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Preface

George Santayana, a Spanish philosopher and writer of the nineteenth century, once
said: “Those who do not remember the past are condemned to repeat it”.1 And this
is, in a way, what time series analysis is about: we analyze the past (actually,
samples obtained usually at regular intervals from a system of our interest) so that
we can obtain valuable information with which we can analyze what has happened
in the past and, if used correctly, try to avoid disastrous (or at least non-desirable)
outcomes in the future. This analysis is not easy though. These sampled data may
have very complex dependencies on other external variables (exogenous variables)
or on other sampled data (multivariate time series), and it can contain a certain
amount of noise due to inaccurate sensor readings or even some samples can be
completely incorrect (outliers). To make things worse, the amount of data available
may be so huge that the computational complexity of even the more simple
methods may need such a long time that only parallelism and big data infrastruc-
tures can be used to solve the problem. The applications are, however, also huge.
We can find time series analysis, modeling, and forecasting methods in the litera-
ture applied in so diverse fields such as business economics, statistics, engineering,
environmental sciences, or physical sciences, just to mention a few of them. As a
consequence, we can state that time series-related research is arguably one the most
important research fields at the present time (more than 14,000 research papers only
in 2017 according to Web of Science from Thomson Reuters).

The origin of this book stems from the International work-conference on Time
Series, ITISE 2017, held in Granada (Spain) in September 2017. Our aim with the
organization of ITISE 2017 was to create a friendly discussion forum for scientists,
engineers, educators, and students about the latest ideas and realizations in the
foundations, theory, models, and applications for interdisciplinary and multidisci-
plinary research encompassing disciplines of statistics, mathematical models,
econometrics, engineering, and computer science in the field of time series analysis
and forecasting.

1The Essential Santayana. Selected Writings Edited by the Santayana Edition, Compiled and with
an introduction by Martin A. Coleman. Bloomington: Indiana University Press. 2009.
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The list of topics in the successive Call for Papers has also evolved, resulting in
the following list for the last edition:

1. Time Series Analysis and Forecasting.

• Nonparametric and functional methods.
• Vector processes.
• Probabilistic approach to modeling macroeconomic uncertainties.
• Uncertainties in forecasting processes.
• Nonstationarity.
• Forecasting with many models. Model integration.
• Forecasting theory and adjustment.
• Ensemble forecasting.
• Forecasting performance evaluation.
• Interval forecasting.
• Econometric models.
• Econometric forecasting.
• Data preprocessing methods: data decomposition, seasonal adjustment, sin-

gular spectrum analysis, and detrending methods.

2. Advanced Methods and Online Learning in Time Series.

• Adaptivity for stochastic models.
• Online machine learning for forecasting.
• Aggregation of predictors.
• Hierarchical forecasting.
• Forecasting with computational intelligence.
• Time series analysis with computational intelligence.
• Integration of system dynamics and forecasting models.

3. High Dimension and Complex/Big Data.

• Local versus global forecast.
• Techniques for dimension reduction.
• Multiscaling.
• Forecasting from Complex/Big data.

4. Forecasting in Real Problems.

• Health forecasting.
• Telecommunication forecasting.
• Modeling and forecasting in power markets.
• Energy forecasting.
• Financial forecasting and risk analysis.
• Forecasting electricity load and prices.
• Forecasting and planning systems.
• Real-time macroeconomic monitoring and forecasting.
• Applications in other disciplines.
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After a careful peer review and evaluation process (each submission was
reviewed by at least 2, and on the average 2.9, program committee members or
additional reviewer), 121 contributions are presenting in this proceedings (accepted
for oral, poster, or virtual presentation), according to the recommendations of
reviewers and the authors’ preferences.

High-quality candidate papers (22 contributions) were invited to submit an
extended version of their conference paper to be considered for this special pub-
lication in the book series of Springer: Contributions to Statistics. For the selection
procedure, the information/evaluation of the chairman of every session, in con-
junction with the review comments and the summary of reviews, was taken into
account.

So, now we are pleased to have reached the end of the whole process and present
the readers with these final contributions that we hope, will provide a clear over-
view of the thematic areas covered by the ITISE 2017 conference, ranging from
theoretical aspects to real-world applications of Time Series Analysis and
Forecasting.

It is important to note that for the sake of consistency and readability of the
book, the presented papers have been classified into the following parts:

• Part I: Advanced Mathematical Methodologies in Time Series.
The main objective of this part is to present mathematical and logical structures,
methodologies, and theories that could be used with time series and also that has
been used so far. It also aims to bring into existence recent and becoming
developments in computational mathematics that could be used in the field of
time series. In particular, six contributions have been selected for this part. Two
of them shed some light on the problem of robustly estimating model parameters
in the presence of highly noisy data and outliers. Another contribution applies to
time series analysis techniques to demonstrate the weakness of some crypto-
graphic systems used in some bank's cash dispensers or credit cards. There are
two additional contributions which deal with more complex mathematical
models: one of them proposes a way to estimate the probability distribution
of the next observation of a time series using a closed solution to a Fokker–
Planck equation model of the time series, which is a partial differential equation
well known in statistical mechanics. The other proposes an extension to prob-
lems with exogenous variables of an existing methodology to predict
high-dimensional time series using the Koopman operator framework. To that
end, the authors assume that the time series are generated by some underlying
unknown dynamical system whose inputs are precisely these exogenous vari-
ables. Finally, the last contribution selected for this part studies the limit of the
empirical distribution function of the eigenvalues of a symmetric matrix which
emulates a covariance matrix of several AR(1) processes. The conclusion of the
paper is that this empirical distribution of eigenvalues converges almost surely
to a nonrandom limit function given by the Marchenko–Pastur distribution.
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• Part II: Computational Intelligence Methods for Time Series.
Although time series analysis can be considered a discipline originated within
the statistical area, in the last decades many computational intelligence methods
or machine learning approaches have been proposed to solve time series-related
problems. In fact, new and further computational intelligence approaches, their
efficiency and their comparison to statistical methods and other fact-checked
computational intelligence methods are significant topics in academic and
professional projects. It is not uncommon the existence of time series forecasting
competitions which try to elucidate which of the two main research streams is
better. For instance, the M4-Competition for the first time makes explicit
mention to machine learning forecasting methods. Within this topic, two con-
tributions have been selected for this book. The first one uses neural networks to
detect anomalies from time series, in this case, from datasets corresponding to
Internet traffic. The second one uses support vector regression with different
methods for scaling the data which are taken from a competition, in this case,
the Knowledge Discovery and Data Mining Cup which took place in 2017.

• Part III: Dimensionality Reduction and Similarity Measures in Time Series.
With the arrival of the Internet of Things, supported by the cheapening of
sensors, storing devices, and wireless communications alike, time series data are
becoming even bigger. One fundamental way to tackle with the computational
complexity of this problem is trying to reduce the dimensionality of the problem
but still maintaining an efficient representation of the data or to study similarity
measures in the data so we can classify the data into several clusters, thereby
reducing its complexity as we subsequently work with the clusters instead of
with the data. Four contributions have been selected within this topic. The first
one deals with the automatic search of segments within a time series whose
trend can be linearized. The second one proposes an efficient algorithm for
anomaly detection of quasi-periodic time series data, efficient enough to operate
in real time on computationally weak platforms like smartphones. The third one
is about the definition of a similarity measure for comparing a special kind of
time series, time interval datasets, which consist of a start point in time, an end
point in time and any amount of metadata. Finally, the last contribution selected
for this part deals with the task of selecting the right comparison measure when
trying to obtain groupings or clusters from time series or from features obtained
from them under the perspective of a pure classification problem.
After these first mainly theoretical parts, we have dedicated the last three parts
of the book to the practical applications of time series analysis, modeling, and
forecasting. Part IV will deal with finance applications, part V with
energy-related applications, and finally, the last part will include other real
scenarios where this field can be applied.

• Part IV: Econometric Models.
One of the most prominent applications of time series modeling and forecasting
lies within the field of econometrics. Playing a little with the quote given at the
beginning of this preface, Jeremy Grantham, a well-known British
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econometrician, once said: “Remember that history always repeats itself. Every
great bubble in history has broken. There are no exceptions”. This part aims at
presenting some recent developments of time series research applied to financial
and futures data with the original idea of focusing on studies that develop and
apply recent nonlinear econometric models to reproduce financial market
dynamics and to capture financial data properties with the hope of eventually
predict the next economic bubble. Three contributions have been selected to that
end. The first one tries to contribute to finding an answer to this question: how
can we, without the knowledge (or an estimation) of the variance of the
observations, test whether a change in the dynamics of a time series has
occurred? A particular example is provided for the case of the Prague Stock
Exchange Index. The second one investigates the presence of spatial differences
in the dynamic link between unemployment rate variation and GDP growth in
some European Union countries by providing a novel distance measure for
evaluating the closeness of two vector autoregressive moving average models.
The third and last contribution selected for this part makes use of copulas, which
are well-known multivariate probability distributions for which the marginal
probability distribution of each variable is uniform, to analyze the dependence
between inflation and US/Euro exchange rates in the Euro area, during different
periods with very interesting conclusions.

• Part V: Energy Time Series Forecasting.
This part makes particular emphasis on the application of time series analysis,
modeling, and forecasting applied to energy-related data. By energy, we refer to
any kind of energy, such as electrical, solar, microwave, wind, and so on. The first
of the contributions selected for this part uses computational intelligence meth-
ods, particularly a neural network trained with a genetic algorithm, to estimate
aircraft fuel consumption with the purpose of reducing civil aviation carbon
emissions. The next contribution uses NARXmodels, recursive least squares, and
genetic algorithms to predict the energy consumption of a given access point
within a Wi-Fi Infrastructure, so that better decisions so as to the placement of the
access point could be made in order to alleviate energy expenditure. Finally, the
last paper uses an ARMA-X-GARCH-X modeling approach to investigate the
impact of wind energy and photovoltaic feed-in on electricity spot price level in
Germany and its volatility with very interesting findings.

• Part VI: Forecasting in Real Problems.
This last part is dedicated to other real applications of time series analysis,
modeling, and forecasting different from those especially mentioned before
(financial and energy-related). Four contributions were finally selected to that
end. The first one proposes a methodology based on multivariate Mahalanobis
distance calculation combined with surrogate time series testing, which is
especially interesting for short time series extracted from so a diverse set of real
problems such as seismological, meteorological, physiological, and economic
datasets. The second one describes and analyzes the association between res-
piratory diseases and air pollution concentrations by handling the
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multicollinearity and serial dependence between these time series using a hybrid
model, which is a combination of a generalized additive model with principal
component analysis and a vector autoregressive model. The third selected
contribution deals with a special class of time series measured from black-hole
systems and whose analysis can lead us to derive information about the geo-
metrical structure of astronomical objects. These time series are especially
difficult to manipulate due to their sparseness but the authors manage to do it
here using a fully Bayesian-based method based on a state-space model. Finally,
we conclude with a contribution whose objective is to model transient oscilla-
tions measured by a high-accuracy accelerometer in the presence of outliers. For
that purpose, the authors define an observation time series model consisting of a
linear regression model with time-variable autoregressive errors, where each
coefficient is described by a second linear regression model throughout time and
where the white noise components follow a scaled t-distribution with unknown
degree of freedom.

Last but not least, we would like to point out that this edition of ITISE was
organized by the University of Granada together with the Spanish chapter of the
IEEE Computational Intelligence Society and the Spanish Network on Time Series
(RESeT). The Guest Editors would also like to express their gratitude to all the
people who supported them in the compilation of this book, and especially to the
contributing authors for their submissions, the chairmen of the different sessions,
and to the anonymous reviewers for their comments and useful suggestions in order
to improve the quality of the papers.

We wish to thank our main sponsors as well: the Department of Computer
Architecture and Computer Technology, the Faculty of Science of the University of
Granada, the Research Centre for Information and Communications Technologies
(CITIC-UGR), and the Ministry of Science and Innovation for their support and
grants. Finally, we wish also to thank Prof. Alfred Hofmann, Vice President
Publishing—Computer Science, Springer-Verlag and Dr. Veronika Rosteck
Springer, Associate Editor, for their interest in editing a book series of Springer
based on the best papers of ITISE 2017.

We hope the readers of this book can make the most of these selected
contributions.

Granada, Spain Ignacio Rojas
March 2018 Héctor Pomares

Olga Valenzuela
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Forecasting via Fokker–Planck Using
Conditional Probabilities

Chris Montagnon

Abstract Using a closed solution to a Fokker–Planck equation model of a time
series, a probability distribution for the next observation is developed. This pdf has
one free parameter, b. Various approaches to selecting this parameter have been
explored: most recent value, weighted moving average, etc. Here, we explore using a
conditional probability distribution for this parameter b, based upon the most recent
observation. These methods are tested against some real-world product sales for
both a one-step ahead and a two-step ahead forecast. Significant reduction in safety
stock levels is found versus an ARMA approach, without a significant increase in
out-of-stocks.

Keywords Forecasting · Fokker-Planck · Parameter distribution · Conditional
probability · Stock control

1 Introduction

When forecasting a time series {Xt , t = 1, . . . , N }, rather than the “best” (e.g., min-
imum squared error) prediction of a single value X̂ N+1, the expected value of the
next point in the time series, one often requires a probability distribution of the
possible values of X̂ N+1. Kantz and Schreiber [1] proposed tackling this through a
Fokker–Planck equation [2] but did not take this further because of difficulty esti-
mating the parameters. Several more recent papers (e.g., Refs. [3–5]) have sought to
use forecasting methods based upon a diffusion model leading to a Fokker–Planck
equation but the solutions have been numerical. References [6–8] also report diffi-
culties in estimating the parameters in a Fokker–Planck model. In this paper, we use
a conditional probability approach to estimate these parameters.

In Ref. [9], we modeled a time series using a drift coefficient D(1) = −γ x and
diffusion coefficient D(2) = c − bx2 in a Fokker–Planck equation:

C. Montagnon (B)
Department of Mathematics, Imperial College, London SW7 2AZ, UK
e-mail: chrismontagnon@compuserve.com

© Springer Nature Switzerland AG 2018
I. Rojas et al. (eds.), Time Series Analysis and Forecasting,
Contributions to Statistics, https://doi.org/10.1007/978-3-319-96944-2_1
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4 C. Montagnon

∂W

∂t
= − ∂

∂x
(D(1)W ) + ∂2

∂x2
(D(2)W )

where W (x, t |xN = XN )dx is the probability of finding the actual XN+t in (x, x +
dx) when the value XN has been observed for xN .

This lead to a differential equation in W:

(c − bx2)Wxx + (γ − 4b)xWx + (γ − 2b)W = Wt (1a)

The diffusion coefficient should be positive, so c ≥ bX2
max, and one can show

that the variance of W (x, t) increases with increasing c, so c should be as small as
possible, giving

c = bX2
max, where Xmax = max(|Xt |, t = 1, . . . , N ) (1b)

In order to reach a closed solution in Ref. [9], we needed the constraint:

γ = 3b (1c)

This lead to the solution:

Wb(x, t |xn = XN )

= ebt

2
√

π tb(X2
max − X2

N )
1
2

exp

{
− 1

4tb

(
sin−1

(
x

Xmax

)
− sin−1

(
XN

Xmax

))2
}
(2)

The two constraints (1b) and (1c) on the parameters γ, c, and b mean that this
distribution is dependent only on one free parameter, which in this paper we choose
to be b. This paper explores how our knowledge of previous values of the time series
{Xt , t = 1, . . . , N } helps select a value or a distribution for b.

2 Fokker–Planck Solution Versus N (µ, ŝe)

Conventionally, the distribution for the possible values of the next point in the time
series is found by using N (μ, ŝe) where μ is set equal to an ARMA forecast and ŝe
is found from the residuals of these past ARMA forecasts. It is relevant to see how
this Fokker–Planck approach compares to that of N (μ, ŝe).

Themean ofWb(x, 1) is made the same as themeanμ ofN (μ, ŝe), sowe compare
the standard deviation of these two distributions.When b = b(1), the smallest b value,
then as shown in Fig. 3 in the Appendix, the W graph is considerably tighter than
theN graph. As we increase the b value used, to say b(4), we get Fig. 4 where again
the W graph remains narrower than the N graph. In both these examples, the 95%
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point for the W distribution will be substantially lower than that for the N (μ, ŝe)
distribution so in our retail example stock levels will be set lower using theWb(x, 1)
distribution compared to using the N (μ, ŝe) distribution.

3 Definition of the Past Values of Parameter b

We define bτ− j to be the smallest b that makes the observed point Xτ− j+1 just less
than the 75%point of the distributionWb(x, 1|xτ− j = Xτ− j ), i.e., bτ− j is the solution
to ∫ Xτ− j+1

Wbτ− j (x, 1|xτ− j = Xτ− j )dx = 0.75 solved for bτ− j (3)

For a given time series, up to point τ , this generates a set of values (b1, b2, . . . ,
bτ−1). If we consider a discrete set of possible values for b, say b( j) : j = 1 to 30,
we obtain a distribution of these values similar to that shown in Fig. 1.

Note:
1. Whenever Xτ+1 is < mean of Wbτ

(x, 1|xτ = Xτ ), then b is given the smallest
value (in this case 0.001) in solving (3). Thus for at least 50% of the points this is
the value selected.
2. The final b value is the default value used when (3) does not solve, so the final
probability shown is really prob(b ≥ 0.059).

Fig. 1 Probability distribution for parameter b across all 300 points of the time series
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Fig. 2 Time series of the parameter b chosen to meet 75% point

Figure2 shows the times series bτ , so one can see that forecasting the values
of b as though it was a normal time series (e.g., using an ARMA approach) is not
practical, so in this paper we explore ways of choosing bτ based upon what has just
happened, i.e., based upon the observed actual for bτ−1 as defined in (3).

4 Method for One-Step Ahead Forecasts

We consider first the situation where we want a forecast for tomorrow (i.e., D + 1)
when we are at the end of today (D + 0): so we might be placing an order to meet
sales for tomorrow (D + 1). Given a time series of sufficient length (e.g., N > 100)
and considering a discrete set of possible values for b, as above, we can form not
only the overall probability distribution for b as in Fig. 1, but also a set of discrete
conditional probability distributions:

p(bτ |bτ−1 = b(k)) (4)

Thus, for example in an extreme situation, we might find that every time the value
b(1) occurred it was always followed by the b value b(31), in which case we would
have

prob(bτ |bτ−1 = b(1)) = δ(b − b(31))
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For the test series we used, each of which had some 300 points, we found that in
practice only b(1), b(2), b(31) occurred sufficiently often to build a conditional proba-
bility distribution as per (4), i.e., only for k = 1, 2, or 31 did we have enough (> ca.
20) points to generate any meaningful distribution.

With this information on the likely values of bτ that follow a particular observed
value for bτ−1, at least for bτ−1 = b(1), b(2) or b(31), the method for generating
Wb(x, t |xn = XN ) became

(i) If bτ−1 = b(1), b(2) or b(31), then

Wb(x, 1|xτ = Xτ ) = 1

M
31∑
j=1

prob(b( j)|bτ−1)Wb( j) (x, 1|xτ = Xτ ) (5)

where bτ−1 = b(k) and M is a normalizing factor.
(ii) If bτ−1 not = b(1), b(2) or b(31), then

Wτ (x, 1|xτ = Xτ ) = 1

28

7∑
j=1

(8 − j)Wbτ− j (x, 1|xτ = Xτ ) (6)

i.e., as defined in Refs. [9, 10] where this was shown to be one of the better
methods of defining Wbτ

(x, t |xn = XN ) (bτ− j is as defined in (3)).
(iii) In the situation of (ii) above, i.e., bτ−1 not = b(1), b(2) or b(31), we also tested

using a probability distribution

Wb(x, 1|xτ = Xτ ) = 1

M
31∑
k=1

prob(b(k))Wb(k) (x, t |xτ = Xτ ) (7)

where prob(b(k)) is the probability distribution of b(k) unconstrained by the
value of bτ−1, i.e., similar to the discrete pdf in Fig. 1.

5 Results for One-Step Ahead Forecasts

We applied the above method to the ten test series a defined in Ref. [11]. We used
200 points for each series. This gave the results in Table1.

The performance of all three versions of method 1 is compared to results using
Normal distribution with mean equal to AR(7) forecast and with the variance calcu-
lated from the forecast residuals from past data.
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Table 1 Results for one-step ahead forecasts from various conditional probability approaches to
bτ in Wbτ (x, 1|xτ = Xτ )

AR Method 1a Method 1b Method 1c

Av stock 112 101 106 104

Stockout % 4.6 9.6 6.5 6.6

Key
AR Stock level is 95% pt of a Normal with mean = AR forecast, variance computed from past
residuals
Method 1a Stock level is 95% pt. of Wbτ (x, 1), b chosen as (6) above for all b
Method 1b Stock level is 95% pt. of Wbτ (x, 1), b chosen as (5) and (6) above
Method 1c Stock level is 95% pt. of Wbτ (x, 1), b chosen as (5) and (7) above

Using method 1a, i.e., stock level is set at 95% point ofWb(x, 1|xτ = Xτ) which
is chosen as (6) above—but for all values of bτ−1—gave average stock level of 101
which is lower than the AR reference of 112 but stockouts are higher at 9.6%.

Taking note of the value of bτ−1 that has just occurred and using the conditional
probabilities as per (i) and (ii) above (i.e., method 1b), average stock level increased
slightly over method 1a, at 106 but was still lower than the reference AR solution
and stockouts were the lowest at 6.5%.

Applying a probability distribution for all bτ−1 using (5) and (7) above (i.e.,
method 1c) gave the lowest average stock level at 104 but stockouts rose slightly as
compared to method 1b: 6.6% versus 6.5%.

Thus, from these results on this these test data series, we can conclude

• usingmethod 1a (computingWb(x, 1|xτ = Xτ) from aweighted average of recent
values) reduces stock by 10% versus a conventional AR method, but doubles the
number of stockouts.

• introducing a “conditional probability” approach (methods 1b and 1c) still reduces
stock versus the AR method by some 6% but now stockouts are only slightly over
the 5% target.

So the conditional probability method of calculating bτ is worth pursuing.

6 Method for Two-Step Ahead Forecasts

In many real-world situations, the reordering of stock to meet customer demand has
to allow time for delivery from the supplying warehouse. Thus, at the end of day 0,
one might calculate the stock that would need to be delivered at the end of day 1 in
order to meet demand in day 2. We will call this situation a two-step ahead forecast.
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In addition to making an estimate of demand in day 2, one needs to take a view as
to what might have happened in day 1 so as to compute what stock might be available
at the end of day1/start of day 2 before taking into account how much be added to
this to meet demand in day 2. To do this, we need two pdfs:

Wb′ (x, 1|xτ = Xτ ) : the pdf made at the end of day τ for sales in day τ + 1.

Wb′′ (x, 2|xτ = Xτ ) : the pdf made at the end of day τ for sales in day τ + 2.

Thus, if S is the stock available at the end of day τ (day 0) after, the delivery has
been made that night (i.e., S is the total stock available for demand in day 1 (day
τ + 1)), and if W 95

b′′ (2) is the stock required at the start of day 2 (i.e., the level that if
achieved would meet 95% of demand in day 2, after the delivery that is to be made
end day1 / start day 2), then the order to be delivered at end of day 1 is expected to
be ∫ +|X |max

−|X |max

max{[W (95)
b′′ (2) − max((S − x), 0)], 0} · Wb′ (x, 1|xτ = Xτ )dx (8)

7 Results for Two-Step Ahead Forecasts

In Table2, we see the results of this two-step ordering process under various methods
of choosing the values for b

′
and b

′′
.

Table 2 Results for two-step ahead forecasts from various conditional probability approaches to
b in Wbτ (x, 2|xτ = Xτ )

ARa ARb Method 2a Method 2b Method 2c

Av stock 112 160 114 112 109

Stockout % 8.5 3.5 11.4 8.4 8.2

Key
ARa pdf day 1, Normal (AR forecast day 1, variance from past), pdf day 2, Normal (AR forecast
day 2, variance from past)
ARb pdf day 1, Delta (95% point of day 1), pdf day 2 Normal (AR forecast day 2, variance from
past)
Method 2a (1) Wbτ (x, 1), b as method 1b, (2) Wbτ (x, 2), b as method 1a,
Method 2b (1) Wbτ (x, 1), b as method 1b, (2) Wbτ (x, 2), b as method 1b,
Method 1c (1) Wbτ (x, 1), b as method 1b, (2) Wbτ (x, 2), b as method 1c
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These are two different AR solutions which are used as a reference. For the first
solution (AR(a)), the pdf for sales in day 1 is taken as Normal with amean (m1)= the
AR one-step forecast and a variance (s21 ) calculated from past forecast errors. Also,
the pdf for sales in day 2 is taken as Normal with mean (m2) = the AR forecast from
regression of Xt on Xt−2, Xt−3, . . . , Xt−8 and variance (s22 ) from the past errors in
this two-step forecast. That is in (8) above

Wb′ (x, 1|xτ = Xτ ) is replaced by Normal(m1, s21 ) (9)

and to find W (95)
b′′ (2)

Wb′′ (x, 2|xτ = Xτ ) is made = Normal(m2, s22 ) (10)

This reference AR(a) solution generates an average stock level of 112 with a
stockouts at 8.5%.

The second AR solution (AR(b)) takes the pdf of sales in day 1 as

Wb′ (x, 1|xτ = Xτ ) = δ(W (95)(1) − x).

whereW (95)(1) is the 95% point of (9), i.e., we use a single value for our estimate of
day 1 sales in calculating this order for delivery end day 1 / start day 2. W (95)

b′′ (2) is
again the 95% point of the Normal distribution (10). This method gives an average
stock level of 160 and stockouts at 3.5%.

In method 2a, the first application of our methods to this two-step ahead problem,
we take

• the pdf for day 1,Wb′ (x, 1|xτ = Xτ ), where b
′
is calculated as inmethod 1b above,

and
• the pfd for day 2, Wb′′ (x, 2|xτ = Xτ ) is as method 1a and the b′′ are as defined
similar to (3) but of course the bτ− j are redefined to reflect the “best” bτ− j such
that X(τ− j)+2 is at the 75% point of Wbτ− j (x, 2|xτ− j = Xτ ).

This method, method 2a, gives an average stock level of 114 but stockouts of
11.4%.

In method 2b, we introduce the conditional probabilities p(b j |bk) for k = 1, 2,
or 31, in order to calculate the pdf for day 2, i.e.,

(i) If bτ−1 = b(1), b(2) or b(31) then

W (x, 2|xτ = Xτ ) = 1

M
31∑
j=1

prob(b( j)|bτ−1)Wbj (x, 2|xτ = Xτ ) (11)

where bτ−1 = b(k) and M is a normalizing factor.
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(ii) If bτ−1 not = b(1), b(2) or b(31) then

W (x, 2|xτ = Xτ ) = 1

28

7∑
j=1

(8 − j)Wbτ− j (x, 2|xτ = Xτ ) (12)

With this method 2b, we get the results shown in column 5 of Table2: average
stock level of 112 and stockouts at 8.4%.

Finally, in method 2c, we introduce a discrete probability distribution for all the
b j , i.e., not only p(b j |bτ−1) where bτ−1 = b(k) for k = 1, 2, or 31, but p(b j ) =
unconditional p(b j ) for all other k. As shown in column 6, this reduces the average
stock level slightly further: now 109, but stockouts stay much the same at 8.2%.

8 Conclusion

Instead of setting reorder stock levels through a conventional approachwith a forecast
sales pdf Normal with mean equal to the AR forecast, we have used a solution to
an appropriate Fokker–Planck equation to generate a pdf for salesWb(x, t |xτ = Xτ )

which has a free parameter b. Various methods (e.g., see Refs. [9, 10]) have been
tried to generate a b that gives a forecast pdf resulting in a low stock level and a low
number of stockouts. In this paper, we have used a conditional pdf for the value of b
which depends on the value of the most recent b observed. Applying this method to
over 2,000 points in a set of test series, first to a one-step ahead reordering system,
reduces (when compared to an AR method) stock levels in these test series by some
7% although stockouts are still 1.6% above the target of 5%. When the reordering
system requires orders to be placed at the end of day 0 for delivery at end of day
1 (and thus for use in day 2), using a conditional probability distribution to select
the parameter b in the probability distribution for sales in day 2, Wb(x, 2|xτ = Xτ ),
gives an improvement of 3% in average stock level and also an improvement 0.3%
points in stockouts, both compared to a conventional AR forecasting approach.

Thus, one may conclude that selecting b in Wb(x, t |xτ = Xτ ) by a conditional
probability approach is worthwhile.

Appendix

Fokker–Planck Distributions Wb Versus Normal (AR(7), ŝe)

See Figs. 3 and 4.
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Fig. 3 Plot of (i) Wb and (ii) Normal (AR(7), ŝe)—(ii) is the wider graph b has its smallest value:
b1

Fig. 4 Plot of (i) Wb and (ii) Normal (AR(7), ŝe)—(ii) is the wider graph b has its fourth value: b4
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Cryptanalysis of a Random Number
Generator Based on a Chaotic
Ring Oscillator

Salih Ergün

Abstract This paper introduces cryptanalysis of a random number generator (RNG)
based on a chaotic ring oscillator. An attack system is proposed to discover the
security weaknesses of the chaos-based RNG. Convergence of the attack system is
proved using master–slave synchronization scheme. Future evaluation of the RNG
is obtained from a scalar time series where the only information available are the
structure of theRNGand a scalar time series observed from the chaotic ring oscillator.
Simulation and numerical results verifying the feasibility of the attack system are
given. It is verified that deterministic chaos itself cannot be pointed out as the source
of randomness.

Keywords Cryptanalysis · Random number generator · Chaotic ring oscillator
Continuous-time chaos · Synchronization of chaotic systems

1 Introduction

Over the last decades, there has been an increasing emphasis on using tools of infor-
mation secrecy. Certainly, random number generators (RNGs) have more promi-
nently positioned into the focal point of research as the core component of the secure
systems. Although many people are even unaware that they are using them, we use
RNGs in our daily business. If we ever obtained money from a bank’s cash dispenser,
ordered goods over the Internet with a credit card, or watched pay TV we have used
RNGs. Public/private key pairs for asymmetric algorithms, keys for symmetric and
hybrid cryptosystems, one-time pad, nonces, and padding bytes are created by using
RNGs [1].

Being aware of any knowledge on the design of the RNG should not provide a
useful prediction about the output bit sequence. Even so, fulfilling the requirements
for secrecyof cryptographic applications using theRNGdictates three secrecy criteria
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as a “must”: 1. The output bit sequence of the RNG must pass all the statistical tests
of randomness [2]; 2.The previous and the next random bit must be unpredictable [3]
and; 3. The same output bit sequence of the RNG must not be able to be reproduced
[4].

An important principle ofmodern cryptography is theKerckhoff’s assumption [2],
which states that the overall security of any cryptographic system entirely depends
on the security of the key, and assumes that all the other parameters of the system are
publicly known. Cryptanalysis is complementary of cryptography. The interaction
between these two branches of cryptology forms modern cryptography which has
become strong only because of security analysis that reveals the weaknesses in the
existing cryptographic systems.

There are four fundamental techniques for random number generation: 1. Ampli-
fication of a noise source [5, 6]; 2. Jittered oscillator sampling [1, 7]; 3.Discrete-time
chaotic maps [8–10] and; 4. Continuous-time chaotic oscillators [11, 12]. Although
the use of discrete-time chaotic maps in the realization of RNG has been widely
accepted for a long period of time [8], it has been shown during the last decade that
continuous-time chaotic oscillators can also be used to realize RNGs [11, 12]. In
particular, a “true” RNG based on a chaotic ring oscillator has been proposed in
[11]. In this paper, we target the RNG reported in [11] and further propose an attack
system to discover the security weaknesses of the targeted system.

The strength of a cryptographic system almost depends on the strength of the
key used or in other words on the difficulty for an attacker to predict the key. On
the contrary to recent RNG design [12], where the effect of noise generated by
circuit components was analyzed to address security issue, the target random number
generation system [11] pointed out the deterministic chaos itself as the source of
randomness.

The organization of the paper is as follows. In Sect. 2, the target RNG system is
described in detail; In Sect. 3, an attack system is proposed to cryptanalyze the target
system and its convergence is proved; Sect. 4 illustrates the numerical results with
simulations which is followed by concluding remarks.

2 Target System

Chaotic systems are categorized into two groups: discrete time or continuous time,
respectively regarding on the evolution of the dynamical systems. In target random
number generation system [11], a simple continuous-time chaotic circuit is utilized
as the core of the RNG. This chaotic system is derived from two ring oscillators
coupled by diodes [11].

Using the normalized quantities: xn = vn/Vth , yd = id Rd/Vth , t = T/RC , α =
GmR, β = C/(C + C1), γ = R/R1, δ = R/Rd , and ε = R/R2, the equations of the
chaotic circuit transform into Eq. 1:
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Fig. 1 Bifurcation diagram against the parameter ε

˙x1a1 = −x1a1 − αx3a1
˙x2a1 = −x2a1 − αx1a1
˙x3a1 = −β(γ + 1)x3a1 − αβx2a1 − βδyd
˙x1b1 = −x1b1 − αx3b1
˙x2b1 = −x2b1 − αx1b1
˙x3b1 = −(ε + 1)x3b1 − αx2b1 + δyd

where

yd =
⎧
⎨

⎩

x3a1 − x3b1 − 1 f or x3a1 − x3b1 > 1
0 f or |x3a1 − x3b1| ≤ 1
x3a1 − x3b1 + 1 f or x3a1 − x3b1 < −1

(1)

The equations in (1) generate chaos for different sets of parameters. Bifurcation
diagram against the parameter ε = R/R2 is constructed. As shown in Fig. 1, the given
system generates chaos for the parameter ε over a wide range (1.81 < ε < 3.13)
which points out that the nonideal effect on the performance of the chaotic system
is not critical. The chaotic attractor (Horizontal : x3b1, Vertical : x2b1) given in
Fig. 2 is obtained from the numerical analysis of the system with α = 3.7, β = 0.1,
γ = 1, δ = 100 and ε = 2.5.

Target random number generation mechanism is described in [11] where bit gen-
eration method is based on jittered oscillator sampling technique. As depicted in
[11], the output of a fast oscillator is sampled on the rising edge of a jittered slower
clock using a D flip-flop where the jittered slow clock is realized by a chaotic ring
oscillator circuit.

In this design, if the fast and the slower clock frequencies are known as well as the
starting phase difference ΔT , the output of the fast oscillator, sampled at the rising
edge of the jittered slower clock, can be predicted. It can be shown that the output
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Fig. 2 Numerical analysis results of the chaotic system for α = 3.7, β = 0.1, γ = 1, δ = 100, and
ε = 2.5

bit sequence S(bit)i is the inverse of least significant bit of the ratio between the total
periods of the jittered slower clock and period of the fast clock:

S(bit)i =
⎛

⎝
� (

∑i
j=1 Tslow j)−ΔT

T f ast /2
�mod2

(2d f ast )

⎞

⎠

′

(2)

where T f ast = 1
f f ast

, f f ast , d f ast are the period, frequency and the duty cycle of
the fast clock, respectively, and the periods of the jittered slower clock Tslow j are
obtained at times t satisfying:

s(t) = x3a1(t) = Q wi th ds
dt > 0 (3)

where x3a1(t) is the chaotic signal and Q is the logic threshold of the D flip-flop.
We have numerically verified that, for high f f ast

fslow center
ratios, the effect ofΔT becomes

negligible and the mean value (moutput ) of the output sequence Sbit approaches the
fast clock duty cycle d f ast where frequency of the chaotic signal, corresponding to
mean frequency of the jittered slower clock fslow center , determines the throughput
data rate ( frng). It should be noted that anyone who knows the chaotic signal output
can reproduce the same output bit sequence.

The authors of [11] have preferred to useNIST 800-22 [13, 18] statistical test suite
in order to analyze output randomness of their RNG design. However, Big Crush [14]
and Diehard [15] statistical test suites which are available at the publication date of
target paper were not applied to output bit stream of the RNG. It should be noted that,
the target random number generation system [11] does not satisfy the first secrecy
criteria, which states that “RNG must pass all the statistical tests of randomness.”
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3 Attack System

After the seminal work on chaotic systems by Pecora and Carroll [16], synchroniza-
tion of chaotic systems have been an increasingly active area of research [17]. In
this paper, the convergence of attack and target systems is numerically demonstrated
using master–slave synchronization scheme [17]. In order to provide cryptanalysis
of the target random number generation system, an attack system is proposed which
is given by Eq. 4:

˙x1a2 = −x1a2 − αx3a2
˙x2a2 = −x2a2 − αx1a2 + c(x2a1 − x2a2)
˙x3a2 = −β(γ + 1)x3a2 − αβx2a2 − βδyd
˙x1b2 = −x1b2 − αx3b2
˙x2b2 = −x2b2 − αx1b2
˙x3b2 = −(ε + 1)x3b2 − αx2b2 + δyd

where

yd =
⎧
⎨

⎩

x3a2 − x3b2 − 1 f or x3a2 − x3b2 > 1
0 f or |x3a2 − x3b2| ≤ 1
x3a2 − x3b2 + 1 f or x3a2 − x3b2 < −1

(4)

where c is the coupling strength between the target and attack systems. The only
information available are the structure of the target randomnumber generation system
and a scalar time series observed from x2a1.

In this paper, we construct the attack system expressed by Eq. 4 that synchronizes
(x2a2 → x2a1 for t → ∞) where t is the normalized time.We define the error signals
as ex1a = x1a1 − x1a2, ex2a = x2a1 − x2a2, and ex3a = x3a1 − x3a2 where the aim of
the attack is to design the coupling strength such that |e(t)| → 0 as t → ∞.

The master–slave synchronization of attack and target systems is verified by the
conditional Lyapunov Exponents (CLEs), and as first reported in [16], is achievable
if the largest CLE is negative. Largest CLEs are calculated for different values of
coupling strength c while a scalar time series is observable from x2a1. When c is
greater than 0.42 then the largest CLE is negative and hence identical synchronization
of target and attack systems starting with different initial conditions is achieved and
stable [16]. (Largest conditional Lyapunov Exponent is −0.0108588 for c = 0.5).
However for c is less than 0.42, largest CLE is positive and identical synchronization
is unstable.

Log |ex1a(t)|, Log |ex2a(t)|, and Log |ex3a(t)| are shown in Fig. 3, Fig. 4, and
Fig. 5 respectively, for c = 3, where the synchronization effect is better than that of
c = 0.5. As shown in the given figures, the attack system converges to target system
and master–slave synchronization is achieved in less than 145t .
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Fig. 3 Synchronization error Log |ex1a(t)|

Fig. 4 Synchronization error Log |ex2a(t)|

4 Numerical Results

Wenumerically demonstrate the proposed attack system using a fourth-order Runge–
Kutta algorithmwith fixed step size and its convergence is illustrated in Fig. 3, Fig. 4,
andFig. 5, respectively.Numerical results of x1a1 − x1a2, x2a1 − x2a2, and x3a1 − x3a2
are also given in Fig. 6, Fig. 7, and Fig. 8, respectively illustrating the unsynchronized
behavior and the synchronization of target and attack systems.

It is observed from the given figures that master–slave synchronization is achieved
and stable. As shown by black lines in these figures, no synchronous phenomenon
is observed before 145t . In time, the proposed attack system converges to the target
system and identical synchronization is achieved where colored lines depict synchro-
nized behaviors of chaotic states in Fig. 6, Fig. 7, and Fig. 8, respectively.



Cryptanalysis of a Random Number Generator Based on a Chaotic Ring Oscillator 21

Fig. 5 Synchronization error Log |ex3a(t)|

Fig. 6 Unsynchronized behavior and the synchronization of target and attack systems:
Horizontal : x1a1, Vertical : x1a2
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Fig. 7 Unsynchronized behavior and the synchronization of target and attack systems:
Horizontal : x2a1, Vertical : x2a2

Since the identical synchronization of attack and target systems is achieved
(x2a2 → x2a1) in 145t , the estimated values of x3a1 and S(bit)i bit which is generated
according to the procedure explained in Sect. 2 converge to their corresponding fixed
values. As a result, it is obvious that identical synchronization of chaotic systems is
achieved and hence output bit streams of target and attack systems are synchronized.

It is clearly shown master–slave synchronization of proposed attack system is
achieved. Hence, output bit sequences of target and attack systems are synchronized.
In conclusion, cryptanalysis of the target random number generation system not only
predicts the previous and the next random bit but also demonstrates that the same
output bit sequence of the target random number generation system can be repro-
duced. As a result, the target random number generation system [11] satisfies neither
the second nor the third secrecy criterion that an RNGmust satisfy. It should be noted
that deterministic chaos itself cannot be pointed out as the source of randomness.
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Fig. 8 Unsynchronized behavior and the synchronization of target and attack systems:
Horizontal : x3a1, Vertical : x3a2

5 Conclusions

In this paper, we propose a cryptanalysis method for a chaos-based random number
generator (RNG). An attack system is introduced to discover the security weak-
nesses of the chaos-based RNG and its convergence is proved using master–slave
synchronization scheme. Although the only information available are the structure
of the target RNG and a scalar time series observed from the target chaotic system,
identical synchronization of target and attack systems is achieved and hence output
bit streams are synchronized. The target RNG does not fulfill Big Crush and Diehard
statistical test suites, the previous and the next bit can be predicted, while the same
output bit sequence of the RNG can be reproduced. Simulation results presented in
this paper not only verify the feasibility of the proposed method but also encourage
its use for the cryptanalysis of the other chaos-based RNG designs. The proposed
attack renders the generated bit streams predictable, thereby qualifying the target
RNG to be used as a not true but pseudorandom source.
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the additive combination of a multivariate, nonlinear regression model with multiple
univariate, covariance stationary autoregressive (AR) processes whose white noise
components obey independent scaled t-distributions. These distributions enable the
stochastic modeling of heavy tails or outlier-afflicted observations and present the
framework for a partially adaptive, robust maximum likelihood (ML) estimation of
the deterministic model parameters, of the AR coefficients, of the scale parameters,
and of the degrees of freedom of the underlying t-distributions. To carry out the ML
estimation, we derive a generalized expectation maximization (GEM) algorithm,
which takes the form of linearized, iteratively reweighted least squares. In order to
derive a quality assessment of the resulting estimates, we extend this GEM algorithm
by a Monte Carlo based bootstrap algorithm that enables the computation of the
covariance matrix with respect to all estimated parameters. We apply the extended
GEM algorithm to a multivariate global navigation satellite system (GNSS) time
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1 Introduction

The estimation of the parameters of a measurement process is an important part of
modeling and monitoring in many applications. Unfortunately, the measured data
may contain multiple outliers. In such a case, the probability density function (pdf)
of the random deviations is presumed to be heavy-tailed. Robust parameter estima-
tion is then used to minimize the influence of outliers and to avoid the removal of
measurements. Robust approaches utilize estimators that are less affected by outliers
than the least-squares (LS) estimator.Maximum likelihood (ML) type estimators (M-
estimators) have been developed to be robust to outliers, e.g., the Huber M-estimator
[1]. These estimators basically take advantage of using reduced weights for out-
liers. In addition, (Student’s) t regression models were introduced, which assume
scaled t-distributed errors in robust ML estimation (cf. [2]). The computation of
corresponding ML estimates can be easily realized by the iterative reweighted least-
square (IRLS) approach, as shown in [3]. The variances of the random deviations are
rescaled by means of the resulting weights conforming to their locations under the
density function. This procedure, a so-called (partially) adaptive estimator, allows
for estimating the unknown degree of freedom (d.o.f.) of the t-distribution jointly
with the regression parameters and the scale parameter.

Multivariatemultiple regression is a technique that estimatesmore thanone (possi-
bly nonlinear) regression model with more than one outcome variable (deterministic
regression function) and with random deviations that are generally assumed to obey
the normal distribution. Alternatively, [4] presumed the multivariate t-distribution
with unknown scale matrix and unknown d.o.f., and demonstrated different expec-
tation maximization (EM) algorithms to estimate the unknown model parameters
jointly with the scale matrix and the d.o.f. efficiently. In previous contributions, [5,
6] demonstrated that the expectation conditional maximization (ECM) and the ECM
either (ECME) algorithms accelerate the convergence of the EM algorithm notice-
ably. To deal withmodels that do not allow for closed-form solutions by EM, the opti-
mization principle of generalized expectation maximization (GEM) was suggested
by [3]. This approach approximates the maximum inside of every EM step instead
of reaching the maximum completely. GEM algorithms applying Newton–Raphson
steps have been used commonly (see e.g. [7]). To handle nonlinear functionalmodels,
[2, 8] presented an IRLS algorithm for GEM with Gauss–Newton steps.
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Many multivariate time series are expected to be correlated over time, which
makes (partially adaptive) parameter estimation more challenging. Autocorrelations
appear inmany types of sensor data. For instance, inertial sensor data, satellite gravity
gradiometry data, and global navigation satellite system (GNSS) data have random
deviations that show colored noise characteristics (see, e.g., [9–12]). Such sensors
can also produce multiple outliers, so that robust parameter estimation is preferable
over the classical LS approach. In order to take the autocorrelatedness of random
deviations in time series into account, [13] extended the aforementioned partially
adaptive estimator for linear regression models based on the scaled t-distribution.
They assumed autoregressive (AR) random deviations in a univariate time series,
with the white noise components of the AR process following independently and
identically a scaled t-distribution.

We demonstrated in [14] the extension of the preceding univariate, linear model to
a multivariate and nonlinear (differentiable) regression model. Regarding the setup
of the AR model, we simplified the complex general case of stochastically depen-
dent time series to the case where each time series component is associated with
a univariate AR process of individual order, independently of the AR processes of
the other components. Thus, cross-correlations between the different colored noise
processes are currently not considered. In this paper, we add two important issues
that have not been addressed in [14]. First, we replace the algorithm regarding the
estimation of the d.o.f. of the underlying t-distribution by an interval-based search
approach, which generally is more reliable than the previously used conventional
search algorithm.

Second, we extend the previous GEM algorithm by a Monte Carlo (MC) boot-
strap algorithm (in the sense of [15, 16]) for computing the covariance matrix of
all unknown model parameters. In the context of geodetic regression models with
autocorrelated measurements, [16] employed for this purpose MC strategies, as
extensions of an iterative preconditioned conjugate gradients multiple adjustment
(PCGMA) algorithm, to estimate an accurate covariancematrix for themodel param-
eters (including optimal weighting and regularization parameters). Bootstrap models
are also well suited to time series analysis with combined regression and ARmodels
[17]. The method used in the current paper is based on an MC bootstrap approach
to covariance matrix estimation in the context of EM algorithms for missing data
models, as explained in [7].

The remainder of the paper is structured as follows. In Sect. 2, we describe the
general time series model. In Sect. 3, we derive a GEM algorithm for parameter
estimation and provide a bootstrap algorithm concerning the associated covariance
matrix. In Sect. 4, we analyze three-dimensional (3D) time series of GNSS observa-
tions, where the regression model is given by a 3D circle.
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2 The Observation Model

The time series model we consider in the following is

Yk,t = hk,t (ξ1, . . . , ξm) + Ek,t , (1)

Ek,t = αk,1Ek,t−1 + · · · + αk,pk Ek,t−pk +Uk,t , (2)

Uk,t
ind.∼ tνk (0, σ

2
k ), (3)

where k ∈ {1, . . . , N } is a sensor component and t ∈ {1, . . . , n} a time instance. In
the first equation, Yk,t is an observable or measurand described by a possibly nonlin-
ear function hk,t (ξ1, . . . , ξm) of unknown parameters ξ = [ξ1 . . . ξm]T and a random
deviation or measurement error Ek,t . Thus, the random vectors Yt = [Y1,t . . . YN ,t ]T
formamultivariate time series. For each sensor component, the randomdeviations are
modeled by a covariance stationary AR(pk) process (2) with component-dependent,
given order pk and unknown coefficients αk = [αk,1 . . . αk,pk ]T . By employing dif-
ferent AR processes, we allow for different forms of colored measurement noise in
the various components, while assuming cross-correlations between errors of dif-
ferent sensor components to be negligible. Furthermore, according to (3), the error
variables Uk,1, . . . ,Uk,n of each component independently and identically follow
a t-distribution with component-dependent, unknown scale factor σ 2

k and unknown
d.o.f. νk . Thus, we allow these white noise components to have different (unknown)
levels of variability and individual (unknown) tail or outlier characteristics.

For brevity of expressions, we treat the regression part as the vector-valued func-
tions ht (ξ) = [h1,t (ξ) . . . hN ,t (ξ)]T . Let us also stack all of the unknown model
parameters ξ , α1, . . ., αN , σ 2

1 , . . ., σ
2
N , ν1, . . ., νN in the single vector θ . In addition,

we write the colored and white noise components as the multivariate time series
Et = [E1,t . . . EN ,t ]T and Ut = [U1,t . . .UN ,t ]T , respectively. The lower case yt , et ,
and ut constitute real-valued vectors as certain numerical realizations of the random
vectors Yt , Et and Ut , respectively.

To estimate the parameters θ , we construct a likelihood function given each white
noise path uk . Using the definition of the scaled t-distribution (cf. [2]) and the inde-
pendence assumption in (3), we can write the joint pdf of each white noise series in
the factorized form

f (uk) =
n∏

t=1

�
(

νk+1
2

)
√

νkπσ 2
k �

(
νk
2

)

[
1 +

(
uk,t
σk

)2

/νk

]− νk+1
2

, (4)

where � is the gamma function. Furthermore, due to the lack of cross-correlations,
the product of these pdfs yields the joint pdf f (u) = f (u1) . . . f (uN ). The idea is
now to introduce the functional model (1) and the AR processes (2) into that pdf.
Assuming the AR processes to be invertible, we can write (2) also as
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uk,t = ek,t − αk,1ek,t−1 − · · · − αk,pk ek,t−pk . (5)

Introducing the lag operator notation L jet = et− j and the lag polynomial αk(L) =
1 − αk,1L − · · · − αk,pk L

pk ,we can abbreviate the right-hand sideof (5) byαk(L)ek,t .
Here, we may view αk(L) as a decorrelation filter since it transforms the colored
noise series ek,1, . . . , ek,n into the white noise series uk,1, . . . , uk,n . Let us now
“invert” also the functional model (1) and substitute the resulting error equations
Ek,t = Yk,t − hk,t (ξ1, . . . , ξm) into (5). Then, the natural logarithm of the (factor-
ized) pdf f (u1) . . . f (uN ) in (4) takes the form

log f (u) =
N∑

k=1

⎛

⎝n log

⎡

⎣ �
(

νk+1
2

)
√

νkπσ 2
k �

(
νk
2

)

⎤

⎦

−νk + 1

2

n∑

t=1

log

[
1 +

(
αk(L)(yk,t − hk,t (ξ))

σk

)2

/νk

])
, (6)

which (as a function of all unknown model parameters and observations) we define
to be the log-likelihood function logL(θ; y). As the inverted AR process (5) involves
time instances t = 0,−1, . . . at which no data are available, wemake the assumption
that the associated observations and noise realizations all take the value 0. When
fixing the “initial conditions” is this standard manner, logL is sometimes referred to
as a conditional log-likelihood function.

This function, however, will only be used directly for the ML estimation of the
degrees of freedom νk as the likelihood equations for all other parameters are too
complicated and too cumbersome to solve. We can obtain closed-form expressions
for the parameters ξ , αk , and σ 2

k if we replace the distributional assumption (3) by
the equivalent model (cf. [2])

Uk,t
ind.∼ N (0, σ 2

k /wk,t ) | wk,t , (7)

Wk,t
ind.∼ χ2

νk

νk
. (8)

Here, the random variablesWk,t are unobservable data in the form of latent variables,
which later take the role of observation weights in an IRLS algorithm. Small weights
are associated with errors in the tails (i.e., with outliers) and lead to an increase of
the variance through its rescaling σ 2

k /wk,t . For this reason, the outlier model (7)–(8)
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is sometimes called a variance-inflation model. The two independence assumptions
in that model allow for factorization of the joint pdf of the white noise and latent
variables, so that we obtain for the logarithm

log f (u,w) = const. − n

2

N∑

k=1

log(σ 2
k ) + n

2

N∑

k=1

νk log
(νk

2

)
− n

N∑

k=1

log�
(νk

2

)

−
N∑

k=1

n∑

t=1

1

2

[
νk +

(
αk(L)(yk,t − hk(ξ)

σk

)2
]

wk,t +
N∑

k=1

n∑

t=1

1

2
(νk − 1) logwk,t

(9)

(see [14] for details). This function serves in the sequel as the proxy log-likelihood
function logL(θ; y,w), instead of logL(θ; y). The idea of replacing or imputing the
“missing data” wk,t by conditional expectations based on the stochastic model for
Wk,t leads us to the following GEM algorithm.

3 Generalized EM Algorithm

EM Algorithm for Estimating Unknown Parameters

In [14], we developed a GEM algorithm, which consists of an E- and an M-step.
The Q-function needed in the E-step is defined as the conditional expectation of the
foregoing log-likelihood function, givenmeasurement results y and parameter values
in the i th iteration step θ (i), that is,

Q(θ |θ (i)) = EW|y;θ (i) {logL (θ; y,W)} . (10)

In order to carry out the E-step (required for the determination of the weights within
IRLS), initial parameter values are needed. In addition, we choose within the first
iteration step equal weights w

(0)
k,t = 1 for each component of the multivariate time

series.
To carry out theM-step, wemaximize theQ-function given in (10) by determining

the first partial derivatives of the Q-function with regard to the unknown parameters
ξ , αk , σ 2

k , and νk grouped in θ and subsequently setting these derivatives equal to
zero. The current iteration step is denoted by (i + 1) and leads to the parameter
solution θ (i+1), which replaces the solution θ (i) of the previous iteration step. As
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the determination of the derivatives with respect to the parameters ξ involves the
linearization of the functions hk,t , the maximum is approximated by taking a Gauss–
Newton step (of length γ ). Thus, we have a GEM algorithm, which is summarized
in Algorithm 1. Important steps are tagged with a circle around a letter–number
combination. These steps are described in detail in the following lines:

N.1 This update is added entirely or partially to the trial solution (in the sense

of a Gauss–Newton step with step size γ ∈ (0, 1]). In case the Q-function is
decreased by the current step length (which is initialized by γ = 1 in each
iteration step), the step length is halved and the Q-function evaluated again at
the current estimates. The step length is reduced until theQ-function increases
and thus approaches the maximum, as required by GEM.

N.2 Since we aim for covariance stationary and invertible AR processes, it is

necessary to determine whether all roots of α
(i+1)
k (z) = 0 are located within

the unit circle. In case this is not true,we stabilize the preceding polynomial by
mirroring all roots with magnitude exceeding 1 into the unit circle (cf. [18]),
using MATLAB’s polystab routine.

N.3 The estimates ν
(i+1)
1 , . . ., ν(i+1)

N constitute the zeros of these equations, which

are to be found numerically. We use a reliable zero search based on the one-
dimensional interval Newton method described in [19].

Bootstrapping Algorithm for Determining the Covariance
Matrix

We have presented in section “EM Algorithm for Estimating Unknown
Parameters” a GEM algorithm, which allows for the estimation of the determin-
istic model parameters, of the AR coefficients, of the scale parameters, and of the
d.o.f.s of the underlying t-distributions. Oftentimes, not only the estimated parame-
ter is of interest, but also their (variance-)covariance matrix. This covariance matrix,
which we denote by �{̂θ}, characterizes the quality of the estimated parameters. As
the estimator θ̂ is a complex nonlinear function of random deviations, propagation
of variance–covariance information cannot be carried out directly. Bootstrapping,
in combination with MC techniques, can however be applied in this situation with-
out any difficulty. The calculation process to derive the covariance matrix of the
estimated parameters is summarized in Algorithm 2.
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Algorithm 1: GEM Algorithm

Input : yk,t , hk,t (ξ), pk, itermax, ε, εν (k = 1, . . . , N ; t = 1, . . . , n)

Output: ξ̂ , σ̂ 2
k , ν̂k, êk, ûk, Ŵk, α̂k

Initialization: ξ (0); ν(0)
k ; σ (0)

k ; α(0)
k

for i = 0 . . . itermax do
E-Step:

w
(i)
k,t = ν

(i)
k +1

ν
(i)
k +

(
α
(i)
k (L)(yk,t−hk,t (ξ

(i))

σ
(i)
k

)2 � W(i)
k =

⎡

⎢⎣
w

(i)
k,1 0 · · · 0

0
...

. . .
...

0 0 · · · w
(i)
k,n

⎤

⎥⎦

M-Step:

�y(i)
k,t = yk,t − hk,t (ξ

(i)),A(i)
k,t = ∂hk,t (ξ (i))

∂ξ

�y
(i)
k,t = α

(i)
k (L)�y(i)

k,t , A
(i)
k,t = α

(i)
k (L)A(i)

k,t

�ξ (i+1) =
(

N∑
k=1

1
(σ 2

k )(i)
A

(i),T
k W(i)

k A
(i)
k

)−1 N∑
k=1

1
(σ 2

k )(i)
A

(i),T
k W(i)

k �y
(i)
k

γ = 1

ξ (i+1) = ξ (i) + γ�ξ (i+1) (halve γ if necessary) N.1

e(i+1)
k,t = yk,t − hk,t (ξ

(i+1)) � E(i+1)
k =

⎡

⎢⎣
e(i+1)
k,0 · · · e(i+1)

k,1−pk
...

...

e(i+1)
k,n−1 · · · e(i+1)

k,n−pk

⎤

⎥⎦

α
(i+1)
k =

(
E(i+1),T
k W(i)

k E(i+1)
k

)−1
E(i+1),T
k W(i)

k e(i+1)
k

(stabilize α
(i+1)
k if necessary) N.2

u(i+1)
k,t = e(i+1)

k,t − α
(i+1)
k,1 e(i+1)

k,t−1 − · · · − α
(i+1)
k,pk

e(i+1)
k,t−pk

= α
(i+1)
k (L)e(i+1)

k,t

(σ 2
k )(i+1) = 1

n

n∑
t=1

w
(i)
k,t

(
u(i+1)
k,t

)2 = u(i+1),T
k W(i)

k u(i+1)
k

n

0 = 1 + log ν
(i+1)
k − ψ

(
ν

(i+1)
k
2

)
+ ψ

(
ν

(i+1)
k +1

2

)
− log

(
ν

(i+1)
k + 1

)

+ 1
n

n∑
t=1

(
log ν

(i+1)
k +1

ν
(i+1)
k +

(
u(i+1)
k,t /σ

(i+1)
k

)2 − ν
(i+1)
k +1

ν
(i+1)
k +

(
u(i+1)
k,t /σ

(i+1)
k

)2

)
N.3

if max j,k(|ξ (i)
j − ξ

(i+1)
j |, |(σ 2

k )(i) − (σ 2
k )(i+1)|) < ε and

maxk(|ν(i)
k − ν

(i+1)
k |) < εν then

break
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Algorithm 2: Bootstrapping Algorithm

Input : ξ̂ , σ̂ 2
k , ν̂k , êk , ûk , Ŵk , α̂k

Output: �{̂θ}
For every component k = 1, . . . , N , every time instance t = 1, . . . , n and every
b = 1, . . . , B,

• Generate the white noise samples using the estimated t-distributions:

u(b)
k,1, . . . , u

(b)
k,n

ind.∼ tν̂k (0, σ̂
2
k ).

• Compute the colored noise samples using the estimated AR models:
e(b)
k,t = α̂k,1e

(b)
k,t−1 + · · · + α̂k,pk e

(b)
k,t−pk

+ u(b)
k,t .

• Compute the observation samples using the fitted deterministic functions:
�
(b)
k,t = hk,t (̂ξ) + e(b)

k,t .

• Use Algorithm 1 to compute the bootstrap solutions:

θ̂
(1)

, . . . , θ̂
(b)

.

and compute the mean bootstrap solution:

θ̂ = 1
B

B∑
b=1

θ̂
(b)

.

• Compute the bootstrap covariance matrix: �{̂θ} ≈ 1
B

B∑
b=1

(
θ̂

(b) − θ̂
) (

θ̂
(b) − θ̂

)T
.

4 Field Experiment Setup and Its Results

The multi-sensor system (MSS) considered for geo-referencing in this contribution
consists of a terrestrial laser scanner (TLS) and two GNSS antennas/receivers. As
shown in Fig. 1, the TLS is the core sensor of the MSS, which rotates about its
vertical axis with a constant angular velocity. The GNSS receivers are connected to
two eccentric GNSS antennas, which are mounted such that the centroid of antenna
reference points (ARPs) coincides with the TLS’s rotating axis. In addition to these
GNSS receivers, we assume to have a nearby reference GNSS station with known
position. During the data acquisition, the MSS performs a complete 360◦ rotation
about its vertical axis while collecting both TLS data (i.e., a 3D point cloud) and
GNSS measurements, which are synchronized through GNSS receiver event marker
(see [20] for details regarding the MSS).

The objective of the navigation system is to provide the position (the centroid of
ARPs) and the pointing direction (heading) of the laser scanner. In [20], the standard
real-time kinematic (RTK) positioning [21] was used to estimate individual rotating
antenna positions. Then, a constrained nonlinear filtering method, in particular an
extended Kalman filter, was used to obtain the above parameters. Nadarajah et al.
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Fig. 1 Prototypical realization of the MSS formed by a laser scanner (blue) and two eccentrically
mounted GNSS antennas (green). This MSS was used for the field experiment

Fig. 2 Location of the practical experiment on the roof of the building of the Geodetic Institute
(Messdach) at the Leibniz Universität Hannover, Germany. The MSS from Fig. 1 is mounted on
pillar 5 while reference station is located at pillar 8

[22] utilized a constrained integer least-squares and array-aided positioning enabling
improved ambiguity resolution and improved positioning accuracy.

For numerical analyses, we used the GNSS observations from a field experi-
ment on the building of the Geodetic Institute (Messdach) at the Leibniz Universität
Hannover, Germany. The MSS was mounted on pillar 5 (see Fig. 2) and equipped
with a TLS Z+F Imager 5006 as well as two individually and absolutely calibrated
LEIAX1202GG GNSS antennas about 0.6 m apart. These antennas are connected
to two dual frequency GNSS receivers JAVAD TRE_G3TH DELTA. The reference
station (and thus the origin of the coordinates) is located at pillar 8 (about 20 m
from the MSS) and equipped with a JAVAD TRE_G3TH DELTA GNSS receiver and
LEIAR25.R3 LEIT antenna. A full 360◦ rotation consists of approximately 7609
points (acquired with a data rate of 10 Hz) with respect to one antenna.



Further Results on a Robust Multivariate Time Series Analysis … 35

We applied the GEM algorithm to approximate a measured and preprocessed 3D
GNSS time series (see [20, 22]) by a 3D circle with the three components North
(Xt ), East (Yt ), and Up (Zt ):

⎛

⎝
Xt

Yt
Zt

⎞

⎠ =
⎛

⎝
−r cos(Tt ) sin(�) + r sin(Tt ) cos(θ) cos(�) + Cx

r cos(Tt ) cos(�) + r sin(Tt ) cos(θ) sin(�) + Cy

−r sin(Tt ) sin(θ) + Cz

⎞

⎠ +
⎛

⎝
E1,t

E2,t

E3,t

⎞

⎠

(11)
The multivariate (three-dimensional) nonlinear regression model in (11) contains six
model parameters: two for the orientation (azimuth angle � ∈ [−π, π ] and zenith
angle θ ∈ [0, π ]) of its unit normal vector, one for the radius (r ), and three for the
circle center (Cx ,Cy,Cz) (cf. [23]). In this application, n = 7896 time instances
in (11) were registered. Concerning the random deviations Et , we determined three
differentARmodels. To identify a correct and computationally inexpensivemodel for
the given real data set, we applied the GEM algorithm (Algorithm 1) for different AR
orders concerning the North-, East-, andUp-time series, beginningwith small orders.
We used the maximum cumulated periodogram test described in [13] for testing if
each estimated noise series ûk,1, . . . , ûk,n differs significantly from theoretical white
noise. In this way, we determined for the North- and East-component an AR(15)
model each, and for the Up-component an AR(18) model (all of which passed the
white noise tests). InFig. 3, the estimated cumulatedperiodogramsof the decorrelated
residuals for the North- and East-component are depicted.

Figure 4 shows the adjusted circle and the observed 3D points. Having obtained an
estimated d.o.f. of 120 and 88, respectively, for the North- and East-component, we
conclude that the white noise components of these GNSS series are almost normally

Fig. 3 Excess of the estimated periodogram of the decorrelated residuals for the North- and East-
component AR(15) model (blue and green) and for the Up-component AR(18) model (magenta)
with respect to the theoretical white noise periodogram (black) and 99% significance bounds (red)
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Fig. 4 3D view of observed
(black points) and adjusted
circle (red line) for n = 7827
real three-dimensional
GNSS measurements taken
from [22], displayed in a
North East Up (NEU)
coordinate system

Table 1 Results of the bootstrap algorithm using 500 replications. The rows 1–6 of this table
indicate themeans of estimatedmodel parameters, their standard deviations, and the 95%confidence
intervals. The rows 7–9 give the results for estimated scale factors for the North- (X), East- (Y),
and Up- (Z) components

Mean Std 95% confidence interval

r (m) 0.2971 0.00022 [0.2968 0.2974]

� (rad) −0.00078 0.00061 [−0.00183 0.0003]

θ (rad) −0.00665 0.00283 [−0.0112 − 0.00217]

Cx (m) 12.2340 0.00013 [12.2338 12.2342]

Cy (m) −16.6317 0.00038 [−16.6321 − 16.6312]

Cz (m) 0.01628 0.00138 [0.01458 0.01776]

σ 2
X 7.3 × 10−7 1.2 × 10−8

[
7.1 × 10−7 7.6 × 10−7

]

σ 2
Y 1.4 × 10−6 2.2 × 10−8

[
1.3 × 10−6 1.4 × 10−6

]

σ 2
Z 3.0 × 10−6 4.0 × 10−8

[
2.9 × 10−6 3.1 × 10−6

]

distributed. In contrast, the d.o.f. for the Up-component turned out to be 33, which
indicates that the corresponding white noise residuals are moderately heavy-tailed.

We used Algorithm 2 of section “Bootstrapping Algorithm for Determining
the Covariance Matrix” to illustrate the bootstrap sampling with the GEM algo-
rithm and to derive the full variance–covariance matrix of all estimated parameters.
For this purpose, we generated B = 500 samples. In Table 1, we present 95% confi-
dence interval alongside the means and standard deviations with respect to both the
six estimated circle parameters and the three scale factors. The metric components
(radius and center point) of the circle model are estimated with standard deviations
at submillimeter level. For the azimuthal orientation (�), the model parameter is
estimated in centi-degree range, resulting in a metric uncertainty of about 0.018 m
at a distance of 30 m. In comparison to the approach in [20], these results consti-
tute an improvement of the estimated parameters of main interest within the direct
geo-referencing of 3D point clouds. The estimated zenith angle (θ ) is dominated
by the Up-component of the GNSS observations. Since this Up-component is typi-
cally characterized by a higher measurement noise than the horizontal components
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(North and East), we expected a higher standard deviation for the zenith angle. The
same behavior can be seen for the estimated scale factors and corresponding con-
fidence intervals, whereas the horizontal components perform better in contrast to
the Up-component. In case of a carefully performed leveling process of the MSS,
the variations of the zenith angle can be minimized and, therefore, would play a
secondary role.

5 Conclusions and Outlook

In this paper, we considered multivariate regression time series with both AR col-
ored noise and outlier-afflicted/heavy-tailed white noise components. The latter were
modeled by scaled t-distributions with estimated d.o.f., in which distributions are
heavy-tailed and thus frequently used as a way to achieve a data-adaptive robust
ML estimator. We described the theory and implementation of a GEM algorithm,
in which the deterministic model parameters, the AR coefficients, the scale factors,
and the d.o.f. for the multiple time series can be estimated in the form of IRLS. In
order to derive the covariance matrix of these parameters as a quality measure for
the estimated parameters, we demonstrated anMC-based bootstrap algorithm, which
allows also for the computation of confidence intervals concerning all parameters
for a given error probability. The presented algorithm was also tested in a real data
experiment using GNSS measurements. A model selection with respect to the order
of the AR process was performed by employing a periodogram-based white noise
test. Finally, the analysis of the estimated d.o.f. throughout the different multivariate
time series showed that the white noise residuals of the Up-component of the GNSS
time series deviate from a normal distribution. In the future, we intend to extend the
GEM algorithm by modeling in addition cross-correlations between the individual
time series.
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A New Estimation Technique for AR(1)
Model with Long-Tailed Symmetric
Innovations

Ayşen Dener Akkaya and Özlem Türker Bayrak

Abstract In recent years, it is seen in many time series applications that innovations
are non-normal. In this situation, it is known that the least squares (LS) estimators
are neither efficient nor robust and maximum likelihood (ML) estimators can only
be obtained numerically which might be problematic. The estimation problem is
considered newly through different distributions by the use of modified maximum
likelihood (MML) estimation technique which assumes the shape parameter to be
known. This becomes a drawback in machine data processing where the underlying
distribution cannot be determined but assumed to be a member of a broad class of
distributions. Therefore, in this study, the shape parameter is assumed to be unknown
and the MML technique is combined with Huber’s estimation procedure to estimate
the model parameters of autoregressive (AR) models of order 1, named as adap-
tive modified maximum likelihood (AMML) estimation. After the derivation of the
AMML estimators, their efficiency and robustness properties are discussed through
simulation study and compared with bothMML and LS estimators. Besides, two test
statistics for significance of the model are suggested. Both criterion and efficiency
robustness properties of the test statistics are discussed, and comparisons with the
correspondingMMLandLS test statistics are given. Finally, the estimation procedure
is generalized to AR(q) models.
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1 Introduction

ARmodels are very useful and popular inmodeling time series data inmany different
areas such as economics, finance, engineering, and so on. The classical AR mod-
els assume that the innovations are normally distributed which might be invalid in
applications. Under non-normality, the LS estimators are neither efficient nor robust,
and maximum likelihood (ML) estimators are elusive due to the implicit nature of
likelihood functions. Use of iterative approach is weary due to convergence problems
and produces bias in estimators especially for small samples. Therefore, in recent
studies, this assumption is relaxed by the use of MML method developed by Tiku
[10] to estimate the unknown parameters in such situations [1–4, 14, 15]. The MML
estimators capture all the good statistical properties of ML estimators and they are
explicit functions of sample observations. Besides, they are (i) considerably more
efficient (unbiased and smaller variance) than the LS estimators for all sample sizes,
particularly for large n, (ii) asymptotically fully efficient under very general regular-
ity conditions and almost fully efficient for small samples, and (iii) robust to plausible
deviations from the assumed distribution and mild data anomalies (outliers, inliers,
etc.). For the detailed information about MML procedure and its applications, one
can refer to [11, 13]. On the other hand, MMLmethod is based on the assumption of
a particular distribution, i.e., the shape parameter is known. Many different ways are
suggested in the literature for determining the shape parameter including the use of
Q–Q plots and data exploratory techniques [3, 6, 11]. Due to the intrinsic robustness
of MML estimators [11], the values obtained by any of these methods will yield
essentially the same estimates and standard errors for plausible alternatives. How-
ever, when the data is huge and machine learning methods are applied, it is important
to estimate this parameter also since one has no opportunity to investigate the nature
of the underlying distribution in this case. It can only be assumed that it is a member
of a broad class of distributions. Inserting a likelihood equation related to the shape
parameter into the likelihood equation system makes it unsolvable analytically even
if the MML estimation method is used. Thus, there is a need to extend the MML
method so that the assumption on the shape parameter is relaxed.

In studies [7, 8], M-estimators which are efficient and robust under a broad class
of long-tailed symmetric (LTS) distributions are developed. In this study, following
[5, 12, 16], we use an adapted form of MML estimators which combine the logic of
MML with M-estimators named as AMML estimation in memory of Moti Lal Tiku
who actually initiated the idea and thought this name. The parameters are estimated
under the assumption that the innovations in AR(1) model belong to LTS family. The
efficiency and robustness properties of them are discussed via simulation as well as
their comparison with LS and MML estimators. Then, two significance tests of the
model are suggested. The criterion and efficiency robustness properties of the tests
are discussed and compared with the corresponding MML and LS test procedures.
Finally, the estimation procedure is expanded to AR(q) models.
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2 Estimation of the Model Parameters

Consider the time series model

yt � μ + φyt−1 + εt , (1 ≤ t ≤ n), (−1 < φ < 1) (1)

where the innovations εt are independent and identically distributed (iid), and have
one of the distributions in LTS family

f (ε) � �(p)

σ
√
k�(1/2)�(p − 1/2)

(
1 +

ε2

kσ 2

)−p

,−∞ < ε < ∞; (2)

where k �2p − 3 and p ≥2. E(ε)�0 and V(ε) � σ 2. For p �∞, Eq. (2) reduces
to normal N(0, 1). Kurtosis of the distribution assumes the values ∞, 9, 4.2, 3.4,
and 3 for p �2.5, 3.5, 5, 10, and ∞, respectively. Note that the distribution of
t � √

υ/k(ε/σ ) is student’s t with υ � 2p − 1 degrees of freedom. The likelihood
function is

L ∝ σ−n
n∏

i�1

(
1 +

ε2i

kσ 2

)−p

(3)

In fact, Eq. (3) is the likelihood function conditional on y0 � ε0/
√
1 − φ2 where ε0 is

an independent innovation that has the same distribution as εi (1 ≤ i ≤ n). Actually,
this is Model 2 of [17] which is more general than their Model 1.

Modified Maximum Likelihood Estimators

The likelihood equations for known p are obtained in terms of zi �
(yi − φyi−1 − μ)/σ � εi/σ, (1 ≤ i ≤ n) as follows:

∂lnL

∂μ
� 2p

kσ

n∑
i�1

g(zi ) � 0,

∂lnL

∂φ
� 2p

kσ

n∑
i�1

g(zi )yi−1 � 0,

∂lnL

∂σ
� − n

σ
+
2p

kσ

n∑
i�1

zi g(zi ) � 0, (4)

where g(zi ) � zi(
1+

z2i
k

) .
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SinceEq. (4) includes nonlinear function, g(zi ), they haveno explicit solutions and
iterative solutions are problematic.MMLmethod is used to find estimators, which are
known tobe asymptotically equivalent toMLestimators [11]. Estimationprocedure is
carried out in three steps: (i) themaximum likelihood equations are expressed in terms
of the order statistics of z(i) � (

y[i] − φy[i]−1 − μ
)
/σ where

(
y[i], y[i]−1

)
are the

concomitants of z(i), i.e., the pair
(
y j , y j−1

)
( j � [i]) associated with the ith ordered

value, z(i) so that the ordering of the time series data is not lost; (ii) the nonlinear
function g

(
z(i)
)
is replaced by linear approximations g

(
z(i)
) ∼� αi +βi z(i), 1 ≤ i ≤ n

where the constant coefficients αi and βi are obtained from the first two terms of a
Taylor series expansion of g

(
z(i)
)
around the ith population quantile, t(i) � E

(
z(i)
)
.

Here, we use approximate values of t(i) calculated from

�(p)√
k�(1/2)�(p − 1/2)

t(i)∫
−∞

(
1 +

z2

k

)−p

dz � i

n + 1
(1 ≤ i ≤ n). (5)

The resulting αi and βi are

αi � (2/k)t3(i)/
{
1 + (1/k)t2(i)

}2
andβi � [

1 − (1/k)t2(i)
]
/
{
1 + (1/k)t2(i)

}2
, (6)

and (iii) Eq. (6) is incorporated in Eq. (4) and by solving the modified (linearized)
likelihood equations ∂lnL∗/∂μ � 0, ∂lnL∗/∂φ � 0, and ∂lnL∗/∂σ � 0, the MML
estimators are obtained as

μ̂ �
n∑

i�1

βi

(
y[i] − φ̂y[i]−1

)
/m,

φ̂ � K + Dσ̂ , σ̂ �
(
B +

√
B2 + 4nC

)
/2
√
n(n − 1) (7)

where

m �
n∑

i�1

βi , K �
∑n

i�1 βi y[i]y[i]−1 − 1
m

∑n
i�1 βi y[i]

∑n
i�1 βi y[i]−1∑n

i�1 βi y2[i]−1 − 1
m

(∑n
i�1 βi y[i]−1

)2 ,

D �
∑n

i�1 αi y[i]−1∑n
i�1 βi y2[i]−1 − 1

m

(∑n
i�1 βi y[i]−1

)2 ,

B � 2p

k

n∑
i�1

αi
(
y[i] − ȳ[.] − K

(
y[i]−1 − ȳ[.]−1

))
,

C � 2p

k

n∑
i�1

βi
(
y[i] − ȳ[.] − K

(
y[i]−1 − ȳ[.]−1

))2
,

ȳ[.] �
n∑

i�1

βi y[i]/m, ȳ[.]−1 �
n∑

i�1

βi y[i]−1/m.
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Comment: The coefficients β i (1≤ i ≤n) increase until the middle value and then
decrease in a symmetric fashion. Therefore, if β1 is positive, then all the β i coeffi-
cients are positive and σ̂ is real and positive. For small p and large n, however, β1

(and a few other β i coefficients) can be negative and needed to be rectified. Thus,

if β1 turns out to be negative, we replace αi by α∗
i � (1/k)t3(i)/

{
1 + (1/k)t2(i)

}2
and

βi by β∗
i � 1/

{
1 + (1/k)t2(i)

}2
(1 ≤ i ≤ n). Realize that the extreme observations

automatically receive small weights, which deplete their effect due to the umbrella
ordering of βi values and this is instrumental in achieving robustness to long-tailed
symmetric distributions and outliers in a sample.

Computations: The estimates of theparameters requirefiguringout the concomitants
found out by sorting the innovations. Therefore, there is a need to obtain the initial
estimates for the parameters in the model. This is done by the use of LS estimators μ̃

and φ̃, given inEq. (8) sinceLSestimators do not need anydistributional assumptions.
Then, the initial estimates of innovations ε̃i � yi −φ̃yi−1−μ̃(1 ≤ i ≤ n) are ordered
to obtain the concomitants

(
y[i], y[i]−1

)
corresponding to the ith ordered value of

the estimated residual. By the use of these concomitants, the MML estimators are
calculated from Eq. (7). To eliminate the effects of the initial estimates, the LS
estimators μ̃ and φ̃ are then replaced by μ̂ and φ̂, respectively, and the corresponding
innovations êi � yi − φ̂yi−1 − μ̂ are ordered to obtain the new concomitants. The
revised MML estimators are computed from these new concomitants. The process
is repeated one more time for the estimates to stabilize sufficiently.

Least Squares Estimators

Regardless of the underlying distribution, the LS estimators are

μ̃ �
∑n

i�1 yi
n

− φ̃

∑n
i�1 yi−1

n
, φ̃ �

∑n
i�1 yi yi−1 −∑n

i�1 yi
∑n

i�1 yi−1/n∑n
i�1 y

2
i−1 − (∑n

i�1 yi−1
)2

/n
,

and σ̃ �

√√√√∑n
i�1

(
yi − φ̃yi−1 − μ̃

)2
n − 2

. (8)

Adaptive Modified Maximum Likelihood Estimators

Since the shape parameter p is unknown, the coefficients αi and βi have to be esti-
mated from the sample data. The idea of Huber [8] is implemented for this purpose.
Let T0 and S0 be the initial estimators of μ and σ , respectively, given as
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T0 � med
{
yi − φ̂0yi−1

}
and S0 � 1.483med

{∣∣∣yi − φ̂0yi−1 − T0
∣∣∣}, (1 ≤ i ≤ n)

(9)

where φ̂0 � med
{

y2−y1
y1−y0

,
y3−y2
y2−y1

, . . . ,
yn−yn−1

yn−1−yn−2

}
, (i � 1, 2, . . . , n − 1).

Then, ti values in Eq. (6) can be estimated by t̂i � yi−φ̂0 yi−1−T0
S0

and the revised
estimated values of coefficients αi and βi are obtained as follows:

α̂i � (2/k)t̂i/
{
1 + (1/k)t̂2i

}2
and β̂i � 1/

{
1 + (1/k)t̂2i

}2
. (10)

Note that theMML estimators do not have bounded influence functions, so coeffi-
cients αi and βi are revised to make them bounded. Besides, they completely depend
on the observations not the presumed values of the parameter φ and p.

The adaptive modified maximum likelihood estimators are obtained as in Eq. (7)
by replacing αi and βi with the estimated coefficients α̂i and β̂i given in Eq. (10)
and the concomitants

(
y[i], y[i]−1

)
with the original observations (yi , yi−1). Since ti

values are not obtained from the quantiles of the distribution but estimated directly
from the sample and complete sums are invariant to ordering, we do not need to use
the concomitants anymore.

Realize that α̂i and β̂i depend on the value k (2p − 3). If k is chosen very large,
then the coefficients β̂i reduce to 1 and lose its effect to achieve robustness. On the
other hand, if k is chosen as small, estimators become inefficient. Therefore, the
choice k �30 (i.e., p �16.5) turns out to be a good compromise as suggested in [5,
12].

Computations: (i) First using sample observations calculate the initial values of
φ̂0,T0, and S0; (ii) use these initial values to calculate μ̂, φ̂ and σ̂ from Eq. (7) by
the use of coefficients α̂i and β̂i given in Eq. (10); (iii) replace φ̂0,T0, and S0 by φ̂,
μ̂, and σ̂,, respectively; and (iv) repeat the process one more time and calculate μ̂, φ̂

and σ̂ which are the desired AMML estimators.

3 Efficiency and Robustness Comparisons of the Estimators

To evaluate the efficiency and robustness of the AMML, MML, and LS estimators,
[100,000/n] (integer value)Monte Carlo runs (simulations) are used. The distribution
of ε, known as populationmodel, is taken as LTSwith p�16.5. As alternative sample
models first the following (1) to (5) are used.

(1) Normal with mean 0 and variance σ 2, and the LTS family with
(2) p �5.0;
(3) p �3.5;
(4) p �2.5;
(5) p �2.0
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The results for n �30, 50, and 100, where φ �0.5, μ �0.0, and σ �1.0, are given
in Table 1.

It can be seen fromTable 1 that all estimators are unbiased exceptAMMLestimate
of σ which is slightly less and its bias decreases as sample size increases as expected.
However, in all cases, the variances of AMML estimates are smaller than that of the
LS estimates and similar to MML estimates except Model (1) where they are close.
Thus, although AMML slightly underestimates σ , its mean squared error is less than
the others. All methods underestimate σ in Model (5). Therefore, we can conclude
that AMML is efficient and robust to misspecification errors. Similar results are
obtained for other presumed values of φ, μ, and σ , so they are not reported here for
conciseness.

Then, the outlier models where (n − r)Xi come from N
(
0, σ 2

)
and r (we do not

know which) come from

(6) N
(
0, 4σ 2

)
;

(7) N
(
0, 16σ 2

)
; r � [0.5 + 0.1n] (integer value),

and the mixture models

(8) 0.90N
(
0, σ 2

)
+ 0.10N

(
0, 4σ 2

)
and

(9) 0.90N
(
0, σ 2

)
+ 0.10N

(
0, 16σ 2

)
are taken as alternative sample models. The innovations are scale corrected to make
their variances equal to σ 2. The results for n �30, 50, and 100, where φ �0.5, μ �
0.0, and σ �1.0 are given in Table 2.

It can be seen from Table 2 that the results are similar to misspecification ones
given in Table 1. Again similar results are obtained for other presumed values of φ,
μ, and σ , so they are not reported here for conciseness.

Finally, the extreme alternative sample models

(10) Student’s t distribution with two degrees of freedom;
(11) Cauchy distribution; and
(12) Slash (Normal/Uniform) distribution

are taken as alternative sample models. It must be noted that Model (10) has finite
mean but nonexistent variance, and Models (11) and (12) have nonexistent mean
and variance. Since the differences between the AMML and the others become very
striking due to exploding variances, only the results for AMML estimators are given
in Table 3. However, it must be noted that Model (10) is still comparable due to
negligible bias in μ and φ with unacceptable variances. Besides, σ is overestimated
by other methods in this case again with unacceptable variances. Therefore, under
such extreme alternatives, only AMML method is valid and robust.
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4 Significance Test of the Model

Testing the null hypotheses H0: φ � 0 is of practical interest. If the null hypothesis
is true, then the model given in Eq. (1) reduces to a random process. Therefore, this
hypothesis actually tests the significance of the model.

Lemma 1 If φ �0, then the conditional distribution (σ known) of φ̂(σ ) is asymp-
totically normal with mean φ and variance kσ 2/

{
2p
∑n

i�1 βi (yi−1 − ȳi−1)
2
}
.

The result follows from the asymptotic equivalence of likelihood and modified
likelihood equations [11, 15] and ∂lnL∗/∂φ assumes the form [9]

∂lnL∗

∂φ
� 2p

kσ 2

{
n∑

i�1

βi (yi−1 − ȳi−1)
2

}[
φ̂(σ ) − φ

]
. (11)

Since φ̂ and σ̂ converge to φ and σ, respectively, as n becomes large, to test H0

we propose a test statistic

T1 �
√

(1.1)
∑n

i�1
βi (yi−1 − ȳi−1)

2
(
φ̂/σ̂

)
(12)

where 2p/k �1.1, p �16.5. Large values of T 1 lead to the rejection of H0: φ � 0 in
favor of H1: φ > 0.

The corresponding test statistic based on the MML procedure is obtained by
replacing φ and σ by their MML estimators, (yi , yi−1) pair by their concomitants(
y[i], y[i]−1

)
and related βi coefficients in Eq. (12). The test statistic based on MML

estimators is denoted by T
′
1.

The test statistic based on the LS estimators is

T2 �
√∑n

i�1
(yi−1 − ȳi−1)

2
(
φ̂/σ̂

)
. (13)

It is important for a test statistic to have both criterion and efficiency robustness
which are defined as having a Type I error not substantially higher than the presumed
value for any plausible alternative and its power is high, respectively. Thus, the
robustness properties of the power function of tests based on AMML, MML, and
LS estimators are examined through [100,000/n] (integer value) Monte Carlo runs
(simulations).

The distribution of ε, known as population model, is taken as LTS with p �16.5.
As alternative sample models, first Models (1)–(5) given in Sect. 3 are used. Type
I errors and power values of the test statistics based on AMML, MML, and LS
estimators for n �30, 50, and 100, where μ �0.0 and σ �1.0 are given in Table 4.

It can be seen from Table 4 that AMML, MML, and LS give similar results under
Model (1). However, as the sample models deviate more from normality, AMML has
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both criterion and efficiency robustness and converges to 1.00 faster as n becomes
larger.

Then, the outlierModels (6) and (7) andmixtureModels (8) and (9) are considered
as alternative sample models. The innovations are scale corrected to make their
variances equal to σ 2. The results for n �30, 50, and 100, where μ �0.0 and σ �
1.0 are given in Table 5. It can be seen that the results are similar to misspecification
ones given in Table 4.

Furthermore, following [3, 15 (Appendix A)]

lim
n→∞

1

n
βi (yi−1 − ȳi−1)

2 ∼� QE(yi−1 − ȳi−1)
2

� QV (yi−1) � (p − 1/2)(p + 1/2)

p(p + 1)
V (yi−1) (14)

where V (yi−1) � σ 2/
(
1 − φ2

)
, the following result is obtained.

Lemma 2 If φ �0, then the conditional distribution (σ known) of φ̂(σ ) is asymp-
totically normal with mean φ and variance kσ 2/{2pnQV (yi−1)}.

Based on Lemma 2, we propose an alternative test statistic as

T3 �
√

(1.1)n
(p − 1/2)(p + 1/2)

p(p + 1)
V (yi−1)

(
φ̂/σ̂

)
(15)

where p �16.5 and V (yi−1) � σ̂ 2 under H0. Again, large values of T 3 lead to the
rejection of H0: φ � 0 in favor of H1: φ > 0.

The corresponding test statistic based on the MML procedure is obtained by
replacing φ and σ by their MML estimators and Q by (p−1/2)

(p+1) if β1 > 0, else keeping
the same as the one used in T3 (see comment in Sect. 2.1) in Eq. (12). The test statistic
based on MML estimators is denoted by T

′
3.

The test statistic based on the LS estimator is

T4 � √
nV (yi−1)

(
φ̃/σ̃

)
. (16)

The robustness properties of these test statistics for the Models (1)–(9) are given
in Tables 6 and 7.

We suggest using T1 rather than T3 since it has better robustness properties. This is
due to the fact that the estimators are almost unbiased and T1 considers the variance
of the estimator while T3 does not. Actually, this is the reason that the performances
of the T3 and corresponding MML and LS test statistics are similar.
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5 Generalization to AR(q) Model

Consider the general stationary autoregressive model of order p

yt � μ +
q∑

j�1

φ j yt−j + εt , (1 ≤ t ≤ n) (17)

where the innovations εt are independent and identically distributed (iid), and have
one of the distributions in LTS family given in Eq. (2).

Take initially that φ1 � φ2 � · · · � φq and let T0 and S0 be the initial estimators
of μ and σ , respectively, given as

T0 � med
{
yi − φ̂0

(
yi−1 + yi−2 + · · · + yi−q

)}
and

S0 � 1.483med
{∣∣∣yi − φ̂0

(
yi−1 + yi−2 + · · · + yi−q

)− T0
∣∣∣}, (1 ≤ i ≤ n) (18)

where φ̂0 � med
{

yq+1−yq
yq−y0

,
yq+2−yq+1
yq+1−y1

, . . . ,
yn−yn−1

yn−1−yn−q−1

}
, (i � 1, 2, . . . , n − 1).

The AMML estimators are

μ̂ �
n∑

i�1

βi

(
yi − φ̂1yi−1 − φ̂2yi−2 − · · · − φ̂q yi−q

)
/m

φ̂ � C−1
(
K + Dσ̂

)
, σ̂ �

(
B +

√
B2 + 4nC

)
/2n (19)

where

φ̂ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̂1

φ̂2

...

φ̂q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i�1

αi yi−1

n∑
i�1

αi yi−2

...

n∑
i�1

αi yi−q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, K �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i�1

βi yi−1(yi − ȳ0)

n∑
i�1

βi yi−2(yi − ȳ0)

...

n∑
i�1

βi yi−q (yi − ȳ0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

⎡
⎢⎢⎢⎣
C11 · · · C1q

...
. . .

...
Cq1 · · · Cqq

⎤
⎥⎥⎥⎦,C jk �

n∑
i�1

βi yi−k
(
yi− j − ȳ j

)
, ȳ j �

n∑
i�1

βi yi− j/m

m �
n∑

i�1

βi , B � 2p

k

(
n∑

i�1

αi yi − K ′C−1D

)
,C � 2p

k

(
n∑

i�1

βi (yi − ȳ0) − K ′C−1K

)
.
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α̂i and β̂i are as given in Eq. (10) where t̂i � yi−φ̂0(yi−1+yi−2+ ···+yi−q)−T0
S0

again
estimated from the sample.

Computation is similar to the AR(1) case. First, use the initial values to calculate
the estimates of the model parameters. Then, revise them with the AMML estimates
and repeat the process one more time to calculate the desired final AMML estimate
values of the model parameters.

6 Conclusion

In this study, for AR(1) models, MML technique is adapted to machine data process-
ing, where the distribution family is known rather than the exact distribution. For this
purpose, the idea of Huber M-estimation is inserted to MML technique. Then, the
efficiency and robustness properties of the most widely used LS estimators, MML
and AMML estimators are examined through simulations and observed that MML
and AMML estimators are more efficient than LS estimators as expected. However,
AMMLunderestimates σ in all cases but havemuch smaller variances than the others
yielding less mean squared errors. Therefore, if there is an opportunity to examine
the distribution, one should prefer the use of MML rather than AMML. Otherwise,
like in machine data processing, one can safely use AMML estimators having in
mind the bias in σ which cannot be corrected since the exact distribution is not
known. Then, the two different test statistics for the significance test of the model
are proposed. Their criterion and efficiency robustness properties are examined via
simulation and compared with the corresponding ones using MML and LS estima-
tors in the test statistics. It is observed that under normality they all perform similar.
However, as the innovations deviate from normality, more AMML- andMML-based
test statistics become more robust especially for detecting small deviations. Again,
the performances of AMML and MML are almost similar though MML can be pre-
ferred in cases where p is known due to its slightly better performance. Finally, the
estimation procedure is expanded to AR(q) models.
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Abstract We propose a novel methodology to predict high-dimensional time series
with exogenous variables using Koopman operator framework, by assuming that the
time series are generated by some underlying unknown dynamical system with input
as exogenous variables. In order to do that, we first generalize the definition of the
original Koopman operator to allow for input to the underlying dynamical system.
We then obtain a formulation of the generalized Koopman operator in reproducing
kernel Hilbert space (RKHS) and a new derivation of its numerical approximation
methods, namely, Extended Dynamic Mode Decomposition (EDMD) and its kernel-
based version. We also obtain a statistical interpretation of kernel-based EDMD
developed for deterministic Koopman operator by utilizing the connection between
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system · Koopman operator · Perron–Frobenius operator · Dynamical system ·
Reproducing kernel Hilbert space · Gaussian processes · Machine learning
Data mining · Econophysics · Financial markets modeling · Energy forecasting
Collective behavior

1 Introduction

In many application fields, a high-dimensional time series {xt }may be considered as
being generated by or sampled from some underlying dynamical system (RN , t, Ft )

that is often nonlinear and stochastic, where xt �→ Fτ (xt ) = xt+τ ∈ R
N is the N -

dimensional state vector evolved by the flow F. However, these high-dimensional
state vectors are usually extrinsic measurements or outputs of the underlying lower
dimensional true state’s dynamics zt+τ = F̂

τ
(zt ). When the task is to predict each

component of the output xt , using some machine learning techniques to learn its
superficial dynamics Ft without identifying the true state dynamics zt+τ = F̂

τ
(zt )

may be computationally heavy and not optimal. Nevertheless, if there is no need
for identification other than prediction of outputs, it is often favorable to find some
intrinsic feature maps {ϕi (xt )}Mi=1 (where M < N and the M-dimensional feature
vector ϕ(xt ) is not necessarily the same as the underlying true state zt ) to embed
the high-dimensional output to lower dimensional intrinsic manifold, or in other
words, to learn both the geometry and dynamics for simultaneous dimensionality
reduction and prediction, as shown in the schematic Fig. 1. Therefore, the question
is how to find such {ϕi (xt )}Mi=1 that given the latest output xt , one can predict feature
maps’ future values ϕ(xt+τ ) and transform back to the pre-image xt+τ , and how is
ϕ(xt+τ ) related to ϕ(xt ) on the intrinsic manifold. The key to these questions is the
Koopman operator of dynamical systems [1–3], whose eigenfunctions can serve as
the desired intrinsic featuremaps {ϕi (xt )}. TheKoopman operator is a linear operator
that enables investigation of a nonlinear dynamical system using linear theories and
techniques, and since it has been developed as a data-driven framework [4, 5],most of
its applications up to now are dealing with high-dimensional time series. There have
been several major numerical methods developed to extract the spectral properties

Fig. 1 Manifold learning that is capable of simultaneous dimensionality reduction and prediction
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of Koopman operator from time series data, and utilizing these properties for time
series prediction has several major advantages [6].

In this paper, we generalize the Koopman operator framework to systems with
inputs as exogenous variables. By taking the simplest generalization approach [7],
we found that the techniques and methods that we developed for Kernel KMR [6]
methodology can be utilized almost directly with minimal modification. Hence, we
can generalize Kernel KMR to Kernel GKMRX (Kernel-based Generalized Koop-
man Mode Regression with eXogenous variables) to predict high-dimensional time
series with exogenous variables. In the theory part of this paper, we formulate the
Koopman operator in reproducing kernel Hilbert space (RKHS), which is the most
important function space in modern machine learning, and we obtain a new deriva-
tion of the Extended Dynamic Mode Decomposition (EDMD) algorithm [5] and
its kernel-based extension [8] by exploiting the Dirac bra–ket notation [9]. More-
over, we obtain a statistical interpretation of these numerical methods developed for
deterministic Koopman operator by exploiting the connection between RKHS and
Gaussian processes regression, and relate it to the stochastic Koopman and Perron–
Frobenius operator. In the application part, we test our new prediction methodology
for various types of data from different fields and obtain promising initial results.

2 Theory

Koopman Operator of Dynamical System and Its
Generalization to Systems with Input

Consider a high-dimensional time series {xn} sampled from an underlying dynamical
system (M, n, F), wheren ∈ Z is discrete time,M ⊂ R

N is the N -dimensional state
space containing the {xn}, and xi �→ F(xi ) = xi+1 defines the evolution law. For
continuous-time dynamical system (M, t, Ft ), the flow Ft evolves the system state
as x0 �→ Ft (x0) = xt . Since time series data are often sampled with a fixed time
gap τ , the adjacent two snapshots of the system are related by Fτ (xt ) = xt+τ . When
the context is clear, we will drop the τ in Fτ to denote either the discrete time map or
continuous-time flow of a fixed time gap τ . Here, we restrict to stationary time series,
or at least locally stationary time series, which can be considered as being sampled
from autonomous dynamical systems. We will generalize the Koopman operator to
systems with input later.

The (deterministic) Koopman operator K : F → F is defined as (Kφ)(x) =
(φ ◦ F)(x) = φ(F(x)), where ◦ denotes the composition of φ with F, and F is
the “feature space” consisting of scalar observables or functions of state space
φ : M → C. Since Kφ is another element in F , the Koopman operator defines
a new dynamical system (F , n,K) whereK evolves an observable or feature φ ∈ F
to a new function Kφ that gives the value of φ at “one step in the future.” Unlike
F which is finite dimensional, K is infinite dimensional because it acts on func-
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Fig. 2 Koopman operator is the “pullback” of F: when the system evolves from xt to F(xt ) in
state space, a function φ defined on the state space is evolved by K such that the new function Kφ

evaluated at old state xt is taking the value of old function φ evaluated at new state F(xt )

tion space F . However, it is also linear even when F is nonlinear, and hence one
can investigate its spectral properties, i.e., eigenvalues and eigenfunctions, which we
refer to as Koopman eigenvalues {μk} and eigenfunctions {ϕk}.

Technical results showed that K fully characterizes F under very general con-
ditions [2, 3], so dynamical systems (M, n, F) and (F , n,K) are two different
representations of the same evolution, as shown in the schematic Fig. 2. The link
between these two representations is the “full state observable” g(x) = x, where
x �→ F(x), and gi �→ (Kgi ) = gi ◦ F where gi ∈ F is the i th component of the
vector-valued observable g : M → R

N . Assuming gi is in the span of a set of K
Koopman eigenfunctions {ϕk}Kk=1, where K could (and often will) be infinite, then
it can be projected as gi = ∑K

k=1 ξikϕk with ξik ∈ C. Hence, g can be obtained by
“stacking” these weights into vectors (i.e., ξ j = [ξ1 j , ξ2 j , . . . , ξN j ]T ). As a result,

x = g(x) =
K∑

k=1

ξ kϕk(x), (1)

where ξ k is the kth Koopman mode corresponding to the eigenfunction ϕk . To make
prediction or arrive at the system state of “one step in the future,” one can either evolve
x through F directly, or evolve the full state observable g(x) through the Koopman
operatorK as g(F(x)) = (Kg) (x) = ∑K

k=1 ξ k(Kϕk)(x) = ∑K
k=1 μkξ kϕk(x). Sim-

ilarly, for continuous-time case,we have xt+τ = Fτ (xt ) = g(Fτ (xt )) = (Kτ g) (xt )
= ∑K

k=1 e
λkτ ξ kϕk(xt ), where λk and ϕk are the kth eigenvalue and eigenfunction of

the infinitesimal generator K̂ � d
dt of the semi-group ofKoopmanoperators {Kt }t∈R+ ,

and μk = eλkτ is the kth eigenvalue of finite-time Koopman operator Kτ = eτK̂.
In order to compute {(μk, ϕk, ξ k)}Kk=1 of Koopman eigenvalues, eigenfunctions,

and modes from data, one has to find a matrix representation of K by project-
ing it into some subspace of F spanned by a basis {ψk(x)}Kk=1. For computa-
tional feasibility and convenience, we usually require ψk(·) ∈ L2(M), such that
we can compute inner products using training data {(x1, y1), . . . , (xM , yM)} where
yi = F(xi ), in order to require {ψk(x)}Kk=1 to be orthonormal by computing the
Moore–Penrose pseudoinverse of the data matrix �+

x , where [�x ]i j = ψ j (xi ).
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Exploiting Dirac’s bra–ket notation [9] to write functions, functionals, inner prod-
ucts, and linear operators in a compact way, we denote the i th row of �+

x as
〈ψi | such that the inner product 〈ψi |ψ j 〉L2 = δi j , where δi j is the Kronecker delta.
Hence, in this “feature space” FK � span{ψk(·)}Kk=1, the identity operator can
be written as 1FK = ∑K

k=1 |ψk〉〈ψk |, and K projected to FK can be written as
K = K1FK = K∑K

k=1 |ψk〉〈ψk | = ∑K
k=1 |ψk ◦ F〉〈ψk |. Therefore, the elements of

matrix representation K of K are K i j = 〈ψi |K|ψ j 〉L2 = 〈ψi |ψ j ◦ F〉L2 , and K =
�+

x � y , where the j th column of� y is |ψ j ◦ F〉 and [� y]i j = ψ j ◦ F(xi ) = ψ j ( yi ).
Eigenvalue problem K|ϕk〉 = μk |ϕk〉 becomes eigenvalue equation of K as Kvk =
μkvk , where the i th component of vk is (vk)i = 〈ψi |ϕk〉L2 , so the eigenfunction
|ϕk〉 = ∑K

i=1 |ψi 〉(vk)i , or �x = �xV in matrix notation, where [�x ]i j = ϕ j (xi )
and columns of V are {vk}. The continuous-time eigenvalue can be computed as
λk � log(μk)/τ , and according to Eq. (1), Koopman modes {ξ k} can be computed
byprojecting g(x) = x onto {ϕk(x)} as� = �+

x X ,where the i th rowsof� and X are
ξ T
i and xT

i , respectively. This procedure is called Extended Dynamic Mode Decom-
position (EDMD) [5], and it has become one of the most widely adopted numerical
methods for data-driven Koopman spectral analysis, even outside the fluid dynam-
ics community where the Koopman operator’s spectral properties was thoroughly
investigated for the first time [2].

Furthermore, there are several ways to generalize Koopman operator to sys-
tems with input [7]. One of the simplest ways is to augment the system state
xt with the current input ut ∈ R

N ′
, such that the dimension of the extended sys-

tem state x̃ will be N + N ′. The time evolution of the system will be extended
as x̃t+τ = F̃

τ
(x̃t ) = F̃

τ
(xt , ut ), where the first N components of F̃ and x̃ are

xt+τ = Fτ (xt , ut ), and we assume that there is a purely formal map or flow that
“shifts” the input as ut+τ = Sτ (xt , ut ), since there is not necessarily any “dynam-
ics” of the input. The generalized Koopman operator can be defined on this extended
system as before Kφ(x̃t ) = φ ◦ F̃

τ
(x̃t ). For prediction purposes, we are only inter-

ested in the original system state x, so there is no need to project N ′-dimensional
full state observable of input gu(xt , ut ) = ut on Koopman eigenfunctions in order
to compute the corresponding Koopman modes for input. Except for this trivial dif-
ference, all the available numerical procedures for Koopman spectral analysis and
prediction can be applied with very little modification. Notice that this augmentation
trick can be also applied to previous state and input, such that one can investigate
a system with finite amount of memory in the same way as investigating a system
without memory. For simplicity, we only consider memoryless system in this paper,
and this topic will be left for future investigation.
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Reproducing Kernel Hilbert Space and Gaussian Processes
Regression

In this subsection, we briefly summarize the basic theory of reproducing kernel
Hilbert space (RKHS) and its relation to Gaussian processes regression. For a more
complete exposition of this topic with technical details, we refer the readers to
Refs. [10, 11].

The RKHS is a Hilbert space of functions equipped with inner product 〈·|·〉Hk

satisfying: (1) ∀x fixed, k(x, y) = kx(·) ∈ Hk is a function of y; (2) k(·, ·) has the
“reproducing” property: ∀ f ∈ Hk , 〈 f (·)|kx(·)〉Hk = f (x). It follows from (2) that
〈k y(·)|kx(·)〉Hk = k y(x) = kx( y) = k( y, x). EachRKHShas a unique k, and accord-
ing to Moore–Aronszajn theorem, given any symmetric positive definite function
k( y, x), there is a unique RKHS such that k( y, x) is the reproducing kernel. In fact,
this theorem showed that this unique RKHS { f ∈ Hk | f (·) = ∑M→∞

i=1 αi k(·, xi )} can
be built from defining the inner product 〈 f |g〉Hk = ∑M ′→∞

j=1

∑M→∞
i=1 αiβ j k( y j , xi ),

where g(·) = ∑M ′→∞
j=1 β j k(·, y j ). It satisfies the reproducing property 〈 f (·)|kx(·)〉Hk

= ∑M→∞
i=1 〈αi k(·, xi )|kx(·)〉Hk = ∑M→∞

i=1 αi k(x, xi ) = f (x). The reproducing ker-
nels can be considered as a basis of this RKHS, and they are also called “point
evaluation functionals.”

Another representation of RKHS is from Mercer’s theorem, which states that a
positive (semi-)definite function can be eigen-decomposed as k(x, x′) =∑∞

i=1 σi qi (x)qi (x′), where {qi (·)} are orthonormal in L2, and {σi }M→∞
i=1 is a nonin-

creasing sequence of eigenvalues with σM → 0 when M → ∞. It follows from this

theorem that the unique RKHS associated to this k(x, x′) is { f ∈ L2| ∑∞
i=1

〈qi | f 〉2L2
σi

<

∞}, and the inner product is given by 〈 f |g〉Hk = ∑∞
i=1〈 f |qi 〉L2

1
σi

〈qi |g〉L2 . One con-

sequence of this inner product is that the induced norm is ‖ f ‖2Hk
= 〈 f | f 〉Hk =

∑∞
i=1

〈qi | f 〉2L2
σi

, and in order to be bounded, the components fi = 〈qi | f 〉L2 must decay
quickly when i increases, which effectively imposes a smoothness requirement on
L2 in order for it to become a RKHS. Another consequence of this inner prod-
uct is that one can define {pi (·) = √

σi qi (·)} such that it is an orthonormal basis
of this unique RKHS, and as an analog to the Dirac delta which can be repre-
sented by δx(·) = ∑∞

i=1 qi (x)qi (·), the reproducing kernel functions can be written
as kx(·) = ∑∞

i=1 pi (x)pi (·).
For a regularized optimization problem J [ f ] = 1

2λ2
M

∑M
i=1(yi − f (xi ))2 +

1
2‖ f ‖2Hk

given some training data or observations {(x1, y1), (x2, y2), . . . , (xM , yM)},
where xi ∈ R

N and yi ∈ R, the representer theorem [12] asserts that the min-
imizer f̂ (·) = ∑M

i=1 αi k(·, xi ), such that one can effectively minimize J [αi ] by
setting the derivatives with respect to αi equal to zeros, and then the αi ’s can
be solved as a column vector α = (G + λ2

M I)−1 y, where y = [y1, . . . , yM ]T are
the training outputs, I is the identity matrix, and G is the kernel Gramian matrix
where Gi j = k(xi , x j ). Given a new test data x∗, the predicted function output is
f̂ (x∗) = k(x∗)T (G + λ2

M I)−1 y, where k(x∗)T = [k(x∗, x1), . . . , k(x∗, xM)]. This
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is the same as the posterior mean of Gaussian processes regression with i.i.d. noise
variance λ2

M .
A more heuristic view of predicting the function output given a new test data is

from the point evaluation at this new data. As an analog to the point evaluation in L2

using Dirac delta f (x∗) = 〈δx∗ | f 〉L2 = ∫
f (x)δ(x − x∗)dx (which is computation-

ally infeasible using training data), one can work in the RKHS using the reproducing
kernel function k(x, x′) as f (x∗) = 〈kx∗ | f 〉Hk = ∑M

i=1〈kx∗ |qi 〉L2
1
σi

〈qi | f 〉L2 , where
the inner products in L2 can be approximated by summation using training data as
〈g| f 〉L2 = ∫

g(x) f (x)dx ≈ ∑M
i=1 g(xi ) f (xi ) = ∑M

i=1〈g|kxi 〉Hk 〈kxi | f 〉Hk . Hence,
one can obtain

∑M
i=1〈kx∗ |qi 〉L2

1
σi

〈qi | f 〉L2 ≈ ∑
i jl〈kx∗ |kx j 〉Hk 〈kx j |qi 〉Hk

1
σi

〈qi |kxl
〉Hk 〈kxl | f 〉Hk . Notice that the kernel Gramian matrix has eigen decomposition G
= Q�2QT , where Qi j = q j (xi ) = 〈kxi |q j 〉Hk and � is diagonal with �i i = √

σi .

Hence, G−1 = Q�−2QT and (G−1)i j = ∑M
l=1〈kxi |ql〉Hk

1
σl

〈ql |kx j 〉Hk . Finally, one
arrives at

f (x∗) = 〈kx∗ | f 〉Hk = k(x∗)TG−1[ f (x1), . . . , f (xM)]T , (2)

which is the same as the posterior mean in noiseless Gaussian processes regres-
sion. Replacing G−1 by the Moore–Penrose pseudoinverse G+ will be equivalent
to regularization, or adding noise in Gaussian processes regression. A typical way
of regularization using G+ is to truncate out some small eigenvalues σi ’s and the
corresponding eigenvectors qi (x)’s, although a more sophisticated way to perform
this truncation is using a smooth cutoff developed in Ref. [6]. A useful result fol-
lowing the above derivation is that the inner product in RKHS can be approximated
using training data as 〈g| f 〉Hk ≈ ∑

i j 〈g|kxi 〉Hk [G−1]i j 〈kx j | f 〉Hk , which means that
the projection operator into this RKHS can be approximated by training data as
1Hk = ∑M

i=1 |pi 〉〈pi | ≈ ∑
i j |kxi 〉Hk [G−1]i j Hk 〈kx j |.

In summary, deterministic approximation of a function in RKHS or point eval-
uation of a function on new data can have a statistical interpretation via Gaussian
processes regression. Moreover, since k(x∗)TG−1 is a row vector of weights on the
training outputs [ f (x1), . . . , f (xM)]T , and if it sums up to 1 and if the amount
of training data is sufficiently large, it may be considered as a density estimation
for the posterior distribution of Gaussian processes, which will induce a density on
the training data [x1, . . . , xM ]T . A special case is the point evaluation on training
data f (xi ) = k(xi )TG−1[ f (x1), . . . , f (xM)]T , where k(xi )TG−1 will become a
row vector with every element equal to zero except for the i th one equal to 1, which
is a probability mass function concentrated on xi that approximates the Dirac delta
distribution δxi (·). Again, replacing G−1 by the Moore–Penrose pseudoinverse G+
effectively corresponds to Gaussian processes with additive noise such that the Dirac
delta will become a narrow Gaussian centered at the training data.
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Koopman Operator in Reproducing Kernel Hilbert Space

To interpret Koopman operator in RKHS, first notice that it can be also defined as an
integral operator [13–16], which enables a better and uniform formulation of both
deterministic and stochasticKoopmanoperator, and itsHermitian adjoint, namely, the
Perron–Frobenius operator L = K†, where the † denotes Hermitian adjoint. Again,
consider the dynamical system (M, t, Ft ). When Ft is highly nonlinear and/or
stochastic, starting froman initial point onM andkeeping track of its single trajectory
along the time evolution will become meaningless, as any finite initial difference
will blow up exponentially. Instead, a better strategy is to investigate the statistical
behavior of a swarm of points’ time evolution, which leads to the investigation of
(probability)measure/density onM and its time evolution induced by Ft . Consider a
probability density function ρ defined onM, and for computational convenience, we
require ρ ∈ F ⊆ L2(M). When F evolves an arbitrary swarm of points of system
states onM, i.e., evolves the pre-image F−1(A) of any measurable domain A ⊆ M
to A at time τ later, the density ρ on F−1(A) will be evolved by a linear operator to
a new density on A as

∫
A
(Lτ ρ)( y)d y = ∫

F−1(A)
ρ(x)dx, such that the probability

measure in conserved, where the Lτ is the Perron–Frobenius operator that evolves
probability densities. If F is stochastic, which means that F(x) follows a transition
probability density pτ ( y|x), the Perron–Frobenius operator can be also defined as

(Lτ ρ)( y) =
∫

F−1(A)

ρ(x)pτ ( y|x)dx. (3)

A special case is the deterministic system, where pτ ( y|x) will become a Dirac
delta distribution δF(x)( y) = δ( y − F(x)), such that the center of an initial Dirac
delta distribution δx will be moved in consistence with the dynamics as Lτ δx( y) =∫
F−1(A)

δ(x − x′)δ( y − F(x′))dx′ = δF(x)( y). Analogous to this, notice that Koop-
man operator for deterministic system is defined as (Kτh)(x) = (h ◦ F)(x) =
h(F(x)), it can be also written as (Kτh)(x) = ∫

A
h( y)δ( y − F(x))d y, and fol-

lowing this idea, the Koopman operator for stochastic system should be defined as

(Kτh)(x) =
∫

A

h( y)pτ ( y|x)d y = E[h(F(x))|x], (4)

which is the conditional expectation of observable h’s value at time τ later. Using
these definitions, one can check that the Koopman operator and Perron–Frobenius
operator are adjoint to each other for both deterministic and stochastic systems, by
considering how the expectation value of an observable over some region evolves in
time:
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E[h( y)] =
∫

A

(Lτ ρ)( y)h( y)d y = 〈Lτ ρ|h〉L2 =
∫

A

∫

F−1(A)

ρ(x)pτ ( y|x)dxh( y)d y

=
∫

F−1(A)

E[h(F(x))|x]ρ(x)dx =
∫

F−1(A)

(Kτh)(x)ρ(x)dx = 〈ρ|Kτh〉L2 ,

(5)
where Kτ acting to the left on 〈ρ| is 〈ρ|Kτ |h〉L2 = 〈K†

τ ρ|h〉L2 = 〈Lτ ρ|h〉L2 . This
formulation enables us to predict the expectation of a function’s value at a later
time when tracking and predicting a single trajectory is not meaningful due to high
nonlinearity and/or stochasticity of F, andwe can relate this formulation toKoopman
and Perron–Frobenius operators in RKHS as follows.

Recall from Eq. (2) that point evaluation in RKHS is the same as computing
some expectation value such as the posterior mean of Gaussian processes, for exam-
ple, 〈kxi | f 〉Hk = k(xi )TG−1[ f (x1), . . . , f (xM)]T , where k(xi )TG−1 is a row vec-
tor with all zero elements except for the i th equal to 1, which may be considered
as discrete approximation to Dirac delta distribution δxi . Replacing G−1 by pseu-
doinverse G+ will be equivalent to regularization or adding noise to the Gaussian
processes, such that k(xi )TG+ can approximate some narrow Gaussian centered
at xi . Similarly, consider the projection of Koopman operator in RKHS by point
evaluation of a function |h〉 evolved by K at a new state x∗ as 〈kx∗ |K|h〉Hk =
k(x∗)TG−1[Kh(x1), . . . ,Kh(xM)]T , where the k(x∗)TG−1 is expected to approxi-
mate the initial density ρ(x) before time evolution in Eq. (3), in the limit of infinite
amount of training data, i.e.,M → ∞.

On the other hand, recall that the identity operator in RKHS1Hk = ∑
i |pi 〉〈pi | ≈∑

i j |kxi 〉HkG
−1 Hk 〈kx j |, and inner product can also be approximated as 〈g|1Hk | f 〉Hk

≈ ∑
i j 〈g|kxi 〉Hk [Q�−2QT

y ]i j 〈k y j
| f 〉Hk , where [QT

y ]i j = 〈qi |k y j
〉Hk = ∑

l〈qi |ql
〉L2

1
σl

〈ql |k y j
〉L2 ≈ ∑

l
1
σi

〈qi |kxl 〉Hk 〈kxl |k y j
〉Hk = [�−2QT K T ]i j , and K i j =

〈kxi |K|kx j 〉Hk = kx j (F(xi )) = k( yi , x j ) = 〈k yi |kx j 〉Hk . It follows that Q�−2QT
y

= Q�−2QT Q�−2QT K T = G−2K T , and hence 1Hk can also be approximated
by 1Hk ≈ ∑

i j |kxi 〉Hk [G−2K T ]i j Hk 〈k y j
|. After substituting the 1Hk ’s in 〈kx∗ |1Hk

K1Hk |h〉Hk with appropriate approximations, one can obtain

〈kx∗ |K|h〉Hk ≈ k(x∗)TG−1KG−2K T [h( y1), . . . , h( yM)]T . (6)

When the number of training snapshots pairs M → ∞, we would expect that
k(x∗)TG−1 approximates ρ(x), and KG−2K T approximates the transition density
pτ ( y|x), such that the matrix multiplication between G−1 and K in Eq. (6) approx-
imates the integral over x in Eq. (3), and the matrix multiplication between K T

and [h( y1), . . . , h( yM)]T in Eq. (6) approximates the integral over y in Eq. (4).
Finally, we can consider Eq. (6) as an appropriate discrete approximation of Eq. (5)
using training data, and the point evaluation of a function h evolved by Koopman
operator in RKHS at a new data point 〈kx∗ |K|h〉Hk is equivalent to predicting its
expectation value E[h( y)] over training data at a later time. Notice that during the
derivation of Eq. (6), we did not use the definition of stochastic Koopman operator,
but using training data, we can indeed approximate (Kτh)(x) = ∫

A
h( y)pτ ( y|x)d y
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= E[h(F(x))|x] by the rows of KG−2K T [h( y1), . . . , h( yM)]T , and approximate
(Lτ ρ)( y) = ∫

F−1(A)
ρ(x)pτ ( y|x)dx by the columns of k(x∗)TG−1KG−2K T . These

nice relations are induced by the connection between deterministic approximation
of a function in RKHS and Gaussian processes regression, and replacing G−1 by G+
will turn these almost singular densities to narrow Gaussians, which have even better
statistical interpretation and correspond to regularized optimization in RKHS and
noisy Gaussian processes regression that usually have better prediction accuracy.

In order to predict the future state of the system using the spectral properties of
Koopman operator in RKHS, we first need to obtain amatrix representation ofK pro-
jected in this space. Following the derivation of EDMDprocedure in previous section,
one canwrite1Hk = ∑

i |pi 〉〈pi | = ∑
i |qi 〉L2

1
σi L2〈qi | = ∑

i j |q j 〉L2
1
σ j

〈q j |pi 〉L2〈pi |
≈ ∑

il |kxl 〉Hk 〈kxl |qi 〉Hk
1√
σi

〈pi | = ∑
il |kxl 〉Hk [Q�+]li 〈pi | = ∑

il |pi 〉Hk [�+

QT ]il Hk 〈kxl |, where |pi 〉 = √
σi |qi 〉 (in some literature they are called canonical

features or Mercer’s features due to Mercer’s theorem). Then, K can be written
as K1Hk = ∑

k |pk ◦ F〉〈pk |, and its matrix representation is K̂ i j = 〈pi |K|p j 〉Hk

= 〈pi |1HkK1Hk |p j 〉Hk = [�+ QT K Q�+]i j , where we plugged in the last two
expressions of 1Hk above, and K i j = 〈kxi |K|kx j 〉Hk = kx j (F(xi )) = k( yi , x j ) =
〈k yi |kx j 〉Hk can be computed directly on training data. Similarly, the eigenvalue

problem can be solved by computing eigenvalues and eigenvectors of K̂ , where the
i th component of eigenvector v j is (v j )i = 〈pi |ϕ j 〉Hk , so the eigenfunction |ϕ j 〉 =∑

i |pi 〉(v j )i . The point evaluation of an eigenfunction on training data is 〈kxi |ϕ j 〉Hk

= ϕ j (xi ) = ∑
l〈kxi |pl〉Hk (v j )l = ∑

nl〈kxi |kxn 〉Hk 〈kxn |ql〉Hk
1√
σl

(v j )l = [GQ�+

V ]i j , where columns of V are {v j }. By defining [�x ]i j = 〈kxi |ϕ j 〉Hk and [�y]i j =
〈k yi |ϕ j 〉Hk , we can write the matrix of eigenfunctions evaluated on training data in
a compact form as �x = GQ�+V and �y = K Q�+V . Following the same con-
vention and notation in derivation of EDMD, the matrix of Koopman modes can be
solved as � = �+

x X = �+
y Y = [diag(eλτ )]+�+

x Y , where rows in Y are { yT } and
[diag(eλτ )] is the diagonal matrix containing the finite-time eigenvalues μi = eλi τ .
This procedure is called kernel-based Koopman spectral analysis [8] and it is cur-
rently being adopted as a better approach for other applications [6]. Finally, given a
new system state x∗, the prediction of the lth component of system state Fl(x∗) will
be a point evaluation of the K-evolved observable gl at x∗ as

〈kx∗ |Fl〉Hk = 〈kx∗ |K|gl〉Hk =
M∑

i=1

〈kx∗ |K|ϕi 〉Hk�il =
M∑

i=1

〈kx∗ |ϕi 〉Hke
λi τ�il

=
M∑

i=1

k(x∗, xi )[Q�+V [diag(eλτ )]�]il,
(7)

where�il is the Koopman mode associated with the i th eigenfunction when project-
ing gl(x) on �x .

Another benefit of working in RKHS is that when properly choosing and/or
designing the kernel functions (e.g.,Gaussian RBF kernel), the unique associated



Prediction of High-Dimensional Time Series … 75

RKHS is dense in the space of continuous bounded functions, which means that
these kernel functions are universal approximators to any function in this very large
and general function space, and hence they should achieve better approximation and
prediction in most cases, especially in computing Koopman eigenfunctions via point
evaluation ϕ j (xi ) = 〈kxi |ϕ j 〉Hk .

3 Numerical Algorithm

Recall Eq. (7), if one needs to predict all state variables at a future time, one can
simply compute

F(x∗) = k(x∗)T Q�+V [diag(eλτ )]�, (8)

where k(x∗)T = [k(x∗, x1), . . . , k(x∗, xM)]. Notice that for system with input, all
the x∗, xi , and yi are extended states with input, but the Koopman modes � will
only contain N columns corresponding to the first N components of the extended
state, which eliminates meaningless prediction on input. Another observation is that
if we substitute � in Eq. (8) with � = [diag(eλτ )]+�+

x Y , after some simplification,
we will get k(x∗)TG+Y , which is exactly the regularized optimization in RKHS or
Gaussian processes regression on each state variable one-by-one. As we elaborated
in Ref. [6], one of the major advantages of utilizing the spectral properties of Koop-
man operator is to linearly decompose the system dynamics as a summation over
individual modes, such that it is possible to regularize, sort, perform more “physi-
cal” cross-validation, and optimize these modes in order to generate an ensemble of
predictors to achieve better prediction. When investigating time series with exoge-
nous variables as a dynamical system with input, since the only major change on
the numerical procedure is to neglect the Koopman modes associated with input,
one can simply work with the remaining Koopman modes and all techniques and
methods developed for Kernel-based Koopman modes regression (Kernel KMR)
[6] can be employed almost unchanged. Hence, we achieved a simple yet useful
extension of Kernel KMR, which we refer to as Kernel-based Generalized Koopman
Mode Regression with eXogenous variables (Kernel GKMRX). For more details on
the techniques and methods constituting the Kernel KMR, we suggest referring to
Ref. [6].

4 Numerical Examples and Applications

We tested this new methodology by predicting high-dimensional stock prices’ log
returns while considering trading volumes of these stocks as exogenous variables.
Due to the page limit rule, we refer the readers to Ref. [6] for detailed description of
the stock markets data that we used. Compared to Kernel KMR, the Kernel GKMRX
can achieve about 0.1% improvement in both root-mean-squared error (RMSE) and
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mean absolute error (MAE). This insignificant improvement is due to the fact that
stock returns time series are very close to random walk, and trading volume as extra
informationwill not change this fact to improve the prediction significantly.However,
when applying to electricity generation and consumption time series with weather
condition as exogenous variables, we expect some major improvement over Kernel
KMR as reported in Ref. [6], and we are currently testing and summarizing these
results.

5 Conclusion and Outlook

In this paper, we generalized our previously developed Kernel KMR methodology
to Kernel GKMRX (Kernel-based Generalized Koopman Mode Regression with
eXogenous variables) for prediction of high-dimensional time series with exoge-
nous variables, by utilizing a simple yet useful generalization of Koopman operator
to dynamical systems with input that generates the time series. We found that the
techniques and methods that we developed for Kernel KMR can be employed in
Kernel GKMRX with minimal modification. By formulating Koopman operator in
reproducing kernel Hilbert space, we obtained a new derivation of the kernel-based
EDMD and the original EDMD algorithms using Dirac bra–ket notation. More-
over, we obtained a statistical interpretation of these numerical methods developed
for deterministic Koopman operator by exploiting the connection between RKHS
and Gaussian processes regression, and relate them to the stochastic Koopman and
Perron–Frobenius operators. This connection and the statistical interpretation are cru-
cial to justify the application of existing data-driven deterministic Koopman spectral
analysis to nondeterministic dynamical systems, and account for the advantage of
kernel-based EDMD over original EDMD which relies on explicit choice of basis
functions spanning the space where the Koopman operator is projected and approxi-
mated. In applications, we found that the prediction performance of thismethodology
is promising in forecasting real-world high-dimensional time series with exogenous
variables, e.g., stock returns time series with trading volume as exogenous variables.

This generalization of Koopman operator to systems with input is not unique, and
we are keen to investigate other generalization for prediction purposes. Moreover,
even the very simple trick in this generalization that we used in this paper can be
developed further to investigate system with memory in the same way as for mem-
oryless systems. These will be left for future work. Another possible improvement,
which is still an open question, is the design of kernel functions. When utilizing
Gaussian RBF kernels, it should be possible to optimize the kernel widths as hyper-
parameters by some other more sophisticated techniques in machine learning. This,
again, will be left for future investigation.

Acknowledgements The corresponding author would like to thank Dr. Alexandre Mauroy for
insightful discussions on generalizing Koopman operator to systems with input.
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Eigenvalues Distribution Limit
of Covariance Matrices with AR
Processes Entries

Zahira Khettab and Tahar Mourid

Abstract We consider a class of random matrices BN = XNTN Xt
N , where XN is a

matrix (N × n(N ))whose rows are independent, the entries Xi j in each row satisfy an
autoregressive relationAR(1), and TN is a diagonalmatrix independent of XN . Under
some conditions, we show that if the empirical distribution function of eigenvalues
of TN converges almost surely to a proper probability distribution as N −→ ∞
and n(N )

N −→ c > 0, then the empirical distribution function of eigenvalues of BN

converges almost surely to a non-random limit function given by Marcenko and
Pastur. Numerical simulations illustrate the behavior of kernel density estimators
and density estimators of Stieltjes transform around the true density and we give a
numerical comparison on the base of L1 error varying different parameters.

Keywords Large dimensional random matrix · Empirical distribution function
of eigenvalues · Covariance matrix · Autoregressive processes · Stieltjes
transform · Kernel density estimators

1 Introduction

Theoretical studies on covariance matrices have a long history and appear in many
domains in the real world and having links with practical problems (see [1] and [9]).
For example, in multivariate statistics, spectral asymptotic results are used in solving
the detection problem in signal process [9].

Consider the following random matrix:

BN = XNTN X
t
N (1)
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where XN = ( 1√
N
Xi j ), (i = 1, . . . , N ; j = 1, . . . , n(N )) is a matrix (N × n(N ))

with independent rows with the entries Xi j of each row satisfy an autoregressive
relation AR(1) and TN is a diagonal matrix (n × n) with real entries independent of
XN (Xt

N is the transpose matrix of XN ). More precisely, for each i ≥ 1 we have

Xi j+1 = ρXi j + εi j+1, j ≥ 1 (2)

where
(
εi j , i, j ≥ 1

)
are i.i.d. rv’s (random values) withmean 0 and variance σ 2 > 0,

such that εi j admits a continuous density function with respect to Lebesgue measure.
The parameter ρ is such that |ρ| < 1 assuring a strictly stationary process. The
diagonal matrix TN = diag (τ1, . . . , τn) is independent of XN and the rv’s τi are
real.

The empirical distribution function (e.d. f.) of the eigenvalues (λi ) of the sym-
metric matrix BN is defined by

FBN (x) = 1

N

N∑

i=1

1(λi≤x),

where 1A denoting the indicator function of the set A.
A large number of papers have dealt with the problem to identify the limit of

the e.d. f. of eigenvalues of random matrices BN as N −→ ∞ and n(N )

N −→ c > 0.
Marcenko and Pastur [7] originally studied this problem for more general forms of
random matrices. They establish, under some conditions on moments, that if the
e.d. f. FTN converges to a proper distribution function H , then FBN converges in
probability to a proper distribution function. Their method involves the Stieltjes
transform, where they shown that the Stieltjes transform of the limiting distribution
function satisfies a first-order partial differential equation, then via the characteristics
they shown that this function is a solution of an algebraic equation identifying hence
the limit.

Afterward, several authors [4, 5, 8, 11, 12] extended this result giving the almost
sure convergence of the e.d. f. of eigenvalues under mild conditions on the entries
Xi j . Most of the previous papers employ the same transform as [7] and the entries
Xi j of the matrices are independent random variables, except the paper [3], where
dependent entries are considered.

Our goal in this paper is to study, under some assumptions, the limit of the e.d. f.
FBN of the random matrix BN = XNTN Xt

N , where the entries Xi j of the matrix
XN satisfy an autoregressive relation AR(1) for each i . We follow the approach
given in [8] where the authors apply Marcenko and Pastur method to study the
limit of Stieltjes transform of the e.d. f. FBN and then we identify the limit law.
We illustrate by numerical simulations the behavior of kernel density estimators and
density estimators of Stieltjes transform to identify the true density and give L1 errors
varying different parameters.
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The paper is organized as follows. Section 2 provides the main result. Section 3
presents numerical simulations. The proof of the main result will be postponed in
Sect. 4.

2 Main Result

First, we introduce some random variables and random matrices. We truncate and
centralize the entries Xi j of the random matrix XN to obtain new corresponding
random matrices as follows: for i = 1, . . . , N ; j = 1, . . . , n(N ), let

X̂i j = Xi j1(|Xi j |<√
N), X̂ N =

(
1√
N
X̂i j

)
, B̂N = X̂ N TN X̂

t
N , (3)

X̃i j = X̂i j − E
(
X̂i j

)
, X̃ N =

(
1√
N
X̃i j

)
, B̃N = X̃ N TN X̃

t
N , (4)

and

{
X̄i j = X̃i j1(|Xi j |≤ln N) − E X̃i j1(|Xi j |≤ln N),

X̄ N =
(

1√
N
X̄i j

)
, B̄N = X̄ N TN X̄ t

N .
(5)

We pointed out that the problem described above has been often handled by the
method of Stieltjes transform. Let M (R) be the set of distribution functions on R.

Recall that the Stieltjes transform of a distribution function F ∈ M (R) is defined
by

mF (z) =
∫

1

λ − z
dF (λ) , z ∈ C

+ ≡ {z ∈ C : 	mz > 0} ,

where 	m is the imaginary part. The inversion formula is given by

F([a, b]) = 1

π
lim

ε→0+

∫ b

a
	mmF (x + iε) dx,

where a and b are continuity points of F . Also, the weak convergence of probability
distribution functions is equivalent to the convergence of Stieltjes transforms (Theo-
remB.9, [1]). From the inversion formula, it follows that for any countable set S ⊂ C

+
such that R ⊂ S̄ the closure of S, and a sequence (FN ) ∈ M (R), F ∈ M (R), we
have the following equivalence:

lim
N→∞mFN (z) = mF (z) ,∀z ∈ S ⇐⇒ FN → F as N → ∞, (6)

where FN → F is the vague convergence of distributions functions.
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Furthermore, we consider the following random matrices. For j, l = 1, 2, . . . ,
n(N ), denote by q̄ j the j th column of X̄ N defined by (5) that is

q̄ j = 1√
N

(
X̄1 j , . . . , X̄ N j

)t := 1√
N
Vj , (7)

and by
B̄( j) = B̄N

( j) := B̄N − τ j q̄ j q̄
t
j , (8)

where τ j are the elements of TN , and define

x = xN := 1

N

n∑

j=1

τ j

1 + τ jmF B̄N (z)
, x( j) = xN

( j) := 1

N

n∑

l=1

τl

1 + τlmF B̄( j) (z)
, (9)

where mFB̄N and m
FB̄( j) are Stieltjes transform of the matrices B̄N and B̄( j), respec-

tively. Finally, set

C1
( j) := (

B̄( j) − z I
)−1

, C2
( j) := (

x( j) − z
)−1 (

B̄( j) − z I
)−1

(10)

where I is the identity matrix.

Now, we state the main result of this paper giving the almost sure limit of the
e.d. f. of the eigenvalues of the random matrix BN (tr is the trace of the matrix).

Theorem 1 Assume

(a) For N = 1, 2, . . . , let XN =
(

1√
N
Xi j

)
be a matrix (N × n(N )) with indepen-

dent rows and an AR(1) autoregressive relation (2) in each row. The entries
Xi j , i, j ≥ 1, have all their moments finite and n(N )

N → c > 0 as N → ∞.
(b) TN = diag (τ1, . . . , τn) , τi ∈ R, and the e.d. f. of TN converges almost surely

to a distribution function H as N → ∞.

(c) The matrices XN and TN are independent.
(d) For k = 1, 2 and j = 1, 2, . . . , n(N ), the matrices Ck

( j) defined in (10) satisfy

E
∣
∣∣V t

j C
k
( j)Vj − trCk

( j)

∣
∣∣
6 ≤ K N 3, where Vj given by (7) and K > 0.

Then, the e.d. f. FBN of the random matrix BN = XNTN Xt
N converges vaguely

almost surely to a distribution function F, as N −→ ∞, whose Stieltjes transform
mF(z) satisfies the following functional relation:

mF (z) = −
(
z − c

∫
τdH (τ )

1 + τmF (z)

)−1

; z ∈ C
+. (11)

Remark Assumption (a) is fulfilled in part if the white noise (εi j ) has all moments
(Gaussian white noise). Assumptions (b), (c) are standard and analogous of that
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Fig. 1 Densities of the limit law and STE with TN the identity matrix

existing in [8]. Assumption (d) requires a control of sixth moment of quadratic form
of a matrix and its trace by a third power of size N. In the case of i.i.d. entries
Xi j , i, j ≥ 1, assumption (d) is fulfilled (cf. Lemma 3.1 in [8]).

3 Numerical Simulations

As a practical impact of the main result, we illustrated in [6] the behavior of the
empirical density estimator of e.d. f. of eigenvalues (λi , i = 1, . . . , N ) of large ran-
dom matrices BN , and identify the density function of the limit law by numeri-
cal simulations. First, we recall the formulas giving density of limit law and the
empirical Stieltjes transform estimator. From [10], we have for all x ∈ R − {0} , and
z = x + iy, y > 0, the distribution function F (limit of the e.d. f. FBN ) has a con-
tinuous derivative f defined by f (x) = (1/π) 	mm0(x), where m0(x) is given by
Stieltjes transform mF (z) as limz→x mF (z) := m0(x) (Figs. 1, 2 and Table 1).

The Stieltjes Transform Estimator (STE) is defined by

fN (x) = (1/π) 	mmFBN (z) ,

where mFBN (z) = 1
N tr (BN − z I )−1 = 1

N

N∑

i=1
(λi − z)−1 .

Now, we apply Gaussian Kernel Estimators (GKE) defined by

f̂N (λ) = 1

NhN

N∑

i=1

K (
λ − λi

hN
); λ ∈ R
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Fig. 2 Densities of the limit law and STE with TN having three eigenvalues: 1, 3, 10

Table 1 L1-errors of STE in Case 1: TN identity matrix with c = 1 and Case 2: TN diagonal matrix
having three eigenvalues: 1, 3, 10 with c = 0.2. For weak and strong dependence and different
sample size values N

ρ = 0.2 ρ = 0.7

N 100 500 1000 100 500 1000

Case 1 0.0297 0.0245 0.0200 0.0390 0.0327 0.0298

Case 2 0.0206 0.0020 0.0009 0.0151 0.0020 0.0009

Fig. 3 Behavior of STE and GKE with matrix TN having three eigenvalues: 1, 3, 10

where hN is the bandwidth converging to 0 and NhN → ∞, and K is a Gaussian
kernel : K (u) = 1√

2π
exp(− 1

2u
2).

We compare the performance of Stieltjes Transform Estimators (STE) and Gaus-
sian Kernel Estimators (GKE) on the base of L1-errors (Fig. 3 and Table 2).
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Table 2 L1-errors of the STE andGKE, with TN having three eigenvalues and c = 0.2 for different
sample size values N

ρ = 0.2 ρ = 0.7

N 100 500 1000 100 500 1000

STE 0.0160 0.0102 0.0092 0.0126 0.0102 0.0093

GKE 0.0109 0.0094 0.0088 0.0106 0.0093 0.0091

Conclusion
From more numerical simulations, we may observe that the performance of esti-
mators strongly depends on the choices of the dimension c, AR parameter ρ, and
sample size N . The variability of parameters has a direct impact on the stabilization
and convergence rate of the estimators. Particular choices of parameters confirm
a good performance of the estimators and lead to indicate optimal values for these
parameters.We also observe an effect of the dimension c on density estimator conver-
gence rate. For c > 1, for bothweak and strong dependencies (ρ = 0.2, ρ = 0.7), the
estimators perform well from on N = 100. However, for small values of c (c < 0.2),
there is an influence of parameter values on the convergence rate. For weak depen-
dence (ρ = 0.2) STE perform quite well for moderate value N = 100, whereas for
strong dependence (ρ = 0.7) the estimator accurate enough well only for large N
(when N > 1000). The number of eigenvalues of TN has an effect on the behavior
of the estimators as well as on their performance. Both estimators perform well and
give a good representation of the true density with a small advantage of GKE.

4 Proof of the Main Result

Recall thesewell-known facts. For each i , the process (Xi j , j ∈ Z) satisfying relation
(2) is a stationary AR(1) process, then it satisfies the geometric strong mixing prop-
erty (G.S.M) with strong mixing coefficient αk = αk(Fm

0 ,F∞
m+k) = O

(
ρk

)
, where

0 < ρ < 1 andFb
a = Fb

a,i = σ(Xi j , a ≤ j ≤ b), whenever εi j has a strictly positive
continuous density (see [2] p. 58).

The covariance between two real-valued rv’s is bounded as follows: if η ∈ L p and
ξ ∈ Lq are Fm

0 and F∞
m+k-measurable, respectively, then we have

|E (ηξ) − E (η) E (ξ)| ≤ 12 ‖η‖p ‖ξ‖q α
1
r
k (12)

for all 1 ≤ p, q, r ≤ ∞ with 1
p + 1

q + 1
r = 1, and the norm ‖.‖p = E

1
p |.|p.

On the other hand, there exists a distance D(., .) on the space M (R) , such that
for two sequences (FN ), (GN ) ∈ M (R) , we have (see [8]).

lim
N→∞

‖FN − GN‖ = 0 =⇒ lim
N→∞ D (FN ,GN ) = 0, (13)
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where ‖.‖ denotes the sup-norm of bounded functions from R to R.

To lighten the writing, the dependency of most of variables on N will occasionally
be dropped form the notation. Now, we replace T by a suitable matrix for further
analysis: for θ ≥ 0 define, Tθ = diag

(
τ11(|τ1|≤θ), . . . , τn1(|τn |≤θ)

)
, and let Q be any

(N × n) matrix. If θ and (−θ) are continuity points of H , then by Lemma 2.5 of [8]
and assumption (b) of the Theorem 1, as N → ∞ and n

N → c > 0, we have

∥∥∥FQT Qt − FQTθ Qt
∥∥∥ ≤ 1

N
rg (T − Tθ ) = 1

N

n∑

j=1

1(|τ j |>θ) → cH
{
[−θ, θ ]c

}
a.s.

It follows that if θ = θN → ∞, then

∥∥∥FQT Qt − FQTθ Qt
∥∥∥ → 0 a.s. (14)

Choose θ such that

θ4

[
E

2
3 |X11|2 1(|X11|≥ln N ) + 1

N

]
→ 0, (15)

and ∞∑

N=1

θ8

[
1

N 7/6
E1/6 |X11|4 1(ln N≤|X11|<

√
N) + 1

N 2

]
< ∞. (16)

For continue, we need the following result.

Lemma 1 Let the (N × n) matrices X =
(

1√
N
Xi j

)
verifying assumption (a) of

Theorem 1, and X̂ =
(

1√
N
X̂i j

)
where X̂i j = Xi j1(|Xi j |<√

N). For θ ≥ 0 set Tθ =
diag

(
τ11(|τ1|≤θ), . . . , τn1(|τn |≤θ)

)
, τi ∈ R. We have

D
(
FXTθ Xt

, F X̂Tθ X̂ t
)

→ 0 a.s.

Proof From Corollary A.42 of [1], we find

D2
(
FXTθ Xt

, F X̂Tθ X̂ t
)

≤
[
2

N
tr

(
XXt − X̂ X̂ t

)
+ 4

N
tr X̂ X̂ t

] [
θ2

N
tr

(
XXt − X̂ X̂ t

)]
.

In order that this distance tends almost surely to 0, we can show by Borel–Cantelli

lemma that
[

θ2

N tr
(
XXt − X̂ X̂ t

)]
tends to 0 and

[
4
N tr X̂ X̂ t

]
is bounded almost

surely. So the result.
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Proof of the Theorem 1

For (N × n) matrix, X =
(

1√
N
Xi j

)
verifying assumption (a) of Theorem 1. With

help to inequality (12) and the fact that
(
Xi j

)
satisfies the G.S.M. property, we obtain

M1 ≤ E
(
tr

(
XXt

)2) ≤ M2 (17)

where

M1 = K

N
{nE |X11|4 + n (N + n − 2) E2 |X11|2 − E

2
3 |X11|6},

M2 = K

N
{nE |X11|4 + n (N + n − 2) E2 |X11|2 + E

2
3 |X11|6 + (N − 1) E

4
3 |X11|3}.

With the same arguments, we may deduce a bound of the variance

var
(
tr

(
XXt

)2) ≤ K

N 4
{N 4E |X11|4 E2 |X11|2 (18)

+N3[E 4
3 |X11|6 + E

1
2 |X11|4 E

1
3 |X11|6 E

1
3 |X11|12 + E |X11|2 E

2
3 |X11|9]

+N2[E 2
3 |X11|6 E

1
6 |X11|24 + E

1
3 |X11|15 E |X11|3 + E

2
3 |X11|12 + E

5
12 |X11|12 E

1
6 |X11|18]}.

Using (14) and (13), we may write

D
(
FXT Xt

, FXTθ Xt
)

→ 0 and D
(
F X̂Tθ X̂ t

, F X̂T X̂ t
)

→ 0 a.s.

Furthermore, by Lemma 1, we get

D
(
FXT Xt

, F X̂T X̂ t
)

→ 0 a.s. (19)

For B̂N and B̃N defined by relations (3) and (4), we have from Lemma 2.5 of [8],

∥
∥∥F B̂N − F B̃N

∥
∥∥ → 0. (20)

Let ¯̄Xi j = X̃i j − X̄i j . Hence,

¯̄Xi j = X̃i j1(|Xi j |≥ln N) + E X̃i j1(|Xi j |<ln N),
¯̄X =

(
1√
N

¯̄Xi j

)
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where X̃i j and X̄i j are defined by the relations (4), (5), respectively.
Then, from Cauchy–Schwartz inequality, we can show that the squared distance

D2
(
F X̃Tθ X̃ t

, F X̄Tθ X̄ t
)

is bounded by

1

N

{
θ2tr

( ¯̄X ¯̄Xt)2
+ 4

[
θ4tr

( ¯̄X ¯̄Xt)2
tr

(
X̄ X̄ t

)2
] 1

2

+4

[[
θ4tr

( ¯̄X ¯̄Xt)2
tr

(
X̄ X̄ t

)2
] 1

2

θ2tr
( ¯̄X ¯̄Xt)2

] 1
2

⎫
⎬

⎭
.

Therefore, in order to show that almost surely

D
(
F X̃Tθ X̃ t

, F X̄Tθ X̄ t
)

→ 0, (21)

it suffices to verify that

θ4 1

N
tr

( ¯̄X ¯̄Xt)2
→ 0,

1

N
tr

(
X̄ X̄ t

)2 = O (1) a.s. (22)

Since E
( ¯̄X11

)
= 0 and ¯̄Xi j = X̃i j1(|Xi j |≥ln N) + E X̃i j1(|Xi j |<ln N), we have

E
∣∣
∣ ¯̄X11

∣∣
∣
2 ≤ K E |X11|2 1(|X11|≥ln N ) → 0. (23)

For p ≥ 4,

E
∣∣
∣ ¯̄X11

∣∣
∣
p ≤ K

(
N

p−4
2 E |X11|4 1(ln N≤|X11|<

√
N) + 1

)
. (24)

By dominated convergence theorem, we get

E
∣∣X̄11

∣∣2 → E |X11|2 = γ. (25)

For p ≥ 4 and definition of rv’s X̄11, we have

E
∣∣X̄11

∣∣p ≤ K (ln N )p−2 . (26)

From (15), (23), (24), E(|X11|4 1(ln N≤|X11|<
√
N)) ≤ NE |X11|2 and relation (17), we

may write
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E

[
1

N
θ4tr

( ¯̄X ¯̄Xt)2
]

≤ K θ4

[
E

2
3 |X11|2 1(|X11|≥ln N ) + 1

N

]
→ 0.

Also (18) gives

var

(
1

N
θ4tr

( ¯̄X ¯̄Xt)2
)

≤ K θ8

[
1

N 7/6
E1/6 |X11|4 1(ln N≤|X11|<

√
N) + 1

N 2

]
,

where the latter bound is summable by (16).

Hence, we obtain 1
N θ4tr

( ¯̄X ¯̄Xt)2
→ 0 a.s.

Now it remains to show that 1
N tr

(
X̄ X̄ t

)2 = O (1) a.s. Using (17), (25) and (26),
we find

K {− (ln N )
8
3

N 2
} ≤ E

[
1

N
tr

(
X̄ X̄ t

)2
]

− n

N

(
n

N
+ 1 − 2

N

)
E2

∣∣X̄11

∣∣2

≤ K { n
N

(ln N )2

N
+ (ln N )

8
3

N 2
+ (ln N )

4
3

N
}.

Consequently, E
[

1
N tr

(
X̄ X̄ t

)2] − n
N

(
n
N + 1 − 2

N

)
E2

∣∣X̄11

∣∣2 → 0, and,

E
[

1
N tr

(
X̄ X̄ t

)2] → γ 2 [c (c + 1)] .

Concerning the variance, by (18), (25) and (26), we may obtain

var

(
1

N
tr

(
X̄ X̄ t

)2
)

≤ K
(ln N )

17/3

N 3
,

which is summable. Then, (22) is verified from which (21) follows. This result with

(14) allow us to write, D
(
F X̃T X̃ t

, F X̄T X̄ t
)

→ 0 a.s.

From (19) and (20), in order to prove D
(
FXT Xt

, F
) → 0 a.s, it suffices to verify

that, D
(
F X̄T X̄ t

, F
)

→ 0 a.s. For this aim, we shall show that for any z ∈ C
+,

mFX̄T X̄t (z) → mF (z) a.s.
Let z ∈ C

+ and B̄N = X̄T X̄ t , the sequence {F B̄N } satisfies the assumptions of
Lemma 2.8 of [8]. So ∃m > 0 such that

inf
N

F B̄N [−m,m] > 0, δ = inf
N

	m (
mFB̄N (z)

)
> 0 a.s.

Write B̄N − z I = (x − z) I + X̄T X̄ t − x I, and then

(x − z)−1 − mB̄N
(z) = 1

N

n∑

j=1

τ j

1 + τ jmF B̄N (z)
d j , (27)
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where

d j = dN
j = 1 + τ jmF B̄N (z)

1 + τ j q̄ t
j

(
B̄( j) − z I

)−1
q̄ j

q̄ t
j

(
B̄( j) − z I

)−1 (
(x − z)−1 I

)
q̄ j

− 1

N
tr

(
B̄N − z I

)−1 (
(x − z)−1 I

)
,

with q̄ j denote the j th column of X̄ , and B̄( j), x , x( j) are defined by relations (8) and
(9).

Lemma 3.1 of [8] and assumption (d) of the Theorem 1 permit us to obtain

max
j≤n

max [β1, β2, β3] → 0 a.s (28)

where

β1 =
∣∣∣
∥∥q̄ j

∥∥2 − 1
∣∣∣ ,

β2 =
∣∣∣∣q̄

t
j

(
B̄( j) − z I

)−1
q̄ j − 1

N
tr

(
B̄( j) − z I

)−1
∣∣∣∣ ,
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)
I
)−1

q̄ j

− 1

N
tr

(
B̄( j) − z I

)−1 ((
x( j) − z

)
I
)−1

∣∣∣∣ .

Lemma 2.6 of [8] gives us, max j≤n max[| γ1 |, | γ2 |] → 0, where γ1 = m
FB̄( j)

(z) − mFB̄N (z) , γ2 = mFB̄N (z) − q̄ t
j

(
B̄( j) − z I

)−1
q̄ j .

So that for N large enough, we have, max j≤n max[|	mγ1| , |	mγ2|] < δ
2 .

Then, for j, l ≤ n,

∣
∣∣∣∣

1 + τ jmF B̄N (z)

1 + τ t
j q̄ j

(
B̄( j) − z I

)−1
q̄ j

− 1

∣
∣∣∣∣
<

2

δ
| γ2 |,

and ∣∣
∣∣∣

τl

1 + τlmF B̄N (z)
− τl

1 + τlmF B̄( j) (z)

∣∣
∣∣∣
≤ 2

δ2
| γ1 | .

Therefore,

max
j≤n

max[
∣∣
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1 + τ jmF B̄N (z)

1 + τ t
j q̄ j

(
B̄( j) − z I

)−1
q̄ j

− 1

∣∣
∣∣∣
,
∣
∣x − x( j)

∣
∣] → 0. (29)

Using Lemmas 2.6, 2.7 of [8] and (28), (29), we may have
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max
j≤n

d j → 0.

Since ∣∣
∣∣

τ j

1 + τ jmF B̄N (z)

∣∣
∣∣ ≤ 1

δ
,

we may conclude from (27) that

(x − z)−1 − mB̄N
(z) → 0.

Hence, the relation (11) is satisfied.
Finally, using (6), the proof of Theorem 1 is now complete.
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Deep Learning for Detection of BGP
Anomalies

Marijana Cosovic, Slobodan Obradovic and Emina Junuz

Abstract The Internet uses Border Gateway Protocol (BGP) for exchange of routes
and reachability information between Autonomous Systems (AS). Hence, BGP is
subject to anomalous traffic that can cause problemswith connectivity and traffic loss.
Routing Table Leak (RTL), worm and power outage events are considered anomalous
in the sense that they can disrupt the Internet routing and cause slowdowns of varying
severity, which leads to packet delivery reliability issues. Deep learning, a subfield of
machine learning, could be applied in detection of BGP anomalies. Studying RTL,
worm, and power outage events are of interest to network operators and researchers
alike. In this paper, we consider datasets of several events, all of which caused large-
scale Internet outages. We use artificial neural network (ANN) models based on a
backpropagation algorithm for anomalous event classification.

Keywords Machine learning · Deep learning · Anomaly detection · BGP
Sampling

1 Introduction

The AS-level Internet topology is a structure in which autonomous systems (AS),
collections of routers with same routing policies, are represented by nodes, while the
connection between the nodes are data paths used for exchanging reachability infor-
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mation between the ASs. Each AS is uniquely represented by an autonomous system
number (ASN). As the number of ASs increased over time in the Internet, BGP was
defined to improve existing External Gateway Protocol (EGP) and its drawbacks in
terms of hierarchical structure that limited efficient expansion of the Internet. The
latest version of the BGP protocol is BGP-4 defined in [1]. BGP is a routing protocol
that connects different domains and it is used for routing in networks composed of a
large number of ASs. It is used for routing among autonomous systems, and its latest
version allows for Classless Inter-Domain Routing (CIDR), path aggregation, incre-
mental additions, better filtering capabilities, and determining the routing policy. The
Routing Information Service (RIS) project was initiated in 2001 by the Réseaux IP
Européens Network Coordination Centre (RIPE NCC). RIPE NCC belongs to one of
the five Regional Internet Registries (RIRs) that manage allocation and registration
of IP addresses and ASNs. The scope of the RIS project is collecting and storing
routing data from Remote route collectors (RRC) positioned predominantly at Inter-
net exchange points. RRCs are software routers, released on the Linux platform that
collect routing information. RRCs are positioned in all five RIRs but a majority of
them are located within the RIPE NCC domain. Presently, 18 RRCs are active and
using Quagga routing software for collecting raw data that is stored in MRT routing
information export format [2] to two different type of files: all BGP packets created
every 5 mins and a complete BGP routing table that is created every 8 hr [3]. PyBG-
PDump, a library written in Python is used to convert MRT into ASCII format. The
quality of the data is inspected after the conversion, as missing and corrupt data may
occur.

By studying BGP packets files and, in particular, by extracting BGP update mes-
sages from them, as they contain important reachability information, we can study
connectivity disruption in the Internet during anomalous events. We investigated
several types of anomalous events, namely, routing table events, worms, and power
outage events. RTL events are in general initiated by router misconfigurations and,
although not malicious in nature, can cause connectivity problems and traffic loss.
Worm and power outage events can also contribute to connectivity and traffic loss
issues. All of the events considered in this study were globally visible events. We
extracted 15 features from BGP update messages on a minute-level: features related
to volume of BGP messages and AS-PATH features related to AS-PATH attribute.
For the duration of the anomalous event, we label the class feature with one (anomaly
present), while the time before and after the anomalous event we label the class fea-
turewith zero (anomaly not present). In thisway,we obtained a labeled featurematrix
for each of the events. Routing data, extracted from the BGP update messages, could
be considered as time series data since data points are indexed in time order.

Machine learning techniques have been employed in anomaly classification tasks
[4–7].Deep learning, part ofmachine learning, has been used extensively in voice and
image recognition, language modeling, and information retrieval, amongst others,
and has impacted the wide range of information processing tasks [8]. Detection of
anomalies in time series data has employed deep learning techniques in the past.
ANNs are systems that can be trained to recognize patterns in data and classify
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anomalous from regular data instances [9, 10]. Routing data could be used to analyze
past anomalous events and aid in classification of future anomalous events.

The paper is organized as follows. In Sect. 2, we describe ANNs. Introduction
of anomalous events, such as particular RTL events, worm events and power outage
event are discussed inSect. 3. In addition, extractionofBGP features from thedatasets
concludes Sect. 3. Classification methodology and used performance measures are
discussed in Sect. 4. We conclude with Sect. 5.

2 ANN—Deep Learning

Artificial Neural Networks (ANN) are originally developed tomimic basic biological
systems and to learn based on examples in the way humans do. In essence, neural
networks learn gradually from the interdependence of data input properties. This
interdependence can be linear or nonlinear in nature. Application of ANN has been
present in the anomaly detection field [7, 9, 10]. When used in supervised learning
neural network needs labeled input data; hence it is known in advance which class the
data belongs to. Based on a comparison between the output of the neural network and
the target function, during the training process, ANN adjusts the weights as shown
in Fig. 1.

Artificial neural networks can be classified as Feedforward or Feedbackward
structures, depending on the direction of propagation of the information. The Feed-
backward structure of neural networks refers to the spread of information backwards.
When the input vector is applied to the input layer of the neural network, it propa-
gates through the network throughout all its layers, and it generates output values by
using the output layer of the network. The output values are compared with a desired
target function, and for each of the neurons in the output layer the difference is cal-
culated. Further information about these differences propagates backwards until all
the neurons in the neural network are affected by the difference between the original
and the target output value. The value of the weighting factors is determined by the
optimization technique (typically a minimizing of the loss function with respect to

Fig. 1 Artificial neural network
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the weights in the network), which determines the weighting factors such that the
loss function is minimized.

ANN are simple mathematical methods made up of basic processing elements
called neurons. The structures of neural networks differ in the number of layers
used. Between the first and last layers of neural networks, there are hidden layers:
usually one hidden layer in simpler networks and more hidden layers in complex
neural networks.

The architecture of the neural network is engaged in specific neuronal connectivity
as a whole. Usually, the number of neurons in the input layer is equal to the number
of features (number of columns in the feature matrix). Each neuron has one input,
and all the outputs are connected to all neurons of the next layer, as shown in Fig. 2.
When using a neural network for classification, the output layer can have one or more
neurons, depending on whether it is binary or multi-class classification. The most
commonly used functions for the output neuron modeling are sigmoid or normalized
exponential [11] functions.

Perceptron is a neuron model type developed in the original neural networks, in
which each neuron has a number of inputs (xj) associated with corresponding weight
factors (ωj), which show the effect of a particular input on the output. Thus, the
output neuron classifies information by comparing the value of the sum (1) and the
threshold value, which is a parameter of the neuron.

∑

j

ωjxj (1)

Modeling of neurons with a perceptron has the following disadvantage: a small
change in the weight factor of any perceptron can lead to a sudden change in its
output. This, in turn, can lead to a complicated change in the rest of the network,
which may be difficult to control. The most commonly used artificial neuron model,
which solves the aforementioned problem, is the sigmoid neuron, shown by the
following expression:

Fig. 2 Architecture of ANN with four layers: one input layer, two hidden layers, and one output
layer
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1

1 + exp
(
−∑

j ωjxj − b
) (2)

where ωj are weighting factors, xj are input neurons, and b is bias. It turns out that a
change in the output of sigmoid neurons linear function changes theweighting factors
and bias. In this way, it is easier to determine how changes in weighting factors and
bias may influence the change of the output neuron; hence, the neural network could
be considered more resilient to changes of data and the ability to learn.

3 Anomalous Events

The BGP routing system is subject to frequent incidents that result in significant
interruptions of Internet connectivity. This can be observed in BGP update messages.
In this paper, we consider the following routing table leak events: Routing Leak
AS9121 [12], AWS Route Leak [13], Telecom Malaysia AS4788 Route Leak [14],
and Indosat Routing Table Leak [15], all of which showed an increased number of
announced IP prefixes throughout the duration of the events. We also consider the
Slammer [16] and Code Red I [17] worm events, as well as the Moscow power
blackout event [18].

BGP Datasets

We obtain datasets from the RIPE NCC that collects Internet routing data by using
Routing Information Service (RIS) Remote Route Collectors (RRC) positioned in
various locations throughout the world. The effects of all the events considered in
this paper and presented in Table 1 caused globally visible connectivity issues. We
have used routing updates collected at two RRCs located in CIPX, Geneva and VIX,
Vienna. We used BGP update messages during the occurrence of the routing leak,
worm, and power outage events stored in MRT format described in [2]. In order to
create a feature matrix, we observed BGP update messages during a five day period,
including two days before and two days after the actual event.

Duration of the actual events lasted between 79min, in the case of theAS9121RTL
event, and 869min, in the case of the Slammerworm event. The rest of the anomalous
events have durations that fall between those two values (Table 1). Python code was
written in order to extract features from the dataset that is a collection of BGP update
messages afterMRT toASCII conversion for each of the events. For example, Table 2
shows that on June 12, 2015 at 16:05:02UTC,AS12350 (192.65.185.157) announced
that the address prefixes 177.155.50.0/23, 177.155.52.0/23, 201.46.160.0/19, and
201.46.232.0/21 were available. The path by which the above prefixes were available
was AS-PATH: 12350 174 6762 262589 262589 262589 262589 262589 28615. The
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Table 1 BGP anomalous events

Dataset Regular class Anomaly class Number of features

AS9121 RTL 7121 79 15

AWS RTL 7085 115 15

Malaysian Telecom
RTL

7018 182 15

Indosat RTL 7050 150 15

Slammer 6331 869 15

Code Red I 6600 600 15

Moscow power outage 7031 169 15

Table 2 BGP update message during Telecom Malaysia AS4788 routing leak

FIELD: VALUE:

TIME: 06/12/15 16:05:02

TYPE: BGP4MP/MESSAGE/Update

FROM: 192.65.185.157 AS12350

TO: 192.65.185.40 AS12654

ORIGIN: IGP

AS-PATH: 12350 174 6762 262589 262589 262589
262589 262589 28615

NEXT_HOP: 192.65.185.157

MULTI_EXIT_DISC: 0

ANNOUNCE 177.155.50.0/23
177.155.52.0/23
201.46.160.0/19
201.46.232.0/21

original autonomous system was AS28615, while AS262589, AS6762, and AS174
were transit autonomous systems. BGP update messages traveled from the original,
via transit, to the ultimate AS. On the other hand, the data transmitted were traversed
by the sequence of ASs defined by the AS-PATH attribute path (from left to right).
Fifteen volume and AS-PATH features were extracted from BGP messages on a
minute-level during the 5-day period, hence producing a feature matrix of 7200×
15 in size.

The volume features that we observed are the number of BGPmessages announc-
ing new routes, the number of BGP messages withdrawing already existing routes,
the number of announced IP prefixes (Figs. 3, 5, 6, 7, 8, 10 and 11), the number
of withdrawn IP prefixes (Fig. 12), the number of duplicate announced messages,
the number of duplicates withdrawn messages, the number of implicitly withdrawn
messages, the number of BGP messages which NLRI originates from the Exterior
Gateway Protocol (EGP), the number of BGPmessages which NLRI originates from
the Interior Gateway Protocol (IGP), and the number of BGP messages which NLRI
originates from unknown sources.
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Fig. 3 Number of announced network layer reachability information (NLRI) prefixes during
AS9121 Routing Leak Event as observed on RIPE Route Collector rrc04, CIPX

Duplicate announcements and withdrawal messages are defined as BGP update
messages that announce the same combination of IP prefix and AS-PATH attribute
that has previously been announced. Implicit withdrawal implies that the same IP
prefix has been announced with a different AS-PATH attribute, hence it is an implicit
withdrawal of a previous announcement (same IP prefix but different AS-PATH).

The features we computed based on the AS-PATH attribute are: the average length
of the AS-PATH attribute, themaximum length of the AS-PATH attribute (Fig. 6), the
average length of each unique AS-PATH attribute, the average edit distance, and the
maximum edit distance (Figs. 4 and 9). While extracting information from the AS-
PATH attribute, we considered regular and unique AS-PATHs. We also considered
AS-PATHs as a string of ASNs (autonomous system number) and computed the
similarity of two adjacent AS-PATHs by finding their edit distance [19].

Fig. 4 Maximum edit distance during AS9121 Routing Leak Event as observed on RIPE Route
Collector rrc04, CIPX
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Features belong to three types: continuous, categorical, and binary. All of the
volume features belong to the continuous type, since features may have an infinite
number of values. On the other hand, features derived from the AS-PATH attribute
may have a finite number of values and hence, are categorical. The class feature is
of the binary type: given volume and AS-PATH features, we either have anomalous
instances or not.

We have labeled all 7200 time instances (described by 15 features) as either
belonging to anomalous or regular class in accordancewith the information regarding
the beginning, duration, and end of each of the events. We have referred to several
sources in order to label our data as correctly as possible.

Considering that global routing tables increased in size from the time of the first
event, we needed to normalize feature values to account for Internet size growth.
Normalization is done such that each feature vector has a zero mean and a standard
deviation of one [20]. We also performed feature discretization for the features of
the continuous type prior to training the neural network. We did not encounter any
missing data during the seven events observed, although we did have an increased
number of outliers in the case of the Indosat RTL and Code Red I datasets, which
can be observed in Fig. 7 and Fig. 10, respectively.

Routing Table Leak Events

Many of the events that cause connectivity issues are classified as routing leaks. It is
often unclear what is meant by that term. Based on research of actual events on the
Internet, which can be of use to network operators and Internet users, the authors in
[21] define routing leaks as a propagation of announced paths beyond the intended
scope. This means that the BGP path announcement from one AS to another in some
way violates the routing agreements between a sending AS, a receiving AS or any
transit AS. The consequence of routing leaks is traffic redirection through a path
not originally planned, and thus, various malicious attacks from analyzing data to
eavesdropping could be performed. The most common reasons why routing leaks
occur are errors in the router’s configuration [22].

AS9121 Routing Table Leak
The AS9121 Routing Table Leak took place on December 24, 2004. AS9121
announced to other ASs through BGP sessions that were used to reach almost 70%
of all prefixes, which at that time amounted to more than 106 k prefixes. As a result,
the data of tens of thousands of networks were either lost or diverted. AS9121 started
to announce prefixes to its neighbors around 9:20 GMT, and the event lasted until
just after 10:00 GMT. AS9121 continued announcing prefixes for the rest of the day.
The prefix announcement rate reached a second peak at 19:47 GMT. The number of
announced IP prefixes during the routing leak event is shown in Fig. 3. An increase
was observed in the number of withdrawn IP prefixes, as well. Besides the increase
in the number of announced/withdrawn prefixes, the maximum edit distance (the
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Fig. 5 Number of announcedNLRI prefixes duringAWSRouting Leak Event as observed on RIPE
Route Collector rrc04, CIPX

measure of similarity between two AS-PATH attributes) increased during the dura-
tion of the event, as can be observed in Fig. 4. This could indicate that the choice of
the paths differed from the common ones, and it was a sign of disruption between
commonly connected ASs.

AWS Route Leak
The AWS Route Leak started at 17:10 UTC on April 22, 2016, and affected a large
number of ASs and prefixes. Loss of traffic and connectivity were present since
networks with high traffic prefixes, such as Google, Amazon, and Twitter, were
affected, amongst others.

The event occurred due to maintenance issues on Innofield AG (AS 200759)
that is connected to Swiss Internet eXchange (SwissIX). Innofield AG normally
announces one IPv4 and IPv6 prefix to SwissIX. During maintenance reactivation
of BGP sessions, AS 200759 distributed prefixes belonging to Amazon as belonging
to private AS 65021. Prefix announcements were propagated through AS 6939 Hur-
ricane Electric (HE) that peers at SwissIX. This resulted in a redirection of traffic
passing through HE to a private AS, and hence, it compromised the reachability of
Amazon AS. Since the event was widespread and likely caused by a misconfigured
route optimizer, we observed an increase in announced IP prefixes at CIPX, as shown
in Fig. 5.

Telecom Malaysia Route Leak
The Malaysian Telecom (AS 4788) leaked one-third of all IP prefixes in the global
routing table to the backbone provider Level3 (AS 3549).

The event, triggered by routers misconfiguration at Telecom Malaysia, started on
June 12, 2015 at 8:43UTC and lasted until 11:45UTC. Level3 (AS 3549) propagated
traffic from its peers and customers via TelecomMalaysia, which was not capable of
handling the traffic volume, resulting in major packet loss and performance degra-
dation. The performance degradation was especially pronounced between the Asia
Pacific region and the rest of the Level 3 network. Figure 6 shows an increased
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Fig. 6 Number of announced NLRI prefixes (left) and maximum AS-PATH length (right) during
Telecom Malaysia Routing Leak Event as observed on RIPE Route Collector rrc04, CIPX

number of announced IP prefixes (left) and also an increase of maximum AS-PATH
length (right) for the duration of the route leak event.

Indosat Routing Table Leak
The Indosat routing table leak occurred on April 2, 2014. At the time of the event, the
global routing table consistedof nearly half amillion routes.AS4761 (Indosat) leaked
around 320,000 routes, which happened during scheduled maintenance, starting at
18:25 UTC. The reason behind Indosat originating prefixes that were not assigned
to it is assumed to be that BGP was redistributed with bad upstream filtering. This
inadvertent error had an impact that was observed on various route collectors through
an increase of announced IP prefixes, as shown in Fig. 7. Several hundreds of those
prefixes were widely accepted, and services of some networks such as Akamai, a
leading content delivery network (CND) and cloud service provider, were disrupted.

Fig. 7 Number of announced NLRI prefixes during Indosat Routing Leak Event as observed on
RIPE Route Collector rrc04, CIPX
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Worm Events

The Slammer worm is a single packet UDP scanning worm (404 bytes) that attacked
MS SQL server and MS SQL server desktop addition on January 25, 2003. It spread
worldwide in less than 10 min by sending copies of itself to random IP addresses.
The main reason behind this rapid spread was the result of a bandwidth-limited
scanner: each copy of the worm could scan at the maximum rate that the processor
and network bandwidth could support. Depending on the upload bandwidth, every
Slammer copy could be sending infectious packets at the maximum rate, hence the
rapid spreading in which the number of infected machines doubled every 8.5 s. The
number of announced IP prefixes during the Slammer worm is shown in Fig. 8, while
the maximum edit distance increase can be observed in Fig. 9.

Fig. 8 Number of announced NLRI prefixes during Slammer worm event as observed on RIPE
Route Collector rrc04, CIPX

Fig. 9 Maximum edit distance during Slammer worm event as observed on RIPE Route Collector
rrc04, CIPX
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Fig. 10 Number of announced NLRI prefixes during Core Red I worm event as observed on RIPE
Route Collector rrc04, CIPX

The Code Red I worm was released through IIS servers in June 2001, but the
peak of infected computers was observed on July 19, 2001. The worm spread itself
by creating a sequence of random IP addresses using static seed for generation of
new IP addresses. Since every infected computer went through the same list of IP
addresses, fewer systems were infected in comparison to the Slammer worm spread,
and the number of infected machines doubled only every 40 min. The number of
announced NLRI prefixes during the Core Red I worm event as observed on RIPE
Route Collector rrc04, CIPX is shown in Fig. 10.

Power Outage Events

The Power outage event considered in this study is a Moscow power blackout that
occurred on May 25, 2005. Moscow Internet eXchange (MSK-IX) was shut down at
that time. Considering that 80% of Russian traffic at the time was passing through
MSK-IX and that telecommunication infrastructure is greatly centralized around
Moscow, rerouting of traffic created congestion. The outage had an impact on wide
scale connectivity issues, hence, there was a disruption of Internet service: even
though the data centers of main Russian websites had power, their traffic was still
going through MSK-IX. Figure 11 shows an increased number of announced IP
prefixes in BGP updatemessages during the power outage, as observed at RIS remote
route collector in Vienna Internet eXchange (VIX). The number of withdrawn IP
prefixes during the Moscow power outage is shown in Fig. 12, and we can observe
the time delay between the onset of power outage and the onset of the increase in
number of withdrawn IP prefixes in BGP messages.
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Fig. 11 Number of announcedNLRI prefixes duringMoscow power blackout as observed on RIPE
Route Collector rrc05, VIX

Fig. 12 Number of withdrawnNLRI prefixes duringMoscow power blackout as observed on RIPE
Route Collector rrc05, VIX

4 Classification of Anomalous Events

Methodology

We used the Keras Python library [23] with the Theano backend for development and
evaluation of deep learning models. Models, based on a backpropagation algorithm
for training of fully connected multilayer perceptron (MLP) neural networks, are
defined as sequences of layers: an input layer, hidden layers, and an output layer.
The shape of the input data needs to be specified only for the first layer in the
sequence. In Keras, using Dense class is one of the ways to define fully connected
layers. Network weights can be initialized to random numbers using either uniform
or Gaussian distribution. Use of appropriate activation function allows for better
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training of the network [24]. Traditionally, sigmoid and tanh activation functions are
used, but the authors in [24] have shown that better performance can be achieved
using a rectifier activation function. In the output layer, we use a sigmoid function
as we are dealing with binary classification.

We use 10-fold cross validation for determining accuracy on the test dataset,
and as we increase the number of hidden layers beyond two, classification accuracy
decreases. We found that a neural network with two hidden layers is the optimal
model for the anomalous datasets considered: routing table leak, worm, and power
outage. Using either too few or too many neurons in the hidden layers may result
in problems of underfitting and overfitting, respectively. General guidelines are used
for determining the number of neurons within each hidden layer. We selected neural
network architecture based on trial and error, but in accordance with the following
general guidelines: the number of neurons in hidden layers should be between the
sizes of input and output layers, and they should be the sum of two-thirds of the input
layer neurons and output layer neurons. Hence, we trained the neural network with
two dense hidden layers with 15 and 10 neurons, respectively.

Performance Measures

The goal of binary classification is to categorize data into two different classes: reg-
ular or anomalous. In most cases, the number of anomalous instances is a fraction of
regular instances, and as such, the cost of classifying regular or anomalous instances
is not the same. The performance measures employed in this paper, needed for com-
prehensive comparison of different deep learning models, are accuracy, F-measure,
the Matthews Correlation Coefficient (MCC), the area under Precision-Recall (PR),
the area under Receiver Operating Characteristics (ROC), and time taken to build a
model. Accuracy, considering our datasets are highly imbalanced (Table 1), might
not be the most accurate performance measure. This is due to the fact that misclas-
sification would have different costs associated with points belonging to either the
regular or anomalous class. Accuracy is defined as the ratio of points belonging to the
regular/anomalous class that are classified as regular/anomalous and the total number
of points in the dataset. In order to define F-measure, we first define recall (R) as the
ratio of detected anomalous points and all points labeled as anomalous. On the other
hand, precision (P) is a ratio of detected anomalous points and all anomalous points.
Specificity (S) is a ratio of detected regular points and all regular points; hence it
is a measure of how many regular instances are identified as regular. F-measure is
given as a double ratio of the product of P and R and the sum of P and R. MCC is
given by (3), where N is the number of all points and TP is the number of data points
classified as anomalous.

MCC � TP/N − PR√
PR(1 − P)(1 − R)

(3)
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The PR curve is more often used when there is a class imbalance problem [25]
because both precision and recall measures are defined by focusing on the number of
detected anomalous points. ROC curve represents the relationship between recall and
specificity measure, and as such, remains the same regardless of the baseline prior
probability of the anomalous class. This is reflected in the reported results (Tables 3,
4 and 5) in which the area under the PR curve is often smaller than the area under
the ROC curve.

Table 3 Performance measures of the original anomalous events

Dataset Acc F-measure MCC ROC PR Time (s)

AS9121 RTL 0.99375 0.945 0.942 0.998 0.946 10.55

AWS RTL 0.99431 0.808 0.807 0.961 0.848 10.95

Malaysian Telecom RTL 0.9925 0.852 0.848 0.979 0.883 10.58

Indosat RTL 0.93056 0.753 0.707 0.897 0.802 10.65

Slammer 0.95986 0.834 0.811 0.976 0.916 10.57

Code Red I 0.94542 0.586 0.582 0.887 0.628 10.65

Moscow power outage 0.99639 0.920 0.919 0.974 0.923 8.76

Table 4 Performance measures of anomalous events using oversampling techniques

Dataset Acc F-measure MCC ROC PR Time (s)

AS9121 RTL 0.99816 0.998 0.996 0.999 0.999 22.02

AWS RTL 0.99167 0.992 0.983 0.994 0.984 20.95

Malaysian Telecom RTL 0.98953 0.990 0.979 0.995 0.994 21.12

Indosat RTL 0.92087 0.923 0.844 0.958 0.940 21.19

Slammer 0.93854 0.940 0.878 0.977 0.967 19.63

Code Red I 0.89932 0.899 0.799 0.954 0.947 20.43

Moscow power outage 0.98962 0.990 0.979 0.997 0.997 18.1



110 M. Cosovic et al.

Table 5 Performance measures of anomalous events using undersampling techniques

Dataset Acc F-measure MCC ROC PR Time (s)

92AS9121
RTL

0.98734 0.987 0.975 0.999 0.999 0.28

AWS RTL 0.96087 0.960 0.923 0.979 0.986 0.36

Malaysian
Telecom
RTL

0.95055 0.950 0.901 0.975 0.981 0.29

Indosat
RTL

0.88333 0.878 0.770 0.927 0.948 0.31

Slammer 0.94131 0.941 0.883 0.983 0.979 2.73

Code Red I 0.9075 0.901 0.821 0.947 0.964 1.93

Moscow
power
outage

0.9645 0.964 0.929 0.986 0.989 0.48

Classification Results

We used a neural network with two hidden layers and obtained the performance
measure values shown in Table 3. Accuracy is not the best approach to compare
classification of different events, as the datasets are highly imbalanced. Hence, we
used performancemeasures as introduced in Sect. 4.2. In addition, time taken to build
amodel is added in the results. Table 1 shows that amongst all RTL events,Malaysian
Telecom RTL has the largest set of data labeled as anomalous—182 compared to
the AS 9121 RTL event in which only 79 instances are labeled as anomalous. The
Indosat RTL event shows the worst performance of all RTL datasets, and we can
contribute that to noise in the dataset (Fig. 7). Slammer, followed by the Code Red I
dataset, has the largest number of instances belonging to the anomaly class amongst
all datasets. Noise in the Code Red I dataset, as shown in Fig. 10, might be the
reason behind poor performance measures of Code Red I presented in Table 3. We
used undersampling and oversampling techniques as in [26] to balance regular and
anomalous instances in all datasets. In the case of oversampled and undersampled
datasets, their imbalance ratio is around 1, meaning the classes are balanced; hence,
accuracy and F-measure are approximately the same values.

Oversampling techniques are algorithms that create additional instances of the
class that is represented by a smaller number of instances in the dataset. We
used six oversampling techniques, namely, Synthetic Minority Oversampling Tech-
nique (SMOTE), Support Vector Machine (SVM)-SMOTE, Borderline1-SMOTE,
Borderline2-SMOTE,Adaptive Synthetic Sampling (ADASYN), andRandomOver-
sampling (ROS) algorithms. By using balancing techniques of the datasets, we
achieved better performance measures, as shown in Table 4. The best results were
achieved using the SVM-SMOTE oversampling technique for AS9121 RTL, AWS
RTL, Indosat RTL, Slammer, Code Red I and Moscow dataset, while the Malaysian
Telecom RTL dataset, when oversampled by ROS algorithm, had the best perfor-
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mance measure that was better by a small margin than when oversampled by the
SVM-SMOTE algorithm.

Undersampling techniques are algorithms that remove instances from the dataset
that belong to the more represented class. We used ten undersampling algorithms,
namely, Near Miss-1, Near Miss-2, Near Miss-3, Tomek Links, Cluster Centroids,
One-sided selection, Random undersampling (RUS), Edited Nearest Neighbors,
Neighborhood Cleaning Rule, and Condensed Nearest Neighbors. By using under-
sampling balancing techniques of the datasets, we achieved better performance mea-
sures, as shown inTable 5.When comparingTables 4 and 5, the values of performance
measures (F-measure, MCC, and ROC) are greater in the case of oversampling tech-
niques for most datasets, and this is due to possible overfitting. Also, when datasets
are oversampled, additional points from the anomalous class are added into the orig-
inal dataset, hence, the area under the PR curve increases, as can be observed in
Table 4.

The best results were achieved using the RUS undersampling technique for
AS9121 RTL, AWS RTL, Slammer, and Code Red I datasets, while Code Red I,
Indosat RTL and Malaysian Telecom RTL datasets, when undersampled by the Near
Miss-1 algorithm, had the best performance measure, which was only better by a
small margin than when undersampled by the RUS algorithm.

5 Conclusion

Wehave developed amodel for anomaly detection based on artificial neural networks
with two hidden layers, which are optimal because performance indices deteriorated
with additional hidden layers. We used a cross-validation technique to determine the
number of neurons in each of the layers. Balancing techniques (dataset oversampling
and undersampling) were employed, as the original datasets are highly imbalanced.
Classification of the Indosat RTL and Code Red I datasets achieved the worst perfor-
mancemeasures, possibly due to noise in the datasets. Similar performancemeasures
on those datasets propagatedwhen undersampling and oversampling techniqueswere
used. We concluded that employing volume and AS-PATH features extracted from
BGP update messages could lead to the reliable classification of anomalous events.
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7. Ćosović, M., Obradović, S., Junuz, E.: Deep learning for detection of BGP anomalies. In:
Proceedings of International Work-Conference on Time Series (ITISE 2017), pp. 487–498
(2017)

8. Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Signal Process.
7(3–4), 197–387 (2014)

9. Dau, H.A., Ciesielski, V., Song, A.: Anomaly detection using replicator neural networks trained
on examples of one class. In: Proceedings of the 10th International Conference on Simulated
Evolution and Learning, pp. 311–322 (2014)

10. Jadidi, Z., Muthukkumarasamy, V., Sithirasenan, E., Sheikhan, M.: Flow-based anomaly
detection using neural network optimized with GSA algorithm. In: Proceedings of the 33rd
IEEE International Conference on Distributed Computing SystemsWorkshops (ICDCSW’13),
pp. 76–81 (2013)

11. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer-Verlag New York Inc., Secaucus, NJ, USA (2006)

12. Popescu, A.C., Premore, B.J., Underwood, T.: Anatomy of a Leak: AS9121. https://www.nan
og.org/meeting-archives/nanog34/presentations/underwood.pdf (2005). Accessed 20 Novem-
ber 2017

13. AWS Route Leak-North American Network Operators Group Mailing List. https://mailman.n
anog.org/pipermail/nanog/2016-April/085410.html (2016). Accessed 20 June 2016

14. Telecom Malaysia AS4788 Route Leak-North American Network Operators Group Mailing
List. https://mailman.nanog.org/pipermail/nanog/2015-June/076187.html (2015). Accessed 20
June 2016

15. Indosat Routing Table Leak-North American Network Operators Group Mailing List. https://
mailman.nanog.org/pipermail/nanog/2014-April/065920.html (2014). Accessed 20 June 2016

16. Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S., Weaver, N.: Inside the Slammer
Worm. IEEE Secur. Priv. 1(4), 33–39 (2003)

17. Schauer,R.C.: Themechanisms and effects of theCodeRedworm. https://www.sans.org/readin
g-room/whitepapers/dlp/mechanisms-effects-code-red-worm-87 (2001). Accessed 20 Novem-
ber 2017

18. Moscow Power Blackout-North American Network Operators Group Mailing List.
https://www.nanog.org/mailinglist/mailarchives/old_archive/2005-05/msg00650.html (2005).
Accessed 20 June 2016

19. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Dok-
lady Akademii Nauk SSSR 163(4), 845–848 (1965)

20. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Effiicient BackProp. In: Montavon, G., Orr,
G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48.
Springer-Verlag, London, UK (1998)

21. Sriram, K., Montgomery, D., McPherson, D., Osterweil, E., Dickson, B.: Problem Definition
and Classification of BGP Route Leaks. https://www.rfc-editor.org/rfc/rfc7908.txt (2016)

22. Mahajan, R., Wetherall, D., Anderson, T.: Understanding BGP misconfiguration. In: Proceed-
ings of the Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM’02), pp. 3–16 (2002)

23. Chollet, F.: Keras. https://github.com/fchollet/keras (2016)
24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Pro-

ceedings of 27th International Conference onMachineLearning, pp. 807–814 (2010).Accessed
20 November 2017

https://www.nanog.org/meeting-archives/nanog34/presentations/underwood.pdf
https://mailman.nanog.org/pipermail/nanog/2016-April/085410.html
https://mailman.nanog.org/pipermail/nanog/2015-June/076187.html
https://mailman.nanog.org/pipermail/nanog/2014-April/065920.html
https://www.sans.org/reading-room/whitepapers/dlp/mechanisms-effects-code-red-worm-87
https://www.nanog.org/mailinglist/mailarchives/old_archive/2005-05/msg00650.html
https://www.rfc-editor.org/rfc/rfc7908.txt
https://github.com/fchollet/keras


Deep Learning for Detection of BGP Anomalies 113

25. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Pro-
ceedings of 23rd InternationalConference onMachineLearning, pp. 233–240 (2006).Accessed
20 November 2017
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Using Scaling Methods to Improve
Support Vector Regression’s
Performance for Travel Time and Traffic
Volume Predictions

Amanda Yan Lin, Mengcheng Zhang and Selpi

Abstract Long queues often happen on toll roads, especially at the tollgates. These
create many problems including having an impact on the regular roads nearby. If
travel time and traffic volume at the tollgates can be predicted accurately in advance,
this would allow traffic authorities to take appropriate measures to improve traffic
flow and the safety of road users. This paper describes a novel combination of scal-
ing methods with Support Vector Machines for Regression (SVR) for travel time
and tollgate volume prediction tasks, as part of the Knowledge Discovery and Data
Mining (KDD) Cup 2017. A new method is introduced to handle missing data by
utilising the structure of the road network. Moreover, experiments with reduced data
were conducted to evaluatewhether the conclusions fromcombining scalingmethods
with SVR could be generalised.

Keywords Travel time prediction · Traffic volume prediction · Tollgate · SVR
Time series analysis · SVR with scaling · Support vector regression

1 Introduction

Traffic jams are common scenes in most roads including toll roads or controlled
access roads. The tollgates, in particular, are well known as bottleneck, especially
during rush hours and holidays. Reliable methods to predict future traffic flow and
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demands are important for traffic management authorities and road users. With pre-
cise predictions, the traffic regulators can decide how to deal with the problems (e.g.
to open more tollgates or divert traffic at upstream intersections) and road users can
plan their routes better. This paper is an extended version of [1], where we combined
Support Vector Machine for Regression (SVR) with scaling methods for predicting
travel time and traffic volume (as part of a competition in Knowledge Discovery and
Data Mining (KDD) Cup 2017 [2]) for a given road and tollgate during rush hours,
knowing the previous two-hour data and some days before. While the base of the
work here is the same as in [1], a new piece of work (i.e. testing the generalisation of
our methods) is added here. Furthermore, we elaborate on our own method to fill in
the missing data by utilising the road network topology. For completeness purpose,
we include the relevant parts of the base work here.

Travel time is the time taken fromadesignated start point to a designated end point.
Traffic volume is a record of the number of vehicles at a designated point. Travel
time and volume calculations depend on many stochastic factors, such as weather
condition, holidays, time of day and season, thusmaking the tasks of predicting travel
time and traffic volume challenging to date.

SVR is a version of Support Vector Machine (SVM) for regression that was
proposed in 1996 by Drucker et al. [3]. SVR is chosen here due to past researches
that have shown good performances using SVR in different areas, including financial
time series forecasting [4], stock market price forecasting [5], real-time flood stage
forecasting [6] and also travel time prediction [7].

The rest of this paper is arranged as follows. Section2 describes the data and the
objectives of this work. Section3 describes the related work. In Sect. 4, the methods
used are introduced. We describe and discuss the results of our experiments for
travel time prediction and traffic volume prediction in Sects. 5 and 6, respectively.
We test if the conclusions from Sects. 5 and 6 could be generalised in Sect. 7. The
final conclusions are presented in Sect. 8.

2 Data and Work Objectives

The data used here are from the KDD Cup 2017. It consists of four types, i.e. road
network topology, time-stamped records of actual vehicles driving from intersections
to tollgates (called vehicle trajectories data), traffic volume at tollgates and weather
data. The road network is represented as a sequence of road links and implemented as
a directed graph Fig. 1. The network includes three intersections (A, B, C) and three
tollgates (1, 2, 3). These make up ten routes. Only data from vehicles using Amap
navigation software was included in the vehicle trajectories data [2]. Therefore, there
was quite a lot of missing data in the provided data set.

The objectives of this work are to address the following tasks:

• Task 1—Travel time prediction: Given training data described above for the period
from 19 July to 24 October, predict the average travel time for each route during
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Fig. 1 The link representation of road network. Each route is composed by a sequence of links
and each link is represented by an arrow. The value without parentheses over a link represents the
unique ID of the link and the value in parentheses represents the length of the link

rush hours (08:00–10:00 and 17:00–19:00), per 20-min interval, for the period
from 25 October to 31 October.

• Task 2—Traffic volume prediction: Given training data described above for the
period from 19 September to 24 October, estimate the volume for each of the five
tollgate-direction pairs (Tollgate 1-entry, Tollgate 1-exit, Tollgate 2-entry, Tollgate
3-entry and Tollgate 3-exit) during rush hours, per 20-min interval, for the period
from 25 October to 31 October.

• Task 3—Test the generalisation of the methods used, i.e. testing if the conclusions
from Tasks 1 and 2 still hold if we use different data as input.

3 Related Work

Traffic flow prediction, a well-known problem in traffic network, has been studied by
many researchers. Both statistical (data-driven) and analytical approaches (model-
based) had been tried for such predictions (see a recent review in [8]). The statistical
approach uses time series data consisting variables such as travel times, speeds and
volumes as input and predict the near future travel time based on historical traffic
patterns. This approach assumes that the current or near future travel time will have
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similar pattern as historical travel time, while the analytical approach deduces the
travel time from traffic conditions. The traffic conditions in turn are predicted from
traffic propagation on the network by using traffic simulators. The statistical approach
is suitable to be used when there are good amount of historical data, while the
analytical approach can be applied to the situation with changes in input factors,
for example, adding additional networks [8]. Compared with analytical approach,
an obvious advantage of statistical approach is that there are lots of ready-to-use
software packages, and the approach does not need much expertise about traffic flow
modelling [9].

SVR belongs to the statistical approach and is a data-driven method. An appli-
cation of SVR for highway travel time prediction has been studied by Wu et al. in
[7]. There exist two main differences between data sets in Wu et al.’s paper and in
our project, one is that they collected the data from different highways, while our
data were collected between different intersections and tollgates, the other is that in
our data, we have special holidays and lots of missing data, but they avoided special
holidays and set the data loss rate within some threshold values. In addition, we use
feature scaling as a data preprocessing step, which was not included in Wu et al.’s
work.

4 Methods

Experiments using SVR with and without scaling methods were conducted. The
scaling methods investigated include standard scaling, min-max scaling and robust
scaling. A combination of our own method (called complementary) and linear inter-
polation was used to fill in the missing data. The use of different combinations of
features was tested. Cross-validationwas used tomeasure the predictive performance
of each model built using different scaling methods and feature sets. Generalisation
of the methods was tested.

Support Vector Regression

The Support Vector Regression (SVR) uses the same principles as the Support Vector
Machine for Classification (SVC). The goal of SVR is to find a function, with at
most ε deviation from the actual target y. The problem can be written as a convex
optimisation problem

minimize
1

2
‖w‖2 subject to yi − 〈w, xi 〉 − b ≤ ε

〈w, x〉 + b − yi ≤ ε
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If the problem is not feasible, slack variables ξi , ξ ∗
i are introduced. The formulation

becomes

minimise
1

2
‖w‖2 + C

∑

i=1

(ξi + ξ ∗
i ) subject to yi − 〈w, xi 〉 − b ≤ ε + ξi

〈w, x〉 + b − yi ≤ ε + ξ ∗
i

ξi , ξ
∗
i ≥ 0

where the constant C > 0 is penalty parameter. More about SVR can be found in
[10, 11]. In this project, we used the SVR implementation from Scikit-learn library
in Python [12].

Scaling Methods

Scaling is a way to systematically alter all the values in a data set. The simplest
method, min-max scaling, is rescaling the data to a fixed range, usually [0, 1] or
[−1, 1]. For a given data set X , a min-max scaling is typically done via the following
equation:

lb + X − min(X)

max(X) − min(X)
(ub − lb),

where lb is a lower bound of the range and ub is an upper bound [13].
One common and widely used scaling method is standard scaling. The idea of

standard scaling is to make the values of each feature in the data have zero mean and
unit variance, according to

X − mean(X)

standard deviation(X)
.

Another scaling method is robust scaling, which is based on the median and the
interquartile range. If the data set X contains many outliers, robust scaling often
gives better results [14]. Robust scaling is defined as

X − median(X)

I QR
,

where IQR is interquartile range [14].
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Error Measurements and Validation Method

Mean Absolute Percentage Error (MAPE) has been chosen by KDD cup team to
evaluate the predictions. The MAPE is defined as

MAPE = 1

R

R∑

r=1

(
1

T

T∑

t=1

|drt − prt
drt

|). (1)

For Task 1 (travel time prediction), drt and prt are the actual and predicted average
travel time for route r during time window t . For Task 2 (volume prediction), R is
the number of tollgate-direction pairs (1-entry, 1-exit, 2-entry, 3-entry and 3-exit),
T is the number of time windows in the testing period and drt and prt are the
actual and predicted traffic volume for a specific tollgate-direction pair r during time
window t .

Cross-validation was used to assess the predictive performance of our models.

5 Travel Time Prediction

To build a good model for Task 1, we addressed the sub-task to estimate the average
travel time, per 20 mins interval, from designated intersections to tollgates, for the
hours 08:00–10:00 and 17:00–19:00 during 18 to 24 October, with training data from
19 July to 17 October. In order to test our models, the previous two-hour data of the
period to be predicted were used as test data.

Quite a lot of data points weremissing in the data set. Before running experiments,
the missing data were filled in by applying our own ‘Complementary’ method as
shown in Fig. 1 and then linear interpolation. ‘Complementary’ is a method to fill in
missing data in a route with the relevant part of other route(s) data. For instance, if
there is missing data for a specific time window in route C-3, we gather part of that
specific time window data from C-1 to get the data from Intersection C to point p (C
→ p) and part of data in route B-3 to get the data from point p to Tollgate 3 (p → 3)
to fill in the missing part in C-3, see Fig. 1. ‘Complementary’ was applied to the data
in routes B-1, B-3 and C-1 in the same way. Since there are not many missing data
in routes A-2 and A-3, the missing parts were only filled in by linear interpolation.

We assumed that, in the morning and afternoon, the travel time of every given
route is independent of each other, and as a result, we applied the same prediction
procedure on each route in the morning and afternoon separately. After iterative trial
and error experiments with different parameter values chosen randomly, Radial Basis
Function (RBF) was selected as our kernel function, with parameters γ = 0.005 and
ε = 0.5. Furthermore, parameter C was chosen based on

max(|ȳ + 3σy |, |ȳ − 3σy |) (2)
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where ȳ and σy are the mean and standard deviation of the y values from training
data [15]. It has been found that SVRwith RBF is less sensitive to data preprocessing
methods such as scaling [13].

Several cross-validation experiments, for example, testing different scaling meth-
ods, different number of training data and different feature sets were conducted. Time
window position and the previous two-hour travel time were treated as two basic fea-
tures during the process. Time window position: since the prediction is for the rush
hours (the definitions of rush hours are 08:00–10:00 and 17:00–19:00), every 20
mins interval, the rush hours are divided into six 20-min time window. For instance,
for the rush hour in the afternoon, 17:00–17:20 is the first time window position,
17:20–17:40 is the second and so on. Previous two-hour travel time: it means the
two-hour travel time data before the rush hours. For example, the previous two-hour
travel time for the rush hours in the afternoon is the data from 15:00 to 17:00. They
are divided into six 20-min time window as well.

Obviously, the travel time is a product of dynamic interplay of traffic demand
and traffic supply [16]. High traffic flow denotes high traffic demand. The factors,
including temporal effects, such as daily pattern, weekly pattern and holiday have
influences on the traffic demand [7]. The factors, for example, crashes, road works,
weather and so on have influences on the traffic supply. For this reason, we added
some extra features into the prediction one by one. The predictive performance of
every resulting model was evaluated by comparing the results from validation and
prediction phases. We show extra features that can capture the traffic demand as
follows. Special days: holidays,weekends orworking days.Tollgate volume: itmeans
the traffic volume at the tollgate in the target route. For instance, when predicting the
travel time in routeA-2, the tollgate volumemeans the volume at Tollgate 2 (shown in
Fig. 1). Adjacent tollgate volume: it means the traffic volume at the tollgate adjacent
to route to be predicted. When two routes are from the same intersection and then
go to different tollgates, while one of them is the route to be predicted, another one
will become the adjacent route. For instance, route A-2’s adjacent tollgate volume is
the volume at Tollgate 3.

The predictive performances of using SVR combined with different scaling meth-
ods are presented in Table1. This table also shows the results of the experiments using

Table 1 Average MAPE from cross-validation experiments with basic features, using two sets of
training data (all means 19/7 to 17/10 and part means 19/9 to 17/10). Test set is from 18/10 to 24/10

Scaling method Validation using
all data

Prediction using
all data

Validation using
part of data

Prediction using
part of data

Robust scaling 0.2302 0.1886 0.1901 0.2073

Standard scaling 0.2296 0.1902 0.1888 0.2083

Min-Max scaling
[0, 1]

0.2276 0.1935 0.1811 0.1928

No scaling 0.2464 0.2081 0.1977 0.2001
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two different amounts of training data (‘all’ means training data from 19/7 to 17/10
and ‘part’ means training data from 19/9 to 17/10).

In Table1, one can see that using fewer weeks data for training gives better valida-
tion results, butworse prediction results. This alsomeans that our experiments did not
show anything conclusive about the influence of season on the travel time prediction
(note that the period 19/7 to 18/9 is a summer season). Similarly, our experiments
(not shown here due to space) suggest that most of the weather-related features did
not increase predictive performance of our models. If any, only temperature was
worth adding.

The best experimental result from the travel time prediction task is achieved by
applying robust scaling with the two basic features (the previous two-hour travel
time and time window position). Table1 also shows that using scaling method gives
better predictive performance compared to no scaling. Robust scaling seems to be
particularly good for time series with more varying patterns (that include summer
season), while min-max scaling seems to be particularly good for time series with
more similar patterns.

6 Traffic Volume Prediction

In order to build a good model for Task 2, we addressed this sub-task: estimate the
average volume for every tollgate-direction pair, per 20 mins interval, during rush
hours (08:00–10:00 and 17:00–19:00) from 18 October to 24 October using training
data from 19 September to 17 October.

We assumed that, in the morning and afternoon, the volume at a given tollgate-
direction pair is independent of each other, and as a result, we applied the same
prediction procedure on each tollgate-direction pair in the morning and afternoon
separately. MAPE defined in Eq.1 was used to calculate the average error for every
tollgate-direction pair. We applied SVR for the volume prediction as well. After
iterative trial and error experimentswith different parameter values chosen randomly,
Radial Basis Function (RBF) was selected as our kernel function, with parameters
γ = 0.01 and ε = 0.01. Furthermore, parameter C was selected by Eq.2.

Similar feature selection strategy, as in Sect. 5, is used for this task. Time window
position and the previous two-hour volume were treated as two basic features during
the process. Timewindow position is the same as in Sect. 5 and the previous two-hour
volume means the two-hour volume data before the rush hours to be predicted.

The performances of combining different scalingmethodswith SVRare presented
in Table2. For the volume prediction, applying SVR combinedwith a scalingmethod
gives a huge improvement to the result compared with only using SVR. And again,
it appears that robust scaling is particularly good for time series with more varying
patterns. Note that the period from 1 October to 7 October is a big holiday period in
China and it is widely known that the traffic volume is unusual during that period.

Traffic volume may depend on many factors, including time of day, day of week,
holiday, weather, etc. For this reason, an additional feature called special days to
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Table 2 Average MAPE from cross-validation experiments with features: time window position
and previous two-hour volume. Training data are from 19/9 to 17/10. Test data are from 18/10 to
24/10.

Scaling method Validation result Prediction of test data

Robust scaling 0.2710 0.1472

Standard scaling 0.2717 0.1502

Min-Max scaling [0, 1] 0.3467 0.1526

No scaling 1.0374 0.3128

capture the holiday and weekend effect was added. Other features, extracted from
the provided volume data, including the number of vehicleswith ETC and the number
of vehicles having vehicle model, n (n ∈ [0, 7]), were also tested in our experiments
(not shown here due to space). The predictive performance increases when we add
special days to the feature set. The best performance (with average MAPE 0.2691
in validation phase and 0.1436 in prediction phase) is from an experiment, where
special days are included in the feature set, suggesting that the feature special days
are very important for traffic volume prediction.

7 Generalisation

Based on the experimental results from the previous sections, we conclude that: (i)
SVR with a scaling method performs better compared to without scaling, (ii) robust
scaling is especially good for time series with varying patterns and (iii) min-max
scaling is especially good for time series with similar patterns. These conclusions
could depend on the provided input data. Here, we want to test if the conclusions
could be generalised, if different traffic data sets are used. Due to the lack of other
traffic data set, we analyse the following question instead:

Do these conclusions still hold if some of the data had been missing?

If someof the data hadbeenmissing,we start fromslightly different data. Thebasic
idea to address this question is: randomly delete some values from the original data
(pretend those values were missing) and repeat the same experiment with reduced
input data. The procedure can be summarised as follows:

1. Delete p% of the original data randomly.
2. Fill in the originally missing data and the deleted data using complementary and

linear interpolation.
3. Take the data after Step 2, for each of the three scaling methods, run the experi-

ment with a fixed feature set and a fixed SVR setting. For simplicity reason, we
use the basic feature set (time window position and the previous two-hour travel
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Fig. 2 Validation and prediction error for 100 experiments with 10% (top) and 50% (bottom)
deleted data for the generalisation of Task 1 (travel time prediction)

time), RBF-kernel and SVR parameters, ε = 0.5, γ = 0.005. The output from
this step is a table similar to Table1, but with changed values.

4. Repeat Step 1 to Step 3 100 times.

Task 1 was investigated with five levels of deletion (10, 20, 30, 40 and 50%). For
brevity, only the results from 10 and 50% are reported, here, in Fig. 2.

The results from Task 1, Fig. 2, show that the performance of no scaling (black)
is noticeably worst compared to that of the other methods for both validation (solid
lines) and prediction (dashed lines). For validation, the performances of robust scal-
ing (solid red) and standard scaling (solid blue) are very similar, while min-max
scaling (solid green) is slightly better than the other scaling methods. For prediction,
the performances of robust scaling (dashed red) and standard scaling (dashed blue)
deteriorate more than min-max scaling (dashed green) as more data are deleted. A
possible explanation of this is that as more data are deleted, the more outliers dis-
appear and are replaced with smoother values (since we use complementary and
linear interpolation to fill in the deleted data). This suggests that min-max scaling is
especially good for time series with similar patterns.
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Fig. 3 Validation and prediction error for 100 experiments with 10% (top) and 50% (bottom)
deleted data for the generalisation of Task 2 (volume prediction)

A modified generalisation procedure was applied for Task 2, with the same five
levels of deletion. The modifications include: In Step 2, only linear interpolation
is used to fill in the originally missing data and the deleted data; In Step 3, use
time window position and the previous two-hour volume as feature set and set SVR
parameters, ε = 0.01, γ = 0.01.

The results from Task 2, Fig. 3, show that, in all cases, the performance of no
scaling (black) is worst compared to that of the other methods for both validation
(solid lines) and prediction (dashed lines). The performances of robust (red) and
standard scaling (blue) are very similar in both validation and prediction. Unlike
the results of generalisation from Task 1, the validation performance of min-max
scaling (solid green) deteriorates more than the other scaling methods as more data
are deleted. For prediction, the performances of all three scaling methods are very
similar. A possible explanation for this is that the original pattern (varying pattern)
of volume data are mostly preserved after deletion and filling in process.

Based on the results of this section, the conclusions (i) and (iii) still hold. Regard-
ing conclusion (ii), it seems that, for the data with varying pattern, the robust and
standard scaling performs very similar and slightly better than min-max scaling.
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8 Conclusion

This paper demonstrated the application of SVRwith scaling methods for travel time
and tollgate volume predictions in rush hours. The impact of using three different
scaling methods (robust scaling, standard scaling and min-max scaling) with SVR
predictor was investigated. Furthermore, experiments to test if the conclusions from
Sects. 5 and 6 still hold if reduced data are used as input were conducted. Our results
suggested that SVR combined with a scaling method provides a more accurate pre-
diction than without scaling, especially for volume prediction task. Min-max scaling
was found to be particularly good for time series with more similar patterns. The
performances of robust scaling and standard scaling were found to be pretty similar,
and they seemed to perform slightly better than min-max scaling for time series with
varying patterns.

Features that capture different travel time/volume influencing factors were anal-
ysed in the experiments. Although adding the features tollgate volume and adjacent
tollgate volume have been found to increase the performance in some of our exper-
iments for travel time prediction, but it is not always the case. The feature special
days was found to be useful for volume prediction. Weather-related features were
not found to be that useful in our experiments.

When our model was applied to Task 1, the mean absolute percentage error of
the travel time prediction is around 0.19, which differs by only 0.02 from the best
result obtained by other contestants (this is a competition task, the best prediction
result was announced). Similarly, when our model was applied to Task 2, the mean
absolute percentage error of the volume prediction is around 0.144, which differs
by only 0.03 from the best result. We conclude that SVR combined with a scaling
method can still provide a reasonable performance for travel time and traffic volume
predictions, even when the training data contain many outliers (like holiday data)
and no deep analysis of the data was applied.

Acknowledgements S. acknowledges strategic funding support from Chalmers Area of Advance
Transport while writing this paper.
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Linear Trend Filtering via Adaptive
LASSO

Matúš Maciak

Abstract Linear trend filteringmethods are popular due to their overall simplicity—
the model is linear in each segment and there are typically only few segments con-
sidered. These segments are defined by unique points where the trend changes its
direction—so-called changepoints. In this paper, we consider an innovative esti-
mation approach for such models. Our proposal is based on recent developments
in the atomic pursuit techniques: we present an estimation algorithm based on the
adaptive LASSO penalty and we introduce a fully data-driven method which can be
effectively used to fit the continuous linear trend models. Some statistical proper-
ties are discussed and the empirical performance is compared with respect to other
competitive LASSO-based techniques.

Keywords Linear trend filtering · Joinpoint regression · Regularization · Lasso
Adaptive lasso · Changepoints · Oracle properties

1 Introduction

In general, the trend filtering models can be viewed in terms of some convex mini-
mization problemwhere oneminimizes some objective function (usually an L2-norm
loss) together with some specific penalty—typically the sum of the absolute kth order
differences of the consecutive parameter estimates (for some reasonable choice of
k ∈ N). The resulting model is then formed as a linear combination of the k degree
spline functions such that the overall fit is continuous (for k > 0). A specific scenario
is obtained for k = 1. This choice leads to the linear trend filtering case: the resulting
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estimate is piecewise linear and, in addition, it is continuous over the whole domain.
Such models are also commonly known as joinpoint regression models (segmented
regression, sequential linear models or linear trend models respectively).

The key advantage of the linear trend filtering models is their overall simplicity
while still offering a quite reasonable amount of flexibility when fitting some data
(see, for instance, [1] for an overview). This is also the reason why these models
gained somuch popularity in last decades: statistical models which can be interpreted
in a simple and straightforward way are needed especially in situations when the final
conclusions drawn from the model are about to be explained to non-statisticians or,
more generally, to people with a lack of mathematical skills. Indeed, the linear trend
model can be, in each of its phase, interpreted as an ordinary linear regression model.
The model phases are put together at the points where the slope of the regression line
changes, but it the overall continuity property is still preserved. The points where
the slope breaks are usually referred to as changepoints (sometimes also transition
points, breakpoints or joinpoints, respectively). The linear trend changes in order to
adapt for the existing structural changes in the underlying dependence.

There are various methodological approaches for estimating the piecewise linear
model and for performing statistical inference in suchmodel. Standard techniques are
based on the L2-norm minimization with some prior knowledge on the right number
of changepoints, or slope breaks, respectively. Theoretical results suggest that itmight
be advantageous to know the number of changepoints in advance; this knowledge can
improve the overall performance and it also provides a more convenient theoretical
background for proving certain statistical properties. Moreover, the prior knowledge
on the number of changepoints in the model also yields a better rate of convergence.

In practical situations, however, the number of changepoints is rarely known
in advance and some model selection techniques need to be used to choose one
final model from a set of plausible ones. Usually, a statistician deals with a whole
sequence of (nested) models with different number of changepoints and the selection
can be performed, for instance, by the means of some permutation tests [2–5], or
the likelihood ratio tests [6, 7] by evaluating some goodness-of-fit criterion (usually
BIC). An alternative approach can be seen in adopting the Bayesian framework
instead (see [8, 9]).

All these techniques, however, require a multistage approach where, in the first
stage, one needs to estimate the set of plausible models while the model selection is
performed later, in the next stages. A convenient approach would be estimating and
selecting the final model at once—in just one single stage. This can be obtained by
using some ideas of the sparse signal processing methods involving atomic pursuit
techniques and adopting, for instance, the k order differences common for the trend
filtering [10, 11], the total variation penalty [12, 13], or the LASSO regularization
[14, 15] for the changepoint detection and estimation. These methods based on
the sparsity principle share the same idea: the estimated model is heavily over-
parametrized and the data themselves are used to choose only a small subset of
relevant parameters while shrinking all remaining parameters exactly to zero. This
is performed exclusively by utilizing the nature of the L1-norm (see Fig. 1 for an
illustration). The objective function used in the minimization problem is combined
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L2−norm Regularization Contours 

[0,0] β1

β2

L1−norm  Regularization Contours 

[0,0] β1

β2

Fig. 1 Standard contours of the L2-norm penalty and the L1-norm penalty. The smooth favor of the
L2-norm is responsible for selecting all parameters to be nonzero while the sharp edges of the L1-
norm creates the background for selecting just some nonzero parameters and shrinking remaining
ones exactly to zero

with the L1-normpenaltywhich penalizes themagnitude of each estimated parameter
(see [16, 17]).

On the other hand, the standard LASSO problem is well known for having a ten-
dency to choose slightly more parameters in the final model than necessarily needed
[18, 19]. This also implies that the LASSO estimation is not oracle consistent in
general scenarios (see, for instance, [20]), but there were some oracle consistent
modifications proposed (for instance, an elastic net by [21] and adaptive LASSO by
[20]) to avoid this inconsistency issue and to improve the overall selection perfor-
mance of the LASSO estimated models.

In this paper,weuse the adaptiveLASSOmodification andwe improve the original
idea presented in [14] for the LASSO based changepoint detection and estimation in
piecewise linear models. We introduce the adaptive LASSO trend filtering approach
and we show that the final model can be obtained within the same time costs as the
standard LASSO based model. The adaptive based trend filtering can be also used to
consistently estimate the true slope breaks (i.e., consistent changepoint detection and
estimation) in the overall trend and it can be shown to satisfy the oracle properties.

In addition, by utilizing the complete solution paths as elucidated by [22] we
can, in an easy and straightforward manner, obtain the whole set of all possible
models (beginning with a simple linear trend with no breaks up to a perfect linear
interpolation overall unique data points), and by using the recent advances in the post-
selection inference (see, for instance, [23, 24]) we can test for the significance of the
final model. The model selection step is thus performed via the L1 regularization and
both, the changepoint location detection and the changepoint magnitude estimation
are performed in a data-driven manner in just one single step. Finally, the proposed
modeling approach can be easily extended to handle some qualitative restrictions
imposed on the final estimate (in a similar manner as in [15]), which can be easily
accounted for by adding some set of straightforward linear constraints. This turns
out to be useful especially in economics and econometric modeling.
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The paper is organized as follows: in the next section, we describe the underlying
model and we propose the adaptive LASSO trend filtering approach. Some statistical
properties are presented in Sect. 3 and finite sample properties are investigated in
Sect. 4 where the performance of the proposed adaptive LASSO estimation approach
is put in contrast with the standard LASSO methods and the obtained results are
discussed.

2 Adaptive LASSO in Trend Filtering

Let {(Xi ,Yi ); i = 1, . . . , n} be a random sample drawn from some unknown popu-
lation, with the join distribution function F(X,Y ), such that Xi ’s have some compact
domain, say, an interval (0, 1), and they are all unique. Without the loss of gener-
ality, we may assume that Xi < Xi+1, for all i = 1, . . . , n − 1. Alternatively, one
can also consider the Xi values to be some specific time points in some given period
of time, denoting the times when actual observations Yi ’s are taking place. In the
following, however, we will refer to the general scenario only. Let, moreover, {ξi }n−1

i=1
be a sequence of unobserved points from the same domain as the Xi values, such that
Xi < ξi ≤ Xi+1, for every i = 1, . . . , n − 1. We assume that the overall dependence
structure between Y and X can be expressed as a piecewise linear model with the
linear pieces joining together at the points ξi ’s only, however, not necessarily all
of them. Under these assumptions, we can express the underlying piecewise linear
model as

Yi = ai + bi Xi + εi , for i = 1, . . . , n, (1)

where we assume independent random error terms εi ∼ N (0,σ2), for an unknown
constant σ2 > 0, while the overall continuity condition can be formulated as

ai + biξi = ai+1 + bi+1ξi , for i = 1, . . . , n − 1. (2)

Considering the model in (1)–(2), we would like to estimate the unknown param-
eters ai , bi ∈ R, for i = 1, . . . , n, and we want to detect the locations, if there are
some, where the overall slope breaks. In particular, we need to specify those ξi ’s, for
which bi �= bi+1.

The sparsity principle inModel (1)–(2) is employed throughout the parameters bi ,
for i = 1, . . . , n, as we assume that bi = bi+1 holds for all, but some small subset of
indexes from I = {1, . . . , n − 1}. If there is some location ξi , for which bi �= bi+1,
then we introduce a changepoint in the model: it holds that ξi = ai−ai−1

bi+1−bi
and the linear

trend changes at this location from bi to bi+1 in order to adjust for the underlying
structural change in the data. The intercept parameters, values ai , for i = 1, . . . , n,
are then determined by the requirement on the overall continuity over the whole
domain of interest (i.e., interval (0, 1)).
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Using the standard properties of the L1-based regularization, and LASSO penalty
in particular, we can define the corresponding parameter estimates as the solutions
of the minimization problem

Minimize
ai , bi ∈ R

1
n

n∑

i=1
(Yi − ai − bi Xi )

2 + λn

n−1∑

i=1
|bi+1 − bi | ,

w.r.t. X� <
a�−a�+1

b�+1−b�
≤ X�+1, for � ∈ {i; bi+1 − bi �= 0}.

(3)

Note, that for bi+1 = bi we are not estimating any location ξi , as there is no change
in the overall trend at this point. Thus, we only minimize (3) with respect to optimal
changepoint locations ξi = ai−ai+1

bi+1−bi
, for which bi+1 �= bi .

The penalty term in (3) can be interpreted as a penalty of the total variation
type (see [12, 25, 26]); λn > 0 represents a classical regularization parameter, here
controlling the number of changepoints in the final estimate. For λn → 0, we expect
changepoints to occur in every ξi , for i = 1, . . . , n − 1, resulting in an interpolating
piecewise linear curve with possible slope changes between every two neighboring
observations; for λn → ∞, on the other hand, an overall linear trend over the whole
domain of interest is produced and no changepoints are present, thus bi = bi+1, for
all i = 1, . . . , n − 1.

The minimization problem in (3) is well defined, but, unfortunately, it is not
convex. It can be still solved using some optimization toolboxes though, but it can
get quite complex and time consuming if the number of observations or change-
points grows. Moreover, the standard optimization methods may end up in a local
minimum instead of the global minimum and some caution is always necessary
when interpreting the results in such non-convex problem. The reason of this non-
convexity is the assumption we made about the changepoint locations: we assume
that ξi ∈ (Xi , Xi+1], for i = 1, . . . , n − 1, and thus, it can be easily seen that the
design matrix of the model depends on these location parameters, which are also
subjects to the minimization in (3).

An intuitive way around is to assume a slightly simplified version of the model:
the overall trend can only change in the actual observational points Xi ’s. For instance,
wemay define ξi = Xi+1, for i = 1, . . . , n − 1, which now simplifies the initial min-
imization problem and brings it back to a standard convex optimization scenario. The
potential regression segments are now only determined by two neighboring observa-
tions, possibly having n − 1 segments at most joining together at the design points
X2, . . . , Xn−1. This scenario was already proposed in [14] and further investigated
in [15]. As the authors pointed out, this restriction might be slightly limiting in some
finite sample cases, but this limitation becomes negligible and vanishes as the sam-
ple size increases. Once we assume that the possible changepoint locations can only
occur at the observational points Xi ’s, then the minimization problem in (3) can be
expressed in terms of a standard LASSO problem
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Minimize
β ∈ R

n

1

n
‖Y − Xβ‖22 + λn

n−1∑

j=2

|β j |, (4)

where Y = (Y1, . . . ,Yn)	 is the response vector, for the parameter vector we
haveβ = (β0, . . . ,βn−1)

	 = (a1, b1, (b2 − b1), . . . , (bn−1 − bn−2))
	 ∈ R

n , and the
design matrix takes the form

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 X1 0 0 . . . 0
1 X2 0 0 . . . 0
1 X3 (X3 − X2) 0 . . . 0
...

...
...

. . .
. . .

...

1 Xn (X3 − X2) (X4 − X3) . . . (Xn − Xn−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5)

The regularization parameter λn > 0 is, as we already mentioned, used to control the
number of changepoints appearing in the final model. The design matrix X can be
decomposed into two parts: the first two columns corresponds with a standard design
matrix used for an ordinary linear regression with the corresponding intercept and
slope parameters (a1, b1) ∈ R

2 and the remaining columns of X are used to model
hypothetical trend breaks in the final model. If there is some changepoint detected at
some location, the corresponding column of the design matrix is used to model the
break and the involved parameter estimate become nonzero.

The minimization problem in (4) is convex, and thus, it can be effectively solved
using some standard optimization tools. Another approach, for example, is to use
the LARS algorithm proposed in [22], and to obtain the whole solution paths for all
λn > 0. On the other hand, this problem also has some limitations, which are evident
especially when it comes to the theoretical properties of the estimates obtained by
(4). The standard LASSO penalty in (4) is well known for over-fitting the final model
and, in general, it does not provide a consistent selection in terms of the sparsity—
more nonzero parameters are present in the model than the true number of nonzero
values (see [18]).

In order to improve the selection performance of the model we adopt the idea
presented in [20], and we introduce an analogous minimization problem where the
estimate for β = (β0, . . . ,βn−1)

	 is now defined as

β̂ = Argmin
β ∈ R

n

1

n
‖Y − Xβ‖22 + λn

n−1∑

j=2

|β j |
|β̂(LS)

j | , (6)

where, in addition to (4), we are using a specific scaling factor for each parameter
β j , j = 2, . . . , n − 1, in order to make the shrinkage effect (in terms of the relative
magnitude) same for all elements. The scaling factor is given by the corresponding
ordinary least squares estimate β̂(LS)

j of β j , for each j = 2, . . . , n − 1. Recall, that
we again do not penalize for the overall intercept and slope parameters, which are
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β0,β1 ∈ R. The ordinary least squares estimates arewell defined and they are unique:
the total number of parameters equals to the total number of observations, and thus,
the ordinary least squares yield a perfect data interpolating fit.

From the theoretical point of view, it is not strictly required to use the least squares
estimates in (6) for rescaling the β j parameters in the LASSO penalty. The adaptive
LASSOwas shown (see [20] for details) to preserve its selection consistency and ora-
cle properties with any

√
n-consistent estimates of β j ’s when these are used instead

of the least squares estimates in (6). Especially in situations, where the standard least
squares estimates cannot be calculated (for instance, if the number of observations
is less than the number of parameters, or the data matrix is not regular), it might
be suitable to use some alternative techniques instead (for instance, the estimates
obtained by the elastic net minimization approach).

Computational Aspects

As already pointed out, the minimization formulated in (6) is a convex optimization
problem and therefore, a global minimum can be found by using the same efficient
algorithms, which are used to solve the standard LASSO problems. In the follow-
ing, we propose a straightforward algorithm to perform the adaptive LASSO trend
filtering as defined in (6).

1. Calculate the ordinary least squares estimate for β = (β0, . . . ,βn−1)
	 ∈ R

n as

β̂
(LS) = (

X
	
X

)−1
XY , where X is defined in (5).

2. Define a new design matrix X̃ = (X0, X1, w2X2, . . . , wn−1Xn−1), where w j =
|β̂(LS)

j |, for j = 2, . . . , n − 1, and X0, . . . , Xn−1 are the columns of X.
3 Solve the standard LASSO minimization formulated as

β̃ = Argmin
β ∈ R

n

1

n

∥
∥Y − X̃β

∥
∥2

2 + λn

n−1∑

j=2

|β j |. (7)

4 Calculate the final estimates for β = (β0, . . . ,βn−1)
	 as β̂ j = β̃ j , for j = 0, 1,

and β̂ j = β̃ jw j , for j = 2, . . . , n − 1.

The minimization in (7) does not yet fully correspond with the standard LASSO
problemas defined in [17],where the author considered the samevector of parameters
in the objective function and also in the penalty term. In our situation, we do not
want to penalize for the first two parameters (the overall intercept and slope) and
thus, only a sub-vector of β ∈ R

n plays the role in the penalty term in (7). The
problem can be, however, easily transformed to exactly fit the LASSO problem
defined in [17]. By splitting the design matrix into two parts as X̃ = (X̃1, X̃2), where
X̃1 consists of the first two columns of X̃, and the corresponding vector of parameters
is split accordingly, β = (β	

(1),β
	
(2))

	, such that β(1) = (a1, b1)	 = (β0,β1)
	, then



138 M. Maciak

it only needs somebasic algebra calculations to show that X̃β̃ = X̃1β̃(1) + X̃2β̃(2), for

β̃ = (β̃
	
(1), β̃

	
(2)) being the solution of (7), can be equivalently expressed as HY +

(I − H)X̃2β̃(2), where H = X̃1
(
X̃

	
1 X̃1

)−1
X̃1, and β̃(2) is now the solution of the

minimization problem

β̃(2) = Argmin
β ∈ R

n−2

1

n

∥
∥(I − H)Y − (I − H)X2β2

∥
∥2
2 + λn‖β2‖1,

which now fully corresponds with the standard LASSO problem as discussed in [17].
Technical details can be found in [14].

3 Theoretical Properties

The theoretical properties of the adaptive LASSO are mostly well known and details
can be found in [20]. Some theoretical results related to the changepoint detection and
estimation can be also found in [27]. In this session, we summarize some important
facts and we provide additional technical details related to the trend filtering models
and are, otherwise, not found elsewhere.

Let us recall, that X j , for j = 0, . . . , n − 1, denote the corresponding columns
of the designs matrix X, defined in (5). For the vector of parameter estimates β̂
given by (6), and the vector of the corresponding signs ŝ ∈ [−1, 1]n−2, with ŝ j =
sign(β̂ j+1), for j = 1, . . . , n − 2, the KKT optimality conditions can be expressed
in a straightforward way as

X	
j (Xβ̂ − Y) = 0, for j = 0, 1; (8)

X	
j (Xβ̂ − Y) + λn

|β̂(LS)
j | ŝ j−1 = 0, for j = 2, . . . , n − 1;

ŝ j−1 = sign(β̂ j ), if β̂ j �= 0, for j = 2, . . . , n − 1;
ŝ j−1 ∈ [−1, 1], if β̂ j = 0.

Using the KKT conditions above and applying the same idea as used in Theorem
1 in [14], we can prove the consistency property of the adaptive LASSO estimate
of the underlying linear trend in a classical L2-norm sense. In addition, inheriting
the properties of the adaptive LASSO approach, we can also show that the obtained
estimates preserve the oracle properties, which, beside the asymptotic normality
property of the nonzero estimates, means that the consistent selection is achieved,
meaning that

P
[∀ j ∈ {0, . . . , n − 1}; sign(β̂ j ) = sign(βo

j )
] → 1, for n → ∞,
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for some vector of the true parameters βo = (βo
0 , . . . ,β

o
n−1)

	 ∈ R
n , and the optimal

choice of the regularization parameter λn > 0, which needs to fulfill λn → ∞ and
λn/

√
n → 0, for n → ∞.

Reflecting this selection consistency property and the mean consistency in the
L2-norm sense back onto the initial model scenario defined in (1) and (2), we can
conclude that the changepoints in themodel (i.e., breaks in the overall linear trend) are
estimated consistently as the sample size tends to infinity. The theoretical properties
guarantee both—the consistent estimation of the true number of changepoints with
their locations and the consistent recovery of the overall underlying trend.

The asymptotic normality of the vector of estimated parameters can be expressed
as √

n
[
β̂A − βo

A
] D−→
n→∞ N

(
0,σ2

C
−1
A

)
, (9)

whereA = { j; βo
j �= 0} stands for the set of indexes for all nonzero parameters in the

true parameter vectorβo = (βo
0 , . . . ,β

o
n−1)

	 ∈ R
n , β̂A andβo

A are the corresponding
sub-vectors of β̂ and βo with elements which correspond to indexes in A, and the
matrix CA is composed of the rows and columns of C = limn→∞ 1

nX
	
X, where

again, the indexes of the rows and columns are in the set A.
Due to the selection consistency property, it can be easily seen that for all other

parameter estimates β̂ j , where j ∈ {0, . . . , n − 1} \ A, we easily obtain that

β̂ j
P−→ 0 for n → ∞.

The asymptotic normality in (9) can be used to perform statistical tests about the
vector of parameter estimates or it can be utilized for constructing the corresponding
confidence intervals.

Alternatively, one can also adopt the residual bootstrap approach (see [28] for
further details) to mimic the asymptotic normal distribution in (9) and to avoid
standard plug-in techniques which are known for their poor performance in some
situations with a rather slow convergence and insufficient approximation. From the
practical point of view, the proposed model can be easily extended to account for
additional shape restrictionswhichmight be convenient in econometricmodeling and
finance models. Such restrictions (for instance, monotonicity) are easily enforced by
using a set of well defined linear constraints. These linear constraints can be easily
implemented into the estimation algorithm discussed in Sect. 2 with no additional
computational costs.

4 Simulations

For the simulation purposes, we consider a simple situation for a linear trend model
with two existing breaks: the first changepoint occurs at x1 = 0.2 and the second at
x2 = 0.7. The underlying function takes the form
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f (x) = 2xI{x∈(0,0.2)} + (0.6 − x)I{x∈[0.2,0.7)} + (x/2 − 0.45)I{x∈[0.7,1)}, (10)

where the unit interval (0, 1) is considered to be the domain for x . The data were
simulated according to themodel in (1), with independent error terms being normally
distributed with the zero mean parameter and variance σ2 > 0.

In order to investigate various signal-to-noise scenarios, we considered three dif-
ferent values for the variance parameter σ2 ∈ { 14 , 1

2 , 1} and four sample sizes for
n ∈ {50, 100, 500, 1000}. For each combination of the variance and sample size, we
obtained 100 Monte Carlo simulations and four different models were fitted: the
first model with the standard LASSO approach and the prior knowledge on two
existing changepoints with the corresponding regularization parameter denoted as
λ(2); the second model based on the standard LASSO approach with the asymptot-
ically optimal value of λn = n−1(log n)5/2, denoted as λAS; the third model, again
based on the standard LASSO approach, however, with the regularization parameter
defined by the minimum cross-criterion, denoted as λCV ; finally, the last model is
based on the proposed adaptive LASSO approach with the regularization parameter
λn = o(

√
n) (see [20]), denoted as λAD . All four models are compared with respect

to three different quantities: the mean estimation bias 1
n

∑n
i=1( f (Xi ) − x	

i β̂) and
the mean squared error (MSE) 1

n

∑n
i=1( f (Xi ) − x	

i β̂)2 to assess the performance
with respect to the conditional mean estimation and the changepoint detection rate
1
2

∑2
k=1 |xk − x̂k | to judge the performance with respect to the consistency of the

changepoint recovery. Let us just recall that β̂ is the sparse vector estimate defined
by (6) and xi is the i th row of the model matrix X in (5).

The simulation results for the estimation bias and the mean squared error quantity
are given in Table 1 and the results for the number of estimated changepoints (the
set Ân) and the changepoint detection rate are given in Table 2.

Considering Table 1, it is clear that the proposed adaptive LASSO approach for
the linear trend filtering performs at the same quality as the other three LASSO
based techniques. The mean squared error quantity converges towards zero in all
four cases and, in addition, the observed convergence rate is roughly at the same
level. The mean estimated bias is, as expected close to zero and even identical for all
four models—this is however, not the case. The tabulated values differ at a smaller
magnitude which is not reflected in the table.

On the other hand, if we focus on the results in Table 2, the adaptive LASSO
evidently outperforms the other three standard LASSO approaches. Moreover, the
standard LASSO approaches, beside the model with λAS , are worse even from the
practical point of view. Indeed, the model with the regularization parameter λ(2) uses
a prior knowledge about two existing changepoints and the model with λCV requires
a multistage approach where, in the first few stages, we need to fit various models for
different values of λ > 0, and later, once the minimum value of the cross-validation
criterion is obtained, the final model can be fitted. The standard LASSO model with
λAS is, same as the adaptive LASSO approach, a single stagemethod—the asymptot-
ically optimal value of the regularization parameter can be easily obtained given the
sample size. On the other hand, all standard LASSO approaches perform poorly with
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Table 2 The simulation results for four LASSO: standard LASSO with three different regulariza-
tion parameters (value λ(2) taken under the prior knowledge of two changepoints in the model; the
asymptotically optimal value λAS = n−1(log n)5/2 and the regularization parameter λCV given by
the minimum cross-validation criterion) and the adaptive LASSO with the asymptotically optimal
value λAD = o(

√
n). In the first three columns, the estimated number of changepoints over 100

Monte Carlo simulations is given in terms of the minimum, median, and maximum ([m|m|m]).
The standard LASSO model with λ(2) always contains exactly two changepoints, therefore, it is
omitted. In the remaining columns, the changepoint detection error detection rate calculated as
1
2

∑2
k=1 |xk − x̂k | is given together with the corresponding standard errors in brackets

σ2 n Changepoints |Ân | Changepoint error detection rate

λAS λCV λAD Model
λ(2)

Model
λAS

Model
λCV

Model
λAD

σ2 = 0.25 50 [0|1|2] [0|2|6] [0|0|3] 0.078
(0.045)

0.128
(0.069)

0.073
(0.041)

0.120
(0.047)

100 [0|2|5] [0|3|7] [0|1|4] 0.076
(0.041)

0.063
(0.037)

0.065
(0.041)

0.101
(0.060)

500 [4|7|13] [2|6|12] [2|3|7] 0.044
(0.032)

0.038
(0.023)

0.035
(0.024)

0.036
(0.023)

1000 [5|12|24] [3|7|19] [2|4|8] 0.036
(0.019)

0.024
(0.015)

0.027
(0.021)

0.027
(0.019)

σ2 = 0.50 50 [0|1|4] [0|2|6] [0|1|3] 0.092
(0.045)

0.100
(0.060)

0.079
(0.035)

0.114
(0.059)

100 [0|2|5] [0|3|5] [0|1|5] 0.089
(0.046)

0.076
(0.042)

0.072
(0.040)

0.078
(0.040)

500 [4|8|15] [1|5|12] [2|3|7] 0.060
(0.044)

0.041
(0.023)

0.047
(0.035)

0.046
(0.032)

1000 [7|14|28] [3|8|16] [2|4|8] 0.043
(0.025)

0.025
(0.016)

0.036
(0.026)

0.035
(0.027)

σ2 = 1.00 50 [0|2|4] [0|1|5] [0|1|4] 0.097
(0.043)

0.105
(0.049)

0.095
(0.045)

0.103
(0.040)

100 [0|3|5] [0|2|5] [0|2|5] 0.100
(0.048)

0.089
(0.049)

0.077
(0.042)

0.087
(0.045)

500 [5|9|22] [0|5|13] [2|3|7] 0.077
(0.053)

0.034
(0.019)

0.061
(0.048)

0.052
(0.030)

1000 [11|19|38] [2|8|22] [2|3|9] 0.058
(0.034)

0.021
(0.012)

0.047
(0.033)

0.036
(0.021)

respect to the number of estimated changepoints. The LASSO methods are common
for their tendency to overfit the true model which can be also observed from Table
2—the number of estimated changepoints increases as the sample size increases.
However, the adaptive LASSO seems to be able to overcome this inconvenient prop-
erty and the number of estimated changepoints much closely correspond with the
true number of changepoints (there are two true changepoints in the model in (10)).

The performance of the error detection rate seems to be at the same scale for all
four methods but it would be natural to expect smaller error detection rates if there
are more changepoints being estimated in the model (the error detection rate only
considers two location estimators with the smallest distance from the true locations
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Fig. 2 Finite sample performance for three differentmodels: the standardLASSOmodel (SLASSO)
fitted with a prior knowledge that there are only two breaks in the slope is always provided in the
first figure column (the corresponding regularization parameter is denoted as λ(2)). In the middle
column, there is again the standard LASSO model, however, with the asymptotically optimal value
of the regularization parameter and finally, in the last column, there is the adaptive LASSO model
(ALASSO) with the asymptotically optimal regularization parameter λAS = o(

√
n). The pointwise

range for the estimated models over 100 Monte Carlo repetitions is given by the gray regions and
the blue solid lines represent a scaled density of the estimated changepoint locations

x1 = 0.2 and x2 = 0.7). This is however not what we observe in Table 2—the error
detection rates for the model with λAD are, in general, smaller than those for the
model with λCV and, in some cases, even smaller than those for the model with λAS .
Therefore, we can also conclude that even the changepoint detection performance is
better for the adaptive LASSO approach (see also an illustration in Fig. 2).

5 Conclusion

In this paper, we proposed a new approach to fit linear trend models. The idea
is based on the sparse fitting modeling approach where we adopted the adaptive
LASSO approach in order to achieve the model selection consistency in terms of the
true number of changepoints being estimated in the final model.
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The proposed estimation method is compared with the standard LASSO tech-
niques on the base of various models and different qualitative characteristics. The
adaptive LASSO outperforms the standard LASSOmethods with respect to the num-
ber of estimated changepoints: while the standard LASSO tends to overfit the final
model (no matter what is the selection strategy for the value of the regularization
parameter), the proposed adaptive LASSO estimation can perform consistently with
the true model and, moreover, the estimation is fully automatic and performed in just
one single step.

Given the theoretical properties of the adaptive LASSO—its oracle properties
especially—we can easily adopt various inference tools to test the significance of
nonzero parameters in the model. Unlike the classical LASSO estimation, the adap-
tive LASSO yields a consistent selection and the constructed estimates are known to
have the oracle properties. Therefore, the proposed methodology is especially suit-
able in situations where no prior knowledge on the true number of changepoints in
the model is given in advance.

In addition, various shape-restricted models (e.g., monotone trends) can be
obtained as a straightforward extension of the proposed fitting algorithm using the
same computational costs. This can be convenient especially in finance and econo-
metric modeling where one expects the final model to have some specific mono-
tonic/isotonic properties.
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An Efficient Anomaly Detection
in Quasi-Periodic Time Series Data—A
Case Study with ECG

Goutam Chakraborty, Takuya Kamiyama, Hideyuki Takahashi
and Tetsuo Kinoshita

Abstract Anomaly detection from a time series is an important problem with appli-
cations to find or predict the development of a fault in a system. Depending on the
source of the data, it could be nonperiodic, quasi-periodic, and periodic. Model-
ing an aperiodic data to detect anomaly is difficult. A pure periodic data seldom
happens in nature. Finding anomaly in quasi-periodic time series signals, for exam-
ple, bio-signals like ECG, heart rate (pulse) data, are important. But, the analysis is
computationally complex because of the need for proper window size selection and
comparison of every pair of subsequences of window-size duration. In this paper, we
proposed an efficient algorithm for anomaly detection of quasi-periodic time series
data. We introduced a new concept “mother signal”, which is the average of normal
subsequences. Creation of the mother signal is the first step in the process. Finding
deviations of subsequences of varied duration (due to quasi-periodicity) frommother
signal, is the second step. When this distance crosses a threshold, it is declared as
a discord. The algorithm is light enough to work in real-time on computationally
weak platforms like a mobile phone. Experiments were done with ECG signals to
evaluate the performance. It is shown to be computationally more efficient compared
to existing works, and could identify discords with higher rate.
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1 Introduction

The health of any running system is monitored by a set of sensors, the collected data
from which is analyzed to ensure safety and/or predict malfunctioning. Depending
on the system, the data could be aperiodic or periodic. There are studies on anomaly
detection, both on periodic and nonperiodic signals. Various techniques are used,
such as HMM based [1], prediction-based [2], similarity-based [3], window-based
[4] and segmentation-based [5]. For aperiodic signals, piecewise regression [6, 7]
and model-based clustering methods [8] are proposed. These models need a lot of
training data to optimize the model parameters. They require long training using
computationally heavy algorithms like expectation maximization.

For many systems, the data collected are quasi-periodic, where the period varies
slightly over an average. Important bio-signals tomonitor health, like ECG, pulse rate
are quasi-periodic.Recently, systematic collection, storing and analysis of bio-signals
is widely adapted for personalized healthcare, medical informatics, drug testing and
a plethora of applications. Anomalies in bio-signal can detect/predict heart disease,
pulse failure or other kinds of life-threatening situations. Present healthcare systems
installed on mobile devices collect data continuously, to get analyzed at the end of
the day on a different platform. A real-time analysis to create alarms for people
vulnerable to heart-related problems, could save lives, avoid driving accidents, etc.
This is not realized yet.

The main motivation of this work is to detect an anomaly in quasi-periodic time
series signals in real-time, on computationally weak platforms like smartphones. We
did experiment on ECG data because there are many works done, and labeled data
available on the web. The approach is from the signal point of view. No physiological
or medical knowledge is used.

Definition of Time Series Discords

The anomaly subsequences in a quasi-periodic signal are called discords. In quasi-
periodic signals, as the period randomly varies over the average, to find anomaly,
one needs to compare every possible pair of subsequences. Usually, from the domain
knowledge, one fixes the subsequence window length. Time series discords are sub-
sequences, which are maximally different to all the rest of the subsequences of
the whole sequence. Discords could be detected by comparing every pair of sub-
sequences, and identifying and ordering them, with the one having largest distance
from its nearest (least distant) neighbor heading the list. Usually, we are interested to
find the set of discords for which the distance from the normal subsequence is above
some predefined threshold. We can find discords using brute force method which is
computationally heavy with time complexity of O(n2), where n is the total number
of subsequences possible out of the whole time series.
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Let us consider a discrete time series consisting of T time-slots. Let us also con-
sider that the subsequence length is m time-slots, where m � T . Thus, the original
signal consists of n = (T − m + 1) such subsequences. The i th subsequence starts
at i th slot, where 0 ≤ i ≤ (T − m). If all possible pairs are to be compared, we need
n2 ≈ T 2 comparisons becausem � T and, therefore, n ≈ T . In previous works, the
length of the subsequence was user defined [4]. In our work, the length m is com-
puted from the signal, and is equal to the average of the fundamental period of the
quasi-periodic time series [9].

Related Works

As the time series length gets longer, comparing all pairs to find discords is compu-
tationally complex. Related works are proposals of how to find discords efficiently.
As ECG data is one of the most popular quasi-periodic signal, many of the works
are with ECG signals. One of the early work was by Keogh [4]. They discretize
the data value into three levels, assigning alphabets “A”, “B”, “C”, and proposed a
heuristic algorithm to find maximal distance subsequences. In Keogh’s work, one
need to fix parameters, and the result depends on them. Subsequently, parameter-
free discord search algorithm for quasi-periodic signals were reported in [10, 11].
Recently, anomaly detection in ECG artifacts using Motif was proposed in [12]. In
[13], algorithms for assessing normality of multivariate signals are implemented
in R.

Of quasi-periodic signals, ECG is one most investigated and recently finds appli-
cations in many mobile devices. It is now common to attach wearable sensors to
collect bio-signal and transfer to mobile device by Blue-tooth communication. Sim-
ple analysis, like instantaneous pulse rate is available. Real analysis of the recorded
data is done off-line after uploading the data on a PC. For example, the device would
collect ECG data over a day, and then it is analyzed offline for detecting discords.

Existing algorithms to find anomaly in quasi-periodic signals like ECG are com-
putationally heavy. Yet, it is important to identify anomaly in bio-signals in real-time,
especially for those who havemedical history. A real-time identification and warning
could avoid fatality. The aim of this work is to propose an algorithm which can run
on a weak computational platform, with low memory requirement—for example, a
smartphone.

Depending on the algorithm used, anomaly location and frequency would vary.
The ground truth could be understood and identified only by the domain expert,
in case of bio-signals by a health professional. Anomaly detected on the basis of
algorithmic analysis may not tell the ground truth. In fact, some signal anomaly could
be of no health concern, whereas the algorithmmay miss some subtle problems. Yet,
a warning is important even when there could be an occasional false-alarm.

The rest of the paper is as follows. In Sect. 2, the core idea behind the algorithm,
creation of mother signal is explained. How it is actually done for ECG data is also
explained. In Sect. 3, the algorithm to find discords is explained. Experimental data
set and their results are elaborated. The paper is concluded in Sect. 4.
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Fig. 1 The slowly moving baseline is shifted to constant value of zero

2 Proposed Idea—Mother Signal

What IsMother Signal?

We proposed a new concept [14], we named “mother signal”. As a first step, we set
m equal to the fundamental period, average of most frequently occurring periodic
signals. The fundamental assumption here is that normal (not discords) subsequences
overwhelmingly outnumber subsequences with discords, which is true for any run-
ning system.Mother signal is the average of those normal subsequences.Oncemother
signal is known, discords are detected more efficiently. Even if we use exhaustive
comparison with mother signal, the complexity is O(mn) much less than O(n2). In
other words, comparisons with mother signal will be much more efficient compared
to brute force comparison of every possible pairs. The largest discord is the one
whose distance is highest from the mother signal. Multiple discords can be detected
as subsequences whose distances with mother signal exceed a predefined threshold.
Otherwise, we can identify and list the first predefined number of discords in order
of their distances from the mother signal.

Fromagivenquasi-periodic time series, first, its fundamental period is determined.
For that the slowly moving baseline is shifted to a constant level of zero, as shown
in Fig. 1. Next, the peaks of the signal are identified, to find the span of different
subsequences. This procedure is explained in Fig. 2. The time series signal, shown in
Figs. 1 and 2, is an ECG signal. One peak to the next is one subsequence. The time
duration of these subsequences vary over an average, except at places where there is
a discord. We took a large number of samples to verify their distribution, and found
that to be normal. The average of these periods is set as the value of m, the time
duration of the so-called mother signal. For any two normal subsequences, though
their durations may differ a little from m, if we normalize the durations to m and
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Fig. 2 Identifying the peaks to determine the periods

shift-and-rotate for maximum match (minimum Euclidean distance), their distance
will be small. Only in case of discords the distance from mother signal would be
large even when all possible shifts and rotations are tried.

Creation of theMother Signal

In this section, we describe how themother signal is created. As shown in Fig. 2, local
minimum points are marked, and subsequences from one to its next are identified.
The basic idea is to cluster those subsequences. The cluster with the maximum
cardinality is considered to be consisting of normal subsequences. Their mean will
form the mother signal.

For clustering, we need tomeasure the distance between any pair of subsequences.
As they are of different length in time, ideally the distance measured by dynamic
time warping (DTW), should be considered. We too did clustering using distances
measured by DTW. But, DTW is computationally heavy. We proposed a faster solu-
tion. All subsequences are scaled to the same length, the average length of all sub-
sequences. For length normalization, algorithms used for image compression and
enlargement are tried. Euclidean distance between two subsequences were calcu-
lated after scaling them to same time duration using (a) Lanczos, (b) Bilinear, (c)
Nearest Neighbor, (d) Piecewise Aggregate Approximation, and (e) Bicubic algo-
rithms. The total computation time for clustering, using DTW to measure distance
and Euclidean distance after scaling using different scaling algorithms, are shown in
Fig. 3. Euclidean distance after scaling takes almost the same time, using different
scaling algorithms. DTW requires nearly 100 times more computation time.

Clustering of Subsequences

The number of clusters is not known a-priori. As the motivation is to find the clus-
ter with highest cardinality, the result is not affected much on the setting of the
number of clusters. We tried different clustering algorithms as listed here: agglom-
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Fig. 3 Time required for clustering when different algorithms were used for measurement of
distance between a pair of subsequences

Fig. 4 Three clusters from 40 subsequences. Cardinality of cluster 2, which consists of normal
subsequences, is the highest

erative clustering; k-means with K = 2, 3, 4, 5; X-means, SOM, DBSCAN. Both
DBSCAN, X-means, where optimum cluster number is automatically set, resulted
in four clusters. Three clusters are shown in Fig. 4, the result when only 40 subse-
quences were used for clustering. We included some discord portion. As shown in
the figure, majority of signals fall in cluster 2, which we conclude is the ensemble of
normal subsequences. The average of all members of this highest cardinality cluster
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is the mother signal. In case of ECG data, mother signal may change with time. In
fact, with the same person, it will change with the person’s activity. While we experi-
mentedwith ECG data, we updatedmother signal using latest ν subsequences, where
ν = 40. Once mother signal is ready, it is used for next incoming signal.

3 Proposed Algorithm, Experimental Data, and Results

The computational complexity for anomaly detection using brute force method is
O(n2). Even all possible comparisons with mother signal will reduce the complexity
to O(mn). As n � m, comparison using mother signal is much more efficient. In
this section, we propose a heuristic algorithm which will improve the efficiency even
further.

The basic idea of proposed heuristic for reducing computation is as follows. Sup-
pose, for i th subsequence, to find the minimum distance (i.e., maximum match)
with mother signal, we need to shift-and-rotate the i th signal by p slots. We already
found that using step-by-step shift-and-rotate comparison. In that case, for comparing
(i + 1)th subsequence with the mother signal, we need to shift-and-rotate (i + 1)th
subsequence by (p + 1) slots because (i + 1)th subsequence is only one-slot shifted
from the i th subsequence. In that way, for (i + 1)th subsequence, the number of
shift-rotate-compare will be reduced fromm to 1.We can reduce the computation for
distance comparison by m times. Through experiment, we found that 97% of times,
this one-slot shift gave best match. But, it does not always happen, especially for dis-
cord subsequence. First, we shift (i + 1)th subsequence by p-slots, (p + 1)-slots and
(p + 2)-slots, and calculate the distance with mother signal. Ideally, (p + 1)-slots
shift will give the best match. If that does not happen, we needmore elaborate search-
ing for proper shift that would achieve maximum match with the mother signal. An
efficient heuristic algorithm for this elaborate searching is proposed and explained
below.

In Fig. 5, we show the distance when a normal signal is compared with the mother
signal. The x-axis represents the shift and the y-axis is the distance. The change of
distance with shift is smooth, with a prominent minimum at shift around 100 slots.
The distance is symmetric on two sides of the minimum. Because of this shape, it is
easy to find the minimum without comparing distances for all possible m shifts. We
calculate distances for a few equally spaced shifts, and can easily converge to the
minimum point (maximum match) in a few trials. The heuristic search algorithm to
find minimum distance is explained in [14].

4 Experimental Data and Results

We used data from MIT-BIH Database [15], the detail of which is shown in Table 1.
The algorithm complexity to find anomaly is basically the number of timeswe need to
calculate distance between two subsequences.Distance function calculatesEuclidean
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Fig. 5 Distance of two subsequences from mother, shown at different shifts. The graph is symmet-
rical on both sides of minimum. The one on the left is a closer match to mother signal, as distance
minimum is almost zero

Table 1 Data used for experiments and Computation time

Data set T m Proposed Algo [16] (s = 20) [16] (s = 100) [4]

1 3751 228 1.14 2.48 6.9 8.8

2 3750 163 0.85 2.01 5.73 8.6

3 3750 251 1.09 2.06 5.77 9.03

4 3750 143 0.95 3.06 8.94 8.47

5 5400 351 2.43 4.77 12.67 15.46

6 5401 292 1.56 3.16 8.76 14.74

7 5400 399 2.23 2.84 8.55 16.85

8 16500 370 8.28 21.33 60.92 67.01

distance between two subsequences. Computation time for the proposed algorithm
is at fourth column, and for other competitive algorithms, are shown in the last three
columns of Table1. For the proposed algorithm, time to generate mother signal is
also included. We can see that the proposed algorithm is almost eight times faster
compared to [16] (with parameter s = 100) and [4]. Though, [16] (s = 20) is faster
compared to [16] (s = 100), in Table 2 we can see that its performance (F-score) is
not good.

In Table 2, we show the average of F-score for all 8 data sets using our proposed
algorithm and related works, reported in [4, 16]. This table verifies that, in spite of
our algorithm being faster, its identification of discords (both precision and recall)
are either the best, or very near to the best. In the last column, we show how F-score
of our algorithm differs from the best result. Out of 8, for 4 data sets, it gave the best
result. For the rest, it was near the best.

It is usual to evaluate any pattern recognition algorithm by precision and recall.
In our case, the ground truth is not known. The decision of anomaly is solely based
on the distance from the normal trend—both for the proposed method as well as
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Table 2 Comparison of F-score for all eight Data sets

Data set Proposed Algo [16] (s = 20) [16] (s = 100) [4] Difference with best

1 0.92 0.89 0.91 0.94 0.02

2 0.54 0.35 0.58 0.44 0.04

3 0.88 0.51 0.59 0.51 0.00

4 0.95 0.72 0.85 0.71 0.00

5 0.91 0.87 0.93 0.95 0.04

6 0.76 0.52 0.61 0.34 0.00

7 0.72 0.34 0.65 0.52 0.00

8 0.83 0.73 0.84 0.81 0.01

Table 3 Detection of PCV and SPVC discords

Data set T m PVC
count

SPVC
count

PVC detection
(%)

SPVC
detection (%)

Error
rate (%)

1 1,000,500 210 18 4 78 0 14

2 1,000,500 220 9 4 89 0 10

3 1,000,500 270 12 2 75 50 9

4 1,000,500 250 23 7 87 14 5

5 1,000,500 270 10 13 80 25 23

6 1,800,000 253 86 0 100 – 0

7 1,800,000 279 9 16 90 8 9

8 1,800,000 268 8 5 80 20 1

Fig. 6 Distance from mother signal and Discords for certain threshold value

brute force method. All the results in Table 2 are from signal shape perspective. The
medical interpretation of discords could differ.

To evaluate the significance of our result inmedical perspective,wedid experiment
with a different (much longer) data set. The data parameters and the result are shown
in Table 3. These are labeled data, with two types of discords, PVC (Premature
Ventricular Contractions and SVPC (Supraventricular Premature Contraction). The
distance of subsequences, from mother signal is shown in Fig. 6. PVC discords are



156 G. Chakraborty et al.

more prominent, andwe could detect with very high accuracy. But, most of the SVPC
discords were missed. It is also evident from Fig. 6 that though prominent discords
form sharp spikes, setting proper threshold value to identify all discords, is difficult.

5 Conclusion

We could improve the efficiency of discord detection in periodic signals. We com-
pared our algorithm to other kind of algorithms [16] proposed recently. Comparison
with [12] is underway. Thememory requirement is not analyzed. The parameters used
in our algorithm, determine both the efficiency as well as the quality of the result.
To find their optimum values for maximum efficiency without sacrificing quality is a
challenge. We will investigate how the result changes with parameter values, for cer-
tain type of bio-signals. Finally, the most important aspect is to compare the results
with ground truth. We hope to obtain more labeled data with discords, identified by
health experts. Our algorithm works for quasi-periodic signals. The period changes
over time, like pulse rate varies with the level of exhaustion or emotional state. We
took care by using a window of 40 × m (the last m) to find new m and the new
mother signal. Selecting this window size is critical and application dependent. Dis-
cords with different waveforms have different meanings. For practical application,
we need to analyze the discords to provide the user with their level of emergency
and suggestions for action to be taken.
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Similarity Analysis of Time Interval Data
Sets—A Graph Theory Approach

Marc Haßler, Christian Kohlschein and Tobias Meisen

Abstract Comparison of entities, i.e., the measurement of their similarity, is a fre-
quent, but challenging task in computer science. It requires a precise and quantifiable
definition of similarity itself. Are two texts equal, if they overlap in a majority of
their composing words? Does a pair of pictures resemble the same content? What
defines the sameness of two songs? While certain distance-based approaches, e.g.,
Minkowski, make for a good starting point in defining similarity, there is no one-size-
fits-all approach. In this work, we tackle a particularly interesting problem, namely,
the definition of a similarity measure for comparing time interval data sets. Our
approach regards the data sets as disjoint parts of a bigraph, thereby allowing for an
application of methods from graph theory. We present both a formal definition of the
similarity of two time intervals and our methods as well as concrete use-case from
the medical domain, thus demonstrating the applicability for real-world scenarios.

Keywords Graph theory · Time interval data set · Similarity analysis · Medical
data analysis · Distance measures

1 Introduction and Motivation

Time interval data occur in a huge variety of fields for example as part of process
optimization in the production technology [1], within scheduling tasks in logistic or
staff planning [2] or as labeled sleep data in themedical field [3]. All mentioned areas
observe deviance in their recorded data due to different reasons, such as machine
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failure, sick leave or other abnormalities. Regardless of the reason for the deviation,
short reaction times must be guaranteed.

In many scenarios, such as manufacturing, medicine or production technology,
analysts recognize deviations mostly based on their experience and start appropri-
ate countermeasures. This procedure resembles a similarity analysis regarding past
processes or situations. Recognitions like these can not often be part of the computer-
aided similarity analysis because at the moment there are only few limited possibili-
ties to quantify interval similarities. Examples for specific similarity analysis already
exist within certain scientific research areas. Those methods include the area of text
or image processing, where similarity analysis is used to optimize search algorithms
[4], within biology to compare genes or gene groups [5, 6] or as a tool of audio recog-
nition methods [7]. Research regarding time interval data sets gained importance in
recent years [8–13]. However, basic considerations of similarities regarding time
intervals are still missing in our opinion. While the similarity in the mentioned pub-
lications was derived from a sequence analysis and studies the existing data sets as a
whole, in our approach, we deduce the similarity of the data set from the individual
similarities between the underlying intervals.

Therefore,we concentrate solely on time intervals and at first construct a similarity
measure to compare intervals with each other. This method allows for a detailed view
on specific characteristics of the records saved in the time interval data set and a
comparison even under big time offsets is possible. Further, our approach is able to
measure the similarity of two data sets with well-known methods from graph theory
[14]. To achieve our goal, we interpret the comparative data sets as the disjoint parts
of an bigraph where each time interval is represented by a node within these parts
and the weight of each edge represents the similarity measure of the corresponding
intervals.

This chapter is an extended version of [15] and is structured as follows. In the
chapter, we will give a brief overview of other approaches in the field of time interval
data similarity. In Sect. 3 we construct the interval distance between two time inter-
vals, which is then used in Sect. 4 to build the distance between two time interval
data sets. At the end we discuss the results and give an outlook (Sect. 5), followed by
a conclusion in Sect. 6. Throughout the whole paper we illustrate our results within
the use case of similarity analysis between classified sleep data, where the main goal
is the comparison of different nights of sleep. The used golden standard of sleep
classification was provided by Rechtschaffen and Kales in 1968 [16] and is further
developed by the American Academy of Sleep Medicine (AASM) [3] as the current
standard in practice.

2 Related Work

The work of Kostakis et al. [8] regarding time interval data sets compares two data
sets in relation to the correlation of the intervals within the respective data set.Within
this method, a difference regarding the interval length is not considered as long as
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Fig. 1 Interval relation within a data set defined by Kostakis et al. [8]. Reprinted by permission
of Springer-Verlag Berlin Heidelberg 2011
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Fig. 2 Left: time-based view on data sets by Meisen [9]; right: our interval approach

it does not effect the correlation between the two intervals. The authors introduce
seven interval correlations, which they used for their comparison (cf. Fig. 1).

Work from Meisen et al. [9] differentiate the similarity analysis into three dis-
tances, which are later combined to form the similarity measure. These distances are
determined at a specific time t and are the following:

(1) “temporal order distance” compares the number of active intervals at time t.
(2) “temporal measure distance” matches the “value” of all intervals at time t.
(3) “temporal relation distance” analyzes the relation of all intervals at time t.

This approach takes into account the lengths of the individual intervals, but only
considers the data set for each evaluation at a certain point in time. Therefore, even
small time shifts in one of the datasets are completely changing the outcome of the
analysis.

The previously mentioned methods can be described as static comparisons, as
depicted in Fig. 2, yet global changes (like temporal displacements) are not regarded.
Here, our method has a decisive advantage as we are able to allow global changes to
be incorporated into the model by matching individual intervals.
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3 Similarities Between Time Intervals

In order to make sure that two time intervals are comparable, we take a closer look at
the construction of these intervals. They consist of a start point and an end point and
any amount of metadata, such as device class or hourly cost to run, e.g., a specific
process like introduced byMeisen et al. [9]. In this paper,we assume that themetadata
is available in mathematical form and is thus comparable (cf. section “Metadata and
Dealing with Deadlines”). We consider the following form for an interval p:

p := (
sp, ep,Mpi | i ∈ N

)

or in short form p := (
sp, ep

)

where

sp := start point of the interval

ep := end point of the interval

Mpi := i-th metadata of the interval

In our example of sleep data sets, each interval represent an occurring sleep phase. sp
and ep describe the start and end point of the corresponding phase and Mp contains
the information in which sleep phase the patient was during the interval period. That
means we identify labeled sleep data as a time interval data set and visualize it like
shown in Fig. 3, where the vertical lines represent the transition from one interval to
the next.

The interval similarity analysis is divided into three parts. At first, the geometrical
data of each interval, such as length or position on the time axis, is compared to
generate geometrical distances between two intervals. In the secondpart, themetadata
as well as the possibility to address deadlines or earliest starting time is added into

REM

NREM 3

NREM 2

NREM 1

Wake

Cycle 1 Cycle 2 Cycle 3

time

Fig. 3 Hypnogram that shows the characteristic sleep stages, referring to AASM standards [3]
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the interval similarity. In the end, all of these information define a similarity measure
for two time intervals.

Geometrical Analysis

In the first step, we use the information for each interval to generate several dis-
tances with the possibility to evaluate each characteristic differently. For two inter-
vals p = (sp, ep) and q = (sq, eq) as well as a norm || · ||, we conclude the following
geometrical attributes.

(1) Start point distance:

DS(p, q) := ||sp − sq||
||max

{
ep, eq

} − min
{
sp, sq

} || (1)

(2) End point distance:

DE(p, q) := ||ep − eq||
||max

{
ep, eq

} − min
{
sp, sq

} || (2)

(3) Lengths distance:

DL(p, q) := 1 − min
{||ep − sp||, ||eq − sq||

}

max
{||ep − sp||, ||eq − sq||

} (3)

(4) Overlap:

DO(p, q) := 1 − ||p ∩ q||
min

{||ep − sp||, ||eq − sq||
} (4)

with the interval

p ∩ q =
{

(max
{
sp, sq

}
,min

{
ep, eq

}
) for max

{
sp, sq

}
< min

{
ep, eq

}

0 else

(5) Gap:

DG(p, q) :=
{

min{||sq−ep||,||sp−eq||}
||max{ep,eq}−min{sp,sq}|| for ||p ∩ q|| = 0

0 else
(5)

Example 1 To visualize (Fig. 4) the geometrical attributes, we take a closer look at
the intervals p := (0, 10) and q := (3, 7) and calculate their attributes:

(1) ||p|| = 10, ||q|| = 4 and ||max
{
ep, eq

} − min
{
sp, sq

} || = 10
(2) p ∩ q = (3, 7) and therefore ||p ∩ q|| = 4
(3) ||sp − sq|| = 3, ||ep − eq|| = 3 and DG(p, q) = 0.
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Fig. 4 Visualization of two intervals with their geometrical attributes

Metadata and Dealing with Deadlines

As previously stated, it is assumed that the metadata related to the considered time
intervals p and q are in mathematically comparable form. That means that for every
metadata i there is a continuous distance DMi with 0 < DMi (p, q) < 1 available. The
metadata can, for example, be used to identify, if two intervals are comparable or not.
In our use case we use the appearing sleep phases to determine, if the corresponding
time intervals should be compared.

A comparison criterion regarding interval deadlines is also added, which means
that, if interval p is compared with q, we want to make sure that interval q does
not end after p has ended. The same holds true for a start condition. The difference
to the distances already mentioned is the lack of symmetry because within these
distances the order of the intervals is crucial. For the mentioned criteria, we defined
the following two distances:

DEND(p, q) : =
{
min

{
1, ||eq − ep||

}
for eq > ep

0 else
(6)

DSTART (p, q) : =
{
min

{
1, ||sp − sq||

}
for sp > sq

0 else
(7)

Similarity of Two Time Intervals

With all the introduced distances, a distancemeasure for two time intervals is defined,
where every characteristic is individually weighted. Therefore, it is adaptable to
specific use cases because in case of machine failure the length of the failure could
be more relevant than the time of appearance, while within staff planing the point
of time where a shortage is located may be a higher priority. This measure is later
used in Sect. 4 to calculate the similarity between two data sets. It can be defined as
follows:

Definition 1 (distance between time intervals) For two intervals p and q as well as
weight factorsλ∗ ∈ R

+
0 , the distance between the intervals ismeasured by calculating
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the weighted sum of distances:

S(p, q) :=
∑

i∈I
λi · Di(p, q) (8)

Thus, the more similar the two intervals p and q are to each other, the smaller the
value of S(p, q) is. In the next step, two time interval data sets are compared and the
similarity using this approach is evaluated.

4 Similarity Analysis Regarding Time Interval Data Sets

In this chapter, two interval data sets P and Q are compared. At first, the same
cardinality for both P and Q is assumed, that means the number of intervals in each
data set is the same. In section “How toDeal withDifferent Cardinality”, a procedure
for dealing with different cardinalities is introduced. Furthermore, the intervals in
P are specified with pi and qi for Q. For the remainder of the paper, data sets are
considered as disjoint partial sets of a complete, weighted bipartite graph, in which
the edge weight between two nodes corresponds to the interval similarity measure S
(cf. Definition 1). In Fig. 5 such visual transition from two hypnograms to the graph
form is displayed.

Hence, the similarity of time interval data sets (STIDes) is equivalent to a perfect
matching with minimal weight within our constructed bipartite graph.

Definition 2 (STIDes approach) Let P and Q be two time interval data sets, pi ∈ P,
qi ∈ Q and |P| = |Q| = n. Furthermore, � is the set of permutations of a set with n
elements and π ∈ �. The similarity between P andQ is determined by the following
distance measure:

S(P,Q) := min
π

{
n∑

i=1

S(pi, qπ(i))

}

π∈�

(9)

Such minimization problems in bipartite graphs can be solved in polynomial time
by using, for example, the Hungarian algorithm [14]. Our approach is, therefore,
capable of calculating a similarity measure within polynomial time while being able
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�
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q1 q2 q3 q4

S(p1, q1)

Fig. 5 Left: two datasets as hypnograms; right: representation as bipartite graph
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to prioritize certain characteristics and measure similarities even with existing time
shift. In the next part, we expand this static approach for a dynamic similarity search,
which also includes rescaling and shifting possibilities.

Dynamic Changes Within One Data Set

Until now, the previous static approach has difficulties in determining realistic sim-
ilarities as soon as one of the time interval sets has big temporal shifts. In Fig. 6,
we recognize that the length of each sleep stage except the first one, as well as their
sequence is identical for both data sets D1 and D2. That means only the time to fall
asleep is much longer in data Set D1.

If we can globally shift the second data set to the right, we get much more realistic
distance values with our approach. A comparison with true-to-scale model data sets
is not provided in the basic configuration either, however, the construction of our
interval distances allows an extension of both desired properties. Therefore,we define
two kinds of operators, where the Eq. 10 deals with temporal displacement and Eq. 11
is able to rescale the intervals of one data set.

REM

NREM 3

NREM 2

NREM 1

Wake
D1

D2

REM

NREM 3

NREM 2

NREM 1

Wake

time

Fig. 6 Two data sets where only the first interval differ in their length
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Definition 3 Let p = (sp, ep) be an time interval in short form. Furthermore, let
v ∈ R be a shift parameter and s ∈ R+ a scaling factor. The functions

p + v := (sp + v, ep + v) (10)

s · p := (s · sp, s · ep) (11)

map an interval onto a new interval, hence we can integrate these functions into our
similarity measure.

For the similarity analysis of our data sets, this means that we have to solve the
following minimization problems:

Definition 4 Let P and Q be two time interval data sets, pi ∈ P, qi ∈ Q and |P| =
|Q| = n. Furthermore, let � be the set of permutations of a set with n elements,
π ∈ �, v ∈ R a shift parameter and s ∈ R+ a scaling factor. The degree of similarity
taking into account global displacement (12) or global scaling (13) can then be
calculated with

S(P,Q + v) : = min
π,v

{
n∑

i=1

S(pi, qπ(i) + v)

}

π∈�,v∈R
(12)

S(P, s · Q) : = min
π,s

{
n∑

i=1

S(pi, s · qπ(i))

}

π∈�,s∈R+

(13)

Although an efficient solver of the above minimization problem is still part of our
research, the solubility of the problem can be shown.

Lemma 1 (Existence of theMinimum)Let the conditions ofDefinition 4 be satisfied.
The following functions are then continuous with a global minimum.

F1(v) : = min
π

{
n∑

i=1

S(pi, qπ(i) + v)

}

π∈�

(14)

F2(s) : = min
π

{
n∑

i=1

S(pi, s · qπ(i))

}

π∈�

(15)

For a detailed proof of the above lemma see [15], but the idea behind the proof is the
concept of the extreme value theorem by Weierstrass in 1860 and therefore it was
shown, that both functions are continuous and lower bounded.
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How to Deal with Different Cardinality

Until now, we assumed that both data sets have equal cardinality, but realistically this
will not often be the case in real life situations. If we look at our use-case of sleep
data and we want to compare two different nights of sleep, the chances are minimal,
that the same amount of sleep phases occur in different nights of sleep. Therefore, a
option to deal with these cardinality differences is needed. Our approach, therefore,
is filling the smaller data set with additional nodes, dubbed “dummy nodes”, and
set the edge weight of all edges connecting these dummy nodes to the maximum
occurring edge weight. In Fig. 7 an example with one dummy node is shown. We
then adjust the calculation within the STIDes approach and define the following.

Definition 5 Let P and Q be two interval data sets with |P| > |Q|. We then gen-
erate a set of dummy nodes D with |D| = |P| − |Q|, set the interval similarity
S(pk , dl) = maxi,j

{
S(pi, qj)

}
for every pk ∈ P and dl ∈ D. The adjusted similarity

is then calculated as

S(P, {Q ∪ D}) := min
π

{
n∑

i=1

S(pi, qπ(i))

}

π∈�

− |D| · max
i,j

{
S(pi, qj)

}
(16)

The extent to which unmatched intervals of |P| influence the similarity measure must
be considered according to the individual use case and the similarity measure then
adapted accordingly. Another possibility to use data sets with different cardinality
and, therefore, work with rectangular matrices within the Hungarian algorithm, is
the algorithm presented by Bourgeois and Lassalle [17].

Combining the shifting approach with the Definition 5, we are not only able to
realistically compare two different nights of sleep, but also to compare one sleep
cycle (cf. Fig. 3) with a whole night to find similar sleep cycles. In other words, the
approach is able to find a similar subset within a data set when given only a part of
a data set to compare.

p1 p2 p3 p4

q1 q2 q3 d1

*

*S(p4, d1) = maxi,j {S(pi, qj)}

Fig. 7 Bigraph example with one dummy node d1
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5 Discussion and Outlook

The STIDes approach is capable of processing different kinds of similarity views
because of the capability to set different weight parameters λi according to each
specific use case. However, this results in an additional effort in the basic setting
of the method since the parameters must be set separately for each application. In
addition, the creation of dummy nodes allows a determination of the similarity of two
unequal data sets, but the remaining intervals do not yet influence the computation
of similarity. With the possibility of applying global changes like time shifts we are
able to find similarities between a whole data set and a given subset of another data
set. Especially, in this case, the created dummy nodes should not interfere with the
similarity calculation.

In the future, we will focus our research on these global changes like time shifts
and scaling. Although it was shown that the global minimum within the functions
(12) and (13) exists, a statement about the computational complexity could not be
made so far. We will also investigate the combined effect of both time shifts and
scaling to be able to compare parts of a true-to-scale model with a complete data
set. This combined influence can be represented by the structure of the method as
a multidimensional function. However, to what extent this affects the complexity
of the calculations must also be examined. The possibility to apply different shift
and/or scaling factors to different groups of intervals within one data set is also an
interesting case, which will be studied in future research. Within the future research,
differences in the cardinality of the data sets will again be looked upon to be able to
set influence parameters for the similarity measure.

6 Conclusion

In this chapter, a similarity measure depending on the relation of the intervals to each
other was introduced. For this purpose, the properties of the intervals, such as the
size of the overlap, start and end point distances were defined. From these properties,
distance values were derived, which in a weighted sum form the similarity measure
of two intervals. This allows to individually weight each interval characteristic an,
therefore, is an approach which is adaptable to the considered use case. On the
basis of the weighted sum, the STIDes approach was defined, which compares two
time interval data sets with one another. For this purpose, the minimum sum of the
individual similarities is calculated over all possible interval pairs, which results in
the defined similarity measure. An interval pair consists of an interval of each of the
two considered time interval data sets. The option to weight each interval property is
retained by this approach in the extended similarity measure of two data sets. In order
to compensate for a possible cardinality difference between the data sets, dummy
nodes were introduced, so that each interval can be assigned one partner from the
other set and therefore the STIDes approach can be applied. The desired similarity
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measure of the possibly modified data sets is determined by the Hungarian algorithm
in polynomial time (O(n3)), where n represents the number of intervals in the bigger
data set. The introducedmethodology for identifying similarities alsomade it possible
to incorporate global changes in the intervals of one data set into the analysis. In this
context, it has been shown that the defined functions have a global minimum in order
to be able to apply the above-described approach, but the complexity changes with
the implementation of global changes are not yet researched. The combination of
working with different cardinalities and applying global time shifts to one data set,
enables the approach to find the most similar subset of a time interval data sets for a
given smaller data set.

Overall, the considered approach provides a versatile method for describing sim-
ilarities, in which all properties of the intervals are included in the similarity analysis
and, moreover, various types of dynamic changes within the data sets can bemapped.
Due to the general representation of this methodology, the similarity analysis can be
applied to a variety of problems, and thus meets the goal of a general description of
similarities between time interval data sets.
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Logical Comparison Measures
in Classification of Data—Nonmetric
Measures

Kalle Saastamoinen

Abstract In this chapter, we will create and use generalized combined compari-
son measures from t-norms (T ) and t-conorms (S) for comparison of data. Norms
are combined by the use of generalized mean, where t-norms give minimum and
t-conorms give maximum compensation. From this intuitively thinking follows that
when these norms are aggregated together, these new comparison measures should
be able to find the best possible classification result in between minimum and max-
imum. We will use classification as our test bench for the suitability of these new
comparison measures created. In these classification tasks, we have tested five differ-
ent types of combined comparison measures (CCM), with t-norms and t-conorms.
That were Dombi family, Frank family, Schweizer-Sklar family, Yager family, and
Yu family. In classification, we used the following datasets: ionosphere, iris, and
wine. We will compare the results achieved with CCM to the ones achieved with
pseudo equivalences and show that these new measures tend to give better results.

Keywords Ionos · Iris · Wine · Similarity · Comparison measure · Logical
Classification · Data

1 Introduction

Traditionally,measures used for comparison have beenmetric-based similarities. It is
a common belief that measures for comparison should hold true for some properties
ofmetric spaces. This belief originates from the blinkered view that the comparison of
objects should always have something to do with distance. This has been questioned
in many papers [1–5]. In practice, it seems that properties of distance have little or no
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affect at all on the results that can be achieved from the use of different comparison
measures. This becomes empirically clear when one looks at the test results presented
in this paper.

Much of the fuzzy set theory’s original inspiration and further developments
originate from the problems of pattern classification and cluster analysis. Essentially,
this is the reason why classification is chosen to be the test bench for many-valued
logic-based comparison measures in this chapter. In classification, normally, the
question is not whether a given object is or is not a member of a class, but the degree
towhich the object belongs to the class. Thismeans thatmost classes in real situations
are fuzzy in nature [6]. This fuzzy nature of real-world classification problems may
shed some light on the general problem of decision- making [7].

This chapter will suggest a general definition for comparison measure and will
show how results presented in article [8] achieved with pseudo equivalences can get
better.

The chapter is organized as follows. In the first section, logical comparison mea-
sures, combined comparison measure (CCM) (12), and the theory behind them are
presented. The second section presents classification schemata and data sets used for
testing. The third section presents results achieved and these results are compared
to the results achieved before. In the fourth section, conclusions are done and some
future directions are given.

2 Logical Comparison Measures

Definition 1 A set function g defined on X , where X is a fuzzy set and has the
following properties called as fuzzy measure:

1. g (∅) = 0, g (X ) = 1
2. If A,B ∈ X and A ⊆ B, then g (A) ≤ g (B)

3. If An ∈ B, A1 ⊆ A2 ⊆ · · · ⊆ An−1 ⊆ An, then lim
n→∞g (An) = g

(
lim
n→∞An

)

It is suggested here that the comparison measures used, where comparison is done
feature by feature and then, these comparisons are aggregated, could actually be any
measures which fulfill the following properties:

1. The comparison measure used has a clear logical structure, e.g., it is an Archime-
dean t-norm or t-conorm (like Frank (2), (7)) or S-equivalence [8].

2. The comparison measure is monotone. This condition ensures that a decrease (or
increase) in any values that are to be compared cannot produce an increase (or
decrease) in the comparison result.

3. The comparison measure is associative. This guarantees that the final comparison
results are independent of the grouping of the arguments and that one can expand
these comparisons to more than two arguments.

4. The comparison measure is continuous. This guarantees that one can safely com-
pute with the values that are to be compared.
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The idea behind using logical structures instead of, for example, simple distances
lie in the fact that logical structures always have some kind of linguistic content
inside them. For example, t-norms and t-conorms can be seen as corresponding to
the words “and” and “or”, equivalence as corresponding to the expression “if and
only if”. One can see that just by using these logical measures, it is possible to give
some linguistic meaning to the comparison procedure.

Some criteria for comparison measures are suggested here. The following criteria
are almost the same as Lowen gives for aggregation operators [9] and originally, they
are presented by Bellman-Giertz [10]. It has also been suggested that not all of these
criteria are necessary [11]. One can, however, see that the criteria by Bellman R. and
Giertz M. also applies well to the comparison measures presented in this chapter.

1. Axiomatic strength. It is suggested here that the operator is better, if the axioms
of the operator satisfies are less limiting, this is equivalent to Lowen [9]. It is seen
that depending on the choice of the logical structure used, this will fit well with
the definition given in (2).

2. Flexibility. Through the flexibility, three things are met that are of an empirical
fit, adaptability, and compensation. Adaptability comes from the fact that all
comparison measures created in this article are parameterized. Compensation
property follows from the use of a generalized mean to combine the different
values. Empirical fit follows then from the use of logical structures, adaptability,
and compensation. Empirical fit can naturally only finally be proven by empirical
testing, as is done in this article.

3. Numerical efficiency. Some operators such asmin andmax are numericallymore
efficient than, for example, Frank’s t-norm and t-conorm. In large problems, this
will always be problematic to some degree. However, it is gradually becoming
less of problem as computers computing power is constantly increasing.

4. Range of compensation. In general, the larger the range of compensation the
better the compensatory operator. In some comparison measures presented in this
article, the range of compensation has been increased by combining t-norms and
t-conorms and in all comparison measures, a generalized mean has been used.

5. Aggregating behavior of the comparison measure. Aggregating behavior in
the comparison measures presented here, be adjusted by the use of proper mean
value in the generalized mean. For example, if a parameter value of 0 is used with
a generalized mean, a geometric mean will be obtained, which is to say that one
attains the product of the values and subsequently each value “added” normally
decreases the resulting aggregate degrees of membership.

6. Required scale level ofmembership functions. Comparisonmeasures presented
in this article have very little restrictions concerning scale levels.
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T-norms and T-conorms as the Measures for Comparison

In the paper, [12] measures have been defined based on the use of the generalized
mean, weights, t-norms, and t-conorms. Below, these results are added to the defi-
nition of the combination measure of the t-norm and t-conorm.

Connectives play an important role when trying to model reality by equations.
For example, when linguistic interpretations such as “AND” or “OR” are used for
connectives in conjunction and disjunction, quite often this does not require or mean
crisp connectives, but that these connectives are only needed to some degree. In
such cases, connectives called t-norms or t-conorms may be used. The t-norm gives
minimum compensation, while the t-conorm gives maximum compensation. This
means that t-norms tend to give more value for the small values, while t-conorms
give more value for the big values in the interval in which they are used. In prac-
tice, neither of these connectives fit the collected data appropriately. There is still
a lot of information that is left in between of these two connectives. An important
issue when dealing with t-norms and t-conorms is the question of how to combine
them in a meaningful way, since neither of these connectives alone gives a general
compensation for the values where they are adapted. For this reason, one should
use a measure that somewhat compensates this gap in between the values of these
two norms. Article [13] shows how the generalized mean works as the compensative
connective between minimum and maximum connectives. The scope of aggregation
operators is demonstrated in Fig. 1.

The first researchers to try the compensation of t-norms and t-conorms were
Zimmermann and Zysno [14]. They used the weighted geometric mean in order to
compensate the gap between fuzzy intersections and unions. When one uses the
geometric mean, equal compensation is allocated to the all values, and problems
might occur if some of the values combined are relatively very low or high.

Created Comparison Measures From T-norms and T-conorms The following
is a brief representation of the algebraic equations that can be created by combin-
ing weights into some important t-norms and t-conorms and then, the combining
values are given that were achieved by aggregating them with a generalized mean.
Archimedean t-norms and t-conorms are a good choice since they are continuous
and monotonic [15].

The comparison measure (12) has been tested by combining it here with different
kinds of t-norms and t-conorms. It has been tested without weights ωci and ωdi, since
the weighting process was too time-consuming with differential evolution. All the
comparison measures mentioned in this subchapter have been tested in classification

Fig. 1 Compensation of
t-norms and t-conorms
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tasks. T -norms and t-conorms are tested with weights, where a generalized mean
has been used to aggregate and compensate the values.

Parameterized families of t-norms and t-conorms are used here. Families tested in
classificationwere theDombi family [16], Frank family [17], Schweizer-Sklar family
[18], Yager family [19], and Yu family [20]. The Frank and Schweizer-Sklar families
of t-norms are also copula families [21] so they have good statistical properties see
Fisher [22].

From t-norm and t-conorm families, we have created the following comparison
measures.

Definition 2 Measure based on Dombi [16] class of t-norm with generalized mean
and weights:

TD 〈f1 (i) , f2 (i)〉 =
⎛
⎝

n∑
i=1

ωci

(
1 +

[(
1

f1 (i)
− 1

)p

+
(

1

f2 (i)
− 1

)p] 1
p
)−m⎞

⎠
1
m

, (1)

where p > 0 and i = 1, . . . , n.

Definition 3 Measure based on Frank [17] class of t-norm with generalized mean
and weights:

TF 〈f1 (i) , f2 (i)〉 =
(

n∑
i=1

ωci

(
logp

[
1 +

(
pf1(i) − 1

) (
pf2(i) − 1

)

p − 1

])m) 1
m

, (2)

where p > 0, p 
= 1 and i = 1, . . . , n.

Definition 4 Measure based on Schweizer and Sklar [18] class of t-norm with gen-
eralized mean and weights:

TSS 〈f1 (i) , f2 (i)〉 =
(

n∑
i=1

ωci
(
max

{
0, (f1 (i))p + (f2 (i))p − 1

}) m
p

) 1
m

, (3)

where p 
= 0 and i = 1, . . . , n.

Definition 5 Measure based on Yager [19] class of t-norm with generalized mean
and weights:

TY 〈f1 (i) , f2 (i)〉 =
(

n∑
i=1

ωci

(
1 − min

{
1,

[
(1 − f1(i))

p + (1 − f2(i))
p] 1

p

})m
) 1

m

, (4)

where p > 0 and i = 1, . . . , n.

Definition 6 Measure based on Yu [20] class of t-norm with generalized mean and
weights:
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TYu 〈f1 (i) , f2 (i)〉 =
(

n∑
i=1

ωci (max {0, (1 + p) (f1 (i) + f2 (i) − 1) − p · f1 (i) f2 (i)})m
) 1

m

, (5)

where p > −1 and i = 1, . . . , n.

Definition 7 Measure based onDombi [16] class of t-conormwith generalizedmean
and weights:

SD 〈f1 (i) , f2 (i)〉 =
⎛
⎜⎝

n∑
i=1

ωdi

⎛
⎝1 +

[(
1

f1 (i)
− 1

)−p

+
(

1

f2 (i)
− 1

)−p
]− 1

p
⎞
⎠

−m
⎞
⎟⎠

1
m

, (6)

where p > 0 and i = 1, . . . , n.

Definition 8 Measure based on Frank [17] class of t-conorm with generalized mean
and weights:

SF 〈f1 (i) , f2 (i)〉 =
(

n∑
i=1

ωdi

(
1 − logp

[
1 +

(
p1−f1(i) − 1

) (
p1−f2(i) − 1

)

p − 1

])m) 1
m

, (7)

where p > 0, p 
= 1 and i = 1, . . . , n.

Definition 9 Measure based on Schweizer and Sklar [18] class of t-conorm with
generalized mean and weights:

SSS 〈f1 (i) , f2 (i)〉 =
(

n∑
i=1

ωdi

(
1 − (

max
{
0, (f1 (i))p + (f2 (i))p − 1

}) 1
p

)m
) 1

m

,

(8)
where p 
= 0 and i = 1, . . . , n.

Definition 10 Measure based onYager [19] class of t-conormwith generalizedmean
and weights:

SY 〈f1 (i) , f2 (i)〉 =
(

n∑
i=1

ωdi

(
min

{
1,

[
(f1(i))

p + (f2(i))
p
] 1

p

})m
) 1

m

, (9)

where p > 0 and i = 1, . . . , n.

Definition 11 Measure based on Yu [20] class of t-conorm with generalized mean
and weights:

SYu 〈f1 (i) , f2 (i)〉 =
(

n∑
i=1

ωdi (min {1, f1 (i) + f2 (i) + p · f1 (i) f2 (i)})m
) 1

m

, (10)

where p > −1 and i = 1, . . . , n.
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Definition 12 Combined comparison measure (CCM) based on the t-norm and t-
conorm with a generalized mean and weights [30]:

C 〈f1, f2〉 =
( n∑
i=1

(
wiT

p
i 〈f1 (i) , f2 (i)〉 + (1 − wi) (Sp

i 〈f1 (i) , f2 (i)〉)
)m) 1

m

(11)

where i = 1, . . . , n, p is a parameter combined to the corresponding class of fuzzy
intersections Ti and unions Si and wi are weights and i = 1, . . . , n.

3 Classification

Many times, there are given a set of data which is already grouped into classes and
the problem is then to predict which class each new data belongs to. This is normally
referred to as classification problem. The first set of data is referred to as training
set, while this new set of data is referred to as test set [23]. Classification is seen as
a comparison between training set and test set.

Description of the Similarity Based Classifiers

Objects, each characterized by one feature vector in [0, 1]n, is classified into different
classes. The assumption that the vectors belong to [0, 1]n is not restrictive since the
appropriate shift and normalization can be done for any space [a, b]n. The comparison
measures can be used to compare objects to classes. Below is the used classifier in
the algorithmic form:

SIMILARITY BASED CLASSIFIER
_______________________________________________________________
Require: data
scale data between [0, 1]

Require: test,learn[1...n],weights,dim
for i = 1 to n do
idealvec[i] = IDEAL[learn[i]]
maxcomp[i] = ( 1

dim

)1/m
(
dim∑
j=1

weights
[
j
] (
CCM

(
idealvec

[
i, j

]
, test

[
j
]))m

)1/m

end for
class = argmaxi maxcomp[i]

__________________________________________________________________
In the algorithm, the combined comparison measure (CCM) with a generalized

mean is used. IDEAL is the vector that best characterizes the class i and here the
generalized mean vector of the class as an IDEAL-operator has been used.
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When we choose to use randomized weights (RWs) instead of using differential
evolution (DE), we achieve a significant saving in computing time. RW is approxi-
mately 150,000 times faster.

Evolutionary algorithm is used because of its diversity and robustness to find
weights in classification process, information about evolutionary algorithms, in gen-
eral, can be found, for example, from [24–27]. Obviously, other optimizers can be
used aswell. Evolutionary algorithm used here is based on differential evolution [28].
DE is a simple population-based stochastic function minimizer. The objective of DE
is to iterate each member of the population and compare its value to the trial member
value, and the superior member stays for the next iteration. The evolution strategy
defines the way in which a trial member is generated. DE tries to seek weights that
will give the maximal similarity compared to the values set by experts. This is done
so that DE tries to minimize the value of the objective function with trial member
values. The objective function is the total difference between classification defined
by experts and the classification defined by similarity used here for all learning data
sets. Finally, DE gives the optimal weight values.

The flow of the classification task has been described in the flowchart (Fig. 2).
Classification procedure uses part of the data (learning) for weight optimization
either using differential evolution or randomized weights depending on the choice.
After this, rest of the data (test) is used for classification and then, this result is saved,
now if loop is done,N -timesmax,min, andmean values are saved and then, this same
classification procedure is done from the beginning for the next parameter value p.
After all, parameter values p have been done we start from the next mean value m
the loop again.

Data Sets

We tested our measures with three different data sets which are available from the
[29]. The data sets chosen for the test were: ionosphere, iris, and wine. These sets
differ greatly in the magnitude of instances and the number of predictive attribute
values.

Ionos: This is radar data, where the targets were free electrons in the ionosphere.
Here are two classes: “Good” and “Bad”. “Good” radar returns are those showing
evidence of some type of structure in the ionosphere. “Bad” returns are those that do
not; their signals pass through the ionosphere. The number of instances is 351. The
number of attributes is 34 plus the class attribute.

Iris: Perhaps, it is the best-known database to be found in the pattern recognition
literature. The number of attributes is 4 plus the class attribute. The data set contains
3 classes of 50 instances each, where each class refers to a type of iris plant.

Wine: The data is the result of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis determined the
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Fig. 2 Simplified flowchart of the classification procedure
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Table 1 Mean (Av), Maximum (Max) classification results with different comparison measures
(CMs), Optimized (DE), and Randomized (RND) Weights and Variances (VAR) versus previous
best results with pseudo equivalences

CM IonoAv IonoMax IrisAv IrisMax WineAv WineMax

Frank CCMDE
(%)

83.68 94.89 91.68 100 90.47 100

Frank CCMRND
(%)

79.86 94.32 71.61 100 87.22 100

Frank CCMVAR 0 0.0075833 0 0.022331 0.00013855 0.022344

Equivalences
(%)

80.16 93.75 98.84 100 96.35 100

quantities of 13 constituents found in each of the 3 types of wines. The number of
instances are class 1 59, class 2 71, and class 3 48.

4 Results

In our classification tasks,we have tested five different types of combined comparison
measures (CCM), with t-norms and t-conorms fromDombi, Frank, Schweizer-Sklar,
Yu, and Yager families [30]. In all these tested families, the combination of Frank
norms always managed to give the best results. From the Table 1, one can see a
comparison between the previous best true positive classification results with many-
valued pseudo equivalences [8] versus to the best true positive classification results
with CCM presented here. We tested our classifications in both weights that were
randomly selected 200 times (RND) and with weights that were optimized 10 times
(DE) for each p- and m-value.

Table 1 shows the mean and maximum of the classification results from all com-
binations of weights and parameters. Results were better using CCMmeasure Eq. 11
with Frank norms Eq. 2 and 7 with Ionosphere data set than when we used pseudo
equivalences for the classification. With Iris and Wine data sets pseudo equivalences
gave slightly better results.

5 Conclusions

In classification and the development of expert systems, the typical problem is choos-
ing the right function for comparison.Whendata has different dependencies, different
operators should be used. Usually, the simplest operators are selected, which are not
normally the optimal choice. As a solution to this problem, this paper has offered
combined comparison measure 12 that combines with generalized mean t-norm and
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t-conorm. This measure is on a logically sound basis. It also has been shown that
these comparison measures give reasonable results.

Comparison measures introduced in this article consistently give good and stable
results in classification, which can be seen from the Table 1. Combined comparison
measure (11) based on Frank type of t-norm (2) and t-conorm (7) gave the best
classification results, which are the same or better than those attained from the pseudo
equivalences. One can also see that the improvements in classification results due to
changing to the right comparison measures were quite significant.

From the tested combined comparison measures (11), use of a combination of
Frank type t-norm and t-conorm is recommended.

These new comparison measures can be used in, for example, pattern recognition,
clustering, expert systems, medical diagnosis systems, decision support systems,
fuzzy control, etc. Classification results were not only good but also stable, which
makes these comparison measures usable.
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Asymptotic and Bootstrap Tests
for a Change in Autoregression Omitting
Variability Estimation

Barbora Peštová and Michal Pešta

Abstract A sequence of time-ordered observations follows an autoregressivemodel
of order one and its parameter is possibly subject to change at most once at some
unknown time point. The aim is to test whether such an unknown change has occurred
or not. A change-point method presented here rely on a ratio type test statistic based
on themaxima of cumulative sums. Themain advantage of the developed approach is
that the variance of the observations neither has to be known nor estimated. Asymp-
totic distribution of the test statistic under the no-change null hypothesis is derived.
Moreover, we prove the consistency of the test under the alternative. A bootstrap
procedure is proposed in the way of a completely data-driven technique without
any tuning parameters. The results are illustrated through a simulation study, which
demonstrates the computational efficiency of the procedure. A practical application
to real data is presented as well.

Keywords Change point · Structural change · Change in autoregression
Hypothesis testing · Bootstrap · Ratio type statistic · Variance estimation free test

1 Introduction and Main Goals

The focus lies on autoregressive time series of order one, i.e., AR(1) series. We try
to detect a possible change of the scalar parameter from a stationary autoregressive
model using the ratio type test statistic, which allows us to avoid estimating the
unknown nuisance dispersion parameter of the time series.
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The results are inspired by [1], where an autoregressive times series model of
order p is taken into account and the whole vector of autoregression parameters is
subject to change. The authors proposed to detect such change by computing partial
sums of weighted residuals based on the maximum type CUSUM test statistics.
The results were consequently extended by the bootstrap approach in [2]. The main
disadvantage of these methods is that the variance estimation is problematic. To
overcome such a dilemma, the ratio type test statistic is utilized in the change-point
detection.

The remainder of the paper is structured as follows: Sect. 2 introduces a change-
point model for AR(1) series together with stochastic assumptions. The ratio type
test statistic for the change-point detection is proposed in Sect. 3. Consequently,
the asymptotic behavior of the considered test statistic is derived, which covers the
main theoretical contribution. Asymptotic critical values are calculated in Sect. 4 by
Monte Carlo simulations. Bootstrap extension of the testing procedure is established
in Sect. 5. Section6 contains a simulation study that illustrates the performance of
the asymptotic and bootstrap tests. It numerically emphasizes the advantages and
disadvantages of the proposed procedures. A practical application of the developed
approach to a stock exchange index is presented in Sect. 7. Proofs are given in the
Appendix.

2 Autoregressive Model with Possibly Changed Parameter

Let us consider the following time series model with a possible change in parameter
β after an unknown time point τ :

Yt = βYt−1 + δYt−1I{t > τ } + εt , t = 2, . . . , n, (1)

where β and δ �= 0 are fixed (not depending on n) unknown parameters, 1 < τ =
τn ≤ n is the unknown change point, and ε2, . . . , εn are independent and identically
distributed (iid) random errors satisfying further conditions specified later on. For the
sake of convenience, we have already suppressed the index n in the observations Yt,n
as well as in the parameter τn in the model formulation (1) and whenever possible
later on.

We are going to test the null hypothesis that the autoregression parameter remained
constant for the whole observation period

H0 : τ = n (2)

against the alternative that a change of the autoregression parameter occurred at
some unknown time point τ prior to the latest observed time n, i.e.,

H1 : τ < n, δ �= 0. (3)
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3 Test Statistic for Change in Autoregression

The ratio type test statistics for the simple change in mean were introduced in [3].
We utilize this idea and propose the following ratio type test statistic to detect the
change in the autoregression of order one:

Vn = max
nγ≤k≤n−nγ

max
2≤i≤k

∣
∣
∣

∑i−1

j=1
Y j (Y j+1 − β̂1kY j )

∣
∣
∣

max
k+1≤i≤n−1

∣
∣
∣

∑n−1

j=i
Y j (Y j+1 − β̂2kY j )

∣
∣
∣

, (4)

where 0 < γ < 1/2 is a given constant, β̂1k is an ordinary least squares estimate of the
parameter β based on the observations Y1, . . . ,Yk and β̂2k is an ordinary least squares
estimate of β based on the observations Yk+1, . . . ,Yn . Being more formal, the esti-
mate β̂1k is obtained when regressing the vector of responses y1,k := (Y2, . . . , Yk)�
on the vector of covariates x1,k := (Y1, . . . ,Yk−1)

�. Analogously, the estimate β̂2k is
obtained when regressing the vector of responses yk+1,n := (Yk+2, . . . ,Yn)� on the
vector of regressors xk+1,n := (Yk+1, . . . ,Yn−1)

�.
The motivation for constructing the ratio type test statistic Vn comes from the

linear regression setup (so-called normal equations). so-called normal equations.
Being more specific, the estimate β̂1k is a solution of

x�
1,k

(

y1,k − x1,kb
) = 0

with respect to b ∈ R and the estimate β̂2k is a solution of

x�
k+1,n

(

yk+1,n − xk+1,nb
) = 0

with respect to b ∈ R. Then, one may define partial sums of the weighted residuals
as

x�
1,i

(

y1,i − x1,i β̂1k
)

, i = 2, . . . , k

and
x�
i,n

(

y,n − xi,nβ̂2k
)

, i = k + 1, . . . , n.

Consequently, these partial sums can be used as basis for the maxima of partial
sums in the numerator and the denominator ofVn . Note that, this approach—usage of
the ratio type test statistics—can be generalized for the change of a vector autoregres-
sion parameter of the stationary autoregressive AR(p)-process, when p ≥ 2, using
the notation from [1].

Before deriving asymptotic properties of the ratio type test statistic, we formulate
several stochastic assumptions on the time series model (1):

Assumption 1 β ∈ (−1, 1) \ {0}.
Assumption 2 β + δ ∈ (−1, 1) \ {0}.
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Assumption 3 {εt , t = 0,±1, . . .} are iid random variables having Eεt = 0, Var εt
= σ 2 > 0, and Eε4t < ∞ for all t . Observation Y1 is independent of {ε2, ε3, . . .}.

Assumptions 1, 2, and 3 mean that the time series is a stationary autoregressive
sequence of order one (and not an iid sequence) before and even after the possible
change point.

The limit behavior of the test statistic under the null hypothesis is characterized
by the following theorem.

Theorem 1 (Under null) Suppose that Y1, . . . ,Yn follow model (1), assume that
Assumptions 1 and 3 hold. Then, under null hypothesis (2),

Vn
D−−−→

n→∞ sup
γ≤t≤1−γ

sup0≤u≤t |W(u) − u/tW(t)|
supt≤u≤1

∣
∣W̃(u) − (1 − u)/(1 − t)W̃(t)

∣
∣
, (5)

where {W(x), x ∈ [0, 1]} is a standardWiener process and W̃(x) = W(1) − W(x).

The next theorem describes the test statistic’s behavior under a fixed alternative.

Theorem 2 (Under alternative) Suppose that Y1, . . . ,Yn follow model (1), assume
that alternative (3) holds for some fixed δ �= 0, and τ = [ζn] for some γ < ζ <

1 − γ . Then, under Assumptions 1, 2, and 3,

Vn
P−−−→

n→∞ ∞.

The previous theorem provides consistency of the studied test statistic under the
given assumptions. The null hypothesis is rejected for large values of the ratio type
statistic. Being more formal, we reject H0 at significance level α if Vn > v1−α,γ ,
where v1−α,γ is the (1 − α)-quantile of the asymptotic distribution (5).

4 Asymptotic Critical Values

The explicit form of the limit distribution (5) is not known. The critical values may
be determined by simulations from the limit distribution fromTheorem 1. Theorem 2
ensures that we reject the null hypothesis for large values of the test statistic. We
tried to simulate the asymptotic distribution (5) by discretizing the Wiener process
and using the relationship of a random walk to the Wiener process. We considered
1000 as the number of discretization points within [0, 1] interval and the number of
simulation runs equals to 100,000. discretization points and simulations were tried as
well, but only negligible differences in the critical values were acquired. In Table1,
we present several critical values for γ = 0.1 and γ = 0.2.

Note that, the numerator and denominator in the test statistic Vn can be inter-
changed and such a modified test statistic can still be used for detection of the
change in autoregression (but using different critical values).
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Table 1 Simulated critical values corresponding to the asymptotic distribution of the test statistic
Vn under the null hypothesis

100(1 − α)% 90% 95% 97.5% 99%

γ = 0.1 6.298815 7.293031 8.283429 9.589896

γ = 0.2 4.117010 4.745884 5.368286 6.159252

5 Bootstrap Test Procedure

A possible extension of the proposed methods is bootstrapping. Using the bootstrap
techniques implemented similarly as in [4] for the change in means, one can obtain
critical values in an alternative way compared to the presented asymptotic approach.

A wide range of literature has been published on bootstrapping in the change-
point problem, e.g., [2]. Here, we concentrate on a residual bootstrap, for which
an estimate of the unknown change point in autoregression is prerequisite. One can
estimate the change point τ in a similar fashion as in [5]:

τ̂ = arg max
2≤k≤n

∣
∣
∣
∣
∣
∣

k−1
∑

j=1

Y j (Y j+1 − β̂1nY j )

∣
∣
∣
∣
∣
∣

. (6)

Since the errors εt ’s are supposed to be independent, we base the errors’ estimates
on residuals

ε̂t :=
{

Yt − β̂1τ̂Yt−1, t = 2, . . . , τ̂ ,

Yt − β̂2τ̂Yt−1, t = τ̂ + 1, . . . n.
(7)

We build up the bootstrap test on the resampling with replacement of the residu-
als {̂ε2, . . . , ε̂n}. This provides bootstrapped residuals {̂ε∗

2, . . . , ε̂
∗
n}. Then, the boot-

strapped residuals ε̂∗
t are centered by their conditional expectation 1

n−1

∑n
i=2 ε̂i

yielding

ε̃∗
t := ε̂∗

t − 1

n − 1

n
∑

i=2

ε̂i . (8)

To develop a proper bootstrap version of our test statistics Vn , it is useful to note that,
under the null hypothesis H0, the expressions from the numerator and the denomi-
nator of (4) can be alternatively rewritten as

i−1
∑

j=1

Y j (Y j+1 − β̂1kY j ) =
i−1
∑

j=1

Y jε j+1 −
∑i−1

j=1 Y
2
j

∑k−1
j=1 Y

2
j

k−1
∑

j=1

Y jε j+1 (9)

and
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n−1
∑

j=i

Y j (Y j+1 − β̂2kY j ) =
n−1
∑

j=i

Y jε j+1 −
∑n−1

j=i Y
2
j

∑n−1
j=k Y

2
j

n−1
∑

j=k

Y jε j+1. (10)

Then, the bootstrap test statistic is just a modification of the test statistic Vn , where
the original errors εt appearing in (9) and (10) are replaced by their bootstrap coun-
terparts ε̃∗

t :

V∗
n = max

nγ≤k≤n−nγ

max
2≤i≤k

∣
∣
∣
∣
∣
∣

∑i−1

j=1
Y j ε̃

∗
j+1 −

∑i−1
j=1 Y

2
j

∑k−1
j=1 Y

2
j

k−1
∑

j=1

Y j ε̃
∗
j+1

∣
∣
∣
∣
∣
∣

max
k+1≤i≤n−1

∣
∣
∣
∣
∣
∣

∑n−1

j=i
Y j ε̃

∗
j+1 −

∑n−1
j=i Y

2
j

∑n−1
j=k Y

2
j

n−1
∑

j=k

Y j ε̃
∗
j+1

∣
∣
∣
∣
∣
∣

.

An algorithm for the bootstrap is illustratively shown in Procedure 1.

Procedure 1 Bootstrapping test statistic Vn .
Input: Time series of length n, i.e., sequence of observations {Y1, . . . ,Yn}.
Output: Bootstrap distribution of Vn , i.e., the empirical distribution where proba-

bility mass 1/B concentrates at each of (1)V∗
n , . . . , (B)V∗

n .

1: estimate the change point by calculating τ̂ from (6)

2: compute the residuals ε̂t as in (7)

3: for b = 1 to B do // repeat in order to obtain the empirical distribution

4: {̂ε∗
2, . . . , ε̂

∗
n} resampled with replacement from the original residuals

{̂ε2, . . . , ε̂n}
5: calculate the centered bootstrap residuals {̃ε∗

2, . . . , ε̃
∗
n} via (8)

6: compute bootstrap test statistics (b)V∗
n

7: end for

6 Simulation Study

A simulation experiment was performed to study the finite sample properties of the
asymptotic and bootstrap tests for the change in the AR(1) parameter. In particular,
the interest lies in the empirical size of the proposed tests under the null hypothesis
and in the empirical rejection rate (power) under the alternative. Random samples
(1000 each time) are generated from the time series change-point model (1). The
number of observations is set to n = 200, n = 400, and n = 800 in order to demon-
strate the performance of the testing approach in case of different sample sizes. Two



Asymptotic and Bootstrap Tests … 193

Table 2 Empirical size of the asymptotic (asym) and bootstrap (boot) tests for change in autore-
gression under H0 using γ = 0.1, considering the significance level α. Innovations (innov) are iid
having Student t5 and standard normal N(0, 1) distribution

α 0.100 0.050 0.025 0.010

innov N(0, 1) t5 N(0, 1) t5 N(0, 1) t5 N(0, 1) t5

n =
200

β =
−0.6

asym 0.258 0.342 0.172 0.266 0.126 0.216 0.088 0.152

boot 0.231 0.314 0.157 0.243 0.109 0.192 0.078 0.140

β =
0.2

asym 0.296 0.400 0.206 0.318 0.158 0.234 0.106 0.176

boot 0.273 0.361 0.182 0.290 0.142 0.217 0.095 0.158

n =
400

β =
−0.6

asym 0.218 0.238 0.136 0.160 0.080 0.108 0.046 0.072

boot 0.199 0.207 0.118 0.144 0.069 0.097 0.040 0.063

β =
0.2

asym 0.186 0.220 0.124 0.152 0.086 0.106 0.044 0.072

boot 0.159 0.196 0.108 0.137 0.077 0.094 0.039 0.056

n =
800

β =
−0.6

asym 0.157 0.193 0.098 0.122 0.059 0.081 0.022 0.048

boot 0.141 0.172 0.084 0.103 0.051 0.068 0.019 0.043

β =
0.2

asym 0.135 0.187 0.078 0.115 0.054 0.073 0.023 0.049

boot 0.124 0.175 0.066 0.101 0.049 0.067 0.020 0.042

values of the autoregression parameter are taken into consideration, i.e., β = −0.6
and β = 0.2 to represent stronger negative dependence and weaker positive depen-
dence. The innovations are obtained as iid random variables from a standard normal
N(0, 1) or Student t5 distribution. Simulation scenarios are produced as all possible
combinations of the abovementioned settings. Parameter γ is set to 0.1. The number
of bootstrap replications used is 2000.

To assess the theoretical results under H0 numerically, Table2 provides the empir-
ical sizes (empirical probabilities of the type I error) of the tests for change in the
autoregression parameter, where the significance level is α.

The proportion of rejecting the null hypothesis is getting closer to the theoretical
significance level as the number of time series observations increases. Better per-
formance of the tests under the null hypothesis is observed, when the innovations
have lighter tails (represented by N(0, 1) distribution). Note that, the test statistics
Vn and V∗

n are based on the L2 regression approach. There is no visible direct effect
of the value of the autoregression parameter on the empirical rejection rates based
on this particular simulation study. Generally, the empirical sizes are higher than
they should be, i.e., the tests reject the null hypothesis more often than one would
expect. We may see that comparing to the critical values obtained by simulations
from the asymptotic distribution, the critical values obtained by bootstrapping are
more accurate, because the empirical sizes coming from the bootstrap procedure are
closer to the theoretical ones.
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Table 3 Empirical power of the asymptotic (asym) and bootstrap (boot) tests for change in autore-
gression under H1 using γ = 0.1, considering the significance level α and δ = 0.5. Innovations
(innov) are iid having Student t5 and standard normal N(0, 1) distribution

α 0.100 0.050 0.025 0.010

innov N(0, 1) t5 N(0, 1) t5 N(0, 1) t5 N(0, 1) t5

n =
200

β =
−0.6

τ =
n
2

asym 0.924 0.920 0.888 0.888 0.834 0.848 0.774 0.774

boot 0.935 0.929 0.899 0.897 0.845 0.859 0.793 0.792

τ =
n
3

asym 0.930 0.896 0.894 0.866 0.838 0.830 0.772 0.766

boot 0.944 0.910 0.906 0.885 0.851 0.843 0.788 0.780

β =
0.2

τ =
n
2

asym 0.788 0.828 0.718 0.766 0.640 0.694 0.548 0.602

boot 0.801 0.839 0.729 0.779 0.653 0.708 0.551 0.615

τ =
n
3

asym 0.774 0.784 0.676 0.698 0.596 0.606 0.478 0.508

boot 0.787 0.798 0.688 0.711 0.608 0.619 0.492 0.516

n =
400

β =
−0.6

τ =
n
2

asym 0.984 0.984 0.968 0.958 0.926 0.924 0.856 0.888

boot 0.990 0.989 0.980 0.969 0.939 0.936 0.871 0.901

τ =
n
3

asym 0.992 0.982 0.972 0.962 0.958 0.944 0.924 0.926

boot 0.997 0.986 0.981 0.972 0.970 0.965 0.938 0.939

β =
0.2

τ =
n
2

asym 0.948 0.938 0.906 0.904 0.864 0.852 0.792 0.798

boot 0.961 0.952 0.920 0.919 0.877 0.865 0.804 0.807

τ =
n
3

asym 0.898 0.892 0.826 0.828 0.752 0.758 0.634 0.642

boot 0.909 0.903 0.840 0.837 0.769 0.771 0.645 0.665

n =
800

β =
−0.6

τ =
n
2

asym 0.999 0.999 0.996 0.996 0.992 0.995 0.980 0.981

boot 0.999 0.999 0.999 0.999 0.997 0.998 0.989 0.992

τ =
n
3

asym 0.999 0.999 0.996 0.998 0.995 0.997 0.987 0.988

boot 0.999 0.999 0.999 0.999 0.998 0.999 0.994 0.996

β =
0.2

τ =
n
2

asym 0.996 0.989 0.988 0.978 0.972 0.963 0.938 0.931

boot 0.999 0.994 0.996 0.989 0.985 0.972 0.951 0.950

τ =
n
3

asym 0.981 0.980 0.960 0.959 0.926 0.929 0.860 0.866

boot 0.992 0.991 0.981 0.979 0.944 0.946 0.878 0.881

The performance of both testing procedures under H1 in terms of the empirical
rejection rates is shown in Table3, where the change point is set to τ = n/2 or
τ = n/3. Parameter δ is chosen as δ = 0.5.
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We may conclude that the power of the tests increases as the number of obser-
vations increases, which was expected. The test power drops when switching from
a change point located in the middle of the time series to a change point closer to
the beginning or the end of the time series. Innovations with heavier tails (i.e., t5)
yield slightly smaller power than innovations with lighter tails. Negative dependence
seems to give higher power of the tests based on this simulation study. Generally,
the bootstrap outperforms with respect to power the classical asymptotics in all sce-
narios. So, the bootstrap extension of the developed asymptotic procedure provides
improvement from a numerical and computational point of view.

In contrast to the slightly lower power in case of relatively small sample size and
moderate change in the autoregression parameter, one may try to consider a larger
change in β from −0.8 to 0.8 in case of n = 150. Here, the simulated power, even
in case of the asymptotic version of the test, reaches 0.994 (for α = 0.05). Hence,
for a large change in autoregression, the tests achieve high power. To improve the
computational performance of the tests for detecting the change in autoregression,
longer time series of observations are a general solution.

7 Application to Stock Exchange Index

As an illustrative example of the proposed technique for detecting of the change in
autoregression, we concentrate on the Prague Stock Exchange index called PX Index
(formerly PX50). It is a capitalization-weighted index of major stocks that trade on
the Prague Stock Exchange.

The starting exchange day for the Index PX50 was April 5, 1994. We consider
a time series consisting of daily PX50 values starting from November 16, 1994 up
to September 27, 2001. Only business days were taken into account, providing 1850
observations. The starting date of the observation period was chosen later than the
starting day of the exchange, since onlyweekly (not daily) values of the PX50 records
were available at the beginning. Moreover, the market after opening the exchange
was not as stable as later on. The last observation date was chosen in order to avoid
effects of the attacks on September 11, 2001. The considered time series can be seen
in Fig. 1. The PX50 data can also be downloaded from [6].

We denote the original data of the PX50 index as {Xt }t . First, we transform
the PX50 index by taking into account the differences of logarithms, i.e., Yt =
log(Xt/Xt−1). This transformation can be interpreted as considering logarithms of
daily returns of the PX50 index. Besides that, using this approach stationary time
series before and even after a possible change point are obtained. The transformed
index values are shown in Fig. 3.

Let us assume that Y1, . . . ,Yn follow autoregressive change point model (1). We
are going to decide whether the change in the AR(1) parameter occurred or not based
on the proposed asymptotic and bootstrap tests. The value of the test statistic Vn for
γ = 0.1 is 7.321143, which is larger than the 95%-critical value 7.293031 simulated
from the limit distribution under the null hypothesis as well as the 95%-critical
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Fig. 1 Daily prague stock exchange index (PX50) values fromNovember 16, 1994 to September 27,
2001

value 6.043474 provided by the bootstrap resampling. Therefore, we reject the null
hypothesis of no change in the autoregressive parameter based on both approaches.
The progress of the ratio of the test statistic

Qk =
max
2≤i≤k

∣
∣
∣

∑i−1

j=1
Y j (Y j+1 − β̂1kY j )

∣
∣
∣

max
k+1≤i≤n−1

∣
∣
∣

∑n−1

j=i
Y j (Y j+1 − β̂2kY j )

∣
∣
∣

, nγ ≤ k ≤ n − nγ

is depicted in Fig. 2 together with the asymptotic and bootstrap 95%-critical values.
We can estimate the unknown change point τ as in (6). This leads to τ̂ = 949,

which corresponds to October 7, 1998. The log returns of PX50 together with the
depicted estimated change point for the change in autoregression are displayed in
Fig. 3.

The explanation of the detected change in autoregression is possibly connected
to the Russian financial crisis (also called Ruble crisis) that hit Russia on August 17,
1998. It resulted in the Russian government and the Russian Central Bank devaluing
the ruble and defaulting on its debt. In 1998 influenced by Russian financial crisis,
the index reached its historical bottom on October 8 with 316 points, which is the
first day after the detected change in autoregression of the PX50 log returns.

Moreover, the estimate of theAR(1) parameter before the detected change is β̂1τ̂ =
0.3347 and the estimate of the AR(1) parameter after the detected change is β̂2τ̂ =
0.0538. This coincides with Fig. 3, where the time series seems more ‘correlated’
before the detected change than after it.
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Fig. 2 The values of Qk for the PX50 index data with γ = 0.1. The dashed purple horizontal
line represents the asymptotic 95%-critical value and the solid blue horizontal line stands for the
bootstrap 95%-critical value
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Fig. 3 Log returns of PX50 with the estimated change point τ̂ depicted by the orange vertical line

Finally, we investigated the eligibility of the model. The ACF (autocorrelation
function) and PACF (partial autocorrelation function) plots of the time series before
and after the estimated change point is employed. Both ACF plots go to zero at an
exponential rate, while both PACF plots become zero immediately after the first lag.
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We applied the Ljung–Box test on the residuals of the fitted AR(1) models (before
and after the change). The hypothesis that the residuals in each AR(1) model have
no autocorrelation is rejected in both cases, which suggests that the two series are
stationary.

8 Conclusions

A testing procedure for a possible change in the autoregression parameter is demon-
strated. It detects whether the observed sequence is an AR(1) process, or the time
series is an AR(1) process up to some unknown time point and it is again an AR(1)
process after this unknown time point with a different autoregression parameter.

The asymptotic behavior of the ratio type test statistic for the change in autore-
gression was investigated under the null hypothesis as well as under the alternative.
The theoretical limiting distribution under the null hypothesis provided critical val-
ues for the test, which were obtained by simulation. The main advantage of the ratio
type statistics in hypotheses testing is that they provide an alternative to the non-ratio
type statistics mainly in situations, in which variance estimation is not straightfor-
ward. The regression bootstrap method is investigated as an add-on to the asymptotic
procedure. The simulations reveal that both presented approaches—based on the tra-
ditional asymptotics and on the bootstrapping—keep the significance level under the
null and provide reasonable powers under the alternatives. Nevertheless, the boot-
strap technique seems to be more accurate and outperforms the asymptotics in terms
of power. Finally, an application of the developed procedures on the stock exchange
index data was performed.
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Appendix: Proofs

Proof (of Theorem 1) Let us consider an array

Un,i =
√

1 − β2

σ 2
√
n − 1

Yi−1εi , i = 2, . . . , n

and a filtration Fn,i = σ {ε j , j ≤ i}, i = 2, . . . , n and n ∈ N. Then, {Un,i ,Fn,i } is
a martingale difference array such that

EU 2
n,i = 1 − β2

σ 4(n − 1)
EY 2

i−1ε
2
i = 1

n − 1
.
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Moreover,

n
∑

i=2

U 2
n,i −

n
∑

i=2

EU 2
n,i = 1 − β2

σ 4(n − 1)

n
∑

i=2

(Y 2
i−1ε

2
i − EY 2

i−1ε
2
i ).

Furthermore,

1

n − 1

n
∑

i=2

(Y 2
i−1ε

2
i − EY 2

i−1ε
2
i )

= 1

n − 1

n
∑

i=2

[Y 2
i−1(ε

2
i − σ 2)] + 1

n − 1

n
∑

i=2

(Y 2
i−1 − EY 2

i−1)σ
2.

Since {Y 2
i−1(ε

2
i − σ 2)} is a martingale difference array again with respect toFn,i , we

have under Assumption 3 from the Chebyshev’s inequality that

1

n − 1

n
∑

i=2

[Y 2
i−1(ε

2
i − σ 2)] P−−−→

n→∞ 0.

Similarly, as a consequence of Lemma 4.2 in [1],

1

n − 1

n
∑

i=2

(Y 2
i−1 − EY 2

i−1)
P−−−→

n→∞ 0.

Thus,
n

∑

i=2

U 2
n,i

P−−−→
n→∞ 1. (11)

Next, for any ε > 0,

P
(

max
2≤i≤n

U 2
n,i > ε

)

≤
n

∑

i=2

P
(

1 − β2

σ 4(n − 1)
Y 2
i−1ε

2
i > ε

)

≤ (1 − β2)2

ε2σ 8(n − 1)2

n
∑

i=2

EY 4
i−1Eε4i −−−→

n→∞ 0. (12)

Additionally,

lim
n→∞

[nt]
∑

i=2

EU 2
n,i = lim

n→∞
[nt] − 1

n − 1
= t (13)

for all t ∈ [0, 1].
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According to Theorem 27.14 from [7] for the martingale difference array {Un,i ,

Fn,i }, where the assumptions of this theorem are satisfied due to (11), (12), and (13),
we get

[nt]
∑

i=2

Un,i
D [0,1]−−−→
n→∞ W(t).

Therefore,

1√
n − 1

⎛

⎝

[nt]
∑

i=2

Yi−1εi ,

n
∑

i=[nt]+2

Yi−1εi

⎞

⎠
D 2[0,1]−−−−→
n→∞

σ 2

√

1 − β2

(W(t), W̃(t)
)

, (14)

where W̃(t) = W(1) − W(t).
Let us define

Y j,l = (Y j , . . . ,Yl)
� and ε j,l = (ε j , . . . , εl)

�.

Hence, for the expression in the numerator of Vn , it holds

i−1
∑

j=1

Y j (Y j+1 − β̂1kY j ) = Y�
1,i−1

(

Y2,i − Y1,i−1β̂1k
)

= Y�
1,i−1

(

Y1,i−1β + ε2,i − Y1,i−1β − Y1,i−1
(

Y�
1,k−1Y1,k−1

)−1
Y�

1,k−1ε2,k

)

= Y�
1,i−1ε2,i − Y�

1,i−1Y1,i−1
(

Y�
1,k−1Y1,k−1

)−1
Y�

1,k−1ε2,k . (15)

Similarly, for the expression in the denominator of Vn ,

n−1
∑

j=i

Y j (Y j+1 − β̂2kY j )

= Y�
i,n−1εi+1,n − Y�

i,n−1Yi,n−1
(

Y�
k+1,n−1Yk+1,n−1

)−1
Y�

k+1,n−1εk+2,n. (16)

Lemma 4.2 in [1] gives

sup
γ≤t<1

1

[nt]

∣
∣
∣
∣
∣

[nt]
∑

s=1

(Y 2
s − EY 2

s )

∣
∣
∣
∣
∣
= oP(1) (17)

and

sup
0<t≤1−γ

1

[n(1 − t)]

∣
∣
∣
∣
∣

n−1
∑

s=[nt]+1

(Y 2
s − EY 2

s )

∣
∣
∣
∣
∣
= oP(1), (18)
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as n → ∞, where [nt] and [n(1 − t)]mean truncated number to zero decimal digits.
Finally, (14) together with (15), (16), (17), and (18) implies

1√
n − 1

⎛

⎜
⎜
⎜
⎜
⎝

sup
0≤u≤t

∣
∣
∣
∣
∣

[nu]−1∑

j=1
Y j (Y j+1 − β̂1[nt]Y j )

∣
∣
∣
∣
∣

sup
t≤u≤1

∣
∣
∣
∣
∣

n−1∑

j=[nu]+1
Y j (Y j+1 − β̂2[nt]Y j )

∣
∣
∣
∣
∣

⎞

⎟
⎟
⎟
⎟
⎠

D 2[γ,1−γ ]−−−−−−→
n→∞

σ 2

√

1 − β2

⎛

⎝

sup
0≤u≤t

|W(u) − u/tW(t)|
sup
t≤u≤1

∣
∣W̃(u) − (1 − u)/(1 − t)W̃(t)

∣
∣

⎞

⎠ .

Then, the assertion of the theorem directly follows. �

Proof (of Theorem 2) Let us take k = τ + 2, k = [ξn] for some ζ < ξ < 1 − γ and
i = τ + 1. Then,

τ
∑

j=1

Y j (Y j+1 − β̂1(τ+2)Y j )

= Y�
1,τε2,τ+1 − Y�

1,τY1,τ
(

Y�
1,τ+1Y1,τ+1

)−1
Y�

1,τ+1ε2,τ+2 − Y�
1,τY1,τ δ.

According to the proof of Theorem 1, as n → ∞,

1√
n − 1

(

Y�
1,τε2,τ+1 − Y�

1,τY1,τ
(

Y�
1,τ+1Y1,τ+1

)−1
Y�

1,τ+1ε2,τ+2

)

= OP(1).

Lemma 4.2 from [1] gives

1√
n − 1

∣
∣Y�

1,τY1,τ δ
∣
∣

P−−−→
n→∞ ∞.

Now,

1√
n − 1

max
2≤i≤k

∣
∣
∣
∣
∣
∣

i−1
∑

j=1

Y j (Y j+1 − β̂1kY j )

∣
∣
∣
∣
∣
∣

P−−−→
n→∞ ∞.

For τ < k = [ξn], the denominator in (4) divided by
√
n − 1 has the same distri-

bution as under the null hypothesis and it is, therefore, bounded in probability. It
follows that the maximum of the ratio has to tend in probability to infinity as well,
while n → ∞. �
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Distance Between VARMA Models
and Its Application to Spatial Differences
Analysis in the Relationship
GDP—Unemployment Growth Rate
in Europe

Francesca Di Iorio and Umberto Triacca

Abstract In this paper, a novel distance measure for evaluating the closeness of two
vector autoregressive moving average models is presented and its main properties
are discussed. The proposed distance is used to investigate the presence of spatial
differences in the dynamic link between unemployment rate variation and GDP
growth in some European Union countries.

Keywords AR metric · Distance · Unemployment · GDP · VARMA models

1 Introduction

Vector autoreressive moving average (VARMA) models are a class of models that
are designed to capture joint movements and dynamic patterns in an array of multiple
variables. These models have been applied in various research fields. Their success is
mainly based on the fact that they are considered to be data-driven, i.e., the underlying
structure in the estimated model is determined by the data. However, there is no
canonicalway tomeasure the dissimilarity between twodifferentVARMAs.Theneed
for such a distancemeasure arises in both clustering and classification of multivariate
time series. In this paper, we propose a distance measure for evaluating the closeness
of twoVARMAmodels andwe use such notion of distance to investigate the presence
of spatial differences in the dynamic link between unemployment rate variation and
economic growth in some European Union economies.
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The rest of paper is organized as follows. Section 2 introduces a distance measure
between pairs of VARMAmodels. In Sect. 3, we present the application. Finally, we
conclude in Sect. 4.

2 A Distance Measure Between VARMA Models

Let us remind that a k-dimensional process
{
yt = (y1t , . . . ykt )

′ ; t ∈ Z
}

is a
VARMA(p, q) process if it can be represented as

ΦΦΦ(L)yt = ΘΘΘ(L)ut (1)

where
{
ut = (u1t , . . . ukt )

′ ; t ∈ Z
}
is a k-variate white-noise process with zero

mean vector and nonsingular covariance matrix ΣΣΣu. The (k × k) matrices ΦΦΦ(L)

and ΘΘΘ(L) have finite polynomial elements in lag operator L and are assumed to
be of full rank. They can be expressed as ΦΦΦ(L) = I − ΦΦΦ1L − · · · − ΦΦΦ pL p and
ΘΘΘ(L) = I − ΘΘΘ1L − · · · − ΘΘΘq Lq where I is the (k × k) identity matrix and {ΦΦΦ i } and
{ΘΘΘ i } are (k × k) matrices of parameters. It is assumed that ΦΦΦ(z) and ΘΘΘ(z) have no
common factors. Process (1) is stationary if the roots of the determinantal equation det
[ΦΦΦ(z)] = 0 are outside the unit circle, and invertible if the roots of determinantal
equation det [ΘΘΘ(z)] = 0 are outside the unit circle.

In this paper, we assume that

det [ΦΦΦ(z)] �= 0, |z| < 1 for z ∈ C (2)

It is important to note that the condition (2) allows for nonstationarity. However, it
excludes explosive processes from our consideration.

Univariate Models Implied by a VARMA Model

In this subsection, following [9], we show that a VARMAprocess implies a particular
specification of its individual elements in terms of univariate ARMA processes. We
first observe that

adj [ΦΦΦ(L)]ΦΦΦ(L) = det [ΦΦΦ(L)] I

where adj [ΦΦΦ(L)] is the adjoint of the matrixΦΦΦ(L). Then, premultiplying both sides
of (1) by adj [ΦΦΦ(L)], we obtain the autoregressive final form,

det [ΦΦΦ(L)] yt = adj [ΦΦΦ(L)]ΘΘΘ(L)ut .

Consequently, the marginal model for the i th element of yt is given by
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det [ΦΦΦ(L)] yit = Bi (L)ut (3)

whereBi (L)denotes the i th rowof thematrixB(L) = adj [ΦΦΦ(L)]ΘΘΘ(L). As the right-
hand side of (3) is the sum of k finite moving averages, it can also be represented as
a finite moving average θi (L)εi t , where εi t is a white noise process, such that

θi (L)εi t = Bi (L)ut (4)

The coefficients of the polynomial θi (L) are found by equating the autocovariances in
the two representations. In particularwe obtain a nonlinear systemof equationswhere
the unknowns are the θi (L) coefficients and the variance of the εi t . The invertibility
condition ensures a unique solution. Considering (3) and (4), the univariate ARMA
models implied by (1) are given by

det [ΦΦΦ(L)] yit = θi (L)εi t .

Thus, we have yit ∼ ARMA(p∗, q∗) i = 1, ..., k, where it is well known that p∗ ≤
kp and q∗ ≤ (k − 1)p + q. We note that the innovations in the different ARMA
models are correlated and, in absence of any cancelation, all the univariate models
have identical autoregressive parts.

The Proposed Distance

In the previous subsection, we have shown that a set Ay of k invertible univariate
ARMA processes corresponds to every k-variate VARMA process, y. We note that
any univariate process yi ∈ Ay has an (possibly infinite order) AR representation,

yit =
∞∑

l=1

πil yit−l + εi t .

Given two invertible ARMA processes, x , y, following [4], we consider the quantity

d(x, y) =
[ ∞∑

l=1

(πxl − πyl)
2

] 1
2

.

as a measure of distance between the two invertible ARMA processes. Thus, in the
class of the k-variate VARMA processes, Vk , could seem natural to consider the
following definition of dissimilarity between two VARMA processes.

Definition 1 Let x and y be two VARMA models in Vk ; then their distance D(x, y)

is given by the sum of the distances between the implied ARMAmodels component
by component as follows:
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D(x, y) =
k∑

i=1

d(xi , yi ), x, y ∈ Vk (5)

where xi and yi (i = 1, ..., k) are the univariate invertible ARMA processes implied
by k-variate VAR processes x and y, respectively. �

Example 1 For illustrative purposes, consider two VARMA(1, 1) processes, y and
x, respectively, defined by the following equations:

[
1 − 0.2L 0.3L
−0.5L 1 − 0.7L

] [
y1t
y2t

]
=

[
1 − 0.2L 0.8L
0.3L 1 − 0.5L

] [
a1t
a2t

]
(6)

with covariance error matrix Σa = I and
[
1 − 0.6L −0.5L
0.5L 1 + 0.3L

] [
x1t
x2t

]
=

[
1 + 0.2L −0.7L
−0.8L 1 + 0.3L

] [
b1t
b2t

]
(7)

with covariance error matrix Σb = I . The univariate models implied from (6) are
given by

(
1 − 0.9L + 0.29L2) y1t = ε1t − 0.88ε1t−1 + 0.04ε1t−2 with σ 2

ε1
= 1.25,

(
1 − 0.9L + 0.29L2

)
y2t = ε2t − 0.51ε2t−1 + 0.28ε2t−2 with σ 2

ε2
= 1.79.

The univariate models implied from (7) are

(
1 − 0.3L + 0.07L2

)
x1t = e1t + 0.47e1t−1 − 0.32e1t−2 with σ 2

e1 = 1.06,

(
1 − 0.3L + 0.07L2

)
x2t = e2t − 0.29e2t−1 − 0.06e2t−2 with σ 2

e2 = 2.71.

The distance between these VARMA processes is equal to D(y, x) = 2.03. �

It is important to stress that contrary to the distance d(xi , yi ) for univariate ARMA
model, the distance D(x, y) depends on variance matrices of the considered pro-
cesses.
Example 1-continued. An illustration of this aspect can be see considered for the
bivariate process (7) the following covariance matrix:

Σb = E

([
b1t
b2t

] [
b1t b2t

]) =
[
1 1
1 1

]

In this case, the implied univariate models become

(
1 − 0.3L + 0.07L2) x1t = e1t + 0.30e1t−1 − 0.40e1t−2
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(
1 − 0.3L + 0.07L2

)
x2t = e2t − 1.41e2t−1 + 0.46e2t−2

and then the new distance between processes (6) and (7) is D(y, x) = 4.55. �
The next proposition provides some main properties of the distance D.

Proposition Let Vk be the class of the k-variate VARMA processes. The function
D : Vk × Vk → R defined as

D(v1, v2) =
k∑

i=1

d(v1i , v2i ) v1, v2 ∈ Vk,

satisfies the following properties:

i. Nonnegativity: D(v1, v2) ≥ 0 ∀ v1, v2 ∈ Vk;
ii. Symmetry: D(v1, v2) = D(v2, v1) ∀ v1, v2 ∈ Vk;
iii. Triangularity: D(v1, v2) ≤ D(v1, v3) + D(v3, v2) ∀ v1, v2, v3 ∈ Vk;
iv. v1 = v2 implies D(v1, v2) = 0 ∀ v1, v2 ∈ Vk .

Proof Evidently, D(v1, v2) is a nonnegative function. Further, since d(v1i , v2i ) =
d(v2i , v1i ) for i = 1, ..., k, we have that

D(v1, v2) =
k∑

i=1

d(v1i , v2i ) =
k∑

i=1

d(v2i , v1i ) = D(v2, v1) v1, v2 ∈ Vk .

and henceD(v1, v2) is a symmetric function. In order to show the triangle inequality,
we first note that

d(v1i , v2i ) ≤ d(v1i , v3i ) + d(v3i , v2i ),

where v3i is the i th univariate invertible ARMA component implied by the k-variate
VARMA processes v3. Thus

D(v1, v2) ≤
k∑

i=1

[d(v1i , v3i ) + d(v3i , v2i )] =
k∑

i=1

d(v1i , v3i ) +
k∑

i=1

d(v3i , v2i )

= D(v1, v3) + D(v3, v2).

Finally, it is clear that if v1 = v2, we have that v1i = v2i for i = 1, ..., k and hence
d(v1i , v2i ) = 0 for i = 1, ..., k. It follows that D(v1, v2) = 0. �

Using the proposed distance (5), we can introduce the notion of norm of aVARMA
process.

Definition 2 Let y be a VARMA model in Vk , defined by the equation
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ΦΦΦ(L)yt = ΘΘΘ(L)ut .

The norm of y is given by ‖y‖ = D(y, u), where u = {ut }. �

Example 2 Consider, for instance, the VARMAprocess x given by equation (7). The
norm of this process is ‖x‖ = 1.63. �

The norm of a VARMA process is defined as the distance between the process and
its innovation. We observe that the norm of the k-variate process v ∈ Vk , depends on
the sequences {π1i }, ..., {πki }. Since these sequences contain all information about
the stochastic dependence structure of the process v, we can interpret the norm of a
VARMA process like a measure of the stochastic dependence structure of the pro-
cess. To illustrate this point, we consider the following VARMA process y given by
equation (8):

Example 3

[
1 − 0.1L 0

0 1 + 0.1L

] [
y1t
y2t

]
=

[
1 + 0.3L 0.2L

0 1 + 0.2L

] [
a1t
a2t

]
(8)

with covariance error matrix Σa = I . In process (8), there is less “structure” than
in the process (7), in fact its the norm ‖y‖ = 0.40, is less than to the norm of the
process (7) ‖x‖ = 1.63. �

We conclude this subsection by presenting an example useful to motivate our
distance. In particular, we consider the following VARMA(1, 1) processes given in
[7] (p. 323):

Example 4

[
x1t
x2t

]
−

[−0.8 −2
0 0

] [
x1t−1

x2t−1

]
=

[
a1t
a2t

]
−

[−0.5 0
0 0

] [
a1t−1

a2t−1

]

[
y1t
y2t

]
−

[−0.8 −2 + η

0 ω

] [
y1t−1

y2t−1

]
=

[
a1t
a2t

]
−

[−0.5 η

0 ω

] [
a1t−1

a2t−1

]

A simple way to compare them could be through a parametric approach, consider-
ing the Euclidean distance between the vectors [−0.8,−2, 0, 0,−0.5, 0, 0, 0]′ and
[−0.8, −2+η, 0, ω, −0.5, η, 0, ω]′, given by

δ = [
2η2 + 2ω2

]1/2

We note that these processes are equal for any nonzero ω and η, but δ > 0. Thus, we
reach a wrong conclusion. Instead, using distance (5) we correctly conclude that the
distance between these two processes is 0. �
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Two remarks are in order (i) the distance d(x, y) for the univariate ARMAmodel
is a special case of D(x, y) for k = 1; (ii) given the same set of initial values, if
D(x, y) = 0, then the corresponding VARMA models x and y produce the same
forecasts. However, unlike the distance d(x, y), the vice-versa is not true, since the
distance (5) depends on the covariancematrices of the error terms. As a consequence,
two VARMAs with the same parameters may have distance different from zero if
they have different covariance error matrices.

Distance Estimation Procedure

The estimation of the proposed distance is based on usual VARMAmodel estimates
carried on two datasets. It must be underlined that the theoretical results illustrated
in the previous sections remain valid even if the estimated VARMA models in the
two datasets do not have the same lag order. This is because it is a matter of fact that
a smaller order VARMA process can be considered as a restriction of larger one.

In order to obtain an estimate of D(x, y) we use the following procedure:

Procedure

1. Estimate on two observed data x and y the suitable VARMA(p, q) models,
obtaining the estimated parameter vectors ϑx = (φ1, . . . , φpx ; θ1, . . . , θqx ) and
ϑy = (φ1, . . . , φpy ; θ1, . . . , θqy ), where possible px �= py and qx �= qy ;

2. Using the estimated parameters ϑx and ϑy from step 1 obtain the implied ARMA
models for the univariate processes xi and yi (i = 1, ..., k);

3. Evaluate theAR(∞) representation truncated a some suitable lag p̃ of theARMA
models in step 2 obtained the estimated autoregressive coefficients πxi l and πyi l ;

4. Using the coefficients πxi l and πyi l of the AR(∞) representation from step 3
evaluate the estimate distance d̂(xi , yi ) (i = 1, ..., k);

5. Estimate the VARMA distance D(x, y) using D̂(x, y) = ∑k
i=1 d̂(xi , yi ).

3 Spatial Variability of the Relationship Between
Unemployment and GDP

The linkage between the rate of change in GDP and change in unemployment
(the Okuns Law) is one of the most studied issue of empirical macroeconomics
(see [1, 5, 8], among others).

The aim of this section is to investigate the presence of spatial differences in the
dynamic linkage between unemployment (U) and Gross Domestic Product (GDP) in
thirteen European Union economies: Belgium, Denmark, Germany, Ireland, Greece,
Spain, France, Italy, Netherlands, Austria, Portugal, Finland, andUK. The used quar-
terly data, from Eurostat database, are the Gross Domestic Product at market prices,
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Table 1 Missing data

Missing data

Be 1998: Q1, Q3, Q4

Dk 1998: Q1, Q3, Q4

Ge 1998, 1999, 2000, 2001, 2002, 2003, 2004: Q1,
Q3, Q4

Ei 1998: Q1, Q3, Q4; 1999: Q1

Fr 1998, 1999, 2000, 2001, 2002: Q1, Q3, Q4

Nl 1998, 1999: Q1, Q3, Q4

Au 1998: Q1, Q3, Q4

Uk 1998: Q1, Q3, Q4

chain-linked volumes index with 2010 = 100 seasonally and calendar adjusted (the
namq_10_gdp Eurostat dataset) and the Total Unemployment rates (the lfsq_urgan
Eurostat dataset). The sample period is first quarter 1998—fourth quarter of 2016
(1998Q1–2016Q4). There are some missing values for the Unemployment rates at
the beginning of the period for some countries, as reported in Table 1.

The missing data are imputated using backcasting, while the Total Unemploy-
ment rates are seasonal adjusted using TRAMO-SEATS. Figures 1 and 2 describe
the general behavior of the GDP and the seasonally adjusted Unemployment rates.
To get more legible graphics, the countries were divided into two graphs with the
same scale. The considered economies share more or less the same story before
and after the 2009 crisis. We observe a downward trend for Unemployment until
the 2008 followed by an increasing path and a upward trend for GDP until 2008
and after a growth slowdown, or a fall or a sharp fall as for Greece. A special
case is given by Ireland whose GDP shows from 2015 an incredible increase. This
is the result of several corporate actions undertaken by some major multinational
company based in the country (see for more details: https://www.oecd.org/std/
na/Irish-GDP-up-in-2015-OECD.pdf and http://ec.europa.eu/eurostat/documents/
24987/6390465/Irish_GDP_communication.pdf).

Using the Augmented Dickey–Fuller unit root test with constant (asymptotic p-
value are reported in Table 2) and with lags selection according to the Bai-Ng test,
we verified that all the GDP and Unemployment series in logarithms are I(1), with
the only exception of the Unemployment of Belgium. Then, we decided to consider
the relationship between the rates of growth of unemployment rate and GDP. The
usual preliminary analysis on growth rates shows some of the series have outliers,
in particular, in 2008:Q2-2009:Q2, that have been corrected using TRAMO. Lags
selection procedure for the VARs, based on BIC criteria, choose just one lag for
all countries. The relationship is thus analyzed for all countries through a bivariate
VAR(1) model for the variables Δlog(U ) and Δlog(GDP).

We apply the procedure described above evaluating proposed distance (5) between
any pair of countries, setting p̃ = 15, obtaining the matrix of distances reported in

https://www.oecd.org/std/na/Irish-GDP-up-in-2015-OECD.pdf
https://www.oecd.org/std/na/Irish-GDP-up-in-2015-OECD.pdf
http://ec.europa.eu/eurostat/documents/24987/6390465/Irish_GDP_communication.pdf
http://ec.europa.eu/eurostat/documents/24987/6390465/Irish_GDP_communication.pdf
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Fig. 1 Gross Domestic Product at market prices, chain-linked volumes index 2010 = 100, seasonal
adjusted

Fig. 2 Total unemployment rates, seasonal adjusted

Table 2 ADF asymptotic p-value

series Be Dk Ge Ire Gre Es Fra Ita NL Au Por Fin Uk

log(U) 9.e−05∗∗∗ 0.21 0.98 0.47 0.61 0.49 0.17 0.46 0.33 0.35 0.55 0.06 0.42

log(Gdp) 0.14 0.52 0.77 0.84 0.10 0.48 0.17 0.11 0.25 0.31 0.05 0.07 0.58
∗∗∗Statistical significance at 1%
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Fig. 3 Two-dimensional scatterplot of countries obtained by multidimensional scaling

Table 3.1 A useful way of visualizing the information contained in a distance matrix
between units is to conduct a MultiDimensional Scaling (MDS) analysis.2 Given the
matrix of distances among VARs presented in Table 3, classical MDS produces the
map reported in Fig. 3.

The analysis by MDS of the distance matrix shows that we can identify the fol-
lowing clouds of similarity:

1. France, Germany, Portugal;
2. Italy, Spain;
3. Austria, Denmark

The other countries reveal peculiar paths. This is true, in particular, for Belgium
and Netherlands. The relative proximity between Italy and Spain seems to be over-
whelmed by the recent dynamics of both the labor market and GDP resulting from
the crisis that has hit Europe since 2009. In the sameway, the well-known situation in
Greece explains its position in the figure. It seems more difficult to explain, however,
the position of Portugal near to Germany and France, even if a graphical inspection
reveals a similar general dynamic in the GDP growth rate before 2009. Belgium and
Netherlands seem to be very far each other; also, in this case, an explanation can be
found in the peculiar political situation experimented by Belgium when the political

1Full results concerning the estimation of the VARmodels are available from the authors on request.
2See [3]. From a nontechnical point of view, the purpose ofMDS is to provide a visual representation
of the pattern of given distances among a set of objects. Given a matrix of distances between various
objects, MDS plots the objects on a map such that those objects that are very similar to each other
are placed near each other on the map, and those objects that are very different from each other are
placed far away from each other on the map. Present elaboration is conducted by the MDS package
in Gretl.
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Fig. 4 Cluster analysis on multidimensional scaling distance

parties were not able to form a government for at least 2 years starting from June
2010. The overall conclusion is that despite the ongoing integration within the EU,
there are still significant differences among countries regarding the dynamic link
between unemployment rate variation and economic growth.

As a robustness check, we have also conducted a cluster analysis to identify
homogenous subgroups of implied ARMAmodels. Results obtained using complete
linkage are in Fig. 4 that seems to sustain the naive conclusion based on Fig. 3.

4 Conclusions

There are many circumstances in which is important to compute a distance measure
for multivariate time series. In this paper, a novel notion of distancemeasure between
pairs of VARMA models has been introduced and its main properties have been
discussed.We have used such notion to investigate the presence of spatial differences
in the dynamic linkage between unemployment rate variation and economic growth
in 13 European Union economies. The analysis reveals that, despite the ongoing
integration within the EU, many countries have special positions of their own.
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Copulas for Modeling the Relationship
Between Inflation and the Exchange Rate

Laila Ait Hassou, Fadoua Badaoui, Okou Guei Cyrille, Amine Amar,
Abdelhak Zoglat and Elhadj Ezzahid

Abstract Copulas are useful tools for formalizing the dependence structure between
variables. They have proven to be very valuable in economics, where the dependence
plays a key role. In this chapter, we use copulas to analyze the dependence between
inflation and US/Euro exchange rates in the Euro area, during different periods. We
first explore the dependence between the variables using a nonparametric approach.
Then, we select an appropriate parametric copula for each period. Results confirm the
sensibility of copulas to macroeconomic fluctuations that occur during the analyzed
periods.
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1 Introduction

Inflation rate is a key macroeconomic indicator. It is defined as a persistent increase
in the general level of prices. This increase results in a reduction of the value of
money (ILO, IMF, OECD, UNECE, Eurostat, and The World Bank, [1]). One of the
highest priorities of governments and central banks is price stability. Low inflation
promotes economic growth and full employment. High inflation erodes international
competitiveness and reduces the value of saving. To control prices, central banks
take into consideration the relationship between inflation and severalmacroeconomic
variables like Gross Domestic Product (GPD), interest rate, and exchange rate.

Economic theory provides conflicting views about the links between inflation and
other macroeconomic variables. Empirical research attempts to determine the nature
of this relationship depending on countries and periods. Chollete and Ning [2] found
a negative dependence between output and prices. Munyeka [3] detected a positive
dependence between inflation and real GDP. Fitzgerald and Nicolini [4] documented
a negative linear dependence between unemployment and inflation.

The exchange rate is among the macroeconomic variables that are significantly
linked to inflation. It directly influences the latter through imported final goods
prices, or indirectly via imported intermediate goods prices used in domestic pro-
duction. Many studies discussed the effect of exchange rate fluctuations on inflation.
Arize et al. [5] conducted an empirical investigation to study the links between the
variations of exchange and inflation rates in 82 countries. Using a linear regression
approach, they showed that exchange rate variability has a statistically significant
effect on inflation variability. Naz et al. [6] showed that high exchange rate volatility
contributes to a higher exchange rate pass-through to inflation. Xiongtoua and Sri-
boonchitta [7] used a copulas-based GARCH to analyze the dependence between the
exchange and inflation rates in Laos. They found that the two variables have strong
nonlinear and positive correlation. Kano [8], Burstein and Gopinath [9], and Engel
[10] showed the existence of a relationship between exchange rate and inflation.

This chapter aims to explain the relationship between US/Euro exchange rate and
inflation in Euro area during three different periods that cover crisis and noncrisis
economic phases. The remaining of this chapter is organized as follows. The second
section provides a theoretical background and the methodology. The third section is
devoted to the presentation of the data used to illustrate our approach, the results,
and a discussion. The fourth section contains a brief conclusion.

2 Methodology and Theoretical Background

Economic data are often multidimensional and require a joint modeling of sev-
eral variables. The relationship between variables can be modeled using families of
bivariate distributions. It is common, for some convenience reasons, to use bivariate
distributions with marginals belonging to a same family. A classical example of such
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a situation is the use of bivariate normal distribution family because it is widely stud-
ied in the literature and easy to apply. This approach is not suitable for the general
case where there is no condition on the marginals.

The copula approach enables overcoming this difficulty because it allows to link
any two marginals to their bivariate distribution. In other words, knowing only the
marginal distributions of two random variables, we theoretically can construct their
joint distribution. This property of copulas makes them widely popular and very
attractive in statistics. Copulas have been successfully applied in risk management
(Kole et al. [11]), finance and insurance (Grégoire et al. [12], and Genest et al. [13]),
and actuarial science (Frees and Valdez [14]). The books by Joe in [15] and Nelsen
[16] are excellent references on copulas theory.

A Brief Aperçu of Copulas

Given two random variables X and Y with continuous marginals F and G, the Sklar
theorem (Sklar [17]) states that the joint distribution function H (., .) of (X ,Y ) can
be written in terms of a unique function C(F(.),G(.)):

H (x, y) = C(F(x),G(y)). (1)

The function C(., .) is known as the copula of (X ,Y ). It describes how H is coupled
with the marginal functions F and G.

The literature is rich in copula families. For the reader convenience, we present
below some of them that are very common and will be used in this work.

Elliptical copulas: They are very appropriate to capture symmetric dependence.
Gaussian and t-copulas are famous examples of elliptical copulas. The main advan-
tage of a t-copula is that it can capture tail dependence.

Archimedean copulas: They are adequate in the case of tails dependence. The
Clayton, Frank, and Gumbel copulas are Archimedean. The Frank copula is sym-
metric while the Clayton andGumbel copulas are asymmetric. As the Clayton copula
exhibits greater dependence in the lower tail, the Gumbel copula captures upper tail
dependence.

Table1 provides the expressions of copulas employed in this chapter.

Choosing the Appropriate Copula

To identify the best copula fitting a given set of data, we proceed in two steps. First, we
use a nonparametric approach (Chi and K-Plots) to identify the families of candidate
copulas. Such tools are available as packages in the statistical software R. Then, to
select the most appropriate copulas among those families, we use a semi-parametric
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Table 1 Some examples of copulas

Copula name C(u, v) expression

Gumbel exp[−((− log(u))θ + (− log(v))θ )
1
θ ], θ ≥ 1

Clayton max([u−θ + v−θ − 1]− 1
θ , 0), 0 �= θ ≥ −1

Frank − 1
θ
ln(1 + (exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1 ), θ �= 0

Gaussian ΦΣ(Φ−1(u),Φ−1(v)), |θ | ≤ 1

Student tΣ,ν(t−1
ν (u), t−1

ν (v)), |θ | ≤ 1

Plackett (1+(θ−1)(u+v))−
√

(1+(θ−1)(u+v))2−4uvθ(θ−1)
2(θ−1) ,

1 �= θ > 0

Galambos uv exp(((− log(u))−θ + (− log(v))−θ )
−1
θ ),

θ > 0

approach, based on Deheuvels copula and Mean Square Error, and a parametric
approach based some Goodness-of-fit tests.

Let X and Y be two random variables, F and G their marginal distributions, andH
their joint distribution. Consider (Xi,Yi)1≤i≤n a random sample from the distribution
H . We denote by Fn, Gn, andHn the empirical distribution functions of the X, Y, and
the couple (X, Y), respectively

Fn(Xi) = rank(Xi)

n
, Gn(Yi) = rank(Yi)

n
, and Hn(Xi,Yi) = rank(Xi,Yi)

n

For simplicity, we note hereafter Fn(Xi), Gn(Yi), and Hn(Xi,Yi), respectively, by Fi,
Gi, and Hi.

The Chi-Plot The Chi-Plot is a graphical tool that helps localizing the dependence
between two variablesX and Y . Fisher and Switzer [18, 19] present Chi-Plot as a plot
of the pairs (λi, χi), where χi is the measure of failure of the bivariate distribution
function to factorize into a product of marginal distribution functions at the sample
argument (Xi,Yi), and λi is the distance from (Xi,Yi) to the bivariate median. The
χi and λi are defined by

λi = 4 sign(˜Fi ˜Gi)max(˜Fi
2
, ˜Gi

2
) and χi = Hi − Fi ∗ Gi√

Fi(1 − Fi)Gi(1 − Gi)
, (2)

where ˜Fi = Fi − 0.5 and ˜Gi = Gi − 0.5.
To help assess random variation in the observed values of χ , Fisher and Switzer

[18, 19] built confidence intervals of the form ±cp
√
n. They also gave approximate

values of the cp’s for different values of p ∈ [0, 1]. In the case of independence,
we expect that p × 100% of the pairs (λi, χi) will be uniformly scattered inside the
interval [−cp

√
n, cp

√
n ]. In the case of a positive dependence, the pairs points go

scattered above the band, and conversely for the case of negative dependence.
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TheKendall (K-Plot) Similarly to the concept of QQ-plot, used for assessing graph-
ically the adequacy of a fitting distribution, Genest and Boies [20] propose the K-Plot
a visual tool for assessing dependence in a bivariate random sample The K-Plot is
a rank-based procedure for the detection of dependence. The procedure consists in
representing the pairs (Wi,n,Hi) for i ∈ [1, n], where Wi,n is the expectation of the
ith order statistic of a n random sample size. K0 is a conditional distribution, issued
from H , under independence of X and Y . The form of the bivariate distribution K0

is given by
K0(w) = P(UV ≤ w) = w − w log(w) (3)

whereU and V are independent uniform random variables on the interval [0, 1], and
Wi,n is given by

Wi,n = n(n − 1)!
(i − 1)!(n − i)!

∫ 1

0
w{K0(w)}(i−1){1 − K0(w)}(n−i)dK0(w) (4)

The closer is the K-Plot to the 45◦ line, the weaker is the association between the
random variables.

Deheuvels Empirical Copula and Mean Squared Error (MSE) The Chi-Plot and
K-Plot can provide awide family of candidate copulas that fit the data. To reduce such
a family, we resort to a semi-parametric tool. This approach compares a candidate
copula Cθj to the empirical copula Cn, introduced by Deheuvels [21], using the mean
squared error

SMEn(Cθj ) = 1

n

n
∑

i=1

[

Cn(Fi,Gi) − Cθj (Fi,Gi)
]2

,

where Cn is defined byHn (as Sklar theorem states), and θj = θ0 + j ∗ � for 1 ≤ j ≤
m with � denoting the step variation. The best copula Cθj to fit the sample is the one
that minimizes SMEn(Cθj ).

To confirm the nonparametric approach choice, we perform some nonparametric
goodness-of-fit tests.

Goodness-of-Fit Tests In this section, we present the Cramer–von Mises and
Kolmogorov–Smirnov tests that we used to select the appropriate copula to fit the
data.We give below their expressions based on Kendall’s transformation as proposed
by Genest et al. [22].

Sn =
∫ 1

0
|Kn(t)|2∂Kθn(t), and Tn = sup

0≤t≤1
|Kn(t)|,

where Kn(t) = √
n(Kn(t) − Kc(t)) with Kn(t) denoting, respectively, the empirical

Kendall distribution, andKC(t) = P(C(U, V ) ≤ t) denoting the Kendall distribution
corresponding to copula C(u, v).
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Forecasting

Once the copula C(., .) modeling the dependence between variables X and Y is
identified, forecasting becomes a straightforward operation. For instance, using the
conditional copula CX , we can forecast Y given X . The conditional copula CX is
defined as

P[Y ≤ y|X = x] = P[V ≤ v|U = u] = ∂C(u, v)

∂u
:= CX (F(x),G(Y )), (5)

where V = G(Y ), v = G(y), U = F(X ), and u = F(x).
For τ ∈ [0, 1] , the τ -th conditional quantile function given Xt = x, denoted by

QX (τ |x), is defined by

QX (τ |x) = G−1(C−1
X (F(x), τ )), (6)

where ϕ−1 denotes the inverse function of a function ϕ.

3 Results and Discussion

The proposed methodology is applied to monthly inflation and US/Euro exchange
rate in the Euro area over different periods. These data are available at the European
Central Bank (https://www.ecb.europa.eu).We apply the methodology to model data
over different periods (see Fig. 1) to pinpoint the sensitivity of copulas to macroeco-
nomic changes.

Fig. 1 The evolution of inflation in the Euro area from Apr. 2000 to Dec. 2016

https://www.ecb.europa.eu
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Fig. 2 The exchange rate and inflation evolution during sixteen years

Data Description

Thefirst periodbegins inApril 2000 and ends inDecember 2007.Observations during
2007, not involved in building the model, are used to check its forecasting validity.
A slightly different model is obtained when these data are added to the learning
sample. This new model proved to be inadequate in forecasting 2008 observations.
This could be due to the fact that the year 2008 was a period of economic crisis. The
third period ranges from September 2009 to June 2016. The data from September
2009 to March 2016 account for a learning sample used to choose the appropriate
copula. The retained model is used to forecast observations of the second quarter
of 2016. The evolution of US/Euro exchange and inflation rates in the Euro area is
shown in Fig. 2. This graphic shows clearly that these rates are correlated.

Fitting the Data

Financial time series are not immediately suitable for copula modeling because they
are serially correlated [23].We need first to eliminate autocorrelation and seasonality.
This can be achieved using the Box-Jenkins approach for modeling time series (Box
and Jenkins [24]). In this work, we use this approach and find that our data can be
modeled by an AR or a SARIMA process. The models adjusted to Xt and Yt provide
correlated residuals, εXt and εYt , which are not autocorrelated. The key idea to model
the correlation, between Xt and Yt , is to determine the best copula that models the
dependence between εXt and εYt .

Using some goodness-of-fit criteria and statistical tests (AIC, BIC, and signifi-
cance of estimated parameters), we retain the models in Table2 to extract the unpre-
dictable component of the time series.



224 L. Ait Hassou et al.

Table 2 Residuals deduced from adjusting different time series models

Series Adjusted models Residuals

The inflation (2000–2007) SARIMA (0, 1, 0)(0, 0, 1) εInf ,period1

The US/Euro exchange rate
(2000–2007)

SARIMA (0, 1, 1)(0, 0, 0) εExch,period1

The inflation (2000–2008) SARIMA (1, 1, 0)(0, 0, 1) εInf ,period2

The US/Euro exchange rate
(2000–2008)

SARIMA (0, 1, 1)(0, 0, 0) εExch,period2

The inflation (2009–2016) Exponential smoothinga εInf ,period3

The US/Euro exchange rate
(2009–2016)

SARIMA (1, 1, 0)(0, 0, 0) εExch,period3

aFor details on exponential smoothing models, see Holt [25]

Fig. 3 Plots of inflation residuals against exchange rate residuals

Applying the Kolmogorov–Smirnov goodness-of-fit test, we conclude that the
residuals are normally distributed. The plots of inflation residuals against the
exchange rate residuals (Fig. 3) do not show any particular pattern. To graphically
explore the dependence structure between the residuals, we use the Chi-Plot and
K-Plot approach expecting that the plots guide our choice of the appropriate copula
families.

On the K-Plot in Fig. 4a, the dots show a clear departure from the diagonal line.
This is an evidence of dependence between the two variables. This dependence is
confirmed by the Chi-Plot (Fig. 4b) including the whole sample. This graphic is an
indicator of a correlation existence on the tails.

Constructing Chi-Plots for data in the tails (Fig. 4c, d), we conclude that there is
no correlation in the lower tails, while the upper tails are strongly related.



Copulas for Modeling the Relationship Between Inflation and the Exchange Rate 225

Fig. 4 Chi-Plot and K-Plot for the first period

Table 3 The retained copulas from the empirical investigation for the first period

Period Copula Value of θ SME value

2000–2006 t-Copula 0.02 0.00194476

Normal 0.02 0.0019655

Frank 0.1 0.000198502

Plackett 1.04 0.0019857

Clayton 0.01 0.000199487

Gumbel 1 0.000201036

Galambos 1 0.003321712

These results suggest that the appropriate underlying copula should belong to the
Archimedean family. In Tables 3 and 4, we present, respectively, the results of our
empirical investigation for the 2000–2006 and 2009–2016 periods.

The copulas in Table3 are tested using the Cramer–von Mises goodness-of-fit
test. The results are shown in Table5.
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Table 4 The retained copulas from the empirical investigation for the third period

Period Copula Value of θ SME value

2009–2016 t-Copula 0.14 0.0002496044

Normal 0.14 0.0002496305

Frank 0.72 0.0002510564

Plackett 1.42 0.0002513465

Clayton 0.21 0.0002222103

Gumbel 1.1 0.0002812121

Galambos 1 0.00248208

Table 5 The final retained copulas, based on a GoF tests

Period Copulas family Fitted copula P-value Value of θ

2000–2006 Archimedean Clayton 0.6848 −0.066658

Plackett Plackett 0.5759 0.85718

Elliptical Copulas t-Copula 0.9615 −0.054132

Normal 0.9805 −0.054132

Table 6 The final retained copulas for the third period, based on a GoF tests

Period Copulas family Fitted copula P-value Value of θ

2009–2016 Archimedean Clayton 0.9595 0.017868

Plackett Plackett 0.9486 1.0394

Elliptical Copulas t-Copula 0.7248 0.013909

Normal 0.6958 0.013909

During the 2000–2006 period, the most appropriate copula, describing the depen-
dence between inflation and exchange rate, was a Normal copula. Other families of
copulas, namely, theArchimedean and the Plackett copulas, could be used to describe
the studied dependence structure.

Based on the same methodology, the Elliptical copulas are retained to model the
dependence between inflation and US/Euro exchange rate during the 2008 period (a
t-copula with a p-value of 0.93 and a Normal copula with a p-value of 0.96).

During the third period (2009–2016), an Archimedean copula (a Clayton copula
with a p-value of 0.95 and a Plackett copula with a p-value of 0.94, as showed in
Table 6) is retained to capture the link between the two variables. Elliptical copulas
give also a high p-value but its p-value is lower than the p-value of the two previous
copulas. Archimedean copulas have the great advantage to capture a wide range
of dependence. Examples of Archimedean copulas are the product copula which
corresponds to independence of the examined variables, the Clayton copula which is
used in the case of strong left tail dependence, the Gumbel copula which is employed
in the case of highly correlated variables at high values but less correlated at low
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Table 7 Predicted values based on the retained copulas

Observed values t-Copula Normal Clayton Plackett

−0.19 −0.085 −0.092 −0.096 −0.096

−0.09 −0.033 −0.033 −0.037 −0.037

−0.07 −0.01 −0.008 −0.011 −0.011

−0.05 −0.046 −0.049 −0.052 −0.052

0.02 0.001 0.005 0.002 0.002

0 −0.047 −0.05 −0.053 −0.053

values, and the Frank copula which is applied when a tail dependence is weak. Unlike
the Elliptical copulas, the Archimedean copulas are not derived from multivariate
distribution functions using Sklar’s theorem.

We propose to retain the Elliptical and Archimedean copulas for forecasting. This
step allows identifying the best model that captures the structure of the dependence
between inflation and US/Euro exchange rate.

Our results show that during the first period, characterized by a stability, copulas
perform well in terms of forecasting (Table 7).

In the opposite, for crisis and instable periods, the forecasting seems to be impre-
cise. This is due to the volatility of the major macroeconomic aggregates. To over-
come this problem, we suggest to model the updated series using dynamic copulas.

4 Conclusion

The study of dependence between economic variables is of prime importance for
decision makers. Copulas Techniques are powerful tools to explore this dependence.
In this chapter, we attempted to explore the correlation structure between inflation
and US/Euro exchange rate during the pre-crisis, crisis, and post-crisis periods.

Four main results are to be highlighted. First, during the 2000–2006 period,
the most appropriate copula that describes the dependence between inflation and
exchange rate, was a Normal copula. Second, the Elliptical copulas are the most
suitable to model the dependence between inflation and US/Euro exchange rate dur-
ing the 2008 period. Third, for the 2009–2016 period, an Archimedean copula (a
Clayton copula with a p-value of 0.95 and a Plackett copula with a p-value of 0.94,
as showed in Table 6) is retained to capture the link between the two variables. Four,
it appears that during the stable pre-crisis period, copulas performs well in terms
of forecasting. These results provide evidence about the accuracy to use different
copulas to model the links between economic variables when different periods are
analysed.
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Fuel Consumption Estimation
for Climbing Phase

JingJie Chen and YongPing Zhang

Abstract Aiming at the problem of the civil aviation carbon emission, the purpose
of this chapter is to present a simplified method to estimate aircraft fuel consumption
using an adaptive Genetic Algorithm-Back Propagation (GA-BP) Strong prediction
network. This chapter gives a brief overview of the modeling approach and describes
efforts to validate and analyze the initial results of this project. The parameters of fuel
consumption are analyzed by using QAR flight data, two kinds of fuel consumption
prediction model are proposed, it is the BP prediction model and the adaptive (it is
abbreviated to A) GA-BP (Genetic Algorithm-Back Propagation) Strong prediction
model. The crossover and mutation probability of GA-BP Strong prediction model
can be adaptive adjustment, and the BP neural network as a weak predictor, after the
limited number of iterations, it can realize error optimization adjustment and solve the
complicated nonlinear problem. Results of the simulation indicated the two models
have obvious advantages in nonlinear prediction, and the prediction accuracy and
the degree of fitting are good. The results of this study illustrate that the two neural
network with nonlinear transfer functions can accurately represent complex aircraft
fuel consumption functions for climb phases of flight, so the two models are feasible
in the field of fuel consumption prediction. The methodology can be extended to
cruise and descent phases of flight.

Keywords Flight data · Adaptive GA-BP-AdaBoost network · Fuel consumption
Prediction

1 Introduction

Air transport industry acts as a catalyst to the economic and social development of
a nation. But the development of air transport industry is faced with major issues
like high fuel consumption [1, 2]. Furthermore, according to Henderson et al. [3]
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research that aircraft CO2 emission is proportional to fuel burn. For this challenge,
many researchers have studied about different models on aircraft fuel consumption
prediction. Thus, to obtain rational forecast results, various prediction models are
put forward. Chang [4] presents the fuzzy logic modeling (FLM) technique, which
will be employed to establish the reference lift-to-drag (L/D) model. The model is
utilized to predict the deficiencies of lift-to-drag ratio through sensitivity analysis to
determine the relative contributions from influencing flight variables for the excessive
fuel consumption. Zhang et al. [5] propose a representative support vector network-
aided fuel consumption model which is developed using data given in the route
date and aircraft performance manual, support vector machine is trained to estimate
fuel consumption of a certain aircraft. Performance differences between the aircraft
types are natural and they inevitably cause problems in the air traffic system, Cavcar
[6] present the excess fuel consumption impact of aircraft performance differences
in the air traffic environment. For this purpose, both climb and cruise phases of a
flight mission are analyzed. Based on the principle of energy conservation, a model
was established to estimate the fuel consumption by Collins [7]. Based on the flight
process, Mayer [8] presents an exponential relationship model which is to establish
the relationship between the fuel flow and the height in the fall and climb phases.
Based on the genetic algorithm, the Baklacioglu [9] researches a genetic algorithm-
optimized neural network topologywhich is designed to predict the fuel flow-rate of a
transport aircraft using real flight data. Thismodel used to study the change of the fuel
with the air speed and altitude at different time. Baklacioglu [10] develops a new aero-
propulsive model (APM) which is derived from the flight manual data of a transport
aircraft using Genetic Algorithms (GAs) to perform accurate trajectory predictions.
The use ofGAs enhanced the accuracy of both propulsive and aerodynamicmodeling,
and successfully predicted the trajectory for the descent phase. Bartel [11] introduces
an updated model which is presented that describes the takeoff thrust to within±1%
of that of the reference engines, for flight speeds up to Mach 0.4. This takeoff thrust
model has been adapted to account for the impact of bleed air extraction and altitude
effects.

However, the mentioned above have some limitations for the study of fuel con-
sumption. Most of them were based on the level of time series with a single flight
as the research object to analyze the characteristics of flight and then built a model
to predict the fuel consumption at different times in the flight process. It is lack of
practical application.

Using neural network, complex nonlinear function can be easily handled, and the
network has an advantage that there is no need to reveal the mathematical equa-
tion describing the input–output mapping before the network training. The output
of the network function is close to the actual output value, so as to achieve a more
accurate prediction effect. The genetic algorithm can realize global optimization
and optimize the initial state of the network. Back propagation neural network pre-
diction model and a back propagation based on genetic algorithm (GA-BP) neural
network prediction model have many successful applications [12, 13]. Chen et al.
[14] proposes a neurons method based on BP neural network to achieve the linear
approximation of complex nonlinear relationships and got a satisfactory cruise fuel
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consumption model. Saravanan et al. [15] used Genetic Algorithm (GA) to estimate
electricity demand for different scenarios (low, high growth, and trend lines) based
on economic indicators of historical data. Although all these reviews provided vital
information on fuel consumption prediction models on different scales, accurate fuel
consumption prediction remains a challenge for energy management.

Generally, the flight of the aircraft involves five typical flight stages of takeoff,
climb, cruise, descent, and landing. The literature [16] pointed out that the fuel
consumption of the climb, cruise, and the descent accounts for over 90% of the total
fuel consumption. Many scholars have given a variety of prediction models of cruise
fuel consumption. These models have achieved high prediction accuracy. The climb
is more typical than the descent, so this chapter studies climb phase. For long voyage,
the climb has a small proportion of fuel consumption, and the statistical analysis can
obtain the accurate prediction results. The literature [17] presents a method based
on Bootstrap statistical theory to establish the prediction model of fuel consumption
and gets the high prediction accuracy. However, for short voyage, the climb fuel
consumption accounts for a large part, and the result of simple statistical analysis is
not satisfactory.

Based on the above analysis, this chapter attempts to develop a suitable method
to estimate aircraft fuel consumption using neural network approach to deal with
relation between energy consumption and its influence factors. Harshad and Hamsa
[18] demonstrates that flight data record the main parameters used for the analysis
of fuel consumption. In the study, through the analysis of QAR data, we select the
main factors that affect the fuel consumption, but only for the climbing condition.

An adaptive GA-BP neural network fuel consumption forecasting model is estab-
lished, and a strong prediction is joined in the model. It will enable more accurate
climb fuel predictions. In this chapter, the fitting degree of the model output, the
average value of the relative error and the mean square error are chosen as the bench-
mark of the feasibility of the model. Furthermore, as an improvement to the existing
models is comparedwith the BP neural network predictionmodel, and the simulation
results are analyzed. It is proved that these two models have good prediction effect.

2 Fuel Consumption Statistical Analysis

This chapter chooses the flight data for 2012 to analyze its fuel consumption. We use
k-means clustering to classify the voyages. We define the fuel consumption as X and
randomly select k points as the starting center, k is the number of cluster clusters.
Then, calculate the distance between each point and center. To find the nearest center
for each point and assign it to the cluster that corresponds to that center. After this
step, the center of each cluster is updated to the average of all points of this cluster. Re-
cluster and update the center until the results remain unchanged. Through the above
method, the voyage is divided into long voyage, middle voyage, and short voyage
three categories. Of which, more than 2060 km for the long voyage, 1124–2060 km
for the middle voyage and less than 1124 km for short voyage.
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Table 1 Statistical analysis of kilometers fuel consumption in different voyage

Long voyage Middle voyage Short voyage

N statistic 695 1061 1741

Minimum statistic 2.22 2.11 1.64

Maximum statistic 4.35 7.80 11.06

Mean statistic 3.023 3.770 4.649

Variance statistic 0.184 0.255 0.899

The fuel consumption of the three voyages is statistically analyzed, respectively.
The results are shown in Table 1.

Through the analysis it can be found that as the mileage increases, kilometers
fuel consumption is gradually increased. Degree of dispersion of the long voyage
kilometer fuel consumption is less, and with the reduction of mileage, kilometers
fuel consumption the degree of dispersion gradually increased. Relative to the climb
and the descent, the calculation of the cruise fuel consumption is simple, and mainly
related to its flight distance. The fuel consumption of the climb has nothing to do
with the voyage, and its relative fuel consumption is relatively high during the whole
flight, so we mainly study the fuel consumption of the climb.

3 Fuel Consumption Influencing Factors

Flight data QAR records the most flight parameters of the aircraft from takeoff to
landing, these parameters are closely related to the fuel consumption of the aircraft,
which provides a good basis for the analysis of fuel consumption [19]. So, in this
chapter, the QAR data is selected as the data set of model training and prediction.

Based on those flight control parameters, a prediction model can be made to
estimate fuel loading. There is required to do data filtering. Sometimes, when data is
missed out, interpolation is also required if the filtering frequency is fixed. Similarly,
in this chapter, the idea of stepwise linear regression is used to screen and eliminate
themultiple co-linear variables in theQARdata [20].We can screen effect parameters
of aircraft climb phase. In this study, according to the absolute value of the correlation
coefficient size, we take the initial weight of climbing segment, the climbing distance,
the rate of climb, and the force of the wind in the nose and the total temperature of
the atmosphere as the input of the model five factors. The outputs of the model
are relatively easy to determine according to our modeling objective. They are fuel
consumption.

After that, the model input data are normalized to the same dimension. We define
xmax and xmin as the maximum andminimum value in the sample and xk as the sample
normalization value and the function can be written as
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xk � x − xmin
xmax − xmin

(1)

4 Improved Model Algorithm

Basic Procedures and Ideas

We propose a genetic optimization BP neural network. The whole idea of network
structure is using the improved adaptive genetic algorithm to obtain the optimal indi-
vidual and used to optimize the initial weights and threshold of the neural network.
After training, the BP network learning to get the fuel consumption forecast output,
in order to improve the prediction accuracy, we used BP network as a weak predictor,
after a finite number of iterations and outputs the result of strong prediction results.
Structure diagram as shown in Fig. 1.

GA-BP-AdaBoost Parameters Setup

In this section, we propose a fuel consumption prediction model based on GA-BP-
AdaBoost neural network. We take the 280 sets of QAR data from different flights
in the same course and take them as the training dataset and test dataset of the fuel
consumptionmodel. The input is the startingweight of aircraft, the climbing distance,

Fig. 1 Based on improved GA-BP strong prediction model
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the rate of climb, the wind speed, the total temperature of the atmosphere, set X as
input vector, X � [X1,X2,X3,X4,X5], Aircraft fuel flow as the output, set Y as the
output vector. Genetic algorithm for optimizing network weight needs to design the
main parameters.

Step 1. An initial population is generated. A population of W individuals were ran-
domly generated. W is chosen 30.

Step 2. Coding for neural network. In order to get the high precision weight and
threshold value, the real number coding method is adopted. Individual coding length
is L. There L is equal to N ∗M+M+M ∗K+K, and the input node number N takes
5, the number of hidden nodes M takes 10, the number of output nodes K takes 1.

Step 3. Fitness Function. Training overall error should be as small as possible, so
genetic algorithm uses the minimum objective function value as the fitness function.
We calculate the sum of the absolute value of fuel consumption error in the training
sample and chromosome adaptive value is

f �
n∑

i�0

abs(yi − oi) (2)

n�200 is the training samples number. oi is the expected output of BP network. yi
is the forecasted output of BP network.

Step 4. Selecting operation. The selection operation is used to determine the recom-
bination or crossover parent individuals and the number of offspring individuals
generating by the candidate population. We use the following formula to calculate
the chromosome fitness and selection probability. The chromosome adaptive value
is Fi and the selective probability is Pi.

Fi � 1

fi
(3)

Pi � Fi∑P
i�0 Fi

(4)

P is the reciprocal of fitness. P�30 is population size.

Step 5. Crossover Operator and Crossover Probability. We randomly select two
chromosomes and choose their weights and thresholds with crossover probability to
form two new individuals aki, a1j. We use arithmetic crossover operation to generate
two new individuals:

akj � aki(1 − a) + a1ja (5)

a1j � a1i(1 − a) + akja (6)
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a is a parameter, a ∈ (0, 1). The crossover probability usually takes the value of
the [0.5, 0.98]. The crossover probability of this study is obtained by the following
formula:

Pc � m +
m(fav + fi)

10(fi − fmin)
, fi ≥ fav (7)

Pc � m − m(fav + fi)

10(fi − fmin)
, fi < fav (8)

m �0.7, fi is the smaller value of the fitness value of the two selected individuals,
fav is the average value of all fitness values, fmin is the minimum value in all fitness
values.

Step 6. Mutation Operator and Mutation Probability. We use arithmetic mutation
operation to generate two new individuals

aij � aij + (aij − amax) ∗ f (g), r ≥ 0.5 (9)

aij � (aij + aij − amax) ∗ f (g), r < 0.5 (10)

f (g) � r2

(
1 − g

Gmax

)
(11)

Mutation point is aji (aji ∈ [amin, amax]). r2(r2 ∈ [0, 1]) is a random number,
g is the number of iteration and Gmax is the max number of evolution.

Mutation probabilityPm usually value between [0.001, 0.05]. It can be represented
by an adaptive mutation probability formula.

Pm � m1 +
m1(f

′
i + fav)

10(f
′
i − fmin)

, f
′
i ≥ fav (12)

Pm � m1 − m1(f
′
i + fav)

10(f
′
i − fmin)

, f
′
i < fav (13)

Here, m1 � 0.04. f
′
i is the value of the smaller adaptation for the current two

variants.

Step 7. Initialization of BP weights and thresholds. The obtained optimal individual
is decomposed into the initialization weight and threshold value of the BP network.
In this chapter, we use three layers of BP neural network, the input neurons are 5,
and the hidden neurons are 10.

Step 8. Training model. After optimized, the composite model of BP and AdaBoost
is established and began to start training.
In step 5 and 6, the formula mentioned, we can know that the crossover probability
and mutation probability follow the change of fitness value, which can avoid the
divergence of GA algorithm, fall into local minimum and speed up the convergence.
In step 8,we can obtain the optimization of initialweights and thresholds. Then, begin
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to train the BP network, if the predicted output error does not meet the conditions,
the iterative adjustment of program can reduce the output error, and prediction model
precision is improved, and the practical application of the prediction is enhanced.

5 Model Validations

Model Feasibility Evaluation Criteria

In this chapter, mean relative error (MRE), sum of relative error absolute values, and
mean square error of relative error (MSE)were introduced asmetrics of themodeling
accuracy. Goodness of fit (R) is used to quantify model accuracy. For a data set of
n measured outputs oi and predicted outputs yi, Relative error, MRE, and MSE is
calculated as

erro � oi − yi
yi

(14)

MRE � 1

N

∑N

i�0

oi − yi
yi

(15)

MSE �
∑N

i�0

(
oi−yi
yi

)2

N
(16)

R �
∑N

i�0 (oi − δ1)2∑N
i�0 (yi − δ1)2

(17)

Model Testing and Evaluation

We use Matlab 2016b software platform to build model. It includes the BP neural
networkmodel and the GA-BP-AdaBoost model. There are 200 training samples and
80 of the samples are verification samples. The parameters of the BP neural network
model are set as follows: the number of training is 30, the training target is 0.002,
and the learning rate is 0.1. The parameters of the GA-BP-AdaBoost neural network
model are set as follows: the population size is 30, and the evolutionary algebra is
30.

Neural network training index of output value are as follows: the mean relative
error value is 0.0035 and the sum of absolute value of relative error is 2.0225, the
relative error of standard deviation is 0.0260, the goodness of fit is 0.9801, the mean
square error of the relative error is 6.8235e−04. According to evaluation index, the
training model is satisfying, and it can be employed to output prediction.

Figure 2 is the contrast diagram of the two models of the prediction of the output
and the error. Figure 3 is the neural network curve fitting, which can show the validity
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of the prediction function. With the different prediction samples 40, 60, 80, Table 1
gives the relative mean error, mean square error, and fitting degree of two kinds of
prediction models.

Factors affecting fuel consumption is not limited to the factors considered in this
chapter, also affected by other factors, such as weather conditions, the same flight
with different routes and airports and other factors such as route congestion. And
considering the security requirements of actual flight, the plane will usually carry
45 min, alternate or return flight fuel, which may lead to “Fuel oil consumption”
happen. So the prediction value and the expected value of the fuel consumption are
allowed to error exist.

It is concluded that adaptive GA-BP-AdaBoost prediction model has a small
increase in the prediction accuracy and nonlinear fitting ability, fault tolerance capa-
bility. Moreover, when the training data set is less, the prediction precision and
dynamic quality of the model are still kept. By analyzing the index value of the
simulation and evaluation model, and considering the existence of the actual error,
conclusion can be drawn that the results indicate that these two methods used to
forecast fuel consumption is feasible, effective, and convenient for practical appli-
cations.

Fig. 2 Output and relative error of model prediction
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Fig. 3 Analysis of neural network fitting curve

Model Testing and Evaluation

With the increase of the genetic algebra, the fitness value is reduced after 20 genera-
tions, and the network fitness is optimal. So the weights and thresholds of the model
are optimized which can improve the prediction accuracy of the model. In Fig. 3, the
relative error values of the two prediction models are between [−0.1 0.1].

When the prediction sample number is 80, after three iterations, the best val-
idation parameters of the improved adaptive GA-BP-AdaBoost prediction model
is 0.0025504. Similarly, after four iterations the best validation parameters of BP
model is 0.0035213. It indicates that mean square error of GA-BP strong prediction
is smaller than BP prediction. So, its output values closer to the predicted target and
has a stronger adaptability (Table 2).

Table 3 gives the average relative error, mean square error, and fitting value of
two prediction models relative to the different prediction samples. Through the table,
we can analyze the accuracy of the prediction models. In the application of fuel
consumption prediction, alongwith the increase of the number of prediction samples,

Table 2 Model index value

BP model Improved GA-BP-AdaBoost model

Sample
number

40 60 80 40 60 80

MRE 0.0100 0.0177 0.0127 0.0185 0.0149 0.0119

SRE 1.0125 1.5365 1.8855 1.1026 1.3550 1.8830

MSE 0.0011 0.0011 8.80e−04 0.0011 7.67e−04 0.0011

R 0.9558 0.9041 0.9043 0.9347 0.9347 0.9633
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Table 3 Model comparison

Forecast sample
number 80

BP model FUZZY model SVR model Improved GA-
BP-AdaBoost
model

MRE 0.0177 0.0065 0.0194 0.0119

R 0.9043 0.9049 0.9070 0.9633

the two-forecast model can be effective convergence and the predictive accuracy of
adaptive GA-BP-AdaBoost prediction model increases slightly which is converted
to the number level of the actual project can achieve a more significant improvement.

The fuzzy logic model of fuel consumption proposed by Chang R C and the SVR
model of fuel consumption proposed by HF Zhang are using the same data as the
above experimental data to forecast, the prediction sample number is 80. Results in
the following Table 3. Analyzing the data in the Table 2, it is found that the Improved
GA-BP-AdaBoost model than other model has a good capability of nonlinear fitting,
and the average relative error is small than SVR model and BP model. However,
the average relative error of fuzzy logic model proposed by Chang R C is small
than the average relative error of Improved GA-BP-AdaBoost model, but its sum
of relative error is 2.4319, higher than the Improved GA-BP-AdaBoost model error
sum 0.5489.it shows that fuzzy logic model is at the cost of model performance to
reduce the output error, so that dynamic stability of fuzzy logic model become lower.

Factors affecting fuel consumption is not limited to the factors considered in this
chapter, also affected by other factors, such as weather conditions, the same flight
with different routes, and airports and other factors such as route congestion. And
considering the security requirements of actual flight, the plane will usually carry
45 min alternate or return flight fuel, which may lead to “Fuel oil consumption”
happen. So, the prediction value and the expected value of the fuel consumption are
allowed to error exist.

It is concluded that adaptive GA-BP-AdaBoost prediction model has a small
increase in the prediction accuracy and nonlinear fitting ability, fault tolerance capa-
bility. Moreover, when the training data set is less, the prediction precision and
dynamic quality of the model are still kept. By analyzing the index value of the
simulation and evaluation model, and considering the existence of the actual error,
conclusion can be drawn that the results indicate that these two methods, used to
forecast fuel consumption, are feasible, effective, and convenient for practical appli-
cations.

In the premise of not affect flight safety, it is in order to effectively reduce the fuel
consumption, as much as possible to improve the utilization rate of fuel resources.
We use the model proposed in this chapter to analyze single factor influence on fuel
consumption when defining other influence factors.

Through the prediction of fuel consumption, we can get the single factor variable
interval. It can provide a reference for the flight plan, so that flight to achieve the best
fuel saving flight state.
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6 Conclusion

Accurate forecasts of fuel consumption are vital when demand grows faster, it can
guide civil aviation energy policies’ effective implementation and reduce flight car-
bon emissions. Energy consumption forecast is a complex problem due to interactive
factors. In this study, in order to reduce the amount of carbon emissions from flights
and improve the fuel utilization rate, the fuel consumption forecast model based on
GA-BP-AdaBoost is presented. The model is verified by flight climbing stage.

By comparing the BP prediction model, the proposed model in the prediction
accuracy, nonlinear fitting ability, and fault-tolerant ability are increased. And with
small training data set, the model can still maintain prediction accuracy and dynamic
performance index. Analyzing the Simulation and considering the actual causes of
errors, it can be concluded that the two models have practical applications. Also,
through the analysis of QAR data, we can aim at the different stages of the same
voyage flight to establishment two kinds of prediction models are presented in the
chapter, they used to predict aircraft in various stages of the fuel consumption. Sim-
ilarly, in the case of network training as well, if the forecast result of test set is found
to have a large deviation from the actual value and then analyzed the error, we can
even determine in this flight if there is a fault. Therefore, it is necessary for us to
study the prediction model of fuel oil.

In future work, the enhancement of the model presented here is the extension to
estimate thrust associated with a fuel burn flight condition parameter such as Thrust
Specific Fuel Consumption (TSFC). Preliminary results obtained indicate that TSFC
can also be easily characterized using genetic algorithm and TSFC can be regarded
as time series. Maybe it is a good research direction to build fuel prediction model
related to trajectory prediction of transport aircraft based on time series.
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Time Series Optimization for Energy
Prediction in Wi-Fi Infrastructures

David Rodriguez-Lozano , Juan A. Gomez-Pulido
and Arturo Duran-Dominguez

Abstract Access points play an important role in Wi-Fi networks and can provide
us with useful information about the energy consumption according to the users’
behavior. If we predict the energy consumption in a determined access point, we
can make easier the maintenance plans for the network infrastructure making the
most adequate decisions about the placement of new devices or reinforcement of
existing ones, for example. In this work, we propose an energy prediction methodol-
ogy based on system identification, where the energy measured in the access points
is represented as time series. The prediction results were reasonably good for an
experimental environment consisting of ten access points in an academic building,
modeling the energy patterns along some weeks. Moreover, we found an optimiza-
tion problem where the main parameters of the identification model can be adjusted
in order to provide results more accurate. Given the computational effort required
for searching in depth the optimal values, we applied a genetic algorithm, which
provided better results in less time with regard to a direct search method.

Keywords Wi-Fi networks · Access point · Energy consumption · Time series
System identification · Prediction · Optimization · Genetic algorithm

1 Introduction

The Access Point (AP) is a device that supports the data traffic and the session
requests in a Wi-Fi infrastructure. The energy use in the AP comes mainly from
the demand for network access by users, among other factors. The energy levels in
the APs are optimization objectives in many research works [1], and they give us
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useful information about the users’ behavior. From this knowledge, we can plan the
maintenance tasks of the network infrastructure. In this sense, we should know the
energy impact of the maintenance work before doing it, predicting the energy in the
APs according to the past energy patterns.

We predict the energy in the APs from time series modeling, using a three-step
methodology. First, we collect data on the energy from the network usage during a
time period where the users had a regular activity. Next, we build as many time series
as access points the network has, where each series draws the daily energy level in
the corresponding AP. Next, wemodel the time series applying system identification.
Finally, the models obtained are used to predict the next energy data. The prediction
could be better if we improve the identification by using metaheuristics that optimize
their main parameters.

We have not found works about predicting energy in the APs using time series,
but others focus with regards to predict the density of neighboring APs and the
corresponding data traffic [2], or the data quota [3], for example. Other aspects of
the wireless networks such as users’ location [4], data traffic [5], mobility [6, 7]
application workloads were studied for prediction purposes.

2 System Identification of Time Series

A Time Series (TS) is a signal y(k) sampled by a period T that describes the behav-
ior of a dynamic system. System Identification (SI) [8] tries to find a parametric
mathematical model of the TS from the measures of y(k).

The parametric polynomial description is usual in SI. The ARMAX (Moving-
Average Auto-Regressive) model [9] is a well-known option to model a discrete
system. If q is the delay unit, and q−d the time delay (k − d), ARMAX is described
by A(q)y(k) = 0, where A(q) = 1 + a1q−1 + · · · + anaq−na , being na the model
size. In a polynomial description, the ARMAX model is given by (1).

y(k) + a1y(k − 1) + · · · + ana y(k − na) = 0 (1)

The identification of the TS consists in determining the values of ai from the
observation of the NM samples of the signal y. From this model, we can calcu-
late the estimated signal ye(k) (2), where θ is a one-column matrix containing the
ai parameters and ϕ is a one-column matrix with observed values. Then, ye(k) is
compared with the real signal y(k) in order to determine the error done.

ye(k) = [−a1y(k − 1) − · · · − ana y(k − na)] = ϕT (k)θ (2)

There are two possibilities to perform the identification (obtain θ ): batch or recur-
sive. We choose the recursive parametric estimation, which estimates and updates
θ along the time, in a way that, for each time k, we obtain an ARMAX model.
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Obviously, the more past samples we have, the more accurate model we obtain,
because we have more information about the behavior of the system.

There are several algorithms for the recursive identification: Kalman Filter, RLS
(Recursive Least Squares) and LMS (Least Mean Squares). We choose RLS because
of its goodness and accuracy, and because it can be used in environments of dynamic
nature where the TS is processed in real time. This algorithm considers the forgetting
factor λ, whose value is usually chosen in the interval 0.97 to 0.995 [9]. On the other
hand, the accumulated error (3) can be a good measure of the identification accuracy,
and it mainly depends on the model size and the forgetting factor, for a particular
TS.

F(na, λ) =
k=NM∑

k=1

|y(k) − ye(k)| (3)

3 Energy Prediction in Access Points

The prediction of the future behavior of the TS is possible if it is previously identified
in order to know its behavior by amathematical description. The recursive estimation
of the ARMAX model allows us to obtain this description. From this approach, the
prediction can improve when the identification advances in the time, because we
suppose models are more accurate.

Prediction Approach

In order to perform the prediction, we choose the time ks from which we model the
system based on the past behavior. In practice, ks will be the last known value of
the TS. Let us suppose y is the real TS, ye is the estimated value from the ARMAX
model, and ys is the predicted TS. We have real values of y until k = ks , so the last
estimated value will be ye(ks + 1), since the estimated value in ks + 1 is calculated
from the model built with the real values up to previous time, ks . From ks + 1, we
predict by RLS assuming ys(k) = ye(k). Therefore, ys(ks + 1) = ye(ks + 1), and
we apply RLS successively.

Figure1 shows an example of TS predicted with this approach. The top plot shows
the identification of the full TS (na = 3 and λ = 0.98), where ye is the TS estimated
from the model generated with all the data in the TS, and NM = 39 is the number
of samples. Now, let us suppose we only know the TS up to ks = 20. From this time,
we generate the predicted signal ys , calculated in this way: In the next time (ks + 1)
to the last known value y(ks), the predicted value ys is ye is estimated according to
the model ARMAX-RLS built considering the previous known y values. Then, in
ks + 2, we perform the identification taking the real value of the TS as ys , instead
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Fig. 1 Example of identification (top) and prediction from ks = 20 (down)

of y (we suppose we do not know it already). Therefore, we calculate the estimated
value ye(ks + 2), next it is assigned again to the predicted signal ys at this time, and
so on.

We can see in the down plot of the figure the predicted ys (the dotted plot is the
real y which has not been taken into account for the prediction; it is shown only for
comparison purpose). Obviously, the more predicted values, the worse prediction we
have, because the predicted signal is built with the previous predicted values, instead
of the previous real ones.

Energy Data

We have collected data from a library building of the University of Extremadura
(UEX), Spain. This Wi-Fi network is composed of 10 access points accessed by
2,907 users along 73days: 10 full weeks labeled from #1 to #10, and the first 3
days next to the last week; nevertheless, we only consider 5 of these 10weeks, as
we explain later. The energy data in each AP were collected each 60 s in the 12 h
daily period from 9 to 21 h, in order to filter the energy data closer to the real users’
behavior, since the usual activity of the network users happens in that period in the
library building.

We built 10 time series from the collected data, one for each AP, showing the total
daily energy due to the users’ activity in the period. We want to predict the energy in
the APs when we do not have more data. The prediction is more accurate in the next
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Fig. 2 Ten time series corresponding with the energy in each AP, sampled daily considering only
working days: fromMonday (day 1) to Friday (day 5). Each series is composed of 25 samples. The
3 last days considered for comparison purposes with the predicted days are also shown

day to the last known day, and it gets worse when the predicted day moves away.
The three last days (71–73) are not part of the TS, but they are left for comparison
purposes with the 3 first predicted days.

We are interested in analyzing the users’ behavior through the energy patterns. For
this purpose, we remove all the weekends, since the library is closed then. Moreover,
we delete those weeks where one of their days does not reflect a usual behaviour
(holiday, network down, etc). Taking into account these constraints, we only consider
5 weeks (25days), as they are shown in Fig. 2.

Prediction Results

Figure3 shows the prediction of the time series. Dotted and continuous lines are real
(y) and predicted (ys) series, respectively.

The value of na determines the initial time kini from which RLS builds the
ARMAX model. The more na is, the more value for kini . Therefore, as the time
series has a low number of samples (NM = 25), we should consider a low value for
na; otherwise, the identification would start later, the recursive calculations would
consider few data and, consequently, the identification would be worse.

The predicted values were compared with the real ones using the variable v (vari-
ation) defined as v(%) = 100 × (ys − y)/y. The predicted data and the absolute
values of their corresponding variations are shown graphically in Fig. 4. In general,
the predictions are good; as regards they do not move away too much from the real
values (less than 2% in almost all the cases). Only 2 of the 30 predictions have vari-
ations of 3 and 4%. Besides, the variations for the first predicted day (ks + 1) are
under 1% in 8 of the 10 access points.
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Fig. 3 Predicted energy (continuous line) in each AP in the next 3 days to the last considered day
(sample number 25). The known energy data (dotted line) correspond with the working days of the
5 considered weeks, from Monday (1) to Friday (5). The real energies of the 3 last days are not
considered in the time series, but they are useful for calculating the prediction performance. Energy
is displayed in mW
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Fig. 4 Absolute variation of the predicted energy with regard to the real energy, in each access
point, for the next 3 days to the last known day (ks ): Monday (ks + 1), Tuesday (ks + 2), and
Wednesday (ks + 3)

The variation can be positive or negative, showing the trend to increase or decrease
the own time series (according to the day in the week, the trend in the network use
will be greater or smaller). We can see how the prediction gets worse when it is
far from the last known value (ks = 25). This is observable in 6 of the 10 access
points; in the other 4 APs, the prediction is different, depending on the behavior and
variability of the own time series.

Finally, we remember that the size of the time series and its behavior influences
on the prediction results. One the one hand, the more weeks the TS has, the more
accurate the predictionwill be, becausewe havemore samples of the sameday.On the
other hand, the variability of the TS (a very different behavior between consecutive
days or for the same day in each week) implies a worse identification. Ideally, the
prediction will be better as more stable be the behavior of the time series. The worse
results of our work can be blamed to the access points that show high variability in
its behavior (for example, AP7).

4 Parameter Tuning for Improving the Accuracy

The parameters na (model size) and λ (forgetting factor) have a strong influence on
the identification accuracy. In this section, we compare a direct search method and a
metaheuristic for founding the optimal pair.

Direct Search

We should establish an upper limit to na if we want to process enough samples of the
TS, becauseRLSonly can process from kini = na + 1.The upper limit isNM-MM-1,
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Table 1 Optimal pairs (na, λ) and the corresponding identification errors, found after two experi-
ments of direct search with 74,505 (1) and 745,005 (2) identifications

AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10

na1 3 3 3 3 3 3 3 3 3 3

λ1 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24 3.24

F1 5.65E+6 8.41E+6 1.34E+7 9.42E+6 1.03E+7 6.89E+6 8.35E+6 8.09E+6 8.15E+6 1.26E+7

na2 3 3 3 3 3 3 3 3 3 3

λ2 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32

F2 5.62E+6 8.98E+6 7.72E+6 9.79E+6 7.79E+6 6.62E+6 7.19E+6 1.31E+7 8.44E+6 2.65E+7

where NM is the number of samples and MM the minimum number of samples that
we want to process. As our series has 28 samples, we think that MM = 20 is a
reasonable minimum value, because the more behavior information of the series be
processed, the more accuracy the prediction will have. On the other hand, the lower
limit should be at least 3 because of theARMAXmodel is polynomial. Consequently,
we establish the limits 3 ≤ na ≤ 7. With regard to the forgetting factor, we establish
a wide range: 0.1 ≤ λ ≤ 15.0.

The direct search considers values of the pair (na, λ) generated iteratively by
incrementing them using the intervals hna and hλ for na and λ respectively. The
interval hna = 1 because the model size is integer, so we consider 5 possible values
of na. However, hλ depends on the desirable accuracy for the direct search. For this
purpose, we have performed two experiments with different computational efforts:
hλ = 0.001 (experiment #1) and hλ = 0.0001 (experiment #2). This means to gen-
erate 1 + (hλu − hλl)/hλ values of λ, where λu and λl are the upper and lower limits
of λ, respectively. This way, experiment #1 implies to generate 14,901 values for
λ and 74,505 identifications, whereas experiment #2 implies to generate 149,001
values for λ and 745,005 identifications, for each TS.

Table1 shows the optimal pairs and their corresponding minimum identification
errors, found after performing both the experiments. We conclude that, for each
experiment, the minimum error was found always for the same pair in all the TS: the
best model size was na = 3, whereas λ oscillates between 3.24 and 5.

Figure5 shows an example of the direct search. The plot on the left displays
the identification errors for the pairs (na, λ) generated in experiment #1 for AP6.
This plot does not show clearly the possible minimum peaks, so we have applied a
correcting function that highlights the maximum and minimum peaks, maintaining
the proportion among all the points. This way, the plot on the side shows a high
number of minimum peaks near themselves, where we could sense the existence of
a global minimum. This fact is similar in the other series.

We think that the high number of minimum peaks suggests that the optimum pair
could be different for each TS; even more, the identification error is very sensitive
to the pair setting. Therefore, we should perform a deeper search. Nevertheless, a
direct search could waste a high computational effort performing identifications in
wide areas where the minimum errors are not present. Besides, larger time series
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Fig. 5 Error measure in the identification of AP6, for 74,505 values of the pair (na, λ). Plot on
the right shows the same plot on the left after applying a correcting function that highlights the
maximum and minimum peaks, maintaining the proportion among all the points, in order to show
a better display

imply higher computation time for the identification. All these factors move us to
consider alternatives that are more efficient instead of direct search. In this sense,
metaheuristics are well-proven solutions in optimization problems.

Metaheuristics for Efficient Search

Metaheuristics [10] are approximate algorithms based on heuristic search. They
explore efficiently the space of solutions intensifying the search in the nearness of a
promising solution, and can be based on trajectory or population. Among population-
based metaheuristics, Evolutionary Algorithms (EAs) [11] are inspired in evolution
rules at individual level.

Genetic Algorithms (GA) [12] are one of the most known EA. They are stochas-
tic search methods with many successful applications. In order to understand their
behavior, we explain some definitions:

1. The objective function f (X) is the function to optimize, and it depends on
NVAR decision variables xi . In our case, we have NVAR = 2 decision variables,
x1 = na and x2 = λ, and f (X) is the accumulated error (3) in the TS identifica-
tion: f (x1, x2) = F(na, λ). Therefore, each evaluation of the objective function
implies to perform a full identification.
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Fig. 6 Scheme of the genetic algorithm used in this work

2. An individual X is a solution of the optimization problem, or a set of values xi .
In our case, a solution is a pair (na, λ).

3. A population is the set of NIND individuals that evolves along generations.
4. The phenotype Pi of individual Xi is defined by their decision variables Pi =

(xi,1, ..., lxi,NV AR), and the genotype Gi of individual Xi its phenotype is coded
according to a determined alphabet. In our case, we work with real numbers, so
the genotype has the same representation. The chromosome G of the population
is the set of genotypes of all their individuals.

5. Fitness function transforms the objective function into a measure of relative fit-
ness. In our case, the fitness of an individual is its objective value with regard to
the entire population.

Figure6 shows how the GA works:

1. We start generating an initial population: Chrom.
2. Next, all the individuals in the population are evaluated: ObjV .
3. Assignment phase: In the first iteration (generation) of the GA, a fitness value is

assigned to each individual: FitnV .
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Table 2 Optimal pairs (na, λ) and the corresponding identification errors, found after 10 runs of
the GA for each time series, according to the parameter limits

AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10

na 3 3 4 5 5 4 3 7 7 6

λ 4.87 3.70 5.60 2.23 3.42 2.58 1.70 3.22 1.50 2.19

F 5.66E+6 7.54E+6 6.81E+6 5.94E+6 6.22E+6 6.20E+6 6.92E+6 6.26E+6 6.73E+6 7.13E+6

#run 8 5 7 8 7 2 1 5 7 9

4. Selection phase: the best individuals (parents) are chosen for crossover according
to their fitness values: SelCh.

5. Recombination phase: The parents are crossed to generate new individuals (off-
spring), updating SelCh.

6. Mutation phase: Particular mutations are applied to some individuals of the off-
spring, updating SelCh.

7. Evaluation phase: The offspring ins evaluated: ObjV Sel.
8. Reinsertion phase: The offspring individuals are reinstated in Chrom.
9. The algorithm goes to the assignment phase again. These phases are performed

iteratively alongmany generations, up to a stop criterion is reached. This criterion
can be a number of generations, computation time, etc.

Aftermany experiments, we have tuned themain parameters of theGA as follows:
population of 500 individuals, 50 generations as stop criterion, selection rate of 0.9,
crossover probability of 0.8, selection byuniversal stochastic sampling, and crossover
by fixed point.

Table2 shows the optimal solutions found after 10 runs of the GA for each TS,
observing the limits established in direct search for na and λ. We note that GA
performs less identifications than direct search. Thus, one run of GA performs {eval-
uation of initial population (500) + 50 generations × [selection rate (0.9) × popula-
tion size (500)]} = 23,000 identifications, whereas experiments #1 and #2 of direct
search implied 74,505 and 745,005 identifications, respectively. Thus, if we compare
Tables1 and 2, we check howGA provides minimum errors in all TS, except for AP1
where the error is practically the same. Consequently, the GA improves the accu-
racy of the identification, and consequently the prediction, with lesser computational
effort with regard to a simple direct search.

5 Conclusions

We have applied the time series analysis to the daily energy consumption in the
access points of a Wi-Fi network, in order to predict the values for the next days.
This knowledge can be useful for the maintenance of the network infrastructure. We
have collected data from a real wireless environment consisting of ten access points
in an academic building, accessed by thousands of students along several weeks. The
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time series, one for each access point, were modeled according to an auto-regressive
formulation with recursive estimation and predicted for the three next days. The
prediction results were compared with known energy values in order to analyze the
method accuracy.

The obtained results are good enough, since the differences between prediction
and real values are under 2% in almost all the cases. Nevertheless, the prediction
can be improved using optimal values for the prediction model and the forgetting
factor in the recursive estimation, since both parameters have a strong influence in
the error done. Pursuing this goal, we have checked how a proposal based on genetic
algorithms provides better optimal values than direct search methods, even with low
computational efforts.

As future researchworks,wepropose to addother parameters different than energy
consumption to be predicted for maintenance purpose like number of connected
users, network sessions, and data traffic, since these data are easily accessible from
theAP itself. In addition, more realistic networks should be considered. For example,
time series should be larger, in order to analyze more data with regard to the users’
behavior; thus, we may consider a wider window of days in order to give more
representation to the different parts of the year (holidays, beginning of the academic
year, examination period, etc.).
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An Econometric Analysis
of the Merit-Order Effect in Electricity
Spot Price: The Germany Case

François Benhmad and Jacques Percebois

Abstract In this paper,we carry out an econometric analysis forGermany, as a coun-
try with high penetration of renewable energy sources (RES), in order to investigate
impact of wind energy and photovoltaic feed-in on electricity spot price level, the
so-calledmerit-order effect.We have used anARMA-X-GARCH-Xmodelingwhere
wind generation and photovoltaic are considered as exogenous variables included in
the mean and the variance equation, in order to assess the joint impact of RES on the
electricity spot price level as well as on spot price volatility in Germany. Our main
empirical findings suggest that wind power and photovoltaic feed-in decreases elec-
tricity spot price. However, their impact on electricity spot prices volatility is quite
different. Indeed, the solar photovoltaic power has a lowering on impact electricity
price volatility, whereas the wind feed-in exacerbates it.

Keywords RES · Electricity spot prices · Merit-order effect · Volatility

1 Introduction

Renewable energy is a key component of the EU energy strategy. It started with the
adoption of the 1997White paper and has been driven by the need to decarbonize the
energy sector and address growing dependency on fossil fuel imports from politically
unstable regions outside the EU. In 2009, the EU released the First Climate and
Energy Package, with 2020 targets (compared to 1990 levels): 20% GHG emissions
reduction, 20% renewable energy share in primary energy mix, and 20% energy
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efficiency improvement. The Second Climate and Energy Package with targets for
2030 released in 2014 comprised the objectives submitted to the COP21 in 2015:
40% GHG emissions reductions, 27% renewable energy share in primary energy
mix, and 27% energy efficiency improvement.

Various RES supporting schemes are operating in Europe, mainly feed-in tariffs,
fixed premiums, and green certificate systems. The German Renewable Energy Act,
“Erneuerbare-Energien-Gesetz” (EEG), a well-known support scheme, has provided
a favorable feed-in tariff (FIT) for a variety of renewable energy sources (RES) since
the year 2000. It also gives priority to electric power in-feed from RES overpower
in-feed from conventional power plants, i.e., fossil- and nuclear-fuel thermal and
already existing hydro-based power plants. Thus, all renewable sources combined
made up to 30 per cent of gross electricity production in 2016 and are Germany’s
second most important source of electricity generation after coal [3].

One of the central empirical findings in the literature on renewable energy is that
an increase in RES generation would put a downward pressure on the spot electricity
market price by displacing the conventional power plants with higher marginal cost.

In this paper, we carry out an econometric analysis in order to investigate the
impact of the RES on electricity prices, the so-called, merit-order effect using a data
sample of daily electricity spot prices in Germany for the 2012–2016 period.

There are two main contributions of this study to the literature. First, in contrast
to the previous studies in Germany, we take into account the joint impact of wind
feed-in and solar photovoltaic on electricity price with amore recent dataset allowing
us to assess the learning curve of new technologies integration in the energy mix of
Germany.

Second, an ARMA-X-GARCH-X modeling is used with wind and photovoltaic
power generation as exogenous variables included in the mean and the variance
equation. The goal is to assess the joint impact of intermittent renewable electricity
generation on the electricity spot price level as well as on spot price volatility in
Germany.

Our main findings suggest that intermittent wind feed-in and solar photovoltaic
power generation not only decrease the spot electricity price in Germany but also
have an impact on its price volatility. However, photovoltaic has a downward impact,
whereas the wind feed-in has an opposite impact—upward—on electricity spot price
volatility.

The so-called merit-order effect has gained increasing attention in the literature
both on a theoretical basis and an empirical one. Indeed, Jensen and Skytte [11] point
out that RES generation enters at the base of the merit-order function, thus shifting
the supply curve to the right and crowding the most expensive marginal plants out
from the market, with a reduction of the wholesale clearing electricity price.

Several papers have carried out empirical analysis on the impact of RES in elec-
tricity markets, finding evidence of the merit-order effect. Indeed, one of the central
empirical findings in the literature on renewable energy sources (RES) is that an
increase in intermittent sources generation would put a downward pressure on the
spot electricity market price by displacing high fuel-cost marginal generation. RES
installations, although they are very capital-intensive, have almost zero marginal
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generation cost and thus are certainly dispatched to meet demand. More expensive
conventional power plants are crowded out, and the electricity price declines.

It is worth noting that several authors have explored this topic. For Germany,
Bode and Groscurth [4] find that renewable power generation lowers the electricity
price. Neubarth et al. [15] show that the daily average value of the market spot
price decreases by 1 e/MWh per additional 1,000 MW wind capacity. Sensfuss
et al. [17] show that in 2006, renewables reduced the average market price by 7.83
e/MWh. Nicolosi and Fürsch [16] confirm that in the short run, wind power feed-in
reduces prices, whereas in the long run, wind power affects conventional capacity,
which could eventually be substituted. For Denmark, Munksgaard and Morthorst
[14] conclude that if there is little or no wind (<400 MW), prices can increase up
to around 80 e/MWh (600 DKK/MWh), while with strong wind (>1500 MW) spot
prices can be brought down to around 34 e/MWh (250 DKK/MWh). Jonsson et al.
[12] show that the average spot price is considerably lower at times where wind
power production has been predicted to be large. Sáenz de Miera et al. [19] found
that wind power generation in Spain would have led to a drop in the wholesale price
amounting to 7.08e/MWh in 2005, 4.75e/MWh in 2006, and 12.44e/MWh during
the first half of 2007.

Gelabert el al. [10] find that an increase in renewable electricity production by
1 GWh reduces the daily average of the Spanish electricity price by 2 e/MWh.
Wurzburg et al. [21] find that additional RES generation by 1 GWh reduces the daily
average price by roughly 1 e/MWh in German and Austrian integrated markets.
Woo et al. [20] carry out an empirical analysis for the Texas electricity price market
and showed a strong negative effect of wind power generation on Texas balancing
electricity prices. Ketterer [13] also examined wind power in German electricity
markets and found that an additional RES generation by 1GWh led to a reduction of
daily spot price by approximatively 1 e/MWh.

Benhmad and Percebois [1, 2] also explored German electricity markets for a
more recent dataset and found similar results consisting of a reduction of daily spot
price by approximatively 1 e/MWh for each an additional GWh of wind feed-in.

The paper is organized as follows. Section 2 provides an overview of the merit-
order effect. In Sect. 3, we carry out an empirical analysis and discuss the main
findings. Section 4 provides some concluding remarks.

2 The Merit-Order Effect

In order to supply electricity, different power generation technologies compete with
each other according to their availability of supply and their marginal cost of pro-
duction (fossil fuels such as coal or natural gas, nuclear power, renewable energy
sources like hydroelectric generators, wind or solar energy).

The electricity market operates according to day-ahead bidding. Indeed, the trans-
mission system operators basically receive the bids from all power producers for the
quantity and cost for each hour of the next day and then assigns the dispatch based



262 F. Benhmad and J. Percebois

on the lowest cost producer until demand is met. All producers who dispatch get
the marginal price of the last producer that dispatched. As a result even if the last
producer only produced theoretically one kWh, then that is the price of the system.
This conventional approach consists of ranking the power plants of the system in
ascending order of their marginal cost of generation. This approach is called the
merit order.

Traditionally, the hydroelectric power plants are the first to be dispatched on the
grid. They are followed, respectively, by nuclear plants, coal-fired, and/or combined-
cycle gas turbines (CCGT), and then open cycle gas turbine (OCGT) plants and
oil-fired units with the highest fuel costs.

Although power plants with the highest marginal cost correspond to the oil-fired
gas turbines, gas plants are usually the marginal producers and as a result the cost
of gas is very relevant to the wholesale pricing setting of electricity. But, due to EU
ETS price weaknesses, carbon prices have plunged to record low prices making it
more expensive to burn gas than coal. Moreover, The U.S. coal surpluses export due
to shale gas revolution has lowered coal prices in Europe, whereas oil-indexation
of gas contracts and geopolitical concerns have made natural gas more expensive.
Therefore, the price competitiveness of more polluting coal-fired plants allows them
to be dispatched before the gas turbine and to be the key of electricity price setting.

However, a pricing based onmarginal costs could never allowRES to recover their
fixed costs. Indeed, the photovoltaic (PV) and wind power plants have a high average
cost and their load factor is too low due to intermittency. Therefore, subsidizing
renewable energy sources by feed-in tariff scheme allowing their average costs to be
recovered corresponds to a support mechanism outside the market. By granting an
economic return above the market price, these supporting schemes have promoted
RES development in several European electricity markets.

As the renewable energy sources (RES) have priority for grid access at zero
marginal cost, i.e., have the privilege of priority dispatch, electricity from RES par-
ticipating in the auction process at zero marginal cost replaces every other energy
source with higher marginal cost. The decoupling of spot market prices and RES
in-feed due to FIT support scheme results in lower average equilibrium price level
on the spot market. This downward pressure on wholesale electricity prices is the
so-called merit-order effect [18].

Indeed, during full and peak times, the marginal power plant is logically a
combined-cycle gas-fired plant. However, as they have no fuel costs, RES has a zero
marginal cost. Thus, electricity from RES makes the coal-fired plant becoming the
marginal plant. The electricity market price is thus lower than it would be if there was
no RES power in-feed. Lowering electricity spot prices causes a serious distortion to
the electricity market.

Indeed, if the wind or solar power plants were not remunerated according to feed-
in tariffs scheme, they could never be profitable because the spot market price at full
and peak periods would not allow them to recover their fixed costs.

Furthermore, the insufficient dispatching of the flexible gas-fired plants jeopar-
dizes their profitability as they cannot be operated profitably because peak spot prices
are too often below their marginal operation costs. Thus, the RES, by lowering equi-
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Fig. 1 Merit order based on average and marginal costs

librium spot price level, will squeeze peak load power plants out of the market due
to their comparatively higher variable costs. Figure 1 shows the merit-order curve
based, respectively, on average and on marginal costs.

3 Empirical Evidence

Data

The analysis is based on time series data of the German power system as provided
by the platform of the European Energy Exchange (EEX). The spot market is a day-
ahead market, and the spot price is an hourly contract with physical delivery on the
next day. The Phelix day base is then calculated as the average, weighted price over
these hourly contracts. The sample data covers the period going from January 1,
2012 to December 31, 2016, summing up to 1827 observations.

Figure 2 provides a plot of the data for the whole period. It is easy to see that the
data exhibits the typical features of electricity prices and contains several periods of
extreme volatility, price spikes, and shows a mean-reverting behavior.

The descriptive statistics of German electricity spot prices summarized in Table 1
show that values of sample mean are close to 34.97 and a standard deviation of 11.74.

The sample kurtosis (6.86) is higher than 3, the kurtosis of a normal distribution,
implying that price distribution exhibits fat tails. Furthermore, negative skewness
indicates a greater probability of large falls in electricity price than large increases. By
the Jarque–Bera statistic, the null hypothesis of normal distributions is also rejected.

For the RES generation, we use daily forecasts of wind power and photovoltaic
generation for the full period as illustrated in Figs. 3 and 4.
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Fig. 2 Daily EEX day-ahead spot prices (e/MWh)

Table 1 Descriptive statistics
of German electricity spot
prices

Observations 1827

Mean 34.97

Std. dev. 11.74

Skewness −0.33

Kurtosis 6.86

Jarque-Bera 1171.37

Prob. 0.0000

These forecasts are made by the four German transmission system operators
(TSO).1

The descriptive statistics (Table 2) show that the wind power and photovoltaic
forecasts fed into the grid have, respectively, a daily mean of 6817 and 3651 MWh
per day but a high variability.

1The data are available in 15 min format. For this study, 15 minMWdata are averaged for each hour
and again averaged toMWh per day. There is four transmission system operators (TSO) in Germany
and one TSO in Austria: Amprion GmbH, TenneT TSO GmbH, 50 Hz Transmission GmbH, EnBW
Transportnetze, and APG-Austrian Power Grid AG.
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Fig. 3 Wind power feed-in (2012–2016)

Fig. 4 Photovoltaic power generation (2012–2016)
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Table 2 Descriptive statistics of wind feed-in and photovoltaic

Wind PV

Observations 1827 1827

Mean 6817.63 3651

Std. dev. 5652.75 2380

Skewness 1.54 0.28

Kurtosis 5.32 1.91

Jarque-Bera 1135.58 113.14

Prob. 0.0000 0.0000

Empirical Methodology: ARMA-X-GARCH-X Model

In order to explore the link between daily electricity spot price and RESwind in-feed
(wind and photovoltaic), we should carry out a linear regression using least squares
method.

As electricity spot prices deviate from the normal distribution due to more fre-
quent large outliers, outliers should first be removed before conducting the regression
analysis.

In line with the literature, we remove values that exceed three times the standard
deviation of the original price series. The outliers are then replaced with the value
of three times the standard deviation. Furthermore, the analysis of electricity spot
prices correlogram shows a strong autocorrelation in lags 7, 14, 21, and 28 indicating
a weekly seasonality. Indeed, electricity demand has a typical seasonal pattern as it
varies throughout the day and during the week, as well as across the year.

Therefore, models of electricity prices should incorporate seasonality using
dummy variables. For the weekly seasonality, dummy variables’ coefficients show
a progressive lowering of electricity spot prices from the beginning to the end of
the week. The lowest value occurs on Saturday. For the monthly dummy variables,
although some coefficients are not significant, we see a lowering of electricity spot
prices during March, April, May, June, July, and August.

After outliers removal and seasonal adjustment, we carry out an augmented Dick-
ey–Fuller (ADF) test [7] to test for stationarity properties of electricity adjusted spot
prices (Table 3).

Table 3 ADF unit root test on adjusted electricity spot prices

t-statistic Prob.

Augmented
Dickey–Fuller

Test statistic −8.588311 0.0000

Test critical values 1% level −3.433739

5% level −2.862924

10% level −2.567554
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Table 4 ADF unit root test on WIND_SA

t-statistic Prob.

Augmented
Dickey–Fuller

Test statistic −19.173116 0.0000

Test critical values 1% level −3.433739

5% level −2.862924

10% level −2.567554

Table 5 ADF unit root test on PV_SA

t-statistic Prob.

Augmented
Dickey–Fuller

Test statistic −23.18669 0.0000

Test critical values 1% level −3.433739

5% level −2.862924

10% level −2.567554

The ADF t-statistic is −8.85, whereas the 5% critical value is −2.86. The null
hypothesis of a unit root is rejected, spot electricity prices are then stationary. As
electricity is not storable, the price tends to spike and then reverts (mean-reverting
behavior) as soon as the divergence of supply and demand is resolved [9].

For the wind power, the variable shows seasonal dynamics which could be
accounted for using dummy variables. The deseasonalized time series called
(wind_sa) is then tested using the ADF test which reveals their stationary behav-
ior (the ADF t-statistic is −19.17, whereas the 5% critical value is −2.86) (Table 4).

For the photovoltaic power, the variable shows seasonal dynamics which could be
accounted for using dummy variables. The deseasonalized time series called (pv_sa)
is then tested using the ADF test which reveals their stationary behavior (the ADF
t-statistic is −23.18, whereas the 5% critical value is −2.86) (Table 5).

Even after removingout seasonality andoutliers, electricity spot prices still present
high-order serial correlation in its structure which could be filtered out by an autore-
gressive moving average (ARMA) filter [6]. Therefore, the impact of wind in-feed
and photovoltaic on electricity prices is explored according to the following ARMA-
X model where the wind feed-in and photovoltaic power considered as exogenous
variables X:

(spot_sa)t � α0 +
p∑

i�1

α1(spot_sa)t−i +
q∑

j�1

β jεt− j + δwind_sat + λpv_sat + υt

The selection of autoregressive lag p could depend on AIC minimization, and q
is assumed to be 0. According to the Akaike information criterion, the best choice
was lag p�7 which corresponds to a weekly seasonality.2

2The results of 7 autoregressive terms, not reported here, are available upon request.
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Table 6 Wind and photovoltaic feed-in impact on electricity prices and volatility

Dependant variable: electricity spot prices

Sample: 1.1.2012 31.12.2016

(A) (B)

Mean equation

Constant −0.46 (0.65) 0.00 (0.99)

Wind −0.00099 (0.00) −0.0010 (0.00)

PV −0.00098 (0.00)

Variance equation

Constant 3.59 (0.00) 3.44(0.00)

Alpha 0.31 (0.00) 0.31(0.00)

Beta 0.56 (0.00) 0.56 (0.00)

Wind 0.00016 (0.00) 0.00016 (0.00)

PV −0.0004 (0.00)

Adj. R-squared 0.7467 0.7584

AIC 5.7713 5.6973

BIC 5.8116 5.7426

Note AIC and BIC stand, respectively, for Akaike and Bayesian information criterion, p-values are
in parentheses

Table 7 ARCH heteroskedasticity test on regression residuals

Heteroskedasticity test: ARCH

F-statistic 120.83 Prob. F(1,1816) 0.0000

Obs*R-squared 113.41 Prob. Chi-Square(1) 0.0000

The estimation results reported in Table 6 (Column A) reveal a negative impact
of wind power on the electricity price in Germany. Indeed, for each additional GWh
of wind feed-in, the electricity price decreases by 1 e/MWh at the spot market.
Therefore, and given the average wind electricity generation during 2012–2016, the
merit-order effect roughly corresponds to an average price decrease, in absolute
terms, of approximately 7 e/MWh.

The residuals of linear regression should then be homoskedastic according to
least squares estimator hypothesis. Therefore, an ARCH-effect test following the
procedure of Engle [8] is carried out on residuals data (see, Table 7).

We conclude that the time series of residuals is heteroskedastic and the parsi-
monious GARCH(1, 1) specification [5] could be used to take into account the
time-varying volatility feature of spot electricity spot prices.

As our goal consists in exploring the joint impact ofwind in-feed on spot electricity
price level and also on price volatility dynamics, thewind feed-in should be taken into
account as an exogenous variable in themean equation aswell as in the variance equa-
tion. Therefore, our empirical analysis is based on ARMA(p, q)-X-GARCH(1, 1)-X
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modeling where the exogenous variable X represents the wind in-feed. The empirical
results based on AR(7)-X-GARCH(1, 1)-X model are reported in Table 6 (Column
A).

The model parameters are positive and statistically significant at the 1% level.
We can conclude that the introduction of wind electricity in Germany has not only
reduced the electricity spot prices (−0.001) but also induced an increase of their
volatility (positive sign +0.00016 at the conditional variance equation).

Indeed, wind in-feed, due to the merit-order effect, not only reduces the electricity
spot price levelmaking them sometimes negative but induces an increase in electricity
price volatility, exacerbating risks in electricity markets.

The estimation results also reported in Table 6 (Column B) reveal not only a neg-
ative impact of wind power on the electricity price in Germany but also a negative
impact of solar photovoltaic generation on electricity prices of the same magni-
tude. Indeed, for each additional GWh of photovoltaic feed-in, the electricity price
decreases approximatively by 1 e/MWh at the spot market. Therefore, and given
the average photovoltaic electricity generation during 2012–2016, the merit-order
effect induced by photovoltaic roughly corresponds to an average price decrease, in
absolute terms, of approximately 3.65 e/MWh.

To explore the joint impact of wind in-feed and photovoltaic on spot electricity
price level and on price volatility dynamics, the two variables should be taken into
account as exogenous variable in the mean equation as well as in the variance equa-
tion. The empirical results based on AR(7)-X-GARCH(1, 1)-Xmodel are reported in
Table 6 (Column B). The model parameters are positive and statistically significant
at the 1% level.

We can conclude that the introduction of wind electricity in Germany has not
only reduced the electricity spot prices (−0.001), but also induced an increase of
their volatility (positive sign +0.00016 at the conditional variance equation). How-
ever, photovoltaic electricity not only reduced electricity spot prices (−0.001) but
also induced a downward pressure of their volatility (negative sign −0.0004 at the
conditional variance equation). Therefore, we conclude that wind and solar photo-
voltaics have the same effect on electricity spot prices (downward effect) of the same
magnitude approximatively, but have the opposite impact on its volatility dynamics.

Thus, the full model containing wind feed-in and photovoltaic electricity genera-
tion has a clear superiority on the model based only upon wind feed-in as shown by
high level of adjusted R-squared and information criterions (see Table 6).

Indeed, the upward effect on electricity prices volatility induced by highly inter-
mittent wind feed-in is largely offset by the photovoltaic downward effect. Thus,
the mixture of installed electricity generation capacities consisting of wind and solar
photovoltaic allows German electricity market volatility to be less higher than it
would be if Germany had only installed wind generation capacities.
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4 Conclusion

The feed-in tariffs support scheme, consisting of buying intermittent electricity at
a fixed price off-market considerably higher than the spot market price, has clearly
induced a huge market penetration of RES in Germany.

The fact that this intermittent electricity has statutory priority on the grid and at
the same time participates in spot market auctions at a zero marginal cost can have
negative effects on the functioning of the spot market as it leads to a downward trend
in the equilibrium price: the so-called merit-order effect. Indeed, each additional
GWh wind (and RES in general) production of electricity will have a crowding
effect on higher marginal cost power plants.

The purpose of the paper consists in quantifying the merit-order effect of wind
feed-in and photovoltaics in Germany during the 2012–2016 period. One of the
major findings is that the day-ahead electricity spot price fell by 1 e/MWh for each
additional GWh, respectively, for the two renewable energy sources. Moreover, the
wind electricity generation has an increasing effect on the spot prices volatility which
is largely offset by photovoltaics with their strong downward impact on volatility.

However, although the volatility is controlled by a mixture of installed capacities
of RES, the merit-order effect remains a big challenge for Germany. This negative
effect of RES could significantly be limited by the interconnections of between Ger-
many and neighboring countries especially France, allowing it to export its surplus
wind power. Therefore, the development of the renewable energy sources should be
accompanied by a market coupling in order to address their challenges to European
electricity system.
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The Analysis of Variability of Short Data
Sets Based on Mahalanobis Distance
Calculation and Surrogate Time Series
Testing
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Abstract In this work, we present convenient for short time series approach which
is based on the multivariate Mahalanobis distance calculation, combined with the
surrogate time series testing. In order to test the ability of this approach to differentiate
changes which could occur in complex processes, we analyzed data sets of different
origins. We used seismological, meteorological, physiological, and economic data
sets. Exactly, we analyzed data sets of inter earthquake times (IET), inter earthquake
distances (IED), and differences in consecutive magnitudes (DM) compiled from
southern Californian earthquake catalogue, data sets of yearly number of warmer
and colder days derived frommaximal air temperature data bases in Tbilisi, Georgia,
arterial systolic, and diastolic blood pressure time series of healthy persons, as well
as components of Index of Economic Freedom (IEF) and exchange rate time series
of three southern Caucasian countries. It was shown that used approach, even in the
case of relatively short time series, may effectively be used to quantify dynamical
changes occurred in different natural complex processes.
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1 Introduction

According to ancient Pythagoreans “All things are numbers”. Nowadays, in an era of
digital technologies, this truth about numbers, through which we explore the world
around us, has stopped being an abstract philosophical statement and became a part
of everyday life. Not always, but often we manage to do so that these numbers
(commonly measured, or calculated somehow) would be represented in the form
of equally spaced in time—evenly sampled time series, though often they can be
available to us only in the form of unevenly sampled sequences of data. To get these
data sets is not an easy job, so far as we deal with structures and processes of nature,
which presently often are named as complex. Complexity is a frequently used, though
still poorly defined, concept [1, 2]. At present, it looks almost hopeless endeavor to
try to find the accepted conventional, clear-cut and single-valued explanation of the
term “complexity” in the plenty of available textbooks or regular scientific articles. At
the same time, it is clear that complexity is related with the crosscutting hierarchical
organization, multitude of out of equilibrium dispersed mutual interactions, etc. All
these cause the fact that structurally or functionally the whole in such systems is not
equal to the sum of its parts, what in varying degree is characteristic for all nonlinear
systems.

Examples of complexity can be found in very different areas, such as atmo-
sphere (climate and weather change), geophysics (tides, earthquakes, volcanoes,
magnetic field variations), social systems (crowd behavior), medicine and biology
(rhythms, physiological cycles, epidemics), economy (financial market behavior,
exchange rates), engineering (friction, fracturing), communication (electronic net-
works, internet packet dynamics), etc.

Anyway, in spite of unavoidable complexity of natural world, often we succeed to
identifying and quantifying a signal, which characterize interesting for us structures
or processes [2]. In such cases, we deal with the varying time (at least in time)
usually discrete, evenly or unevenly sampled data sequences. Multitude of examples
of such data sets from different complex processes can be listed from diverse fields
of research and practical activity.

Presently, complex time series analysis is in the focus of interdisciplinary research
interests. Many conceptual solutions and interesting results related with the quan-
tification of complex processes can be listed in different fields [2, 3]. At the same
time, the problems arise when available for researchers, usually, not stationary data
sets do not fulfill necessary for correct complex data analysis, strong requirements
imposed on data sets such as length, quality, etc. [2, 3].

In such cases, we are forced to combine different approaches in order to have an
understanding on general features of complex process based on existed imperfect
data sets. In this work, we describe our approach which is based on the combina-
tion of multivariate analysis and surrogate testing, of the relatively short data sets
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[2–4]. Exactly, we used multivariate Mahalanobis distance calculation to evaluate
changes that occurred in the analyzed process as assessed by two or three of its main
characteristics. After, in order to test whether observed changes are indeed related
with the internal dynamical structure of process, we compared original data sequence
with surrogate time series with the distorted dynamical structure. We also present
the results of analyses carried out on relatively short complex time series of different
origin.

Thus, the objective of this research can be reduced to a problem of classification,
having in mind the separation of states of the analyzed complex processes assessed
by selected two–three characteristics.

Becauseof the fact that data sets bymeansofwhichwe try to understanddynamical
features of natural complex systems rarely fulfill all high standards of the contem-
porary complex time series analysis, the approaches like that presented in this work
will have of great importance for different scientific and practical applications.

2 Data and Methods of Analysis

In this research, four different types of data sequences have been used to demonstrate
how in the case when only short data sets are available the multivariate analysis can
be used to assess dynamical features of complex natural processes.

We started from the seismic data sets. We analyzed inter earthquake times, inter
earthquake distances, and differences in consecutive earthquake magnitudes com-
piled from the southern Californian earthquake catalogue, at M4.7 representative
threshold, as presented by Kagan and colleagues [5]. Exactly, we used part of this
catalogue from 1929 to 1952.

Next data set, we used, was maximum daily temperatures measured in Tbilisi,
Georgia from 1915 to 2013. This data set fulfilled all standards of data quality con-
trol and homogeneity. From these time series, we compiled a daily max temperature
anomalies time series consisting of deviations of daily max air temperatures from
the long-term average for the same day of the year. From the daily max air temper-
ature anomalies data sets, we compiled sequences of yearly number of days when
anomalies of daily max temperatures significantly deviate from the 99-year mean
of anomalies for that days. We considered separately sequences of number of days,
when anomalies of max daily temperatures were significantly larger (warmer days-
WD) or were significantly lower (colder days-CD) than 99-year mean values. These
(WD and CD) sequences strongly characterize features of the warm and cold tails of
the distribution, and thus are more relevant to characterize aspects of the anomalous
changes in max daily temperatures that occurred as a result of temperature increase
[6].

After we proceeded to physiological data sets. We considered arterial blood pres-
sure time series from70volunteers. The age of participants varied from30 to 50 years.
All subjects gave informed consent to participate in the study. Participants of the study
were not given medicines for 2–3 days preceding the examination. The monitoring
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of blood pressure was carried out from 12.00 to 12.00 AM of the next day, taking
into consideration the physiological regime of participants of the study. We analyzed
systolic (SBP) and diastolic (DBP) arterial blood pressures. These data have been
obtained from 24 h ambulatory monitoring recordings at 15 min sampling time.

Used in this research economical data sets represented components of Index of
Economic Freedom (IEF) as well as daily increments of currency exchange data for
three southernCaucasianCountries,Azerbaijan,Georgia, andArmenia (2013–2016).

The main goal of our research was akin to a general classification problem, i.e.,
a problem, regarding changes that occurred in certain process (no matter seismic,
climatic, physiological, or economical). For this purpose, in the present research, the
Mahalanobis distance (MD) calculation was applied [4] which is a popular method
of distinguishing multivariable data groups by using a univariate distance measure
that is defined by several performance parameters. Mahalanobis distance can be
calculated as follows:

D2 � (x̄1 − x̄2)
T S−1(x̄1 − x̄2) (1)

where x̄1 and x̄2 are sample means from sample sets of sizes n1 and n2, The “T”
superscript denotes the transpose operator. S is pooled covariance matrix

S � ((n1 − 1)S1 + (n2 − 1)S2)

n1 + n2 − 2
(2)

where Si are covariance matrices of corresponding groups.
Generally, the two conditions or states of systems aremore similar (more probable

to belong to the same class or group), if their MD value is smaller. After computation
of MD values, in order to assess the significance of separability between compared
groups, Hotelling’s two-sample T2 statistics was used, which was then converted
into F value and assessed by F-test. F-value was calculated as follows:

F � n1n2
n1 + n2

n1 + n2 − p − 1

(n1 + n2 − 2)p
D2 (3)

where p and (n1+n2 – p− 1) are degrees of freedom. Then, calculated F values were
compared with a critical value, Fc, which, for certain degrees of freedom values, can
be easily found in different statistical textbooks. When calculated F>Fc, then null
hypothesis, that there is no separation between considered groups, can be rejected,
and thus statistically significant differencebetweengroups is established at a specified
probability.

Usually, MD calculation is preferable for multivariate comparison for two main
reasons. First, it reduces a multivariate system to a univariate system, and second,
MD is sensitive to inter-variable changes in a multivariate system [4].

For the purposes of our analysis, we needed to assess the influence of long- and
short-range temporal correlations in the considered data sets on the results of the
separability analysis. For this, it was necessary, these results to be compared with the
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results, obtained for surrogate data sets where the original dynamical structure has
been intentionally distorted in a certain manner [2, 3]. In present research, however,
we restrict our analysis only by the shuffled surrogates, in which dynamical structure
of original process is completely destroyed. Results of comparison with other sur-
rogates in which original time structure is just partly destroyed will be presented in
future. Thus, here, we accomplished an analysis on original as well as corresponding
randomized (shuffled) data sets. For each of the four, above mentioned, original data
sets, we compiled 50 of such randomized sequences. It is logical that these data
sets were much closer to a normal distribution, and thus comparison with such data
sets was important also for the correctness of the interpretation of results of MD
calculation.

3 Results and Discussion

As it is said in the previous section, themain goal of the researchwas the classification
of changes occurred in the considered complex system, based on the analysis of short
data sets of specially selected two, three characteristics. Generally, one of the most
important steps in such tasks of the classification is the systems’ feature extraction
[4]. This implies the transformation of original data sets into new ones, enabling to
focus on targeted features of the investigated process.

As mentioned above, we have started from the multivariate analysis of seismic
process based on Southern California earthquakes catalogue [5]. From this database
consisting of 155 events from 1929 to 1952, when strong earthquake M7.5 occurred,
we compiled IET, IED, and DM data sequences. These data sequences are typical
examples of short, unevenly sampled data sets. Thus, because of short catalogue
(due to high representative threshold M4.7), we could not analyze systems behavior
in the equal time intervals and have decided to compare similarity or dissimilarity
of seismic process in the consecutive windows of 40 data, shifted by 10 data. We
compared groups which contained IET, IED, DM sequences. In Fig. 1a, we show
results of comparison between the first window (which contains first 40 data in
catalogue and started in 1929) with other windows shifted by 10 data. As we see,
seismic process assessed by the variability of IET, IED, DM sequences, in most of
these windows, looks similar like in the first window (MD value is lower than level
of significance). Only two windows (4th started in 1940 and 11th started in 1950)
reveal statistically significant difference comparing to first window. At the same
time, is important to say that these two windows are quite different by the amount
of released seismic energy. Indeed, as we see in Fig. 2, in the 4th window almost the
maximal amount of seismic energy was released while in the 11th window amount of
released seismic energy is close to minimum among all considered 40 data windows.
This fact apparently, once again points that dynamics of complex seismic process in
whole, can not be correctly understood based only on the knowledge of features of
behavior in one of its energetic, temporal or spatial domains. All the said underlines
the importance of different multivariate analyses in this field. In present work, we
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Fig. 1 MDvalues calculated by IET, IED, and DM sequences for the consecutive 40 data windows,
shifted by 10 data. a Data obtained from original Southern California earthquake catalogue com-
pared with the first window, b data obtained from randomized catalogues compared with the first
window, c windows contained data from the original catalogue are compared with the correspond-
ing windows contained data from randomized catalogues. Dotted line corresponds to significant
difference between windows at p�0.05
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demonstrate interesting possibilities provided by one of such approaches andwe plan
to continue similar researches in future.

Next, to exclude possible mistakes in our analysis, which can be caused by differ-
ent short- and long-term correlations, we decided to use shuffling procedure. Exactly,
as it was described in the methods section, we compared the natural seismic process
with the process in which the original temporal, spatial, and energetical structure was
intentionally distorted. In other words, we compared original IED, IET, and DM data
sets with ones compiled from shuffled catalogues. It is interesting that according to
our results (Fig. 1a, b), differences between the first window of original catalogue and



The Analysis of Variability of Short Data Sets … 281

next windows is not by chance and apparently are caused by the different character
of earthquakes’ temporal, spatial, and energetical distributions in different windows.

Further analysis supported this supposition. Indeed, as we see in Fig. 1c, com-
parison of original IET, IED, and DM data sets with ones compiled from catalogues
where natural dynamical structure was distorted, shows that there are windows (third
and fourth as well as last two windows) in which dynamical features of seismic pro-
cess is indistinguishable from random process. At the same time, in other windows
(e.g., in first and second and especially in 7th and 8th windows, Fig. 1c) we observe
that by its features of temporal, spatial, and energetic distributions, original seismic
process is significantly different from randomness. This apparently points out that in
these windows seismic process behaves more regular by features of the space, time
and energetic distributions comparing to other windows. Taking into consideration
that strongest earthquakes (M7.0 and larger) occurred at the beginning and at the end
of considered period (in 1934 and 1952) obtained results can be considered in favor
of our earlier suggestion that the seismic process looks more regular at periods of
decreased local seismic activity. It also not possible to exclude that observed changes
are related with the features of aftershocks distribution. It is necessary to underline
that we dealt with cleaned catalogue [5] at high magnitude threshold level (M4.7),
what definitely decrease possibility of appearance of aftershocks in the catalogue,
but to exclude such possibility completely seems impossible.

Anyway, presented analysis convinces that even in the case of short data sets for
which using of common dynamical data analysis tools is questionable or impossible,
we may draw important conclusions about dynamics of complex seismic process
based on the procedure of multivariate MD calculation combined with surrogate
data testing.

Second type of data sets, for which we have tested ability of approach to access
changes in the dynamical features of complex process based on MD calculation of
short data sets, came from climatology. Namely, as it was mentioned above we used
WD and CD data sequences derived from data bases of daily max air temperatures in
Tbilisi,Georgia (1915–2013).Weunderline again that these sequences ofwarmer and
colder days stem from the same—daily max air temperature data sets. Additional
analysis described elsewhere [6] convinces us that changes occurred in the local
climate should be much more complicated than a simple shift toward an increase
of mean max air temperatures many times described in literature (see e.g., http://
www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3s3-8-2.html). At the same time,
it becomes clear that a separate analysis of two processes (i.e., variability of warm
and cold days), based only on monovariate considerations, will not give a correct
view of changes that occurred as a result of increase in max daily air temperatures.

Therefore, in order to learn more about changes in the local climate in the sense of
variability of warmer and colder days, we accomplished simultaneous multivariate
analysis based on both (WD and CD) data sets. We compared two groups, each of
which contained sequences of yearly number of warmer days as the first column and
colder days as the second column. Analysis was accomplished in the consecutive
33-year windows, shifted by 11 years.

http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3s3-8-2.html
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Fig. 3 Mahalanobis distances calculated by sequences of yearly number of warmer and colder days
in consecutive 33-year windows. At the bottom are shown sections—windows (of 33-year span),
to which other 6 windows (in columns) were compared

In Fig. 3, we show MD values calculated for different sliding windows; dotted
line in these figure corresponds to the level of significant difference (F > 4, at critical
Fc � 3.14 for p � 0.05). According to obtained results, significant separation was
observed for mainly distant (in time) windows. Generally, significant separation
between compared groups means that features of variability of yearly number of
warmer and colder days have been strongly changed. Thus, assessed by features of
the variability of yearly number of warm and cold days the state of the local climate
change process in Tbilisi, has significantly changed during last 99 years.

At the same time changes happening with variation of yearly number of warmer
and colder days in Tbilisi look regular because they occurred gradually (MD values
in later windows compared to the first window almost always increase significantly)
during a whole period of observation. MD for windows in the middle of observation
period are less different from the first and last window, sometimes the difference is
insignificant.

Thus, we can conclude that over the period of our analysis local climate under-
went strong changes in the features of variability of yearly number of warmer and
colder days. Further, we performed analysis of changes in the local climate over
analyzed period of observation, in sense of time correlation features in variation of
yearly number of warmer and colder days. For this, as it was described above, it was
necessary to compare original data sets with ones, where original temporal structure
was intentionally distorted.

In general, time series of dailymax air temperature anomalies used in this research,
represent a certain type of data sets with removed yearly trends, i.e., the time structure
of the original process of daily max air temperature variation is already essentially
changed. At the same time, there are different kinds of short- and long-term correla-
tions, which obviously still exist in such data sets even after removal of yearly trends.
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Fig. 4 Mahalanobis distance values between original and time structure distorted sequences of
yearly number of warmer and colder days in Tbilisi, calculated for consecutive 33-years windows
(11-year step, 1915–2013). Dotted line corresponds to significant difference at p�0.05

This is why we further destroyed all internal time structures of the original process
by random shuffling. Exactly, we constructed time structure distorted sequences of
yearly number of warmer and colder days, based on randomized data sets of anoma-
lies of max daily temperatures, which in turn have been compiled from averaged
rows of several tens of shuffled original max air temperature data sets. As it was
expected, time structure distorted data sets of number of warmer and colder days
almost do not reveal changes in consecutive 33-years windows (not shown here), in
contrast to original (WD and CD) sequences (presented in Fig. 3).

Results of Mahalanobis distance calculation when original and dynamical struc-
ture distorted data sets have been compared is presented in Fig. 4. From this figure, it
can be concluded that the extent of regularity in the local climate variability, in sense
of changes in the amount of warmer and colder days, has significantly changed in
different 33-year windows of considered 99 year period. The situation with climate
change looked most dysregulated in the middle of the last century. What presently
can be said for sure is that changes in the local climate in Tbilisi should be related
with changes in large- and small-scale atmospheric dynamics. In the present work,
we do not go deeper into these discussions, because themain goal was to demonstrate
the effectiveness of used approach for short data sets from different complex natural
processes.

Next, for the same purpose of the analysis of short data from complex processes,
we proceeded to the analysis of physiological data sets (from the database of Institute
of Clinical Cardiology, Tbilisi, Georgia). Namely, we analyzed arterial systolic and
diastolic blood pressure data sets (SBP and DBP) of persons falling into optimal
arterial hypertension grade, according to guidelines of European Society of Hyper-
tension (ESH) and the European Society of Cardiology (ESC) [7]. Generally, blood
pressure variability is one of the most often discussed in the special scientific liter-
ature questions. Most attention usually is paid to differences in the blood pressure
variability of patients from different hypertensive groups (see e.g., [8, 9]).

Knowledge of the character of variability of blood pressure characteristics is very
important becausemay provide unique information on human physiological system’s
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Fig. 5 Mahalanobis distance values calculated for consecutive, 8 h, windows shifted by 1 h. a
Compared to first window sequences of original systolic and diastolic blood pressures of persons
in optimal arterial hypertension group, b comparing each window of original data to corresponding
window of shuffled time series. Dotted line corresponds to significant difference between windows
at p�0.05

behavior and may serve as characteristic fingerprints for health condition identifica-
tion as well as for comparison with other systems and models. Among others, is very
important to further clear up the character of changes in blood pressure typical for
certain hypertensive groups (here in the optimal arterial hypertension grade, defined
according to ESH and ESC guidelines (e.g., [7])). Exactly, in this research, we aimed
to assess changes occurred during different periods of a day in persons falling in the
optimal arterial hypertension group. We accomplished multivariate analysis of aver-
aged (over whole group) values of systolic and diastolic blood pressures which were
measured in each 15 min during 24 h observation period.

We see in Fig. 5 (left curve) that by the features of variability of arterial systolic
and diastolic blood pressures, all consecutive (8 h long) windows are clearly dif-
ferent from the first window (12.00–20.00) excluding two neighbor windows at the
beginning of a period of observation. The most different from the first window, by
the largest MD value, is blood pressure variability in 12th window, corresponding to
23.00 PM–07.00AMperiod. After, the extent of difference decreases though remains
statistically significant compared to the first window (see Fig. 5a). It is not shown
here but we have carried out additional analysis and compared all windows with each
other and concluded that in about 60% of considered cases neighboring windows (of
8 h long) are statistically not different. It is interesting that two windows, started at
16.00 and 18.00 accordingly, are statistically similar with just one adjacent window
and clearly differ from all other, 8 h long, windows. Also, we observed an interesting
fact that sometimes blood pressure variation in certain time window may reveal fea-
tures looking like a long-range correlation (see e.g., [3, 8–10]). Exactly, in these 8 h
periods, features of blood pressure variability (assessed by SDP and DBP data sets)
was statistically different from closest windows while remained indistinguishable
from the more distant windows.
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Fig. 6 Mahalanobis distance values, calculated for three southern Caucasian countries in 2014 (1),
2015 (2) and 2016 (3) compared with 2013 year: based on yearly components of IEF (a), based on
normed currency exchange rates (grey columns in right figure) (b), compared with time structure
distorted data sets of increments of currency exchange (black columns in right part of figure b)

This fact inspired us to compare original time series with data sets in which origi-
nal structure of systolic and diastolic blood pressure measurements are destroyed by
random shuffling procedure. In this case, as we see in Fig. 5b, blood pressure variabil-
ity as compared with sequences of averaged randomized data sets, reveals interesting
features. Exactly, 8 h span windows (6th and 7th in Fig. 5b) starting on 17.00 and
18.00 PM as well as starting on 03.00 and 04.00 AM (16th and 17th) windows,
by features of systolic and diastolic blood pressure variability, are indistinguishable
from random processes.

Aswe alreadymentioned above, in thiswork, we did not aim to provide exhaustive
explanations of the found changes. We just wanted to show that by the presented
analysis approach, even having short physiological data sets from the certain (here
healthy) group of patients, it is possible to get new and interesting information about
changes in the features of the variation of systolic and diastolic blood pressures.

In the next step of our analysis, we have targeted to test economical data sets as
an additional example of complex time series. For this purpose, we have selected
two types of short data sets for southern Caucasian Countries: Armenia, Azerbaijan,
and Georgia. Namely, we started from the comparison of economical characteristics
of these countries by their Index of Economic Freedom (IEF), as it is presented at
Heritage Foundation Report (http://www.heritage.org/index/) for last 4 years. We
have observed that situation in southern Caucasus as whole, according to the yearly
IEF components of three countries, tends to be slightly changed and in 2016 change
was rather stronger and close to being significant in comparison with 2013 (left part
of Fig. 6).

At the same time, comparison with Georgia for 4 years of analysis indicates that
economical situation as assessed by IEF components is not different from Armenia
(MD value 0.45) while situation is close to being significantly different (MD value
0.51, F�2.32 at critical Fc�2.5 for p�0.05), if we compare Georgia with Azerbai-
jan (not shown here). Because they are very short and specific, for data sets of yearly

http://www.heritage.org/index/
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components of IEF, we could not use surrogate testing. So, we carried out additional
multivariate analysis for southern Caucasian countries based on normed increments
of daily exchange rates time series (used data available from official sites of: Central
Bank of Azerbaijan, https://en.cbar.az; National Bank of Georgia, https://www.nbg.
gov.ge; Central Bank of Armenia, https://www.cba.am). As follows from our results
(Fig. 6b), by variability of increments of national currencies, the situation of southern
Caucasian countries was significantly different in 2015 compared to 2013, while in
2014 and 2016, we do not observe significant changes comparing to 2013.

Moreover, apparently observed in 2015, changes have serious grounds rooted in
the processes taking place in the domestic economies of these countries as far as they
are not related to random factors which could be occurred by chance. Indeed, when
compared with surrogates, where original structure of exchange rate was distorted
we did not find significant difference. This fact convinces that mentioned changes
cannot be regarded as random (see black columns in Fig. 6b).

Thus, in present work, for four data sets of different origin, we demonstrated the
ability of used approach to indicate interesting dynamical features of complex natural
processes even in the case of short available data sets.

4 Summary

In the present work, we aimed to test method which was developed for the purpose
to assess the character of changes in the complex dynamical systems when we have
just short data sets. Approach is based on the Mahalanobis distance calculation,
combined it with the surrogate data testing procedure.

We used an approach for the analysis of data sets from different natural processes.
Exactly in the frame of present research, we used seismological, meteorological,
physiological, and economic data sets.

For all used data sets, it was shown that combination of Mahalanobis distance
calculation with the surrogate data testing enables to have new understanding about
changes occurred in complex systems even in the case of relatively short time series.

Acknowledgements This work was supported by Shota Rustaveli National Science Foundation
(SRNSF), grant 217838 “Investigation of dynamics of earthquake’s temporal distribution”.

References

1. Tsallis, C.: Introduction toNonextensiveStatisticalMechanics,Approaching aComplexWorld.
Springer, New York, NY, USA (2009)

2. Abarbanel,H.D.I.,Brown,R., Sidorowich, J.J., Tsimring,L.S.: The analysis of observed chaotic
data in physical systems. Rev. Mod. Phys. 65(4), 1331–1392 (1993)

https://en.cbar.az
https://www.nbg.gov.ge
https://www.cba.am


The Analysis of Variability of Short Data Sets … 287

3. Matcharashvili, T., Chelidze, T., Janiashvili, M.: Identification of complex processes based on
analysis of phase space structures. In: Byrnes, J.S. (ed.), Imaging for Detection and Identifica-
tion, pp. 207–243. Springer, Dordrecht (2007)

4. McLachlan, G.J.: Mahalanobis distance. Resonance 6, 20–26 (1999)
5. Kagan, Y.Y., Jackson, D.D., Rong, Y.F.: New catalog of southern California earthquakes,

1800–2005. Seismol. Res. Lett. 77(1), 30–38 (2006)
6. Matcharashvili, T., Zhukova, N., Chelidze, T., Founda, D., Gerasopoulos, E.: Analysis of long-

term variation of the annual number of warmer and colder days using Mahalanobis distance
metrics—a case study for Athens. Phys. A 487, 22–31 (2017) (accepted for publication)

7. Joint National Committee on the Detection: Evaluation, and treatment of high blood pressure.
The sixth report of the joint national committee on prevention, detection, evaluation, and
treatment of high blood pressure. Arch. Intern. Med. 157, 2413–2446 (1997)

8. Janiashvili, M., Jibladze, N., Matcharashvili, T., Topchishvili, A.: Comparison of statistical
and distributional characteristics of blood pressure and heart rate variation of patients with
different blood pressure categories. Model Assist. Stat. Appl. 8, 177–184 (2013). https://doi.
org/10.3233/MAS-130262

9. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents
and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995).
https://doi.org/10.1063/1.166141

10. Pastor-Barriuso, R., Banegas, J.R., Damian, J., Appel, L.J., Guallar, E.: Systolic blood pressure,
diastolic blood pressure, and pulse pressure: an evaluation of their joint effect on mortality.
Ann. Intern. Med. 139, 731–739 (2003)

https://doi.org/10.3233/MAS-130262
https://doi.org/10.1063/1.166141


On Generalized Additive Models
with Dependent Time Series Covariates

Márton Ispány, Valdério A. Reisen, Glaura C. Franco, Pascal Bondon,
Higor H. A. Cotta, Paulo R. P. Filho and Faradiba S. Serpa

Abstract The generalized additive model (GAM) is a standard statistical method-
ology and is frequently used in various fields of applied data analysis where the
response variable is non-normal, e.g., integer-valued, and the explanatory variables
are continuous, typically normally distributed. Standard assumptions of this model,
among others, are that the explanatory variables are independent and identically dis-
tributed vectors which are not multicollinear. To handle the multicollinearity and
serial dependence together a new hybrid model, called GAM-PCA-VAR model,
was proposed in [17] (de Souza et al., J Roy Stat Soc C-Appl 2018) which is the
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M. Ispány (B)
University of Debrecen, Debrecen, Hungary
e-mail: ispany.marton@inf.unideb.hu
URL: https://www.inf.unideb.hu/en/ispanymarton

V. A. Reisen · P. R. P. Filho · F. S. Serpa
Federal University of Espírito Santo, Vitória, Brazil
e-mail: valderioanselmoreisen@gmail.com

P. R. P. Filho
e-mail: pauloprezotti@hotmail.com

F. S. Serpa
e-mail: faradibasarquis@uol.com.br

G. C. Franco
Federal University of Minas Gerais, Belo Horizonte, Brazil
e-mail: glaura@est.ufmg.br

V. A. Reisen · P. Bondon · H. H. A. Cotta · P. R. P. Filho
Laboratoire des Signaux et Systèmes (L2S), CNRS-CentraleSupélec-Université
Paris-Sud, Gif-sur-Yvette, France
e-mail: pascal.bondon@l2s.centralesupelec.fr

H. H. A. Cotta
e-mail: cotta.higor@gmail.com

P. R. P. Filho
e-mail: pauloprezotti@hotmail.com

© Springer Nature Switzerland AG 2018
I. Rojas et al. (eds.), Time Series Analysis and Forecasting,
Contributions to Statistics, https://doi.org/10.1007/978-3-319-96944-2_20

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96944-2_20&domain=pdf


290 Ispány et al.

combination of GAM with the principal component analysis (PCA) and the vector
autoregressive (VAR) model. In this paper, some properties of the GAM-PCA-VAR
model are discussed theoretically and verified by simulation. A real data set is also
analyzed with the aim to describe the association between respiratory disease and
air pollution concentrations.

Keywords Air pollution · Generalized additive model · Multicollinearity
Principal component analysis · Time series · Vector autoregressive model

1 Introduction

In the recent literature of time series, there has been an outstanding growth in models
proposed for data that do not satisfy the Gaussian assumption. This is mainly the case
when the response variable under study is a count series or an integer-valued series.
Procedures developed to analyze this kind of data include, for example, observation-
driven models, see [3, 6], integer-valued autoregressive (INAR) processes, see [1,
2], or non-Gaussian state space models, see [8, 10].

Particularly in health and environmental studies, where the response variable
is typically a count time series, the GAM has been widely used to associate the
dependent series, such as the number of respiratory or cardiovascular diseases to
some pollutant or climate variables, see, for example, [5, 13, 14, 16–18] among
others. In general, the researches related to the study of the association between
pollution and adverse health effects usually consider only one pollutant. This simple
model choice may be due to the fact that the pollutants are linearly time-correlated
variables, see the discussion and references in [17].

Recently, it has become a common practice to use PCA in regression models to
reduce the dimensionality of an independent set of data, especially the pollutants,
which in some instances can include a large number of variables. The PCA is highly
indicated to this purpose, as it can handle themulticollinearity problem that can cause
biased regression estimates, see for example, [19].

Nevertheless, use of PCA in the time series context can bring some misspecifica-
tions in the fit of the GAM model, as this technique requires that the data should be
independent. This problem arises due to the fact that the principal components (PCs)
are linear combinations of the variables. In this context, as the covariates are time
series, the autocorrelation present in the observations are transferred to the PCs, see
[21].

One solution to this issue was recently proposed by [17] and [18], who introduced
a model which combines GAM, PCA, and the VAR process. The authors suggest to
apply the VAR model to the covariates, in order to eliminate the serial correlation
and produce white noise processes, which in turn will be used to build the PCs in
the PCA. The new variables obtained in the PCA are finally used as covariates in the
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GAM model, originating the so-called GAM-PCA-VAR model. In their work, the
authors have focused on presenting the model and showing its superiority compared
to the sole use of GAM or the GAM-PCA procedures, but have not deepened on the
theoretical properties of the model.

This work aims to state and prove some properties of the GAM-PCA-VARmodel,
as well as to perform some simulation study to check the results for small samples.

The paper is organized as follows. Section2 presents the GAM-PCA-VARmodel,
and its related models as GAM, PCA and VAR, in some detail. In Sect. 3, the theoret-
ical results are proved for the main model. Section4 discusses the simulation results
and Sect. 5 is devoted to the analysis of a real data set. Section6 concludes the work.

2 The GAM-PCA-VAR Model

The GAM, see [11, 20], with a Poisson marginal distribution is typically used to
relate a nonnegative integer-valued response variable Y with a set of covariates or
explanatory variables X1, . . . , X p, see [11, 20]. In a GAM the expected value μ of
the response variable Y , μ = E(Y ), depends on the covariates via the formula

g(μ) = β0 +
p∑

i=1

fi (Xi ),

where g denotes the link function, β0 is the intercept parameter and fi ’s are functions
with a specified parametric form, e.g., they are linear functions fi (x) = βi x , βi ∈
R, i = 1, . . . , p, or nonparametric, e.g., they are simple smoothing functions like
splines or moving averages. The unknown parameters β0 and fi , i = 1, . . . , p can
be estimatedbyvarious algorithms, e.g., backfitting or restrictedmaximum likelihood
(REML)method. However, if the data observed for variables Y and Xi , i = 1, . . . , p,
form a time series, the observations cannot be considered as a result of independent
experiments and the covariates present strong interdependence, e.g.,multicollinearity
or concurvity, the standard fitting methods result in remarkable bias, see, e.g., [7,
17].

Let {Yt } ≡ {Yt }t∈Z be a count time series, i.e., it is composed of nonnegative
integer valued random variables. We suppose that the explanatory variables form a
zero-mean stationary vector time series {X t } ≡ {X t }t∈Z of dimension p, i.e., X t =
(X1t , . . . , X pt )

� where � denotes the transpose, with the covariance matrix ΣX =
E(X tX�

t ). Let Ft denote the σ -algebra which contains the available information
up to time t for all t ∈ Z from the point of view of the response variable, e.g., X t is
Ft−1-measurable. TheGAM-PCA-VARmodel is introduced in [17] as a probabilistic
latent variable model. In this paper, we define this model in a more general form as



292 Ispány et al.

Yt |Ft−1 ∼ Poi(μt ), (1)

X t = ΦX t−1 + AZt (2)

with link

g(μt) = β0 +
p∑

i=1

∞∑

j=0

fi j (Zi(t− j)), (3)

where Poi(·) denotes the Poisson distribution, the latent variables {Zt }, Zt =
(Z1t , . . . , Z pt )

�, forma zero-meanGaussian vectorwhite noise process of dimension
p with diagonal variance matrix Λ = diag{λ1, . . . , λp}, where λ1 ≥ λ2 ≥ · · · ≥ λp,
A is an orthogonal matrix of dimension p × p, Φ is a matrix of dimension p × p, g
is a known link function, β0 denotes the intercept, and fi j ’s are unknown functions.
For a zero-mean Gaussian vector white noise process {Zt }with covariance matrixΣ

we shall use the notation {Zt } ∼ GWN(Σ), see also [4, Definition 11.1.2]. Clearly,
for all i , the univariate time series {Zit } ∼ GWN(λi ), and {Zit } is mutually inde-
pendent from {Z jt } for all j �= i . We assume that all the eigenvalues of Φ are less
than 1 in modulus which implies that (2) has a unique stationary causal solution. In
the case of a Poisson distributed response variable, the two widely used link func-
tions are the identity link, g(z) = z, and the canonical logarithmic link, g(z) = log z.
The set (β0, { fi j }, A,Λ,Φ) forms the parameters of the GAM-PCA-VAR model to
be estimated. We remark that in the case of canonical logarithmic link function no
additional assumption is needed for the parameters, while in the case of identity
link function all the parameters in (3), i.e., β0 and fi j ’s, have to be nonnegative. It
should be also emphasized that the underlying intensity process {μt } of {Yt } is also
a time series with a complex dependence structure, and μt is Ft−1-measurable for
all t ∈ Z. One can see that the time series {X t } of covariates depends on {Zt } by
formula X t = ∑∞

k=0 Φk AZt−k for all t , see [4, Example 11.3.1].
The dependence of the response time series {Yt } from the explanatory vector time

series {X t } in the GAM-PCA-VAR model can be described by three transformation
steps. Clearly, by (2), the latent variable can be expressed as Zt = A�U t , where
U t := X t − ΦX t−1 for all t . Thus, as the first step, the intermediate vector times
series {U t } is derived from filtering {X t } by a VAR(1) filter. One can see that {U t } ∼
GWN(ΣU ) where ΣU := AΛA�. Then, as the second step, the latent vector time
series {Zt } as PC vecta is derived by instantaneous linear transformation of the
intermediate vector white noise {U t }. The transformation matrix of the PCA is given
by the spectral decomposition of ΣU . Finally, as the third step, the standard GAM
with link (3) is fitting for the response time series {Yt } using the latent vector time
series {Zt }. The impact of the VAR(1) filter in the first step is to eliminate the
serial correlation present in the original covariates. On the other hand, the impact
of the PCA in the second step is to eliminate the correlation in the state space of
the original covariates. Hence, the result of these two consecutive transformations is
the latent vector time series {Zt } whose components, Zit , i = 1, . . . , p, t ∈ Z, are
independentGaussian variables both in space and time. In the case of logarithmic link
function, large positive values in a coordinate of the latent variable indicate locally
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high influence according to this latent factor. On the contrary, large negative values
indicate negligible influence on the response, see, for example, [21]. The order of
models in the acronym GAM-PCA-VAR corresponds to these steps starting with the
third one and finishing with the first one.

The GAM-PCA-VAR model contains several submodels with particular depen-
dence structure. If Φ = 0 then (2) is simplified to a PC transformation. In this case,
we suppose that there is no serial correlation and we only have to handle the corre-
lation in the state space of covariates. We have two transformation steps: PCA and
GAM. This kind of models is called GAM-PCA model and has been intensively
studied, see, e.g., [15, 22]. Beside the full PCA when all PCs are involved into the
GAM, we can fit a restricted PCA model by defining fi j = 0 for all i > r and j ≥ 0
where r < p. In this case, the first r th PCs are applied as covariates in the GAM
step. If the matrices in VAR(1) model (2) have the following block structures:

Φ =
[
Φq 0
0 0

]
, A =

[
Aq 0
0 Ip−q

]
,

where the eigenvalues of the q × q matrix Φq are less than one in modulus, Aq

is an orthogonal matrix of dimension q × q(q ≤ p), and fi1(z) = βi z with βi ∈ R

for i = 1, . . . , r(r ≤ q), fi1 is a general smoothing function for i = q + 1, . . . , p,
fi j = 0 otherwise, then we obtain the model that was studied in [17] and applied in
the data analysis of Sect. 5. In this model, it is supposed that the set of covariates
can be partitioned into two sets: (X1, . . . , Xq) are normal covariates, e.g., the pol-
lutant variables in the terminology of Sect. 5, while (Xq+1, . . . , X p) are so-called
confounding variables as trend, seasonality, etc. The normal covariates satisfy a q-
dimensional VAR(1) model, however, instead of all coordinates of the innovation,
only its first r th PCs are involved into the GAM taking into consideration that the
covariates present strong inter-correlation. Finally, we note that our model can be
further generalized by replacing (2) by the more general VARMA or VARIMA or
their seasonal variants (SVARMA or SVARIMA) models.

Since the latent variables {Zt } form a Gaussian vector time series, given a sample
(X1,Y1), . . . , (Xn,Yn), the log-likelihood can be expressed in an explicit form, see
[17] for a particular case. Because this log-likelihood is rather complicated a three-
stage estimation method is proposed. First, VAR(1) model is fitted to the original
covariates by applying standard time series techniques. Second, PCA is applied
for the residuals defined by Ẑt = X t − Φ̂X t−1, t = 2, . . . , n, where Φ̂ denotes the
estimated autoregressive coefficient matrix in the fitted VAR(1) model. Third, GAM
model is fitted using the PCs. The approach discussed above is similar to the PC
regression, see, e.g., [12, Chap. 8], and it can be considered as a three-stage nonlinear
regression method.

The first two steps of the above proposed parameter estimation method for GAM-
PCA-VAR model can be interpreted as consecutive orthogonalizations, first in time
and then in the state space of covariates. In [17, Remark] we argued that the order
of VAR filter and PCA can not be interchanged because the orthogonalization in the
state space does not eliminate the serial correlation and, as the necessary next step,
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the orthogonalization in time by VAR filter bring back the inter-correlation between
the covariates. In what follows, we demonstrate this phenomena by giving a simple
example. Let {X t } be a zero-mean causal VAR(1) process defined by

X t = Ψ X t−1 + W t ,

where {W t } is a zero-mean vector white noise process with variance matrix ΣW .
Suppose that the variance matrixΣX of {X t } is diagonal, i.e., the coordinates of {X t }
can be interpreted as PCs after PCA. Then, ΣW is not necessarily a diagonal matrix,
which implies that a VAR(1) filter may result in an inter-correlated white noise.
Namely, consider the following parametersΣW = AΛA� andΨ = ASA�, whereΛ

and S are diagonalmatrices and A is an orthogonalmatrix. In otherwords,we suppose
that the orthogonal matrix A in the spectral decomposition of ΣW diagonalizes the
autoregressive coefficient matrix as well. Then, we have, by formula (11.1.13) in [4],
that

ΣX =
∞∑

j=0

Ψ jΣW (Ψ �) j =
∞∑

j=0

AS jΛS j A� = Adiag

{
λi

1 − s2i

}
A�.

Let σ 2 > maxi {λi } arbitrary and define si := √
1 − λi/σ 2 for all i . Clearly, Ψ is a

causal matrix since all its eigenvalues are less than 1 in modulus and ΣX = σ 2 I ,
i.e., the coordinates of {X t } are uncorrelated. However, the innovation variance
matrix ΣW can be arbitrary proving that the application of VAR filter for a non-
intercorrelated vector time series can give inter-correlated vector white noise in its
coordinates.

Now, we present some particular examples of GAM-PCA-VAR models.

Example 1 One of the simplest GAM-PCA-VAR models is the model with dimen-
sion p = 1 and log-linear link function. In this case, there is only one covariate {Xt },
and (2) is an AR(1) model

Xt = φXt−1 + Zt , (4)

where |φ| < 1 which guarantees the existence of a unique stationary causal solution,
{Zt } ∼ GWN(λ), λ > 0. We remark that A = 1 in (2) in order for the model to be
identifiable. The link is log-linear, expressed as

logμt = β0 + β1Zt . (5)

The parameter set of this model is (β0, β1, λ, φ) with parameter space R2 × R+ ×
(−1, 1). In this model, there is no dimension reduction. Clearly, Zt = Xt − φXt−1,
thus the response depends on the covariate through the link

logμt = γ0 + γ1Xt + γ2Xt−1, (6)
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where there is a one-to-one correspondence between the parameter sets (β0, β1, φ)

and (γ0, γ1, γ2) defined by the equations γ0 = β0, γ1 = β1 and γ2 = −φβ1 provided
φ �= 0. However, if we fit the standard GAM by using the link (6) with covariates
Xt and Xt−1 at time t , we take no count of the interdependence in time series {Xt }
which can result in biased and inconsistent estimators of the GAM parameters.

Example 2 Define a particular two-dimensional (p = 2) GAM-PCA-VAR model
with logarithmic link function in the following way. The two-dimensional covariate
vector process {X t }, X t = (X1t , X2t )

�, satisfies the VAR(1) model

[
X1t

X2t

]
=

[
φ1 0
0 φ2

] [
X1(t−1)

X2(t−1)

]
+

[
cosϕ − sin ϕ

sin ϕ cosϕ

] [
Z1t

Z2t

]
,

where |φ1| < 1, |φ2| < 1 and {Zit } ∼ GWN(λi ) with λi > 0, i = 1, 2, which are
independent from each other. Note that the set of two-dimensional orthogonal matri-
ces, A, can be parametrized by an angle parameter ϕ ∈ [0, 2π). We assume that the
link is

logμt = β0 + β1Z1t .

The parameter set of this model is (β0, β1, ϕ, λ1, λ2, φ1, φ2) and the parameter space
is R2 × [0, 2π) × R

2+ × (−1, 1)2. Note that, in this model, there is a PCA step as a
dimension reduction since only the first coordinate {Z1t } of the vector innovation is
involved into the GAM as covariate. One can see that the response depends on the
covariates through the link

logμt = γ0 + γ1X1t + γ2X2t + γ3X1(t−1) + γ4X2(t−1),

where γ0 = β0, γ1 = β1 cosϕ, γ2 = β1 sin ϕ, γ3 = −β1φ1 cosϕ and γ4 = −β1φ2

sin ϕ. Thus, the intensity process {μt } depends on all coordinates of X t and X t−1.
Clearly, there is a one-to-one correspondence between the two parameter sets
(β0, β1, ϕ, φ1, φ2) and (γ0, γ1, γ2, γ3, γ4).

Example 3 A seasonal one-dimensional GAM-PCA-VAR model with linear link
function can be defined in the following way. Suppose that the one-dimensional
covariate process {Xt } satisfies the SARs(1) model:

Xt = φXt−s + Zt ,

where |φ| < 1, {Zt } ∼ GWN(λ)with λ > 0 and s ∈ Z+ denotes the seasonal period.
The link is linear and is given by

μt = β0 + β1 f (Zt ),

where f : R → R+ is a known function andβ0, β1 ∈ R+ are parameters. The param-
eter set of this model is (β0, β1, λ, φ) with parameter space R

3+ × (−1, 1). The
response variable depends on the original covariates through the link
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μt = β0 + β1 f (Xt − φXt−s).

If the function f is sufficiently smoothwe have the approximation f (Xt − φXt−s) ≈
f (Xt ) − φ f ′(Xt )Xt−s , and then

μt = γ0 + γ1 f1(Xt ) + γ2 f2(Xt , Xt−s), (7)

where f1, f2 are known functions and γ0 = β0, γ1 = β1 and γ2 = −β1φ. Thus, the
response depends on the original covariate and its s-step lagged series through the
standard GAM. However, the covariates in (7) are clearly dependent.

3 Theoretical Results

In this section, we prove some theoretical results for particular classes of GAM-
PCA-VAR models. Consider the log-linear model defined by the link

logμt = β0 +
p∑

i=1

∞∑

j=0

βi j Zi(t− j), (8)

where β0, βi j ∈ R, i = 1, . . . , p, j ∈ Z+. The first proposition is about the existence
of log-linear GAM-PCA-VAR models.

Proposition 1 Suppose that σ 2 := ∑p
i=1 λi

∑∞
j=0 β2

i j is finite. Then the GAM-PCA-
VAR model with log-linear link (8) has solution {(Yt , X t )} which is a strictly station-
ary process and E(Yt ) = E(μt ) = exp(β0 + σ 2/2) for all t ∈ Z.

Proof By conditioning we have that

E(Yt ) = E(E(Yt |Ft−1)) = E(μt ) = E(exp(logμt )) = exp(β0 + σ 2/2) (9)

is finite since, by (8), logμt ∼ N (β0, σ
2), i.e., μt has a lognormal distribution,

and the moment generating function of ξ ∼ N (β0, σ
2) is given by Mξ (t) :=

E(exp(tξ)) = exp(β0t + (σ t)2/2). Thus, the nonnegative integer valued random
variable Yt is finite with probability one for all t ∈ Z. The vector time series {Zt }
forms a Gaussian white noise. Hence it is strictly stationary process with backshift
operator B(Zt ) = Zt−1 for all t ∈ Z. Since both stochastic processes {Yt } and {X t }
depend on {Zt } through time-invariant functionals, we have the strict stationarity of
{(Yt , X t )} and B(X t ) = X t−1, B(Yt ) = Yt−1 for all t ∈ Z. �

In the next proposition, we prove that all moments of the log-linear GAM-PCA-
VAR model are finite.

Proposition 2 Suppose that σ 2 defined in Proposition 1 is finite. Then, all moments
of the stochastic process {(Yt , X t )} are finite. In particular, we have, for all t ∈ Z,
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Var(Yt ) = exp(2β0 + σ 2)(exp(σ 2) − 1 + exp(−β0 − σ 2/2)),

Var(μt ) = exp(2β0 + σ 2)(exp(σ 2) − 1).

Proof Let r ∈ N. Define the r th factorial of a nonnegative integer k as k[r ] := k(k −
1) · · · (k − r + 1) and let k[0] := 1. For the r th factorial moment of Yt we have by
conditioning that

E(Y [r ]
t ) =

∞∑

k=0

k[r ]P(Yt = k) = E
∞∑

k=0

k[r ]P(Yt = k |Ft−1)

= E
∞∑

k=r

μk
t

(k − r)!e
−μt = E(μr

t )

for all t ∈ Z. Similarly to (9), we have that the factorial moments are finite, since

E(Y [r ]
t ) = E(μr

t ) = E(exp(r logμt )) = exp{β0r + (σr)2/2}. (10)

Since the higher order moments can be expressed by the factorial moment via the
formula

E(Y r ) =
r∑

j=0

S(r, j)E(Y [ j]),

where S(r, j)’s denotes Stirling numbers of the second kind, the finiteness of all
higher ordermoments follows easily. Since {X t } is aGaussian process all itsmoments
are finite. Finally, the existence of mixed moments follows by the Cauchy–Schwarz
inequality.

From (10), we have

Var(μt ) = E(μ2
t ) − E2(μt ) = exp(2β0 + (2σ)2/2) − exp(2β0 + σ 2)

= exp(2β0 + σ 2)(exp(σ 2) − 1).

Finally, the formula for Var(Yt ) can be derived by

Var(Yt ) = E(Var(Yt |Ft−1)) + Var(E(Yt |Ft−1)) = E(μt ) + Var(μt ).

�

The existence of all moments for the log-linear GAM-PCA-VAR process is to be
compared with the same result for the integer-valued GARCH, so-called INGARCH,
process, see [9, Proposition 6]. This implies that the log-linear GAM-PCA-VAR pro-
cess possesses second and higher order structures, e.g., the autocorrelation function,
the spectral density function, the cumulants and the higher order spectra exist. Let
ρY denotes the autocorrelation function of the time series {Yt }.
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Proposition 3 For the auto- and cross-correlation functions of the GAM-PCA-VAR
process {(Yt , X t )} with intensity process {μt }, we have ρY (h) = cYρ(h), ρμ(h) =
cμρ(h) and ρYμ(h) = cYμρ(h) where

ρ(h) := exp

⎛

⎝
p∑

i=1

λi

∞∑

j=0

βi( j+|h|)βi j

⎞

⎠ − 1, h ∈ Z \ {0},

and the constants cY , cμ, cYμ are defined by

cY := (exp(σ 2) − 1 + exp(−β0 − σ 2/2))−1, cμ := (exp(σ 2) − 1)−1, cYμ := √
cY cμ.

Moreover, Cov(Yt+h, X t ) = Cov(μt+h, X t ) = E(Yt+hX t ) = E(μt+hX t ) = C(h)

with

C(h) := exp(β0 + σ 2/2) ×

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
k=0

Φk A(λ ◦ βh+k) if h ≥ 0,

∞∑
k=0

Φk−h A(λ ◦ βk) if h ≤ 0,
(11)

where λ := (λ1, . . . , λp)
�, β j := (β1 j , . . . , βpj )

�, j ∈ Z+, and ◦ denotes the entry-
wise (Hadamard) product.

Proof Let h ∈ N. One can see that for the intensity process we haveμt+h = μ
(1)
th μ

(2)
th

where

logμ
(1)
th := β0 +

p∑

i=1

h∑

j=1

βi(h− j)Zi(t+ j), logμ
(2)
th :=

p∑

i=1

∞∑

j=0

βi( j+h)Zi(t− j).

Clearly, μ(1)
th is independent of Ft−1 and Yt , while μ

(2)
th is Ft−1-measurable. Hence,

we have by conditioning that

E(Yt+hYt ) = E(YtE(Yt+h |Ft+h−1)) = E(μt+hYt ) = E(μ
(1)
th μ

(2)
th Yt )

= E(μ
(1)
th )E(μ

(2)
th E(Yt |Ft−1)) = E(μ

(1)
th )E(μ

(2)
th μt ) = E(μt+hμt )

since μt is independent of μ
(1)
th . This gives the result for h > 0. On the other hand,

for all h > 0, again by conditioning, E(Yt+hμt ) = E(μt+hμt ). Thus

Cov(Yt+h,Yt ) = Cov(μt+h, μt ) = Cov(Yt+h, μt ), h ∈ Z \ {0}.

Since
E(μt+hμt ) = E(μ

(1)
th μ

(2)
th μt ) = E(μ

(1)
th )E(μ

(2)
th μt )
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similarly to (9) we have

E(μt+hμt ) = exp

⎛

⎝2β0 + 1

2

p∑

i=1

λi

⎛

⎝
h−1∑

j=0

β2
i j +

∞∑

j=0

(βi( j+h) + βi j )
2

⎞

⎠

⎞

⎠

= exp

⎛

⎝
p∑

i=1

λi

∞∑

j=0

βi( j+h)βi j

⎞

⎠E(μt+h)E(μt ).

Thus, the first part of the proposition follows by Proposition 2.
Next we prove (11) for the cross-correlations of response and covariate variables.

Clearly, by conditioning,E(Yt+hX t ) = E(μt+hX t ) for all h ∈ Z+. On the other hand,
for all t ∈ Z, h ∈ Z+, we have X t+h = X (1)

th + X (2)
th where

X (1)
th :=

h∑

k=1

Φh−k AZt+k, X (2)
th :=

∞∑

k=0

Φh+k AZt−k .

One can see that X (1)
th is independent of Ft−1 and Yt , while X

(2)
th is Ft−1-measurable.

Thus, we have that

E(X t+hYt ) = E((X (1)
th + X (2)

th )Yt ) = E(X (1)
th )E(Yt ) + E(X (2)

th E(Yt |Ft−1))

= E(X (1)
th )E(μt ) + E(X (2)

th μt ) = E(X t+hμt ).

Hence E(Yt+hX t ) = E(μt+hX t ) for all h ∈ Z and it is enough to compute the cross-
correlation between {X t } and {μt }. Let h ≥ 0. For all � ∈ {1, . . . , p}, k ∈ Z+ let
Ih

�k := {1, . . . , p} × Z+ \ (�, k + h) and define the random variables

log ξ th
�k := β0 +

∑

(i, j)∈Ih
�k

βi j Zi(t+h− j), log ηth
�k := β�(k+h)Z�(t−k).

Then μt+h = ξ th
�k η

th
�k , where the factors in this decompostion are independent. Since

E(μt+hX t ) = ∑∞
k=0 Φk AE(μt+hZt−k) and, using the fact that for Z ∼ N (0, λ) and

β ∈ R we have E(Z exp(βZ)) = βλ exp(λβ2/2),

E(μt+h Z�(t−k)) = E(ξ th
�k η

th
�k Z�(t−k)) = E(ξ th

�k )E(ηth
�k Z�(t−k)) = E(μt+h)β�(k+h)λ�,

we obtain the formula (11). The proof is similar in the case of h < 0. �

Remark 1 It is easy to see that if βi j = β
j
i for all i, j , then the function ρ is given

by ρ(h) = exp(
∑p

i=1 λiβ
|h|
i /(1 − β2

i )) − 1, h ∈ Z. If βi ’s are all positive then ρ

is positive everywhere and we have autocorrelation functions which are similar to
what is displayed in Fig. 1. For the one-dimensional model in Example 1 we have
the cross-correlation function (CCF)C(h) = exp(β0 + λβ2

1/2)λβ1φ
−h for h ≤ 0 and
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C(h) = 0 for h > 0. If φ > 0 then, according to positive or negative β1, we obtain
everywhere positive or negative CCFs. For example, see the CCFs in Fig. 2 between
the response (Admissions) and pollutants CO, NO2 that are positive and the CCFs
between the response (Admissions) and O3, SO2 that are negative at every lag,
respectively.

Consider another widely used link function, the linear one, and define the linear
GAM-PCA-VAR model by the link

μt = β0 +
p∑

i=1

∞∑

j=0

βi j f (Zi(t− j)), (12)

where β0, βi j ∈ R+, i = 1, . . . , p, j ∈ Z+, are parameters and f : R → R+ is a
known function, e.g., f (z) = exp(z). Let ϕ(x | λ) denote the probability density
function of the normal distribution with mean 0 and variance λ.

Proposition 4 Suppose that, for all i = 1, . . . , p,
∑∞

j=0 βi j < ∞ and τi :=∫ ∞
−∞ f (x)ϕ(x | λi )dx < ∞. Then theGAM-PCA-VARmodelwith linear link (12) has
a strictly stationary solution {(Yt , X t )}. Moreover, E(Yt ) = E(μt ) = β0 +∑p

i=1 τi
∑∞

j=0 βi j .

Proof The proof is similar to the proof of Proposition 1. �

Clearly, the assumptions of Proposition 4 do not necessarily garantee the existence
of higher order moments of linear GAM-PCA-VAR process. Indeed, the r th order
moment E(Y r

t ) is finite if and only if
∫ ∞
−∞ f r (x)ϕ(x | λi )dx < ∞ for all i where

r ≥ 1.

4 Simulation Study

In order to evaluate the effect on the parameter estimation of a GAM model in
the presence of temporal correlation in the covariate {Xt }, a simulation study was
conducted. The data were generated according to the model discussed in Example
1. Three estimation methods were considered: the standard GAM with only one
covariate where the estimated parameters were β0 and β1 (M1); the standard GAM
with two covariates, the original one and its 1-step lagged series, where the estimated
parameters were β0, β1, β2 and φ = −β2/β1 (M2); the full GAM-PCA-VAR model
by the procedure described inSect. 2where all parametersβ0, β1, φ, λwere estimated
(M3).

For the model discussed in Example 1 the data were generated under β0 = 0.2,
β1 = 1, λ = 2 and three scenarios were considered as φ = −0.7, 0.3, 0.9 to model
strong negative, small positive and strong positive correlations, respectively. In order
to model the impact due to some unobservable variables, e.g., environmental ones in
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Table 1 Simulation results for model in Example 1

Estimation method φ Parameter Mean Bias MSE

M1: GAM with Xt −0.7 β0 = 0.2 0.699 0.499 0.253

β1 = 1 0.507 −0.492 0.244

M2: GAM with Xt , Xt−1 β0 = 0.2 0.204 0.004 0.001

β1 = 1 0.999 −0.001 0.0002

φ =-0.7 −0.7 0 0.0001

M3: GAM-PCA-VAR β0 = 0.2 0.205 0.005 0.001

β1 = 1 0.999 −0.001 0.0002

φ = −0.7 −0.695 0.004 0.0005

λ = 2 2.003 0.003 0.008

M1: GAM with Xt 0.3 β0 = 0.2 0.302 0.102 0.012

β1 = 1 0.905 −0.095 0.009

M2: GAM with Xt , Xt−1 β0 = 0.2 0.209 0.009 0.001

β1 = 1 0.998 −0.002 0.0002

φ = 0.3 0.3 0 0.0002

M3: GAM-PCA-VAR β0 = 0.2 0.209 0.009 0.001

β1 = 1 0.999 −0.001 0.0002

φ = 0.3 0.306 0.006 0.0008

λ = 2 1.995 −0.005 0.009

M1: GAM with Xt 0.9 β0 = 0.2 1.002 0.802 0.651

β1 = 1 0.191 −0.809 0.655

M2: GAM with Xt , Xt−1 β0 = 0.2 0.2 0 0.001

β1 = 1 1 0 0.0002

φ = 0.9 0.899 −0.001 0

M3: GAM-PCA-VAR β0 = 0.2 0.203 0.003 0.001

β1 = 1 1 0 0.0002

φ = 0.9 0.899 −0.001 0.0001

λ = 2 2.007 0.007 0.0086

the context of the next section, independent N (0, 0.1) distributed random variables
were added to the predictor of logμt for all t ∈ Z. The sample size n = 1000 and
the number of Monte Carlo simulations was equal to 100. The empirical values of
mean, bias and mean square error (MSE) are displayed in Table1. All results were
obtained by using R-code.

In the case of standard GAM estimation (M1) it can be seen that the estimate
of β1 is heavily affected by the autocorrelation structure present in the covariate,
by presenting a negative bias which increases in absolute value as |ϕ| increases.
The estimated MSE also increases substantially with |ϕ|. On the other hand, it can
also be seen that the fitted standard GAM model tends to severely overestimate β0.
Contrarily, the estimation methods M2 and M3 work equally well, the estimates of
the parameters are very close to the true values with noticeably small MSE. The
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undoubted advantage of method M3 against M2 is that an AR(1) model is also
fitted for the covariate where the innovation variance λ is estimated and which can
be applied later in the prediction. In this procedure, first, the covariate variable is
predicted by (4), and then the response variable is predicted by the GAM using the
link (5).

5 Application to Air Pollution Data

In this study, the number of hospital admissions (Admissions) for respiratory dis-
eases (RD) as response variable was obtained from the main children’s emergency
department in the Vitória Metropolitan Area (called Hospital Infantil Nossa Sen-
hora da Gloria), ES, Brazil. The following atmospheric pollutants as covariates were
studied: particulate material (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2),
ozone (O3) and carbon monoxide (CO). For details, e.g., descriptive statistics and
basic time series plots, see [17]. The data analyzed in this section can be obtained
from http://wileyonlinelibrary.com/journal/rss-datasets.

The graphs of the sampling functions of the autocorrelations and partial autocor-
relations in Fig. 1 show that the series of the number of hospital admissions for RD
possesses seasonal behavior, which was to be expected for this phenomena. Another
characteristic observed in the series was an apparently weak stationarity. Similar
graphs for the pollutant series can be found in [17].

Figure2 shows the sample cross-correlation functions (CCF)between the response
and pollutant covariates. As we discussed in Remark 1 four CCF’s among them
present similar behavior: the impact of pollutants CO and NO2 is positive while
the impact of SO2 and O3 are negative to the response variable at every lag. This
observation is consistent with the PCA result presented in [17], see Table5, where
CO and NO2 form a joint cluster for PC1. On the other hand, all CCF’s possess
seasonal behavior as well.
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Fig. 1 Sample autocorrelation function (ACF) and partial autocorrelation function (PACF) of the
response variable

http://wileyonlinelibrary.com/journal/rss-datasets
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Fig. 2 Sample cross-correlation function (CCF) of the response and pollutant variables
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Fig. 3 Sample cross-correlation function (CCF) of the response and first three PCs

Figure3 shows the sample cross-correlation functions (CCF)between the response
variable and thefirst threePCsderived fromapplyingPCAfor the vector of pollutants.
In Sect. 3.2 of [17], see Table5 there, one can see that the first three components
correspond to 83.2% of the total variability. The temporal behavior of the PCs is also
presented in the autocorrelation plots of [17, Fig. 4]. The autocorrelations and the
cross-correlations displayed here presented heavy seasonality as well. On the other
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Fig. 4 Sample cross-correlation function (CCF) between the response and pollutant variables after
the filtering

hand, the shape of the CCFs for the response and PCs can also be classifed into
similar groups to the CCFs in Fig. 2. The CCF of PC1 is similar to the one of the
PM10. The CCF of PC2 displays only negative correlations similar to SO2 and O3,
while the CCF of PC3 (Fig. 3) displays only positive correlations, see CO and NO2

in Fig. 2.
In order to filter the vigorous seasonality both in the response and pollutant vari-

ables, seasonal ARMA filters with a 7-day period were applied. The pollutant vector
time series and the one-dimensional response time series were filtered by SVAR7(1)
and SARMA7(1, 1) processes, respectively. The residuals obtained by these filters
indicate remaining significant correlations, see the CCFs between these residuals
in Fig. 4. The significant cross-correlations and their respective lags are presented
in Table2. Clearly, the correlations which belong to the negative lags are spurious.
However, the correlations which belong to the positive lags measure the true impact
of a covariate. For example, there are significant correlations at lag 2 for pollutants
PM10, NO2 and CO equally which could mean that the influence of these pollutants
to the response indicates 2days delay. Contrarily, the influence of the pollutants SO2

and O3 presents far delays.
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Fig. 5 Sample cross-correlation function (CCF) between the response and PCs after the filtering

Table 3 Significant cross-correlations and their respective lags between the response variable RD
and PCs after the filtering

RD × PC1 RD × PC2 RD × PC3

Lag −14 −12 2 6 25 −5 −2 5 12 1 14 23

Value −0.051 −0.046 −0.057 0.046 0.043 −0.048 −0.046 0.048 −0.047 0.042 −0.078 −0.045

Figure5 shows the sample CCF between the residuals of the response variable
and the first three PCs after the filtering. The significant cross-correlations and its
respective lags are presented in Table3. It should be emphasized that there are strong
coincidences in the lags between Tables2 and 3. For example, the lag 2 in PC1
corresponds to the pollutants PM10, NO2 and CO, the lag 6 in PC1 corresponds
to the pollutant CO, while lag 25 in PC1 corresponds to the pollutant O3. The lag
12 in PC2 corresponds to the pollutant SO2. Finally, the lag 14 corresponds to the
pollutant NO2 and the lag 23 to the pollutants SO2 and NO2. These correspondences
are compatible with the clustering derived in [17, Table7]. The fitted GAM-PCA-
VAR model with its goodness-of-fit measures are reported in [17] as well. We note
that in this fitted model fi j = 0 was chosen for all j > 0. In view of the above results
the GAM-PCA-VAR model with link

logμt = β0 +
p∑

i=1

∑

j∈Ii

fi j (Zi(t− j))

can also be a possible candidate, where Ii denotes the set of lags which belong to the
significant cross-correlation between the residuals of the response and the i th PC.
This model can be fitted by using the procedure described in Sect. 2.

6 Conclusions

A hybrid model, called GAM-PCA-VARmodel, composed by three statistical tools,
the VAR model, PCA and the GAM, with Poisson marginal distribution, was devel-
oped in a more general framework than in [17]. A three-stage estimation method was
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proposed and studied by simulation for some examples. Some theoretical properties
were also proved. The model was applied to describe the dependence between the
number of hospital admissions for respiratory diseases and air pollutant covariates.

An extension of the proposed estimation method for the GAM-PCA-VAR model
by a variable selection procedure which ensures that only the significant PCs with
their respective lags are involved into the model will be pursued in future works.
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A Bayesian Approach to Astronomical
Time Delay Estimations

Mariko Kimura, Hyungsuk Tak and Taichi Kato

Abstract Time delay estimations between two time series data in astronomy have
some difficulties due to their sparseness. We propose a fully Bayesian method based
on a state–spacemodel for this kind of analyses, and raise one example of the applica-
tion to astronomical data. Our estimation can deal with heteroskedastic observational
errors of astronomical time series and has much smaller errors than the result with a
conventional method. This method may be applicable for many kinds of black hole
systems and has a potential to derive the information of geometrical structure of
astronomical objects after some improvements.

Keywords Bayesian inference · State–space model · Accretion · Black hole
physics

1 Introduction

One may think that the brightness of stars is static. However, there are countless
stars in the universe whose brightness varies drastically, even though we may hardly
recognize such variations with naked eyes. We can see easily the dramatic brightness
variations of stars over time by using telescopes. Astronomers call these brightness
time series data of a star a light curve.

These light curves are sparsely and irregularly observedwith heteroskedasticmea-
surements errors. Ground-based telescopes, for example, can monitor stars only in
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clear sky at night. Even a fragment of cloud that intervenes between a star and a
telescope would prevent us from measuring its brightness. Neither do space tele-
scopes monitor a star regularly because the Sun plays the similar role to the cloud.
Consequently, astronomers obtain unevenly-spaced time series data of brightness
with large gaps between observations. Also, since the sensitivity of detecters changes
according to the brightness of the targeted star, each data point has a heteroskedastic
measurement error; brightness of a faint star is estimated with a larger measurement
error than that of a bright star.

It is possible to observe a star at several different wavelengths (optical, ultraviolet,
X-ray, radio wavelengths, and so on) by using different telescopes and/or detecters.
The resulting multiwavelength light curves can be used to better understand physical
characteristics of the star. For example, Fig. 1 displays a realistic multiwavelength
data set of the black hole binary V404 Cyg; the upper time series is an X-ray light
curve and the lower one is an optical light curve. If the fluctuations of these two light
curves are similar to each other, we may know the underlying phisics in the black
hole binary by investigating their correlation and time lag.

Here, we introduce a novel Bayesian method to estimate the time lag between
two light curves. Unlike traditional grid-based estimation methods, such as cross-
correlation method (e.g., [1]), the proposed Bayesian method has been physically
motivated and accounts for the sparse and heteroskedastic features of the light curves
in a fully parametric way.
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Fig. 1 Anexample of two light curves of the same star at differentwavelengths. They are optical and
X-ray short-term variations during the 2015 summer outburst in V404 Cyg, a black hole binary. The
vertical axis represents brightness of the object in units of magnitudes (an astronomical logarithmic
measure of brightness) or X-ray count rates. The rectangles and circles denote the light curves in
the X-ray 25–60 keV band (taken by the INTEGRAL satellite) and the optical V band (taken by
ground-based telescopes), respectively. These data are a part of the light curves shown in [2]
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Fig. 2 Schematic figure of a black hole binary

2 Accretion onto Black Holes and Importance of Time
Delay Estimations

Before introducing our method, we describe some basic knowledge on black hole
binaries, and explain the reason why time lag estimates are important in this kind of
objects. Although the Sun which is the most familiar star for us is a single star, about
half the stars in the universe are binary systems, in which two stars rotate around
each other. Black hole binaries are a subtype of binary systems, and one of them is
composed of a central black hole and a low-mass star like the Sun.1 Since a black
hole has a strong gravitational field, the matter of a paired low-mass star is attracted
toward a black hole. Then, the matter rotates around the black hole and forms an
accretion disk like Fig. 2. Via the accretion disk, the matter falls into the black hole
and its energy is released as a lot of light rays. In other words, the light emission
from this system is a death cry of the fallen matter. X-rays and optical light rays are
emitted from the inner and outer disk, respectively, according to the temperature of
the accretion disk (see Fig. 2). Although optical light rays are also emitted from the
low-mass star, its contribution is weak in comparison with the brightness of the disk.

If the matter in the accretion disk is absorbed into the black hole constantly,
the light emission should be static, but a rapid increase of brightness is sometimes
observed [3]. This phenomenon is called an outburst. The origin of outbursts is
believed to be disk instabilitywhich transiently increases the amount ofmatter accret-
ing onto a black hole [4]. Although the global trend of the outbursts can be explained
by the disk instability model, the origin of short-term variability observed in some
outbursts like Fig. 1 is not clear. Unraveling this mechanism would contribute to the
better understanding of the physics not only in black hole binaries but also in many
other black hole systems, for example, active galactic nuclei having accretion disks

1There are other black hole binaries having paired high-mass stars, but we regard black hole binaries
have low-mass companion stars in this chapter.
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Fig. 3 Schematic picture of the structure of a black hole binary and related radiation processes
producing time lags. a A part of radiated X-rays from the high-temperature inner disk is absorbed
at the outer disk and optical light rays are reemitted from the outer disk. Then, an optical delay on
timescales of several tens of seconds is observed [6, 7]. b The matter in a disk is transported from
the outer region to the inner region. If the inhomogeneous accreting matter propagates inward, we
will observe optical emission at first, and X-ray emission some time later

around supermassive black holes because the similar variability has been observed
(e.g., [5]). In order to know the clue of the mechanism, the time delay estimations
between correlated optical and X-ray light variations are useful because the delays
are related to the radiation process of their light variations and the disk structure. We
show two different emissionmechanisms in black hole binaries in Fig. 3 as examples.
The sign of the time delay measurement determines if the X-ray emission is earlier
or later than the optical emission ((a) or (b) in Fig. 3), and it helps us figure out which
emission mechanism is dominant in the disk.

3 Our Bayesian Approach and Its Application

A Bayesian State–Space Model for Time Delay Estimations

We overview our Bayesian approach that models the observational light curves using
a state–space model; see [8] for details. Each observation is recorded in magnitude
that is an astronomical measure of brightness on a logarithmic scale. The observed
data are n magnitudes of one light curve, x = {x1, x2, . . . , xn}, measured at obser-
vation times, {tx1 , tx2 , . . . , txn }, and m magnitudes of the other light curve, y =
{y1, y2, . . . , ym} measured at possibly different observation times, {ty1 , ty2 , . . . , tym }.
The number of observations for each light curve is not necessarily the same. We
assume that the observed magnitudes are measured around the unknown true magni-
tudes with heteroskedastic measurement errors. We denote these latent magnitudes
by X = {X (tx1), X (tx2), . . . , X (txn )} for x and Y = {Y (ty1),Y (ty2), . . . ,Y (tym )} for
y, and known standard deviations of measurement errors by {δ1, δ2, . . . , δn} for x
and {η1, η2, . . . , ηm} for y.

A state–space model is composed of (i) an observational equation that defines the
relationship between the observed data and unknown states of a latent process, and



A Bayesian Approach to Astronomical Time Delay Estimations 313

(ii) a system equation that specifies the relationship among the unknown states [9].
Assuming that the observed data are measured with heteroskedastic Gaussian errors
centered at the unknown true magnitudes, we can specify the observational equation
as follows:

xi | X (txi ) ∼ N
(
X (txi ), δ2i

)
for i = 1, 2, . . . , n, (1)

y j | Y (ty j ) ∼ N
(
Y (ty j ), η2

j

)
for j = 1, 2, . . . ,m. (2)

In addition, we assume that one latent light curve is a shifted version of the other
in magnitude and time, i.e., Y (t) = X (t − Δ) + β, where β is a magnitude offset
between two latent light curves and Δ is the time lag of interest. This is called a
curve-shifting assumption [10]. Using this assumption, we can reexpress Eq. (2) as
follows:

y j | X (ty j − Δ),Δ, β ∼ N
(
X (ty j − Δ) + β, η2

j

)
for j = 1, 2, . . . ,m. (3)

For a system equation, we adopt a continuous-time Ornstein–Uhlenbeck (O–U)
process that is also called a damped random walk process among astronomers. This
process is empirically proven to describe well the stochastic variations of brightness
of active galactic nuclei generated by accretion [11] in that the power spectral density
of such light curves are consistent to that of the O–U process. This process is defined
by the following stochastic differential equation:

dX (t) = −1

τ
(X (t) − μ)dt + σdB(t). (4)

Here, μ denotes the overall mean of the process, and σ represents the short-term
variability of the process. Both are on the magnitude scale. Also, τ is a timescale of
the process in days, and B(t) is a standard Brownian motion. The solution of this
stochastic differential equation defines the relationship among the latent magnitudes
by the following Gaussian conditional distributions:

X (tΔ1 ) ∼ N

(
μ,

τσ 2

2

)
, and for i = 2, 3, . . . , n + m,

X (tΔi ) | X (tΔi−1) ∼ N

(
μ + ai

(
X (tΔi−1) − μ

)
,

τσ 2

2
(1 − a2i )

)
(5)

where ai ≡ exp(−(tΔi − tΔi−1)/τ), and tΔ = (tΔ1 , . . . , tΔn+m) are the sorted vector of
n + m observation times among the n observation times, {tx1 , . . . , txn }, and the m
time-lag-shifted observation times, {ty1 − Δ, . . . , tym − Δ}. We denote all of n + m
latent magnitudes by X(tΔ). These conditional Gaussian distributions defines the
system equation of a state–space model. See Fig. 4 for a diagram that describes the
assumed data generation process.
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Fig. 4 A diagram that describes the data generation process. The observed data xi and y j are
generated from a latent light curve X(tΔ) representing the unknown true magnitudes evaluated at
discrete observation times

Besides the n + m latent magnitudes, our model has five unknown parameters,
i.e.,Δ, β,μ, σ , and τ , and we adopt the following prior distributions for these model
parameters, considering the knowledge from previous astronomical probes:

Δ ∼ Uniform(−0.04, 0.04), β ∼ N(0, 105), μ ∼ Uniform(−30, 30)

σ 2 ∼ inverse Gamma(1, 1), τ 2 ∼ inverse Gamma(1, 2 × 10−7). (6)

See Sects. 2.4 and 2.5 of [8] for motivation and scientific background of these
choices.

The resulting full posterior density denoted by π(Δ, β,μ, σ, τ, X(tΔ) | x, y)
is proportional to the multiplication of the density functions whose distributions
are defined in Eqs. (1), (3), (5), and (6), respectively. We sample the full posterior
distribution using a Metropolis–Hastings within Gibbs sampler [12]; see Sect. 3 of
[8] for details.

Application to Observational Data

We apply our method to the data of the 2015 winter outburst in V404 Cyg, which
are given in the right panel of Fig. 5.2 This figure exhibits correlation between X-
ray and optical large-amplitude variations. The X-ray light curve in this data set is
scaled to the amplitudes of optical variations by using the result of the logarithmic
regression between the X-ray and optical luminosity in order to meet the curve-
shifting assumption. We also confirm that the power density spectrum of the X-ray
light curve is well expressed by a power law as that of the O-U process is (see Fig. 6).

2The data were obtained on new year’s day in 2016.
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Fig. 5 The observed optical and X-ray light curves during the 2015 winter outburst in V404 Cyg.
The length of the time interval between the first and last observations is about an hour. The empty
rectangles indicate the X-ray light curve and the filled rectangles denote the optical light curve.
The half-length of each vertical line around the rectangles represents the standard deviation of the
measurement error

Fig. 6 Power spectral
density of the X-ray light
curve in Fig. 5. The errors
represent the standard
deviations
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In order to implement our model, we use an R package, timedelay, which is
publicly available at CRAN.3 Since the marginal distribution of the time lag often
suffers from multimodality, this package adopts a repelling-attracting Metropolis
algorithm [13] to better explore a multimodal distribution of Δ; Fig. 7 shows that
the autocorrelation time decreases faster with the algorithm. We first compute the
profile likelihood of the time lag and check dominant modes of the time lag. Next
we prepare initial three Markov chains near the highest mode. We run each Markov
chain for 150,000 iterations, discarding the first 50,000 as burn-in.

The left and right panels of Fig. 8 show the histogram and trace plot of the posterior
sample of the time lag Δ, respectively. This sampling result indicates that the optical
variations are delayed to the X-ray ones by 22.7+0.3

−0.2 s. The Gelman–Rubin conver-
gence diagnostic statistic [14] computed from the three Markov chains is 1.0003,

3https://cran.r-project.org/package=timedelay.

https://cran.r-project.org/package=timedelay
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Fig. 7 Autocorrelation functions of posterior sample ofΔ for one chain. Left: without the repelling-
attracting metropolis algorithm. Right: with the repelling-attracting metropolis algorithm
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Fig. 8 Left: The resulting posterior distribution of the time lag around the highest mode. In the
histogram on the left, the solid blue line indicates the posteriormedian ofΔ and the dashed blue lines
represent the 68% quantile-based interval. There are a small mode near 37.7 s and an invisibly mode
near 42.4 s, though not shown here. The right panel displays the trace plot of posterior samples of
Δ for one chain. We can see the existence of small modes which are not displayed in the histogram

close enough to unity. Although not shown here, we also perform a sensitivity anal-
ysis to see that our posterior inference is robust to the choice of the scale parameters
of the inverse-Gamma prior distributions for τ and σ 2. We suggest that the ∼22-s
optical delay originates from the X-ray reprocessing (see (a) of Fig. 3). Figure5
and the left panel of Fig. 8 represent the preliminary light curves and estimations of
the results shown in [15], respectively. The detailed scientific interpretation is also
described in that paper.

4 Discussion

Applicability of Our Method for Other Astronomical Systems

Asmentioned in Sect. 2, there are many other black hole systems including accretion
disks in the universe. Since the brightness variations of these systems are produced
by accretion, our method is naturally applicable for them. Actually, it was originally
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developed for gravitational-lensed light curves [8]. Here, we raise two examples of
the application.

Gravitational-Lensed Light Curves
Quasars are a very bright subclass of active galactic nuclei. If there is an object having
strong gravitational field between a quasar and the Earth, the light from the quasar
is bent and split, and we obtain several images from one quasar because each of the
split light rays arrive at the Earth via each different path. Light variations derived
from these images delay to each other due to the different length of each path. Since
these time delays are proportional to Hubble constant which determines the degree
of expansion of the universe, we can estimate the constant by measuring the delays
[16, 17]. Please see [8] for the details of the application to this type of phenomena.
In gravitational-lensed events, one light curve is offset in brightness to the other due
to the different degree of the lensing magnification [18]. This effect is taken into
account via a polynomial regression in the paper [8].

Reverberation Mapping
Active galactic nuclei are believed to be surrounded by broad-line regions, lumps of
rotating gas around the central black holes. The optical continuum emission from
accretion disks illuminates the broad-line regions and ionizes the neutral gas in them.
Then, some photons are emitted from the ionized gas. This phenomenon is similar to
the X-ray reprocessing explained in (a) of Fig. 3. The light variations of line emission
are delayed against those of the continuum, and have smaller amplitudes like Fig. 1.
Since the time delay between the continuum and line emission is regarded to reflect
the approximate timewithwhich the photonsmove at the light speed from the vicinity
of the central black hole to the broad-line region, we can inference the approximate
distance between them by multiplying the delay and the light speed. This method is
called reverberation mapping [19]. In conjunction with the rotating velocity of the
broad-line regions measured by the spectroscopic observations, we can estimate the
mass of the central black hole.

This reverberation mapping method is also used to constrain the inner structure
of active galactic nuclei. For instance, low-energy X-ray delays have been detected
in the delay estimations between low-energy and high-energy X-ray variations. This
kind of delays are regarded to be caused by the illumination of the inner disk by
high-energy X-rays, i.e., the similar phenomena to X-ray reprocessing shown in (a)
of Fig. 3 occur. On the contrary, high-energy X-ray delays against low-energy X-rays
have been also observed. They are considered to be the representation of propagating
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accretion flow in the inner region, and resemble X-ray delays in black hole binaries
(see (b) in Fig. 3). Both two phenomena can give key information on the size of the
disk and/or the corona [20].

Advantages of Our Method and Future Work

We can inference time delays without any interpolations and their statistic errors with
high accuracy by using our Bayesian method. This is an advantage of our method
over some conventional methods. Actually, although we also tried the time delay
estimation as for our data in Fig. 5 by using a locally normalized discrete correlation
function [21], the analysis presented larger errors by more than 35 times than those
obtained by our method.

Though our approach is a sophisticatedmethod, there is some room to improve for
versatility. In the current version, the difference in amplitudes between optical and
X-ray variability is not taken into account. If our model includes a scale parameter
as an unknown constant, i.e., the relation between two light curves is assumed to be
Y (t) = CX (t − Δ) + β (C : constant), we can inference the difference.

In addition, few photons arrive at the Earth in an exposure time when the system is
very faint or when we observe it at extremely high-energy wavelengths. Although we
assume that the magnitudes of light curves are expressed by Gaussian distributions,
it is better to expand our method to be applicable for Poisson distributions if we need
to analyze faint and/or high-energy light curves.

Moreover, as we can see Fig. 1, the optical light curves havemore smoother shape.
If we model this smoothness, we may obtain more information of the disk structure
by the reverberation mapping. For instance, one light curve can be expressed by the
convolution of the other light curve and a transfer function as follows:

Y (t) =
∫

Ψ (Δ)X (t − Δ)dΔ, (7)

where Ψ (Δ) is a transfer function. The transfer function in [8] is a delta function
of the time delay. Our next step is to develop a method for dealing with some other
transfer functions in order to know the width of the time delay depending on the
extended shape of the accretion disk. Black hole binaries are tiny systems and active
galactic nuclei are too far from the Earth. They always look like point sources on
astronomical observational images, and we cannot directly observe their geometrical
structures. If it is possible to know the width of time delays, we could estimate the
disk size more accurately from it. If the transfer function itself can be estimated, we
might be able to estimate the disk structure by the reverberation mapping method.
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Diversity of Light Curves in Astronomy

Though we exhibit the light curves of only black hole binaries, there are many other
kinds of light variations in astronomy. We display some of them in Fig. 9. The light
curves shown in the upper left panel are of 3C 454, one of blazers whose light vari-
ations originate from jet ejections. They seem to be similar to the variability of the
price of the stock in spite of the sparseness and large errors. Quasi-periodic oscil-
lations, periodic modulations having time-varying phases, are sometimes observed
in this kind of systems. Their power spectral density looks like a power law plus a
small sharp peak (e.g., [22]).

There are also many pulsating variable stars in the universe. The second example
displayed in the upper right panel of Fig. 9 is the light variations of R Sct, one of RV
Tau-type pulsating variable stars, which show alternating shallow and deep minima,
and astronomers wonder whether this behavior is predictable [23, 24].

The light variations in the lower panel of Fig. 9 are of V344 Lyr which belongs
to a subclass of dwarf novae showing occasional long and big outbursts. These light
variations were observed in the early stage of the outburst, and we can see that
small-amplitude and periodic variability grows up, and that its period and amplitude
are gradually varying with time. We sometimes observe a few different types of
variations whose periods are close to each other during the same time interval. It is
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Fig. 9 Light curve collections. Upper left: The optical V -band light curves of 3C 454 (taken by the
Catalina real-time transient survey (CRTS)). Upper right: The visual observations of R Sct (taken
by the American association of variable star observers (AAVSO)). Lower: The optical light curves
of V344 Lyr (monitored by the Kepler satellite)



320 M. Kimura et al.

demonstrated that these signals are resolved by using the least absolute shrinkage
and selection operator (Lasso) method [24, 25].

5 Conclusions

Analyzing astronomicalmultiwavelength light curves is a challenging problem, since
these data usually have each different irregular and sparse samplings. We estimated a
time lag between X-ray and optical light curves in a black hole binary by using a fully
Bayesian method including state–space model. Our method enables us to estimate
the time lagwith small errors, and has the advantage of the robust results independent
of the choice of the parameters in prior distributions. This method will be applicable
for other astronomical systems if the light variations from them are expressed by
O-U process. In the near future, enormous observational data will be collected by
several upcoming astronomical surveys and big telescopes. Time-domain astronomy
is coming soon and further developments of statistical procedures are required in
astronomy.
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Autoregressive and t-Distributed Errors
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Abstract In this contribution, we consider an expectation conditional maximization
either (ECME) algorithm for the purpose of estimating the parameters of a linear
observation model with time-dependent autoregressive (AR) errors. The degree of
freedom (d.o.f.) of the underlying family of scaled t-distributions, which is used to
account for outliers and heavy-tailedness of the white noise components, is adapted
to the data, resulting in a self-tuning robust estimator. The time variability of the AR
coefficients is described by a second linear model. We improve the estimation of the
d.o.f. in a previous version of the ECME algorithm, which involves a zero search,
by using an interval Newton method. We model the transient oscillations of a shaker
table measured by a high-accuracy accelerometer, and we analyze various criteria
for selecting a simultaneously parsimonious and realistic time-variability model.

Keywords Linear model · Time-dependent AR process · Scaled t-distribution
Self-tuning robust estimator · EM algorithm · Vibration analysis
1 Introduction

In many fields of application, observed time series can be approximated by a linear
(“deterministic”) model, involving desired target quantities in the form of unknown
parameters to be estimated. Random deviations (“errors”) of the observations from
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the functional model are frequently autocorrelated (“colored noise”), for instance, as
a consequence of sampling with small time differences between the measurements
(cf. [1]). Colored noise can often be modeled by means of an autoregressive (AR)
or by a more general autoregressive moving average (ARMA) process. In geodesy,
for instance, linear models based on spherical harmonics have been employed in
conjunction with ARMA error processes to model satellite gravity gradiometer data
acquired within the Gravity and Gravity Field and Steady-State Ocean Circulation
Explorer (GOCE) mission (cf. [2]). Recently, accelerometer measurements of an
oscillation were linearly modeled as a sum of sinusoids with additive AR errors [3].

In geodetic applications, colored noise is frequently found to display a time-
variable behavior (see, e.g., [4, 5]), mainly as a consequence of temporally chang-
ing conditions within the measurement environment. To take such phenomena into
account, employment of AR processes with time-dependent coefficients was sug-
gested (cf. [6]). While many different methods for generating time-dependent AR
and ARMA processes have been introduced since then (see [7] for a comparative
study), the most frequently applied approach appears to have been based on the idea
of expressing the values of a particular, temporally changing AR(MA) coefficient as
values of a best-fitting linear combination of certain basis functions. Popular choices
of basis functions have been polynomials with different orders [8], Legendre poly-
nomials [9], B-splines [10], wavelets [11], sinusoids [12], sigmoid functions [13],
and discrete prolate spheroidal sequences [14].

Least squares techniques, which are commonly employed for estimating the
parameters of regression ARMA models (see [15] for an early exposition), should
be used with caution when outliers are expected to be present in the observations.
When reliable prior knowledge about the relative frequencies of outliers is lacking,
it makes sense to use a self-tuning robust estimator based on a family of heavy-tailed
probability distributions. Such estimators are partially adaptive in the sense that
shape parameters which control the tail behavior of the associated probability den-
sity function are estimated alongside the main model parameters [16]. In the context
of linear regressionmodels, the family of scaled t-distributions has been found useful
in this regard [17] since it allows for the application of an expectation maximization
(EM) algorithm in the computationally convenient form of iteratively reweighted
least squares (IRLS) [18, 19]. To speed up the convergence of this EM algorithm in
applied situations, modifications to an expectation conditional maximization (ECM),
multicycle ECM or ECM either (ECME) algorithm have been proposed (cf. [20]).

The linear regression model with t-distributed errors, as considered within these
studies, was recently extended to include a covariance-stationary AR model with
t-distributed white noise components [3]. The derived ECME algorithm showed that
the parameter estimates concerning the linear regression and AR model can be com-
puted via two separate IRLS schemes. Kargoll et al. [5] demonstrated the extension
of this twofold IRLS algorithm from a covariance-stationary to a time-dependent AR
process, employing the aforementioned basis function approach with polynomials
of different orders. In the current contribution, we improve that algorithm regarding
the estimation of the degree of freedom (d.o.f.) of the underlying t-distribution. Fur-
thermore, we substantially extend the numerical analysis of the vibration experiment
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involving measurements of a high-accuracy accelerometer (considered in the previ-
ous two studies), focusing now on the important issue of model selection concerning
the time-variable AR process.

2 The Observation Model

We assume that each observable Yt of a time series is represented by a purely deter-
ministic model Atξ and an additive random deviation or error Et , i.e.,

Yt = Atξ + Et (t = 1, . . . , n). (1)

In the following, we denote byY the (n × 1)-random vector of all observables, by E
the (n × 1)-random vector of all random deviations, byA the (n × m)-design matrix
consisting of the known (1 × m)-row vectors A1, . . . ,An , and by ξ the (m × 1)
column vector of unknown functional parameters. In order for these parameters to
be estimable, we assume the number of observations to exceed the number m of
functional parameters and the design matrix to be of full rank. Moreover, we allow
the random deviations to be autocorrelated according to a time-variable AR process

Et = α1,t Et−1 + · · · + αp,t Et−p +Ut (t = 1, . . . , n), (2)

in which we assume the random variablesU1, . . . ,Un to be independently and iden-
tically distributed (i.i.d.) with mean 0 and variance σ 2

0 . We call the autocorrelated
random deviations E1, . . . , En also the “colored noise components” of the mea-
surement time series Y1, . . . ,Yn . To fix the initial conditions of the AR(p) model
(2), we assume that E0, . . . , E1−p take a constant value of 0. Furthermore, for each
j = 1, . . . , p we treat the AR coefficients α j,1, . . . , α j,n as unknown values of some
function on {1, . . . , n}, in the sense that

α j,t = Xtβ j ( j = 1, . . . , p; t = 1, . . . , n). (3)

Here, the given (1 × q)-row vectorsX1, . . . ,Xn give rise to a second, (n × q)-design
matrix X, and the (q × 1) column vectors β1, . . . ,β p contain the corresponding
(unknown) parameters. Stacking these p column vectors then yields the (pq × 1)
column vector β. Note that the vectorXt is the same for each of the pAR coefficients
α1,t , . . . , αp,t . In otherwords,we employ the same type of function for all coefficients
of one AR model while allowing the functional parameters to be different for the
various AR coefficients.

In order to account for heavy-tailed or outlier-afflicted errors, we let the i.i.d.
randomvariablesU1, . . . ,Un (whichwe also refer to as the “white noise components”
of the time-variable AR process) follow a scaled (Student’s) t-distribution tν(0, σ 2)

with mean 0, unknown d.o.f. ν, and unknown scale parameter σ 2. This family of
distributions has the probability density function (pdf)
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f (ut ) = �
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ν+1
2
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√
νπ σ �

(
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σ
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/ν

]− ν+1
2

(t = 1, . . . , n), (4)

where � is the gamma function. For large d.o.f. (say, ν ≥ 300), this pdf closely
approximates a Gaussian bell curve, so that short-tailed or outlier-free measure-
ment errors can be represented by this stochastic model as well. As U1, . . . ,Un are
stochastically independent, their joint pdf is given by the product

∏n
t=1 f (ut ).

We intend to estimate all of the unknown model parameters ξ , β, σ 2, ν by means
of ML estimation (all autoregressive coefficients α j,t can be calculated directly from
β and need, therefore, not be included in the list of parameters to be estimated). To
this end, we assume that the AR model (2) can be inverted. Substituting (1)–(3) for
the t th realization of Ut , we obtain

ut = et − α1,t et−1 − · · · − αp,t et−p (5)

= (yt − Atξ) − Xtβ1(yt−1 − At−1ξ) − · · · − Xtβ p(yt−p − At−pξ), (6)

where we set the initial conditions y0 = · · · = y1−p = 0 and A0 = · · · = A1−p =
0[1×m], according to the previous specifications of e0 = · · · = e1−p = 0. To give
the expressions for ut a form that is easier to manage and interpret, we use the
notation L jZt := Zt− j in connection with αt (L) := 1 − α1,t L − · · · − αp,t L p and
Zt = αt (L)Zt (where Zt is a term of an arbitrary sequence of matrices). We can then
write (5) more briefly as

ut = et = αt (L)et = αt (L)(yt − Atξ) = yt − Atξ . (7)

Here, et , yt and At can be interpreted as the outputs of a time-variable digital filter
αt (L) that is applied, respectively, to a certain segment of the error time series
e1, . . . , en , of the observation time series y1, . . . , yn and of the vector sequence
A1, . . . ,An . The entire collection of digital filters α1(L), . . . ,αn(L) can be viewed
as turning the colored noise components e1, . . . , en progressively into white noise
components u1, . . . , un , so that we call it a “decorrelation filter”.

Substituting (6) into (4) and forming the product of these univariate pdf, we have
a joint pdf f (u) for the white noise components u1, . . . , un , which evidently is a
function of all observations y and of all unknown parameters. Therefore, we could
write f (u) as the likelihood functionL(ξ ,β, σ 2, ν; y). As this function is conditional
on the previously fixed initial conditions for E0, . . . , E1−p, we thus have a conditional
likelihood function (in the sense of [21]), which can be expected to give reasonable
estimation results in case the number of observations is large enough for the number
of distorted values—created by the simple choice of initial conditions (also known
as “warm-up effect”, cf. [22])—to be negligible in comparison to the total number
of observations.

Unfortunately, the previous likelihood function does not allow for closed-form
expressions of the parameter estimates. To obtain such expressions at least for someof
the parameter groups, we employ a well-known latent-variables approach (described
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in detail, e.g., in [3]), in which unobservable (“latent”) gamma-distributed random
variables W1, . . . ,Wn are introduced in addition to the observables Y1, . . . ,Yn . Let-
ting ν be the d.o.f. of the original t-distribution error model, we choose the gamma
distribution defined by the pdf

f (wt ) =
{

( ν
2 )

ν
2

�( ν
2 )

· w
ν
2 −1
t · e− ν

2 wt if wt > 0,

0 if wt ≤ 0.
(8)

We assume the latent variables to be stochastically independent, so that their joint
pdf f (w) constitutes the product

∏n
t=1 f (wt ). To obtain an ML estimator which

is equivalent to the one constructed before directly from the pdf f (u) based on t-
distributions, each white noise component Ut is now assumed to follow a normal
distribution conditional on the occurrence of the value wt of the latent variable Wt .
For this purpose, we choose the particular pdf

f (ut |wt) = 1
√
2π(σ/

√
wt )2

exp

{
− u2t
2(σ/

√
wt )2

}
, (9)

and we assume Ut to be conditionally independent from U1, W1, . . . ,Ut−1, Wt−1,
Ut+1, Wt+1, . . . ,Un and Wn . Thus, the values of the latter random variables do
not affect the density of ut . In a first step, we can combine (8) and (9) for every
time instance t to the joint pdf f (ut , wt ) = f (wt ) f (ut |wt ) of the latent variable
Wt and the time-wise associated white noise component Ut . In a second step,
we may combine these joint pdfs for all time instances t = 1, . . . , n to the joint
pdf f (u,w) =∏n

t=1 f (ut , wt ) by exploiting the previous assumptions of (condi-
tional) independence. We now use this pdf to define a proxy likelihood function
L(ξ ,β, σ 2, ν; y,w) in place of the original likelihood function L(ξ ,β, σ 2, ν; y). It
can be shown that the latter defines the marginal distribution of the former, so that
both models may be viewed as being equivalent (cf. [19]). It should also be men-
tioned that the conditional pdf f (wt |ut ) defines the gamma distributionG(a, b)with
parameters a = (ν + 1)/2 and b = (ν + u2t /σ

2)/2, given the value ut . This fact is
used in the subsequent derivation of an EM algorithm based on the proxy likelihood
function.

3 The Modified EM Algorithm

It is convenient to collect all the unknown model parameters ξ , β, σ 2 and ν within
a single column vector θ and to use the natural logarithm of the proxy likelihood
function, which we can write as
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logL(θ; y,w) = −n

2
log(2π) − n
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2
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logwt − 1
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2

n∑

t=1

(logwt − wt ). (10)

Note that each part αt (L) of the decorrelation filter is a function of the parameters β.
Further note that the values w1, . . . , wn of the unobservable latent variables are not
given, so that (10) cannot bemaximized directly. This can be remedied bymaximizing
instead the conditional expectation

Q(θ |θ (i)) = EW|y;θ (i) {logL (θ; y,W)} . (11)

of the log-likelihood function (also known as the “Q-function”). Here, besides the
observations y, prior parameter values θ (i) must also be given. Then, maximizing
the Q-function yields a new solution θ (i+1), which is used in the next iteration step
in place of the previous solution θ (i). Alternating the expectation (E) step and the
maximization (M) step yields an EM algorithm in the sense of [18].

Concerning the E step, since we defined the likelihood function in terms of the
white noise U rather than the observables Y, we may condition directly on the
values u. We then find for the Q-function the expression

Q(θ |θ (i)) = c − n

2
log(σ 2) − 1

2σ 2

n∑

t=1

w
(i)
t

[
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]2 + nν

2
log ν (12)

−n log�
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− log
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n
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(
logw

(i)
t − w

(i)
t

)]

(see [5] for details), where c is a constant independent of the unknown parameters,
ψ is the digamma function, and

w
(i)
t = ν(i) + 1

ν(i) +
(

α
(i)
t (L)(yt−At ξ (i))

σ (i)

)2 . (13)

Regarding the M-Step, we determine the first partial derivatives of the Q-function
(12) with respect to the individual parameters ξ , β, σ 2 and ν in θ , and we set these
derivatives equal to zero. This yields for parameter ξ j

∂

∂ξ j
Q(θ |θ (i)) = 1

σ 2

n∑

t=1

w
(i)
t At, j (yt − Atξ) = 0, (14)

and then for all m of these equations
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⎡

⎢
⎣

A1,1 · · · An,1
...

...

A1,m · · · An,m

⎤

⎥
⎦W(i)

⎡

⎢
⎣

y1 − A1ξ
...

yn − Anξ

⎤

⎥
⎦ =: AW(i)

(
y − Aξ

) = 0, (15)

whereW(i) denotes a diagonal matrix with elementsw
(i)
1 , . . . , w(i)

n . Since the filtered
quantities y andA depend on the unknown parameters β through the AR coefficients
in model (3), we employ the additional principle of conditional maximization (CM)
in the sense of [20], substituting the available values β(i) of the preceding itera-
tion step for these unknowns. The procedure accordingly is to compute from β(i)

the AR coefficients α
(i)
1,1, . . . , α

(i)
p,n , then the filtered quantities y(i)

t = α
(i)
t (L)yt and

A
(i)
t, j = α

(i)
t (L)At, j . The normal equations (15) are now solved by the reweighted

least squares estimate

ξ (i+1) =
(
(A

(i)
)TW(i)A

(i)
)−1

(A
(i)

)TW(i)y(i). (16)

The resulting colored noise residuals follow to be e(i+1)
t = yt − Atξ

(i+1). Similarly
to ξ , we find the normal equations for β by setting the partial derivatives of the
Q-function with respect to β1, . . . ,β p equal to zero. Substituting now the available

estimates ξ (i+1) and e(i+1)
t in the spirit of CM, we thus obtain

⎡

⎢
⎣

e(i+1)
0 XT

1 · · · e(i+1)
n−1 XT

n
...

...

e(i+1)
1−p XT

1 · · · e(i+1)
n−p XT

n

⎤

⎥
⎦W(i)

⎡

⎢
⎣

e(i+1)
1 − e(i+1)

0 X1β1 − · · · − e(i+1)
1−p X1β p

...

e(i+1)
n − e(i+1)

n−1 Xnβ1 − · · · − e(i+1)
n−p Xnβ p

⎤

⎥
⎦

=: (E(i+1))TW(i)
(
e(i+1) − E(i+1)β

) = 0, (17)

using the initial conditions e(i+1)
0 = · · · = e(i+1)

1−p = 0 and the stacked vector βT =
[βT

1 . . . βT
p ]. Then, the reweighted least squares solution for β reads

β(i+1) = ((E(i+1))TW(i)E(i+1)
)−1

(E(i+1))TW(i)e(i+1). (18)

Applying the resulting decorrelation filter α
(i+1)
1 (L), . . . ,α(i+1)

n (L) to the previ-
ously computed colored noise residuals yields the white noise residuals u(i+1)

t =
α

(i+1)
t (L)e(i+1)

t (t = 1, . . . , n), which can now be used to compute the scale fac-
tor. Setting the derivative of the Q-function with respect to σ 2 equal to zero and
substituting u(i+1)

t , we find the average weighted sum of squared residuals

(σ 2)(i+1) = 1

n

n∑

t=1

w
(i)
t

(
u(i+1)
t

)2 = (u(i+1))TW(i)u(i+1)

n
. (19)
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Concerning the estimation of the d.o.f. ν of the t-distribution, it was generally found
in previous studies (e.g., [20]) that the convergence of the algorithm can be sped up by
maximizing the original log-likelihood L(ξ ,β, σ 2, ν; y) instead of the Q-function.
As shown in detail in [3], this leads to the equation

0 = 1 + log ν(i+1) − ψ

(
ν(i+1)

2

)
+ ψ

(
ν(i+1) + 1

2

)
− log

(
ν(i+1) + 1

)
(20)
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⎣log
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⎞

⎟
⎠− ν(i+1) + 1

ν(i+1) +
(
u(i+1)
t /σ (i+1)

)2

⎤

⎥
⎦ ,

which can be solved for ν(i+1). With this modification and the application of CM,
the EM algorithm turns into an ECME algorithm.

When initial parameter values θ (0) andweightsW(0) are lacking, we start the algo-
rithm with the computation of a least squares solution ξ (0) = (ATA)−1AT y. Using
the unit weight matrix W(0) = I, solutions β(0) and (σ 2)(0) can then be determined;
we usually choose ν(0) = 30 concerning the d.o.f. Having thus fixed the initial val-
ues, the E step and CM(E) steps (16)–(20) are iterated until a sufficient level of
convergence is reached. In our numerical example, we check if the greatest absolute
value of the differences between the estimates of two subsequent iteration steps is
less than 10−6 for the parameters ξ , β, σ 2, and less than 10−4 for ν. To estimate ν,
we carried out a reliable zero search using an interval Newton method according to
Algorithm 6.1 in [23].

4 An Application to Vibration Analysis

The measurement and estimation of amplitudes (possibly in conjunction with the
identification of the frequencies) of oscillating structures such as bridges is an impor-
tant task of engineering geodesy, with high relevance to disciplines such as structural
healthmonitoring (see, e.g., [24]). Themeasurements of such oscillations throughout
time can be modeled by means of a sum of sinusoids and additive random deviations,
that is,

yt = a0
2

+
M∑

j=1

a j cos (2π f j xt ) + b j sin (2π f j xt ) + et (t = 1, . . . , n). (21)

Typically, an oscillation is induced by moving objects on the structure, and rela-
tively stable amplitudes in terms of the coefficients a0, a1, . . . , aM and b1, . . . , bM
are reached after some time of “transient oscillations”. The expected frequencies
f1, . . . , fM can often be derived through an analysis of the eigenfrequencies of the
particular structure. Whereas the stable part of the oscillations can be explained
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deterministically by laws of physics, the transient oscillations appear to be less reg-
ular, suggesting the incorporation of a stochastic model component into (21). One
idea (which we investigate in the sequel) is to model the smoothly changing devi-
ations of the transient oscillations from the stable oscillations as the combination
of a time-variable AR process and outliers. Modeling outliers stochastically via a
scaled t-distribution, we thus have an observation model within the framework of the
generic model described in Sect. 2.

To investigate the adequacy of high-accuracy and low-cost accelerometers for
the purpose of structural health monitoring of bridges, a vibration experiment was
carried out at the Institute of Concrete Construction of the Leibniz Universität Han-
nover/Germany. This experiment involved several sensors that were mounted on a
shaker table, which consisted of a plexiglass plate (fixed between two wooden sup-
ports) and two imbalance motors in the center. The experiment lasted for about 45
min, throughout which a constant oscillation frequency of 16 Hz was induced. In the
following, we analyze, in particular, the measurements of a high-accuracy single-
axis PCBPiezotronics accelerometer, in which data reflect the induced oscillations in
terms of the sinusoids (21). The sampling frequency of that sensor is approximately
195 Hz, so that the induced frequency of 16 Hz is well below the Nyquist frequency.
The recorded data set includes both a period of transient oscillations (clearly visible
within thefirst 1500 values or 7.7 s) and a period of stable oscillation (maintained until
the end of the experiment). The latter period was analyzed by [3], who employed the
model (21) with M = 11 frequencies (to capture the significant side frequencies that
are caused by the sampling of the originally continuous-time phenomenon as well
as by the physical properties of the shaker table) in connection with a time-constant
AR process and t-distributed white noise components. In the current contribution,
we specify M = 12 frequencies by f j = j · 8 Hz ( j = 1, . . . , 12), so that the vector
ξ of functional parameters consists of the 25 unknown coefficients a0, a1, . . . , a12
and b1, . . . , b12.

Concerning the time-variable AR process (3), we used linear combinations of
polynomials x0, x1, . . . , xk up to a maximum degree k, treating the coefficients as
unknown parameters. To identify an adequate and parsimonious model for the given
data, we applied the described ECME algorithm for different AR orders p and differ-
ent polynomial degrees k, beginning with the smallest considered AR model (p = 1
and k = 0). Then, for each k = 0, . . . , 5, we determined the smallest AR order p∗ for
which the estimated residuals û1, . . . , ûn (resulting from the final iteration step, as
indicated by the “hat”) passed a white noise test (WNT). The adopted test measures
the maximum cumulated periodogram excess T = maxi |Si − i/M | with respect to
a cumulated, theoretical white noise periodogram (cf. Sect. 7.3.3 in [25]). Here, the
normalized cumulated periodogram defined by S0 = 0, Si =∑i

k=1 Ik/
∑m

k=1 Ik for
i = 1, . . . ,m (m = floor(n/2)) involves partial sums of the one-sided periodogram
I1, . . . , Im , which we computed by means of theMATLAB routine periodogram.
The significance of T can be evaluated by comparison with critical values based on
a specified significance level α. Note that the choice k = 0 corresponds to a time-
constant AR process; for this simple case, we also identified the most parsimonious
AR model order p∗ with successful WNT (see Fig. 1) by executing the ECME algo-
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Fig. 1 Acceptance of the white noise test regarding the time-constant AR(20) model (k = 0)
estimated with fixed degree of freedom (ν = 300), shown as the excess of the periodogram (blue)
of the white noise residuals with respect to the theoretical white noise periodogram (black), lying
within the 99% significance bounds (red)

Table 1 Model selection criteria based on (1) the maximum polynomial degree (p.d.) k, (2) the
lowest AR order p∗ for which the periodogram-based WNT is accepted, (3) the total number of
AR parameters—determined by p∗q = p∗(k + 1), (4) the estimated scale factor, (5) the estimated
d.o.f., (6) the log-likelihood of the original observation model, and (7) the colored noise residual
sum of squares (RSS). Results are also shown for the largest AR order p− = p∗ − 1 for which the
model did not pass the WNT

p.d.: k = 0 k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

ν = 300 adaptive adaptive adaptive adaptive adaptive adaptive

AR orders p− 19 29 20 20 5 14 12

p∗ 20 30 21 21 6 15 13

#AR param. p∗q 20 30 42 63 24 75 78

est. scale factor p− 11.24 3.44 6.76 6.23 9.50 7.67 7.82

(σ̂ 2 [·10−6]) p∗ 10.91 3.53 6.12 5.69 9.48 6.60 6.90

estimated d.o.f. p− – 2.6 7.1 6.5 4.3 7.3 7.6

(ν̂) p∗ – 2.9 6.1 5.8 4.8 4.8 5.0

log-likelihood p− 6412 6694 6583 6623 6175 6493 6487

(logL(θ̂; y)) p∗ 6434 6743 6621 6662 6219 6489 6473

RSS p− 11.71 12.38 11.45 11.49 1.95 11.57 11.30

(Ω = eT e) p∗ 11.61 11.34 11.53 11.47 1.82 1.87 1.88

rithmwith the a priori fixed degree of freedom ν = 300 (which closely approximates
the standard assumption of normally distributed white noise). A summary of results
relevant to model selection is given by Table1.

Based on these findings, it makes sense to select the adaptively determined solu-
tion that involves cubic polynomials (k = 3) in connection with an AR(6) model
for the following reasons. Besides the accepted WNT test, the colored noise resid-
ual sum of squares (RSS) Ω = 1.82 is minimal among all shown solutions, whose
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Fig. 2 Top row: oscillation dataset y (blue), the adjusted observations ŷ = Aξ̂ for the time-variable
(tv) AR(6) model based on cubic polynomials (in red on the left subplot), and the adjusted observa-
tions for the nonadaptively estimated time-constant (tc) AR(20) model (in red on the right subplot).
Bottom row: the corresponding estimated residuals (white noise residuals û in blue, colored noise
residuals ê in red)

fact indicates the relatively best approximation of the given measurements by the
adjusted observations ŷ = Aξ̂ . Figure2 demonstrates this effect in comparison to
the nonadapted solution with k = 0. Whereas the time-variable AR(6) model repro-
duces the eventual oscillation amplitude quite accurately, much of the oscillation
signal is absorbed into the colored noise of the time-constant model, resulting in the
relatively large RSS value Ω = 11.61.

In light of the fact that the estimated d.o.f. for the adaptive solution involving
the time-variable AR(6) process takes the rather low value ν̂ = 4.8, we see that the
estimated white noise residuals display a considerable level of heavy-tailedness and
deviation from a Gaussian error distributions. As shown in Table1, the solutions
for k = 1 and k = 2 give larger ν̂ and smaller σ̂ 2, indicating that the colored noise
residuals absorbed outliers (located under the tails of the pdf), besides absorbing
vibration signal. Larger polynomial degrees (k = 4 and k = 5) produce values for
the d.o.f. and the RSS (Ω) that are similar to the values resulting from the choice
k = 3.However, the lattermodel involves only 24ARcoefficients,which ismuch less
than the 75 and 78 coefficients required for the models k = 4 and k = 5, respectively.
Table1 also shows that the log-likelihoods of the desirablemodels (inwhich the time-
variable AR models do not absorb too much of the vibration signal) are smaller than
for other solutions (in which vibration signal migrates into the AR model).

Having identified the time-variable AR(6) model as the most reasonable one,
we analyze its characteristics in the time and frequency domain. On the one hand,
the estimated cubic polynomials describing the time-variability of that model show
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Fig. 3 Estimated coefficients of the time-variable (tv) AR(6) model based on cubic polynomials
and of the first six coefficients of the nonadaptively estimated time-constant (tc) AR(20) model

Fig. 4 Power spectral density of the time-variable AR(6) model

rather smooth changes of the individual coefficients (see Fig. 3). On the other hand,
we determined the time-variable power spectral density (see Fig. 4), defined by

PSD( f, t) = σ̂ 2
u /

∣∣∣1 −∑p
j=1 α̂ j,t e−i2π j f

∣∣∣
2
(cf. [26]), where the standard deviation of

the t-distributed white noise components is given by σ̂ 2
u = ν̂

ν̂−2 σ̂
2. We can observe

that also the PSD changes rather smoothly with time. Furthermore, the evident fact
that the PSDs have peaks around 16 and 72Hz demonstrates that the oscillation sig-
nal is still partially captured by the colored noise model, possibly as a consequence
of nonconstant signal frequency.
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5 Summary, Conclusions, and Outlook

We defined an observation time series model consisting of a linear regression model
with time-variable autoregressive errors, where each coefficient is described by a sec-
ond linear regression model throughout time and where the white noise components
followa scaled t-distributionwith unknowndegree of freedom.Toobtain closed-form
expressions for the corresponding self-tuning robust maximum likelihood estimator,
we derived a modified expectation maximization algorithm, which takes the form
of iteratively reweighted least squares for the solution of the two linear models. We
applied this algorithm to model transient oscillations measured by a high-accuracy
accelerometer in the presence of outliers. We identified a parsimonious observation
model that clearly separates the desired vibration signal, the transient oscillation
component (described by colored noise residuals), and the outliers (captured by the
heavy-tailed white noise residuals). This identification was based on choosing the
most parsimonious, time-variable AR model that simultaneously passes the white
noise test and produces the least RSS with respect to the colored noise. The adaptive
solution for this model was also characterized by the lowest occurring degree of
freedom and a relatively large scale factor. Unfortunately, the log-likelihood appears
to be an irrelevant quantity in the process of model selection. This finding makes
sense since the likelihood function of very complicated observation models, such as
the one considered in the analyzed vibration experiment, must be expected to have
local maxima. EM algorithms are known for getting stuck in such local maxima,
which might correspond to undesirable solutions in our example. To shed further
light on this problem, it might be helpful to carry out global optimization not only
for the degree of freedom, but for the entire model. Since multidimensional interval
methods are very time consuming, we intend to apply heuristic methods such as a
genetic algorithm for this task in the future.
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