For a typical rate of 5 bits for a mean compokrllent and
3 for a variance there are just 2°" =256 distinct values which, when computed in
advance, will reduce the distance evaluation to an indexed summation from the
precomputed tables.

With even lower rates the number of terms in the sum can be reduced by
combining adjacent tables into a single one (e.g., with half the previous rate,
combining two such tables results in the same number of distinct values but reduces
the summation costs to half).

Computing the tables for each frame can be avoided if the feature vectors are also
quantized (Vasilache et al. 2004). In this case the entire state likelihood evaluation is
reduced to table lookup and summation with no other overhead costs per observation
vector.

11.9 Practicalities and Conclusion

In practice the acoustic model compression methods are selected in close relation
with the specifics of the problem at hand. As example, if the memory requirements
are not very tight and/or the models need to support speaker or environment
adaptation as well, a scalar quantization approach might work very well and it is also
very simple. By accommodating larger missmatches between the trained model
statistics versus the testing conditions it also allows more room for parameter
updates. On the other hand, if we have a large model set to begin with and a higher
compression ratio is required, then a vector quantization or subspace distribution
clustering approach is needed. If also support for parameter adaptation is required
then the tyied structure induced by SDCHMMSs can help if it truly matches
the intrinsic properties of the data since with tying it allows for faster, more effec-
tive model updates. However, with high compression it might happen that excessive
tying severly reduces the degrees of freeedom for adaptation in which case vector
quantization might be a better choice.

With respect to specific performance figures, scalar quantization at 5 bit for the
mean parameters and 3 bits for the variances does not alter the original recognition
performance and it also gives a good packing into one byte of the joint indices. At
half this rate (3 bit means and 1 bit variances) a moderate recognition performance
degradation must be tolerated for the substantial gain in memory (and computation).
Even for extreme situations, globally tied variances and only 2 bit rates for the mean
parameters more than 95% of the original recognition performance is preserved
signaling a high degree of robustness and redundancy.

For subspace distribution clustering or vector quantization there are more
alternatives to evaluate such as formation of subspaces and bitrate allocation for
each codebook. Good results were reported with 6-bit rates for a mean-variance
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pair (Leppinen and Kiss 2005) or 4-bit rates for mean parameters in 2 dimensional
codebooks with a global variance (Astrov 2002; Varga et al. 2002). When pushing
the limits, as for the scalar case, it is surprising to observe that the performance is not
dramatically decreased with rates as low as 1 bit per mean-variance pairs (Mak 2004,
Sect. 3).

Of considerable practical importance during the state likelihood computation is
the quick access into codebooks of parameters or of precomputed values. Due to this,
byte sized indexes are desirable as these can avoid potentially costly bit unpacking
operations. Here the costs are either the extra programming complexity in scheduling
the unpacking in parallel with useful computation, or an unavoidable run-time
complexity increase, or both.

With the massive market for portable devices and the growing interest for speech
enabled user interfaces, embedded speech recognition has received considerable
interest in recent years. A large body of work is targeting directly or indirectly the
complexity reduction topic therefore we kindly ask the interested reader to explore
the literature beyond the incomplete list of references included throughout this
chapter. Although the methods introduced in this chapter were targeting acoustic
model compression for speech recognition their range of application can be exten
ded to other classification tasks, even if not HMM based. The model complexity
criterions, the principles of parameter tying, formation of subspaces in multi-
dimensional feature streams with data clustering and quantization are universal
methods which find applicability in a wide context in pattern recognition.
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Fixed-Point Arithmetic

Enrico Bocchieri

Abstract. There are two main requirements for embedded/mobile systems: one is low power
consumption for long battery life and miniaturization, the other is low unit cost for compo-
nents produced in very large numbers (cell phones, set-top boxes). Both requirements are
addressed by CPU’s with integer-only arithmetic units which motivate the fixed-point arith-
metic implementation of automatic speech recognition (ASR) algorithms. Large vocabulary
continuous speech recognition (LVCSR) can greatly enhance the usability of devices, whose
small size and typical on-the-go use hinder more traditional interfaces. The increasing compu-
tational power of embedded CPU’s will soon allow real-time LVCSR on portable and low-
cost devices. This chapter reviews problems concerning the fixed-point implementation of
ASR algorithms and it presents fixed-point methods yielding the same recognition accuracy of
the floating-point algorithms. In particular, the chapter illustrates a practical approach to the
implementation of the frame-synchronous beam-search Viterbi decoder, N-grams language
models, HMM likelihood computation and mel-cepstrum front-end. The fixed-point recog-
nizer is shown to be as accurate as the floating-point recognizer in several LVCSR experi-
ments, on the DARPA Switchboard task, and on an AT&T proprietary task, using different
types of acoustic front-ends, HMM’s and language models. Experiments on the DARPA
Resource Management task, using the StrongARM-1100 206 MHz and the XScale PXA270
624 MHz CPU’s show that the fixed-point implementation enables real-time performance: the
floating point recognizer, with floating-point software emulation is several times slower for
the same accuracy.

12.1 Introduction

There is an on-going world-wide powerful expansion of network technologies such
as 3G cellular telephone networks, wireless data networks based on the IEEE 802.11
(WLAN) and on the 802.16 (WIMAX) standards, and broadband networking to the
home by fiber, DSL and wireless. There is a parallel growth of client devices such as
cell and smart phones, PDA’s, portable media players, set-top boxes, internet tablets,
GPS systems, with applications in the areas of communication, entertainment and
productivity. For example, the global volume of Short Message Services was about
1 trillion messages in 2005, and it is expected to grow to 3.7 trillion messages by
2012 yielding 67 billion USD of revenue.

Speech technologies can play a very significant role in these global developments
by enhancing the user interface that is still limiting the device usability, in spite of
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continuous improvements over the years. Traditional interfaces based on screen,
vision and keyboard arehindered by the physical size and by the typical on-the-go use of
devices. The speech recognition algorithms can be implemented on the network
server, distributed between server and device, or fully embedded on the device
(Zaykovskiy 2006). The increasing computational power of the device will soon
allow the real-time embedded implementation of high accuracy large-vocabulary
continuous speech recognition (LVCSR), thus enabling access to data residing on the
ever-growing memory of the device and on the network, through a speech-centric
interface.

LVCSR on embedded platforms must overcome several and unique challenges
(Novak 2004; Viikki 2001). To lower hardware cost and power consumption, as
needed for longer battery life and miniaturization, the CPU’s do not have floating-
point arithmetic units. This motivates the study of the fixed-point implementation
(for operation on the device) of high-accuracy, computationally intensive LVCSR al-
gorithms that are traditionally implemented on the floating-point server. Relevant
studies are Sagayama and Takahashi (1995) and Bocchieri and Mak (2001) concern-
ing HMM parameter tying, (Kanthak et al. 2000; Vasilache 2000; Leppénen and Kiss
2005) for the state-likelihood computation in fixed-point. There are many other sig-
nificant issues studied in the literature such as front-end implementation, noise ro-
bustness and memory reduction (Gong and Kao 2000; Kao and Rajasekaran 2000;
Jeong et al. 2004; Rose et al. 2001; Vasilache et al. 2004), recognition of large lists
(Novak et al. 2003) and rapid porting (Kohler et al. 2005). Custom hardware can also
be designed to efficiently support speech recognition algorithms (Li et al. 2006).

Previous works on fixed-point decoding concern either small-vocabulary con-
tinuous-speech tasks or large-vocabulary tasks with deterministic grammars. This
chapter also focuses on LVCSR tasks based on word N-gram language models. Sec-
tion 12.2 presents the general principles of algorithm implementation in fixed-point
arithmetic. Section 12.3 reviews the most popular LVCSR method, based on hidden
Markov models (HMM), focusing on the system components needed for fixed-point
recognition. Section 12.4 describes a systematic approach to the fixed-point represen-
tation of the parameters of the recognizer components, including frame-synchronous
Viterbi beam-search, with stochastic and deterministic language models, HMM
state and state-duration likelihood computations, and the acoustic front-end.
Thefixed-point recognizer is shown to be as accurate as the floating-point recog-
nizer in LVCSR experiments (Sect. 12.5) on the DARPA Switchboard task
(http://www.nist.gov/speech) and on fluently spoken telephone speech from an
AT&T customer care application. The design is quite general, and the same fixed-
point parameterization is successfully used for different acoustic front-end features,
feature transformations, and HMM’s (ML and MMI trained), without the need of
critical task-specific calibrations. The target hardware is 32-bit integer CPU’s (e.g.,
StrongARM), but the approach may be suitable for 16-bit CPU’s with 32-bit accu-
mulators as well. Section 12.5 also reports about real-time recognition results on the
DARPA Resource Management (RM) benchmark (1000 word vocabulary, speaker
independent), as tested on two fixed-point devices, namely the 206 MHz Strong-
ARM and the 624 MHz XScale PXA270 CPU’s. Fixed-point implementation is
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necessary for real-time recognition because software emulation of floating-point
operations is several times slower.

12.2 Fixed-Point Arithmetic

In computing, real numbers are commonly represented either in floating-point or in
fixed-point notation. The latter is especially useful for CPU’s capable of efficient
computation on integer operands but lacking hardware support (thus inefficient) for
floating-point types. Every-day life offers many examples of the fixed-point nota-
tion. The accepted tolerance for money amounts is half a cent and retail prices are
rounded to the nearest cent. Money is therefore represented by an integer number of
cents (e.g.,¢932 ) or, equivalently, as a number of dollars specified to two decimal
places (e.g.,$9.32 ). In this “dollars and cents” notation there are an integer part
(dollars) and a fractional part (cents), and the position of the decimal point is fixed.
This is perfectly suitable for most transactions, but it is inconvenient for large sums.
For example the estimated 2005 U.S. GNP of $11,350,000,000,000.00 is more com-
pactly expressed in the floating point notation, or $0.1135 10 " floating-point
the position of the decimal point is variable as specified by the exponent, which
allows for a wider range of values for a given number of digits in the number repre-
sentation.

In computing, a real number is represented in fixed-point by storing its integer
and fractional parts in a memory word. If the fractional part is stored in the p least
significant bits, the number format is defined as Q p. Intuitively p denotes that an
imaginary radix point (or decimal point in base 10) is between the p’h and the
(p+1 )th least significant bits of the computer word. In practice, the choice of p is
a compromise: larger values of p allow for smaller round-off errors (~ 2" 71) and
higher precision, but they give a smaller dynamic range. For example, in a 32-bit
word the number of bits assigned to the integer part is 32 — p, which limits the

range of values to 27 In programming with the fixed-point notation, special care
must be taken to avoid overflow problems while maintaining a suitable precision.

From this respect, floating-point types are much more convenient and flexible. In
fact, the floating-point representation (by mantissa and exponent) of real numbers
provides a much wider dynamic range because the radix point position, specified by
the exponent, spans a wider range. In computations, the mantissa value is scaled up
or down to use all available bits without overflowing, while the exponent keeps track
of the radix point position.

12.2.1 Programming with Fixed-Point Numbers

Common programming languages, such as C and C++, do not have a native type for
fixed-point numbers. From the above “dollars and cents” example it is evident that
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fixed-point numbers are essentially integers, and the programmer can store fixed-
point variables as integer types in C. Arithmetic with fixed-point numbers uses
integer operations, with additional rules concerning the position of the radix point. In
operations on X,  and z , with radix-point positions p_, p yand p_, these conditions

apply:
z=xxy : p,=p, =p,

z=xy i p=p.tp,
z=xly : p=p,.—p,
x>y - P.=P

The operand radix point position can be changed to satisfy the above conditions.
Arithmetic shifts to the left and to the right move the radix point to left and right,
respectively:

x <<i has fixed-point format Q( Pt i)
x >>i has fixed-point format Q( P~ i)

A right or left shift of a fixed-point number multiplies its integer representation
by a negative or positive power of two, respectively. Therefore changes of the radix
point position can avoid errors of overflow and underflow. In a typical example, the
product of two integers representing two fixed-point numbers may overflow the
range [-2°',2°") of a 32-bit CPU: the problem can be avoided by suitable right-
shifts of the factors before multiplication. For these several reasons arithmetic shifts
are common in the implementation of fixed-point algorithms, and CPU’s (e.g.,
StrongARM) may support integer arithmetic operations, shifts, and condition testing
in a single instruction cycle.

A useful fixed-point programming technique makes use of the block floating-
point format. The method consists in scaling a block of numbers so that the maxi-
mum absolute value uses all available bits (e.g., the full word length). The scale up
(or down) operation is implemented by left (or right) shifts, with the number of shifts
recorded as an “exponent” common to all the numbers of the block.

In the interest of computational speed, complex mathematical functions are im-
plemented in fixed-point by table look-up. To reduce the table size, the programmer
may exploit the properties of the desired function. For example, for loglo(.) one
may store values over a limited input range, such as [1,2]: to find log,,(x) the
table look-up function performs the search (e.g., binary search) of the inte-
gerk 31<2"x <2, and it computes logw(ka) —k log,,(2) from the stored
logarithm values. The implementation of trigonometric functions may exploit their
symmetry. To limit the table size and maintaining precision, the table look-up access
method may use interpolation of stored values.
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12.2.2 Fixed-Point Representation and Quantization

The Q p fixed-point representation of a real number X can be determined as the
nearest integer of 2” x : for example, in base 10, the Q2 fixed point representation
of z is 314 (with an imaginary decimal point between the second and third signifi-

cant digits) that is in fact the closest integer of 10” 7.
Later in the chapter we will use the following procedure to design a linear quan-
tizer and to identify the Q p fixed-point format of its output. Suppose that we want

to quantize real values from the interval
[a,b] (12.1)

using m bits, e.g., to the range of integers [—2'"71,2'"71). We follow the pro-
cedure:

i. Optional. Demean decimal values, by subtracting

[ a+b a+b]
[a,b]_)t_ 57 5 J

ii. Find the largest integer p , such that:

2" <2Px <2 xe [a,b]

iii . Quantize X € [a,b] to the nearest integer of 27 x .

Step iii yields a fixed-point format of X with an average round-off error that is
essentially scale invariant, because of the choice of p in step ii. We can then operate
on the quantizer output with Q p fixed-point arithmetic. Other quantizers, such as
the Loyd-Max quantizer, are useful to minimize the average distortion for the desired
number of bits. The output of these non-linear quantizers can be used in fixed-point
arithmetic by mapping the quantizer code-words to a suitable fixed-point representa-
tion.

12.3 LVCSR MAP Recognizer

Speech recognition is the process of mapping the speech signal to a sequence of
discrete symbols such as phonemes, words and sentences, the large variability of
the signal being the obstacle to high accuracy. Causes of variability are the channel/
environment, the speaker, and various aspects of the language such as phonetics,
phonology, syntax and prosody.
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Acoustic Co-articulation,
model lexical,
(HMM) language models.
Ssizli:;h Acoustic 0 Q
—_—> » Decoder ————»
front-end

Fig. 12.1 Diagram of a speech recognizer

A typical recognition system based on the so called noisy channel formulation is
shown in Fig. 12.1. The recognizer decodes the most likely word sequence given the
acoustic signal, represented by a time sequence of feature or observation vectors
O =(0,,...0); . An acoustic front-end typically outputs a vector every 10 ms,

each vector providing a parametric representation of the short time spectrum over a
time window of duration between 20 and 40ms . If Q =(@,,...w,,) denotes a

generic word sequence, the recognizer output according to the noisy channel formula-

A

tionis QQ = arg max Pr(€2 | O), and after applying Bayes rule:
0

A

Q= argmax Pr(O|Q)Pr(Q) (12.2)
Q

This probabilistic model relates the observed signal to the recognized sentence,
and its implementation is based on several assumptions about speech and language.

A sentence is thought as a word sequence with probability Pr(€), as provided by

the language model of the speech recognition application. Words are modeled ac-
cording to a dictionary, or lexicon, as sequences of basic language units, the pho-
nemes. In general, because of physical constraints of the human articulatory system,
the acoustic realization of a certain phoneme is affected by neighboring sounds. This
co-articulation phenomenon is represented as a mapping from the phonetic context-
dependent acoustic realizations to the (context-independent) phonemic units of the
language. Finally, the context-dependent phonetic units are related to the observation
vectors through an acoustic model, typically based on techniques like hidden Markov
models (HMM), neural-networks (NN), or NN-HMM hybrids. This chapter is con-
cerned with the most popular HMM. HMM’s are Markovian chains of observation
probability density functions, known as states, that can be viewed as generative
models of the observation vectors. In this interpretation the observation vectors are
emitted from the state output densities thus modeling the signal variability caused by
speaker and channel. Different states implicitly correspond to different parts of an
acoustic unit, with state transitions controlled by the Markov chain topology and by
the state duration model (Sect. 12.3.2). Thus, the HMM state sequence is related to

the word sequence {2 by the HMM topology, context-dependency, lexical and lan-
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guage models; Eq. 12.2 can be solved by finding the sequence of HMM states that
maximizes a suitable decoding function. After well known steps, Eq. 12.2 becomes:

A

Q =argmax F(Q) (12.3)
Q

with the decoding function:

F(Q)=1n(Pr(Q))+aln(A(S))+AmI(D (S)) (12.4)
and:
Pr(Q): likelihood of language model,
S : HMM state sequence corresponding to €2,
A : likelihood of O given S,
D : likelihood of the durations of the states in .S,
a, f : empirical state and state-duration multipliers.

12.3.1 HMM State Likelihoods

HMM’s can be classified according to the type of output density functions. In con-
tinuous observation density HMM’s, the state output observation densities are de-
fined as a weighted mixture of base densities, typically Gaussians or Laplacians.
Continuous HMM’s are the most popular because they provide the highest accuracy
in many tasks, and their fixed-point characterization is detailed in this chapter. Such
a characterization can clearly be extended to the semi-continuous HMM’s, where all
mixtures are expressed in terms of a common set of base functions, with different
mixtures characterized only by a different sets of weights. The semi-continuous
approach, such as used for embedded ASR in Huggins-Daines et al. (2006), facili-
tates a smaller memory foot-print. In discrete HMM’s the observations are vectors of
symbols from a finite alphabet: for a given state, a discrete density is estimated for
every observation component. The state observation density is obtained by multiply-
ing the probabilities of the individual components under the assumption of independ-
ence. Typically the discrete models are the least accurate and normally used only in
simple tasks. The computation of the discrete state likelihoods can be solely based on
table look-ups of fixed-point numbers.

We define the generic HMM state s as a weighted mixture of N Gaussians
with diagonal co-variances (0 denotes the vector of standard deviations):

Pr(o|s)= iw&i N(o,,us,,., 0'“.)
i=1

Given the sequence S =(s,,...,5;) of states corresponding to

O =(0,,...,0); , the total state log-likelihood contribution to Eq. 12.4 is:
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N“z
a IH(A) = aZT: 11'1 {z Ws,’i N(ot’lus,,i’ o-.x,,i )J

t=1 i=1

By approximation of the inner-most summation over the Gaussians probabilities
(index 1) with the maximum of its addenda, and after simple manipulations:

d : feature vector dimension (12.5)
o), 1,07 ™ component of o o .
oM 505+ ) p o M i O

d
c,; :ln(W_g,i)_Zln (‘/Z 03‘/;1')
=1

Standard deviation reciprocals are used in Eq. 12.5 because multiplications are
computed more quickly than divisions. In Sects. 12.4.1 and 12.4.3 we address the
fixed-point computation of Eq. 12.5, with the corresponding fixed-point representa-
tion of the HMM state parameters.

12.3.2 State Duration Model

When considering the state sequence S = (Sl,...,ST), corresponding to observa-

tions O = (0 1,...0T) , let’s suppose that starting at generic time f, exactly O
consecutive frames are generated by the state i/, i.e.:

St—l # v, St = St+1 == S1+5—1 =y, St+5 # 4

Then ¥ is said to have duration & , and we denote with Pr (5 | l//) such state
duration probability. The duration models are estimated from data, typically as
gamma probability density functions. For run-time access during recognition,
Pr (5 | l//) are stored in look-up tables for a suitable range of durations, such as

1<6<32.
Given the states ¥ = (l//l,...,l/lg), with durations A = (5],...,5@) , the con-

tribution of the duration model to Eq. 12.4 is:
€]

pIn(D)=pIn(Pr(A|W))=3 Bln(Pr(5,|y,)) (12.6)

0-1
The fixed-point representation of the duration probabilities for the computation
of Eq. 12.6 is discussed in Sect. 12.4.1.
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12.3.3 Language Model

A simple yet successful stochastic language modeling basis for LVCSR is the N-
gram model. In general, because of the chain rule of probability:

M
Pr(Q)=Pr(w,,..0,) = [ [Pr(@, | @,...0, )

m=1
The N-gram model assumes that the conditional probability of @, depends only

on the N preceding words. The language model probability becomes:

M
Pr(Q)~[][Pr(0,|®, ..o, )
m=1

Therefore, the language model log probability is:

In (Pr(Q)) Zln (Pr(@, | @, yrn0,.,)) (12.7)

There is a vast body of llterature concerning both the N-gram model estimation
from large text corpora and various N-gram model extensions. This chapter is con-
cerned with the fixed-point representation of the N-gram log-probability contribution
to the ASR decoding function (Eq. 12.4), as detailed in Sect. 12.4.1.

12.3.4 Viterbi Decoder

The acoustic HMM’s are related to the word sequence by the context-dependency,
dictionary and language models, as briefly discussed in Sect. 12.3. The recognized

word sequence f) in Eq. 12.3 is determined by searching for the HMM state se-
quence that maximizes F(€2) as in Eq. 12.4. Today, the most adopted decoder is

based on the time-synchronous Viterbi search where all partial state paths are ex-
tended (using the Markovian assumption of the model) in parallel from generic time
t to t+1, until all the T observation vectors are processed. In the Viterbi decoder
implementation we adopt the formulation based on weighted finite-state transducers
(Mohri et al. 2002). A finite-state transducer is a finite automaton whose between-
state transitions are labeled with input and output symbols. Therefore a path through
the transducer maps an input symbol sequence to an output symbol sequence. In a
weighted transducer, quantities (such as probabilities) are encoded into transition
weights. These are accumulated along the transducer path to provide the total weight
for mapping the input sequence to the output sequence. The speech recognition
transducer uses the state observation distributions as input and the words as output
symbols, respectively. The transducer encodes all aspects of the recognition model,
such as the HMM topology, context dependency, lexicon and language model. The
arc weights encode the HMM state likelihoods, and the pronunciation and language
model probabilities. The decoding process, or searching for the best HMM state path,
becomes therefore equivalent to searching for the transducer path with maximum
total weight.
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12.3.5 Acoustic Front-End

There are many different parametric representations of the speech signal for the
purpose of speech recognition and a respective vast literature. As a working exam-
ple, we consider one of the most popular parameterizations, namely the vector of
Mel-frequency cepstrum coefficients (MFCC) first proposed for ASR in Davis and
Mermelstein (1980). MFCC’s are derived from a cepstral analysis of the speech
signal. The principal difference from the standard cepstrum is that the frequencies
are equally spaced on the mel auditory scale to approximate the response of the hu-
man auditory system. The MFCC computation is depicted in Fig. 12.2.

Speech
samples = i i
p Pre . > Wlndowlng > ||FFT||2
emphasis (Hanning)
A 4
MFCC’s
<+—— DCT < Logarithm [« fl_:ﬁ er_sl::i

Fig. 12.2 Computation of MFCC’s

The filters are simulated by weighted sums of the square magnitudes of the FFT

components. The weighting function of the generic ™ filter is triangularly shaped,
with maximum at the center-frequency
f,=100i Hz, 1<i<10;  f,=1.1f,,, i>10

and linearly tapered to zero at frequencies fi_1 and fl 41 - The key-points of the fixed-
point computation of the MFCC’s are discussed in Sect. 12.4.4. Dynamic aspects of
the MFCC’s are also parameterized in the observation vectors, either explicitly as
first and second time differentials (delta-delta coefficients) or through discrimina-
tively trained transforms (Saon et al. 2000).

12.4 Fixed-Point Implementation of the Recognizer

This section describes the application of fixed-point arithmetic (Sect. 12.2) to the
speech recognition problem (Sect. 12.3). In general, a practical approach to fixed-
point implementations is to examine histograms of the algorithm variables to choose
the fixed-point formats giving the required numerical precision without overflow
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problems. However, the statistical properties of the decoding function (Eq. 12.4)
suggest a more systematic approach that generalizes to different observation vector
types, HMM’s and language models. Intuitively, a crucial role in the evaluation of
the search hypotheses during decoding is played in Eq. 12.5 by the normalized dif-
ference

-1

(o) —1!,)o!, (12.8)
and by the distance
. . o —1)\2
((0/ -1l ;)ol, ) (12.9)
Distributions of Eq. 12.8 and Eq. 12.9 are respectively Gaussian (zero mean and

unit variance) and » : , regardless of the type of observation vector and vector com-

ponent: thus the same fixed-point representation may be appropriate for different
feature vector types and components, and for different HMM’s. Our fixed-point

design of Eq. 12.4 is parametrized by e,m and v, as summarized in Table 12.1.

12.4.1 Log-Likelihoods

For the weighted difference of Eq. 12.8 and its square (Eq. 12.9) we adopt Q e and

Q2e fixed-point representations, respectively, as in Table 12.1. Since Eq. 12.5
accumulates Eq. 12.9 into the Mahalanobis distance

d . , oy
Z((og —ul;)ol, ) (12.10)
J=1
and then into the state log-likelihoods, we also represent Eq. 12.10 and the state log-
likelihoods in Q2e format. The HMM log-terms 2¢,, (Eq. 12.5) are also Q2e

fixed-point numbers, because they are added into Eq. 12.10.

In the implementation of the multiplication by & an appropriate arithmetic

2 b
shift yields a Q2e fixed-point product. The constant % is typically optimized to

the speech recognition task, type of observation vectors and HMM’s. In our systems
this parameter varies between 0.025 and 0.05. To help regressing the 32-bit fixed-

point implementation against the floating-point decoder, it is useful to represent %
with a significant precision, choosing its fixed-point format to yield an integer repre-
sentation between /024 and 2048. Before multiplication by % in Eq. 12.5, the

radix-point position of the log-likelihood factor is adjusted to prevent overflow.
Similarly, the duration log-probabilities (Eq. 12.6) are Q2e fixed-point numbers,

and when multiplying by /3, the Q2e format is maintained by arithmetic shift.
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Table 12.1 Fixed-point parameters 771,V and €

e : fixed point Qe format for:
A . -l
: J J J
— normalized error (Ot —H,; ) o

—and Q2e format for:

— HMM state log-likelihoods,

— duration model log-likelihoods,

— language model probabilities, and

— cumulative log-probabilities of partial state paths
— during decoding, and related parameters such as
— beam threshold.

m : bits for the d quantizers of ,usj’i,j =1,...d.

-1
v : bits for the d quantizers of 07/, ,j=1,...,d .

The language model log-probability (Eq. 12.7) is added to the state and state-
duration likelihoods into the cumulative log-probability (Eq. 12.4). Therefore Eq.
12.7, its N-gram log-probabilities addenda, and the decoding function (Eq. 12.4) are
represented in the Q2e format. The Q2e format is also adopted for cumulative
log-probabilities of the partial state-path hypotheses that are evaluated during
decoding. In the weighted finite state formulation of (Mohri et al. 2002) the language
model (e.g., N-gram) log-probabilities are encoded in the arc weights. The transducer
semi-ring can be implemented in fixed-point: for example, if the transducer arc
weights share the same fixed-point representation, the product operator of the
tropical semi-ring is the integer addition, and the sum operator is the max function.
Delayed composition (Mohri et al. 2002) can be supported in the fixed-point
implementation, which is useful to reduce run-time memory in many applications
such as (Novak et al. 2003).

12.4.2 Viterbi Frame-Synchronous Search

As motivated above, the cumulative log-likelihoods of partial state paths are
represented in the Q2e format. To save computation while extending the paths
from an observation vector to the next, it is common practice to prune (ignore) the
paths whose log-likelihoods fall below a certain threshold (or beam-width). The

fixed-point representation of the beam-width is therefore Q2e.

A normalization procedure is important to avoid that the cumulative log-
likelihoods of the state paths grow too large and overflow the fixed-point representa-
tion. Before extending the state paths ending at a certain time /, one may simply
subtract the maximum log-likelihood score from all path scores. The search for the
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most likely path is not affected, because the same value is subtracted from all the
hypotheses. The frequency of this normalization step depends on the word size and
on the adopted Q 2e representation of the log-likelihoods. With 16-bit words it may
be necessary to normalize the scores after processing every observation vector, or at
least every few vectors. With 32-bit words several minutes of speech may be proc-
essed without normalization.

12.4.3 Gaussian Parameters

We need to address the fixed-point representation of the Gaussian mean and variance
parameters that are required in the computation of the Mahalanobis distance (Eq.
12.10). To account for the different dynamic ranges of the Gaussian mean

components, we build a quantizer for every jth ( j=1...d ) component, as in i, ii
and 777 of Sect. 12.2.2, with the range of Eq. 12.1:

: J J
l: min 4/, max ,u”}

State s, Gaussian i > State s, Gaussian i

Parameter m in Table 12.1 specifies the number of bits of the mean quantizers.
We denote by Q p’ the fixed-point format of ,us/,l. induced by the j & quantizer.

The same format is adopted for Otj because it is subtracted from the mean

component in Eq. 12.10. Similarly, we build another set of d quantizers, one for
i -1 .th . . . .

every O'S/ . (the ]th inverse standard deviation component) using steps ii and iii of

Sect. 12.2.2, with the range as in Eq. 12.1:

[ min o/, max O'jfl} (12.11)

State s, Gaussian i St State s, Gaussian i St
Parameter v specifies the number of bits, with output range [0,2"), of these

quantizers. We denote by Q 7/ the fixed point format of O'Sj’i1 induced by its
quantizer. Because of artifacts in the training data, there may be a small number of
variance estimates that are exceedingly small. These incorrect estimates are
problematic because they may cause exceedingly large (and erroneous) likelihood
values during recognition. In fact, the estimated variance values should be suitably
floored: this is good practice in floating-point recognizers and even more so in fixed-
point systems because of the limited dynamic range. In particular the artifact of small
variance values may determine an exceedingly large range of the inverse standard
deviations in Eq. 12.11, and very large average distortions of the corresponding
linear guantizer. To avoid these problems we simply floor the estimated variance of

the generic j " feature component to one thousandth of its average value across the
Gaussians of the HMM states.



268  Enrico Bocchieri

The pseudo-code of the fixed-point computation of Eq. 12.10 is shown in Table
12.2.

Table 12.2 Pseudo-code for the fixed-point implementation of Eq. 12.10

sum=0; j=0;

while (j <d) {
j=Jj+l1
temp = (o] —ptl,)ol " 11Q(p’+17)
temp = temp >> shift, // change to Qe
sum = sum+temp *temp // sumis Q2e

}

S;a0

The integer product (Of —,u;;’l.)O'j B is Q(pj +rj) fixed-point, then it is
changed to Qe with a right arithmetic shift of shift, = p’ +r/ —e bits, and
finally it is squared and accumulated into the sum with the desired Q 2e format.

In Table 12.2 a negative shift; designates a left shift of —shift; bits. In practice

we can choose e,/ and Vv so that shift  is positive for every component. Typically
Eq. 12.10 is the most computational intensive operation in the speech recognition
process. Depending on the CPU architecture, other implementations, for example
based on multiply-add operations, may give a higher throughput.

12.4.4 MFCC Front-End

This section reviews the most critical details of the fixed-point implementation of the
MFCC computation with 32-bit word arithmetic. A description of the MFCC compu-
tation with 16-bit words and 32-bit accumulators can also be found in Gong and Kao
(2000). Empirically, as tested on speech data, our fixed-point implementation typi-
cally approximates the floating-point computation to the third decimal digit. This
approximation is sufficient. In fact the Gaussian means, subtracted from the MFCC’s
in Eq. 12.9, are more coarsely quantized with no loss of recognition accuracy, as
observed in the experiments of the next section. We experimented with speech sam-
pled at 8 and 16 KHz: before FFT input the analysis window (20ms) is zero-
padded to 512 and 1024 samples, respectively. Scaling operations are essential in
the fixed-point computation of the FFT (Oppenheim and Schafer 1975). We store the
sine values of the FFT butterflies as Q 15 numbers, and we scale the outputs of the

butterfly banks so that the maximum absolute value lies between 2" and 2", Scal-
ing is by block floating point, see Sect. 12.2.1. We also store the weights of every
mel filter in block floating-point format, with maximum filter weight not to exceed
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128. Then, knowing the maximum number of weights of the filters, we can apply the
block floating-point representation to the input of the mel-filter to prevent overflow
with 32-bits. The logarithm function for the MFCC computation is implemented by
table look-up, with values stored as Q12 fixed-point numbers, as discussed in Sect.
12.2.1. The cosine values of the discrete cosine transform are stored in Q10 format.

12.5 Experiments

In this section we perform several recognition experiments on different tasks and we
verify that the described fixed-point approach is as accurate as the floating point
recognizer. The design is largely based on the fixed-point representation of Eq. 12.8,
whose statistics are independent of the ASR task, type of observation vector and
HMM: in fact we also verify that the fixed-point parameters do not require critical
task-specific calibrations. The experiment setup is shown in Fig. 12.3. The floating-
point HMM and the language model are converted to the fixed-point representation
by quantizers, as described in Sect. 12.4. Thus we compare the accuracies of the
fixed-point and floating-point recognizers with the same models. To experiment with
different types of acoustic front-ends (besides the MFCC front-end of Sect. 12.3.5
that is implemented in fixed-point), we convert the front-end output to fixed-point
by quantization. The Gaussian mean quantizers (Sect. 12.4.3) are applied to the
front-end feature components, as these are subtracted from the Gaussian means in
Eq. 12.8.

. Co-articulation,
Acoustic

del lexicon,
rﬁ;ﬂf/{ language model
( l ) transducers
Quantizer Quantizer
Speech u
signal p [Floatin int] <% Fixed-point Q
g-poin > . ixed-point |
front-end Quantizer decoder

Fig. 12.3 Testing the fixed-point decoder
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The recognition experiments are performed on the following tasks:

SWBD : DARPA Switchboard task, tested on the 2003 real-time test set (recognition
from first-pass only),

CCAPP: fluent telephone speech from a customer-care application, with word
tri-gram language model (perplexity of 60), vocabulary of 7,000 words,
5,000 test sentences, and up to 50 words/sentence,

RM  : DARPA Naval Resource Management, word-pair grammar, 40 speakers,
speaker independent task, 1,200 test sentences, speech sampled at 16 KHz
(Lee 1989).

In the experiments we used these types of feature vectors:

MFCC : mel-frequency cepstrum coefficients,
PLP  : perceptual linear prediction cepstra (Hermansky and Morgan 1994),

with feature transformations:

DD : cepstra and energy with 1st and 2nd differentials, 39 components,

HDA : discriminative linear transformation of the cepstrum and energy features
(Saon et al. 2000), 60 components,

VTLN : vocal tract length normalization (Lee and Rose 1996).

The HMM’s are context-dependent triphonic models, estimated either by maxi-
mum likelihood (ML) or maximum mutual information (MMI) methods. The
CCAPP and SWBD HMM’s were trained on 170 and 300 hours of audio, respec-
tively.

Table 12.3 compares the LVCSR accuracies of the fixed-point and of the float-
ing-point recognizers on a Pentium 4 PC, for different tasks. For example, the
CCAPP system, with MFCC features, discriminative transformation, vocal tract
length normalization, and MMI-trained HMM, is denoted by CCAPP_MFCC-HDA-
VTLN_MMI. On the PC, fixed-point implementations may be faster than floating-
point, as shown in Kanthak et al. (2000) for the state likelihoods. Our target is the
StrongARM CPU, and we have not optimized the fixed-point software for speed on
the Pentium. However, the Pentium is convenient for measuring accuracies, because
it runs the recognition software much faster (higher clock rate) than the embedded
CPU while producing exactly the same results. The large memory on the PC allows
for testing the recognition accuracy of the fixed-point recognizer for very large tasks,
such as the DARPA Switchboard.

The accuracies (Table 12.3) of the fixed-point and of the floating-point recogniz-
ers (equal beam-width), are the same, within 0.1%, for all tasks. All systems use
the same configuration of the fixed-point parameters, without task-specific tuning.
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Table 12.3 Accuracies of floating-point and fixed-point decoders (fixed-point parameters:
m=v=8,e=5)

ASR Word accuracy (%)
system Floating Fixed
RM_MFCC-HDA MMI 96.4 96.4
RM_MFCC-DD_ ML 95.7 95.6
RM_PLP-DD ML 95.6 95.5
CCAPP_MFCC-HDA-VTLN MMI 80.5 80.6
CCAPP_MFCC-HDA_ MMI 78.4 78.4
SWBD MFCC-HDA_ MMI 59.2 59.1
SWBD_MFCC-HDA ML 56.7 56.6
SWBD_PLP-HDA ML 55.7 55.6

The values of the fixed point parameters 71, v and e can be changed over a
wide range without affecting the recognition accuracy, (Table 12.4 and 12.5). Even
though the tables show results only for the system CCAPP _MFCC-HDA-
VTLN_MMI, the accuracies of the other tasks are equally affected by m, v and e.

Means and variances are linearly quantized to 5 bits, without significant loss of
accuracy (Table 12.4).

Table 12.4 Word accuracy (%) as function of m and v (m =5) of fixed-point system
CCAPP_MFCC-HDA-VTLN_MMI

v=3 v=4 v=>5 v=06 v="T v=2_8

m=3 43.5 533 56.9 57.0 56.6 56.4
m=4 44.1 74.4 77.8 77.6 78.0 77.8
m=5 45.0 76.3 80.0 80.1 80.2 80.3
m=6 453 76.4 80.1 80.2 80.5 80.4
m=17 45.7 76.5 80.2 80.4 80.6 80.5
m=38 45.6 76.6 80.2 80.5 80.5 80.6

Nonlinear quantization would provide additional compression (Leppéanen and Kiss
2005; Vasilache 2000), at the cost of additional indirections in the computation. Our
goal was to quantize HMM means and variances to no more than eight bits to reduce
the HMM size to a relatively small fraction of total run-time memory. The accuracy
doesn’t change (within 0.1% ) for 2 < e <6 (Table 12.5). Accuracy is affected by
truncation errors for e <1, and by overflows for e > 7 . Largere’s, would require
normalization of the cumulative log-likelihoods in the Viterbi search, as discussed in
Sect. 12.3.4. In any case the decoder operates correctly over a wide range of e, on
the various tasks. We use 32-bit fixed-point arithmetic, but the good performance for
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eas small as 2 or 1, suggests that the implementation is suitable for 16-bit CPU’s
with 32-bit accumulators.

Table 12.5 Word accuracy (%) as function of ¢ (m = v =8) of fixed-point system
CCAPP_MFCC-HDA-VTLN MMI

12.5.1 Real-Time on the Device

The fixed-point recognizer has been benchmarked on the RM task (RM_MFCC-
DD_ML) using these devices:

e A desk-top telephone with a StrongdARM-1100 CPU, running at 206
206 MHz, with 30 MBytes of RAM, and Linux 2.6.6.

e A Pocket Pc iPAQ hx4700 with an XScale PXA270 CPU, running at
624 MHz and 64 Mbytes of RAM. We installed the Linux OS (Famil-
iar distribution) following the instructions at www.handhelds.org.

The device executables were cross-compiled on the PC (see Fig. 12.4), with the
GNU *“tool-chain” and gcc version 3.4.2. For testing ASR on the device, access to
executables and to fixed-point speech feature files is through the network link. The
Unix command “top” shows a run-time memory use for the RM_MFCC-DD ML of
7.5 Mbytes (virtual and resident). The HMM (with mean and variance parameters
stored in one byte) and the pre-compiled transducer require one mega-byte each.

Device:
desk-top phone (206 MHz StrongArm), or Network Pentium PC,
iPAQ hx4700 (624 MHz XScale) < »  Linux OS
with Linux OS.

Fig. 12.4 Device development system

Real-time recognition performance for the RM_MFCC-DD ML task is shown in
Fig. 12.5.
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Task: RM, speaker ind., 40 speakers.
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Fig. 12.5 Word accuracy of task RM_MFCC-DD_ML as a function of recognition time
normalized by input audio time

Here the recognition accuracy is plotted as a function of time (normalized by the
duration of the input audio). The recognition times and the corresponding accuracies
were measured in various experiments using different beam-width values. Two plots
are shown for the fixed-point recognizer running either on the 206 MHz StrongARM
or on the 624 MHz XScale, respectively, both showing recognition in real-time. As
reference, the third plot shows the accuracy of the floating-point recognizer running
on the PC. The time axis of this plot was scaled by a factor of 23, to account for the
speed difference between the 2.4 GHz Pentium and the embedded CPU. The tick
marks on the plots correspond to specific values of the beam-width, showing that the
fixed-point implementation provides the same accuracy (within a small difference) as
the floating-point recognizer over the entire range of beam-widths.

It should be noted that a program containing floating-point operations can be
executed on a fixed-point CPU by means of sofiware emulation of the floating-point
instructions. However, the program will be slower (depending on the number of
floating-point instructions contained in the code) than the corresponding fixed-point
implementation. We measured that the floating-point recognizer running on the
206 MHz StrongARM-1100 CPU is about 40 times slower than the fixed-point im-
plementation (task RM_MFCC-DD_ML). Floating-point emulation can be obtained
in two ways. In one method (used in our experiments) the compiler generates float-
ing-point instructions that trigger run-time instruction faults: these are caught and
properly handled by the Linux kernel. In the other method the programmer provides
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a library of floating-point emulation functions that are invoked at compile-time
(compiler flag —msoft-float). This second emulation method is generally more effi-
cient than the former (there is no kernel overhead, the actual improvement depends
on the user-supplied library), but it still is several times slower than the fixed-point
implementation.

12.6 Conclusion

The on-going expansion of network technologies and the need of enhanced user
interfaces for the client-devices motivate the fixed-point implementation of speech
recognition algorithms, for operation on CPU’s without floating-point arithmetic
units. This chapter has reviewed problems and it has proposed methods concerning
the fixed-point implementation of ASR algorithms. In particular it has described a
practical approach to the implementation of the frame-synchronous beam-search
Viterbi decoder, N-grams language models, HMM likelihood computation and mel-
cepstrum front-end, typical of large vocabulary continuous speech recognition
(LVCSR) systems. The described methods are also useful to prototype ASR applica-
tions in embedded systems. In fact, the decoder fixed-point parameters do not need
critical task-dependent calibrations, and the language and acoustic models, trained
with the standard floating-point algorithms, can be automatically ported to the re-
quired fixed-point representation.

The presented fixed-point implementation of the LVCSR algorithms is as accu-
rate as the floating-point recognizer, in medium and large vocabulary continuous
speech recognition tasks. The chapter results demonstrate real-time recognition of
the standard DARPA Resource Management on two embedded CPU’s namely the
206 MHz StrongARM-1100 and the 624 MHz XScale PXA270. The fixed-point
implementation enables real-time operation: the floating point recognizer, with float-
ing-point software emulation, is several times slower for the same accuracy.
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Software Architectures for Networked
Mobile Speech Applications

James C. Ferrans and Jonathan Engelsma

Abstract. We examine architectures for mobile speech applications. These use speech engines
for synthesizing audio output and for recognizing audio input; a key architectural decision is
whether to embed these speech engines on the mobile device or to locate them in the network.
While both approaches have advantages, our focus here is on networked speech application
architectures. Because user experience with speech is greatly improved when the speech modal-
ity is coupled with a visual modality, mobile speech applications will increasingly tend to be
multimodal, so speech architectures therefore must support multimodal user interaction. Good
architectures must reflect commercial reality and be economical, efficient, robust, reliable, and
scalable. They must leverage existing commercial ecosystems if possible, and we contend that
speech and multimodal applications must build on both the web model of application develop-
ment and deployment, and the large ecosystem that has grown up around the W3C’s web speech
standards.

13.1 Introduction

In this chapter we explore architectures that support multimodal user interaction on
mobile devices. Our particular emphasis is on those architectures that rely on speech
engines located in the network instead of on the device. We will briefly survey the
current state of speech recognition, then describe how voice-only applications have
rapidly shifted to a standards-based web model of development and deployment. Because
mobile devices already have very capable visual modalities, and because combining a
voice and a visual modality greatly improves the user experience on mobile devices,
mobile voice applications will increasingly be multimodal. After providing this back-
ground we present a conceptual model for categorizing multimodal architectures, de-
scribe several commercial multimodal systems, and discuss the standards needed before
wide adoption of multimodal systems can occur. Our discussion is informed by a com-
mercial-grade multimodal system developed by Motorola and partner companies.

13.1.1 Embedded and Distributed Speech Engines

Mobile devices first supported “speech recognition” via simple template matching: to
enable voice dialing, the user first trained an embedded template matching algorithm by
providing it with an audio input sample to associate with each phone book entry. To
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voice dial, the user would repeat the name or phrase associated with that contact, and
the algorithm would compare the new audio sample against the stored waveforms to
determine the contact to call. This approach is speaker-dependent and suffices for up to
a few hundred contacts.

True speech recognition became practical commercially about a decade ago, and
took two forms. Transcription systems on desktop PCs were speaker-dependent and
required high-quality microphones and a quiet environment. The user would spend
perhaps 10 or 15 min reading sample sentences to train the system, which would then
do a fairly credible job of transcribing what the user said.

The second form of commercial speech recognition to arrive in the mid to late
1990s was the network-based speech recognizer. These were reached over circuit-
switched voice calls and were speaker-independent. Instead of being able to transcribe
all of a single user’s speech based on a relatively large dictionary, network-based
speech recognizers could understand many users but had to be given strict constraints
on what to expect them to say. Constraints were specified by context-free grammars
much like those used to specify programming languages. So while a grammar-based
speech recognizer achieved speaker-independence by limiting what users can say, a
transcription base speech recognizer achieved grammar independence by limiting the
users who can speak with it.

As mobile devices have become more powerful, it became possible to embed
grammar-based speech recognition systems on them. They remain less capable than
their larger cousins running on network-based computers. They typically support vo-
cabularies in the ten to twenty thousand word range, and take up roughly ten megabytes
of storage. As a rule of thumb, network-based and desktop speech recognizers have
vocabularies ten times larger than embedded recognizers, and have proportionately
greater hardware requirements.

Transcription systems are now just starting to appear on mobile devices, where
voice entry of SMS messages and email is a very valuable use case. So far these have
had mixed results. Transcription systems are also moving into network-based server
farms in configurations that support speaker-independent recognition, which is poten-
tially a very significant development.

Speech recognition has steadily improved over the years, both in the network and
on devices. We will see more speaker-independence, less restriction on what people
can say, and other advances, although challenges remain (Deng and Huang 2004).

Speech synthesis has made parallel gains. Older formant-based systems synthesized
speech from acoustic models, and tended to sound rather unnatural. But these are giv-
ing way to concatenative systems that string together segments of prerecorded speech
samples to sound far more human. As with speech recognition, speech synthesis sys-
tems based in the network are more advanced than those embedded on mobile devices.

13.1.2 The Voice Web

By the mid-1990s, speech technologies had matured to a point where voice applications
could begin to displace existing touch-tone (DTMF) applications. Voice applications
were initially deployed on proprietary interactive voice response (IVR) systems,
which were connected to the public switched telephony network (PSTN) with special-
ized hardware that supported banks of incoming analog lines or digital T1 or E1 lines.
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In addition to integration with the PSTN, an IVR system contained speech engines, one
or more voice applications, and also the back-end business logic, database interfaces,
and legacy application interfaces needed to integrate the voice applications with the
existing infrastructure. The proprietary nature of [IVR systems meant that voice appli-
cations were costly to deploy, and difficult to port to other platforms.

In the mid 1990s, researchers at AT&T exploring ways to best implement web ser-
vices realized that the web model for application development and delivery was as well
suited for voice applications as it was for visual ones: it made no difference at all if the
user was interfacing with microphone and speaker instead of a keyboard and display
(Atkins et al. 1997). The web model enables and encourages a clean division between
each application’s interface and its back-end business logic. All the application’s leg-
acy system integration, database access, and business logic could be factored out of the
IVR platform and onto standard application web servers, using the rich variety of tools
developed for visual web applications, and leveraging the simplicity of web application
deployment.

This factoring required standards that would enable any IVR platform to render the
same backend web application to callers in the same way. Standard web protocols such
as HTTP and TCP/IP would be used of course, and resources such as audio files would
be delivered to the IVR platform the same way as they would to a visual web browser.
But how would the web application convey voice dialogs to the IVR platform? Some
researchers proposed augmenting HTML with voice dialog constructs, but most con-
cluded that the unique aspects of voice dialogs—the need to manage temporal flow,
handle input errors, resolve ambiguous inputs, specify timings, and so on—required a
new markup language.

Some early voice markup languages were AT&T’s PML (Atkins et al. 1997), HP’s
TalkML (Raggett 1999), IBM’s SpeechML, and Motorola’s VoxML (Ladd et al.
1999). Commercial realities dictated there be only one, so in early 1999 AT&T, IBM,
Lucent, and Motorola created the diceXML Forum, whose purpose was to develop a
standard language. The Forum published VoiceXML 1.0 (Boyer et al. 2000) and then
gave it to the #Wld-llle &6 Consortium (W3C) which published the VoiceXML
2.0 Recommendation (McGlashan et al. 2004).

The industry eagerly adopted the VoiceXML standards, because they were a first
major step in the disaggregation of proprietary IVR platforms into interchangeable
components based on open standards. The IVR platform was transformed into a ge-
neric VoiceXML voice server, and it now rendered standard voice web applications
hosted on standard application web servers (see Fig. 13.1). Web development and
deployment technologies, coupled with these new standards, dramatically drove down
the cost of voice applications, so that today literally billions of calls are processed each
year by VoiceXML-based voice servers, and applications as large as the North Ameri-
can Directory Assistance service are based on VoiceXML.

These new voice server platforms have become further commoditized by standards
closely related to VoiceXML. The first is the Internet Engineering Task Force (IETF)
Media Resource Control Protocol (MRCP), whose goal is to provide a standard control
interface to speech engines, to make them easily interchangeable (Shanmugham et al.
2006). Developed with VoiceXML servers in mind, MRCP can be adapted to other
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contexts. It is comparable to HTTP, with each textual request to the speech engines
specifying the prompts to play and the speech grammars to listen for, and each corre-
sponding textual responses from the speech engines giving the recognition results.
MRCP makes it far easier to integrate new speech engines into a voice server, to give it
better speech technologies, customize it for new locales, or simply switch to a lower
cost supplier.

+ HTML pages
» Scripts
e + Audio files

« Images

B LT LT LT T,

Web user + VoiceXML pages §
« Scripts :
+ Audio files :
Sy Application Server
‘( + Business logic
. - « Database interface
- « Content
* Transaction support
VoiceXML Gateway » Legacy system interface
* VoiceXML interpreter
» Speech recognizer
* Speech synthesizer
* Media playback
Phone User - Telephony interface

Fig. 13.1 Voice web architecture

While MRCP is the protocol for the control of speech engines and other media re-
sources, dice over Internet Protocol (VoIP) standards like the Session Initiation pro-
tocol (SIP) (Rosenberg et al. and Schooler 2002) and RTP are protocols for directing
audio streams to and from the speech engines (Sutherland and Danielsen 2006).

The first benefit of VoIP to the voice platform architect is that specialized hardware
terminating incoming PSTN lines no longer needs to be located inside the voice server
platform itself. A media gateway can now terminate the lines and convert their time-
division multiplexed (TDM) audio streams into VoIP. This significantly drops the
hardware costs and makes the overall system more flexible. Without VoIP, the incom-
ing audio channels need to be terminated at a telephony hardware card attached to
some machine in the voice server, either one running speech engines or one doing
media gateway-like conversion of the TDM audio into IP packets for processing in
speech engines on another machine. This means that machines must handle some mul-
tiple of the incoming PSTN line size. In North America this typically means the speech
engine box has to support one or more 23-channel T1 lines, while in Europe it has to
handle one or more 31-channel El lines. If the box could comfortably handle, say 80
incoming calls instead of 69 (three T1s) or 62 (two Els), that extra capacity is wasted.
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With #7P, the media gateway ca n deliver exactly the right amount to each box so that
fewer are needed. And VoIP-based voice platforms can serve pure IP traffic such as
Skype calls directly, with no need for a media gateway.

The combination of MRCP and VoIP also allows the architect of a voice server
platform to cleanly separate the Voice XML dialog interpreter from the speech engines
and place them in various convenient and efficient topologies. For example, platforms
are usually composed of self-contained “pods” of machines, each of which operates
independently and handles several hundred callers. A pod supporting two hundred
callers had to dedicate a speech recognizer channel to each possible incoming call, but
now with MRCP and VolIP they can easily get by with, say, fifty speech recognizers,
each of which is shared among many calls. For each prompt and collect cycle, a
VoiceXML interpreter will use SIP to establish a session to an available speech recog-
nizer and a media player and to set up the RTP audio pathways to each. Then the inter-
preter will use MRCP to tell the engines what to play to the user and what to listen for.
When MRCP returns the recognition results are returned to the VoiceXML interpreter,
the interpreter closes the SIP session to release the speech engines for another caller to
use. This greatly increases the scalability and flexibility of the voice server platform
architecture. This efficiency is possible because people interacting with voice applica-
tions spend much more time listening and thinking than they do speaking.

The W3C’s Call Control XML (CCXML) is a final standard used to open up voice
server platform architectures. VoiceXML cleanly separates the application and busi-
ness logic from the voice platform, MRCP provides a generic “plug-and-play” control
interface to the speech engines, and VoIP standards enable very flexible internal audio
pathways in the voice server platform. But the VoiceXML interpreter is still coupled to
platform-dependent call control operations for accepting incoming calls, placing outgo-
ing calls, disconnecting calls, transferring calls, etc. Call control needs to be factored
out in a standard way, and this is what CCXML enables (Auburn 2007). A CCXML
interpreter now becomes part of the platform, and is driven by web pages in the
CCXML markup language. These tell the interpreter how to establish and tear down
call legs between two or more human and computer endpoints. The platform then uses
CCXML to start up sessions and to bring in new participants as needed (as in telecon-
ferences). A VoiceXML interpreter participating in such a session implements its call
control operations by sending markup to the CCXML interpreter. Platform dependent
call control interfaces are now encapsulated inside the CCXML interpreter.

We covered these topics at some length to convey something of the scale and
commercial importance of the voice web, and to lay groundwork to return to later in
our discussion. It turns out that this sophisticated network infrastructure, with only
minor change, can support multimodal applications as well as voice-only applications.
Multimodal architectures that leverage the VoiceXML-based voice web ecosystem will
therefore have significant commercial advantages.

13.1.3 Multimodal User Interfaces

Mobile devices are physically small, making interaction with the keypad, stylus, and
display relatively difficult. These difficulties are compounded when we have accessi-
bility problems like arthritis or poor eyesight. “Situational impairments” are also prob-
lematic: we may be wearing gloves, walking on an uneven sidewalk, or trying to read
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the screen in bright sunlight. Various user studies quantify these difficulties: a joint
study at Columbia and Google analyzed one million Google Mobile Search queries and
found that the average time to enter even short one to four character search terms on a
mobile keypad was over 40 s, with 30-34 character searches taking over 90 s. Stylus
input was faster, at 25 s and 50 s respectively (Kamvar and Baluja 2005).

These times are very problematic from a usability standpoint. But while mobile de-
vices are poor at keypad entry, they are highly optimized for audio interaction, which
makes voice input especially attractive in mobile search: assuming the speed and accu-
racy of the system is high enough, speech entry of search terms can take just a few
seconds.

But pure speech applications have their own issues. We do not want to blurt out
personal information, and complex spoken output is much harder to remember than
visual output. Speech interfaces have their own accessibility issues, e.g., for people
with accents and hearing problems, and they have associated situational impairments
such as background noise and laryngitis.

Conveniently, the weaknesses of mobile visual user interfaces are offset by the
strengths of speech user interfaces: while it is slow and difficult to type (or even spell)
Albuquerque in a mobile airline application, it is quite fast and easy to say it. And
likewise, the strengths of visual interfaces offset the weaknesses of speech interfaces:
visual information often is faster to process and remember than spoken information,
while disambiguation of speech input can be done quickly with a visual drop-down
menu of the alternatives (Oviatt 2000). The weaknesses of one modality are offset by
the strengths of the other, which makes mobile multimodal applications very attractive
(Suhm et al. 2001).

13.1.4 Distributed Speech Recognition

Speech recognizers should be given the highest quality audio input to reduce mis-
recognition, but telephony channel quality is generally not of the best quality. Land-
lines deliver only about 4 kHz of bandwidth, though they are circuit-switched and tend
not to drop segments of audio. Mobile audio channels use codecs that favor low band-
width over audio fidelity, and they also drop packets. IP telephony channels can also
drop packets, but their codecs can use more bandwidth.

To deliver high-quality audio to speech recognizers over mobile channels, the E7:ST
Aurora group developed the Distributed Speech Recognition (DSR) standards (Pearce
2000). They achieve this by moving the earliest stage of audio processing from the
speech recognizer to the mobile device. This stage converts the raw audio into a digital
stream of audio samples, called feature vectors. These are encoded in an RTP stream
transmitted by a UDP/IP data channel to the speech recognizer. In this way channel
loss is reduced, the fidelity of the audio signal is kept high, and bandwidth is reduced.
Moreover, DSR front-ends on mobile devices can do special processing to eliminate
background noise, approximately halving the error rate due to background noise
(Pearce 2004).

These benefits are substantial, but compete against alternative approaches such as
using existing audio channels and accepting higher recognition error rates, or shipping
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the full raw audio over reliable broadband connections to the speech server. The best
chance for widespread adoption of DSR will be to pair it with distributed multimodal
systems, since its benefits are synergistic with those of multimodal systems.

13.1.5 Multimodal Architectures

The Open Mobile Alliance (OMA) is a standards group formed in 2002 to develop
open standards for the mobile phone industry. It consists of mobile operators, device
manufacturers, software vendors and others. One of their working groups is Browser
Technologies, and a subgroup called Mobile Application Environment recently pub-
lished a conceptual multimodal architecture (Open Mobile Alliance 2006).

This architectural view is at a high enough level to cover cases where the speech
engines are in the network and cases where they are embedded on the device. Figure
13.2 illustrates the key entities in their architecture. Each user interface modality is
controlled by a user agent (UA), which has zero or more processing engines (PEs) sup-
porting it. A web browser is a canonical example of a user agent for the visual modal-
ity; one of its processing engines might be its input processing subsystem, another
processing engine could be the subsystem that renders output using HTML, CSS, and
so on. Similarly, a VoiceXML-based voice browser is a user agent: its speech recog-
nizer is a processing engine for speech input, and its audio output subsystem, which
includes speech synthesis, forms a second processing engine.

Multimodal systems are those that have at least two user agents (modalities). Typi-
cally, they are comprised of a visual modality and a voice modality, but many other
combinations are possible. For example, we can add in a third modality for hand-
writing recognition and, perhaps, cursive handwritten output. A haptic modality can be
driven by motion input detected by a three-axis accelerometer and can generate motion
output by causing a transducer to vibrate at various frequencies: using it you could turn
pages by flicking the phone left and right, and get feedback when you try to go beyond
the first or last page through feeling a particular vibrational pattern. A pulse sensor
could be part of an input-only modality used in wellness applications: during physical
activity, the pulse modality can be linked to an audio output modality that coaches the
user on how intensely to exercise.

Some fairly unusual multimodal systems have been developed using modalities
other than speech. A head-mounted sensor can track one’s gaze to determine what is
being looked at, and therefore forms a sort of ocular input modality. An “emotional”
input modality is even within reach of current technology: several startups are working
with low-cost electroencephalogram (EEG) sensors that measure “focus” and “tran-
quility.” At the Consumer Electronics Show in 2006, a startup called NeuroSky dem-
onstrated a multimodal computer game with three modalities: (1) a standard computer
display showing a 3D world of objects, (2) a head-mounted gaze sensor to pick out
what object the player is looking at, and (3) a head-mounted “emotion” sensor that
measured focus and tranquility. The system caused objects looked at with a high de-
gree of focus to be moved closer to the player, and caused objects looked at with tran-
quility to float off the floor (NeuroSky 2007).
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Fig. 13.2 Conceptual multimodal architecture (OMA)

When using a speech modality, the visual modality need not be a standard form-
based interface or web browser. It could be a game engine (Zyda et al. 2007) or an
avatar interface.

Modalities may or may not support both input and output. A voice modality can
have speech recognition but not generate audio prompts. Or the visual modality can be
used for output but not for input. An example illustrating this point is a Bluetooth
service discovery application that features speech input and visual output to connect
rapidly to location-based services (Engelsma and Ferrans 2007).

Returning to the OMA conceptual architecture in Fig. 13.2, there is a need to coor-
dinate the user agents (modalities). For instance, the results of a speech recognition
may affect the visual display (i.e., field values are updated) or a typed input value af-
fects the active speech recognition grammar. The interaction manager (IM) is the
OMA architectural element that effects this coordination: it synchronizes the data and
execution flow between the user agents.

Multimodal applications generally do not operate in a vacuum and therefore must
obtain external information and update external state. A weather application needs to
look up weather conditions, download spoken weather reports, download radar images
and other visuals, and download advertisements. It also might upload user preferences.
The OMA architectural element representing the external world is called the backend,
and the IM communicates with the backend. The backend is generally the web and all
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its applications and services, but in a self-contained system it might be a local web
server, a set of local files, etc. The minimal backend is probably a static specification
file defining a multimodal dialog.

In practice of course a real multimodal system will differ from this ideal view. A
visual web browser’s processing engines are not necessarily distinctly separable, since
input and output have close cross linkages. And it is very common for each user agent
to fetch needed resources directly from the backend rather than use the IM as a client-
side proxy. But overall, the OMA model is a very helpful tool for understanding and
comparing variant multimodal architectures.

Looking again at Fig. 13.2, one can draw a horizontal line across it at various
heights to effect divisions between client and server components. Each possible divi-
sion defines a class of multimodal architectures. Draw the line at the top, with only the
backend above it, and it describes the family of multimodal architectures with every-
thing resident on the device. Draw the line above the visual modality’s user agent (“UA
A”), and you describe a family where everything but the visual user agent is in the
network. We will explore these families in more depth later.

13.1.6 Simultaneous and Sequential Multimodality

Multimodal systems are divided into two broad categories depending on whether the
user interacts with the modes simultaneously or not. In a simultaneous multimodal
system, more than one mode is active at the same time. In a sequential multimodal
system only one mode is active at any time. A simultaneous multimodal map applica-
tion could both display a map and play a voice prompt at the same time, and allow
input by keypad, touch screen, or voice at any time. For instance the user could select a
“zoom in” menu item or say “zoom in” (Maes and Saraswat 2003).

A sequential multimodal map application would only have one mode active at a
time. For example, the user could place a voice call to establish the current location and
the destination for a trip, hang up, and then start a visual application that downloads
this information and the turn-by-turn directions for that route. Or in a sequential stock
trading application the user might again interact first by voice, then later get an SMS or
multimedia message containing a trade confirmation. Sequential multimodal systems
offer some of the same advantages as simultaneous multimodal systems, but are less
complex to architect and implement.

Simultaneous multimodal systems are further subdivided into composite and non-
composite multimodal systems. In a non-composite multimodal system the inputs from
the various modalities are independent and are presented to the application in the order
that they occur, even if they occur at nearly the same time. In a composite multimodal
system, inputs from two or more modalities that occur at or close to the same time are
considered to be a single coordinated input, so they must be composed or “fused” into a
single input before being given to the application. Take an application for finding out
movie theater shows and show times. In a non-composite approach the user might first
select a theater from a list or a map, and then a moment later say “show times, please.”
In a composite approach, the user might draw a circle around a theater push-pin on the map
while saying “show times” (Maes and Saraswat 2003). Composite multimodal systems
are potentially faster and easier to use, but have not yet been introduced commercially.
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13.1.7 Mode Composition

The OMA architectural model supports hierarchical decomposition: a user agent can
itself be decomposed into an interaction manager and two or more lower level user
agents. For example, consider adding a new voice modality to an existing user interface
that supports visual output, input from the keypad, input from a virtual keyboard with
touch screen and stylus, and input by handwriting recognition with the stylus. The
existing user interface is already multimodal, and so must consist of an interaction
manager, a couple of lower level user agents, and some internal processing engines
(e.g., the handwriting recognizer). To add the new voice modality then, one has to add
the voice modality’s user agent and processing engines, and couple the voice user
agent to the existing system with a new higher level interaction manager.

13.2 Classes of Multimodal Architectures

We now turn to how best to architect a multimodal system. We consider only simulta-
neous multimodality: sequential systems are a kind of “degenerate” case of simultane-
ous multimodality where a relatively lengthy context switch has to take place to shut
down one mode and activate another. Simultaneous multimodal systems require much
tighter coordination, and hence are more difficult to architect than sequential multimo-
dal systems.

Voice
Modality

Visual
Modality

Fig. 13.3 Five families of simultaneous multimodal architectures
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Architecting a multimodal system is a complex process with no one right solution:
each family of multimodal architectures has its own comparative advantages.

Figure 13.3 shows the OMA conceptual multimodal architecture with five alterna-
tive horizontal dividing lines between client and server. Each division identifies a fam-
ily of simultaneous multimodal architectures. We consider only the very common case
of a visual modality plus a voice modality: other architectural families are possible
when combining other modalities.

13.2.1 Fully Embedded or “Fat Client” (a)

Let’s consider each class in turn. First we consider the case where every component is
placed on the mobile device.

Dividing line (a) places only the backend on the server." All other components are
on the mobile client: the visual modality, the voice modality, and the interaction man-
ager linking them together. This approach is necessary if multimodal applications must
operate when the device is not connected to a network, but it requires a fairly powerful
device. On the surface it would seem to be the class of multimodal architecture that
makes the least use of network bandwidth, but that depends in large part how self-
contained the speech applications are. An embedded driving direction application with
voice entry of addresses would need to download huge speech grammar files for each
town or postal code, but a networked driving direction application would only have to
send a relatively short audio stream up to the voice server.

One instance of this architecture is a prototype created by IBM and Opera on a
Windows Mobile handset (Kennedy 2005). In this prototype, the visual user agent is
the Opera XHTML browser, and the voice user agent is an IBM embedded VoiceXML
2.0 interpreter. The processing engines for the voice user agent are from IBM (embed-
ded ViaVoice). The interaction manager is IBM client middleware.

This prototype’s demonstration application was voice-activated local search.
Search terms were entered by voice, and after each term was recognized on the device,
it was sent to the Yahoo local search web service to obtain the results. Mobile local
search is a very compelling multimodal application: it is valuable to people, requires
rich visual output, and works far better with voice input than with keypad input. The
IBM application is authored in the XHTML+dice Profile (X+V) markup language, a
clean unification of XHTML for the visual modality and VoiceXML for the voice
modality (Axelsson et al. 2004).

13.2.2 Distributed Processing Engines (b)

Dividing line (b) defines the class of multimodal architectures where the speech en-
gines are distributed to a network-based voice server, but nothing else is. (A variant on

! Here and subsequently we gloss over the special, and relatively rare case where
the application backend is entirely local to the client device.
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this would be to distribute the speech recognizer, but leave the speech synthesizer on
the device.) The natural protocol to communicate with distributed speech engines is
MRCP, which as described above is the IETF’s textual protocol, patterned after HTTP,
that sends prompt-and-collect requests to the speech engines and gets recognition re-
sults in the corresponding responses (Shanmugham et al. 2006). Before we talk about
this family of architectures in particular, we will take a lengthy discursion into the
benefits of placing speech engines in the network.

There are some very highly significant advantages to distributing speech engines. If
they are on the device they take up substantial memory, even though only a minority of
device owners may be using them. They are also compute-intensive, which can make
battery drain an issue (Delaney et al. 2005). Administration is far easier if speech engines
are on the network: it is much more efficient to patch the speech recognizer on a thou-
sand voice servers than ten million mobile devices. The speech application itself is
much easier to tune and update in a distributed architecture: usability experts can listen
to recorded sessions to find places where users run into difficulties, and use that data to
revise prompts and tune speech grammars. Testing itself is much easier, since only one
set of speech engines must be tested, not a multiplicity of speech engines and versions
on scores and hundreds of different types of mobile device.

A final advantage of distributing speech engines to the network is that it can greatly
minimize network traffic and delay in many common scenarios. The speech recognizer
needs to have both the audio to recognize, and compiled speech recognition grammars
to tell it what to look for. The audio originates on the handset, while the grammars
originate in the backend application. There are two pathways into the speech recog-
nizer: the inexpensive high-speed wired network, or the expensive, slower-speed wire-
less network. The relative size of the audio and the speech grammars, the frequency of
change in the speech grammars, and the speeds of the two networks all must be taken
into account by the architect in deciding where to place the speech recognizers.

One anti-pattern to avoid is using an embedded speech recognizer driven by huge
frequently changing speech grammars generated in the network. For example, if the
user is browsing an online music store with five million songs divided into a hundred
categories of 50,000 titles per category, with new titles added each day, then each day
and for each category the user triggers a speech recognition grammar download of
perhaps five megabytes, and an embedded grammar compilation step that together
might take 5-10 min and substantial battery power. In this case, it is far better to send
up a couple of kilobytes of DSR-compressed audio to the voice server: the results will
be back in a couple of seconds, and the battery will barely be affected. This tradeoff
turns out to be fairly common: think of mobile search, map applications with points of
interest being added and removed each day, corporate directory access, access to back
end erzlterprise data, looking for auctions on eBay, ordering books from Amazon, and
SO on.

? One optimization would be to do the grammar compilation in the network instead
of the device, but then each application needs to have the grammar compiler for each
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On the other hand, if the application backend is on the mobile device, it is better to
do the speech recognition on the device, otherwise the device would have to generate a
potentially large speech grammar for the network-based speech recognizer.

This tradeoff is captured in the Pearce Principle (Pearce 2002), which states that
speech recognition should be done at the point closest to the location of the speech
grammar being listened for. This provides a rational for hybrid speech recognition
systems, which leverage local recognition for local applications, and remote recogni-
tion for network-based applications.” This is similar to the data-intensive supercomput-
ing principle of locating computation where the data resides, rather than moving the
data to the point of computation (Bryant 2007). This insight has also long been known
in the area of query processing in distributed databases.

Returning from our discursion into the virtues of distributed speech engines, the
Distributed Processing Engines family of distributed multimodal architectures has a
significant disadvantage in that it requires MRCP or a protocol at the same level to go
over the wireless network to the server hosting the speech engines. This is relatively
expensive in terms of bandwidth and round trips: MRCP was designed to be a lower-
level protocol used within a voice server platform and hence it has many more, and
much larger messages than a higher level protocol would have.

13.2.3 Thin Client (d)

We will return to architectural family (c) after we discuss (d) and (e).Family (d) is the
“thin client” multimodal architecture. This places the full voice modality in the net-
work, along with the interaction manager. This approach is fairly balanced for contem-
porary mobile devices and networks. It turns out to be second best in terms of network
bandwidth, but there can be some awkwardness in writing applications where some
logic has to be broken out into an explicit interaction manager off in the network. But
overall it shares many virtues with family (c), which we believe edges it out in desir-
ability.

13.2.4 Remote Visual Interface (e)

With the dividing line drawn beneath the visual user agent, as in (e), we have an archi-
tecture class where everything but the visual user interface rendering and the input
subsystem is distributed to the server. A protocol for driving a remote user interface

possible mobile device configuration, and know each device’s configuration, a com-
plex task. Even if this reduced data transmission, battery drain, and elapsed time by an
order of magnitude, the resulting delay would still make the experience very painful for
the user.

* When high-quality embedded transcription engines become practical, and applica-
tion developers take advantage of them, the dynamics change: transcription systems do
not use speech grammars.
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needs to be developed, and the mobile device just contains a module that does the
lower levels of the visual user interface. Most of the logic driving the visual user inter-
face is in the network.

This is the same approach that the X Window System takes. One instantiation of
the Remote Visual Interface architecture would be to put an X Server on the mobile
device and drive it from an X Client in the network. They would communicate with the
X11 protocol. In this approach, the X Server corresponds to the OMA visual process-
ing engines and the X client corresponds to the OMA visual user agent.

Auvo, an early multimodal startup (ca. 2000-2002), used this architecture, but un-
fortunately they were years ahead of the market and ran out of funding.

The main drawback of remoting the visual user interface over a mobile data net-
work is of course bandwidth and latency. Bandwidth is becoming less and less impor-
tant, but a protocol that introduces many round trip delays will be less useful than one
that has few delays. Another drawback is that this architecture makes it very hard to
expose the full power of the native visual user interfaces on each device: it almost
invariably presupposes that each device runs a client that understands a “least common
denominator” protocol and API.

13.2.5 “Pudgy” Client (c)

The final major family of multimodal architectures is described by dividing line (c), the
so-called “Pudgy” Client. This is a slight variation on Thin Client, moving the interac-
tion manager from the server over to the mobile client. This makes it a bit fatter than
Thin Client, hence the name.

This approach is more optimal in terms of network usage (the interaction manager
has somewhat more work to do to drive the visual interface than the voice interface,
and hence should be located with it). It is more intuitive for developers, who tend to
view the mobile client as the proper locus of control, just as it is for purely visual ap-
plications. The notion that voice is a sort of supplemental input method under control
of the client software has proven to be especially appealing. We cover an implementa-
tion of Pudgy Client at length in Sect. 13.3.

13.2.6 Discussion

We have just described five main families of distributed architectures that support
simultaneous multimodal interaction.

The Fully Embedded architecture is well-suited for more powerful devices and ap-
plications that reside on the device itself. It has trouble running applications that re-
quire significant fetching of speech grammars from a network-based source, since
these can take very significant amounts of bandwidth and time to download and com-
pile. Embedded speech engines lead to various administration difficulties, and also
make voice application testing more complex and problematic. Nevertheless, devices
and networks are both gaining in power and speed, diminishing some of these difficul-
ties. As device-based speech recognition becomes more transcription-based (open
vocabulary), the need for speech grammars will diminish. We therefore believe that
this will be an effective architecture going forward.
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The four remaining approaches leverage network speech engines and do not share
many of the above limitations. On the other hand, they cannot be used in a discon-
nected mode. Of the four, Distributed Processing Engines requires the client to exercise
detailed low-level control and therefore requires more network message round trips,
introducing delay. The Remote User Interface also requires a lot of network traffic, and
pushes off on the multimodal server a lot of user interface control logic, which means
that the server has to support a single generic abstract visual user interface with least
common denominator functionality, and that therefore the native user interface capa-
bilities of each device cannot be fully leveraged.

The Thin Client and Pudgy client architectures are both nice balances that minimize
network traffic and are easy to develop applications for. Of the two we have a moder-
ate preference for Pudgy: it is more natural to have the interaction management done
close to the visual modality than the voice modality, as the client application is the
natural locus of control.

13.3 The “Plus V” Distributed Multimodal Architecture

Motorola began working on a distributed multimodal system connected to a standard
iceXML server in the network in 2001 (Pearce et al. 2005). Our initial architecture
was primarily Thin Client (d), with the interaction manager consisting of a few extensions
to the Voice XML Form Interpretation Algorithm, so the voice dialog actually drove the
visual dialog as a side effect. We quickly found this to be awkward and unnatural,
as developers believed interaction management belonged in the client device.

In early 2002 we tried another approach, where the interaction management was
explicitly made a module in the client software. This was an implementation of Pudgy
Client. A major motivating factor was a series of unpublished simulation studies
we did to evaluate the architectural families. The goal was to determine bandwidth and
latency costs of each approach on GPRS networks. We found that Pudgy Client was
much better overall than the others we tested. Our subsequent implementations con-
firmed this: on the 2.5G GPRS and the 2G iDEN networks, our system takes between
0.8 s and 2.0 s between the end of speech and the visual display of the recognition
result, substantially faster than even today’s multimodal systems running on 3G data
networks. This speed is due to Pudgy’s low messaging requirements, its terse binary
message format, and the use of the DSR codec, which takes only 5.6 kbps of band-
width, on the audio channel.

In this approach, the client is fully in charge of the interaction. The networked
VoiceXML server is under its control and merely adds the voice modality to the inter-
action, hence the architecture’s more formal name “Plus V.” A key advantage of Plus
V is that it supports any visual user interface. We have created three instances: one that
connects a dva JIME  MIDlet on the handset to the networked voice server (J+V),
another that connects a C++ application using Qt user interface on Linux handsets to
the voice server (Qt+V), and a third that connects a version of the Konqueror XHTML
browser using the X+ kultimodal markup language (Axelsson et al. 2004). Any visual
interface can be supported: for instance the Torque 3D game engine could be used in a
“Torque+V.” This agnosticism to the graphical user interface is a strong advantage.
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Fig. 13.4 Plus V multimodal architecture

Figure 13.4 shows the Plus V multimodal architecture at the next level of detail.
The voice server is a very slightly modified VoiceXML server. We started with the
commercial SandCherry Voice Platform (see www.sandcherry.com) and dropped in
the commercial Motorola VoxGateway VoiceXML 2.0/2.1 interpreter (Ferrans 2003)
and the Nuance OSR 3.0 speech recognizer, which supports the DSR codec.

On the client we have the standard codec for audio output, a DSR front end to do
the encoding of the audio, a native user interface, and one of the Plus V implementa-
tions as described above.

In the OMA terminology, the visual user interface and the VoiceXML voice
browser are the user agents, the speech engines are the voice modality’s processing
engines, and the visual modality’s processing engines are elements of the graphical
user interface software. The interaction manager is represented by the Plus V device-
side framework (the client application can do some interaction management).

The client drives the voice server using the Distributed Multimodal Synchroniza-
tion Protocol (Engelsma and Cross 2007) over a reliable TCP/IP channel. The client
tells the voice server which VoiceXML page to load and which VoiceXML dialog on
that page to run. Once the dialog is running, if the user speaks to the system, the voice
server uses DMSP to convey the recognition result back to the client. If the user types,
the Plus V Framework sends the new field value to the voice server via DMSP, where
it causes the VoiceXML dialog to advance. If the user scrolls through the visual form’s
fields, the client also tells the voice server the new focus field. This level of coordina-
tion is necessary because each visual field may have a distinct audio prompt introduc-
ing it, and each field typically also has a speech grammar associated with it. Mixed
initiative dialogs are also supported by this approach. DMSP is currently an IETF
Draft, and for performance it seeks to minimize messages, message size, and round
trips. The message format is a very condensed binary format, with an optional XML
format for use when message size is not an issue.

The efficiency of DMSP and of the DSR speech recognition codec makes Plus V
the fastest distributed multimodal architecture we are aware of in terms of recognition
response latency. As mentioned above the time between the raising of the push-to-talk
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key and visual confirmation of the user’s speech runs between 0.8 s and 2.0 s on the 2G
iDEN network, and 1.0 s and 3.0 s on the 2.5G GPRS network. These times are also at
least as fast as the embedded speech approaches we are familiar with.

The DMSP protocol has its client endpoint inside the Plus V Framework; its voice
server endpoint is the DMSP Controller. The Controller in turn has some hooks inside
the VoiceXML interpreter’s main loop: the Form Interpretation Algorithm (FIA),
which determines what field to prompt and collect at each iteration. The FIA just needs
to stop and check for commands coming from the client, and if it is in its listen phase
when control commands come in, it needs to break out of that speech recognition to see
what to do next. It was not at all hard to make this modification: we estimate that the
effort needed to multimodal-enable a Voice XML interpreter is at most 2% or 3% of the
effort needed to write that interpreter.

13.4 Other Distributed Multimodal Architectures

Plus V is by no means the only way to architect a multimodal system. In this section
we briefly sketch several other commercial distributed architectures. The goal is to
show how varied the solutions are, not to exhaustively enumerate them.

13.4.1 Video Interactive Services with VoiceXML

In 2005 several people realized that VoiceXML could be adapted to video telephony
quite easily. It already supported the playback of recorded audio, identified by URL
and media type. It also already supported the recording of audio, of a given media type,
and the posting of that audio to a web server. Why not plumb the voice platform to
carry mixed audio and video streams via SIP and RTP, link those streams to the mobile
handset, and support the idea of video prompts and video recordings?

This turned out to be relatively straightforward, and the only impact on Voice XML
itself was a desire to generalize the name of the “audio” prompt element.

The resulting platforms support multimodal applications that combine voice and
video modalities. A video answering machine application can play different video
prompts based on the caller, and take video messages from callers. Support applica-
tions can now show videos of procedures and accept videos showing problems to sup-
port representatives. Many other interesting multimodal applications are enabled by
this approach (Burke and McGlashan 2006).

Because the modes used are voice and video, these systems do not fit neatly into
our architectural families, but it is somewhat analogous to the Remote User Interface
(e). The drawbacks of the Remote UI approach do not apply when using a video user
interface instead of a graphical user interface: video playback is very standard and not
highly interactive.

13.4.2 Multimodal for Set-Top Boxes

PromptU (www.promptu.com) began a few years ago as a company specializing in
using voice to interact with the electronic program guide (EPG) displayed on televi-
sions via the cable operator’s set-top boxes. The EPG application runs on the head-end
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equipment in the operator’s infrastructure, and is controlled by keys on the television
remote.

In the PromptU system, the remote is augmented by a microphone and a push-to-
talk button. When the user speaks (“Find actress Penelope Cruz”), the audio from the
remote goes to the set-top box, where it is encoded by an Aurora DSR Front End
(Pearce 2000) and sent up to a voice server located in the head-end. The voice server
runs an application that maps the voice commands into actions on the EPG, and the
output is sent back to the set-top box for display on the television.

More recently, PromptU has been moving into the general mobile multimodal
application space, supporting music download, ring tones, games, and so on. The
PromptU architecture is in the Thin Client family.

13.4.3 Bare Minimum Mobile Voice Search

Plus V was developed at a mobile handset company, where we had luxuries to do
things that others cannot. We wrote DSR front end encoders for DSP chips, ensured
that audio packets could be streamed using RTP, and even influenced the future MIDP
3.0 J2ME implementation.

A company that wanted to get a multimodal application out to its customers on as
many handsets as possible would have to start from a different point, deploying a sys-
tem that made the least possible assumptions about those handsets, and then influenc-
ing the industry to add the sort of enablers that we put into Plus V. Let’s assume this
company is doing a mobile multimodal search application.

By necessity, this company would choose a distributed architecture, since that off-
loads a huge amount of complexity and variability from the mobile devices. On the
client they would probably select dva ZME for its ubiquit y. Their Java client applica-
tion would present the visual interface, use the JSR 135 Mobile Media API to gather
voice input, and use HTTP to post that audio up to the server. Along with the audio, the
HTTP request would contain the location, from GPS or the carrier’s cell tower ID
information. The request might contain a cookie identifying the user, and perhaps other
contextual information.

On the server receiving this request runs the server side of their application. This
first would send the audio over to a speech server for recognition, a process that proba-
bly would take into account the user’s desired search location and radius. The speech
server sends back the results, and the server-side search application feeds them to the
existing web services API for the search service. At the same time the server-side ap-
plication could interact with an ad server to get contextually relevant advertising to
show the user. The server-side application then sends back the HTTP response with the
search results, advertisements, and other response information.

The architecture described is not highly optimized or general, but it can be im-
proved on handsets that support streamed audio, and if the application is successful, the
industry will quickly try to add enablers to improve the user experience.
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13.4.4 A Transcription-Based Architecture

Our last example architecture is from Mobeus, a startup just coming out of stealth
mode in May 2007 (http://www.podtech.net/scobleshow/search/Mobeus). They have
server side technology for doing speaker-independent transcription, which is ideal for
mobile multimodal search applications, voice to SMS and email applications and so on.
Their view of how this should be integrated with a visual user interface on the client is
radically simple: provide a text entry widget connected to this transcription server, plus
controls for speaking into it and editing the result to correct any errors or select from
the “n-best” alternatives for each word. The results are very impressive, and while
again it may not be the fastest or most general system (audio prompting is not ad-
dressed, e.g.), at this stage these sorts of approaches can unlock a lot of value.

13.5 Toward a Commercial Ecosystem

The #ld-tlle 86 Consortium (W3C) has been working in the area of multimodal
standards since early 2002. Progress has been slow mainly because of a lack of early
proprietary implementations, but as we have seen above this is soon going to change.
As the value of multimodal systems becomes apparent, there will be a renewed push to
create interoperability standards to grow the industry. Where do things stand today?

The W3C Voice Browser and Multimodal Interaction working groups (www.w3.org)
are working on a future markup language. This will be philosophically similar to X+V
(Axelsson 2004) in that a combination of XHTML and VoiceXML is called for. The
framework that integrates the two markup languages will be a markup language called
State Chart XML (SCXML) which is closely patterned on David Harel’s State Chart
formalism (Harel 1987). The challenge will be to create a language accessible enough
to attract developers from ad hoc approaches.

The W3C is also working to “modularize” VoiceXML into a subset appropriate for
use in a multimodal system (for instance it makes no sense for the executed VoiceXML
to do call control operations like disconnect in a multimodal configuration). They are
also revising VoiceXML’s stand-alone event model to allow control events to come in
from external sources, a task necessary if VoiceXML interpreters need to be controlled
by interaction managers.

The IETF is to protocols what the W3C is to web markup languages. We have de-
scribed at a very high level one such control protocol between the interaction manager
and user agents: DMSP (Engelsma and Cross 2007) which has been submitted to the
IETF as an Internet Draft. The outcome of this submittal is not yet clear, but it will
probably take the upcoming impetus of successful proprietary multimodal systems to
push this forward.

The 3GPP, an industry standards body focused on GSM standards, has approved
the use of DSR for multimodal applications, and 3GPP2, the parallel organization for
CDMA standards, is also considering it. DSR should offer continued incremental bene-
fits even in a world of huge bandwidth.

Other standards would be needed to mature this ecosystem. There needs to be a
standard for how a control protocol like DMSP drives a VoiceXML interpreter, perhaps a
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standard for authoring languages other than the W3C’s StateChart-based one (e.g., for
Java or C++ application authoring), standard APIs for integrating XHTML browsers
on the mobile device, and so on.

13.6 Conclusion

Multimodal user interaction is very natural and is about to become a common part of
our lives. Systems like our Plus V platform demonstrate conclusively that multimodal
technology is practical, fast, and efficient even on older mobile data networks. Speech
recognition has advanced to the point where complex and commercially important
applications like mobile voice search, voice media search, and voice to SMS and email
transcription can be implemented.

Commercial interest from companies like Google, Microsoft, and Nuance is very
high and focused in the area of multimodal local search. It seems inevitable that
Google will merge their new 1.800.GOOG411 voice directory assistance application in
with their visual Google Local Mobile. Microsoft paid $800 million in early 2007 to
acquire TellMe for their deep experience in voice directory assistance and driving
directions. Nuance has acquired at least two companies with multimodal capabilities,
Lobby7 and Mobile Voice Control, and acquired BeVocal for their application hosting
capability. Japanese mobile operator KDDI deployed the EZ Navi Walk pedestrian
navigation multimodal application (with DSR) in late 2006. Other players like Yahoo,
PromptU, V-Enable, Kirusa, and VoiceBox are entering this arena. All of these are
deploying distributed multimodal architectures.

This wide range of proprietary architectures will inform standards efforts at the
W3C and elsewhere. Multimodal interaction will remain a fruitful area of research,
especially as other innovative modalities are developed.
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Speech Recognition in Mobile Phones

Imre Varga and Imre Kiss

Abstract. Speech input implemented in voice user interface (voice UI) plays an important role
in enhancing the usability of small portable devices, such as mobile phones. In these devices
more traditional ways of interaction (e.g. keyboard and display) are limited by small size,
battery life and cost. Speech is considered as a natural way of interaction for man-machine
interfaces. After decades of research and development, voice Uls are becoming widely
deployed and accepted in commercial applications. It is expected that the global proliferation
of embedded devices will further strengthen this trend in the coming years. A core technology
enabler of voice Uls is automatic speech recognition (ASR). Example applications in mobile
phones relying on embedded ASR are name dialling, phone book search, command-and-
control and more recently large vocabulary dictation. In the mobile context several tech-
nological challenges have to be overcome concerning ambient noise in the environment,
constraints of available hardware platforms and cost limitations, and necessity for wide
language coverage. In addition, mobile ASR systems need to achieve a virtually perfect per-
formance level for user acceptance. This chapter reviews the application of embedded ASR in
mobile phones, and describes specific issues related to language development, noise robust-
ness and embedded implementation and platforms. Several practical solutions are presented
throughout the chapter with supporting experimental results.

14.1 Introduction

As in virtually every area, manufacturers of mobile phones are interested to enrich
their product portfolio for offering added value to end users. This includes additional
features as well as improving existing ones. For this, clear user benefit is balanced
with additional costs on the manufacturing side. In certain market segments end
users may refuse to accept an increase in price even if the improvement of the feature
set makes the product much more attractive.

ASR is considered as a comfortable input modality of man-machine-interfaces.
Meeting the expectation of end users fully is the target that we mean by the term
natural man-machine-interface.

Some typical applications covered by ASR are supported by other means already.
Indeed, speech input is an alternative method of user interface in mobile phones
which compares and measures against existing methods like keypad or joystick. That
is the main reason why it is not obvious how to implement ASR technology in a
generally accepted and successful way in consumer products like mobile phones.
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Attracting end users also includes meeting the user expectation of virtually perfect
accuracy of ASR—they expect a similar level of perfection to a human. ASR
demonstrated significant advances during the past decade and achieved excel-ent
performance in certain application areas. However, it is still has not yet reached the
level of human performance.

Speech input in mobile phones seems especially attractive in combination with
other features, e.g. hands-free operation. Various factors increase the importance of
hands free. One of them is the introduction of new, mobile multimedia applications:
for example, video telephony requires hands-free mode. A further aspect is the use of
mobile phones in cars, which has been recognized as dangerous due to conventional
methods of user interface. Violation of basic traffic safety requirements motivated
many countries to prohibit the use of mobile phones by law while driving.

On the other hand, the typical acoustic environment when using mobile phones,
especially in hands-free operation, makes it much more difficult to achieve high ASR
accuracy. Indeed, noise robustness in adverse conditions is one of the key issues of
designing ASR for mobile phones.

Some further specialities of ASR in mobile phones are important to mention as
well. Miniaturization resulted in keypads shrunk in size making the role of speech
input more important. Terminals without any keypad may stand at the end of an
evolution path where voice control is the only method of user control. Support of
multiple languages is needed in mobile phones. Cost sensitivity represents a further
important aspect in consumer product implementation. This includes hardware cost,
such as fixed-point DSP and memory and implementation cost components as part of
the unit end price.

Based on the elaboration above, we can state the challenge we are facing is to
achieve a high quality (virtually error-free) ASR under adverse conditions at virtu-
ally no extra costs for the user, competing with existing and already accepted user
interface techniques—all at the same time. Even though this is an extremely tall
order, in certain practical applications this challenge can be coped with successfully
(Varga et al. 2002).

14.2 Applications of Speech Recognition for Mobile Phones

The various applications of speech recognition in mobile phones make the handling
of the devices more user-friendly. First we address the basic functionalities.

The name dialling feature seems very useful since it supports the basic function-
ality of a mobile phone, i.e., to place a call. After activation of the function, the user
says the name of the person to be called. This implies immediate action. For name
dialling, a pre-defined register of names with associated phone numbers (contact
database) is needed. A less user-friendly (although simpler) method is digit dialling
where the user must have the phone number of the person to be called in mind and
speaks the digits one after the other. A more comfortable variant of digit dialling is
natural number dialling (22). Name and digit dialling can be implemented directly in
the phone or in a car kit associated with the phone.
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Command-and-control improves the user experience by flattening complex menu
structures. This makes the multi-step approach of navigation by keypad or joystick
super-fluous. The user just inputs the desired action which is passed to an interpreter
causing the action performed. Voice control is especially attractive in combination
with hands-free operation.

Speech-to-text or dictation is fundamentally different in scope since this func-
tionality is not basic to mobile phones originally. Dictation systems exist for a long
time for desktop computers and their performance is continuously improving. How-
ever, these systems have been mostly successful in applications where dictation has
already been an established practice, such as legal or medical domains (Fenn 2005).
For general-purpose text entry ASR systems are more likely to succeed in the mobile
environment, where there is a stronger motivation for users to adopt the new
technology due to cumbersome traditional input mechanisms. ASR for dictation may
be fully implemented in the network with speech transmitted over the wireless
network by usual transmission techniques, or be partly located in the mobile phone
and partly in the network. The latter approach is usually referred to as distributed
speech recognition (DSR). For more details see Chap. 5 of this book. Alternatively,
large vocabulary dictation systems can also be implemented in mobile phones as
mobile computing platforms become more and more powerful.

Next, we review the basic technologies relevant for the above mentioned appli-
cations. Isolated word recognition means the capability of recognizing a single word
(the command). Typically, isolated word recognition is useful for name dialling and
command-and-control applications; however, it results in a rather artificial (machine-
like) speaking style. The complexity is rather low, both in terms of algorithmic
processing power and vocabulary size (below 100 in most cases).

Keyword spotting allows for a much more user-friendly operation because the
user is not required to speak isolated words anymore. The speaker may speak natural
phrases which contain dedicated keyword(s), the actual command(s). The speech
recognizer separates the useful information (keyword) from the non-useful informa-
tion (classified as garbage). The vocabulary size can be kept still restricted as with
isolated word recognition, up to 100 words.

Keyword spotting is hence a kind of connected word recognition. The term
connected word recognition stands in contrast to isolated word recognition. It refers
to a technique which allows the speaker to speak several keywords in a connected
manner. Connected word recognition greatly improves the value of the user interface
feature. The difficulty is that words are pronounced differently when connected than
when separated which causes an increase of the algorithmic complexity.

Continuous speech recognition allows natural speaking style by requiring no
pauses between words. The difference to keyword spotting from technical point of
view is the vocabulary size. Large vocabulary makes dictation possible. On the other
hand, the computing complexity and memory requirements increase significantly.

A further dimension to consider is the distinction between speaker-dependent,
speaker-independent and speaker-adapted systems. In a speaker-dependent system,
the user may include any new word in the vocabulary at the expense of training. In
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this way, the language and pronunciation behaviour of the speaker are automatically
taken into account. Speaker-dependent recognition is independent of languages,
dialects, and pronunciations. Examples of speaker-dependent ASR are name dialling
applications. Dynamic Time Warping (DTW) (Ning et al. 2002) and Hidden Markov
Model (HMM) based (Laurila 1997) speaker dependent name diallers have been
widely used in mobiles.

The need for training in speaker-dependent systems impacts their usability
greatly. Users may not be willing to train the system, or may forget the voice tags
trained. Speaker-independent systems overcome this difficulty by pre-training speech
models on large amounts of training data and they are predominantly HMM-based.
To cope with various languages, dialects, speaker behaviours, high efforts are spent
in the algorithmic design and pre-training of HMM-based speaker-independent sys-
tems. In order to achieve a good performance over a wide range of speaker variations,
databases in various languages containing a large set of speech samples taken from
different speakers in different conditions are needed for pre-training (Hoge 2000).

The combination of speaker-independent and speaker-dependent recognizers
leverages the benefits of both systems: user-friendliness due to pre-trained vocabulary
and high performance due to user-trained additions to the vocabulary. Furthermore,
advanced speaker independent systems support on-the-fly adaptation of the acoustic
models. These speaker-adaptive systems maximize the accuracy of the system for
user and environment variations, while maintaining a low level of user interaction.
Adaptation is typically carried out during the normal course of use, in a transparent
manner to the user. Table 14.1 illustrates some typical mobile ASR applications in
function of speech recognizer capabilities.

In the context of ASR application in mobile phones we emphasize that voice
Uls provide convenience and ease of use as an alternative to small sized keypad
and display. In addition, in developing regions, with low rate of literacy among the
population, voice (and graphical) Uls lower the usage entry barrier for people. Many

Table 14.1 Typical applications in terms of speech recognition capabilities

Isolated word Keyword spotting Continuous
Speaker Basic digit or natural ~ Flexible SMS and/or
independent (SI)  number dialling, command-and- Email dictation
basic command-and-  control
control
Speaker Basic name dialling High accuracy n.a.
dependent (SD) voice activation
Mix of STand SD  Advanced digit and Flexible digit High accuracy
and/or speaker name (or natural dialling, name SMS and/or
adaptive number and name) dialling, and email dictation
dialling command-and-

control
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semi-literate or illiterate users’ first experience with voice communication and/or the
Internet may be a portable mobile device. Since small portable devices, such as
mobile phones and multimedia computers are produced in large volumes for a global
market, it is essential to offer them with a wide set of languages.

There are two important factors that make this challenging. First, as already
mentioned, speech recognition systems rely on statistical techniques that usually
require large training corpora for providing sufficient performance. This includes
both textual and acoustic databases. For some languages the necessary language
resources are readily available. For some others, they may be difficult to find or
collect. Second, as in practical configurations a set of languages needs to be sup-
ported by a mobile device, several languages have to coexist in the limited memory
space. Therefore, a suitably compact representation has to be developed—we address
these issues next.

14.3 Multilinguality and Language Support

In the context of this paragraph, we refer to multilinguality as simultaneous support for
several languages for ASR and TTS. Multilingual systems typically also possess the
capability of easy adaptation to unseen (or scarcely resourced) languages (Schultz
and Waibel 2000, 2001).

14.3.1 Multilingual Speaker Independent Name Dialing

In this section we discuss multilinguality in the context of a typical embedded app-
lication: speaker independent name dialling. A typical architecture for a multilingual
isolated word speech recognition engine is shown in Fig. 14.1. The system consists
of the following modules: text-based language identification (LID), pronunciation
modelling or text-to-phoneme conversion (T2P), acoustic modelling (AM) and isolated
word decoder (DEC).

Written entries (e.g., name tags from a contact database) are first fed into language
identification, which assigns the most likely languages to the word in question. Lan-
guage identification may be based on e.g., statistical models using neural networks or
N-gram probabilities. Normally the character set used in the entries also limits the
possible language choices.

Next, the words and language tags are inputted to the T2P module that produces
the respective pronunciations for the word. To account for possible LID errors, as
well as the possible ambiguity of some names (e.g., Peter may be an English or
Swedish name) several pronunciation variants are provided for a given word. The
methods applicable for T2P depend heavily on the language in question. Simple
pronunciation rules can be used for regular languages, while more sophisticated
models, i.e., decision trees (Quinlan 1993), neural networks (Sejnowski and Rosenberg
1987; McCulloch et al. 1987; Hakkinen et al. 2000) or finite-state transducers (Caseiro
et al. 2002) can be applied for less regular ones.
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Fig. 14.1 Architecture of a multilingual ASR system

Finally, the complete set of pronunciations (all words, all pronunciation variants)
and the sub-word acoustic models are used to build a recognition network. To save
space for acoustic models, as well as to provide robustness for languages with less or
no training data, acoustic models are trained in the following manner. First, overlaps
between language specific phoneme sets are identified. This can be done in a
knowledge-based manner (e.g., based on the IPA phoneme definitions), a data driven
manner by clustering phonemes based on the statistical properties of their reali-
zations in the acoustic model and database, or as a third option, a combination of
these methods can be used. It is also a good practice to verify the resulting phoneme
set by recognition experiments on a test database and compare the performance to a
mono-lingual setup. In many cases, some problematic phoneme combinations can be

identified this way.
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The task of the decoder is to match the incoming sequence of features
(representing the words uttered by a speaker) to the recognition network. Most likely
word hypotheses can then be displayed to the user for selection or confirmation.

Usually the number of languages a system has to support depends on the market a
product variant is produced for. In the case of name dialling, certain pronunciation
variants of names can be eventually eliminated from the recognition network based
on usage statistics. If the owner of the mobile device pronounces an ambiguous word
consistently, the system may be able to identify which pronunciation variant is the
most likely and discard the rest.

As the number of languages grows, the benefits of multilingual phoneme set be-
come more and more dominant (Fischer et al. 2000). In addition, when no acoustic
data is available for some language, but a knowledge-based mapping can be created
between the phonemes of the language and the phoneme-set in the multilingual sys-
tem the language coverage can be easily extended for the unseen language.

Figure 14.2 illustrates the performance of a practical multilingual ASR system
(Kiss and Vasilache 2002). The name dialling system supports 25 languages. The
speech data for multilingual acoustic model training (using a common multilingual
phoneme set) consisted of Danish, Dutch, English, Finnish, French, German, Portuguese
and Spanish material. Altogether 11 databases were used for training. Depending on
the language, the material contained natural sentences, phonetically rich words and
command words. For the rest of the languages no acoustic training data was available.
Only clean speech was used in the training phase. The quantized (Vasilache 2000)
acoustic models were 8-mixture monophone HMMs with 76 phonemes as defined in
our in-house multilingual phoneme set.

A small vocabulary, isolated word recognition task was chosen for the evalua-
tion. For each of the languages, a 120-word lexicon was defined containing both
native and non-native name entries. The recognition tests were carried out using an
in-house isolated-word database comprising of 1,000-8,000 test utterances from
several speakers for each of the languages. The actual number of utterances de-
pended on the language. The performance evaluation was carried out both under
clean and noisy operating conditions. The noisy test data was obtained by artificially
mixing noise to the clean test utterances. Four kinds of noise (car, café, car noise
with background speech and/or music, airport hall) were used at randomly chosen SNRs
between +5 dB and +20 dB. The SNR distribution was set to be uniform. To reduce the
effects of speaker, language, pronunciation and environmental mismatches, on-line,
supervised, maximum a posteriori (MAP) adaptation was applied to the acoustic
models as described in (Vasilache and Viikki 2001).

The average recognition accuracies are 93.61% (SI) and 97.01% (SA) in clean,
85.73% (SI) and 93.01% (SA) in noise. The figure also shows that the lack of native
training data did not necessarily imply worse recognition accuracy. Some languages,
e.g., Romanian and Slovak even outperformed e.g., Danish and Dutch for which
native training data was available. For this small vocabulary recognition application,
the 25-lingual phoneme set proved to be well performing and robust solution.
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Fig. 14.2 Multilingual name dialling results with 25 languages in clean environment (top) and
noise (bottom). The bars reflect the accuracy for each language for speaker independent (SI)
and speaker adapted (SA) models

14.3.2 Multilinguality in Other ASR Applications

In this section we address more complex ASR tasks that are attractive for small
portable devices. More sophisticated command-and-control type of applications in-
clude voice control for music player or radio (‘play song X’, ‘tune to station Y’); or
entering calendar entries or natural numbers by voice (‘meeting on Monday, 22nd
of May at 8 AM’, ‘two hundred and thirty five’). Most of these applications can be
efficiently realized by an ASR engine using a recognition network defined by compact
context-free grammars. Multilinguality in these cases may require language-specific
variants of the grammars. Extending a system to new languages is relatively straight-
forward.

One of the most demanding ASR applications for embedded systems is large
vocabulary dictation. These systems can significantly improve the ease and speed of
text input on devices with limited (small sized qwerty, or only numerical) keypads.
On contrary to simple name dialling and command and control type of applications,
dictation systems require statistical language models (in many cases in the form of
statistical N-grams). There are two difficulties that arise from language modelling.
First, the size of these language models in most cases is quite significant (the other
significant factor usually being the context-dependent acoustic model set). Second,
languages are different and they may call for different types of language models.
For example, highly inflecting languages, such as Hungarian, Finnish, Turkish are
best represented by morpheme-based language models with longer context size,
while analytic languages, such as English can be well described by word models
with relatively short contexts.

14.3.3 Language Resources

As we discussed above, language resources play an important role in state-of-the-art
ASR systems. Automatic text-to-phoneme mapping requires large pronunciation
lexica, acoustic modelling and language modelling require acoustic and text data. In
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various Frame Programs of the European Community there have been several pro-
jects targeting at language resource creation for ASR applications. The SpeechDat-Car
(http://www.speechdat.org/SP-CAR/) project partners collected large multi-channel
speech databases in automotive environments for several languages. The Speecon
(http://www.speechdat.org/speecon/index.html) project focused on collecting linguis-
tic data for speech recogniser training in the consumer devices. The LC-STAR and
LC-STAR II projects (www.lc-star.com) created lexica and text corpora. Recently, it
has been demonstrated in an increasing number of application that language models
can significantly be improved by using freely available text resources from the
World Wide Web (Bulyko et al. 2003; Sarikaya et al. 2005; Sethy et al. 2006; Sethy
et al. 2007).

14.4 Noise Robustness

Robustness of speech recognizers in mobile phones is a key requirement to achieve a
high recognition rate needed for user satisfaction. The term ‘robustness’ in general
reflects the desired high-quality system behaviour in adverse conditions which in-
clude the presence of environmental and background noise, transmission channel
characteristics, speaker specific variations (Lombard reflex, male/female/child, spon-
taneous speech, dialects etc.).

In mobile phones, use of single channel techniques seems feasible. In car
environment, microphone array has found to be an effective means to perform noise
reduction by directional characteristics. The combination of microphone array with
beamforming signal processing proves very effective (Balan et al. 2004). In case of
severe disturbances in car, speech recognition rate is so low that the application of
noise reduction is mandatory. The improvement of speech recognition rate is sub-
stantial and varies as a function of input SNR.

A proven method to cope with adverse conditions is to follow a multi-step
approach including the use of robust HMM models, feature extraction, and noise
reduction (Varga et al. 2002).

14.4.1 Robust HMM Models

Robust HMM models are an effective means to capture the variability. Robustness is
achieved when the emission probabilities observed from the real speech data come
close to the emission probabilities incorporated in the used HMM models. In order to
reduce the probability differences and hence increasing recognition rate, training by
appropriate databases (Hoge 2000; SpeechDat 2000) is essential in order to produce
robust HMM models.

14.4.2 Feature Extraction

Feature extraction algorithms in the front-end are implemented to adapt to varying
channel characteristics, various background noises, and to extract tonal features as
well. A Maximum Likelihood channel adaptation algorithm proved to be efficient
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(Varga et al. 2002). In the enhanced MFCC (Mel Frequency Cepstral Coefficients)
analysis the parameters are aug-mented by first and second order derivatives. Op-
tionally two tonal features (voicing parameter and pitch value) can be added to the
feature set. Two parameter sets resulting from the analysis of two adjacent frames are
transformed via a Linear Discriminant Analysis (LDA) leading to a 24-dimensional
feature vector. The main purpose of the LDA is to reduce the dimensionality of the
vector to achieve a memory efficient solution although it is effective in improving
noise robustness as well (Westphal 1997).

14.4.3 Noise Reduction

Among different kinds of noises, non-stationary noises are the most difficult to
compensate for. Examples of non-stationary noises are background speech in a café-
teria, music and street noise. Their spectral and temporal properties overlap with speech
and hence it is difficult to separate the speech from noise.

Spectral attenuation and subtraction algorithms have proven as effective means in
reducing acoustic noise. These schemes regard noise as an additive uncorrelated
component over clean speech in the captured signal. Noise reduction forms a time-
varying filter whose parameters are calculated from estimated short-term signal and
noise spectrum. Various versions of the noise reduction algorithms were proposed.

In the method of cascading of two stages in combination with a frame dropping
scheme (Andrassy et al. 2001), in the first stage, a Wiener filter is calculated for every
spectral bin as the attenuation function. For the second stage of spectral attenuation,
the noise power spectrum is estimated by the minima of the smoothed power spec-
trum within a moving interval having the advantage that no explicit detection of non-
speech segments is needed. For every frequency bin the noise estimate is subtracted
of the noisy speech signal. In both stages the noise estimate is weighted by an
oversubtraction factor pending on the frequency and on the signal to noise ratio in
order to reflect the uncertainty of the noise estimate. To prevent the thus proces-
sed signal from being negative flooring is employed. The channel compensation
reduces signal changes due to the different characteristics of the transmission chan-
nels. The signal distortion caused by the transmission channel is assumed to lead to
an offset in the cepstral domain. This offset is estimated using a Maximum Likelihood
Estimator. Finally a frame drop algorithm is contained in the front-end in order to
reduce insertion errors by dropping non-speech frames. The speech/non-speech de-
cision is based on an energy criterion.

Next, we describe a noise reduction algorithm called spectral subtraction in the
modulated spectral domain in more detail. Modulation spectral enhancement ap-
proaches like RASTA and high-pass filtering have been effective in reducing channel
distortions. As shown in (Sivadas 2006), spectral subtraction can also be successfully
applied in the modulation spectral domain.

Linguistic information in speech signals is concentrated between 0.4 and 20 Hz
in modulation frequency domain (Houtgast 1989), the region around 4 Hz being
the most significant. Many of the popular temporal filtering algorithms such as
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RASTA (Hermansky, Morgan 1994), dynamic features (Furui 1986) suppress the
modulation frequencies outside the required modulation frequency domain. These
techniques assume that the channel distor-tion is predominantly linear time invariant
and convolutive and that additive noise is minimal. Channel distortion becoming
additive in the log spectral domain, is removed by linear filtering. The most common
approach to minimize the effect of both convolutional and additive noises is to cas-
cade the algorithms to remove each of them. First, spectral subtraction is applied
to reduce the additive noise followed by RASTA filtering or some other bandpass
filtering to remove the convolutional noise.

For effective suppression of non-stationary noise, spectral subtraction needs
special improvement like noise spectrum update during non-speech intervals. An
alternative noise compensation approach tackles the effect of spectrally overlap-
ping non-stationary noises. Modulation spectrum gives the temporal spectral charac-
teristics of the signal within each (mel) frequency band. By applying the Wiener
filter to the time trajectories of each mel frequency filter output it is possible to
alleviate the effect of non-stationary noises. A possible use case for this is voice
activated name dialling in mobile phones. The user may be trying to dial a number in
a crowded cafeteria or in a subway. Due to the non-stationary nature of the back-
ground noise, the effectiveness of conventional noise robustness approaches is
limited.

_ Voice activity Noise modulation
> detection (VAD) spectrum estimation
n . .
y—( ), Windowing > Mel Modulation spectrum Wiener filter in
+FFT filterbanks computation > modulatlon‘
spectral domain

Noisy speech signal

A
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Fig. 14.3 Additive noise reduction by filtering in modulation spectral domain

Figure 14.3 shows the block diagram of the noise reduction scheme. First, Short
Time Fourier Transform (STFT) of the noisy speech is computed. Triangular mel
filter weights are applied to the magnitude spectrum to obtain a mel-spectrogram. A
voice activity detector (VAD) is used to keep track of non-speech regions. Let x(k,n),
y(k,n) and w(k,n) represent instantaneous energy of clean speech, noisy speech and
noise respectively at frame index n for mel-frequency bin k.

Assuming that speech and noise are uncorrelated, the spectral energy of speech
corrupted by additive noise is given by

v(k,n) = x(k,n) + w(k,n) . (14.1)
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Modulation spectrum for each mel filter bank output is computed using N point
FFT window for every sample.

X (k,0) = Y(k,®) + W (k,0), (14.2)

where @ is the modulation frequency. Subtractive noise reduction algorithms can be
expressed as (Virag 1999)

| X (k,0)| = G(k,0)-[Y (k,0®)| with 0< G(k,®)<1. (14.3)
Dropping the mel-frequency bin index %, the gain function can be written as

G(©)=G[SNR . (©)]
7 @)
l-a -
v (@)

R 1
|W(®)| 4 L (14.4)
<
[ (@) a+

712

=1

where, pf/(@)‘ is the modulation spectral magnitude of noise estimated during non-
speech segments, « is the oversubtraction factor, B is the noise floor and exponent
y=y1= 1/7 , determines the rate of change of gain G(®) from 0 to 1. The a posteriori
Signal to Noise Ratio (SNR) is given by

= (14.5)

Modulation spectral component of clean speech is estimated as

X(k,0) = ‘)”((k,@)‘e-/ arg(Y (k.0)) (14.6)
The mel-spectral energy trajectory of clean speech is given by

%(k,n) = FFT ' (X (k,0)). (14.7)

The algorithms were tested on a multilingual small vocabulary isolated word
recognition task. Test set comprises of ~40,000 words from seven European
languages: Finnish, Swedish, German, English, Danish, Icelandic and Norwegian.
The size of vocabulary per language was ~120.

The baseline front-end used in the experiments was based on 13 FFT-derived Mel-
frequency cepstral coefficients (MFCC) and their first and second order derivatives (39
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coefficients in total). Recursive mean removal was applied on all components of the
resulting feature vectors, and the variance of all the components was normalized to
unity (Viikki et al. 1998). A generalized Wiener filter is applied to the magnitude of the
modulation spectrum. The mel filter bank output is reconstructed from the filtered
magnitude spectrum and phase of the noisy speech modulation spectrum using overlap-
add method. Modulation spectrum of the noise is computed during the non-speech
segments using a VAD.

Table 14.2 Performance of noise reduction front-ends on an isolated word recognition task.
The numbers represent Word Error Rate (WER) in percentage

Car Cafe Street  Clean
Baseline 8.79 13.56 12.27 3.67
Spectral subtraction 6.77 9.90 9.12 3.69

Modulation FFT=16 6.79 9.34 8.39 3.72
Spectral
Wiener filter ~ FFT=32  6.05 8.44 7.88 3.69

FFT=64  6.02 8.29 7.81 3.68

The acoustic model set consists of three state monophone models with eight
Gaussian densities per state. The model sets were trained on an in-house training set
containing clean speech data from various European languages. Both sets contained
a total of 75 multilingual phone models that were used to model the basic acoustic
units of the seven European languages mentioned above.

The Word Error Rates (WER) of Wiener filter based front-end with noise com-
pensation in spectral domain and in modulation spectral domain are tabulated in
Table 14.2. Noise is artificially added to the clean utterances at Signal to Noise
Ratios (SNR) ranging from 5 dB to 20 dB in steps of 5 dB. The non-stationary noises
are cafeteria and street noise. Car noise is the stationary one. Results in Table 14.2
are the average WER for the 5 dB to 20 dB SNR conditions.

The highest detectable modulation frequency is half the analysis frame rate. In
our experiments, the frame rate was kept at 100 Hz (= 10 ms frame shift), resulting
in maximum modulation frequency of 50 Hz. The effectiveness of the modulation
frequency noise suppression approach depends on the resolution of the FFT to obtain
the modulation spectrum. With 50 Hz Nyquist frequency, FFT length of 16 provides
resolution of ~6 Hz. Since we want to resolve modulation frequency components less
than 4 Hz, a longer analysis window is required. From the table it can be seen that
longer FFT windows give better noise robustness.

Comparing the relative improvements obtained using spectral subtraction and
modulation spectral Wiener filter for different types of noises, it can be seen that the
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improvements in the case of non-stationary noises is higher in the case of modulation
spectral filtering.

14.5 Footprint and Complexity Reduction

Small memory footprint and low computational complexity are essential for any
embedded ASR system. The reasons are several-fold: cost reduction, competing
applications for limited resources and preserving battery life in portable devices.

Concerning memory footprint, we differentiate between static (Flash) and dynamic
(RAM) memory. In most embedded ASR systems, the Flash memory footprint is
largely determined by three factors: the size of acoustic models (AM), the size of
language model (LM) and the size of pronunciation lexicon (Lex) and/or automatic
text-to-phoneme model.

14.5.1 Footprint Reduction of Acoustic Models

In speaker independent, sub-word based systems acoustic models are usually context-
independent or context-dependent phonemes. These models aim at capturing the
statistical properties of phoneme realizations (phones) in real-life speech. There are
two major options for reduction of AM size: to reduce the number of parameters in
the model set, and to reduce the memory necessary to represent model parameters.
Fortunately, the first approach coincides with the goals of robust model training, i.e.
the amount of training data available usually limits the number of parameters in the
model set that can be estimated in a reliable manner.

There are two widely used parameter tying methods to reduce the size of acoustic
models while retaining as high modelling accuracy as possible. The first method is
called decision tree-based state-tying (Young et al. 2002), where states sharing some
common properties in the model set are pooled together, so a common pool of train-
ing data can be used to estimate state parameters more reliably. In most cases, state-
tying is performed in a knowledge and data-driven manner, whereby pre-defined set
of questions (phonetic questions) are used to train a binary decision tree. At each
branching point, the tree is grown (phonetic question is selected) in a manner to
maximize the likelihood of the training data given the final set of state tyings.

The second method is called density tying. It is usually done in a completely
data-drive manner, and aims at reducing the number of acoustic densities in the
model space by combining densities that are closer to each other (as defined by a
suitably chosen distance metric) than a certain threshold. Density tying does not take
into account the state structure in the model space, and can be used in combination
with state-tying. In many practical cases, more compact AM models can be trained by
using subsequently state and density tying, than either of these methods alone. As we
shall see in Sect. 14.6, these techniques can be successfully applied to build a
practical embedded dictation system.

The next large category of footprint reduction techniques consist of various
quantization schemes aiming at representing model parameters at a reduced resolution
to save memory.
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In HMM-based systems the model parameters are density means, variances
(assuming diagonal covariance matrix), and mixture weights. Usually the first two
are considered more important, because in practice mixture weights contribute only
little to the overall state emission probabilities. These density parameters can be
quantized in several ways. Popular techniques include scalar quantization (Vasilache
2000), joint vector quantization of mean and variance, and subspace vector quanti-
zation (Bocchieri and Mak 1997). A comparison of these techniques is presented in
(Leppidnen and Kiss 2005). As we shall see later in this section, the quantization of
model parameters can be combined with quantization of feature vectors to result in
fast state emission probability computation.

14.5.2 Footprint Reduction of Language Models

For language modeling, we focus our attention to statistical N-gram language models
as they are widely used in many practical systems (for the sake of simplicity we
assume that the basic modeling unit in the LM is a word and the model is a back-off
bi-gram):

)= {(N(iJ)—D)/ NG) if NG, j)>t (14.8)

’ b)) p()) otherwise
where N(i; j) is the number of times word j follows word i and N(i) is the number of
times that word i appears. Essentially, a small part of the available probability mass
is deducted from the higher bi-gram counts and distributed amongst the infrequent
bi-grams. This process is called discounting. When a bi-gram count falls below the
threshold t, the bi-gram is backed-off to the unigram probability suitably scaled by a
back-off weight in order to ensure that all bi-gram probabilities for a given history
sum to one (Young et al. 2002). Bi-gram N-gram models need the following para-
meters to be stored: word pairs, bi-gram probabilities and back-off scaling factors.
An LM can be considered as a sparse graph where vertices are words from the
vocabulary and edges represent bi-grams. As such, it can be efficiently represented
using adjacency lists.

For language model compression, the same two principles can be applied as we
showed for acoustic models. First, the number of parameters in a language model can
be effectively reduced (and the model be made more robust) by using e.g., entropy-
based pruning schemes (Stolcke 1998).

LM model parameters can be represented in an efficient manner by using profile-
based compression (Olsen and Oria 2006) and quantization. The idea behind profile-
based com-pression is simple. When N-grams with the same history are ordered
according to decreasing probability, the resulting probability profiles are remarkably
similar. Some profiles may be identical (especially when the probability values are
quantized), or they may be prefixes of longer profiles. Therefore, the same profile
can be re-used to represent the probability distribution of N-grams for several
different word histories, thereby saving memory.

Profiles in effect act as a codebook. Profiles themselves can also be compressed.
As they tend to follow an exponential decay, non-uniform sampling can effectively
be applied. Values in between samples can be interpolated. Table 14.3 shows the LM
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footprint reduction achieved for representing N-gram probabilities in a practical large
vocabulary embedded dictation system. In the table Q represents the quantization
levels for probability values (e.g., Q16 corresponds to 4-bit quantization), while S
represents the parameter for non-uniform (logarithmic) sampling of profiles. So for i
denoting the location of the kth sample in the profile:

b =1 (14.9)
i, =i, , + max(1,round(log,, (i, ,)/S)) .

It can be seen that the memory footprint can be reduced 12-fold from 436 KB
(S=1,000, NoQ) to 36 KB (S=0.5, Q16) with a minor loss in word accuracy
(85.1% vs. 85.0%).

Another useful practical technique to reduce the footprint and improve the
performance of language models in embedded systems is clustering. The use of
semantic classes has been proposed in (Oria and Olsen 2006). In a large vocabulary
(33Kwords) embedded dictation task for US English, the use of semantic classes
reduced the model size by 16%, while at the same time also reduced the word error
rate by 12% relatively.

Table 14.3 Number of profiles, average profile length, size of profile codebook and word
accuracy for different quantization and profile compression settings (From Olsen et al. 2006,
© 2006 IEEE)

S =1,000 S=0.5 S=0.1 S=0.05 S=0.01
No Q 4033/52 4017/10 3849/4 3814/3 381072
436 kb 103 kb 51 kb 45 kb 39 kb
85.1% 85.0% 84.6% 84.0% 79.5%
Q32 3108/64 2797/13 1279/6 905/5 456/3
213 kb 48 kb 13 kb 8 kb 4 kb
85.0% 85.0% 84.6% 84.1% 81.2%
Ql6 2454/78 1773/16 566/8 344/6 151/4
202 kb 36 kb 7 kb 4 kb 1 kb
84.9% 85.0% 84.5% 84.1% 81.1%
Q8 937/164 479/30 154/12 90/9 42/5
157 kb 17 kb 2.6 kb 1 kb 0.4 kb
73.7% 84.7% 84.2% 83.7% 81.9%
Q4 297/356 119/61 44/22 26/13 14/5
107 kb 8 kb 1 kb 0.5 kb 0.1 kb

84.0% 83.7% 82.4% 81.8% 78.3%
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14.5.3 Footprint Reduction of Pronunciation Lexicon

In addition to acoustic and language models, the large size of pronunciation lexica
can also affect the footprint of embedded ASR system. In most cases, however, word
labels (written form) and corresponding phoneme sequences (pronunciations) can be
effectively compressed by relatively simple means. In a large vocabulary system, it is
likely that several words in the lexicon have the same starting characters, or starting
phonemes in their pronunciation. This property can be used to store written word labels
(or pronunciations) in a tree structure. Words can share the common starting letters,
and these prefixes need to be stored only once. The benefit of the tree representation is
that it lends itself to efficient search.

In addition to storing the pronunciation lexicon explicitly, automatic T2P methods,
based on decision trees (Quinlan 1993), neural networks (Sejnowski and Rosenberg
1987; McCulloch et al. 1987; Hakkinen et al. 2000), or finite-state transducers (Caseiro
et al. 2002) can also be applied.

14.5.4 Reduction of Computational Complexity in Embedded ASR
Systems

Next we look into methods to reduce the computational complexity of embedded
ASR algorithms. We divide these methods into two categories. The first category
contains algorithms for efficiently computing state emission probabilities, while the
second category focuses on efficient search in the recognition network.

In state emission probability computation, first we focus on continuous density
HMMs (CDHMMs) with state densities consisting of a mixture of diagonal Gaussian
densities. The logarithmic Gaussian density likelihoods are computed as follows

N _ 2
L :Ck_gz(xf ), (14.10)

2
243 O

where L, is the log-likelihood of the density 4, x; denotes the ith component of the
feature vector, y4; and oy; stand for the ith mean and standard deviation component of
density k. N denotes the total number of components in the feature vector. The
additive constant C} is given by

| . (14.11)
C, =logl ————
‘ [H?IJZHGE, J
Finally, the emission probability for one state is expressed as
5 - 1og(zexp<m ‘L, >] < max(i, +1,), (14.12)
k

where Wy is the mixture weight for density & in state s and the summation is
performed for all mixture densities corresponding to s. In practice the log sum
operation can be avoided by taking into account only the best scoring density in
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every state. This significantly reduces the state score computation without significant
effect on recognition accuracy.

In (Kiss and Vasilache 2002) three methods for simplifying the computation of
state emission probabilities of continuous density-based HMMs are proposed. Feature
component masking, variable-rate partial likelihood update and density pruning all
resulted in significant savings in the decoding complexity with marginal impact on the
recognition performance. A combination of feature component masking and density
pruning was evaluated in a small vocabulary, 25-lingual, speaker-independent, isolated
word recognition system. With a computational complexity reduction of 62% com-
pared to the baseline system, a marginal, 1.6%/6.5% relative error rate increase was
obtained without/with on-line Maximum A-Posteriori (MAP) adaptation on the aver-
age in clean and noisy operating environments. The presented framework can also be
extended to larger vocabulary systems.

An often used technique to speed up density score computation is Gaussian
selection (Bocchieri 1993; Gales et al. 1999). The idea behind GS is to reduce the
search space for density score computation by clustering the densities in the model
space. During decoding, in a two-level GS setup, first the cluster centroids are matched
to the incoming feature vector, and in the second step only members of the best
matching clusters are used for score computation. The number of densities in the best
clusters can be significantly less than in the entire model space. Usually densities are
clustered into overlapping clusters (one density may belong to more than one clus-
ter). This improves accuracy, but also increases the memory needed for storing the
model. The reason is that storing the identities of densities belonging to a given
cluster can be excessive when the overall density count in the model set is large. In
(Leppidnen and Kiss 2006) a novel Gaussian selection algorithm is proposed. It uses
non-overlapping clusters, therefore cluster members can be identified by a starting
and ending index in a linear array. The overhead to store the identity of cluster
members is thus minimal. The scheme achieves 66% computational savings with a
relative increase in word error rate (WER) of 4%. The GS scheme is also combined
with frame rate reduction and feature masking provides further savings in com-
putation. 75% (4% increase in WER) and 68% (3.5% increase in WER) savings were
obtained by adding frame rate reduction and feature masking, respectively.

All of the above schemes can be applied to HMM models with continuous or
discrete probability distributions. However, in case of discrete HMMs state emission
probability computation can also speeded up significantly, if in addition to model
parameters, feature vectors are also quantized. In the simple case of scalar model
quantization (Vasilache 2000) with 5-bit allocated to mean and 3-bit allocated to
variance (more precisely inverse standard deviation), any given pair of mean and
inverse standard deviation component can take 256 different values. Feature vectors
can usually be quantized at a rate of 3—4 bits per component, without any loss in
recognition accuracy. In a system utilizing 5 + 3 bit quantization for model parameters
and 4-bit quantization for feature vector components state emission probabilities can be
calculated as a simple lookup operation in a 256 x 16 table. The model parameters and
the feature vector can be used to address the table, which stores pre-computed state
emission probabilities.
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14.5.5 Low Memory, Fast Decoding

A large network recognition network will have many nodes and one way to make a
significant reduction in the computation needed is to only propagate tokens (Young
et al. 1989) which have some chance of being amongst the eventual winners. This
process is called token pruning (Young et al. 2002) and is widely applied in em-
bedded ASR systems. It can be implemented at each time step by keeping a record of
the best token overall and de-activating all tokens whose log probabilities fall more
than a beam-width below the best. In certain cases, it may be necessary to limit the
worst-case RAM memory use for the decoding network (not to risk running out of
memory when several applications are used concurrently). In this case, a maximum
limit can be set for the overall number of active tokens. In the beginning of decod-
ing this token buffer is filled up, but when progressing in the utterance, the log-
probability-based thresholding may limit the number of active tokens below the
maximum level. At first it may seem risky to set a hard limit in the number of tokens
for a decoding network. In practice, however, tree-structured networks prove quite
robust to this, because in the initial phase of decoding tokens are active close to the root
of the tree (shared prefixes of words), and when progressing further, only the most
likely word candidates must be covered by active tokens.

Finally, a practical and important approach to reduce active RAM footprint of
embedded ASR systems is to dynamically load large components of the system (e.g.,
lexicon or LM). The idea is similar to caching, whereby only the most actively used
parts are kept in RAM memory, and less frequently used parts are stored in slower
access Flash memory.

14.6 Platforms and an Example Application

In Table 14.4 we summarize the basic technical properties of some recent embedded
platforms. Nokia’s smartphones and N800 Internet tablet are ARM-based devices
running around 220-330 MHz featuring 10-128 MB of SDRAM and 10-256 MB of
NAND Flash memory that can be extended up to 1-4 GB using removable memory
cards. The smartphones use Symbian OS, while the Internet tablet is Linux-based.
Depending on the model and OS used, the free RAM memory available for user
applications varies between ~4 and 22 MB for smartphones, and is ~112 MB for the
Internet tablet. Internal Flash memory has 8.5—-160 MB free space for applications on
the smartphones and ~176 MB on the Internet tablet. ARM 9 (OMAP1710) supports
only fixed-point arithmetics, while ARM11 (OMAP2420) has a built-in floatingpoint
co-processor, making porting easier.

The ARMI11 core also includes hardware acceleration for 3D graphics, but this
feature is not easily used for ASR purposes. Both the OMAP 1710 and 2420
processors include a powerful DSP in addition to the ARM MCU. For easy
application development (and portability) reasons, however, the DSP is not used by
add-on ASR applications.



320  Imre Varga and Imre Kiss

Table 14.4 Basic properties of example embedded portable platforms

Device Nokia 6630 Nokia E60 Nokia N93 Nokia N95 NokiaNgoo o iPAQ  Phrasedator HPIPAQ — HP iPAQ

HX2495 P2 H2750 H3800
0os Symbian OS Symbian OS Symbian OS Symbian OS Linux Windows  Windows  Windows Linux
Internet . . Windows .
SWoplattorm  S602.6  S603.0  S6032  S604.1 Tabletos /indows  Windows iy o0gs Familiar
Mobile 5.0 CE3.0 v0.6.1
2007 SE
ARM926 ARM926 ARM11 ARM11 ARM11
Intel Xscale Intel XScale Intel XScale Intel
Processor (OMAP (OMAP (OMAP (OMAP (OMAP
1710) 1710) 2420) 2420) 2420) PXA270 PXA 255 PXA 270  StrongARM

Clock rate 220MHz 220MHz 332MHz 332MHz 332MHz 520MHz 400MHz 624MHz 206MHz

SDRAM 10MB 64MB 64MB 64MB 128MB 64MB 256MB 128MB 64MB
SDRAM

available for  ~4-5MB  ~21MB ~22MB ~18MB  ~112MB N/A N/A N/A ~35MB
apps.

Flash / 10MB/  128MB/  128MB/  256MB/  256MB/  192MB/

Memory 168 2GB 2GR 2GR 4GB A N/A/1GB  82MB/N/A 32MB/N/A
card (max)

Fash

available for  ~8.5MB  ~64MB ~50MB  ~160MB  ~176MB N/A N/A N/A N/A
apps.

Virtual no no no no es es es es es
memory ¥ y ¥ ¥ y

HP’s PDAs are built around Inter’s Xscale processors (PXA255, PXA270)
running around 400-620 MHz. An older model released in 2002 used Intel Strong-
ARM processor running at 206 MHz. They include 64-128 MB of RAM (with the
exception of custom made Phraselator P2 device having 256 MB of RAM). The
amount of available Flash memory ranges from 32 MB up to 1 GB using external
memory card. All Xscale processors are fixed-point. Most systems use various
versions of Windows CE/Mobile, however some devices have been used with Linux
and Pocket Mac operation systems. Linux and Windows operating systems support
virtual memory, while the presented versions of Symbian do not.

14.6.1 Example Application: Large Vocabulary Isolated Word Dictation

In this section we describe the work done in Nokia Research Center on low footprint
embedded dictation (Karpov et al. 2006). The system supports five languages: US
English, UK English, French, Spanish and Mandarin Chinese. It runs in 1.5-2 MB of
RAM and requires 1.7-2.4 MB of Flash storage depending on the language. The
system works reliably in speaker independent mode, but for the best accuracy a few
minutes of speaker enrollment is advised. The word accuracy of the system (after
enrollment) varies between 85% and 92% on the average for western languages and
~90% character accuracy for Chinese. The size of the vocabulary is between 23,000
and 43,000 words depending on the language (Fig. 4.4).
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Short message

= [ VoiceEnroll

% & Sentence 1 of 30

To | Karpov Evgeny

Hi, are you going | Both nr'gunization:

to can help you find support
ton groups
tonight

Select Cancel Pause

Fig. 14.4 Screen shots of the embedded dictation application running on a Nokia 6630 mobile
phone. The left and right panels respectively show the dictation process and the enrollment

The system is designed for isolated word dictation; users are required to leave
short pauses between words. This dictation style allows word segments to be iden-
tified reliably, and feedback can be given to the user between word segments.
Isolated word decoding also made it possible to keep the RAM footprint very low.

Isolated word dictation is computationally simpler than continuous word dictation
because the word segmentation can be decoupled from the recognition process. In our
engine we do this by using a VAD module for identifying word segments based on the
pauses between the words. Word segments are decoded left to right in real time as they
become available by an isolated word decoder. The words to be scored in a segment
are selected by using a langu-age model for predicting likely word continuations of the
words in the previous segment. Depending on the Ul mode, a sentence decoder can
optionally be used for computing the overall most likely sentence hypothesis given the
scored word lists in each word segment.

Voice activity detection: The VAD algorithm measures the long-term spectral
divergence (LTSD) between speech and noise (Ramirez et al. 2004). It formulates
the speech/non-speech decision rule by comparing the long-term spectral envelope to
the average noise spectrum. The decision threshold is adapted to the measured noise
energy while a controlled hangover is activated only when the observed SNR is low.
It uses a long-term speech window to track the spectral envelope and is based on the
estimation of so-called long-term spectral envelope (LTSE). The decision rule is then
formulated in terms of the long-term spectral divergence (LTSD) between speech
and noise.

Word decoder: For every word in the dictated message, the system predicts a
number of possible follower words using a language model. These words form the
system vocabulary for the next word. The recognition network is composed as follows:
first phonetic pronunciations are fetched from the pronunciation lexicon for all words
in the vocabulary. Next, a tree-structured phoneme-decoder network is created in
such a way that common prefixes in the phonetic pronunciations are shared (i.e., Dave
d-el-v and David d-el-v-I-d will share the three initial phonemes d-el-v). This re-
presentation reduces memory footprint and increases decoding speed. The decoding is
carried out in the conventional token-passing way with pruning.
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Language modelling: The language model (LM) used in the demonstrator is
based on a second order n-gram model: bi-grams and unigrams. The LM has two
roles: vocabulary selection and sentence modelling. When the beginning of a new
speech segment has been identified by the VAD module, the LM is used for selecting
the words that are to receive acoustic scoring by the decoder in that segment. In the
demonstrator, selection is based on bi-gram ‘prediction’. Assuming the correct word
in the previous segment is known, the most likely word continuations will be the bi-
grams that start with that particular word. In case the list of predicted words is short,
the word list is padded by backing off to unigram prediction. This minimizes the
probability of not having the correct word in the list that is selected for acoustic
scoring. Vocabulary prediction selects the most likely words, but at that stage the
LM probabilities are not needed. However, when the selected words have received
acoustic scoring, the word probabilities are required so that a correct ranking can be
made which takes both acoustic probability and LM probability into account. Hence,
both the word and the n-gram probabilities need to be stored in the language model.
The probabilities do not have to be represented very accurately, and therefore they
can be heavily compressed (Olsen and Oria 2006).

Acoustic modelling: The acoustic model set used in the demonstrator consists of
bi-phone HMMs. Each model is made up of three states with 16 Gaussian densities
in each state. All bi-phones are left-context. To make the models more compact and
to enable proper training of all parameters the models have been tied using decision-
tree state-tying and density-tying. For fast observation probability computation, both
model parameters and feature vectors are quantized.

Language resources: A large amount of domain-specific data is required for
training reliable acoustic and language models. This is especially true for LMs that
show a very strong dependency on the genre, style and topic of the data they are trained
on. This means that an LM that performs well in one specific domain will most pro-
bably perform quite poorly on test data from a different domain. On the other hand, a
relatively small amount of domain-specific training data is considerably more effi-
cient than a large amount of generic training data. A database of Personal Communi-
cation (PCOM) data was collected for training both acoustic and language models.
The text database for LM training consists of 2 million words of simulated SMS
messages that were submitted by native speakers of the language. The messages cover
12 topics representative of typical messaging communication (‘vacation report’,
‘change of plans’, ‘family communication’, ‘invitation’, ‘congratulations’, ‘travel plans’,
‘business’, ‘feedback’, ‘teenagers’, ‘school’, ‘notes/reminders’, and ‘open domain’).

The acoustic model training data consisted of off-the-shelf databases (Speech-
Dat-Car, Speecon, Wall Street Journal, etc.) and the in-house PCOM databases
for each language. The PCOM acoustic databases were recorded from 100 native
speakers per language (evenly distributed by gender, age and dialectal region) in
the office environment. Each speaker has 30 enrollment utterances for acoustic
adaptation and 240 test utterances (SMS messages). Enrollment and SMS messages
were read by the speakers both in continuous and isolated word manner. We used on
the average 70 speakers for training and 30 speaker for testing. The total amount of
training material was ~200 h e.g., for US English. The addition of the PCOM
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data base increased performance quite significantly. This is mainly because part of
this data is spoken in an isolated manner, which matched well the recognition task.

14.7 Conclusion and Outlook

Speech recognition is an important technology that can greatly improve the usability
of mobile phones. In order to make this possible, several problems ranging from
adverse noise conditions and implementation constraints to wide language support
have to be overcome.

In this chapter, we reviewed the typical mobile application scenarios and presented
some advanced solutions to address the above problems. We described methods for
robustness impro-vement by robust HMM modelling, feature extraction, and noise
reduction techniques.

Simultaneous support of multiple languages is important for mobile phones dis-
tributed on the global market. We described the necessary technology components in
the framework of a practical multilingual speaker-independent name dialling system.
We also briefly reviewed the implications of multilinguality to more complex ASR
applications, such as embedded dictation.

Our presentation also focused on implementation aspects including effective te-
chniques for small memory footprint and low computational complexity. We ad-
dressed the charac-teristics of typical mobile phone platforms from the perspective of
speech recognition and presented the details of an example application on large
vocabulary isolated word dictation system.

Voice Uls clearly compete with already accepted Ul methods of mobile phones.
Due to the significant advances in embedded ASR technology over the past years,
the technology is becoming more and more widespread. However, in practical de-
ployments ASR technology often faces extremely high level user expectation.
Human-like performance still remains a challenge for speech recognizers. As ASR
algorithms improve and mobile phone platforms become more and more powerful,
we can expect embedded ASR to become a viable and widely used solution for more
and more complex applications in mobile phones.
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Handheld Speech to Speech Translation System

Yuqing Gao, Bowen Zhou, Weizhong Zhu and Wei Zhang

Abstract. Recent Advances in the processing capabilities of handheld devices (PDAs or mo-
bile phones) have provided the opportunity for enablement of speech recognition system, and
even end-to-end speech translation system on these devices. However, two-way free-form
speech-to-speech translation (as opposite to fixed phrase translation) is a highly complex task.
A large amount of computation is involved to achieve reliable transformation performance.
Resource limitations are not just CPU speed, but also the memory and storage requirements,
and the audio input and output requirements all tax current systems to their limits. When the
resource demand exceeds the computational capability of available state-of-the-art hand-held
devices, a common technique for mobile speech-to-speech translation system is to use a client-
server approach, where the handheld device (a mobile phone or PDA) is treated simply as a
system client. While we will briefly describe the client/server approach, we will mainly focus
on the approach that the end-to-end speech-to-speech translation system is completely hosted
on the handheld devices. We will describe the challenges and algorithm and code optimization
solutions we developed for the handheld MASTOR systems (Multilingual Automatic Speech-
to-Speech Translator) for between English and Mandarin Chinese, and between English and
Arabic on embedded Linux and Windows CE operating systems. The system includes an
HMM-based large vocabulary continuous speech recognizer using statistical n-grams, a trans-
lation module, and a multi-language speech synthesis system.

15.1 Introduction

In recent years, there have been significant efforts to develop reliable and satisfactory
automatic speech-to-speech translation systems, which are typically available on more
powerful platforms such as desktop servers or laptop computers. However, because
such devices are not compact, they are not convenient for mobile applications. This
limits the usefulness of this form of translation technology. Many circumstances
where translation is required can only be effectively aided by truly mobile devices
such as a Personal Digital Assistant (PDA).

On the one hand, automatic speech-to-speech translation is a highly complex task.
A large amount of computation is required to achieve reliable translation performance.
Memory and storage requirements, and the audio input and output requirements all
tax current systems to their limits. Therefore, when the resource demand exceeds the
computational capability of available state-of-the-art hand-held devices, a common
technique for mobile speech-to-speech translation system is to use a client-server
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approach. Here, the hand-held device (either a mobile phone or PDA) is treated
simply as a system client, and the speech input is compressed and transmitted from
this client to a back-end server that is much more powerful, either over a wireless
telephone network or a wireless LAN connection such as Wi-Fi (IEEE 802.11b). The
entire end-to-end speech translation task is conducted at the server. Finally, the spo-
ken utterance in the target language is sent back to the hand-held device, thus provid-
ing the user audio output on location.

Obviously, there are several disadvantages of the client-server based approach.
First, the service area is limited to locations where wireless connections are available.
Second, large vocabulary speech recognition over conventional telephone channels,
especially unreliable wireless channels, will degrade the quality of the translation.
Third, this approach limits the flexibility of the user’s control over the overall trans-
lation system, making highly customized applications much more difficult to design
and deploy.

On the other hand, the development of increasingly powerful mobile devices is
reaching a level that is comparable to the power of desktop systems of only a few
years ago. In order to bridge the gap between the requirements of contemporary tran-
slation systems and the current mobile computing platforms, we have employed a
number of optimizations, significantly enhancing the accessibility of our automatic
speech translation technology. We have developed our speech-to-speech translation
systems on PDA with an embedded Linux platform as well as the popular Window-
CE platform.

Our PDA-based system achieves comparable translation performance and speed
to that found in our MASTOR desktop system. Numerous optimizations were em-
ployed to improve translation speed and to reduce resource demands. However, the
system still maintains a large vocabulary continuous speech recognizer that operates
in real time, or near-real time. The typical response time for an end-to-end translation
isunder 5 s.

The organization of this chapter is as follows. Section 15.2 describes the system
overview. Section 15.3 covers each major components of the system. Section 15.4
explains the experiments results and has some discussions. And we give the conclu-
sion in the final section.

15.2 System Overview

15.2.1 System Architecture

Our system employs the same architecture as its desktop counterpart, the MASTOR
system (Gao et al. 2002). Specifically, the system consists of a Large Vocabulary
Continuous Speech Recognizer (LVCSR) that operates in real-time or near-real time
to recognize input utterances, a fast translation module to translate the recognized
text from the source language into text in the target language, and a multi-language
speech synthesizer to convert the translated text into audio output in the target lan-
guage. The system GUI is designed to let the user check both recognition and trans-
lation results, and to allow the user to re-play the output. Logging of results from
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the recognition and translation modules, as well as system configuration is also
implemented in the system.

Figure 15.1a, b show the architectures of our speech translation systems when
two different translation approaches are used respectively. Figure 1a shows the con-
cept based translation approach is used. The input speech is recognized using an
automatic speech recognizer (ASR) and then parsed by a statistical natural language
understanding (NLU) module. An information extraction component is responsible
for analyzing the semantic tree obtained from the NLU. This component is responsi-
ble for representing the (recognized) spoken sentence information in a language
independent “interlingua” representation (Gu et al. 2006). This is combined with the
canonical representation of “named entities” such as numbers and other attributes
detected by our semantic model. The resulting representations are sent to a natural
language generation (NLG) engine to render in the target language. The two types of
information are translated using distinct models, with the specific attributes of items,
such as times and dates, using conventional techniques familiar to the machine trans-
lation community. The interlingua translation, however, uses statistical techniques
and can perform considerable surface changes when required for the target language.
Finally, when a textual representation of the utterance in the target language is com-
plete, a text-to-speech synthesizer is used to produce spoken output.

ASR |:> INLU |:> NLG |:> TTS

SIPL LM

ASR |:> Multi-Layer Viterbi Decoder |:> TTS

Fig. 15.1 System architecture of a speech-to-speech translation system on a handheld device:
a Statistical NLU-NLG based concept translation approach. b statistical finite-state transducer
based phrase translation approach

Figure 15.1b shows the architecture when statistical phrase based translation
approach is used. The target translation can be obtained from a multi-layer Viterbi
search, given the Statistical Integrated Phrase Lattices (SIPL) and a statistical
language model, which is a novel framework for performing phrase-based statisti-
cal machine translation. IBM internal finite-state transducer toolkit is used during
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the development. In this work, we propose a novel framework for performing
phrase-based statistical machine translation using weighted finite-state transducers
(WFST’s) that is significantly faster than existing frameworks while still being
memory-efficient. In particular, we represent the entire translation model with a
single WFST that is statically optimized, in contrast to previous work that represents
the translation model as multiple WFST’s that must be composed on the fly. While
the language model must still be dynamically combined with the translation model,
we describe a new decoding algorithm (Zhou et al. 2006) that can be viewed as an
optimized implementation of dynamic composition.

15.2.2 Hardware and OS Specifications

To demonstrate the feasibility of building a system with our speech translation archi-
tecture on a standard PDA, we have built our system on three target hardware plat-
forms. The first one (Zhou et al. 2004) is an iPaq PDA model H3800. It is equipped
with an Intel’s String ARM CPU with 206 MHz. The system has 64 MB of RAM
and 32 MB of flash ROM. The original of this iPaq is shipped with Microsoft’s
Pocket PC 2002 and it is replaced with Familiar, a full featured Lunix distribution for
mobile devices, based on the embedded Linux kernel. This PDA is also equipped
with either an IBM Compact-Flash Micro drive, or a MultiMediaCard. We use it to
store n-gram language models, translation models and dictionaries.

The second one (Zhu et al. 2006) is a customized PDA (referred to as the P2 be-
low). It is equipped with an Intel 400 MHz XScale PXA 255 processor. The system
has 256 MB of RAM and an SD (Secure Digital) card for additional storage. The P2
has been ruggedized for outdoor use. The original P2 was equipped with software for
one-way, fixed phrase translation.

The third one is the HP iPaq PDA model H2750, a popular and commercially
available device. The processor shipped with this product is Intel’s XScale PXA 270
running at a frequency of 624 MHz. The system has 128 MB of RAM and an §2 MB
iPAQ File Store system. It is also equipped with an SD card for additional storage.
We use SD card to store the weighted finite state transducer based translation models
and TTS voice files for the concatenated embedded TTS. All systems have a built-in
microphone for speech input and an integrated speaker for audio output. The buttons
on the PDA are used as push-to-talk for speech input, and user can also use the stylus
to start or stop speech input.

15.2.3 Interface

Figure 15.2 shows the MASTOR user interfaces for several the handheld devices. On
the left is on a Linux-based iPaq, on the middle is on a custom designed PDA using
Microsoft Windows WinCE.NET 4.2 operation system, on the right is on HP iPAQ
H2750 using Microsoft Pocket PC 2003 OS system. Usually, on the top of the
screen, there are two radio buttons or two Start/Stop buttons for each direction show-
ing the status of the microphone. There are also buttons showing the current speech
translation direction. In the middle, there are two edit controls, one for displaying
recognition results, the other for displaying translation results. The translation button
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Fig. 15.2 Screenshots of Mastor system on several platforms a iPAQ H3800 using Embedded
Linux; b Customized PDA using WinCE.net 2.4.0; ¢ iPAQ H2750 using Pocket PC 2003

is for initiating the translation. The play output button is for playing or re-playing the
audio output.

On the custom designed ruggedized PDA system. There are five buttons on the
bottom of the screen: The Setting button is for setting the system parameters; 1.5
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way button is to enable 1.5-way translation mode. Using 1.5 Way mode may be more
convenient for the user in cases when the speech recognition results are slightly dif-
ferent from what was said. The list contains sentences sorted in order of similarity
to what was spoken and allows the user to quickly choose a similar sentence. A sen-
tence in the list can be clicked and then translated by pressing the Play button. 1.5
Way mode displays common, short phrases. Reset button is for system reset; Exit
button is for exiting the Mastor system; and finally, the Instruction button is used for
playing instruction of the system.

On Pocket PC 2003 system, there is one plus and one minus button which let the
user change the volume level of speech output. There is also an indicator which
shows the state of the adaptation function in the Automatic Speech Recognition
(ASR) engines. The action of turning on or off this adaptation function is in the sys-
tem menu. There are two switch buttons and one toggle button on this specially de-
signed PDA. We utilize the switch buttons to turn on or off the microphone for both
languages. We use the toggle button for translation and playing output, as well as
increasing or decreasing the playback volume. Therefore, the system on this PDA is
stylus free, making it possible to operate with one hand.

15.3 System Components and Optimization

15.3.1 LVCSR on Handheld Devices

The recognition module developed for our mobile speech translation system is an
HMM-based LVCSR engine using statistical n-grams. Unlike most grammar-based
embedded speech recognition systems, our system has the advantage of large voca-
bulary coverage. Moreover, it has the flexibility to switch to new application domains,
which is typically only found on desktop-based systems. To accomplish this, IBM’s
large vocabulary speech recognition engine, as featured in the popular ViaVoice dicta-
tion product, was ported to the XScale processor architecture.

On porting this large scale system to ARM architecture, it is first noted that the
StrongARM platform (as well as most currently available handheld devices), unlike
the Intel x86 series, has no integrated floating point (FP) hardware. It depends en-
tirely on software that emulates the FP co-processor. Despite much of the IBM rec-
ognizer being developed to use mostly integer computations, our initial profiling
experiments showed that substantial amounts of time were consumed by FP calcula-
tions. Therefore, significant efforts were made to integerize the most of the signal
processing front-end and search components of this system. This includes a fixed
point math implementation of the following major recognizer components: the Mel-
cepstrum feature extraction, the Gaussian likelihood computation of the context de-
pendent phone models, as well as the procedures of fast match and detailed match
during the decoding process. Particularly, at the feature extraction front-end compu-
tation modules such as high-pass filtering, discrete cosine transformation, Fast
Fourier transform, LDA, pitch calculation and silence detection have been mostly
integerized.
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The English acoustic model uses an alphabet of 52 phones. Each phone is mod-
eled with a 3-state left-to-right hidden Markov model (HMM). This system has
approximately 3,500 context-dependent states modeled using 42 K Gaussian dis-
tributions and trained using 40 dimensional features. The context-dependent states
are generated using a decision-tree classifier. The Chinese acoustic model uses 162
phones, including some phones that are tone-dependent. Each phone is also modeled
with a 3-state left-to-right HMM. It has about 3,000 context-dependent states mod-
eled using 40 K Gaussian distributions. The colloquial Arabic acoustic model uses
about 30 grapheme phones that essentially correspond to letters in the Arabic alpha-
bet, not including any diacritics such as short vowels. The colloquial Arabic HMM
structure is the same as that of the English model. The colloquial Arabic acoustic
model is also built using 40 dimensional features. It has 28 K Gaussian distributions.
All models are trained using discriminative training (Povey and Woodland 2002).

A statistical trigram language model is built for English, Chinese and colloquial
Arabic languages recognized in this speech translation system. The English language
model is built using a corpus of 6.4 million words. This corpus is split as training and
holdout sets with 5.7 million and 0.64 million words, respectively. The vocabulary
size is about 30 K. The language model is smoothed using a deleted interpolation
technique. Due to memory limitations of the P2 device, the language model is further
pruned with bigram and trigram thresholds of 1 and 2, respectively. The size of the
English language model is about 7 MB. In Chinese, the language model is built
using a corpus of 2 million words, with a vocabulary size of 10 K. The size of Chi-
nese language is about 5 million.

In Arabic, words can take prefixes and suffixes to generate new words that are
semantically related to the root form of the word (stem). As a result, the vocabulary
size in modern standard Arabic as well as dialectal Arabic can become very large
even for specific domains. For colloquial Arabic, we used a corpus of 3.3 million
words that is again split as training and holdout sets with 2.9 million and 0.32 million
words, respectively. The vocabulary size for this corpus is about 98 K, which is too
large to be used on the P2 system due to the CPU and memory limitations on the
device. Aggressive pruning of both the vocabulary and the counts of the language
model would be required. Instead, we built the language model on morphologically
tokenized data. Applying the morphological analysis, we split some of the words
into prefix + stem + suffix, prefix + stem, or stem + suffix forms. We refer the reader
to (Afify et al. 2006) to learn more about the morphological tokenization algorithm.
Morphological analysis reduced the vocabulary size to 58 K without sacrificing cov-
erage. Nevertheless even this was too large to be used in the P2 device. Next, we
eliminated singletons from the vocabulary, which reduced the vocabulary further
down to 37 K, and applied cutoff thresholds to the bi-gram and tri-gram counts in the
language model. The size of the final language model is about 9MB.

Adaptation to a new speaker or environment is becoming very important in em-
bedded speech recognition as these systems are deployed in unpredictable real world
situations. Feature space Maximum Likelihood Regression (fMLLR) has proven to
be especially effective for this purpose, particularly when used for incremental unsu-
pervised adaptation (Li et al. 2002). Unfortunately the standard implementation used
by most authors requires unacceptable CPU power for embedded speech recognition
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systems. The CPU requirements can, to a degree, be lowered by using the block
diagonal transformation matrix, but we will show that there are other problematic
issues with the standard approach later.

We have decided to use the stochastic gradient descent approach. It has been suc-
cessfully implemented in IBM’s Embedded ViaVoice (EVV), where we face the
fundamental problems of embedded systems: limited CPU performance, slow and
small memory, no floating point unit. Adaptation is implemented through a feature
space transform of the form O’ = AO + B, where O are the speech frames, A is the
transformation, and B is the bias. The total amount of parameters to estimate is only
n(n + 1), where n is the dimension of the feature vector. The adaptation is thus effec-
tive even with just a few seconds of data. One of the main challenges we face when
deploying fMLLR on embedded platforms is integerization. The classical approach
used in (Li et al. 2002) requires the need to compute the inverse of A. The inverse is
usually performed using the Choleski decomposition algorithm. The implementation
in integer arithmetic is fast, but unfortunately very sensitive to numerical errors (due
to the necessary scaling and rounding), and can end up with completely wrong ei-
genvalues. This Choleski decomposition break down can be detected and an extra
fail-safe mechanism usually takes care of resetting the transform in this case. In our
solution (Zhu et al. 2006) we use the stochastic gradient descent approach which
avoids the computation of the inverse (Balakrishnan 2003) and thus the eigenvalue
related problems do not exist.

15.3.2 Natural Language Understanding and Generation Based Translation

We have developed two approaches for translation module. One is composed of a
statistical natural language understanding (NLU) and a statistical natural language
generation (NLG) module. The other is Weight Finite State Transducer based ap-
proach. We address the NLU/NLG approach in this section.

The NLU/NLG based concept translation approach is similar to the interlingua
approach, which have been explored within C-STAR project by CMU (Lavie et al.
1997; Levin et al. 2000), ATR (Yamamoto 2000), ITC-IRST (Lazzari 2000), CAS
(Zhou et al. 2004) and CLIPS (Blanchon and Boitet 2000), etc.

The NLU module is based on the statistical parser employed in IBM telephony
natural language dialog systems. This component utilizes statistical decision-tree
models to determine the meaning and structure of the input utterance, which is
achieved by assigning a hierarchical tree structure to the recognized sentence as
predicted by the statistical model. The semantic parser examines the class-tagged
sentence and determines the meaning of the sentence by evaluating a large set of
potential parse tree in a bottom-up left-to-right fashion. The parse hypothesis that
scores the highest based on the statistical models is returned as the best parse hy-
pothesis.

Current English and Chinese corpora include 10,000 sentences for each language
in the domain of security and emergency medical care. 68 distinct labels and 144
distinct tags are used to capture the semantic information. An example of an anno-
tated English sentence is illustrated in Fig. 15.3. In this parse tree, “FOOD” is a
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semantic concept represented by one or a group of words, while “food” is a tag that
refers to a semantic concept represented by only one word. The concepts and tags in
Fig. 15.3 are not designed to exclusively represent semantic meanings and may rep-
resent syntactic information as well, such as those shown in the label of “SUBJECT”
and the tag of “query”. While the semantic information remains the main annotation
target, syntactic-related labels and tags are used to group the semantically less

IS!
[ QUERY | [ suBJECT | [ posskss | [ Foop |
| | A
query  pron-sub  possess adj food
are you carrying any foods

Fig. 15.3 Example of (concept-based) semantic parse tree

QUERY |SUBJECT| WELLNESS]

| PLACE | | PREPPH | BODY-PART |

is he bleeding any where else  besides his abdomen
1St
[ PLACE | Isunn:crl [WELLNESS‘ I QUERY

lPREPPH“ BODY-PART | lPLACEl

BT e & EREEAAES S g
(besides) (his abdomen) (anywhere else)  (he) (is bleeding) (k4]

Fig. 15.4 Example of concept-based English-to-Chineses translation
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important words into classes, which were found very useful in the NLG procedure
to deal with the serious data sparseness problem.

An example of English-to-Chinese translation using the statistical interlingual
approach is illustrated in Fig. 15.4. The source English sentence and the correspond-
ing Chinese translation are represented by a set of concepts—{PLACE, SUBJECT,
WELLNESS, QUERY, PREPPH, BODY-PART}. Some of the concepts (such as
PLACE, WELLNESS and BODY-PART) are semantic representations while some
of the concepts (such as PREPPH) are syntactic representations. There are also con-
cepts (such as SUBJECT and QUERY) that represent both semantic and syntactic
information. Note that although the source-language and target-language sentences
share the same set of concepts, their tree structures could be significantly different
because of the distinct nature of these two languages (i.e., English and Chinese).
Therefore, in our approach, a natural language generation (NLG) algorithm, and in
particular, a natural concept generation (NCG) algorithm, is required to transform the
tree structures in the source language into appropriate tree structures in the target
language, so that the source language sentences can be reliably translated into the
target language sentences.

While the NLU module is not a significant computational bottleneck, it is impor-
tant to improve the runtime speed of this module to lower the overall response time
of the system. An effort was made to reduce the runtime memory requirements and
to improve the parsing speed.

As we briefly mentioned in previous paragraph, very little work has been done
using a statistical learning approach to produce natural language text directly form a
semantic representation. Such as in our case, Ratnaparkhi (2000) introduced a statis-
tic method to generate noun phrase from a simple semantic representation, attribute-
value pairs, which is a special subclass of the semantic representation we want to
deal with. We have developed our NLG component using a similar approach. The
high-level semantic translation is accomplished by NLG in the target language from
the semantic representation. More specifically, statistical NLG is used to discover the
preferred concept ordering and to assign the lexical form of a grammatical sentence
in the target language. The statistical models are directly learned from a training
corpus, using no manually designed grammars or knowledge bases. In our speech
translation system, the statistical NLG component has three kinds of input: a set tree-
structured language-independent semantic variables, as shown in Fig. 15.3; a set of
unordered translation attributes in the target language; a probability model for lan-
guage generation.

During the translation, the source sentence is parsed, yielding the constituent
structure of the semantic tree that is kept, while the concept ordering information is
discarded. The word generation probability model is a maximum likelihood prediction
based on maximum entry modeling.

On porting this component to ARM platform, this NLG module is re-implemented
to fit with low computational resources available on PDA. This includes a more effi-
cient implementation of search procedures, as well as significantly reduced I/O rou-
tines.
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15.3.3 Weighted Finite State Transducer Based Translation

There is another approach based on a statistical MT methodology, originally pro-
posed for written-text translation by an IBM group (Brown et al. 1993). It was then
applied to spoken language translation by the RWTH group (Ney et al. 2000; Ney
2003) and used in VerbMobil project (Wahlster 2000). More recently, finite state
methods have been widely applied in various speech and language processing appli-
cations (Mohri et al. 2002). Of particular interest are the recent efforts in approach-
ing the task of machine translation using Weighted Finite State Transducers (WFST).
Various translation methods have been implemented using WFST in the literature.
Among them, Knight and Al-Onaizan (1998) described a system based on word-to-
word statistical translation models in the light of Brown et al. (1993). Bangalore and
Riccardi (2001) propose to apply WFST to select and reorder lexical items, and
Kumar et al. (2005) implemented the alignment template translation models using
WEFST. One of the reasons why WFST-based approaches are favored is because of
the availability of mature and efficient algorithms for general purpose decoding and
optimization. For the task of speech-to-speech translation where our ultimate goal is
obtain a direct translation from source speech to target language, the WFST frame-
work is even more attractive as it provides the additional advantages of integrating
speech recognition and machine translation more coherently. In addition, the nature
of WFST that combines cascaded models together as compositions offers an elegant
framework that is able to incorporate heterogeneous statistical knowledge from mul-
tiple sources. This should be particularly valuable when the translation task is more
complicated by the presence of conversational disfluent speech and recognition
errors. On the other hand, compared with word level SMT (Brown et al. 1993),
phrase-based methods explicitly take the word contexts into consideration to build
translation models. Koehn et al. (2003) compared several schemes proposed by vari-
ous researchers as how to establish phrase-level correspondences and they showed
that all of these methods achieved consistently better performance over word-based
approaches.

We use Weighted Finite State Transducer to build the entire translation model. A
Viterbi decoder is used to combine the translation model and language model FST’s
with input lattice efficiently.

The phrase-based translation task can be framed as finding the best path in the
following FSM, S =1 o H, where, the “0” denotes the composition operation, I repre-
sents the source sentence with possible reordering, and,

H=PoToWoL (15.1)

here P, T, W, and L refer to the transducers of source language segmentation, the
phrase translation, the target language phrase-to-word, and the target language model,
respectively.

To minimize the amount of computation required at translation time, it is desir-
able to perform as many composition operations in Eq. 15.1 as possible, ahead of
time. The ideal situation is to compute H offline. At translation time, one need only
compute the best path of S=1 o H. However, it can be very difficult to construct H
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given practical memory constraints. While this has been done in the past for word-
level and constrained phrase-level systems (Zhou et al. 2005), this has yet to be done
for unconstrained phrase-based systems. In Zhou et al. (2006), this issue is tackled as
the following.

First, we note that the source language segmentation transducer P explores all
“acceptable” phrase sequences for any given source sentence. It is crucial that this
transducer to be deterministic because this can radically affect translation speed and
memory usage. In Zhou et al. (2006), we introduce an auxiliary symbol, denoted
EOP, marking the end of each distinct source phrase. By adding these artificial
phrase boundary markers, each input sequence corresponds to a single segmented
output sequence and the transducer becomes determinizable.

Secondly, while it may not be feasible to compute H in its entirety as a single
FSM, we separate H into two pieces: the language model L and the translation model
M:

M = Min(Min(Det(P) o T) o W) (15.2)

where Det and Min denotes the determinization and minimization operation respec-
tively. In spite of the fact that T and W in (2) are not deterministic, and that minimi-
zation is formally defined on deterministic machines (Mohri et al. 2002), in practice,
we often find that minimization can help reduce the number of states of non-
deterministic machines. It should also be noted that due to the determinizability of P,
M (the SIPL) in the above equation can be computed offline using a moderate
amount of memory. See Fig. 15.5 for a sample portion of the resulting transducer.

In this approach, translation has been defined as finding the best path in I o M o
L. To address the problem of efficient computation, Zhou et al. (2006) have devel-
oped a multilayer search algorithm. Specifically, as shown in Fig. 15.6, we have one
layer for each of the input FSM’s: I, L, and M. At each layer, the search process is
performed via a state traversal procedure starting from the start state, and consuming
an input word in each step in a left-to-right manner. This can be viewed as an opti-
mized version of on-the-fly or dynamic composition integrated with a Viterbi search
procedure. However, this specialized decoding algorithm has the advantage of not
only significant memory efficiency and being possibly many times faster than gen-
eral composition implementations found in FSM toolkits, but it can also incorporate
information sources that cannot be easily or compactly represented using WFST’s.
For example, the decoder can allow us to apply the translation length penalties and
phrase penalties to score the partial translation candidates during search.

We represent each state S in the search space using the following 7-tuple: (S;, Sy,
S, Cu, Cp, b, éprev), where S;, Sy, and Sp record the current state in each input F SMA;
Cy and Cy record the accumulated cost in M and L in the best path up to this point; h
records the target word sequence labeling the best path up to this point; and Spmv
records the best previous state. The initial search state S, corresponds to being lo-
cated at the start state of each input FSM with no accumulated costs. To reduce the
search space, two active search states are merged whenever they have identical Sy,
Swm and Sy values; the remaining state components are inherited from the state with
lower cost. In addition, two pruning methods, histogram pruning and threshold or
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beam pruning, are used to achieve the desired balance between translation accuracy
and speed. The search algorithm is implemented using fixed-point arithmetic for
deployment on PDA devices that lack a floating point processor. This results in
translation speeds of hundreds of words per second on a PDA device, while using
less than 20 MB runtime memory.

15.3.4 Embedded Speech Synthesis

Once an utterance is translated by the translation model, it is sent to the screen for
display and to a fext-to-speech (TTS) engine. Considering the limited resources
available in a mobile device, formant TTS could be a reasonable choice. But high
quality synthesized speech is vital for speech to speech communication. Therefore,
compact concatenate voices have been developed both English and foreign lan-
guages.

Our synthesis system uses a set of speaker-dependent decision-tree state-clustered
hidden Markov models to automatically generate a leaf level segmentation of a large
signal-speaker continuous-read-speech database. During synthesis, the phone se-
quence to be synthesized is converted to an acoustic leaf sequence by descending the
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HMM decision tree. Duration, energy and pitch values are predicted using separate
trainable models. To determine the segment sequence to concatenate, a dynamic
programming search is performed overall the waveform segments aligned to each
leaf in training. The dynamic programming attempts to ensure that the selected seg-
ments join each other spectrally, and have durations, energies and pitches such that
the amount of degradation introduced by the subsequence of using TD-PSOLA is
minimized. More detail about IBM concatenate TTS is in paper (Donovan and Eide
1998). Due to the limited memory space available in a typical PDA device, the actual
TTS voice segment fonts are stored in SD card while the search algorithm runs in the
memory. The typical time for synthesis a sentence with 10 words is about one second.

15.4 Experiments and Discussions

15.4.1 Speech Recognition Experiments

Speech recognition experiments are designed to measure the effectiveness of our
integrization algorithms and the proposed fast incremental adaptive method. Experi-
ments were conducted on 3 different speech data sets. Tables 15.1 and 15.2 show the
results on read speech recorded in quiet and noisy conditions. The first data set
(shown in Table 15.1) is read speech from 5 speakers, each read 150 English sen-
tences in quiet office. The second data set (shown in Table 15.2) was recorded
in noisy condition from 3 speakers, each read 100 English sentences. These noisy
speeches were recorded by using Andrea NC-65 microphone. The speakers’ lips
are about 2-3 in. away from the microphones. The vehicle noise source is about
5-6 ft away from the microphones, and the noise level of 70-75 dbA measured next
to the microphones. The third test data set is spontaneous speech (results shown in
Table 15.3). The spontaneous speech data was recorded in two different conditions.
Test 1, Test 2 and Test 3 were recorded from S2S system mediated cross-lingual
conversations. Test 4 was also from cross-lingual conversations but it was mediated
by human interpreters, therefore the speech is much more casual and includes a lot of
disfluencies.

Speech recognition results measuring in word error rates (WERs) with and with-
out the adaptation method are shown also in Tables 15.1-15.3. As for the compari-
son, the results from PC version of ASR code are also shown in the same tables. In
Table 15.1, clean speech, the average of WER of integerized ASR engine is 5.21%
while WER on laptop version ASR engine is 4.60%. The degradation is reasonable
and within our expectation. With fMLLR adaptation, the average WER goes down to
4.28% which is 22.09% relative improvement and is very close to results of laptop
version (4.25%). In Table 15.2, for noisy speech, on average, the difference between
integerized engine code and PC version is less than 1%. Here we also see the signifi-
cant gain by using the adaptation algorithm. In Table 15.3, the degradation of inte-
gerization varies within different test, and the range is between 1% and 3%. With
fMLLR, we see a significant gain on Test 1 data set, but not for Test 2 data set. Since
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the speech in Test4 data set was from conversations between people mediated human
interpreters, therefore they are highly spontaneous, the WERs are particularly high.
We noticed that the adaptation algorithm does not work well when the WERs are
high.

Overall, these results indicate that the performance degradation of the integeriza-
tion compared with the float-point engine is within expectation and significant gain
is achieved by using proposed fast adaptation method.

Table 15.1 Read speech in quiet condition

Different ASR code WER (%)
PDA (integerized code) 5.21
With fMLLR 4.28
PC (floating point code) 4.60
With fMLLR 4.25

Table 15.2 Read speech in noisy condition

Different ASR code WER (%)
PDA (integerized code) 15.82
With fMLLR 11.14
PC (floating point code) 14.69
With fMLLR 12.46

Table 15.3 Spontaneous speech recognition

English
Test Test Test Test
1 (%) 2 (%) 3(%) 4 (%)
PDA (integerized code) 21.84 17.54 15.23 46.18
with fMLLR 15.57 18.76 13.80 46.29
PC (floating point code) 18.07 16.79 14.24 39.86
with fMLLR 13.19 14.93 12.00 35.83
Arabic
PC (floating point code)
with fMLLR 25.80 24.56 23.00 29.58

We also measured CPU usage with adaptation enabled and disabled. On average,
the proposed stochastic gradient descent method only increases CPU usage by about
15%. Fortunately, most of this extra usage occurs at the end of recognition, after the
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user has been presented with recognition results, so it does not affect real time rec-
ognition performance.

15.4.2 Translation Experiments

The English-Mandarin recognition and translation experiments were done on the
DARPA CAST Aug’04 offline evaluation data, which has an English script of 130
sentences and a Chinese script of 73 sentences for medical domain. Each script was
read by 4 speakers. The recognition word error rate for English is 11.06%, while the
character error rate for Mandarin is 13.60%, both are run on speaker-independent
models. The translation experiments are done on both clean text and the ASR de-
coded scripts. The 4-g Bleu score results measured using 8 human translations as
references are shown in Table 15.4. The oracle scores show that if one can combine
the translation results from these two different approaches, the accuracy can be fur-
ther improved. Currently, we present two alternate translations to users in the real-
time system and give them more information for communication purpose. It is very
useful to notice that the translation results generated by our two approaches are al-
ways consistent in meaning.

English—Arabic experiments are done on several S2S system mediated cross-
lingual conversations (a subset of DARPA development set). In each dialog, an English
speaker and an Arabic speaker were talking to each other via a speech-to-speech trans-
lation device. We extracted 395 English utterances and 200 colloquial Arabic utter-
ances from the dialogs. Three human translation references are created for measuring
the BLEU score purpose. The results are shown in Table 15.5. Since the data is spon-
taneous conversational speech, the recognition WERs for both English and Arabic
are not as high as those observed in human interpreter mediated conversation. The
BLEU scores of English-to-Arabic is slightly lower than that of Arabic-to-English.
One possible reason is that spelling of words in colloquial Arabic dialect is not stan-
dardized (more variations for the same word), which can lead to a low BLEU score.
Another observation is that the ASR errors degrade the BLEU score more signifi-
cantly for English-to-Arabic. Although the ASR WERs look similar for English and
Arabic, we notice that the WER of English content words is higher than that of Ara-
bic. A possible reason is that the English acoustic model is not trained from sponta-
neous speech, while the Arabic acoustic model is trained with more conversational
style speech mainly from in-domain data.

Table 15.4 BLUE score of English-Mandarin translation

En-to-Cn Cn-to-En
Input Clean ASR Clean ASR
NLU/NLG 0.578 0.513 0.276 0.245
WEFST 0.572 0.504 0.276 0.246

NLU/NLG+WEFST(Oracle) 0.691 0.606 0.365 0.342
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Table 15.5 BLUE score of English—Arabic translation

ASR BLUE BLUE
WER (Clean) (ASR)
En-to-Ar 15.9% 0.388 0.202
Ar-to-En 25.8% 0.596 0.416

We described two different statistical approaches for speech-to-speech transla-
tion. The concept based approach focuses on understanding and re-generating the
meaning of the speech input, while the finite-state transducer based approach empha-
sizes both system development and search speed and memory efficiency. The former
approaches usually involve large amount of human effort in linguistic information
annotation, although the amount of annotated data needed is not very large. The latter
approach, weighted FST, may exploit un-annotated parallel corpora at the cost of
potential meaning loss and the requirement of large amount of parallel text data.

Both approaches have shown comparable results. The oracle scores show that if
one can combine the translation results from these two different approaches, the
accuracy can be further improved significantly. Currently we present two alternate
translations to users in the real-time system to enhance the communications. It is
very useful to notice that the translation results generated by our two approaches are
always consistent in meaning.

In cases where under studied languages (low resource) are involved in speech
translation, the task would be more complex due to a number of reasons. Here are
two particular ones in our concern. (1) lack of large amount of speech data which
represent the oral language spoken by the right target native speakers, consequently
traditional statistical translation approach is not applicable, the speech recognition
error rate is much higher than popular languages, such as English or Chinese; (2)
lack of linguistic knowledge realization in annotated corpus. Therefore neither lin-
guistic knowledge based approaches (such as our concept-based approaches) nor
pure statistical approaches (such as IBM model 1-5 and FST-based methods) are
suitable for rapid development of applicable systems.

We believe that integration of the two research paradigms into a unified frame-
work, e.g., in a unified FST composition, should be the way to go. A shallow seman-
tic/syntactic parser is designed and implemented to enable statistical speech translation
using knowledge-based shallow semantic/syntactic structures. This information is
further utilized to process inevitable speech recognition errors and disfluencies in the
colloquial speech. While the shallow-structure parser is initiated upon lightly anno-
tated linguistic corpora and trained using statistical model, it can be greatly enhanced
and expanded by applying machine learning algorithms on un-annotated parallel
corpora. The integration of the two approaches should increase the system end-to-end
performance, and reduces the amount of parallel text data required by the statistical
algorithm.

15.5 Conclusion

We present our recent effort to develop two-way free-form speech-to-speech transla-
tion systems on a PDA using embedded Linux and Window CE or general Pocket
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PC platform. Due to the limited resources in both computational capability and
memory and storage constrain in a typical handheld device, building an entire end-to
end system on such devices is a highly complex task.

We developed the handheld MASTOR systems (Multilingual Automatic Speech-
to-Speech Translator) for between English and Mandarin Chinese and between Eng-
lish and Arabic on embedded Linux and Windows CE operating systems. The system
includes an HMM-based large vocabulary continuous speech recognizer using statis-
tical n-grams, a translation module, and a multi-language speech synthesis system.
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Automotive Speech Recognition

Harald Hoge, Sascha Hohenner, Bernhard Kémmerer, Niels Kunstmann,
Stefanie Schachtl, Martin Schonle, and Panji Setiawan

Abstract. In the coming years speech recognition will be a commodity feature in car. Control of
communication systems integrated in the car infotainment system including telephony, audio
devices and destination inputs for navigation can be done via voice. Concerning speech recogni-
tion technology biggest the challenge is the recognition of large vocabularies in noisy environ-
ments using cost sensitive hardware platforms. Further intuitive dialog design coupled with
natural sounding text to speech systems has to be provided to achieve a smooth man-machine
interaction. This chapter describes commercial driven activities to develop and produce speech
technology components for various automotive applications including the used speech recogni-
tion, speaker characterization, speech synthesis and dialog technology, the used platforms, and a
methodology for the evaluation of recognition performance.

16.1 Introduction

Man Machine Interaction in car is a typical application demanding a “hands-free,”
“eyes-free” operation mode. Speech recognition is well suited to fulfill these demands.
Yet the specific acoustic environment and specific platforms found in cars are chal-
lenging:

— Noisy environment with a signal-noise ratio in the range of 20 dB till -5 dB
— Low cost microphones mounted 30—100 cm from the speaker
— Embedded platforms with restricted computing power and memory

First applications were focused on command and control functions as name dialing
to handle the telephone integrated in car. Nowadays destination input for navigation
containing more than 100 000 street and city names is the most challenging task for
speech recognition technology.

In the following recent advances and activities performed in Siemens Corporate
Technology by the group “Siemens Speech Processing” are described.
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16.2 Siemens Speech Processing—From Research to Products

Siemens Corporate Technology was founded in the late 70th to support Siemens Oper-
ating Groups to secure a forefront position. Speech processing was one of the first
topics of Corporate Technology, therefore now looking back on a history of more than
25 years. While the first decade—the 80th—was mainly research oriented, there was
already demand for large vocabulary recognition (at that time 1000-2000 isolated
words in a speaker-dependent mode). Requests came, among others, from the Medical
Group to support doctors for report generation from Computer Tomography images.

The second decade—the 90th—saw increased utilization of the speaker-
independent recognition in communications. Large switching systems were enhanced
with generic recognition units for later application integration—implemented on inte-
ger DSPs—as well as with dedicated speech-enabled functions e.g., for voice-mail
control.

The late 90th and the beginning of the new century finally brought speech technol-
ogy on embedded platforms which became cheap enough to serve vast consumer mar-
kets like mobile phones and car infotainment.

While command and control like recognition allows for basic voice access to
services, more user convenience can be realized with natural voice dialogs. Dialog
systems control the flow of user input and system output to collect all parameters as
dates or money amounts needed for an application query. For applications in commu-
nications/telephony, dialog systems control speech in and speech out, but future sys-
tems are foreseen to provide multi-modal interaction combining voice, graphics, and
haptics in a synchronized and consistent way.

Speech signals carry more than just words and sentences: there is implicit informa-
tion about the speaker—gender, age, language, and mood or stress—which is of value
for many applications. In order to make this information accessible, Siemens Speech
Processing developed components for speaker recognition and speaker characteriza-
tion. While speaker recognition has to be trained on the person to be recognized (enroll-
ment) speaker characterization derives age/gender or language decisions speaker-
independently.

Finally, universal voice feedback to users needs a flexible text-fo-speech synthesis
system which is optimized for the chosen application domain.

16.2.1 Development for Performance and Quality

Speech technology serves as the connector between users and systems, requesting safe
and reliable operation. Development at Siemens Speech Processing therefore follows
a well defined process from requirements analysis (driven by market pull, product
component demands, and research/technology push), development frameworks, and
acceptance tests. Tools for versioning, workflow management, and defect/change track-
ing help to maintain a high level of software and functionality quality. Apart from
bug-free software and functional completeness the (recognition) performance of speech
components is crucial for the final deployment. Therefore procedures and measures
have to de developed that serve both the supplier and the customer to gain confidence
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and trust in the operation of the components. As an example, a systematic approach for
SNR-based measurements of recognizer performance has been developed which is
described later on.

Siemens Speech Processing is organized into “Innovation,” “Technology,” “Prod-
ucts,” and “Natural Language Understanding,” implementing a chain of valueads that
narrows down from the broad spectrum of science and research over proven technology
pieces to products that match market requirements. The focus on Natural Language
Understanding combined with dialog capabilities—often found in separate compa-
nies—opens the way to natural interaction with optimized functionality.

The following will give a short overview of components developed and delivered
by Siemens Speech Processing.

16.2.2 High-Performance Recognizer

With the event of cellular phones, processing power became cheap enough to bring
speech recognition on mobile devices. For that purpose a dedicated recognizer product
was developed that offers various benefits. The Siemens Recognizer Embedded is tar-
geted for mobile phones, car infotainment and navigation, PDA/PNA deployment, and
dedicated embedded systems in hearing aids, medical devices, or industrial panels and
comes with selected European, US and Asian languages (see Fig. 16.1).
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Fig. 16.1 User interface for voice driven applications in car
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This Siemens Recognizer Embedded is complemented by the Siemens Recognizer
Server that offers standard interfaces and protocols like MRCP and RTP, multi-port
and multi-threading with load-balancing, and optimizations for Windows and Linux.
Acoustic models for selected languages of Europe, US, China, and India are provided
to serve these important markets. The Siemens Recognizer Server is targeted for call-
center automation, auto-attendant solutions, and industrial applications.

16.2.3 Ultra-Compact Text-to-Speech Synthesizer

The generation of artificial voices has to meet several requirements—the speech must
be intelligible and natural while the footprint must match given hardware limits. Sie-
mens Speech Processing decided to concentrate on a solution for extremely small foot-
prints. A state-of-the-art diphone based technology is used where short segments from
real speech are concatenated, adjusted at the boundaries, and modulated by the prosody
contour. For advanced applications a dedicated text pre-processing module resolves
e.g., abbreviations and numbers.

The Siemens Text-to-Speech Synthesizer Embedded starts from just around 250 kB
for tasks like caller name announcement in mobile phones and reaches 1.5 MB for
email or SMS reading (one language). The system is available for European languages,
US English and Mandarin Chinese and is targeted for low-footprint, low-cost devices
like mobile phones e.g., for developing countries or mobile industrial devices.

Fig. 16.2 Carefully designed dialog machines are needed for a smooth man-machine interaction
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16.2.4 Natural Voice Dialog

Mixed-initiative conversational voice dialog systems offer a maximum of convenience
to users. These “how can I help you” systems were first implemented in telephony
voice portals and advanced /VR systems. Siemens Speech Processing gained consi-
derable experience from these areas before converting the technology to embedded
systems. By that, convenient voice access to complex information sources like
web-services or manuals can now be experienced for example in cars that are “always-
on” (see Sect. 16.3).

Traditional dialog systems operate in a state-based manner on VoiceXML scripts
that are hand-crafted to implement certain functionality. While this approach showed
to be widely accepted, it is very time consuming for a first implementation. Siemens
Speech Processing therefore developed a slot-filling solution which allows for a
descriptive dialog design. This dialog engine knows about the task and associated
parameters, allows for multi-parameter input and over-answering and performs an
automatic dialog in case of unclear or missing entries.

Additional state-based procedures and a complementary communication with the
platform over dynamic VoiceXML pages combine the best of both worlds.

Especially in automotive applications there is a need for coherence between the
GUI and a voice dialog. The Siemens dialog engine is perfectly prepared to achieve
this, relieving the UI developer of a heavy burden and securing a consistent user ex-
perience (see Fig. 16.2).

16.2.5 Speaker Characterization and Recognition

Imagine a system that adapts to a driver without knowing him: speaker characteriza-
tion determines automatically age, gender, and language of the current user as basis for
adaptive dialogs. Spoken language identification allows a user to interact in his lan-
guage, even if it differs from the system language (e.g., in rental cars). With age classes
“child,” “teenager (f/m),” “adult (f/m),” and “senior,” dedicated dialog styles can be
chosen—from uncouth to serious. And knowing the gender the recognition perform-
ance can be optimized as well as, e.g., the content of services re-ordered.

The Siemens Speaker Characterization adds age/gender recognition and language
identification to the Siemens Recognizer Server while the Siemens Speaker Recogni-
tion performs a biometric recognition of individuals after enrollment—text dependent
as well as text-independent.

16.3 Example Automotive Voice Applications: Infotainment,
Navigation, Manuals, and Internet

High performance recognition opens new opportunities for a more natural interaction
by voice in cars. When vocabularies are no longer restricted to few commands or
names but extend to several thousand words, and when those recognizers are combined
with an appropriate dialog engine and Text-fo-Speech synthesizer, especially in the
automotive scenario new speech applications become reality that will significantly
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enhance usability. Siemens Speech Processing explores various applications that bene-
fit from speech user interfaces, already today or in the near future. The following gives
a short survey on the results and solutions obtained so far.

16.3.1 Radio Station Selection

A typical use-case for speech recognition is the control of entertainment sources of car
infotainment systems. Available radios already display the name of the tuned station,
provided as the “Program Service Name” by the radio data system RDS. A serious
issue for voice-based selection of radio stations is the limitation to at most eight charac-
ters for the Program Service Name. Due to this it is a common to transmit abbrevia-
tions or short forms for the station names like, e.g., “CEREDIGN” for Radio Ceredigion
in the UK. This raises the question how an inexperienced user knows what in order to
switch to the corresponding station. One solution here is to provide an exception list for
the recognizer which contains multiple pronunciations for each (known) RDS name.
An automatic conversion of text to phonemes is then utilized only for RDS names not
contained in this list.

16.3.2 MP3 Title Selection

There is an increasing demand to consume audio and video media wherever they are.
The development of effective compression techniques for audio like MP3-coding and
the availability of portable players, even integrate in various recent cell phones acceler-
ated this trend. The use of speech control for the administration of large amounts of
audio files, playback control, and the selection of titles and artist becomes a desirable
feature, especially for the case of limited interaction possibilities of portable players or
car infotainment systems. What makes the task of voice control for portable players so
specific?

First of all, with genres, interprets, albums, and titles there is a large amount of
partly structured data to be operated on. The phoneme strings for genres are normally
provided by the supplier and fit to the chosen speech recognition language, while the
names of interprets, titles, or albums need not to stem from the current speech recogni-
tion language. Although there are activities going on to supply possible pronunciations
for interprets and titles (see e.g., www.gracenote.com), suitable information in this area
is still sparse. This situation leads to the third particularity of the MP3 selection, the
need to deduce a phonetic representation for arbitrary song names where the originat-
ing language is not known beforehand. Unfortunately, usually provided language in-
formation in subjective property frames of an ID3 tag is not reliable enough.

The task of language identification is made even more ambitious when the titles do
not contain valid words, or when there are purposeful spelling “errors” like for the
album “Konvicted” by Akon. Furthermore, song titles are often short and consist of
only a few words not necessarily typical for the chosen language. A related issue arises
from phrases which contain words from different languages, e.g., in the title “Femme
Like U” of the album “La Good Life” by K-Maro.
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Usually employed techniques for language identification employ n-gram statistics,
decision trees, or neural networks and operate on phrase level or on word level. On the
word level, useful cues are language-specific letters or letter sequences, e.g., the Ger-
man “B,” or “th” for English. On phrase level the approaches try to combine the indica-
tive features from single words in an intelligent way or one use the sequence of words.
Presumably, the best solution for the language identification task in the given situation
will be a weighted combination of different approaches.

Once the system has decided on the language of a phrase and of the underlying
words, the grapheme-to-phoneme conversion deduces the phoneme string corres-
ponding to a possible pronunciation.

Even if the language was correctly detected there arises another issue that has great
impact on the recognition performance: in many situations the language of the speech
engine is different from the language of the title to be spoken. As a consequence, e.g., a
non-French who wants to select “Je ne regrette rien” by Edith Piaf will produce a more
or less strong foreign accent. Whether a sophisticated phoneme substitution technique
can handle such cases in a satisfying way remains to be clarified when voice control for
portable players becomes more widespread.

At the moment most systems operate with an English speech recognizer as the ma-
jority of titles and albums are in English. As a consequence, various issues of multi-
linguality are still the most prominent challenges for the MP3 title selection use case.

16.3.3 Navigation Destination Entry

A challenging task for speech recognition is the input of a destination into naviga-
tion system. Depending on what is regarded as a city there are between 50 k and 100 k
entities in Germany, comprising up to 12 k streets. Due to this large number of active
words combined with the adverse sound conditions in a moving car the recognition
result is typically provided as an n-best-list on the display of the head unit for final
selection by the user.

Since the pronunciation of city and street names is often non-regular, the corre-
sponding phoneme strings are normally contained in the navigation database. In case
of a destination entry, the phonetic data for all city names (or all street names respec-
tively) has to be provided to the recognition engine. This poses strong requirements on
either data transfer rates in case of separated units for navigation and recognition or on
memory space to cache all information in advance, since the response time of the rec-
ognizer increases considerably when adding the time for data transfer to the recogni-
tion time itself.

It can be observed that there a different cities with the same name as well as
identical phonetic representations for names with different writings. As an example,
the phonetic pronunciation “Snalf” for a German city corresponds to 5 different ortho-
graphic forms of 11 cities:
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Memmingen
Schnaid <§ Hallerndorf

Wallenfels

am Bodensee
Schnaidt <{ bei Tettnang

Wangen, Allgéu
Schnait————__ Bad Tolz

Remstal

Schnaitt Teisendorf
bei Neukirchen am Teisenberg
Feldkirchen-Westerham

Schneit

"Snalt"

Griinenbach, Allgau

The task here is to provide a multi-modal HMI for recognition in combination with
an appropriate approach to resolve such ambiguities. As a solution the list of different
written forms is displayed and the final destination is selected in a consecutive dialog
step.

16.3.4 Manuals and Help Systems

“Where is the gas cap located 7’ When approaching a gas station with a rental car this
question is not unlikely to arise, and a spoken dialog Aelp system in that car would then
be very welcome. However, to provide an appropriate interaction the dialog has to
perform much more than simple command and control. Such a system must be able to
understand questions in natural language, and it has to understand as many variations
of this question as possible.

User: How do I start a conference call?

System: In order to start a conference call, call the first
participant. Then press the call back button, ...

User: Which one is the call back button?

System The call back button is found on ....

Fig. 16.3 Example: spoken dialog help system for a PABX

Siemens Speech Processing explored this task by generating an interactive help
system for a PABX telephone system (see Block et al. 2004), for which about 200
different help topics have been modeled. For each topic a key grammar for possible
phrasings of the question (all in all about 1150 words) as well as an answer prompt
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with the required help was developed. In addition, prompts for each topic were formu-
lated that are used for a clarification sub-dialog when the user input could not be inter-
preted straight forward. These elements then constitute the parameters for the dialog
engine which combines them into a spoken dialog system (cf. Fig. 16.3). While no
further tuning was performed, a usability test showed already 85% task completion.

It seems obvious that—while driving—a user would prefer to access the car manual
by voice instead of filing through a (even electronic) booklet, making this approach a
major step towards improved overall usability in cars.

16.3.5 Access to Structured Web Content

The internet offers a lot of information that might be of value for drivers. Again the
question arises how a driver can access this information (which was originally
designed for graphical interaction) in an eyes-free/hands-free mode when on the road.
As participants in the research project SmartWeb' Siemens Speech Processing ex-
plored the automatic generation of spoken dialogs from structured Web content. These
dialog applications then allow the driver to gather relevant information in a free voice
dialog without too much distraction, leaving his/her hands on the steering wheel.

The chosen approach focuses on Web content that is represented as HTML tables.
By structuring its information in headers, columns and lines, a table can be perceived
by humans at a glance. Another important characteristic of tables is that they allow for
easy comparison of values, cf. example below:

Table 16.1 Gas prices for Bonn and surroundings

Station Fuel City Code Address Price/l
Name 1 Normal Bonn 53115 Street 1 1,189
Name 4 Normal Bonn 53115 Street 4 1,199
Name 2 Normal Siegburg 53721 Street 2 1,199
Name 3 Normal Rheinbach 53359 Street 3 1,179
Name 1 Super Bonn 53115 Street 1 1,239
Name 4 Super Bonn 53115 Street 4 1,249

These characteristics are now used to automatically generate speech dialog applica-
tions. Tables are collected by a web crawler, sorted according to their usefulness, and
normalized. After these steps, the linguistic content of a table is parsed and transformed
into three units: introduction, key grammars, and answer prompts.

The introduction is necessary to tell the user what the new dialog application is
about, in order to prevent out-of-vocabulary and out-of-domain questions by the user.
From the Table 16.1 in Example2 the following introduction would be generated: “Gas

"This work was partially funded by the German Ministry of Education and Re-
search BMBF in the framework of the SmartWeb project under grant 01IMDO1K. See
Wahlster (2004) and www.smartweb-projekt.de for more information on the Smart-
Web project.
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Prices in Bonn and surroundings, with information on station, fuel, city, code,
address and price per liter. You can ask me for example, what do you know about
Name 1?7”.

In order to model possible questions a user might ask after such an introduction—
e.g., “Where do I get the cheapest super in Bonn?” or “How much is super in
Bonn?"—several mechanisms are deployed. First, the system tries to identify the type
of a column automatically. If this was successful, it assigns standard grammars that
belong to the type determined. For example, the heading “Price per liter” followed by
many numerical values is likely to be of type “price” and would be assigned the stan-
dard grammars provided for querying the price of something, i.e., phrases like “How
much is,” “What's the price of ” etc. If no type can be identified, grammars are gener-
ated from the values themselves by putting a “Which” in front of the column headline,
e.g., “which city,” and enumerating the values, e.g., “Bonn” etc. Through this mecha-
nism a question like “Where do I find a Shell station in Bonn? ” is captured. Finally,
typical phrases for comparison are incorporated wherever a numeric value is found,
adding “cheapest,” “cheaper than ™ etc. to the vocabulary.

For the automatic generation of an answer prompt it is important, that the system
tells the user first what was understood before the answer is given, e.g.: “As answer to
your question about address, super, Bonn, the cheapest price, I found: Hauptstrafse
14>

The content of the table is stored in a serialized file to feed the answers, and some
algorithms are added in order to allow cross comparison of the numeric values trig-
gered by the comparative grammars. By this, all relevant information is contained in
the system once it is generated from the internet, which means that the application does
not need to be online while in use. Only when the contents of the table change the
system has to be updated. See Berton et al. (2006) for a description of the transport of
internet applications into the car and their integration in a multimodal infotainment
HMI of the research prototype.

16.3.6 Access to Web Services

Another way to access web content is given by web services, which offer standardized
methods for accessing enclosed data. A web service can be seen as a database or a
collection of databases for which a description of fields and access methods are pro-
vided in the WSDL format. An increasing number of those services appear in the web,
offering access to all kinds of information, e.g., to yellow pages (e.g., dialo.de), event
calendars (e.g., eventful.com), or weather reports (wetteronline.de). The information
provided in these services is always up to date while the interface remains stable in
comparison to normal web pages.

If these services are to be accessed by speech, necessary parameter values have to
be gathered in a dialog. This is depicted in Fig. 16.4 for voice access to an event web
service, where recognition results are (indirectly) confirmed and missing parameters
are asked from the user before the query to the web service is started.
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An interface layer for the dialog application was implemented that transforms the
question of the user into a correct WSDL query and transmits it, e.g., via UMTS, to the
database.

User: Are there any concerts in Munich?
System: | Concerts in Munich, on which day?
User: Tomorrow.

System: | Tomorrow, Tuesday, 10th of April?
User: Yes.

System: | I found seven concerts.

Alban Berg Quartett-Haydn, Schonberg,
Beethoven. Herkulessaal der Residenz.
Start time 8 p.m.

User: -

System: | More than Soul. Nightclub Bayerischer
Hof. Start time 8 p.m.

Fig. 16.4 Spoken dialog access to web services

The answer sent by the web service—in this case again via UMTS—usually con-
sists of a long table consisting of all entries matching the query. A pre-processing unit
phrases the answer so that it can be well read out by the Text-to-Speech and understood
by the driver. Two approaches for this pre-processing step were studied. In the first
procedure, the items on the answer list are read one after the other and the user can
barge in anywhere with commands like “details,” in order to hear more information on
this specific item, or “drive me there” in order to enter an intermediate destination into
the navigation system. The second approach implements an additional dialog built on
the answers from the web service. This dialog allows the user to ask for items which
otherwise would have been out of vocabulary, e.g.: “Are there any concerts with Alfred
Brendel next week?”

In contrast to the processed HTML tables described in the section above—for
which a one way communication such as broadcast suffices—web service information
must always be accessed online. But this also implies the potential to provide the driver
with up-to-the-minute information where necessary, e.g., when looking for a free park-
ing lot at the destination—and this can pay in terms of fuel and time savings.

16.4 Automotive Platform Issues and Challenges

The environment for the implementation of speech recognition on automotive plat-
forms differs from the one on a mobile phone for a couple of reasons. Before going
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Fig. 16.5 Distribution of dialog control and speech recognition between different processing
units in cars: Both in the head unit (a), in different units connected by an automotive bus
system (b), in dedicated telephone unit connected to the mobile phone via Bluetooth (c)

into detail here we take a very coarse look at the situation. There is more than one
control unit in the car where the actual recognition engine can reside on (cf. Fig. 16.5).

16.4.1 Hardware Constraints

The most salient difference of an automotive environment when compared to a mobile
device is the amount of electric energy. By this some of the restrictions known from
mobile devices vanish and higher clock rates for processors (therefore processing
power) and busses (throughput) become possible.

But concerning hardware there are other important topics for automotive platforms
to be considered. The quality requirements regarding temperature range for electronic
components, data retention time for non-volatile memory and operational life time as
formulated in the quasi-standard “AEC-Q100” (Automotive Electronic Council 2003)
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are much higher than in the ordinary consumer electronics industry. Table 16.2 shows
a comparison of typical processors used in automotive infotainment systems to a proc-
essor as currently used in office PCs (rightmost column). Apart from the most promi-
nent difference—the clock speed of the processor—there are quite a couple of issues to
be mentioned in this context. For systems like the blackfin BF533 (which is a derivate
from a DSP development line) it is still important to support an integer implementation
of the relevant signal processing parts of speech recognition. Another topic with some-
times underestimated importance is an efficient access to code and data in the memory.
Although modern embedded systems already feature L1-caches for code and data, L2-
caches are often missing and the clock speed for the memory bus is way below the one
for current desktop processors. Future developments, e.g., the so-called CarPCs might
reduce the gap between automotive hardware to desktop systems, but the special re-
quirements on robustness prohibit the catch up for basic performance numbers.

Table 16.2 Comparison of typical processors for automotive infotainment

Analog devices Freescale Renesas AMD Athlon 64
ADSP BF533 1.MX31 SH7785 FX
Clock speed 594 MHz 532 MHz 600 MHz 3000 MHz
Native data 16/32 Bit 32 Bit 32 Bit 32/64 Bit
Type
L1 I-Cache 16 k 16 k 32k 64 k (per core)
L1 D—Cache 32k 16 k 32k 64 k (per core)
System mem- 120 MHz 133 MHz 300 MHz 2000 MHz
ory clock
Floating point ~ SW HW HW HW

16.4.2 Software Constraints

Not only the hardware, but also the software in automotive environments has to obey
certain qualification criteria. The so-called MISRA guidelines (The Motor Industry
Software Reliability Association 2004) together with an approved development process
(The SPICE User Group 2005) set the touchstones for any development of automotive
software.

Furthermore, possible complexity of use cases makes it necessary to employ an
advanced real time operating system. Even in the case of challenging tasks like the
concurrent streaming of two MP3-streams for rear seat entertainment with additional
recalculation of the route, voice control of, e.g., the radio for station selection should
not be deferred on the head unit.

The typical real time operation systems in automotive environments are VxWorks
and QNX, with Windows CE becoming a constantly maturing alternative.

The above mentioned software conditions for the deployment of speech recognition
as well as the demands on the hardware in automotive environment can be partly con-
tributed to the product life cycle for cars which—being around 6 years—is much
higher than for any mobile consumer electronics device.
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16.4.3 User Constraints

In the car voice control is part of a multimodal man machine interface. Switching of
the input modality between a touch screen, other haptic input, and voice control—
which is commonly activated by pressing a push-to-talk key—should be possible at
any time. Hence, at system design time there has to be a clear decision on the function-
ality and use cases which should be operable by voice input.

If the chosen approach attaches variable voice commands to the wording of any
possible screen on the display, quite a large number of different recognizer configura-
tions may emerge. This inherently complicates verification and testing of dialog flows.

A crucial point for the acceptance of an automotive control device is the start-up
time of the entire system. People expecting the vehicle engine to start at turn-key are
unlikely to accept waiting for a long time until the car infotainment system is operable.

16.4.4 Acoustic Channel

The acoustic environment constitutes one of the greatest challenges for automotive
speech recognition. The degree of noise to be handled by the recognizer depends on
the position of the microphone(s) with respect to the speaker and on the quality of the
microphone(s) themselves. The microphone is typically mounted in the roof of the car
somewhere near the sunshields or next to the rear-view mirror. Hence there is no close-
talk situation and the direction of ventilation might be right towards the microphone,
e.g., in the defrost operation mode.

The combination of multiple microphones for microphone array processing with
beam-forming can be used for the reduction of ambient noise and the masking of peo-
ple talking on the co-driver’s seat. However, since an amount of four microphones
quadruples the price on the bill-of-material and additional space and mounting is
needed as compared to a single microphone, this option is not chosen very often by the
car manufacturers, even though DSPs for microphone array signal processing are
available.

16.5 Noise Robust Recognition Technology

As described in Sect. 16.4.4 the reduction of noise captured by the acoustic channel is a
challenging task for speech recognition. Various noise sources contribute to a noise
mixture that can often reach or exceed the level of the desired speech signal. Stationary
noises produced by tires, airstreams, and fan noise sum up with non-stationary noises
from the engine, exterior traffic or the indicator.

In speech recognition two basic approaches are used in parallel to handle the problem
of noise:

Use of noise reduction algorithms
Use of “environment-matched” HMMs.

The purpose of noise reduction is to deliver features as MFCCs with minimal
disturbances compared to clean speech. The feature extraction including the noise
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reduction is performed in the front-end of the Siemens Recognizer Embedded. Cur-
rently this front-end is optimized with the goal to exceed the performance of the stan-
dardized “advanced front-end” (Ramabadran et al. 2004). Environment-matched
HMMs are used in the back-end of the recognizer. They are trained with speech data-
bases which were recorded in an acoustic environment as expected in the applications
(Hoge 2000). This is motivated by the fact that environment-matched HMMs are theo-
retically providing the best recognition performance. As already mentioned in Chap. 14
(Speech Recognition in Mobile Phones) databases dedicated to car environment have
been produced for many languages by EC-funded projects.

CAr NoIse

c
e 5 _.
lag [ms] 05 frequency [Hz]

lag [ms]

Fig. 16.6 Autocorrelation function of power spectra of car noise (left) and of clean speech (right)

As shown in Sect. 16.5.5 noise reduction algorithms improve recognition also in
the case when “environment-matched” HMMs are used. The reason for these findings
can be seen in the imperfectness of current HMM technology which assumes statistical
independencies of features across frames and do not model the strong temporal correla-
tion of spectral features. As shown in Fig. 16.6 and 16.7, the autocorrelation of power
spectra extracted per FFT-bin, which are the basis for the MFCC features, show high
correlation in time, where the noise reaches after ca. 20 ms its offset (average value of
power spectrum) and speech beyond 100 ms. This behavior is quite uniform over the
different frequency bins.

As shown in Fig. 16.6, the offset of car noise is quite high, which shows the slow
change of the level of noise. Another property of the car noise is shown in Fig. 16.8,
which shows that the power spectra from car noise and clean speech are quite different
(e.g., in contrast to babble noise). This property explains further why recognition in car
works quite successfully under noisy condition.
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Fig. 16.7 Autocorrelation of power spectra of clean speech and car noise for two selected bins
(301,5 Hz; 3617,6 Hz)

In the following we describe shortly the Siemens Recognizer Embedded, after-
wards the noise reduction algorithms with related recognition results.

16.5.1 ASR Front-End

The ASR front-end (Varga et al. 2002) is based on the MFCC feature extraction
method. Sampling frequency is 11.025 kHz, the length of the audio frames is 23 ms
with a 15 ms frame-shift. Per frame a 256 bin FFT is performed and the power spec-
trum per bin is calculated. This power spectrum is used for noise reduction delivering
noise reduced power spectra. After Mel-filtering and logarithmic compression of the
power spectra 12 cepstral coefficients and one energy coefficient are computed per
frame. To remove spectral bias a maximum likelihood based channel compensation
technique is used. From these coefficients delta and delta-delta coefficients are calcu-
lated and a “super-vector” containing the coefficients of two consecutive frames is
built. The super-vector is reduced to dimension 24 using LDA.

The back-end is based on HMM technology. In the experiments presented below
we use a phoneme modeling approach (Bauer 1997).
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Fig. 16.8 Power Spectra of car noise and clean speech

16.5.2 Minimum Mean Square Weighting Rules

Most noise reduction algorithms are computed in the frequency domain, where an
individual gain factor is applied for every frequency bin. Short-time spectral analysis
based on overlapping speech frames is usually employed as a frequency domain trans-
formation. Many weighting rules are derived in a way, that the mean square error be-
tween the original speech signal and the resulting estimated speech signal is mini-
mized, the most famous being the Wiener Filter

SNR, (1)

Gy ()= ,
e () SNR, (1)+1

(16.1)

where / denotes the frame index, & the frequency index, and SNR() the Signal-to-
Noise-Ratio of the actual frame. As the original speech signal Si(J) is usually not avail-
able SNRy(1) has to be estimated. An algorithm which represents the state-of-the-art in
speech enhancement, the so-called a priori SNR Wiener Filter (Scalart and Filho 1996),
is based on the a-priori Signal-to-Noise-Ratio SNR,;,. SNR,,;, is estimated by a deci-
sion-directed approach which was first described in Ephraim and Malah (1984). The
estimated values of the previous frame for the clean speech spectrum S”k (-1) and noise
variance /iNk (I-1)=E{|N,(I-1)|*} are considered recursively for the computation of
the actual SNR value:
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(1,0} + ¢ S C=DE (16.2)

Ay 1=1)

¢ being the smoothing constant. The a-posteriori Signal-to-Noise-Ratio SNRy (1) is
computed from the noisy speech spectrum Y(/) and the estimated noise variance of the
actual frame:

SNR, (1) = (1=¢) - max {SNR

k, post

L OF

SNR, .., () = = .
oo Ay, (D

(16.3)

16.5.3 Recursive Least Squares Weighting Rules

Only the actual frame is considered in the derivation of weighting rules based on the
minimum mean square error cost function. However, the key signal components used
in the weighting rules, estimations of speech and noise power spectral densities, are
computed recursively incorporating the frame(s) before. A good example is the compu-
tation of SNR,,;, in Eq. 16.2.

To avoid this contradiction a family of weighting rules based on the Recursive
Least Squares (RLS) criterion can be derived. The dependency of the actual frame on
the previous ones is explicitly considered in the corresponding cost function

M
JisM) =Y w) |E, @) (16.4)
1=0

where w(l) is a weighting coefficient and M denotes the actual frame. The error Ej(l) is
defined as

E () =S8,() =G (D) Y, (), (16.5)

Si(1) representing the clean speech spectrum and Sy())= Gy(1) Yi(l) its estimate, where
Gy(1) denotes the desired gain factor and Y(/) the noisy speech signal.

Using Eq. 16.5 in Eq. 16.4 and minimizing the result with respect to Gi(J) leads to
the well-known recursive least squares weighting rule

M
D> w)Y, (1S, (D)
GEM) = — (16.6)

D owd) [r0)°
=0

From this generic weighting rule various implementations can be derived, mainly dif-
fering in the way of estimating the clean speech signal.
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16.5.4 Implementations of RLS Weighting Rules

For the following implementations an exponential weighting coefficient w(l) is used,
taking into account all frames from the past,

wl)y=p"", 0<i<M, 0<p<l. (16.7)

1. Recursive Least Squares (RLS) Algorithm

For the derivation of the Recursive Least Squares algorithm described in Beaugeant
et al. (2002) the noisy speech signal in the nominator of (16.6) is expressed as Yy(l) =
Si(1) + Ni(l) and the assumption is made that on average speech and noise are uncorre-
lated

i PMISI(HN (D) =0 . (16.8)

1=0
This results in
Eg (M)

LS _
G (M) = Eg (M)+Ey (M)

M
with £, (M)= p* |, )| and Ue{s,N}. (16.9)
1=0

Subsequently Sy(/) is approximated by the noisy observation Y(/). Using different
weighting coefficients for noise and speech power spectral densities and introducing an
overestimation factor ¢ for the noise term the following weighting rule is obtained:

£y (M) with (M)=§: o U (16.10)
Ey (M)+aEy (M) g '

and Ue {Y,N}.

G (M) =

The exponential forgetting factor py smoothes the involved signals. Usually different
values are applied for py and py.

2. Recursive Gain Least Squares (RGLS)

A new weighting rule is obtained by directly applying Eq. 16.6. A recursive formula-
tion for the weighting factors Gy(!) can be stated (Setiawan 2005a):

G My =GRS M -1+ KM M (16.11)
where K} is a gain factor and " is called the residual with

! =S (M) = Y, (M) G S (M -1) (16.12)
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The mathematical derivation is given in Setiawan (2005a). The clean speech signal
Sk(M) is approximated by

S, (M) = B, (M)=a By (M) &, (16.13)

J Oy,

A being the phase component of the noisy signal.

3. RLS with Modified Spectral Subtraction

Another method for estimating the clean speech signal is given in Setiawan (2005a):
The same derivation as for the RLS algorithm is used, but the average power spectral
density of speech in the nominator of Eq. 16.6 is now computed from the power spec-
tral densities of noisy signal and noise signal averaged over all past frames:

M M M
2 A s of =2 oM @ - a o Ve (16.14)
=0 =0 1=0

Using the same notations as above results in the weighting rule

Ey (M)—-aEy (M)
Ey (M)

G (M) = (16.15)

16.5.5 Recognition Results

Table 16.3 shows some recognition results achieved with the new algorithmic ap-
proaches. The recognition tests have been carried out on the Spanish versions of the
SpeechDat Car, SPEECON Car, and SPEECON Adult databases (SpeechDat 2000).
The channels given in the table represent signals recorded with far-talk micro-
phones at a medium distance of 0.5m—Im. For the SpeechDat Car recordings the mi-
crophones have been mounted at typical positions at the car ceiling (channel 2: A-
pillar, channel 3: sun visor in front of driver, channel 4: rear mirror). Different isolated
word recognition tasks have been examined. The back-end of the ASR, a phoneme-
based HMM recognizer trained with 20000 Gaussian densities has been used (Bauer
1997). As a baseline system serves the RLS implementation (Beaugeant et al. 2002).
Results using this kind of noise reduction have also been published in the context of the
ETSI Aurora front-end evaluation (Andrassy et al. 2001). For comparison purposes the
results achieved with the state-of-the art Wiener approach using a-priori SNR estima-
tion (Scalart and Filho 1996) are given as well. It can be seen from the table that a
relative improvement of the word error rate up to 18 % can be achieved on the average,
the best results are achieved with the modified spectral subtraction approach. We were
able to improve these results up to 22 % relative word error rate improvement by com-
bining the new weighting rules with root compression algorithms (Setiawan 2005b).
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Table 16.3 Recognition results with SpeechDat Car ES and SPEECON Adult ES—Word
Accuracies (ACC) as defined in Eq. 16.16; WER=1—ACC

]
o — = g
= S ; .
s z— = _E
— “ = o =3
o = H H E29
53 S8 7)) g N
Algorith 2 &8 g 938
gorithm — . s = é 2.3
Database | Word accuracies
SpeechDat 858 commands Channel 2 93.0 92.8 92.0 93.0
Car Channel 3 920 925 924 923
ES(306 Channel 4 889  88.6 89.9 903
speakers) 150 city names Channel 2 878 880 906  90.0
Channel 3 884 892 90.7 91.1
Channel 4 87.6  88.8 89.2 89.0
Speecon 208 application
Car speciﬁc words Channel 2 85.4 88.0 88.2 88.8
ES(625 Channel 3 87.2 90.2 89.6  90.0
speakers)
100 city names Channel 2 798 827 823 827
Channel 3 81.8 85.6 85.8 85.8
Speecon 208 application
Adult speciﬁc words Channel 2 92.2 95.0 94.2 943
ES(561 Channel 3 89.5 92.3 926 926
speakers)
Mean word 76 g95 898  90.0
accuracy
Rel WER 55 139 164 180
1mprovement

16.6 Methodology for Evaluation of Automotive Recognizers
Quality Measurement Using SNR Curves

The evaluation of speech recognition systems is an essential issue for the customer
acceptance of a product. However, evaluation results of individual customer-specific
tests are hardly comparable due to different test setups, while database tests often do
not reflect the real-life environment for the final product.

Therefore, we have developed a well-defined procedure for an independent evalua-
tion of speech recognizer products in real-life car-environments. The procedure has
been exemplified and validated in comprehensive in-car tests by deploying the Sie-
mens Recognizer Embedded based on the RLS Algorithm shown in Eq. 16.10 of
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Sect. 16.5 allowing a comprehensive, objective and comparable assessment of recognizer
performances under real-life conditions.

16.6.1 Common Evaluation Procedures

The common evaluation procedures for speech recognition products can roughly be
subdivided into three different approaches: customer-specific tests, database tests, and
a hybrid approach of both.

With customer-specific tests the fulfillment of different customer requirements can
be verified very well. However, there is nearly no possibility to compare evaluation
results from different customer-specific test setups.

With tests on common databases it is possible to produce comparable test results.
However, such database tests often do not reflect the real-life environment for the final
product: for example, the audio path of the final product is not taken into account, and
the recordings were in most cases performed in cars different to the target car. Finally,
common databases often do not contain all commands of the final product, and there-
fore allow to verify only a subset of the overall commands.

The following approach can be seen as a hybrid of a customer-specific test and
common database tests: clean speech from databases is mixed with noise recorded with
the final target in the final environment. However, this approach has also some disad-
vantages. First, as for database tests already stated, often not all commands of the final
product are included in a database. And second, the mixing of clean speech and noise is
not the same as speech recorded in real noise, as e.g., due to the Lombard-effect speech
characteristics often change under noise (Junqua 1993).

16.6.2 Proposed SNR-Approach

In order to overcome the constraints of the previously described approaches, we pro-
pose in the following an objective and practical evaluation procedure especially for
automotive environments based on SNR (Signal-To-Noise Ratio) values. For our
evaluation procedure, recordings are taken on a normalized roundtrip with typical
traffic and road situations. For each utterance a specific signal-to-noise ratio is calcu-
lated to assign the utterance to an SNR-bin of the main car noise range. In a defined
evaluation procedure, the SNR-bins are compiled into normalized SNR recognition
curves. This SNR-based approach has the advantage of better comparability in opposi-
tion to conventional tests with fixed driving speed (e.g., 0/50/130 km/h), as environ-
mental conditions like weather, tires or road type are implicitly considered. Further-
more an SNR-based approach takes the speaker loudness correctly into account.

16.6.3 Data Recording

To provide a comparable and comprehensive assessment of the recognizer perform-
ance, recordings from 12 test speakers (6 male and 6 female from target group) are
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taken on a normalized roundtrip. All recordings are performed with the final target.
The audio signals are recorded as provided to the recognizer engine as well as the
recognition results. The normalized roundtrip should contain most of normal traffic
situations and road types like town traffic, country roads and highways. To diversify
the in-car situation, recordings are taken with opened as well as with closed windows
and comprise different settings of the air conditioning. All test speakers get a list of the
same test utterances. This list should contain all commands, that have to be tested, and
every command should occur in the same quantity (preferably at least five times each).

16.6.4 Evaluation

After the calculation of the signal-to-noise ratio with a well-defined algorithm (Hoge
and Andrassy 20006) for every recorded utterance, all recordings are grouped into SNR-
bins from 2 to 16 with a step of 2, where every SNR-bin X includes all recordings with
a signal-to-noise ration higher or equal X —2 and lower X + 2. The idea of this group-
ing is that every utterance within the same SNR-bin has the same “level of challenge”
for the recognizer, as the challenge notably depends on the ratio between the intensity
of speech signal and environmental noise. Furthermore the grouping summarizes the
utterances in few SNR-bins improving the statistical relevance of recognition results.
After this grouping, the word accuracy ACC,,.,, for every SNR-bin S is calculated:

_ subst (S) + del (S) + ins (S) (16.16)

ACC mean (S) = 1
utt (S)

where utt(S) is the total number of recorded utterances in the SNR-bin S, subst(S)
is the number of false recognized (substituted) utterances, de/(S) is the number of not
recognized (deleted) utterances, and ins(S) is the number of additionally recognized,
but not spoken (inserted) utterances in the SNR-bin S.

To avoid a strong influence of very good or very bad recognized speakers on the
word accuracy, the best and the worst speaker are removed from all SNR-bins. For this
purpose, an individual word accuracy ACC, over all SNR-bins S is calculated for every
speaker n as follows

D [ACCH(S) = ACC mean ($)] * it (S)
ACC, = $=min (16.17)

max

> uttn(S)

S=min

where ACC,,..,(S) is the mean word accuracy over all speakers for the correspond-
ing SNR § from equation (1), and utz,(S) is the number of utterances of speaker  in the
SNR-bin S.
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Fig. 16.9 SNR-curves for different languages/products

With this approach the decision on best and worst speaker is based on their relative
performance to the other speakers per SNR-bin rather than on an overall word accu-
racy, which heavily depends on the particular noise conditions per speaker.

After removing all utterances from the best and worst speakers, the final word ac-
curacy for every SNR-bin is calculated receiving SNR-curves like shown in the Fig.
16.9. These SNR-curves shown in Fig. 16.9 give a comparative overview about the
performance of a recognition product under different aspects. First, the distribution of a
SNR-curve shows the characteristics of the recognizer under different noise levels.
Second, all recognition curves (e.g., for different languages or products) are directly
comparable, as every SNR-curve has been created under the same conditions and sub-
divided into the SNR-bins by the same algorithm. For example, if two recognizers with
a similar performance have been recorded under different weather conditions (e.g.,
sunny vs. rainy), the overall word accuracy will normally differ due to the different
noise levels. However, with our approach, SNR-curve of both recognizers can be com-
pared directly, as every SNR-bin reflects a similar noise level for the corresponding
utterances.
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The SNR-curves can finally be translated into normalized SNR-curves as shown in
Fig. 16.10, taking the mean over all curves within every SNR-bin (or e.g., customer
requirements) as baseline

ACC (S) — ACC paseiine (S) (16.18)

ACC retaiive (S) = ACC pasetine (S)

With such a normalized representation it is now very easy to compare the recogni-
tion performances visually.
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Fig. 16.10 Normalized SNR-curves for different languages/products

16.6.5 Best Practice

We experienced some issues to be considered to get a good coverage of the utterances
over the whole SNR-range and to avoid unnatural accentuation of the test utterances.
First of all, the sequence of the test utterances should be varied a little bit for every
speaker to avoid dependences between certain utterances in the sequence and certain
traffic situations, as often the same circuit will be driven. Second, the sequence of
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utterances should not contain a series of same commands. Otherwise the test speakers
sometimes start to play with the accentuation of this command. The same applies for
unnatural digit-sequences (e.g., like 0102030405). Finally, the round trip should con-
tain as much different driving situations as possible to get a good distribution of the
utterances over the whole SNR-range for all speakers and therefore to get a compre-
hensive assessment of the recognizers performance.

16.7 Conclusion

Various voice driven automotive applications will be installed in car in the coming
years. The most challenging task is destination input for navigation due to the large
vocabulary of city and street names. The Siemens Speech Processing Group delivers a
set of speech processing components, which are suited for realizing these applications
on the automotive platforms. Recent advances in noise reduction technology are pre-
sented which lead to further improvement in recognition rate. The proposed methodol-
ogy for evaluation of recognizers has been exhaustively field-tested in comprehensive
in-car tests by deploying the Siemens Recognizer Embedded. Several car manufactur-
ers request the proposed procedure for judging the quality of a recognizer.

Future developments will go in the direction of multimodal, speaker adapted dialog
technology, where also infrared cameras will be involved. Fusing facial and acoustic
features will improve the recognition rate (lip reading) and will improve speaker char-
acterization parameters (stress, uncertainty, etc.) to allow speaker state adapted dialog
steering. For the next years we expect advances in microphone array technology
(hardware and software) improving further recognition.

Still some “hard” problems in speech recognition technology will not be solved in
the near future and need basic research. Substantial improvement in recognition per-
formance on phoneme level is needed to achieve human performance. Further varia-
tions in pronunciation caused by dialectal and casual speech have to be handled.
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Energy Aware Speech Recognition for Mobile Devices

Brian Delaney

Abstract. As portable electronic devices move to smaller form-factors with more features, one
challenge is managing and optimizing battery lifetime. Unfortunately, battery technology has
not kept up with the rapid pace of semiconductor and wireless technology improvements over
the years. In this chapter, we present a study of speech recognition with respect to energy
consumption. Our analysis considers distributed speech recognition on hardware platforms
with PDA-like functionality. We investigate quality of service and energy trade-offs in this
context. We present software optimizations on a speech recognition front-end that can reduce
the energy consumption by over 80% compared to the original implementation. A power
on/off scheduling algorithm for the wireless interface is presented. This scheduling of the
wireless interface can increase the battery lifetime by an order of magnitude. We study the
effects of wireless networking and fading channel characteristics on distributed speech recog-
nition using Bluetooth and IEEE 802.11b networks. When viewed as a whole, the optimized
distributed speech recognition system can reduce the total energy consumption by over 95%
compared to a software client-side ASR implementation. Error concealment techniques can be
used to provide further energy savings in low channel SNR conditions.

17.1 Introduction

In this chapter we present software and hardware optimizations to reduce the energy
consumption for distributed speech recognition on portable hardware with PDA-like
functionality. We concentrate specifically on general-purpose hardware including
StrongARM processors, IEEE 802.11, and Bluetooth networks. We explore the en-
ergy design space with respect to delay, wireless channel characteristics, and local
processing capability. We begin with a brief overview of battery technology fol-
lowed by a review of energy-aware design principles. Next, we present energy opti-
mization results for the speech recognition front-end on the HP Labs Smartbadge
hardware platform. Finally, energy tradeoffs with respect to the wireless network
interface are explored for both IEEE 802.11 and Bluetooth networks.

17.1.1 Battery Technology

In the past 30 years, processor speeds and memory sizes have increased at a stag-
gering rate, while battery technology has only increase by a factor of two to three.



376  Brian Delaney

New battery technologies are being developed to minimize this gap, but the fact
remains that battery technology has traditionally lagged behind advances of proces-
sor and memory technology. With the proliferation of portable electronic devices,
this emphasizes the need to use battery resources efficiently.

A battery technology can be rated according to several factors (Green and Wilson
2001):

Energy density The amount of energy stored per unit volume (Wh/I%)
Specific energy The energy per unit weight of a battery (Wh/kg)
Nominal Voltage The average rated voltage output throughout the discharge
cycle (V)
Rated Capacity The amount of current the battery can deliver over a specified
period of time (milliamp-hours).

The energy density and specific energy are used to rate the amount of energy
with respect to the size and weight of the battery. A battery with a rated capacity of
1000 mAh will be able to deliver current of 1000 mA for one hour, 500 mA for 2 h,
or 2000 mA for half an hour. Given the rated capacity and nominal voltage, one can
find the total battery energy by multiplying the two values.

In the area of rechargeable battery technology, there have been several types over
the years. The first, nickel-cadmium (NiCd) technology is virtually non-existent in
the marketplace today. This battery technology suffered from low energy densities
and a memory effect that reduced the capacity after relatively few charge/discharge
cycles. Nickel-metal hydride (NiMH) technology alleviates some of the memory
effect of NiCd with increased energy densities, but the total lifetime of the battery is
reduced. The most common technology is lithium-ion (Li-ion). Li-ion batteries have
a much longer life cycle with increased energy densities, but the charging process
requires more sophisticated electronics, which drives up cost. The newest battery
technology, lithium-polymer, has even greater energy density than Li-ion but with
increased cost. Despite the cost, lithium-polymer has found its way into smaller
devices where weight and size are critical. While new technologies are being devel-
oped, such as miniature generators and fuel cells, there is an ever-increasing demand
for improved battery technology with today’s power hungry portable devices.

17.1.2 Energy Aware Design Principles

Given a fixed amount of battery energy, there has been an emphasis on energy-
aware design principles in the literature. The goals of energy aware design are to put
hooks or knobs into the hardware, software, or applications that allow scalability in
quality vs. energy. This is different from low-power design, which often does not
seek to allow scalability. The result of energy-aware design is a system that can
adapt to changing conditions and modify its energy usage accordingly. For example,
a hand-held video streaming application might opt to send and decode video of de-
creased quality to extend battery lifetime. In another situation, the user might de-
mand high-quality video, even if only for a short time.
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Energy-aware design and scalability must take place at all levels, from the device
level to the application layer. Many CPUs already allow energy scalable operation
through techniques such as dynamic voltage and frequency scaling. Running a par-
ticular application at its lowest frequency and voltage setting that still provides
acceptable performance will save energy. Dynamic application of this technique can
be difficult since the operating system must have knowledge of the operating re-
quirements of various applications running on the system. For applications such as
speech recognition, this information may be difficult to predict far in advance. Oper-
ating systems are becoming increasingly aware of energy considerations, but fine
grained control requires the assistance from the application layer. Memory subsystems
can be designed such that entire banks of memory are shut off when not needed, but,
once again, the operating system must maintain control of these adaptations.

Software optimization techniques can also help to reduce energy consumption.
By writing software that will run efficiently on a particular platform, the program
can use fewer resources, including battery energy. Compiler optimizations only offer
marginal improvements in energy consumption. Any significant gains will require
optimizations that address bottlenecks with respect to the particular architecture
studied. This may include limiting the mathematical precision (i.e. fixed point arith-
metic), efficient data structure organization to reduce cache misses, and the use of
approximate algorithms when hardware accelerated versions are not available, such
as square root, logarithmic, or trigonometric functions.

Table 17.1 Power dissipation for major subsystems of the HP Labs Smartbadge IV

1. Subsystem 2. Power 3. Percentage
(mW)

4. CPU 5. 694 6. 21

7. Memory 8. 1115 9. 34

10. Wireless 11. 1500 12. 45

13. Total 14. 3309 15. 100

The wireless network can use significant amounts of power in an embedded sys-
tem. Table 17.1 shows the power dissipation of various components of the HP Labs
Smartbadge IV embedded system. These are average power measurements during
some moderate CPU processing and wireless network activity. The 802.11b network
interface used almost half of the power of the total system; therefore wireless net-
work optimization is an important consideration.

17.1.3 Related Work

The wireless network power optimization problem has been addressed at different
abstraction layers, starting from the semiconductor device level to the system and
application level. Energy efficient channel coding and traffic shaping to exploit
battery lifetime of portable devices were proposed in Chiasserini et al. (2002). A
physical layer aware scheduling algorithm aimed at efficient management of sleep
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modes in sensor network nodes is illustrated in Shih et al. (2002). Energy efficiency
can be improved at the data link layer by performing adaptive packet length and
error control (Lettieri et al. (1999). At the protocol level, there have been attempts to
improve the efficiency of the standard 802.11b, and proposals for new protocols
(Jones et al. 1999). Packet scheduling strategies also can be used to reduce the
energy consumption of transmit power. A server-driven scheduling methodology
aimed at reducing power consumption for streaming MPEG4 video was introduced
in Acquaviva et al. (2003). Savings of as much as 50% in the wireless local area
network (WLAN) power consumption, relative to just using 802.11b power man-
agement, were reported.

Traditional system-level power management techniques are divided into those
aimed at shutting down components and policies that dynamically scale down process-
ing voltage and frequency (Simunic et al. 2001). Energy-performance tradeoffs
based on application needs have been addressed (Kravets and Krishnan 2000). A
different approach is to perform transcoding and traffic smoothing at the server
side by exploiting estimation of energy budget at the clients (Shenoy and Radkov
2003). A new communication system, consisting of a server, clients and proxies,
which reduce the energy consumption of 802.11b compliant portable devices by
exploiting a secondary low-power channel is presented in Shih et al. (2001). Since
multimedia applications are often most demanding of system resources, a few
researchers studied the cooperation between such applications and the OS to save
energy.

There have been several studies of power consumption with respect to speech
recognition. Analog signal processing techniques were used in Smith and Hasler
(2002) to build both the signal processing front-end and HMM acoustic modeling. In
analog signal processing, DSP algorithms are realized with analog CMOS circuits.
Power consumption estimates for the front-end were less than 100 microwatts. Re-
ducing the computation and memory access can also reduce energy consumption. By
using a subset of available features for likelihood computation Li and Bilmes (2005)
report a 27%—43% reduction in power consumption using a cycle accurate energy
consumption simulator. Other authors have considered custom chip architectures
designed specifically for speech recognition. By exploiting parallelism in the speech
recognition process Krishna et al. (2003) were able to increase battery lifetime by
about 25% while improving recognition speed on a custom XScale-based architec-
ture. In Nedevschi et al. (2005) a custom hardware architecture for low-power speech
recognition was introduced. Power consumption was found to be about 12 times
lower than that of a software-based ARM processor solution. In Mathew et al. (2003)
a hardware accelerator for Gaussian evaluation was built alongside a general purpose
processor. The resulting system used 100 times less energy than a Pentium 4 system
when running the CMU Sphinx recognition system. Figure 17.1 shows the power
consumption estimates of several published speech recognition applications on gen-
eral purpose hardware, DSP chips, and custom ASIC designs.
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Fig. 17.1 Power consumption figures for various ASR hardware/software configurations

17.2 Case Study of Distributed Speech Recognition Using the HP
Labs Smartbadge System

As we have seen, implementing high quality speech recognition on an embedded
system, such as a cellular phone, PDA, or other device is a difficult challenge. In this
section, we discuss some of these challenges in detail and present some solutions.
First, we present a software based front-end feature extraction for a distributed
speech recognition system that is designed for minimal power consumption. Through
algorithmic, architectural optimizations, and dynamic voltage scaling, we are able to
reduce the energy consumption of the signal processing algorithm on a general pur-
pose processor by 89%. Next, we model and analyze the energy required to transmit
speech features across a network using IEEE 802.11 and Bluetooth networks.

17.2.1 Signal Processing Front-End

This section describes the optimization of a signal processing front-end feature ex-
traction for a distributed speech recognition system. The baseline system used in the
experiments is version 0.3 of the open-source Sphinx II speech recognizer from
Carnegie Mellon University. The optimization methods used for the algorithm sub-
stantially decrease the power usage while increasing speed (measured in processor
cycle counts). Estimates of total power usage are performed using a cycle-accurate
energy consumption simulator (Simunic et al. 2001a).

The architecture of the embedded system simulated in the experiments mimics
that of the Smartbadge IV system developed at the Appliance Platform department of
Hewlett-Packard Laboratories (Maguire et al. 2004). It is based on a Strong-
ARM processor running a lightweight Linux O/S. In addition to performing energy
consumption simulations to evaluate the quality of source code optimizations, we
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also implemented and ran the optimized version of the front-end on Smartbadge IV
hardware. We found that real-time signal processing of speech is possible at eleven
discrete CPU frequency and voltage settings, thus enabling further power savings.

Since the front-end feature extraction step is relatively low in complexity, it is
desirable to perform this step on the embedded device and to send compressed fea-
tures across the network. The signal processing itself consists of a pre-emphasis
filter, an FFT, filter-bank computation, a DCT, and a logarithm. It has been shown
that mel-frequency cepstral coefficients can be compressed with little effect on the
error rate of the speech recognizer (Zhu and Alwan 2001). The ETSI standard for
distributed speech recognition describes algorithms to compute, compress, and
transmit these speech features (Pearce 2001). We consider several bit rates and quan-
tization levels, including one that is similar to the ETSI standard.

The source code optimizations can be grouped into two categories. The first
category, architectural optimizations, aims to reduce power consumption while in-
creasing speed by using optimization methods targeted to a particular processor or
platform (e.g. an embedded system with no floating-point hardware). Ideally, many
of these optimizations should be done by a compiler. However, currently available
compilers for most embedded systems do not have these optimizations built-in.
In addition, measurements presented in Simunic et al. (2001) show that the im-
provements that can be gained using standard compiler optimizations are marginal
compared to writing energy efficient source code. The second category of source
code optimizations is more general and involves changes in the algorithmic imple-
mentation of the source code with the goal of faster performance with less power
consumption.

The final optimization presented in this work, dynamic voltage scaling (DVS), is
the most general since it can be applied at run-time without any changes to the
source code. Dynamic voltage scaling algorithms reduce energy consumption by
changing processor speed and voltage at run-time depending on the needs of the
applications running. The maximum power savings obtained with DVS are propor-
tional to the savings in frequency and to the square of voltage.

Profiling of the original source code under a StrongARM simulator revealed that
most of the execution time was spent in the computation of the DFT (which is im-
plemented as an FFT). Since speech is a real-valued signal, an N-point complex FFT
can be reduced to an N/2-point real FFT. Some further processing of the output is
required to get the desired result, but this overhead is minimal compared to the re-
duction in computation. Additional savings can be obtained when the trigonometric
functions used in the computation of the FFT are pre-computed and stored in a
lookup table, thus eliminating multiple function calls in the FFT loop. Algorithmi-
cally, the source code is now ready for optimizations specific to the StrongARM
architecture.

Further profiling of the source code on a StrongARM simulator revealed that
over 90% of the time was spent in floating-point emulation. The StrongARM has no
on-chip floating-point processor, so all floating-point operations must be emulated in
software. Simply changing from double- to single-precision floats improved the
performance considerably. However, additional profiling showed that 80% of the
time was still being spent in floating point emulation. Any further gains require
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fixed-point arithmetic. Implementing a pre-emphasis filter and Hamming window
using fixed-point arithmetic is straight-forward. Fixed-point FFTs are well studied
and have often been implemented on digital signal processor chips. Careful attention
must be paid to the location of the decimal point to avoid overflow while maintain-
ing precision.

After passing the input frame through the FFT, the mel filter bank must be ap-
plied. The filter bank amplitudes are calculated using the squared magnitude. This
presents some challenges since this squared number multiplied by the filter coeffi-
cients, H,[k], can easily overflow the 32-bit registers. A 64-bit result can be ob-
tained from the StrongARM multiplier using assembly language, but overflow can

be avoided simply by rewriting the filter bank equation to use just the magnitude:
N2

Y[i]= ZQX[k]HH,.[k])Z (17.1)

k=0
This avoids overflow since H,;[k] <1, therefore the result of each multiplication is
small. The coefficients, \/ H;[k] , are stored in a lookup table. The one drawback to
this method is that computing the magnitude requires a square root operation. Fast
integer square root algorithms exist, but they must be used on each output from the
FFT, which is costly. Fortunately, the magnitude can be estimated as a linear combi-
nation of the real and imaginary parts using the following equation (Frerking 1994):

| x |2 amax(| Rixj |, Itxy ) + min(| Rix} | S{xj ) (17.2)

where & and f can be chosen to minimize the mean squared error, and R{x} and

3J{x} represent the real and imaginary parts of the complex number X .
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Fig. 17.2 Cycle count (left axis) and energy consumption (right axis) per frame of speech
(Delaney et al. 2002, © 2002 IEEE)
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Computing the first 13 coefficients of the DCT is relatively easy to do in fixed-point
arithmetic, but taking the natural logarithm is a more difficult task. One possible option
is to perform a floating-point logarithm, but profiling showed that the logarithm itself
as well as the transition to and from fixed-point is costly. A fixed-point logarithm
using a polynomial expansion requires some divides, which are slow on the Stron-
¢gARM. However, we can approximate the logarithm in base 2 using simple bit ma-
nipulation (Crenshaw 2000). A shift and scaling of the result is used to obtain the
natural logarithm for a fixed point number x, whose decimal is located at the nth bit.

h{z—’f’J = [log, (x)—n]In(2) (17.3)

Three main criteria are considered in order to evaluate the effectiveness of a
particular optimization: performance (in terms of processor cycle count), energy
consumption, and accuracy or word error rate (WER). Simulation results for process-
ing one frame (25 ms) of speech on the Smartbadge IV architecture running at
202.4 MHz are shown in Fig 17.2. The x-axis shows the source code in various
stages of optimization. The “baseline” source code contains no software optimiza-
tions. The “optimized float” code contains the algorithmic optimizations as well as
some additional source code optimizations. Double-precision floating-point numbers
were changed to single-precision 32-bit floats in the “32-bit float” version of the
code. Finally, the “fixed-point” implementation contains all of the source code op-
timizations described in this chapter. For each version of the code, we report the
performance (in CPU cycles) and the total battery energy consumed (in £/ Joules).
The simulation results are computed by the cycle-accurate energy simulator, and
include processor core and level 1 cache energy, interconnect and pin energy, energy
used by the memory, losses from the DC/DC converter, and battery inefficiency. The
reduction in energy consumption is not as dramatic as the reduction in cycle count
for the fixed-point version due to an increase in memory references per unit of time.
In fixed-point code, basic math operations are reduced to a few cycles as opposed to
long iterations of floating-point emulation which do not require as many memory
references. However, we have still achieved a reduction in the total battery energy
required to process one frame of speech data by 83.5%.

Once the code is optimized for both power consumption and speed, we investi-
gate the energy savings from DVS. The StrongARM processor on Smartbadge IV
can be configured at run-time by a simple write to a hardware register to execute at
one of eleven different frequencies. We measured the transition time between two
different frequency settings at 150 ms. Since typical processing time for the front-
end is much longer than the transition time, it is possible to change the CPU fre-
quency without perceivable overhead. In our case, we obtained real time performance
at all possible frequency and voltage settings. At 59 MHz the system uses 34.7% less
power than at 206 MHz. Combining the DV'S results with the source code optimiza-
tions, we calculate the overall reduction in power consumption to be 89.2%.

Finally, we include the fixed-point vector quantization code in our profiling and
consider different bit rates and quantization levels. Although some differing tech-
niques have been proposed, the most common technique for compressing Mel-
frequency cepstral coefficients (MFCC) is some form of vector quantization. For our
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system, we use an intra-frame product code vector quantization scheme presented in
Pearce (2001). We train a set of codebooks using a K-means training algorithm with
bit rates ranging from 1.2 kbps to 2.0 kbps. We include an additional bit allocation
that is similar to the ETSI standard that will operate at 4.2 kbps. In general, we can
expect increased WER at lower bit rates.
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Fig. 17.3 Computational energy usage and measured average power for different quantization
bit allocation schemes

Source code to perform the quantization of the MFCC data was written in fixed-
point for the StrongARM processor and profiled using the energy consumption simu-
lator. Figure 17.3 shows a comparison of energy consumption for various vector
quantization bit allocation schemes. The bars represent the total energy consumption
per frame of speech for the quantization step, and the line represents the measured
CPU power dissipation at each bit rate. The measured values closely match the re-
sults from the energy consumption simulator. There is approximately a 14% increase
in CPU power consumption but a greater than 50% reduction in WER between the
highest and lowest bit rates. Even at the highest bit rate, the vector quantization is
only 12% of the total energy usage. This suggests that speeding up the quantization
process by using smaller codebooks would produce minimal reductions in energy
consumption and would have a much greater impact on speech recognition accuracy.

In this section, we have outlined some optimization techniques to reduce the
energy consumption of a particular signal processing algorithm. On embedded sys-
tems with no floating-point hardware, fixed-point arithmetic is an important step in
lowering the power consumption of a program. However, careful attention must be
paid to basic math functions (i.e. cosine, log, etc.) and overflow/underflow issues.
Approximate algorithms perform well for certain applications and can result in sav-
ings in both time and power usage. By using software optimizations, we were able to
achieve a reduction in energy usage by 83.5% compared to the non-optimized source
code. We show that additional power savings are possible by scaling processor fre-
quency and voltage at run time, while still meeting the performance requirements.
At the lowest frequency/voltage setting, we calculate an overall reduction in power
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consumption by 89.2%. With the addition of vector quantization, the total energy
required to process one frame of speech data is approximately 380 u Joules.

17.2.2 Energy Consumption of DSR with IEEE 802.11 Wireless
Networks

In this section we address the issue of energy consumption of the wireless interface
for a distributed speech recognition system. As we have discussed earlier, the wire-
less interface can occupy almost half of the energy budget on many mobile wireless
devices. We introduce techniques to minimize the energy consumption required to
transmit speech parameters to an ASR server. We model the energy consumption of
a DSR system using the IEEE 802.11b wireless interface. By employing synchro-
nous burst transmission of speech parameters, we can maximize the amount of time
spent in a low power state or off state while adding minimal delay to the application.
Using this technique, we can significantly reduce the energy consumption required
for transmission. We explore these tradeoffs with respect to latency, channel condi-
tions, and energy consumption. These techniques can provide reductions in energy
consumption of over 90% compared to a software based client-side ASR system.

Given the relatively low bit rates used in DSR, these networks will operate well
below their maximum throughput range. In this situation, more energy saving oppor-
tunities will develop from exploiting moderate increases in application latency by
transmitting more data less often. This allows the network interface to either be pow-
ered down or placed into a low-power state in between transmissions. Other wireless
networks with throughput in the low kbps range, such as many cellular telephony
networks, may require other techniques, such as better compression, to minimize
energy consumption. However, we do not consider such wireless networks here.

In order to estimate the power consumption for wireless transmission, we directly
measure the average current into the network interface. These measurements are
performed under ideal conditions with no competing mobile hosts or excessive inter-
ference. Using these measurements as a baseline, we are able to tailor a simple en-
ergy consumption model to investigate the effects of increased application latency.
By buffering compressed speech features, we maximize the amount of time spent in
the low-power or off state. We introduce a power on/off scheduling algorithm for the
802.11b device that exploits this increased latency. Given the medium access control
(MAC) scheme for both 802.11b and Bluetooth, we can incorporate the effects of
channel errors into the energy model. We use these results to investigate which tech-
niques should be used to maintain a minimum quality of service for the speech rec-
ognition task with respect to channel conditions.

The 802.11b interface operates at a maximum bit rate of 11 Mbps with a maxi-
mum range of 100 m. The MAC protocol is based on a carrier sense multiple ac-
cess/collision avoidance schemes, which includes a binary exponential back-off
system to avoid collision. It uses an automatic repeat request (ARQ) system with
CRC error detection to maintain data integrity. We used a PCMCIA 802.11b inter-
face card and measured the average current going into the interface to get the power
dissipation.
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Our measurements indicate there is only a difference of a few mW in power
consumption between the highest and lowest bit rates. This is expected since the bit
rates are low, and the transmit times are very short. Also, the use of UDP/IP protocol
stacks and 802.11b MAC layer protocols both add significant overhead for small
packet sizes. The 11 Mbps WLAN interface is under-utilized with this type of low
bit rate traffic. The other 802.11 standards, including 802.11g, have similar operation
but with different modulation schemes which provide higher bit rates. However, we
can obtain some improvement in power consumption by increasing the number of
frames per packet. This increases the total delay of the system, but less battery en-
ergy is used since the various networking overhead is amortized across a larger
packet size. However, due to the relatively high data rates provided by 802.11b, the
WLAN interface spends most of its time waiting for the next packet to transmit. The
802.11b power management (PM) mode can provide some savings in energy con-
sumption but this does not hold under heavy broadcast traffic conditions (Acquaviva
et al. 2003), defined as a higher than average amount of broadcast packets. In addi-
tion, the PM mode is not available in the ad-hoc (as opposed to infrastructure) top-
ography. We present an on/off scheduling algorithm to reduce the total energy
consumption of the 802.11b device under these conditions. While operating in the
802.11b power management mode, a WLAN card goes into an idle state. Every
100 ms it wakes up and receives a traffic indication map, which is used to indicate
when the base station will be transmitting data to this particular mobile host. With
heavy broadcast traffic, the WLAN interface will rarely be in the idle state and it will
consume power as if it were in the always-on mode. This is because the time re-
quired to analyze the broadcast packets is larger than the sleep interval. This increase
in power consumption will happen even if there are no applications running on the
mobile host.
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Fig. 17.4 WLAN power consumption in 802.11b PM mode in light and heavy traffic conditions

Figure 17.4 shows the power consumption of the WLAN card in the 802.11b
power management mode in both heavy and light traffic conditions. Notice that in the
left graph, under heavy traffic, the card is unable to transition to the low-power idle
state very often. The average power approaches the always-on mode. Measurements



386  Brian Delaney

in Acquaviva et al. (2003) indicate that even in less than average amounts of broadcast
traffic, energy is wasted by the extra processing.

Since the energy consumption of PM mode on 802.11b networks breaks down in
heavy traffic conditions, we consider an alternate technique. If we are only interested
in transmitting speech recognition related traffic and not any other broadcast traffic,
we can simply power off the WLAN card until we have buffered enough data to
transmit. However, powering the card on and off has an energy-related cost that
needs to be accounted for.

Figure 17.5 shows the timing of this scheduling algorithm. The period, T, is
determined by the number of speech frames sent in one packet. The transmission is
synchronous such that every T seconds we will send that amount of compressed
speech features and stay in the off state for the remainder of the time. With larger
values of 7" we can hope to amortize the cost of turning the WLAN card on and off
at the expense of longer delay. Assuming that a speech recognizer server is able to
process speech at or near real-time, the user will experience delay near the value of
T . Depending on the type of application, a longer delay may or may not be accept-
able to the end user.
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Fig. 17.5 The timing of the 802.11b scheduling algorithm (Delaney et al. 2005, © 2005 IEEE)

The two interesting parameters to consider are the power on time (7, ,,) and

the number of speech frames transmitted at once, which dictates the total period 7.
Figure 17.6 shows the power on delay on the x-axis and estimated energy consump-
tion on the y-axis. We fixed the value of 7" to 0.48 s, or 48 frames of speech data.
The PM mode configuration in light traffic almost always outperforms the proposed

scheduling algorithm except for very small values of 7}, Typical values may

ack_on *
range from 100 ms to 300 ms, with newer hardware possibly using less time. How-
ever, in heavy traffic conditions, the PM mode approaches the always on power

consumption (shown by the top line in the plot), so the scheduling algorithm can give
better performance under these conditions. With 7, , = at 100 ms, the total energy
consumption per packet is approximately 75 mJ for the scheduling algorithm and
approximately 390 mJ for PM mode in heavy traffic conditions (from Fig. 17.6).
This is a reduction in energy consumption by about 80%. However, this only holds
true for heavy broadcast traffic conditions, so the mobile device will have to monitor
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Fig. 17.6 Wireless LAN power on delay vs. energy consumption per packet (Delaney et al.
2005, © 2005 IEEE)

890 % 0 o o o o o o o o o

o

Energy (mJ)

»

0 f f f f f f f f f f f f
10 20 40 60 80 100 200 300 400 600 800 1000 2000

Latency (ms)

‘ —@— Eon (mJ) —m— Esave (mJ) —A— Esched (mJ) ‘

Fig. 17.7 Average energy consumption per 10 ms speech frame versus DSR latency for
various 802.11b power management schemes. (WLAN power on delay is fixed at 100 ms.)
(Delaney et al. 2005, © 2005 IEEE)

the broadcast traffic and decide between the standard 802.11b PM mode or the
scheduling algorithm.

Finally, we consider increased delay or latency, 7', in Fig. 17.7 with T, .,
fixed at 100ms. In this plot, the energy cost was determined using measured values
of power consumption. The energy cost has been normalized to show the average
energy required to transmit one frame of speech data. As the total number of frames
approaches 80 (7 =800ms), we can see that the scheduling algorithm ( E,.;.;)
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will be able to outperform the PM mode configuration ( E

<ave ) Tegardless of traffic
conditions. This will result in less than one second of delay for a user interface appli-
cation with speech recognition. Shorter power on ( 7, ,, ) times can help move this
crossover point to shorter delays. Longer delays of two seconds or more can further
reduce energy consumption and are good candidates for applications requiring lower
interactivity such as dictation.

Since the 802.11b MAC protocol uses an automatic-repeat-request (ARQ) proto-
col with CRC error detection to maintain data integrity, the energy consumption will
be a function of channel signal to noise ratio (SNR). After the reception of a good
packet, an ACK is sent across a robust control channel. For a given bit error rate and
packet length, the probability of a packet error in the absence of any error correction
coding techniques is:

P.=1-(1-BER)" (17.4)

where L is the packet length, and BER is the bit error probability for the current
channel conditions. For our analysis, we used the BER probability for 256-QAM
modulation in a Rayleigh fading channel to approximate the 802.11b CCK modula-
tion (Proakis 1995).

Given the probability of retransmission (P.), the expected number of retransmis-
sions (7,.) is given by (Wicker 1995):

1
T.=——- 17.5
=1TE (17.5)

Using these equations, an energy model can be constructed that incorporates the
energy used in the MAC overhead as well as the energy required for repeated re-
transmissions, assuming the average SNR remains the same. Such an energy model
is presented in Ebert et al. (2002) and is summarized here:

1

En(BER,L)=Eyy+ T, Py +(Ey + Ty xPy) x G-BERY

(17.6)

where E,, is the average energy required to acquire the channel, 7, is the time

required to receive the ACK packet, P, is the receive power for the robust control
channel, and F, is the power used during transmission. Given this energy model, we

can incorporate it into our scheduling shown in Fig. 17.5.

We use this expression in our final comparison to quantify the energy consump-
tion of 802.11b vs. channel SNR. In particular, we show how larger packet sizes and
lack of error correction techniques force 802.11b to operate in higher channel SNR.
However, techniques such as packet fragmentation and error correction can be used
to extend the lower SNR range of §02.11b.
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17.2.3 Energy Consumption of DSR Using Bluetooth Networks

The Bluetooth personal area network provides a maximum bit rate of 1 Mbps, and a
variety of different packet types are available to support different traffic require-
ments. It supports a range that is considerably less than 802.11b, on the order of
10 m. Bluetooth supports both data and voice traffic packets as well as a hybrid
packet containing both voice and data. Media access is handled via a time-division
duplex (TDD) scheme where each time slot lasts 625 us. Voice packets are given
priority over data packets in scheduling. In this work, we consider only pure voice or
pure data packets. Data packets are available in both high-rate and medium-rate
packets. These are DHn or DMn packets for both high and medium data rate respec-
tively, where 7 depicts the number of TDD slots the packet occupies: 1, 3, or 5.
High-rate packets use a stop-and-wait automatic-repeat-request (4RQ) protocol with
CRC error detection within the packet. Medium-rate packets use a 2/3 rate (15,10)
shortened Hamming code in addition to the ARQ protocol. Voice packets, due to
their time-sensitive nature, do not use an ARQ protocol. Voice packets are available
in HV1, HV2, or HV3 types, where the number denotes the amount of error correc-
tion rather than slot length. All voice packets occupy one TDD slot with varying
data payloads. HV3 packets use no error correction. HV2 packets use the (15,10)
Hamming code, and HV1 packets use a 1/3 rate repetition code. Given the soft time
deadlines with speech data intended for a machine listener, we can easily use either
data packets or voice packets without consideration of packet jitter or delay charac-
teristics.

First we use a model for the energy consumption of a single Bluetooth voice or
data packet given in Delaney (2004). We then consider the use of Bluetooth power
saving modes to reduce the energy consumption during the idle time, similar to the
802.11b scheduling algorithm. Finally, we investigate the implications of bit errors
on both voice and data packets.

Using power measurements of a USB Bluetooth device attached to the Smart-
Badge IV combined with our energy model, we are able to estimate the energy usage
for our system. Figure 17.8 shows the energy required to transmit one frame of
speech data at various DSR compression rates over a Bluetooth link. We consider the
use of both high-speed and medium-speed data packets. We assume an error-free
channel with no retransmissions. We can see in Fig. 17.8 that there is a higher energy
cost for medium-rate packets due to the forward error correction (FEC) overhead.
However, these packets will be a better choice for lower SNR conditions. Energy
consumption approximately doubles between the 1.2 kbps and 4.2 kbps bit rates.
However, these estimates do not consider idle time between packets that will con-
sume energy as well.

We can incorporate the Bluetooth power saving modes into our model to account
for the idle time in between packets. A node within a Bluetooth piconet can operate
in a variety of different power management modes. These are connected/transmit,
park, hold, and sniff. There is a fixed cost to transition from one mode to the next,
and the power consumption of each mode can be measured directly. For our analysis,
we will use the park, since it provides competitive transition times as well as the
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Fig. 17.8 Energy used to transmit one frame of speech with varying compression rates for
Bluetooth radio

ability for a master node performing multiple speech recognition requests to support
more nodes.

A Bluetooth node in park mode will wake up upon activity to transmit some data
and then enter the park mode when finished. The energy consumption of this scenario
is as follows:

E= Bx x T;x + Etransition + Ppark X Tpark (177)

where E,

ransition

is the total energy used to transition to/from the various operating
states, and P,,, and T, are the power dissipation and times in the park mode

respectively. The time spent in the park state is a function of the overall latency of
the system and the amount of data being transmitted. We measure 0.18 watts in the
transmit mode, and 0.077 watts in the park mode. Transition times to and from the
park state are on the order of several milliseconds each.

Next, we investigate how the presence of bit errors on the wireless channel will
affect both the energy consumption and, in the case of voice packets, speech recogni-
tion accuracy. We use this data to identify which types of packets can be used effec-
tively in various channel conditions. The main difference between the two types of
packets is that voice packets rely only on FEC and no ARQ, while data packets can
use both FEC and ARQ. The energy consumption of Bluetooth voice packets is inde-
pendent of channel conditions. Therefore, we can estimate the energy consumption
using an equation similar to Eq. 7. The main difference in energy consumption per
frame of speech will come from the reduced user payload due to FEC bits.

Bluetooth voice packets have energy consumption that is independent of SNR
since no ARQ protocol is used. By using increased delay, as with the data packets,
we can minimize the energy consumption by increasing the amount of time spent in
the low-power park state. However, since ARQ is not used, bit errors can have an
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impact on speech recognition accuracy. Using a combined interleaving and error
concealment approach (Delaney 2004), increased delay can improve the ASR accu-
racy as well as reduce energy consumption in low channel SNR conditions.

In Fig. 17.9, the energy consumption per frame of speech is plotted vs. the inter-
leaving delay. This energy consumption includes the time between transmissions,
including the low-power park state. For a given packet type the reduction in energy
consumption with respect to increased delay levels off after 64 frames. This knee
coincides with accuracy experiments in Delaney (2004), suggesting that delays be-
yond 0.64 s have little benefit in terms of improved accuracy and decreased energy
consumption.
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Fig. 17.9 Energy vs. interleaver delay for Bluetooth voice packet types

Conversely, data packets in the presence of bit errors will continue to be retrans-
mitted until they are received correctly or a timeout occurs. For the purposes of this
analysis, we calculate the BER using BFSK modulation under a Rayleigh fading
channel. By accounting for the various modes of packet failure and error correction
performance, the probability of a packet retransmission for a given BER can be de-
rived theoretically (Valenti et al. 2002). Given this information, the energy can be
estimated as:

(17.8)

1
EDxn :Ptx ><625/JS><1’1><1
)
where P, is the probability of a retransmit for the appropriate packet type. By divid-
ing the energy by the number of frames in a packet, which varies with packet length
and coding technique, we can get the energy required to send one frame of speech.

17.2.4 Comparison of 802.11 and Bluetooth in DSR

We have provided energy models for both 802.11b and Bluetooth wireless networks
for distributed speech recognition traffic. The two main variables of interest are the
total delay, 7', and the average channel SNR. Bluetooth networks do not generally
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benefit from increased delay, as the energy consumption spent in the park mode
dominates the energy usage after about 100 ms. Powering off a Bluetooth node is not
an option because the paging/inquiry process to rejoin a piconet can take in excess
of 10 s.

For the purposes of this work, it is sufficient to describe the energy requirements
for local ASR as the product of the average power dissipation of the processor and
memory under load and the time required to perform the speech recognition task. For
the Smartbadge IV, we have measured the average CPU and memory power dissipa-
tion as F,, =694mW and F,,, =1115mW when under full load. Given the real-
time factor R for the speech recognition task, we can estimate the energy consumption
to recognize one frame of speech as:

1
E =(P,, +P, X Rx—— 17.9
local ( cpu mem) 100 ( )

Therefore, for a speech recognition task that runs R =2.5 times slower than real-
time, we can expect to use approximately 45 mJ of battery energy to process one
frame of speech. Similarly, we can estimate energy usage for speech recognition that
occurs at or near real-time, R =1, thus providing a range of realistic energy con-
sumption estimates for a client-side implementation.

By using the client-side ASR energy model and the DSR energy model for both
Bluetooth and 802.11b wireless networks, we can examine the energy tradeoffs with
respect to channel quality, delay, and ASR accuracy. Higher bit rates have small
increases in system level energy consumption due to the overhead of the power sav-
ing algorithms on the wireless device.

In Fig. 17.10, we plot the energy consumption per frame of speech for client-side
ASR and DSR under both 802.11b and Bluetooth wireless networks with respect to
channel quality. For DSR, we include the both the communication and computation
(feature extraction/quantization) energy costs. For 802.11b, we consider the energy
consumption of the power on/off scheduling algorithm with a latency of 240 ms,
480 ms, and 2 s and unlimited ARQ retransmissions. For the Bluetooth interface we
show the energy consumption for both medium- and high-rate data packets as well as
the three types of voice packets with latency of 480 ms. To the right of the Y-axis we
have the approximate energy savings over client-side ASR operating 2.5 times
slower than real-time. We can expect a scaled down speech recognition task (i.e.
simpler acoustic and language models or smaller vocabulary) running at real-time to
give 60% energy savings. However, this will come at a cost of reduced functionality
for the user, perhaps going to a more constrained vocabulary and speaking style. We
have not quantified the cost of reduced utility for the user in this work. However, for
the various DSR scenarios in Fig. 17.10 we assume little to no reduction in quality
for the end-user by maintaining sufficient data integrity through source coding tech-
niques and/or ARQ retransmissions. Table 17.2 shows the percentages of computation
and communication energy for a few different configurations as well as the expected
battery lifetime with a 1400 mAh/3.6V lithium-ion cell. The 802.11b interface with
long delays gives the lowest overall energy consumption and an almost even division
between energy spent in computation and communication. DSR with Bluetooth uses
a higher percentage of communication energy, and this amount does not decrease



Energy Aware Speech Recognition for Mobile Devices 393

— BTData | % Reduction
¢+ BT Voice in Energy
-~ 802.11b
— Local ASR

>

| Local ASR (R=2.5)

Local ASR (R=1)

60%

802.11b (T50.24s) |

/

NoTTTe R 89%

Energy (mJ)

""""""""" 94%

/ >97%

Fig. 17.10 The energy consumption of client-side ASR and DSR under Bluetooth and 802.11b
vs. SNR. The Y-axis is log-scale (Delaney et al. 2005, © 2005 IEEE)

Table 17.2 Summary of speech recognition energy consumption in high channel SNR conditions
(Delaney et al. 2005, © 2005 IEEE)

Comp. o Total/Frame Battery
Type (%) Comm. (%) (mJ) lifetime (h)
DSR w/Bluetooth
(T=048 s) 32 68 1.17 43.1
DSR w/802.11b (T = 0.48 s) 15 85 2.5 20.2
DSR w/802.11b (T =2 s) 42 58 0.92 54.8
Local ASR (R =2.5) 100 0 45 1.12

significantly with increased delay due to the overhead of the park mode. Even modest
delays of less than half a second can yield significant battery lifetime with constant
streaming of DSR data.

In a good channel with high SNR, Bluetooth allows system wide energy savings
of over 95% compared with full client-side ASR. DHS packets offer the lowest over-
head and best energy savings, while DM1 packets offer the most robust operation
down to around 10 dB with some minimal energy cost. The ARQ retransmission
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protocol causes rapid increases in energy consumption after some SNR threshold is
reached. It is possible to operate in lower SNR through packet fragmentation, which
will lower the probability of a packet being received in error. This is evident in Fig.
17.10 by comparing DH1 and DHS5 data packets. The longer packet length in DHS
packets causes a sharp increase in retransmits and energy consumption at around
25 dB, whereas DH1 packets can operate down 15 dB before the number of retrans-
mits becomes excessive. In addition, FEC bits can be used to lower the probability of
a packet retransmit. The Hamming code in DM1 and DMS5 packets allows operation
down to around 10 and 16 dB respectively.

IEEE 802.11b networks allow system wide energy savings of approximately 89—
94% with relatively small values of 7. With larger values of 7', such as one second
or more, we can use less energy than Bluetooth. However, due to the larger packet
overhead, larger maximum packet sizes, different modulation, techniques, and lack
of error-correcting codes, the 802.11b network does not operate as well in lower
SNR ranges. Packet fragmentation or a switch to a more robust modulation technique
with lower maximum bit rate can extend the lower SNR range at the cost of in-
creased energy consumption, but we have not considered these effects here. How-
ever, 802.11b does offer increased range and may be more appropriate in certain
scenarios.

Table 17.3 Lower SNR bound for Bluetooth packets using server-side error concealment and
interleaving

SNR lower bound (dB)
Packet type ETSI Error concealment Energy (uJ)
HV3 27 17 23.4
HV2 17 10.5 375
HV1 12 5 70.3

In Table 17.3, the practical lower SNR bound for distributed speech recognition
using Bluetooth voice packets with and without server-side error concealment and
interleaving is shown. The table is derived from a series of experiments under vari-
ous channel conditions from Delaney (2004). The ETSI bit-stream is corrupted by
burst errors and speech recognition is performed. The WER is calculated in each
case, and the error concealment technique provides more graceful degradation in the
presence of bit errors. Error concealment and interleaving can reduce the energy
consumption by allowing Bluetooth packets with higher data payloads to be used in
lower SNR conditions. Between 27 and 17 dB a 37% reduction in transmit energy is
possible since HV3 packets can be used instead of HV2 packets. A 46% reduction in
transmit energy between 17 and 10.5 dB since HV2 packets can be used instead of
HV1 packets. DSR can still be used down to 5 dB SNR, so the much more expensive
client-side ASR does not need to be used.
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17.3 Conclusion

In this chapter, we investigated the system-level energy consumption of distributed
speech recognition on a portable wireless device. We considered energy usage from
both computation and communication in our final analysis. Careful optimization of
the signal processing front-end from an energy consumption perspective was per-
formed. The advantages of DSR from an energy consumption perspective are clear.
Client-side speech recognition in software can consume several orders of magnitude
more energy than a DSR system. However, the use of low-power ASIC chips for
speech recognition may help reduce the energy consumption of client-side ASR
below that of off-the-shelf hardware.

In our analysis of DSR, we have considered both 802.11b and Bluetooth wireless
networks. Given the relatively high bit rates these standards provide with respect to
DSR traffic, we investigated the use of synchronous burst transmission of the data to
maximize the amount of time spent in a low-power or off state. While this adds a
small delay to the end-user, the energy savings can be significant. With 802.11b, we
can reduce the energy consumption of the wireless interface by around 80% with
modest application delays of just under half a second. Bluetooth offers lower energy

consumption for smaller values of delay, 7, but as delay increases, the Bluetooth
energy consumption is dominated by the time spent in park mode. The 802.11b inter-
face with on/off scheduling can operate with a lower energy consumption than Blue-

tooth when 7' exceeds 1.3 s. Through the use of error concealment and interleaving,
we can operate Bluetooth voice packets in low SNR conditions with minimal impact
on speech recognition and accuracy while still consuming small amounts of energy.
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