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It is with great sadness that we announce the passing of Springer author Nick T.
Thomopoulos. Prior to a teaching career at Illinois Tech which spanned over four
decades, Nick served in the US Army and rose to the rank of sergeant. Nick’s
considerable contributions to the field of management science include developing
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which he published with Springer.
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Preface

This book includes several statistical methods and tables that are not readily avail-
able in other publications. The content begins with a review of continuous and
discrete probability distributions that are in common use, and examples are provided
to guide the reader on applications. Some other useful distributions that are less
common and less understood are described in full detail. These are the discrete
normal, left-partial, right-partial, left-truncated normal, right-truncated normal, log-
normal, bivariate normal, and bivariate lognormal. Tables with examples are pro-
vided to enable researchers to easily apply the distributions to real applications and
sample data. Tables are listed for the partial distribution, and examples show how
they are applied in industry. Three of the distributions, left-truncated normal, right-
truncated normal, and normal, offer a wide variety of shapes, and a new statistic, the
spread ratio, enables the analyst to determine which best fits sample data. A set of
tables for the standard lognormal distribution is listed, and examples show how they
are used to measure probabilities when the sample data is lognormal. A complete set
of 21 tables is listed for the bivariate normal distribution, and examples show how
they apply to sample data. Also shown is how to calculate probabilities when an
application is from a bivariate lognormal distribution. This book will be highly
useful to anyone who does statistical and probability analysis. This includes scien-
tists, economists, management scientists, market researchers, engineers, mathemati-
cians, and students in many disciplines.

Burr Ridge, IL, USA Nick T. Thomopoulos
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Chapter 1
Continuous Distributions

1.1 Introduction

A variable, x, is continuous when x can be any number between two limits. For
example, a scale measures a boy at 150 pounds; and assuming the scale is correct
within one-half pound, the boy’s actual weight is a continuous variable that could
fall anywhere from 149.5 to 150.5 pounds. The variable, x, is a continuous random
variable when a mathematical function, called the probability density defines the
shape along the admissible range. The density is always zero or larger and the
positive area below the density equals one. Each unique continuous random variable
is defined by a probability density that flows over the admissible range. Eight of the
common continuous distributions are described in the chapter. For each of these, the
range of the variable is stated, along with the probability density, and the associated
parameters. Also described is the cumulative probability distribution that is needed
by an analyst to measure the probability of the x falling in a sub-range of the
admissible region. Some of the distributions do not have closed-form solutions,
and thereby, quantitative methods are needed to measure the cumulative probability.
Sample data is used to estimate the parameter values. Examples are included to
demonstrate the features and use of each distribution. The distributions described in
this chapter are the following: continuous uniform, exponential, Erlang, gamma,
beta, Weibull, normal and lognormal. The continuous uniform occurs when all
values between limits a to b are equally likely. The normal density is symmetrical
and bell shaped. The exponential happens when the most likely value is at x¼ 0, and
the density tails down in a relative way as x increases. The density of the Erlang has
many shapes that range between the exponential and the normal. The shape of the
gamma density varies from exponential-like to one where the mode (most likely) and
the density skews to the right. The beta has many shapes: uniform, ramp down, ramp
up, bathtub-like, normal-like, and all shapes that skew to the right and in the same
manner they skew to the left. The Weibull density varies from exponential-like to
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shapes that skew to the right. The lognormal density peaks near zero and skews far to
the right.

Law and Kelton [1]; Hasting and Peacock [2]; and Hines et al. [3] present
thorough descriptions on the properties of the common continuous probability
distributions.

1.2 Sample Data Statistics

When n sample data, (x1, . . ., xn), are collected, various statistical measures can be
computed as described below:

x 1ð Þ ¼ minimum of x1; . . . ; xnð Þ
x nð Þ ¼ maximum of x1; . . . ; xnð Þ
�x ¼ average
s ¼ standard deviation
cov ¼ s=�x ¼ coefficient of variation

τ ¼ s2=�x ¼ lexis ratio

1.3 Notation

The statistical notation used in this book is the following:

E xð Þ ¼ expected value of x
V xð Þ ¼ variance of x
μ ¼ mean
σ2 ¼ variance
σ ¼ standard deviation

Example 1.1 Suppose an experiment yields n ¼ 10 sample data values as follows:
[24, 27, 19, 14, 32, 28, 35, 29, 25, 33]. The statistical measures from this data are
listed below.

x 1ð Þ ¼ min ¼ 14
x 10ð Þ ¼ max ¼ 35
�x ¼ 26:6
s ¼ 6:44
cov ¼ 0:24
τ ¼ 1:56
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1.4 Parameter Estimating Methods

Two popular methods have been developed to estimate the parameters of a distri-
bution from sample data. One is called the maximum-likelihood-estimate method
(MLE) that is mathematically formulated to find the parameter estimate that gives the
most likely fit with the sample data. The other method is called the method-of-
moments (MoM) that substitutes the statistical measures like ( �x, s) into their
mathematical counterparts [μ, σ] and applies algebra to find the estimates of the
parameters.

1.5 Transforming Variables

While analyzing sample data, it is sometimes useful to convert a variable x to another
variable, x0, where x0 ranges from zero to one; or where x0 is zero or larger. More
discussion is below.

Transform Data to (0,1)

A way to convert a variable from x to x` so that x0 lies between 0 and 1 is described
here. Recall the summary statistics of the variable x as listed earlier. For convenience
in notation, let a0 ¼ x(1) for the minimum, and b0 ¼ x(n) for the maximum. When x,
with average �x and standard deviation s, is converted to x0 by the relation:

x0 ¼ x� a0ð Þ= b0 � a0ð Þ
the range on x` becomes (0,1). The converted sample average and standard deviation
are listed below:

�x0 ¼ �
�x� a0

�
= b0 � a0ð Þ

s0 ¼ s= b0 � a0ð Þ
respectively, and the coefficient of variation of x` is:

cov0 ¼ s�=�x0

When x lies in the (0,1) range, the cov is sometimes useful to identify the
distribution that best fits sample data.
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Transform Data to (x � 0)

A way to convert a variable, x to, x`, where x0 � 0 is given here. The summary
statistics described earlier of the variable x are used again with a0 ¼ x(1) for the
minimum. When x is converted to x0 by the relation:

x0 ¼ x� a0ð Þ
the range of x0 becomes zero and larger. The corresponding sample average and
standard deviation become:

�x0 ¼ �
�x� a0

�
s0 ¼ s

respectively. Finally, the coefficient of variation is:

cov0 ¼ s�=�x0

1.6 Continuous Random Variables

A continuous random variable, x, can take on any value in a range that spans
between limits a and b. Note where the low limit, a, could be minus infinity; and
the high limit, b, could be plus infinity. An example is the amount of rainwater found
is a five-gallon bucket after a rainfall. A probability density function, f(x), defines
how the probability varies along the range, where the sum of the area within the
admissible region sums to one. Below defines the probability density function, f(x),
and the cumulative distribution function, F(x):

f xð Þ � 0 a � x � b

F xð Þ ¼
Z x

a
f wð Þdw a � x � b

This chapter describes some of the common continuous probability distributions
and their properties. The random variable of each is denoted as x, and below is a list
of the distributions with their designations and parameters.

continuous uniform x ~ CU(a,b)
exponential x ~ Exp(θ)
Erlang x ~ Erl(k,θ)
gamma x ~ Gam(k1,k2,a,b)
beta x ~ Bet(k1,k2,a,b)
Weibull x ~ We(k1,k2)
normal x ~ N(μ,σ2)
lognormal x ~ LN(μy,σy2)
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Of particular interest with each distribution is the coefficient of variation (cov)
and its range of values that apply. When sample data is available, the sample cov can
be measured and compared to each distribution’s cov range to help narrow the
choice of the distribution that applies.

1.7 Continuous Uniform

A variable, x, follows a continuous uniform probability distribution, Cu(a,b), when it
has two parameters a and b, where x can fall equally likely anywhere from a to
b. See Fig. 1.1. The probability density, and the cumulative distribution function of
x are below:

f xð Þ ¼ 1= b� að Þ a � x � b

F xð Þ ¼ x� að Þ= b� að Þ a � x � b

The expected value, variance, and standard deviation of x are listed below:

E xð Þ ¼ μ ¼ bþ að Þ=2
V xð Þ ¼ σ2 ¼ b� að Þ2=12

σ ¼ b� að Þ=
ffiffiffiffiffi
12

p

Coefficient of Variation

Note when the low limit is set to zero, (a ¼ 0):

μ ¼ b=2

σ ¼ b=
ffiffiffiffiffi
12

p

cov ¼ 2=
ffiffiffiffiffi
12

p
¼ 0:577

a                   b      x

Fig. 1.1 The continuous
uniform distribution
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Parameter Estimates

When sample data, (x1, . . ., xn), is available, the parameters (a,b) are estimated as
shown below by either the maximum-likelihood estimate (MLE) method, or by the
method-of-moment estimate.

From MLE, the estimates of the two parameters are the following:

ba ¼ x 1ð Þ ¼ min x1; . . . ; xnð Þbb ¼ x nð Þ ¼ max x1; . . . ; xnð Þ
The method-of-moment way uses the two equations: μ ¼ (b þ a)/2, and σ ¼ (b –

a)/
ffiffiffiffiffi
12

p
, to estimate the parameters (a,b). as below:

ba ¼ �x�
ffiffiffiffiffi
12

p
s=2bb ¼ �xþ

ffiffiffiffiffi
12

p
s=2

Recall, �x is the sample average and s is the sample standard deviation.

Example 1.2 Suppose a continuous uniform variable x has min ¼ 0 and max ¼ 1,
yielding: x ~ CU(0,1). Some statistics are below:

f xð Þ ¼ 1 0 � x � 1

F xð Þ ¼ x 0 � x � 1

μ ¼ 0:5

σ2 ¼ 1=12 ¼ 0:083

σ ¼
ffiffiffiffiffiffiffiffiffiffi
1=12

p
¼ 0:289

cov ¼ 0:289=0:500 ¼ 0:578

The probability of x less or equal to 0.45, say, is:

P x � 0:45ð Þ ¼ F 0:45ð Þ ¼ 0:45:

Example 1.3 The yield strength on a copper tube was measured at 70.23 from a
device with accuracy of � 0.40, evenly distributed. Hence, the true yield strength,
denoted as x, follows a continuous uniform distribution with parameters:

a ¼ 70:23� 0:40 ¼ 69:83

b ¼ 70:23þ 0:40 ¼ 70:63

The probability density becomes:

f xð Þ ¼ 1=0:80 69:83 � x � 70:63

and the cumulative distribution is:

F xð Þ ¼ x� 69:83ð Þ=0:80 69:83 � x � 70:63

6 1 Continuous Distributions



The mean, variance and standard deviation are the following:

μ ¼ 70:23

σ2 ¼ 0:80ð Þ2=12 ¼ 0:053

σ ¼
ffiffiffiffiffiffiffiffiffi
0:53

p
¼ 0:231

The probability that the true yield strength is below 70, say, becomes:

F 70:00ð Þ ¼ 70:00� 69:83ð Þ=0:80 ¼ 0:212

Note, the cov is 0.231/70.23 ¼ 0.003
But when x is converted to x` ¼ x – a, the mean, standard deviation, and

coefficient of variation become:

μ�¼ 70:23� 69:83ð Þ ¼ 0:40
σ�¼ 0:231

cov�¼ 0:231=0:40 ¼ 0:577

Example 1.4 An experiment yields the following ten sample data entries: (12.7,
11.4, 15.3, 20.5, 13.6, 17.4, 15.6, 14.9, 19.7, 18.3). The analyst assumes the data
comes from a continuous uniform distribution and seeks to estimate the parameters,
(a, b). To accomplish, the following statistics are measured:

x 1ð Þ ¼ min ¼ 11:4

x nð Þ ¼ max ¼ 20:5

�x ¼ 15:93

s ¼ 3:00

The two methods of estimating the parameters (a,b) are applied. The MLE
estimates are the following:

ba ¼ min ¼ 11:4bb ¼ max ¼ 20:5

The method-of-moment estimates become:

ba ¼ 15:93�
ffiffiffiffiffi
12

p
� 3:00=2 ¼ 10:73bb ¼ 15:93þ

ffiffiffiffiffi
12

p
� 3:00=2 ¼ 21:13

Note, when x` ¼ (x – a):

�x�¼ 15:93� 11:4ð Þ ¼ 4:53

s�¼ s ¼ 3:00

and
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cov ¼ s=�x�¼ 3:00=4:53 ¼ 0:662

which is reasonably close to the continuous uniform value of 0.577.

1.8 Exponential

The exponential distribution, Ex(θ), is used in many areas of science and is the
primary distribution that applies in queuing theory to represent the time between
arrivals and the time to service a unit. The variable, x, has its peak at x ¼ 0 and a
density that continually decreases as x increases. See Fig. 1.2 where θ ¼ 1. The
density has one parameter, θ, and is defined as below:

f xð Þ ¼ θe�θx for x � 0

The cumulative probability distribution becomes,

F xð Þ ¼ 1� e�θx for x � 0

The mean, variance, and standard deviation of x are listed below:

μ ¼ 1=θ
σ2 ¼ 1=θ2
σ ¼ 1=θ

Since μ ¼ σ, the coefficient-of-variation becomes:

cov ¼ 1:00

The median, x0.50, occurs when F(x) ¼ 0.50; and thereby,

F x0:50ð Þ ¼ 0:50 ¼ 1� e�θx0:50

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8

q = 1
Fig. 1.2 The Exponential
Distribution when μ ¼ 1.0
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Solving for x0.50, yields:

x0:50 ¼ � ln 1� 0:50ð Þ=θ ¼ 0:693=θ ¼ 0:693μ

where ln ¼ the natural logarithm.

Parameter Estimate

When a sample of size n yields sample data (x1, . . ., xn) and an average, �x, the
estimate of θ becomes:

bθ ¼ 1=bx
This estimate is derived from the MLE and also from the method-of-moments.

Example 1.5 Assume a variable, x, is exponentially distributed with mean equal to
ten. Some measures of x are below:

μ ¼ 1=θ ¼ 10

θ ¼ 0:10

f xð Þ ¼ 0:10e�0:1x x > 0

F xð Þ ¼ 1� e�0:1x x > 0

σ2 ¼ 100

σ ¼ 10

cov ¼ σ=μ ¼ 10=10 ¼ 1:00

Example 1.6 The α-percent-point of x, denoted as xα, is computed as below.

Since, α ¼ F xð Þ ¼ 1� e�θx

xα ¼ � 1
θ

� �
ln 1� αð Þ

where ln ¼ natural logarithm, and,

P x � xαð Þ ¼ α

When the exponential variable, x`, has θ ¼ 1.0, giving μ ¼ 1.0, the distribution is
sometimes called the standard exponential distribution; and the α-percent-point of x`
becomes:

x�α ¼ � ln 1� αð Þ
When θ 6¼ 1.0, the α-percent-point of x, xα, is related to its counterpart of x`, x`α,

as follows:
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xα ¼ � 1
θ

� �
ln 1� αð Þ ¼ 1=θð Þx�α ¼ μx�α

With θ ¼ 1.0 and α ¼ 0.90, say,

x‘0:90 ¼ � ln 1� 0:90ð Þ ¼ 2:303:

If θ ¼ 2:0 : μ ¼ 1=θ ¼ 0:5 and x0:90 ¼ 0:5� 2:303 ¼ 1:152

If θ ¼ 0:4 : μ ¼ 2:5 and x0:90 ¼ 2:5� 2:303 ¼ 5:757

so forth,

Example 1.7 Suppose an analyst has n ¼ 10 sample observations: 6.0, 11.4, 21.6,
0.6, 3.0, 5.0, 9.0, 14.6, 2.6, 4.2, and suspects the data is from an exponential
distribution. The sample average and standard deviation are computed and as
follows:

�x ¼ 7:80

s ¼ 6:48

The estimate of the exponential parameter is bθ ¼ 1/�x¼ 1/7.80¼ 0.128. Note also,
the coefficient-of variation becomes:

cov ¼ 6:48=7:80 ¼ 0:83

which is similar to cov ¼ 1.00 of the exponential distribution.

1.9 Erlang

The Erlang distribution, Erl(k,θ), is named after its founder, Agner Erlang, a Danish
mathematician from the early 1900s, who was studying how many circuits were
necessary to provide acceptable telephone service while working for the Copenha-
gen Telephone Company. The distribution has many shapes ranging from the
exponential to normal, and is often used in studying queuing systems. The Erlang
has two parameters, θ and k. The parameter θ is the scale parameter and k, is an
integer that identifies the number of independent exponential variables that are
summed to form the Erlang variable.

The Erlang variable x is related to the exponential variable y as below:

x ¼ y1 þ . . .þ ykð Þ
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The probability density of x is,

f xð Þ ¼ xk�1θke�θx= k � 1ð Þ! x > 0

and the cumulative distribution function is,

F xð Þ ¼ 1� e�θx
Xk�1

j¼0

θxð Þj=j! x > 0

The expected value of x is related to the expected value of y as below:

E xð Þ ¼ μ ¼ kE yð Þ ¼ k=θ

In the same way, the variance of x is formed from adding k variances of y, V(y),
as below:

V xð Þ ¼ σ2 ¼ kV yð Þ ¼ k=θ2

The standard deviation becomes:

σ ¼
ffiffiffi
k

p
=θ

When k ¼ 1, the Erlang distribution is the same as an exponential distribution
where the peak is at x ¼ 0, from where the density skews downward to the right.
Note via the central-limit theorem, as k increases, the shape of the Erlang density
resembles a normal density.

Coefficient-of-Variation

The coefficient of variation of the Erlang is computed as below:

cov¼ σ=μ
¼ ffiffiffi

k
p

=θ=k=θ
¼ 1=

ffiffiffi
k

p

The following is a list of the cov as k ranges from 1 to 10. Note how the
distribution begins as an exponential (cov ¼ 1.00), and trends as a normal variable
(cov � 0.33).

k cov
1 1.000
2 0.707
3 0.577
4 0.500
5 0.447
6 0.408
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7 0.378
8 0.354
9 0.333
10 0.316

Parameter Estimates

When sample data (x1, . . ., xn) is available, with the sample average, �x, and variance,
s2, parameter estimates, ( bk, bθ ) can be obtained in a two step manner. Using the
relations for μ and σ2 listed earlier, the relations below now apply:

�x ¼ bk=bθ
s2 ¼ bk=bθ2

1. Using the above,

bθ ¼ �x=s2bk ¼ �xbθ
2. Set bk equal to its closest integer, and re-compute bθ as:

bθ ¼ bk=�x
Example 1.8 Suppose n samples (x1, . . ., xn) yields: �x¼ 20 and s2 ¼ 64. Using the
two steps given above,

1ð Þ bθ ¼ 20
64

¼ 0:3125

bk ¼ 20� 0:3125 ¼ 6:25

2ð Þ bk ¼ 6bθ ¼ 6=20 ¼ 0:30

Example 1.9 Suppose the same data of Example 1.8 where n samples (x1, . . ., xn)
yield �x¼ 20 and s ¼ 8, and cov ¼ 8/20 ¼ 0.40. Using the cov listings given earlier,
the closest k to cov¼ 0.40 isbk¼ 6; and thereby, the estimate of θ becomesbθ¼ bk/�x¼
6/20 ¼ 0.30.

Example 1.10 Consider an Erlang variable with parameters, k¼ 3 and θ¼ 0.5. The
mean, variance, standard deviation and coefficient-of-variation are below:

12 1 Continuous Distributions



μ ¼ 3=0:5 ¼ 6:0

σ2 ¼ 3=0:52 ¼ 12:00

σ ¼
ffiffiffiffiffi
12

p
¼ 3:46

cov ¼ 3:46=6:0 ¼ 0:577

The cumulative distribution function is obtained as follows:

F xð Þ ¼ 1� e�0:5x 0:5xð Þ0=0!þ 0:5xð Þ1=1!þ 0:5xð Þ2=2!
h i

The probability of x ¼ 8.0 or less, say, is computed as below:

F 8:0ð Þ ¼ 1� e�4 1þ 4þ 8½ � ¼ 0:761

Cumulative Probability

A standard Erlang distribution with parameter k is introduced by setting the param-
eter θ to one, θ ¼ 1.0. By doing so, the cumulative distribution of the variable x is
computed as follows:

F xð Þ ¼ 1� e�x
Xk�1

j¼0

xj=j! x > 0

where F(x)¼ probability of x or less. Calculated values of F(x) are listed in Table 1.1
below for selective entries of x when the Erlang parameter varies from k ¼ 1 to
k ¼ 6. Note at k ¼ 1, the Erlang is the same as the exponential distribution.

For clarity, let F(x`)θ represent the cumulative distribution for variable x` and for
any θ; and let, F(x)1 be the same for variable x when θ ¼ 1. Hence, x`θ ¼ x, and
x` ¼ x/θ. For example, when k ¼ 1 and θ ¼ 1, Table 1.1 shows F(2)1 ¼ 0.86. So
when k¼ 1, θ ¼ 2, x`¼ x/ θ ¼ 2/2¼ 1.0 and F(1)2 ¼ F(2)1 ¼ 0.86. Also note when
k ¼ 1 and θ ¼ 0.5, x` ¼ x/θ ¼ 2/0.5 ¼ 4 and thereby F(4)0.5 ¼ F(2)1 ¼ 0.86, So
forth.

1.10 Gamma

The gamma distribution, Gam(k,θ), is the same as the Erlang, except the parameter k
is a positive integer for the Erlang, and k is any value larger than zero for the gamma.
The gamma variable, x, is zero or larger. The density of the gamma is,
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f xð Þ ¼ xk�1θkexp �θxð Þ=Γ kð Þ x > 0

where Γ(k) is called the gamma function, (not a density), defined as

Γ kð Þ ¼
Z 1

0
tk�1e�tdt for k > 0

When k is a positive integer, Γ(k) ¼ (k-1)! Note: Γ(1) ¼ 1, Γ(2) ¼ 1, Γ(3) ¼ 2,
Γ(4) ¼ 6, Γ(5) ¼ 24, and so forth. Also note, Γ(0.5) ¼ ffiffiffi

π
p ¼ 1.77. The non-integer

values, in-between, are estimated using quantitative methods.

Table 1.1 Values of the
cumulative probability, F(x),
for selective values of x from
the Erlang Distribution for
k ¼ 1 to 6 when θ ¼ 1.0

k

x 1 2 3 4 5 6

0.0 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.39 0.09 0.01 0.00 0.00 0.00

1.0 0.63 0.26 0.08 0.02 0.00 0.00

1.5 0.78 0.44 0.19 0.07 0.02 0.00

2.0 0.86 0.59 0.32 0.14 0.05 0.02

2.5 0.92 0.71 0.46 0.24 0.11 0.04

3.0 0.95 0.80 0.58 0.35 0.18 0.08

3.5 0.97 0.86 0.68 0.46 0.27 0.14

4.0 0.98 0.91 0.76 0.57 0.37 0.21

4.5 0.99 0.94 0.83 0.66 0.47 0.30

5.0 0.99 0.96 0.88 0.73 0.56 0.38

5.5 1.00 0.97 0.91 0.80 0.64 0.47

6.0 1.00 0.98 0.94 0.85 0.71 0.55

6.5 1.00 0.99 0.96 0.89 0.78 0.63

7.0 1.00 0.99 0.97 0.92 0.83 0.70

7.5 1.00 1.00 0.98 0.94 0.87 0.76

8.0 1.00 1.00 0.99 0.96 0.90 0.81

8.5 1.00 1.00 0.99 0.97 0.93 0.85

9.0 1.00 1.00 0.99 0.98 0.95 0.88

9.5 1.00 1.00 1.00 0.99 0.96 0.91

10.0 1.00 1.00 1.00 0.99 0.97 0.93

10.5 1.00 1.00 1.00 0.99 0.98 0.95

11.0 1.00 1.00 1.00 1.00 0.98 0.96

11.5 1.00 1.00 1.00 1.00 0.99 0.97

12.0 1.00 1.00 1.00 1.00 0.99 0.98

12.5 1.00 1.00 1.00 1.00 0.99 0.99

13.0 1.00 1.00 1.00 1.00 1.00 0.99

13.5 1.00 1.00 1.00 1.00 1.00 0.99

14.0 1.00 1.00 1.00 1.00 1.00 0.99

14.5 1.00 1.00 1.00 1.00 1.00 1.00

15.0 1.00 1.00 1.00 1.00 1.00 1.00
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F(x) is computed as an Erlang when k is a positive integer, but when k is not an
integer, quantitative methods are needed.

The mean, variance, and standard deviation of x are the following:

μ ¼ k=θ

σ2 ¼ k=θ2

σ ¼
ffiffiffi
k

p
=θ

Hence,

cov ¼ σ=μ ¼ 1=
ffiffiffi
k

p

When k � 1: cov � 1, and the mode is zero.
When k > 1: cov < 1, and the mode is larger than zero.
Since the shape of the gamma looks anywhere from an exponential to a normal,

the cov ranges from above one to below 0.33.

Parameter Estimates

The parameters, k, θ, can be estimated from sample data via the method-of-moments
as shown below:

Since, μ ¼ k/θ and σ2 ¼ k/θ2; substituting the sample counterparts, �x, s2, yields: �x
¼ bk /bθ and s2 ¼ bk/bθ2 . Thereby, the estimates of θ and k are the following:

bθ ¼ �x=s2

bk ¼ �xbθ
Example 1.11 An experiment yields the following sample data: (x1, . . ., xn) with
mean �x ¼20.4 and variance s2¼ 95.6. Assuming the gamma distribution applies, the
estimates of the gamma parameters become:

bθ ¼ �x=s2 ¼ 20:4=95:5 ¼ 0:214bk ¼ �xbθ ¼ 20:4� 0:214 ¼ 4:37

Cumulative Probability Estimates

When the gamma parameter θ is set to one, θ ¼ 1, the cumulative probability of the
gamma variable, x, can be estimated from use of Table 1.1 results that are based on
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the Erlang distribution. Recall the parameter k for the Erlang includes only the
positive integers, k ¼ 1, 2, . . . .; while the same for the gamma is any value of k
larger than zero. The estimates are based on interpolation and include only the values
of k > 1. The method is described below in Example 1.12.

Example 1.12 Suppose x is a gamma variable with θ ¼ 1, k ¼ 1.7 and the analyst
wants an estimate of F(2)k¼ 1.7 ¼ P(x < 2.0). Note the particular values from
Table 1.1 listed below:

k F(2)
1 0.86
2 0.59

Hence,

0:59 < F 2ð Þk¼1:7 < 0:86

and with interpolation:

F 2ð Þk¼1:7 � 0:67:

Assume further, the analyst wants an estimate of F(1.8)k¼ 1.7 ¼ P(x < 1.8) when
θ ¼ 1 and k ¼ 1.7. The pertinent entries from Table 1.1 are listed below:

k F(1.5) F(2.0)
1 0.78 0.86
2 0.44 0.59

Hence,

0:44 < F 1:8ð Þk¼1:7 < 0:86

and with interpolation,

F 1:8ð Þk¼1:7 � 0:62:

1.11 Beta

The beta distribution, Bet(k1,k2,a,b), with variable x, has four parameters (k1,k2,a,b)
where k1 > 0, k2 > 0, and (a < x < b). The distribution has many shapes depending on
the values of k1 and k2 as described below:

Parameters Shape
k1 < 1 and k2 � 1 mode at x ¼ a (right skewed)
k1 � 1 and k2 < 1 mode at x ¼ b (left skewed)
k1 ¼ 1 and k2 > 1 ramp down from x ¼ a to x ¼ b
k1 > 1 and k2 ¼ 1 ramp down from x ¼ b to x ¼ a
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k1 < 1 and k2 < 1 bathtub shape
k1 > 1 and k2 > 1 and k1 > k2 mode closer to x ¼ b and left skewed
k1 > 1 and k2 > 1 and k2 > k1 mode closer to x ¼ a and right skewed
k1 > 1 and k2 > 1 & k1 ¼ k2 mode in middle, symmetrical, normal like
k1 ¼ k2 ¼ 1 uniform

Standard Beta

A related distribution is the standard beta, Bet(k1,k2,0,1),with variable x`, having the
same parameters (k1,k2) as the beta, and is constrained to the range (0,1). The
relation between x and x` is below:

x�¼ x� að Þ= b� að Þ
and,

x ¼ aþ x� b� að Þ
The probability density for x` is,

f x�ð Þ ¼ x�ð Þk1�1 1� x�ð Þk2�1=B k1; k2ð Þ 0 < x�< 1ð Þ
where

B c; dð Þ ¼ beta function ¼
Z1

0

tc�1 1� tð Þd�1dt

There is no closed-form solution for the cumulative distribution function, F(x`).
The expected value and variance of x` are below:

E x�ð Þ ¼ μ ¼ k1
k1 þ k2

V x�ð Þ ¼ σ2 ¼ ðk1k2Þ
ðk1 þ k2Þ2ðk1 þ k2 þ 1Þ

When k1 > 0 and k2 > 0, the mode is the following:

eμ ¼ k1 � 1
k1 þ k2 � 2ð Þ
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Mean and Variance

The expected value and variance of the beta x becomes:

EðxÞ ¼ aþ E x�ð Þðb� aÞ
VðxÞ ¼ ðb� aÞ2V x�ð Þ

Parameter Estimates

When an analyst has sample data, (x1, . . ., xn), and obtains measures of the sample
mean, �x�, and mode, ~x�, estimates of the parameters k1 and k2 can be derived. This is
by recalling the equations given above on the mean, μ, and the mode, eμ, of the
standard beta, and applying some algebra to arrive at the following estimates:

bk1 ¼ �x�
�
2~x�� 1

�
=
�
~x�� �x�

�
bk2 ¼ �

1� �x�
�bk1=�x�

Example 1.13 Assume an analyst has sample data from a beta distribution with
measures of the sample mean, �x¼ 22, mode, ~x ¼ 18, a` ¼ 10 and b` ¼ 50. The data
are converted to standard beta measures as below:

�x�¼ 22� 10ð Þ= 50� 10ð Þ ¼ 0:30

~x�¼ 18� 10ð Þ= 50� 10ð Þ ¼ 0:20

So now, the estimates of the parameters, k1, k2, are measured:

bk1 ¼ 0:30 2� 0:2� 1:0ð Þ= 0:20� 0:30ð Þ ¼ 1:80bk2 ¼ 1� 0:30ð Þ � 1:8=0:30 ¼ 4:20

Note, since bk1 > 1, bk2 > 1 and bk2 > bk1, the beta variable, x, lies within a ¼ 10 and
b ¼ 50 and is skewed to the right.

1.12 Weibull

The Weibull distribution, We(k1,k2), is named after Wallodi Weibull, a Swedish
mathematician who described its use during 1951 with applications in reliability and
life testing. The distribution has two parameters, k1 > 0 and k2 > 0, and the random
variable, denoted as x, ranges from zero and above. The probability density is:
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f xð Þ ¼ k1k2
-k1 xk1-1exp � x=k2ð Þk1

h i
x > 0

and the cumulative distribution function is:

F xð Þ ¼ 1� exp � x=k2ð Þk1
h i

x > 0

The mean and variance of x are listed below,

μ ¼ k2
k1

Γ
1
k1

� �

σ2 ¼ k2
2

� �
k1

2Γ
2
k1

� �
� 1=k1Γ

1
k1

� �2
" #

Recall Γ denotes the gamma function described earlier. When the parameter
k1 � 1, the shape of the density is exponential-like with a peak at x ¼ 0. When
k1 > 1, the shape has a mode greater than zero and skews to the right, and at k1 � 3,
the density shape starts looking like a normal distribution.

Since the shape of the Weibull goes from an exponential-like to a normal-like, the
cov ranges from above one to below 0.33.

The mode is computed as below:

eμ ¼ k2 k1 � 1ð Þ=k1½ �1=k1

Note when k1 ¼ 1, the mode is zero.

Weibull Plot

The analyst can plot sample data on special designed graph paper to determine if the
data fits a Weibull distribution, and if so, the plot gives estimates on the parameters:
k1 and k2.

Parameter Estimates

Law and Kelton [1] provide the following way to estimate the Weibull parameters
(k1, k2) when the following data is available:

~x ¼ an estimate of the most likely value modeð Þ of x
xα ¼ an estimate of the α� percent � point value of x
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The analysis here is when k1 �1 and the mode of x is greater than zero. When x
represents time-to-fail, k1 ¼ 1 indicates the fail rate is constant, and k1 > 1 is when
the fail rate increases over time. For this situation, the mode is measured as below:

~x ¼ k2 k1 � 1ð Þ=k1½ �1=k1

Using algebra, k2 becomes

k2 ¼ ~x= k1 � 1ð Þ=k1½ �1=k1

The cumulative distribution for the α-percent-point of x is xα and is obtained by
the following,

F xαð Þ ¼ 1� exp � xα=k2ð Þk1
h i

¼ α

Hence,

ln 1� αð Þ ¼ � xα=k2ð Þk1
h i

Applying algebra and solving for k2,

k2 ¼ xαð Þ= ln 1= 1� αð Þ½ �1=k1

So now,

~x= k1 � 1ð Þ=k1½ �1=k1 ¼ xαð Þ= ln 1= 1� αð Þ½ �1=k1

and thereby,

~x=xα ¼ k1 � 1ð Þ=k1½ �1=k1= ln 1=1� αð Þ1=k1

Solving for k1 The only unknown in the above equation is k1. At this point, an
iterative search is made to find the value of k1 where the right side of the above
equation is equal to the left side. The result is bk1.
Solving for k2 Having found bk1, the other parameter, k2, is now obtained from

bk2 ¼ ~x=
�bk1 � 1

�
=bk1h i1=bk1

Example 1.14 Suppose sample data provides estimates of ~x¼ 100 and x0.90 ¼ 300.
Note α ¼ 0.90. To find the estimate of k1, the following computations are needed to
begin the iterative search.

~x=xα ¼ 100=300 ¼ 0:33
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k1 � 1ð Þ=k1½ �1=k1= ln 1=1� að Þ1=k1 ¼ k1 � 1ð Þ=k1½ �1=k1= ln 1=1� 0:90ð Þ1=k1

¼ k1 � 1ð Þ=k1½ �1=k1= ln 10ð Þ1=k1

Note the left-hand-side (LHS) of the equation below. An iterative search of k1 is
now followed until the LHS is near to 0.33, i.e.,

LHS ¼ k1 � 1ð Þ=k1½ �1=k1= ln 10ð Þ1=k1
¼ 0:33

The search for k1 begins with k1 ¼ 2.00, and continues until k1 ¼ 1.62.

At k1 ¼ 2:00, LHS ¼ 0:465

At k1 ¼ 1:70, LHS ¼ 0:363

At k1 ¼ 1:60, LHS ¼ 0:321

At k1 ¼ 1:65, LHS ¼ 0:343

At k1 ¼ 1:62, LHS ¼ 0:330

Hence, bk1 ¼ 1.62.
So now, the estimate of k2 is the following:

bk2 ¼ �
~x
�
=
�bk1 � 1

�
=bk1h i1=bk1

¼ 100ð Þ= 1:62� 1:00ð Þ=1:62½ �1=1:62
¼ 180:9

Example 1.15 Suppose an analyst has the following data for an item: k1 ¼ 1.62,
k2 ¼ 180.9, and the location parameter is γ ¼ 1000 h. He/she wants to find the
probability of an item failing prior to w ¼ 1200 h, where w ¼ γ þ x. The probability
is obtained as below:

F w ¼ 1200ð Þ ¼ F x ¼ 200ð Þ ¼ 1� exp � 200=180:9ð Þ1:62
h i

¼ 0:692

Note, the probability of a failure, F(w), listed below for selective values of
w ¼ γ þ x ranging from 1010 to 1600 h when k1 ¼ 1.62 and k2 ¼ 180.9.

w 1010 1025 1050 1100 1200 1300 1400 1500 1600
F(w) 0.01 0.04 0.12 0.31 0.69 0.90 0.97 0.99 1.00

1.13 Normal

The normal distribution, N(μ,σ2), is symmetrical with a bell shaped density. This
distribution originates from Johann Gauss, a German mathematician of the early
1800s. Its parameters are: the mean μ, and the standard deviation σ. This is perhaps
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the most widely used probability distribution in business and scientific applications.
A full description on the standard normal is given in Chap. 3 (Standard Normal).

Standard Normal Distribution

A companion distribution, the standard normal distribution, N(0,1), has a mean of
zero, a standard deviation of one, and has the same shape as the normal distribution.
The notations for the normal and standard normal variables are the following:

x ¼ normal variable
z ¼ standard normal variable

and the conversion from one to the other are shown below:

z ¼ x� μð Þ=σ
x ¼ μþ zσ

When k represents a particular value of z, the probability density is:

f kð Þ ¼ 1=
ffiffiffiffiffi
2π

p	 

exp �k2=2

� �
The cumulative distribution function yielding the probability (z less than k)

becomes:

F kð Þ ¼
Z k

�1
f zð Þdz

Although there is no closed-form solution for the cumulative distribution, over
the years, a series of approximate methods have been developed. In Chap. 3 (Stan-
dard Normal), one such approximation method is described, and is used throughout
this book. Fig. 1.3 depicts the shape of the standard normal distribution.

Coefficient of Variation

The range of the normal variable x is almost entirely from L to H where:

-4.0 -2.0 0.0 2.0 4.0

Fig. 1.3 The Standard
Normal Distribution
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L ¼ μ� 3σ
H ¼ μþ 3σ

When L ¼ 0,

μ ¼ 3σ

and

cov ¼ σ=μ ¼ 0:33

Parameter Estimates

When n sample data, (x1, . . . ., xn), is available and the sample average, �x, and
variance, s2, are computed, the corresponding estimates of the normal parameters are
the following:

bμ ¼ �xbσ2 ¼ s2

Example 1.16 Suppose an experiment yields ten sample data entries as: [2.3, 7.4,
8.1, 9.7, 10.1, 11.2, 12.5, 15.3, 16.1, 19.0]. The average is �x¼ 11.17 and the standard
deviation is s ¼ 4.83. Hence,

bμ ¼ 11:17bσ2 ¼ 4:832

1.14 Lognormal

The lognormal distribution, LN(μy,σy2), with variable x > 0, has a density that peaks
early and skews far to the right. A full description of the distribution is given in
Chap. 9 (Lognormal). The lognormal variable is related to a counterpart normal
variable y, in the following way:

y ¼ ln xð Þ
x ¼ ey

The variable y is normally distributed with mean and variance, μy and σy2,
respectively, and x is lognormal with mean and variance, μx and σx2. The notation
for x and y are as below:
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xeLN μy; σy
2

	 

yeN μy; σy

2
	 


The parameters that define the distribution of x, are the mean and variance of
y. The parameters between x and y are related in the following way.

μx ¼ exp μy þ σy2=2
h i

σx2 ¼ exp 2μy þ σy2
h i

exp σy2
� �� 1

� �
μy ¼ ln μx

2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2x þ σ2x

qh i
σy2 ¼ ln 1þ σx2=μx

2
� �

The cov of lognormal variable x is much larger than its counterpart normal
variable y.

Parameter Estimates

Consider a lognormal variable x with sample data, (x1, . . ., xn). The data are
transformed to their normal counterparts by y ¼ ln(x), and thereby, the data entries
become: (y1, . . ., yn). So now, the average and variance of the y entries are computed
and labeled as: �y, and sy

2. The estimates of the parameters for the lognormal
distribution become:

bμy ¼ �y

bσy
2 ¼ sy

2

Example 1.17 Assume the analyst has collected ten sample entries as: [4.3, 5.8, 3.2,
2.4, 5.8, 6.1, 7.6, 9.2, 10.3, 33.9]. The sample mean and standard deviation of x are
�x¼ 8.86, s¼ 9.13, respectively, and thereby the cov¼ 1.03. Upon taking the natural
logarithm of each, y ¼ ln(x), the sample now has ten variables on
y. The corresponding values of y are: [1.459, 1.758, 1.163, 0.875, 1.758, 1.808,
2.028, 2.219, 2.332, 3.523]. The mean and variance of the n ¼ 10 observations of
y are �y ¼ 1.892 and sy

2 ¼ 0.1442. Hence, the lognormal variable is denoted as:

xeLN 1:892; 0:1442
� �
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1.15 Summary

Eight of the common continuous distributions are described and these are: contin-
uous uniform, exponential, Erlang, gamma, beta, Weibull, normal and lognormal.
For each, the probability density, parameters, and the admissible range are defined.
The cumulative probability function is also listed when available; but on some
distributions, there is no closed-form solution and quantitative methods are needed
to compute the cumulative probability. When sample data is obtainable, the compu-
tations to estimate the parameter values from the data are shown. Examples are
presented to demonstrate the use of the distributions and the way to estimate their
parameters.

References

1. Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis. Boston: McGraw Hill.
2. Hasting, N. A. J., & Peacock, J. B. (1974). Statistical distributions. New York: Wiley & Sons.
3. Hines, W.W., Montgomery, L. D. C., Goldsman, D. M., & Burror, C. M. (2003). Probability and

statistics for engineers. New York: Wiley & Sons.

References 25



Chapter 2
Discrete Distributions

2.1 Introduction

When the outcome of an independent experiment trial includes a specified set of
values, usually integers, the outcome is a discrete variable. For example, the number
of dots in a roll of two dice can take on only the integer numbers 2 to 12. When
probabilities are assigned to each outcome and the sum over all possible outcomes is
one, the variable, x, becomes a discrete random variable. The chapter describes the
following six common discrete probability distributions: discrete uniform, binomial,
geometric, Pascal, Poisson, and hyper geometric. For each of these, the probability
function is listed, along with parameters of the function. Included, also are the mean,
variance and applications on each distribution. When sample data is available, the
analyst applies measures from the data to estimate the parameter values. The discrete
uniform distribution applies when all the discrete integers between and including
two limits (a,b) are possible outcomes and each can occur with an equal probability.
The binomial occurs when n trials with a constant probability per trial yields zero to
n successes. The geometric happens when n trials are needed to obtain the first
success and the probability of a success is constant per trial. The Pascal is when n
trials are needed to obtain k successes and the probability of a success is constant per
trial. The Poisson occurs when the average rate of events occurring in specified
duration is known. The hyper geometric happens with n trials are taken without
replacement from a population of size N that has D defectives.

Law and Kelton [1]; Hasting and Peacock [2]; and Hines et al. [3] present
thorough descriptions on the properties of the common discrete probability
distributions.
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2.2 Discrete Random Variables

A discrete random variable includes a set of exact values where each has a specific
probability of occurrence by chance, and the sum of all the probabilities is equal to
one. The event could be the number of dots on a roll of die (1, 2, 3, 4, 5, 6), or the
number of heads in four tosses of a coin (0, 1, 2, 3, 4,), so forth. The more common
discrete random variables are listed below with their typical designations along with
parameters.

Discrete uniform x ~ DU(a,b)
Binomial x ~ Bin(n,p)
Geometric x ~ Geo(p)
Pascal x ~ Pa(k,p)
Poisson x ~ Po(θ)
Hyper Geometric x ~ HG(n, N, D)

Lexis Ratio

A statistic that helps to determine the discrete distribution that applies to a set of
sample data is the lexis ratio, τ ¼ σ2

μ : The lexis ratio is computed from sample data

by bτ ¼ bσ2

bμ , where bμ ¼ �x ¼ sample average, and bσ2 ¼ s2 ¼ sample variance.

2.3 Discrete Uniform

When a variable x takes on all integers from a to b with equal probabilities, the
variable follows the discrete uniform distribution, DU(a,b). The probability of x is:

P xð Þ ¼ 1= b� aþ 1ð Þ x ¼ a, aþ 1, . . . , b

and the cumulative distribution function is:

F xð Þ ¼ x� aþ 1ð Þ= b� aþ 1ð Þ x ¼ a, aþ 1, . . . , b

The expected value and variance of x are listed below:

E xð Þ ¼ μ ¼ aþ bð Þ=2

V xð Þ ¼ σ2 ¼ b� aþ 1ð Þ2 � 1
h i

=12
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Parameter Estimates

When sample data is collected, (x1, . . ., xn), the common statistics measured are as
follows:

�x ¼ sample average
s2 ¼ sample variance
x(1) ¼ minimum
x(n) ¼ maximum

The above stats are used to estimate the parameters as shown below. The MLE
method yields:

ba ¼ x 1ð Þ
bb ¼ x nð Þ

Another way to estimate the parameters is by the method-of-moments as shown
below:

ba ¼ floor integer of
�
�xþ 0:5� 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12s2 þ 1

p �
bb ¼ ceiling integer of

�
2�x� ba�

Example 2.1 Suppose an experiment yields ten discrete sample data entries [7, 5, 4,
8, 5, 4, 12, 9, 2, 8], and estimates of the min and max parameters from a discrete
uniform distribution are needed. The following statistics are computed from the data:

�x ¼ 6:4

s2 ¼ 8:711

x 1ð Þ ¼ 2

x nð Þ ¼ 12

Using the MLE method, the parameter estimates are:

ba ¼ 2

bb ¼ 12

The method-of-moment estimate of the parameters are as follows:

ba ¼ floor 6:4þ 0:5� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 8:711þ 1

p� � ¼ floor 1:764ð Þ ¼ 1

bb ¼ ceiling 2� 6:4� 1:764ð Þ ¼ ceiling 11:036ð Þ ¼ 12
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2.4 Binomial

When a variable, x, is the number of successes from n independent trials, with p the
probability of success per trial, x follows the binomial distribution, Bin(n,p). The
variable x can take on the integer values of zero to n.

The probability of x in n trials is listed below:

P xð Þ ¼ n
x

� �
px 1� pð Þn�x x ¼ 0, . . . :, n

The parameters are:

n ¼ number of trials
p ¼ probability of a success per trial

The cumulative distribution function of x, F(x), is the probability of the variable
achieving the value of x or smaller. When x ¼ xo,

F xoð Þ ¼ P x � xoð Þ:
The mean, variance, and standard deviation of x are below:

μ ¼ np

σ2 ¼ np 1� pð Þ
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þ

p

Lexis Ratio

The lexis ratio, τ, is always less than one as shown below:

τ ¼ σ2=μ ¼ np 1� pð Þ=np ¼ 1� pð Þ < 1:

Parameter Estimates

When a sample of n trials yields x successes, the MLE of p is,

bp ¼ x=n
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The associated standard deviation becomes:

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp�1� bp�=nq

In the event the n trial experiment is run m times, and the results are (x1, . . ., xm),
the estimate of p becomes,

bp ¼
X

xi= nmð Þ

When the i-th experiment has ni trials and xi successes, the estimate of p becomes:

bp ¼
X

xi=
X

ni

Normal Approximation

When n is large, and,

p � 0:5 with np > 5,

or

p > 0:5 with n 1� pð Þ > 5,

x can be approximated with the normal distribution, as follows:

x � N np; np 1� pð Þ½ �
Using the normal approximation, where μ ¼ np and σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1� pð Þp
, the

probability of the number of successes equal or below xo becomes:

P x � xoð Þ ¼ P x � xo þ :5ð Þ
¼ F xo þ :5� npð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1� pð Þp� �
where F(z) is the cumulative probability from the standard normal distribution. The
probability that the number of successes is equal to xo is obtained as below:

P x ¼ xoð Þ ¼ P xo � :5 � x � xo þ :5ð Þ
¼ F xo þ :5� npð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np 1� pð Þp� �� F xo � :5� npð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þp� �
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Poisson Approximation

When n is large and p is small, and the above normal approximation does not apply,
x can be approximated by the Poisson distribution with parameter θ. The probability
of any x becomes:

P xð Þ ¼ e�θθx=x! x ¼ 0, 1, . . . ::

The estimate of θ is below:

θ ¼ np

Example 2.2 Suppose x is binomial with n ¼ 10 and p ¼ 0.30. The mean and
standard deviation of the number of successes are below:

μ¼ np ¼ 10� 0:3

¼ 3:0

σ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þp

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 :3ð Þ :7ð Þp

¼ 1:45

The probability distribution on x is:

P xð Þ ¼ 10
x

� �
0:3x0:710�x x ¼ 0, 1, . . . :, 10

Note,

P 0ð Þ ¼ 10
0

� �
0:300:710 ¼ 0:028

P 1ð Þ ¼ 10
1

� �
0:310:79 ¼ 0:121

so on.

Example 2.3 An experiment is run n ¼ 5 times and the number of successes is
x ¼ 2. The estimate on the probability of a success becomes:

bp ¼ x=n ¼ 2=5 ¼ 0:40

The standard deviation on the estimate of p, denoted as sp, is below:

sp ¼ bp �
1� bp�=n� �0:5

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:4 :6ð Þ=5p

¼ 0:22
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Example 2.4 An experiment of n¼ 10 trials is run m¼ 4 times with success results
as: (3, 4, 2, 3). The estimate on the probability of success per trial is:

bp ¼ P
xi= nmð Þ

¼ 12= 4� 10ð Þ ¼ 0:30

The associate standard deviation becomes:

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:3 :7ð Þ=40p

¼ 0:072

Example 2.5 An experiment is run n ¼ 80 times with a probability of success of
p ¼ 0.20. The analyst wants to find the probability of x less or equal to 20. Since, p
¼0.2� 0.5 and np ¼ 16 > 5, the normal distribution can be used to approximate the
probability. The mean and standard deviation of x are the following:

μ ¼ 80� :2 ¼ 16

σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2 :8ð Þ80p ¼ 3:58

Applying Table 3.1 of Chap. 3 (Standard Normal), the cumulative probability
becomes:

P x � 20ð Þ ¼ F 20:5� 16ð Þ=3:58½ �
¼ F 1:256ð Þ
� 0:89

Example 2.6 Suppose n ¼ 100 trials with p ¼ 0.01 and the analyst wants to
estimate the probability of x at one or less. Because n is large and p is small, the
Poisson distribution is used to estimate the probability. The mean of x becomes: θ ¼
np ¼ 100 � 0.01 ¼ 1.0; and the probability is computed below:

P x � 1ð Þ ¼ F 1ð Þ
¼ P 0ð Þ þ P 1ð Þ
¼ e�110=0!þ e�111=1! ¼ 0:736

2.5 Geometric

The variable of the geometric distribution, Geo(p), could be set as the number of
trials, n, till the first success; or the number of fails, x, till the first success. Both are
described below.
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Number of Trials

The probability of the number of trials, n, to achieve the first success, when p is the
probability of a success per trial, is obtained by the geometric distribution where n�
1. The probability of n is below:

P nð Þ ¼ p 1� pð Þn�1 n ¼ 1, 2, . . .

The cumulative probability of n or less is obtained as shown here:

F nð Þ ¼ 1� 1� pð Þn n ¼ 1, 2, . . .

The expected value and variance of n are listed below.

E nð Þ ¼ μn ¼ 1=p

V nð Þ ¼ σn2 ¼ 1� pð Þ=p2

Number of Failures

The number of fails till the first success, x, is related to the number of trials, n, in the
following way;

x ¼ n� 1

The probability becomes,

P xð Þ ¼ p 1� pð Þx x ¼ 0, 1, 2, . . .

The mean and variance of x are listed below:

μx ¼ 1� pð Þ=p
σx2 ¼ 1� pð Þ=p2

Lexis Ratio

The lexis ratio of x:

τ ¼ σx2=μx
¼ 1� pð Þ=p2½ �= 1� pð Þ=p½ �
¼ 1=p

is always greater than one.
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The lexis ratio of n:

τ ¼ σn2=μn ¼ 1� pð Þ=p
could be larger or smaller than one.

Parameter Estimate

When a series of experiments yield m samples on the number of trials till a success
as: (n1, . . ., nm), the MLE of p becomes:

bp ¼ 1=�n

where:

�n ¼
X

ni=m

When the variable is the number of fails till a success and the average number of
fails is �x, the estimates of p becomes:

bp ¼ 1=
�
�xþ 1

�
Example 2.7 Suppose the probability of a success is p ¼ 0.2 and the variable of
interest is the number of trials, n, till the first success. The probability of n is:

P nð Þ ¼ 0:2 0:8n�1
� �

n ¼ 1, 2, . . . :

Note, P(1) ¼ 0.200; P(2) ¼ 0.160; P(3) ¼ 0.128; so on, and,

F 3ð Þ ¼ P n � 3ð Þ ¼ 0:200þ 0:160þ 0:128 ¼ 0:488

Also observe:

F 3ð Þ ¼ 1� 1� 0:2ð Þ3 ¼ 1� 0:512 ¼ 0:488

Example 2.8 Assume m ¼ 5 samples on n (number of trials till a success) are the
following: (3, 8, 4, 2, 5). The average of n becomes �n ¼ 22/5 ¼ 4.4, and hence, the
estimate on the probability of a success is:

bp ¼ 1=4:4 ¼ 0:227

Example 2.9 Consider a situation where p¼ 0.10 is the probability of a success per
trial and x is the number of fails till the first success. The probability of x becomes:

P xð Þ ¼ 0:10 0:90xð Þ x ¼ 0, 1, . . .

2.5 Geometric 35



The mean and variance of x are:

μx ¼ 0:90=0:10 ¼ 9:0

σx2 ¼ 0:90=0:102 ¼ 90:0

and the lexis ratio is:

τ ¼ 90:0=9:0 ¼ 10:0

Example 2.10 Suppose m ¼ 8 samples from geometric data are obtained and yield
the following values of x: [13, 16, 12, 15, 14, 14, 11, 15] where x is the number of
failures till the first success. The analyst wants to estimate the probability of a
success, p, and since the average of x is �x ¼ 13.75, the estimate becomes:

bp ¼ 1= 13:75þ 1ð Þ ¼ 0:068:

2.6 Pascal

A French mathematician, Blaise Pascal, first formulated the Pascal distribution
during the early seventeenth century. He is also credited with other accomplishments
in mathematics, and with the invention of a mechanical calculator. The random
variable of the Pascal distribution, Pa(k,p), is either of two type: the number of trials,
n, to obtain k successes; or the number of failures, x, to obtain k successes. Both are
described below.

Number of Trials

The Pascal distribution applies when the variable is the number of trials, n, needed to
achieve k successes with p the probability of a success per trial. This distribution is
also called the Negative Binomial distribution. The probability of n is listed below:

P nð Þ ¼ n� 1
k � 1

� �
pk 1� pð Þn�k n ¼ k, kþ 1, . . .

The cumulative distribution function becomes:

F nð Þ ¼
Xn
y¼k

P yð Þ n ¼ k, kþ 1, . . .
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The mean and variance of n are listed below.

E nð Þ ¼ μn ¼ k=p

V nð Þ ¼ σn2 ¼ k 1� pð Þ=p2

Lexis Ratio

The lexis ratio on n becomes:

τ ¼ σn2=μn
¼ k 1� pð Þ=p2½ �= k=p½ �
¼ 1� pð Þ=p

where τ could be larger or smaller than one.

Parameter Estimate

Suppose m samples on the number of trials to achieve k successes are: (n1, . . ., nm);
with the average:

�n ¼
X

ni=m

The MLE of the probability of a success becomes:

bp ¼ k=�n

Number of Failures

When x is the number of failures to achieve k successes, the variable x is as follows:

x ¼ n� k x ¼ 0, 1, 2, . . .

The mean and variance of x become:

μx ¼ μn � k ¼ k 1� pð Þ=p
σx2 ¼ σn2 ¼ k 1� pð Þ=p2
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Lexis Ratio

The lexis ratio on x becomes:

τ ¼ σx2=μx
¼ k 1� pð Þ=p2½ �= k 1� pð Þ=p½ �
¼ 1=p

where τ is always larger than one.

Parameter Estimate

If m samples of x are: (x1, . . ., xm) and �x is the average of the m samples, the
estimate of p becomes:

bp ¼ k=
�
�xþ k

�
Example 2.11 Suppose n is the number of trials to reach k ¼ 4 successes when the
probability of a success is p ¼ 0.60. The probability of n is listed below:

P nð Þ ¼ n� 1
4� 1

� �
:64 :4ð Þn�4 n ¼ 4, 5, . . . ::

Note:

P 4ð Þ ¼ 4� 1
4� 1

� �
:64 :4ð Þ4�4 ¼ 0:1296

P 5ð Þ ¼ 5� 1
4� 1

� �
:64 :4ð Þ5�4 ¼ 0:2074

so on.
The probability of n ¼ 5 or less becomes:

P n � 5ð Þ ¼ 0:1296þ 0:2074 ¼ 0:3370

The mean and variance of n are below:

μn ¼ 4=0:6 ¼ 6:66

σn2 ¼ 4 1� :6ð Þ=:62 ¼ 4:44
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Note, the counterpart mean and variance of x are the following:

μx ¼ 6:66� 4 ¼ 2:66

σx2 ¼ 4:44

The lexis ratio of n is:

τ ¼ 4:44=6:66 ¼ 0:66

and, the lexis ratio of x is:

τ ¼ 4:44=2:66 ¼ 1:66

Example 2.12 Suppose m ¼ 5 samples from the Pascal distribution with parameter
k ¼ 4 are observed and yield the following data entries of n (number of trials): [16,
14, 17, 15, 16], and the analyst wants to estimate the probability of a success. Since
the average is �n ¼ 15.60, the estimate of p is bp ¼ 4/15.60 ¼ 0.256.

2.7 Poisson

The Poisson distribution is named after its founder, Simeon Poisson, a famous
French mathematician who, during the early 1800s, is credited with advancements
in mathematics, geometry and physics. The variable, x, is distributed like a Poisson
distribution, Po(θ), when events under study occur randomly with an average rate of
θ for a specified time duration, area, or space. It could be the number of demands for
a specific product per day at a retail location. The probability of x is the following:

P xð Þ ¼ θxe�θ=x! x ¼ 0, 1, 2, . . . ::

The expected value and variance of x are shown below.

E xð Þ ¼ μ ¼ θ

V xð Þ ¼ σ2 ¼ θ

Lexis Ratio

Since the mean and the variance are both equal to θ, the lexis ratio becomes:

τ ¼ σ2=μ ¼ 1
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Relation to the Exponential Distribution

The Poisson and the exponential distributions are related since the time, t, between
events from a Poisson variable are distributed as exponential, Exp(θ), with
E(t) ¼ 1/θ.

Parameter Estimate

When n samples (x1, . . ., xn) are collected, and the sample average is �x, the MLE
of θ is:

bθ ¼ �x

Example 2.11 Cars arrive to a parking lot on Monday mornings at an average rate
of 2 per 15 min. For this time duration, the mean and variance of the number of cars
arriving are:

μ ¼ 2
σ2 ¼ 2

The probability of x arrivals in 15 min becomes:

P xð Þ ¼ e�22x=x! x ¼ 0, 1, 2, . . . :

Note,

P 0ð Þ ¼ e�220=0! ¼ 0:135

P 1ð Þ ¼ e�221=1! ¼ 0:271

P 2ð Þ ¼ e�222=2! ¼ 0:271

so on.
The probability x is two or less becomes:

P x � 2ð Þ ¼ 0:677

Example 2.12 Suppose n ¼ 10 samples from Poisson data are observed and yield
the following values of x: [1, 1, 2, 3, 3, 1, 2, 3, 1, 2], and the analyst wants to estimate
the Poisson parameter, θ. Since the average of x is �x¼ 1.90, the estimate is bθ ¼ 1.90.
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2.8 Hyper Geometric

The variable x is distributed by the hyper geometric distribution, HG(n,N,D), where
x represents the number of defectives in n samples taken without replacement from a
population of size N with D defectives. The variable x can take on the integer values
of zero to the smaller of D and n. The probability of x is the following:

P xð Þ ¼ N � D
n� x

� �
D
x

� �
=

N
n

� �
x ¼ 0, . . . :, min n;Dð Þ

The expected value and variance of x are listed below:

E xð Þ ¼ μ ¼ nD=N

V xð Þ ¼ σ2 ¼ n D=N½ � 1� D=N½ � N� n½ �= N� 1½ �
The lexis ratio is smaller than one as shown below:

τ ¼ σ2=μ ¼ 1� D=N½ � N� n½ �= N� 1½ � < 1

Parameter Estimate

The ratio of defectives per unit (D/N) can be estimated from sample data. Assume, N
units and n samples without replacement each day; and m days of sample number of
defectives are: (x1, . . ., xm). The average of the m samples is denoted as �x. Hence, the
estimate of the ratio of defectives becomes:

bD
N

¼ �x=n

Example 2.11 Each day a lot of N¼ 5 units come into a store and a sample of n¼ 2
are taken without replacement to seek out any defectives. If the number of defectives
is D ¼ 1, the probability of finding x defectives is below:

P xð Þ ¼ 4
2� x

� �
1
x

� �
=

5
2

� �
x ¼ 0, 1

The probabilities become:

P 0ð Þ ¼ 4
2� 0

� �
1
0

� �
=

5
2

� �
¼ 0:60
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P 1ð Þ ¼ 4
2� 1

� �
1
1

� �
=

5
2

� �
¼ 0:40

The mean and variance of x are computed below:

μ ¼ 2� 1=5 ¼ 0:40

σ2 ¼ 2� 1=5 1� 1=5½ � 5� 2½ �= 5� 1½ � ¼ 0:24

The lexis becomes

τ ¼ 0:24=0:40 ¼ 0:60

Example 2.12 Assume the scenario of Example 2.11 where N¼ 5 units arrive each
day and n ¼ 2 are sampled without replacement. A sample on five days yields the
following number of defectives: (0, 1, 0, 0, 0) that have an average of �x¼ 0.20. The
estimate of the ratio of defectives is below:

bD
N

¼ 0:20=2 ¼ 0:10

Hence, 10% of the units are estimated to be defective.

Example 2.13 A park manager wants to estimate the number of grown turtles in a
small lake in the park. Over a series of days, he traps D ¼ 10 turtles, and tags each
and releases them back into the lake. On subsequent days, he traps n ¼ 8 turtles and
x ¼ 2 of them have the tag attached. An estimate on the number of grown turtles, N,
in the lake is obtained as below:

Since,

E xð Þ ¼ nD=N

bN ¼ nD=x

¼ 8� 10=2 ¼ 40

2.9 Summary

Six discrete distributions are summarized: discrete uniform, binomial, geometric,
Pascal, Poisson and hyper geometric. The probability function, parameters and
admissible region are described for each. Estimates of the parameter values are
obtained, for each of the distributions, by use of sample data. Examples are also
presented to guide the user on the characteristics and calculations needed for each
distribution.
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Chapter 3
Standard Normal

3.1 Introduction

The normal distribution is perhaps the most used distribution in business, engineer-
ing and scientific research and analysis of data. The distribution is fully described by
two parameters, the mean and the standard deviation. A related distribution is the
standard normal that has a mean of zero and standard deviation equal to one. Almost
all statistical books have table measures listed on the standard normal. An easy
conversion from the normal variable to the standard normal variable and vice versa is
available. Since there is no closed-form solution to the cumulative probability of the
standard normal, various approximations have been developed over the years. The
Hasting’s approximation is applied here and table listings in the chapter are derived
from the same. The standard normal variable ranges between minus and plus infinity,
but almost all of the probability falls within minus and plus 3.0. For ease of
calculations in the chapter and the book, only the range of the standard normal
between minus and plus 3 is used. For an application in a latter chapter, (Bivariate
Normal), the standard normal distribution is converted to a discrete distribution, for
which the variable changes from continuous to a discrete; and table values of the
discrete normal are listed here for later use.

3.2 Gaussian Distribution

The normal distribution is often referred as the Gaussian distribution, named after
Johann C. F. Gauss, a German mathematician, who first formulated and published
the distribution in 1809 [1]. The normal distribution is a widely used probability
distribution and applies in all type of disciplines. The normal distribution also
evolves when the number of independent samples of any shaped variable increases,
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as stated by the central-limit theorem. Further, the distribution is symmetrical and is
bell shaped.

The standard normal distribution is a derivation of the normal distribution. It has a
mean of zero and a standard deviation of one, and can be converted from and to any
normal distribution. This is the distribution whose measures are published in almost
all statistical and probability books.

3.3 Some Relations on the Standard Normal Distribution

z ¼ standard normal variable
k ¼ a particular value of z

f zð Þ ¼ 1=
ffiffiffiffiffi
2π

p� �
e�z2=2 ¼ probability density of z

F kð Þ ¼ P z � kð Þ ¼
Z k

�1
f zð Þdz ¼ cumulative probability of z ¼ k

H(k) ¼ P(z > k) ¼ 1 – F(k) ¼ complementary probability of z ¼ k

Z k

�1
zf zð Þdz ¼ �f kð Þ

Z 1

k
zf zð Þdz ¼ f kð Þ

Z 1

�1
zf zð Þdz ¼ 0

Z k

�1
z2f zð Þdz ¼ �kf kð Þ þ F kð Þ

Z 1

k
z2f zð Þdz ¼ kf kð Þ þ H kð Þ
Z 1

�1
z2f zð Þdz ¼ 1

Note since z is a continuous variable, F(k) ¼ P(z � k) ¼ P(z < k).

3.4 Normal Distribution

The random variable of the normal distribution is denoted as x and has mean μ and
standard deviation σ. The common notation on x and the normal distribution is
below,
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x � N μ; σ2
� �

The approximate low (L) and high (H)) limits on x are the following:

L ¼ μ� 3σ
H ¼ μþ 3σ

The probability that x falls between L and H is near unity, since:

P L � x � Hð Þ � 0:998

3.5 Standard Normal

The random variable of the standard normal distribution is denoted as z and has
mean zero and standard deviation one. The notation for z is listed below:

z � N 0; 1ð Þ
The way to convert x (normal distribution) to z (standard normal distribution),

and vice versa is shown below:

z ¼ x� μð Þ=σ
x ¼ μþ zσ

The approximate low (L) and high (H) limits on z are listed below:

L ¼ �3

H ¼ þ3

and the probability of z within these limits is almost unity, since,

P L � z � Hð Þ � 0:998

For simplicity in this book, only the values of z ranging from �3.0 to þ3.0 are in
consideration. See Fig. 3.1.

-3 0 +3 z

Fig. 3.1 The standard
normal distribution
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3.6 Hastings Approximations

Because there is no closed-form solution for the cumulative distribution F(z);
various researchers have developed estimate algorithms for the cumulative proba-
bility of the standard normal. Two approximations are used in this book and both are
due to C. Hastings, Jr. [2, 3].

Approximation of F(z) from z For a given z, to find F(z), the following Hastings
routine is run.

1. d1 ¼ 0.0498673470
d2 ¼ 0.0211410061
d3 ¼ 0.0032776263
d4 ¼ 0.0000380036
d5 ¼ 0.0000488906
d6 ¼ 0.0000053830

2. If z � 0: w ¼ z
If z < 0: w ¼ �z

3. F ¼ 1–0.5[1 þ d1w þ d2w
2 þ d3w

3 þ d4w
4 þ d5w

5 þ d6w
6]�16

4. if z � 0: F(z) ¼ F
If z < 0: F(z) ¼ 1 – F

Return F(z).

Approximation of z from F(z) Another useful approximation also comes from
Hastings, and gives a routine that yields a random z from a value of F(z). The routine
is listed below.

1. c0 ¼ 2.515517
c1 ¼ 0.802853
c2 ¼ 0.010328
d1 ¼ 1.432788
d2 ¼ 0.189269
d3 ¼ 0.001308

2. H(z) ¼1 – F(z)
If H(z) � 0.5: H ¼ H(z)
If H(z) > 0.5: H ¼ 1 – H(z)

3. t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln
�
1=H2

q �
where ln ¼ natural logarithm.

4. w ¼ t – [c0 þ c1t þ c2t
2]/[1 þ d1t þ d2t

2 þ d3t
3]

5. If H(z) � 0.5: z ¼ w
If H(z) > 0.5: z ¼ �w.

Return z.
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3.7 Table Values of the Standard Normal

Table 3.1 lists values of k, F(k), H(k), and f(k), from the standard normal distribution
that fall in the range: [�3.0, (0.1), þ3.0]. In a similar way, Table 3.2 contains values
of F(z), z, H(z) and f(z) for the range of F(z): [0.01, (0.01), 0.99]. Figure 3.2 depicts
F(k), f(k) and k for standard normal variable z.

Example 3.1 Suppose an analyst has experiment results where x is normally dis-
tributed with mean μ ¼ 100 and standard deviation σ ¼ 10, i.e., x ~ N(100, 102).
Assume the analyst wants to find the probability of x less or equal to 115. To
accomplish, the following three steps are applied:

Table 3.1 The standard
normal statistics sorted by k,
with cumulative distribution,
F(k), complementary
distribution, H(k), and
probability density, f(k)

k F(k) H(k) f(k) k F(k) H(k) f(k)

�3.0 0.001 0.999 0.004 0.0 0.500 0.500 0.399

�2.9 0.002 0.998 0.006 0.1 0.540 0.460 0.397

�2.8 0.003 0.997 0.008 0.2 0.579 0.421 0.391

�2.7 0.003 0.997 0.010 0.3 0.618 0.382 0.381

�2.6 0.005 0.995 0.014 0.4 0.655 0.345 0.368

�2.5 0.006 0.994 0.018 0.5 0.691 0.309 0.352

�2.4 0.008 0.992 0.022 0.6 0.726 0.274 0.333

�2.3 0.011 0.989 0.028 0.7 0.758 0.242 0.312

�2.2 0.014 0.986 0.035 0.8 0.788 0.212 0.290

�2.1 0.018 0.982 0.044 0.9 0.816 0.184 0.266

�2.0 0.023 0.977 0.054 1.0 0.841 0.159 0.242

�1.9 0.029 0.971 0.066 1.1 0.864 0.136 0.218

�1.8 0.036 0.964 0.079 1.2 0.885 0.115 0.194

�1.7 0.045 0.955 0.094 1.3 0.903 0.097 0.171

�1.6 0.055 0.945 0.111 1.4 0.919 0.081 0.150

�1.5 0.067 0.933 0.130 1.5 0.933 0.067 0.130

�1.4 0.081 0.919 0.150 1.6 0.945 0.055 0.111

�1.3 0.097 0.903 0.171 1.7 0.955 0.045 0.094

�1.2 0.115 0.885 0.194 1.8 0.964 0.036 0.079

�1.1 0.136 0.864 0.218 1.9 0.971 0.029 0.066

�1.0 0.159 0.841 0.242 2.0 0.977 0.023 0.054

�0.9 0.184 0.816 0.266 2.1 0.982 0.018 0.044

�0.8 0.212 0.788 0.290 2.2 0.986 0.014 0.035

�0.7 0.242 0.758 0.312 2.3 0.989 0.011 0.028

�0.6 0.274 0.726 0.333 2.4 0.992 0.008 0.022

�0.5 0.309 0.691 0.352 2.5 0.994 0.006 0.018

�0.4 0.345 0.655 0.368 2.6 0.995 0.005 0.014

�0.3 0.382 0.618 0.381 2.7 0.997 0.003 0.010

�0.2 0.421 0.579 0.391 2.8 0.997 0.003 0.008

�0.1 0.460 0.540 0.397 2.9 0.998 0.002 0.006

3.0 0.999 0.001 0.004
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Table 3.2 Standard normal distribution sorted by cumulative distribution F(z); with variable z;
complement probability H(z); and probability density f(z)

F(z) z H(z) f(z)

0.01 �2.327 0.990 0.027

0.02 �2.054 0.980 0.048

0.03 �1.881 0.970 0.068

0.04 �1.751 0.960 0.086

0.05 �1.645 0.950 0.103

0.06 �1.555 0.940 0.119

0.07 �1.476 0.930 0.134

0.08 �1.405 0.920 0.149

0.09 �1.341 0.910 0.162

0.10 �1.282 0.900 0.175

0.11 �1.227 0.890 0.188

0.12 �1.175 0.880 0.200

0.13 �1.126 0.870 0.212

0.14 �1.080 0.860 0.223

0.15 �1.036 0.850 0.233

0.16 �0.994 0.840 0.243

0.17 �0.954 0.830 0.253

0.18 �0.915 0.820 0.262

0.19 �0.878 0.810 0.271

0.20 �0.841 0.800 0.280

0.21 �0.806 0.790 0.288

0.22 �0.772 0.780 0.296

0.23 �0.739 0.770 0.304

0.24 �0.706 0.760 0.311

0.25 �0.674 0.750 0.318

0.26 �0.643 0.740 0.324

0.27 �0.612 0.730 0.331

0.28 �0.582 0.720 0.337

0.29 �0.553 0.710 0.342

0.30 �0.524 0.700 0.348

0.31 �0.495 0.690 0.353

0.32 �0.467 0.680 0.358

0.33 �0.439 0.670 0.362

0.34 �0.412 0.660 0.366

0.35 �0.385 0.650 0.370

0.36 �0.358 0.640 0.374

0.37 �0.331 0.630 0.378

0.38 �0.305 0.620 0.381

0.39 �0.279 0.610 0.384

0.40 �0.253 0.600 0.386

0.41 �0.227 0.590 0.389

0.42 �0.202 0.580 0.391

(continued)
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Table 3.2 (continued)

F(z) z H(z) f(z)

0.43 �0.176 0.570 0.393

0.44 �0.151 0.560 0.394

0.45 �0.125 0.550 0.396

0.46 �0.100 0.540 0.397

0.47 �0.075 0.530 0.398

0.48 �0.050 0.520 0.398

0.49 �0.025 0.510 0.399

0.50 0.000 0.500 0.399

0.51 0.025 0.490 0.399

0.52 0.050 0.480 0.398

0.53 0.075 0.470 0.398

0.54 0.100 0.460 0.397

0.55 0.125 0.450 0.396

0.56 0.151 0.440 0.394

0.57 0.176 0.430 0.393

0.58 0.202 0.420 0.391

0.59 0.227 0.410 0.389

0.60 0.253 0.400 0.386

0.61 0.279 0.390 0.384

0.62 0.305 0.380 0.381

0.63 0.331 0.370 0.378

0.64 0.358 0.360 0.374

0.65 0.385 0.350 0.370

0.66 0.412 0.340 0.366

0.67 0.439 0.330 0.362

0.68 0.467 0.320 0.358

0.69 0.495 0.310 0.353

0.70 0.524 0.300 0.348

0.71 0.553 0.290 0.342

0.72 0.582 0.280 0.337

0.73 0.612 0.270 0.331

0.74 0.643 0.260 0.324

0.75 0.674 0.250 0.318

0.76 0.706 0.240 0.311

0.77 0.739 0.230 0.304

0.78 0.772 0.220 0.296

0.79 0.806 0.210 0.288

0.80 0.841 0.200 0.280

0.81 0.878 0.190 0.271

0.82 0.915 0.180 0.262

0.83 0.954 0.170 0.253

0.84 0.994 0.160 0.243

(continued)
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1. Convert x to z as: z ¼ (x – μ)/σ ¼ (115–100)/10 ¼ 1.5.
2. Search Table 3.1 to find: F(1.5) ¼ 0.933 ¼ P(z � 1.5).
3. Since P(x � 115) ¼ P(z < 1.5), the probability sought is 0.933.

Example 3.2 Consider the data from Example 3.1 again where x ~ N(100, 102).
Assume the analyst is now seeking the probability of x falling between 80 and 90. To
find this probability, i.e. p(80 < x < 90), the following four steps are taken:

1. zL ¼ (x – μ)/σ ¼ (80–100)/10 ¼ �2.0
2. zH ¼ (x – μ)/σ ¼ (90–100)/10 ¼ �1.0
3. Table 3.1 yields: F(�2.0) ¼ 0.023 and F(�1.0) ¼ 0.159
4. P(80 < x < 90) ¼ F(zH) – F(zL) ¼ F(�1.0) – F(�2.0) ¼ 0.159 – 0.023 ¼ 0.136

Example 3.3 Suppose a situation where x is normally distributed as follows:
x ~ N(5,12), and a researcher needs to find the value of xo, where the probability
of x exceeding xo is 0.05, i.e., P(x > xo) ¼ 0.05. In this situation, the following three
steps are taken:

Table 3.2 (continued)

F(z) z H(z) f(z)

0.85 1.036 0.150 0.233

0.86 1.080 0.140 0.223

0.87 1.126 0.130 0.212

0.88 1.175 0.120 0.200

0.89 1.227 0.110 0.188

0.90 1.282 0.100 0.175

0.91 1.341 0.090 0.162

0.92 1.405 0.080 0.149

0.93 1.476 0.070 0.134

0.94 1.555 0.060 0.119

0.95 1.645 0.050 0.103

0.96 1.751 0.040 0.086

0.97 1.881 0.030 0.068

0.98 2.054 0.020 0.048

0.99 2.327 0.010 0.027

f(k)

F(k)

k z

Fig. 3.2. F(k) with f(k), k
and z from the standard
normal distribution
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1. Table 3.2 is searched to find H(1.645) ¼ 0.05.
2. The corresponding value of x is xo ¼ μ þ zσ ¼ 5 þ 1.645 � 1 ¼ 6.645
3. Hence, P(x > 6.645) ¼ 0.05.

Example 3.4 For the random variable, x~ N(8,22), find the mid (L,H) where p
(L < x < H) ¼ 0.50. To obtain, the three steps are below:

1. Table 3.2 shows F(�0.674) ¼ 0.25 and F(0.674) ¼ 0.75.
2. Hence, L ¼ 8–0.674 � 2 ¼ 6.652 and H ¼ 8 þ 0.674 � 2 ¼ 9.348.
3. Thereby, P(6.652 < x < 9.348) ¼ 0.50.

3.8 Discrete Normal Distribution

Consider an adaptation of the standard normal distribution where only a finite set of
discrete values are permitted. Let these values be the following: (�3.0, �2.9, . . .. . .,
2.9, 3.0), where the total set is denoted as: k ¼ [�3.0, (0.1), 3.0]. Altogether, there
are 61 discrete possible values. For simplicity, this distribution is here named the
discrete normal distribution. It is needed in Chap. 7 (Bivariate Normal) to estimate
the probabilities associated with the bivariate normal distribution.

The probability of discrete variable k, P(k), is obtained as follows:

P kð Þ ¼ f kð Þ=
X3:0

z¼�3:0

f zð Þ for k ¼ �3:0; 0:1ð Þ; 3:0½ �

where f(k) is the probability density of z ¼ k from the standard normal distribution.
The cumulative probability of z less or equal to k, P(z � k), is denoted as F(k).
Table 3.3 lists the complete set of this adapted discrete normal distribution, with
values of k, P(k) and F(k).

Example 3.5 Consider the discrete normal distribution, and note from Table 3.3
that the most likely value of k is 0.0, since P(0.0) ¼ 0.040 is the largest of all
probabilities. Note also, the expected number of random trials to obtain k ¼ 0.0 is
1/P(0.0) ¼ 1/0.0400 ¼ 25.

Example 3.6 Consider once more the discrete normal distribution. The least likely
values of k to occur by chance are k¼�3.0 and k¼ 3.0 since the probability of each
is the smallest at P(�3.0) ¼ P(3.0) ¼ 0.0004.

3.9 Summary

The standard normal distribution with variable z is a special case of the normal
distribution with variable x, and conversion from one to the other is easily done. The
Hasting’s approximation of the cumulative distribution for the standard normal is
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Table 3.3 Discrete normal distribution with discrete normal variable, k; probability, P(k); and
cumulative probability, F(k)

k P(k) F(k)

�3.0 0.0004 0.0004

�2.9 0.0006 0.0010

�2.8 0.0008 0.0018

�2.7 0.0010 0.0029

�2.6 0.0014 0.0042

�2.5 0.0018 0.0060

�2.4 0.0022 0.0082

�2.3 0.0028 0.0111

�2.2 0.0036 0.0146

�2.1 0.0044 0.0190

�2.0 0.0054 0.0245

�1.9 0.0066 0.0310

�1.8 0.0079 0.0389

�1.7 0.0094 0.0484

�1.6 0.0111 0.0595

�1.5 0.0130 0.0725

�1.4 0.0150 0.0875

�1.3 0.0172 0.1047

�1.2 0.0195 0.1241

�1.1 0.0218 0.1460

�1.0 0.0243 0.1702

�0.9 0.0267 0.1969

�0.8 0.0290 0.2259

�0.7 0.0313 0.2572

�0.6 0.0334 0.2906

�0.5 0.0353 0.3259

�0.4 0.0369 0.3628

�0.3 0.0382 0.4010

�0.2 0.0392 0.4402

�0.1 0.0398 0.4800

0.0 0.0400 0.5200

0.1 0.0398 0.5598

0.2 0.0392 0.5990

0.3 0.0382 0.6372

0.4 0.0369 0.6741

0.5 0.0353 0.7094

0.6 0.0334 0.7428

0.7 0.0313 0.7741

0.8 0.0290 0.8031

0.9 0.0267 0.8298

1.0 0.0243 0.8541

1.1 0.0218 0.8759

(continued)
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described and is used to generate the tables of the chapter. The variable z ranges from
minus to plus infinity, but almost all the probability is from �3.0 to þ3.0, and for
simplicity, this is the range used in the chapter. One table lists statistical measure for
k, a particular value of z, ranging from �3.0 to þ3.0. Another table is for the
cumulative probability, F(z), ranging from 0.01 to 0.99. For use in a subsequent
chapter, an adaption of the standard normal to a discrete normal is developed.
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Table 3.3 (continued)

k P(k) F(k)

1.2 0.0195 0.8954

1.3 0.0172 0.9125

1.4 0.0150 0.9275

1.5 0.0130 0.9405

1.6 0.0111 0.9516

1.7 0.0094 0.9611

1.8 0.0079 0.9690

1.9 0.0066 0.9756

2.0 0.0054 0.9810

2.1 0.0044 0.9854

2.2 0.0036 0.9889

2.3 0.0028 0.9918

2.4 0.0022 0.9940

2.5 0.0018 0.9958

2.6 0.0014 0.9971

2.7 0.0010 0.9982

2.8 0.0008 0.9990

2.9 0.0006 0.9996

3.0 0.0004 1.0000
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Chapter 4
Partial Expectation

4.1 Introduction

This chapter concerns a particular value of the standard normal, k, called the left-
location parameter, and the average of the difference of all standard normal z values
larger than k. This is called the partial expectation of z greater than k, and is denoted
as E(z > k). A table of E(z > k) for k ¼ �3.0 to þ3.0 is listed. Another partial
described in this chapter is when the location parameter is on the right-hand side, and
of interest is the average of the difference of all standard normal z values smaller than
k. This is called the partial expectation of z less than k, and is denoted as E(z < k). A
table of E(z < k) for k ¼ �3.0 to þ3.0 is listed. These measures are of particular
interest in inventory management when determining when to order new stock for an
item and how much. The partial expectation is used to compute the minimum
amount of safety stock for an item to control the percent fill. The percent fill is the
portion of total demand that is immediately filled from stock available. Another use
in inventory management is an adjustment to the forecast of an item when advance
demand becomes available. Advance demand occurs when a customer orders stock
that is not to be delivered until a future date. Several examples are presented to guide
the user on the use of the partial expectation.

In 1959, and 1962, Robert G. Brown showed how the partial expectation of the
standard normal distribution can be used to compute the safety stock for an inventory
item [1, 2]. In 1980, N. Thomopoulos developed and published tables on the partial
expectation; and demonstrated their application in inventory management for com-
puting the safety stock of a stocked item; and also for adjusting a previous forecast
on a stock item when advance demands arrive, [3].
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4.2 Partial Expectation

The partial expectation is a measure concerning a portion of the standard normal
distribution; either on the right-hand side or on the left-hand side of the standard
normal. To illustrate, assume the standard normal variable, z, and a particular value
of k, where of interest is the average of (z – k) for all values of z larger than k. This
average is called the partial expectation of z greater than k; and k is the left-location
parameter. When the value of k is on the right-hand side of z, the measure of interest
is the average of (z – k) for all values of z below k; and hence, this is the partial
expectation of z smaller than k; where k is now the right location parameter. An
important use of the partial expectation is in inventory management where it is
needed to compute the size of the safety stock for each item held in stock. It is also
used to adjust forecasts when advance demand information is available.

4.3 Left Location Parameter

Consider the standard normal distribution where a location parameter, k, is stated
and only the values of z larger than k are considered. Hence (z > k) and of interest is
the expected value of z larger than k. In this way, k is the left-most value of z. This is
called the partial expectation of z greater than k and is denoted as E(z > k) as shown
in Fig. 4.1. Below lists an identity of the expectation:

E z > kð Þ ¼
Z 1

k
z� kð Þf zð Þdz ¼ f kð Þ � kH kð Þ

Recall, f(k) is the probability density of the standard normal when z ¼ k, and H
(k) is the probability of z larger than k.

k             z

E(z>k)

Fig. 4.1 The partial
expectation E(z > k) with k
and z from the standard
normal distribution
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Table Entries

Table 4.1 is a list of the values of E(z > k) for the set of location parameters, k, with
the range: [�3.0, (0.1), þ3.0]. Note where E(z > k) starts with 3.000 at k ¼ �3.0;
drops to 0.399 at k ¼ 0.0; and finally to 0.000 at k ¼ þ3.0.

Table 4.1 Partial expectation
E(z > k) sorted by the left
location parameter k

k E(z > k) k E(z > k)

�3.0 3.000 0.0 0.399

�2.9 2.901 0.1 0.351

�2.8 2.801 0.2 0.307

�2.7 2.701 0.3 0.267

�2.6 2.601 0.4 0.230

�2.5 2.502 0.5 0.198

�2.4 2.403 0.6 0.169

�2.3 2.304 0.7 0.143

�2.2 2.205 0.8 0.120

�2.1 2.106 0.9 0.100

�2.0 2.008 1.0 0.083

�1.9 1.911 1.1 0.069

�1.8 1.814 1.2 0.056

�1.7 1.718 1.3 0.046

�1.6 1.623 1.4 0.037

�1.5 1.529 1.5 0.029

�1.4 1.437 1.6 0.023

�1.3 1.346 1.7 0.018

�1.2 1.256 1.8 0.014

�1.1 1.169 1.9 0.011

�1.0 1.083 2.0 0.008

�0.9 1.000 2.1 0.006

�0.8 0.920 2.2 0.005

�0.7 0.843 2.3 0.004

�0.6 0.769 2.4 0.003

�0.5 0.698 2.5 0.002

�0.4 0.630 2.6 0.001

�0.3 0.567 2.7 0.001

�0.2 0.507 2.8 0.001

�0.1 0.451 2.9 0.001

3.0 0.000
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4.4 Inventory Management

The partial expectation with a left location parameter plays an important role in
inventory management in deciding when to replenish the inventory on each item in
stock and how much. It is used in the computations to determine the size of the safety
stock, SS, for every item held. The safety stock is needed in the event the demand
exceeds the forecast over the lead-time. The lead-time is the duration that begins
when a replenish order is sent to the supplier and ends when the stock is received.
The demand over the lead-time is assumed to follow a normal distribution. The
percent-fill (PF), is measured for a duration called the order-cycle (OC). The OC is
the time between two replenishments of stock. The percent-fill becomes:

PF ¼ (demand filled in OC)/(total demand in OC)

The demand is the customer orders that arrive to be immediately filled by the
stock currently on-hand. The management sets the PF desired and a mathematical
method determines the order point, OP, and order level, OL needed to accomplish.
This method requires the following data:

F ¼ monthly forecasts.
L ¼ lead-time (month)
σ ¼ one month standard deviation of forecast error
Q ¼ order quantity
PF ¼ desired percent-fill

The forecast for the lead-time is FL, and the associated standard deviation over the
lead-time, σL, are obtained by,

FL ¼ L� F

σL ¼
ffiffiffi
L

p
σ

The safety stock is determined from a safety factor, k, as below:

SS ¼ kσL

To find the safety factor, a time interval is needed that allows the computations to
take place. The time duration covering the order cycle, OC, is selected, and the PF
for this duration is set as the desired percent-fill. The order cycle is the time interval
between two receipts of new stock. For this length of time, the percent-fill is:

PF ¼ (demand filled in OC)/(total demand in OC)
¼ 1 – (demand short in OC)/(total demand in OC)
¼ 1 – E(z > k)σL/Q

Note, Q is the amount of replenish stock in the order cycle and represents the
expected demand in the OC. E(z > k)σL is the expected demand exceeding the OP
during the order cycle, and therefore is a measure of the stock that is short in the
OC. So now, the partial expectation becomes,
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E z > kð Þ ¼ 1� PFð ÞQ=σL
The safety factor, k, that corresponds to E(z > k) is obtained from Table 4.1. Note

from the table where k > 0 only when E(z > k) < 0.40. To avoid a negative safety
stock, k is set to zero when E(z > k) � 0.40, where no safety stock is needed.

With k now obtained, the safety stock is computed by,

SS ¼ kσL

The order point, OP, and order level, OL, become,

OP ¼ FL þ SS

OL ¼ OPþ Q

Each day, the sum on-hand inventory (OH) and on-order inventory (OO) is
compared to the OP and if (OH þ OO) � OP, a new buy quantity is needed and
becomes,

buy ¼ OL� OHþ OOð Þ
In this way, the inventory replenishments for the item is controlled to yield the

percent-fill, PF, desired by the management.

Example 4.1 Suppose a part where the management wants a percent fill of
PF ¼ 0.95. Assume a horizontal forecast applies and F ¼ 10 per future month, the
standard deviation of the one-month forecast error is σ ¼ 5, the lead-time is
L ¼ 2 months, and the order quantity is Q ¼ 20 pieces. For this situation, the
following computations take place.

FL ¼ 2� 10 ¼ 20

σL ¼
ffiffiffiffi
2

p
� 5 ¼ 7:07

E z > kð Þ ¼ 1� 0:95ð Þ20=7:07 ¼ 0:14

Table 4.1 shows: E(z > 0.7) � 0.14
Thereby, the safety factor to use is k ¼ 0.7, and the safety stock becomes:

SS ¼ 0:7� 7:07 ¼ 4:95 � 5

Finally, the order point and order level on this part are obtained as below:

OP ¼ FLþ SS ¼ 20þ 5 ¼ 25

OL ¼ OPþ Q ¼ 25þ 20 ¼ 45
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4.5 Right Location Parameter

Suppose a scenario where the standard normal distribution applies and a location
parameter, k, is specified and only the values of z smaller than k are observed. Hence
(z < k) and of interest is the expected value of z smaller than k. In this way, k is the
right-most value of z. The analysis here is called the partial expectation of (z < k).
Below is the expectation related to the size of the difference of z smaller than k; and a
depiction is in Fig. 4.2.

E z < kð Þ ¼
Z �k

1
z� kð Þf zð Þdz ¼ �f kð Þ � kF kð Þ

As before, f(k) is the probability density of the standard normal when z ¼ k, and
F(k) is the probability of z less than k.

Table 4.2 is a list of the values of E(z < k) for the set of location parameters, k,
with the range: [�3.0, (0.1), þ3.0]. Note where E(z < k) starts with 0.000 at
k ¼ �3.0; decreases to �0.399 at k ¼ 0.0; and finally to �3.000 at k ¼ þ3.0.

Example 4.2 The daily water intake at a water supply system in an urban commu-
nity during August is normally distributed with mean μ ¼ 100 and standard
deviation σ ¼ 10. In the event the intake is low, a reserve supply of water is needed
to satisfy the daily demands. A call for the use of a reserve is triggered should the
daily intake fall to 90 or less. For this reason, the management of the system wants to
know the average shortage when the supply is 90 or less.

To find this amount, the four steps listed below are followed:

1. The associated location parameter from the standard normal distribution, k, is
obtained as shown here:

k ¼ 90� μð Þ=σ ¼ 90� 100ð Þ=10 ¼ �1:0

2. Now, use Table 4.2 with k ¼ �1.0 to find the corresponding partial expectation:

E z < kð Þ ¼ E z < �1:0ð Þ ¼ �0:083:

k             z

E(z<k)

Fig. 4.2 The partial
expectation E(z < k) with k
and z from the standard
normal distribution
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3. The corresponding partial expectation for the normal distribution becomes:

E x < 90ð Þ ¼ E z < kð Þσ ¼ �0:083� 10 ¼ �0:83:

4. Hence, the average shortage when x is less than 90 is 0.83.

Example 4.3 A dealer stocks service parts for cars needing maintenance and repair.
One of the parts has the following data: F ¼ 10 is the average forecast per month;

Table 4.2 Partial expectation
E(z < k) sorted by location
parameter k

k E(z < k) k E(z < k)

�3.0 0.000 0.0 �0.399

�2.9 �0.001 0.1 �0.451

�2.8 �0.001 0.2 �0.507

�2.7 �0.001 0.3 �0.567

�2.6 �0.001 0.4 �0.630

�2.5 �0.002 0.5 �0.698

�2.4 �0.003 0.6 �0.769

�2.3 �0.004 0.7 �0.843

�2.2 �0.005 0.8 �0.920

�2.1 �0.006 0.9 �1.000

�2.0 �0.008 1.0 �1.083

�1.9 �0.011 1.1 �1.169

�1.8 �0.014 1.2 �1.256

�1.7 �0.018 1.3 �1.346

�1.6 �0.023 1.4 �1.437

�1.5 �0.029 1.5 �1.529

�1.4 �0.037 1.6 �1.623

�1.3 �0.046 1.7 �1.718

�1.2 �0.056 1.8 �1.814

�1.1 �0.069 1.9 �1.911

�1.0 �0.083 2.0 �2.008

�0.9 �0.100 2.1 �2.106

�0.8 �0.120 2.2 �2.205

�0.7 �0.143 2.3 �2.304

�0.6 �0.169 2.4 �2.403

�0.5 �0.198 2.5 �2.502

�0.4 �0.230 2.6 �2.601

�0.3 �0.267 2.7 �2.701

�0.2 �0.307 2.8 �2.801

�0.1 �0.351 2.9 �2.901

3.0 �3.000
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σ¼ 3 is the standard deviation of F; L¼ 0.5 month is the lead-time duration; OP¼ 6
is the order point; and OL¼ 11 is the order level. To measure the percent fill for this
part, the following eight steps are taken:

1. FL ¼ L � F ¼ 5
2. σL ¼ ffiffiffi

L
p

σ ¼ 2.12
3. SS ¼ OP – FL ¼ 1
4. k ¼ SS/σL ¼ 0.47
5. Via Table 4.1, E(z > k) � 0.21
6. E(short in OC) ¼ E(z > k)σL ¼ 0.445
7. Q ¼ OL – OP ¼ 5
8. PF ¼ 1 – E(z > k)σL/Q ¼ 0.91

Example 4.4 For the part in Example 4.3, find the OP and OL that yields a percent-
fill of PF ¼ 0.95. To accomplish, the following five steps are taken:

1. E(z > k) ¼ (1 – PF)Q/σL ¼ (1–0.95)5/2.12 ¼ 0.118
2. Via Table 4.1, k � 0.8
3. SS ¼ kσL ¼ 1.70
4. OP ¼ FL þ SS ¼ 6.7 ~ 7
5. OL ¼ OP þ Q ¼ 12

4.6 Advance Demand

Another application of the partial expectation in inventory management is the
forecast adjustments due to advance demands. On some occasions a demand for
an item is known one or more months prior to the date the customer wants possession
of the item. This is known as an advance demand. For example, in April, the
customer orders the quantity prior to its need in June. The demand is part of the
regular demand in June and not an addition to it. The forecast for the future months
are already generated from the flow of demands of the past, and with this extra
advance demand knowledge, an adjustment to the forecast can be applied.

Assume the current month is t ¼ N and F(τ) ¼ forecast for the τ th future month
with σ the corresponding standard deviation. Further, let xo ¼ advance demand for
future month τ. Of need now is an adjustment to the forecast for the τ-th future
month. It is assumed the demand for the future month comes from the normal
distribution with parameters, mean ¼ F(τ) and standard deviation ¼ σ. Note where,

k ¼ xo � F τð Þ½ �=σ
and the partial expectation of the standard normal where (z > k) is:

E z > kð Þ
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The corresponding partial expectation for the demand, x, larger than xo, is:

E x > xoð Þ ¼ E z > kð Þσ
Hence, the forecast adjustment for future month τ becomes,

Fa τð Þ ¼ xo þ E z > kð Þσ

Example 4.5 Suppose a part where the forecast for future month τ is F(τ) ¼ 90 and
the standard deviation is σ ¼ 30. Assume the sum of advance demands is xo ¼ 70
pieces, and an adjustment to the forecast is needed. In this scenario,

k ¼ 70� 90½ �=30
¼�0:67

and with interpolation, Table 4.1 gives the partial expectation E(z > �0.67) � 0.82.
Thereby, the adjusted forecast is,

Fa(τ) ¼ xo þ E(z > �0.67) σ
¼ 70 þ 0.82�30
¼ 94.6

Example 4.6 Consider the same part as Example 4.5, (F(τ) ¼ 90, σ ¼ 30), but now
assume the advance demand is xo ¼ 30. In this scenario,

k ¼ 30� 90½ �=30
¼�2:00

and from Table 4.1, E(z > �2) ¼ 2.008. Thereby, the adjusted forecast is,

Fa(τ) ¼ xo þ E(z > �2) σ
¼ 30 þ 2.008 � 30
� 90.0

Note, there is no change in the forecast since the demand is on the low end of the
normal range.

Example 4.7 Suppose once more the same part as Example 4.5, (F(τ) ¼ 90,
σ ¼ 30), where now the advance demand is xo ¼ 180 pieces. In this scenario,

k ¼ 180� 100½ �=30
¼ 3:00

and Table 4.1 gives, E(z > k) ¼ 0.00. The adjusted forecast now becomes,

Fa(τ) ¼ xo þ E(z > k)σ
¼ 180 þ 0.00 � 30
¼ 180.0

4.6 Advance Demand 65



Note when the advance demand is three or more standard errors above the
forecast, F(τ), the adjusted forecast is the same as the advance demand, xo.

4.7 Summary

A particular value of z ¼ k, from the standard normal, is selected as a left-location
parameter and the average of the difference from all values of z larger than k is
computed and called the partial expectation of z greater than k. The mathematical
notation is E(z > k), and table values of E(z > k) are listed for k ¼ �3.0 to þ3.0. In
the same way, a right location parameter, k, is selected and the difference from all z
values smaller than k is computed and noted as E(z < k). Table values for E(z < k) are
listed for k¼�3.0 toþ3.0. The partial expectation is used in inventory management
to generate the safety stock for each item in the inventory, and also is used to adjust a
forecast when advance demands become available for an item.
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Chapter 5
Left Truncated Normal

5.1 Introduction

The left-truncated normal distribution, (LTN), takes on many shapes from normal to
exponential-like. It has one parameter, k, the left-location parameter of the standard
normal distribution. The shape of the distribution follows the normal for all standard
normal z values larger than k, and thereby the distribution skews to the right. The
statistical measures of this distribution are readily computed and include the mean,
standard deviation, coefficient-of-variation, cumulative probability, and all percent-
points needed. Three sets of table values are listed in the chapter allowing the user
easy access and use to the distribution choice. One of the tables includes a range of
percent-points denoted as tα where the probability of t less or equal to tα is α. The
percent-points start with a value of zero and this is located at the left-location
parameter, and since all subsequent values are larger, they thereby are all positive
quantities. In addition to the tables, plots of the distribution are provided to observe
the various shapes and relation to k. When sample data is available, the average,
standard deviation and coefficient-of variation are easily computed, and the analyst
applies these to identify the left-truncated normal distribution that best fits the
sample data. This allows the analyst to estimate any probabilities needed on the
sample data, without having to always assume the normal distribution. Examples are
provided to help the user on the application of the distribution. In Chap. 7 (Truncated
Normal Spread Ratio), another statistic is introduced that further aids the analyst to
identify the type of distribution (left-truncated, right-truncated, normal) that best fits
sample data, and also provides an estimate of the low limit for the left-truncated
normal, and the high-limit for the right truncated normal. This chapter pertains to a
left-truncated normal, while the next chapter describes the right-truncated normal.

In 1980, Thomopoulos, [1] developed tables on the left-truncated normal distri-
bution and described how to apply them to generate the safety stock for items in the
inventory. In 2001, Johnson studied the characteristics of the truncated normal
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distribution, [2]; and in 2002, Johnson and Thomopoulos, [3], provide tables on the
left-truncated normal. A new set of tables is generated in this chapter.

5.2 Left-Location Parameter

The left-truncated normal distribution derives from the standard normal distribution
where a location parameter, k, is set and includes the z values above k. Hence, only
z > k are included in the distribution. For stability, a new variable, t, is called where
t ¼ (z – k) and t � 0. The probability density of t is denoted as g(t) and the
cumulative probability distribution is G(t), and both are obtained as below:

g tð Þ ¼ f zð Þ=H kð Þ
G tð Þ ¼ F zð Þ � F kð Þ½ �=H kð Þ

where f(z) is the probability density at z for the standard normal, and H(k) is the
complementary cumulative distribution of the standard normal when z ¼ k.

5.3 Mathematical Equations

Some of the mathematical relationships pertaining to the left-truncated normal
distribution are listed below:

f zð Þ ¼ 1=
ffiffiffiffiffi
2π

p� �
e�z2=2 ¼ probability density of z

F kð Þ ¼ P z � kð Þ ¼
Z k

�1
f zð Þdz ¼ cumulative probability of z ¼ k

H(k) ¼ P(z > k) ¼ 1 – F(k) ¼ complementary probability of z ¼ k

Z1

k

zf zð Þdz ¼ f kð Þ

E z > kð Þ ¼
Z 1

k
z� kð Þf zð Þdz ¼ f kð Þ � kH kð Þ

E z > kð Þ2
h i

¼
Z1

k

z� kð Þ2f zð Þdz ¼ �kf kð Þ þ H kð Þ 1þ k2
� �

E(t)k ¼ E(z > k)/H(k) ¼ expected value of t given k
E(t2)k ¼ E[(z > k)2]/H(k) ¼ expected value of t2 given k
V(t)k ¼ E(t2)k – E(t)k

2 ¼ variance of t given k
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μt(k) ¼ E(t)k ¼ mean of t given k
σt kð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

V tð Þk
p ¼ standard deviation of t given k

Note since z is a continuous variable, F(k) ¼ P(z � k) ¼ P(z < k).

5.4 Table Entries

Table 5.1 records the statistical values for the left-truncated normal variable, t, when
the location parameter, k, ranges as [�3.0, (0.1), 3.0]. The statistical values listed are
the mean, μt(k); standard deviation, σt(k); and coefficient of variation, covt(k). Note
at k ¼ �3.0, the coefficient of variation is near 0.33, signifying the distribution is
like a normal distribution. At k ¼ þ3.0, the coefficient of variation is approaching
1.00, where the shape is like and exponential distribution. See Fig. 5.1 that depicts
the shape of the probability density of t for various location parameters, k.

The way to find the Table 5.1 entries μt(k), σt(k) and covt(k) for a location
parameter k is described below: Table 3.1 is searched to find f(k) and H(k) for the
selected value of k. Next the partial expectations of (z > k) are computed as follows:

E z > kð Þ ¼ f kð Þ � kH kð Þ
E z > kð Þ2
h i

¼ H kð Þ 1þ k2
� �� kf kð Þ

This now allows deriving the expected values for the left-truncated normal
variable, t, as below:

E tð Þk ¼ E z > kð Þ=H kð Þ
E t2ð Þk ¼ E z > kð Þ2

h i
=H kð Þ

V tð Þk ¼ E t2ð Þk � E tð Þk2

Thereby,

μt kð Þ ¼ E tð Þk
σt kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
V tð Þk

q

covt kð Þ ¼ σt kð Þ=μt kð Þ

Example 5.1 Note in Table 5.1, when the location parameter is k¼ 1.0: μt(k) 0.525,
σt(k) ¼ 0.446, and covt(k) ¼ 0.850. The computations to obtain these results are
shown in the four steps below:

1. Table 3.1 is called when k ¼ 1.0 to find:

f kð Þ ¼ 0:242
H kð Þ ¼ 0:159:
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Table 5.1 Left truncated normal distribution sorted by location parameter k; with mean μt(k);
standard deviation σt(k); and coefficient of variation covt(k)

k μt(k) σt(k) covt(k)

�3.0 3.004 0.993 0.331

�2.9 2.906 0.991 0.341

�2.8 2.808 0.989 0.352

�2.7 2.710 0.986 0.364

�2.6 2.614 0.982 0.376

�2.5 2.518 0.978 0.388

�2.4 2.423 0.972 0.401

�2.3 2.329 0.966 0.415

�2.2 2.236 0.959 0.429

�2.1 2.145 0.951 0.443

�2.0 2.055 0.942 0.458

�1.9 1.968 0.931 0.473

�1.8 1.882 0.920 0.489

�1.7 1.798 0.907 0.504

�1.6 1.717 0.894 0.520

�1.5 1.639 0.879 0.536

�1.4 1.563 0.863 0.552

�1.3 1.490 0.847 0.569

�1.2 1.419 0.830 0.585

�1.1 1.352 0.812 0.601

�1.0 1.288 0.794 0.616

�0.9 1.226 0.775 0.632

�0.8 1.168 0.756 0.647

�0.7 1.112 0.736 0.662

�0.6 1.059 0.717 0.677

�0.5 1.009 0.697 0.691

�0.4 0.962 0.678 0.705

�0.3 0.917 0.659 0.718

�0.2 0.875 0.640 0.731

�0.1 0.835 0.621 0.744

0.0 0.798 0.603 0.756

0.1 0.763 0.585 0.767

0.2 0.729 0.568 0.778

0.3 0.698 0.551 0.789

0.4 0.669 0.534 0.799

0.5 0.641 0.518 0.808

0.6 0.615 0.503 0.817

0.7 0.590 0.488 0.826

0.8 0.567 0.473 0.834

0.9 0.546 0.460 0.842

1.0 0.525 0.446 0.850

1.1 0.506 0.433 0.857

(continued)
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2. The partial expectations are now computed:

E(z > k) ¼ f(k) � kH(k) ¼ 0.242 –1.0 � 0.159 ¼ 0.083
E[(z > k)2] ¼ H(k)(1 þ k2) – kf(k) ¼ 0.159(1 þ 12) – 1 � 0.242 ¼ 0.076

3. The expected values for variable t are the following:

E(t)k ¼ E(z > k)/H(k) ¼ 0.083/0.159 ¼ 0.522
E(t2)k ¼ E[(z > k)2]/H(k) ¼ 0.076/0.159 ¼ 0.478
V(t)k ¼ E(t2)k – E(t)k

2 ¼ 0.478 – 0.5222 ¼ 0.206

4. Finally, the mean, standard deviation and coefficient of variation for t are:

μt(k) ¼ E(t)k ¼ 0.522
σt kð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

V tð Þk
p ¼ 0.453

covt(k) ¼ σt(k)/μt(k) ¼ 0.868

The difference in the table entries from the computations is due to rounding.

Table 5.1 (continued)

k μt(k) σt(k) covt(k)

1.2 0.488 0.421 0.863

1.3 0.470 0.409 0.870

1.4 0.454 0.398 0.876

1.5 0.439 0.387 0.882

1.6 0.424 0.376 0.887

1.7 0.410 0.366 0.892

1.8 0.397 0.356 0.897

1.9 0.385 0.347 0.902

2.0 0.373 0.338 0.906

2.1 0.362 0.330 0.910

2.2 0.351 0.321 0.914

2.3 0.341 0.313 0.918

2.4 0.332 0.306 0.921

2.5 0.323 0.298 0.924

2.6 0.314 0.291 0.926

2.7 0.306 0.284 0.928

2.8 0.298 0.277 0.929

2.9 0.291 0.270 0.931

3.0 0.283 0.264 0.933
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5.5 More Tables

Table 5.2 contains the statistical values for left-truncated normal variable, t, when the
cumulative probability of the location parameter k, F(k), ranges as [0.01, (0.01),
0.99]. The statistical values listed are the mean, μt(k); standard deviation, σt(k); and
coefficient of variation, covt(k). Note at F(k) ¼ 0.01, the coefficient of variation is
near 0.411, signifying the distribution is similar to a normal distribution. At F
(k) ¼ 0.99, the coefficient of variation is approaching 1.00, where the shape is like
an exponential distribution.

0 2 4

k=2.0

0 2 4

k=1.0

-5 0 5

k=-3.0

-4 -2 0 2 4

k=-2.0

-2 0 2 4

k=-1.0

-2 0 2 4

k=0.0

-2 0 2 4

k=-0.5

-2 0 2 4

k=-1.5

Fig. 5.1 Depiction of left-truncated normal when k ¼ �3 to þ2
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Table 5.2 Left truncated normal distribution sorted by standard normal cumulative probability F
(k) of location parameter k; with mean μt(k); standard deviation σt(k); and coefficient of variation
covt(k)

F(k) k μt(k) σt(k) covt(k)

0.01 �2.327 2.354 0.968 0.411

0.02 �2.054 2.104 0.947 0.450

0.03 �1.881 1.951 0.929 0.476

0.04 �1.751 1.841 0.914 0.496

0.05 �1.645 1.754 0.900 0.513

0.06 �1.555 1.682 0.887 0.527

0.07 �1.476 1.620 0.875 0.540

0.08 �1.405 1.567 0.864 0.552

0.09 �1.341 1.519 0.854 0.562

0.10 �1.282 1.477 0.844 0.571

0.11 �1.227 1.438 0.834 0.580

0.12 �1.175 1.402 0.825 0.589

0.13 �1.126 1.370 0.817 0.596

0.14 �1.080 1.339 0.808 0.604

0.15 �1.036 1.311 0.800 0.611

0.16 �0.994 1.284 0.792 0.617

0.17 �0.954 1.259 0.785 0.623

0.18 �0.915 1.235 0.778 0.629

0.19 �0.878 1.213 0.770 0.635

0.20 �0.841 1.191 0.764 0.641

0.21 �0.806 1.171 0.757 0.646

0.22 �0.772 1.152 0.750 0.651

0.23 �0.739 1.133 0.744 0.656

0.24 �0.706 1.115 0.737 0.661

0.25 �0.674 1.098 0.731 0.666

0.26 �0.643 1.081 0.725 0.671

0.27 �0.612 1.066 0.719 0.675

0.28 �0.582 1.050 0.713 0.679

0.29 �0.553 1.035 0.708 0.684

0.30 �0.524 1.021 0.702 0.688

0.31 �0.495 1.007 0.696 0.692

0.32 �0.467 0.993 0.691 0.696

0.33 �0.439 0.980 0.686 0.700

0.34 �0.412 0.967 0.680 0.703

0.35 �0.385 0.955 0.675 0.707

0.36 �0.358 0.943 0.670 0.711

0.37 �0.331 0.931 0.665 0.714

0.38 �0.305 0.919 0.660 0.718

0.39 �0.279 0.908 0.655 0.721

0.40 �0.253 0.897 0.650 0.725

0.41 �0.227 0.886 0.645 0.728

(continued)

5.5 More Tables 73



Table 5.2 (continued)

F(k) k μt(k) σt(k) covt(k)

0.42 �0.202 0.876 0.640 0.731

0.43 �0.176 0.865 0.635 0.734

0.44 �0.151 0.855 0.631 0.738

0.45 �0.125 0.845 0.626 0.741

0.46 �0.100 0.835 0.621 0.744

0.47 �0.075 0.826 0.617 0.747

0.48 �0.050 0.816 0.612 0.750

0.49 �0.025 0.807 0.607 0.753

0.50 0.000 0.798 0.603 0.756

0.51 0.025 0.789 0.598 0.758

0.52 0.050 0.780 0.594 0.761

0.53 0.075 0.771 0.589 0.764

0.54 0.100 0.763 0.585 0.767

0.55 0.125 0.754 0.580 0.769

0.56 0.151 0.746 0.576 0.772

0.57 0.176 0.737 0.571 0.775

0.58 0.202 0.729 0.567 0.777

0.59 0.227 0.721 0.562 0.780

0.60 0.253 0.713 0.558 0.782

0.61 0.279 0.705 0.553 0.785

0.62 0.305 0.697 0.549 0.788

0.63 0.331 0.689 0.545 0.790

0.64 0.358 0.681 0.540 0.793

0.65 0.385 0.674 0.536 0.795

0.66 0.412 0.666 0.531 0.798

0.67 0.439 0.658 0.527 0.801

0.68 0.467 0.650 0.522 0.803

0.69 0.495 0.643 0.518 0.806

0.70 0.524 0.635 0.513 0.808

0.71 0.553 0.628 0.509 0.811

0.72 0.582 0.620 0.504 0.814

0.73 0.612 0.612 0.500 0.816

0.74 0.643 0.605 0.495 0.819

0.75 0.674 0.597 0.491 0.822

0.76 0.706 0.590 0.486 0.824

0.77 0.739 0.582 0.481 0.827

0.78 0.772 0.574 0.477 0.830

0.79 0.806 0.566 0.472 0.833

0.80 0.841 0.559 0.467 0.836

0.81 0.878 0.551 0.462 0.839

0.82 0.915 0.543 0.457 0.842

0.83 0.954 0.535 0.452 0.845

(continued)
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The way to find the Table 5.2 entries k, μt(k), σt(k) and covt(k) for the cumulative
probability F(k) is described below: First, Table 3.2 is searched to find the value of k
that is associated with F(k). Next, Table 3.1 yields f(k) and H(k) for the value of
k. Then, the partial expectations of (z > k) are computed as follows:

E z > kð Þ ¼ f kð Þ � kH kð Þ
E z > kð Þ2
h i

¼ H kð Þ 1þ k2
� �� kf kð Þ

Finally, the expected values for the left-truncated normal variable, t, are below:

E tð Þk ¼ E z > kð Þ=H kð Þ
E t2ð Þk ¼ E z > kð Þ2

h i
=H kð Þ

V tð Þk ¼ E t2ð Þk � E tð Þk2

Thereby,

μt kð Þ ¼ E tð Þk
σt kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
V tð Þk

q

covt kð Þ ¼ σt kð Þ=μt kð Þ

Example 5.2 Note in Table 5.2, when the cumulative probability of the location
parameter is F(k) ¼ 0.40: μt(k) ¼ 0.897, σt(k) ¼ 0.650, and covt(k) ¼ 0.725. The
computations to obtain these results are shown in the five steps below:

1. Table 3.2 is called when F(k) ¼ 0.40 to find k ¼ �0.253.

Table 5.2 (continued)

F(k) k μt(k) σt(k) covt(k)

0.84 0.994 0.526 0.447 0.849

0.85 1.036 0.518 0.441 0.852

0.86 1.080 0.509 0.436 0.856

0.87 1.126 0.501 0.430 0.860

0.88 1.175 0.492 0.425 0.864

0.89 1.227 0.482 0.419 0.868

0.90 1.282 0.473 0.413 0.873

0.91 1.341 0.463 0.406 0.878

0.92 1.405 0.452 0.400 0.883

0.93 1.476 0.441 0.392 0.890

0.94 1.555 0.429 0.385 0.897

0.95 1.645 0.416 0.377 0.905

0.96 1.751 0.402 0.367 0.914

0.97 1.881 0.385 0.357 0.927

0.98 2.054 0.365 0.344 0.944

0.99 2.327 0.336 0.326 0.970
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2. The values of f(k) and H(k) are obtained by:

f kð Þ ¼ 1=
ffiffiffiffiffi
2π

p� �
e�k2=2 ¼ 0:386

H kð Þ ¼ 1� F kð Þ ¼ 0:60

3. The partial expectations are now computed:

E(z > k) ¼ f(k) � kH(k) ¼ 0.386 þ0.253 � 0.600 ¼ 0.538.
E[(z > k)2] ¼ H(k)(1 þ k2) – kf
(k)

¼ 0.60[1 þ (�0.253)2] þ0.253 � 0.386 ¼
0.736

4. The expected values for variable t are the following:

E(t)k ¼ E(z > k)/H(k) ¼ 0.538/0.60 ¼ 0.897
E(t2)k ¼ E[(z > k)2]/H(k) ¼ 0.736/0.60 ¼ 1.227
V(t)k ¼ E(t2)k – E(t)k

2 ¼ 1.227 – 0.8972 ¼ 0.424

5. Finally, the mean, standard deviation and coefficient of variation for t are:

μt(k) ¼ E(t)k ¼ 0.897
σt kð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

V tð Þk
p ¼ 0.651

covt(k) ¼ σt(k)/μt(k) ¼ 0.726

The difference in the table results from the computations is due to rounding.

5.6 Left Truncated Distribution

Table 5.3 gives selected values of the t variable for the left-truncated normal
distribution when the location parameter, k, ranges as: [�3.0, (0.1), 3.0], and the
cumulative probability distribution, G(t) spans from 0.01 to 0.99. Recall, t begins at
zero and is computed as shown below.

Given k and G(t), then:

G tð Þ ¼ F zð Þ � F kð Þ½ �=H kð Þ
1� G tð Þ½ � ¼ H zð Þ=H kð Þ,

where Table 3.1 yields H(k).
Hence,

H zð Þ ¼ 1� G tð Þ½ �H kð Þ
and Table 3.2 gives the associated value of z. Finally,

t ¼ z� kð Þ
is obtained.
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Example 5.3 Table 5.3 shows when the location parameter is k ¼ �1.0 and the
cumulative distribution of t is G(t) ¼ 0.50, the value of the left-truncated variable is
t ¼ 1.20. The four steps below show how this value is obtained:

1. Table 3.1 yields H(k) ¼ H(�1.0) ¼ 0.841
2. Using, H(z) ¼ [1 – G(t)]H(k) ¼ [1–0.50] � 0.841 ¼ 0.420
3. Table 3.2 shows H(0.202) ¼ 0.420, thereby, z ¼ 0.202
4. t ¼ (z – k) ¼ [0.202 – (�1.0)] ¼ 1.20

5.7 Application to Sample Data

To apply the LTN Tables 5.1 and 5.3, to sample data, an estimate of the sample
coefficient-of-variation, cov, is needed. The cov must be computed at a point where
the low limit, γ, is zero. Hence, the cov estimate is obtained as below:

if γ ¼ 0: cov ¼ s/�x
if γ 6¼ 0: cov ¼ s/(�x – γ)

A way to estimate γ is provided in Chap. 7 (Truncated Normal Spread Ratio).
The sample data includes the following:

�x¼ sample mean
s ¼ sample standard deviation
γ ¼ low-limit
cov ¼ s/(�x � γ) ¼ adjusted coefficient of variation

The table statistics includes the following:

k ¼ left-location parameter,
μt(k) ¼ mean of t at k
σt(k) ¼ standard deviation of t at k

The percent-point conversions concerning variables x and t are as follows:

tα ¼ μt kð Þ þ σt kð Þ �
xα� �x

�
=s

� �

xα ¼ �xþ s tα� μt kð Þð Þ=σt kð Þ½ �
where:

tα ¼ α-percent-point of variable t
xα ¼ α-percent-point of variable x

Example 5.4 Consider sample data where the variable, x, is zero or larger (γ ¼ 0);
the mean is �x ¼ 50, and the standard deviation is s ¼ 30. Assume the analyst is
seeking the probability for x � 20. Because the coefficient-of-variation is cov ¼ 30/
50 ¼ 0.60, the left-truncated normal distribution applies. To find P(x � 20), the
following four steps apply.
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1. Table 5.2 is searched to locate the nearest left-location parameter, k, that has
cov¼ 0.60, and this is k¼�1.08. The associated mean and standard deviation of
t are:

μt kð Þ ¼ 1:339
σt kð Þ ¼ 0:808

2. The value, tα, that corresponds to xα ¼ 20 is obtained as below:

tα ¼ μt kð Þ þ σt kð Þ �
xα� �x

�
=s

� �
¼ 1:339þ 0:808 20� 50ð Þ=30½ � ¼ 0:531

3. Table 5.3 is searched for the closest value of k ¼ �1.08, (�1.1), and t ¼ 0.531
(0.60) and finds the associate measure of G(t) ¼ 0.20.

4. With interpolation, P(t � 0.531) � 0.17.
Hence, P(x � 20) � 0.17.

See Fig. 5.2.

Example 5.5 Consider the sample data of Example 5.4 again where �x¼ 50, s ¼ 30,
cov ¼ 0.60, and recall, x � 0. Suppose the analyst wants to find the median value of
x, where P(x � x0.50) ¼ 0.50. To obtain, the following three steps are taken.

1. Table 5.2 is searched to locate the nearest left-location parameter, k, that has
cov ¼ 0.60. This is k ¼ �1.08, and the variable is denoted as t. The associated
mean and standard deviation of t are:

μt kð Þ ¼ 1:339
σt kð Þ ¼ 0:808

2. Table 5.3 is searched with the closest k, (�1.1) and G(t) ¼ 0.50 to find:

t0:50 ¼ 1:27

3. The corresponding value of x0.50 is now found as follows:

xα ¼ �xþ s
�
tα� μt kð Þð Þ=σt kð Þ ¼ 50þ 30 1:27� 1:339½ Þ=0:808� ¼ 47:4

Hence, P(x � 47.4) � 0.50.

0 50 100 150

k=-1.08 & g= 0Fig. 5.2 Plot depicting
distribution from
Example 5.4
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Example 5.6 Suppose sample data from a left-truncated normal distribution yields
an average of 50, standard deviation 20, and the data has a low-limit of γ ¼ 10. Of
need here is to find the 90 percent-point of the data. The vital stats of the sample are
as follows:

γ ¼ 10

�x ¼ 50

s ¼ 20

To find x0.90, the following four steps are followed:

1. The adjusted cov is computed as below:

cov ¼ s=
�
x � γ

� ¼ 20= 50� 10ð Þ ¼ 0:50

2. Table 5.1 is searched to locate the nearest left-location parameter, k, that has
cov¼ 0.50, and this is k¼�1.70. The associated mean and standard deviation of
t are:

μt kð Þ ¼ 1:798
σt kð Þ ¼ 0:907

3. Table 5.3 is searched with the closest k, (�1.7) and G(t) ¼ 0.90 to find:

t0:90 ¼ 3:01

4. The corresponding value of x0.90 is found as follows:

xα ¼ �xþ s
�
tα� μt kð Þð Þ=σt kð Þ

¼ 50þ 20 3:01� 1:798ð Þ½ Þ=0:907� ¼ 76:70

See Fig. 5.3 that depicts the distribution.

0 50 100 150

k = -1.70 & g = 10Fig. 5.3 Plot depicting
distribution from
Example 5.6
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5.8 LTN for Inventory Control

The key function in inventory management is to determine when to replenish stock
and how much for every item in each stock-holding location. To do this efficiently, a
forecast, F, of every item is revised each month; along with an estimate of the
standard deviation, s, of the forecast error. The coefficient of variation, cov, for each
item is measured as cov ¼ s/F. The mathematical methods that control the inventory
are based on the forecast and the standard deviation, and mostly assumes the demand
variation is normally distributed. But, with the author’s experience, most of the items
in the stock holding locations (distributions centers, dealers, stores) are not normally
distributed; they are distributed as the left-truncated normal distribution with the low
limit of γ ¼ 0. Examples for an automotive service part distribution center and for a
retailer are provided.

Automotive Service Parts Distribution Center

Below are statistics on the percent of parts by cov (cov, % parts) from a service parts
automotive distribution center with over 100,000 part numbers and one-billion
dollars in annual sales. The forecasts are revised each month and the replenish
needs are determined every day. The parts with cov of 0.50 or less (38%) are the
more high demand parts; while the parts with cov of 0.50 and higher (62%) are
mainly the lower demand parts. For the parts with the higher cov, it is important to
use the left-truncated normal with γ ¼ 0, rather than the normal to compute the
inventory need; otherwise, the system will not yield the level of service that is
planned.

Cov % parts
0.00–0.30 26
0.30–0.50 12
0.50–0.80 12
0.80–1.00 10
1.00 - 40
sum 100

Retail Products

Most items in a retail store are of the low demand type, as described in
Thomopoulos, [4]. These are items that have an average monthly demand of two
or less. Could be pricey items like: televisions, refrigerators, power tools, furniture,
mattresses, silverware, china, with many models in competition. Other retail items
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also have many competitive models, like toasters, razors, toothpaste, hair cream, and
lamps. The more models in competition, the less demand per individual model.
Many other items are by style with a variety of sizes, like: shoes, sweaters, shirts,
trousers, dresses, coats, and so on. Each size of the style is a stock-keeping-unit,
(sku). In most scenarios, the demand for an individual sku is small and most are less
than one per month. The monthly demands for low demand items are not normally
distributed; instead, the Poisson or the left-truncated normal, with the low limit set at
zero, should be used in the inventory control computations.

To illustrate why the demands are quite low in an inventory store, two examples
from the shoe industry are sited. Consider a large shoe store with 500 styles and an
average of 20 sizes per style, representing 10,000 skus. Assume for a normal month,
the store sells 2000 pair. The average demand per sku is thereby 0.20 pair. For a
more moderate store, the number of styles is 300 and the average number of sizes per
style is 15. In this scenario, the store carries 4500 skus. If the average number of sales
per month is 1500 pair, the average demand per sku is 0.33 pair.

5.9 Summary

A particular value of the standard normal, z ¼ k, is selected as a left location
parameter and all values of z larger than k are allowed in the left-truncated normal
distribution. The mathematical equations for the mean, standard deviation, coeffi-
cient-of-variation, cumulative probability, and a variety of percent-points are devel-
oped. Table values for k ranging from �3.0 to þ3.0 are listed. Another table of F
(k) ranging for 0.01 to 0.99 is also listed. A third table lists a variety of percent-points
(0.01 to 0.99) as k flows from �3.0 to þ3.0. When an analyst has sample data and
the coefficient of variation is computed, the analyst can estimate which value of k
best fits the data; and thereby with the tables can compute all the probabilities needed
for the sample data, without the need to always assume the data is normally
distributed.
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Chapter 6
Right Truncated Normal

6.1 Introduction

The right-truncated normal distribution (RTN) takes on many shapes, from a normal
to an inverted exponential-like. The distribution has one parameter, k, called the
right-location parameter of the standard normal distribution. The distribution
includes all the standard normal values smaller than k, and thereby the density
skews towards the left-tail. The important statistics are readily computed and are
the following: mean, standard deviation, coefficient-of-variation, cumulative prob-
ability, and a variety of percent-points. Table values are provided to allow the analyst
to apply the distribution to sample data. Also included is a series of plots that show
the analyst how the density is shaped with respect to the right-location parameter.
The percent-points are all negative values since the distribution starts with zero at the
right-truncated location parameter, and subsequently moves downward to the left.
Hence, the average and coefficient-of-variation are also negative values. When
sample data is available, the average, standard deviation and coefficient-of variation
are easily computed, and the analyst can apply these to identify the right-truncated
normal distribution that best fits the sample data. This also allows the analyst to
estimate any probabilities needed on the sample data, without having to always
assume the normal distribution. Examples are provided to help the user on the
application of the distribution. In Chap. 7, (Truncated Normal Spread Ratio), another
statistic is introduced and allows the analyst to easily identify the type of distribution
(left-truncated, right-truncated, normal) that best fits sample data. This chapter
pertains to a right-truncated normal distribution; while the prior chapter describes
the left-truncated normal. Recall from Chap. 1, (Continuous Distributions), only the
beta distribution offers a choice of shapes that skew to the left, and thereby this right-
truncated normal distribution may well be a welcome alternative. Furthermore, the
percent-points of the right-truncated normal are far easier to compute that those of
the beta distribution.
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In 2001, Johnson [1] studied the left and right truncated normal distributions.
Also in 2001, Johnson and Thomopoulos [2] generated tables on the right-truncated
normal distribution. A complete new set of tables is produced in this chapter.

6.2 Right Truncated Distribution

The right-truncated normal distribution derives from the standard normal distribu-
tion where a location parameter, k, is set and only the z values of the standard normal
below k are allowed. Hence, only z < k are included in the distribution. For stability,
a new variable, t, is called where t ¼ (z – k) and t � 0. So the density of t is denoted
as g(t) and the cumulative distribution is G(t). Note the following:

g tð Þ ¼ f zð Þ=F kð Þ
G tð Þ ¼ F zð Þ=F kð Þ

where f(z) is the probability density at z for the standard normal, F(z) ¼ cumulative
probability of z, and F(k) is the cumulative probability of the standard normal when
z ¼ k.

6.3 Mathematical Equations

Some of the mathematical relationships pertaining to the right-truncated normal
distribution are listed below:

f zð Þ ¼ 1=
ffiffiffiffiffi
2π

p� �
e�z2=2 ¼ probability density of z

F kð Þ ¼ P z � kð Þ ¼
Z k

�1
f zð Þdz ¼ cumulative probability of z ¼ k

H(k) ¼ P(z > k) ¼ 1 – F(k) ¼ complementary probability of z ¼ k

Some related integrals are below:

Z k

�1
zf zð Þdz ¼ �f kð Þ

Z k

�1
z2f zð Þdz ¼ �kf kð Þ þ F kð Þ

Some relations on the partial expectation of (z < k)

E z < kð Þ ¼
Z k

�1
z� kð Þf zð Þdz ¼ �f kð Þ � kF kð Þ

86 6 Right Truncated Normal



E z < kð Þ2
h i

¼
Z k

�1
z� kð Þ2f zð Þdz ¼ kf kð Þ þ F kð Þ 1þ k2

� �

6.4 Variable t Range

Below are some relations on the variable t ¼ (z – k) where z < k and t is negative.

E(t)k ¼ E(z < k)/F(k) ¼ expected value of t at k
E(t2)k ¼ E[(z < k)2]/F(k) ¼ expected value of t2 at k
V(t)k ¼ E(t2)k – E(t)k

2 ¼ variance of t at k
μt(k) ¼ E(t)k ¼ mean of t at k
σt kð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

V tð Þk
p ¼ standard deviation of t at k

For this analysis, the limits on z are �3, thereby the high and low limits on t are:
[0,–(3 þ k)]. Some samples on the range of t as related to k follow (Fig. 6.1):

At k ¼ 3: t ¼ (0,–6)
At k ¼ 2: t ¼ (0.–5)
At k ¼ 1: t ¼ (0,–4)
At k ¼ 0: t ¼ (0,–3)
At k ¼ �1: t ¼ (0,–2)
and so on.

6.5 Table Entries

Table 6.1 contains a list of statistical measures from the right-truncated normal
distribution with right-location parameter, k, ranging as: [�3.0, (0.1), 3.0]. The
random variable is denoted as t where t ranges from –(3 þ k) to 0. For each k, the
table gives the values of μt(k), σt(k), and covt(k).

The four steps below describe how the statistical measures are obtained for each
value of k.
1. For a given k, Table 3.1 is called to find:

f kð Þ and F kð Þ:

2. Now compute the partial expectations:

E z < kð Þ ¼ �f kð Þ � kF kð Þ
E z < kð Þ2
h i

¼ kf kð Þ þ F kð Þ 1þ k2
� �
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3. For t ¼ (z – k) with z < k, calculate the expectations of t:

E tð Þk ¼ E z < kð Þ=F kð Þ
E t2ð Þk ¼ E z < kð Þ2

h i
=F kð Þ

V tð Þk ¼ E t2ð Þk � E tð Þk2

4. The mean, standard deviation and coefficient-of-variation of t are obtained as
below:

μt kð Þ ¼ E tð Þk
σt kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
V tð Þk

p

-4.0 -2.0 0.0 2.0 4.0

k=3

-4.0 -2.0 0.0 2.0

k=1

-4.0 -3.0 -2.0 -1.0 0.0

k=-1

-4.0 -3.0 -2.0 -1.0 0.0 1.0

k=0

-4.0 -2.0 0.0 2.0 4.0

k=2

-4.0 -3.0 -2.0 -1.0 0.0

k=-2

-4.0 -3.0 -2.0 -1.0 0.0 1.0

k=0.5

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0

k=1.5

Fig. 6.1 Depiction of right-truncated normal for various values of k
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covt kð Þ ¼ σt kð Þ=μt kð Þ

Example 6.1 Note from Table 6.1, when k ¼ 1.0: μt(k) ¼ �1.288, σt(k) ¼ 0.794,
and covt(k) ¼ �0.616. Below shows how these results are obtained.

1. From Table 3.1 and k ¼ 1.0,

Table 6.1 Variable t of right truncated normal distribution sorted by location parameter k; with
mean μt(k); standard deviation σt(k); and the coefficient of variation cov

k μt(k) σt(k) cov k μt(k) σt(k) cov

�3.0 �0.283 0.264 �0.933 0.0 �0.798 0.603 �0.756

�2.9 �0.291 0.270 �0.931 0.1 �0.835 0.621 �0.744

�2.8 �0.298 0.277 �0.929 0.2 �0.875 0.640 �0.731

�2.7 �0.306 0.284 �0.928 0.3 �0.917 0.659 �0.718

�2.6 �0.314 0.291 �0.926 0.4 �0.962 0.678 �0.705

�2.5 �0.323 0.298 �0.924 0.5 �1.009 0.697 �0.691

�2.4 �0.332 0.306 �0.921 0.6 �1.059 0.717 �0.677

�2.3 �0.341 0.313 �0.918 0.7 �1.112 0.736 �0.662

�2.2 �0.351 0.321 �0.914 0.8 �1.168 0.756 �0.647

�2.1 �0.362 0.330 �0.910 0.9 �1.226 0.775 �0.632

�2.0 �0.373 0.338 �0.906 1.0 �1.288 0.794 �0.616

�1.9 �0.385 0.347 �0.902 1.1 �1.352 0.812 �0.601

�1.8 �0.397 0.356 �0.897 1.2 �1.419 0.830 �0.585

�1.7 �0.410 0.366 �0.892 1.3 �1.490 0.847 �0.569

�1.6 �0.424 0.376 �0.887 1.4 �1.563 0.863 �0.552

�1.5 �0.439 0.387 �0.882 1.5 �1.639 0.879 �0.536

�1.4 �0.454 0.398 �0.876 1.6 �1.717 0.894 �0.520

�1.3 �0.470 0.409 �0.870 1.7 �1.798 0.907 �0.504

�1.2 �0.488 0.421 �0.863 1.8 �1.882 0.920 �0.489

�1.1 �0.506 0.433 �0.857 1.9 �1.968 0.931 �0.473

�1.0 �0.525 0.446 �0.850 2.0 �2.055 0.942 �0.458

�0.9 �0.546 0.460 �0.842 2.1 �2.145 0.951 �0.443

�0.8 �0.567 0.473 �0.834 2.2 �2.236 0.959 �0.429

�0.7 �0.590 0.488 �0.826 2.3 �2.329 0.966 �0.415

�0.6 �0.615 0.503 �0.817 2.4 �2.423 0.972 �0.401

�0.5 �0.641 0.518 �0.808 2.5 �2.518 0.978 �0.388

�0.4 �0.669 0.534 �0.799 2.6 �2.614 0.982 �0.376

�0.3 �0.698 0.551 �0.789 2.7 �2.710 0.986 �0.364

�0.2 �0.729 0.568 �0.778 2.8 �2.808 0.989 �0.352

�0.1 �0.763 0.585 �0.767 2.9 �2.906 0.991 �0.341

0.0 �0.798 0.603 �0.756 3.0 �3.004 0.993 �0.331
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f 1ð Þ ¼ 0:242
F 1ð Þ ¼ 0:841

2. The partial expectations of (z < k) become:

E z < kð Þ ¼ �0:242� 1:0� 0:841 ¼ �1:083

E z < kð Þ2
h i

¼ 1:0� 0:242þ 0:841 1þ 12
� � ¼ 1:924

3. For t ¼ (z-k), the expected values are below:

E tð Þk ¼ �1:083=0:841 ¼ �1:288
E t2ð Þk ¼ 1:924=0:841 ¼ 2:288
V tð Þk ¼ 2:288� �1:288ð Þ2 ¼ 0:629

4. The mean, variance, and coefficient-of-variation of t are now computed:

μt kð Þ ¼ �1:288
σt kð Þ ¼ 0:6290:5 ¼ 0:791
cov ¼ 0:791=� 1:288 ¼ �0:614

Any difference from the table values and the above are due to rounding.

6.6 More Tables

Table 6.2 contains selected values of the t variable for the right-truncated normal
distribution when the location parameter, k, ranges as: [�3.0. (0.1), 3.0], and the
cumulative distribution, G(t) spans from 0.01 to 0.99. Recall, t begins at –(3þ k) and
is computed as shown below.

The four steps that follow describe how the percent-point values of t are obtained
for each combination of k and G(t).

1. Table 3.2 gives the value of F(k) associated with k.
2. The cumulative distribution of t is:

G tð Þ ¼ F zð Þ=F kð Þ
and thereby,

F zð Þ ¼ G tð Þ � F kð Þ
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3. Table 3.1 gives the value of z related to F(z).
4. Hence,

t ¼ z� kð Þ

Example 6.2 Table 6.2, of the right-truncated normal distribution, shows when the
location parameter is k ¼ 1.0, and the cumulative distribution is G(t) ¼ 0.50, the
percent-point is t ¼ �1.20. The four steps below shows the computations.

1. Table 3.1 is called to give F(1) ¼ 0.841 at k ¼ 1.0
2. F(z) ¼ 0.50 � 0.841 ¼ 0.420
3. Table 3.2 shows z ¼ �0.202 at F(z) ¼ 0.420
4. Hence,

t ¼ z� kð Þ ¼ �0:202� 1:0 ¼ �1:202

The difference between the table values and the above computations is due to
rounding.

6.7 Application to Sample Data

To apply the RTN Tables 6.1 and 6.2, to sample data, an estimate of the sample
coefficient-of-variation, cov, is needed. The cov must be computed at a point where
the high-limit, δ, is zero. Hence, the cov estimate is obtained as below:

If δ ¼ 0: cov ¼ s/�x
If δ 6¼ 0: cov ¼ s/(�x – δ)

A way to estimate the high-limit δ is provided in Chap. 7 (Truncated Normal
Spread Ratio).

The sample data includes the following:�x¼ sample average
s ¼ sample standard deviation
δ ¼ high-limit
cov ¼ s/(�x – δ) ¼ adjusted coefficient of variation

The table statistics includes the following:

k ¼ right-location parameter,
μt(k) ¼ mean of t at k
σt(k) ¼ standard deviation of t at k

The percent-point conversions concerning variables x and t are as follows:

tα ¼ μt kð Þ þ σt kð Þ �
xα� �x

�
=s

� �
xα ¼ �xþ s tα� μt kð Þð Þ=σt kð Þ½ �

94 6 Right Truncated Normal



where:

tα ¼ α-percent-point of variable t
xα ¼ α-percent-point of variable x

Example 6.3 A researcher has sample data from a right-truncated normal distribu-
tion where the mean is �x ¼ 50, the standard deviation is s ¼ 5, and high-limit is
δ ¼ 60. The analyst wants to find the probability of x less than 55. To find this
probability, the five steps below are followed.

1. The coefficient-of-variation is cov ¼ s/
�
�x� δ

� ¼ 5/(50–60) ¼ �0.50.
2. Table 6.1 is searched to find k � 1.70 when cov ¼ �0.50. Also, μt(k) ¼ �1.798

and σt(k) ¼ 0.907.
3. Applying: ta ¼ μt kð Þ þ σt kð Þ �

xa� �x
�
=s

� �
¼�1:798þ 0:907 55� 50=5ð Þ½ �
¼ �0:891

4. From Table 6.2 at k ¼ 1.70 and t ¼ �0.891: α � 0.83.
5. Hence, P (x < 55) �0.83.

See Fig. 6.2 for a depiction on the shape of the distribution.

Example 6.4 Suppose sample data from a right-truncated normal are available
whose mean is �x ¼ 200, the standard deviation is s ¼ 30, and the right-location
parameter is δ ¼ 250. Of interest is to find the probability of x less or equal to 210.
To obtain, the four steps below are followed.

1. The adjusted coefficient-of-variation is cov ¼ s/
�
�x � δ) ¼ 30/(200–250) ¼

�0.60.
2. Table 6.1 is searched to find k � 1.10 when cov ¼ �0.60. Also, μt(k) ¼ �1.352

and σt(k) ¼ 0.812.
3. Using xα ¼ 210, the corresponding value of t is obtained as below:

tα¼ μt kð Þ þ σt kð Þ �
xα� �x

�
=s

� �
¼ �1:352þ 0:812 210� 200ð Þ=30½ �
¼ �1:08

Table 6.2 is searched with t ¼ �1.08 and k ¼ 1.10 to find G(t) �0.59.
Hence, P(x � 210) �0.59.
See Fig. 6.3 that depicts the shape of the distribution.

0 20 40 60 80

k=1.70 & d d =60Fig. 6.2 Plot depicting the
distribution of Example 6.3

6.7 Application to Sample Data 95



Example 6.5 Suppose an analyst has sample data from a right-truncated normal
distribution where �x¼ 100, s¼ 16 and the high-limit is δ¼ 120. Of interest is to find
the 0.95-percent-point of x. To accomplish, the four steps below are followed:

1. The adjusted coefficient of variation is:

cov ¼ 16= 100� 120ð Þ ¼ �0:80

2. Table 6.1 is searched with cov ¼ �0.80 to find k � �0.40.
Note also, μt(k) ¼ �0.669 and σt(k) ¼ 0.534.

3. Table 6.2 is searched with k ¼ �0.40 and G(t) ¼ 0.95 to find tα ¼ �0.05.
4. The corresponding value of x is computed as below:

xα ¼ �xþ s tα� μt kð Þð Þ=σt kð Þ½ �
¼ 100þ 16 �0:05� �0:669ð Þ½ �=0:534� ¼ 118:5

See Fig. 6.4.

6.8 Summary

A particular value of the standard normal, z ¼ k, is selected as a right location
parameter and all values of z smaller than k are allowed in a new distribution called
the right-truncated normal. The mathematical equations for the mean, standard
deviation, coefficient-of-variation, cumulative probability, and a variety of percent-
points are developed. Table values for k ranging from �3.0 to þ3.0 are listed. A

0 50 100 150 200 250 300

k=1.10 & d=250Fig. 6.3 Plot depicting the
distribution shape of
Example 6.4

0 50 100 150

k=- 0.40 & d=120 Fig. 6.4 Plot depicting the
shape of the distribution for
Example 6.5
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second table lists a variety of percent-points (0.01–0.99) when k flows from �3.0 to
þ3.0. When an analyst has sample data and the coefficient of variation is computed,
the analyst can estimate which value of k, right-location parameter, best fits the data,
and thereby can compute all the probabilities needed for the sample data, without the
need to always assume the data is from a normal distribution.
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Chapter 7
Truncated Normal Spread Ratio

7.1 Introduction

A new statistic, called the spread ratio, is introduced that allows the analyst to
identify which distribution best fits sample data, where the choice of distributions
are the normal, left-truncated normal (LTN), and right-truncated normal (RTN).
When the choice is the LTN or RTN, the location parameter, k, is also identified. The
spread ratio for each distribution is computed using percent-points, t0.01, t0.99, and
the mean of the distribution, and is a positive number. Using sample data, an
estimate of the spread ratio is easily measured, and when the ratio is near one, the
normal distribution fits the data best; when below one, the LTN is chosen; and when
above one, the RTN is selected. For LTN, the low limit of the population data, γ, is
estimated with use of the sample data and the tables provided on LTN. In the same
way, if the RTN is chosen as the distribution, the high limit, δ, of the population data
is easily estimated using sample data and the tables on RTN. Further, in either event,
LTN or RTN, the analysis allows the researcher to estimate a value xα, where P
(x� xα)¼ α. Also when LTN or RTN, the analysis shows how to estimate the value
of α for a given x` where P(x � x`) ¼ α.

7.2 The Spread Ratio

This chapter seeks a measure to identify the type of distribution to select for a
collection of sample data. The choice is between the normal (N), left-truncated
normal (LTN) and right-truncated normal (RTN). In the event of the latter two, the
location limit is measured, γ for LTN, and δ for RTN. A new measure called the
spread ratio, denoted as θ, is introduced here. This ratio is developed using the t
distributions of the LTN and the RTN. The spread ratio, θ, is computed subsequently
in the chapter. When θ is close to one, the N distribution is selected.
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Otherwise, if θ is less than one, the LTN distribution is chosen; and if θ is greater
than one, the RTN distribution is called.

When an analyst has sample data, denoted as (x1, . . ., xn), and the data is used to
measure various stats of: �x, s, x(1) ¼ min, x(n) ¼ max; these stats are applied to
estimate the spread ratio, θ. The estimated spread ratio is used to identify the type of
distribution that is most likely: N, LTN or RTN. The stats also allow the analyst to
estimate the low limit, γ for LTN, or the high limit, δ for RTN. Further, the analyst
also can estimate the α-percent-point, xα, of the data, where P(x � xα) ¼ α. Further,
for any value x` of variable x, the estimate of α is measured where P(x � x`) ¼ α.

7.3 LTN Distribution Measures

In Chap. 5 (Left Truncated Normal), various measures of the LTN distribution are
defined, and some are used in this chapter. The LTN variable is labeled as t¼ (z – k)
and is greater or equal to zero because only the values of z > k are in use. Recall, z is
the variable from the standard normal distribution, and k is the left location param-
eter. The measures in use here are the following:

t0.01 ¼ 0.01-percent-point
t.0.99 ¼ 0.99-percent-point
μt(k) ¼ mean of variable t with location parameter k
σt(k) ¼ standard deviation of variable t with location parameter k

Some new measures are defined in this chapter. These are the left-spread which is
the width of the interval from t0.01 to μt(k), and the right-spread that is the interval
from μt(k) to t0.99. The spread ratio, denoted as θ, is the ratio of the left-spread over
the right-spread. A summary of these measures is below:

μt kð Þ � t0:01
h i

¼ left� spread

t0:99 � μt kð Þ
h i

¼ right � spread

θ ¼ μt kð Þ � t0:01=
h h

t0:99 � μt kð Þ� ¼ spread-ratio

7.4 LTN Table Entries

Table 7.1 is a list of various measures from the left-truncated normal distribution.
The table is sorted by the left-location parameter, k, with a range of: [�3.0, (0.1),
3.0]. The table includes the percent-points, t0.01 and t0.99; the mean, μt(k), standard
deviation, σt(k), coefficient-of-variation, cov(k), and spread-ratio, θ. Note all values
of θ are less than one, indicating the left-spread is smaller than the right-spread.
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Table 7.1 Left truncated normal by location parameter k, percent-points t0.01, t0.99, mean, μt(k),
standard deviation, σt(k), coefficient-of-variation, cov(k), spread-ratio, θ

k t0.01 t0.99 μt(k) σt(k) cov(k) θ

�3.0 0.720 5.327 3.004 0.993 0.33 0.98

�2.9 0.637 5.227 2.906 0.991 0.34 0.98

�2.8 0.559 5.127 2.808 0.989 0.35 0.97

�2.7 0.486 5.028 2.710 0.986 0.36 0.96

�2.6 0.419 4.928 2.614 0.982 0.38 0.95

�2.5 0.359 4.829 2.518 0.978 0.39 0.93

�2.4 0.305 4.729 2.423 0.972 0.40 0.92

�2.3 0.258 4.630 2.329 0.966 0.41 0.90

�2.2 0.218 4.532 2.236 0.959 0.43 0.88

�2.1 0.183 4.433 2.145 0.951 0.44 0.86

�2.0 0.155 4.335 2.055 0.942 0.46 0.83

�1.9 0.130 4.237 1.968 0.931 0.47 0.81

�1.8 0.110 4.140 1.882 0.920 0.49 0.78

�1.7 0.093 4.043 1.798 0.907 0.50 0.76

�1.6 0.080 3.947 1.717 0.894 0.52 0.73

�1.5 0.068 3.852 1.639 0.879 0.54 0.71

�1.4 0.059 3.758 1.563 0.863 0.55 0.69

�1.3 0.051 3.664 1.490 0.847 0.57 0.66

�1.2 0.044 3.572 1.419 0.830 0.58 0.64

�1.1 0.039 3.481 1.352 0.812 0.60 0.62

�1.0 0.034 3.390 1.288 0.794 0.62 0.60

�0.9 0.030 3.302 1.226 0.775 0.63 0.58

�0.8 0.027 3.214 1.168 0.756 0.65 0.56

�0.7 0.024 3.128 1.112 0.736 0.66 0.54

�0.6 0.022 3.044 1.059 0.717 0.68 0.52

�0.5 0.020 2.962 1.009 0.697 0.69 0.51

�0.4 0.018 2.881 0.962 0.678 0.70 0.49

�0.3 0.017 2.802 0.917 0.659 0.72 0.48

�0.2 0.015 2.724 0.875 0.640 0.73 0.47

�0.1 0.014 2.649 0.835 0.621 0.74 0.45

0.0 0.012 2.576 0.798 0.603 0.76 0.44

0.1 0.011 2.504 0.763 0.585 0.77 0.43

0.2 0.010 2.435 0.729 0.568 0.78 0.42

0.3 0.010 2.367 0.698 0.551 0.79 0.41

0.4 0.009 2.301 0.669 0.534 0.80 0.40

0.5 0.008 2.238 0.641 0.518 0.81 0.40

0.6 0.008 2.176 0.615 0.503 0.82 0.39

0.7 0.007 2.117 0.590 0.488 0.83 0.38

0.8 0.007 2.059 0.567 0.473 0.83 0.38

0.9 0.007 2.003 0.546 0.460 0.84 0.37

1.0 0.007 1.949 0.525 0.446 0.85 0.36

1.1 0.006 1.897 0.506 0.433 0.86 0.36

(continued)
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When k ¼ �3.0, the right and left spreads are almost the same size, similar to a
normal distribution; and at k ¼ 3.0, the left-spread is much smaller than the right-
spread, like an exponential distribution.

7.5 RTN Distribution Measures

In Chap. 6 (Right Truncated Normal), various measures of the RTN distribution are
defined, and some are repeated in this chapter. The RTN variable is defined as
t¼ (z � k) for z < k and thereby t is less or equal to zero. As before, z is the variable
from the standard normal distribution, and k is the right location parameter. The
measures in use here are the following:

t0.01 ¼ 0.01-percent-point
t0.99 ¼ 0.99-percent-point
μt(k) ¼ mean of variable t with location parameter k
σt(k) ¼ standard deviation of variable t with location parameter k

The spread ratio, θ, for the RTN is computed the same as given earlier for the
LTN, and is repeated below:

θ ¼ μt kð Þ � t0:01=
h h

t0:99 � μt kð Þ� ¼ spread-ratio

Table 7.1 (continued)

k t0.01 t0.99 μt(k) σt(k) cov(k) θ

1.2 0.006 1.846 0.488 0.421 0.86 0.35

1.3 0.006 1.797 0.470 0.409 0.87 0.35

1.4 0.006 1.750 0.454 0.398 0.88 0.35

1.5 0.005 1.704 0.439 0.387 0.88 0.34

1.6 0.005 1.660 0.424 0.376 0.89 0.34

1.7 0.005 1.617 0.410 0.366 0.89 0.34

1.8 0.005 1.575 0.397 0.356 0.90 0.33

1.9 0.005 1.534 0.385 0.347 0.90 0.33

2.0 0.004 1.495 0.373 0.338 0.91 0.33

2.1 0.004 1.456 0.362 0.330 0.91 0.33

2.2 0.004 1.417 0.351 0.321 0.91 0.33

2.3 0.004 1.379 0.341 0.313 0.92 0.33

2.4 0.004 1.340 0.332 0.306 0.92 0.33

2.5 0.003 1.301 0.323 0.298 0.92 0.33

2.6 0.003 1.260 0.314 0.291 0.93 0.33

2.7 0.003 1.218 0.306 0.284 0.93 0.33

2.8 0.002 1.173 0.298 0.277 0.93 0.34

2.9 0.002 1.124 0.291 0.270 0.93 0.35

3.0 0.001 1.070 0.283 0.264 0.93 0.36
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7.6 RTN Table Entries

Table 7.2 is a list of various measures from the right-truncated normal distribution.
The table is sorted by the left-location parameter, k, with a range of: [�3.0, (0.1),
3.0]. The table starts with k ¼ �3.0 and includes the percent-points, t0.01 and t0.99;
the mean, μt(k), standard deviation, σt(k), coefficient–of-variation, cov(k), and spread-
ratio, θ. Note all values of θ are greater than one, indicating the left-spread is larger
than the right-spread. When k ¼ 3.0, the right and left spreads are almost the same
size, like a normal distribution. At k ¼ �3.0, the left-spread is much larger than the
right-spread, similar to an inverted exponential distribution.

7.7 Estimating the Distribution Type

Tables 7.1 and 7.2 can now be used to identify the type of distribution, normal or
truncated, that most represents the stats gathered from a set of sample data. This
scenario occurs when an analyst has n data points, (x1, . . ., xn), of a process and
wishes to fit the data to such a distribution. With the data, the following statistics are
listed below:

�x ¼ average
s ¼ standard deviation
x(1) ¼ minimum of sample
x(n) ¼ maximum of sample

7.8 Selecting the Distribution Type

With the above stats, the sample estimate of the spread-ratio is computed as follows:

bθ ¼ �x� x 1ð Þ=½ ½x nð Þ � �x�
Note, the sample spread ratio is always a value greater than zero, and when bθ is

reasonably close to 1.00, the normal distribution should be chosen. When below
1.00, the tilt is toward the LTN, and when above 1.00, it is towards the RTN. The
author does not give a definitive rule on when bθ deviates far enough away from 1.00
to not choose a normal distribution. A general rule on selecting the distribution type
is given below:

If bθ < 0.70: select LTN

If 0.70 � bθ � 1:30 : select Normal

If bθ > 1.30: select RTN
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Table 7.2 Right-truncated normal by location parameter k, percent-points t0.01, t0.99, mean, μt(k),
standard deviation, σt(k), coefficient-of-variation, cov(k), spread-ratio, θ

k t0.01 t0.99 μt(k) σt(k) cov(k) θ

�3.0 �1.494 �0.006 �0.283 0.264 �0.93 4.36

�2.9 �1.397 �0.005 �0.291 0.270 �0.93 3.88

�2.8 �1.365 �0.005 �0.298 0.277 �0.93 3.64

�2.7 �1.359 �0.005 �0.306 0.284 �0.93 3.50

�2.6 �1.366 �0.005 �0.314 0.291 �0.93 3.40

�2.5 �1.381 �0.005 �0.323 0.298 �0.92 3.32

�2.4 �1.401 �0.005 �0.332 0.306 �0.92 3.27

�2.3 �1.426 �0.005 �0.341 0.313 �0.92 3.22

�2.2 �1.454 �0.005 �0.351 0.321 �0.91 3.18

�2.1 �1.485 �0.005 �0.362 0.330 �0.91 3.14

�2.0 �1.518 �0.005 �0.373 0.338 �0.91 3.11

�1.9 �1.553 �0.005 �0.385 0.347 �0.90 3.07

�1.8 �1.590 �0.005 �0.397 0.356 �0.90 3.04

�1.7 �1.629 �0.005 �0.410 0.366 �0.89 3.01

�1.6 �1.670 �0.005 �0.424 0.376 �0.89 2.98

�1.5 �1.713 �0.006 �0.439 0.387 �0.88 2.94

�1.4 �1.757 �0.006 �0.454 0.398 �0.88 2.91

�1.3 �1.803 �0.006 �0.470 0.409 �0.87 2.87

�1.2 �1.851 �0.006 �0.488 0.421 �0.86 2.83

�1.1 �1.901 �0.006 �0.506 0.433 �0.86 2.79

�1.0 �1.953 �0.007 �0.525 0.446 �0.85 2.75

�0.9 �2.006 �0.007 �0.546 0.460 �0.84 2.71

�0.8 �2.062 �0.007 �0.567 0.473 �0.83 2.67

�0.7 �2.119 �0.008 �0.590 0.488 �0.83 2.62

�0.6 �2.179 �0.008 �0.615 0.503 �0.82 2.58

�0.5 �2.240 �0.008 �0.641 0.518 �0.81 2.53

�0.4 �2.303 �0.009 �0.669 0.534 �0.80 2.48

�0.3 �2.369 �0.010 �0.698 0.551 �0.79 2.43

�0.2 �2.436 �0.010 �0.729 0.568 �0.78 2.37

�0.1 �2.506 �0.011 �0.763 0.585 �0.77 2.32

0.0 �2.577 �0.013 �0.798 0.603 �0.76 2.27

0.1 �2.650 �0.014 �0.835 0.621 �0.74 2.21

0.2 �2.726 �0.015 �0.875 0.640 �0.73 2.15

0.3 �2.803 �0.017 �0.917 0.659 �0.72 2.09

0.4 �2.882 �0.018 �0.962 0.678 �0.70 2.03

0.5 �2.963 �0.020 �1.009 0.697 �0.69 1.97

0.6 �3.045 �0.022 �1.059 0.717 �0.68 1.91

0.7 �3.129 �0.024 �1.112 0.736 �0.66 1.86

0.8 �3.215 �0.027 �1.168 0.756 �0.65 1.80

0.9 �3.303 �0.030 �1.226 0.775 �0.63 1.74

1.0 �3.391 �0.034 �1.288 0.794 �0.62 1.68

1.1 �3.481 �0.039 �1.352 0.812 �0.60 1.62

(continued)
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Some may argue, the above selection rule should be adjusted depending on the
sample size, n.

7.9 Estimating the Low and High Limits

When the LTN is selected, the low limit, denoted as γ, is estimated; and when the
RTN is chosen, the high limit, denoted as δ, is estimated.

When LTN

In the event LTN is identified as the distribution to use, a next choice is to estimate
the low limit of the data values, denoted as γ. In many situations, the low limit is
known a-priori, and no estimate is needed. When γ is known, x � γ; and should
γ ¼ 0, then x � 0.

Table 7.2 (continued)

k t0.01 t0.99 μt(k) σt(k) cov(k) θ

1.2 �3.573 �0.044 �1.419 0.830 �0.58 1.57

1.3 �3.665 �0.051 �1.490 0.847 �0.57 1.51

1.4 �3.759 �0.059 �1.563 0.863 �0.55 1.46

1.5 �3.853 �0.068 �1.639 0.879 �0.54 1.41

1.6 �3.948 �0.080 �1.717 0.894 �0.52 1.36

1.7 �4.044 �0.094 �1.798 0.907 �0.50 1.32

1.8 �4.141 �0.110 �1.882 0.920 �0.49 1.28

1.9 �4.238 �0.131 �1.968 0.931 �0.47 1.24

2.0 �4.336 �0.155 �2.055 0.942 �0.46 1.20

2.1 �4.434 �0.184 �2.145 0.951 �0.44 1.17

2.2 �4.532 �0.218 �2.236 0.959 �0.43 1.14

2.3 �4.631 �0.259 �2.329 0.966 �0.41 1.11

2.4 �4.730 �0.305 �2.423 0.972 �0.40 1.09

2.5 �4.829 �0.359 �2.518 0.978 �0.39 1.07

2.6 �4.929 �0.419 �2.614 0.982 �0.38 1.06

2.7 �5.028 �0.486 �2.710 0.986 �0.36 1.04

2.8 �5.128 �0.559 �2.808 0.989 �0.35 1.03

2.9 �5.228 �0.638 �2.906 0.991 �0.34 1.02

3.0 �5.328 �0.721 �3.004 0.993 �0.33 1.02
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Estimate γ when LTN

When the low limit is not known and an estimate is needed, a way to approximate the
value of γ is described below. From Table 7.1, gather the following measures that are
associated with the value of the location parameter, k:

t0.01 ¼ 0.01-percent-point
μt(k) ¼ mean
σt(k) ¼ standard deviation

Form the approximate relation between the sample data and the table measures as
shown below:

�
γ� �x

�
=s ¼ t0:01 � μt kð Þ

h i
=σt kð Þ

Now use the above relation to estimate γ as follows:

γ0 ¼ �xþ s t0:01 � μt kð Þ
h i

=σt kð Þ
bγ ¼ min γ0; x 1ð Þ½ �

When RTN

In the event RTN is identified as the distribution to use, a next choice is to estimate
the high limit of the data values, denoted as δ. In many situations, the high limit is
known a-priori. When δ is known, x � δ applies.

Estimate δ when RTN

When the high limit is not known and an estimate is needed, a way to approximate
the value of δ is described below. From Table 7.2, gather the following measures that
are associated with the value of the location parameter, k:

t0.01 ¼ 0.01-percent-point
t.0.99 ¼ 0.99-percent-point
μt(k) ¼ mean
σt(k) ¼ standard deviation

Form the approximate relation between the sample data and the table measures as
shown below:
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�
δ� �x

�
=s ¼ t0:99 � μt kð Þ

h i
=σt kð Þ

Now use the above relation to estimate δ as follows:

δ0 ¼ �xþ s t0:99 � μt kð Þ
h i

=σt kð Þ

δ
_ ¼ max δ0; x nð Þ½ �

When Normal

The normal distribution is selected when the sample spread-ratio, bθ , is close to 1.0.
In this event, the related measures come from the standard normal distribution as
described in Chap. 3 (Standard Normal).

Compute the Adjusted Coefficient of Variation

When the distribution choice for a set of sample data is LTN or RTN, and the
respective limit, bγ or bδ, is estimated, it becomes possible to compute the adjusted
coefficient of variation, cov, as follows:

If LTN: cov ¼ s/(�x � bγ)
If RTN: cov ¼ s/(�x � bδ)

The analyst might compare the sample cov with its counterpart cov listed in
Tables 7.1 or 7.2, to further verify the distribution type selected adequately repre-
sents the sample data. Note for example, it is possible to choose the wrong distribu-
tion since the spread ratios of Tables 7.1 and 7.2 are based exclusively on the
truncated normal distributions. A case in point is the comparison of the normal
and the continuous uniform distributions, where they both are symmetrical about
their mean and the computed spread ratio for each is θ ¼ 1.00. Chapter 1 (Contin-
uous Distributions), shows that the cov for a normal distribution is 0.33, and the cov
for a continuous uniform distribution is 0.58.

7.10 Find xα Where P(x � xα) ¼ α

If the distribution chosen is LTN or RTN, the α-percent-point of variable x is
estimated as below:
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xα ¼ �xþ s tα� μt kð Þð Þ=σt kð Þ½ �
where tα is from Table 5.3 for the LTN, and from Table 6.2 for the RTN.

7.11 Find α Where P(x � x`) ¼ α

If the distribution chosen is LTN or RTN, the cumulative probability for a given x`, P
(x � x`) ¼ α, is estimated using the two steps below:

1. tα ¼ μt(k) þ σt(k)[(x` � �x)/s]
2. If LTN, find α from Table 5.3 at k and tα.

If RTN, find α from Table 6.2 at k and tα.

Example 7.1 A sample yields the following statistics:�x¼ 30, s¼ 10, x(1) ¼ 20 and
x(n) ¼ 50. The sample spread ratio becomes:

bθ ¼ 30� 20ð Þ= 50� 30ð Þ ¼ 10=20 ¼ 0:50:

Since bθ < 1.0, the left-truncated normal is chosen, where Table 7.1 at θ ¼ 0.50
shows the location parameter as k ¼ �0.45.

An estimate of the low limit, γ, is obtained as follows. Note at θ ¼ 0.50:
t0.01 ¼ 0.019, μt(k) ¼ 0.98 and σt(k) ¼ 0.69. Thereby,

γ0 ¼ �xþ s t0:01 � μt kð Þ
h i

=σt kð Þ

¼ 30þ 10 0:019� 0:980ð Þ=0:69½ � ¼ 16:1

bγ ¼min γ0; x 1ð Þ½ �
¼min 16:1; 20½ � ¼ 16:1

Figure 7.1 is a plot of the left-truncated normal distribution with k ¼ �0.45 and
the low limit estimated at bγ ¼ 16.1.

0 20 40 60 80

k =-0.45 & g g =16.1Fig. 7.1 Depiction
of distribution from
Example 7.1
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The adjusted coefficient of variation is computed below:

cov ¼ s=
�
�x� bγ�

¼ 10= 30� 16:1ð Þ
¼ 0:72

The corresponding cov from Table 7.1 with k ¼ �0.45 is cov ¼ 0.695.

Example 7.2 Suppose, n samples of a process gives the following: �x¼ 0.0, s ¼ 35,
x(1) ¼ �40 and x(n) ¼100. The sample spread-ratio becomes:

bθ ¼ 0� �40ð Þ½ �= 100� 0½ � ¼ 40=100 ¼ 0:40:

Since bθ < 1.0, the left-truncated normal distribution applies; for which Table 7.1
is used to estimate the location parameter as, k¼ 0.40, showing the data is skewed to
the right.

The associated parameters to estimate the low limit are: t0.01¼ 0.009, μt(k)¼ 0.669
and σt(k) ¼ 0.534. Hence:

γ0 ¼ 0:00þ 35 0:009� 0:669ð Þ=0:534½ � ¼ �43:3

bγ ¼ min �43:3;�40½ � ¼ �43:3

Figure 7.2 shows how the left-truncated normal distribution appears with the low
limit estimated at bγ ¼ �43.3.

The adjusted coefficient of variation is obtained as below:

cov ¼ s=
�
�x� bγ�

¼ 35= 0:0� �43:3ð Þð Þ
¼ 0:81

The corresponding cov from Table 7.1 with k ¼ 0.40 is listed as cov ¼ 0.80.

Example 7.3 A sample of size n yields the following: �x ¼ 300, s ¼ 20, x(1) ¼ 250
and x(n) ¼ 330, where the sample spread ratio becomes:

bθ ¼ 300� 250ð Þ= 330� 300ð Þ ¼ 50=30 ¼ 1:67:

-100 -50 0 50 100 150

k = 0.40 & g = -43.3Fig. 7.2 Depiction
of distribution from
Example 7.2
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Because, bθ > 1.0, the right-truncated normal is selected, and Table 7.2 is used to
estimate the location parameter as k ¼ 1.00.

An estimate of the high limit uses the following parameters when k ¼ 1.00:
t0.99 ¼ �0.034, μt(k) ¼ �1.288, and σt(k) ¼ 0.794. The high limit is now estimated
below:

δ0 ¼ �xþ s t0:99 � μt kð Þ
h i

=σt kð Þ
¼ 300þ 20 �0:034� �1:288ð Þð Þ=0:794½ � ¼ 331:4

δ¼ max δ0; x nð Þ½ � ¼ max 331:4; 330½ � ¼ 331:4
_

A plot for this data is presented in Fig. 7.3 where the right-truncated normal is
selected and the high limit is estimated at bδ ¼ 331.4.

The adjusted coefficient of variation is computed as follows:

cov ¼ s=
�
�x� bδ�

¼ 20= 300� 331:4ð Þ
¼ �0:64

The corresponding cov from Table 7.2 with k ¼ 1.00 is listed as cov ¼ �0.62.

Example 7.4 Suppose a sample yields the following: �x¼ 110, s¼ 44, x(1)¼ 50 and
x(n) ¼ 175. The sample spread ratio becomes:

bθ ¼ 110� 50ð Þ= 175� 110ð Þ ¼ 60=65 ¼ 0:923:

Because, bθ < 1.0, the LTN is called and Table 7.1 shows the location parameter as
k ¼ �2.40 and cov � 0.40, for which the data is similar to a normal distribution.
Table 7.1 shows at k ¼ �2.40, μt(k) ¼ 2.423, σt(k) ¼ 0.972 and t0.01 ¼ 0.305. The
estimate of the low limit becomes:

bγ ¼ 110þ 44 0:305� 2:423ð Þ=0:972½ � ¼ 14:12

A plot for this scenario is shown in Fig. 7.4.
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k = 1.00 & d = 331.4Fig. 7.3 Depiction of
distribution from
Example 7.3
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The adjusted coefficient of variation is computed below:

cov¼ s=
�
�x� bγ�

¼ 44= 110� 14:12ð Þ
¼ 0:46

The coefficient of variation from Table 7.1 with k ¼ �2.40 is cov ¼ 0.40.

Example 7.5 Assume the data of Example 7.1 where �x¼ 30, s¼ 10, x(1) ¼ 20 and

x(n) ¼ 50, bθ ¼ 0.50, bγ ¼ 16.1, and the LTN distribution is selected. Assume the
analyst is seeking the 90-percent-point on x, where,

P x � x0:90ð Þ ¼ 0:90

To find x.90, the three steps below are taken:

1. Since the LTN is selected, Table 7.1 yields, with interpolation, the location
parameter of k ¼ �0.45, μt(k) ¼ 0.98 and σt(k) ¼ 0.69.

2. Table 5.3 is now searched with k ¼ �0.45 to find t0.90 � 1.94.
3. The 90-percent-point of x is computed as below:

x0:90 ¼ �xþ s
�
t0:90� μt kð Þ�=σt kð Þ� �

¼ 30þ 10 1:94� 0:98ð Þ=0:69½ �
� 43:9

Example 7.6 Suppose the data of Example 7.3 where �x¼ 300, s ¼ 20, x(1) ¼ 250,
x(n) ¼ 330, bθ ¼ 1.67, k ¼ 1.00, μt(k) ¼ �1.288, σt(k) ¼ 0.794, and the RTN is
selected with the high limit bδ ¼ 331.4. Assume the analyst is seeking the 10 percent
percent-point on x, denoted as x0.10.

To find x0.10, the two steps below are run:

1. Table 6.2 is searched with k ¼ 1.00 to find t0.10 � �2.38.
2. The 10-percent-point of x is obtained as below:

0 100 200 300

k = -2.40 & g g = 14.12Fig. 7.4 Depiction of the
distribution from
Example 7.4

7.11 Find α Where P(x � x`) ¼ α 111



x0:10 ¼ �xþ s
�
t0:10� μt kð Þ�=σt kð Þ� �

¼ 300þ 20 �2:38� �1:288ð Þð Þ=0:794½ �
¼ 272:5

Example 7.7 Assume the data from Example 7.1 again, and suppose the analyst
is seeking the cumulative probability when x` ¼ 40, i.e., P(x � 40). Recall, �x ¼
30, s ¼ 10, k ¼ �0.45, μt(k) ¼ 0.98, σt(k) ¼ 0.69, where the LTN is selected. The
value of variable t becomes:

t¼ μt kð Þ þ σt kð Þ �
x�� �x

�
=s

� �
¼ 0:98þ 0:69 40� 30ð Þ=10½ �
¼ 1:67

Table 5.3 is searched with k ¼ �0.45 and t ¼ 1.67 to find α � 0.84. Hence,
P(x � 40) � 0.84.

Example 7.8 Assume the data from Example 7.3 again, and suppose the analyst
is seeking the cumulative probability when x` ¼ 280, i.e., P(x � 280). Recall, �x ¼
300, s ¼ 20, k ¼ 1.00, μt(k) ¼ �1.288, and σt(k) ¼ 0.794 where the RTN is chosen.
The value of variable t becomes:

t¼ μt kð Þ þ σt kð Þ �
x�� �x

�
=s

� �
¼ �1:288þ 0:794 280� 300ð Þ=20½ �
¼ �2:08

Table 6.3 is searched with k ¼ 1.00 and t ¼ �2.08 to find α � 0.17; hence
P(x � 280) � 0.17.

7.12 Summary

A new parameter, the spread ratio, is developed to identify the distribution that best
fits sample data from: right truncated normal, left truncated normal, or normal. The
value of the spread ratio is computed for each k of the left-truncated normal, and for
every k of the right-truncated normal. When sample data is available, the analyst can
easily estimate the spread ratio with the data and then determines which distribution
best fits the sample data. The tables of this chapter and of Chaps. 5 and 6 allow the
analyst to statistically analyze the data from the distribution chosen, without having
to always assume the normal distribution.
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Chapter 8
Bivariate Normal

8.1 Introduction

A common scenario in scientific studies occurs when two variables are jointly related
in a statistical manner. It could be research on the height and weight by gender and
ethnic group, where the weight of an adult is related to the height of a adult from the
same gender and ethnic group. The bivariate normal distribution is the typical way to
analyze data of this sort. The marginal distributions of the two variables are normally
distributed, when their joint distribution is bivariate normal.

The distribution is defined by the marginal mean and standard deviation of each
variable, and also the correlation between the two. A related distribution is the
bivariate standard normal distribution, whose variables have a mean of zero and
standard deviation of one. The correlation remains the same as the counterpart
bivariate normal distribution and varies from �1.0 to þ1.0. The mathematical
relations pertaining to the marginal and conditional distributions of the standard
normal are also described in the chapter. Because there is no closed-form solution to
measure the probabilities, an approximation method is developed and applied in this
chapter. Table entries of the joint cumulative probabilities are listed, one for each
correlation ranging as: (�1.0, �0.9, . . ., 0.9, 1.0). For comparison sake, a single
table is also structured to show how the joint probabilities vary by correlation. The
chapter shows how to convert sample data from a bivariate normal to its counterpart
bivariate standard normal, whereby joint probabilities are readily obtained. A series
of examples are provided to guide the user on applications.

Over the years, a great many scholars have contributed to the literature
concerning the bivariate normal distribution. A few associated with the author are
listed here. In 1998, Montira Jantaravareerat studied the bivariate normal distribution
and the cumulative probability distribution [1]; and also in 1998, Jantaravareerat and
Thomopoulos describe how to estimate the cumulative joint probabilities for the
bivariate normal distribution [2]. In 2001, Carol Lindee developed a method to
estimate the cumulative probabilities for the multivariate normal distribution [3];
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and also in 2001, Lindee with Thomopoulos formulated a method to estimate the
cumulative joint probabilities for multivariate normal distributions [4]. This chapter
develops a new method to approximate the cumulative probability of the bivariate
normal distribution; from which the tables of the chapter are created.

8.2 Bivariate Normal Distribution

When two random variables, x1 and x2 are jointly related by the bivariate normal
distribution their marginal distributions are normally distributed. The notation is:

x1; x2ð Þ � BVN μ1; μ2; σ1; σ2; ρð Þ
where (μ1, μ2, σ1, σ2, ρ) are five parameters of the distribution; and where (�1 < x1
< 1), and ( � 1 < x2 < 1).

The probability density of the variables x1 and x2 is below:

f x1; x2ð Þ ¼ 1= 2πσ1σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2ð Þ

p
exp

h h
� w=2 1� ρ2

� ��
where

w ¼ x1 � μ1ð Þ=σ12þ
� �

x2 � μ2ð Þ=σ2�2 � 2ρ x1 � μ1ð Þ x2 � μ2ð Þ=σ1σ2½ �

Marginal Distributions

The marginal distributions of x1 and x2 are normally distributed as follows:

x1 � N μ1; σ1
2

� �

and

x2 � N μ2; σ2
2

� �

where, E(x1) ¼ μ1, and E(x2) ¼ μ2.
The correlation between x1 and x2 is computed as below:

ρ ¼ σ12= σ1σ2ð Þ
where σ12 is the covariance between x1 and x2. The covariance is also denoted as C
(x1, x2), and is computed as follows:

C x1; x2ð Þ ¼ E x1x2ð Þ � E x1ð ÞE x2ð Þ
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Conditional Distributions

When x1 ¼ x1o, a particular value of x1, the conditional mean of x2 is:

μx2jx1o ¼ μ2 þ ρ σ2=σ1ð Þ x1o � μ1ð Þ

and the corresponding variance is

σx2jx1o2 ¼ σ22 1� ρ2
� �

The conditional distribution of x2 given x1o, denoted as x2|x1o, is also normally
distributed as,

x2 j x1o � N μx2jx1o; σx2jx1o
2

� �

In the same way, when x2 ¼ x2o, a specific value of x2, the conditional mean of
x1 is

μx1jx2o ¼ μ1 þ ρ σ1=σ2ð Þ x2o � μ2ð Þ

and

σx1jx2o2 ¼ σ12 1� ρ2
� �

The associated conditional distribution of x1 given x2o is also normally distrib-
uted as,

x1 j x2o � N μx1jx2o; σx1jx2o
2

� �

8.3 Bivariate Standard Normal Distribution

The bivariate standard normal distribution is a basic case of the bivariate normal. The
variables are denoted as z1 and z2, in place of x1 and x2. The means are zero; the
standard deviations are equal to one; and the correlation could range from �1 toþ1.
The notation for the bivariate standard normal is below:

z1; z2ð Þ � BVN 0; 0; 1; 1; ρð Þ
where,

μ1 ¼ 0, σ1 ¼ 1, μ2 ¼ 0, σ2 ¼ 1
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Conditional Distribution of z2

When z1 ¼ k1:

μz2jk1 ¼ ρk1
σz2jk12 ¼ 1� ρ2ð Þ

and the conditional distribution of z2 given k1 is also normal as below:

z2 j k1 � N μz2jk1; σz2jk1
2

� �

Conditional Distribution of z1

When z2 ¼ k2:

μz1jk2 ¼ ρk2
σz1jk22 ¼ 1� ρ2ð Þ

The conditional distribution of z1 given k2 is below:

z1 j k2 � N μz1jk2; σz1jk2
2

� �

Cumulative Joint Probability

The cumulative joint probability of k1 and k2 is below:

F k1; k2ð Þ ¼ P z1 � k1 \ z2 � k2ð Þ
Because there is no closed form solution to the above, an approximation method

is developed here and is described below.

Approximation of F(k1, k2)

The cumulative probability of z1 < k1 and z2 < k2 is mathematically obtained as
below:
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F k1; k2ð Þ ¼
ðk1

�1

ðk2

�1
f z1; z2ð Þdz2dz1

But since there is no closed-form solution to the above, the steps listed below are
applied to approximate the double integral. For simplicity, the range on the two
standard variables are set to �3, instead of the conventional limits of �1. Thereby,
(�3� z1 � 3), and (�3� z2 � 3) are used throughout. To begin the approximation,
note the following:

F k1; k2ð Þ ¼
ðk1

�1

ðk2

�1
f z2jz1ð Þdz2

2
4

3
5f z1ð Þdz1

¼
ðk1

�1
F k2jz1ð Þf z1ð Þdz1

Applying the discrete normal distribution, described in Chap. 3 (Standard Nor-
mal), for discrete variable z1 ¼ [�3.0, (0.1), k1], the joint cumulative probability is
approximated by:

F k1; k2ð Þ �
Xk1�0:1

z1¼�3:0

F k2jz1ð ÞP z1ð Þ þ 0:5F k2jk1ð ÞP k1ð Þ

Recall, the discrete variable z1 where,

P z1ð Þ � 0 and
X3:0

z1¼�3:0

P z1ð Þ ¼ 1:0

Note, also,

F k2j z1ð Þ ¼ F k2 � μz2jz1
� �

=σz2jz1
h i

where the marginal mean of z2 given z1 is,

μz2jz1 ¼ ρz1

and the corresponding standard deviation is,

σz2jz1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2ð Þ

p
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Table Values of F(k1, k2)

Table 8.1 includes a series of 21 separate tables that list the approximated cumulative
probability, F(k1, k2), for selected values of the correlation, ρ, and for (k1, k2). Each
table pertains to a specific correlation value as follows: ρ ¼ [�1.0, (0.1), 1.0]. The
standard normal values are: k1 ¼ [�3.0, (0.5), 3.0], and k2 ¼ [�3.0, (0.5), 3.0].

Table 8.2 is a related table that summarizes and compares many of the results
from Table 8.1. The range of correlations is: ρ ¼ [�1.0, (0.2), 1.0]; and the standard
normal values are: k1 ¼ [�3.0, (1.0), 3.0], and k2 ¼ [�3.0, (1.0), 3.0].

8.4 Some Basic Probabilities for (z1, z2) ~ BVN(0, 0, 1, 1, ρ)

Tables 8.1 and 8.2 allow the user to estimate various basic joint probabilities
concerning the variables z1 and z2. Five of the common such probabilities are below:

P z1 � k1 \ z2 � k2ð Þ ¼ F k1; k2ð Þ
P z1 > k1 [ z2 > k2ð Þ ¼ 1� F k1; k2ð Þ
P z1 > k1 \ z2 > k2ð Þ ¼ F 1;1ð Þ � F k1;1ð Þ � F 1; k2ð Þ þ F k1; k2ð Þ
P z1 � k1 [ z2 � k2ð Þ ¼ F k1;1ð Þ þ F 1; k2ð Þ � F k1; k2ð Þ

¼ 1� P z1 > k1 \ z2 > k2ð Þ
P k1L � z1 � k1H \ k2L � z2 � k2Hð Þ ¼ F k1H; k2Hð Þ � F k1H; k2Lð Þ � F k1L; k2Hð Þ

þ F k1L; k2Lð Þ

Example 8.1 Use Table 8.2 to find the probabilities listed below for the standard
bivariate normal variables: (z1, z2) ~ BVN(0, 0, 1, 1, 0.8). In the calculations, use
k ¼ 3 in place of k ¼ 1, except at F(1,1) ¼ 1.00.

P z1 � 1 \ z2 � 1ð Þ ¼ F 1; 1ð Þ
¼ 0:781

P z1 > 1 [ z2 > 1ð Þ ¼ 1� F 1; 1ð Þ
¼ 1� 0:781
¼ 0:219

P z1 > 1 \ z2 > 1ð Þ ¼ F 1;1ð Þ � F 1; 3ð Þ � F 3; 1ð Þ þ F 1; 1ð Þ
¼ 1:000� 0:842� 0:842þ 0:781
¼ 0:097

P z1 � 1 [ z2 � 1ð Þ ¼ F 1; 3ð Þ þ F 3; 1ð Þ � F 1; 1ð Þ‘
¼ 0:842þ 0:842� 0:781
¼ 0:903

P �1 � z1 � 1 \ �1 � z2 � 1ð Þ ¼ F 1; 1ð Þ � F 1;�1ð Þ � F �1; 1ð Þ þ F �1;�1ð Þ
¼ 0:781� 0:158� 0:158þ 0:097
¼ 0:562
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8.5 Probabilities for (x1, x2) ~ BVN(μ1, μ2, σ1, σ2, ρ)

When seeking to compute a probability pertaining to the bivariate normal variables,
(x1, x2), the following conversion to their counterpart standard normal variables, (z1,
z2), are applied as follows:

z1 ¼ x1 � μ1ð Þ=σ1
z2 ¼ x2 � μ2ð Þ=σ2

The standard normal variable values included in the probability examples are
listed here: (x1o, x1L, x1H, x2o, x2L, x2H). The conversion to their counterpart standard
normal values are shown below:

k1 ¼ x1o � μ1ð Þ=σ1
k1L ¼ x1L � μ1ð Þ=σ1
k1H ¼ x1H � μ1ð Þ=σ1
k2 ¼ x2o � μ2ð Þ=σ2
k2L ¼ x2L � μ2ð Þ=σ2
k2H ¼ x2H � μ2ð Þ=σ2

The way to derive a joint probability of (x1, x2) is by the associated standard
normal variables (z1, z2), as shown with the examples below:

P x1 � x1o \ x2 � x2oð Þ ¼ P z1 � k1 \ z2 � k2ð Þ
P x1 > x1o [ x2 > x2oð Þ ¼ P z1 > k1 [ z2 > k2ð Þ
P x1 � x1o \ x2 > x2oð Þ ¼ P z1 > k1 \ z2 > k2ð Þ
P x1 � x1o [ x2 � x2oð Þ ¼ P z1 � k1 [ z2 � k2ð Þ

P x1L � x1 � x1H \ x2L � x2 � x2Hð Þ ¼ P k1L � z1 � k1H \ k2L � z2 � k2Hð Þ

Example 8.2 Assume (x1, x2) ~ BVN(10, 20, 2, 3, 0.8). The variables (x1, x2) are
converted to the counterpart standard bivariate normal variables, (z1, z2), as shown
below:

z1 ¼ x1 � 10ð Þ=2
z2 ¼ x2 � 20ð Þ=3

Various probabilities concerning (x1, x2) are listed subsequently and have the
following values: x1o¼ 12, x1L¼ 8, x1H¼ 12, x2o¼ 23, x2L¼ 17 and x2H¼ 23. The
associated values for the standard bivariate normal are obtained as follows:

k1 ¼ 12� 10ð Þ=2 ¼ 1:0
k1L ¼ 8� 10ð Þ=2 ¼ �1:0
k1H ¼ 12� 10ð Þ=2 ¼ 1:0
k2 ¼ 23� 20ð Þ=3 ¼ 1:0
k2L ¼ 17� 20ð Þ=3 ¼ �1:0
k2H ¼ 23� 20ð Þ=3 ¼ 1:0
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The probabilities for (x1, x2) of interest are listed here along with the computed
results:

P x1 � 12 \ x2 � 23ð Þ ¼ P z1 � 1 \ z2 � 1ð Þ ¼ 0:781
P x1 > 12 [ x2 > 23ð Þ ¼ P z1 > 1 [ z2 > 1ð Þ ¼ 0:219
P x1 > 12 \ x2 > 23ð Þ ¼ P z1 > 1 \ z2 > 1ð Þ ¼ 0:097
P x1 � 12 [ x2 � 23ð Þ ¼ P z1 � 1 [ z2 � 1ð Þ ¼ 0:903

P 8 � x1 � 12 \ 17 � x2 � 23ð Þ ¼ P �1 � z1 � 1 \ �1 � z2 � 1ð Þ ¼ 0:562

Example 8.3 Assume (x1, x2) ~ BVN(100, 50, 8, 5, 0.5) and x1o ¼ 112. Find the
minimum x2, denoted as x2o, where P(x1 < 112 \ x2 < x2o) � 0.90.

Note k1 ¼ (112–100)/8 ¼ 1.5, and using Table 8.1 with ρ ¼ 0.5, the smallest k2
that yields F(1.5, k2) ¼ 0.90 is, by interpolation, k2 � 1.67. Hence,
x20 ¼ (μ2 þ k2σ2) ¼ (50 þ 1.67	5) ¼ 58.35.

8.6 Summary

The joint bivariate probability distribution of two variables is listed along with its
marginal and conditional distributions. A special case of this distribution is the
standard bivariate normal, and the way to convert data from a bivariate normal to
a standard bivariate normal is shown. An approximation method is developed to
generate joint cumulative probabilities from the bivariate standard normal. Alto-
gether, 21 tables are listed, one per correlation of: ρ ¼ (�1.0, �0.9, . . ., 0.9, 1.0).
Another table is listed that compares the cumulative probabilities from one correla-
tion to another. When sample data is available, the analyst can readily use the tables
to estimate a variety of joint probabilities concerning the sample data.
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Chapter 9
Lognormal

9.1 Introduction

When the logarithm of a variable, x, yields a normal variable, y, x is distributed as a
lognormal distribution. The reverse occurs when the exponent of y transforms back
to the lognormal x. The lognormal distribution has probabilities that peak on the left
of its range of values and has a tail that skews far to the right. The mean and variance
of the lognormal are related to the mean and variance for the counterpart normal.
Further, the parameters of the lognormal are the mean and variance of the counter-
part normal. In the pursuit to develop percent-point values for the lognormal in this
chapter, some mathematical maneuvering is needed. When the normal variable y has
its mean shifted to zero, to produce another normal variable y`, the exponent of y`
transfers back to a lognormal that becomes a standard lognormal variable where
percent-point values can be computed. Table values for the standard lognormal are
listed in the chapter. The way to start with sample data from a lognormal variable and
convert to a standard lognormal variable is described so that analysts can readily
apply the tables.

Francis Galton [1] is credited with being the first to formulate the lognormal
distribution; and as such, the lognormal is sometimes referred as the Galton distri-
bution. He was an Englishman who in the 1800s was active in a variety of
disciplines, including: heredity, psychology and statistics. Since Galton, many
researchers have enhanced the literature on applications on the lognormal distribu-
tion. In 2003, N. Thomopoulos and A.C. Johnson published tables on percent-point
values of the standard lognormal distribution [2]. A new set of lognormal tables is
developed in this chapter.
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9.2 Lognormal Distribution

The lognormal distribution occurs when the logarithm of its variable, x, yields a
normally distributed variable, y. In the reverse way, the exponential of normal y
reverts back to the lognormal x.

9.3 Notation

For simplicity in this chapter, the following notation is used:

LN ¼ lognormal
N ¼ normal
w ¼ raw LN variable
x ¼ shifted LN variable
x` ¼ standard LN variable
y ¼ N variable
y` ¼ zero-mean N variable

9.4 Lognormal

The lognormal distribution with variable x � 0, has a peak near zero and is skewed
far to the right. This variable is related to a counterpart normal variable y, in the
following way:

y ¼ ln xð Þ
where ln is the natural logarithm, and

x ¼ ey

The variable y is normally distributed with mean and variance, μy and σy2,
respectively, and x is lognormal with mean and variance, μx and σx2. The designation
for x and y are listed below:

x � LN μy; σy
2

� �

y � N μy; σy
2

� �

Note, the parameters to define the distribution of x, are the mean and variance of
y. The parameters between x and y are related in the following way:
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μx ¼ exp μy þ σy2=2
h i

σx2 ¼ exp 2μy þ σy2
h i

exp σy2
� �� 1

� �
μy ¼ ln μx

2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2x þ σ2x

qh i
σy2 ¼ ln 1þ σx2=μx

2
� �

Lognormal Mode

The mode of the lognormal variable, x, denoted as eμx, is obtained as below:

eμx ¼ exp μy � σy2
� �

Lognormal Median

The median of lognormal x is obtained as follows:

μ0:5 ¼ exp μy
� �

9.5 Raw Lognormal Variable

Consider n observations from a lognormal distribution, denoted as (w1, . . ., wn).
Assume the smallest value of w that can occur is denoted as γ, where,

w � γ:

The bound, γ, is called the low limit.
In the pursuit of seeking a standard lognormal distribution, the analysis to follow

requires a lognormal variable that is always zero or larger. Oftentimes, γ ¼ 0, and
hence, w � 0 at the outset.

9.6 Shifted Lognormal Variable

In the event the smallest value of w is not zero, a shifted lognormal variable, x, is
formed as below:
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x ¼ w� γ

where,

x � 0

When the low limit of w is γ¼ 0, then x¼w. The mean and standard deviation of
LN variable x is denoted as follows:

μx ¼ mean
σx ¼ standard deviation

9.7 Normal Variable

The LN variable, x, is converted to its counterpart normal variable, y, as below:

y ¼ ln xð Þ

9.8 Zero-Mean Normal Variable

In the quest to define a standard LN variable, it is necessary that the associated N
variable have a mean of zero. To accommodate, a shifted normal variable, y`, is
formed as below:

y�¼ y� μy

So now, the mean of y` is:

μy�¼ 0

and the standard deviation of y` is the same as for y, where:

σy� ¼ σy

The normal designation becomes:

y�� N 0; σy�2
� �
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9.9 Standard LN Variable

The standard LN variable, x`, is obtained from the zero-mean normal variable,
y`. Note the relation below that shows how to convert from y` to x`, and from y`
to x:

x ¼ ey�eμy ¼ x�eμy

Since μy` ¼ 0, the conversion from y` to x` is:

x�¼ ey�

Also, the way to convert back from x` to y` is the following:

y�¼ ln x�ð Þ
The designation for the standard LN distribution is the following:

x�� LN 0; σy�2
� �

where the parameters, μy` ¼ 0, σy`2, are from the associated zero mean normal
distribution.

Below shows how the mean and variance of x is related to the same of x`:

μx ¼ μx�exp μy
� �

σx2 ¼ σx�2exp 2μy
� �

9.10 Lognormal Table Entries

Table 9.1 contains selected statistics from the standard lognormal distribution. The
table is sorted by the standard deviation of the zero-mean normal distribution, σy`,
with a range of: [0.05, (0.05), 4.00]. The standard lognormal statistics are the
following: three percent-points: x`.01, x`.50, x`.99; the mode, eμx� ; and the mean,
standard deviation and coefficient of variation, μx`, σx` and covx`, respectively.
Recall, the notation for the variables are x` for the standard lognormal, and y` for
the zero-mean normal.

Example 9.1 Table 9.1 shows the following percent-point results when σy` ¼ 1.80:
x.01 ¼ .02, x.50 ¼ 1.00 and x.99 ¼ 65.86. The results are obtained as follows:

x:01 ¼ exp z:01 � σy0
� � ¼ exp �2:327� 1:80ð Þ ¼ 0:015
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Table 9.1 Lognormal distribution sorted by the standard normal standard deviation, σy`; with
lognormal: percent-point x`.01; mode eμx� ; median x`.50; mean μx`; percent-point x`.99; standard
deviation σx`; and coefficient of variation covx`

σy` x`.01 eμx� x`.50 μx x`.99 σx` covx`
0.05 0.89 1.00 1.00 1.00 1.12 0.05 0.05

0.10 0.79 0.99 1.00 1.01 1.26 0.10 0.10

0.15 0.71 0.98 1.00 1.01 1.42 0.15 0.15

0.20 0.63 0.96 1.00 1.02 1.59 0.21 0.20

0.25 0.56 0.94 1.00 1.03 1.79 0.26 0.25

0.30 0.50 0.91 1.00 1.05 2.01 0.32 0.31

0.35 0.44 0.88 1.00 1.06 2.26 0.38 0.36

0.40 0.39 0.85 1.00 1.08 2.54 0.45 0.42

0.45 0.35 0.82 1.00 1.11 2.85 0.52 0.47

0.50 0.31 0.78 1.00 1.13 3.20 0.60 0.53

0.55 0.28 0.74 1.00 1.16 3.59 0.69 0.59

0.60 0.25 0.70 1.00 1.20 4.04 0.79 0.66

0.65 0.22 0.66 1.00 1.24 4.54 0.90 0.73

0.70 0.20 0.61 1.00 1.28 5.10 1.02 0.80

0.75 0.17 0.57 1.00 1.32 5.72 1.15 0.87

0.80 0.16 0.53 1.00 1.38 6.43 1.30 0.95

0.85 0.14 0.49 1.00 1.44 7.22 1.48 1.03

0.90 0.12 0.44 1.00 1.50 8.12 1.67 1.12

0.95 0.11 0.41 1.00 1.57 9.12 1.90 1.21

1.00 0.10 0.37 1.00 1.65 10.24 2.16 1.31

1.05 0.09 0.33 1.00 1.74 11.50 2.46 1.42

1.10 0.08 0.30 1.00 1.83 12.92 2.81 1.53

1.15 0.07 0.27 1.00 1.94 14.52 3.21 1.66

1.20 0.06 0.24 1.00 2.05 16.31 3.69 1.79

1.25 0.05 0.21 1.00 2.18 18.32 4.24 1.94

1.30 0.05 0.18 1.00 2.33 20.58 4.89 2.10

1.35 0.04 0.16 1.00 2.49 23.12 5.67 2.28

1.40 0.04 0.14 1.00 2.66 25.97 6.58 2.47

1.45 0.03 0.12 1.00 2.86 29.17 7.67 2.68

1.50 0.03 0.11 1.00 3.08 32.77 8.97 2.91

1.55 0.03 0.09 1.00 3.32 36.82 10.54 3.17

1.60 0.02 0.08 1.00 3.60 41.36 12.43 3.45

1.65 0.02 0.07 1.00 3.90 46.46 14.71 3.77

1.70 0.02 0.06 1.00 4.24 52.19 17.49 4.12

1.75 0.02 0.05 1.00 4.62 58.63 20.87 4.51

1.80 0.02 0.04 1.00 5.05 65.86 25.03 4.95

1.85 0.01 0.03 1.00 5.54 73.98 30.14 5.44

1.90 0.01 0.03 1.00 6.08 83.11 36.46 6.00

1.95 0.01 0.02 1.00 6.69 93.36 44.31 6.62

2.00 0.01 0.02 1.00 7.39 104.88 54.10 7.32

2.05 0.01 0.01 1.00 8.18 117.82 66.35 8.12

(continued)
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Table 9.1 (continued)

σy` x`.01 eμx� x`.50 μx x`.99 σx` covx`
2.10 0.01 0.01 1.00 9.07 132.35 81.77 9.01

2.15 0.01 0.01 1.00 10.09 148.68 101.25 10.04

2.20 0.01 0.01 1.00 11.25 167.02 125.97 11.20

2.25 0.01 0.01 1.00 12.57 187.62 157.48 12.53

2.30 0.00 0.01 1.00 14.08 210.76 197.84 14.05

2.35 0.00 0.00 1.00 15.82 236.76 249.76 15.79

2.40 0.00 0.00 1.00 17.81 265.97 316.85 17.79

2.45 0.00 0.00 1.00 20.11 298.78 403.94 20.09

2.50 0.00 0.00 1.00 22.76 335.64 517.51 22.74

2.55 0.00 0.00 1.00 25.82 377.04 666.31 25.80

2.60 0.00 0.00 1.00 29.37 423.55 862.14 29.35

2.65 0.00 0.00 1.00 33.49 475.80 1121.09 33.48

2.70 0.00 0.00 1.00 38.28 534.49 1465.07 38.27

2.75 0.00 0.00 1.00 43.87 600.42 1924.15 43.86

2.80 0.00 0.00 1.00 50.40 674.48 2539.70 50.39

2.85 0.00 0.00 1.00 58.05 757.69 3368.93 58.04

2.90 0.00 0.00 1.00 67.02 851.15 4491.26 67.01

2.95 0.00 0.00 1.00 77.58 956.15 6017.44 77.57

3.00 0.00 0.00 1.00 90.02 1074.09 8102.58 90.01

3.05 0.00 0.00 1.00 104.72 1206.59 10964.90 104.71

3.10 0.00 0.00 1.00 122.12 1355.43 14912.67 122.12

3.15 0.00 0.00 1.00 142.77 1522.63 20383.39 142.77

3.20 0.00 0.00 1.00 167.34 1710.45 28000.63 167.33

3.25 0.00 0.00 1.00 196.62 1921.45 38657.15 196.61

3.30 0.00 0.00 1.00 231.60 2158.47 53636.80 231.60

3.35 0.00 0.00 1.00 273.49 2424.73 74794.03 273.48

3.40 0.00 0.00 1.00 323.76 2723.83 104819.51 323.76

3.45 0.00 0.00 1.00 384.23 3059.83 147634.75 384.23

3.50 0.00 0.00 1.00 457.14 3437.28 208980.79 457.14

3.55 0.00 0.00 1.00 545.25 3861.29 297300.39 545.25

3.60 0.00 0.00 1.00 651.97 4337.60 425065.61 651.97

3.65 0.00 0.00 1.00 781.53 4872.67 610784.32 781.53

3.70 0.00 0.00 1.00 939.17 5473.74 882045.95 939.17

3.75 0.00 0.00 1.00 1131.44 6148.96 1,280,165 1131.44

3.80 0.00 0.00 1.00 1366.49 6907.47 1,867,292 1366.49

3.85 0.00 0.00 1.00 1654.49 7759.55 2,737,347 1654.49

3.90 0.00 0.00 1.00 2008.21 8716.74 4,032,915 2008.21

3.95 0.00 0.00 1.00 2443.65 9792.00 5,971,447 2443.65

4.00 0.00 0.00 1.00 2980.96 10999.90 8,886,110 2980.96
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x:50 ¼ exp z:50 � σy0
� � ¼ exp 0:000� 1:80ð Þ ¼ 1:000

x:99 ¼ exp z:99 � σy0
� � ¼ exp 2:327� 1:80ð Þ ¼ 65:93

Table 3.1 provides z.01, z.50 and z.99. Any differences in the above computations
and table values are due to rounding.

Example 9.2 Table 9.1 shows the following parameter results when μy` ¼ 0, and
σy`¼ 1.80:eμx0 ,¼ 0.04, μx`,¼ 5.05 and σx`¼ 25.03, and covx`¼ 4.95. The results are
obtained as shown below:

eμx�¼ exp �σy‘2
� � ¼ exp �1:802

� �� ¼ 0:04

μx� ¼ exp σy�2=2
� � ¼ exp 1:802=2

� �� ¼ 5:05

σx�2 ¼ exp σy�2
� �

exp σy�2
� �� 1

� � ¼ exp 1:802
� �

exp 1:802
� �� 1

� � ¼ 25:03ð Þ2
covx� ¼ σx�=μx� ¼ 25:03=5:05 ¼ 4:95

Example 9.3 Assume an analyst has a variable x that is lognormal and has n data
entries: (x1, . . ., xn). Of interest is to compute some statistical measures on the
variable x. Note, the following four steps below:

1. Each sample of x is converted to a normal variable by y ¼ ln(x) where ln is the
natural log. So now, the converted data is (y1, . . ., yn). With this data, assume the
mean and standard deviation of y are computed and are listed as below:

μy ¼ 0:6735
σy ¼ 1:805

Note:

y � N 0:6735; 1:8052
� �

2. The normal variable y is converted to the zero mean normal:

y�¼ y� μy
� �

Hence,

μy� ¼ 0
σy�¼ 1:805

and

y�� N 0; 1:8052
� �
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3. With the mean of y` set to zero, the standard lognormal variable, denoted as x`, is
now computed by:

x�¼ ey�

where,

μx� ¼ exp 1:8052=2
� � ¼ 5:099

σx�2 ¼ exp 1:8052½ � exp 1:8052
� �� 1

� � ¼ 25:4952

σx�¼ 25:495

and,

x�� LN 0; 1:8052
� �

:

4. To transform the standard lognormal variable x` back to the original lognormal
variable x, the following is applied:

x ¼ x�eμy

So now, the variable x is lognormal with:

μx ¼ 10

σx ¼ 50

where,

x � LN 0:6735; 1:8052
� �

:

With the conversions completed, it is now possible to measure some statistical
relations of the original lognormal variable x by use of Tables 9.1 and 9.2. Note from
Table 9.1 when μy ¼ 0 and σy ¼ 1.8, the mean and standard deviation of the
corresponding standard lognormal variable is μx` ¼ 5.05 and σx` ¼ 25.03 with
covx` ¼ 4.95. Further, the percent-points for the standard lognormal at 0.01, 0.50
and 0.99 are 0.02, 1.00 and 65.86, respectively.

To convert the above results from the standard lognormal to the lognormal, first
note:

eμy ¼ e 0:6735ð Þ ¼ 1:961

Hence,

μx ¼ μx�� 1:961 ¼ 5:099� 1:961 ¼ 10:00
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Also,

P x�� 0:02ð Þ ¼ P x � 0:02� 1:961ð Þ ¼ P x � 0:392ð Þ ¼ 0:01
P x�� 1:00ð Þ ¼ P x � 1:00� 1:961ð Þ ¼ P x � 1:961ð Þ ¼ 0:50

P x�� 65:86ð Þ ¼ P x � 65:86� 1:961ð Þ ¼ P x � 129:15ð Þ ¼ 0:99

The entries in Table 9.2 also pertain to the standard lognormal variable. When
μy` ¼ 0 and σy` ¼ 1.80, the percent-points are listed for 0.01 to 0.99. For example,
with use of the table, the 90% tolerance interval of x` is:

P 0:05 � x�� 19:32ð Þ ¼ 0:90

The corresponding 90% tolerance interval of x is obtained from the following
computations:

0:05� 1:961ð Þ ¼ 0:098
19:32� 1:961ð Þ ¼ 37:887

and thereby,

P 0:098 � x � 37:887ð Þ ¼ 0:90

9.11 Lognormal Distribution Table

Table 9.2 contains selected percent-points for the standard lognormal distribution.
The table is sorted by the standard deviation, σy`, of the zero-mean normal distribu-
tion with a range of [0.05, (0.05), 4.00]. The selected percent-points are for cumu-
lative probabilities, α ¼ [.01, .05, .10, .20, .30, .40, .50, .60, .70, .80, .90, .95, .99].
The α-percent-point of x` is obtained by:

x�α ¼ exp zασy‘
� �

where,

zα is from the standard normal of Table 3.1, and P(z < zα) ¼ α.
σy` ¼ standard deviation from the zero-mean normal distribution.
x`α ¼ α-percent-point from the standard lognormal distribution.

Note, where the median, denoted as x.50, is equal to 1.00 throughout the table.
Also observe where the spread from (x.01 to x.50), is much smaller than the counter-
part spread from (x.50 to x.99), for most of the table. When σy` is small, the spreads are
fairly even, indicating, the lognormal distribution is similar to a normal distribution
when σy` is near 0.5. See Fig. 9.1.
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Example 9.4 Table 9.2 gives the following results when σy`¼ 1.00: x.05¼ 0.19 and
x.95 ¼ 5.18. The computations below show how these are obtained. First note from
Table 3.2, where z.05 ¼ �1.645 and z.95 ¼ 1.645.

x�:05 ¼ exp z:05 � σy‘
� � ¼ exp �1:645� 1:00ð Þ ¼ 0:19

x�:95 ¼ exp z:95 � σy‘
� � ¼ exp 1:645� 1:00ð Þ ¼ 5:181

9.12 Summary

The relation between the lognormal and normal distributions is described; along with
the conversion between the means and variances of each. The development of a
standard lognormal distribution is the focus of the chapter. The standard lognormal is
related to a zero mean normal. This allows an analyst who has lognormal data to
convert to a standard lognormal distribution for which statistical analysis is readily
performed. The statistical measures of the standard lognormal are the following:
mean, standard deviation, coefficient of variation, median, mode, and a variety of
percent-points.
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Chapter 10
Bivariate Lognormal

10.1 Introduction

When two variables are jointly related by the bivariate lognormal distribution, their
marginal distributions are lognormal. At first, the distribution appears confounding
due to the lognormal characteristics of the variables. By taking the log of each
marginal distribution, a pair of normal marginal distributions evolve, and these are
jointly related by the bivariate normal distribution described in Chap. 8 (Bivariate
Normal). The bivariate normal is defined with the mean and standard deviation of
each normal variable and by the correlation between them. These five parameters
become the parameters for the counterpart bivariate lognormal distribution. The
chapter shows how the mean and variance from the normal is transformed to the
mean and variance for the lognormal. Also described is how to compute the
correlation of the lognormal from the normal parameters. When sample data is
distributed as bivariate lognormal, converting some data and applying the bivariate
normal tables of Chap. 8 allow computation for a variety of joint probabilities.

Over the years, many scholars have provided mathematical formulation and
applications on the lognormal bivariate distribution. Some applications familiar
with the author are referred here. In 1984, N. Thomopoulos and Anatol Longinow
showed how to compute the bivariate lognormal distribution for a structural engi-
neering reliability problem [1]. During 2004, N. Thomopoulos and A.C. Johnson
developed a way to compute the cumulative probabilities for a bivariate lognormal
distribution [2].
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10.2 Bivariate Lognormal

When two variables, (x1, x2), are bivariate lognormal, their marginal distributions are
lognormal. The associated bivariate normal variables are (y1, y2), where yi ¼ ln(xi)
i ¼ 1, 2, and ln is the natural logarithm. The parameters for the lognormal distribu-
tion are those from the normal variables, y1, y2.

Notation

For clarification sake, it may be helpful to review the notation in use in this chapter,
as listed below:

LN ¼ lognormal
N ¼ normal
x ¼ LN variable
x` ¼ standard LN variable
y ¼ normal variable
y` ¼ zero-mean N variable
z ¼ standard N variable

Some Properties Between x and y

The lognormal variable, x, and the normal variable, y, are related as shown below:

y ¼ ln xð Þ
x ¼ ey

where ln is the natural log. Further, it is assumed x � 0.
The standard lognormal variable, x`, and the zero-mean normal variable, y`, are

also related to each other. The zero-mean normal variable, y`, is obtained by shifting
away from the mean of y as below:

y�¼ y� μy
� �

and thereby has a zero mean. The variable x` and y` are related as follows:

x�¼ ey�

y�¼ ln x�ð Þ
Note also,

x ¼ ey�eμy ¼ x�eμy
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Mode of x and x`

The mode of lognormal x and x` are computed as below:

mode xð Þ ¼ exp μy � σy2
� �

mode x�ð Þ ¼ exp �σy2
� �

10.3 Lognormal and Normal Notation

The variable y is normally distributed with mean and variance, μy and σy2, respec-
tively, and x is lognormal with mean and variance, μx and σx2. The notation for x and
y are as below:

x � LN μy; σy
2

� �

y � N μy; σy
2

� �

Related Parameters

The parameters to define the distribution of x, are the mean and variance of y. The
parameters between x and y are related in the following way:

μx ¼ exp [μy þ σy2/2] ¼ mean of x

σx2 ¼ exp [2μy þ σy2][exp(σy2) – 1] ¼ variance of x

μy ¼ ln μx
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2x þ σ2x

qh i ¼ mean of y

σy2 ¼ ln [1 þ σx2/μx2] ¼ variance of y

10.4 Bivariate Lognormal Distribution

The bivariate lognormal is a joint distribution with variables, x1 and x2 when the
marginal distributions are lognormal as below:

x1 � LN μy1; σy1
2

� �
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x2 � LN μy2; σy2
2

� �

and where the counterpart normal variables, (y1, y2) are jointly related with a
correlation of ρy.

Bivariate Lognormal Correlation

Law and Kelton [3] provide the following formulation for the bivariate lognormal
correlation.

σy1y2 ¼ E(y1y2) – E(y1)E(y2) ¼ covariance between y1 and y2
ρy1y2 ¼ σy1y2/σy1σy2 ¼ correlation between y1 and y2
ρx1x2 ¼ exp σy1y2

� �� 1=
�� �
exp σy12 � 1

� � �
exp σy22 � 1

� �� 	

0:5

¼ correlation between x1 and x2

Bivariate Lognormal Designation

The designation of the bivariate lognormal distribution is the following:

x1; x2ð Þ � BVLN μy1; μy2; σy1; σy2; ρy
� �

10.5 Bivariate Normal Distribution

The bivariate normal is a distribution with variables y1, y2 that are jointly related
with a correlation ρy, and whose marginal distributions are normally distributed as
shown below:

y1 � N μy1; σy1
2

� �

y2 � N μy2; σy2
2

� �

The common designation of the bivariate normal variable is,

y1; y2ð Þ � BVN μy1; μy2; σy1; σy2; ρy
� �
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Recall,

y1 ¼ ln x1ð Þ
y2 ¼ ln x2ð Þ

10.6 Bivariate (Zero-Mean) Normal Distribution

The bivariate (zero-mean) normal distribution is the same as the bivariate normal
distribution except the means of the jointly related variables, (y1`, y2`), are zero. The
relations between (y1`, y2`) and (y1, y2) are below:

y1�¼ y1 � μy1
� �

y2�¼ y2 � μy2
� �

The standard deviations and the correlation between y1` and y2` are the same as
that between y1 and y2. Hence,

σy1� ¼ σy1
σy2� ¼ σy2
ρy� ¼ ρy

The common designation for the bivariate zero-mean normal distribution is
below:

y1�; y2�ð Þ � BVN 0; 0; σy1; σy2; ρy
� �

Bivariate (Standard) Normal Distribution

The bivariate (standard) normal distribution is the same as the bivariate (zero-mean)
normal distribution except the standard deviations of the jointly related variables,
(z1, z2), are equal to one. The relations between (z1, z2) and (y1`, y2`) are below:

z1 ¼ y1�=σy1
z2 ¼ y2�=σy2
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The standard deviations and the correlation between z1 and z2 are the following:

σz1 ¼ 1:0

σz2 ¼ 1:0

ρ ¼ ρz ¼ ρy

and the notation for this distribution is below:

z1; z2ð Þ � BVN 0; 0; 1; 1; ρð Þ

Example 10.1 An analyst has n paired data (x1i, x2i) for i ¼ 1 to n whose range is
quite large and suspects the data is distributed as a bivariate lognormal. To overcome
the large range of values, the data are converted in the following way:

y1i ¼ ln x1ið Þ and y2i ¼ ln x2ið Þfor i ¼ 1 to n

where ln is the natural log. Applying a statistical analysis to the paired data of (y1i,
y2i), the average, �y, standard deviation, s, and correlation, r, statistics are computed
and are as follows:

�y1 ¼ 5:0

�y2 ¼ 8:0

sy1 ¼ 2:0

sy2 ¼ 3:0

ry1y2 ¼ 0:60

Since, (x1, x2) are assumed as bivariate lognormal, (y1, y2) are bivariate normal.
Thereby,

x1; x2ð Þ � BVLN 5:8; 2; 3; 0:6ð Þ
y1; y2ð Þ � BVN 5; 8; 2; 3; 0:6ð Þ

10.7 Deriving F(x1, x2)

To find F(x1o, x2o) ¼ P(x1 � x1o \ x2 � x2o), the four steps below are followed:

1. Derive the corresponding normal variables as below:

y1o ¼ ln x1oð Þ
y2o ¼ ln x2oð Þ
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2. Compute the standard normal variables (k1, k2):

k1 ¼ y1o � μy1
h i

=σy1

k2 ¼ y2o � μy2
h i

=σy2

3. With interpolation, get F(k1, k2) from Table 8.1 with ρy.
4. Finally,

F x1o; x2oð Þ ¼ F k1; k2ð Þ

Example 10.2 As an exercise, use the results from Example 10.1, where (x1, x2) are
bivariate lognormal with BVLN(5, 8, 2, 3, 0.6), and apply the equations between the
bivariate normal and bivariate lognormal. The following results are found:

y1; y2ð Þ � BVN 5; 8; 2; 3; 0:6ð Þ
y1�; y2�ð Þ � BVN 0; 0; 2; 3; 0:6ð Þ
z1; z2ð Þ � BVN 0; 0; 1; 1; 0:6ð Þ

μx1�¼ e4=2 ¼ 7:389

μx2� ¼ e9=2 ¼ 90:017

σx1�¼ e4 e4 � 1
� �� 	0:5 ¼ 54:096

σx2�¼ e9 e9 � 1
� �� 	0:5 ¼ 8102:584

σy1�y2� ¼ 0:6� 2� 3 ¼ 3:6

ρx1‘x2‘ ¼ e3:6 � 1
� �

= e4 � 1
� �

e9 � 1
� �� 	0:5 ¼ 0:054

μx1 ¼ 7:389� e5 ¼ 1096:6

μx2 ¼ 90:017� e8 ¼ 268, 337:3

σx1 ¼ 54:096� e10
� 	0:5 ¼ 8028:5

σx2 ¼ 8102:584� e16
� 	0:5 ¼ 24153462:2

�

ρx1x2 ¼ 0:054

Example 10.3 Assume the results from Examples 10.1 and 10.2 where the analyst
wants to find the cumulated probability of F(x1o, x2o)¼ F(1000, 300,000). To obtain
the results, the following four steps are taken:

1. Convert (x1o, x2o) to (y1o, y2o) as below:
y ¼ ln(x) and thereby,
(y1o, y2o) ¼ (6.91, 12.61)
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2. Transfrm y to y` ¼ (y – μy), and obtain:
(y1o`, y2o`) ¼ (1.91, 4.61)

3. Convert y` to standard normal variates by k ¼ (y`/σy) with results listed below:
(k1, k2) ¼ (0.95, 1.54)

4. Apply Table 8.1 with ρ ¼ 0.6 and find Fk(0.95, 1.54) � 0.81, Thereby, Fx(1000,
300,000) � 0.81.

Example 10.4 Table 10.1 shows that F(x1, x2) ¼ F(1096.6, 13, 359.7) ¼ 0.64 from
the bivariate lognormal distribution where (x1, x2) ~ BVLN(5, 8, 2, 3, 0.6). The table
also lists the same result for the bivariate normal distribution of F(k1, k2) ¼ F(1.0,
0.5) ¼ 0.64 where (k1, k2) ~ BVN(0, 0, 1, 1, 0.6). Below shows how the results are
obtained.

At k1 ¼ 1.0: y1 ¼ μy1 þ k1σy1 ¼ 5.0 þ 1.0 � 2.0 ¼ 7.0

x1 ¼ ey1 ¼ e7.0 ¼ 1096.6
At k2 ¼ 0.5: y2 ¼ μy2 þ k2σy2 ¼ 8.0 þ 0.5 � 3.0 ¼ 9.5

x2 ¼ ey2 ¼ e9.5 ¼ 13,359.7

Table 10.1 gives the cumulative probability, F(x1, x2) for the bivariate lognormal
variables where, (x1, x2) ~ BVLN(5, 8, 2, 3, 0.6). The table also shows how the
probabilities are obtained from the standard bivariate lognormal variables when the
correlation of the standard normal is ρ ¼ 0.6. The latter results are taken from
Chap. 8 when ρ ¼ 0.6, and (k1, k2) ~ BVN(0, 0, 1, 1, 0.6).

Example 10.5 Assume the analyst using the data from Example 10.1 wants to find
some representative values of (x1,x2) where the cumulative probability, F(x1, x2), is
near 0.90. Using Table 10.1 with ρ ¼ 0.6, note the following for F(k1, k2):

F 1:5; 2:0ð Þ ¼ 0:92
F 2:0; 1:5ð Þ ¼ 0:92
F 1:5; 1:5ð Þ ¼ 0:89

Table 10.1 is a corresponding listing of F(x1, x2) when ρ ¼ 0.6. Applying the
conversion from k to y` to y to x yields the following for (x1, x2):

At (k1, k2) ¼ (1.5, 2.0): F(2980, 1,202,604) ¼ 0.92
At (k1, k2) ¼ (2.0, 1.5): F(8103, 268,337) ¼ 0.92
At (k1, k2) ¼ (1.5, 1.5): F(2980, 268,337) ¼ 0.89

Noting the wide spread that the lognormal distribution gives, the analyst might
select:
(x1, x2) ¼ (3, 000, 300, 000).
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10.8 Summary

The relation between the lognormal and normal distributions is again refreshed to
form the conversion between the bivariate lognormal and the bivariate normal.
When an analyst has data from a bivariate lognormal distribution, some computa-
tional maneuvering transforms the distribution to a bivariate normal. The tables from
Chap. 8 (Bivariate Normal) are then applied to compute the probabilities needed on
the bivariate lognormal data. Examples are presented to guide the user on the
application.
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