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I wrote this book with three types of reader in mind. Type A consists mainly of
experienced oceanographers1 who want to add R to their list of tools for data
analysis. They should expect to learn how R can simplify and energize their research
programmes. In type B are technicians, consultants and others who may be called
upon to solve new problems without sufficient time to study the literature or to
implement clean algorithms. Since R provides a wide range of well-vetted solutions
that are tied closely to the literature, readers of type B (and their employers) can
look forward to an increase in productivity and a reduction in stress. Finally, type C
comprises students who are entering oceanography, equipped with R skills gained
during previous studies. I hope they will see how to use their skills to competitive
advantage during the transition to oceanography.

Taken together, these three types make up the core of any department of
oceanography, spanning ages, skills and interests. Given their varied backgrounds
and ambitions, they may have different reasons to read this book, and so it is
organized with this in mind.

1Limnologists should also find the book useful, since many instruments and methods are shared
between the fields. However, it is tiresome to read “oceanography and limnology” repeatedly, and
OAR is a pleasingly nautical abbreviation for the book title.
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viii Preface

Chapter 1 puts R in the context of other tools used in oceanography, as part of an
argument that now is a good time for oceanographers to try R. Although this chapter
is intended mainly for readers of types A and B, who tend to be accustomed to old
tools and wary of new ones, readers of type C may find it useful for setting the scene.

Chapter 2 provides an R tutorial that is framed in oceanographic examples. This
should be examined closely by readers of types A and B, who will need to learn
R syntax. Readers of type C might choose to skim this chapter, with an eye to the
peculiarities of oceanographic data.

Chapter 3 presents a sketch of the oce package. Since it was developed during
the evolution of a research programme, oce is a very practical thing. It provides
functions for a wide range of oceanographic computations, for reading dozens of
instrument-specific oceanographic data formats, and for producing graphics that
obey oceanographic conventions (Kelley and Richards 2018). Its object orientation
scheme lets analysts work at a high level of abstraction, without losing the ability
to probe lower levels when appropriate. Although there are excellent tools for
individual tasks in other computing languages, few match oce as a coherent
framework. Also, and very importantly, the decision to use R means that users have
access to thousands of packages for statistical and other operations, yielding cutting-
edge methodologies without the burden of extensive coding.

Chapter 4 contains explanations of how R might be used in real-world applica-
tions. Here, the steps of the analysis are explained in detail, from start to finish.
Drawn from the classic oceanographic literature, the applications sample the four
sub-disciplines of oceanography: chemical, biological, geological and physical.
While practical-minded readers might focus on the R code, I hope that any reader
with an interest in oceanography will welcome the chance to explore data put
forward by the likes of Alfred Redfield, Gordon Riley, Tuzo Wilson and Walter
Munk.

Chapter 5 continues the applied theme, but with less depth and more breadth. A
miscellany of methods, this chapter is likely to be consulted a section at a time, as
needs arise. Readers of type C should note that oceanography has yet to develop
standard operating procedures, and so this chapter is more a suggestive guidebook
than a detailed map.

Chapter 6 provides solutions to the many exercises that pepper the text. This is
a key element of the book, because working on exercises is a sure way to build
skill. Little is gained by passive reading . . . nobody ever learned to play a violin by
watching someone else play one.

Appendix A contains advice to readers who are switching to R from Matlab.
Appendix B has an outline of popular GUI systems that simplify the use of R,
without limiting its power. Appendix C holds a discussion of map projections in the
oce package, while Appendix D explains how oce lets analysts switch between
the UNESCO and GSW formulations of seawater properties. A few aspects of high-
performance calculations in R are sketched in Appendix E. Finally, in Appendix F,
readers will find some remarks on the future of R, in general terms and in the context
of oceanographic analysis.



Preface ix

Colophon. This book was typeset in LATEX, with R being used for all the
diagrams. The code for the diagrams, along with all the sample code, is embedded
in the text using Sweave (Leisch 2002), with R acting as a preprocessor that creates
output and diagrams prior to typesetting. This setup means that readers can be
confident that R code provided in this book will work as indicated.
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Acronyms

ADCP Acoustic Doppler Current Profiler. This acronym was coined by
RDI-Teledyne; similar instruments made by Sontek are called acous-
tic Doppler profilers, with the acronym ADP. In the oce package,
the adp class holds both types of data

ADV Acoustic Doppler Velocimeter, a device that uses acoustic signals to
infer velocity at a point. This acronym is used by Sontek; Nortek
refers to similar instruments as “Vector velocimeters.” In oce, the
adv class holds both types

CRAN Comprehensive R Archive Network, the repository for the R appli-
cation and associated packages1

CSV Comma-Separated Value, as used in spreadsheets
CTD Conductivity-Temperature-Depth instrument. In the oce package,

data from CTD instruments are of class ctd
EOF Empirical Orthogonal Function
GEOSECS Geochemical Ocean Section Study
GSW Gibbs SeaWater toolbox of TEOS-10, provided with the gsw pack-

age and various oce functions; see Sect. 5.2.1 and Appendix D
LISST Laser In Situ Scattering and Transmissometry instrument
MEDS Marine Environmental Data Service2

NetCDF A self-describing binary data format used in some applications in
oceanography and atmospheric science3

NOAA US National Oceanographic and Atmospheric Administration4

NODC US National Oceanographic Data Center5

1http://cran.r-project.org.
2http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/index-eng.html.
3http://www.unidata.ucar.edu/software/netcdf/docs/.
4http://www.noaa.gov/.
5http://www.nodc.noaa.gov/.
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ODF Ocean Data Format, used by the Canadian Department of Fisheries
and Oceans6

ODV Ocean Data Viewer software7

POP Practical (or Provisional) Operating Procedure.
SLEIWEX St Lawrence Estuary Internal Wave Experiment
SOP Standard Operating Procedure (contrast with POP).
TEOS-10 Thermodynamic Equation of Seawater-20108

UNESCO United Nations Educational, Scientific and Cultural Organization
WOCE World Ocean Circulation Experiment9

6http://slgo.ca/app-sgdo/en/docs_reference/documents.html.
7http://odv.awi.de.
8http://www.teos-10.org.
9http://woce.nodc.noaa.gov/wdiu.
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Symbols

The next few pages list some symbols used in oceanography. The R commands used
here require the oce package to have been loaded, with

library(oce)

which may be done in a startup file (see page 10). It is also common to use this
startup file to specify a default seawater formulation. In this book, most examples
use the Gibbs SeaWater (GSW) formulation (McDougall and Barker 2011), as
established with

options(oceEOS="gsw")

in the author’s startup file. The older UNESCO system, denoted "unesco", is
also available throughout oce. See Sect. 5.2.1 and Appendix D for more discussion
of these systems, and note that a choice of equation of state can also be made in
function calls, as illustrated below.

ρ in situ seawater density in kg/m3. For example, at practical salinity
35 PSU, in situ temperature 10◦C and pressure 100 dbar, the UNESCO
and TEOS-10 formulations of seawater density are1

swRho(salinity=35, temperature=10, pressure=100,
eos="unesco")

[1] 1027.404

swRho(salinity=35, temperature=10, pressure=100,
longitude=300, latitude=30, eos="gsw")

[1] 1027.406

(Note that the GSW formulation requires longitude and latitude, and
it is a geographical variation of seawater “salt” ion ratios that yields
the small density difference seen above.) The names of the arguments
could be omitted, e.g.

swRho(35, 10, 100, 300, 30, "gsw")

works as above. In R, argument names are optional, provided that
they are given in the correct order, and without gaps. R also permits
abbreviation of argument names, e.g. t=10 could be written instead
of temperature=10, as explained in Sect. 2.3.11.2.

1In a convention employed throughout oce, this function starts with “sw” to indicate that it applies
to seawater. Analogously, air density may be calculated with airRho().

xix
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σ Density anomaly, ρ − 1000 kg/m3, calculated with swSigma().
σθ Potential density anomaly, referenced to surface pressure;

swSigmaTheta(35, 10, 100, eos="unesco")
[1] 26.95398

is equivalent to
th <- swTheta(35, 10, 100, eos="unesco")
swSigma(35, th, 0, eos="unesco")
[1] 26.95398

σt Crude form of potential density anomaly, defined as ρ − 1000 kg/m3,
with ρ based on in situ temperature and zero pressure.

swSigmaT(35, 10, 100, eos="unesco")
[1] 26.952

σ0, . . . , σ4 Potential density with reference pressure 0 dbar, 1000 dbar, 2000 dbar,
3000 dbar and 4000 dbar.

θ Potential temperature, i.e. the temperature of a water parcel moved
adiabatically from one pressure to another, e.g.

swTheta(35, 10, 100, eos="unesco")
[1] 9.988453

for movement to the surface, or
swTheta(35, 10, 100, 1000, eos="unesco")
[1] 10.10996

for movement to 1000 dbar. (These two calculations illustrate the use
of default values for function arguments; see Sect. 2.3.11.2.)

Θ Conservative temperature, as defined in GSW.
CT Conservative temperature argument name in GSW functions.
f Coriolis parameter, e.g. at 45◦N

coriolis(45)
[1] 0.0001031261

g Acceleration due to gravity, e.g. at 45◦N
gravity(45)
[1] 9.80619

N2 Square of buoyancy frequency defined by N2 = −g ρ−1
0 ∂ρ/∂z where

ρ0 is a reference density. N2 may be calculated with swN2().
p Sea pressure, i.e. in situ pressure minus atmospheric pressure. Given

hydrostatic balance dp/dz = −ρg,
gravity() * swRho(35, 10, 1, eos="unesco") / 1e4
[1] 1.007053

illustrates the near equivalence of sea pressure in dbars and depth in
m, since 1 dbar is 104 Pa.

S Seawater practical salinity, in the UNESCO system.
SA Seawater absolute salinity, as defined in GSW (Sect. 5.2.1 and

Appendix D.)
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SA Absolute salinity argument name in GSW functions.
SP Practical salinity argument name in GSW functions.
t Time, for most of the oceanographic literature. (In some thermo-

dynamic treatments, e.g. the GSW literature, t stands for in situ
temperature, in ◦C.)

t In situ temperature argument name in GSW functions.
T In situ temperature in Celsius, for most of the oceanographic literature,

although in Kelvin for some thermodynamic analyses, e.g. in the GSW
literature.

u, v,w Components of velocity in the x, y and z directions.
x, y, z Horizontal and vertical Cartesian coordinates. Typically z is measured

in metres above the mean sea surface. Since instruments measure
pressure instead of vertical coordinate, conversion with swZ() or
swDepth() can be useful.



Chapter 1
Why R, and Why Now?

Abstract For many years, the R language has had a reputation as a premier system
for interactive data analysis. From a user’s perspective, there are two main reasons
for this. First, R is a language designed specifically for working with data, so it has
important practical features (e.g. sensible treatment of missing values) that are not
found in more general languages. Second, R comes with a vast array of high-quality
packages, or libraries, that handle specialized tasks. The packages are contributed
by experts in various fields, and tend to be tied closely to the literature—two facts
that are relevant in an integrative field such as oceanography. The case for R has
grown stronger in recent years, with a general movement to open-source software,
and with specialized aspects of oceanographic data analysis becoming available in
the oce package. Now is a good time for oceanographers to try R.

In a young scientific field, work is often carried out by postgraduate students whose
thesis goals inspire new procedures intended for somewhat limited application.
These procedures might be called practical (or provisional) operating procedures
(POP), by analogy to the standardized operating procedures (SOP) used in more
routine work. As fields mature, POP may be translated to SOP, expanding the
range of application and permitting a shift in workload to technicians who do not
need postgraduate training. According to this line of reasoning, new undergraduate
programmes can be a sign of a maturing field. This is the state of oceanography
today.1

The task of translating POP to SOP may be eased if similar tools are used in each,
so it makes sense to consider the choice of tools carefully. In this spirit, Fig. 1.1

1For an example, the author was contributing to the development of a new undergraduate
programme at Dalhousie University, while working on this book.

© Springer Science+Business Media, LLC, part of Springer Nature 2018
D. E. Kelley, Oceanographic Analysis with R,
https://doi.org/10.1007/978-1-4939-8844-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8844-0_1&domain=pdf
https://doi.org/10.1007/978-1-4939-8844-0_1


2 1 Why R, and Why Now?

Ease of Use
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Fig. 1.1 Comparison of general-purpose computing languages or applications that may be used
for oceanographic analysis

compares R with some other systems that might be used for oceanographic data
analysis.2 Some of these systems hold little promise, but it is worth touching on
them all, if only for the excuse to bring up some general issues.

The diagram suggests that Excel scores poorly on both power and usability.
While the first point is unlikely to be contested by anyone who has tried to use
Excel on a large dataset, some readers might argue that Excel is easy to use.
However, the context is important. Compared with its competitors, Excel is ill-
suited to the particular calculations and graphical displays that oceanographers need.
For example, it is easy to add columns in Excel, but considerably more difficult
to correctly enter a formula for seawater density that contains dozens of numerical
values specified to five or more digits. Also, the very thing that makes Excel popular
for nontechnical work, its graphical user interface (GUI), is an impediment in
technical work,3 because a sequence of GUI operations is difficult to describe and
reproduce.4 A text-based approach is preferable to a GUI approach for all but the
simplest of tasks. Those who switch from Excel to R should see benefits quickly,
and should find the transition easy, because there are tools for combining the two
systems (Heiberger and Neuwirth 2009).

To some extent, the box for Excel in Fig. 1.1 is a place-holder for other GUI
systems, and so these need not be discussed in much detail, with one exception:

2This book deals more with data analysis than with statistics. For early thoughts on data analysis,
see the influential paper by Tukey (1962), along with the recent historical commentary by Mallows
(2006).
3GUI-based systems can be problematic for users with weak vision, with text-based systems such
as R providing a better choice (Godfrey 2013; Godfrey and Erhardt 2014).
4Issues in reproducible research are discussed by Pebesma et al. (2012), while Herndon et al.
(2013) detail problems particular to Excel.
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Ocean Data Viewer.5 ODV is a GUI-based system that offers good support for many
oceanographic operations, including the equation of state, specialized graphing, etc.
However, its power is limited by both its GUI-based design and the fact that the
ODV source code is not available for inspection or modification.

All the other entries in Fig. 1.1 are languages, some compiled and others
interpreted. Languages are well-suited for reproducible research, because the code
used to solve a problem is, in and of itself, a full description of the processing
procedure. Good coding practices make the transference of effort between tasks or
work groups an easy matter, often involving little more than changing the name
of a data file. Readers who are accustomed to the GUI approach will discover
other benefits in adopting the language approach. Loops make it easy to carry out
repetitive work. Conditional blocks handle changing circumstances. Functions and
object-orientation yield specialization and simplicity of operation, without loss of
generality. The only cost for these benefits is a learning process that starts with
thinking beyond menus and icons.

Generally, compiled languages offer higher efficiency than interpreted ones, but
they are much more difficult to use. This is why the compiled languages C, Fortran
and C++ are placed on the left of Fig. 1.1. These are used in the most demanding of
computing tasks, from operating systems to climate models. The relative positions
of these languages on the diagram are debatable, since they depend on the nature
of the work being carried out. C offers essentially the full power of the machine,
but the language is difficult to use for oceanographic work, because of its weak
support for matrices and other high-level data types. Fortran offers similar power,
and has an advantage over C in its strong support for matrices. In some ways, C++
is even easier to use, with an object orientation model that reduces coding effort and
facilitates collaboration, but its object orientation can impose efficiency penalties, if
users rely on overly indirect algorithm expression.

Although compiled languages underpin all computing applications, and remain
the best solution for large computing tasks such as numerical models, they have
fallen out of favour for interactive work. This is particularly true for so-called
“exploratory data analysis” as described in the seminal treatment of Tukey (1977)
and more recently by, e.g., Velleman and Hoaglin (2004). Of many interpreted
languages that might be discussed in the present context, three stand out: Matlab,
Python, and R.

As with the compiled languages shown in Fig. 1.1, the relative merits of the
interpreted languages depend on the work being done. The illustrated efficiency
ranges are large because not all problems map well to the fastest components of the
languages. For example, these three languages all provide strong low-level support
for matrices, so that problems that can be cast in matrix form are handled with
efficiency approaching that of compiled languages. Importantly, each also allows

5http://data.unep-wcmc.org.
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advanced users to frame parts of their algorithms in compiled languages, yielding
great improvements in speed.6

The most contentious aspect of Fig. 1.1 may be the ranking of Matlab, Python
and R in terms of ease of use, for this is the sort of judgement that partly boils down
to a matter of taste. The diagram expresses the author’s opinion, based on years
of experience, that Python is superior to Matlab, and that R is superior to both.
This reflects several factors. First, both Python and R are popular in more diverse
fields (at least outside oceanography), which means that users of these languages can
benefit from the efforts of broad communities of experts. The popularity lies partly
in the technical merits of the languages, and partly in their open-source licenses.
Especially in a university setting, open-source systems attract talented people who
have a habit of sharing their work, and this can lead to nonlinear improvements
to the development process.7 For Python and R, the shared efforts are organized
through systems that bundle software code with documentation and test cases. The
bundles are called packages in R. These packages are a significant factor in the
present judgement of the superiority of R, since they provide the power to tackle a
myriad of tasks that come up in oceanographic analysis.

An important package in the oceanographic context is oce. As discussed in
Chap. 3 and throughout this book, oce handles dozens of specialized oceanographic
data formats, and provides functions for calculations and graphical displays that
are specific to oceanography. Its object-oriented approach lets novices get results
quickly, without imposing undue limits on experts. Reproducible research is built
into the foundation of the package, with a processing log being contained in all
oce data objects. Few limitations are imposed on the scope of work done with
oce, because the package integrates well with both the base R language and other
packages.

Based on factors such as those listed above, the thesis statement of this book
is that R is a powerful system for oceanographic analysis, with high potential for
open-ended research and more routine technical work. Simply stated, it is a tool that
works well, and fits comfortably in the hand.

There is a learning process in adopting R, and this book is designed to accelerate
that process, in different ways for readers of different backgrounds. The author
is a research scientist and an educator, not a salesman, and so the text points out
the weaknesses of R, as well as strengths. For many readers, these strengths and
weaknesses will be measured against Matlab, and so an early component of the
tutorial provided in the next chapter is a brief comparison of the two languages.

6For example, the oce package (Kelley and Richards 2018) uses C to decode the binary data
files produced acoustic Doppler instruments, reducing computation times by orders of magnitude
compared with pure R.
7See Raymond (2001) for a general discussion of open-source development, Fox (2009) for
comments in the R context, and Lowndes et al. (2017) for details of how using R and other open-
source tools can enhance reproducibility in ocean science.



Chapter 2
R Tutorial for Oceanographers

Abstract R comes with an excellent tutorial that, like many fine tutorials, tends
to be ignored by people with little patience for material presented in a general
manner. This is why the present chapter uses oceanographic examples to explain
R concepts, and why code makes up so much of the text. The early examples
are designed to encourage readers to become comfortable whilst navigating the R
documentation, because this skill can be the key to moving from simple examples to
real-world applications. The main concepts of R data types and language features are
illustrated here in practical terms, with many of the explanations involving graphical
representation. Since experienced R users are unlikely to study this chapter in
great depth, specialized methods of oceanographic analysis are mainly deferred to
succeeding chapters.

2.1 Introduction

R can be deceptive at first, because it handles simple tasks so well that newcomers
might wonder if it has the power for advanced work. They need not worry, for R
balances simplicity and power in ways both subtle and varied. Some users notice
this first in the thoughtful system of default function arguments, through which
R achieves simplicity without loss of flexibility. Others will focus on how R uses
object orientation methods to generalize tasks, letting users think about science
instead of syntax. Those with programming experience will see the benefits of the
functional basis of R, and its innovative rules for the scope of variables and the
evaluation of expressions. And those working on computationally demanding tasks
will appreciate the R interfaces to C, C++ and Fortran, and its handling of multiple-
processor systems.

R is a practical language that owes some of its strength to its lineage. Many of its
best characteristics can be traced to the S and S-plus languages upon which it was
patterned. These earlier systems were well designed at the outset, and were honed
by use in advanced research settings (Becker and Chambers 1984; Becker et al.
1988; Chambers and Hastie 1992). R was also born in a research setting, which may

© Springer Science+Business Media, LLC, part of Springer Nature 2018
D. E. Kelley, Oceanographic Analysis with R,
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explain why it has innovations that take it beyond the earlier languages (Ihaka and
Gentleman 1996; Chambers 2008).

The important book by Venables and Ripley (1999) contains a wide-ranging and
authoritative overview of R and its use, and it can be recommended to any reader.
Dalgaard (2002) is a good companion, especially for beginners. The Chambers
(2008) and Wickham (2014) treatments of technical aspects should prove useful
to advanced users, especially those developing R packages. There are also many
books about specialized topics, e.g. graphical display (Murrell 2006; Wickham
2009), time series analysis (Shumway and Stoffer 2006), neural networks (Ripley
1996), Bayesian methods (Albert 2009), numerical ecology (Borcard et al. 2011),
etc. Readers should have little difficulty finding books on a specialized applications
of R; for example, the present book is part of a Springer “UseR!” series that has
dozens of titles.

In addition to texts, the extensive features of R are covered in detail in the official
documentation (R Core Team 2017). For beginners, the most important part of this
is the essay entitled “An introduction to R.” Other essays deal with R as a language,
with writing packages to extend the system, etc.; these are recommended to readers
who already use R frequently. There is also a full reference manual that, spanning
thousands of pages, is best consulted a little at a time.

A sensible way to learn R is to work through a tutorial. The “Introduction to R”
can be used in this fashion, and few readers would be disappointed with its pacing,
coverage or clarity. The present chapter is not as deep, nor as broad, but it does
have two advantages: (a) it is cast in oceanographic terms, which may hold readers’
interest better than general material and (b) it contains many exercises that should
speed up the learning process.

By the end of this chapter, readers should be able to accomplish simple tasks
in R, and understand code for more complicated tasks. This will set the stage for
the upcoming chapters, in which the focus shifts more directly to oceanographic
analysis. But, before any of this can be done, we must acknowledge the “elephant
in the room”, Matlab.

Over the past few decades, Matlab has become so popular in oceanography that
many regard it as a lingua franca for data analysis. Figure 2.1 (and Appendix A)
illustrates that mapping from Matlab to R is not difficult, especially when viewed in
stages. For example, the first Matlab line
load xy.dat

causes a file named xy.dat to be read, with the numerical values being stored
in a matrix named xy. Although the syntax is simple, it hides a great deal. Upon
encountering the load token, Matlab interprets the next token as a file name, and
constructs a variable with an analogous name, into which to store the contents of the
file. By contrast, the equivalent line in R
xy <- read.table("xy.dat")

is more complicated, but also more direct. The “<-” token indicates assignment. To
its left is the name of a variable to store the result of an expression to its right. In
this case, the expression is the value returned by a function named read.table()
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Fig. 2.1 Comparison of Matlab and R for file input and graphics

that reads tabular data and returns a so-called “data frame” (discussed at length later)
representing information within the named file.

Next, the Matlab line
plot(xy(:,1),xy(:,2))

constructs a line graph with the first column of xy taken as the x coordinate and
the second as the y coordinate. The “:” means to use all rows. Note the use of
parentheses in two very different ways here, to indicate arguments to a function and
to indicate indices of a matrix. The R version
plot(xy[,1], xy[,2])

differs in several ways. First, it creates a scatter graph by default, although this can
be changed to a line graph easily (see Exercise 2.1). Second, the axis labels indicate
the names of the plotted items, which is very helpful in exploratory analysis because
it reduces the need to change axis titles if variables are changed. Third, R uses square
brackets for indexing and does not require the “:” place-holder.

Finally, a user exits Matlab with
quit

while the equivalent in R is
q()

which calls a function named q(). Matlab users may find it odd to exit a program by
calling a function, but this fits the theme of R, which is a function-oriented language.
Indeed, many things that one might think of as commands or operators in Matlab
take the form of functions in R, and this has subtle and helpful effects that will
become clearer in the remainder of this book.
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Exercise 2.1 Type help(plot) in a console, and use the results to see how to
draw a line graph instead of a scatter plot. (See page 187 for a solution.)

Exercise 2.2 Consult the documentation for read.table(), to see how to
indicate that the first line of the file contains a line with the names of the columns.
(See page 187 for a solution.)

Exercise 2.3 Use the mfrow argument of par() to draw multi-panel plots in R,
emulating the Matlab subplot command. (See page 188 for a solution.)

Exercise 2.4 Use outer() to emulate the Matlab function meshgrid. (See
page 188 for a solution.)

2.2 First Steps with R

2.2.1 License

R is subject to a “GNU General Public License”. This has three practical benefits.
First, it means that R can be included in linux systems, which ensures distribution
within a community of technically minded users who tend to help other users
by contributing to online forums and sharing code. Second, R is an open source
application, so that users can examine its internal workings, in case they want to
evaluate the methods or extend them. And third, R is available free of charge, which
has obvious benefits to students, researchers and consultants.

2.2.2 Installation

On linux systems, R is installed in the same way as other software, either using GUI
operations or by typing commands in a terminal. On other systems, installation is a
simple matter of visiting the R website1 and installing the appropriate pre-compiled
version. Archived versions are also available there.

2.2.3 R Packages

R benefits greatly from a scheme for combining code and documentation into so-
called packages that are distributed in the Comprehensive R Archive Network,
CRAN, which is available at the R website. As shown in Fig. 2.2, the number of

1http://cran.r-project.org/.

http://cran.r-project.org/
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Fig. 2.2 Number of R packages on the CRAN archive site. The curve results from using nls() to
perform a nonlinear regression with model n = n0 exp((t − t0)/τ), where n is package count, t − t0
is the time since the first point shown, and n0 and τ are free parameters. This yields a doubling
time of 3.2 ± 0.1 years (95% confidence interval)

packages2 has increased dramatically since R was released, with over ten thousand
being available at the time of writing. The coverage of these packages is broad,
reflecting the broad popularity of R. Since packages are usually developed by
experts in the sub-field of application, they tend to address relevant problems in
up-to-date ways. Code quality tends to be high, given both the expertise of the
developers and automated code-quality checks that are built into the packaging
process.

The R documentation explains the process of package development in clear
terms, and so it is not difficult for users to develop packages for their own work.
Since all R users benefit from the work of others, there is a natural tendency to
share. This sharing often starts within work groups, but as code becomes robust, it
can make sense to share more broadly on CRAN.

Some of packages used in this book are unlikely to be installed by default in the
version of R on the reader’s computer. To see whether a package is already installed,
open an R console and type, e.g.

library(oce)

If an error message results, then it will be necessary to install oce, either with a
menu item in a GUI version of R or by writing

install.packages("oce")

in an R console. Development versions of packages may be installed from source
files.

2The package count was inferred from web archives at http://wayback.archive.org/.

http://wayback.archive.org/
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For packages that are developed on the GitHub social coding website3, the
building process is, e.g.

library(devtools)
install_github("oce", "dankelley", "development")

It is important to note that many of the examples in this book deal with the oce
package, but the

library(oce)

that should precede the use of oce has been removed from the code examples in the
text, some of which are only a few lines long. However, a library() call will be
provided for all other packages used in examples.

Code presented in this book uses packages named boot, bvpSolve,
changepoint, DBI, deSolve, devtools, doMC, doParallel, fields,
geonames, gsl, hexbin, imputeTS, jpeg, KernSmooth, lattice,
lmodel2, lubridate, magrittr, MASS, microbenchmark, mixtools,
ncdf4, oce, ocedata, party, plyr, propagate, R.matlab, ReacTran,
rgdal, rootSolve, RSQLite, segmented, signal, smatr, tiff,
vioplot, WaveletComp, and XML, plus the packages upon which these depend.

2.2.4 Running R

Starting an R console is system-dependent. Many systems provide an icon that can
be clicked to launch a GUI-based interface to R (see Appendix B), in addition to a
command-line tool that can be used within a terminal.

The startup behaviour of R can be customized with a startup file, e.g. the author
has

options(digits=7, digits.secs=3)
options(editor="mvim")
options(oceEOS="gsw")

in a file called .Rprofile in his home directory, to control the number of digits
in numbers and times, to set his preferred text editor, and to default to the “Gibbs
Seawater” formulation of the seawater equation of state, as opposed to the older
UNESCO formulation (see Sect. 5.2.1 and Appendix D). Information on R startup
is provided by help(Startup).

There are GUI wrappers that simplify some R operations, including the popular
Rstudio system, but R is still a computing language at its core, with detailed
actions being controlled by textual instructions. These instructions may be typed in
an R console or entered in a file that is processed by R. Many users combine the two
methods, using the console to test provisional approaches, and gradually copying
working code into an editor window. Power users are inclined to prefer working in

3github.com.

github.com
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editors that are external to GUI applications, and this is easy with Rstudio. The
most popular standalone text editors are Emacs (for which the ess mode handles
R) and Vim (for which the vim-r plugin handles R); each allows transferral of
individual lines or blocks of code to a running R session.

Except for trivial work, it is a mistake to use R in a solely interactive mode.
Saving code in files is necessary to achieve reproducible results. These files should
be self-contained, so that they can be used directly by another researcher with access
to the data. There are several ways to use such a file. Within an R session, such a
file (called work.R, say) can be executed with

source("work.R")

in an R console, by clicking an icon in an Rstudio window, or with
R --no-save < work.R

or
Rscript work.R

within a unix-like operating system.
It is easy to automate R analysis considerably on Unix. For example, if the

following4 is put into a file called Makefile, then typing make in a terminal
will run R on all the files with name ending in .R, generating a .out for each.
R = $(wildcard *.R)
OUT = $(R:.R=.out)
%.out: %.R

R --no-save < $< > $@
all: $(OUT)
clean:

rm -f *.out
Typing make again does not call R, because the .out files are older than their
.R sources. If any of the .R files are changed, then typing make again processes
just those files. Typing make clean removes the .out files, resetting the process.
Using make speeds up complex multi-staged work, with the extra benefit (compared
with interactive analysis) of documenting the entire processing procedure, a key
component of reproducible research.

2.2.5 Getting Help

Readers who have followed along with the worked exercises will already be
comfortable accessing the R help system in a basic way, e.g.

help(read.table)

explains read.table(). As a convenience, this can also be written
?read.table

4The indented lines of the Makefile must start with a tab character, not spaces.
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If the function (or dataset) name is not known, it may still be found by searching the
documentation, e.g.

help.search("trig")

yields information on a variety of functions relating to trigonometry and
help.search("angle", package="oce")

reveals oce functions or datasets whose documentation contains the word angle.
The search string must be enclosed in quotes for help.search(), but quotes are
optional for help().

An overview of the functions in a package is easily obtained, e.g.
help(package="oce")

yields the documentation at a broad level, and
package?oce

yields a more specific entry about the package.
The example() function is a companion to help() that runs any

examples that are provided in the documentation for a named function, e.g.
example(plot) provides a few examples of plotting. This can be very useful,
because many documentation pages have pertinent examples.

Exercise 2.5 Use help.find() to find an R package that accesses the www.
geonames.org website, and thus locate Halifax, Nova Scotia. (See page 189 for a
solution.)

2.3 Syntax

2.3.1 Expressions

R can be used as a calculator, simply by typing expressions, and e.g.
377 / 120
[1] 3.141667

(Ptolemy’s approximation of π ) demonstrates a call-and-response typographic
convention used throughout this book. Importantly, the response displayed here was
created by R itself, using a system called “sweave” (Leisch 2002). Thus, readers
can rest assured that the numerical and graphical examples of the book will work as
indicated, apart from formatting nuances.5

A confusing aspect is the string “[1]” preceding the result of the calculation.
This is a counter indicating that the first number on the line is the first in a sequence.
These counters are helpful for long sequences. For example, the colon operator (:)
forms a sequence of values (a “vector”, in R parlance) in a stated range, e.g. 1:7

5R displays a prompt before the input, but this is omitted throughout this book.

www.geonames.org
www.geonames.org
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yields the integers from 1 to 7 and their inverse cubes can be calculated with the
power operator (ˆ)

1 / (1:7)^3
[1] 1.000000000 0.125000000 0.037037037 0.015625000
[5] 0.008000000 0.004629630 0.002915452

Even this short vector may reveal the usefulness of output counters.
Readers who skipped the parentheses in the previous expression will see a display

of hundreds of numbers. This is because the exponential operator is acted upon
before the sequence-forming operator. It is said that “ˆ” takes precedence over
“:”. By contrast, “:” takes precedence over multiplication, as the reader can verify
by entering “1 / 1:7 * 3” in a console. The precedence of operators is well
documented, but it is also easy to forget, so parentheses are recommended to avoid
confusion.

On a more aesthetic note, it is good idea to use white space to clarify the notation,
especially in complicated expressions. This is somewhat a matter of preference, with
some R users inserting a single space before and after every operator, and others
inserting space only for certain operators, or in certain circumstances, depending on
whether the expression is being entered interactively or being inserted in a document
to be shared widely.

Much more could be said about the syntax of R, but it is preferable to continue
on with practical examples. For any but the simplest of work, it is certain that users
will need to make use of R functions. Of course, given its focus on data analysis,
R provides many functions for statistical and numerical work. Most functions can
work with single values, or collections of values such as vectors. This latter fact
will be a commonplace for Matlab programmers, but those coming to R from C-like
languages will find that it greatly simplifies coding, eliminating loops. For example,
the Taylor series approximation

ex =
∞∑

n=0

xn

n! (2.1)

for x = 1/10 can be evaluated to five terms with
sum(0.1^(0:4) / factorial(0:4))
[1] 1.105171

where factorial() calculates n! and sum() adds elements.
In addition to such numerical-analysis functions, a conventional set of functions

for programming is available. For example, the minimum of a vector is calculated
with min(), while the index of the smallest element is given by which.min().
The corresponding functions for maximum are max() and which.max(). The
range of values in a vector (or any other collection of numerical values) is calculated
with range(). The boolean function all() examines a vector of boolean values
(or expressions) and returns TRUE if each of these values is TRUE. Similarly,
any() indicates whether any of the values is TRUE. All of these functions can
handle missing values (see Sect. 2.3.3.6).
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Comments may be added to R expressions by placing a # character on the line,
so long as that character is not in a quoted character string. Since an empty line is a
valid R expression, this also provides a scheme for standalone comments.

# Note that atan() returns an angle in radians
4 * atan(1) # pi
[1] 3.141593

Exercise 2.6 Use cumsum() to monitor the convergence of the Taylor series for
exp(). (See page 189 for a solution.)

2.3.2 Variables

2.3.2.1 Variable Assignment

As noted previously, R denotes assignment with the operator “<-”, e.g.
phi <- (1 + sqrt(5)) / 2

stores the golden ratio in a variable named phi. It is also possible to assign to
variables indirectly using assign(), e.g.

assign("phi", (1 + sqrt(5)) / 2)

This second approach is helpful when the variable of interest only becomes known
as the R code is being run, as is common in reading data files.

2.3.2.2 Variable Evaluation

Writing the name of a variable in an expression that is evaluated causes R to look
up the value and use it appropriately,6 e.g.

1 / phi
[1] 0.618034

It is also possible to find a variable by name, using get(), e.g.
get("phi") - 1
[1] 0.618034

(Aside: comparison of the previous two results reveals a key property of the golden
ratio.)

6A subtle point is that R does not always look up the values of variables until they are needed. This
is related to R concepts of “lazy evaluation” and “promises”.



2.3 Syntax 15

2.3.2.3 Variable Names

Readers with programming experience will find that R accepts common conventions
for variable names. For example, a name may contain letters and numbers, the case
of letters is significant, etc. However, there are important differences between R
variable names and those in other languages.

In some languages, a period in a variable name has a special meaning, e.g. to
refer to part of a multi-component object. This is not so in R, where the purpose of
a period is both more varied and more confusing (see, e.g., Bååth 2012). In some
cases, R treats a period in a variable name just like any other character, e.g. in

one.half <- 1 / 2

it provides a visual cue that two words are linked. However, in some circumstances,
periods have a special meaning relating to the generic functions, a somewhat
complex topic to be dealt with in Sect. 2.3.11.6. In the interest of clarity, many R
users avoid periods in names, except for generic functions. That raises a question of
how best to provide a visual cue of word linkage. A style that is popular in some
other languages is to use underlines, e.g.

three_quarters <- 3 / 4

However, underline was once used to indicate assignment in R (a convention
borrowed from S), and some text editors automatically expand this character to <-.
To avoid confusion, the author uses “camel case” notation, in which a case switch
is used to separate words, e.g.

fourFifths <- 4 / 5

This notation is used in the oce package and in other packages, including the
popular Bioconductor system for genomic analysis.

Caution R provides great freedom in variable names. For example, assign()
permits a blank character as a variable name, and get() recovers its value without
complaint. Needless to say, such tricks are best avoided.

Caution R does not have read-only variables. For example, even though pi is
automatically defined by R to be π , it is valid to write pi <- 3.41, and doing
so can lead to errors that may be difficult to find later.

2.3.2.4 Variable Scope

Variables in R come into existence when they are assigned a value. Those values are
accessible only within what is called the variable “scope”. For example, variables
created within a function are destroyed when the function returns. This is important,
because it means that calling an R function tends not to have side effects on any
variables in the enclosing scope. This lack of side effects is an aspect of so-called
functional programming, in which a function affects its environment only through
its return value.
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Sometimes, however, it seems that side effects are the best solution to a coding
problem, and the <<- operator may be used then, to widen the scope of assignment.
See, e.g., Gentleman and Ihaka (2000) and Wickham (2014) for further discussion.

2.3.3 Basic Storage Types

2.3.3.1 Numerical Types

Integer numbers are denoted with suffix “L” (for “long”, the size of integer storage
in R), e.g.

five <- 5L

which is revealed as an integer by storage.mode()
storage.mode(five)
[1] "integer"

As noted previously, sequences of numbers can be generated with “:”
1:3
[1] 1 2 3

and more general increments are handled with seq(), e.g.
byTwo <- seq(10L, 20L, 2L)

produces the sequence 10, 12, . . . , 20 as integers (but the returned vector would
be of the “double” storage mode if the third argument were not an integer, or if
other argument values required floating-point representation). Integers that map to
the contents of the sequence can be produced with seq_along()

seq_along(byTwo)
[1] 1 2 3 4 5 6

and such mappings are often helpful in working through datasets, such as the
stations with an oceanographic section, or the levels within a given station.

Floating-point numbers are indicated with decimal points or exponents
twoPi <- 8 * atan2(1, 1)
avogadro <- 6.02e23

Complex numbers are denoted with suffix “i” on the imaginary part, e.g.
x <- 1 + 2i

The real and imaginary parts of a complex number are recovered with Re() and
Im(), and related functions perform other requisite tasks. Many R functions accept
complex numbers as arguments, e.g.

sqrt(1i)
[1] 0.7071068+0.7071068i

exp(pi * 1i)

[1] -1+0i

Unfortunately, R does not provide small storage types, such as the 2-byte integers
that are used to save space in several acoustic Doppler and satellite data formats. If
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memory is sufficient, it may be sensible to promote such data to 8-byte integers or
floating-point values in R. However, for large datasets it is better to glue together
pairs of single-byte elements, as is done in the oce package (Chap. 3).

2.3.3.2 Logical Type

R uses TRUE and FALSE to denote logical values, e.g.
waterIsWet <- TRUE

Logical negation is achieved by putting ! to the left of a logical quantity. Writing
| between two logical quantities yields “or”, while & yields “and.” Note that these
operators produce vectors when applied to vectors, while the related operators ||
and && each produce single-valued results.

A common way to construct logical values is through comparison, e.g.
x <- seq(-3, 3)
x < 0
[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE

shows how the less-than operator is used; similar operators include <=, >, >=, ==,
and !=. (See Exercise 2.7 for notes regarding the use of ==.) A common use of
logical values is for subsetting, e.g.

mean(x[x > 0]) # mean of positive values
[1] 2

(This is equivalent to mean(subset(x, x > 0)), which is a clearer expres-
sion to some users.)

The indexing method also works for assignment, e.g.
x[x <= 0] <- NA
mean(x, na.rm=TRUE)
[1] 2

where mean() has been given an argument to ignore missing values.

Caution Although TRUE and FALSE can be abbreviated T and F, this is a poor
idea because it leads to confusion, especially in oceanographic work, where “T” is
a common abbreviation for a temperature.

Exercise 2.7 Use == to find your computer’s precision, i.e. the smallest resolvable
difference between floating-point values. (See page 190 for a solution.)

Exercise 2.8 Explain why all.equal() is good way to compare floating-point
values. (See page 190 for a solution.)

2.3.3.3 Textual (Character) Type

Text strings may be enclosed in single or double quotation marks, and one nested in
the other is taken as a literal, e.g.
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cat("Henry ('Hank') Stommel was a smart man.")
Henry ('Hank') Stommel was a smart man.

Strings may be pasted together with paste()
paste("Stommel", "(1948)", "is a classic.")
[1] "Stommel (1948) is a classic."

Substrings may be extracted with substr()
filename <- "atlantic.dat"
substr(filename, 1, 8)
[1] "atlantic"

and nchar() gives the number of characters in a string
substr(filename, nchar(filename)-2, nchar(filename))
[1] "dat"

Strings may be split into components with strsplit()
strsplit("Stommel-Arons-Faller", split="-")
[[1]]
[1] "Stommel" "Arons" "Faller"

the result of which is a “list,” discussed in Sect. 2.3.6. (Splitting is a very useful
operation, for many tasks.)

R provides a variety of functions for altering strings, including sub(), which
replaces the first matched substring

sub("a", "A", "atlantic")
[1] "Atlantic"

and gsub(), which (by default) replaces all occurrences
gsub("a", "A", "atlantic")
[1] "AtlAntic"

Various text encoding schemes may be used for strings, including ASCII, UTF-
8, and “byte” forms. People requiring accents in strings probably know how to
enter them with key combinations, e.g. the “ä” in “Väisälä” may be obtained with
option-u a on some systems. Such characters may also be entered with a coding
system known as ISO/IEC 8859-1. In this, the code for “ä” is the hexadecimal
sequence E4. Such sequences may be entered into R strings by prefacing them with
the two-character code \x and setting the encoding with Encoding(), e.g.

N <- "V\xE4is\xE4l\xE4"
Encoding(N) <- "latin1"
N
[1] "Väisälä"

Setting the encoding to "bytes" can guide the construction of regular expressions,
but this can be a tricky business, depending on the encoding used to input data, etc.

It can be wise to stick with one encoding scheme. In oce, that scheme is (usually)
UTF-8. To see how this works, consider reading CTD files created by Seabird
software. If the software is set up to save σθ in CNV files, then there will be a
column named sigma-é00. Then the relevant header line can be isolated in UTF-
8 and latin-1 formats with, e.g.
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f <- system.file("extdata", "d201211_0011.cnv",
package="oce")
readLines(f, encoding="latin1")[54]
[1] "# name 22 = sigma-é00: Density [sigma-theta,
Kg/m^3]"

readLines(f, encoding="UTF-8")[54]

[1] "# name 22 = sigma-\xe900: Density [sigma-theta,
Kg/m^3]"

Although the first form has the advantage of displaying the line as a text
editor might, the UTF-8 form may be more convenient for programming, e.g.
read.ctd.cnv() finds such entries in headers with
n <- gsub("^# name [0-9][0-9]* = (.*):.*$",

"\\1", h, ignore.case=TRUE, useBytes=TRUE)
if (1==length(grep("^sigma-\xe9[0-9]{2}$", n,
useBytes=TRUE)))

Readers with programming experience will have no trouble reading regular
expressions in the previous lines of code. Others might benefit from a brief sketch
(consulting the R help system for details). Consider the strings "Atlantic" and
"Pacific", which may be joined into a vector with c(). To see which contains
the letter "t", write

grep("t", c("Atlantic", "Pacific"))
[1] 1

If no element had contained the pattern, grep() would have returned a zero-
length vector, so the expression 0 < length(grep(p, x)) tests whether any
element of vector x contains pattern p.

Special characters can be inserted into patterns, achieving useful outcomes. The
character "^" stands for the start of a string, and "$" stands for the end of the
string, as in the CTD example above. A period can stand for any character. An
asterisk after a pattern indicates that the pattern may appear zero or more times.
Alternative characters are enclosed square brackets, and a dash can be used to create
a sequence. Substrings enclosed within parentheses can be reused later, as is done in
the gsub() example, where n is assigned the value of the first (and only) marked
substring.

Special difficulties arise with human-entered text, because typos are common,
and users in different locales might spell differently. R helps in such cases with
fuzzy string matching provided by agrep() and adist().

Exercise 2.9 A directory contains Biosonics echosounder files, with names indi-
cating start times, with four digits for year, two for month and two for day, followed
by an underline and then two digits for hour, two for minute, and two for second,
ending with .dt4. Use grep() to isolate data starting between 1100 h and 1500 h
on June 28th, 2008. (See page 190 for a solution.)
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2.3.3.4 Binary (Raw) Type

R has a byte-level type that it designates as “raw.” Positive integers in the range
from 0 to 255 can be converted to this form with as.raw(), e.g.

as.raw(1:16)
[1] 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10

and as.raw() also handles floating-point values in the allowed range, by first
coercing its input to integer form. Raw constants follow a C-like notation, e.g. 0x0f
or 0x0F for 0000 11112, and C notation is also used for binary operations, with the
conventional operators |, & and !.

A good way to handle binary formats is to use readBin() to read the whole file
into a raw vector, and then to work though that vector with readBin() on smaller
chunks of data. Readers who have struggled with files in which the endianness
shifts from entry to entry will appreciate the fact that readBin() has an argument
specifying the endian nature of the item being decoded.

2.3.3.5 Time Types

A simple approach to dealing with time in R is to treat it as a numerical value
that has meaning to the user, but not to R. For example, a numerical model might
output time in days or years, with the expectation being that an analyst will take the
unit into account when making calculations and plotting results. However, a more
systematic approach is required for data.

Decoding times recorded in notebooks can require answering questions such as
whether 2018/2/10 is early in the year or late in it, whether 8 o’clock is in the
morning or the evening, and when (or whether) daylight-savings time commenced
in a given year, in a given jurisdiction . . . and realizing that such answers might not
hold across pages, even those written by a single person.

Some details are more universal, and R handles them well by itself. These include
leap years and leap seconds, along with the thornier matter of timezones. (The IANA
timezone database7 spans over 20,000 lines.) Readers interested in such things
should consult Ripley and Hornik (2001) for an introduction to how R handles dates
and times.

R has two schemes for representing time types. In one, time is represented
by a numerical value representing the year, another representing the month, etc.
This scheme is used by as.POSIXlt(), which converts text strings into times.
In the second scheme, used by the analogous function as.POSIXct(), time is
represented by a single numerical value that measures the interval since a reference
time. Both schemes have additional information on timezone, etc.

Conversion between these two schemes is trivial, so there is little need to discuss
both. The single-number scheme will be the focus here. Time objects created by

7www.iana.org/time-zones.

www.iana.org/time-zones
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as.POSIXct() store the number of seconds since the start of the year 1970.8

Prior times have negative values, and fractional seconds are handled by the use of
floating-point storage.

For example, one minute past the origin time is
t0 <- as.POSIXct("1970-01-01 00:01:00", tz="UTC")

This may be displayed as a text string or a numeric value
t0
[1] "1970-01-01 00:01:00 UTC"

as.numeric(t0)
[1] 60

Note the use of tz to set the timezone. If tz is not given, R will use a local time
zone. This default can lead to highly undesirable results, such as an R program
producing different results when run in different regions, so a tz value should
always be supplied. However, even this is problematic, because of ambiguities in
timezone notation. For example, AST means Atlantic Standard Time to the author,
but it might mean Alaskan Standard Time, or Afghanistan Standard Time, to a
reader. A good solution is to specify timezones by region and city, e.g.

as.numeric(as.POSIXct("1970-1-1 00:00:00",
tz="America/Halifax"))

[1] 14400

shows that local standard time in the author’s city is 4 h “behind” UTC. (Use
help(timezones) to learn more about timezones.)

Handling alternative representations of times is simplified with the format
argument, e.g.

as.POSIXct("Jan 1, 1970 00:01:00", tz="UTC",
format="%b %d, %Y %H:%M:%S")

[1] "1970-01-01 00:01:00 UTC"

handles a common format used in non-technical writing; note that %b is an
abbreviated month name, %d is decimal day, %Y is year including century, %H is
hour, %M is minute, and %S is second. See the documentation for strptime() for
the details of the coding scheme, which includes some standardized forms, e.g.

as.POSIXct("1917-12-06 09:04:35", format="%F %T",
tz="America/Halifax")

[1] "1917-12-06 09:04:35 AST"

expresses the time of the Halifax explosion in ISO 8601 format.
Using as.POSIXlt() is very similar to this. Working with numerical values

for year, month, etc., is also easy, with ISOdatetime().
All of the above relates to the base package. The lubridate package

(Grolemund and Wickham 2011) also has functions that parse common formats,
and e.g.

8Alternative time origins may be specified to as.POSIXlt(), and this can be helpful in working
with times represented in other systems such as SPSS and SAS.
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library(lubridate)
ymd("1970 Jan 1")
[1] "1970-01-01"

ymd("1970-01-01")

[1] "1970-01-01"

demonstrates that it is quite adept at decoding formats.
Oceanographers use a wide variety of numerical schemes for time, so oce

provides numberAsPOSIXct() for inferring times from the Unix, Matlab, SAS,
SPSS, GPS and Argo numerical schemes.

The above has dealt with single values, but of course R also handles vectors of
times. For example, sequences of times may be created with seq()

seq(t0, by="1 min", length.out=2)

[1] "1970-01-01 00:01:00 UTC" "1970-01-01 00:02:00 UTC"

or simply by adding a sequence of numerical values to a time, e.g.
t0 + 60 * seq(0, 1)
[1] "1970-01-01 00:01:00 UTC" "1970-01-01 00:02:00 UTC"

Despite the strong support for time types in R, there are many ways to get into
trouble if care is not taken. A few hints may help.

1. Always set the timezone, ideally to tz="UTC".
2. Matlab users should note that Julian days start at 0 in R, e.g.

as.numeric(julian(as.POSIXct("1970-1-1", tz="UTC")))
[1] 0

3. Be careful when assembling multiple times with c(), e.g.
as.POSIXct(c("1970-1-1", "1970-1-1 0:0:1"))
[1] "1970-01-01 AST" "1970-01-01 AST"
as.POSIXct(c("1970-1-1 0:0:0", "1970-1-1 0:0:1"))
[1] "1970-01-01 00:00:00 AST" "1970-01-01 00:00:01 AST"

reveals that R selects the printing format based on the first element.
4. Be aware that format() and strftime() handle unspecified timezones

differently, e.g.
t0 <- as.POSIXct("1970-01-01 00:01:00", tz="UTC")
format(t0)
[1] "1970-01-01 00:01:00"
strftime(t0)
[1] "1969-12-31 20:01:00"

(Note that setting tz="UTC" in the format() and strftime() calls makes
them yield identical results.)

5. Limit your choice of functions, and study the documentation well, to avoid
surprises such as the one just mentioned.

6. Try using attr(), attributes() and as.numeric() to find the roots of
any problems that may arise.
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2.3.3.6 Missing Values and Other Special Values

Conventional notation is used for numerically problematic values in R, e.g.
c(1/0, -1/0, asin(3))
[1] Inf -Inf NaN

R has a special code for missing values, such as might result from instrument
malfunction. These are indicated with NA, which could be read as “not appropriate.”
A missing value can take the place of most R items, e.g.

c(1, 2, NA, 4)
[1] 1 2 NA 4

c("inshore", NA, "offshore")

[1] "inshore" NA "offshore"

The provision of missing values in R reveals that it is a language that grew from
the demands of research. Other systems such as Matlab reuse NaN or some other
code for a missing value, blurring meaning. Many R functions detect missing values
and offer ways to control how they are interpreted, e.g.

mean(c(1, NA, 2))
[1] NA

mean(c(1, NA, 2), na.rm=TRUE)

[1] 1.5

There are also functions for selecting data, e.g.
mean(na.omit(c(1, NA, 2)))
[1] 1.5

In many cases, simply omitting missing data will be sufficient, but sometimes
this is not an option, e.g. skipping data in a time series will yield problems with
computing spectral properties. An entry to the general literature about handling
missing data is provided by Horton and Kleinman (2007). Readers can also find
guidance in their own branches of the oceanographic literature, with treatments
often being keyed to instrument type, e.g. Sect. 5.9.2.2 presents ideas for dealing
with acoustic-Doppler velocimeter (ADV) data.

R uses the symbol NULL to indicate an extant but empty quantity. This is
sometimes used in function arguments. A common use in processing is in the item-
by-item construction of vectors, as explained in Sect. 2.3.4.

R provides several functions for testing whether numbers are problematic, e.g.
is.nan() tests for NaN, is.infinite() tests for Inf, and is.null() tests
for NULL values. In many cases, the best test is is.finite(), which returns
TRUE only if the argument is not Inf, not NaN, and not NA.

Caution Matlab data files tend to use NaN for missing value, so that Matlab files
that are converted to R need an extra step, e.g.

x <- readMat("x.mat")
x[is.nan(x)] <- NA
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2.3.4 Vectors

Vectors hold sequences of values, and e.g.
x <- 3
is.vector(x)
[1] TRUE

reveals that even single values are vectors.
A vector can contain entries of any atomic mode, meaning "logical",

"integer", "numeric", "complex", "character" or "raw", or of
either "expression" or "list" mode. However, a vector cannot contain an
admixture of these modes. Applications requiring the grouping of items of dissimilar
modes should use lists (Sect. 2.3.6), instead of vectors.

A few examples will suffice to show how to use vectors in practical work. A
vector of numerical values may be constructed in a number of ways, e.g. with the
colon operator “:” for integers

threeStooges <- 1:3

with a sequence function for more general values
thirds <- seq(0, 1, length.out=4)

with the repeat function
fourScore <- rep(20, 4)

and with the collection function
irrational <- c(pi, exp(1))

The last of these methods also works for strings
stoogeNames <- c("Larry", "Curly", "Moe")

Vector elements are accessed with a square-bracket “[” notation patterned on C,
although R indexes the first element at 1, not 0 as in C, e.g.

stoogeNames[2]
[1] "Curly"

and multiple elements may be accessed at the same time, by providing a vector of
indices within the square brackets, e.g.

stoogeNames[c(1, 3)]
[1] "Larry" "Moe"

A boolean vector may also be used to access elements. For example, the most
colourful of the seven seas of Medieval literature are

seas <- c("Mediterranean", "Adriatic", "Arabian",
"Black", "Caspian", "Persian", "Red")

seas[c(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE)]
[1] "Black" "Red"

In the above examples, the vector contents are specified in code, so R can set up
storage before assigning values. However, in some cases, vector length is discovered
by data inspection or user instruction. If the requisite vector length is known before
determining contents, storage may be allocated with e.g.
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depths <- vector("numeric", 100)

with values entered later. If length is not known in advance, a vector can be
constructed incrementally (less efficiently), starting with an empty vector

lengths <- NULL

and then, as each new length L is found, append it to the list, e.g.
lengths <- c(lengths, L)

Another approach is to assign past the end of the vector, e.g.
lengths[2] <- 4

appends an additional item to the vector. Starting in 2017, R developed a new
scheme for memory allocation beyond the end of a vector, yielding great improve-
ments to the processing speed of this method, making it preferable to the c()
method in many cases.

Caution Binary operations between vectors follow a recycling rule that permits
combination even if the vectors are of unequal length. This works by cycling through
the elements of the shorter vector as needed, e.g. in

1:6 + c(1, 0)
[1] 2 2 4 4 6 6

the second vector is expanded to c(0, 1, 0, 1, 0) before the addition. This
behaviour is very helpful, but can be surprising to programmers coming from
languages that disallow operating on mismatched objects.

Exercise 2.10 Use floor() to select even integers from a vector. (See page 190
for a solution.)

2.3.5 Arrays and Matrices

As with vectors, the concept of a matrix should be familiar to most readers. A
simple interpretation is a grid of values, as one might construct by writing a number
(or string, etc.) in the boxes on a square-ruled sheet of paper. An array is a more
general item that can have higher dimensions. For example, a gridded sea-level field
η = η(x, y) might be stored in a matrix, while a 3D array would suit a gridded
temperature field T = T (x, y, z).

As with vectors, arrays are fairly flexible in terms of their contents, but any given
array can contain only one type, and that type must be single-valued (i.e. it is not
possible to store an array in the cell of another array).

To see if an item is a matrix, use is.matrix(), and to see whether it is an
array, use is.array(). Coercion rules usually ensure that arrays alter themselves
if the type of an element alters, e.g. if a floating-point number is inserted into a
matrix of integers, the rest of the numbers are converted to floating point values.
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The matrix() function can construct matrices from vectors, e.g.
m <- matrix(1:6, nrow=2)
m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

shows how to fill a matrix by columns; use byrow=TRUE to fill by rows. Matrices
can also be created by combining columns with cbind() or rows with rbind().

2.3.5.1 Algebra

Matrix operations may be carried out in an element-by-element manner with
operators such as +, *, etc. For example, each cell in A*B is the product of
corresponding cells in A and B. (Note that a recycling rule applies to matrices,
as for vectors.) Matrix multiplication is denoted by the %*% operator, and the
usual linear-algebra rules control whether A%*%B can succeed, depending on the
matrix dimensions. Those dimensions may be recovered or set with dim(). Other
common matrix operations include: transpose with t(), determinant calculation
with det(), singular value decomposition with svd(), QR decomposition with
qr(), eigenanalysis with eigen(), inversion with solve(), generalized matrix
inversion with ginv() from the MASS package, etc.

2.3.5.2 Indexing and Subsetting

Subsets of matrices can be extracted with [, e.g. with m as defined previously,
m[1,]
[1] 1 3 5

shows the first row, and
m[-1,]
[1] 2 4 6

shows the results of deleting that row.
The labelling in the results shown above indicates that R has converted the

column and row matrices into vectors. This behaviour can be disabled by supplying
the drop argument, e.g.

m[1,,drop=FALSE]
[,1] [,2] [,3]

[1,] 1 3 5

Note the need for two commas here, because the second argument to [ is an index;
see help("[") for more.

Caution The R conversion to vectors should be kept in mind when converting
matrix-oriented code from other languages.
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2.3.5.3 Reshaping

In addition to reporting the dimensions of an item, dim() can be used on the left-
hand side of an assignment expression, to set the dimension, e.g.

dim(m) <- c(1, 6)
m

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 2 3 4 5 6

This reveals that matrices and arrays are stored in column order, which proves
convenient when connecting R to C, C++ or Fortran.

2.3.5.4 Storage

R stores matrices and arrays as vectors, saving dimensions with attributes
attributes(m)
$dim
[1] 1 6

The dollar sign in the result is an indication that the attributes are stored in an item
named dim within a list. (See Sect. 2.3.6 for more on lists.)

2.3.5.5 Example: A Rotation Matrix

Suppose moorings are placed at locations drawn in Fig. 2.3 (left) with
E <- seq(0, 0.5, 0.1)
N <- seq(0, 0.5, 0.1)
plot(E, N, xlim=c(0,1), ylim=c(0,1), asp=1)

and that these locations are to be expressed in an xy coordinate system rotated 45◦
anti-clockwise of geographic. This is expressed with rotation matrix

R =
[

cos θ sin θ

− sin θ cos θ

]
(2.2)

Fig. 2.3 Rotation from E-N
coordinate system to x-y
coordinate system.
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with θ = 45◦, which may be expressed as
theta <- 45 * pi / 180
S <- sin(theta)
C <- cos(theta)
R <- matrix(c(C, S, -S, C), byrow=TRUE, nrow=2)

so that matrix multiplication yields x and y in columns
xy <- R %*% rbind(E, N)
plot(xy[1,], xy[2,], xlim=c(0,1), ylim=c(0,1), asp=1,

xlab="x", ylab="y")

as in the right panel of Fig. 2.3.

Exercise 2.11 Write a function to find the indices of the maximal value of a matrix.
(See page 191 for a solution.)

2.3.6 Lists

The restriction that any given vector, matrix or array can hold just one data type
yields efficiencies, but some programming situations call for collections of disparate
items. In R, such collections are called lists, and they may be constructed with
list(), e.g.

hex <- list(name="six", value=6, constituents=c(2,3))

or with as.list(). If the list items have names, they may be retrieved with “$”
extraction operator or “[[” (this second operator being overloaded to look within
oce objects; see Sect. 3.3).

hex$name
[1] "six"

hex[["value"]]

[1] 6

Regardless of whether list items are named, they may be also recovered by
numerical index, with single-bracket notation

hex[3]
$constituents
[1] 2 3

retaining item names and double-bracket notation
hex[[3]]
[1] 2 3

discarding names.
As will be explained in Chap. 3, the oce package stores data as lists, because so

many oceanographic data combine vectors with matrices, raw bytes with decimal
numbers, etc.

Exercise 2.12 Show how to access a list within a list. (See page 191 for a solution.)
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2.3.7 Factors

Factors designate categorical data, and they have wide applications to oceanographic
work, for such things as species names, etc. Factors simplify data analysis because
many R functions handle them in useful ways. The ideas may be illustrated with
air-sea drag data reported by Garratt (1977).

data(drag, package="ocedata")

The values of the drag coefficient CD stored as Cd within this dataset were
inferred from either a “profile” method or an “eddy correlation” method. A factor is
a natural way to store this information, as is revealed with

str(drag) # results not shown

The list of categories is provided by levels()
levels(drag$method)
[1] "profile" "eddy"

while as.numeric() reveals the method used for each datum
as.numeric(drag$method)
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2

2 2 2 2 2
[29] 2 2 2

These numerical values are convenient for coding the data with symbols, as in
the left panel of Fig. 2.4.

code <- as.numeric(drag$method)
levels <- levels(drag$method)
plot(drag$U, drag$Cd, pch=code,

xlab="Wind Speed [m/s]", ylab=expression(C[D]))
legend("topleft", pch=1:length(levels), legend=levels)

As an example of R plotting functions that handle factors in special ways,
boxplot(Cd ~ method, data=drag, notch=TRUE)

yields the box plots shown in right panel of Fig. 2.4 (see Tukey (1977) for more on
box plots and other methods of exploratory data analysis).
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Fig. 2.4 Left: Symbol coding with factors. Right: boxplot coded with factors
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Factors are also given special consideration by several non-graphical functions,
and this lowers the effort of some everyday tasks, such as regression and the analysis
of variance (Sect. 2.5.6).

More generally, factors provide a simple way to subdivide datasets into com-
ponents to be processed individually, somewhat akin to the map-reduce method
(Lämmel 2008) popularized by Google. For example,

dragSplit <- split(drag, drag$method)

splits drag into a list with elements named profile and eddy, making it easy
to study differences between the subtypes, e.g. a t test

t.test(dragSplit$profile$U, dragSplit$eddy$U)$p.value
[1] 0.4587837

might offer some insights.
For the drag data, the identification of method as a factor is straightforward.

Factors can also be helpful with continuously varying data that can be subdivided
meaningfully, as with the constructed O2 profile9 drawn as Fig. 2.5 with

p <- seq(0, 1000, 10)
O2 <- 280 - 1.7 * p * exp(-p / 200)
plot(O2, p, ylim=rev(range(p)), type="l")

Here, p is pressure in decibars and O2 is oxygen concentration in µmol/kg.
Figure 2.5 shows the profile constructed as follows.

If there were a need to find the thickness of the layer with O2 concentration under
180µmol/kg, a first step might be to create a factor

f<-factor(O2<180,levels=c(TRUE,FALSE),labels=c("Low",
"High"))

(There is no requirement to supply levels and labels, but doing so reduces the
chance of errors of interpretation.) To find the thickness of the layer in question,
split the data

psplit <- split(p, f)

creating a list with elements named Low and High.

Fig. 2.5 Oxygen profile,
with minimum region
indicated
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9This profile results from a nonlinear regression (Sect. 2.5.5.2) of the oxygen profile at station 112
of the section dataset in the ocedata package.
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The pressure limits of the low-oxygen zone can be added to Fig. 2.5 with

abline(h=range(psplit$Low), lty=2)

Exercise 2.13 Use factor() and split() to identify the months in which
Keeling CO2 signal rises and falls. (See page 191 for a solution.)

2.3.8 Data Frames

Data frames are a complement to matrices and lists, and they are very important in R.
Indeed, help(data.frame) states that data frames are “used as the fundamental
data structure by most of R’s modeling software.”

One way to think of data frames is as matrices that may contain columns of
different storage types. This extension can be very useful for general data, e.g. in
listing information on two leaders of oceanography

leaders <- data.frame(person=c("Munk", "Stommel"),
born=c(1917, 1920))

The print() function displays an entire data frame
print(leaders)

person born
1 Munk 1917
2 Stommel 1920

while str() provides an overview
str(leaders)
'data.frame': 2 obs. of 2 variables:
$ person: Factor w/ 2 levels "Munk","Stommel": 1 2
$ born : num 1917 1920

that reveals that R created the first column as a factor.
Data frame columns may be selected in various ways:
leaders[1] # or leaders["person"]

person
1 Munk
2 Stommel

leaders[[1]] # or leaders[["person"]]
[1] Munk Stommel
Levels: Munk Stommel

leaders$person
[1] Munk Stommel
Levels: Munk Stommel

The $ style is convenient for interactive work, but the others are required for
programs that need to use names() to find names at run time.
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It is easy to modify data frames, e.g.
leaders$born<-c(as.Date("1917-10-19"),as.Date
("1920-09-27"))

alters the birth dates and
leaders$institution <- c("SIO", "WHOI")

adds a new column for workplace.

Exercise 2.14 Construct a data frame with column x containing numbers from 0 to
2π , and y containing sin x. (See page 192 for a solution.)

Exercise 2.15 Append volume to the oceans dataset from the ocedata pack-
age. (See page 192 for a solution.)

Exercise 2.16 Suppose a data frame contains CTD data for a series of stations,
with columns for salinity, temperature, pressure, and station ID. Use split()
and factor() to create a list with one element per station. (See page 193 for
a solution.)

2.3.9 Contingency Tables

Tabulation may be accomplished with functions table() or tabulate(). The
first of these returns an object of class "table", which is essentially an integer
vector with names, while the second returns a integer without names.

A handy use of table() is to count missing values, e.g. the number of missing
phosphate data in the section dataset from the ocedata package can be found
as follows:

data(section, package="oce")
table(sapply(section[["phosphate"]], is.na))
FALSE TRUE
2817 24

where sapply() applies is.na() to all the PO4 measurements in the section.

2.3.10 Conditional Evaluation

R provides conditional evaluation with if statements, e.g. the following checks
whether the sun is above the horizon.

if (sunAzimuth > 0)
cat("daytime\n")

In this case, a single action is to be performed. As in many other computing
languages, multiple actions are enclosed with braces, e.g.



2.3 Syntax 33

if (ocean == "Atlantic") {
area <- 1e8 # km^3
depth <- 4 # km
cat("Ocean volume:", area * depth, "km^3\n")

}

It is also possible to specify a statement (or block of statements) to be executed if
the tested condition is false, e.g.

if (depth < 100) cat("shelf\n") else cat("deep\n")

which also illustrates that blocks can be put on one line.
The if statement acts as an expression that returns a value, e.g.
sedimentType <- if (L < 62.5e-6) "mud" else "sand"

distinguishes between two sediment categories; nested ifs might be used if samples
might contain gravel, etc.

In the previous examples, only a single value was being tested. Multiple values
can be handled with loops (Sect. 2.3.12), but it is usually better to use ifelse()
to improve speed and clarity.

The first argument to ifelse() is a vector, matrix, etc., of logical values. The
second is a corresponding vector (etc.) of values to be selected if a particular test
value is TRUE, and the third contains values for FALSE conditions. For example, a
matrix of depths

H <- matrix(c(10, 50, 90, 200), nrow=2)

can be categorized by domain with
ifelse(H < 100, "shelf", "deep")

[,1] [,2]
[1,] "shelf" "shelf"
[2,] "shelf" "deep"

2.3.11 Functions

2.3.11.1 Built-In Functions

R provides functions for common tasks related to plotting, statistics, and numerical
analysis. Many specialized mathematical functions are provided as well, either in
the base system or in packages. Some searching may be required to find the best
package for a given task. For example, the formula for the perimeter of an ellipse
involves the complete elliptic integral of the second kind, and this is available
as ellint_Ecomp() in the gsl (GNU scientific library) package,10 e.g. the
perimeter of an ellipse with radii 1 and 2 is

10See http://www.gnu.org/software/gsl/ for more on GSL.

http://www.gnu.org/software/gsl/
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library(gsl)
a <- 2
b <- 1
4 * a * ellint_Ecomp(sqrt((a^2-b^2)/a^2))
[1] 9.688448

2.3.11.2 Defining Functions

The syntax for defining functions is similar to that for defining variables, using
the assignment operator “<-”. For example, ship speeds reported in knots can be
converted to metres per second with a function defined as

knotToSI <- function(k) (1852/3600) * k

This assigns to the symbol knotToSI a function that takes a single argument
named k. The expression following the list of arguments is the value to be returned
by the function.

As with if statements, functions with more than one line need braces, e.g.
knotToSI <- function(k) {

factor <- 1852/3600
factor * k

}

The rule is that the last item evaluated in the function provides the return value. It is
also possible to return a value specifically with return().

Of course, the purpose of this function is to work with numbers. Calling this
with a non-numeric argument will generate an error. Good functions will check
for erroneous argument values, and they will be flexible enough to handle a range
of conditions. For example, knotToSI() might be extended to handle marine-
telegraph specifications such as k="dead slow", by inserting a conditional that
uses is.numeric() and adjusts k accordingly.

Function arguments may have default values, e.g.
knotToSI <- function(x, modern=TRUE)

if (modern) x * (1852/3600) else x * (1853.248/3600)

permits the use of nautical miles as defined in the US prior to 1954, the year when
the nation adopted the international standard.

Functions may check to see whether an argument had been supplied at call time,
using missing(), e.g.

knotToSI <- function(x, modern=TRUE)
{

if (missing(x))
stop("must supply x")

# rest of function as in previous examples
}

reports an error if nothing can be calculated; another choice might be
if (missing(x))

return(NA)
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The argument list may contain ellipses (. . . ) to indicate that there may be
additional arguments that may be passed on to children, e.g.

indicateTheOcean <- function(ocean, ...)
mtext(ocean, ...)

indicateTheOcean("Pacific", col="blue")

uses mtext() to draw text in a plot margin, using a blue colour. Importantly,
indicateTheOcean does nothing related to colour; it merely provides the
calling function with an opportunity to specify arguments such as col along to
mtext().

Many useful R functions have a large number of arguments, which would make
it easy to make errors in calling the functions, but for the fact that R permits
named arguments. This permits the skipping of arguments, and the specification
of arguments out of order, e.g.

f <- function(x, y, z, u, v, w) ...
f(z=Z, w=W)

would make sense in situations not requiring x, y, u and v.

Exercise 2.17 Devise a function using ifelse() that returns the tangential
velocity in a Rankine vortex. (See page 193 for a solution.)

2.3.11.3 Recursive Functions

Functions may be recursive, meaning that they can call themselves. Some algo-
rithms are defined elegantly in such terms. For example, the greatest common
denominator of two integers can be computed with

gcd <- function(a,b) if (b == 0) a else gcd(b,a %% b)

where the %% operator computes the remainder of division of two integers. However,
as in other languages that permit recursion, there can be a computational penalty for
mimicking elegant mathematical recursion in code (see Appendix E for some notes
on handling computationally demanding tasks).

2.3.11.4 Functions as Arguments to Other Functions

Many important R functions take other functions as arguments. This scheme can be
valuable, as may be illustrated with examples of three commonly used functions in
this class: uniroot(), optimize() and lapply().

First, consider the case of root-finding. Suppose the task is to find the temperature
at which water of practical salinity 35 has density 1025 kg/m3 at atmospheric
pressure. To do this, define the function

densityMismatch <- function(T)
swRho(rep(35, length(T)), T, 0, eos="unesco") - 1025
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which should have a root at the desired temperature.11 A search interval for the root
may be found with, e.g.

T <- seq(0, 30, length.out=100)
plot(T, densityMismatch(T), type="l")
abline(h=0, col=2)

which produces a graph (not shown) verifying that this function indeed has a zero
in the interval 0◦C< T < 30◦C, so

uniroot(densityMismatch, interval=c(0, 30))$root
[1] 19.08284

provides the desired temperature.
Optimization provides a second example of functions calling functions. For the

multivariate case, R provides optim(), plus related functions such as nlm()
and nls(). There are subtle details to multivariate optimization, and so a better
preliminary illustration is provided by the one-dimensional case, which is handled
by optimize(). For example, suppose the goal is to find the temperature that
yields maximum fresh-water density at sealevel pressure. With salinity pressure
fixed, we may write a univariate function:

dens <- function(T)
swRho(salinity=0,temperature=T,pressure=0,eos=
"unesco")

so that the desired temperature may be computed with
optimize(dens, interval=c(0, 10), maximum=TRUE)$maximum
[1] 3.980739

where the maximum value overrides the default, which is to seek a minimum.

Exercise 2.18 Use uniroot() and coriolis() from the oce package, to
find the critical latitude at which the Coriolis parameter f matches the M2 tidal
frequency (12.4206 hour period). (See page 193 for a solution.)

Exercise 2.19 Use uniroot() to create a function that calculates linear gravity
wave speed as a function of period. (See page 193 for a solution.)

2.3.11.5 Function Closures

Function closures provide a mechanism for binding functions with parameters,
making it easy to create suites of related functions that are made distinct by those
parameters. Although this methodology may be unfamiliar to some readers, it is
worth learning because it can improve code simplicity and reusability. The scheme
uses functions that create other functions, e.g.

11Note the use of the UNESCO equation of state here; with the GSW equation, longitude and
latitude would also have to be supplied; see Sect. 5.2.1 and Appendix D.
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exponent <- function(p)
function(x) x^p

makes a function that creates functions for exponentiation:
cubeRoot <- exponent(1/3)

creates a cube-root function, called as cubeRoot(8), for example.

Exercise 2.20 Create a function closure for individualized calibration of Seabird
thermistors. (See page 194 for a solution.)

2.3.11.6 Generic Functions

Items in R have an attribute named class, which is revealed by class()
atl <- "Atlantic"
class(atl)
[1] "character"

and changed with the same function
class(atl) <- "ocean"
class(atl)
[1] "ocean"

A form of object orientation12 is achieved in R via “generic” functions that are
replaced by specialized functions according to the class of the first argument. The
syntax is simple, with the specialized function being named as the desired generic
function, followed by period and then the class name, e.g.

print.ocean <- function(x)
cat("My favourite ocean is the", x, "\n")

defines a function to be used if print() is called with an ocean object.
print(atl)
My favourite ocean is the Atlantic

Generic functions provide users with specialized functions without demanding
that they know the individualized names of those functions, or even the classes of the
objects under consideration. R provides specialized variants for such key functions
as print(), summary() and plot(), and this greatly simplifies processing, as
users tend to rely on the default of plot(x) doing something sensible, no matter
what x may be.

A list of generic functions can be retrieved with, e.g., methods(plot),
and help on specialized functions is found by appending the class name, e.g.
help(plot.ts) yields help on the time-series plot function.

12Readers who wish to learn more details of object orientation in R might start with Chambers
(2008) or Wickham (2014).
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2.3.11.7 Function Pipelines

In recent years, efforts have been made to implement an R analogy to Unix pipelines,
with a notation for chaining function calls. For example, the mean sine of the
integers from 1 to 10 may be computed conventionally in R with

mean(sin(1:10))

and the magrittr package lets this be written
library(magrittr)
1:10 %>% sin %>% mean

where %>% is a binary operator that takes the item on its left and supplies it as the
first argument to the function on its right.

The scheme also works with user-generated functions, including anonymous
function, which can use “.” as a place-holder for the passed value, e.g.

∑10
0 (1/2)n

becomes
1:10 %>% {(1/2)^.} %>% sum
[1] 0.9990234

Parentheses permit extra arguments to be supplied, e.g.
1:10 %>% sin %>% mean(trim=0.10)

uses a trimmed mean.
Some clarity is lent to complex operations by using line breaks, e.g.
1:10 %>%

sin %>%
mean(trim=0.10)

partly because of the space provided for comments on the individual steps.

2.3.11.8 Operators as Functions

In R, operators are functions. Thus, when the R parser encounters the division
operator, it calls a function named “/”, so that 1/2 is equivalent to

`/`(1, 2)
[1] 0.5

Readers with programming experience will see how this relates to the previous
section, and might start using it for wider purposes. However, some care is required,
e.g. the following shows how to turn addition into subtraction

`+` <- `-`
3 + 2
[1] 1

Note that the original meaning of + is recovered with
rm(`+`)
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2.3.12 Loops

R has several styles of looping structures that provide for repeated calculation. The
choice of structure is sometimes dictated by the problem at hand, and sometimes by
personal style.

In a for loop, an index term is set to each value in a sequence, e.g.
for (i in 1:10)

cat(2^i, ' ')
2 4 8 16 32 64 128 256 512 1024

Note that loops comprising more than one line require braces, just like conditional
blocks with more than one line. In many cases, the iteration will be over the indices
of items in a list or a vector, and a good way to handle this is to use seq_along()
(as in Sect. 2.3.3.1) to find the indices; also, note that, e.g.

for (i in seq_along(x))
print(x[i])

will not execute the loop if x is empty, whereas
for (i in 1:length(x))

print(x[i])

will try to execute the loop contents with i=1 and then with i=0, perhaps surprising
those who have not studied how “:” works. It pays to get in the habit of using
seq_along() or its cousin, seq_len(). Also, if an index is not actually needed,
it may be clearer to write, e.g.

for (n in seq(0, 5))
cat(factorial(n), " ")

1 1 2 6 24 120

Although for is a natural way to loop over discrete cases, some methods are
better expressed with a while loop, which repeats while a condition remains TRUE.
For example, Heron’s method for estimating square roots is

x <- 4 # number whose square root is desired
r <- 1 # first guess
while (abs(r^2 - x) > 0.01) # tolerance 0.01

r <- 0.5 * (r + x / r)
r
[1] 2.00061

A more basic loop is repeat, which never exits unless a break is executed.
x <- 0
repeat {

cat(x, ' ')
x <- x + 1
if (x > 5)

break
}
0 1 2 3 4 5
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Actually, break can be used to break out of any type of loop, not just repeat
loops. A relative is next, which causes a short-circuit that returns to the top of the
loop, e.g.

for (x in seq(-1, 1)) {
if (x < 0)

next
print(x)

}
[1] 0
[1] 1

Exercise 2.21 Write a loop that displays the values of items in the current
workspace, using ls() and get(). (See page 194 for a solution.)

2.3.13 Alternative to Loops

Loops are not always desirable, e.g. the addition of two vectors with a loop
nx <- length(x)
z <- vector("numeric", length=nx)
for (i in 1:nx)

z[i] <- x[i] + y[i]

is slower13 and more difficult to understand than the non-looping form
z <- x + y

For this example, the looping form is also less general than the second form, because
the latter handles matrices and arrays, not just vectors.

In addition to arithmetic cases such as the above, R offers a variety of ways
to avoid loops. For example, apply() uses a given function for the elements of
matrices or arrays, with

m <- matrix(1:8, nrow=2, byrow=TRUE)
m

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8

apply(m, 1, sum)
[1] 10 26

showing how to sum along rows. (Use the second argument to 2 to sum across
columns.) The third argument is any function with a single argument, e.g.

apply(m, 1, function(x) sum(x^2))
[1] 30 174

computes the sum of squares along rows.

13For more on performance issues, see Appendix E.
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If the item under consideration is a list, then lapply() should be used, e.g.
l <- list(a=0:100, b=c(9,11))
lapply(l, mean)

(results not shown) computes the mean values of a and b.
There are several other functions in the “apply” family that are worth learning

about. Readers familiar with Google’s map-reduce method (Lämmel 2008) will see
an analogy with the approach used in R. This topic is further discussed by Wickham
(2011), both generally and in the context of his plyr and dplyr packages, which
extend and simply the apply family of functions in base R.

Exercise 2.22 Extract velocity from the oce dataset adp, and plot distance-
averaged beam-1 velocity versus time. (See page 194 for a solution.)

Exercise 2.23 Calculate and plot yearly average CO2 data, using lapply(). (See
page 195 for a solution.)

Exercise 2.24 Use a function in the plyr package to find minima and maxima of
the data stored in ctd[["data"]], a CTD station provided by the oce package.
(See page 196 for a solution.)

2.4 Graphics

A great strength of R as a research tool is the simplicity and power of its graphics
system. The use of generic functions (Sect. 2.3.11.6) ensures that applying plot()
to differing data types produces results tailored to those types. For example, supplied
with two columns, plot() produces an x-y plot. Supplied with a data frame, it
creates a useful multi-panel graph that compares every column with every other
column. Supplied with the results of a regression, plot() produces a set of
deeply informative plots. In addition to such general things, many R packages
provide plotting types, e.g. oce extends plot() to provide dozens of specialized
oceanographic plots.

2.4.1 Scatter and Line Plots

Several examples of scatter plots and line plots having already been shown, more
complicated examples may be of interest at this point in the text.

The base R system does not provide polar plots, but these can be constructed
without difficulty. Consider the hourly wind speed and direction measurements held
in the buoy dataset of the ocedata package.

data(buoy, package="ocedata")
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Fig. 2.6 Left: winds near Halifax. Right: Argo float trajectory

The data frame stores direction from which the wind blows, measured clockwise
from true North, so the air velocities (u > 0 meaning flow to east, etc.) are computed
with

theta <- (90 - buoy$direction) * pi / 180
u <- -buoy$wind*cos(theta)
v <- -buoy$wind*sin(theta)

and the left panel of Fig. 2.6 is created with
s <- c(-1, 1) * max(buoy$wind, na.rm=TRUE)
plot(u, v, xlab="u [m/s]", ylab="v [m/s]",

xlim=s, ylim=s, asp=1)
for (ring in seq(5, 30, 5))

lines(ring*cos(seq(0, 2*pi, pi/32)),
ring*sin(seq(0, 2*pi, pi/32)), col="gray")

Note the use of xlim and ylim to centre the diagram, xlab and ylab to control
labels, and asp to set the aspect ratio; these are all optional arguments that would
likely be skipped in a quick plot.

As a second example, consider the argo dataset, representing Argo float
measurements made about once per ten days. This is an oce object, so the location
data can be extracted with the accessor operator, [[ (Sect. 3.3)

data(argo, package="oce")
lat <- argo[["latitude"]]
lon <- argo[["longitude"]]

after which it is a simple matter to plot the float trajectory14 with a coastline15

plot(lon, lat, asp=1/cos(pi*mean(range(lat))/180))
data(coastlineWorldMedium, package="ocedata")
cwlon <- coastlineWorldMedium[["longitude"]]

14See Sect. 5.7 for more on Argo floats.
15Several coastline resolutions are provided in the ocedata and oce packages.
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Fig. 2.7 Contoured world topography, showing coastline and 5 km isobath

cwlat <- coastlineWorldMedium[["latitude"]]
polygon(cwlon, cwlat, col="gray")

2.4.2 Contour Plots

The ocedata package provides a 2-degree resolution topographic dataset called
topo2, a simple matrix of elevation in metres above mean sea level. The matrix
may be contoured simply, with contour(topo2) yielding a serviceable diagram
with auto-selected contour intervals and axes running from 0 to 1, but the following
yields a more informative result (Fig. 2.7); note the use of xaxs and yaxs to
prevent distracting space around the plot.

data(topo2, package="ocedata")
lon <- seq(-179.5, 178.5, length.out=180)# see ?topo2
lat <- seq(-89.5, 88.5, length.out=90)
contour(lon, lat, topo2, drawlabels=FALSE,

levels=c(0,-5000),
lty=c(1, 3), xaxs="i", yaxs="i", asp=1)

Caution Users familiar with Matlab contouring may find R contouring confusing.
If the topo2 dataset is saved to a file with write.table() (with row.names
and col.names both FALSE) and loaded into Matlab with load topo2.dat,
then the matrix will have to be transposed before contouring in Matlab. A simple
mnemonic should make the R approach clear: the mathematical form z(x, y)

translates to the code form z[ix, iy], where ix and iy are indices for the x
and y grid directions.

Exercise 2.25 Reproduce Fig. 2.7 with axes labelled in geographical notation. (See
page 196 for a solution.)



44 2 R Tutorial for Oceanographers

Exercise 2.26 Devise a wrapper function to handle reversed x or y values in
contouring. (See page 196 for a solution.)

Exercise 2.27 Contour the formula for wind-chill temperature, 13.12+0.6215T −
11.37U0.16 + 0.3965T U0.16, as a function of air temperature, T , and wind speed,
U . (See page 196 for a solution.)

2.4.3 Image Plots

The R function image() produces basic images, e.g.
image(topo2)

yields the top panel of Fig. 2.8. There is no provision for a colour bar, but this can
be created with imagep() in the oce package, e.g.

imagep(topo2)

Fig. 2.8 Images produced with image(), top, and imagep(), bottom
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produces an image (not shown) that is similar, apart from the different default colour
scheme and the axis labelling.

Since the data represent topography, it makes sense to set a colour scale used in
the literature for such fields. For example, the colour scale named “globe” within
the Generic Mapping Tools software (Wessel et al. 2013) may be specified with

imagep(topo2, colormap=colormap(name="gmt_globe"))

which creates the bottom panel of Fig. 2.8. The imagep() axis labelling indicates
the matrix dimensions, which may be more useful than the unit range shown
by image(). Another practical consideration is that imagep() handles several
special cases for its first argument, e.g. if it is a topo object as defined by the oce
package, then imagep() will extract longitude and latitude, and use these on the
axes.

2.4.4 Hexagon Binning

R offers several ways to show data density in a two-dimensional space, including
smoothScatter() in the base graphics package (Exercise 2.28), and more
sophisticated variants in other packages. The hexagon bin scheme, in the hexbin
package, is worth illustrating because it is also popular in other computing systems
(Carr 1991).

As an example, the distribution of salinity and temperature values in the papa
dataset (from Ocean Weather Station P) may be displayed as in Fig. 2.9 with

library(hexbin)
data(papa, package="ocedata")
S <- as.vector(papa$salinity)
T <- as.vector(papa$temperature)
plot(hexbin(S, T, xbins=20))

Fig. 2.9 Hexagon bin
representation of data density
in the papa dataset
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Fig. 2.10 Three-dimensional data represented with contours and a wireframe

2.4.5 Three-Dimensional Plots

The rggobi package provides interactive 3D plots, while the lattice package
provides static ones. Such graphs being best suited to smooth functions, an example
will be constructed using interpBarnes() to smooth the wind dataset.

The contour diagram in the left panel of Fig. 2.10 is created with
library(lattice)
data(wind, package="oce")
g <- interpBarnes(wind$x, wind$y, wind$z)
contour(g$xg, g$yg, g$zg, xlab="x", ylab="y", labcex=1)

and the 3D wireframe plot is added as the right panel with
wireframe(g$zg, xlab="x", ylab="y", zlab="z", cex=5)

Adjusting the viewing angle of wireframe plots can sometimes reveal features
of interest, but often at the expense of obscuring other features. Ragged fields
are a particular problem, e.g. wireframe(topo2) yields an uninformatively
dense blob. It can be best to avoid eye-catching 3D plots, relying instead on more
quantitative formats such as contour diagrams and images.

2.4.6 Time-Series Plots

The ts class handles time series data that are sampled at a constant rate. Construct-
ing and plotting such things is easy. For example, the giss dataset (Hansen et al.
2010) from the ocedata package can be converted to a ts object and plotted as
in the left panel of Fig. 2.11 with
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Fig. 2.11 GISS surface temperature anomaly illustrated with time-series and box plots

data(giss, package="ocedata")
Ta <- ts(giss$index, start=giss$year[1],

frequency=1 / mean(diff(giss$year)))
plot(Ta, ylab="Temperature Anomaly")

(The automatic naming of the horizontal axis is a sign that the plot function is
decoding time information stored in attributes(Ta); such a scheme also
facilitates spectral analysis, discussed later.)

2.4.7 Box Plots

The monthly giss signal being fairly ragged, an analyst might wish to construct
statistical descriptions over years or decades. A box plot can be a good starting point
for this sort of analysis (see, e.g., Tukey 1977). The round() function may be used
to round to powers ten so that

decade <- round(time(Ta), -1)

yields an indicator of decade, and then
boxplot(Ta ~ decade, notch=TRUE,

xlab="Time", ylab="Temperature Anomaly")

gives a box plot as in the right panel of Fig. 2.11. The notch setting yields a
display of a type of confidence interval on the median, which is desirable in some
applications.

2.4.8 Lagged Autocorrelation Plots

Lagged autocorrelation analysis offers further insights on the giss temporal
variability, e.g.
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Fig. 2.12 Autocorrelation analysis of GISS surface temperature anomaly

Tad <- Ta - predict(lm(giss$index ~ giss$year))
acf(Tad, lag.max=length(Tad), col="gray",

xlab="Lag [month]", ylab="GISS autocorrelation")

yields Fig. 2.12 for a detrended version of the data. (The maximum lag has been
set to the length of the time series, because the default is too small to show the
interannual variation.)

2.4.9 Histogram Plots

Histograms may be created with hist(), e.g. histograms of the velocity compo-
nents in the adp dataset may be constructed with

data(adp, package="oce")
velo <- adp[["v"]]
eastward <- velo[,,1]
northward <- velo[,,2]
upward <- velo[,,3]
hist(eastward, main="")
hist(northward, main="")
hist(upward, main="")

yielding Fig. 2.13. The main argument to hist() prevents an unaesthetic label at
the top of each panel. Another argument that is commonly set is breaks, which
controls the bins of the histogram. In some cases, it can help to extract the return
value from hist(), to construct other types of plots. For example, a cumulative
histogram could be constructed with

eh <- hist(eastward, plot=FALSE)
plot(eh$mids, cumsum(eh$counts), type="s")

where plot=FALSE prevents hist() from plotting. The cumulative histogram,
not shown here, uses “staircase” type to reveal the break points.
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Fig. 2.13 Histograms of velocity measured with an Acoustic Doppler Current Profiler
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Fig. 2.14 Spectrum of an artificial time-series. Note that the vertical axis is logarithmic

2.4.10 Spectrum Plots

Spectral analysis is a complicated subject that will be discussed in some detail in
Sect. 5.9.4.5. Here, the goal is just to introduce plotting. For example,

t <- seq(0, 30 * 24, 1/2)
f <- list(M2=0.0805114007, M4=0.1610228013) # cph
x <- 2*sin(f$M2*2*pi*t) + sin(f$M4*2*pi*t) + rnorm(t)

simulates a month of half-hourly sampled tidal data, which may be converted to a
time series with

xts <- ts(x, frequency=2)
after which the spectrum shown in Fig. 2.14 may be constructed with

spectrum(xts)
rug(c(f$M2, f$M4), side=3, tcl=-0.5, lwd=2)
mtext(c("M2", "M4"), side=3, line=0.5, at=c(f$M2, f$M4))

The vertical line above the highest frequency is actually a cross indicating uncer-
tainty in spectral value and bandwidth, but it looks like a line because the bandwidth
is very narrow, without spectral smoothing (see Sect. 5.9.4.5).
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Fig. 2.15 Pairs plot of hydrographic data in the section dataset

2.4.11 Pairs Plots

The R function pairs() makes it easy to “plot everything versus everything else,”
to quote advice the author received when he entered oceanography. This may be
illustrated with the nutrient data in the WOCE oceanographic section provided in
the section dataset, e.g.

data(section, package="oce")
d <- data.frame(NO3=section[["nitrate"]],

PO4=section[["phosphate"]],
SiO4=section[["silicate"]])

yields a dataset with NO3, etc., and then
pairs(d)

yields Fig. 2.15. Actually, using plot()would have yielded a similar plot, because
the first argument is a data frame, and so the generic function would have handed
control to pairs().

Exercise 2.28 Use the panels argument to draw the panels as density diagrams,
using smoothScatter(). (See page 197 for a solution.)
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Fig. 2.16 Conditioning plot showing the dependence of silicate on nitrate and depth (indicated
by pressure), for the section dataset, spanning the Atlantic at 36N. The scatter-plot panels
correspond to pressure ranges indicated by bars in the upper panel, revealing that the relationship
between SiO4 and NO3 varies with depth in the water column

2.4.12 Conditioning Plots

A conditioning plot, or coplot, represents multivariate dependencies by breaking
data into categories of the independent variables. The dependence is expressed with
a formula that is similar to that used for regression.

For example, Fig. 2.15 reveals a fairly tight fit between NO3 and PO4, but SiO4
displays a more forked dependency. To investigate whether depth may be the hidden
factor here, we might construct a conditioning plot of SiO4 conditioned on both NO3
and pressure. The first step is to extract the data

data(section, package="oce")
pressure <- section[["pressure"]]
NO3 <- section[["nitrate"]]
SiO4 <- section[["silicate"]]

after which Fig. 2.16 may be constructed with
coplot(SiO4 ~ NO3 | pressure, rows=1)

providing an indication that the nitrate-silicate relationship indeed varies with depth.
Further investigation (e.g. of dependence on latitude) can be handled either by
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conditioning on another variable or by colour-coding symbols. (Other methods for
studying watermass patterns are dealt with in Sect. 5.2.3.)

2.4.13 Function Plots

Given a need to graph the decaying oscillatory function e−x cos 2πx, one might start
by defining the function

f <- function(x) exp(-x) * cos(2 * pi * x)

moving on to create vectors to be plotted
xx <- seq(0, 1, length.out=100)
yy <- f(xx)

and finally plotting
plot(xx, yy, type="l")

Although this is straightforward, it is certainly more tedious than using a function
plot, e.g.

plot(function(x) exp(-x) * cos(2 * pi * x))

Readers who try this will notice that a default range of x has been used, and that
the vertical axis is automatically labelled with the formula. This second feature
ensures that the label represents the function faithfully, which reduces the chance of
erroneous results in interactive work involving trials with different functions. Small
conveniences such as this help to explain why R is widely regarded as a comfortable
tool for everyday analysis.

2.4.14 Aesthetic Control of R Graphics

R offers control over many aesthetic aspects of plots, through arguments to the
plotting functions and through calls to par(). A few important examples are listed
below.

The type argument of plot() indicates whether data on x-y graphs should be
indicated with symbols, connected with lines, etc. Symbol type is set with pch and
symbol size with cex. Line type and width are set with lty and lwd, respectively.
Colour is controlled with col. (For filled symbols, col applies to the perimeter,
with bg being used for the fill colour.)

The default R plot margins are wider than those in typical publications, so the
margins in most of the examples in this book are narrowed by adjusting the mar
argument to par(). The related mgp argument, which controls the spacing of axis
titles and labels, is also adjusted here. Readers may find

par(mar=c(3, 3, 1, 1), mgp=c(2, 0.7, 0))

to be a good starting point, if they wish to devote more space to the content and less
to the axes.
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Another practical consideration is the need for mathematical notation in plots,
which is handled with expressions, e.g.

plot(1:10, (1:10)^2, xlab="x", ylab=expression(x^2))

An asterisk between symbols in expressions indicates multiplication, so that,
for example, expression(a*b) is typeset as ab (as in TEX and LATEX).
Most other arithmetic operators are typeset as-is, e.g. expression(a/b)
yields a/b. Indexing gives subscripts, so expression(a[0]) yields a0,
while carat gives superscripts, expression(a^2) yielding a2. Text and
expressions may be combined with paste() or multiplication, e.g. both
expression(paste(x, " [m]")) and expression(x*" [m]") yield
x [m]. A restriction worth noting is that expressions cannot contain certain
keywords, so that, e.g. expression(V[in]) is disallowed because in has
a special meaning. However, substitute() solves this problem, with, e.g.
as.expression(substitute(V[x], list(x="in"))) yielding Vin.

In addition to aesthetic concerns, graphical designer should also take into account
issues of accessibility. This is an area that is treated seriously in the R community,
and an argument can be made that R outperforms other software in terms of
accessibility to viewers with vision limitations (Cleveland and McGill 1984; Ihaka
2003; Zeileis et al. 2009).

2.4.15 Limitations of R Graphics

The first impression of many Matlab users is that R is weak at interactive
graphics. This is partly, but not entirely, true. For example, the zoom package
provides a simple way to zoom in on subregions of plots. Similarly, locator()
can be used to find plotted values based on mouse clicks. At a deeper level,
getGraphicsEvent() provides access to mouse up/down events, keyboard
events, etc., so it can be used for sophisticated interactive graphs. More widely,
and arguably more importantly, the shiny package provides a way to set up
flexible and powerful GUI systems (see Sect. 2.8). However, all of this requires extra
programming, so it is not analogous to the scrolling/zooming behaviour that Matlab
users may enjoy.

Matlab users who rely heavily on the GUI may find that they can derive benefits
from changing their expectations and adopting new habits. For example, expanding
a subregion of a graph in an interactive R session is no harder than using the up-
arrow to recall the command that created the plot, adding or modifying the xlim or
ylim arguments to that command, and pressing “enter” to repeat the plot() call.
This is not as easy as using the mouse to select a region to enlarge, but neither
is it especially arduous. Furthermore, R analysts tend to copy their interactive
code into scripts, and this means that the details of the graphical setup are easily
shared across research groups. This script-based way of working is employed by
serious analysts in both Matlab and R, because it has clear advantages in terms
of reproducible research. This is a matter of increasing concern in oceanographic
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research, with journals encouraging authors to supplement their papers with both
data and methodological details.

Another complaint from some Matlab users is that multi-panel plots are handled
awkwardly in R. Again, this is true, but it does not usually pose serious limitations
in practice. Multi-panel graphs may be created in several ways in core R. The
most common scheme may be to use par(), specifying mfrow or mfcol to lay
out a uniform grid, or using layout() for a non-uniform grid. Unfortunately,
these schemes do not permit alteration of previously drawn panels, a task that is
accomplished easily in Matlab. The solution in R is simply to plan a bit more, or to
cut/paste interactively entered commands into a script, and to make modifications
there.

All of the above (and most of this book) is framed in reference to the system
called “base graphics.” This system is decades old, and has stood the test of
time, despite some limitations. An recent alternative is the “grid graphics” system,
developed by Paul Murrell, and described in his textbook (Murrell 2006) as well as
in the documentation for the grid package. As a low-level system, grid imposes
a high burden on the user. The best way to leverage its strengths may be with
Hadley Wickham’s ggplot2 package, which produces elegant results for a broad
range of graphical elements. While ggplot2 is worth serious consideration for
many applications, there are two reasons why it is not used in this book or in the
companion oce package. First, the R documentation uses base graphics, so serious
use of ggplot2 requires that analysts become comfortable with two systems
that differ widely in fundamental respects. Second, ggplot2 is significantly
slower than base graphics, which can prove to be problematic for the interactive
analysis of oceanographic datasets, which are often quite large. For example, on the
author’s computer, plotting a histogram of 107 points took 0.5 s with hist(x) in
base graphics, and 7.5 s with qplot(x, geom="histogram") in ggplot2.
The slowness of the ggplot2 version is a problem for modern oceanographic
instruments, some of which have on-board storage of 16 Gbyte.

2.5 Probability and Statistics

2.5.1 Probability

R is used commonly in undergraduate teaching of probability and statistics, so
nobody should not be surprised that it handles these topics elegantly and efficiently.
Readers with textbook knowledge and limited coding experience are cautioned
against trying to improve upon the R functions, because they tend to be more robust
than naive solutions. The choose() function provides a case in point, with

choose(52, 5)
[1] 2598960
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giving the number of possible 5-card poker hands in a 52-card deck. Mathematically,
this is 52C5 = 52!/(47! 5!), but expressing this directly, with

factorial(52) / (factorial(47) * factorial(5))
[1] 2598960

is problematic. Although this works for a 52-card deck, it fails with much larger
decks, for which factorial() produces values too large to represent in the
computer. (Choosing from four decks illustrates this on a 64-bit machine.) Similar
limitations exist for other “natural” expressions in probability. The lesson is that
only experts should consider replacing built-in R functions.

Exercise 2.29 The Rink Ratz® hockey card game has a 69-card deck with 2
desirable “miraculous save” cards. At the start of the game, 5 cards are discarded
without being examined. What is the probability that there will be exactly 1
miraculous save card left in the deck? (See page 197 for a solution.)

2.5.2 Statistics

R provides various properties of statistical distributions, in a family of functions
with names that might seem cryptic at first. The first letter of the name indicates
the quantity to be calculated, with subsequent letters indicating the distribution,
as outlined in Table 2.1. Using d for the first letter retrieves a probability density

Table 2.1 Statistical
distributions provided in R

Name code Distribution

beta beta distribution

binom Binomial distribution

cauchy Cauchy distribution

chisq χ-squared distribution

exp Exponential distribution

f F distribution

gamma Gamma distribution

geom Geometric distribution

hyper Hypergeometric distribution

lnorm Log-normal distribution

logis Logistic distribution

nbinom Negative-binomial distribution

norm Normal distribution

pois Poisson distribution

signrank Signed-rank distribution

t t distribution

unif Uniform distribution

weibull Weibull distribution

wilcox Wilcox distribution
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function, while p retrieves a cumulative probability density function, q a quantile
function, and r a random number function. The examples of the following sections
should clarify the scheme.

2.5.2.1 Statistical Tables

Although statistical tables lose much of their value in a system that permits
easy calculation of any desired quantity, readers might find it instructive to try
reproducing some of the tables found in their textbooks, e.g.

t(outer(1:3, 1:5, function(nu1, nu2) qf(1-0.05, nu1, nu2)))

[,1] [,2] [,3]
[1,] 161.447639 199.500000 215.707345
[2,] 18.512821 19.000000 19.164292
[3,] 10.127964 9.552094 9.276628
[4,] 7.708647 6.944272 6.591382
[5,] 6.607891 5.786135 5.409451

creates a table of F values for α = 0.05. Here, outer() has been used to create
the table, with an anonymous function taking ν1 and ν2 as input.

Exercise 2.30 Construct a graph comparing the normal distribution with the t

distribution with 2 degrees of freedom. (See page 197 for a solution.)

2.5.2.2 Confidence Intervals of Means

A confidence interval on the mean of a vector x of length n drawn from the Student
t distribution is given by t∗s/

√
n where t∗ is the value of the t distribution for n − 1

degrees of freedom and a specified confidence level, and the standard deviation s

may be computed with sd(). For example,
qt(0.975, df=length(x)-1) * sd(x) / sqrt(length(x))

illustrates the computation of a 95% confidence interval of the mean of x.
Other distributions are handled similarly, with qt() being replaced with

qnorm() for the normal distribution, dchisq() for χ2, etc.

2.5.2.3 Measurement Uncertainty and Error Bars

It is important to distinguish between the confidence intervals of means discussed in
the previous section, and measurement uncertainties. The latter refer to the spread
of data, and this is usually what is meant by with “±” in text and by error bars on
plots.

As explained by Taylor and Kuyatt (1994, Sections 3 and 4), measurement
uncertainties may be divided into Type A, related to the statistics of the data,
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and Type B, related to wider factors such as previous measurements, manufacturer
specifications, calibrations, etc.

For Type A, Taylor and Kuyatt (1994, Section 2.3) recommend calculating
measurement uncertainty as kui , where k is a “coverage factor” calculated from
the statistics of the data and ui is the “standard uncertainty,” inferred as the standard
deviation and thus calculated with sd(). This is a factor of

√
n larger than the

confidence interval on the mean, so analysts must be careful to report methods
clearly to avoid confusion between two numbers that may be very different.16

Setting k to 1.96 achieves 95% coverage probability for normally distributed
data, perhaps explaining why some analysts use k = 2 for approximate 95%
coverage probability. Different applications may call for different k values, so
analysts should provide enough information to let readers perform their own
calculations with different parameters (Taylor and Kuyatt 1994, Section 7).

Exercise 2.31 Write a function that computes measurement uncertainties assuming
a t distribution. (See page 198 for a solution.)

Exercise 2.32 Write a function that plots error bars. (See page 198 for a solution.)

2.5.2.4 Random Number Generation

As noted above, random numbers may be generated from many different distri-
butions. Two commonly used cases are rnorm() for the normal distribution and
runif() for the uniform distribution. Another useful function is set.seed(),
which sets the seed for a sequence of random numbers, which is handy for
reproducible research.

2.5.3 Summaries and Overview Functions

The summary() function produces useful summaries of data and objects. Being
a generic function, it acts differently when supplied with different arguments. In
the simple case of numerical arguments, it reports the data range, mean, and three
quartiles, e.g.

summary(rnorm(100))
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.48865 -0.51127 -0.02768 -0.04943 0.60007 2.55300

16Home electricity provides a dramatic illustration. Although voltage measurements may give a
confidence interval on the mean that barely departs from 0V, the measurement uncertainty will
indicate that any given measurement could easily be of order 100V. That is why electrical outlets
must be covered up, in houses with young children.
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Other data types are treated in sensible ways. Related functions are also useful, e.g.
quantile() calculates quantiles, and fivenum() gives Tukey’s five-number
summary (lower limit, lower “hinge”, median, upper hinge, and upper limit). A
useful semi-graphical way to summarize data is with stem(), e.g. with17

set.seed(253)
x <- rnorm(n=30, mean=2, sd=0.1)

as data, the results
stem(x)
The decimal point is 1 digit(s) to the left of the |

18 | 9
19 | 13344
19 | 56778888
20 | 12333
20 | 666779
21 | 111
21 |
22 | 1
22 |
23 | 3

indicate (in the first and second lines) that 1.89 and 1.91 are in x, along with two
instances of 1.93 and 1.94, etc. Thus, stem() produces not just a textual histogram,
but also a list of the (rounded) data.

There are several graphical representations that may be used, e.g. Fig. 2.17 shows
histograms and box plots

hist(x, main="")
boxplot(x, horizontal=TRUE, notch=TRUE)

along with density and violin plots
plot(density(x), main="")
rug(x, side=1)
library(vioplot)
vioplot(x, horizontal=TRUE, col="gray")

Note that the data are shown along the lower axis of the density plot, by using
rug(). This function is quite handy with relatively small datasets.

2.5.4 Hypothesis Testing

Hypothesis testing is supported with a suite of R functions. Explanations of the
underlying ideas may be found in most textbooks on statistics, and e.g. Legendre and

17Note the use of set.seed() to let readers reconstruct the example.
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Fig. 2.17 Data summaries from hist(), boxplot(), density() and vioplot()

Legendre (1998) and Borcard et al. (2011) provide treatments in the oceanographic
context.18

The popular t test is handled with t.test(), which provides both one-sample
or two-sample tests, the latter paired or unpaired. The alternative argument
controls alternative hypotheses, while mu sets the mean, conf.level sets the
confidence level, etc.

The data shown in Fig. 2.17 provide an example.
t.test(x)

One Sample t-test

data: x
t = 120.05, df = 29, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
1.989308 2.058263
sample estimates:
mean of x
2.023786

18It is unwise to use hypothesis tests without considering their limitations. Some issues of
misapplication are outlined by, e.g., Johnson and Omland (2004) and Hauer (2004), and deep
concerns about the misuse of p values are raised in a highly influential editorial in The American
Statistician (Wasserstein and Lazar 2016).
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Fig. 2.18 Q-Q plots for random numbers chosen from a uniform distribution (left) and normal
distribution (right)

The p value is small19 compared with typical significance levels (often 0.05),
which argues in favour of the alternative hypothesis (which is helpfully stated in
the t.test() output) that the mean of x is not equal to zero.

The documentation for the stats package is worth consulting for its discussion
of the many other tests that complement the t test. Just one more example will be
given here: testing for normality.

A typical first step in testing a distribution for normality is to draw a Q-Q plot
with qqplot(). For example, Fig. 2.18 shows such plots with random numbers
drawn from uniform and normal distributions.

set.seed(254)
uniform <- runif(n=1e3)
normal <- rnorm(n=1e3)
par(mfcol=c(1,2))
qqnorm(uniform)
qqnorm(normal)

A linear Q-Q plot suggests a normal distribution, as in the right panel. This plot
style is so useful that it is included in the graphs produced when plot() is called
with the results of a regression model (see Sect. 2.5.5).

R provides a variety of formal tests as well, e.g. a Shapiro-Wilks test
shapiro.test(uniform)

Shapiro-Wilk normality test

data: uniform
W = 0.9495, p-value < 2.2e-16

yields a small p value, suggesting (as expected) that the uniform data are not
normally distributed. By contrast, the same test on the normal data yields a high p

19If p < 2.2 × 10−16, R regression summaries simply reports “p-value: < 2.2e-16”.
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value, consistent with a normal distribution. (Other tests of normality are provided
in the mvShapiroTest, nortest and fBasics packages.)

Exercise 2.33 Show how split() and laply() can be used to produce a
monthly climatology of a signal, and illustrate using the results of Exercises 2.31
and 2.32. (See page 198 for a solution.)

2.5.5 Regression

Since regression is used in many fields, there are many resources that explain the
theory and provide practical advice. Accordingly, the present treatment is somewhat
cursory, focussing mainly on R details; see also Chambers and Hastie (1992),
Faraway (2005), and Faraway (2002).

The standard R system provides linear, generalized, and nonlinear least-squares
regression, with lm(), glm(), and nls() respectively, Optional packages pro-
vide much more, e.g. MASS (Venables and Ripley 1999) provides robust regression
with rlm() and ridge regression with lm.ridge(), segmented (Muggeo
2008) provides piecewise-linear regression, etc. Some methods are handled by
multiple packages, e.g. ridge regression is provided by mgcv (Wood 2001) as
well as by MASS. Readers with specific needs should study the documentation of
specialized functions, but it is wise to start with the basics, the following discussion
of which is divided into linear and nonlinear categories.

2.5.5.1 Linear Regression

Linear regression involves the study of data modelled by

y = β1x1 + β2x2 + · · · + ε (2.3)

where y is a response vector that depends on vectors xi , scalars βi are constants to
be determined, and ε is a vector of error or misfit. An intercept is handled by setting
x1 = 1, and polynomial regression by expressing, e.g., y = a + bx + cx2 with
x1 = 1, x2 = x and x3 = x2.

Synthetic data can be used to illustrate how regression (essentially, calculating
βi) works in R. For example,

set.seed(2551) # for reproducibility
x <- seq(0, 1, length.out=25)
y <- 1 + 2 * x + 4 * x^2 + rnorm(length(x), sd=0.1)

creates a test case that is not quite linear, so it can be used to illustrate how to work
through a sequence of regression models.

A sensible first step is to plot the data, e.g.
plot(x, y)
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Fig. 2.19 Use of lm() for linear and quadratic regression models

producing the symbols in Fig. 2.19. Although inspection reveals curvature, an
analyst working with such data might still start with a linear model, in the interests
of simplicity or to satisfy a theoretical or practical constraint.

The workhorse regression function for linear models is lm(), and
lm(y ~ x)
Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

0.3469 5.9952

shows that it is easy to use. The “˜” in the first argument indicates that it is a
formula. It could be read as “y depends linearly on x”, but emphatically not that
the model is y = βx, because an intercept is implied; the zero-intercept case is
explained later. A formula can specify interaction terms and other complications;
see help(formula) and help(lm) for more on the notation.

The results of the regression may be saved to a variable, e.g.
linear <- lm(y ~ x)

and this is helpful because it facilitates further analysis, e.g.
abline(linear)

adds the regression line to the left panel of Fig. 2.19.
The right panel of Fig. 2.19 shows the result of a quadratic fit, resulting from

using poly() in the regression formula
quadratic <- lm(y ~ poly(x, 2, raw=TRUE))

Here, raw=TRUE tells poly() to use conventional polynomials, not orthogonal
polynomials. Another way to get conventional polynomials is with

quadratic <- lm(y ~ x + I(x^2))

where I() causes lm() to take “ˆ” to mean exponentiation as opposed to
interaction (see help(formula)). The prediction may be added with

plot(x, y)
lines(x, predict(quadratic))
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where it should be noted that predict() is a generic function that works for all
sorts of regressions.

The summary() function is useful for studying regression results, e.g.
summary(linear)
Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-0.4512 -0.3282 -0.0916 0.2943 0.6782

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.347 0.140 2.47 0.021 *
x 5.995 0.240 24.94 <2e-16 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.361 on 23 degrees of freedom
Multiple R-squared: 0.964, Adjusted R-squared: 0.963
F-statistic: 622 on 1 and 23 DF, p-value: <2e-16

provides the information normally stated in publications, and much more. First, it
repeats the regression formula, which is helpful for stored output. Then, it provides
information about the residual deviations from the fit, which can be quite helpful if
combined with information on measurement uncertainties. The model coefficients
are presented next, along with standard errors and corresponding t and p values.
Finally, the overall fit is described in terms of correlation coefficients, F statistic
and p value.

In this case, the artificial data have been constructed with a random y component
of standard deviation 0.1, and the residual standard error of the linear regression
is three times as large. Such a comparison (with the standard deviation of this
simulation perhaps being replaced with an estimate of measurement uncertainty
in a real study) might motivate further investigation of model formulation, even
if Fig. 2.19 had not shown a systematic misfit.

The improved results of quadratic regression are revealed by
summary(quadratic)

an excerpt of which is
Residual standard error: 0.08655 on 47 degrees of freedom

indicating a residual comparable to the “noise,” a condition that might indicate
success if this were a calibration study.

However, summary() is not the only tool R provides for checking on regression
results. The plot() function is specialized to handle regression output, e.g.

par(mfrow=c(2, 2))
plot(linear)
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Fig. 2.20 Plot of the regression object for the linear fit shown in Fig. 2.19

yields Fig. 2.20. The top-left panel shows how the model-data misfit varies with
fitted value (a format that also handles multiple independent variables), and
the clear pattern of variation indicates the limitation of a linear model in this
case. Furthermore, the Q-Q plot in the top-right panel reveals that the misfit is
not normally distributed. The other two panels provide further diagnostics (see
help(plot.lm)). The numbers in the panels are the indices of points that may
deserve further consideration, and this can be helpful in revealing data outliers, as
well as poor choices of regression model.

A few questions should be answered before discussing the nonlinear case.

• Can the line be forced to go through the origin? Yes, by appending -1 to the
formula, e.g. writing lm(y ~ x - 1) in place of lm(y ~ x).

• Can the line slope be specified? Yes, by using offset. This can be useful in
fitting power laws, e.g. for y = Ax2/3 with A = 10 plus noise,

x <- 1:100
y <- rnorm(100, mean=10)*x^(2/3)
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m <- lm(log10(y) ~ offset(log10(x^(2/3))))
10^confint(m)

2.5 % 97.5 %
(Intercept) 9.757443 10.20824

where confint() gives confidence intervals on the regression coefficients.
Another notation places known dependence on the left in the formula, e.g.

10^confint(lm(log10(y/x^(2/3)) ~ 1))

• Can R do stepwise regression? Yes; see help(step) and help(stepAIC,
package="MASS").

• Can R draw confidence intervals on the fitted curve? Yes, with predict()
prediction <- predict(lm(y~x),interval="confidence")
lines(x, prediction[,1]) # fit
lines(x, prediction[,2], lty="dashed") # lower bound
lines(x, prediction[,3], lty="dashed") # upper bound

• Can R do multiple regression? Yes, just add the independent variables to the right
side of the formula, e.g.

data(ctd, package="oce")
sigthe <- ctd[["sigmaTheta"]]
sal <- ctd[["salinity"]]
temp <- ctd[["temperature"]]
m <- lm(sigthe ~ sal + temp)

• How are regression coefficients retrieved? With m as in above, use, e.g.
coef(m)
(Intercept) sal temp
-6.6899404 1.0215729 -0.1170753

• Can R handle type-II regression, with errors in both x and y? Yes, and several
methods are available. Several R packages support type-II regression, including
smatr (Warton et al. 2012) and lmodel2 (Legendre 2014). See Warton et al.
(2006) for general issues, and e.g. Ricker (1973), Marsden (1999), McArdle
(2003), and Clarke and Van Gorder (2012) in the context of oceanography.

• Can R handle robust regression? Yes, using rlm() from the MASS package, e.g.
the following simulates the effect of a missing-value code

x <- 1:10
y <- -10 + 5 * x + rnorm(10)
y[10] <- -99.99 # insert 'missing value' code

and Fig. 2.21, constructed with
plot(x, y)
abline(lm(y ~ x))
library(MASS)
abline(rlm(y ~ x), lwd=3)

shows that rlm() performs better than lm() in this case.
• Can R handle piecewise linear regression? Yes, with the segmented package,

as the right panel of Fig. 2.21 shows for wave heights and wind speeds
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Fig. 2.21 Left: conventional and robust regression of data with a spurious outlier, in thin and thick
lines. Right: segmented regression of buoy data

data(buoy, package="ocedata")
plot(buoy$wind, buoy$height, cex=1/2,

xlab="Wind [m/s]", ylab="Wave height [m]")
library(segmented)
s <- segmented(lm(height~wind, data=buoy),

seg.Z=~wind, psi=c(10))
plot(s, add=TRUE, lwd=3)

Exercise 2.34 Contrast the residual plots produced by plot() for linear and
quadratic. (See page 199 for a solution.)

Exercise 2.35 Use eigen() and cov() to draw a line that intersects the means
of x and y, and that has the same slope as the principal eigenvector of the covariance
matrix. (See page 200 for a solution.)

2.5.5.2 Nonlinear Regression

Nonlinear regression involves working with a model equation of the form

y = f (x,β) + ε (2.4)

where f is a nonlinear function of independent variables x = (x1, x2, . . . ) and
model parameters β = (β0, β1, . . . ) and ε represents model-data misfit. The
concepts of nonlinear regression are explained in a variety of textbooks and other
sources; in the R context, see, e.g., Chapter 8 of Venables and Ripley (1999) and
the references in the documentation for nls(), the function used for nonlinear
regression in R. Before getting into the details, it should be noted that nls() is
harder to use than its linear cousin lm(), simply because nonlinear regression is
a much more complicated task, and not one that can always be accomplished in
practice (see, e.g., Gallant 1975).
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Fig. 2.22 An oxygen
concentration profile and the
predictions of a nonlinear
regression model
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Typical procedures may be illustrated with the sample task20 of fitting a model
to an oxygen profile plotted in Fig. 2.22 with

data(section, package="oce")
stn <- section[["station", 112]]
plotProfile(stn, "oxygen", type="p", pch=20)
p <- stn[["pressure"]]
O2 <- stn[["oxygen"]]

This suggests a model function with a mid-depth minimum, e.g.

O2 = A − Bpe−p/C (2.5)

where A, B and C are parameters to be determined. Since nls() requires starting
values for its parameter search, the first step is to estimate reasonably sensible values
of A, B and C (e.g. all should be positive, to get O2 > 0 with a mid-depth minimum
and a deep-water asymptote). Substituting p = 0 in (2.5) reveals that A is the
surface O2 value, and differentiation indicates that the minimum O2 = A − BC/e
occurs at p = C. Figure 2.22 might thus motivate starting values A = 300µmol/kg,
B = 2µmol/(kg dbar), and C = 200 dbar, each perhaps to within a factor of 2. A
test of whether nls() can find a solution without accurate starting values might be
to set each of the three numerical values to 10.

Indeed, these starting values produce a converged solution
m <- nls(O2~A-B*p*exp(-p/C), start=list(A=10, B=10, C=10))

and the gist of this nonlinear regression is summarized as
m
Nonlinear regression model
model: O2 ~ A - B * p * exp(-p/C)
data: parent.frame()

A B C

20See also the NISTnls package, which provides data and code for statistical test suites developed
by researchers at the U.S. National Institute for Standards and Technology.
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277.473 1.668 201.307
residual sum-of-squares: 3501

Number of iterations to convergence: 11
Achieved convergence tolerance: 3.894e-06

The model prediction is added to Fig. 2.22 with
pp <- seq(0, max(p), length.out=100)
lines(predict(m, list(p=pp)), pp)

and the reasonable agreement with data (compared with O2 scatter in deep water)
might motivate further investigation. The next step would be to use summary(m),
after which using profile(m) and plot(profile(m)) can shed light on the
tightness of the fitted parameters. However, before taking any further steps, nls()
must converge, which is not always the case. Problems fall into several classes.

The first requirement is that start must match the formula. The regression
cannot succeed if start is missing parameters, with, e.g.

nls(y ~ a+b*x, start=list(a=1))

yielding the straightforward message
Error in nls(y ~ a + b * x, start = list(a = 1)) :
parameters without starting value in 'data': b

Unfortunately, specifying too many start items
nls(y ~ a + b * x, start=list(a=1, b=1, c=1))

yields the more cryptic error message
Error in nlsModel(formula, mf, start, wts) :
singular gradient matrix at initial parameter
estimates

This is because the calculation involves partial derivatives of model misfit with
respect to each start item, and the derivative with respect to c is zero for this
model, yielding a non-invertible matrix.

It is also a mistake for models to have commingled parameters, e.g. the y =
(β1 + β2)x cannot be solved for β1 and β2 independently, so

x <- 1:10
y <- 3*x
nls(y ~ (a+b)*x, start=list(a=1, b=2))

yields a singular-gradient matrix. In this case, the matrix is singular because two
derivatives are identical, and matrices with identical rows or columns cannot be
inverted.

Helpfully, nls() also checks for singularity during its search through parameter
space. For example, y = ax + exp(bx) degenerates to the problematic form y =
(a + b)x if nls() selects a value of b for which |bx| � 1 for the data being
examined. The error message in such a condition is similar to that shown above, but
without the “initial” phrase.

Problems can also arise when the data-model misfit function has a much stronger
dependence on one parameter than on another. This is akin to the challenge of
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navigating to the lowest spot in a curvy valley that is long and thin. This sort of
problem can be signalled by a variety of error messages from nls(), e.g.

number of iterations exceeded maximum ...

(where . . . will be an integer) indicates that an excessive number of steps has been
taken, with no end in sight. This might be solved with, e.g.
nls(..., control=list(maxiter=200)) # default is 50

but it may be better to reformulate the problem, e.g. by a change of variable to get
O(1) variations. Similarly, the problem

step factor ... reduced below 'minFactor' of ...

may be alleviated by altering minFactor in control.
Sometimes, it helps to try alternative solution methods. The default algorithm

employed by nls() is based on a Gauss-Newton procedure, but if this fails, it
might help to use the algorithm argument to try other methods. The "port"
algorithm is notable because it permits the specification of upper and lower limits for
the parameters, which can help if nls() is straying into regions of parameter space
that are unphysical (e.g. negative salinities) or uninteresting (e.g. angles outside the
range 0 to 2π ).

If the nls() numerical differentiation is problematic, a function can be provided
to calculate derivatives (Chambers and Hastie 1992), e.g. for (2.5)

∂O2

∂A
= 1 ,

∂O2

∂B
= −p e−p/c, and

∂O2

∂C
= −Bp2

C2
e−p/C (2.6)

which may be employed as follows:
O2Model <- function(A, B, C)
{

E <- exp(-p / C)
prediction <- A - B * p * E
gA <- 1
gB <- -p * E
gC <- -B * p^2 / C^2 * E
gradient <- cbind(gA, gB, gC)
attr(prediction, "gradient") <- gradient
prediction

}
mg <- nls(O2~O2Model(A, B, C), start=list(A=10, B=10,
C=10))

with results as already shown.
As a general matter, it can be helpful to call nls() with trace=TRUE, which

prints the sequence of parameter values being tested. This can reveal a variety of
problems, e.g. poor starting values can be signalled by rapid departures from the
initial state. When a sequence of datasets are to be studied, it can be good to use
try() to handle errors in nls() calls, whether to provide helpful information on
the problematic test cases or to work through a sequence of trial model formulations.
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Exercise 2.36 Extract tritium Tu and pressure p from the ocedata dataset
geosecs235, and use nls() to fit the model

Tu = A exp(−(p − p0)
2/D2) + A exp(−(p + p0)

2/D2)

where A, p0 and D are parameters to be inferred. (See page 201 for a solution.)

2.5.6 Analysis of Variance

The analysis of variance (ANOVA) is popular in some branches of oceanography,
and barely used in others. Introductions to the method may be found in most
Statistics textbooks (see, e.g., De Veaux et al. 2006). The R perspective is described
briefly in the documentation of aov() and anova(), with much more detailed
treatments of ANOVA and the related method of regression being provided in the
texts by Chambers and Hastie (1992) and Faraway (2005), a version of the latter
being freely available online as Faraway (2002). These are all general treatments.
For marine examples, see texts by Legendre and Legendre (1998) or Borcard et al.
(2011), the second of which uses R.

An example with constructed data is sufficient to reveal procedures. Suppose
thermometers labelled T 1, T 2 and T 3 each record temperatures in five isothermal
water baths. If the instruments all have random errors of 0.001◦C, T 2 has a
systematic offset of 0.010◦C and T 3 has a systematic offset of 0.001◦C, then an
artificial dataset can be created with

set.seed(256)
T <- data.frame(T1=10.000 + rnorm(n=5, sd=0.001),

T2=10.010 + rnorm(n=5, sd=0.001),
T3=10.001 + rnorm(n=5, sd=0.001))

A box plot is a good way to display the data, and
boxplot(T, horizontal=TRUE, xlab="Temperature")

creates the left panel of Fig. 2.23, which suggests that T 2 is definitely different from
the others, and that T 3 is possibly offset from T 1.

The work is simplified by using stack(), which returns columns for the
dependent variable21 in values and the dependent variable ind.

Ts <- stack(T)

The analysis of variance is carried out with aov(), using a formula notation like
that used by lm()

a <- aov(values ~ ind, data=Ts)

21An alternative to stack() is melt(), from the reshape2 package (Wickham 2007). If this
is used, then aov() must use value for values and variable for ind.
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Fig. 2.23 Results of analysis of variance of simulated data from three thermistors

As with linear regression, summary() gives an overview:
summary(a)

Df Sum Sq Mean Sq F value Pr(>F)
ind 2 0.0003346 1.673e-04 259.3 1.34e-10 ***
Residuals 12 0.0000077 6.500e-07
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

which suggests differences between the instruments. This is consistent with the
boxplot of Fig. 2.23, but there is another way to see this graphically, with the Tukey
honest significant difference, i.e.

plot(TukeyHSD(a))

producing the right panel of Fig. 2.23, which suggests that instruments T 1 and T 3
are similar, but that T 2 is different. The procedure has thus flagged the T 2 anomaly
in the constructed data, but not the smaller T 3 anomaly.

Exercise 2.37 Increase the value of n until the TukeyHSD diagram indicates that
T 1 and T 3 are producing different values. (See page 201 for a solution.)

2.5.7 Partitioning Decision Trees

The term “regime shift” has been used to describe variations in physical or
biological properties of the ocean that take the form of rapid transitions from one
quasi-steady state to another. This is a topic of great interest and some controversy;
see, e.g., Miller et al. (1994), Rudnick and Davis (2003), deYoung et al. (2008) and
Lindegren et al. (2012).

One way to look for regime shifts is with the partitioning tree approach used by
ctree() in the party package (Hothorn et al. 2006). Artificial data
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Fig. 2.24 Analysis of a simulated regime shift. Top: random numbers that shift slightly at x =
500. Bottom: diagram produced by ctree() in the party package

set.seed(257) # for reproducibility
n <- 1000
x <- 1:n
y <- rnorm(n) + ifelse(x > 500, 1/3, 0)
plot(x, y, cex=0.75, col="gray")

as shown in the symbols of the left panel of Fig. 2.24 can illustrate procedures. It is
difficult to discern the shift at x = 500, but

library(party)
p <- ctree(y ~ x)
lines(x, predict(p))

adds lines to the diagram that show that ctree() finds a shift at x = 504,
reasonably close to the actual value. More about the fit is obtained with

plot(p)

which produces the right panel of Fig. 2.24.
Another approach is to use the changepoint package (Killick and Eckley

2014; Killick et al. 2016), e.g. a test for a shift in the mean
library(changepoint)
cpts(cpt.mean(y, penalty="SIC"))
[1] 504

matches the ctree() result.

Exercise 2.38 Use ctree() and cpt.mean() to examine the Southern Oscilla-
tion Index data (soi in the oce package) for regime shifts between 1967 and 1985.
(See page 202 for a solution.)
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2.6 Numerical Methods

2.6.1 Sorting

The sort() function returns a sorted vector, while order() returns indices that
will yield a sorted vector. Thus, for example, x[order(x)] yields the same
results as sort(x). The order() method has the advantage of working with
matrices, e.g. the ocean data

data(oceans, package="ocedata")

may be reordered according to average depth with
oceansOrdered <- oceans[order(oceans$AvgDepth), ]

and a reverse ordering can be found by supplying decreasing=TRUE to
order(). Ranking can be achieved by a nested call to order(), e.g. a column of
rank by average depth may be added with

oceans$rankByAvgDepth <- order(order(oceans$AvgDepth,
decreasing=TRUE))

2.6.2 Root Finding

As noted in Sect. 2.3.11.4, roots of univariate functions may be found with
uniroot(). Roots of polynomials can be found with polyroot(), e.g. (x −
1)(x + 1) may be written a1 + a2x + a3x

2 with a = (−1, 0, 1), yielding:
polyroot(c(-1, 0, 1))
[1] 1+0i -1+0i

2.6.3 Integration

Numerical integration of a function of a single variable is handled with
integrate(). For example,

∫ π

0 sin θ dθ is calculated (along with an error
estimate) with

integrate(sin, 0, pi)
2 with absolute error < 2.2e-14

Infinite limits may also be supplied, e.g. for the witch of Agnesi function
woa <- function(x, a=1)

8 * a^3 / (x^2 + 4*a^2)
integrate(woa, -Inf, Inf)
12.56637 with absolute error < 1.3e-09

the integral matches the theoretical value of 4π to within 2 × 10−15.
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Exercise 2.39 Use integrate() to calculate the perimeter of an ellipse of major
axis a = 2 and minor axis b = 1. (See page 202 for a solution.)

2.6.4 Piecewise Linear Interpolation

Piecewise-linear interpolation is provided with approx(), which returns interpo-
lated values, and approxfun(), which returns an interpolating function.

A common use of approx() is to interpolate values to a uniform one-
dimensional grid. For example, the ctd dataset in the oce package holds
hydrographic data sampled at unevenly spaced pressures.

data(ctd, package="oce")
p <- ctd[["pressure"]]

so that, e.g., salinity may be interpolated to pressures (0, 0.5, . . . ) dbar with
S <- ctd[["salinity"]]
Sinterp <- approx(p, S, seq(0, max(p), 0.5))$y

The first two arguments to approx() are the independent and dependent variables,
and the third is the interpolating grid. Values beyond the data range will be returned
as NA, although the rule argument to approx() provides an alternative to that
convention.

The use of approxfun() may be illustrated with the turbulence measurements
of Grant et al. (1962). The dataset turbulence in the ocedata package contains
wavenumber k and one-dimensional spectrum function φ, provided in non-SI units
for comparison with this classic paper. A quantity of interest is ε, the rate of viscous
dissipation of turbulent kinetic energy per unit mass. Under certain conditions, this
is ε = 15ν

∫ ∞
0 k2φ dk where ν is the kinematic viscosity of seawater, motivating a

plot of k2φ versus k, with

data(turbulence, package="ocedata")
k <- turbulence$k
phi <- turbulence$phi
plot(k, k^2*phi, pch=20, ylim=c(0, 0.41),

xlab=expression(k), ylab=expression(k^2*phi))

resulting in Fig. 2.25. Grant et al. (1962) reported that ε = 0.610 cm2/s3, and it may
be of interest to see whether a similar value can be recovered by integrating under a
function representing the data just plotted, e.g.

lfcn <- approxfun(k, k^2 * phi)

the results of which are added to the diagram with
kk <- seq(min(k), max(k), length.out=100)
lines(kk, lfcn(kk))

The integration is performed with
I <- integrate(lfcn, min(k), max(k))
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Fig. 2.25 Turbulence data recorded by Grant et al. (1962), with k wavenumber (1/cm) and φ one-
dimensional velocity spectral function (cm3/s2)

after which calculating ε is a simple matter of extracting the numerical value of the
integration and scaling to convert to the cgs units used in the 1960s.

nu <- 1e4 * swViscosity(35,10) / swRho(35,10,10,eos=
"unesco")
15 * nu * I$value
[1] 0.6810874

(This ε estimate exceeds the Grant et al. (1962) value by 12%.)

2.6.5 Two-Dimensional Interpolation

The two-dimensional case of interpolating on a rectangular grid is handled with
interp.surface() from the fields package. This does local bilinear inter-
polation of z = z(x, y) by applying

(1 − x′)(1 − y′)z00 + (1 − x′)y′z01 + x′(1 − y′)z10 + x′y′z11 (2.7)

where (x′, y′) is the relative position of the point within the grid cell that bounds it,
and z00 is the value at x′ = y′ = 0, z01 is that at x′ = 0, y′ = 1, etc.

Exercise 2.40 Use interp.surface to find water depth H under the mean Gulf
Stream position as defined in the gs dataset of the ocedata package. Draw a map
of the Gulf Stream location along with a graph of how H varies with distance along
the path. (See page 203 for a solution.)
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Fig. 2.26 Using loess() for surface salinity at ocean weather station Papa

2.6.6 Locally Weighted Polynomial Fitting

R has two functions for locally weighted polynomial fitting, lowess() and
loess(). The first is used by panel.smooth(), which in turn is used
by plot.lm(), coplot(), etc., so it deserves understanding, but the newer
loess() is the focus here.

Figure 2.26 shows variation of surface salinity at ocean weather station Papa,
plotted with

data(papa, package="ocedata")
day <- as.numeric(papa$t - papa$t[1]) / 86400
salinity <- papa$salinity[,1]
plot(day, salinity, ylab="Salinity", col="gray")

where two loess() fits are shown, illustrating the use of the span argument.
l <- loess(salinity ~ day)
lines(day, predict(l))
ll <- loess(salinity ~ day, span=0.25)
lines(day, predict(ll), lty="dashed")
legend("topright",lty=1:2,legend=c("span=0.75",
"span=0.25"))

2.6.7 Interpolating and Smoothing Splines

R provides interpolating splines with spline() and splinefun() and smooth-
ing splines with smooth.spline(). Such functions can be quite helpful in
dealing with noisy oceanographic data. For example, a smoothing spline may be
fitted to the turbulence data with

s <- smooth.spline(k, k^2*phi)
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where default values are used for additional arguments that control the degree of
smoothing, knot distribution, etc.

The predicted values are found with
spred <- predict(s, kk)

producing a list with x being the k supplied to smooth.spline() and y being
the interpolated value, so that

lines(spred$x, spred$y, lty="dotted")

could add a spline curve to Fig. 2.25.

Exercise 2.41 Contrast the predictions of interpolating and smoothing splines for
the turbulence data. (See page 204 for a solution.)

Exercise 2.42 Create a function returning the prediction of a smoothing spline, and
use it to calculate ε as in Sect. 2.6.4. (See page 205 for a solution.)

2.6.8 Cluster Analysis

Cluster analysis may be used to divide a set of data into subsets based on similarity
of some property within groups and dissimilarity between them. Different applica-
tions call for different measures of similarity, perhaps explaining the diversity of
approaches to cluster analysis (Estivill-Castro 2002).

In the popular k means clustering method (Hartigan and Wong 1979), the
measure of similarity is Euclidean distance in property space, the square of which
is given by

n∑

i=1

(xi − x̂i )
2 (2.8)

where x1 . . . xn and x̂1 . . . x̂n are the coordinates of two points in n-dimensional
property space. This has a simple interpretation if the coordinates are of an equal
type, e.g. representing a geometric location, but other cases are more problematic.

For example, if x1 is salinity and x2 is temperature, as on a temperature-salinity
diagram, then the two terms in the expanded sum within (2.8) have different units, so
there can be no physical meaning to their addition. Other problems can arise even in
a geometrical view, e.g. owing to the vastly different vertical and horizontal extents
of oceans. For this reason, (2.8) might be better expressed in nondimensional form,
as

n∑

i=1

(xi − x̂i )
2

L2
i

(2.9)
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Fig. 2.27 Demonstration of cluster analysis in temperature-salinity space

where Li is an appropriate scale in the same unit as xi . In many practical problems,
then, a core issue is the selection of the Li values.

The methodology can be illustrated with temperature and salinity in the papa
dataset, drawn in the left panel of Fig. 2.27 with.22

data(papa, package="ocedata")
S <- as.vector(papa$salinity)
T <- as.vector(papa$temperature)
p <- rep(swPressure(-papa$z), each=dim(papa$salinity)[1])
ctd <- as.ctd(S, T, p, longitude=-145, latitude=50)
plotTS(ctd, pch=20, cex=1/2, eos="unesco")

Most readers might describe the pattern as having two “arms”, one relatively
isohaline, the other relatively isothermal. However, opinions might vary, given a
request to identify 10 groupings. It helps to use extra oceanographic information in
deciding how many clusters to seek. Thought should also be given to the choice of
independent variables. For example, in the present case, some applications might
call for a transformation to density-spiciness space, which could yield different
clusters. Generally, careful attention to the setup can be the key to getting sensible
results from cluster analysis.

For the purpose of illustration, temperature and salinity may be used as the
coordinates, with scale() used to nondimensionalize the variables, after which
kmeans() may be used to do cluster analysis with 2 and 4 suggested groupings,
in the middle and right panels of Fig. 2.27, with

plotTSCluster <- function(ctd, k=4)
{

theta <- swTheta(ctd)
Stheta <- scale(cbind(S, theta), TRUE, TRUE)
cl <- kmeans(Stheta, k, nstart=30)

22It is not strictly necessary to use as.ctd() to create a "ctd" object, but it makes it easier to
create a standardized plot with isopycnals.
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plotTS(ctd, col="darkgray", pch=20,cex=0.5,
eos="unesco")
which <- cl$cluster
for (i in 1:k) {

x <- S[which==i]
y <- theta[which==i]
hull <- chull(x, y) # chull() computes
complex hulls
hull <- c(hull, hull[1])
lines(x[hull], y[hull])

}
}
set.seed(268) # for reproducibility
plotTSCluster(ctd, 2)
plotTSCluster(ctd, 4)

in which chull() has been used to find the convex hull polygons surrounding the
clusters. Note also that kmeans() uses random numbers in its search for cluster
centres, so repeating a calculation without using set.seed() can yield different
answers in some cases.

2.6.9 Fast Fourier Transforms

The fft() function, which provides forward and inverse fast Fourier transforms
(FFT), is used by convolve() and spectrum(), and it is also useful by itself.
It does not normalize in either direction, leaving this to the user, e.g.

fftn <- function(z, inverse=FALSE)
fft(z, inverse) / sqrt(length(z))

defines a 1-D wrapper with a common normalization (see Exercise 5.25 for an
application to rotary spectra.)

With fftn() thus defined, a test of Parseval’s Theorem might be, e.g.
library(testthat)
x <- rnorm(100)
X <- fftn(x)
xx <- fftn(X, TRUE)
expect_equal(sum(x^2), sum(Mod(X)^2))

where the handy expect_equal() from the testthat package is used to
check that the time-series variance matches the integral of the power spectrum. (If
the test failed, it would print an error message.)

A check of the invertibility of the fftn() formulation might be
expect_equal(x+0i, fftn(fftn(x), inverse=TRUE))
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2.7 Input and Output

R has sufficient flexibility to handle any conceivable file format. Since this is
achieved by a fairly long list of functions and arguments, the present discussion
covers several pages, despite being a thin summary.

2.7.1 Reading from Text Files

2.7.1.1 Simple Tables

If a file named table_eg_1.dat starts with

x y
1 1.6180
2 2.7183
3 3.1416

then
d <- read.table("table_eg_1.dat", header=TRUE)

will read the data into a data frame (see Sect. 2.3.8) named d. Since header
is TRUE, the column names are inferred from the first line of the file. If the
header argument is dropped, the columns will be named V1 and V2, unless the
col.names argument is supplied. This convention applies also to relatives such
as read.csv(), read.fwf() and read.fortran() in the utils package,
and analogues in the readr package, which can be faster.23

2.7.1.2 Complicated Tables

A Southern Oscillation Index (SOI) dataset24 starts as follows:

1866 -1.2 -0.3 -1.0 -0.7 0.1 -0.9 -0.7 0.7 -0.4 0.1
1.6 -0.3

1867 0.4 -0.0 -0.0 0.8 0.7 -0.5 0.6 0.5 0.1 -0.7
-1.2 -1.7

One way to read such data would be to create a matrix
d <- as.matrix(read.table("../data/soi.dat", header=FALSE))

and then construct a decimal-year time vector

23A test with a 90 Mb file on the author’s machine revealed read_csv() to be nearly 6 times
faster than read.csv().
24http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.ascii.

http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.ascii
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y <- d[,1]
year <- seq(from=head(y,1), to=tail(y,1)+11/12, by=1/12)

The first step in isolating the SOI values is to drop the first column of d, after which
the matrix should be transposed with t() before creating the vector:

soi <- as.vector(t(d[,-1]))

It is necessary to account for missing values, equal to -99.9 in this dataset, but it
is risky to check for numerical equality, so

missing <- soi < (-90) # parentheses prevents "<-" typo

may be preferable. Usually, the next step would be to set the missing values to the
R coded value, with soi[missing] <- NA, but with this particular dataset, the
missing values are all at the end,

year <- year[!missing]
soi <- soi[!missing]

might be used, if there were no need to retain data length.

2.7.1.3 Line-Based Input

The readLines() function reads a file by lines, returning a vector of strings,
one per line. To illustrate how this can be useful in decoding complicated data files,
a mapping application was used to generate an automobile route from Dalhousie
University to the Woods Hole Oceanographic Institution, resulting in an XML file.
In this file, geographical locations are delimited by strings <coordinates> and
</coordinates>. Within these blocks are comma-separated values of longitude,
latitude and a third item.

The first step in inferring the route is to read the whole file as strings, and to find
the portion containing the route

d <- readLines("../data/dalwhoi.kml")
start <- grep("^\\ s*<coordinates>\\ s*$", d)
end <- grep("^\\ s*</coordinates>\\ s*$", d)

Here, ^ stands for the string start, \\s* stands for whitespace, and $ stands for the
string end (see Sect. 2.3.3.3). Next,

pathIndices <- seq(start + 1, end - 1)
data <- read.csv(text=d[pathIndices], header=FALSE)
lon <- data$V1
lat <- data$V2

reads the locations. Figure 2.28 is then constructed with
data(coastlineWorldFine, package="ocedata")
mapPlot(coastlineWorldFine, projection="+proj=merc",

col="lightgray", longitudelim=range(lon),
latitudelim=range(lat))

mapLines(lon, lat, lwd=5) # thick line for the route

which makes use of a Mercator projection (see Chap. 3).
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Fig. 2.28 Road from
Dalhousie University to
Woods Hole Oceanographic
Institution
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Exercise 2.43 Read the Dalhousie-WHOI route using the XML package. (See
page 205 for a solution.)

Exercise 2.44 Read the sample CTD file ctd.cnv, skipping the header and
naming the columns. (See page 206 for a solution.)

2.7.1.4 Reading by Words and Characters

The scan() function reads a file a “word” (defined as a character group-
ing separated by whitespace) at a time, returning the vector of items, e.g. if
../data/soi.dat contains the SOI data,25 then

tokens <- scan("../data/soi.dat")
length(tokens)
[1] 1963

reveals that scan() reads the whole file, finding 1963 words.
At a finer level, readChar() can be used to read individual characters, e.g.
readChar("../data/soi.dat", 10)
[1] " 1866 -1."

Exercise 2.45 Read the SOI data with scan(). (See page 207 for a solution.)

2.7.1.5 File and Text Connections

When supplied with a filename, most reading functions that are directed at files start
afresh with each invocation, e.g.

readChar("../data/soi.dat", 30)
[1] " 1866 -1.2 -0.3 -1.0 -0.7 "

readChar("../data/soi.dat", 30)
[1] " 1866 -1.2 -0.3 -1.0 -0.7 "

25http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.ascii.

http://www.cgd.ucar.edu/cas/catalog/climind/SOI.signal.ascii
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shows that readChar() rereads the first 30 characters each time it is called. File
connections provide a way to read sequentially through files. The value returned by
file() is a file connection, and e.g.

soi <- file("../data/soi.dat", "r") # second arg
means read-only
readChar(soi, 15)
[1] " 1866 -1.2 -0"

readChar(soi, 15)
[1] ".3 -1.0 -0.7 "

demonstrates that readChar() retains a pointer to file location when its first
argument is a file connection, as opposed to a file name.

Connections may also be made to strings, using textConnection(), e.g.
con <- textConnection("but not a drop to drink")
scan(con, "character", nmax=3)
[1] "but" "not" "a"

scan(con, "character", nmax=3)
[1] "drop" "to" "drink"

Readers with programming experience are likely to see that connections are the
key to working with complex files such as are common in oceanography.

2.7.2 Reading Binary Data

R has powerful and flexible tools for working with binary files. This is important for
oceanographic work, because many instruments record in binary format. Working
with binary data is a somewhat complicated business in any language, but readers
with some skill (e.g. those who know the meaning of phrases such as “little endian”
and “unsigned int”) should not have difficulty handling their data in R.

The first processing step is typically to read the entire file into a memory buffer,
after which the buffer is examined in detail. For example, the oce package (Chap. 3)
reads acoustic Doppler files with code of the form

file <- file(filename, "rb")
seek(file, 0, "end")
fileSize <- seek(file, 0, "start")

Here, file() is given argument "rb" to open the file read-only, in binary format.
Then seek() is used to “point” to the end of the file. Calling seek() a second
time moves the pointer to the start of the file and also returns the number of bytes
in the file, saved here as fileSize. Now, the whole file may be read into a buffer
with readBin(), in binary (“raw”) form.

buf <- readBin(file, "raw", fileSize)

Each element of buf corresponds to a byte. A common operation is to check
those bytes for coded sequences that flag data sections. For example, ADCP files
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from RDI-Teledynestart with the byte 0x7f repeated twice, so a test to see if the
file might be of this type is

probablyRdiAdcp <- buf[1] == 0x7f && buf[2] == 0x7f

and this is one of many tests used by oceMagic() to infer file type, helping
read.oce() to select a specialized reading routine (Sect. 3.2).

Another common operation is to match bytes for sequences that occur at arbitrary
locations within files, not just at the start. In many files, data are provided in discrete
chunks, with each one starting with a particular byte sequence. A single byte is not
a good flag for this, because the probability of a random byte matching is 1/256,
which is so high that typical files will have many false positives. This explains why
the scheme is usually to have a multi-byte sequence, along with other clues, such as
checksums, that identify data chunks.

For large or complex files, it can prove convenient to switch from R to C or C++,
to gain processing speed and to simplify programming. For example, the calculation
of checksums in acoustic Doppler files is relatively simple in C or C++, each of
which is very well-suited to computation at the byte level (Fig. 1.1). The efficiencies
gained by moving some core calculations to such compiled languages are dramatic.
Since these are not languages known to all oceanographers, it is convenient that oce
handles many important file types, freeing analysts from the need to go beyond R in
day-to-day work.

2.7.3 Reading Databases

R can read and write several types of database, e.g. mySQL and SQLite are handled
with the RMySQL and RSQLite packages. The interfaces are similar enough that a
single illustration should suffice.

In 2011, the author started a community educational project to monitor sky
light using data loggers that measure light levels and feed the results to a collating
computer. This collating computer uses an SQLite database named skyview.db
that was originally created with
CREATE TABLE observations(id integer primary key,

time int, light_mean real);
where time is the observation time in Unix seconds and light_mean is the mean
light level during a sampling interval.

The collating computer updates graphs on webpages on a regular interval, using
code that starts with

library(RSQLite)
m <- dbDriver("SQLite")
d <- dbConnect(m, dbname="../data/skyview.db")

to load the SQLite driver and connect to the database. Then, it is a simple matter
of querying the database to extract the columns from the table. For example, the
observations table is recovered with

o <- dbReadTable(d, "observations")
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which creates o as a data frame including all the data in the observations table.
If the goal were to extract only certain columns, a query such as

o<-dbGetQuery(d, "select time, light_mean from
observations")

might be used. (The second argument to dbGetQuery() is written in SQL, which
can be an advantage in working with a large database that can be pared down at a
low level, before transmission of data to R.)

Exercise 2.46 From https://rbr-global.com/support/matlab-tools, get RSKtools
and extract time and temperature from the SQLite file named sample.rsk. (See
page 207 for a solution.)

2.7.4 Reading NetCDF Files

The NetCDF file format is popular in oceanography and meteorology, particularly
for data that can be expressed as vectors or arrays. Of its several useful features,
two that stand out are its use of an endian-independent binary format and its tight
binding of data with metadata that indicate units, ranges, data-quality flags, etc.

An example is provided by the 5-degree resolution version of the World Ocean
Atlas (see, e.g., Boyer et al. 2009), available from NODC.26 This provides gridded
values of salinity and temperature, etc. Accessing the data is easy with the ncdf4
package, written by David W. Pierce. The first step is to open a file connection, e.g.
with

library(ncdf4)
con <- nc_open("../data/woa13_decav_t00_5dv2.nc")

after which an overview of the contents is found by printing con. The results,
which are detailed and much too long to show here, indicate that the file con-
tains coordinate variables named lon, lat and depth, in addition to arrays
holding temperature information in different forms. Data may be accessed with
ncvar_get(), e.g. the atlas grid geometry is recovered with

lon <- ncvar_get(con, "lon")
lat <- ncvar_get(con, "lat")
depth <- ncvar_get(con, "depth")

and a 3D array containing analysed temperature is recovered with
t_mn <- ncvar_get(con, "t_mn")

With such NetCDF-specific work complete, it is easy to explore the data. For
example, Fig. 2.29 shows latitudinal dependence of sea-surface temperature, created
with

26https://www.nodc.noaa.gov/OC5/woa13/woa13data.html.

https://rbr-global.com/support/matlab-tools
https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
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Fig. 2.29 Variation of sea-surface temperature with latitude and longitude

SST <- t_mn[, , depth==0] # third index is depth
vSST <- as.vector(SST)
vlat <- rep(lat, each=length(lon))
lat10 <- cut(vlat, breaks=seq(-90, 90, 10))
boxplot(vSST ~ lat10, xlab="Latitude",
ylab="Temperature")

where cut() has been used to break latitude up into 10-degree bands. Note the
casting of the temperature matrix into vector form with as.vector(), and the
creation of a corresponding latitude by replication with rep().

Exercise 2.47 Plot SST contours with a coastline. (See page 207 for a solution.)

2.7.5 Writing Files

R provides a variety of methods for writing to files. This may be done in textual and
binary ways. Conveniently, the names of functions for writing tend to be paired with
those for reading, e.g. writeChar() is a sibling to readChar().

The R.matlab package can be used to write in Matlab format, but the reader is
cautioned (as of the writing of this book) that the package is somewhat limited, e.g.
for arrays with more than 2 dimensions.

An important R function for writing is save(), which stores R objects to a file
in a binary format that preserves their structure and contents, suitable for recovery
with load(). Saving data in this way offers a convenient way to buffer results,
avoiding repeating slow calculations across R sessions. Importantly, save() uses
a binary format that retains full numerical resolution, alleviating any need to decide
how many digits to use in a text-based file. Since save() and load() store endian
information, there is no need to worry about spurious results in transferring data
between machines of different architectures.
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2.8 Creating R GUI Systems

As mentioned in Sect. 2.4.15, R can handle graphical input in several ways. A simple
method is to use locator() to find the location of a user’s mouse click on a plot,
e.g. to take advantage of the fact that an analyst might be able to detect a data
anomaly more easily by examining a graph than by devising a new algorithm.

Such approaches are helpful for simple tasks, but more sophisticated GUI
elements are desirable for complex tasks, and that’s where the shiny package
comes in. This package makes it easy to set up GUI systems (or “apps”) in R. It
has tools for creating GUI elements such as sliders, menus, radio boxes, text boxes,
etc., in addition to a powerful and flexible system for connecting such elements
to general R code. For example, a shiny app can be set up so that radio buttons
control whether to represent data with contours or images, with slider bars to control
parameters used in smoothing data, etc. The shiny system also has good support
for mouse clicks and drags within a plotting area, which can be helpful in selecting
data to flag or subregions to be replotted at higher magnification. Importantly, the
user’s actions can be accessed throughout the app, which means that a user action
in one panel of a plot can control the display in another panel, providing an escape
from the focus limitation of multi-panel plots that was mentioned in Sect. 2.4.15.

There are many online tutorials dealing with shiny, those provided by
Rstudio being noteworthy.27 A good way to learn shiny is to download a tutorial
app and start modifying it. For example, a common way to search for errors in CTD
data is to look for outliers on a T –S plot. A plot-interaction-exclude app provided
on the Rstudio website28 addresses a similar task, and so it provides a starting
point for a CTD-editing app.

It can be helpful to divide app code into two files, one defining the user interface
and the other defining the actions associated with the interface elements. For the
former, saving

library(shiny)
verticalLayout(wellPanel(plotOutput("plot", brush="brush")),

wellPanel(actionButton("toggle", "Toggle"),
actionButton("reset", "Reset"),
textOutput("excluded")))

to a file named ui.R sets up an interface with a plot area (“wellPanel” in
shiny parlance) at the top of the window and an action area below, as illustrated
in Fig. 2.30. The user is invited to drag the mouse to select (“brush”) bad data, and
then click “Toggle” to switch the status of the indicated points from good to bad (and
vice-versa, for corrections). The other items of the second wellPanel() will be
used to list the indices of suspicious data, and to provide a way to reset the analysis.

27https://www.rstudio.com/products/shiny.
28http://shiny.rstudio.com/gallery/plot-interaction-exclude.html.

https://www.rstudio.com/products/shiny
http://shiny.rstudio.com/gallery/plot-interaction-exclude.html
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Fig. 2.30 Using the CTD-edit shiny app. A point with spurious salinity of 99 has already been
designated as bad, and eliminated from the plot. The mouse has been dragged over low-salinity
values that are suspect, and these will disappear when “Toggle” is pressed

These actions are accomplished and demonstrated using a built-in dataset with
the following code, saved in a file named server.R.

library(shiny)
library(oce)
data(ctdRaw)
ctd <- ctdRaw
shinyServer(function(input, output) {
n <- length(ctd[["pressure"]])
vals <- reactiveValues(keep=rep(TRUE, n))
output$plot <- renderPlot({

plotTS(subset(ctd, vals$keep), eos="gsw")
discard <- subset(ctd, !vals$keep)
points(discard[["SA"]], discard[["CT"]], pch=20,
col="red")

})
output$excluded <- renderText({

paste("Bad:", paste(which(!vals$keep),
collapse=" "))

})
observeEvent(input$toggle, {

df <- data.frame(SA=ctd[["SA"]], CT=ctd[["CT"]])
res <- brushedPoints(df, input$brush,

"SA", "CT", allRows=TRUE)
vals$keep <- xor(vals$keep, res$selected_)

})
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observeEvent(input$reset, {
vals$keep <- rep(TRUE, n)

})
})

In examining such code, the reader would benefit from reading the documentation
for reactiveValues() and observeEvent(), for these are key tools used
to control interactions throughout the app.

Exercise 2.48 Extend the CTD-edit shiny app to read data from a file, set flags
for bad data and save the result to a file. (See page 208 for a solution.)

2.9 Debugging

Debugging tools are an important part of any computing system, and a good topic
with which to end this tutorial. R comes with a simple but effective set of debugging
tools that should become familiar to any user who writes programs of significant
complexity.

Debugging is best done in an interactive environment. The present discussion
describes actions that can be taken in the R console or in an editor, but readers
who are using the Rstudio system will find that there are GUI actions for
the procedures outlined here.29 If file.R produces an error when run from the
(presumed Unix) operating system with
Rscript file.R

then the first step is to launch an interactive R environment, and execute
source("file.R")

to replicate the problem. Then, using
traceback()

will reveal the spot where the error occurred, along with an execution trace
indicating how control arrived at that spot. If the error is obvious, file.R can
be altered and re-sourced, to work through whatever solution occurs to the coder. It
is also helpful to set the system up to trigger the debugger upon errors.

Sometimes an error will be reported long after something was done incorrectly.
(For example, line 100 might contain an attempt to read a file that was incorrectly
named in line 50.) For this reason, it can be helpful to add lines that print variables
at strategic spots in the code. This can be time consuming, so a better approach can
be to use browser() or debug(). For example, with error at line 200, a good
approach might be to add

browser()

29RStudio has a variety of other helpful features, e.g. a code-completing editor and a code-analysis
tool that can recommend alterations that may make code more robust.
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at line 199. When R gets to that spot, the prompt will change, and the user will be
able to examine any variable of interest. Actually, any R command can be executed,
so the user is free to try to find the problem by plotting, etc. There are also some
control commands that can be executed in a browser() session, the most useful
of which are n (or an empty line), which advances to the next step of execution, and
Q, which exits the browser. Although it is simple, browser() is tremendously
helpful in finding errors of any kind, and it may be the most important debugging
tool a R programmer can learn.

Sometimes it is not desired to edit the code, so inserting calls to browser() is
not an option. For this purpose, debug() is handy. It takes as its first argument
the name of a function. Then, when execution is started, everything proceeds
normally until that function is encountered, whereupon control is handed over to
browser(). It is also possible to instruct Rstudio to act as though a break()
call had been been inserted at a specified spot in the code, without actually
modifying the source file.

In the special case of the oce package, another debugging method is to set the
debug argument to an integer higher than zero, so that functions print a record of
some important aspects of their processing. This is just one of the many practical
aspects of the oce package that are sketched in the next chapter.



Chapter 3
The oce Package

Abstract The oce package simplifies oceanographic analysis by handling the
details of discipline-specific file formats, calculations and plots. Designed for real-
world application and developed with open-source protocols, oce supports a broad
range of practical work. Generic functions take care of general operations such
as subsetting and plotting data, while specialized functions address more specific
tasks such as hydrographic analysis, ADCP coordinate transformations, etc. It is
easy to document work done with oce, because its functions automatically update
processing logs stored within its data objects. Users are not limited to oce functions,
however; data are extracted easily from oce objects, so that the thousands of other
R packages may be used as needed.

3.1 Package Options

The oce package (Kelley and Richards 2018) has several options to control global
behaviour, e.g.

options(oceDebug=3)

sets debugging to a high level for all oce function calls, as an alternative to setting
debug argument in such calls. Some other options are listed in Table 3.1. It is
typical to set such things in a startup file (see Sect. 2.2.4).

3.2 File Formats

Table 3.2 lists some of the data formats recognized by read.oce(), which uses
oceMagic() to infer file type, and then calls a specialized function to read the
data. These specialized functions may also be called directly. Either way, users
are relieved from reading lengthy data-format specifications and writing complex

© Springer Science+Business Media, LLC, part of Springer Nature 2018
D. E. Kelley, Oceanographic Analysis with R,
https://doi.org/10.1007/978-1-4939-8844-0_3
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Table 3.1 Some user-controllable oce startup options

Option Default value Meaning

oceMar c(3, 3, 2, 2) Value for par(mar),
controlling margin widths

oceMgp c(2.0, 0.7, 0) Value for par(mgp),
controlling axis label
locations

oceDrawTimeRange TRUE Should oce.plot.ts()
show the time range?

oceAbbreviateTimeRange TRUE Should oce.plot.ts()
shorten time ranges?

oceTimeFormat "%Y-%m-%d %H:%M:%S" Format for time strings

oceUnitBracket "[" Character to embrace units in
plot labels; can also be "("

oceEOS "unesco" Preferred seawater equation
of state; can also be "gsw";
see Sect. 5.2.1 and
Appendix D

Table 3.2 Some of the oceanographic data formats recognized by read.oce() and its helper
function, oceMagic

Class Details

adp Acoustic Doppler profiler, in RDI-Teledyne, Nortek or Sontek format

adv Acoustic Doppler velocimeter, in Nortek or Sontek format

amsr AMSR satellite data

argo Argo float data

bremen Data format used at Bremen

cm Current meter, in Interocean format

coastline Coastline shape, in mapgen, shapefile and other formats

ctd CTD, in Seabird *.cnv, WOCE exchange, ODF or Ruskin format

echosounder Biosonics scientific echosounder

g1sst Global 1km SST satellite/model data

gps Location data

ladp Lowered Acoustic Doppler profiler

landsat Landsat satellite data

lisst Laser in situ scattering and transmissometry

lobo Land/Ocean biogeochemistry Observatory

met Meteorological data.

oce Base of all classes in the oce package

odf Data format used by Department of Fisheries and Oceans, Canada

rsk RBR logging devices, e.g. temperature-depth recorders

satellite Base of amsr, g1sst and landsat classes

sealevel Sea-level elevation, in MEDS or Hawaii format

section Section data

tidem Tidal-model data

topo Earth topography, in NOAA format

windrose Wind rose data
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code,1 e.g. the specialized graphical representation of CTD data shown in Fig. 3.1
was constructed with a simple call to plot(), which tailors its action to the class
of its first argument.

The ability to read a wide variety of data types is a good reason to try R and oce
for oceanographic analysis. There are two main advantages over software provided
by manufacturers. First, oce is open-source, and thus easy to inspect or modify.
Second, manufacturers provide software for just their own instruments, which is of
limited help in coordinating data from the typical oceanographic experiment, which
employs a variety of instrument types.

Open-source alternatives are available in Matlab and Python, and readers will
likely find themselves using these from time to time. A weakness of many such
systems is that they tend to be specialized to particular instruments. By contrast,
oce handles many instruments in a uniform way, which can be helpful to analysts
who work with several data types at once. Much of the oce uniformity stems from
its object-orientation design, discussed in the next section.

3.3 Object Orientation

The oce package uses the S4 scheme of object orientation2 with a hierarchical
collection of object classes that inherit from a common base class named “oce”.
This inheritance scheme simplifies the internal coding of oce, reducing the chance
of bugs and also making it easier for users to add new objects.

All oce classes have three S4 “slots,” with contents as follows (Fig. 3.2).

• metadata, a list describing the object. The contents vary with the object type,
perhaps including the name of a data file, the sampling location, etc.

• data, a list containing the actual data. Again, the contents depend on the object.
For example, CTD objects contain vectors for hydrographic quantities, ADP
objects contain vectors for time and distance in addition to arrays for velocity
components, etc. (This combination of vectors and arrays explains why a list is
used instead of a data frame; see Sect. 2.3.6.)

• processinglog, a list containing items named time and value that record
the processing steps that led to present state of the object.

There are two ways to access data within oce objects. It is possible to use the
@ symbol to access information stored in an object’s data or metadata slots.
However, the recommended method is to the access operator “[[”, e.g.

1The effort of decoding oceanographic data files can be significant, e.g. Teledyne-RDI (2007)
devotes nearly 30 pages to byte-level format of ADCP files, and following that format requires
several hundred lines of R and C/C++ code.
2There is no need to understand S4 in order to use oce, but curious readers can get the gist from
help(Classes) or Chapter 9 of Chambers (2008).
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Fig. 3.1 Hydrographic diagram of a CTD cast made in Halifax Harbour by students in the author’s
Physical Oceanography class at Dalhousie University. This diagram was produced with just two
oce function calls: one to read the data, another to plot them

data(ctd, package="oce")
head(ctd[["temperature"]])
[1] 14.22109 14.22649 14.22509 14.22219 14.22669
14.23318

There are two advantages of the accessor approach. First, it isolates users from
the details of internal storage, letting users write code that is resistent to any changes
in the internal structure of oce objects that may be necessitated by changes in
instrumentation or analysis methodologies. Second, accessors make it easy for users
to infer derived quantities that are not actually stored in the data object, e.g. potential
temperature for a CTD or attenuation-corrected backscatter strength for an ADCP.

The “[[” operator works for assignment as well as access, e.g. temperature
might be increased with
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ctd object

data metadata processingLog

pressure

temperature

salinity f ilename

...

time

value

...

Fig. 3.2 Structure of a CTD object

ctd[["temperature"]] <- 0.001 + ctd[["temperature"]]

but this scheme should be used only for quantities actually stored in the object, not
for derived quantities. (For nontrivial changes, however, it is recommended to use
oceSetData() and oceSetMetadata(), since these record changes within
the object’s processing log.)

Internally, “[[” is a function that searches through the object for the named
quantity. It first examines the metadata slot, returning the value (for access
or assignment) if found, otherwise moving on to the data slot and repeating
the test. This scheme permits a uniform notation, no matter which slot holds the
information. This is useful because the appropriate slot depends on the object
class, e.g. latitude is mandatory for a coastline object so it belongs in the
data slot, but it is an optional addition for CTD instruments, so it belongs in the
metadata slot. The code fragment a[["latitude"]] works for both types of
object, taking values from different places depending on the class of a. This scheme
makes it easy for an analyst to work with a wide range of data types without case-
by-case tailoring of code.

3.4 Datasets

Several datasets are provided with oce and ocedata, some of which are listed in
Tables 3.3 and 3.4. The dataset documentation can be a useful adjunct to the help on
its related class; e.g. compare the output of help("ctd") with the more detailed
information that help("ctd-class") provides.
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Table 3.3 Datasets provided in the oce package

Name Description

adp SLEIWEX ADCP measurements

adv SLEIWEX ADV measurements

argo Argo float #3900388 measurements

cm SLEIWEX S4 current meter measurements

coastlineWorld Default (1:50M) world coastline

colours Colours used in some oce palettes

ctd CTD profile collected in Halifax Harbour

ctdRaw Raw CTD data, including calibration and upcast

echosounder SLEIWEX echosounder measurements

landsat Data from a Landsat image

lisst LISST dataset, constructed artificially

lobo LOBO measurements made in Halifax Harbour

met Meteorological observations at Halifax Int’l Airport

rsk SLEIWEX temperature-depth recorder data (RBR logger)

sealevel Sea-level variation within Halifax Harbour during 2003

sealevelTuktoyaktuk Sea-level variation near Tuktoyaktuk, from Foreman (1977)

section WOCE hydrographic section designated A03

tidedata Data on tidal constituents, used by tidem()

topoWorld World topography data on a 12-minute grid

wind Wind data in Koch et al. (1983)

3.5 Functions

The oce package provides generic functions (Sect. 2.3.11.6) to handle common
tasks, including the access operator mentioned above, along with subset(),
summary() and plot(). This scheme lets users ignore the internal structure of
the data, e.g. if d is an oce object including time, then

dd <- subset(d, time < mean(range(d[["time"]],
na.rm=TRUE)))

retrieves data from the early portion of the sampling interval, no matter the object’s
class. Plotting is also done with generic functions, e.g. Fig. 3.1 was produced with

data(ctd, package="oce")
plot(ctd)

where the plot details are obtained with either of the following:
help("plot,ctd-method")
?"plot,ctd-method"

In addition to generic functions, oce provides a long list of functions for
specialized oceanographic tasks, including (with * representing several function
names)

• map*() functions for drawing maps with projections (see Sect. 3.6)
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Table 3.4 Datasets provided in the ocedata package

Name Description

RRprofile Hydrographic profile from Reiniger and Ross (1968)

beaufort A CTD profile in the Beaufort Sea

buoy Measurements made by a buoy off Halifax

coastlineWorldFine Fine-resolution (1:10M) world coastline

coastlineWorldMedium Medium-resolution (1:50M) world coastline

conveyor Some points on the Broecker (1991) “conveyor belt”

drag Air-sea drag coefficients from Garratt (1977)

endeavour Path of HMS Endeavour

geosecs235 GEOSECS tritium station 235

giss Goddard Institute for Space Studies temperature timeseries

gs Gulf Stream position, from Drinkwater et al. (1994)

levitus “Levitus” World Ocean Atlas SSS and SST

munk Pacific temperature profile examined by Munk (1966)

nao North Atlantic Oscillation timeseries

oceans Geometry of some oceans

papa Measurements at Ocean Weather Station P

redfieldNC Nitrate-carbon data in Figure 3 of Redfield (1934)

redfieldNP Nitrate-phosphate data in Figure 1 of Redfield (1934)

redfieldPlankton Plankton data in Table II of Redfield (1934)

riley Plankton data in Figure 21 of Riley (1946)

schmitt Temperature-salinity data in Figure 1 of Schmitt (1981)

secchi Sechhi-disk measurements in North and Baltic Seas

soi Southern Oscillation Index from 1866

topo2 World topography data on a 2-degree grid

turbulence Turbulence measurements by Grant et al. (1962)

wilson Seafloor-spreading data in Table 1 of Wilson (1963)

• oce.plot.ts(), an alternative to plot.ts() for time-series data
• imagep() and drawPalette() for colour palettes in images and generally
• pwelch() for averaged spectra as discussed by Welch (1967)
• atm*() functions relating to atmospheric properties
• sw*() functions relating to seawater properties (see Table 3.5 and Sect. 5.2.1)

Exercise 3.1 Use the generic plot() for CTD objects, to produce a version
of Fig. 3.1 using the UNESCO equation of state instead of the default TEOS-10
version. (See page 209 for a solution.)

Exercise 3.2 (a) Calculate the density of seawater at pressure 100 dbar, salinity
34 PSU, and temperature 10 ◦C. (b) What temperature would the parcel have
if raised adiabatically to the surface? (c) What density would it have if raised
adiabatically to the surface? (d) What density would it have if lowered about 100 m,
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Table 3.5 Some functions relating to seawater properties

Function Description

swAbsoluteSalinity() Absolute salinity, SA

swAlpha() Thermal expansion coefficient, α = −ρ−1
0 ∂ρ/∂T

swAlphaOverBeta() Ratio of thermal and haline coefficients, α/β

swBeta() Haline contraction coefficient, β = ρ−1
0 ∂ρ/∂S

swConductivity() Electrical conductivity, C

swConservativeTemperature() Conservative temperature, �

swDepth() Depth, −z, inferred from p and latitude

swDynamicHeight() Dynamic height

swLapseRate() Adiabatic lapse rate

swN2() Square of buoyancy frequency, N2

swRho() Density, ρ = ρ(S, T , p)

swSCTp() S inferred from conductivity, T and p

swSTrho() S inferred from T and ρ

swSigma() σ = ρ − 1000 kg/m3

swSigmaT() σ(S, T , 0)

swSigmaTheta() σ(S, θ, 0)

swSoundAbsorption() Sound absorption

swSoundSpeed() Sound speed

swSpecificHeat() Specific heat

swSpice() Spiciness, a property orthogonal to density

swTFreeze() Freezing temperature

swTSrho() T inferred from S and ρ

swTheta() Potential temperature, θ

swViscosity() Dynamic viscosity, μ

swZ() Vertical coordinate, z, inferred from p and latitude

Here, C represents electrical conductivity, p pressure, S salinity and T in situ temperature

increasing the pressure to 200 dbar? (e) Draw a blank T -S diagram with S from 30
to 40 PSU and T from −2 to 20 ◦C. (See page 209 for a solution.)

Exercise 3.3 Use propagate from the propagate package to estimate typical
CTD salinity uncertainty. (See page 209 for a solution.)

3.6 A Practical Example

Figure 3.3 shows annual-mean world sea-surface temperature (SST) from the 2009
version of the World Ocean Atlas dataset (Locarnini et al. 2010; Antonov et al.
2010). A detailed explanation of the construction this diagram provides the chance
to highlight some important oce functions. The first step is to access the data,
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Fig. 3.3 Annual-mean sea surface temperature shown in Mollweide projection

a convenient (but spatially coarse) form of which is provided by the ocedata
package:

data(levitus, package="ocedata")

Although oce can easily select a colour-scale for the image, analysts usually prefer
to set such things to achieve uniformity across plots, and this may be done with

cm <- colormap(zlim=c(-2, 30), col=oceColorsJet)

which uses the “jet” color mapping (see Sect. 2.4.14). Then a palette is drawn with
drawPalette(colormap=cm)

At a global scale, the coastline provided with oce provides sufficient detail and
the Mollweide projection may be a good choice (see Appendix C for more on
projections); with these choices,

data(coastlineWorld, package="oce")
mapPlot(coastlineWorld, projection="+proj=moll",
grid=FALSE)

draws the gray land area in Fig. 3.3. Finally,
mapImage(levitus$longitude, levitus$latitude,

levitus$SST, colormap=cm)

adds the sea-surface temperature. Readers who are following along will notice
that some of the image grid elements are painting over the land. This problem is
alleviated by redrawing that land, after first drawing lines of longitude and latitude:

mapGrid()
mapLines(coastlineWorld)

thus completing Fig. 3.3.
Readers might wish to examine the documentation of the relevant functions to

understand this example fully, but the above should indicate the potential of oce to
produce useful specialized oceanographic plots, in addition to those offered by its
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generic functions. The main thing to realize is that oce is built with R base graphics,
which means that a painting model is employed, with new graphical elements being
put on top of existing ones.

Exercise 3.4 Map ocean-surface density. (See page 210 for a solution.)

Exercise 3.5 Use mapPlot() to draw a world coastline with the Robinson
projection, and trace the 1700s H.M.S. Endeavour cruise. (See page 210 for a
solution.)

3.7 Evolution of oce

The oce package began with ad hoc code to read CTD files stored in the “.cnv”
format (see Exercise 2.44). This was a main program that consisted of little more
than a call to read.table() to read a specified file, with the value of the skip
argument chosen after inspection of the lines at the start of that particular file.

Headers in .cnv files are of variable length, and it is tedious to alter skip for
each case, so the next step was to determine the header length by using grep() to
detect the end of the header. As more files were considered, it became desirable to
infer data columns from the header, instead of specifying them manually. Other
features were added as applications widened, and to avoid confusion the code
was recast as a function that returned not just columnar data, but also other
(meta-data) quantities, such as station number, sampling location, etc., which are
sometimes present in CTD headers. With such additions, formal documentation
became necessary, because even the author found it difficult to remember the
features without examining the code. For oce, as perhaps for other packages,
this was the time when the effort of packaging was seen to be worthwhile, in
order not just to bind documentation and code together, but also to take advantage
of the checks of code and documentation that are involved in R packaging and,
importantly, to create a system that would benefit colleagues.

From the early stages, a version control system was used to track changes to
the oce source code. Between 2007 and 2010, the subversion system was used,
but then a switch was made to git. The code was originally hosted on a website
on the author’s desktop computer, but as the user base grew, it was moved to
Google,3 where it was called r-oce because the name oce had been taken. Then,
in 2010, oce was moved to GitHub,4 where it resides today, benefiting from the
collaboration of additional authors and the advice and bug reports of users from
around the world.

3code.google.com/p/r-oce.
4github.com/dankelley/oce.

code.google.com/p/r-oce
github.com/dankelley/oce
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The official version of oce is available on the CRAN5 servers and may be
installed with install.packages(). The Github website provides updates
between official releases, and it is also used by those requesting new features,
reporting bugs or otherwise helping with oce development.

It is worth noting that additions to oce are always based on the practical
needs of the authors and their colleagues, never on some imagined needs. For
example, support for CTD data was followed quickly by support for oceanographic
sections, with the section class being added as a second child to the parent
oce class. As the authors started working with acoustical instruments, support was
added for acoustic-Doppler profilers (adp) and velocimeters (adv). This continued,
one instrument at a time, with oce gradually growing to offer support for most
instruments in common use today.

Generally, oce functions were developed to work on data in the authors’
possession, often data under active study in a research program. An advantage
of this (beyond satisfying individual research needs) was the early detection of
coding errors or poor design. Through time, new features were increasingly based
on requests from users, often as articulated on the development website4. By design,
this scheme directs coding effort first and foremost to issues of high relevance to the
oceanographic community.

At this point in the text, readers should be able to apply R to their own
work, relying on oce to handle quirky data formats and produce diagrams in the
oceanographic convention. However, as with any tool, there are dangers in forming
habits based on success in early tests. For this reason, the remainder of this book
addresses practical aspects to using R for oceanographic analysis, starting with a
re-analysis of the data in some classic research articles, and then turning attention
to more modern and technical issues.

5cran.r-project.org.

cran.r-project.org


Chapter 4
Historical Examples

Abstract Data extracted from four highly influential oceanographic publications
are used in step-by-step explanations of how to use R for modern-day analysis.
The papers were chosen to represent the four sub-disciplines of oceanography, in
hopes of providing an inherently interesting framework for a discussion of four key
analytical tools.

LINEAR REGRESSION

Alfred C. Redfield, 1934. On the proportions of organic derivations in sea water
and their relation to the composition of plankton. James Johnstone Memorial
Volume, p. 177–192. University Press of Liverpool.

DIFFERENTIAL EQUATIONS

Gordon A. Riley, 1946. Factors controlling phytoplankton populations on
Georges Bank. Journal of Marine Research, 6(1), p. 54–73.

TYPE II REGRESSION AND BOOTSTRAPPING

J. Tuzo Wilson, 1963. Evidence from islands on the spreading of ocean floors.
Nature, 197(4867), p. 536–538.

NONLINEAR REGRESSION

Walter H. Munk, 1966. Abyssal recipes. Deep-Sea Research, 13, p. 707–730.

4.1 Seawater Chemistry (Redfield 1934)

In the early twentieth century, significant efforts were made to measure the spatial
and temporal patterns of seawater chemistry. Some amounted to exercises in map-
ping, while others were more focussed on deriving meaning from the relationships
between measured quantities. A notable example of the latter was provided by

© Springer Science+Business Media, LLC, part of Springer Nature 2018
D. E. Kelley, Oceanographic Analysis with R,
https://doi.org/10.1007/978-1-4939-8844-0_4
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Fig. 4.1 History of citations of the papers listed above, according to a citation search using the
Web of Science

Alfred Redfield in 1934, in his discussion of seawater chemistry in the context of
plankton chemistry (Fig. 4.1 shows the history of citations of this paper, and of the
others discussed in this chapter).

He reported that the concentration of Carbon, Nitrogen and Phosphorus in certain
biologically active seawater compounds tend to be in constant ratio, C:N:P being
140:20:1 by mole (or 100:16.7:1.85 by mass). Importantly, he also showed that
corresponding ratios within marine plankton were similar to those in seawater.
Although the mechanisms behind the similarity were not entirely clear, the rami-
fications were so significant that Redfield (1934) came to be regarded as a founding
paper in modern oceanography (Revelle 1995).

Redfield did not rely heavily on statistical analysis in his paper. This may reflect
the times or his personal interests, but in either case, readers might find it helpful
to see how to analyse his data in R. In the present treatment, the focus will be on
the tools rather than the science, and concrete hints will be provided for graphical
display, regression and hypothesis testing.

Data digitized from Figure 1 of Redfield (1934) are given in the redfieldNP
dataset in the ocedata package, so the analysis starts with loading the data and
using str() for an overview

data(redfieldNP, package="ocedata")
str(redfieldNP)
'data.frame': 119 obs. of 2 variables:
$ PO4: num 0.0488 0.0694 0.075 0.0769 0.0919 ...
$ NO3: num 0.63 0.607 1.349 1.535 0.63 ...
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Fig. 4.2 Concentration of nitrate and phosphate (each in µmole/litre) as graphed in Figure 1 of
Redfield (1934). The solid line has slope 1:20, as drawn by Redfield. The dashed line comes from
a least-squares regression using lm()

The elements of this data frame may be accessed1 with, e.g., redfieldNP
$PO4, and a scatter plot (Fig. 4.2) produced with

plot(redfieldNP$PO4, redfieldNP$NO3,
xlab=expression(PO[4]), ylab=expression(NO[3]))

while Redfield’s N:P ratio of 1:20 is added with
abline(0, 20, lwd=2)

Now, we may go beyond Redfield’s diagram. Since the relationship appears to
be roughly linear, it is natural to fit a linear model relating nitrate to phosphate.2 As
discussed in Sect. 2.5.5, lm() is one way to fit such a model.

1The elements could be accessed as PO4 and not redfieldNP$PO4, etc., if preceded by an
attach(redfieldNP) function call. However, some analysts, including the author, find that
using attach() leads to confusion as to which variables are visible at any given time, and so
they avoid the function and its pair, detach().
2Recognizing that there are errors in both nitrate and phosphate, one might also try a type-II
regression, a matter to be discussed more in Sect. 4.3.



106 4 Historical Examples

Based on Fig. 4.2 plus a desire to explore the concept of Redfield ratio, one might
seek a linear relationship between NO3 and PO4, with intercept set to zero. The
intercept is removed by using -1 in the regression formula3

m <- lm(NO3 ~ PO4 - 1, data=redfieldNP)

where the regression result has been saved in m, so that it can be used later. The first
use is in adding a regression line to Fig. 4.2

abline(m, lty="dashed", lwd=2)

where abline() detects that m was created by lm(), and so it extracts the slope
and intercept automatically.4 Finally, a legend is created with

legend("topleft", pch=c(1, NA, NA),
lty=c(NA, "solid", "dashed"), lwd=2, seg.len=4,
legend=c("Data", "Redfield's line",
"Regression line"))

An overview of the model fit is given by summary(), a generic function
(Sect. 2.3.11.6) that in turn calls summary.lm(); the full output is shown below.

summary(m)

Call:
lm(formula = NO3 ~ PO4 - 1, data = redfieldNP)

Residuals:
Min 1Q Median 3Q Max

-7.9064 -1.1923 0.0619 1.2407 8.0237

Coefficients:
Estimate Std. Error t value Pr(>|t|)

PO4 19.1560 0.2726 70.28 <2e-16 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.45 on 118 degrees of freedom
Multiple R-squared: 0.9767, Adjusted R-squared: 0.9765
F-statistic: 4939 on 1 and 118 DF, p-value: < 2.2e-16

The low overall p value suggests that the regression is statistically significant,
and the high adjusted R2 value indicates that the regression accounts for most of
the nitrate variability. The residual standard error reported by summary() also
tends to be a focus of interest, in cases where replicates or other schemes provide
information on the random measurement errors.

3Note the use of the data argument to lm(), which exposes the elements of redfieldNP, so
that, e.g., NO3 can be written instead of redfieldNP$NO3 within the function call.
4The line could also be drawn with lines(), with the output from predict(); see a nonlinear
example in Sect. 2.5.5.2.
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The inferred slope is lower than Redfield’s value of 20, at least as indicated by
the 95% confidence interval

confint(m)
2.5 % 97.5 %

PO4 18.61619 19.69572

The next step is to consider the concentrations of elements in plankton, which
Redfield (1934) presented in weight-ratio form in his Table II. These values are in
the dataset redfieldPlankton in the ocedata package.

data(redfieldPlankton, package="ocedata")

Following Redfield , we may examine the averages (using na.rm in the second
case because it contains some NA values)

mean(redfieldPlankton$Nitrogen)
[1] 15.44545

mean(redfieldPlankton$Phosphorus, na.rm=TRUE)

[1] 1.88

The values within redfieldPlankton are masses expressed as a percent of
Carbon mass. Redfield compared the averages with seawater values 16.7 and 1.85
(in weight terms) in his Table II. It is perhaps revealing that Redfield did little more
than present these values, writing that the values “are not greatly different.” Such
laudable brevity notwithstanding, the present purpose is to illustrate the use of R, so
further steps may be warranted.

A common approach would be to use t.test() to perform a t test to compare
the data with Redfield’s stated values. The seawater value 16.7 could be used as a
value for comparison:

t.test(redfieldPlankton$Nitrogen, mu=16.7)

One Sample t-test

data: redfieldPlankton$Nitrogen
t = -0.86503, df = 10, p-value = 0.4073
alternative hypothesis: true mean is not equal to 16.7
95\% confidence interval:
12.21401 18.67690

sample estimates:
mean of x
15.44545

With such a large p value, it is difficult to argue that the plankton ratio is different
from the seawater value. Another indication is the fact that the mu value lies within
the confidence interval of 12.2 to 18.7.

As stated, Redfield did not pursue the agreement in any great depth. Instead, he
looked to the future, ending his paper by writing

Whatever its explanation, the correspondence between the quantities of biologically
available nitrogen and phosphorus in the sea and the proportions in which they are utilized
by the plankton is a phenomenon of the greatest interest.
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These words still ring true all these decades later, testifying not just to the
significance of Redfield’s ideas, but also to his ability to explain them. Further to
this second point, readers who study this man will soon find that he had a flair for
communication. Indeed, according to Revelle (1995), Redfield was fond of saying

Life in the sea cannot be understood without understanding the sea itself.

and one would be hard-pressed to find a better statement of the gist of modern
biological oceanography.

Exercise 4.1 Use loess() to fit localized polynomial models (Sect. 2.6.6) of PO4
as a function of NO3, and vice versa. (See page 211 for a solution.)

Exercise 4.2 Alter the lm() call for the Redfield ratio fit, to test whether the slope
might be 20. (See page 211 for a solution.)

Exercise 4.3 Calculate the slope in Fig. 4.2 using ridge, robust and resistant
regression, using functions lm.ridge(), rlm() and lqs() from the MASS
package, respectively. (See page 212 for a solution.)

4.2 Ecosystem Modelling (Riley 1946)

One of many contributions Gordon Riley made to modern biological oceanogra-
phers was to illustrate the utility of using differential equations to track temporal
variations of interconnected elements. A prime example of this is found in his 1946
analysis of phytoplankton populations on Georges Bank, which pioneered a setup
that is still used to this day, with some variations and extensions.

Before getting to the methodology of Riley’s differential equation solution, it
may be instructive to quote the first words of his 1946 paper:

A complex field such as oceanography tends to be subject to opposite approaches. The first
is the descriptive, in which several quantities are measured simultaneously and their inter-
relationships derived by some sort of statistical method. The other approach is the synthetic
one, in which reasonable although perhaps over-simplified assumptions are laid down, these
serving as a basis for mathematical derivation of relationships . . . in many cases there is no
chance for mutual profit because the two approaches have no common ground. Until such
contact has been established no branch of oceanography can quite be said to have come of
age.

This was an important message for a field that was at that time finding its way
in the scientific world. Indeed, it is no less important today; one might argue that
Riley’s “mutual benefit” is at the heart of effective modern oceanographic work.

In the first part of his paper, Riley presented a descriptive treatment that would
have been familiar to fellow marine biologists of the day. Then, in a move that might
have surprised many of his readers, he turned his attention to a differential equation.
This equation related temporal changes in P , the depth-integrated phytoplankton
concentration (in grams carbon per square metre of surface), to gains by photosyn-
thesis and losses by respiration and grazing
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dP

dt
= (Ph − R − G)P (4.1)

where t is time, and the rate factors Ph, R and G describe the effects of
photosynthesis, respiration and grazing.

In dealing with phytoplankton en mass, in ignoring such effects as advection
and diffusion, and in using linear terms on the right-hand side of (4.1), Riley was
providing a good example of what he called “perhaps over-simplified assumptions”
yielding a plausible model that was easy to solve.

As an important further simplification, Riley took the rate factors to be constant
in prescribed time intervals. This turned (4.1) into a set of linear differential
equations with constant coefficients, from which he could construct a piecewise
exponential solution. This made for a simple calculation, entirely appropriate for his
purpose. However, variable rate constants are easy to handle with today’s numerical
integration tools, and so a good way to illustrate modern procedures for dealing
with differential equations is by extending Riley’s setup to allow the rate constants
to vary continuously with time.

The dataset riley holds material that can be used to produce Fig. 4.3, which
compares Riley’s solution with one developed in R. The first step is to load a
digitized approximation of Riley’s data

data(riley, package="ocedata")
and plot his observations along with his solution (digitized from his paper)

plot(riley$fig21points$day, riley$fig21points$P, pch=20,
xlab="Day", ylab="Phytoplankton")

lines(riley$fig21curve$day, riley$fig21curve$P)

The present numerical integration will be done with the deSolve package,
although other packages also offer integrators (Soetaert et al. 2010).

library(deSolve)

The function lsoda() integrates initial value problems of the form dx/dt = f ,
to find x, where t is an independent variable such as time, and f is a forcing term.
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Fig. 4.3 Variation of depth-integrated phytoplankton concentration on Georges Bank. The dots
indicate data shown by Riley (1946) in his Figure 21, and the solid curve was digitized from the
solution he indicated on that figure. The dashed line is the present solution for piecewise-linear
forcing, using lsoda() to perform the integration
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Readers familiar with numerical integration should note that lsoda() can handle a
wide variety of problems, because it monitors the solution and adjusts the algorithm
automatically to balance accuracy and efficiency, e.g. switching between stiff and
non-stiff solvers as needed.

A function must be provided to lsoda() to describe the right-hand side of (4.1).
The variation of Ph, R and G with time is given at roughly 2-week intervals in
Riley’s appendix, and these values are made available in riley$DEparameters.
Lacking data on variations within the 15-day intervals, it is necessary to make
some further assumptions. A simple one is piecewise-linear variation, for which
approxfun() is useful5

funPh<-approxfun(riley$DEparameters$day,
riley $DEparameters$Ph)
funR <- approxfun(riley$DEparameters$day,
riley $DEparameters$R)
funG <- approxfun(riley$DEparameters$day,
riley $DEparameters$G)

It remains to define a function to be integrated by lsoda(). This must take the
independent variable as its first argument, the dependent variable as its second, and
a list of parameters as its third, and it must return a list containing the derivative.
Therefore, (4.1) may be handled with

f <- function(t, P, parameters)
list(P*(funPh(t) - funR(t) - funG(t)))

The first argument to lsoda() is the initial condition, while the second is a
vector of reported values of the independent variable, the third is the function and
the fourth is a list of parameters. In the present case, a numerical solution to (4.1),
reported on a daily interval and with initial condition P = 3.4, is

solution <- lsoda(3.4, 1:365, f, NULL)

where NULL indicates that f() makes no use of parameters.
The return value is a matrix with first column holding the prescribed values

of the independent variable, and succeeding column(s) representing the dependent
variable(s), so

lines(solution[,1], solution[,2], lty="dashed")

adds numerical solution to Fig. 4.3. The plot indicates reasonable agreement
between the two methods.6

Given the effort this sort of calculation would have entailed in the 1940s, Riley’s
simpler approach was both practical and effective. Besides, Riley was not proposing
his work as a deep solution, contextualizing it as follows.

While these methods are obviously crude at the present time and need to be developed
further . . . it does not seem too much to hope that they will eventually solve some of the
problems of seasonal and regional variations that puzzle marine biologists today.

5Readers might like to try other approaches, e.g. fitting a spline function (Sect. 2.6.7).
6A similar finding is reported by Anderson and Gentleman (2012).
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Exercise 4.4 Use lsoda() to solve the NPZ equations as expressed in Chapter 4
of Sarmiento and Gruber (2006)

dN

dt
= P

(
−Vmax

N

KN + N
+ μP λP

)
+ Z μZ

[
(1 − γZ) g

P

KP

+ λZ

]

dP

dt
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(
Vmax

N

KN + N
− λP − g Z

KP

)

dZ

dt
= Z

(
γZ g

P

KP

− λZ

)
(4.2)

with Vmax = 1.4 d−1, KN = 0.1 mmol/m3, μP = 1, λP = 0.05 d−1, μZ = 1,
γZ = 0.4, g = 1.4 d−1, KP = 2.8 mmol/m3, and λZ = 0.12 d−1. Use initial
conditions N = 10, P = 3 and Z = 2, and plot the results over a month. (See
page 212 for a solution.)

Exercise 4.5 Use lsoda() to develop a numerical solution to the wave equation
d2η/dt2 + ω2η = 0 with frequency ω = 1 s−1 during 0 ≤ t ≤ 2π , with initial
condition η = 0 and dη/dt = 1 at t = 0. (See page 213 for a solution.)

4.3 Plate Tectonics (Wilson 1963)

With the mid-twentieth century discovery of banded magnetic fields near the ocean
bottom, the old idea of continental drift gained new life, and evidence was woven
quickly into the plate tectonics theory (Wilson 1962; Vine and Matthews 1963;
Backus 1964). An important thread was J. Tuzo Wilson’s study of ocean island
age, which he motivated by writing (Wilson 1963)

If the Earth has been rigid, the history of the ocean basins should parallel that of the
continents and large parts of the ocean floor should be old; but, if continents have moved,
those parts of the floors exposed by the motion should not be older than the time of drifting.
Explorations of the ocean floors may settle this matter, but in the meantime information has
been sought from the literature published about ocean islands.

Wilson’s Figure 2 provided a clear illustration that there was merit in further
work along these lines. That diagram can be echoed as Fig. 4.4 with

data(wilson, package="ocedata")
plot(wilson$Age, wilson$Distance,

xlab="Age [My]", ylab="Distance [km]",
xlim=c(125, 0), ylim=c(0, 4000))

abline(0, 4000/125)

where abline() adds Wilson’s guiding line. While this line certainly served the
purpose, we can use a search for alternatives as a motivation to explore regression
tools in R. For example, a least-squares regression line passing through the origin is
developed with
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Fig. 4.4 Re-analysis of seafloor-spreading data from Table 1 of Wilson (1963)

m0 <- lm(Distance ~ Age - 1, data=wilson)
abline(m0, lty=2)

and one assuming errors in Age rather than Distance with
mr <- lm(Age ~ Distance - 1, data=wilson)
abline(a=0, b=1/coef(mr), lty=3)

A study of the differences might motivate a neutral regression (Sect. 2.5.5), perhaps
using the smatr package, with

library(smatr)
mn <- sma(Distance ~ Age, data=wilson)
abline(coef(mn), lty=4)

showing a result within the expected range of the others.
Wilson’s study was exploratory, and one might wonder how its results might

have varied with alternative data. One way to address this is to use bootstrapping,
a procedure in which a calculation is performed repeatedly on random subsets of
the data (Efron and Gong 1983; Efron and Tibshirani 1998). This can provide
interesting insights for oceanographic measurements, which often violate the
assumptions of traditional statistical tests.

It is easy to code a bootstrapping procedure in R, but it is better to use the boot
package, in order to get standardized confidence intervals and graphical displays.
The first argument of this function is a data matrix

d <- cbind(wilson$Age, wilson$Distance)

and the second is a function yielding a quantity of interest, based on the matrix and
an indexing vector. For example, it could be a regression slope
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s <- function(d, i) coef(sma(d[i,2]~d[i,1]-1))
[["slope"]]

and, with this, a bootstrap with 100 replicates can be done with
library(boot)
b <- boot(d, s, R=100)

Confidence limits on the results are calculated with
boot.ci(b)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 100 bootstrap replicates

CALL :
boot.ci(boot.out = b)

Intervals :
Level Normal Basic
95% (19.88, 37.10 ) (20.23, 36.50 )

Level Percentile BCa
95% (20.95, 37.22 ) (20.19, 36.61 )
Calculations and Intervals on Original Scale
Some basic intervals may be unstable
Some percentile intervals may be unstable
Some BCa intervals may be unstable

and it is worth noting that Wilson’s estimate of 35 km per million years is within
them.

Exercise 4.6 Explore type II regression with the lmodel2 package. (See page 214
for a solution.)

4.4 Ocean Mixing (Munk 1966)

Many of the foundations of the present-day understanding of ocean dynamics were
established in the middle of the twentieth century, by just a few individuals. One
of them was Walter Munk, who contributed greatly to a dizzying list of topics in
physical oceanography and in geophysics, generally.

An important example is his study of the thermocline in Pacific central waters
(Munk 1966). This paper motivated decades of work on the measurement and theory
of ocean mixing (see Gregg 1991, for early historical notes) and connections to
large-scale ocean and climate systems (see Melet et al. 2016, for a recent treatment).
Although Munk wrote

The model is not new: it was used by Wyrtki (1962) in a discussion of the oxygen minimum
and in various forms goes back to oceanographic antiquity
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Fig. 4.5 Definition sketch
for a crude thermocline
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the model is called “Munk’s model” by almost everyone in the field.
The idea is sketched in Fig. 4.5. Heat supplied at the surface is mixed downward,

but the resulting warming of mid-depth waters is countered by the upwelling of
colder waters. A steady one-dimensional model7 of the system is

0 = −w
∂θ

∂z
+ ∂

∂z

(
KV

∂θ

∂z

)
(4.3)

where w is the upwelling velocity, θ is the potential temperature, z is the vertical
coordinate increasing upwards to z = 0 at the surface, and KV is a so-called
“turbulent” or “eddy” diffusivity, analogous to molecular diffusivity.

If w and KV can be approximated as constants in a given depth zone, then (4.3)
becomes an ordinary differential equation with constant coefficients. With surface
boundary condition θ = θS and far-field boundary condition θ → θD as z → −∞,
the solution is

θ = θD + (θS − θD) exp(z/h) (4.4)

where h = KV /w is a thermocline scale thickness.
If w can be constrained by some means, then inferring h from a potential

temperature profile will reveal the value of KV , which is an important parameter
for more general models.

Figure 4.6 contains an excerpt of Munk’s Figure 1, indicating his inference of
h ≈ 0.77 km (the reciprocal of the label w/κ = 1.3). Data digitized from Munk’s
diagram are provided by the ocedata package, making it easy to see how Munk’s
visual technique compares with nonlinear regression in R.

The first step is to extract the data
data(munk, package="ocedata")
theta <- munk$temperature # file stores pot. temp.
z <- -1000 * munk$depth # convert depth [km] to z [m]

and plot as in Fig. 4.6, with
plot(theta, z, type="p", xlim=c(0.5, 4.0),
ylim=c(-4000, 0),

xaxs="i", yaxs="i",xlab="Potential temperature")

7The 1D simplification calls to mind Gordon Riley’s advice, quoted in Sect. 4.2, but one should
note that Munk explored more complicated models in his paper.
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Fig. 4.6 Left: excerpt from Figure 1 of Munk (1966). The vertical axis is depth in kilometres and
the horizontal axis is potential temperature, ranging from 0.5◦C to 4◦C. The curves are as (4.4)
for a variety of values of w/KV , including nearly flat curves for molecular diffusivity. Right: data
digitized from Munk’s figure, along with the prediction of a regression model.

where limits are chosen to match the geometry of Munk’s figure.
A nonlinear regression to the theoretical form may be carried out with8

m <- nls(theta ~ thetad + (thetas-thetad)*exp(z/h),
start=list(thetas=5, thetad=1, h=1000))

The predictions of this regression model are shown in Fig. 4.6 with
zz <- seq(from=-4000, to=0, by=100)
TT <- predict(m, newdata=data.frame(z=zz))
lines(TT, zz)

and the results may be summarized with
summary(m)
Formula: theta ~ thetad + (thetas - thetad) * exp(z/h)

Parameters:
Estimate Std. Error t value Pr(>|t|)

thetas 11.23138 0.59128 19.00 1.05e-14 ***
thetad 1.16583 0.02019 57.76 < 2e-16 ***
h 844.65390 35.46673 23.82 < 2e-16 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

8Sensible starting parameter values are required for convergence; see Sect. 2.5.5.2.
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Residual standard error: 0.07741 on 21 degrees of freedom

Number of iterations to convergence: 8
Achieved convergence tolerance: 1.815e-06

Note that θS , θD and h each have p values that suggest statistical significance, and
that the residual standard error is comparable to the typical scatter in such data.
Computing confidence intervals on the fitted values

confint(m)
2.5% 97.5%

thetas 10.132192 12.515536
thetad 1.123981 1.207263
h 777.102870 919.107091

reveals slight disagreement with Munk’s reported value of h = 0.77 km.
A follow-up paper by Munk and Wunsch (1998) extended some of the ideas, and

it too provides a useful key for a literature search on ocean mixing. Such a search
will reveal that direct measurements of ocean turbulence have tended to contradict a
naive interpretation of Munk’s KV value, lending weight to the pithy ending of his
prescient 1966 paper:

Until the processes giving rise to diffusion and advection are understood, the resulting
differential equations governing the interior distribution, and their solutions, must remain
what they have been for so long: a set of recipes.

Exercise 4.7 Use try() to skip past errors in nls(), so that a bootstrap estimate
of h can be done. (See page 215 for a solution.)

Exercise 4.8 Specify gradients to nls() to fit the munk data. (See page 116 for a
solution.)

4.5 Concluding Remarks

It is a sad fact that classic papers of the type selected for this chapter are sometimes
cited by those who have not read them in much detail. For example, some of the
citations to Munk’s paper display a peculiar error that suggests that the citing authors
did not look at the original paper, but instead derived bibliographic information from
a published work in which the original paper had been cited incorrectly. Behaviour
of this sort is unfortunate, not just in terms of missed learning opportunities, but also
in terms of missed chances for motivation. This explains why this chapter is framed
around classic papers, and why there are so many quotations from them. There can
be great joy in rediscovering the birth of a field.
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Admittedly, the treatment here is somewhat strained, stemming from a desire
to (a) explain some useful R methods in an interesting context, and (b) distribute
the material across four sections that touch on the four main sub-disciplines of
oceanography.

It should be noted that no attempt has been made here to match the R topic to the
thrust of the cited papers, e.g. Munk was unlikely to have been thinking of nonlinear
regression when he cooked his abyssal recipes! And it should go without saying that
there is no intention to suggest that methods such as those outlined here should have
been employed by the original authors. Indeed, readers who explore further will
notice that the authors were quite conscious that their work was limited. As it turns
out, though, the R approaches have mainly confirmed the results obtained by the
original investigators, and this will not surprise those familiar with the literature,
who know that these authors cast long shadows for good reason. Deep thinkers are
often careful workers, achieving trustworthy results with simple techniques.

In the works considered here, graphical methods were often the most appropriate
tool. This is still true for exploratory work today, although the need to examine larger
datasets motivates the incorporation of statistical and data-reduction techniques
as well. These are the “descriptive” and “synthetic” approaches of Gordon Riley,
and the common integration of the two indicates that, in Riley’s words quoted
on page 108, oceanography has “come of age.” The next chapter illustrates this
descriptive-synthetic integration in a diverse series of short examples.



Chapter 5
Practical Operating Procedures

Abstract Oceanographers are commonly called upon to analyse datasets that are
marred by instrument malfunction and loss, or the inability to resolve features that
are of an unexpected form. Repeating experiments is not the option it is in bench-
based science, so analysts must become skilled at developing ad hoc procedures to
wring useful information out of whatever data can be acquired. This is why standard
operating procedures are less common in oceanography than what might be called
“practical operating procedures.” R is an ideal tool for this way of working, given
its inherent suitability for interactive analysis and its provision of a vast array of
libraries for specialized techniques.

5.1 Introduction

Some oceanographic work takes place in laboratories, where extraneous factors
can be reduced, instruments can be maintained and experiments can be repeated.
Using standard operating procedures for data analysis can increase productivity
and reliability in such situations. However, things are different at sea, where
phenomena are too interconnected to permit controlled experiments, instruments
are routinely damaged or lost, and high environmental variability makes every
repeated experiment unique in some way. Coping with unplanned aspects of
fieldwork can require so much ad hoc adjustment that there is little hope of true
standardization. Instead, field oceanographers tend to employ what might be called
practical operating procedures, adjusting methods to get the most from available
data.

Oceanographers tend to work with many different types of data in any given
project. Using a separate analysis tool for each data type can offer benefits of
specialization, but only at the cost of time spent learning to use individual tools.
Also, the tools tend to be limited, because of the burden of adding commonly
required capabilities (e.g. the equation of state) to each. It makes sense to use
integrated tools, and the main message of this book is that R can take a place in
the centre of such tools. Certainly, it has good procedures for the analysis of clean
datasets, but there are several competitors in this category. Where R really shines
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is with the problematic datasets that oceanographers often face. It is this balanced
applicability that makes R such a useful tool for general oceanographic analysis, as
will be illustrated in the pages that follow.

The needs of bench-based oceanographers are generic enough to be covered
well by most R textbooks, and so the main focus here is on the analysis of field
observations. This topic has been covered previously in both specific and general
ways. As examples of the former, Mamayev et al. (1991) outline the basics of
processing CTD station data, and IOC et al. (2010) detail the care that must be
taken with the equation of state. More general treatments of physical oceanography
are provided by a series of texts, including the expansive treatment by Talley
et al. (2011). There are also books that survey methods of analysis, e.g. Emery
and Thomson (2001) and Wunsch (2015) deal with physical oceanography and
Glover et al. (2011) add in a modelling view, while numerical ecology is treated
by Legendre and Legendre (1998) and (in an R context) by Borcard et al. (2011).
Wide reading also pays off for oceanographers, e.g. many methods for processing
atmospheric data explained by Daley (1991) apply to the ocean as well. The general
literature is also important, and it seems fair to say that most oceanographers’
bookshelves hold monographs on time-series analysis, spatial analysis, neural
networks, etc., alongside books about the sea.

5.2 Hydrography

5.2.1 Seawater Calculation

As explained in Chap. 3, the oce package provides many functions that work with
seawater properties. Their names begin with sw, and so their documentation may be
found with

help.search("sw", package="oce")

The documentation is extensive and tied to the peer-reviewed literature, so a
summary sketch should suffice here.

The sw functions that can accept oce objects as the first argument try to look
within the object to find all requisite information, e.g. in

data(ctd, package="oce")
head(swRho(ctd, eos="gsw"), 3)
[1] 1022.23316 1022.23254 1022.23460

swRho() has used the longitude and latitude values stored within ctd for the GSW
calculation of seawater density (see Chap. 3 and Appendix D).

The accessors for the oce objects that hold hydrographic data are tailored
somewhat to the object type, e.g.

data(section)
SAv <- section[["SA"]]
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Fig. 5.1 Top: Conservative Temperature section across the Gulf Stream; bottom: station locations,
with a box indicating the station from which distance is measured in the section. (See Page 129)

returns a vector holding all the Absolute Salinity values in the section, while
SAl <- section[["SA", "byStation"]]

returns a list containing values split by station. (These station locations are shown
in the lower panel of Fig. 5.1, a diagram explained further in Section 5.2.2.8.)

Although many oce functions have an eos argument, it is also common to use
gsw functions (Kelley et al. 2017) directly, e.g.

head(gsw_rho(ctd[["SA"]], ctd[["CT"]],
ctd[["pressure"]]), 3)

yields results matching the swRho() results shown above, and
cabbel <- gsw_cabbeling(ctd[["SA"]],

ctd[["CT"]], ctd[["p"]])

calculates a cabbeling parameter that is not provided by oce.
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5.2.2 Profile and Section Analysis

5.2.2.1 Reading CTD Data

The oce package provides input functions for a wide variety of oceanographic
instruments, so readers will not need to do any special coding unless they have
an uncommon instrument. Generally, one may write, e.g.,

d <- read.oce("sta01.cnv")

which detects the type of file and then calls a specialized input function (e.g. the
above will call read.ctd.sbe() to read a Seabird CTD file). The result is an
object with a class reflecting the data type. For most data types, data read by
some other means can also be transformed into such an object, e.g.

ctd <- as.ctd(S, T, p)

will create a CTD object given salinity, temperature, and pressure; additional
arguments permit the specification of longitude and latitude.

It is common to store CTD files for a project in a subdirectory, and e.g.
pdf("ctd.pdf")
for (file in list.files(path=".", pattern=".cnv$"))

plot(ctdTrim(read.oce(file)))
dev.off() # close multipage PDF file

will plot them all as pages in a PDF file. This can be a convenient first step in
processing, especially if the file names order sensibly.

Exercise 5.1 Use sub() to create a series of PDF files with names that map to the
names of data files. (See page 217 for a solution.)

5.2.2.2 Editing CTD Data

It is possible to edit (alter) the CTD data using, e.g.,
data(ctd, package="oce")
ctd[["temperature"]] <- ctd[["temperature"]] + 0.1

to add a 0.001◦C, but it is much better to write
ctd <- oce.edit(ctd, "temperature",
ctd[["temperature"]]+0.1)

because oce.edit() stores a record in the object’s processing log, indicating
that the original value was changed. This function can also be used to alter
metadata, e.g.

ctd <- oce.edit(ctd, "waterDepth", 100)

makes the change in the metadata slot for this particular object, because that’s
where waterDepth is stored for CTD objects. Readers who try the above will see
that summary(ctd) lists the two recent edits, as well as one that was required
to correct a date problem in the original .cnv file used to create the ctd dataset
provided by oce.
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5.2.2.3 Plotting CTD Data

A generic function in the oce package provides a good starting point for examina-
tion of CTD data, e.g.

data(ctd, package="oce")
plot(ctd)

produces Fig. 3.1 on page 94. Additional arguments enable customization, with
further refinement being available with plotTS() and plotProfile().

5.2.2.4 Trimming CTD Data

With a glance at Fig. 3.1, experienced oceanographers will suspect that a measured
profile must have been trimmed to just the “downcast” phase, during which the
CTD was lowered at a nearly constant speed to its deepest point. Such trimming is a
common first step in the analysis of CTD profiles, and so the oce package provides
functions to help in the work. The ctdRaw dataset provided with the package is
useful for illustration.

It is convenient to start CTD analysis with a summary, and
data(ctdRaw, package="oce")
summary(ctdRaw)

produces results that include
Min. Mean Max. Dim. Original

Name
...
temperature 2.3226 8.0027 98.952 773 t068
[°C, ITS-90]
salinity [PSS-78] 0.3276 28.504 99 773 sal00

The salinity minimum is odd since only a small river runs into Halifax Harbour,
where the profile was done, and the maximum is definitely suspicious, given its
value and the fact that bad data are often set to 99 in oceanographic data files. The
temperature maximum is also suspicious, being the ITS-90 equivalent of 99◦C in
the IPTS-68 scale used by this particular CTD.1

Of course, maxima and minima identify only single points, but larger sets are
revealed with graphical and statistical tools, e.g.

plotScan(ctdRaw, type="o")

produces Fig. 5.2, suggesting a single spurious pressure. More statistically based
graphical tests include

p <- ctdRaw[["pressure"]]
stem(p)
boxplot(p)
hist(p)

1When oce summarizes or otherwise reports data on CTD data, it converts to modern units and
scales.
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Fig. 5.2 CTD scan plot, revealing an initially unrealistic pressure value, followed by an equili-
brating phase, a downcast, and then an upcast

and numerical tests include the following, all of which reveal that the first pressure
is the only worrisome value.

which(abs(diff(p)) > 1)
which(abs(p - smooth(p)) > 0.5)
which(abs(p - mean(p)) > 2*sd(p))

Readers are likely to have other ideas for dealing with this or other problematic
datasets, by combining simple R actions. This may involve looking at multiple
variables at once, and considering dynamical considerations such as the expected
tendency of density to increase with depth. (For more on such matters, see
Sects. 5.9.2.1 and 5.9.4.6.)

Once suspicious data are identified, it is common to use quality-control flags
to indicate the problem, and the oce function handleFlags() can help with
dealing with these flags, as will be illustrated repeatedly in this chapter.

In addition to ignoring spurious data, oceanographers commonly also ignore the
equilibration phase of CTD casts (in which the instrument is held below the surface
to equilibrate with the seawater), and also the upcast that brings the package back
up to the surface from deep water. The oce function ctdTrim() can be used for
this, although for detailed work it may make sense to do things semi-manually, as
in Exercise 5.4.

Exercise 5.2 Explore the sensitivity of buoyancy frequency, calculated with
swN2(), to the argument df. (See page 217 for a solution.)

Exercise 5.3 Plot salinity and temperature profiles for the ctd dataset within
3 dbar of the pycnocline centre. (See page 218 for a solution.)

Exercise 5.4 Use ctdTrim() and plotScan() together, to trim ctdRaw to
just the downcast portion. (See page 219 for a solution.)

5.2.2.5 Smoothing and Decimating CTD Data

CTDs are typically set up to record data on a fixed time interval, but it is common to
store data in a fixed space interval, after smoothing the data in some way. A popular
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form of smoothing is boxcar averaging, also known as bin averaging. Software
supplied by instrument manufacturers can do this, but it can also be done in R.
The ctdRaw dataset, trimmed to downcast,

data(ctdRaw, package="oce")
ctd2 <- ctdTrim(ctdRaw, method="sbe")

can be used for demonstration. The first step is to choose a pressure increment Δp

between averaging bins, and
summary(diff(ctd2[['pressure']]))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.1430 0.0470 0.1900 0.1627 0.2390 0.6200

might suggest using Δp = 1 dbar, which will include about 5 points per sample,
perhaps sufficient to average across noise.

It so happens that 1 dbar is the default used by ctdDecimate(), so
data(ctdRaw, package="oce")
ctd2 <- ctdTrim(ctdRaw, method="sbe")
ctd3 <- ctdDecimate(ctd2)

handles the task at hand. Figure 5.3, created with
par(mfrow=c(1,2))
plot(ctd2, which="CT", plim=c(15, 0))
lines(ctd3[["CT"]], ctd3[["pressure"]],
lwd=3, col="gray")
plot(ctd2, which="SA", plim=c(15, 0))
lines(ctd3[["SA"]], ctd3[["pressure"]],
lwd=3, col="gray")

shows the results near the top of the water column, for Conservative Temperature
and Absolute Salinity. Note the reduction in point-by-point variation.
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Fig. 5.3 Demonstration of CTD average-decimate scheme, with black line segments for data and
gray ones for the decimated result
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5.2.2.6 Mixed-Layer Detection

Various factors cause turbulence near the surface of the ocean. The resulting surface
mixed layer is important for reasons ranging from the local phytoplankton dynamics
to the climate system. Even though the mixed-layer depth (MLD) is a parameter of
great interest,2 there is little agreement on how it should be defined. This is partly
because the most appropriate definition can depend on the scientific application.
For example, studies of sound propagation might use a definition in terms of sound
speed (Helber et al. 2008), while studies of mixing might motivate a definition in
terms of turbulence (Brainerd and Gregg 1995). The characteristics of the data are
also important, e.g. a method developed for a CTD that samples at high vertical
resolution might fail when applied to the coarse output of numerical models.

This goal here is not to assess the various methods of inferring MLD from
oceanographic data,3 but rather to sketch roughly how R might be used in this sort
of work.

One class of methods involves inferring the thickness of a near-surface region
within which water properties are nearly constant. For example, the MLD may be
defined as the shallowest depth at which density or temperature differs from the
surface value by a fixed amount Δρ or ΔT . As noted in Table 1 of Kara et al. (2000),
studies based on density commonly use Δρ = 0.125 kg/m3, while ΔT values as
low as 0.1 ◦C and as high as 1 ◦C have been suggested, as well as a criterion on
ΔT (∂ρ/∂T ) being at most 0.5 kg/m3. A temperature scheme could be set up as
follows:

data(ctd, package="oce")
plotProfile(ctd, xtype="temperature", ylim=c(15, 0),

col.temperature="black")
temperature <- ctd[["temperature"]]
pressure <- ctd[["pressure"]]
for (criterion in c(0.1, 0.5)) {

inMLD <- abs(temperature[1]-temperature)
< criterion
MLDindex <- which.min(inMLD)
MLDpressure <- pressure[MLDindex]
abline(h=pressure[MLDindex], lwd=2, lty="dashed")

}

2The Sverdrup (1953) paper on the influence of mixed layer depth to phytoplankton biology has
been cited nearly a thousand times to date.
3Suggestions for MLD inference abound in the literature. Useful recent treatments include those
of Kara et al. (2000), Thomson and Fine (2003), de Boyer Montégut et al. (2004), Helber et al.
(2008), Chu and Fan (2010a), and Chu and Fan (2010b). The last in this list discusses a method
used in an exercise here.
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Fig. 5.4 Comparison of four methods for inferring mixed-layer depth. Top left: profile of
Conservative Temperature, with mixed-layer depths inferred using temperature steps of 0.1 and
0.5 ◦C. Top right: similar, but for density step 0.125 kg/m3. Bottom left: based on the peak of N2.
Bottom right: based on the method of Chu and Fan (2010b)

The results (top-left of Fig. 5.4) are noticeably different for the two ΔT criteria. The
deeper estimate is a good match with the results of the Δρ = 0.125 kg/m3 method
(code not shown), as given in the top-right panel.

A second class of methods involves derivatives of water properties, based on,
e.g., ∂T /∂z or ∂2T/∂z2. For example, the thermocline could be inferred as the spot
where |∂T /∂z| is largest, with the region above being interpreted as a mixed layer. A
problem with such methods is that differentiating noisy signal produces results that
can be difficult to interpret, so some smoothing may be required, which introduces
another parameter that must be adjusted. One way to handle smoothing is with a
smoothing spline, as is used by the oce function swN2() to estimate

N2 = −g

ρ

∂ρ

∂z
(5.1)

This could be used in a gradient-based method, e.g. the bottom-left panel of Fig. 5.4
is created with

plotProfile(ctd, xtype="N2", ylim=c(15, 0),
col.N2="black")
mid <- which.max(swN2(ctd))
pstar <- pressure[mid]
abline(h=pstar, lwd=2, lty="dashed")
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The bottom-right panel of Fig. 5.4 shows the results of a method proposed by Chu
and Fan (2010b), as implemented in the solution to Exercise 5.5. In it, the water
column is examined at a sequence of depths below the surface. Denoting a given
depth as z∗, say, the procedure is to perform a linear regression of temperature with
respect to depth for all measurements lying above z∗, and then to use this regression
to predict temperatures over some distance D below z∗. Chu and Fan (2010b) denote
the standard deviation of the fit above z∗ as E1, and the absolute value of the mean
temperature misfit within the test region below z∗ as E2. If z∗ lies at the bottom
of the mixed layer, E1 will be small, while E2 will be large. Thus the ratio E2/E1
may serve as an indicator of whether z∗ is at the bottom of the mixed layer. Chu and
Fan (2010b) suggest calculating the MLD as the depth z∗ where E2/E1 achieves
maximal value.

Exercise 5.5 Use the Chu and Fan (2010b) method on the ctd dataset. (See
page 219 for a solution.)

5.2.2.7 Constructing Sections from CTD Profiles

There are several ways to archive hydrographic section data, and oce can handle
the common ones.

WOCE archival data may be stored in a single CSV file, or in a directory
containing several such files, one for each station. An example of the first case is
the source of the oce dataset named section, which was constructed from a
North Atlantic section denoted A03 in the WOCE system. This was created with
read.section() with the file argument, as follows:
url <- "https://cchdo.ucsd.edu/data/7872/a03_hy1.csv"
section <- read.section(file=url, sectionId="a03",

institute="SIO", ship="R/V Professor Multanovskiy",
scientist="Vladimir Tereschenkov")

Reading a section stored as multiple CTD files is similar, with the directory
argument naming a source directory. Another method is to read CTD objects
individually (see Exercise 5.1), using as.section() to combine them.

5.2.2.8 Plotting Sections

The individual station profiles within oceanographic sections may not share a
common set of sampling depths, but the oce package provides sectionGrid()
to grid the data, so that contour or image plots can be created. The section section
can be used to illustrate, as in Fig. 5.1 near the start of this chapter. The first step in
creating this diagram is to load the data and subset by longitude using a value that
retains the Gulf Stream region, with
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data(section, package="oce")
GS <- subset(section, longitude < -70)
GS <- sectionSort(GS, by="longitude")

where the sorting operation will define distance on the contour plot in terms of the
westernmost station. Although the plot() function will automatically grid these
data, it may be preferable to specific a particular grid, e.g. using pressures 0, 25, 50,
. . . , 1600 dbar as follows:

GSG <- sectionGrid(GS, p=seq(0, 1600, 25))
plot(GSG, which=c(1, 99), map.xlim=c(-80, -60))

where the map view is adjusted to show a recognizable portion of the coastline.
Further customization, e.g. drawing depth contours, is made easier by using separate
plot() calls.

Exercise 5.6 Plot dynamic height and geostrophic velocity across the Gulf Stream.
(See page 220 for a solution.)

Exercise 5.7 Plot a split-depth temperature section for the Gulf Stream, with a
panel for variation in the top 200 m and another for variation below. Use layout()
to make panels of unequal height. (See page 221 for a solution.)

5.2.3 Water-Mass Analysis

5.2.3.1 Inferring Water Types

Sverdrup et al. (1942) suggested using the phrase “water type” to refer to a
homogeneous body of water. This appears as a single point on a temperature-salinity
diagram, or any display of conservative water properties.4 The signature of a “water
mass” (see Sect. 5.2.3.2) is a curve on such a plot.

On a property–property plot, the point representing the passive mixture of two
water types lies along a line connecting the types, and the position of the point on
that line reflects the relative contributions of the two sources. This linear-mixing
concept was applied by Östlund and Hut (1984), who used variations of δ18O mass
concentration to help infer water exchanges in the Arctic Ocean; this study provides
a motivation for a simple illustration here (see, e.g., Tomczak 1999, for a broader
framework).

Salinity will be denoted S, and δ18O concentration X. Using F = (F1, F2, F3)

to indicate the mass fractions of the respective water types that make up a given
product of mixing, the mass conservation equation is

F1 + F2 + F3 = 1 (5.2)

4Sverdrup et al. (1942) considered temperature a conservative property in this context because they
suggested the omission of near-surface observations.
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while that for salinity is

F1S1 + F2S2 + F3S3 = S (5.3)

and that for δ18O is

F1X1 + F2X2 + F3X3 = X (5.4)

These are equations (1) through (3) of Östlund and Hut (1984), which may be
rephrased in matrix form as

MF = O (5.5)

where M is the known source property matrix defined by

M =
⎛

⎝
1 1 1
S1 S2 S3

X1 X2 X3

⎞

⎠ (5.6)

O is the vector of observations

O =
⎛

⎝
1
S

X

⎞

⎠ (5.7)

and F is the fraction vector

F =
⎛

⎝
F1

F2

F3

⎞

⎠ (5.8)

The inference of F is the goal of the present analysis. If the source water types
do not lie on a single line in S-X space, the determinant of M is non-zero and the
solution is

F = M−1O (5.9)

which may be expressed
F <- solve(M, O) # letter O, not zero

in R. To make this more concrete, the steps leading to Fig. 5.5 will be laid out with
simulated data. The first step is to define water types. The values

Ss <- c(36, 31, 19)
Xs <- c(0.50, -1.7, -3.1)

are plotted as a polygon with
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Fig. 5.5 Left: polygon connecting water types and dots for simulated data. Right: boxplots of
inferred water fractions F1, F2 and F3, with lines for unperturbed values (and negative values
indicating points outside the polygon in the left panel)

plot(Ss, Xs, type="n", xlab="S", ylab="X")
polygon(Ss, Xs)
text(Ss, Xs, 1:3, pos=c(1,1,3))

in the left panel of Fig. 5.5, which also includes a “data” cloud drawn with
F <- c(0.05, 0.4, 0.55)
Sobs <- F[1] * Ss[1] + F[2] * Ss[2] + F[3] * Ss[3]
Xobs <- F[1] * Xs[1] + F[2] * Xs[2] + F[3] * Xs[3]
points(Sobs, Xobs, pch="+")

The matrix of source water properties, as in (5.6), may be constructed using
rbind() to bind rows together.

M <- rbind(c(1, 1, 1), Ss, Xs)

A vector of observations is similarly created with
O <- rbind(1, Sobs, Xobs) # letter O, not zero

after which solve() permits inference of the mass fraction vector F′
Fp <- t(solve(M, O)) # letter O, not zero

where t() puts the result in column form; accuracy is checked with
mean(abs(Fp - F))
[1] 1.94289e-16

In this case, solve() gives tightly constrained results, because the polygon does
not collapse onto a line.

The methodology can also be used to explore uncertainty, by perturbing the
input data in Monte Carlo simulations. Those perturbations should reflect the
measurement uncertainty, aspects of the sampling scheme, etc. For illustration, the
values 0.5% for S and 2% for X will be used, with 100 perturbations.
n <- 100
err <- c(0.5, 2)
set.seed(5231) # for reproducibility
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Fp <- matrix(NA, nrow=n, ncol=3)
for (i in 1:n) {

Sp <- Sobs + rnorm(n=1, sd=abs(Sobs) * err[1]/100)
Xp <- Xobs + rnorm(n=1, sd=abs(Xobs) * err[2]/100)
points(Sp, Xp, cex=3/4)
O <- rbind(1, Sp, Xp)
Fp[i,] <- t(solve(M, O))

}

Various approaches may be used to investigate the Fp matrix thus calculated,
and readers might want to consider histograms with hist(), density plots with
density(), etc. A good balance between detail and overview is provided with
boxplots, constructed with boxplot() as below, with the unperturbed values
indicated with abline().

boxplot(Fp, notch=TRUE, ylab="Mass fraction")
abline(h=F, lty="dashed")

The fact that the horizontal lines on the right panel of Fig. 5.5 lie within the
notches on the boxplots may be a reason for some confidence in this procedure, at
least with the assumed simulation properties.

As the standard deviation was used to define uncertainties in S and X for the
simulation, it may be used to infer the percentage uncertainties in the inferred
source-water components, e.g.

round(100*sd(Fp[,1])/mean(Fp[,1]))

yields a 55% scatter in the inferred value of F1, with similar calculations yielding
11% and 3% for F2 and F3, respectively. Another approach, suitable for actual data,
might be to use a bootstrapping method (see Sect. 4.3).

5.2.3.2 Tracing Water Masses

The use of water-mass analysis to contextualize covariation of water properties in
geographical or dynamical terms is a common theme of the literature (see, e.g.,
Tomczak 1999; Hinrichsen and Tomczak 1993; McDougall and Jackett 2007; Zika
and McDougall 2008; Gebbie and Huybers 2010).

The section dataset can be used to illustrate how R can be applied to water-
mass analysis. In this case, which involves careful study of property values, it is
important to use handleFlags() to avoid the effects of spurious values (see
Sect. 5.9.2), with

data(section, package="oce")
section <- handleFlags(section)

A good starting point may be to plot a temperature-salinity diagram, as in the
top-left panel of Fig. 5.6, created with
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Fig. 5.6 T –S diagrams for the section dataset. Top: all observations (left) and just the open-
ocean observations (right), showing the fresh anomalies to be in coastal waters. Bottom left and
right: subdivision into observations west and east of 35W, with dark symbols for mid-depth waters

plotTS(section)
Slim <- par("usr")[1:2]
Tlim <- par("usr")[3:4]

where axis limits are stored for matching panels. Open-ocean stations are plotted in
the top-right panel of Fig. 5.6 with
open <- subset(section, 9 < stationId & stationId<107)
plotTS(open, Slim=Slim, xaxs="i", Tlim=Tlim, yaxs="i")

where the most obvious feature is the absence of low-salinity coastal waters seen in
the full dataset.

Readers familiar with the North Atlantic might wonder whether the warm and
salty waters at density anomalies of 27.5–28 kg/m3 are a signature of Mediterranean
outflow. A simple way to check is to contrast waters to the west and east of the
midpoint of the transect, with

W <- subset(open, longitude < -35)
E <- subset(open, longitude >= -35)
c1 <- "black"
c2 <- "gray"
plotTS(W, col=ifelse(abs(W[["pressure"]]-1000)<400,
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Fig. 5.7 Spatial variation of the temperature-salinity relationship for the open-ocean section
data, showing the Mediterranean signature, increasing eastward

c1, c2), Slim=Slim, xaxs="i", Tlim=Tlim, yaxs="i")
plotTS(E, col=ifelse(abs(E[["pressure"]]-1000)<400,

c1, c2), Slim=Slim, xaxs="i", Tlim=Tlim, yaxs="i")

where the colour specification highlights waters near 1 km depth. As expected, the
resultant bottom panels of Fig. 5.6 show that the anomalously warm and salty waters
are mainly in the eastern half of the domain. Further detail could be found by colour-
coding for latitude, e.g.

cm <- colormap(open[["longitude"]])
drawPalette(colormap=cm)
plotTS(open, col=cm$zcol, mar=c(3, 4, 2, 4))

(results not shown here) reveal that the Mediterranean signal is halved at about
30◦W.

Multivariate relationships may also be shown with a conditioning plot, e.g.
CT <- open[["CT"]]
SA <- open[["SA"]]
lon <- open[["longitude"]]
coplot(CT~SA|lon, rows=1)

produces Fig. 5.7, the panels of which are temperature-salinity diagrams (isopycnals
could be added via the panel argument) arranged by longitude, as indicated by the
plots in the top margins. This gives a clear indication of the western decrease of the
Mediterranean signature.

Exercise 5.8 Create a coplot of the section dataset, showing T –S dependence
as a function of latitude and longitude. (See page 221 for a solution.)
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Exercise 5.9 Suggest how to produce T –S diagrams categorized by longitude,
using cut(), factor() and split. (See page 222 for a solution.)

5.2.3.3 Inferring Transport Mechanisms

The density ratio, which measures the relative contributions of temperature and
salinity to the density stratification, is an important parameter for double diffusive
convection (see, e.g., Turner 1973), and for the salt-finger mode of convection, the
ratio is defined in the UNESCO equation of state by5

Rρ =
(

α
∂θ

∂z

)/(
β

∂S

∂z

)
(5.10)

where

α = − 1

ρ0

∂ρ

∂θ
and β = 1

ρ0

∂ρ

∂S
(5.11)

are the thermal expansion coefficient and haline contraction coefficient, respectively.
Ingham (1966) noted out that large regions of the world ocean have nearly uniform
values of Rρ , and Schmitt (1981) suggested that this might be a consequence of flux
divergences associated with salt-finger convection. As part of his analysis, Schmitt
rewrote (5.10) as

θ ′ = θ0 +
∫ S

S0

Rρ(β/α) dS (5.12)

and applied a least-squares fit of θ ′ to the observed θ , with θ0 and Rρ taken as free
parameters.6 Reproducing his results in R is a simple matter of combining nonlinear
regression with function integration.

The schmitt dataset in the ocedata package contains data for the North
Atlantic example in Figure 1 of Schmitt (1981), and

data(schmitt, package="ocedata")
plotTS(as.ctd(schmitt$S, schmitt$theta, 0),
eos="unesco")

5The GSW equation of state expresses Rρ analogously, but the UNESCO system is used in this
section for easier comparison with the literature referenced here.
6The value of θ0 depends on the value of S0, but the latter may be chosen for convenience of
plotting or matching the range of data.
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Fig. 5.8 Determination of
Rρ , emulating an analysis by
Schmitt (1981)
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Rρ=1.95

creates a reproduction as Fig. 5.8 here. A function for ∂θ/∂S is
dthetadS <- function(S, theta, parms)

list(parms$Rrho * ( swBeta(S, theta, 0,
eos="unesco") /

swAlpha(S, theta, 0,
eos="unesco")))

and so a model for θ is constructed by integrating this, with
library(deSolve)
thetaPrime <- function(theta0, Rrho)

lsoda(theta0, schmitt$S, dthetadS,
list(Rrho=Rrho))[,2]

where the first lsoda() argument is a starting value for the fit, the second gives
values of S at which θ ′ is to be reported, the third is the function to be integrated,
and the fourth is a list of parameters passed to that function. It now remains to fit
the model with

thetaFit <- nls(theta~thetaPrime(theta0, Rrho),
data=schmitt, start=list
(theta0=5,Rrho=2))

lines(schmitt$S, predict(thetaFit))

where the first nls() argument specifies the model, the second is a data frame
holding the data, and the third is a list of starting values. A legend is constructed
with

Rrho <- coef(thetaFit)[2]
legend("topleft", lty="dashed", bg="white",

legend=substitute(paste(R*rho,v),
list(v=sprintf
("=%.2f", Rrho))))

Note that Schmitt (1981) inferred a value of Rρ = 1.948, whereas the present
analysis gives a 95% confidence interval Rρ = 1.95 ± 0.03.

Exercise 5.10 Formulate a model in which the misfit in S is minimized, and
evaluate the confidence interval for it. (See page 223 for a solution.)
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5.3 Acoustical Data

The oce package can handle Doppler data from both profilers and velocimeters. In
most cases, the files may be read with read.oce(). For example,

d <- read.oce("../data/adp_rdi_3737.000",
from=3450, to=3550)

reads an RDI-Teledynedata file, with from and to being optional arguments
specifying a range of profiles to be input. The resultant object has specialized
versions of generic functions for subsetting, plotting, etc., and these make it easy
to process the data.

As an example, plotting a time-series of pressure is a good way to find when the
mooring reached the bottom, and

plot(d, which="pressure", type="p")

produces Fig. 5.9, which shows an increase from atmospheric pressure (near-zero,
by convention for this instrument) to a sea pressure corresponding to about 10 m
depth. A glance at this diagram indicates a settling time between 21:42 and 21:43,
and this estimate could be narrowed further with, e.g.,

start <- numberAsPOSIXct(locator(1)$x);
abline(v=start)

(Note that the combination of actions with semicolon is convenient for interactive
tasks of this type.)

Similar procedures can identify the end of the useful data, after which
dw <- read.oce("../data/adp_rdi_3737.000",
from=start, to=end)

could be used to read just the in-water data, or the entire file could be read and then
subsetted, with, e.g.,

d <- read.oce("../data/adp_rdi_3737.000")
dw <- subset(d, start <= time & time <= end)

After trimming for time, the next step in the processing of Acoustic Doppler data
often involves adjusting the velocity coordinates. Many groups record data in a non-
Cartesian axis system that is aligned with the acoustical beams. Such data are said
to be in “beam coordinates.” The oce package supports this system, in addition to
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Fig. 5.9 A plot used in an interactive session to find a mooring-settling time



138 5 Practical Operating Procedures

a Cartesian coordinate system called “xyz” that is referenced to the instrument, and
another called “enu” that has components in the eastward, northward, and upward
directions. Plots and calculations can be done in each of the coordinate systems, and
functions are provided to convert between them.

For example, the oce package provides a sample ADCP dataset
data(adp, package="oce")

that was created by reading in beam coordinates with
adpBeam <- read.oce("adp_rdi_2615.000",
from=as.POSIXct("2008-06-26", tz="UTC"),
to=as.POSIXct("2008-06-27", tz="UTC"),
by="10:00", latitude=47.88126, longitude=-69.73433)

and then converting to xyz coordinates and thereafter enu coordinates with7

adpXyz <- beamToXyz(adpBeam)
adp <- xyzToEnu(adpXyz)

The plot() function for ADCP objects has many variants, and these are
selected with the which argument. If which is not supplied, the default is a
stacked image plot, displaying the components of velocity and, for four-beam
ADCPs, an “error” velocity related to the mismatch of vertical velocity computed
in two different ways. Other values of which provide for dozens of plot varieties,
including which="pressure", as used above.

A common step in most analyses is to plot the data. Of the many ways to do this,
simple overviews are a common first step. For example,

data(adp, package="oce")
plot(adp, which="uv+ellipse")

produces the diagnostic plot of depth-integrated horizontal velocity components
shown in the left panel of Fig. 5.10.

The author has high-resolution coastline and bathymetry data for this region, with
which the right panel of Fig. 5.10 may be created with

load("../data/coastlineSLE.rda")
load("../data/sltopo.rda")
lat <- adp[["latitude"]]
lon <- adp[["longitude"]]
plot(coastlineSLE, clatitude=lat,
clongitude=lon, span=30)
lines(z030$longitude, z030$latitude, lty=3) # 30m
u <- apply(adp[['v']][,,1], 1, mean, na.rm=TRUE)
v <- apply(adp[['v']][,,2], 1, mean, na.rm=TRUE)
scale <- 1 / cos(lat * pi / 180)
points(lon+u*scale/30, lat+v/30, cex=1/2)

thus revealing a tendency of these tidal currents to be aligned with bathymetry.

7Actually, the oce function toEnu() calculates ENU values without intermediate steps, but for
detailed work it is common to study each variant for clues about issues such as flow anomalies
caused by the mooring, magnetometer problems, etc.



5.4 Sea-Level and Tidal Analysis 139

−0.5 0.0 0.5 1.0

−0
.5

0.
0

0.
5

1.
0

u [m s]

v 
[m

s]

−69.8 −69.7 −69.6

47
.8

0
47

.8
5

47
.9

0
47

.9
5

Fig. 5.10 ADCP plot showing currents with covariance ellipse (left) and currents in relation to
coastline and 30 m isobath (right)

5.4 Sea-Level and Tidal Analysis

The sealevel dataset from the oce package holds observations made in Halifax
Harbour during the year 2003, and it can be used to illustrate some common tasks
in sea-level analysis. For example,

data(sealevel, package="oce")
plot(sealevel)

creates Fig. 5.11, in which the top panel shows the whole data set, the middle panel
a month-long sequence, and the bottom panel a log-power spectrum with some tidal
constituents marked.

The spike in September indicates a storm surge caused by Hurricane Juan, one
of the most damaging recorded storms in this area (Xu and Perrie 2012). The first
step in isolating a storm-surge signal is to remove the tidally forced variations in sea
level, and this is handled with the oce function tidem(), which fits tidal models
with methods8 similar to those of the popular Matlab program called T_TIDE,
described by Pawlowicz et al. (2002) and the earlier Fortran code described by
Foreman (1977). A tidal model is inferred with

m <- tidem(sealevel)

8For more information on tidal analysis, see, e.g., Munk and Cartwright (1966), Godin (1972),
Pugh (1987), and Foreman and Neufeld (1991).
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Fig. 5.11 Sea-level time series measured in 2003 in Halifax Harbour

which, in this default form, automatically selects tidal constituents based on the
sampling interval. The non-tidal residual of sea level is found with

eta <- sealevel[["elevation"]] - predict(m)

and the view can be focussed on the event9 as in Fig. 5.12 with
par(mfrow=c(2,1))
tlim <- as.POSIXct(c("2003-09-24","2003-10-05"),
tz="UTC")
plot(sealevel, which=1, xlim=tlim)
abline(v=as.POSIXct("2003-09-29 04:15:00", tz="UTC"),
lty=2)
t <- sealevel[["time"]]
oce.plot.ts(t, eta, xlim=tlim, ylab=expression(eta),
xaxs="i")
abline(v=as.POSIXct("2003-09-29 04:15:00",tz="UTC"),
lty=3)

9Hurricane Juan made landfall at Halifax about midnight local time (0400h UTC). The author
recalls the moment when the deformations of his window glass had suddenly switched from being
fascinating to terrifying.
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Fig. 5.13 Sea level in Halifax Harbour (solid) along with WebTide prediction (dashed)

the >1 m storm surge was worsened by occurrence near high tide.
Many applications also benefit from the incorporation of dynamical models

of tides. One example is WebTide, available from the Canadian Department of
Fisheries and Oceans,10 which provides a GUI scheme for retrieving data from tidal
atlases of sea level and currents. The oce package provides an R interface to the
WebTide database, e.g.

lat <- sealevel[["latitude"]]
lon <- sealevel[["longitude"]]
t <- sealevel[["time"]][1:72]
eta <- sealevel[["elevation"]][1:72]
eta <- eta - mean(eta)
oce.plot.ts(t, eta, ylab=expression(eta*" [m]"))
tr <- range(t)
tw <- seq(tr[1], tr[2], by="15 min")
e <- webtide("predict",lat=lat,lon=lon,time=tw,
plot=FALSE)
lines(e$time, e$elevation, lty="dashed")

produces Fig. 5.13, showing Halifax Harbour data, along with WebTide sea-level
predictions.

Exercise 5.11 Compare the spring-neap variation in Halifax sea level with the
phase of the moon. (See page 223 for a solution.)

10www.bio.gc.ca/science/research-recherche/ocean/webtide/index-eng.php.

www.bio.gc.ca/science/research-recherche/ocean/webtide/index-eng.php
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Exercise 5.12 Use the oce function plotTaylor() to contrast three tidal
models of sea level in Halifax Harbour: one with default constituents, one with just
M2, and one with just S2. (See page 224 for a solution.)

Exercise 5.13 Determine whether the storm surge from Hurricane Juan in Halifax
Harbour can be detected after removing tidal energy with a Doodson tidal filter. (See
page 225 for a solution.)

5.5 Coastlines

Many formats of coastline data files are recognized by read.oce() or variants of
read.coastline(). Cartesian plots are obtained with, e.g.,

data(coastlineWorld, package="oce")
plot(coastlineWorld)

and map projections (see Appendix C) are obtained either by providing the
projection argument to plot() or to mapPlot().

5.6 Topography

Topographic (bathymetric) data can be plotted as contours, e.g.
data(topoWorld, package="oce")
plot(topoWorld)

or as images, e.g.
imagep(topoWorld)
imagep(topoWorld, colormap=colormap(name="gmt_globe"))

where the latter employs a common topographic palette.
Projected images are handled with mapImage(), e.g.
mapPlot(coastlineWorld, projection="+proj=wintri")
mapImage(topoWorld, colormap=colormap
(name="gmt_globe"))

Exercise 5.14 Construct a hypsometric curve using outer() to create an area
matrix that pairs with the depth matrix topoWorld[["z"]]. (See page 225 for
a solution.)

5.7 Argo Floats

The read.oce() function detects the NetCDF format of Argo data, e.g.

argo <- read.oce("../data/6900388_prof.nc")
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reads the data recorded by the float with ID number #6900388, designated as the
January 2011 “Float of the month” by the British Oceanographic Data Centre. This
dataset is provided in the oce package, accessed with

data(argo, package="oce")

and the overview provided with
summary(argo)

reveals that there are 210 delayed-mode profiles and 13 corrected profiles in this
dataset. The former may be plotted with
argoD <- subset(argo, dataMode=="D")
plot(argoD)
points(argo[["longitude"]], argo[["latitude"]], pch=20)

the result of which will reveal some differences from Fig. 2.6 on Page 42.

Exercise 5.15 Graph surface water properties for the delayed-mode portion of the
argo dataset, as a T –S diagram and a trajectory with symbol size proportional to
spiciness. (See page 226 for a solution.)

5.8 Satellites

Specialized software is typically used to analyse satellite data, but R can help with
many tasks, providing benefits relating to flexibility of processing and integration of
different data types. The landsat package (Goslee 2011) supports Landsat 5 and
Landsat 7 datasets, with functions for such things as data input, plotting, conversion
from engineering units to physical units, image registration, and cloud detection. At
the time of writing, the landsat package was unable to deal with the data from
newly launched Landsat 8 satellite, so some basic support was added to the oce
package, as will be illustrated with a temperature calculation here.

The oce package provides a sample Landsat 8 dataset named landsat. This
is a wintertime view of Nova Scotia and surrounding waters, decimated to a 1 km
grid to speed processing. All 11 wavelength bands are available, but the present
focus is restricted to tirs1, the first band of the thermal infrared sensor. Spanning
wavelengths from 10.6 to 11.2µm, this band may be used to estimate temperature,11

making it broadly relevant to oceanography.
Landsat data are stored in two-byte values (or “counts”) that must be converted

to physical units. The left panel of Fig. 5.14 shows the result of estimating the at-
satellite brightness temperature using

11The tirs2 band could be used similarly, with different coefficients in the formulae. Also note
that those coefficients are subject to change; see, e.g., Barsi et al. (2003) for insights with respect to
previous satellites and the USGS site http://landsat.usgs.gov/calibration_notices.php for calibration
notices for Landsat 8.

http://landsat.usgs.gov/calibration_notices.php
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Fig. 5.14 Landsat-8 image of at-satellite brightness temperature (left) and an estimate of surface
temperature based on a freezing-temperature offset (right)

TB = K2

ln(1 + K1/λL)
− 273.15 (5.13)

where d is the tirs1 count and λL = AL + MLd, and AL, ML, K1 and K2 are
calibrated values stored in a header file (see the USGS website12). These things may
be written as

data(landsat, package="oce")
d <- landsat[["tirs1"]]
AL <- landsat[["header"]]$radiance_add_band_10
ML <- landsat[["header"]]$radiance_mult_band_10
lambdaL <- AL + ML * d
K1 <- landsat[["header"]]$k1_constant_band_10
K2 <- landsat[["header"]]$k2_constant_band_10
TB <- K2 / log(1+K1/lambdaL) - 273.15
TB[d == 0] <- NA

but this is somewhat tedious, so oce provides an accessor function to carry out the
calculation, using a pseudo-band named "temperature", and

plot(landsat, band="temperature",
col=oce.colorsJet, zlim=c(-14, 1))

yields the left panel of Fig. 5.14 a cloud-free day in March, 2014. The land is much
colder than the ocean, and readers familiar with the topography of Nova Scotia

12http://landsat.usgs.gov/Landsat8_Using_Product.php.

http://landsat.usgs.gov/Landsat8_Using_Product.php
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Fig. 5.15 Brightness temperature, with a line indicating a possible water-ice cutoff

might also note how temperature drops with altitude, and how frozen lakes appear
as homogeneous patches.13

Patterns in the open ocean are consistent with knowledge of the region, e.g.
with ∼ 10 km swirls south of Nova Scotia suggesting baroclinic eddies. However,
the patterns are different in the Bay of Fundy, where a granular texture, colder
temperatures, and local knowledge all suggest the presence of sea ice. The nearby
waters have brightness temperature TB ranging from −4 to −3 ◦C, and the fact that
this is well below the freezing temperature demonstrates that further adjustment is
required to infer surface temperature.

The calculation of surface temperature requires knowledge of local surface
emissivity and atmospheric properties (see, e.g., Jiménez-Muñoz et al. 2014). This is
beyond the present scope, but procedures may be illustrated with a more speculative
approach. Assuming waters near sea ice to be near the freezing temperature, a
temperature offset could be computed with a study of subregions that show water.
This would require close inspection of the images, but the methodology can also be
illustrated from a histogram, e.g.

hist(landsat[["temperature"]], breaks=100, main="")
TBice <- -4.5
abline(v=TBice, lty="dashed")

yields Fig. 5.15, in which the vertical line shows a reasonable dividing line between
ice and water, suggesting that surface temperature is

SST <- TB - TBice - 1.8

where 1.8◦C is the freezing temperature for typical oceanic salinity. This result may
be stored within the landsat object with

landsat <- landsatAdd(landsat, SST, "SST")

and then plotted with
plot(landsat, band="SST", col=oce.colorsJet,
zlim=c(-14,1))

the results of which, sketched in the right panel of Fig. 5.14 but more apparent in a
full-resolution image, have ocean temperature exceeding the freezing point.

13The statements about lakes and granularity of ice in the Bay of Fundy refer to the full-resolution
Landsat data, not to the heavily decimated version in the landsat object.
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Exercise 5.16 Use functions in the mixtools package to separate the histogram
of Fig. 5.15 into two parts. (See page 227 for a solution.)

5.9 General Analysis

5.9.1 Processing QC Flags

It is conventional in oceanographic analysis to use quality-control (QC) flags to
indicate questionable data values, instead of setting those values to NA. This has the
benefit of nuance, but it can complicate analysis.

QC flag values may follow conventions set by manufacturers, by data-archiving
agencies, or by individual analysts. Flags are usually associated with individual data
entries, e.g. with a flag for each temperature in a CTD profile, along with separate
sets of flags for the salinities and other properties.

Often, flags are integers whose value indicates the quality of the associated
datum. A fundamental difficulty in dealing with flags is that different coding
values are used for different instruments, and by different data-archiving agencies.
For example, in the case of CTD data, the World Hydrographic Program (WHP)
convention14 is to use a flag equal to 2 for “acceptable” measurements, whereas
the Canadian Department of Fisheries and Oceans (DFO) uses a flag equal to 2 to
indicate “uncertain” data, in its website15 providing data from the Atlantic Zone
Monitoring Program. The argo convention is somewhat of an intermediate, with 2
indicating values deemed “probably good.” Clearly, analysts must be careful when
dealing with QC flags.

The oce package provides a simple scheme for handling QC flags, in a
generic function called handleFlags() that has specialized variants for different
data types. In usually replaces suspicious data with NA values (or alternative
measurements stored in the data file), although analysts may supply functions to
deal with problematic data in more sophisticated ways. Assumptions about flag
conventions are made by handleFlags() based on the data class, but analysts
may still need to tailor things for an individual dataset, as in the WHP versus DFO
example stated above. For example,

data(section, package="oce")
stn100 <- section[["station", "100"]]
stn100[["phosphateFlag"]][14:16]
[1] 2 3 2

stn100[["phosphate"]][14:16]

[1] 1.02 1.15 1.10

14https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/about.htm.
15http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/hydro/index-eng.html.

https://www.nodc.noaa.gov/woce/woce_v3/wocedata_1/whp/about.htm
http://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/azmp-pmza/hydro/index-eng.html
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handleFlags(stn100)[["phosphate"]][14:16]

[1] 1.02 NA 1.10

shows a case in which the default WHP flags will work, so the default action of
handleFlags() is suitable. However, if these data had been in the DFO format,
the appropriate call would have been

handleFlags(stn100, flags=list(2:4))

because DFO indicates problematic data with QC flags of 2–4.
Since summary provides statistics of QC flags, it is sometimes possible to guess

the flags, on the assumption that good data are more common than bad data, but
of course this is no substitute for studying the documentation that agencies provide
with datasets.

For more on how CTD data are handled, type ?"handleFlags,ctd-method"
in an R console. Similar queries provide help on other object types. The first part
of the result is similar across oce classes, but tailored information is provided near
the bottom of the output.

5.9.2 Handling Faulty Data

Although QC flags are often provided with archived oceanographic data, analysts at
the forefront of research are often called upon to work with data that have yet to be
examined for flaws, or for which standardized flags are judged to be questionable.

In examining data for problems, it can help to be aware of the challenges in mak-
ing measurements at sea. Faulty data can be caused by measurement errors (clocks
drift, sensors go out of calibration, biofouling causes instrument malfunction, etc.),
instrumental setup errors (poor scaling factors can yield velocities that “wrap
around” because of modulo arithmetic applied to small memory chunks, etc.) and
platform limitations (tides can shift moorings, currents can knock down mooring
lines, mooring-generated turbulence can occur for certain current directions, etc.).

Many problems are specific to the type of instrument, e.g. the salinity spiking
problem of CTDs has no direct analogue in ADCP data, so it is difficult to provide
general advice. Therefore, only two specific instruments are dealt in the next two
subsections.

5.9.2.1 Diagnosing Data Faults Statistically

Although a thorough discussion of the problems with CTD data is beyond the
present scope (see UNESCO 1988, for an introduction), a few examples may suggest
how R can be helpful for this sort of work.

Returning to the discussion of Sect. 5.2.2.4, the ctdRaw dataset provides
a convenient starting point, with the summary() revealing unphysical values
for temperature and salinity, even though no flags have been set. The working
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Fig. 5.16 Temperature-salinity relationship of the ctdRaw data in raw form (left) and after
removing outliers in two passes (middle and right). The procedure removes most outliers, but
retains a few suspicious points at low temperature

hypothesis of the previous treatment is that the odd values reveal a form of quality-
control, even though an analysis of the header in the source file reveals the line

# bad_flag = -9.990e-29

which suggests otherwise. Such mixed messages are common, and dealing with
them is a core part of practical operating procedures.

Oceanographers use flags of 99, 999, etc., because they are recognizable and
outside the expected range of observation. This second aspect means that procedures
to flag unphysical values will also detect such flags, and so it is worth explaining
some methods used to detect unphysical values.

For example, the Seasoft CTD software can perform a “wild edit” procedure to
identify suspicious values by departure from the mean by more than a specified
multiple of the standard deviation (Sea-Bird Electronics 2016). This may be
accomplished in R with

bad <- function(x, n=2)
is.na(x)|(abs(x-mean(x,na.rm=TRUE))
>n*sd(x,na.rm=TRUE))

and applying this to the data
o <- bad(ctdRaw[["salinity"]]) |
bad(ctdRaw[["temperature"]])
ctdRaw[["salinity"]][o] <- NA
ctdRaw[["temperature"]][o] <- NA

yields the T –S diagrams of Fig. 5.16. Note that using two passes, as recommended
in the Seasoft manual, yields fewer spurious points than a single pass. Even so,
a few suspicious points still stand out from the data cloud, as salinity reductions
in the deep water. Readers experienced in hydrographic data might next turn to
a study of anomalies in spiciness-density space. Another approach might be to
look for rapid variations of properties with respect to pressure or sampling time.
Detailed procedures might vary with the type (and state of calibration/repair) of the
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instrument, the wave state, etc. R makes it easy to do explore such approaches, while
also freeing analysts from possible limitations of commercial software.

Exercise 5.17 Suggest a procedure for performing CTD outlier rejection using data
flags, instead of modifying the data. (See page 227 for a solution.)

5.9.2.2 Diagnosing Data Faults Based on Scientific Context

Sometimes, statistical outlier detection is not the best approach. An example is
provided by a snippet from a ten-day SontekADV recording made during the St
Lawrence Estuary Internal Wave Experiment (Richards et al. 2013).

load("../data/adv-bad.rda")

This instrument was attached firmly to a weighted mooring sitting on the
ocean bottom, so the compass heading should be nearly constant.16 However,
summary(d) indicates a range of nearly 200 degrees (in addition to suspicious
values of roll). Since extrema are sensitive to outliers, it makes sense to look also at
the summary statistics

quantile(adv[["heading"]])
0% 25% 50% 75% 100%
0.0 0.0 90.0 161.7 199.8

and these results are also inconsistent with expectation. In addition, Fig. 5.17 reveals
that the heading shifts dramatically in fractions of a second, which is not physically
possible for such a setup. Another sign of a problem is that the heading record is not
continuous, but mainly shifts between particular values. A simple inference might
settle on an angle of 0◦, since this value occurs so often, but a cautious analyst should
be on the lookout for zero values, which may result from problems in connections
between sensors and loggers. Such considerations underline the fact that blindfolded
statistical analysis is no substitute for contextualizing data in physical terms.

R makes it very easy to explore data with such things in mind. For example, a
crude function to remove data in a specified range, and calculate a median() (or
other function, here named fcn) on the remaining data, is

fix <- function(x, bad, fcn=function(x) median(x))
fcn(subset(x, x < bad[1] | x > bad[2]))

and this is used to exclude near-zero points with
h <- fix(adv[["heading"]], c(-2, 2)) # ignore near zero
par(mfrow=c(1,2))
hist(adv[["heading"]], main="", breaks=100)
abline(v=h, lty="dashed")
label <- sprintf("%.0f", h)

16An exception to this expectation of nearly constant headings occurs when the compass is aligned
at the “cut point” of 0◦ or 360◦. The angleRemap() function from the oce package can be
helpful if calculations are to be done on such angles.
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Fig. 5.17 Five minutes of heading data from an ADV that had an intermittently faulty orientation
unit. Although the actual heading of the instrument is known to be lie between 100◦ and 200◦, it
would be difficult to infer this value from the histogram or the time series, given the frequent
occurrence of zero values. The value in the margins is the heading calculated by a combined
physical/statistical method explained in the text

mtext(label, side=3, at=h)
plot(adv, which=16, type="p", col="gray",

drawTimeRange=FALSE)
mtext(label, side=4, at=h)
abline(h=h, lwd=2)

resulting in Fig. 5.17. An analyst who considered h to be preferable to the existing
heading record might decide to update the object, with

adv <- oceSetData(adv, "heading",
rep(h, length((adv[["time"]]))),
note="replace zero-contaminated
heading")

5.9.3 Dealing with Log-Normally Distributed Data

Log-normally distributed quantities are of interest in many fields (Johnson et al.
1995; Limpert et al. 2001). An important oceanographic example is the rate of
viscous dissipation of turbulent kinetic energy, ε, which is used (Osborn 1980)
to infer KV (Sect. 4.4). One way to distill a set of ε measurements is to calculate
E1 = exp(μ), where μ is the mean of ln ε. This yields an estimate of the population
median. A corresponding estimate of the mean is given by E2 = exp(μ+σ 2/2) with
σ being the standard deviation of ln ε (see, e.g., Johnson et al. 1995, Chapter 14).
In the context of averaged dynamical equations, E2 is of more direct utility than
E1. The contrast between E1 and E2 can be illustrated with artificially constructed
data, e.g.
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Fig. 5.18 Characterizing dissipation rate ε with median (E1) and mean (E2) measures; E shows
the mean of the source distribution used to generate the random values shown

lmuHat <- -5 * log(10) # converted to ln()
lsigmaHat <- 2 * log(10) # converted to ln()
set.seed(593) # for reproducibility
epsilon <- rlnorm(500, lmuHat, lsigmaHat)
hist(log10(epsilon), main="", col="lightgray",
breaks=50)

creates the histogram in Fig. 5.18. The second and third arguments to rlnorm()
are natural logs, so a factor is applied to represent μ̂ = 10−5 and σ̂ = 102. The
theoretical mean E = exp(μ̂+σ̂ 2/2) and the quantities E1 and E2 are also indicated
in Fig. 5.18 with

E <- exp(lmuHat + lsigmaHat^2/2)
E1fcn <- function(x) exp(mean(log(x)))
E2fcn <- function(x) exp(mean(log(x)) + 0.5

* sd(log(x))^2)
abline(v=log10(E), lwd=5)
abline(v=log10(E1fcn(epsilon)), lwd=5, lty=2)
abline(v=log10(E2fcn(epsilon)), lwd=5, lty=3)
legend("topleft", lwd=5, lty=1:3, seg.len=3,

legend=c("E", "E1", "E2"))

In this trial, E2 is much to E than E1 is, suggesting that the E2fcn() offers the
better solution for tasks requiring the mean value.

Exercise 5.18 Compare E1 and E2 in a series of random trials. (See page 228 for
a solution.)

5.9.4 Time-Series Analysis

Time series analysis is used widely in many fields, including economics, engineer-
ing, and both the social and natural sciences. The topic is deep enough to demand
the scale of a textbook, popular examples of which include classics by Jenkins
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and Watts (1969) and Box and Jenkins (1976), and newer treatments by Brillinger
(1981), Priestley (1981), Bloomfield (2005) and Shumway and Stoffer (2006). The
last of these deals with time series in R, touching on wavelet analysis, state-space
modelling, and a host of advanced topics. All of the above are aimed at general
audiences; see, e.g., Chapter 5 of Emery and Thomson (2001) for an oceanographic
context.

5.9.4.1 Time-Series Objects in R

The ts() function creates a time-series object, of class "ts", given data sampled
at a constant rate.

Given that the interval between samples is constant, complete information about
the sampling times can be stored within the object using just three attributes. For
example, a sequence of 5 Weibull-distributed random data might be created with

ts(rweibull(5, 1))
Time Series:
Start = 1
End = 5
Frequency = 1
[1] 0.4450218 0.6482199 5.3843208 1.2436122 0.8863650

Here, the start time, end time, and frequency have all taken on default values, but
using extra arguments to ts() provides great flexibility in specifying sampling
times, e.g.

ts(rweibull(5,1), frequency=0.1)
# start 1, end 41
ts(rweibull(5,1), start=0, frequency=0.1)
# start 0, end 40
ts(rweibull(5,1), end=10, frequency=0.1)
# start -30, end 10

produce results summarized in the comments, but
ts(rweibull(5, 1), start=1, end=10, frequency=0.1)

produces an error, because of the contradiction in the arguments for a time-series of
length 5.

The main advantage of time-series objects is that they contain information about
the sampling times, which is generally useful (e.g. in plotting) but also specifically
useful for important methods such as the computation of spectra (introduced in
Sect. 2.4.10, with more discussion in Sect. 5.9.4.5, below). However, since many
oceanographic data are not sampled at a uniform rate, it makes sense to begin with
a discussion of methods for dealing with irregular data.
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5.9.4.2 Interpolation Methods for Nearly Regular Data

The simplest cases are those in which the sampling rate is nearly constant, e.g.
for logging instruments that usually record properly but that occasionally produce
bad data owing to electronic problems or sensor limitations. For such problems,
a reasonable approach may be to use an interpolating function to re-sample based
on times. A simple approach is to use approx() for linear interpolation between
points, e.g. for artificial data with two bad intervals

t <- 1:20
s <- sin(2*pi*t/10)
s[c(5:7, 15)] <- NA

a new version of the signal could be constructed with
ok <- is.finite(s)
tok <- t[ok]
sok <- s[ok]
sNew <- approx(tok, sok, t)$y

Exercise 5.19 Use approx to write a function that interpolates from one set of
times to another. (See page 228 for a solution.)

5.9.4.3 Windowing Methods for Irregularly Sampled Data

Creating regularly spaced data by using gap-filling procedures can be problematic
for data collected at widely ranging sampling intervals. For example, interpolating
across a narrow gap to replace a spike (see Sect. 5.9.4.6) is unlikely to alter a
spectrum greatly, but doing so across a missing season of hourly observations can
cause deceptive spectral reddening.

A common alternative to gap-filling is to forgo high-frequency resolution,
creating a new time series by averaging within fixed time intervals. For example,
measurements made every few days might be averaged within 1-month windows.
Such procedures yield a fixed “sampling” interval, which then opens the door
to conventional time-series analysis. They also improve statistical reliability of
samples, which can be desirable even with regularly sampled data, if low-frequency
variability is the primary interest (recall the discussion of bin-averaging CTD data
in Sect. 5.2.2.5).

There is no single agreed-upon method for this work. The windows may be
distinct, or they may overlap. The data within windows may be treated equally,
or there may be a focus near window centres. The number of data in each window
may be recorded, perhaps for use in the weighting of models to be fitted later, or it
may be discarded. The computation done within a window may be based on value
alone or on a model of variation over time, e.g. using lm() predictions at central
times can avoid problems of data unevenly distributed within windows of trending
data.
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Fig. 5.19 GISS time-series
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In any case, the first step is a subdivision of the data in time categories, and
this is accomplished easily with the cut() and split() functions explained in
Sect. 2.3.7, after which, e.g., the base function apply() or laply() from the
plyr package can be used for the computation. For example, Fig. 5.19 shows the
application of a running-mean scheme to the Goddard Institute for Space Studies
(GISS) land-ocean temperature index, which is stored as the giss dataset of the
ocedata package.17 The first step in constructing this figure is to plot the raw
data:

data(giss, package="ocedata")
y <- giss$year
i <- giss$index
plot(y, i, type="l", col="gray",

xlab="Year",ylab=expression
("GISS Index ["*degree*"C]"))

after which cut() may be used to set up, say, a pentadal averaging scheme (with
ceiling() and floor() being used for yearly window boundaries)

C <- cut(y, breaks=seq(ceiling(min(y)),
floor(max(y)), 5))

which is then used to split the data into 5-year chunks
ys <- split(y, C)
is <- split(i, C)

within which the data are averaged
library(plyr)
ymean <- laply(ys, mean)
imean <- laply(is, mean)

and plotted as the thick line in Fig. 5.19 with
lines(ymean, imean, lwd=2)

while the next exercise shows how to draw the thin lines, indicating a confidence
interval.

17The giss data are on a uniform sampling interval, but the procedure given here would work
identically if this were not the case.
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Fig. 5.20 Southern Oscillation Index time series since the year 1880 in original form (top) and
after smoothing with a low-pass Butterworth filter (bottom)

Exercise 5.20 Add confidence limits to Fig. 5.19. (See page 229 for a solution.)

5.9.4.4 Time-Domain Analysis

The Southern Oscillation Index (SOI), provided as soi in the ocedata package,
is a well-known example of a time series that has variability on a range of time-
scales, but that lacks a prominent overall trend.18 This can be seen in the top panel
of Fig. 5.20, made with

data(soi, package="ocedata")
SOI <- ts(soi$index,start=soi$year[1],frequency=12)
plot(SOI, xlab="")

using the generic function for plotting a ts objects. The signal has a ragged
appearance that somewhat obscures the interannual variations that are of great
interest in the context of weather patterns. One way to highlight those variations
is to low-pass filter the data, removing higher-frequency variations.

There are two basic approaches to filtering. Denoting the signal of interest xi ,
where i is an index to time, the filter output might be defined using a non-recursive
filter (also called a finite impulse response filter) in which the output yi depends
only on the input19

yi = a0xi + a1xi−1 + . . . (5.14)

or a recursive filter (also called an infinite impulse response filter), in which previous
values of the output are used as well as input values

18The relevance of trends for filtering is discussed at the end of this section.
19Terms for, e.g., xi+1 can be included in the term indicated with ellipsis, yielding non-causal
filters.
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yi = a0xi + a1xi−1 + · · · + b1yi−1 + b2yi−2 + . . . (5.15)

A review by Harris (1978) provides a detailed comparison of several non-
recursive filters that were in common use in the 1970s. Many of these are still
employed routinely today, although recursive filters are also popular. Amongst the
latter, the filter of choice for many oceanographers is the Butterworth filter (see, e.g.,
Roberts and Roberts 1978), so it is worth illustrating here.

The signal package, patterned on a popular Matlab system, supports the
creation and use of a wide variety of filters. Its butter() function creates
coefficients for Butterworth filters of low-pass, high-pass, band-stop, and band-pass
varieties. The filter critical frequencies are specified in its W argument, as multiples
of the Nyquist frequency, e.g. to design a filter with cutoff period τc, the appropriate
value of W is 2τs/τc, where τs is the time between samples. For example, the
following creates a filter with a 12-month cutoff that may be applied to the monthly
sampled soi data:

library(signal)
filt <- butter(n=4, W=2*1/12)
# W=2*tauS/tauC in months

The return value from butter() is a list containing vectors a and b that hold
the coefficients defined in (5.15). To apply the filter, it is common practice to use
filtfilt(), which runs the filter both forward and backward in time in order
to cancel out the phase distortions that occur with recursive filters. It is important
to note that filtfilt() squares the spectral transfer function, so that the 3 dB
reduction at the cutoff frequency changes to a 6 dB reduction (see Exercise 5.23).
Applying the filter to the soi time series with

SOI2<-ts(filtfilt(filt, soi$index), start=1866,
frequency=12)
plot(SOI2, xlab="", ylim=par("usr")[3:4], yaxs="i")

produces the lower panel of Fig. 5.20, where the ylim and yaxs settings copy
the y-axis geometry from the previous plot. There is good evidence of interannual
variability in this low-passed view.

It should be noted that recursive filters such as the Butterworth variant must
make an assumption about the filter output, i.e. the y values in (5.15), “before”
the start of the time series, which can yield spurious predictions at the start of the
output. If filtfilt() is used to do the filtering, the problem can also occur at
the end of the time series. The effect is most pronounced when the input values
are far from zero, as for data with significant trends. Exercise 5.22 deals with a
crude method for addressing this endpoint problem. Other schemes have also been
proposed; see Gustafsson (1996) for an entry into the literature on such methods
for the Butterworth case and, e.g., Mann (2008) for a more general discussion of
endpoint problems with other filters, framed in a climate-change context.

Exercise 5.21 Following Sect. 2.4.8, use acf() to look for oscillations in the soi
dataset. (See page 229 for a solution.)
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Exercise 5.22 With the giss dataset, show how detrending can reduce spurious
endpoint effects of Butterworth filters. (See page 229 for a solution.)

5.9.4.5 Spectral and Wavelet Analysis

Time-domain filtering can be useful for isolating variations within frequency bands
that are known to be pertinent to particular applications, but it is not an ideal tool for
exploring variation across a range of frequencies. Tasks in the latter category can
be better handled with tools such as autocorrelation analysis and spectral analysis.
These have been outlined in Sects. 2.4.8 and 2.4.10, and the goal of the present
section is to expand on the latter, continuing with the SOI time-series constructed
in Sect. 5.9.4.4.

A spectrum plot of soi may be created with a simple spectrum() call
spectrum(SOI, log="no", main="")
abline(v=1/c(2, 8), col="gray")

as shown in the top-left panel of Fig. 5.21, with gray lines indicating periods of 2
and 8 years. The results suggest a broad band of energy at periods of several years,
which is reminiscent of El Niño Southern Oscillation timescales (see, e.g., Philander
and Fedorov 2003), although the raggedness makes it difficult to assess levels. The
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Fig. 5.21 Spectra of soi dataset, with frequency in cycles/year. The left panels show raw and
smoothed spectra in conventional form, while the right panels show a variance-conserving form
with logarithmic frequency. Gray lines mark periods of 2 and 8 years
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pattern is clarified somewhat by smoothing in frequency space, and this may be
controlled with the spans argument, e.g.

spectrum(SOI, spans=c(11, 9, 5), main="")
abline(v=1/c(2, 8), col="gray")

yields the lower-left panel of Fig. 5.21, showing a clearer view of energy distribution
through the year-to-decade band. Variation in this time range can be investigated
more easily if frequency is log transformed. If the vertical axis is altered to show
the product of power and frequency, the result is a variance-conserving spectrum, in
which the ratio of the area under two plotted peaks equals the ratio of variance in the
two frequency bands (see, e.g., Glover et al. 2011, Section 6.3). Such representations
of the raw and smoothed SOI spectra are shown in the right panels of Fig. 5.21,
constructed with

s <- spectrum(SOI, plot=FALSE)
plot(log10(s$freq), s$freq*s$spec, type="l",

xlab="log frequency", ylab="frequency

* spectrum")
abline(v=log10(1/c(2, 8)), col="gray")

for the raw spectrum, and
ss <- spectrum(SOI, spans=c(11, 9, 5), plot=FALSE)
plot(log10(ss$freq), ss$freq*ss$spec, type="l",

xlab="log frequency", ylab="frequency

* spectrum")
abline(v=log10(1/c(2, 8)), col="gray")

for the smoothed spectrum. Each of the panels reveals significant variation in the 2
to 8 year band, with detail (such as the hint of two peaks) being easier to discern in
the smoothed log-frequency case.

This comparison highlights the usefulness of smoothing spectra. The goal is
usually to have enough smoothing to give acceptable confidence in the spectral level,
but not so much that relevant peaks are smoothed away (for a much more expansive
treatment, see Jenkins and Watts 1969, Section 7.2). Since a basic understanding of
filtering is assumed here, the problem reduces to learning what spans does, and
kernel() helps greatly with that. For example, providing spectrum() with
spans=2 yields a smoothing kernel

kernel("modified.daniell", 2)

which has coefficient values (1/8, 1/4, 1/4, 1/4, 1/8), i.e. a boxcar filter with
endpoints that have been halved, which is known as a modified Daniell filter. If
spans is a vector containing more than one element, the resultant smoothing filter
is created by convolving the filters that are constructed for each value in turn, e.g.
convolving filters of length 3, 5 and 9

plot(kernel("modified.daniell", c(3, 5, 9)))

yields the left panel of Fig. 5.22; comparing panels reveals how convolving sharp-
edged filters yields a smoother result, and that careful selection of sub-filter lengths
can control the width of the flat pass band; see, e.g., Shumway and Stoffer (2006)
for more on such issues.
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Fig. 5.22 Examples of spectral filters, corresponding to supplying spectrum()with spans=9,
spans=c(3,9), or spans=c(3,5,9), from left to right

Fig. 5.23 Frequency-time
plot, analogous to a sonogram
or spectrogram, for
constructed chirp signal plus
noise (Exercise 5.24)
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This R approach to spectral smoothing may be unfamiliar to some readers, who
are accustomed to using the popular pwelch() function in Matlab, which divides
the time series into sub-intervals and averages the spectra of the components (Welch
1967). This scheme is also provided by the oce package, with a more limited
function of the same name.

It should be noted, however, that subdivision of time series is useful for more than
averaging. It also opens the door to studies of how the spectral character of a system
varies over time. This can be important in a wide range of applications, an example
in the author’s research being the phasing of internal wave incidence with respect to
the tide, which may reveal forcing mechanisms and propagation pathways.

Using cut() and split(), it is a simple matter to subdivide a time series
into segments for individual spectral analysis. Exercise 5.24 addresses this, leading
to the construction of Fig. 5.23 for artificial data. Diagrams of this general sort are
sometimes called spectrograms, and they have been used in oceanography since the
early days of time-series measurement, e.g. for sonograms of whale calls (Schevill
and Watkins 1962) and for the Snodgrass et al. (1966) study of swell propagation
across ocean basins.

A modern expansion on the traditional frequency-time plot is the wavelet plot.
A key feature in this analysis is the use of non-repeating basis functions for the
spectral decomposition. A commonly used basis function is the so-called Morlet
function illustrated in Fig. 5.24 and defined by
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and where f is nondimensional frequency and t is translated and nondimensional-
ized time (see, e.g., Ashmead 2012). Roughly speaking, wavelet analysis applies a
sliding time window to a dataset in an examination of similarity to basis functions
of different frequencies (Morlet et al. 1982; Daubechies 1990; Torrence and Compo
1998).

The WaveletComp package (Roesch and Schmidbauer 2014) handles wavelet
calculations and their graphical display with simple functions,20 e.g. the temporal
variation of spectral energy in the SOI dataset is calculated using

library("WaveletComp")
data(soi, package="ocedata")
date <- seq(ISOdatetime(soi$year[1],1,1,0,
0,0,tz="UTC"),

length.out=length(soi$year),by="1 month")
w <- analyze.wavelet(data.frame(date=date,
index=soi$index),

"index", dt=1/12, lowerPeriod=1)

where the dt value indicates that frequencies are to be reported in cycles per
year, and the lowerPeriod value removes sub-yearly oscillations from the
analysis. The resultant value is an object of class "analyze.wavelet", and its
components may be further analysed and plotted in several ways. A useful overview
plot such as Fig. 5.25 may be created with

wt.image(w, plot.ridge=FALSE, siglvl=0.005,
color.key="i", show.date=TRUE)

where the second argument prevents the drawing of ridge lines, which can be
distracting on a complex diagram, the third sets a significance level, and the fourth
indicates that power is to be shown, as opposed to quantile. The diagram indicates
that the main SOI variability is in the interannual band, and also that the energy in
that band varies on decadal timescales, consistent with visual inspection of Fig. 5.20.

20The biwavelet package is an alternative.
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Fig. 5.25 Wavelet spectrum of the soi dataset. The light-coloured regions in the top corners
indicate the difficulty of inferring long periods near the ends of a time series. Contour lines
surround regions satisfying a significance criterion, and colour indicates spectral power

Exercise 5.23 Use spectrum() to demonstrate the Butterworth filter response.
(See page 230 for a solution.)

Exercise 5.24 Write a function to compute and display a frequency-time plot.
(See page 231 for a solution.)

Exercise 5.25 Use fft() to compute rotary spectra as defined by Gonella (1972).
(See page 232 for a solution.)

5.9.4.6 Despiking Time-Series Data

A common problem in dealing with oceanographic time-series data is the handling
of “spikes,” i.e. short-lived and high-amplitude departures from otherwise more
smoothly varying signals. Even though special considerations apply to different
data types (see, e.g., Weekley et al. 2010), some general approaches are worth
illustrating.

Methods for spike detection typically combine statistical analysis and an under-
standing of the characteristics of the instrument, the setting, and the quantity being
measured. For example, in hydrostatic flow, the time derivative of velocity is small
compared with the acceleration due to gravity, so a spike criterion in a velocity series
u = u(t) might be written

bad <- (abs(diff(u) / diff(t))) > (criterion * 9.8)

with criterion being adjusted to suit the application.
It can be helpful to combine variables in a dynamically meaningful way,

rather than to consider all measurements individually, and also to work with
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primary variables instead of derived variables (e.g. focussing on temperature and
conductivity, rather than temperature and salinity).

Purely time-series approach can also prove useful. An example is to develop a
measure of the departure of the observations from a smoothed representation of the
signal. Especially if this is done in combination with a measure of event brevity, this
can yield results that are similar to visual spike identification. An illustration may
be provided with artificial data, e.g.

set.seed(5946) # for reproducibility
par(mfrow=c(1, 3))
n <- 200
t <- 1:n
x <- exp(-t/100) + exp(-t/150) * sin(t/10)
+ rnorm(n, sd=0.05)
spiked <- c(50, 100, 101, 150)
x[spiked] <- x[spiked] + c(0.5, 0.5, 0.5, -0.5)

creates a signal that varies on two timescales and has both a random component and
4 added spikes.

Plotting this signal as Fig. 5.26 with
plot(t, x, type="l")
points(t[spiked], x[spiked])

shows that the points are not anomalous with respect to overall x values, since they
lie within the range of the rest of the data. This means that a test of overall deviation
will not be helpful in this case, as it was in the examination of the ctdRaw dataset.
However, the points stand out locally from a smoothed version of x, as can be seen
by examining the histogram of departure from such a smoothed version, e.g.

xs <- lowpass(runmed(x, k=11), n=5)
hist(x-xs, breaks=100, main="")

yields the middle panel of Fig. 5.26, showing outliers at high and low values. In
some instances, an analyst might set cutoff criteria based on visual inspection of a
histogram, but it can also be helpful to take the number of data into consideration,
based on the probability of finding outliers of a given departure from the mean, e.g.
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Fig. 5.26 Despiking a signal using statistics of departure from a smoothed curve. Left: signal
x = x(t) with spikes (circled) at t = 50, 100, 101, and 150. Middle: histogram of x minus xs , a
smoothed version of x. Right: result of replacing anomalous points with xs
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A <- 1
dev <- x - xs
lambda <- A * qt(1 - 1/(2*n), df=n-1)
abline(v=mean(dev) + sd(dev) * lambda*c(-1, 1), lty=2)

where A is a parameter that can be adjusted to increase or decrease the rejection rate.
Now, a logical index of departure can be defined as

bad <- which((abs(dev - mean(dev))
> (lambda * sd(dev))))

For this constructed time series, the resultant bad is the same as spiked. This
suggests some merit to this method, and explains its similarity to despike() in the
oce package. However, the lifetime of the inferred spikes has not been considered
explicitly, and that might be a useful variable to explore, in any further development
along these lines.

Once spikes have been identified, there are three choices for further action:
replace the points with NA, set flags to indicate concern, or replace the suspicious
values with constructed values. In the case of replacement, a simple scheme is to
fill the gap by interpolating linearly between adjacent values. This prevents extrema
within the gaps, which is desirable in some cases (e.g. for density profiles, where
there are physical reasons to distrust inversions on large length scales). Another
common approach is to use a smoothed signal, which is already available for the
scheme just described, i.e.

xx <- x
xx[bad] <- xs[bad]
plot(t, xx, type="l")

as is shown in the right panel of Fig. 5.26. The following example introduces more
sophisticated statistical approaches.

Exercise 5.26 Use na.kalman from the imputeTS package to replace the
spikes in x with the predictions of a Kalman filter. (See page 233 for a solution.)

5.9.4.7 Time-Series Forecasting

Oceanographers practice two types of forecasting with time series data. The first
involves phenomena that are understood well enough that the prediction can have a
dynamical component. Examples include the prediction of tides based on elevation
records, using harmonic constituents of known frequency (Sect. 5.4) and the use of
numerical ocean models to predict pollutant dispersal (see, e.g., Bourgault et al.
2014). In such cases, there is obvious benefit in tailoring the forecasting scheme to
the dynamical situation at hand.

By contrast, the second type involves systems in which there is insufficient
dynamical understanding (or pertinent data) to develop practical forecasts based on
dynamical principles. General forecasting tools, which treat data in isolation from
theory, may be helpful in such cases. A common method is simple regression, e.g.
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extending a linear trend, or some other functional form, into the future. R is ideal for
this sort of work, as discussed in Sects. 2.5.5 and 2.5.5.2. It also provides functions
for fitting more complex stochastic models to data, and these merit an overview
here.

A powerful stochastic method was described in the influential textbook by Box
and Jenkins (1976), so it is often called the Box-Jenkins method. It involves the idea
of a black-box system driven by white noise and described by a finite number of
parameter values. For example, an autoregressive (AR) process is described by21

Xt = c +
p∑

i=1

θiXt−i + εt (5.17)

where t refers to the time step, c is a constant, and the θ terms are parameters of the
process, as is the standard deviation of ε, which is assumed to be a white-noise time
series with zero mean.

An autoregressive model with p terms in the sum is denoted AR(p). A similar
notation, MA(q), is used for a moving-average model of the form

Xt = μ +
q∑

i=1

θiεt−i + εt (5.18)

Such models can be combined into so-called ARMA models. If first-difference
terms are added, an ARIMA (auto-regressive integrative moving average) model
results.

A common forecasting analysis starts with inferring model parameters from an
examination of a time series, after which the model is stepped forward in time to
predict future variation. R provides several functions for this work. Here, the focus
is on the arima() function, which fits ARIMA models.

The method will be illustrated with the adp dataset provided by oce, even
though this is actually a case in which a tidal model could be used. The first step is
to extract a component of velocity

data(adp, package="oce")
whichDepth <- which.min(abs(adp[["distance"]] - 20))
eastward <- adp[["v"]][,whichDepth,1]

and then plot it as a time series
ndata <- length(eastward)
npred <- 100
plot(eastward, type="l", lwd=2, xlim=c(0,
ndata+npred))

21Different treatments use different notations, and even disagree on signs; see ?arima for the R
convention on the latter.



5.9 General Analysis 165

0 20 40 60 80 100 120

−0
.6

0.
0

0.
6

Index

ea
st

w
ar

d

Fig. 5.27 Demonstration of ARIMA modelling

As the resultant Fig. 5.27 shows, velocity displays a tidal character, with added high-
frequency variability.

A model with three auto-regressive coefficients and two moving-average coeffi-
cients may be constructed with

m <- arima(eastward, c(3,0,2))

where the middle value of the second argument specifies no differencing term, i.e.
the function is being used in ARMA mode.

The print() methods produces a useful summary:
print(m)

Call:
arima(x = eastward, order = c(3, 0, 2))

Coefficients:
ar1 ar2 ar3 ma1 ma2 intercept

1.248 -0.142 -0.48 -1.241 0.241 0.076
s.e. 0.246 0.422 0.24 0.518 0.290 0.008

sigma^2 estimated as 0.0138:log likelihood=13.82,
aic=-13.65

and the forecast drawn in Fig. 5.27 with
index <- ndata + seq(0, length.out=npred)
p <- predict(m, n.ahead=npred)$pred
lines(index, p, lwd=0.5, lty="dashed")

reveals that the model captures the oscillating character of the data, while decaying
towards zero as the data fall further into the past. Insight can be gained by repeating
the procedure with different order values, and with constructed datasets of varying
character; see Box and Jenkins (1976, Chapter 6) for more specific advice.



166 5 Practical Operating Procedures

5.9.5 Gridding and Spatial Mapping

5.9.5.1 Challenges in Oceanographic Gridding

Whether acquired with ships, floats, gliders or moorings, oceanographic data are
seldom arranged on a simple grid. Since gridded fields are useful for plotting, for
gradient computation, and for use in finite-difference numerical models, gridding is
a common task in oceanographic analysis. The work falls into the category of the
analysis of spatial data, a topic addressed in several different R packages; see a “task
view” on the R website.22

Although aspects of the work are general, it is prudent to keep the scientific
context in mind, to avoid unrealistic results (see, e.g., Walters 1969). For example,
when gridding hydrographic data for initializing a numerical model, it may make
sense to select a method that yields results that are reasonably consistent with model
dynamics, with density being gravitationally stable, etc. The end use of gridded
fields should also be kept in mind, e.g. a contour diagram may need more smoothing
than an image, because the eye is better at ignoring image speckle than a lacework
of contour lines.

There are also considerations relating to the sampling patterns. Consider CTD
profiles made along a ship track, for which sampling is dense in the vertical
coordinate (sub-metre for raw data) and very much sparser along the ship track
(often tens of kilometres).23 These different scales call for different approaches.
In the vertical, it is common to bin-average and then decimate to fixed depths
(Sect. 5.2.2.5), often with attention being paid to density inversions. Profiles may
then be combined in an along-track coordinate to yield gridded data, as is done by
sectionGrid() in the oce package.

The combination of separate ship (or glider) tracks raises a variety of concerns
owing to undersampling in space and time together. The ocean is so unsteady
that naive gridding between ship tracks occupied years or decades apart can yield
spurious results. Seasonality can be a particular problem, especially near the surface,
but aggregating data reasonably can help with this, e.g. with atlases based on
monthly climatologies (Levitus 1982; Levitus and Boyer 1994).

Analysts would be wise to become familiar with any gridding methods that
are particular to their own fields of study, in order to take advantage of useful
customizations of general methods (or to become aware of errors made by others).
For example, Schmidtko et al. (2013) provide valuable insights on the gridding of
hydrographic data in isopycnal and mixed-layer space. Smoothing is an important
part of that analysis, as it is of most water-column studies. By contrast, some
geological gridding methods use tessellated interpolation to respect each datum
fully, as a way to avoid such problems as smoothing over fault lines (Sambridge
et al. 1995).

22http://cran.r-project.org/web/views/Spatial.html.
23The resolution contrast holds for Argo floats as well as for ships, but not for ocean gliders.

http://cran.r-project.org/web/views/Spatial.html
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In addition to such topical reading, analysts should study the broader literature,
perhaps starting with Chapter 14 of Venables and Ripley (1999) and Chapter 4 of
Emery and Thomson (2001). Other good starting points include Bretherton et al.
(1976), Carter and Robinson (1987), and Davis (1985).

It should be noted that the statistical nature of the general gridding literature is
somewhat divorced from the oceanographic reality. For example, mid-ocean ridges
are effective barriers to water exchange, and so currents steered geostrophically
along opposite sides of a ridge can have markedly different hydrographic properties.
A person contouring a deep hydrographic field would take this into account, in
calculating local averages “by eye.” Ways to improve algorithms are addressed by
Dunn and Ridgway (2002).

5.9.5.2 Least-Squares Gridding Methods

The MASS and spatial packages provide data and functions that are useful for
illustrating least-squares spatial gridding, and analysts should strive to understand
the basic approaches these packages provide.

For example,
library(MASS)
library(spatial)
data(topo) # in MASS package

yields topo, a data frame containing elements x, y, and z. The surf.gls()
function in the spatial package may be used to fit surfaces with a generalized
least-squares method, e.g.
glsModel <- surf.gls(np=2, covmod=expcov, x=topo, d=1)

where np is the degree of the model being fitted, covmod is a function used
to calculate covariance (see the documentation for expcov() in the spatial
package), x holds the (x, y, z) data, and d is a range parameter used by expcov().

Now, it is a simple matter to set parameters, perform the calculation,
glow <- 0
ghigh <- 6.5
gn <- 50
glsPred <- prmat(glsModel, glow,ghigh,glow,ghigh,gn)

and contour the results (Fig. 5.28).
levels <- seq(0, 1000, 50)
contour(glsPred, levels=levels, labcex=1)

(The dashed contours in this figure are developed with a method explained in the
next section.)
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Fig. 5.28 Gridding the topo
dataset, with the solid and
dashed contours inferred from
surf.gls() and
interpBarnes(),
respectively. The isolated
numbers are percentage errors
for the interpBarnes()
method (see Exercise 5.27)
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5.9.5.3 Weighted-Average Gridding Methods

The surf.gls() results of the previous section can be compared easily with those
provided by the iterative method described by Barnes (1994), variants of which are
used in NOAA oceanographic atlases (see, e.g., Levitus 1982; Levitus and Boyer
1994).

b <- interpBarnes(topo$x, topo$y, topo$z,
xg=seq(glow, ghigh, length.out=gn),
yg=seq(glow, ghigh, length.out=gn))

contour(b$xg, b$yg, b$zg, lty="dashed",
levels=levels, drawlabels=FALSE, add=TRUE)

As shown in Fig. 5.28, the contoured fields from the two methods are similar,
especially in regions of relatively high data density. Since there is no theoretical
basis for either method, it is difficult to argue for one method over the other, but
there is value in using several methods on problems like this, partly to get a measure
of what might be called methodological uncertainty.

Exercise 5.27 Use the zd element of the return value from interpBarnes() to
add the percentage errors to Fig. 5.28. (See page 233 for a solution.)

5.9.5.4 Bin-Averaging Before Gridding

Gridding large datasets can be computationally expensive. The time required to cast
n data points onto a grid with Nx cells in one dimension and Ny in the second
becomes proportional to nNxNy for large values of n. With grid spacing chosen
to match the data, Nx and Ny are each proportional to

√
n, and the time estimate
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becomes n2 (see Appendix E for more on estimating computational cost). Such a
rapid increase of cost with increasing dataset size can cause problems in moving
from small test cases to practical applications.

A common solution to this problem, used, for example, in NOAA atlases, is to
reduce the size of the data set by averaging and decimating within spatial bins.
This can be done with a single pass through the data, i.e. with computation time
proportional to n. The procedure can yield such dramatic reductions in computation
time that it is the first step in many analyses of large oceanographic datasets.

Another compelling reason to bin average before gridding is to reduce biases
resulting from uneven sampling density. For example, if waters within a harbour
are sampled much more frequently than waters in the nearby ocean, the gridded
ocean results may be biased towards the harbour value. Averaging in spatial bins
could distill the harbour measurements to a single value, yielding more faithful
representations of the nearby ocean. A similar approach can be used in the time
domain, sometimes in terms of climatologies, in which data within identical seasons
or months are binned together.

Bin averaging in R may be accomplished by combining cut(), split() and
lapply(); an example for a one-dimensional grid is
set.seed(5954) # for reproducibility
x <- runif(100)
f <- x / (1 + x)
unlist(lapply(split(f, cut(x, pretty(x))), mean))

(0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] (0.8,1]
0.07984517 0.22484299 0.32744359 0.40592662 0.47635258

although it can be more straightforward to use binMean1D() from the oce
package (Exercise 5.11)

binMean1D(x, f)$result
[1] 0.07984517 0.22484299 0.32744359 0.40592662
0.47635258

For the two-dimensional case, binMean2D() is useful, as may be illustrated in
gridding the secchi dataset in the oce package. The data set holds in excess of
forty thousand observations, which is not especially large in oceanographic terms,
but it is still large enough to make gridding with interpBarnes() be slower
than desired, for interactive work.

A good first step is to show the data locations, with, e.g.,
data(coastlineWorldFine, package="ocedata")
mapPlot(coastlineWorldFine, grid=5, col="gray",

longitudelim=c(-5, 20),latitudelim=c(50, 66),
projection="+proj=lcc +lat_1=50 +lat_2=65")

data(secchi, package="ocedata")
mapPoints(secchi$longitude, secchi$latitude,
pch=20, cex=0.3)

producing the left panel of Fig. 5.29, which suggests that sample-density bias may
be an issue, the points being much more densely packed in the Baltic Sea and eastern
North Sea than in more oceanic regions.
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Fig. 5.29 Secchi depths. Left: data locations, drawn with Lambert Conformal Conic projection.
Right: contours of bin-averaged and then gridded Secchi depth

A grid with simple longitude and latitude values may be constructed with
lonGrid <- pretty(secchi$longitude, 80)
# yields 1deg spacing
latGrid <- pretty(secchi$latitude, 40)
# " 0.5deg "

and then the bin averaging may be handled with
g <- binMean2D(secchi$longitude, secchi$latitude,

secchi$depth, lonGrid, latGrid)

Before doing the gridding, it is necessary to convert the results into vectors,
which can be done with the oce function ungrid()

u <- ungrid(g$xmids, g$ymids, g$result)

after which a smoothing scale is set (here, 3 times the decimation grid) and gridding
(here, 100 × 100 geometry) is done with

asp <- 1 / cos(mean(u$y)*pi/180)
R <- 3 * diff(latGrid[1:2])
G <- interpBarnes(u$x, u$y, u$grid,

xr=asp * R * asp, yr=R,
xg=pretty(u$x, 100),
yg=pretty(u$y, 100))

The results are plotted as the right panel of Fig. 5.29 with
mapPlot(coastlineWorldFine, grid=5, col="gray",

longitudelim=c(-5, 20), latitudelim=c(50, 66),
projection="+proj=lcc +lat_1=50 +lat_2=65")

levels <- c(6, 8, 10, 12)
lty <- c(3, 1, 3, 1)
lwd <- c(1, 1, 2, 2)
mapContour(G$xg, G$yg, G$zg, lwd=lwd,
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levels=levels, lty=lty)
## redraw the land to clean up contour lines
mapPolygon(coastlineWorldFine, col="gray")
legend("bottomright", lwd=lwd, lty=lty,

legend=levels, bg="white", seg.len=4)

Detailed comparison (not shown here) suggests that the procedure represents the
data reasonably well. Also, with computation time reduced from over a minute to a
fraction of a second, the procedure is suitable for interactive analysis.

5.9.6 Differential Equations

5.9.6.1 Initial Value Problems

Consider slab-like, stress-driven flow on an f -plane, described by

du

dt
− f v = F − λu

dv

dt
+ f u = − λv

(5.19)

where u and v are velocity components in (say) the east and north directions, t is
time, f is the Coriolis parameter, F is applied stress in the x direction, and a linear
representation of bottom friction is used, with coefficient λ, assumed constant.24

Given initial conditions, i.e. u and v at t = 0, these equations may be integrated
with results as in Fig. 5.30.

The first step is to define the momentum equations, with
me <- function(t, y, parms=list(f=1e-4,
lambda=3e-5, F=1e-4))
{

u <- y[1]
v <- y[2]
dudt <- parms$F + parms$f * v - parms$lambda * u
dvdt <- -parms$f * u - parms$lambda * v
list(c(dudt, dvdt))

}

Here, y holds u and v (i.e. the present state), and parms holds the parameters f ,
λ and F . The function returns a list containing du/dt and dv/dt . These coding
patterns are explained in the documentation for lsoda in the deSolve package.

24Being linear, this system is easy to solve analytically. Even so, numerical approaches make it
easy to predict the detailed response to complicated wind stress variation, etc., and permit easy
extension to, e.g., nonlinear friction.
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Fig. 5.30 Numerical estimate of solution of ordinary differential equations for wind-driven slab
motion on a frictional f -plane

The next step is to set up initial conditions and define f , λ and F

IC <- c(0, 0)
parms <- list(f=1e-4, lambda=3e-5, F=1e-4)

after which it remains to define report times and integrate
t <- 86400 * 3 * (seq(0, 500) / 500) # 3 days
library(deSolve)
sol <- lsoda(IC, t, me, parms)

The results are plotted in Fig. 5.30 with
u <- sol[,2]
v <- sol[,3]
par(mfrow=c(1, 3), mar=c(4,4,1,1))
day <- t / 86400
plot(day, u, "l", xlab="Time [d]", ylab="u [m/s]",

ylim=c(-1.5,1.5))
plot(day, v, "l", xlab="Time [d]", ylab="v [m/s]",

ylim=c(-1.5,1.5))
plot(u, v, "l", xlab="u [m/s]",ylab="v [m/s]", asp=1)

Exercise 5.28 Construct a two-layer box model for temperature, with the top layer
subjected to a sinusoidal heat flux. Assume the boxes to be of equal thickness, and
devise a convection scheme to prevent temperature inversion. (See page 234 for a
solution.)

Exercise 5.29 Develop a numerical solution to the convection problem formulated
by Stommel (1961), dy/dt = 1 − y − (y/λ)|Rx − y| with dx/dt = δ(1 − x) −
(x/λ)|Rx − y|, where x is dimensionless salinity, y is dimensionless temperature,
t is dimensionless time, δ = 1/6, λ = 1/5 and R = 2. Draw some traces to mimic
Stommel’s Figure 7, including one starting at x = 0.55, y = 1, which approaches a
stable-spiral attractor. (See page 234 for a solution.)
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5.9.6.2 Boundary Value Problems

Consider the Ekman spiral equations

− f v = Av

d2u

dz2
and f u = Av

d2v

dz2
(5.20)

where u and v are the horizontal components of velocity, f is the Coriolis parameter,
and Av is a turbulent viscosity, assumed to be constant with respect to the vertical
coordinate z. If a constant wind stress τ aligns with y, stress continuity yields
surface boundary conditions

du

dz
= 0 and

dv

dz
= τ

ρAv

(5.21)

at z = 0. Velocity vanishes far below the surface, so u → 0 and v → 0 as z → −∞.
Nondimensionalization yields similar equations, but without f , Av , τ and ρ.

Converting second-order derivatives into coupled first-order derivatives, with shears
denoted as Sx and Sy , the dynamical equations become

du

dz
= Sx,

dv

dz
= Sy,

dSx

dz
= −v, and

dSy

dz
= u (5.22)

with boundary conditions Sx = 0 and Sy = 1 at z = 0, along with u → 0 and
v → 0 for z → −∞.

The first step to a solution is to define a function returning the derivatives, e.g. if
y contains (u, v, Sx, Sy) then the following suffices

func <- function(z, y, parms)
{

return(list(c(y[3], y[4], -y[2], y[1])))
}

Using bvptwp() from the bvpSolve package for this 2-point boundary value
problem requires stating conditions at an initial point (z → −∞), i.e.

yini <- c(0, 0, NA, NA)

indicates that velocities vanish in the deep water. (No statement need be made about
shears Sx and Sy there, so NA is used.) Velocities are left to be undetermined at the
surface, but shears must be specified there

yend <- c(NA, NA, 0, 1)

A solution may now be found with bvptwp(), but as a practical matter it cannot
cover the range −∞ < z < 0 but must instead cover a finite range, e.g. a solution
for −10 < z < 0 may be found with

z <- seq(-10, 0, 0.1)
library(bvpSolve)
res <- bvptwp(yini=yini, yend=yend, x=z, func=func)
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Fig. 5.31 Numerical solution to the Ekman spiral

after which res is a matrix of 5 columns, one for the independent coordinate z, and
the others for u, v, Sx , and Sy .

The following displays the solution as Fig. 5.31, using both profiles and a
hodograph

par(mfrow=c(1, 2))
plot(res[,2], res[,1], type="l",xlim=range(res[,2:3]),

xlab="u, v", ylab="z")
legend("bottomright", lty=c("solid","dashed"),

legend=c("u", "v"),bg="white")
lines(res[,3], res[,1], lty="dashed")
plot(res[,2], res[,3], type="p", asp=1,
xlab="u", ylab="v")

Note the spiralling form of the hodograph, hence the name of this situation.

5.9.6.3 Partial Differential Equations

In a seminal paper, Henry Stommel suggested that the variation of the Coriolis
parameter with latitude provides an explanation for the narrowness and swiftness
of currents such as the Gulf Stream (Stommel 1948). A nondimensional form of the
relevant partial differential equation for the streamfunction ψ (from which velocities
can be computed) is

∂2ψ

∂x2 + ∂2ψ

∂y2 + α
∂ψ

∂x
= γ sin(πy) (5.23)

where x and y are coordinates aligned to the east and north, the sinusoidal term
with γ a constant describes the dependence of eastward wind stress on y, and α is
proportional to df/dy, where f is the Coriolis parameter. The boundary condition
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ψ = 0 (meaning no flow out of the domain) is applied at x = 0, x = A, y = 0 and
y = 1, where A is the domain aspect ratio.

This system can be solved numerically using tran.2D() and steady.2D()
from the ReacTran and rootSolve packages, loaded with

library(ReacTran)
library(rootSolve)

A grid with aspect ratio as in Stommel (1948) may be created with
n <- 100
xg <- seq(0, 1.6, length.out=n)
yg <- seq(0, 1, length.out=n)
dx <- diff(xg[1:2])
dy <- diff(yg[1:2])

It is necessary to set up a function for ∂ψ/∂t in a related dynamical system that
has as its steady-state solution the ψ field sought here25:

de <- function(t, y, parms)
{

pmat <- matrix(y, nrow=n, ncol=n)
p <- tran.2D(pmat, D.x=1, D.y=1,

dx=dx, dy=dy, v.x=-parms$alpha,
C.x.up=0, C.x.down=0, C.y.up=0,
C.y.down=0)

windForcing <- matrix(parms$gamma * sin(pi * yg),
nrow=n, ncol=n, byrow=TRUE)

dP <- p$dC + windForcing
return(list(as.vector(dP)))

}

The y argument is a vector of the solution, which is converted to a matrix so
tran.2D() can calculate ∂2ψ/∂x2 + ∂2ψ/∂y2 + α∂ψ/∂x.

After defining a matrix of (somewhat arbitrary) initial conditions
p0 <- matrix(0, nrow=n, ncol=n)

it remains to set up the details of a particular situation, here with parms chosen to
mimic Figure 5 of Stommel (1948), and then to solve for a steady state and display
the results as in Fig. 5.32,

p <- steady.2D(y=p0, func=de, parms=list(alpha=50,
gamma=2e3), dimens=c(n, n), lrw=1e+6)

sol <- matrix(p$y, nrow=n, ncol=n)
contour(xg, yg, sol, labcex=1,

xaxs="i", yaxs="i", asp=1,
levels=seq(10, 40, 10))

25See Soetaert et al. (2010) and Chapter 3 of Soetaert and Herman (2009) for the mathematical
concepts and framework of the R solution method.
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Fig. 5.32 Numerical solution
of a nondimensional form of
the Stommel (1948) equations
for the streamfunction for
wind-driven ocean circulation
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which is a clear display of the western intensification of circulation that was a key
finding of the Stommel (1948) analysis.

5.9.7 Optimization

Numerical optimization of a function f = f (x1, x1, . . . ) amounts to finding values
of x1, x2, . . . for which the value of f is either a minimum or maximum in some
neighbourhood. There are many ways to accomplish this (see, e.g., Nocedal and
Wright 1999), and several are provided by R with the one-dimensional function
optimize() and the more complicated multi-dimensional function optim().
Since optimize() has been treated already (e.g. in Sect. 2.3.11.4), the present
section focuses on optim().

The goal is an attempt to infer geographic location from sunrise and sunset times,
which may be possible because of an intersection of the edges of the illuminated
earth during the two events. (This fails at the equinoxes because then the edges of the
illuminated half-spheres trace longitude lines.) Solar elevations may be computed
with sunAngle() in the oce package, and combining this with optim() might
permit location estimation based on sunrise and sunset times.

For example, consider Halifax, Nova Scotia, on Canada Day of the year 2017,
when the sun rose at 5:33AM and fell at 9:03PM. These times, which are rounded
to the nearest minute, may be represented in R with

library(lubridate)
tr <- with_tz(as.POSIXct("2017-07-01 05:33:00",

"America/Halifax"), "UTC")
ts <- with_tz(as.POSIXct("2017-07-01 21:03:00",

"America/Halifax"), "UTC")

where with_tz() from the lubridate package provides a convenient way to
switch from the local timezone to UTC. Halifax is shown with a circle in Fig. 5.33,
constructed with

LAT <- 44+38/60
LON <- -(63+35/60)
data(coastlineWorldFine, package="ocedata")
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Fig. 5.33 Result of using
optim() to infer locations
from sunrise and sunset times
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plot(coastlineWorldFine, span=250,
clongitude=LON, clatitude=LAT)

points(LON, LAT, cex=3, lwd=3)

The question is whether the sunrise and sunset times, rounded to the nearest
minute, can yield a location close to the actual value, at this time of year. A function
giving the sum of squared solar angles above the horizon is

fn <- function(ll) {
r <- sunAngle(tr,ll[1],ll[2],
useRefraction=TRUE)$altitude
s <- sunAngle(ts,ll[1],ll[2],
useRefraction=TRUE)$altitude
r^2 + s^2

}

With this, a solution is found and indicated in Fig. 5.33 with
o <- optim(c(0, 0), fn)
points(o$par[1], o$par[2], pch=2, cex=3, lwd=3)
legend("bottomright", pch=1:2, legend=c("Actual",
"Inferred"))

The inferred location is within about 10 km of the actual value. (This example can be
a good way to get children interested in the world around them, and even in history
(see, e.g., Sobel 1995).)

Exercise 5.30 In her 1972 song “You’re so vain,” Carly Simon mentions flying to
Nova Scotia to view a solar eclipse. Determine the time of that eclipse, assuming
that it occurred on March 7, 1970. Use optimize() with the oce functions
moonAngle() and sunAngle(). (See page 235 for a solution.)

5.9.8 Eigenanalysis Methods

Eigenanalysis is employed in many fields of study, and this enables advantageous
cross-fertilization. For example, the Bretherton et al. (1992) discussion of ways to
discover coupled patterns in climate data has clear analogies with oceanographic
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applications. R makes eigenanalysis easy, as will be illustrated here with sketches
of three common tasks: principal component analysis, empirical orthogonal function
decomposition, and modal decomposition.

5.9.8.1 Principal Component Analysis

Principal component analysis (PCA) is a common operation in oceanography. The
method may be easiest to understand for (x, y) data, which can be illustrated with
horizontal components of velocity in the adp dataset that comes with the oce
package.

Out of general interest, a sensible first step may be to display the data as in the
left panels of Fig. 5.34, with

data(adp, package="oce")
##'scale' for equal zero-centred scales on each panel
scale <- max(abs(adp[["v"]][,,1:2]), na.rm=TRUE)
plot(adp, which=1:2, drawTimeRange=FALSE,

mar=c(2,3,1,1), zlim=scale*c(-1, 1))

revealing high similarity in patterns, which is not surprising in a tidal estuary. PCA
provides a way to determine the dominant flow direction. The zone between 20 m
and 30 m from the sensor will be analysed to avoid spurious data near the top of
the water column. Velocity is in a three-dimensional matrix within adp, so the
horizontal components in the focus zone may be extracted and plotted as in the
right panel of Fig. 5.34 with

U <- adp[["v"]]
iDepth <- 20 <= adp[["distance"]] &
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Fig. 5.34 Left: time and distance variation of the eastward and northward velocities in the adp
dataset. The grey patches near the tops of the panels indicate poor data quality near the surface,
revealing a tidal variation in water depth. Right: Principal component analysis of horizontal
components of velocity measured 20 m to 30 m from the instrument
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adp[["distance"]] <= 30
east <- as.vector(U[, iDepth, 1])
north <- as.vector(U[, iDepth, 2])
plot(east, north, asp=1, col="gray")

The PCA procedure is a simple matter of using eigen() for an eigenanalysis of a
covariance matrix created with cov(), as follows:

C <- cov(data.frame(east, north), use="complete.obs")
e <- eigen(C)

after which print(e) reveals that the first eigenvalue is much larger than the
second, indicating the thinness of the current ellipse. This can be shown by drawing
a scaled principle axes cross in Fig. 5.34, with

S <- sqrt(e$values)
E <- e$vectors
me <- mean(east, na.rm=TRUE)
mn <- mean(north, na.rm=TRUE)
lines(me+c(-1,1)*S[1]*E[1,1],
mn+c(-1,1)*S[1]*E[2,1], lwd=3)
lines(me+c(-1,1)*S[2]*E[1,2],
mn+c(-1,1)*S[2]*E[2,2], lwd=3)

The angle of the major principal-component axis is
angle <- atan2(E[2,1], E[1,1]) * 180 / pi

i.e., 55.2◦ anticlockwise from east (see Fig. 5.10 for geographical context).
Although using cov() and eigen() is simple, and perhaps preferred by those

experienced in linear algebra, the operations can be handled with prcomp(),
which has the advantage of associated functions, notably biplot().

5.9.8.2 Empirical Orthogonal Functions

Empirical orthogonal functions (EOFs) came into common use in meteorology in
the 1980s (Wallace and Dickinson 1972; North et al. 1982; North 1984; Barnett and
Hasselmann 1979). The basic idea is to form a basis set from the eigenvectors of
a covariance matrix. The eigenvectors are often called “modes” although they need
not bear any relationship to physical modes.

The adp dataset used in the previous section can also be used to illustrate EOF
analysis. As noted before, the data for the top several meters of the water column
are spurious, and so it makes sense to trim them with

adp2 <- subset(adp, distance < 38)

Now, an EOF decomposition of the depth dependence of the eastward velocity
component is done with

u <- adp2[["v"]][,,1]
e <- eigen(cov(u))
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Fig. 5.35 Empirical orthogonal function analysis of the adp dataset. Left: shapes of modes 1, 2
and 3 (solid, dashed and dotted). Right: variation of mode amplitude with time

The eigenvectors give the modes and the eigenvalues give the variance explained
by them. Computing

sum(e$values[1:3]) / sum(e$values)
[1] 0.9781308

shows that the first 3 modes hold most of the overall variance. These are isolated
with

mode1 <- e$vectors[,1]
mode2 <- e$vectors[,2]
mode3 <- e$vectors[,3]

and plotted in the left panel of Fig. 5.35 with
distance <- adp2[["distance"]]
plot(mode1, distance, type="l", xlim=c(-1,1)/4,

xlab="Modal Shape", ylab="Distance [m]")
lines(mode2, distance, lty=2)
lines(mode3, distance, lty=3)

The temporal variation of modal amplitude is calculated by projecting the modes
onto the data

a1 <- (u %*% e$vectors[,1])[,1]
a2 <- (u %*% e$vectors[,2])[,1]
a3 <- (u %*% e$vectors[,3])[,1]

The mode amplitudes are plotted in the right panel of Fig. 5.35 with
time <- adp2[["time"]]
oce.plot.ts(time, a1, ylab="Amplitude",
drawTimeRange=FALSE)
lines(time, a2, lty=2)
lines(time, a3, lty=3)

A common use of empirical orthogonal function analysis is to construct simpli-
fied models of observed variability. For example, a simplified model with the first
3 modes of the data under consideration can be constructed and plotted in Fig. 5.36
with

U <- t(outer(mode1,a1) + outer(mode2,a2)
+ outer(mode3,a3))
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Fig. 5.36 Two-mode EOF reconstruction of adp dataset (left) compared with data (right).
Contours at interval 0.25 m/s, with negatives dotted and zero highlighted

contour(time, distance, U,
levels=seq(-2, -0.25, 0.25),

lty=3, drawlabels=FALSE)

plus other contour() calls distinguishing zero and positive values by line
width and type. The right panel is constructed similarly, but for the actual data.
Comparison reveals that these three modes capture the main patterns, which is as
expected, given the fraction of variance they explain.

Exercise 5.31 Use svd() to apply the singular value decomposition to the adp
dataset. (See page 236 for a solution.)

5.9.8.3 Dynamical (Internal Wave) Modes

Under certain conditions, the vertical isopycnal displacement φ = φ(z) associated
with internal waves may be described by

1

N2

d2φ

dz2 + 1

C2 φ = 0 (5.24)

where N2 = −(g/ρ)∂ρ/∂z is the square of the buoyancy frequency and C

is a scalar that yields the horizontal propagation speed (“celerity”) of a modal
solution (see, e.g., Cushman-Roisin and Beckers (2011, Section 13.4) or Gill (1982,
Section 6.11)). Assuming no displacement through the mean surface at z = 0 and at
the (assumed flat) bottom at z = −H , the boundary conditions are φ = 0 at z = 0
and z = −H .

Equation (5.24) may be expressed in finite-difference form as

1

N2
i Δz2

(φi−1 − 2φi + φi+1) + 1

C2 φi = 0 (5.25)

where Δz is the distance between the levels and i indexes those levels. In matrix
notation, introducing di = 1/(NiΔz)2 for brevity, this is
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This equation is of the form Dφ = λφ, in which D is a dynamics matrix, φ

is an eigenvector and λ = −C−2 is an eigenvalue. A solution may be found with
eigen(). For example, a hyperbolic-tangent stratification is defined and plotted in
the left panel of Fig. 5.37 with

z <- seq(-100, 0, 1)
rho <- 1026.5 - 0.5*tanh((z+25)/10)
par(mfrow=c(1, 2))
plot(rho, z, type="l", xlab="Density")

For such a smooth profile, N2 could be computed by first difference, but to
illustrate a useful step for noisy data, smooth.spline() may be can be used
before first-differencing

spline <- smooth.spline(z, rho)
Rho <- predict(spline)
lines(Rho$y, Rho$x, lty=2, lwd=2)

The two lines coincide in Fig. 5.37, as expected. However, with more ragged
profiles, or simply for greater control, an analyst might consider providing
smooth.spline() with more arguments to control the smoothing, e.g. df
to set the number of degrees of freedom. Once an acceptable model profile is
established, the required derivatives can be found with the predict() function
for a smoothing spline, e.g.
DZ <- 2
Z <- seq(min(z), max(z), DZ)
N2 <- -9.8 / mean(rho) * predict(spline, Z, deriv=1)$y

where Z is the desired computation grid. Now, D may be constructed with
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n <- length(N2)
d <- 1 / (N2 * DZ^2)
D <- matrix(0, nrow=n, ncol=n)
for (r in 1:n) {

D[r, max(1, r-1)] <- d[r]
D[r, r] <- -2*d[r]
D[r, min(n, r+1)] <- d[r]

}

where max() and min() prevent overstepping the matrix limits. The actual
decomposition into dynamical modes is simple, with

e <- eigen(D)

As in the previous section, e is now a list holding eigenvalues and eigenvectors.
Physical interpretation is simplified if the eigenvectors are ordered by speed
(ignoring eigenvalues of nonphysical sign), and if the mode shapes are normalized.
The results of

C <- ifelse(e$values < 0, sqrt(-1/e$values), 0)
o <- order(C, decreasing=TRUE)
C <- C[o]
modes <- e$vectors[,o]
for (i in 1:dim(modes)[2])

modes[,i] <- modes[,i] / max(abs(modes[,i]))
plot(modes[,1], Z, xlim=c(-1,1), type="l",

xlab="Modes 1 and 2")
lines(modes[,2], Z, lty="dashed")

are shown in Fig. 5.37. Note that the first of these modes has one lobe, that the
second has two, and that each shape might be seen as a stretched version of the
corresponding sinusoidal mode resulting from constant stratification.

Exercise 5.32 Explore the accuracy of this method by adjusting Δz with the case
of constant N = 0.01s−1. (See page 237 for a solution.)

5.9.9 Neural Networks and Machine Learning

A neural network is a pattern-recognition technique that is modelled loosely on
assemblages of biological neurons. The basic idea is that signals pass between
neurons via nonlinear processes, and that tailoring those processes can create a
system that maps certain input patterns to certain output values. For example, an
input signal might be a listing of water properties at each level within a CTD profile,
and the output might be a Boolean value indicating whether the CTD had passed
through an overturning eddy (see, e.g., Galbraith and Kelley 1996). Importantly, the
analyst is not required to devise a conventional algorithm to identify the pattern of
interest. The procedure demands only a decision about network geometry and then
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the provision of a training set with adequate sampling of situations that may come
up in applications.

Neural networks can be helpful in tasks ranging from plankton identification
based on flow cytometry (Boddy et al. 1994, 2000) and digital holographic
microscopy (Missan et al. 2018) to El Niño prediction based on large-scale
atmospheric and oceanic properties (Tangang et al. 1998; Wu et al. 2006). An
early introduction to the use of neural networks in meteorology and physical
oceanography was given by Hsieh and Tang (1998), and the later textbook by Hsieh
(2009) provides updates and further details.

Caution should be exercised in approaching the literature on neural networks,
given an occasional tendency to exaggerate the power of the method (see, e.g.,
Hutson 2018). This tendency has been remarked upon since the early days of
research in this field; see Ripley (1994) and Ripley (1996) for wide-ranging insights
on this and related matters, especially in the statistical context.

There are several ways to perform neural network analysis in R. Bergmeir and
Benítez (2012) provide a good entry to the topic, as well as a helpful comparison of
some of the popular packages. Here, the nnet package will be used for illustration,
partly because it is discussed in some detail within the important textbook by
Venables and Ripley (1999).

Consider the drag dataset, which contains drag-coefficient data digitized from
Garratt (1977, Figure 3). As discussed in Sect. 2.3.7, the contents consist of
measurements of drag coefficient CD , at different wind speeds U , made with two
different methods. A neural network expressing Cd as a function of U and method
may be constructed with

data(drag, package="ocedata")
library(nnet)
n <- nnet(1000*Cd~U+method, data=drag,

size=2, linout=TRUE, decay=1e-2,
maxit=1000)

The first nnet() argument is a formula expressing the relationship (for variables
within the second argument), which in this case scales CD so it will be of order 1,
to prevent the optimizing function used by nnet() from having difficulties finding
a solution. Note that the formula should not be read as a regression formula; it
indicates merely that CD depends in some way on U and method. The size value
controls the network size. The linout argument specifies that the output should
be linear, as opposed to logistic, the latter being better for classification problems.
Adjusting decay can prevent overfitting. The number of iterations is set by maxit.
Other nnet() arguments are explained in its documentation and in Sections 9.4
and 11.6 of Venables and Ripley (1999).
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The CD prediction is compared with observations in the left panel of Fig. 5.38,
created with

pch <- ifelse(drag$method=="eddy", 2, 1)
plot(drag$Cd, 1e-3*predict(n), asp=1, pch=pch,

xlab=expression(C[D]*" (obs)"),
ylab=expression(C[D]*" (pred)"))

abline(0, 1)

The right panel of Fig. 5.38, created with
plot(drag$U, drag$Cd, pch=pch,

xlab="U [m/s]", ylab=expression(C[D]))
U <- seq(0, 30, 0.2)
lines(U, 1e-3*predict(n, list(U=U,
method="profile")))
lines(U, 1e-3*predict(n, list(U=U,
method="eddy")), lty=2)

illustrates that the predictions run smoothly through the experimental data, distin-
guishing between the profile and eddy inference methods.

In this and other simple prediction cases, a single-layer network such as
that made available with nnet() may be sufficient. However, more challenging
pattern-recognition problems can benefit from multiple layers, as are provided by
neuralnet and other systems in R.

Since machine learning is an area of active research, a good starting point for R
methodologies is the CRAN task view dedicated to the topic,26 because it is updated
frequently. Of particular interest for challenging pattern recognition problems is
the advent of deep learning techniques, a topic for which (LeCun et al. 2015)

26https://cran.r-project.org/web/views/MachineLearning.html.

https://cran.r-project.org/web/views/MachineLearning.html
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provide an excellent introduction. In that connection, it is worth pointing out that the
tensorflow package links R with the TensorFlow system,27 a machine learning
library that has seen wide application in both scientific research and commercial
products, since Google released it with an open-source licence in late 2015.

Exercise 5.33 Create a neural network to describe the variation of sound speed with
pressure, for station 103 of the section dataset, exploring the effect of variable
transformation on reproducibility. (See page 237 for a solution.)

27https://www.tensorflow.org.

https://www.tensorflow.org


Chapter 6
Solutions

Abstract This chapter presents potential solutions to the exercises presented in the
previous chapters, along with additional discussion of related issues. The exercises
range widely in complexity, with even the most basic being worthy of some
attention. For example, readers who take the first exercise seriously will learn not
just how to construct simple linegraphs, but also how to read R documentation, and
that is a skill that can pay off in more sophisticated applications such as mapping
the classic Endeavour cruise, as shown in Fig. 6.1.

6.1 Exercises in Chap. 2

Exercise 2.1 on page 7. Type help(plot) in a console, and use the results to see
how to draw a line graph instead of a scatter plot.
Solution. The result of typing the indicated text in an R console is a “help” page.
Reasoning that the solution is likely to lie in an argument to plot(), a clever reader
will skip to the documentation section dealing with arguments, and see the solution
quickly:

plot(xy[,1], xy[,2], type="l")

gives a line graph. Readers should also try other type options: "s" for a staircase
pattern, "h" for a staircase with vertical lines (as in a histogram), "b" for both
points and lines, the latter drawn with spaces adjacent to the points, and "o" for
over-plotting of points and lines.

Exercise 2.2 on page 8. Consult the documentation for read.table(), to see
how to indicate that the first line of the file contains a line with the names of the
columns.
Solution. Typing help(read.table) produces results that are a bit daunting,
but simpler than they may seem at first. The “Usage” section lists read.table()
and some other functions that are similar enough to be grouped together. Focussing
just on read.table(), one sees that the arguments are named file, header,
sep and so on. As in the previous exercise, these are explained in the “Arguments”
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Fig. 6.1 H.M.S. Endeavour cruise, 1768–1771, shown in Robinson projection. (See Page 210 for
the R code that creates this diagram)

section. Clearly, file can be a file name, so there is no need (yet) to study the rest
of the information on that argument. The next argument is header, which is “a
logical value indicating whether the file contains the names of the variables on its
first line”. This reveals that the solution lies in adding one more argument:

xy <- read.table("xy.dat", header=TRUE)

Exercise 2.3 on page 8. Use the mfrow argument of par() to draw multi-panel
plots in R, emulating the Matlab subplot command.
Solution. A great deal of information is provided by help(par), but readers who
did the last two exercises will know that R documentation follows a fixed format that
makes skimming easy, revealing that, e.g., par(mfrow=c(3,2)) gets R ready to
plot a six-panel plot with 3 rows and 2 columns. What happens is that the next six
plots are drawn on this grid, with the top row being filled up first. (By contrast,
par(mfcol=c(3,2)) fills the grid by columns.) Readers who are familiar with
Matlab should note that no further commands are needed to specify where to place
the plots, which may be a plus, but that finished panels cannot be revised, which is
certainly a minus.

Exercise 2.4 on page 8. Use outer() to emulate the Matlab function meshgrid.
Solution. Near the start of the documentation for outer(), one reads “The
outer product of the arrays X and Y is the array A with dimension c(dim(X),
dim(Y)) where element A[c(arrayindex.x, arrayindex.y)] =
FUN(X[arrayindex.x], Y[arrayindex.y], ...)”. This deserves
some thought. The documentation for dim() reveals that it returns the dimension of
its argument. So, given vector values of X and Y, A is a matrix with as many columns
as items in X. A similar statement holds for the rows. The function FUN is provided
by the user. The use of “dummy” variables arrayindex.x and arrayindex.y
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indicates that FUN will be called sequentially, for all combinations of X and Y. For
example, the Matlab code

x = 0:2:100;
y = 0:2:100;
[X, Y] = meshgrid(x, y);
z = exp(-((X-50).^2 + (Y-50).^2)/100);

defines a grid for x and one for y, then creates a peaked function centred at the
midpoints of x and y. In R, vectors can be built with seq()

x <- seq(0, 100, 2)
y <- seq(0, 100, 2)

and outer() can build the desired matrix, e.g.
f <- function(x,y) {

distanceSquared <- (x - 50)^2 + (y - 50)^2
radiusSquared <- 10^2
return(exp(- distanceSquared / radiusSquared))

}
z <- outer(x, y, f)

This shows an important difference between R and Matlab notation. In Matlab, a
dot is used as a prefix for operators to be applied element by element (e.g. “.”
precedes “^” in the example above). In R, it is the matrix operations that get syntax
decorations, e.g. %*% is an inner product.

Exercise 2.5 on page 12. Use help.find() to find an R package that accesses
the www.geonames.org website, and thus locate Halifax, Nova Scotia.
Solution. Using

help.search("geonames")

reveals the geonames package. Its documentation suggests that GNsearch()
provides a solution, viz.

library(geonames)
GNsearch(q="halifax canada", maxRows=1)

although it must be noted that this will not work without first registering as a user
on the geonames website.1

Exercise 2.6 on page 14. Use cumsum() to monitor the convergence of the Taylor
series for exp().
Solution. This is a simple matter of replacing sum() with cumsum(), and using
exp() for the comparison, e.g.

cumsum(0.1^(0:4) / factorial(0:4)) / exp(0.1)
[1] 0.9048374 0.9953212 0.9998453 0.9999962 0.9999999

illustrates quick convergence with small |x|.

1http://www.geonames.org.

www.geonames.org
http://www.geonames.org
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Exercise 2.7 on page 17. Use == to find your computer’s precision, i.e. the smallest
resolvable difference between floating-point values.
Solution. The fact that

(1 + 1e-20) == 1

returns TRUE suggests that the precision is coarser than 10−20, while a similar test
shows it is finer than 10−10. Rather than continue with trial values, it makes sense
to construct a function that changes sign as the logical expression changes, and to
use uniroot() to find the zero of this function; thus,

fcn <- function(x) ifelse((1+10^x)==1, -1, 1)
log10(10^uniroot(fcn, lower=-20, upper=-10)$root)
[1] -15.95451

shows the machine has precision of order 10−16, as expected for a 64-bit CPU using
IEEE-754 double-precision arithmetic (IEEE Computer Society 2008). See the next
exercise for practical implications.

Exercise 2.8 on page 17. Explain why all.equal() is good way to compare
floating-point values.
Solution. The accuracy of real-world calculation tends to be much worse than
machine precision. This is why the comparison function all.equal() uses the
square root of machine precision as the default for its tolerance argument. On
the author’s computer, that default is 1.5 × 10−8, but the value could be different on
different machines. This tailoring to the computer yields important code portability.
Another strength of all.equal() is the convenience afforded by its specialized
versions for different data types. Serious analysts use all.equal() liberally and
take the time to study its documentation.

Exercise 2.9 on page 19. A directory contains Biosonics echosounder files, with
names indicating start times, with four digits for year, two for month and two for
day, followed by an underline and then two digits for hour, two for minute, and two
for second, ending with .dt4. Use grep() to isolate data starting between 1100 h
and 1500 h on June 28th, 2008.
Solution. A solution is

f <- list.files(".")
files <- f[grep("^20080628_1[1234].*dt4$", f)]

Exercise 2.10 on page 25. Use floor() to select even integers from a vector.
Solution. We may use floor() and a multiplication-division pair to test for even
numbers, as suggested

v <- 1:10
v[2*floor(v/2) == v]
[1] 2 4 6 8 10

while another way is to use %% for modulo division
v[v%%2 == 0]
[1] 2 4 6 8 10
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Exercise 2.11 on page 28. Write a function to find the indices of the maximal value
of a matrix.
Solution. A solution is

which.max2 <- function(m)
{

ij <- which.max(m)
ni <- dim(m)[1]
j <- ceiling(ij / ni)
i <- ij - (j - 1) * ni
list(i=i, j=j)

}

and a demonstration with a coarse bathymetry file is
data(topoWorld, package="oce")
w <- which.max2(-topoWorld[["z"]])
topoWorld[["longitude"]][w$i] # near Challenger Deep
[1] 144.5

topoWorld[["latitude"]][w$j]

[1] 12

Exercise 2.12 on page 28. Show how to access a list within a list.
Solution. A sample list, with information on two ocean weather stations, is

ows <- list(name=c("Bravo", "Papa"),
location=list(latitude=c(57, 50),

longitude=c(-50, -150)))

Suppose the task is to change longitude from degrees east to degrees west. In the
dollar-sign notation, this can be done with

ows$location$longitude <- -ows$location$longitude

or with
ows[[2]][[2]] <- -ows[[2]][[2]]

in bracket notation, or with
ows[[2]]$longitude <- -ows[[2]]$longitude

in combined notation; see help("[").

Exercise 2.13 on page 31. Use factor() and split() to identify the months
in which the Keeling CO2 signal rises and falls.
Solution. R provides a dataset of Mauna Loa CO2 concentration,2 and

data(co2)
t <- time(co2)
dco2dt <- diff(co2) / diff(t)
## Shorten t and co2 to match length of dco2dt

2More detailed and up-to-date measurements of Manua Loa CO2 concentration are provided at the
Scripps website https://scripps.ucsd.edu/programs/keelingcurve/.

https://scripps.ucsd.edu/programs/keelingcurve/
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Fig. 6.2 Months in which Mauna Loa co2 rises and falls. (Exercise 2.13)

t <- t[-1]
co2 <- co2[-1]

isolates time and a first-difference estimate of d CO2/dt . A factor identifying rising
and falling concentration is calculated with

fac <- factor(dco2dt > 0, levels=c(TRUE, FALSE),
labels=c("rising", "falling"))

after which the monthly histograms in Fig. 6.2 may be created with
month <- 1 + round(12*t%%1)# %% gets fraction of year
d <- data.frame(t, co2, month)
ds <- split(d, fac)
hist(ds$rising$month, breaks=1:12,

xlab="Month", main="", axes=FALSE)
## Label by month name instead of number
axis(1, at=1:12, label=format(ISOdate(2018,1:12,1),

"%b"))
axis(2)
mtext("CO2 rising", side=3)

and similar for ds$falling. The transition indicates peak concentration in May,
as revealed in the seminal paper by Keeling (1960), just a few years into his
important measurement program.

Exercise 2.14 on page 32. Construct a data frame with column x containing
numbers from 0 to 2π , and y containing sin x.
Solution.

x <- seq(0, 2*pi, length.out=100)
y <- sin(x)
df <- data.frame(x=x, y=y)

Exercise 2.15 on page 32. Append volume to the oceans dataset from the
ocedata package.
Solution. A solution follows; note use of names()

data(oceans, package="ocedata")
names(oceans) # note that 'Volume' is not there
oceans$Volume <- oceans$Area * oceans$AvgDepth
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Exercise 2.16 on page 32. Suppose a data frame contains CTD data for a series
of stations, with columns for salinity, temperature, pressure, and station ID. Use
split() and factor() to create a list with one element per station.
Solution. To illustrate, construct some fake data in two stations, one with two data
levels, the other with three.

d <- data.frame(stn=c(1, 1, 2, 2, 2),
S=c(33.1, 33.2, 35.1, 35.2, 35.3),
T=c(10.1, 10.2, 15.1, 15.2, 15.3),
p=c(1, 2, 1, 2, 3))

Now, use factor() and split() to create a list that will contain two items
stations <- split(d, factor(d$stn))

Exercise 2.17 on page 35. Devise a function using ifelse that returns the
tangential velocity in a Rankine vortex.
Solution. This is defined by rΓ/(2πR2) for r ≤ R and Γ/(2πr) otherwise:

rankine <- function(r, R, Gamma)
ifelse(r < R, Gamma*r/(2*pi*R^2), Gamma/(2*pi*r))

Exercise 2.18 on page 36. Use uniroot() and coriolis() from the oce
package, to find the critical latitude at which the Coriolis parameter f matches the
M2 tidal frequency (12.4206 h period).
Solution. We must find the root φ0 of the function f (φ) − ω, where f = f (φ)

expresses the dependence of the Coriolis parameter on latitude φ, i.e.
uniroot(f=function(lat) (2*pi/12.4206/3600)

- coriolis(lat), lower=0, upper=90)$root
[1] 74.47185

As an aside, the periods of common tidal frequencies can be found with the dataset
named tidedata in the oce package, e.g.

data(tidedata, package="oce")
1 / subset(tidedata$const, "M2"==name)$freq
[1] 12.4206

Exercise 2.19 on page 36. Use uniroot() to create a function that calculates
linear gravity wave speed as a function of period.
Solution. Linear theory yields an implicit equation for phase speed cp in terms of
period τ , depth H and gravitational acceleration g

0 = cp − gτ

2π
tanh

2πH

τcp

(6.1)

so that finding the root using uniroot() yields the desired function
cp <- function(tau, H, g=9.8)

uniroot(function(x) x - g*tau/(2*pi)*tanh(2*pi*H/
(tau*x)), interval=c(0, 100))$root
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Exercise 2.20 on page 37. Create a function closure for individualized calibration
of Seabird thermistors.
Solution. These thermistors are connected to systems that produce a signal of
frequency that varies inversely with electrical resistance.3 Temperature T (◦C) is
assumed to be related to frequency f (Hz) by a Steinhart-Hart equation

T = −273.15 + 1/[g + h ln(f0/f ) + i ln2(f0/f ) + j ln3(f0/f )] (6.2)

where f0 = 1000 Hz is a constant, and g, h, i and j are calibration coefficients for
individual thermistors. Expressing this as

Tcal <- function(g, h, i, j, f0=1000) {
function(f) {

ff <- log(f0 / f)
-273.15 + 1 / (g + h*ff + i*ff^2 + j*ff^3)

}
}

i.e., as a function that returns another function, yields a way to create customized
calibrations, based on the particular values of g, h, i and j for individual thermistors,
e.g.

T2132 <- Tcal(g=4.12744629e-3, h=6.26321187e-4,
i=2.05376982e-5, j=2.13741203e-6)

creates a function for inferring temperature from Seabird thermistor serial number
2132, mentioned in the footnote, e.g. T2132(3180.886) yields 18.6605 ◦C (cf.
calibration-bath temperature 18.6607 ◦C). Using a function closure means that the
coefficients appear just once in the code, reducing the burden of keeping track of
which set of coefficients to use for a given thermistor under analysis.

Exercise 2.21 on page 40. Write a loop that displays the values of items in the
current workspace, using ls() and get().
Solution. A for loop is a good way to handle this.4 Note the use of an odd name
(.anItem) to avoid printing the index of the loop.

for (.anItem in ls()) {
if (.anItem != ".anItem") {

cat(.anItem, "\n")
print(get(.anItem))
cat("\n")

}
}

Exercise 2.22 on page 41. Extract velocity from the oce dataset adp, and plot
distance-averaged beam-1 velocity versus time.

3See http://www.seabird.com/sbe3plus-ctd-temperature-sensor for more on Seabird thermistors
and their calibration.
4A function to do this would need to use ls(envir=parent.frame()) to access variables
in the calling environment.

http://www.seabird.com/sbe3plus-ctd-temperature-sensor


6.1 Exercises in Chap. 2 195

01:00 06:00 11:00 16:00 21:00

−0
.4

0.
0

0.
4

Time

Av
g 

Be
am

 1
 v

el
o

Time

co
2

1960 1970 1980 1990

32
0

34
0

36
0

Fig. 6.3 Results from Exercises 2.22 and 2.23

Solution. Some exploration with str() reveals the names of the relevant quanti-
ties, which may be extracted

data(adp, package="oce")
t <- adp[["time"]]
v <- adp[["v"]]

Then, after checking dimensional matchup with
length(t)
[1] 25

dim(v)

[1] 25 84 4

one may write a solution as in Fig. 6.3 (left) with
v1 <- apply(v[,,1], 1, mean, na.rm=TRUE)
plot(t, v1, type="o", xlab="Time",
ylab="Avg Beam 1 velo")

Exercise 2.23 on page 41. Calculate and plot yearly average CO2 data, using
lapply().
Solution. It is convenient to use the built-in co2 dataset. This is stored as time-
series object, so time may be extracted with

data(co2)
t <- time(co2)

which ranges from 1959 to 1997.917. Following a procedure similar to that of
Exercise 2.13, a factor for yearly subdivision may be created with

tt <- 1959:1998
fac <- cut(t, breaks=tt)

allowing yearly averages to be constructed with
co2l <- split(co2, fac)
cc <- as.numeric(lapply(co2l, mean))

and results displayed as in Fig. 6.3 (right) with
plot(co2, type="l", col="darkgray")
lines(tt[-1]-0.5, cc)
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Exercise 2.24 on page 41. Use a function in the plyr package to find minima and
maxima of the data stored in ctd[["data"]], a CTD station provided by the
oce package.
Solution. First, use

data(ctd, package="oce")
class(ctd[["data"]])
[1] "list"

to load the CTD object and see that the item in question is a list. The next step is
to find the relevant plyr function. This is easy, because plyr employs a naming
scheme in which the first letter indicates the type of input (here, “l” for a list) and
the second the type of desired output (here, d for a data frame). The second argument
to be provided to ldply() is a function that returns a data frame, so a solution is

library(plyr)
ldply(ctd[["data"]],

function(x) data.frame(min=min(x), max=max(x)))

where the 8 lines of output are omitted for brevity. Note that using summary(ctd)
provides more extensive information about the dataset, including important meta-
data.

Exercise 2.25 on page 43. Reproduce Fig. 2.7 with axes labelled in geographical
notation.
Solution. With lon, lat and topo2 as in the text, use, e.g.

contour(lon, lat, topo2, drawlabels=FALSE, levels=c(0,-5000),
col=c("black", "gray"), xaxs="i", yaxs="i", asp=1,
axes=FALSE, xlim=c(-180,180), ylim=c(-90,90)) # new

box()
axis(1, at=c(-180, 0, 180), labels=c("180W", "0", "180E"))
axis(2, at=c(-90, 0, 90), labels=c("90S", "0", "90N"))

Exercise 2.26 on page 44. Devise a wrapper function to handle reversed x or y
values in contouring.
Solution. The order() function returns the indices of a vector in an order that
makes the values monotonic, so we may write

contour2 <- function(x, y, z)
{

ox <- order(x)
oy <- order(y)
contour(x[ox], y[oy], z[ox, oy])

}

Note that this displays axes with increasing values. If this is not desired, e.g.
if the y axis represents pressure, and it is desired to have high pressure at the
bottom of the graph, use order(y, decreasing=TRUE), or consider using
oceContour().

Exercise 2.27 on page 44. Contour the formula for wind-chill temperature 13.12 +
0.6215T − 11.37U0.16 + 0.3965T U0.16, as a function of air temperature, T , and
wind speed, U .
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Solution. This formula is suggested5 for T < 0 ◦C and U > 5 km/h, so a relevant
graph (not shown) can be produced with

T <- seq(-20, 10, 1)
U <- seq(5, 50, 1)
chill <- function(T, U)

13.12 + 0.6215 * T - 11.37 * U^0.16 + 0.3965 *
T * U^0.16

contour(T, U, outer(T, U, chill))

Exercise 2.28 on page 50. Use the panels argument to draw the panels as density
diagrams, using smoothScatter().
Solution. This is not as simple as writing panel=smoothScatter, because
smoothScatter() creates a new plot, and panel must be a function that adds
to an existing plot. The solution is to create a new function that adds a smooth-scatter
diagram to an existing plot, e.g.

pairs(d, panel=function(...) smoothScatter(..., add=TRUE))

Exercise 2.29 on page 55. The Rink Ratz® hockey card game has a 69-card deck
with 2 desirable “miraculous save” cards. At the start of the game, 5 cards are
discarded without being examined. What is the probability that there will be exactly
1 miraculous save card left in the deck?
Solution. There will be exactly one miraculous save (MS) card left if the discarded
pile contains 1 MS card and 4 non-MS cards. The number of ways to pick 1 of the 2
MS cards is 2C1, and the number of ways to pick 4 of the 67 non-MS cards is 67C4.
These are independent events, so the number of ways to get both is the product
2C1

67C4. The total number of ways to pick 5 cards from the deck of 69 is 69C5, so
the desired probability is

choose(2, 1) * choose(67, 4) / choose(69, 5)
[1] 0.1364024

so it can be expected to occur about once every 7 games.

Exercise 2.30 on page 56. Construct a graph comparing the normal distribution
with the t distribution with 2 degrees of freedom.
Solution.
Figure 6.4 compares the probability density functions for the normal and t distribu-
tions, the latter with 2 degrees of freedom.

x <- seq(-3, 3, length.out=100)
plot(x, dnorm(x), type="l")
lines(x, dt(x, df=2), lty=2)

A line for p = 0.95 can be useful
abline(v=qnorm(p=0.95), lty="dotted")

5http://climate.weather.gc.ca/glossary_e.html.

http://climate.weather.gc.ca/glossary_e.html
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Fig. 6.4 Probability density
functions for the normal
distribution (solid line) and
the t distribution with 2
degrees of freedom (dashed
line)
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Exercise 2.31 on page 57. Write a function that computes measurement uncertain-
ties assuming a t distribution.
Solution. The following is a function that does this, with percent being the
desired coverage probability (Taylor and Kuyatt 1994); na.omit() is used to
remove NA values.

uncertainty <- function(x, percent=95)
{

x <- na.omit(x)
k <- qt(p=1-(1-percent/100)/2, df=length(x)-1)
u <- sd(x)
k * u

}

(This function is used in Exercise 2.33.)

Exercise 2.32 on page 57. Write a function that plots error bars.
Solution. A simple solution is

errorBars <- function(x, ymin, ymax,dx=diff(range(x))/100, ...)
{

segments(x, ymin, x, ymax, ...)
segments(x-dx, ymin, x+dx, ymin, ...)
segments(x-dx, ymax, x+dx, ymax, ...)

}

where dx has a default that might be useful, and ... contains graphical parameters
(e.g. col or lwd) that are passed to segments(). (This function is used in
Exercise 2.33.)

Exercise 2.33 on page 61. Show how split() and laply() can be used
to produce a monthly climatology of a signal, and illustrate using the results of
Exercises 2.31 and 2.32.
Solution. For illustration, a dataset named rivsum.odf, containing a century
of monthly estimates of St Lawrence River discharge near Québec City (see, e.g.,
Bourgault and Koutitonsky 1999) was downloaded from a Department of Fisheries
and Oceans website. This is in a specialized ODF format that is recognized by
read.oce(), so

d <- read.oce("../data/rivsum.odf")
discharge <- d[["discharge"]]
time <- d[["time"]]
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Fig. 6.5 Climatology of St Lawrence River discharge near Québec City (Exercise 2.33)

produces discharge in m3/s along with time, which is a POSIXct value from
which the month may be extracted with months(), after which split() may
be used to create a list that collects data into monthly categories. Analysing this
list with laply() from the plyr package then yields monthly mean discarge and
uncertainty, with

library(plyr) # for laply
dischargeSplit <- split(discharge, months(time))
y <- laply(dischargeSplit, mean)
unc <- laply(dischargeSplit, uncertainty)
ymin <- y - unc
ymax <- y + unc

where uncertainty() from Exercise 2.31 has been used. Incorporating the
results of Exercise 2.32, Fig. 6.5 is made with

plot(1:12, y, pch=20, type="o", axes=FALSE,
xlab="", ylab=expression("Discharge ["*m^3/s*"]"),
ylim=range(c(ymin, ymax)))

errorBars(1:12, ymin, ymax)
box()
axis(2)
axis(1, 1:12, c("Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))

where the axis is constructed manually to get month names instead of numbers. Note
also the setting of ylim to encompass not just the data but also the error bars.

Exercise 2.34 on page 66. Contrast the residual plots produced by plot() for
linear and quadratic.
Solution. With data and regressions as in the text, the solution is

plot(linear, which=1)
plot(quadratic, which=1)

with the resultant Fig. 6.6 suggesting that the quadratic model is preferable to the
linear one, with lower residuals and a less pronounced and systematic pattern of
deviations.
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Fig. 6.6 Regression diagnostics for a linear and quadratic model (Exercise 2.34)
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Fig. 6.7 Left: conventional linear fit; right: eigen-analysis fit (Exercise 2.35)

Exercise 2.35 on page 66. Use eigen() and cov() to draw a line that intersects
the means of x and y, and that has the same slope as the principal eigenvector of the
covariance matrix.
Solution. The first step is to construct artificial data

x <- seq(0, 1, length.out=100) + rnorm(100, sd=0.2)
y <- x + rnorm(100, sd=0.4)

and then plot a data cloud (Fig. 6.7)
par(mfrow=c(1, 2))
plot(x, y, asp=1)
abline(lm(y ~ x))

with aspect ratio equal to 1, assuming x and y to be of similar scale. (This
assumption of similar scale, more particularly of errors in x and y, is central to this
method.) The data are bound together into a data frame for use by cov(), and the
desired eigenvector is stored in the first column of the value returned by eigen().
Thus the gist of the solution is

e <- eigen(cov(data.frame(x, y)))

The desired slope is the ratio of y and x components of the eigenvector
B <- e$vector[2,1] / e$vector[1,1]
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Fig. 6.8 Geosecs station
235, data and nonlinear curve
fit (Exercise 2.36)
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and so it only remains to solve for the intercept
A <- mean(y) - B * mean(x)
plot(x, y, asp=1)
abline(A, B)

Figure 6.7 suggests that the results of the eigen method pass through the data cloud
better than those of conventional regression.

Exercise 2.36 on page 69. Extract tritium Tu and pressure p from the ocedata
dataset geosecs235, and use nls() to fit the model

Tu = A exp(−(p − p0)
2/D2) + A exp(−(p + p0)

2/D2)

where A, p0 and D are parameters to be inferred.
Solution. First, extract the data

data(geosecs235, package="ocedata")
Tu <- geosecs235[["tritium"]]
p <- geosecs235[["pressure"]]

and plot them (Fig. 6.8) to get an idea for starting values for parameters.
plotProfile(geosecs235, xtype="tritium", type="p")

The diagram suggests A ∼ 10, D ∼ 100 dbar and p0 ∼ 200 dbar, and
m <- nls(Tu~A*exp(-((p-p0)/D)^2)+A*exp(-((p+p0)/D)^2),

start=list(A=10, p0=200, D=100))
pp <- seq(1000, 0, -10)
lines(predict(m, newdata=list(p=pp)), pp)

adds the corresponding solution to Fig. 6.8, which compares well with Figure 10 of
Kelley and Van Scoy (1999).

Exercise 2.37 on page 71. Increase the value of n until the TukeyHSD diagram
indicates that T 1 and T 3 are producing different values.
Solution. The code is the same as in the text, apart from changing n in the
rnorm() call and removing the random-seed setting. Experimentation suggests
that increasing n to 50 makes the difference between T 1 and T 3 visibly different
from zero on the TukeyHSD() plot, and that values larger than 100 yield
differences of twice the range of the parameter estimates. (This sort of analysis
can be useful in planning experiments.)
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Fig. 6.9 Possible “regime shifts” in the Southern Oscillation Index (Exercise 2.38)

Exercise 2.38 on page 72. Use ctree() and cpt.mean() to examine the
Southern Oscillation Index data (soi in the oce package) for regime shifts between
1967 and 1985.
Solution. The data may be subsetted to cover the suspected 1976–1977 shift
discussed by Miller et al. (1994), and plotted in Fig. 6.9 with

data(soi, package="ocedata")
soi2 <- subset(soi, 1967 <= year & year <= 1985)
plot(soi2$year, soi2$index, col="darkgray",

xlab="Year", ylab="SOI")

With default arguments, ctree() suggests shifts at years 1973.333 and 1976.333:

library(party)
regimes <- ctree(index~year, data=soi2)
lines(soi2$year, predict(regimes), lwd=3)
regimes@tree
1) year <= 1976.333; criterion = 1,

statistic = 14.079
2) year <= 1973.333; criterion = 0.999,

statistic = 11.713
3)* weights = 77

2) year > 1973.333
4)* weights = 36

1) year > 1976.333
5)* weights = 104

but cpt.mean() in the changepoint package (Killick and Eckley 2014;
Killick et al. 2016) suggests just one shift, at 1976.333

library(changepoint)
soi2$year[cpt.mean(soi2$index)@cpts[1]]
[1] 1976.333

Using other data, Miller et al. (1994) identified a shift in 1976, i.e. in the year found
by each of methods used here. However, there is a danger in over-interpreting results
such as these; see, e.g., Cahill et al. (2015).

Exercise 2.39 on page 73. Use integrate() to calculate the perimeter of an
ellipse of major axis a = 2 and minor axis b = 1.
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Solution. The result is given by

4a

∫ π/4

0

(
1 − a2 − b2

b2 sin2 θ

)1/2

dθ (6.3)

and this has numerical solution
a <- 2
b <- 1
integrate(function(t)

4*a*sqrt(1-(a^2-b^2)/a^2*sin(t)^2),0, pi/2)
9.688448 with absolute error < 3.5e-10

which matches the solution from Sect. 2.3.11.1 to within 7 × 10−15.

Exercise 2.40 on page 75. Use interp.surface to find water depth H under the
mean Gulf Stream position as defined in the gs dataset of the ocedata package.
Draw a map of the Gulf Stream location along with a graph of how H varies with
distance along the path.
Solution. First, extract the mean position of the Gulf Stream path. The gs dataset
holds longitude as a vector and latitude as a matrix (for various estimates of the
position). The matrix can be averaged using lapply()

library(fields)
data(gs, package="ocedata")
lon <- rev(gs$longitude)
lat <- rev(apply(gs$latitude, 1, mean))

where rev() is used because the data are ordered from north to south. Next, draw
the coastline in Lambert Conformal Conic projection (Fig. 6.10)

data(coastlineWorldMedium, package="ocedata")
par(mfrow=c(1,2), mar=c(3,3,1,1))
mapPlot(coastlineWorldMedium, proj="+proj=lcc
+lon_0=-65", grid=c(5, 5),
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Fig. 6.10 Left: Gulf Stream position; right: water depth along trajectory (Exercise 2.40)
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longitudelim=c(280, 310),
latitudelim=c(35, 43))

Then, superimpose depths in 1-km increments
data(topoWorld, package="oce")
z <- topoWorld[["z"]]
x <- topoWorld[["longitude"]]
y <- topoWorld[["latitude"]]
mapContour(x, y, z, levels=seq(-6000,-1000,1000),
col="gray")

and add the path of the Gulf Stream.
mapLines(lon, lat, type="o", pch=20)

As a matter of historical interest, Milne (1867) estimated the northern limit of the
Gulf Stream between Halifax and Bermuda as 40◦56’N at 63◦45’W

mapPoints(-(63+45/60), 40+56/60, pch=2)

The final step is to draw the graph of interpolated depth under the Gulf Stream, a
task made easy with interp.surface()

H <- -0.001*interp.surface(list(x=x,y=y,z=z),
cbind(lon,lat))
distance <- geodDist(lon, lat, lon[1], lat[1])
plot(distance, H, xlab="Distance [km]",

ylab="Depth [km]", ylim=c(max(H), 0), type="o",
k pch=20)

Exercise 2.41 on page 77. Contrast the predictions of interpolating and smoothing
splines for the turbulence data.
Solution.
A comparison is shown in Fig. 6.11, using data

data(turbulence, package="ocedata")

from which components are extracted with
k <- turbulence$k
phi <- turbulence$phi
y <- k^2 * phi
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Fig. 6.11 Interpolating and smoothing splines with turbulence data (Exercise 2.41)
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A simple plot will have data point obscuring the spline, so use type="n" to get
axes without the data points, and use rug() to place ticks inside the bottom of the
plot box.

par(mfrow=c(1,2))
plot(k, y, ylab=expression(k^2*phi), ylim=c(0,0.40),
type="n") rug(k, side=1, ticksize=0.06, lwd=1)

Next, add an interpolating spline with n = 200 segments
n <- 200
lines(spline(k, y, n=n))

A sharp eye will see an aphysical wiggle at k ≈ 1, and even a glance reveals a
much larger one in the range 17 < k < 35. By contrast, a smoothing spline
plot(k, y, ylab="", ylim=c(0,0.40), pch=20)
lines(predict(smooth.spline(k,y,df=7),seq(0,35,length.
out=n)))

yields a curve with a smoother character that may make more sense. The cost
of using a smoothing spline is a misfit with the data, and an occasional need
to alter default smoothing parameters, e.g. the setting of df here. In many
applications, smoothing splines produce results that match physical expectations,
e.g. the avoidance of wiggles is helpful in the calculation of the square of buoyancy
frequency by swN2().

Exercise 2.42 on page 77. Create a function returning the prediction of a smoothing
spline, and use it to calculate ε as in Sect. 2.6.4.
Solution. First, construct the spline function

s <- smooth.spline(k, k^2 * phi)

and then construct a wrapper around its predict() function
f <- function(x) predict(s, x)$y

at which point it makes sense to continue the application as in the main text
15 * nu * integrate(f, min(k), max(k))$value
[1] 0.64018

This value is within 4.9% of that reported by Grant et al. (1962), an improvement
over the estimate using piecewise-linear interpolation, in Sect. 2.6.4.

Exercise 2.43 on page 81. Read the Dalhousie-WHOI route using the XML package.
Solution. First, parse the file

library(XML)
p <- xmlParse("../data/dalwhoi.kml")

and extract the root element
r <- xmlRoot(p)

The next step is to discover what r contains. This can be done in R, but readers
might find it faster to use an XML application or to examine the data file in a text
editor. In any case, the following yields longitude and latitude along the route (note
that it’s also possible to name indices to r).
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Table 6.1 Sampling of a cnv-format CTD file

Line Contents

1 * Sea-Bird SBE 25 Data File:

2 * FileName = C:\SEASOFT3\BASIN\BED0302.HEX
11 ** Latitude: N44 41.056

12 ** Longitude: w63 38.633

19 # name 2 = pr: pressure [db]

42 *END*
43 130 129.000 1.480 1.468 14.2245 29.9210 0.000e+00

a <- xmlValue(r[["Document"]][[7]][[4]][[2]], trim=TRUE)
b <- strsplit(a, "\n")[[1]]
library(plyr)
loc <- laply(b, function(x) as.numeric(strsplit(x,",")[[1]]))
names(loc) <- c("lon", "lat", "unknown")

Exercise 2.44 on page 82. Read the sample CTD file ctd.cnv, skipping the
header and naming the columns.
Solution. Loading the file

file <- system.file("extdata", "ctd.cnv",
package="oce")
lines <- readLines(file)

yields results as sampled in Table 6.1. Examination suggests that the line containing
“*END*” flags the end of the header, so

end <- grep("*END*", lines)
data <- read.table(text=tail(lines, -end))

will read the columnar data. The next step is to find the data names
nameLines <- lines[grep("name", lines)]
names <- gsub("^# name .* = (.*):.*$", "\\1",
nameLines)
names
[1] "scan" "timeS" "pr" "depS" "t068" "sal00"
"flag"

and to rename them, perhaps with, e.g.
names[names=="pr"] <- "pressure"

or en masse, with e.g.
names(data) <- c("scan", "time", "pressure", "depth",

"temperature", "salinity", "flag")

Readers with CTD experience will know that data headers vary widely, and may
appreciate the fact that oce automatically recognizes well over 100 hydrographic
variable names (and associates them with data-quality flags, if these are present in
the .cnv file).
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Exercise 2.45 on page 82. Read the SOI data using scan().
Solution. The first step is to download the data from the source listed on page 80.
Time and missing-value can be identified simply, and time constructed with seq()

d <- scan("../data/soi.dat")
n <- length(d) / 13 - 1
year <- 1/24 + seq(from=d[1], to=d[1] + n+11/12,
by=1/12)
SOI <- d[d < 1800]
SOI[SOI < -90] <- NA

Exercise 2.46 on page 85. From https://rbr-global.com/support/matlab-tools,
get RSKtools and extract time and temperature from the SQLite file named
sample.rsk.
Solution. These data are not stored in order of increasing time, so it is necessary
to order by time. This could be done within R, but it is just as easy to do it in the
SQLite query. The first step is to load the file

library(RSQLite)
f <- dbConnect(SQLite(), "../data/sample.rsk")

and then extract the time in milliseconds
d <- dbGetQuery(f,

"select tstamp from data order by tstamp")
t <- numberAsPOSIXct(d[[1]] / 1000)

The table named channels tells what is stored in the file, indicating that
temperature may be retrieved with

T <- dbGetQuery(f,
"select channel02 from data order by tstamp")

[[1]]

Exercise 2.47 on page 86. Plot SST contours with a coastline.
Solution. Constructing Fig. 6.12 is best done by first drawing the coastline, because
oce provides a generic function for coastline objects that will set up sensible axes
(e.g. limiting latitude range). So, the first plotting step is

data(coastlineWorld, package="oce")
plot(coastlineWorld)

A 5-degree version of the 2013 World Ocean Atlas may be read with
library(ncdf4)
con <- nc_open("../data/woa13_decav_t00_5dv2.nc")
lon <- ncvar_get(con, "lon")
lat <- ncvar_get(con, "lat")
SST <- ncvar_get(con, "t_mn")[,,1]

but this has longitude ranging from 0 to 360, so conversion to the −180 to 180
convention used for the coastline is required, with

lon <- ifelse(lon > 180, lon - 360, lon)

contour(lon, lat, SST, add=TRUE, labcex=1)

https://rbr-global.com/support/matlab-tools
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Fig. 6.12 Contours of sea surface temperature from the World Ocean Atlas

Exercise 2.48 on page 89. Extend the CTD-edit shiny app to read data from a
file, set flags for bad data and save the result to a file.
Solution. Adding a call to fileInput() in ui.R will let the user either type a
file name or use a system browser to identify a file. The datapath item in the
returned value is the name of the file to be used. The contents of that file should
be used to define “ctd,” and checks will need to be set up to prevent using that
quantity before it is defined. The flagging and saving steps can be accomplished
together. Adding

actionButton("save_file", "Save Output")

in ui.R sets up a linkage to a function to save the output, and defining that function
with

observeEvent(input$save_file, {
ctd[["salinityFlag"]] <- ifelse(vals$keep, 2, 4)
save(ctd, file="ctd_edited.rda")

})

in server.R accomplishes the task using World Hydrographic Program error
codes of 2 for good data and 4 for bad data. Here, a simple filename is used, but
in practice it would make sense to use a name derived from the input filename. The
object could be trimmed of bad data with handleFlags().



6.2 Exercises in Chap. 3 209

6.2 Exercises in Chap. 3

Exercise 3.1 on page 97. Use the generic plot() for CTD objects, to produce
a version of Fig. 3.1 using the UNESCO equation of state instead of the default
TEOS-10 version.
Solution. Use plot(ctd, eos="unesco")

Exercise 3.2 on page 97. (a) Calculate the density of seawater at pressure 100 dbar,
salinity 34 PSU, and temperature 10◦C. (b) What temperature would the parcel
have if raised adiabatically to the surface? (c) What density would it have if raised
adiabatically to the surface? (d) What density would it have if lowered about 100 m,
increasing the pressure to 200 dbar? (e) Draw a blank T -S diagram with S from 30
to 40 PSU and T from −2 to 20◦C.
Solution. The oce package provides the functions required for this exercise, all
starting with the characters “sw” in their names. Since longitude and latitude are not
given, the UNESCO equation of state will be used. This can be specified in a startup
file, but this illustration uses the eos argument to the various sw functions.

(a) Density ρ = ρ(S, T , p) is
swRho(34, 10, 100, eos="unesco")
[1] 1026.624

(b) Potential temperature θ = θ(S, T , p) is
swTheta(34, 10, 100, eos="unesco")
[1] 9.988599

(c) Use θ for temperature
swRho(34, swTheta(34, 10, 100, eos="unesco"), 0,
eos="unesco")
[1] 1026.173

(d) Use θ , with reference pressure of 200 dbar, for temperature
theta <- swTheta(34, 10, 100, 200, eos="unesco")
swRho(34, theta, 200, eos="unesco")
[1] 1027.074

(e) Use white for the dots
plotTS(as.ctd(c(30,40),c(-2,20),rep(0,2)),
eos="unesco", type="n")

Exercise 3.3 on page 98. Use propagate from the propagate package to
estimate typical CTD salinity uncertainty.
Solution. The SeaBird 911plus specifications state uncertainties of 0.0003 S/m for
conductivity, 0.001 ◦C for temperature and 0.015% percent of range for pressure.
Dividing the conductivity by 4.29140 S/m to get a conductivity ratio (Culkin and
Smith 1980) and assuming a 1400dbar-scale pressure sensor,

library(propagate)
Ce <- 0.0003 / 4.29140
Te <- 0.001
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pe <- 0.015e-2*1400
d <- data.frame(C=c(1,Ce),T=T90fromT68(c(15,Te)),
p=c(0,pe))
propagate(expression(swSCTp(C,T,p,eos="unesco")),
data=d)

The resultant Monte Carlo 95% confidence interval is 34.994 to 35.006, suggesting
a CTD salinity uncertainty of ±0.005.

Exercise 3.4 on page 100. Map ocean-surface density.
Solution. The procedure (results not reproduced here) is the same as for Fig. 3.3,
although first density must be computed. Note also the use of quantile() to
prevent brackish waters from setting the scale.

data(coastlineWorld, package="oce")
data(levitus, package="ocedata")
ssrho <- swRho(levitus$SSS, levitus$SST, 0,
eos="unesco")
cm <- colormap(quantile(ssrho, c(0.025, 0.975),

na.rm=TRUE), col=oce.colorsJet)
drawPalette(colormap=cm)
mapPlot(coastlineWorld, projection="+proj=moll")
mapImage(levitus$longitude, levitus$latitude, ssrho,

colormap=cm)
mapGrid()
mapLines(coastlineWorld)

Exercise 3.5 on page 100. Use mapPlot() to draw a world coastline with the
Robinson projection, and trace the 1700s H.M.S. Endeavour cruise.
Solution. Appendix C reveals that the codename of this projection is robin, so the
map (Fig. 6.1) is drawn with

data(coastlineWorld, package="oce")
mapPlot(coastlineWorld, projection="+proj=robin",

drawBox=FALSE)
data(endeavour, package="ocedata")
mapPoints(endeavour$longitude, endeavour$latitude,

pch=20, cex=0.5)

This projection was used by the National Geographic Society for world maps,
prior to a switch made to the Winkel Tripel near the end of the twentieth century.
Comparison of Figs. 6.1 and C.1 reveals that the two projections differ mainly at
high latitudes.
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Exercise 4.1 on page 108. Use loess() to fit locally weighted polynomial models
(Sect. 2.6.6) of PO4 as a function of NO3, and vice versa.
Solution. The first step is to recreate Fig. 4.2, as Fig. 6.13, using the same steps as
in Sect. 4.1, but with pch=20 in the plot() call, for smaller symbols. Next, add
a loess fit for NO3 as a function of PO4

l1 <- loess(NO3 ~ PO4, data=redfieldNP)
lines(redfieldNP$PO4, predict(l1))

and the opposite, using order() to put the data into order
l2 <- loess(PO4 ~ NO3, data=redfieldNP)
o <- order(redfieldNP$NO3)
lines(predict(l2)[o], redfieldNP$NO3[o],
lty="longdash")

Exercise 4.2 on page 108. Alter the lm() call for the Redfield ratio fit, to test
whether the slope might be 20.
Solution. The p value for the slope, labelled “Pr” in the summary, is in comparison
to zero slope. To compare with a slope of 20, one may create a transformed variable,
either directly

NO3new <- redfieldNP$NO3 - 20 * redfieldNP$PO4
m <- lm(NO3new ~ PO4 - 1, data=redfieldNP)

or indirectly (skipping the creation of a variable not needed later)
m <- lm(NO3 - 20*PO4 ~ PO4 - 1, data=redfieldNP)

In either case, summary(m) reveals output including the following lines
Estimate Std. Error t value Pr(>|t|)

PO4 -0.8440 0.2726 -3.097 0.00245 **
suggesting a slope other than 20.

Fig. 6.13 loess predictions
for NO3 as a function of PO4
(solid) and the reverse
(dashed)
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Exercise 4.3 on page 108. Calculate the slope in Fig. 4.2 using ridge, robust and
resistant regression, using functions lm.ridge(), rlm() and lqs() from the
MASS package, respectively.
Solution. With data loaded as in the text, the slopes for these methods are as follows:
the predictions lie between the lines in Fig. 4.2.

library(MASS)
as.numeric(coef(lm.ridge(NO3 ~ PO4 - 1,
data=redfieldNP)))
[1] 19.15596

as.numeric(coef(rlm(NO3 ~ PO4 - 1, data=redfieldNP)))
[1] 19.22685

as.numeric(coef(lqs(NO3 ~ PO4 - 1, data=redfieldNP)))
[1] 19.72996

Exercise 4.4 on page 111. Use lsoda() to solve the NPZ equations as expressed
in Chapter 4 of Sarmiento and Gruber (2006)

dN

dt
= P

(
−Vmax

N

KN + N
+ μP λP

)
+ Z μZ

[
(1 − γZ) g

P

KP

+ λZ

]

dP

dt
= P

(
Vmax

N

KN + N
− λP − g Z

KP

)

dZ

dt
= Z

(
γZ g

P

KP

− λZ

)

(6.4)
with Vmax = 1.4 d−1, KN = 0.1 mmol/m3, μP = 1, λP = 0.05 d−1, μZ = 1,
γZ = 0.4, g = 1.4 d−1, KP = 2.8 mmol/m3, and λZ = 0.12 d−1. Use initial
conditions N = 10, P = 3 and Z = 2, and plot the results over a month.
Solution. The first step is to define the differential equations

library(deSolve)
NPZ <- function(t, y, parms, ...) {

N <- y[1] ; P <- y[2] ; Z <- y[3] # rename for clarity
N0 <- N/(parms$KN+N)
dNdt<-P*(-parms$Vmax*N0+parms$muP*parms$lambdaP) +

parms$muZ*Z*((1-parms$gammaZ)*parms$g*P/parms$KP+
parms$lambdaZ)

dPdt<-P*(parms$Vmax*N0-parms$lambdaP -
(parms$g/parms$KP)*Z)

dZdt<-Z*(parms$gammaZ*parms$g*P/parms$KP-parms$lambdaZ)
list(c(dNdt=dNdt, dPdt=dPdt, dZdt=dZdt))

}

and parameters
parms <- list(Vmax=1.4, KN=0.1, muP=1, lambdaP=0.05,

muZ=1,
gammaZ=0.4, g=1.4, KP=2.8, lambdaZ=0.12)

Next, set initial conditions and solve
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Fig. 6.14 NPZ simulation results (Exercise 4.4). Left: variation of N (solid), P (long dash) and Z

(short dash) over a month. Middle: covariation of N and P over 6 months, showing slow variation
of cycling. Right: fractional error in N + P + Z over 6 months

IC <- c(N=10, P=3, Z=2)
times <- seq(0, 28, 1/24)
solution <- lsoda(IC, times, func=NPZ, parms=parms)

The solution is plotted with
plot(solution[,1], solution[,2], xaxs="i", yaxs="i",

ylim=c(0, sum(IC)), xlab="Day", ylab="N, P, Z",
type="l", lwd=2, lty=1)

lines(solution[,1], solution[,3], lwd=2, lty=2)
lines(solution[,1], solution[,4], lwd=2, lty=3)

and the resultant left panel of Fig. 6.14 shows a reduction in nutrient for about a day,
with a phytoplankton bloom, followed by an increase in zooplankton concentration
and then a decline of both phytoplankton and zooplankton. The pattern appears to
repeat, but a check in state space over 6 months (middle panel) suggests a slow
variation in the cycle6

One way to test for numerical errors is to compute N + P + Z, which should be
constant in (6.4) since μZ = μP = 1. A six-month simulation
misfit <- (sum(IC) - apply(solution[,-1], 1, sum))/
sum(IC) plot(solution[,1], misfit,xlab="Day",type="l")

(right panel of Fig. 6.14) suggests that lsoda() conserves N + P + Z to under 1
part in 1014 on a 64-bit computer, a compelling reason to use this function instead
of a crude Euler-step integrator.

Exercise 4.5 on page 111. Use lsoda() to develop a numerical solution to the
wave equation d2η/dt2 + ω2η = 0 with frequency ω = 1 s−1 during 0 ≤ t ≤ 2π ,
with initial condition η = 0 and dη/dt = 1 at t = 0.
Solution. Introducing ζ as a new variable, we get a pair of first-order equations

6Such simulations are useful for exploring the nature of the equations, but realistic applications
should include changing background conditions and forcing.
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Fig. 6.15 Left: numerical solution to wave equation; right: 106 times error. (Exercise 4.5)

dη

dt
= ζ and

dζ

dt
= −ω2η (6.5)

which may be expressed in R as
DE <- function(t, y, parameters)

list(c(y[2], -parameters$omega*y[1]))

where y[1] stands for η and y[2] stands for ζ . The solution is simpler than in the
previous exercise:

library(deSolve)
IC <- c(0, 1)
t <- seq(0,2*pi,length.out=100)
parameters <- list(omega=1)
soln <- lsoda(IC, t, DE, parameters)

Since soln holds t , η and ζ , η(t) and its deviation from the analytical solution
sin(t) are plotted in Fig. 6.15 with

par(mfrow=c(1, 2))
plot(soln[,1], soln[,2],

xlab="t", ylab=expression(eta), type="l")
plot(soln[,1], 1e6*(soln[,2]-sin(soln[,1])),

xlab="t", ylab=expression(10^6*Delta*eta),
type="l")

Exercise 4.6 on page 113. Explore type-II regression with the lmodel2 package.
Solution. The documentation for lmodel2() should prove useful to readers who
are unfamiliar with type-II regression. Figure 6.16 starts by mimicking Fig. 4.4,
drawing the data and Wilson’s line. Regression through the origin is not offered by
lmodel2, so the formula used to describe the regression is different from that in
Sect. 4.3. The arguments range.x and range.y are used by the “RMA” (ranged
major axis) method, since both distance and age have meaningful zero values in
this case.
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Fig. 6.16 Re-analysis of
seafloor-spreading data from
Table 1 of Wilson (1963),
using various alternative
regression methods; compare
with Fig. 4.4
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library(lmodel2)
m <- lmodel2(Distance ~ Age, data=wilson,

range.y="relative", range.x="relative")

The value returned by lmodel2() includes regression.results, a matrix
summarizing the coefficients along with other things. To draw the results, only three
columns from the matrix are needed.

rr <- m$regression.results
n <- dim(rr)[1]
for (method in 1:n)

abline(rr[method,2], rr[method,3], lty=method)
legend("topright", lty=1:n, legend=rr[,1])

Readers might find it informative to compare the results designated SMA with those
found with sma() in the smatr package, as presented in Sect. 4.3.

Exercise 4.7 on page 116. Use try() to skip past errors in nls(), so that a
bootstrap estimate of H can be done.
Solution. The key is to wrap the function call in a try block. The z and T vectors
defined in the text may be bound into a matrix with

zT <- cbind(z, T)

that is to be provided to a fitting function
safeFit <- function(zT, i)
{

try({
m <- nls(zT[i,2]~Td+(Ts-Td)*exp(zT[i,1]/h),

start=list(Ts=5, Td=1, h=1000))
coef(m)[["h"]]

},
silent=TRUE)

}
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With these definitions, load boot and perform the calculation with 100 replicates
(output not reproduced here).

library(boot)
set.seed(47)
b <- boot(data=zT, statistic=safeFit, R=100)

after which a confidence interval is constructed with
boot.ci(b, type="basic") # results not printed

which yields a 95% CI of 747 < h < 1029 m. (Note that this range encloses the
Munk (1966) value of 0.77 km.)

Exercise 4.8 on page 116. Specify gradients to nls() to fit the munk data.
Solution. The gradient of the model Eq. (4.4) has components

∂θ

∂θS

= 1 − exp(z/h)

∂θ

∂θD

= exp(z/h)

∂θ

∂h
= − z

h2
(θD − θD) exp(z/h)

(6.6)

which can be provided to nls() with
munk <- function(thetaS, thetaD, h)
{

E <- exp(z / h)
prediction <- thetaD + (thetaS - thetaD) * E
gthetaS <- E
gthetaD <- 1 - E
gh <- -z / h^2 * (thetaS - thetaD) * E
gradient <- cbind(gthetaS, gthetaD, gh)
attr(prediction, "gradient") <- gradient
prediction

}
m <- nls(theta~munk(thetaS, thetaD, h),

start=list(thetaS=5, thetaD=1, h=1000))

and a check with
coef(m)

thetaS thetaD h
11.231380 1.165834 844.653897

indicates that the results match those listed on page 115.
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Exercise 5.1 on page 122. Use sub() to create a series of PDF files with names
that map to the names of data files.
Solution.

for (file in list.files(path=".", pattern=".cnv$")) {
pdf(gsub(".cnv$", ".pdf", file))
plot(ctdTrim(read.ctd(file)))
dev.off()

}

Exercise 5.2 on page 124. Explore the sensitivity of buoyancy frequency, calculated
with swN2(), to the argument df.
Solution. A graphical approach can be helpful, and Fig. 6.17 starts with a default
N2 profile, computed from trimmed and decimated data, starting with

data(ctdRaw, package="oce")
ctd2 <- ctdTrim(ctdRaw, "range", parameters=list

(item="scan", from=130, to=320))
ctd3 <- ctdDecimate(ctd2, p=seq(0,50,1), "boxcar")
plot(ctd3, which="N2", col.N2="black")

after which an N2 profile with specified df may be added simply
lines(swN2(ctd3, df=10), ctd3[["pressure"]],

lty="dashed")

In this particular case, setting df=10 yields a more variable N2 profile, because the
default swN2() call made by plot has computed a default df value that is less
than 10. In some instances, there will be extra information guiding a choice of df
(or similar parameters used by smooth.spline(), or other smoothing functions
chosen by the user). For example, some analysts might examine the artificial density
profile computed by integrating N2 over depth, to see if the calculation has captured
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Fig. 6.17 Left panel: profile of buoyancy frequency N2 computed by default with plot()
(solid), and computed with df set to 10 (dashed). Right panel: density profile (solid), along with
profile computed by integrating the N2 profile calculated with df=10
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features of interest, e.g. pycnocline location in some cases, mixed-layer depth in
other. A simple procedure for estimating such an artificial profile follows.

plot(ctd3, which="density")
dz <- mean(diff(swZ(ctd3)), na.rm=TRUE)
rho0 <- mean(swRho(ctd3), na.rm=TRUE)
rhom <- min(swRho(ctd3), na.rm=TRUE)
g <- gravity() # may specify latitude here
N2 <- swN2(ctd3, df=10)
N2[is.na(N2)] <- 0 # just in case
rho <- rhom - dz * (cumsum(N2) - N2[1]) * rho0 / g
lines(rho, ctd3[["pressure"]], lty="dashed")

Exercise 5.3 on page 124. Plot salinity and temperature profiles for the ctd dataset
within 3 dbar of the pycnocline centre.
Solution. First, load the data and compute N2 values

data(ctd, package="oce")
N2 <- swN2(ctd)

The pycnocline centre might be estimated from the pressure at which N2 is
maximum

p0 <- ctd[["pressure"]][which.max(N2)]

after which focus is directed to the suggested region with
pycnocline<-subset(ctd, p0-2 <= pressure & pressure
<= p0+2)

and then Fig. 6.18 is completed with
par(mfrow=c(1, 2))
plot(pycnocline, which="salinity", type="o",
yaxs="i") abline(h=p0, lty=2)
plot(pycnocline, which="temperature", type="o",
yaxs="i") abline(h=p0, lty=2)
mtext(sprintf("%.1f dbar", p0), side=4, at=p0)

Pr
es

su
re

 [d
ba

r]

Absolute Salinity [g kg]

Pr
es

su
re

 [d
ba

r]

6.
5

5.
5

4.
5

3.
5

30.2 30.6 31.0

Θ [°C]

Pr
es

su
re

 [ d
ba

r]
6.

5
5.

5
4.

5
3.

5

11.5 12.5 13.5

5.
2 

db
ar

Fig. 6.18 Absolute Salinity and Conservative Temperature profiles, near the pycnocline of the
ctd dataset (Exercise 5.3)
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Exercise 5.4 on page 124. Use ctdTrim() and plotScan() together, to trim
ctdRaw to just the downcast portion.
Solution.

data(ctdRaw, package="oce")
plotScan(ctdRaw)

where the value of which indicates that a graph of pressure versus index is to be
shown. The next step is to bracket the downcast in terms of index, and then to narrow
this bracket based on observation of the graph.

Some users will find it convenient to determine the bracket by a visual inspection
of the graph, while others may prefer to use locator() to select values by
clicking on the graph, and still others will prefer to narrow in on the index by
drawing on the graph, e.g. abline(v=100) shows that the start of the downcast
is definitely after index 100. The last two approaches can be combined with, e.g.,

x <- round(locator(1)$x); abline(v=x); mtext(x, at=x,
side=3)

where the semicolons make it easy to repeat the three steps in an interactive session,
simply by striking the up-arrow key.

At this stage, it is convenient to start narrowing the focus. The use of
plotScan(), which puts scan number on the x axis, is handy for this task. Using
the arrow keys in an R console window provides an easy way to find appropriate
limits on scan number, in a few keystrokes, e.g. the sequence

plotScan(ctdTrim(ctdRaw, "range",
parameters=list(item="scan",from=100,
to=400)))

plotScan(ctdTrim(ctdRaw, "range",
parameters=list(item="scan",from=150,
to=400)))

suggests a starting scan value of perhaps 130, and a similar sequence suggests an
ending scan of 300. This second value is open to argument; the author settled upon
it in order to achieve a roughly linear increase of pressure within the range of scan
numbers. How such decisions should be made depends upon the instrumentation
used, e.g. differing for pumped and unpumped conductivity sensors.

A wider data window is used by ctdTrim(), as readers can verify with
plotScan(ctdTrim(ctdRaw, method="sbe"))

Exercise 5.5 on page 128. Use the Chu and Fan (2010b) method on the ctd dataset.
Solution. A solution may be written as a function that returns not just the mixed
layer depth, but also some other interesting elements of the calculation. The
argument n determines the number of data levels to examine below the focus
depth, while variable names the hydrographic variable to be examined, with
temperature, as the default, "sigmaTheta" for σθ , etc.

MLDchu <- function(ctd, n=5, variable="temperature")
{

pressure <- ctd[["pressure"]]
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Fig. 6.19 Dynamic height and geostrophic velocity of the Gulf Stream (Exercise 5.6)

x <- ctd[[variable]]
ndata <- length(pressure)
E1 <- rep(NA, ndata)
E2 <- rep(NA, ndata)
E2overE1 <- rep(NA, ndata)
kstart <- min(n, 3)
for (k in seq(kstart, ndata - n, 1)) {

above <- seq.int(1, k)
below <- seq.int(k + 1, k + n)
fit <- lm(x ~ pressure, subset=above)
E1[k] <- sd(predict(fit) - x[above])
pBelow <- data.frame(pressure=pressure[below])
E2[k]<-abs(mean(predict(fit,newdata=pBelow)-x[below]))
E2overE1[k] <- E2[k] / E1[k]

}
MLDindex <- which.max(E2overE1)
return(list(MLD=pressure[MLDindex], MLDindex=MLDindex,

E1=E1, E2=E2, E2overE1=E2overE1))
}

Using the function to measure MLD is simple, e.g. the following plots the
bottom-right panel of Fig. 5.4 on page 127.

data(ctd, package="oce")
mld <- MLDchu(ctd)
plotProfile(ctd, xtype="temperature", ylim=c(15, 0))
abline(h=mld$MLD, lwd=2, lty="dashed")

Exercise 5.6 on page 129. Plot dynamic height and geostrophic velocity across the
Gulf Stream.
Solution. Start by subsetting and reordering the stations.

data(section, package="oce")
GS <- subset(section, -73.2<longitude &

longitude<(-69.4))
GS <- sectionSort(GS, by="longitude")

Calculate dynamic height and plot it in Fig. 6.19.
par(mfrow=c(1,2), mar=c(3,3,0.5,0.5), mgp=mgp)
dh <- swDynamicHeight(GS)
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Fig. 6.20 Split-depth
temperature section of the
Gulf Stream (Exercise 5.7)
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plot(dh$distance, dh$height, type="l",
xlab="", ylab="Dyn. Height [m]")

then calculate and plot the geostrophic velocity
lat <- GS[["station", 1]][["latitude"]]
f <- coriolis(lat)
g <- gravity(lat)
v <- diff(dh$height)/diff(dh$distance) * g / f / 1e3
v <- c(NA, v) # to get same length as distance
plot(dh$distance, v, type="l",

xlab="Distance [km]", ylab="Velocity [m/s]")

Exercise 5.7 on page 129. Plot a split-depth temperature section for the Gulf
Stream, with a panel for variation in the top 200 m and another for variation below.
Use layout() to make panels of unequal height.
Solution. Continuing with GS, Fig. 6.20 is constructed with

top <- sectionGrid(GS, p=seq(0, 200, 5))
bottom <- sectionGrid(GS, p=seq(200, 5000, 100))
layout(matrix(1:2, nrow=2), widths=1,
heights=c(0.25, 0.75))
plot(top, which="temperature", mar=c(0, 3, 1, 1),

axes=FALSE, legend.loc="")
axis(2, at=pretty(par("usr")[3:4]))
plot(bottom, which="temperature",mar=c(3, 3, 1.0, 1))

where axis() has been provided with labels, since the default in this small domain
would otherwise yield just one labelled depth.

Exercise 5.8 on page 134. Create a coplot of the section dataset, showing
T –S dependence as a function of latitude and longitude.
Solution. Continuing with the section dataset,

data(section, package="oce")
sec <- handleFlags(section) # remove bad data
S <- sec[["salinity"]]
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Fig. 6.21 Coplot of spatial T –S relationship in the section dataset

T <- sec[["temperature"]]
latitude <- sec[["latitude"]]
longitude <- sec[["longitude"]]

yields data that are plotted in Fig. 6.21 with
coplot(T~S|longitude+latitude, number=4, cex=2/3)

where the number of panels has been reduced from the default of 6 to illustrate
the broad features. The section is nearly zonal, with little variation in latitude. The
scattered points at relatively low salinity and middling temperatures are associated
with a location near the coast of North America (see Fig. 5.1, which focusses in
that region), and Mediterranean Water is visible as a relatively warm and salty
watermass, most prominent towards the east.

Exercise 5.9 on page 135. Suggest how to produce T –S diagrams categorized by
longitude, using cut, factor and split.
Solution. Longitude ranges between 68 W and 9 W, and subdivision of stations into
10-degree longitudes is accomplished with
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cs <- cut(open[["longitude", "byStation"]],
seq(-70, 0, 10))
S <- split(open[["station"]], factor(cs))

After which S is a vector of length 7, with each element in turn containing a list of
ctd objects, one per station.

A summary plot (not reproduced here) is obtained with
plotTS(open, eos="gsw")

and aggregate diagrams for each longitude band with
for (Si in S) {

plotTS(as.section(Si), eos="gsw")
lonm <- mean(unlist(lapply(Si,

function(x) x[["longitude"]])))
mtext(round(lonm, 1), side=3, line=0, adj=1,
cex=0.8)

}

where lapply() has been used to perform a computation across the stations
within each longitude band.

Exercise 5.10 on page 136. Formulate a model in which the misfit in S is
minimized, and evaluate the confidence interval for it.
Solution. One may begin as in the text with

library(deSolve)
eos <- "unesco" # match Schmitt's variables
data(schmitt, package="ocedata")

and formulate the model similarly
dS.dtheta <- function(theta, S, parms) {

list(swAlpha(S, theta, 0, eos=eos) /
parms$Rrho/swBeta(S, theta, 0, eos=eos))

}
SModel <- function(S0, Rrho)
lsoda(S0,schmitt$theta,dS.dtheta,
parms=list(Rrho=Rrho))[,2]

fit <- nls(S~SModel(S0, Rrho), data=schmitt,
start=list(S0=20,Rrho=1))

confint(fit)
2.5% 97.5%

S0 35.109322 35.150613
Rrho 1.911916 1.969793

Exercise 5.11 on page 141. Compare the spring-neap variation in Halifax sea level
with the phase of the moon.
Solution. First, load the data and extract relevant variables with

data(sealevel, package="oce")
start <- ISOdatetime(2003,3,1,0,0,0,tz="UTC")
end <- ISOdatetime(2003,3,28,0,0,0,tz="UTC")
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Fig. 6.22 Spring-neap variation of Halifax Harbour sea level, showing the demeaned observed
record (gray), an envelop using a running boxcar filter of the squared square (solid black), and the
square of fractional area of the lit moon (dashed black)

sl <- subset(sealevel, start < time & time < end)
t <- sl[["time"]]
eta <- sl[["elevation"]] - mean(sl[["elevation"]],
na.rm=TRUE)

after which it is simple to plot the timeseries η = η(t) as Fig. 6.22 with
oce.plot.ts(t, eta, drawTimeRange=FALSE, col="gray",

ylim=c(-1,1),
xlab="", ylab="Sea Level [m]")

abline(h=0)

The envelop may be calculated by smoothing the squared signal

tt <- as.numeric(t)
env <- binMean1D(tt, eta^2, seq(tt[1], tail(tt, 1),
24*3600))
lines(env$xmids+(t[1]-env$xmids[1]),
sqrt(env$result), lwd=3)

Moon phase is given by moonAngle(), but it is perhaps simpler to display the
fractional area of the illuminated portion of the moon on the graph.

m <- moonAngle(t, 44.65, -63.6)
lines(t, illum <- m$illuminatedFraction, lwd=2, lty=2)

Assuming negligible “age of the tide”, elevation amplitudes should be highest
with full moon and new moons, i.e. illumination fractions near 0 and 1.

Exercise 5.12 on page 142. Use the oce function plotTaylor() to contrast
three tidal models of sea level in Halifax Harbour: one with default constituents,
one with just M2, and one with just S2.
Solution. After loading the data

data(sealevel, package="oce")
eta <- sealevel[["elevation"]]

the three tidal fits are constructed and illustrated in Fig. 6.23 with
all <- predict(tidem(sealevel))
M2 <- predict(tidem(sealevel, constituents="M2"))
S2 <- predict(tidem(sealevel, constituents="S2"))
plotTaylor(eta, cbind(all, M2, S2))
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Fig. 6.23 Diagnostic plots of
three tidal models
(Exercise 5.12)
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Fig. 6.24 Halifax sea level, after application of a Doodson X0 filter; compare Fig. 5.12

Exercise 5.13 on page 142. Determine whether the storm surge from Hurricane
Juan in Halifax Harbour can be detected after removing tidal energy with a Doodson
tidal filter.
Solution. The Doodson tidal filter is a convolution filter with zero multiplier at zero
lag, and with single-sided multipliers

a <- c(2,1,1,2,0,1,1,0,2,0,1,1,0,1,0,0,1,0,1)/30

at lags ±1 h, ±2 h, etc. (Intergovermental Oceanographic Commission 1985,
Appendix 3), so a full filter is

f <- c(rev(a), 0, a)

The de-tided signal can be calculated and plotted as in Fig. 6.24 with
data(sealevel, package="oce")
eta <- sealevel[["elevation"]]
t <- sealevel[["time"]]
tlim <- as.POSIXct(c("2003-09-24", "2003-10-05"),
tz="UTC")
sealevelC <- filter(eta, f)
oce.plot.ts(t, sealevelC, xlim=tlim, xaxs="i")
abline(v=as.POSIXct("2003-09-29 04:15:00",tz="UTC"),
Slty=2)

The results are not encouraging, a comparison with Fig. 5.12 revealing that the
hours-long storm surge event is smeared out over days by the Doodson filter,
decreasing in magnitude by a factor of 5.

Exercise 5.14 on page 142. Construct a hypsometric curve using outer() to
create an area matrix that pairs with the depth matrix topoWorld[["z"]].
Solution. First, construct a percent-area matrix

data(topoWorld, package="oce")
z <- topoWorld[["z"]]
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Fig. 6.25 Hypsometric curve
(Exercise 5.14)
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lat <- topoWorld[["latitude"]]
area <- outer(rep(1, dim(z)[1]), cos(lat * pi / 180))
area <- 100 * area / sum(area)

and then display elevation and fractional area in Fig. 6.25.

n <- 100
Z <- seq(min(z), max(z), length.out=n)
a <- unlist(lapply(Z, function(Z) sum(area[z>=Z])))
plot(a, Z/1000, type="s", xaxs="i", lwd=3,

ylab="Elevation [km]", xlab="Percent of
Earth Area")

Exercise 5.15 on page 143. Graph surface water properties for the delayed-mode
portion of the argo dataset, as a T –S diagram and a trajectory with symbol size
proportional to spiciness.
Solution. The data may be loaded and subsetted with

data(argo, package="oce")
argoD <- subset(argo, dataMode=="D")

and then near-surface temperature and salinity can be selected with
SSS <- apply(argoD[["salinity"]], 2, head, 1)
SST <- apply(argoD[["temperature"]], 2, head, 1)
lon <- argoD[["longitude"]]
lat <- argoD[["latitude"]]

after which a CTD object created with
SSctd <- as.ctd(SSS, SST, 0, longitude=lon,
latitude=lat)

yields the desired spiciness with
SSspice <- SSctd[["spice"]]

so that Fig. 6.26 can be constructed with
par(mfrow=c(1,2))
cexLon <- rescale(lon, rlow=1/2, rhigh=2)
plotTS(SSctd, cex=cexLon)
cexSpice <- rescale(SSspice, rlow=1/2, rhigh=2)
plot(argo, which=1, coastline="coastlineWorld",
cex=cexSpice)
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Fig. 6.26 Watermass analysis for the argo data set (Exercise 5.15). Left: temperature-salinity
diagram with larger symbols for more eastern locations. Right: trajectory of argo surface position,
with larger symbols for waters of higher spiciness

Fig. 6.27 Separation of the
at-satellite brightness
temperature histogram into
Gaussian groups. The vertical
line is TB inferred from the
warmer group
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Exercise 5.16 on page 145. Use functions in the mixtools package to separate
the histogram of Fig. 5.15 into two parts.
Solution. With TB from Sect. 5.8, using

library(mixtools)
m <- normalmixEM(TB[!is.na(TB)])
plot(m, which=2, col2=c("black", "darkgray"))
TBice <- m$mu[2] - 2 * m$sigma[2]
abline(v=TBice)

yields Fig. 6.27. Note that the inferred brightness temperature of ice, TBice =
−3.7◦C, is similar to that inferred visually and drawn in Fig. 5.15.

Exercise 5.17 on page 149. Suggest a procedure for performing CTD outlier
rejection using data flags, instead of modifying the data.
Solution. With ctdRaw loaded and bad() defined as in the text, a solution using
the World Hydrographic Program flag notation is

data(ctdRaw, package="oce")
for (i in 1:2) {

b <- bad(ctdRaw[["salinity"]])|bad(ctdRaw
[["temperature"]])
ctdRaw[["flags"]]$salinity <- ifelse(b, 3, 2)
ctdRaw[["flags"]]$temperature <- ifelse(b, 3, 2)
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Fig. 6.28 Comparison of two
summaries of log-normal
distributions (Exercise 5.18)
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ctdRaw <- handleFlags(ctdRaw, 3)
}

where handleFlags() sets the questionable values to NA at each of two
iterations.

Exercise 5.18 on page 151. Compare E1 and E2 in a series of random trials.
Solution.
A function returning E1/E and E2/E is

test <- function(n=500,lmuHat=-5*log(10),
lsigmaHat=2*log(10))
{

e <- rlnorm(n, lmuHat, lsigmaHat)
E <- exp(lmuHat + lsigmaHat^2/2)
E1 <- exp(mean(log(e)))
E2 <- exp(mean(log(e)) + 0.5 * sd(log(e))^2)
c(E1 / E, E2 / E)

}

after which trials may be done with laply() in the plyr package
library(plyr)
set.seed(518) # for reproducibility
x <- laply(1:1000, function(trial) test())

and the results plotted as a log-space box plot in Fig. 6.28 with
boxplot(log10(x), horizontal=TRUE, notch=TRUE,

names=c("E1/E", "E2/E"))
mtext("Logged ratios", side=3, line=0)

which shows close agreement between E2 and E, also evidenced by the 95%
confidence interval

10^as.numeric(t.test(log10(x[,2]))$conf.int)
[1] 0.9632924 1.0462378

Exercise 5.19 on page 153. Use approx to write a function that interpolates from
one set of times to another.
Solution. This solution can be handy for putting a suite of instruments on a common
timebase.

adjustTime <- function(t, x, tout, ...)
{
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Fig. 6.29 Autocorrelation of soi dataset, with confidence intervals

if (missing(tout))
tout <- seq(min(t), max(t),
length.out=length(t))

approx(t, x, tout, ...)$y
}

Exercise 5.20 on page 155. Add confidence limits to Fig. 5.19.
Solution. A 95% confidence band may be constructed from z∗σ/

√
n, with z∗

computed for a t distribution with the number of points in the segment.
library(plyr) # for laply
n <- laply(is, length) # segment lengths
zstar <- qt(1-0.05/2, n) # " z values
pm <- zstar * laply(is, sd) / sqrt(n) # " CI/2
lines(ymean, imean + pm) # upper CI range
lines(ymean, imean - pm) # lower CI range

Exercise 5.21 on page 156. Following Sect. 2.4.8, use acf() to look for
oscillations in the soi dataset.
Solution. Constructing Fig. 6.29 is simple (with the default lag range being extended
to show results at up to 5 years):

data(soi, package="ocedata")
SOI <- ts(soi$index,

start=soi$year[1], deltat=diff
(soi$year[1:2]))

acf(SOI, lag.max=5*12, xlab="Lag [years]", main="")

The correlation crosses zero at a 1-year lag, reaches a minimum at approximately
1.5 years, and fails the indicated significance criterion a year thereafter. Doubling
the lag at the negative lobe might suggest an oscillation of 3 years, but the low
significance in that lag range suggests that any such variations are weak or sporadic.

Exercise 5.22 on page 156. With the giss dataset, show how detrending can
reduce spurious endpoint effects of Butterworth filters.
Solution. First, plot the data as the gray line in Fig. 6.30
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Fig. 6.30 Demonstration of
the benefit of detrending
before Butterworth lowpass
filtering, with gray showing
the giss dataset, dashed
black showing the result of
simple filtering, and solid
black showing the result of
filtering after detrending
(Exercise 5.22)

Time

G
IS

S

1880 1920 1960 2000

−0
.5

0.
5

data(giss, package="ocedata")
GISS <- ts(giss$index, start=giss$year[1],
frequency=12)
plot(GISS, col="gray")

Next, construct a Butterworth filter with half-power at 120 months (quarter-power,
with filtfilt() doing the filtering)

library(signal)
f <- butter(n=4, W=2*1/120) # W=2*tauS/tauC in

months

Applying this filter and drawing the results on Fig. 6.30
A <- filtfilt(f, GISS)
lines(giss$year, A, lty=2, lwd=2)

illustrates how Butterworth filters can produce spurious effects near the endpoints.
Better results may be achieved by first detrending the time series, pulling the
endpoints towards zero.

A simple way to remove a trend is with detrend() in the oce package, e.g.
dt <- detrend(giss$index)

creates a list containing Y, the detrended values, along with a and b, the slope and
intercept with respect to seq_along(giss$index).

Filtering the detrended time series, adding back the removed trend, and plotting
as a solid curve in Fig. 6.30

B0 <- filtfilt(f, dt$Y)
B <- B0 + dt$a + dt$b * seq_along(giss$year)
lines(giss$year, B, lwd=2)

reveals that the two filtering schemes yield similar results in the middle years of
observation, but that detrending produces results that are more faithful to the data at
the start and (particularly) the end.

Exercise 5.23 on page 160. Use spectrum() to demonstrate the demonstrate
Butterworth filter response.
Solution. It is convenient to use rnorm() to construct a time series

x <- rnorm(1e5)
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Fig. 6.31 Frequency response of third-order Butterworth filter with cutoff 0.5 times the Nyquist
frequency, applied with filtfilt() (Exercise 5.23)

after which a third-order Butterworth filter with 3-dB cutoff at, say, one-fifth the
Nyquist frequency may be constructed with

library(signal)
W <- 1 / 5
filter <- butter(3, W)

It is recommended to use filtfilt() to avoid altering the phase
y <- filtfilt(filter, x)

but that will change the half-power point to a quarter-power point, as illustrated in
Fig. 6.31 with the following.

X <- spectrum(x, plot=FALSE)
Y <- spectrum(y, plot=FALSE)
plot(X$freq, Y$spec / X$spec, type="l",

xlab="Frequency", ylab="Power Ratio")
abline(v=W*0.5, lty="dashed") # Nyquist=0.5
abline(h=1/4, lty="dashed")

Exercise 5.24 on page 161. Write a function to compute and display a frequency-
time plot.
Solution. A simple solution is as follows.7

sonogram <- function(t, x, seglen=64, log=FALSE, ...)
{

n <- length(t)
if (length(x) != n) stop("t and x must be of equal length")
n <- n - n %% seglen # for trimming to multiple of seglen
t <- t[1:n]
x <- x[1:n]
xs <- split(x, cut(t, breaks=floor(n/seglen)))
m <- length(xs[[1]])
freq <- spectrum(xs[[1]], plot=FALSE)$freq
nfreq <- length(freq)
spec <- matrix(NA, nrow=length(xs), ncol=nfreq)
for (i in seq_along(xs))

spec[i,] <- spectrum(xs[[i]], plot=FALSE)$spec
spec <- spec / sqrt(nfreq) # normalize as for spectrum()

7Note the normalization of the fft() output, to match the convention of spectrum().
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time <- t[seq(1, by=m, length.out=length(xs))]
imagep(time, freq, if (log) log10(spec) else spec,

xlab="Time", ylab="Frequency", ...)
}

where the %% operator is one of several ways of trimming one interval to a multiple
of another integer.

This function may be tested with a chirp signal
n <- 3600
t <- 1:n
freq <- 2 * pi * (0.1 + 0.2 * t/n)
x <- rnorm(n) + sin(freq*t)
sonogram(t, x, col=function(n) gray.colors(n, 1, 0))

with results as shown in Fig. 5.23 on page 159.

Exercise 5.25 on page 161. Use fft() to compute rotary spectra as defined by
Gonella (1972).
Solution. With time-series u and v, Gonella (1972) writes the clockwise and
anticlockwise rotary spectra as

S− = 1

8
(Puu + Pvv − 2Quv)

S+ = 1

8
(Puu + Pvv + 2Quv)

(6.7)

where Puu and Pvv are the auto-spectra of u and v, and Quv is the quadrature
spectrum between u and v. This may be expressed as8

spec.rotary <- function(u, v, deltat=1)
{

n <- length(u)
U <- fft(u) / sqrt(n)
V <- fft(v) / sqrt(n)
Puu <- U * Conj(U)
Pvv <- V * Conj(V)
Quv <- -Re(U)*Im(V) + Re(V)*Im(U)
cw <- (Puu + Pvv - 2*Quv) / 8
acw <- (Puu + Pvv + 2*Quv) / 8
keep <- seq(2, floor(n/2) + 1)
f0 <- 1 / deltat
f <- seq(f0/n, by=f0/n, length.out=floor(n/2))
list(freq=f, specCW=Re(cw[keep]),

specCCW=Re(acw[keep]))
}

8As in the previous Exercise, note the scaling of fft() output.
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Fig. 6.32 Rotary spectra of velocities predicted with an inertial-oscillation model, showing (left)
clockwise and (right) anticlockwise power, focussed on low frequencies including (dashed) the
inertial. Note the 200-fold scale difference (Exercise 5.25)

As a test, u and v time series were constructed with an inertial model similar
to that in Sect. 5.9.6, with altered forcing and added noise. As Fig. 6.32 shows, the
inertial-band energy is mostly confined to the clockwise spectrum, as expected for
this northern-hemisphere simulation.

Exercise 5.26 on page 163. Use na.kalman from the imputeTS package to
replace the spikes in x with the predictions of a Kalman filter.
Solution. With x and bad() defined as in the text,

y <- x
y[bad] <- NA
library(imputeTS)
yy <- na.kalman(y)
plot(t, x, type="l")
lines(t, yy, col="red")

will define y, with NAs in the spikes, and yy, with the NAs replaced with the
predictions of a Kalman filter. This call to na.kalman() uses a maximum-
likelihood model, but other models are also possible (Moritz and Bartz-Beielstein
2017).

Exercise 5.27 on page 168. Use the zd element of the return value from
interpBarnes() to add the percentage errors to Fig. 5.28.
Solution. This misfit may be added with

library(plyr)
e <- laply(seq_along(topo$x),

function(i) (topo$z[i]-b$zd[i])/topo$z[i])
text(topo$x, topo$y, round(100 * e), cex=0.9)
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Exercise 5.28 on page 172. Construct a two-layer box model for temperature, with
the top layer subjected to a sinusoidal heat flux. Assume the boxes to be of equal
thickness, and devise a convection scheme to prevent temperature inversion.
Solution. The method involves a function defining dT1/dt and dT2/dt , where T1
and T2 are the temperatures in the upper and lower boxes, and t is time. Take the heat
flux to be F = A sin(2πt/τ), where A is a constant and τ = 1 year. Let the layer
depths be H , the water density be ρ = 1027 kg/m3 and the specific heat be CP =
4300 J/(kg ◦C). The model equations are then dT1/dt = F/(ρCP H) − k(T1 − T2)

and dT2/dt = k(T1 −T2). A crude way to handle convection is to increase k greatly
when T1 < T2.

model <- function(t, y, parms, ...)
{

T1 <- y[1] # extract elements for clarity of notation
T2 <- y[2]
F <- parms$A * sin(2 * pi * t / parms$tau)
K <- if (T1 < T2) 1e3 * parms$k else parms$k
list(c(dT1dt = F / (1027*4300*parms$H) - K * (T1 - T2),

dT2dt = K * (T1 - T2)))
}

The solution for initial condition T1 = T2 = 10◦C, given parameter values A =
200 W/m2, τ = 1year, k = 1 × 10−7 s−1 and H = 50 m, is found with

library(deSolve)
IC <- c(10, 10)
spy <- 365 * 86400 # seconds per year
parms <- list(A=200, k=1e-7, H=50, tau=1 * spy)
times <- seq(0, 2 * spy, length.out=500)
T12 <- lsoda(IC, times, model, parms)

and the resultant Fig. 6.33 is created with
plot(T12[,1]/spy, T12[,2], type="l",

xlab="Year", ylab="Temperature")
lines(T12[,1]/spy, T12[,3], lty=2)

Exercise 5.29 on page 172. Develop a numerical solution to the convection problem
formulated by Stommel (1961), dy/dt = 1 − y − (y/λ)|Rx − y| with dx/dt =
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Fig. 6.33 Evolution of temperatures in a two-box model of convection, with solid and dashed lines
for upper and lower layers (Exercise 5.28)
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δ(1 − x) − (x/λ)|Rx − y|, where x is dimensionless salinity, y is dimensionless
temperature, t is dimensionless time, δ = 1/6, λ = 1/5 and R = 2. Draw some
traces to mimic Stommel’s Figure 7, including one starting at x = 0.55, y = 1,
which approaches a stable-spiral attractor.
Solution. The differential equations are returned by the function

DE <- function(t, xy, param, ...) {
x <- xy[1] # shorthand for clarity
y <- xy[2]
list(c(param$delta*(1-x)-(x/param$lambda)*abs(param$R*x-y),

1-y-y/param$lambda*(abs(param$R*x-y))))
}

With parameters as used by Stommel (1961)
param <- list(R=2, delta=1/6, lambda=1/5)

and report times
times <- seq(0, 20, length.out=200)

the calculation and plotting are handled with
library(deSolve)
soln <- lsoda(y=c(0.55, 1), times=times, func=DE,
param=param)
plot(soln[,2], soln[,3], type="l",

xlab="x", ylab="y", xaxs="i", yaxs="i",
xlim=c(0, 1), ylim=c(0, 1))

which starts Fig. 6.34, the other trajectories added to which use starting points
chosen to mimic Stommel’s values. To guide the eye to the spiral attractor (and
another attractor), a filled symbol indicates the start of each trajectory and an open
symbol indicates the end.

Exercise 5.30 on page 177. In her 1972 song “You’re so vain,” Carly Simon
mentions flying to Nova Scotia to view a solar eclipse. Determine the time of that
eclipse, assuming that it occurred on March 7, 1970. Use optimize() with the
oce functions moonAngle() and sunAngle().

Fig. 6.34 Evolution of
nondimensional temperature
(x) and salinity (y) in the
Stommel (1961) convection
model (Exercise 5.29)
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Solution. The first step is to create a function returning a measure of the sun-moon
separation at (for example) the location of Halifax. One method is to sum squared
deviations in altitude and azimuth.

lat <- 44.6500
lon <- -63.6000
distance <- function(t)
{

t <- numberAsPOSIXct(t)
m <- moonAngle(t, lat, lon)
s <- sunAngle(t, lat, lon)
sqrt((m$azimuth - s$azimuth)^2 +

(m$altitude - s$altitude)^2)
}

Next, define limits for the day in question
l <- as.POSIXct("1970-03-07 00:00:00", tz="UTC")
u <- l + 86400

Now, use optimize() to perform the 1-D optimization.
eclipse <- optimize(distance, lower=l, upper=u)

The function returns its smallest value at time
numberAsPOSIXct(eclipse$minimum)
[1] "1970-03-07 17:39:55.204 UTC"

and that value is
eclipse$objective
[1] 0.4540549

The moon and sun each cover about 0.5 degrees of the sky, so this is indeed
an eclipse. Readers might enjoy determining whether this was a total eclipse
somewhere in Nova Scotia, as Simon indicates. As for that famous question relating
to this song, R has little to say.

Exercise 5.31 on page 181. Use svd() to apply the singular value decomposition
method to the adp dataset.
Solution. Reconstruct the data as in the text, combining a few of the steps.

data(adp, package="oce")
adp2 <- subset(adp, distance < 38)
u <- adp2[["v"]][,,1]
distance <- adp2[["distance"]]
time <- adp2[["time"]]

Missing values cannot be handled by svd(), but replacing them with the median
may be reasonable

u[is.na(u)] <- median(u, na.rm=TRUE)

after which the actual decomposition is a trivial function call
U <- svd(u)
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Fig. 6.35 Empirical orthogonal function analysis of ADCP data (Exercise 5.31)

The modal shapes are in the columns of U$u, while the time-varying amplitudes are
in the columns of U$v. The results for the first mode may be plotted as Fig. 6.35
with the following, where layout() is used to set up panels of unequal width.

layout(matrix(1:2, nrow=1), widths=c(0.3, 0.7))
plot(-U$v[,1], distance, type="l",

xlab="Modal shape", ylab="Distance [m]")
oce.plot.ts(time, -U$d[1]*U$u[,1],

xlab="Time", ylab="Amplitude")

Exercise 5.32 on page 183. Explore the accuracy of this method by adjusting Δz

with the case of constant N = 0.01 s−1.
Solution. The theoretical wave speed

√
NH/π = 0.3183 m/s for N = 0.01 s−1 and

H = 100 m. Tests with code as in the text recover this value with absolute errors of
0.5, 0.98 and 1.92% for Δz = 1, 2 and 4 m; all of these values are less than the 5%
error expected for a typical 10% uncertainty in N .

Exercise 5.33 on page 186. Create a neural network to describe the variation of
sound speed with pressure, for station 103 of the section dataset, exploring the
effect of variable transformation on reproducibility.
Solution. First, load and plot the data for this station, which is in 5000 m of water,
south of Cape Cod at 36 ◦N.

library(nnet)
data(section, package="oce")
stn <- handleFlags(section[["station", "104"]])
par(mfrow=c(1, 2))
speed <- swSoundSpeed(stn) # in m/s
p <- stn[["pressure"]] # in dbar
plotProfile(stn, xtype=speed, xlab="Speed [m/s]",
type="p")

The resultant circles in Fig. 6.36 reveal a SOFAR channel centred at about
1500 m. The scales of sound speed, pressure, and the derivative of the former with
respect to the latter are very dissimilar, which raises concerns about the ability
of the optimizer used by nnet() to find a solution. Since that optimizer starts
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Fig. 6.36 Neural network model of sound speed as a function of pressure at station 103 of the
section dataset. Left: data and the predictions of 10 trials with unscaled units. Right: similar,
but with transformed variables (Exercise 5.33)

with a random number, a crude way to assess the level of difficulty is to test for
reproducibility across repeated trials.

For illustration, the solutions will be shown on a uniform pressure grid
set.seed(533) # for reproducibility
pp <- seq(max(p), 0, -10)
trials <- 10
e1 <- NULL # will hold misfits
for (i in 1:trials) {

n1 <- nnet(speed ~ p, linout=TRUE,
size=5, decay=1e-2, maxit=1000)

speedPred1 <- predict(n1, newdata=data.frame(p=pp))
lines(speedPred1, pp)
e1[i] <- mean(abs(speed - predict(n1,p)))

}

The results as drawn in Fig. 6.36 are certainly too variable to be of practical
use. One of the trials has predictions that closely follow the data throughout the
water column, but the others don’t even display a SOFAR channel; indeed, the mean
absolute misfit, e1=10.7 m/s, is comparable to the standard deviation of sound speed
over the depth (16 m/s).

A reasonable variable transformation might be to express speed as a deviation
from a canonical value of 1500 m/s and pressure in 1000 dbar units, since this
will pull the variables and their derivatives closer to O(1). In these new terms, the
solution becomes

A <- 1500
B <- 1000
Speed <- speed - A
P <- p / B
plotProfile(stn, xtype=speed,xlab="Speed [m/s]", type="p")
e2 <- NULL
for (i in 1:trials) {

n2 <- nnet(Speed ~ P, linout=TRUE,
size=5, decay=1e-2, maxit=1000)
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speedPred2 <- A + predict(n2, newdata=data.frame(P=pp/B))
lines(speedPred2, pp)
e2[i] <- mean(abs(speed - (A + predict(n2,p))))

}

which results in the right panel of Fig. 6.36. The improvement is obvious: the
transformed variables yield results that describe the data very closely. Indeed, the
misfit e2=0.4 m/s for the transformed variables is low enough that an analyst might
wonder whether overfitting will be a problem. A natural step in exploring that idea
might involve exploring the results of varying the decay argument of nnet().
Another approach would be to apply cross validation methods to the problem,
perhaps along lines discussed by Venables and Ripley (1999).

Since neural networks can display surprisingly odd results at times (see, e.g.,
Hutson 2018), practical analysts tend to spend a great deal of time testing the
robustness and extendibility of proposed solutions. They also sense become familiar
with the relative merits of the different approaches to neural networks that are
provided in R, since nnet() is certainly not the only choice. As noted in the text,
neural networks are a powerful tool, but not one to be used blindly.



Appendix A
Switching from Matlab to R

Most analysts find that it is not difficult to switch from Matlab to R, especially
if a few key differences are kept in mind. This appendix provides a list of such
differences, gleaned from the experience of the author and his colleagues (especially
Clark Richards, who helped to compile the list).

Syntax

1. Assignment to a variable is denoted with “=” in Matlab, but with “<-” in R.
(Actually, it is possible to use “=” for R assignment, but not recommended.)

2. In R, assignment statements do not print their value, so there is no need for the
Matlab convention of using “;” for silencing an assignment.

3. In R, as in most modern languages except Matlab, square brackets are used for
indexing; see Sect. 2.3.4.

4. R matrices are not constructed with a square-bracket syntax, but rather with
matrix(), as.matrix(), cbind() or rbind(); see Sect. 2.3.5.

5. In Matlab, vectors (one-dimensional sequences of values) are often represented
as single-column matrices. The same form can be used in R, but most functions
work with vectors, instead. The drop() function, which drops unused matrix
dimensions, helps to convert Matlab data to R format, e.g. the following shows
how to create vectors for regression with lm().

library(R.matlab)
m <- readMat("filename.mat")
x <- drop(m$x)
y <- drop(m$y)
lm(y ~ x)

6. R coerces arrays to a lower dimension whenever it can (Sect. 2.3.5.2), but the
drop=FALSE argument can override this, e.g.
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a <- matrix(1:10, nrow=2)
a[1,] # a vector
[1] 1 3 5 7 9

yields a vector, whereas
a[1,,drop=FALSE] # a 1-row matrix

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9

yields a one-row matrix. (Note the second comma in the drop=FALSE case.)
7. Matrix multiplication in R uses the %*% operator, while the * operator does item-

by-item multiplication. See Sect. 2.3.5.1 for this and other matrix operations.
8. In Matlab, a period in a variable name indicates the selection of a subcomponent

of a structure. In R, a period in a variable name is generally taken to have no
particular meaning except for generalized functions. See Sect. 2.3.2.

9. The q() function is called to exit R. Since this is a function call, the parentheses
are required. Dropping the parentheses yields a cryptic message that does little
to suggest that R is a friendly language!

Graphics

1. In Matlab, hold on is used to indicate a desire to embellish an existing plot.
Instead, R provides a suite of functions whose whole purpose is to add to
existing plots, such as points() for adding points, lines() for adding
lines, title() for adding titles, legend() for adding legends, mtext()
for writing in plot margins, etc., plus an add argument to contour() and a
few other functions to make them add to an existing plot; see Sect. 2.4.

2. Matlab offers better interactive control of plots than is available in the basic R
graphics system, although the shiny package makes up for this, at some coding
cost. See Sects. 2.4.15 and 2.8, plus Appendix B.

3. Matlab produces “flashier” default graphics, e.g. automatically using colours to
distinguish between lines on a plot. The R strategy is to produce more utilitarian
black/white default plots, in accordance with the tenets outlined by Cleveland
and McGill (1984) and others who have studied the interpretation of graphical
material. R also offers colour schemes that are suitable for viewers with vision
limitations (Ihaka 2003; Light and Bartlein 2004; Zeileis et al. 2009).

Freedom

1. Matlab is a commercial product, sold at a price that is significant to many
research groups and is likely to be prohibitive to those “citizen scientists” who
might wish to use code provided in the supplemental materials of research papers.
R costs nothing.
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2. Portions of Matlab are in closed-source form, making it difficult for users to
check the methods for veracity or appropriateness. The entire R source is open
to inspection.

3. Matlab is covered by commercial licences that may be untoward in some
circumstances. R is covered by a GNU license.



Appendix B
GUI Systems for R

Graphical user interfaces (GUIs) simplify the interactive use of R, providing benefits
to users of various skill levels. Those with limited programming experience may
find GUIs less daunting than the R command-line interface. Those will more
programming experience may appreciate the ease with which GUIs let them access
previous commands, plots, and documentation views. Even experts may use GUIs
when they need simple access to debugging tools, without losing the ability to use
the editors and revision-control systems of their choice.

The basic R system centres on a command-line mode, but this is supplemented
by various GUI systems that can ease interactive analysis (Fig. B.1). Many users
switch between GUI and the command-line, for different sorts of tasks or for a
given task at different stages of completion.1 Some R newcomers, especially those
with limited programming experience, focus almost entirely on GUI systems, but
even experienced programmers can benefit from GUIs for occasional or everyday
use.

There are several GUIs to choose from. Most are in continuous development,
making it problematic to provide detailed feature comparisons here. Still, a broad
and quite personal overview may be of some use to readers.

• Rstudio is a multi-platform system that is popular across a wide range of R
users. Beginners appreciate the access it provides to previously viewed docu-
mentation entries and plots, along with its provision of a simple data viewer and
a code-aware text editor. Those with more computing skills will appreciate that
Rstudio works well with system tools, such as external editors and revision
control systems. Developers will appreciate the ease of rebuilding packages,

1For example, the author tends to use Rstudio to build packages, but not for data analysis. For the
latter, he uses Mac-GUI (usually coupled with a Vim editor window) for exploratory work, moving
to standalone script files as the work progresses. For any task that takes more than a minute, these
script files are run with a Makefile so that analysis is repeated only when the R source-code or the
data files are changed.
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Fig. B.1 An Rstudio window, configured with panels for source code, documentation, console
and graphics

interacting with the debugger, running code-quality checkers, etc. Users at all
levels can benefit from Rstudio notebooks, which record interactive work in
webpages that combine code and graphs.

• Mac-GUI is a Macintosh-only system that provides menu access to documenta-
tion, graphs, console, and editor windows. It provides several Rstudio features,
although typically in more limited ways. Its restriction to a single platform is a
limitation for users who switch between different types of computer. Mac-GUI
does not follow the Rstudio tendency of merging windows together into a
single frame, so it can be a good choice for those who prefer to size and arrange
their own windows.

• JGR supports some of the features of Rstudio, in a more limited way.
• Rcommander provides menu items for some operations such as data loading,

regression and plotting, which may be appealing to beginners.

In addition to GUI systems, there are connections between R and several of the
general text editors that are popular in technical fields. This is important because
users with programming experience tend to have a favourite code-aware text editor
with which they are particularly adept. Emacs users can run R with the ESS (Emacs
Speaks Statistics) system, while Vim users can use the Vim-R-plugin system.
Both of these are set up for R syntax so they can indent and colourize appropriately,
and both interact with R to let users execute blocks of code, consult documentation,
and perform other tasks involved in using R.



Appendix C
Map Projections in oce

The oce package provides many of the map projections used in modern cartog-
raphy. The calculations are done with the rgdal package as an interface to the
underlying PROJ.4 system, and this means that the notation will be familiar to
readers who have experience with map projections in other computing languages.
Only projections that may be inverted are incorporated in oce, because inverse
calculations are required for labelling axes, etc. A table of the roughly 100 oce
projections is presented in this appendix, along with general remarks on choosing
projections and the details of a few common projections.

Cartesian latitude-longitude plots may be suitable for limited areas, if meridional
convergence is handled by setting asp to the reciprocal cosine of mean latitude.
However, a projection may be preferable for scales exceeding a few hundred
kilometres. There are many projections to choose from, and no firm rules to guide
the selection. Often, a projection is chosen to match previous work, facilitating
visual comparison of the data being displayed. The distortion of shapes and areas are
also important considerations (see Airy (1861) for an early treatment and modern
discussions by Snyder (1987) and Evenden (2003), the last of which employs the
PROJ.4 notation used in oce).

Projections may be classified roughly in three categories: cylindrical, conical,
and azimuthal. Conceptually, cylindrical projections have a light source at the earth
centre, with rays passing through points of interest on the earth surface and then onto
a cylinder enclosing the earth. Such projections are well-suited to equatorial regions.
Conical projections have a cone receiving the light, and are often used for mid-
latitude regions. Azimuthal projections, in which a tangent plane receives the light,
are useful for polar regions. Many variants of these basic projections exist, along
with representations that do not fit the light-casting analogy; see Snyder (1993) for
an overview and history.

The oce package handles map projections with the rgdal interface to a system-
level PROJ.4 library.1 Maps are created with mapPlot() and adorned with

1https://trac.osgeo.org/proj/.
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Fig. C.1 World view, using the Winkel Tripel projection, popularized by the National Geographic
Society. The dots are the positions of Argo floats in January, 2018. See Page 248 for the code used
to create this diagram

mapPoints() for points, etc. A list of oce projections is given in Tables C.1
and C.2, with details stemming from the PROJ.4 documentation. A few of these
projections have already been illustrated, including Mercator (page 82), Mollweide
(page 99), Lambert Conformal Conic (pages 170 and 203), Robinson (page 188),
and Winkel Tripel (page 248). NOAA uses the Robinson projection, as did the
National Geographic Society until a recent shift to Winkel Tripel. The latter is
illustrated in Fig. C.1, which was created with

data(coastlineWorld, package="oce")
mapPlot(coastlineWorld, projection="+proj=wintri",

col="lightgray")
year <- 2018
month <- 1
url <- "https://data.nodc.noaa.gov/argo/inv/basins"
for (basin in c("atlantic", "pacific", "indian")) {

f <- sprintf("%s/%s/%s/%s%s%02d_argoinv.txt", url, basin,
year, substr(basin, 1, 2), year, month)

d <- read.csv(f, stringsAsFactors=FALSE)
mapPoints(d$longitude_min, d$latitude_min,

pch=20, cex=0.4)
}
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Fig. C.2 Left: Orthographic projection of the Arctic and North Atlantic. Right: stereographic of
the Arctic

In contrast to the Robinson and Mollweide projections, Winkel Tripel curves
latitude lines, perhaps clarifying features of the Antarctic coastline.

At the hemispheric scale, it can be useful to use projections that call to mind
a view from space, e.g. the left panel of Fig. C.2 is created with an orthographic
projection

mapPlot(coastlineWorld, projection="+proj=ortho +
lat_0=60", col="lightgray", drawBox=FALSE)

Polar views commonly use a stereographic projection, e.g. the right panel of Fig. C.2
results from

mapPlot(coastlineWorld, col="gray", axes=FALSE,
projection="+proj=stere +lat_0=90 +lon_0=-120",
longitudelim=c(-180, 180), latitudelim=
c(70, 110))

where lat_0 yields a northern view, lon_0 puts the Beaufort Sea at the bottom
of the plot, and the symmetry of latitudelim about 90 centres the pole.

In addition to factors relating to domain size, one must also consider the issue of
area and shape distortion. For example, Fig. C.3 illustrates the difference between
an Albers equal area projection

p <- "+proj=aea +lat_1=15 +lat_2=60 +lon_0=-45"
mapPlot(coastlineWorld, projection=p, col="gray",

longitudelim=c(-90, 0), latitudelim=c(0, 50))
mapTissot()
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Fig. C.3 Comparison of Albers equal area projection (left) and Mercator projection (right), each
with Tissot indicatrices to indicate area and shape distortion

and the Mercator projection
p <- "+proj=merc"
mapPlot(coastlineWorld, projection=p, col="gray",

longitudelim=c(-90, 0), latitudelim=
c(-10, 70))

mapTissot()

revealing that the latter yields noticeable area distortion at high latitudes. Thus, the
Albers (or some other area-preserving) projection might be preferred for tasks in
which area is of great concern, such as mapping air-sea heat flux. However, the
Mercator projection is conformal, so that it preserves shapes, and this can be a prime
factor in other applications.

Visual guidance on selecting a projection is provided by mapTissot(), which
was used to draw the semi-circular shapes in Fig. C.3. These show how imaginary
circles on the earth are transformed by the projection (Tissot 1881; Snyder 1987).
In this case, the resultant shapes, a form of Tissot indicatrices, provide a clear
display of how the Mercator projection distorts area but not shape, while the Albers
projection distorts shape but not area. Note that the illustrated Albers projection has
lat_1 and lat_2 set to minimize distortion at 15 and 60◦N, yielding relatively
low distortion in mid latitudes and higher distortion elsewhere.2

Future versions of the oce package will incorporate new versions of PROJ.4 as
they become available. This should mean an increase in the number of projections,
and a decrease in problems with them. However, the evolution of PROJ.4 may lead

2This high degree of configuration is a strength of the PROJ.4 projection used by oce, but it also
imposes a responsibility on authors to provide more details than is common in the literature, so
that readers can reproduce results.
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to incompatibilities, if the arguments to projections change (as they did between
versions 4.8 and 4.9), so that Tables C.1 and C.2 may go out of date over the
years. This should not be of great concern, however, since the documentation for
mapPlot() will be updated as the capabilities change. Indeed, the assumption is
that readers will consult that documentation during the course of their work, e.g. to
learn about the available models of the earth ellipse, as well as the various chart-
datum schemes that can be used.

Table C.1 Map projections in oce

Name Description Type Arguments

aea Albers Equal Area Conic Sph&Ell lat_1, lat_2

aeqd Azimuthal Equidistant Azi, Sph&Ell lat_0, guam

aitoff Aitoff Misc Sph –

bipc Bipolar conic, western hemi. Conic Sph –

bonne Bonne (Werner if lat_1=90) Conic Sph&Ell lat_1

cass Cassini Cyl, Sph&Ell –

cc Central Cylindrical Cyl, Sph –

cea Equal Area Cylindrical Cyl, Sph&Ell lat_ts

collg Collignon PCyl, Sph –

crast Craster Parabolic (Putnin. š P4) PCyl, Sph –

eckN N=1 to 6 for Eckert I to VI PCyl, Sph –

eqc Equidistant Cylindrical Cyl, Sph lat_ts, lat_0

eqdc Equidistant Conic Conic, Sph&Ell lat_1, lat_2

euler Euler Conic, Sph lat_1, lat_2

etmerc Extended Transv. Mercator Cyl, Sph lat_ts, lat_0

fahey Fahey Pcyl, Sph –

fouc Foucault Pcyl, Sph –

fouc_s Foucault Sinusoidal Pcyl, Sph –

gall Gall Stereographic Cyl, Sph –

geos Geostationary Satellite View Azi, Sph&Ell h

gn_sinu General sinusoidal series Pcyl, Sph m, n

gnom Gnomic Azi, Sph –

goode Goode homolosine Pcyl, Sph –

hatano Hatano Asym. Eq. Area Pcyl Sph –

healpix HEALPix Sph Ellips –

rhealpix rHEALPix Sph Ellips north_square,
south_square

igh Interrupted Goode Homolosine Pcyl Sph –

imw_p Inter. map of world polyconic Mod. Poly, Ell lat_1, lat_2, lon_1

kavN N=5 or 7 for Kavraisky V or VII Pcyl Sph –

laea Lambert Azimuthal Eq. Area Azi Sph&Ell –

(continued)
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Table C.1 (continued)

Name Description Type Arguments

lonlat Lon/Lat (geodetic) –

latlon Lon/Lat (geodetic alias) –

lcc Lambert Conformal Conic Conic, Sph&Ell lat_1, lat_2, lat_0

leac Lambert Equal Area Conic Conic, Sph&Ell lat_1, south

loxim Loximuthal Pcyl Sph –

The order and notation follow the PROJ.4 documentation (version 4.9.3), with “Azi” for
azimuthal, “Cyl” for cylindrical, “Ell” for elliptical, “Pcyl” for pseudocylindrical, and “Sph” for
spherical. Only projections with inverses are included in oce

Table C.2 Projections

Name Description Type Arguments

mbt_s McBryde-Thomas flat-polar sine (1) Pcyl, Sph –

mbt_fps " " sine (2) Pcyl, Sph –

mbtfpp " " parabolic Cyl, Sph –

mbtfpq " " quartic Cyl, Sph –

mbtfps " " sinusoidal Pcyl, Sph –

merc Mercator Cyl, Sph&Ell lat_ts

mil_os Miller Oblated Stereo. Azi(mod)

mill Miller Cylindrical Cyl, Sph

moll Mollweide Pcyl, Sph

murdN N=1 to 3 for Murdock I to III Conic, Sph lat_1, lat_2

natearth Natural Earth PCyl, Sph –

nell Nell PCyl, Sph –

nell_h Nell-Hammer PCyl, Sph –

nsper Near-sided perspective Azi, Sph h

ob_tran General oblique transformation Misc Sph (many)

ocea Oblique cylindrical equal area Cyl lat_1, lat_2, lon_1,

lon_2

oea Oblated Equal Area Misc Sph n, m, theta

omerc Oblique Mercator Cyl, Sph&Ell (many)

ortho Orthographic Azi, Sph –

pconic Perspectictive Conic Conic, Sph lat_1, lat_2

poly Polyconic (American) Conic, Sph&Ell

putpN N=1:5, 3p, 4p, 5p, 6p Putnin. š Pcyl, Sph –

qua_aut Quartic Authalic Pcyl, Sph –

qsc Quadrilaterized Spherical cube Pcyl, Sph –

robin Robinson Pcyl, Sph –

rouss Roussilhe Stereographic Azi, Ell –

sinu Sinusoidal (Sanson-Flamsteed) Pcyl, Sph&Ell –

somerc Swiss. Obl. Mercator Cyl, Ell –

(continued)
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Table C.2 (continued)

Name Description Type Arguments

stere Stereographic Azi, Sph&Ell lat_ts

sterea Oblique Stereographic alternative Azi, Sph&Ell –

tcea Transverse Cyl. equal area Cyl, Sph –

tissot Tissot Conic, Sph lat_1, lat_2

tmerc Transverse Mercator Cyl, Sph&Ell

tpeqd Two-point equidistant Misc Sph lat_1, lat_2, lon_1,

lon_2

tpers Tilted perspective Azi, Sph tilt, azi, h

ups Universal polar stereographic Azi, Sph&Ell south

urmfps Urmaev flat polar sinusoidal Pcyl, Sph n

utm Universal transverse Mercator Cyl, Sph zone, south

vandg van der Grinten (I) Misc Sph

vitk1 Vitkovsky I Conic, Sph lat_1, lat_2

wagN N=1 to 6 for Wagner I to VI Pcyl, Sph lat_ts for N=3

weren Werenskiold I Pcyl, Sph

wink1 Winkel I Pcyl, Sph lat_ts

wintri Winkel Tripel Misc Sph lat_1



Appendix D
Seawater Formulations in oce

The oceanographic community has a choice of two sets of formulae for calculating
seawater properties: the UNESCO formulation, popularized in the 1980s, and the
Gibbs-SeaWater (GSW) formulation, proposed in 2010. This appendix outlines how
to navigate between these two systems in the oce package.

In the 1980s, the United Nations Educational, Scientific and Cultural Organi-
zation (UNESCO) endorsed a set of formulae for calculating various properties of
seawater, including an equation of state that relates density to salinity, temperature
and pressure. These formulae are described in most oceanographic textbooks
published in the past two decades, and in primary contributions such as those
by Fofonoff and Millard (1983) and Millard (1987). As expressed in popular
programming languages, the UNESCO formulae were adopted widely by the
oceanographic community by the early 1990s.

Recently, a new set of formulae has been made available, known as the
Thermodynamic Equation Of Seawater (TEOS-10, where the numbers indicate the
year of formulation). The scientific and practical foundations for this are described
by IOC et al. (2010), Wright et al. (2011), McDougall and Barker (2011), Graham
and McDougall (2012), while Millero (2010) and Pawlowicz et al. (2012) provide
historical context. Refinements are expected as new data are acquired, e.g. Budéus
(2018) reported recently that new density measurements suggest a possible density
bias of order 0.010 kg/m3, subject to confirmation by additional studies.

The seawater component of TEOS-10 is denoted GSW, a sort of acronym for
Gibbs SeaWater. This work addresses two requirements that arise from new research
and improvements in ocean measurement. The first is to put the interrelationships
between quantities on a solid thermodynamical basis through the use of a Gibbs
function, and the second is to account for spatial variation in the ionic composition
of seawater.

In the GSW system, salinity is described in several different ways, of which the
most important for oceanographers is a quantity called Absolute Salinity, denoted
SA, that depends on measured water properties and the position of measurement.
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The position is needed to account for spatial variations in seawater ion ratios,
assumed invariant of time for the intended range of application. The formulation
also proposes a quantity called Conservative Temperature, denoted �, which is
based on a careful consideration of thermodynamics.

To ease the transition from UNESCO to GSW, the latter has been made available
in C, Fortran, Matlab and R. The R case is handled by the gsw package (Kelley
et al. 2017), which is loaded automatically by oce.

A simple example may help to solidify the ideas. Suppose a CTD is lowered
at 300◦E and 30◦N (in the central North Atlantic) and it records practical salinity
35 at pressure 1000 dbar (roughly 1 km depth). Then the Absolute Salinity may be
calculated with gsw_SA_from_SP() from the gsw package,

library(gsw)
SA <- gsw_SA_from_SP(SP=35,p=1000,longitude=300,
latitude=30)

yielding SA=35.1682 g/kg. Similarly, if the in situ temperature were 10 ◦C, the
Conservative Temperature could be calculated with1

CT <- gsw_CT_from_t(SA=SA, t=10, p=1000)

yielding Θ=9.869◦C.
Conservative Temperature, �, should not be confused with potential temperature,

θ . To illustrate, the potential temperature referenced to the surface is given by a
direct call to a gsw function

gsw_pt_from_t(SA=SA, t=10, p=1000, p_ref=0)
[1] 9.879145

or, equivalently, to an oce function (note that position must be specified if eos is
"gsw", but not if it is "unesco")

swTheta(salinity=35, temperature=10, pressure=1000,
longitude=300, latitude=30, eos="gsw")

[1] 9.879145

However, swTheta() and gsw_pt_from_t() yield identical results because
the former calls the latter.

It should also be noted that the TEOS-10 formulation of potential temperature
differs slightly from the UNESCO value

swTheta(salinity=35,temperature=10,pressure=1000,
eos="unesco")
[1] 9.879276

although this may be small in many applications.
These examples should be enough to acquaint readers with the gist of using

GSW in some common tasks. Much of that work will probably be done with
the oce package, which loads gsw on startup. Most oce functions that provide

1In situ temperature is denoted t in the gsw functions.
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Fig. D.1 Comparison of GSW and UNESCO formulae for seawater properties, using temperature
and salinity profiles of the ctd dataset provided by the oce packages. Left: GSW Absolute
Salinity (solid) and UNESCO practical salinity (dashed). Right: GSW Conservative Temperature
(solid) and UNESCO potential temperature (dashed). Note that the temperature traces are difficult
to distinguish at this scale, but the salinity traces differ by much more than the scatter in the
measurements

GSW functionality also provide UNESCO functionality. A default preference for
UNESCO or GSW formulation may be specified with

options(oceEOS="unesco")

or
options(oceEOS="gsw")

which may be done in a startup file (Sect. 2.2.4).
Figure D.1 may help to put the differences between the UNESCO and GSW

systems into context. To create the diagram, start with the ctd dataset
data(ctd, package="oce")

and plot salinity on the left, with Absolute Salinity SA as a solid line
plotProfile(ctd, "salinity", eos="gsw")

and practical salinity as a dashed line.
lines(ctd[["salinity"]], ctd[["pressure"]],
lty="dashed")

Similar code created the temperature panel of Fig. D.1, again with solid and dashed
lines for the GSW and UNESCO formulations.

For this particular CTD profile, the differences in the two temperature formula-
tions are small compared with the total variation over depth. By contrast, the salinity
changes account for an appreciable fraction of the range over depth, even though
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Fig. D.2 Excess of Absolute Salinity over practical salinity at the surface, for the levitus
dataset provided by the ocedata package

this sample was taken near a river. Clearly, today’s oceanographers must be careful
in reporting water properties, to avoid confusion in comparing with observations
reported in the older literature, in which the UNESCO system was so engrained.

One way to gain a wider appreciation for the practical difference between
UNESCO and GSW is to construct maps, such as that in Fig. D.2, which is based
on the levitus dataset, as follows.

data(levitus, package="ocedata")
SP <- levitus$SSS
lon <- levitus$longitude
lat <- levitus$latitude
ll <- expand.grid(lon=lon, lat=lat)
SA <- gsw_SA_from_SP(SP=SP, p=0,

longitude=ll$lon, latitude=ll$lat)
data(coastlineWorld, package="oce")
plot(coastlineWorld)
contour(lon, lat, SA - SP, labcex=0.8, add=TRUE,
nlevels=30)

The resultant diagram shows that the difference between surface Absolute
Salinity and practical salinity varies somewhat through space. The pattern is
somewhat reminiscent of surface salinity itself, suggesting the two quantities to be
in nearly constant ratio. Indeed,

summary(as.vector(SA / SP), na.rm=TRUE)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

1.005 1.005 1.005 1.005 1.005 1.019 23712

shows that the ratio has a limited span for the surface waters described in the
levitus dataset.



Appendix E
High-Performance Calculations

Most interpreted languages have limitations when it comes to high-performance
computation, and R is no exception. There are issues involving both computation
time and memory use. Strategies for diagnosing such issues are sketched in this
appendix, along with a few practical methods for overcoming them (Fig. E.1).

Efficiency Limitations of High-Level Languages

R insulates users from the machine in ways that may surprise those who are more
accustomed to compiled languages such as Fortran, C and C++. This insulation
can be both a blessing and a curse. It saves time that would otherwise be spent
programming low-level operations, such as memory allocation, that are difficult to
code and maintain. However, it costs time and memory.

For most everyday problems, analysts will be better served using a high-level
language such as R than they would be if they took the time to recode algorithms in
faster low-level languages. However, some problems are so simply demanding that
their effective solution demands some low-level coding, and this appendix provides
examples of how to do this.

In addition to truly demanding problems, there are some problems that could be
labelled as artificially demanding. The latter may be encountered by inexperienced
users with limited understanding of how computers function. For example, high-
level languages tend to make it easy to work with arrays, and this can sometimes
lead programmers to express algorithms in array form even when it is not actually
required. This can yield elegant solutions that work well during the development
process, but that may fail badly when applied to a larger actual application (see e.g.
Ihaka 2010).

Although honing for efficiency may be an art best learned through experience,
there are some simple steps that may make that experience less disruptive.
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Fig. E.1 Test of multi-core performance with the doParallel and foreach packages, on a
computer with two quad-core processors

Deciding when to optimize

Few programmers would choose an inefficient algorithm if an efficient one is
familiar and readily available, but it can be difficult to know at an early stage which
algorithms best suit a problem. Furthermore, sometimes it is only when making the
transition from exploratory work to routine work that inefficiencies are seen.

Identifying rate-limiting steps is at the core of optimization. For example,
speeding a numerical calculation by 10% will not be of great benefit if 99% of
the computation time is spent waiting for data transfer. The setting also matters.
A commercial enterprise might dedicate a person-month to speed up a task that
needlessly takes tens of seconds of user time, but this would be silly in a research
setting, where tasks are performed only a few times, and where the user may also
be the programmer.

The best decisions on where to direct effort differ from one application to another.
Oftentimes, it make senses to start with low-hanging fruit in the R realm, before
moving on to lower-level languages.

Avoiding loops

In R, as in many interpreted languages, loops can be significantly slower than vec-
torized code. The microbenchmark() function from the microbenchmark
package provides an easy way to test the performance differences. Consider the
problem of computing

∑
i i2, which can be written as a loop
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a <- function(i) {
rval <- 0
for (ii in i)

rval <- rval + ii^2
rval

}

or in vectorized form
b <- function(i)

sum(i^2)

Using microbenchmark() reveals that the looping form of a() is an order of
magnitude slower than the vectorized form of b(). However, the squaring operation
is quick, and the two methods would have more nearly equal performance for slower
operations.

Sometimes, converting loops to vectorized schemes is sensible and efficient, but
other times it reduces both code clarity and performance (see e.g. Ihaka 2010). R
offers several ways to avoid loops, with the apply() family of functions in the R
base system, and related functions in the plyr package.

R tends gets to get more efficient over time, and it is useful to track how this is
done. For example, in version 3.4.0, R altered the memory allocation scheme for
assignments made past the end of a vector. Previously, space had been set aside to
just satisfy the request, but version 3.4.0 set aside extra memory, in case it might be
needed. Thus,

A <- function(n) {
res <- NULL
for (i in 1:n)

res[i] <- i^2
res

}

would trigger this extra allocation, whereas
B <- function(n) {

res <- NULL
for (i in 1:n)

res <- c(res, i^2)
res

}

would not. As of R version 3.4.0, the A() method is several hundred times faster
than the B() method, on the author’s computer. This test suggests dropping the use
of c() for creating expanding vectors, which might otherwise seem to be a more
elegant approach.
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Supplementing R with compiled languages

R has interfaces that permit connection with compiled languages such as C and
Fortran, and using them can greatly reduce programmer effort and execution time.

There are two basic schemes for connecting R with compiled code (see the R
documentation1 for details). The first uses largely unmodified C or C++ code. For
example, the following computes an alternating sum

∑n
1(−1)nxi in C, where x is a

vector of numerical values:
void altsum1(int *n, double *x, double *value)
{
int sign = -1;

*value = 0.0;
for (int i = 0; i < *n; i++) {

*value += sign * x[i];
sign *= -1;

}
}

Note that the computed value is stored in the value argument, not in a returned
value. If this code is in a file named altsum1.c, then it can be built as a shared
library and loaded into R with

system("R CMD SHLIB altsum1.c")
dyn.load("altsum1.so")

after which it can be called with, e.g.,
x <- 1:10
.C("altsum1", n=as.integer(length(x)), x=as.double(x),

value=double(1))$value
[1] 5

The first argument to .C() is the name of the function, and the others are the
function arguments, which are put in the requisite call-by-reference C form with
as.integer() and as.double(). Space is set aside for the calculated value
with double(). Since .C() returns a list of the arguments supplied to C, the
computed result is accessed with the dollar operator.

In the second scheme, C or C++ works directly with R objects. There are two
popular approaches to this. In the older one, still used throughout R itself, C macros
are used to work with R objects, e.g.

#include <R.h>
#include <Rdefines.h>
SEXP altsum2(SEXP x)
{

int n= length(x);
PROTECT(x = AS_NUMERIC(x));

1https://cran.r-project.org/doc/manuals/r-release/R-exts.pdf.

https://cran.r-project.org/doc/manuals/r-release/R-exts.pdf
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double *xp = REAL(x);
SEXP rval;
PROTECT(rval = NEW_NUMERIC(1));
double *value = NUMERIC_POINTER(rval);
int sign = -1;

*value = 0.0;
for (int i = 0; i < n; i++) {

*value += sign * xp[i];
sign *= -1;

}
UNPROTECT(2);
return(rval);

}

where the uppercase words are macros that connect C with R. After similar
compilation, this is called with a different interface:

.Call("altsum2", x)
[1] 5

In this simple example, the macros for the R-C++ interface are a significant
distraction from the actual algorithm. Although this distraction diminishes with
program size, it is not trivial in any case. Luckily, there is another way to connect
R with C++, using the Rcpp system (Eddelbuettel and Francois 2011; Eddelbuettel
2013; Wickham 2014).

Using Rcpp, the present example becomes
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
double altsum3(NumericVector x)
{
double value = 0;
int sign = -1;
for (int i = 0; i < x.size(); i++) {

value += sign * x[i];
sign *= -1;

}
return(value);

}

This may be compiled within R with2

Rcpp::sourceCpp("altsum3.cpp")

and run (in R) with
altsum3(x)
[1] 5

2The related cppFunction()works with text strings instead of source files, which is convenient
for self-contained work.
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The simplicity of this example may be enough to illustrate why Rcpp is the first
choice of many developers. The related RcppArmadillo system offers further
advantages for matrix-heavy work (Eddelbuettel and Sanderson 2014).

A speedup by two orders of magnitude is typical when compiled languages
are used instead of R. Even so, this is a method best employed by those who are
comfortable with low-level languages, and familiar with dealing with the application
crashes that can result when C++ code fails. As noted previously, it is best to stick
with R unless there is a real need for the speed and memory advantages offered by
C++.

Dealing with memory limitations

R stores objects in random access memory. This causes problems for large objects,
particularly because many operations in R involve copying objects before doing
calculations with them. For example, R uses a call by value model for the arguments
to functions, which means that arguments are duplicated when used within a
function. The bigmemory package addresses this by emulating a call by reference
model, which may alleviate the problem in some applications. Another scheme is to
avoid creating objects that are large, e.g. by only working with selected portions of
data stored in a database or other file.

The analysis of algorithms

It is disheartening to spend time writing code to carry out an algorithm that works
well on test data, but that proves to be unacceptably slow for the real application
of interest. In cases where a variety of algorithms could be employed, it is wise to
spend time on the analysis of algorithms before starting to write code. The procedure
should be continued during the coding phase, to verify that the analysis was correct.
(This latter point is especially important for readers who are coming to R from
compiled languages, who may be surprised at the amount of time R can spend
copying data, e.g. when calling functions directly or indirectly. It can take a while
to learn just which parts of an algorithm will be expensive in R.)

Focus should be directed to how an algorithm performs with large data sets, long
integrations, etc., because there is no point speeding up operations that are already
fast enough to be practical. Using the symbol n to indicate the size of the problem
being tackled, the interest is in predicting the asymptotic resource requirements as
n increases. This is similar to the study of the asymptotic behaviour of a function in
mathematics.

There are several approaches to this analysis in computing, expressed in Θ

notation, O notation, o notation, and Ω notation (Knuth 1976, 1968). For the present
purpose, the most useful of them may be the Θ notation.
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Fig. E.2 Definition sketch
for Θ notation, showing that
T (n) falls within bounds
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The basic ideas of Θ notation are illustrated in Fig. E.2. Suppose that a computing
task has a resource cost T (perhaps in terms of time or memory requirements) that
is related to the problem size n by some function T = T (n). For practical purposes,
it makes sense to restrict attention to large values of n, say n > n0 say, where n0
is a constant. Then, it is said that T (n) = Θ(f (n)) if T (n) is bounded between
Cf (n) and C′f (n), where C and C′ are constants and n is large. Roughly speaking,
this means that T (n) is proportional to f (n) for large values of n. The values of C

and C′ relate to the speed of the computer, etc., and are not of interest in comparing
algorithms. For sufficiently large problems, there is also no interest in the value of
n0. The key to the analysis is to focus on the form of f (n).

For example, suppose that T = 0.01n3/2 + n1/2. Clearly, the second term will
be larger than the first if n is small, but the reverse holds for large n. Eventually,
as n increases, the first term will overwhelm the second, so that T will approach
0.01n3/2 as n increases. The notation T = Θ(n3/2) states this. (Note that the scale
factor is dropped, which is sensible because the goal is not to predict running time,
but rather to indicate the pattern of its increase as a function of problem size, n.)

An algorithm that requires mere examination of data is likely to be Θ(n), where
n is a measure of the size of the dataset. By contrast, an algorithm that involves
inter-comparing all the data elements may be Θ(n2), which is much worse for large
datasets. For example, finding the smallest element of a vector is Θ(n). Sorting
such a vector by the bubble sort algorithm is Θ(n2), because it involves n steps in
which successive minima are found. This makes bubble sort an impractical solution
for large data sets, which explains why R provides two other methods: shell sort,
which is Θ(n log2 n) , and quick sort, which is Θ(n log n). These different formulae
are not just of academic interest, because modern oceanographic instruments may
record several gigabytes in a single deployment, so a Θ(n log n) method might be
dramatically faster than a Θ(n2) algorithm.

It makes sense to consider performance also in terms of memory usage, to avoid
the discouragement that might come from spending time developing an algorithm
that performs well on small test cases but that overwhelms system memory when
applied to actual data. Using Rprofmem() during development can help to avoid
such problems.
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Multiple-processing calculations

Until recent years, advances in chip design have permitted an exponential increase
in CPU clock rates over time. This is no longer the case, so much of the research
on high-performance computing now centres on harnessing multiple processors,
whether co-located on a chip or in a warehouse full of computers. Each scale poses
its own challenges, and this is not the place to propose general solutions. Today, it is
common to have more than one CPU in a desktop computer, and two or more cores
within each CPU, and the discussion will be limited to this circumstance.

Several R packages can be used for parallel processing, and these seem certain to
improve over time. (Consult the CRAN high-performance website3 for this.) Even
at this early stage, R can handle multiple cores reasonably well. As an illustration,
a calculation was done with the doParallel and foreach packages, on the
author’s 8-core desktop computer. As Fig. E.1 shows, the performance in this test
was close to being linear in the number of cores used.4 However, it must be
noted that this test case did not provide a challenge to the RAM in the machine;
if each of those cores required anywhere near 1/8-th of the computer’s RAM,
the operating system might start paging memory to disk, incurring a significant
drop in performance and revealing the need for a different distributed-computation
environment.

3http://cran.r-project.org/web/views/HighPerformanceComputing.html.
4Performance achieved with the doMC package was similar, but doParallel may be preferred
because doMC is not presently available on the Microsoft Windows platform.

http://cran.r-project.org/web/views/HighPerformanceComputing.html
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The Future of R

For nearly two decades, R has enjoyed a reputation as a mature language that
evolves safely and systematically, with bug fixes and minor additions being provided
in new versions that appear several times per year. With a dedicated core of
developers working at an impressive pace (illustrated below), we can expect
continued refinements to R in the near term. However, mature software systems
that are relied upon by large communities are a bit like large ships: they are hard to
turn. This is a concern because, as has been noted in this book and elsewhere, R has
some weaknesses compared with competitive systems. The history of the language,
the open-source license, and the evident talents of the core development team all
suggest that the requisite improvements will be made eventually. The question is
whether they will be accomplished by continued incremental changes to R, or by a
significant shift in the underlying code or even the syntax of the language.

The R source code is handled by a version-control system, and a record of
these changes is made available on the R website (see e.g. Fig. F.1). In addition
to official releases, daily builds provide users with up-to-date updates on the
development version. These things reveal a software product in vigorous and
sustained development, and the fact that new releases seldom introduce serious new
bugs is clear evidence of the talents of the developers.

Although the message of this book is that R is well suited for oceanographic
analysis, there are still opportunities for improvement.

• The base graphics system is good for publication, but lacks interactive and three-
dimensional features that are provided in other graphical systems.

• The existence of competing graphical systems imposes some learning burden
on the user. For example, many beginners favour the sophisticated power of the
ggplot2 system, but the core-graphics system is used in most R documentation,
so there is a need to become conversant in both systems. (The oce package relies
on the base-graphics system, which alleviates this problem somewhat.)

• Loops can be so slow in R that analysts may need to use C, C++ or Fortran
for heavy tasks. Still, for medium-scale problems, R improves year by year. For
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Fig. F.1 Sequence numbers of “commits” to the R source code during the year 2013, counting
from zero in January 2003. Vertical lines indicate official R releases

example, the “just in time” compilation and pre-allocation for growing vectors
that came in version 3.4.0 yielded noticeable speedups.

• The limitation of data types can be a problem in representing data economically.
For example, R lacks the 16-bit integer type that is used by several oceanographic
instruments, and promoting these to full machine-length integers can yield
significant memory pressure. (This is why the oce package stores some data
as pairs of 8-bit sequences.)

• The system of copying data passed to functions has advantages in removing “side
effects” but it may sometimes lead to slow performance and excessive memory
use. (The memory requirement is subtle, and it depends on how the data are used
in the function; R uses clever schemes to avoid bloat.)

• The existence of several models for object orientation in R can be confusing to
those learning how to program in the language.

This list of issues is not unique to oceanography, nor restricted to the experience
of the present author. Indeed, the list partly derives from insights presented in essays
and lectures by Ross Ihaka, one of the original authors of R. Readers interested in
the issues and how they may be dealt with in R or a successor language should
consult some of Ihaka’s publications (Ihaka and Gentleman 1996; Ihaka and Lang
2008; Ihaka 2010), along with other materials provided on Ihaka’s website.1

1http://www.stat.auckland.ac.nz/~ihaka/.

http://www.stat.auckland.ac.nz/~ihaka/
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Symbols
. . . in argument lists, 35
.C(), 262
.Call(), 263
#, comment character, 14
.Rprofile file, 10
. in variable names, 15
:, 12, 13, 16, 24, 39
<-, 6, 14, 15, 34, 241
<<-, 16
==, 17, 190
[, 24, 26, 31
[[, 28, 31, 42, 93–95, 125
$, 28, 31
%*%, 26, 28, 189, 242
%>%, 38
%%, 35, 190, 231
%o%, see outer()
ˆ, 13

A
abline(), 49, 62, 105, 106, 111, 132, 219
Absolute Salinity, xx, xxi, 98, 121, 125,

255–258
accessor operator, see [[
acf(), 47, 156, 229
acoustic Doppler, 16, see adp; adv
acronyms, list of, xvii
adiabatic, xx, 209
adist(), 19
adp, xvii, 83, 91, 93, 94, 138, 147
adv, xvii, 23, 149
age of the tide, 224
agrep(), 19

all(), 13
all.equal(), 17, 190
altitude, 236
analysis of algorithms, 264
analysis of variance, 70, see anova();

aov()
anonymous function, 38, 56
anova(), 70
any(), 13
aov(), 70
apply(), 40, 154, 226, 261
approx(), 74, 153
approxfun(), 74, 110
Aquino, Jakson Alves de, xi
Argo float, 22, 42, 96, 142, 166
arima(), 164, 165
array, 25, 26, 28, 241
as.ctd(), 78
as.double(), 262
as.integer(), 262
as.list(), 28
as.matrix(), 80, 241
as.numeric(), 22, 29, 224, 229
as.POSIXct(), 20, 21
as.POSIXlt(), 20, 21
as.raw(), 20
as.vector(), 81, 86
ASCII, 18
assign(), 14, 15
assignment, 6
atan2(), 16
Atlantic Zone Monitoring Program, 146
atmospheric pressure, xx
atomic mode, 24
attach(), 105
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attr(), 22
attributes(), 22, 27, 47
autocorrelation analysis, see acf()
autoregressive model, see arima()
axis(), 221
azimuth, 236

B
Baltic Sea, 97
Barker, Paul, xi
baroclinic topographic Rossby Waves, xi
bathymetry, 138
Bayesian methods, 6
beam coordinates, 137
Beaufort Sea, 97, 249
Bernier, Natacha, xi
bilinear interpolation, 75
binary data format, xvii
bin average, 125, 169, 170
Bioconductor, 15
Biosonics, see instruments
biplot(), 179
boot(), 113, 216
boot.ci(), 113, 216
bootstrapping, 112, 132
boundary value problems, 173
Bourgault, Daniel, xi
boxcar filter, 125, 224
Box-Jenkins method, 164
box model, 172, 234
box plot, 29, 47, 58, 70, 228, see boxplot
boxplot(), 29, 58, 59, 123, 132, 228
break, 39, 40
break(), 90
brightness temperature, 143, 145, 227
browser(), 89, 90
Brunt-Väisäilä, see buoyancy frequency
bubble sort algorithm, 265
buoyancy frequency, xx, 98, 181, 205
butter(), 156, 231
Butterworth filter, 155–157, 161, 229–231
bvptwp(), 173, 186

C
.C(), 262
c(), 19, 22, 24, 25, 261
cabbeling, 121
call by reference/value, 264
camel case, 15
Canada Day, 176
C and C++, 3–5, 13, 20, 24, 27, 84, 93, 256,

259, 262–264, 267

carbon dioxide, 31, 191, 192, 195
cbind(), 26, 112, 241
ceiling(), 154
Challenger Deep, 191
character strings, see strings
Cheel, Richard, xi
chirp signal, 232
chi-squared distribution, 56
choose(), 54, 197
chull(), 79
class(), 37
climatology, 198
cluster analysis, 77, 78
coastline maps, 142
coef(), 65
column order, 27
comma-separated value, xvii, 128
comments in R, 14
compiled languages, 3
complex numbers, 16
Comprehensive R Archive Network, see

CRAN
conditional evaluation, 32
conditioning plot, 51, 134, see coplot()
conductivity sensor, 219
confidence interval, 56, 57, 65, 107, 112, 136,

228
confint(), 65, 107, 116, 136, 223
Conj(), 232
Conservative temperature, xx, 98, 121, 125,

256, 257
continental drift, 111
contour(), 43, 181, 207, 242
convection scheme in models, 234
convex hull, 79
convolve(), 79
coplot(), 51, 76, 134, 221, 222
Coriolis parameter, xx, 36, 171, 174, 193
correlation coefficient, 63
cov(), 66, 179, 180, 200
covariance, 167, 179
coverage factor, 57
coverage probability, 57, 198
cppFunction(), 263
cpt.mean(), 72, 202
CRAN, xvii, 8, 9, 185
critical latitude, 36, 193
cross validation, 239
CTD, xvii, 18, 19, 32, 74, 87, 91–95, 98, 100,

101, 120, 122–124, 146–149, 166, 183,
193, 206, 209, 226, 227, 257

constructing sections from, 128
handling quality-control flags, 147
mixed-layer depth determination, 126, 127
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reading files, 122
salinity uncertainty, 98, 209, 210
smoothing and decimating, 124

ctree(), 71, 72, 202
cumsum(), 14, 189
customizing R, 10
cut(), 86, 135, 154, 159, 169, 222, 231

D
Dalhousie University, xi, 1, 81, 94, 205
database, 84
data frame, 7, 31, 32, 41, 42, 50, 80, 85, 105,

136, 167, 192, 196, 200
data.frame(), 179, 192
data loggers, 84
dates, handling in R, 20
dbConnect(), 84, 207
dbDriver(), 84
dbGetQuery(), 85, 207
dbReadTable(), 84
dchisq(), 56
debug(), 89, 90
Deckmyn, Alex, xi
deepest point in ocean, 191
deep learning, 185
default value, 34
defining functions, see functions
density(), 58, 59, 132
density inversion, 166
density plot, 58
density ratio, 135
Department of Fisheries and Oceans, xviii, 92,

141, 146, 198
det(), 26
detach(), 105
differential equations, 110, 171, 234, 235
dim(), 26, 27, 188
distributions

F, 56, 63
list of, 55
log-normal, 150, 228
normal, 56, 197
t, 56, 57, 197, 198
Weibull, 152

division remainder, 35
Doodson tidal filter, 142, 225
double(), 262
drop(), 241
dynamical modes, 183
dynamic height, 98, 129, 220
dynamic viscosity, 98

E
echosounder, 19, 92, 190
Eddelbuettel, Dirk, xii
efficiency, 3
eigen(), 26, 66, 179, 180, 182, 183, 200
eigenanalysis, see eigen()
Ekman spiral, 173, 174
ellint_Ecomp(), 33
El Niño Southern Oscillation, 157
Emacs text editor, 11
empirical orthogonal function, xvii, 178–180
Encoding(), 18
endian, 20, 83, 85, 86
enu coordinates, 138
EOF, 179
equation of state, 36, 135, 209, 255
ess Emacs mode for R, 11, 246
Euclidean distance, 77
example(), 12
Excel, 2
exiting R, 242
exp(), 14, 189
expand.grid(), 258
expcov(), 167
expect_equal(), 79
exploratory data analysis, 3, 29
expression(), 53, 214

F
factor(), 29–32, 135, 191–193, 222
factorial(), 13, 55
fast Fourier transform, see fft()
fft(), 79, 161, 231, 232
file(), 83
file connection, 83, 85
fileInput(), 208
filtfilt(), 156, 230, 231
finding roots of functions, 73
finite impulse response filter, 155
fivenum(), 58
Flament, Pierre, xi
Flemish Cap, xi
floating-point numbers, 16
floor(), 25, 154, 190
for loop, 39, 194
format(), 22
formula, 51, 62, 70, 184
Fortran, 3, 5, 27, 139, 256, 259, 262, 267
freezing temperature, 145
frequency-time plot, 161, 231
friction, 171
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full moon, 224
functional programming, 15
function closures, 36
function plot, 52
functions, 34–36
fuzzy string match, 19

G
Galbraith, Peter, xi
generalized linear regression, 61
generalized matrix inversion, 26
generic function, 15, 37, 41, 57, 91, 96, 100,

106, 123, 146, 155, 207
genomic analysis, 15
Geochemical Ocean Section Study, xvii, 70,

97, 201
geostrophic calculation, 220
get(), 14, 15, 40, 194
getGraphicsEvent(), 53
Gibbs function, 255
Gibbs seawater formulation, see gsw package
ginv(), 26
GISS time-series, 154
git version control system, 100
glm(), 61
GNsearch(), 189
GNU scientific library, 33
Goddard Institute for Space Studies, 47, 48, 97
golden ratio, 14
Google, 30, 81
GPS, 22
graphical user interface, 2, 3, 9, 10, 53, 87, 141,

245, 246
grep(), 19, 81, 100, 190, 206
gridding, 128, 166, 167
gsub(), 18, 19, 206, 217
gsw functions

gsw_CT_from_t(), 256
gsw_pt_from_t(), 256
gsw_rho(), 121
gsw_SA_from_SP(), 256, 258

gsw package, xi, xvii, xix–xxi, 10, 36, 120,
135, 255–258

GUI systems, see shiny package
Gulf Stream, 129, 174, 203, 204, 220, 221

H
Halifax, 21, 94, 96, 97, 123, 139–142, 176, 224,

236
haline contraction coefficient, 98, 135
Hare, Jenna, xi
Hay, Alex, xi

head(), 80, 226
help(), 11, 12
help.search(), 12
Heron’s method, 39
hexagon bin, 45
hist(), 48, 54, 58, 59, 123, 132, 192
histogram, 48, 58
hockey, see Rink Ratz® hockey card game
hodograph, 174
Hurricane Juan, 139–141
Hurst, Jackie, xi
hydrostatic balance, xx
hypothesis testing, 58
hypsometric curve, 142, 225

I
I(), 62
IANA timezone database, 20
if(), 32, 33
ifelse(), 33, 35, 190, 193, 207
Ihaka, Ross, 268
Im(), 16, 232
image(), 44, 45
Inf, 23
infinite impulse response filter, 155
initial value problem, 109, 171
install_github(), 10
install.packages(), 9, 101
instruments

ADP, 48, 96, 138
ADV, 96
argo, 42, 96, 143, 226
Biosonics, 91
CTD (see CTD)
Interocean, 92, 96
LISST, xvii, 96
LOBO, 96
Nortek, xvii, 91, 92, 96
RBR, 91, 96
RDI-Teledyne, xvii, 84, 92, 137
SBE, 91
Sontek, xvii, 91, 92, 96, 149

integer, 16
integrate(), 73–75, 202, 203
internal wave, 181
Interocean, see instruments
interp.surface(), 75, 203, 204
interpolating spline, 76, 205
interpolation, two-dimensional, 75
interpreted languages, 3
inverting matrices, 26
ionic composition of seawater, 255
IPTS-68 temperature scale, 123



Index 283

is.array(), 25
is.finite(), 23
is.infinite(), 23
is.matrix(), 25
is.na(), 32, 218, 236
is.nan(), 23
is.null(), 23
is.numeric(), 34
ISOdatetime(), 21
ISO 8601 format, 21
isopycnal, 181
ITS-90 temperature scale, 123

J
JGR GUI, 246
julian(), 22

K
Kalman filter, 163, 233
kernel(), 158
Kienast, Stephanie S., xi
kinematic viscosity, 74
kmeans(), 78, 79

L
Ladson, Anthony, xi
Land-ocean biochemical observatory, 96
landsat satellite images, 91
laply(), 35, 41, 61, 154, 169, 198, 195, 199,

203, 205, 223, 226, 228, 229, 233
lapse rate, 98
Laser in situ scattering and transmissometry,

96
layout(), 54, 129, 221, 237
Layton, Chantelle, xi
lazy evaluation, 14
ldply(), 196
leap years, 20
legend(), 106, 136, 242
levels(), 29
Levitus atlas, 97, 99
library(), 10
license used by R, 8, 243
Ligges, Uwe, xii
linear regression, 61, see lm() and rlm()
line plot, 41
lines(), 62, 125, 242
linux, 8
list, 24, 27, 28, 30, 31, 41
list(), 28
list.files(), 122, 190

lm(), 61–63, 65, 66, 70, 105, 106, 108, 111,
153, 211, 241

lmodel2(), 214
lm.ridge(), 61, 108, 212
load(), 86, 138
locally-weighted polynomial fit, 76, 211
locator(), 53, 87, 219
loess(), 76, 108, 211
Logan, Paul and Sue, xi
loops, 39
lowess(), 76
lqs(), 108, 212
ls(), 40, 194
lsoda(), 109–111, 136, 212, 213, 234, 235

M
Mac GUI, 245, 246
Makefile, 245
Manua Loa, 191
mapContour(), 204
mapgen, 92
map projection, viii, 247–249, 251, 252

Albers equal area, 249, 250
distortion of, 249
Lambert Conformal Conic, 170, 203
list of, 251
list of choices in oce, 251, 252
Mercator, 250
Mollweide, 99, 249
orthographic, 249
Robinson, 100, 210, 248, 249
stereographic, 249
Tissot indicatrices, 250
Winkel Tripel, 210, 247–249

map-reduce method, 30
margins of plots, 52
Marine Environmental Data Service, xvii, 92
mathematical notation in plots, 53
Matlab, viii, xi, 3, 4, 6–8, 13, 22, 23, 43, 53, 54,

86, 93, 139, 188, 189, 241, 242, 256
matrix, 3, 6, 7, 25, 26, 28, 31
matrix(), 26, 33, 241
Mauna Loa, 191
max(), 13, 183
mean(), 17
measurement uncertainty, 56, 57, 198
median(), 149, 236
melt(), 70
meridional convergence, 247
M2 etc, see tidal constituent
methods(), 37
mfrow, 188
microbenchmark(), 261
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Mills, Eric, xi
min(), 13, 183
Mirshak, Ramzi, xi
missing(), 34
missing value, 23, see also NA
mixed-layer depth, 126–128, 220
modal decomposition, 178
modified Daniell filter, 158
modulo division, 190
momentum equations, 171
Monte Carlo, 131
months(), 199
Moore, Chris, xi
Morlet function, 159
Morris, Edward P., xi
moving-average model, 164
mtext(), 35, 49, 219, 242
multiplying matrices, 26
Munk, Walter H., viii, 97, 103, 113, 114
Murrell, Paul, 54
MySQL database format, 84

N
N2, see buoyancy frequency
NA, missing value, 23, 74, 107, 173
na.kalman(), 163, 233
na.omit(), 23, 198
named arguments, 35
names(), 31, 192
NaN, not-a-number value, 23
National Geographic Society, 210, 248
National Oceanographic and Atmospheric

Administration, xvii, 92, 168, 169
National Oceanographic Data Center, xvii, 85
nchar(), 18
nc_open(), 85, 207
ncvar_get(), 85, 207
NetCDF data format, xvii, 85, 98, 142
neural network, 6, 183–186, 237–239
neutral regression, 112
new moon, 224
next, 40
nitrate, 50, 51, 104–106, 197
nlm(), 36
nls(), 9, 36, 61, 66–70, 116, 136, 201, 215,

216, 223
nnet(), 184, 185, 237, 239
nonlinear regression, 67, see 277
non-recursive filter, 155
normalmixEM(), 227
Nortek, see instruments
North Sea, 97
Nova Scotia, 144, 176, 177, 235, 236

NPZ model, 111, 212, 213
NULL, empty value, 23, 110
numerical ecology, 6
numerical optimization, 176
Nyquist frequency, 156, 231

O
object orientation, viii, 5, 37
observeEvent(), 89
Ocean Data Format, xviii, 92, 198
Ocean Data View, xviii, 3
ocean glider, 166
oceanographic section, 50, 128
ocean weather station, 45, 76, 78, 97, 191
oce classes, list of, 91
oce functions

airRho(), xix
angleRemap(), 149
as.ctd(), 122, 209, 226
as.section(), 128, 223
beamToXyz(), 138
binMean1D(), 169, 224
binMean2D(), 169, 170
colormap(), 99
coriolis(), xx, 36, 193, 221
ctdDecimate(), 125
ctdTrim(), 122, 124, 217, 219
despike(), 163
detrend(), 230
drawPalette(), 97, 99, 210
gravity(), xx, 218, 221
handleFlags(), 124, 132, 146, 147,

208, 221, 222, 227, 228, 237
imagep(), 44, 45, 97
interpBarnes(), 46, 168, 169, 233
lowpass(), 162
mapContour(), 170
mapGrid(), 99, 210
mapImage(), 99, 142, 210
mapLines(), 81, 99, 210
mapPlot(), 81, 99, 100, 142, 210, 247,

251
mapPoints(), 210, 248
mapPolygon(), 170
mapTissot(), 250
moonAngle(), 177, 224, 235
numberAsPOSIXct(), 22, 207, 236
oceContour(), 196
oce.edit(), 122
oceMagic(), 84, 91
oce.plot.ts(), 92, 97, 141, 180, 224,

225, 237
oceSetData(), 150
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plotProfile(), 123
plotScan(), 123, 124, 219
plotTS(), 123, 135, 143, 209, 223, 226
plotTaylor(), 142, 224
pwelch(), 97
read.coastline(), 142
read.ctd.cnv(), 19
read.ctd.sbe(), 122
read.oce(), 84, 91, 142, 198
read.section(), 128
rescale(), 226
sectionGrid(), 128, 221
sectionSort(), 128, 220
subset(), 218, 220, 222, 223
sunAngle(), 176, 177, 235
swAbsoluteSalinity(), 98
swAlpha(), 98
swAlphaOverBeta(), 98
swBeta(), 98
swConductivity(), 98
swConservativeTemperature(),

98
swDepth(), xxi, 98
swDynamicHeight(), 98, 220
swLapseRate(), 98
swN2(), xx, 98, 124, 127, 205, 217, 218
swRho(), xix, 75, 98, 121, 209, 218
swSCTp(), 98
swSTrho(), 98
swSigma(), xx, 98
swSigmaT(), xx, 98
swSigmaTheta(), xx, 98
swSoundAbsorption(), 98
swSoundSpeed(), 98, 237
swSpecificHeat(), 98
swSpice(), 98, 143
swTFreeze(), 98
swTSrho(), 98
swTheta(), xx, 98, 209, 256
swViscosity(), 75, 98
swZ(), xxi, 98, 218
tidem(), 96, 139, 224
toEnu(), 138
xyzToEnu(), 138

oce license, 101
oce object orientation, 93, 95
oce/ocedata datasets

adp, 48, 96, 138, 164, 178–181, 195, 236
adv, 96
argo, 42, 96, 143, 226, 227
beaufort, 97
buoy, 41, 97, 123, 125, 147, 149, 162, 217,

219, 227, 228
cm, 96

coastlineWorld, 96, 99, 142, 207, 210
coastlineWorldFine, 97, 169, 176
coastlineWorldMedium, 97, 203
colours, 96
conveyor, 88, 97
ctdRaw, 96
ctd, 65, 74, 91, 93, 96, 120, 122, 123, 126,

128, 196, 209, 218–220, 257
drag, 29, 30, 97, 184
echosounder, 96
endeavour, 97, 210
geosecs235, 70, 97, 201
giss, 46, 47, 97, 154, 157, 229, 230
gs, 75, 97, 203
landsat, 96, 143, 144, 227
levitus, 97, 99, 210, 258
lisst, 96
lobo, 96
met, 96
munk, 97, 116, 215, 216
nao, 97
oceans, 97, 192
papa, 45, 78, 97
redfieldNC, 97
redfieldNP, 97, 104, 211, 212
redfieldPlankton, 97, 107
riley, 97, 109
RRprofile, 97
rsk, 96
schmitt, 97, 135, 136, 223
sealevel, 96, 139, 141, 223–225
sealevelTuktoyaktuk, 96
secchi, 97, 169
section, 30, 32, 50, 51, 96, 128,

132–134, 146, 186, 197, 220–222, 237,
238

soi, 97, 155–157, 160, 161, 202, 229
tidedata, 96, 193
topo2, 43, 97
topoWorld, 96, 142, 191, 204, 225
turbulence, 74, 76, 97, 204, 205
wilson, 97, 214
wind, 46, 96

oce package, 91, 93, 96, 98, 100, 101
oceSetData(), 95
oceSetMetadata(), 95
oce website, 101
open source, 1, 8
operators, 13, 38
optim(), 36, 176, 177, 236
optimization, 176, see optimize and optim
optimize(), 35, 36, 176, 177, 235, 236
order(), 73, 196, 211
ordering data, 73
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orthogonal polynomials, 62
outer(), 8, 56, 142, 180, 188, 189, 197, 225

P
packages, 4, 8

base, 21
bigmemory, 264
biwavelet, 160
boot, 10, 112, 216
bvpSolve, 10, 173
changepoint, 10, 72, 202
DBI, 10
deSolve, 10, 109, 171, 214, 223, 234, 235
devtools, 10
doMC, 10, 266
doParallel, 10, 260, 266
dplyr, 41
fBasics, 61
fields, 10, 75
foreach, 260, 266
geonames, 10, 189
ggplot2, 54, 267
graphics, 45
grid, 54
gsl, 10, 33
gsw, xi, xvii, 121, 256
hexbin, 10, 45
imputeTS, 10, 163, 233
jpeg, 10
KernSmooth, 10
landsat, 143
lattice, 10, 46
lmodel2, 10, 65, 113, 214
lubridate, 10, 21, 176
magrittr, 10, 38
MASS, 10, 26, 61, 65, 108, 167, 212
mgcv, 61
microbenchmark, 10, 260
mixtools, 10, 146, 227
mvShapiroTest, 61
ncdf4, 10, 85
neuralnet, 185
NISTnls, 67
nnet, 184
nortest, 61
oce (see oce package)
ocedata, 42, 75, 95, 97, 203, 258
party, 10, 71, 72
plyr, 10, 41, 154, 196, 199, 205, 228, 233,

261
propagate, 10, 98, 209
Rcpp, 263, 264
RcppArmadillo, 264

ReacTran, 10, 175
readr, 80
reshape2, 70
rgdal, 10, 247
rggobi, 46
R.matlab, 10, 86, 241
RMySQL, 84
rootSolve, 10, 175
RSQLite, 10, 84
segmented, 10, 61, 65
shiny, 53, 87–89, 208, 242
signal, 10, 156, 231
smatr, 10, 65, 112, 215
spatial, 167
stats, 60
tensorflow, 186
testthat, 79
tiff, 10
utils, 80
vioplot, 10
WaveletComp, 10, 160
XML, 10, 82, 205
zoom, 53

pairs(), 50
panel.smooth(), 76
Paon, Michelle, xi
par(), 8, 52, 54, 188
Parseval’s Theorem, 79
partial differential equation, 174
partitioning tree, 71
paste(), 18, 53, 248
Pawlowicz, Rich, xi
phase speed, 193
phosphate, 50, 51, 104, 105, 197
piecewise-linear interpolation, 74, 205
piecewise-linear regression, 61
Pierce, David, 85
plankton, 97
plate tectonics, 111
plot(), 37, 41, 42, 50, 52, 53, 60, 66, 93, 96,

97, 138, 187, 199, 209, 211, 217
plot.lm(), 76
plot margins, 52
plot.ts(), 97
plotTS(), 132
points(), 242
poly(), 62
polygon(), 130
polynomial regression, 61
polyroot(), 73
postgraduate students, 1
potential density, xx, 209
potential temperature, 98, 209, 256, 257
practical operating procedure, 119, 148
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practical salinity, xx, xxi, 256–258
prcomp(), 179
precedence of operators, 13
predict(), 62, 63, 65, 68, 77, 205
pressure, xx
pretty(), 170
principal component analysis (PCA), 178, 179
principle axes, 179
print(), 31, 37
processing log, 91, 122
PROJ.4, 247, 248, 250, 252
projections, see map projection
promises, 14
p value, 63
pycnocline, 124, 218
Python, 3, 4, 93

Q
q(), 7, 242
QC flags, 89, 146, 147, 208
qnorm(), 56, 197
Q-Q plot, see qqplot
qqplot(), 60, 64
qr(), 26
QR decomposition, 26
qt(), 56, 162, 198
quadratic fit, 62
Québec City, 198, 199
quality-control flags, 132, 146
quantile(), 58, 210
quick sort, 265

R
random numbers, 60
range(), 13
Rankine vortex, 35, 193
ranking data, 73
raw, 20, 83
rbind(), 26, 28, 131, 241
RBR, see instruments, RBR
Rcommander GUI, 246
RDI, see instruments
Re(), 16, 232
reactiveValues(), 89
readBin(), 20, 83
readChar(), 82, 83, 86
read.csv(), 80
read.fortran(), 80
read.fwf(), 80
readLines(), 81, 206
read.table(), 6, 8, 11, 80, 100, 187
recursive filter, 155, 156
recursive functions, 35

recycling rule, 25, 26
Redfield, Alfred C., viii, 97, 103–105, 107, 108
Redfield ratio, 104, 106
reference density, xx
reference pressure, 209
regime shift, 71
regression, 60, 62

confidence intervals, 65
linear, 62
nonlinear, 68, 69, 114, 115, 201, 215, 216,

223
piecewise-linear, 61
plot, 63
polynomial, 62
prediction, 62, 68
stepwise, 65
summary, 63
type II, 65, 105, 112, 113, 214

regular expression, 18, 19
remainder of division, 35
rep(), 24, 86
repeat, 39
reproducible research, 4, 11, 53, 57
return(), 34
rev(), 203
revision control system, 245
Richards, Clark, xi, 241
ridge regression, 61
Riley, Gordon A., viii, xi, 97, 103, 108–110,

117
Rink Ratz® hockey card game, xi, 55, 197
Ripley, Brian, xii
rivsum dataset, 198
R license, 243
rlm(), 61, 65, 108, 212
rlnorm(), 150, 151
rnorm(), 57, 60, 61, 72, 201, 230
robust regression, 61, 65
root finding, 73
rotation matrix, 27
round(), 47, 219
Rprofmem(), 265
Rstudio GUI, 10, 11, 87, 89, 90, 245, 246
rug(), 49, 58, 205
runif(), 57, 60
runmed(), 162
Ruskin format, 92

S
salinity spiking, 147
salt-finger convection, 135
S and S-plus languages, 5, 15
sapply(), 32
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SAS, 21, 22
satellite data, 16, 143
save(), 86
scale(), 78
scale thickness, 114
scan(), 82, 207
scatter plot, 41
Schillinger, Doug, xi
scope of variables, 15
Scripps, 191
sd(), 56, 57, 198
Seabird CTD, 92, 122
sea level, 139
sea-surface temperature, 85, 98
seawater

adiabatic lapse rate, 98
buoyancy frequency, 98, 217, 218
conservative temperature, xx
density, xix, xx, 75, 98, 218
density anomaly, 98
dynamic height, 98, 220
dynamic viscosity, 75, 98
electrical conductivity, 98
freezing temperature, 98
potential temperature, xx, 98
sound absorption, 98
sound speed, 98
specific heat, 98
spiciness, xi, 98, 143, 226, 227

Secchi depth, 170
sectionGrid(), 128, 166
sections, 128, 132
seek(), 83
segments(), 198
seq(), 16, 22, 24, 61, 74, 189, 192, 207
seq_along(), 16, 39
seq_len(), 39
set.seed(), 57, 58, 60, 61, 70–72, 78, 79,

131, 150, 162, 184, 199, 216, 228, 232,
237

shapefile, 92
shapiro.test(), 60
shell sort, 265
σt , xx
silicate, 50, 51, 104, 197
Simon, Carly, 177, 235
singular value decomposition, 26, 181, 236
SLEIWEX, see St Lawrence Estuary Internal

Wave Experiment
sma(), 215
smoothing spline, see smooth.spline()
smoothScatter(), 45, 50, 197
smooth.spline(), 76, 77, 127, 182, 205,

217

SOFAR, 237, 238
SOI, see Southern Oscillation Index
solar eclipse, 177, 235
solve(), 26, 131
sonogram, 159
Sontek, see instruments
SOP, see standard operating procedure
sort(), 73
source(), 11
sourceCpp(), 263
Southern Oscillation Index, 72, 80–82, 97, 155,

158, 160, 202
spatial mapping, 166
spectral analysis, 97, 159

frequency-time, 161, 231
rotary, 79, 161, 232
spectrograms, 159
wavelet, 152
Welch, 159

spectrum(), 49, 79, 157–159, 161, 230, 231
spiciness, 78, 98, 148
spike detection, 161
spline(), 76
splinefun(), 76
splines, see smooth.spline();

spline(); splinefun()
split(), 30–32, 61, 154, 159, 169, 191–193,

198, 199, 222, 231
split-depth section plot, 221
spreadsheet, xvii
spring-neap, 141, 223
sprintf(), 136
SPSS, 21, 22
SQLite, 84, 207
SST, see sea-surface temperature
stack(), 70
standard deviation, 56
standard operating procedure, viii, 1, 119
standard uncertainty, 57
startup file, 10, 91, 257
state-space modelling, 152
statistical distributions

list of, 55
steady.2D(), 175
Steinhart-Hart equation, 194
stem(), 58, 123
step(), 65
stepAIC(), 65
stepwise regression, 65
St Lawrence Estuary Internal Wave

Experiment, xi, xviii, 96, 149
St Lawrence River, 198, 199
Stommel, Henry, 174
stop(), 34
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storage.mode(), 16
storm surge, 139, 141
str(), 31, 104, 195
streamfunction, 174
strftime(), 22
strings, 17
strptime(), 21
strsplit(), 18
structured query language, see SQLite
sub(), 18, 122
subset(), 17, 96, 128, 137
subset of arrays, 26, 241
substitute(), 53, 136
substr(), 18, 248
Subversion version control, 100
sum(), 13, 189
summary(), 37, 57, 63, 71, 96, 106, 147
sunrise and sunset, 176
surf.gls(), 167, 168
svd(), 26, 181, 236
Sweave, xi
swell propagation, 159
swN2(), 217
swRho(), 120
symbols, list of, xix
system.file(), 206

T
t(), 26, 81, 131, 180
t.test(), 30, 56, 59, 60, 107, 228
table(), 32
tabulate(), 32
Taggart, Christopher, xi
tail(), 80, 206
task view, 185
Taylor series, 13, 14, 189
Teledyne, see instruments
temperature scales IPTS-68 and ITS-90, 123
TensorFlow, 186
TEOS-10, xvii–xix, 97, 209, 255, 256
textConnection(), 83
text encoding, 18
thermal expansion coefficient, 98, 135
thermistor, 194
thermodynamic equation of state, see gsw

package
Θ notation for algorithms, 264
Thompson, Keith, xi
tidal constituent, 36, 96, 193, 224
time(), 47, 141
times, handling in R, 20
time series, 6, 46, 49, 153, 163, 164

time type, 20, 22
timezone, 20–22
Tissot indicatrices, 250
title(), 242
topography, 96, 97, 142
tran.2D(), 175
transposing matrices, 26
trimmed mean, 38
try(), 69, 116, 215
ts(), 152
TS diagram, see plotTS()
t test, see t.test
Tukey honest significant difference, 71
TukeyHSD(), 71, 201
Tuktoyaktuk, 96
turbulence, 74, 116
two-dimensional interpolation, 75
type II regression, see regression

U
UNESCO seawater formulation, xviii–xx, 10,

36, 97, 135, 209, 255–258
ungrid(), 170
uniroot(), 35, 36, 73, 190, 193
Unix, 11, 22, 38, 84, 89
unlist(), 226
UTF-8, 18, 19

V
Väisäilä frequency, see buoyancy frequency
variables, 5, 15, 34, 62
variance, 181
variance, analysis of, see anova() & aov()
variance-conserving spectrum, 158
vector, 12, 13, 24–28
vector(), 24
Vector velocimeter, xvii
version control, 100, 267
vim text editor, xi, 11, 246
violin analogy to R, viii
violin plot, 58, see vioplot()
vioplot(), 58, 59
viscous dissipation, 150

W
water mass, 129, 132
water type, 129, 130
wavelet analysis, 152, 159, 160
wave speed, 36, 193
Web of Science, 104
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websites
iana.org, 20
code.google.com, 100
cran.r-project.org, xvii, 101
github.com, 10, 100
odv.awi.de, xviii
slgo.ca/app-sgdo, xviii
woce.nodc.noaa.gov, xviii
www.meds-sdmm.dfo-mpo.gc.ca, xvii
www.noaa.gov, xvii
www.nodc.noaa.gov, xvii
www.rstudio.com, 87
www.stat.auckland.ac.nz, 268
www.teos-10.org, xviii
www.unidata.ucar.edu, xvii

WebTide, 141
wellPanel(), 87
western intensification, 176
whale calls, 159
which.max(), 13, 218
which.min(), 13
while, 39
white space, 13

Wickham, Hadley, xii, 54
Wilson, J. Tuzo, viii, 103, 111, 112
wind chill, 197
wireframe plot, 46
witch of Agnesi, 73
with_tz(), 176
Woods Hole Oceanographic Institution, 81,

205
World Hydrographic Program, 146, 208, 227
World Ocean Atlas, 97, 99, 210, 258
World Ocean Circulation Experiment, xviii,

50, 51, 92, 96, 128
writeChar(), 86
write.table(), 43

X
xyz coordinates, 138

Y
ymd(), 21
ymd_hms(), 21

iana.org
code.google.com
cran.r-project.org
github.com
odv.awi.de
slgo.ca/app-sgdo
woce.nodc.noaa.gov
www.meds-sdmm.dfo-mpo.gc.ca
www.noaa.gov
www.nodc.noaa.gov
www.rstudio.com
www.stat.auckland.ac.nz
www.teos-10.org
www.unidata.ucar.edu
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