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Preface

When data consist of grouped observations or clusters, and there is a risk that
measurements within the same group are not independent, group-specific random
effects can be added to a regression model in order to account for such within-group
associations. Regression models that contain such group-specific random effects are
called mixed-effects regression models, or simply mixed models. Mixed models are
a versatile tool that can handle both balanced and unbalanced datasets and that can
also be applied when several layers of grouping are present in the data; these layers
can either be nested or crossed.

In linguistics, as in many other fields, the use of mixed models has gained
ground rapidly over the last decade. This methodological evolution enables us
to build more sophisticated and arguably more realistic models but, due to its
technical complexity, also introduces new challenges. This volume brings together
a number of promising new evolutions in the use of mixed models in linguistics
but also addresses a number of common complications, misunderstandings, and
pitfalls. Topics that are covered include the use of huge datasets, dealing with
non-linear relations, issues of cross-validation, and issues of model selection and
complex random structures. The volume features examples from various subfields
in linguistics. The book also provides R code for a wide range of analyses.

The idea for this book first arose at the 2012 Leuven Statistics Days conference,
the theme of which was ‘Mixed models and modern multivariate methods in lin-
guistics’ (http://lstat.kuleuven.be/research/lsd/lsd2012/index.htm). The conference
took place at the KU Leuven and was co-organized by LStat (Leuven Statistics
Research Centre) and the linguistic research group QLVL. We thank all conference
participants for their contributions to the conference. We also thank all authors for
contributing to this book, and we thank all anonymous referees for their important
criticisms.

Leuven, Belgium Dirk Speelman
January 2018 Kris Heylen

Dirk Geeraerts
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Chapter 1
Introduction

Dirk Speelman, Kris Heylen, and Dirk Geeraerts

Abstract As in many other fields, the use of mixed models has recently gained
ground rapidly in linguistics. This methodological evolution enables us to build
more sophisticated and arguably more realistic models, but, due to its technical
complexity, also introduces new challenges. This volume brings together a number
of promising new evolutions in the use of mixed models in linguistics, as well as
addressing a number of common complications, misunderstandings, and pitfalls.
Topics that are covered include the use of huge datasets, non-linear relations, issues
of crossvalidation, and issues of model selection and complex random structures.
The volume features examples from various linguistic subfields. This introductory
chapter succinctly sketches how and why linguistic data often lend themselves to
the use of mixed models and introduces the issues raised, and the topics covered, in
the chapters of this volume.

1 Mixed Models

When data consist of grouped observations, and there is a risk that measurements
within the same group are not independent, group-specific random effects can be
added to a regression model in order to account for such within-group associations.
Regression models that contain such group-specific random effects are called
mixed-effects regression models, or simply mixed models. Mixed models are a
versatile tool that can handle both balanced and unbalanced datasets and that can
also be applied when several layers of grouping are present in the data; these layers
can either be nested or crossed.

As in many other fields, the use of mixed models has recently gained ground
rapidly in linguistics. This methodological evolution enables us to build more
sophisticated and arguably more realistic models, but, due to its technical
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2 D. Speelman et al.

complexity, also introduces new challenges. This volume brings together a number
of promising new evolutions in the use of mixed models in linguistics, as well as
addressing a number of common complications, misunderstandings, and pitfalls.
Topics that are covered include the use of huge datasets, non-linear relations, issues
of cross-validation, and issues of model selection and complex random structures.
The volume features examples from various linguistic subfields.

2 Mixed Models in Linguistics

Examples of early adoptions of mixed models in linguistics can be found in different
subfields of linguistics. Some examples are [5] in corpus linguistics, [2, 6, 7] in
psycholinguistics, [8] in sociolinguistics, [10] in dialectometry/dialectology, etc.
One publication that deserves special mention is the 2008 textbook [1], which
offers a comprehensive coverage of mixed models in linguistics and has been very
instrumental in the wider adoption of this technique in linguistics.

Over the last decade, mixed models have become increasingly popular in
linguistics. This has happened for good reasons, since several types of grouping are
very common in linguistic data. The following paragraphs list but a few examples,
and certainly do not exhaust all possible types of grouping in linguistic data.

– In corpus data, when we study some linguistic variable, sometimes several
attestations of that variable were produced by the same speaker/writer. In that
case, it is possible that instances produced by the same speaker/writer are not
independent. Additionally, corpus data are often sampled from a mixture of
genres/text types, and the utterances in the corpus touch upon different topics.
Here, again, it is possible that observations within the same genre/text type or
observations that share the same topic are not independent. Unfortunately, it is
not always easy to ‘tag’ each observation for speaker, genre or topics information;
this can be difficult or even impossible, either because metadata such as speaker
information are missing or because it is hard to come up with a proper, or
useful, classification of things such as genre or topic. A classification that is
often used as a proxy for sources of grouping that are hard to detect directly,
is that of the individual texts/documents in a corpus. The rationale is that for a
number of reasons (which themselves are often hard to identify or disentangle),
it can be the case that observations from the same text/document (e.g. the same
conversation) are not independent, and that it therefore makes sense to treat
individual texts/documents as grouping level. Also, there is the possibility that
linguistic variables behave differently depending on their immediate linguistic
context. For instance, this may depend on the specific words the variables occur
with. For instance, a syntactic variation pattern (e.g. a word order alternation
pattern) may behave differently, depending on what is the specific main verb in
the pattern or in the syntactic context of the pattern.
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– In experimental data, often several measurements apply to the same participant
or to the same linguistic stimulus, or to the same combination of both (as is often
the case in longitudinal studies).

– In survey data, the location of residence of an informant, or his/her location
of origin, his/her mother tongue, etc. can also be possible sources of obser-
vation grouping. Also, when asked several similar questions, the informant
himself/herself can be the source of non-independence of observations.

– In the context of language and education and language acquisition,
students/pupils, classes, schools, cities, etc. can all be possible sources of
observation grouping.

As these examples make clear, linguistic data often lend themselves to the use
of mixed models. That being said, the application of mixed models to linguistic
data often is far from a trivial matter, for a number of reasons. The following list
contains some of these reasons. None of these are unique to linguistics, but together
they sometimes make the application of mixed models to linguistics a complicated
matter.

– It can be hard to distinguish between random-effect and fixed-effect factors. The
distinction is clear in prototypical cases. In a prototypical fixed-effect factor, the
variable has a rather limited set of levels, both in the sample and in the population,
and all the levels that occur in the population also occur in the sample. In a
replication study, the levels that occur in the new sample would be the same as
in the original study. In a prototypical random-effect factor, the variable typically
has a very large set of levels, certainly in the population, and the levels that occur
in the sample are a random subset of the levels that occur in the population. In a
replication study, the levels that occur in the new sample would typically differ (to
a large extent, if not completely) from those in the original study. Treating such
variables as random-effect factors allows us to build models the merits of which
are not confined to the specific set of levels that were attested in our sample.

Whereas variables such as speaker/writer, participant, informant or word in
many studies approximate the prototypical case of random-effect factors, the
situation is rather different for things such as genre/text type and topic. For
those types of variables, two competing approaches both have their merits. One
approach would be to opt for coarse-grained classifications (of genres/text type
or topics) that can be used as fixed-effect factors. They would have to be such that
all levels are attested in the sample, and that the levels jointly cover all situations
we want to model. This may imply that we can have no ambition to extrapolate
our findings beyond a somewhat restricted, but still rather broad, set of contexts
(e.g. three or four broadly defined genres). The alternative approach is to work
with much more fine-grained classifications (or even treat each individual text as
a separate ‘level’), which then are treated as random-effect factors. Of course, to
some extent the choice between both approaches is related to our research goals.
In some studies, difference between specific genres will be at the heart of the
study. In other studies, genre could be considered a nuisance variable.

– Many variables in linguistics, including response variables, are categorical,
especially in corpus linguistics. Therefore, the most often used type of mixed
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models is that of mixed-effects logistic regression models. From a mathematical
point of view, as far as modeling random effect structures is concerned, this is not
the most favorable case. Moreover, the Zipfian distribution of word frequencies
(with a few very high frequency words and many very low frequency words),
as well as the typically very skewed distribution of the amount of utterances
per speaker/writer, tend to lead to observation groups of very different sizes.
Typically, there are a few very large groups, and many very small groups (often
singletons), which again is challenging from a mathematical point of view.

– A considerable number of numerical variables in linguistics are related to
each other in non-linear ways (as will also be illustrated in several studies
in this book). Also, measurements can show autocorrelation patterns. This is
a particular concern in psycholinguistics experiments in which measurements
constitute time series, but it can also be an issue in corpus data where, for
instance, what happened earlier in a conversation can affect what happens later.
Therefore, techniques are needed that can deal with non-linear relations and with
autocorrelated patterns.

– The ever-increasing size of linguistic corpora, some of which now have clearly
entered the era of big data, as well as the vast amounts of data generated in
modern psycholinguistics labs, can lead to huge data sets. Applying regression
techniques to such huge data sets, especially when the models are complex, can
introduce computational issues.

These are some of the issues addressed in this book.

3 Mixed Models in This Book

This book offers a broad window on the use of mixed models in linguistics, with
different chapters zooming in on different subfields of linguistics. Chapter 2, while
not specifically discussing linguistic examples, zooms in on the analysis of huge
data sets, discussing solutions that can be of great value for the analysis of the
type of huge data sets that are often encountered in modern corpus linguistics.
Chapter 3 zooms in on applications in second language acquisition and language and
education. In Chap. 4, we look at examples from phonology, psycholinguistics and
neurolinguistics. In Chap. 5, dialectometric and sociolinguistic data are discussed.
In Chaps. 6 and 7, finally, examples from corpus linguistics are discussed.

Throughout the chapters, we encounter very different types of random effect
structures. In Chap. 2, we look at the typical type of hierarchical structures of
‘individuals within groups’ that is often encountered in studies on language and
education (e.g. pupils within classes within schools). In Chap. 3, the random-effect
factors are the mother tongue and the second language of individuals who study
Dutch as a third language. In Chap. 4, random-effect factors are participants and
words. In Chap. 5, random-effect factors are speakers, words, and locations. In
Chaps. 6 and 7, finally, random-effect factors are words.
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The different chapters address different important issues related to the use of
mixed models in linguistics. For instance, if we briefly revisit the issues that were
listed in the previous section, we see that the issue of the sometimes difficult
borderline between fixed-effect and random-effect factors plays a role both in
Chap. 3 (mother tongue and second language) and Chap. 7 (genre). The specific
difficulties of using and interpreting mixed-effect logistic regression analysis are
specifically addressed in Chaps. 1 and 6. Non-linear relations are discussed in
Chaps. 4 and 5, and autocorrelation patterns are addressed in Chap. 4. Huge data
sets, finally, are specifically addressed in Chap. 2.

4 Software Used in the Book

The goal of this book is to not only discuss mixed models at a conceptual level,
but to also discuss the practical usage of the technique. Nowadays, many different
statistical packages, including all major commercial tools, offers good support for
mixed models. In linguistics too, many different tools are being used for running
mixed models. That being said, it is probably fair to say that at present, for many
linguists the statistical software environment R is the tool of choice for conducting
mixed-effects regression analyses. This tendency is also reflected in this book.
Most chapters in this book provide R code for the types of analyses that are being
discussed. The authors provide this code either by including the most important
pieces of R code in the text, or by providing a URL where an R script or an R paper
package can be downloaded.

5 Chapters in This Book

To conclude this first chapter, we will introduce the chapters in this book in a bit
more detail.

In Chap. 2, Verbeke et al. present an introduction to mixed models (using the
alternative term clusters to refer to grouped observations) that specifically focuses
on the correct interpretation of the parameters in the models, and on possible pitfalls
and misunderstandings. For instance, they illustrate that in a logistic mixed model,
a type of model that is very often used in linguistics, fixed effects no longer have
a population-average interpretation (as they do in linear mixed models). Instead of
describing average trends in the population (across clusters), they describe trends
in average clusters. Next, they illustrate that Wald tests, likelihood ratio tests, and
score test statistics cannot straightforwardly be used to test whether between-cluster
variability is significant (i.e. to test whether a certain random effect is needed
in a model), but that instead corrections are needed (often using mixtures of �2

distributions). Also, they show that the distribution of empirical Bayes predictions
for random effects (the so-called BLUPS) should not be used to test distributional
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assumptions made in the model. They also discuss pseudo-likelihood techniques,
which enable the researcher to analyze data sets that are so large that standard
likelihood based inference is no longer feasible, and which therefore, in light of the
ever growing size of linguistic corpora and other linguistic data collections, offer a
most welcome addition to the linguist’s toolset. Most examples in Chap. 2 illustrate
cases with nested random effects. In the next chapter, Chap. 3, focus shifts to crossed
random effects.

In Chap. 3, Schepens et al. illustrate that crossed random effects may have more
complex interrelationships than is often assumed. Focus is on model selection
(specifically the selection of the most appropriate random effects structure), where
the authors specifically recommend that researchers compare the fit of their crossed
random effects models with the fit of models that also include the respective random
interaction effects. The chapter reports on a study, based on a large state examination
database, of the effect of L1 (mother tongue) and L2 (second language) on the
proficiency in Dutch as an L3. L1 and L2 are treated as two crossed sources of
random variation. The authors want to inspect whether and how the variation across
the levels of one random-effect factor (e.g. L2) depends on the levels of another
random-effect factor (e.g. L1). For example: could it be that L1 Spanish learners
benefit more from L2 English than L1 German learners do? One way of investigating
this type of interrelatedness between random effects, which the authors claim to
often be an issue in observational studies, is to incorporate an x-by-y random
interaction effect, where x and y are the crossed random effects. The sample used for
this study has data for 73 L1s, 44 L2s (one of which is the value ‘none’), and 759 L1–
L2 combinations. Model selection, as far as the random effect structure is concerned,
consisted of the comparison of four models. The first model is a model with a
random intercept for L1–L2 (Model 1). The second model is a model with crossed
random intercepts for L1 and L2 (Model 2). Next, a model with random intercepts
for both L1 and L1–L2 is inspected (Model 3). Finally, a model with the crossed
random intercepts for L1 and L2, as well as an additional random intercept for
the interaction effect L1–L2 is inspected (Model 4). Additionally, all these models
contain the same range of fixed effects, as well as an additional random intercept
for ‘country of birth’. The authors argue that likelihood ratio tests and inspection
of the estimated parameters indicate that Model 4 explains the data significantly
better than the other models, with a larger proportion of variance being attributed
to L1 factor than to L2 factors. The authors offer a detailed illustration of carefully
executed model selection.

In Chap. 4, Baayen et al. address the case of responses constituting time series,
which is quite common in experimental data in the field of linguistics. This situation
may raise the problem of autocorrelated errors, a problem which in turn can
potentially lead to anti-conservatism of p-values as well as to a more blurred window
on the quantitative structure of the data. The paper illustrates two tools offered by
generalized additive mixed models (gamms), as implemented by the R package
mgcv, for dealing with autocorrelated errors. Generalized additive mixed models
extend the generalized linear mixed model with a large array of tools for modeling
nonlinear dependencies between a response variable and one or more numeric
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predictors. The first tool in mgcv that can help us account for autocorrelated errors
is the incorporation in the model of a first-order autoregressive process for the
errors, which uses an autocorrelation parameter �. The second tool is the use of
factor smooths for random-effect factors. These smooths are set up (by means of
penalization) to yield the non-linear equivalents of random intercepts and random
slopes in the classical linear framework.

Three cases studies are discussed. The first case study is on a word naming
task; in this kind of task, participants are asked to respond to stimuli that are
presented sequentially, so measurements for each participant result in a time series,
and possibly a participant’s later responses are not independent from his earlier
responses. A model with a random intercept for verb (i.e. the word) and by-
subject wiggly penalized curves for trial (i.e. position in the time series), in
combination with a rather modest autoregressive parameter � of 0:3, is shown
to almost completely account for the autocorrelation in the residuals. The second
case study is on the pitch contour in the pronunciation of English three-constituent
compounds. In this study, there are 12 � 40 D 480 elementary time series (viz. all
combinations of 12 speaker and 40 English three-constituent compounds); in each
elementary time series, pitch is measured at 100 moments in normalized time. The
autocorrelation patterns that are much stronger than those in the first case study.
Out of the three models the authors compare for this second case study, a model
with by-compound and by-participant random wiggly curves as well as a high
autoregressive parameter � of 0:98, is found to offer the best fit for the data and to
remove most of the autocorrelation from the model residuals. The third case study
models amplitude over time of the brain’s electrophysiological response to visually
presented compound words (EEG data). Focus is again on the complex random
structure of the data and on the autocorrelation structure in the model residuals.

Throughout the three cases studies, the authors discuss model selection in
detail. They illustrate the different ways in which the introduction of random
curves and of an autoregressive parameter � can impact the models. Regarding
the latter, they more specifically argue and illustrate that, when residuals reveal
autocorrelational structure, � should be chosen high enough to remove substantial
autocorrelational structure, but not so high that new, artificial autocorrelational
structure is artefactually forced onto the data.

In Chap. 5, Wieling et al. investigate which factors influence the linguistic
distances of Catalan dialectal pronunciations from standard Catalan. Using a
large data set of catalan dialect pronunciation of 357 words by 320 speakers of
varying age coming from 40 locations, the authors show that the speakers of
Catalan in Catalonia and Andorra use a variety of Catalan that is closer to the
standard than the variety spoken by speakers from Aragon. Because this tendency
is particularly strong among younger speakers, they argue that the difference is
at least in part due to the introduction of Catalan as an official language in the
1980s in Catalonia and Andorra but not in Aragon. As far as design is concerned,
their study adopts a dialectometric approach that is enriched with social factors.
More specifically, their study is dialectometric, in the sense that they aggregate
over many linguistic variables, but unlike many dialectometric studies, they do
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incorporate age group (which gives them a window on linguistic change) and
several other social factors. The response variable in their model is pronunciation
distance from the standard pronunciation, operationalized as (log-transformed and
centered) normalized PMI-based Levenshtein distance. They use a generalized
additive mixed-effects regression model in which geography is modeled by a non-
linear interaction of longitude and latitude, and in which additionally location is
included as a random-effect factor to capture location-based effects not captured
by geographic coordinates. Fixed-effect predictors include word-specific variables,
as well as location-specific and speaker-related social variables. Model selection is
discussed in detail. The authors argue in favor of using both random intercepts and
random slopes, in order to avoid anti-conservative p-values. They also argue in favor
standardization of predictors. They also touch upon the issue of whether or not to
use a maximally complex random-effects structure (see [3, 4]).

In Chap. 6, Barth and Kapatsinski address an issue that is very common in corpus
data. If we use word as a random factor in the specific context of corpus data,
we are faced with two specific properties of natural language: (1) word frequency
distributions are such that in observational data such as corpus data, a small number
of words will have exceptionally high frequencies; (2) at least according to some
linguistics theories (most notably lexical diffusion theory), high frequency words
tend to behave differently from other words (e.g. more articulatory reduction and
semantic bleaching, and more retention of grammatical patterns that are no longer
productive). The authors use simulation and cross-validation tests to investigate
what are the implications of this situation for the role of random factors such as
word in quantitative corpus linguistics research, and how they should be dealt with
for the purpose of gauging fixed effects, selecting models and establishing model
quality. First of all, they argue that specifically in the case of corpus-like sampling
(which is bound to be unbalanced with respect to word frequencies), the inclusion of
random effects is needed to obtain accurate fixed-effect coefficients. They show that
corpus-like (unbalanced) sampling greatly diminishes the predictive power of fixed-
effects-only models; it also hurts mixed-effects models, but to a much lesser extent.
Second, they argue that whereas random factors need to be included in the models
in order to more accurately capture the fixed effects in the model, at the same time
it is the predictiveness of the fixed effects only that should guide model selection.
In other words, they argue against using the fit (in their case, the concordance index
C) of the complete model (including random effects) to evaluate mixed models, as
is often done in linguistic research. Instead, evaluation of the fit of the model should
be done by examining how much variance is captured by the fixed effects alone.
Extrapolating their findings to the measures introduced in [9], they advocate using
marginal R2 rather than conditional R2. This chapter can also be read as an argument
in favor of cross-validation of regression models, which is a practice that is known
in linguistics, but definitely is not common.

In Chap. 7, Zhang et al. present a mixed-effects logistic regression analysis by
means of which they model how, in newspaper data and online forum data in
Mainland Chinese and Taiwan Chinese, people choose between using either a literal
or a metonymic expression when they refer to a government. Literal expressions
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included in the study are two Chinese words that are the Chinese counterparts
of the English words government and authorities respectively. Metonymic expres-
sions included in the study are all usages of a PLACENAME FOR GOVERNMENT

metonymy encountered in the data (typically country names, or names of capitals or
official residences of state leaders or governments). The source of random variation
in this study is the main verb of the sentence in which the reference to a government
occurs (often, but not always, with this government being the subject of this verb).
Fixed-effect predictors in the model include conceptual, grammatical/discursive
and lectal variables. The study illustrates that the choice of literal vs. metonymic
expressions is the result of a complex interplay of these three types of variables.
Most notably, contexts favoring the use of a PLACENAME FOR GOVERNMENT

metonymy are the discussion of ‘general topics of global importance’ (as opposed to
domain-specific topics and/or topics of only local importance), the syntactic role of
the government being the subject of the sentence, and the situation of the reference
to the government featuring in the title of the text (rather than in the body). Two
models are being presented and discussed. First, a ‘global’ model is fit for all data
points (including references to many different governments). Then, a second model
is fit for the subset of only those observations that refer to the MAINLAND CHINESE

GOVERNMENT. An interesting issue regarding the random structure in the data of
this study, is the question where to draw the line between what are random-effect
and what are fixed-effect factor. Two factors in this paper, viz. lect/variety/style
and topic, are factors that in linguistics often are treated as random-effect factors,
but that here, in light of the specific research goals (specifically, the lack of desire
to extrapolate beyond the topics and lects studied here) are treated as fixed-effect
factors.
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Abstract In many contexts, hierarchical, multilevel, or clustered data are collected.
Examples are longitudinal studies in which subjects are measured repeatedly at
various time points (measurements within subject), surveys in which all members
of a sample of families are questioned (members within families), educational data
in which students from various schools are tested (students within schools), etc.
From a statistical perspective, the challenge is to account for the fact that the
measurements within clusters are not necessarily independent anymore, implying
that standard models such as linear regression or generalized linear regression
are no longer applicable. Mixed models are currently amongst the most flexible
models for the analysis of such data. They can be interpreted as standard linear,
generalized linear, or non-linear models, with cluster-specific random effects shared
by all measurements within the cluster, hereby implicitly accounting for within-
cluster associations. In this chapter, mixed models will be introduced with special
attention for the correct interpretation of the parameters in the models. Also,
examples will be given of situations in which results obtained from fitting mixed
models are incorrectly interpreted. Many commercial software packages nowadays
include mixed model procedures. However, when (extremely) large data sets are to
be analyzed, standard likelihood based inference is no longer feasible. Examples
include data sets with crossed random effects, with many clusters, with many
observations per cluster, or contexts where mixed models are used to build a
joint model for high-dimensional multivariate responses. In such cases, pseudo-
likelihood techniques provide good alternatives. Various versions will be presented
and illustrated. All concepts will be introduced and extensively illustrated using data
sets from various contexts.
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1 Introduction

In many contexts, hierarchical, multilevel, or clustered data are collected. Examples
are longitudinal studies in which subjects are measured repeatedly at various time
points (measurements within subject), surveys in which all members of a sample
of families are questioned (members within families), educational data in which
students from various schools are tested (students within schools), etc. From a
statistical perspective, the challenge is to account for the fact that the measurements
within clusters are not necessarily independent anymore, implying that standard
models such as linear regression or generalized linear regression are no longer
applicable.

Mixed models are currently amongst the most flexible models for the analysis of
such data. They can be interpreted as standard linear, generalized linear, or non-
linear models, with cluster-specific random effects shared by all measurements
within the cluster, hereby implicitly accounting for within-cluster associations.
In this chapter, mixed models will be introduced with special attention on the
correct interpretation of the parameters in the models. Also, examples will be given
of situations in which results obtained from fitting mixed models are incorrectly
interpreted.

Many commercial software packages nowadays include mixed model proce-
dures. However, when (extremely) large data sets are to be analyzed, standard
likelihood based inference is no longer feasible. Examples include data sets with
crossed random effects, with many clusters, with many observations per cluster, or
contexts where mixed models are used to build a joint model for high-dimensional
multivariate responses. In such cases, pseudo-likelihood techniques provide good
alternatives. Various versions will be presented and illustrated.

All concepts will be introduced and extensively illustrated using data sets from
various contexts. The structure of the chapter is as follows. In Sect. 2, an introduction
is given to linear as well as generalized linear mixed models. Both model families
will first be introduced in the context of a particular data set, followed with some
brief discussion of estimation and inference. An extensive case study will be
presented in Sect. 3, where one of the examples from Sect. 2 will be analysed in
full detail, illustrating issues practicing statisticians are often confronted with when
applying mixed models. When mixed models are to be used for the analysis of large
data sets, computational issues may arise. Section 4 provides a split-sample solution
based on pseudo-likelihood inference, and several examples are discussed. Finally,
an overall conclusion is presented in Sect. 5.
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Mothers height Children
Small mothers < 155 cm 1 → 6
Medium mothers [155cm; 164cm] 7 → 13
Tall mothers > 164 cm 14 → 20

Fig. 2.1 Heights of schoolgirls. Growth curves of 20 school girls from age 6 to 10, for girls with
small, medium, or tall mothers

2 Mixed Models

2.1 Linear Mixed Models

Goldstein [12] reports growth curves of 20 preadolescent girls, measured on a yearly
basis from age 6 to 10. The girls were classified according to the height of their
mother. The individual profiles are shown in Fig. 2.1, for each group separately.
The measurements are given at exact years of age, some having been previously
adjusted to these. The values Goldstein reports for the fifth girl in the first group are
114.5, 112, 126.4, 131.2, and 135.0. This suggests that the second measurement is
incorrect. We therefore replaced it by 122. Of primary interest is to test whether the
growth of these schoolgirls is related to the height of their mothers. An extensive
analysis of this data set can be found in Section 4.2 of [29]. Here, we will use the
data to introduce the linear mixed model on an intuitive basis.

Graphical exploration of Fig. 2.1 suggests that the evolution of each child can be
well described by a linear function over time, but with subject-specific intercepts
and possibly subject-specific slopes as well. Let Yij denote the jth measurement for
the ith child, taken at time tj (age), i D 1; : : : ; 20, j D 1; : : : ; 5. It is then assumed
that Yij can be modeled as

Yij D ˇ1i C ˇ2itj C "ij; (2.1)



14 G. Verbeke et al.

in which ˇ1i and ˇ2i are the intercept and slope of child i, respectively, and where
the terms "ij represent the traditional errors, assumed to be normally distributed with
mean zero and variance �2

res. This residual variance expresses the fact that the obser-
vations do not perfectly meet the linearity assumption. From this perspective, �2

res
can be interpreted as representing unexplained within-subject variability. Obviously,
the intercepts ˇ1i are different for all subjects, and this variability can be partially
explained by the fact that the children belong to different groups. Let Si, Mi, and
Ti represent indicators for group membership (short–medium–tall), then a possible
model to explain variability between the children in terms of their intercepts is

ˇ1i D ˇ1Si C ˇ3Mi C ˇ5Ti C b1i: (2.2)

The parameters ˇ1, ˇ3, and ˇ5 represent the average intercepts in the short mother
group, the medium mother group, and the tall mother group. Obviously, a similar
model can be used for the child-specific slopes ˇ2i, leading to

ˇ2i D ˇ2Si C ˇ4Mi C ˇ6Ti C b2i; (2.3)

where ˇ2, ˇ4, and ˇ6 now represent the average slopes in the three groups,
respectively. Note that the error components b1i and b2i indicate that children within
the same group do not necessarily have the same intercepts or slopes. Hence,
the b1i and b2i represent unexplained between-subject variability, and they are
assumed to be jointly normally distributed. More specifically, it is assumed that
bi D .b1i; b2i/

0 � N.0; D/ for some 2 � 2 covariance matrix D, with entries dpq,
p; q D 1; 2.

Combination of Eq. (2.1) with Eqs. (2.2) and (2.3) yields

Yij D .ˇ1Si C ˇ3Mi C ˇ5Ti C b1i/ C .ˇ2Si C ˇ4Mi C ˇ6Ti C b2i/tj C "ij; (2.4)

which is a linear regression model in which some parameters are the same for all
subjects (fixed effects), while other parameters are subject-specific and assumed
random (random effects), resulting in a so-called mixed-effects model, often briefly
termed mixed model.

As mentioned in Sect. 1, mixed models provide a natural way to allow for within-
cluster associations. For example, model (2.4) implies that two observations Yij and
Yik of child i have covariance

cov. Yij; Yik/ D d22tjtk C d12.tj C tk/ C d11 C �2
res;

clearly showing that observations belonging to the same child are no longer assumed
independent, as classical linear regression models would have assumed. Note also
that, because all random terms in (2.4) have mean zero, the expectation of Yij equals

E. Yij/ D .ˇ1Si C ˇ3Mi C ˇ5Ti/ C .ˇ2Si C ˇ4Mi C ˇ6Ti/tj;

showing that the fixed effects are modelling systematic trends in the data, while
random effects are used to model the association structure.
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2.2 Generalized Linear Mixed Models

Expression (2.4) is an example of a linear mixed model, which is any linear
regression containing fixed as well as random regression parameters. When the
outcome of interest is not continuous, a model such as (2.1) is not necessarily
meaningful anymore, and needs to be replaced by a more appropriate model. As an
example, we consider data from the Leuven Diabetes Project [2, 3, 11], in which the
impact is studied of offering general practioners (GP’s) assistance of a diabetes care
team, consisting of a nurse educator, a dietician, an ophthalmologist, and an internal
medicine doctor, for the treatment of their diabetes patients. GP’s from the area of
Leuven (Belgium) were randomly assigned to either a low intervention program or
a high intervention program. Here, we consider the data from the high intervention
program only, resulting in a total of 1577 patients, treated by 61 GP’s. The number of
patients per GP ranged from 5 to 138, with median value 47. Patients were scheduled
to be measured twice, once when the program was initiated, and once after one year
in the study. One of the outcomes of primary interest was HbA1c, glycosylated
hemoglobin, a molecule in red blood cells that attaches to glucose (blood sugar),
high values reflecting more glucose in blood. HbA1c indicates how well diabetes has
been managed over the last 2 or 3 months. Non-diabetics have values between 4 and
6%. HbA1c above 7% indicates that diabetes is poorly controlled, implying higher
risk for long-term complications. Here we will consider a dichotomized version of
HbA1c, defined as Y D 1 if HbA1c is less than 7% and 0 otherwise.

The binary nature of the outcome no longer allows the use of a linear model as
in (2.4). Instead, a logistic model will be used, in which the probability P.Y D 1/ is
modeled on a logit scale. Note also that, in contrast to the growth curves in Sect. 2.1,
an additional hierarchy is present in the data. Indeed, patients are clustered within
GP’s, and repeated (longitudinal) measurements are clustered within patients. This
will be accounted for by random effects at two different levels. Random effects at
the GP level will account for the clustering of patients within GP’s, while random
effects at the patient level will account for the clustering of the repeated measures
within patients. More specifically, let Yijk denote the outcome at time point tk D 0; 1,
for patient j treated by GP i, i D 1; : : : ; 61, j D 1; : : : ; ni, it is assumed that

P
�

Yijk D 1jai; bj.i/
� D exp

�
ˇ0 C ˇ1tk C ai C bj.i/

�

1 C exp
�
ˇ0 C ˇ1tk C ai C bj.i/

� : (2.5)

As before, the parameters ˇ0 and ˇ1 model the systematic trend in the population,
while the parameters ai and bj.i/ model the variability between the GP’s and between
the patients, respectively. The notation j.i/ is used to explicitly denote that patients
are nested within GP’s. As before, cluster (GP or patient) specific parameters ai and
bj.i/ are assumed normally distributed with means 0 and variances �2

GP and �2
PAT ,

respectively. Note that our notation now explicitly acknowledges the fact that the
model is conditional on a particular GP and a particular patient treated by that GP
(probability conditional on ai and bj.i/).
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Model (2.5) is an example of a logistic mixed model, which is one particular
example of a generalized linear mixed model, useful for the analysis of binary
outcomes. Other examples include proportional odds mixed models for ordinal
outcomes or Poisson mixed models for count data. Examples can be found in [15].

2.3 Estimation and Inference

Most commercially available software packages nowadays allow fitting of linear
and generalized linear mixed models. In general, unless a fully Bayesian approach
is followed (see, e.g., [10]), estimation and inference are based on likelihood
principles. Assuming clusters to be independent, the likelihood can easily be
constructed and maximized. Note however that the models often contain many
parameters (fixed effects and random effects). Direct maximization therefore may
require maximization over very high dimensional parameter spaces. Furthermore,
as the number of parameters increases with the number of clusters, classical
asymptotics do not hold anymore. To avoid these problems, likelihood estimation is
based on the marginal likelihood, i.e., the likelihood obtained from integrating over
the random effects which are assumed normally distributed. The resulting marginal
models depend on the fixed effects and the covariance parameters only, the number
of which is relatively small compared to the original number of parameters in the
models.

Except in simple cases such as the linear mixed model, integrating out the random
effects is not possible analytically, and approximations are needed. Many solutions
have been proposed in the statistical literature, including Taylor series expansions,
approximations of the data, and numerical approximations of the integrals. Details
on the many available estimation methods, together with illustrations and compar-
isons, can be found in [15, 18, 30].

Because fitting of (generalized) linear mixed models is based on maximum
likelihood principles, inferences for the parameters are readily obtained from classi-
cal maximum likelihood theory. Indeed, assuming the fitted model is appropriate,
the obtained estimators are asymptotically normally distributed with the correct
values as means, and with the inverse Fisher information matrix as covariance
matrix. Hence, asymptotic Wald-type tests, comparing standardized estimates to
the standard normal distribution can be easily performed. Alternatively, asymptotic
likelihood ratio tests and score tests can be used as well. One complication often
ignored in practice is that estimation of parameters in covariance structures such
as the random-effects covariance D occurs under the restriction of non-negative
definiteness for the resulting covariance structure. This implies that null hypotheses
involving such parameters are often on the boundary of the parameter space. As
a result, classical maximum likelihood theory no longer applies, and none of the
classical testing procedures (Wald, likelihood ratio, score) remain valid. This will
be further discussed in Sect. 3, in the context of the Leuven Diabetes Project.
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While interest is often primarily in estimation and inference for the fixed effects
and/or the variance components only, one sometimes is interested in obtaining
predictions for the random effects as well. They reflect between-cluster variability,
which makes them helpful for detecting special profiles (i.e., outlying individuals) or
groups of individuals showing extraordinary behavior. For example, in the context
of the Diabetes Project Leuven, interest might be in predicting the GP effects ai

to assess the performance of each individual GP. Usually random effects in mixed
models are predicted using their empirical Bayes (EB) estimate. The EB estimate
of a random effect is its posterior mode, i.e., the most likely value for the random
effect, conditional on the observed data for that particular cluster. In the Diabetes
Project Leuven, the EB estimate of the contribution bj.i/ for patient j treated by GP
i would be the most likely value for bj.i/ given the data that have been observed for
that particular patient. The EB estimate of the contribution ai for GP i would be
the most likely value for ai given the observed data of all patients treated by that
particular GP.

3 Mixed Models in Action: The Leuven Diabetes Project

While (generalized) linear mixed models can be interpreted as relatively straight-
forward extensions of the traditional (generalized) linear models [13] to the context
of clustered data, the interpretation of some of the results is less straightforward
and needs special attention. Scientists applying mixed models are not always aware
of these peculiarities, leading to incorrect interpretations of some of the results
obtained. A number of such situations will be described in this section, in the
context of the Leuven Diabetes Project introduced in Sect. 2.2, and analysed using
model (2.5).

3.1 Interpretation of the Fixed Effects

We first consider inference for the fixed effects ˇ0 and ˇ1. Estimates, associated
standard errors and p-values are reported in Table 2.1. As explained in Sect. 2.1,
fixed effects in linear mixed models can be interpreted as average intercepts and
slopes, hence modeling the average trends in the population. Note however, that

Table 2.1 Estimates, associated standard errors, Z-statistics, and p-values for the fixed effects in
model (2.5)

Effect Estimate (se) Z p-value

Intercept ˇ0 0:1662 .0:0796/ 2.0879 0.0368

Time ˇ1 0:6240 .0:0812/ 7.6847 <0.0001
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this interpretation is based entirely on the linearity of model (2.1). In other models,
this interpretation no longer holds. For example, the average trend implied by the
logistic mixed model (2.5) used for the analysis of the Leuven Diabetes Project is
obtained from calculating

E
˚

P
�

Yijk D 1jai; bj.i/
�� D E

(
exp

�
ˇ0 C ˇ1tk C ai C bj.i/

�

1 C exp
�
ˇ0 C ˇ1tk C ai C bj.i/

�

)

; (2.6)

where the expectation is over the random effects ai and bj.i/, both assumed to
be normally distributed. Although the random effects have mean zero, the non-
linear relation between P

�
Yijk D 1jai; bj.i/

�
and the random effects, implies that the

expectation in (2.6) cannot be obtained by simply replacing the random effects by
zero, i.e., the average trend in the population is not given by

P
�

Yijk D 1jai D 0; bj.i/ D 0
� D exp Œˇ0 C ˇ1tk�

1 C exp Œˇ0 C ˇ1tk�
(2.7)

Hence, in contrast to the linear mixed model, the fixed effects no longer have
a population-average interpretation. Instead, they describe the evolution of the
average patient treated by the average GP, i.e., a patient and GP with random effects
equal to zero, which surprisingly is not the average evolution in the population.

This phenomenon can most easily be understood in a graphical way. Figure 2.2
shows the evolution of the probability P.Y D 1/ for 20 randomly selected patients
(thin lines), based on model (2.5). All patients show a logistic evolution with the
same slope ˇ1 and with intercepts ˇ0 C ˇ1tk C ai C bj.i/, which are subject-specific,
depending on the actual patient under consideration, and the actual GP who is
treating that patient. The population-average trend however, is the same probability
but now averaged over the entire population. It is obtained from averaging the
subject-specific probabilities at each time point, and this results in the bold line in
Fig. 2.2. Clearly, the average trend is less steep than each of the individual curves.
Furthermore, the larger the between-GP and between-patient variances �2

GP and �2
PAT

are, the more different the individual trends in Fig. 2.2, leading to a more severe

Fig. 2.2 Graphical
representation of the logistic
mixed model (thin lines),
with indication of the
population-average trend
(bold line)
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deviation of the slope of the population-average trend from the individual trends.
This clearly illustrates that the fixed effects in generalized linear models should not
be interpreted as effects describing the average trends in the population. Instead,
they describe the trend of the average cluster, i.e., a cluster with random effect(s)
equal to zero.

3.2 Tests for Variance Components

Although fixed effects in generalized linear mixed models, in general, should
not be interpreted as the average effect of covariates of interest (such as time),
they do describe systematic trends and therefore often are of primary interest.
This notwithstanding, researchers sometimes are interested in inferences for the
variance components as well. In the Leuven Diabetes Project, for example, one
might be interested in assessing the amount of variability between GP’s. Indeed,
a large between-GP variance �2

GP suggests that there exist substantial differences
between GP’s in terms of being able to control diabetes of their patients. In
such cases, additional patient- or GP-specific covariates may be added to the
model in an attempt to explain the large between-GP variability. Table 2.2 shows
estimates, associated standard errors, Z-statistics, and p-values for the two variance
components in model (2.5). Clearly, the between-patient variability is much larger
than the between-GP variability.

Testing whether the between-GP variability is significant is equivalent to testing
the null hypothesis H0 W �2

GP D 0. Naively, one might argue that the asymptotic
normality of the maximum likelihood estimates allows testing the hypothesis using
a standard Wald test, based on a Z-statistic equal to the estimate divided by the
associated standard error. In our example, the Z-statistic equals 2:6496 leading to a
p-value equal to p D 0:0081. However, as the null hypothesis tested is not in the
interior of the parameter space, the traditional asymptotic properties of maximum
likelihood estimates no longer hold, implying that Wald test, likelihood ratio tests,
and score test statistics no longer follow the asymptotic distribution traditionally
used for the calculation of p-values, and corrections are needed. In the current
example, the corrected p-values for testing H0 W �2

GP D 0 and H0 W �2
PAT D 0 are

only half the original ones, but other corrections may be needed in other contexts.
As an example, consider a model as in Sect. 2.1 with random intercepts and

slopes, and consider testing whether random slopes are needed in the model. Under

Table 2.2 Estimates, associated standard errors, Z-statistics, and p-values (incorrect ! cor-
rected) for the variances of the random effects in model (2.5)

Effect Estimate (se) Z p-value

Between GP variance �2
GP 0:1399 .0:0528/ 2.6496 0:0081 ! 0:0041

Between patient variance �2
PAT 1:1154 .0:1308/ 8.5275 <0:0001 ! <0:0001
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the alternative hypothesis, D is a 2 � 2 non-negative definite matrix, which reduces
to a non-negative scalar under the null hypothesis. Clearly, the null hypothesis is on
the boundary of the alternative parameter space given that it requires the random-
slopes variance to be zero. Stram and Lee [25, 26] have shown that, in this case, the
asymptotic null distribution for the likelihood ratio test statistic is a mixture of a �2

1

and a �2
2, with equal probability 1=2, rather than the standard �2

2 one would expect
under the classical likelihood theory. In general, the asymptotic null distribution for
the likelihood ratio test statistic for testing a null hypothesis which allows for q
correlated random effects versus an alternative of qC1 correlated random effects, is
a mixture of a �2

q and a �2
qC1, with equal probability 1=2. For more general settings,

e.g., comparing models with q and q C q0 (q0 > 1) correlated random effects, the
null distribution is a mixture of �2 random variables [21, 22], the weights of which
can only be calculated analytically in a number of special cases. Similar results can
be derived for the score test. The correction needed for testing H0 W �2

GP D 0 and
H0 W �2

PAT D 0 in the Leuven Diabetes example followed from the results of [22].
Building upon Silvapulle and Silvapulle [24], Molenberghs and Verbeke [16], and
Verbeke and Molenberghs [31, 32] have shown that the Wald test and the score test
are asymptotically equivalent to the likelihood ratio test, and that the same mixtures
of �2 distributions appear as asymptotic null distributions.

3.3 Empirical Bayes Estimation

As explained in Sect. 2.3, predictions of random effects are needed in cases where
predictions for particular clusters are of interest, or if outlying clusters are to be
identified. Figure 2.3 shows histograms of the EB estimates for the random GP
effects ai and random patient effects bj.i/ in model (2.5) used in the analysis of the
Leuven Diabetes Project. The histogram of predicted patient effects suggests three
clusters of patients, with approximate cut-offs for Obj.i/ equal to �0:6 and 0:1. Since

Fig. 2.3 Histograms of empirical Bayes estimates for the random GP effects ai and random patient
effects bj.i/ in model (2.5)
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Table 2.3 Cross-classification of observed response profiles with predicted patient effects,
obtained from fitting model (2.5) to the Leuven Diabetes Project data

Y profile Obj.i/ < �0:6 �0:6 � Obj.i/ < �0:1 �0:1 � Obj.i/

0 �! 0 345 0 0

0 �! 1 0 275 0

1 �! 1 0 0 677

the prediction Obj.i/ is the most likely value for bj.i/ given the observations available
for that particular patient, and since each patient has at most two observations, it
seems that the presence of the clusters is related to the very discrete nature of
possible outcome profiles observed for the patients in this study. Indeed, patients
with Yij1 D Yij2 D 0, i.e., 0 ! 0, are expected to have (very) small predicted
probabilities for reaching the target HbA1c less than 7%. Therefore, their prediction
Obj.i/ should be very small (negative). Patients with both outcomes equal to one, i.e.,
with profile 1 ! 1, should have large predicted probabilities for reaching the target
implying a prediction Obj.i/ which is very large (positive). Patients with two different
outcome values at both occasions, i.e., with profile 0 ! 1 or 1 ! 0, are expected
to have intermediate predicted probabilities for reaching the target. Their prediction
Obj.i/ therefore should be of a moderate level. This can easily be confirmed from
cross-tabulating the observed response profiles with the EB estimates for the patient
effects, see Table 2.3. Note that all patients with HbA1c at target at the start of the
study have their HbA1c at target one year later as well, i.e., no profiles 1 ! 0 have
been observed in this data set. The total number of patients in the table is less than
the total number of patients present in the data set due to missing observations.

The very limited number of different patient profiles, which is a result of the
binary outcome and the fact that at most two observations per patient are available
is also clearly reflected in the scatterplot of predicted patient effects versus predicted
GP effects, shown in Fig. 2.4. For each predicted GP effect, at most seven different
predictions are obtained for patients treated by that particular GP. They correspond
to the seven observed profiles 0 ! 0, 0 ! 1, 1 ! 1, 0 ! �, 1 ! �, � ! 0,
and � ! 1, in which � indicates the outcome value is missing. The negative linear
trends in the scatterplot are also a side effect of the discrete nature of the outcomes.
Indeed, consider two patients, j1 and j2, treated by different GP’s, i1 and i2, but with
the same response profile, e.g., 1 ! 1. Their subject-specific models are given by

P
�

Yijk D 1jai1 ; bj1.i1//

� D exp
�
ˇ0 C ˇ1tk C ai1 C bj1.i1/

�

1 C exp
�
ˇ0 C ˇ1tk C ai1 C bj1.i1/

� ;

P
�

Yijk D 1jai2 ; bj2.i2//

� D exp
�
ˇ0 C ˇ1tk C ai2 C bj2.i2/

�

1 C exp
�
ˇ0 C ˇ1tk C ai2 C bj2.i2/

� :

Since both patients have the same data, their predicted probabilities should be the
same at all time points, implying Oai1 C Obj1.i1/ D Oai2 C Obj2.i2/. Hence, we expect the
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Fig. 2.4 Scatterplot of empirical Bayes estimates of random patient effects bj.i/ versus random GP
effects ai in model (2.5)

sum Oai C Obj.i/ of GP and patient effects to be constant, implying a negative perfectly
linear trend in the scatterplot of predicted patient effects and GP effects, for patients
with the same outcome profile.

This example shows that, while the random effects in mixed models are assumed
to be normally distributed, one should not necessarily expect EB predictions for
those random effects to be normally distributed. The opposite holds as well. As an
illustration, we report results from a small scale simulation of [28]. They simulated
completely balanced continuous data from a linear random-intercepts model, with
five longitudinal observations for 1000 subjects. The true random intercepts were
sampled from a symmetric bimodal mixture of two normals, shown in the left
panel of Fig. 2.5. Such a situation would arise when a factor with two levels is
very predictive for the intercept but has not been included in the model. The
data were analysed with a standard linear random-intercepts model assuming the
random effects to be normally distributed. The right panel in Fig. 2.5 shows the EB
predictions for the random effects. Obviously, the normality assumption forces the
predictions to approximately satisfy normality, showing that EB predictions should
not be used to test distributional assumptions made by the model. This suggests
that, if interest is in studying the random-effects distribution, mixed models should
be used with random-effects distributional assumptions that are sufficiently flexible
[28, 30].
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Fig. 2.5 Histograms of true (left panel) and predicted (right panel) random intercepts for simulated
completely balanced continuous longitudinal data, with five longitudinal observations for 1000
subjects

4 Issues with Large Data Sets

Mixed models can nowadays easily be fitted using commercially available software
packages. However, when large data sets need to be analysed, computational issues
may occur. To focus ideas, consider data sets with N clusters and n measurements
per cluster. Situations where large data sets arise include large observational studies
(N large, e.g., [23]), examples from statistical genetics or functional data analysis (n
large, e.g., [20, 27]), or large multivariate longitudinal studies (N as well as n large
[5]). A graphical representation of such data is given in panel (a) of Fig. 2.6.

As discussed in Sect. 2.3, the fitting of mixed models implies integrating random
effects for which approximations are needed. Because this needs to be done for each
cluster in the data set separately, and at each step of the optimization process, this
can become extremely time consuming in cases where the number N of clusters is
(very) large. Alternatively, large numbers n of observations per cluster lead to high-
dimensional multivariate distributions for the measurements per cluster. This creates
numerical problems, even in the linear model, due to numerical inversion of large
covariance structures. Molenberghs et al. [17] therefore proposed to split the entire
sample in such a way that the calculations become feasible for each sub-sample. The
model can then be fitted to the data of each sub-sample separately, and the results
can be combined afterwards in an appropriate way. Inference follows from pseudo-
likelihood ideas [1]. In Sect. 4.1, the general split-sample idea will be explained, and
pseudo-likelihood inference will be briefly reviewed. Afterwards a number of ways
to split large data sets will be discussed in Sect. 4.2.

4.1 The Split-Sample Idea

Suppose the original purpose was to use maximum likelihood estimation, and
let `.�/ denote the log-likelihood function to be maximized with respect to the
parameter vector � , i.e., `.�/ equals
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(a) Large data sets (b) Independent sub-samples

Meas.→ 1 2 3 4 n
↓ Subj.

#1 • • • • • • • • • • • • • • • • • • •
#2 • • • • • • • • • • • • • • • • • • •
#3 • • • • • • • • • • • • • • • • • • •
#4 • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

#N • • • • • • • • • • • • • • • • • • •

Meas.→ 1 2 3 4 n
↓ Subj.

#1 • • • • • • • • • • • • • • • • • • •
#2 • • • • • • • • • • • • • • • • • • •
#3 • • • • • • • • • • • • • • • • • • •
#4 • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

#N • • • • • • • • • • • • • • • • • • •

(c) Dependent sub-samples (d) Overlapping sub-samples

Meas.→ 1 2 3 4 n
↓ Subj.

#1 • • • • • • • • • • • • • • • • • • •
#2 • • • • • • • • • • • • • • • • • • •
#3 • • • • • • • • • • • • • • • • • • •
#4 • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

#N • • • • • • • • • • • • • • • • • • •

Meas.→ 1 2 3 n
↓ Subj.

#1 • • • • • • • • • • • • • • • • • • •
#2 • • • • • • • • • • • • • • • • • • •
#3 • • • • • • • • • • • • • • • • • • •
#4 • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

#N • • • • • • • • • • • • • • • • • • •

Fig. 2.6 Graphical representation of different ways to split large samples: (a) representation of a
large sample, (b) split in independent samples, (c) split in dependent disjunctive samples, (d) split
in overlapping samples. Braces indicate ways to split the sample in sub-samples

`.�/ D
X

i

`.yij�/; (2.8)

where the summation is over the independent clusters in the data set, and where yi is
the vector of all observations available for cluster i. Pseudo-likelihood methodology
replaces the log-likelihood contribution `.yij�/ of cluster i in (2.8) by a weighted
sum of log-likelihood contributions for sub-vectors Y.s/

i of Yi. More specifically,
rather than optimizing (2.8), the pseudo-log-likelihood function

p`. / D
X

i

X

s

ıs `.y.s/
i j / (2.9)

is maximized with respect to  , not necessarily identical to � , for a well-chosen
set of real numbers ıs, chosen such that maximization of (2.9) becomes relatively
straightforward, and such that  contains all parameters of interest. Although the
so-obtained estimate O is not the maximum likelihood estimate that would have
been obtained if (2.8) had been maximized, it still has similar properties such as
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consistency and asymptotic normality. Asymptotic standard errors for the elements
in O are based on first- and second-order derivatives of p`. / with respect to  .
We refer to [1] for a full account of pseudo-likelihood inference.

4.2 Examples of How Large Data Sets Can Be Split

Depending on the context, the model under consideration, and the research ques-
tions, various ways can be explored to split the data set in sub-samples, all implying
particular choices for the weights ıs in (2.9). In cases where the number N of clusters
is too large to analyse the entire data set at once, the most obvious split is to partition
the clusters in M independent sets Sm of clusters, m D 1; : : : ; M. This situation is
shown in panel (b) of Fig. 2.6. In each sub-sample the model is fitted, yielding an
estimate O�m of � . This is equivalent to maximizing

p`. / D
X

m

X

i2Sm

`.Yij�m/; (2.10)

with respect to  D f�1;�2; : : : ;�Mg. Since (2.10) is a special case of (2.9),
inference for  immediately follows from pseudo-likelihood theory. Note that, in
this case, all �m are equal to � . Hence O contains M independent estimators of � . A
single estimator is easily obtained from averaging all O�m and asymptotic properties
immediately follow.

In case of large n, the data may be partitioned in M sets Sm of clusters,
m D 1; : : : ; M, as indicated in panel (c) of Fig. 2.6. Note that the sub-samples
are no longer independent as each sub-sample Sm contains data of all clusters,
and measurements from the same cluster are not necessarily independent. Let Yi

.m/

denote the observations in Yi belonging to subsample Sm. Fitting the model to each
subsample is now equivalent to maximizing

p`. / D
X

m

X

i

`.Yi
.m/j�m/; (2.11)

with respect to  D f�1;�2; : : : ;�Mg. Since (2.11) is a special case of (2.9),
inference for  immediately follows from pseudo-likelihood theory. Note that,
in this case, all �m are not necessarily equal to � . In a longitudinal context, for
example, some parameters in � may characterize early evolutions therefore only
appearing in the models for early observations in Yi, i.e., in some sub-vectors Yi

.m/

only. Appropriate combination of all O�m into a single estimator for � very much
depends on the precise model and data structure.

While the previous examples of the split-sample technique were based on
partitioning the original sample in disjunctive sub-samples, some applications
require overlapping sub-samples. Examples can be found in Fieuws and Verbeke
[5, 6], Fieuws et al. [7, 9], and Fieuws, Verbeke, and Molenberghs [8], who analysed
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high-dimensional multivariate longitudinal data using mixed models. For each
longitudinal outcome Yi

.q/, q D 1; : : : ; Q a mixed model was assumed with random
effects bi

.q/. Association between the longitudinal profiles for a single subject was
accounted for by allowing the random effects to be correlated, leading to a large
multivariate mixed model for Yi D fYi

.1/; Yi
.2/; : : : ; Yi

.Q/g with random effects
vector bi

0 D .bi
.1/0 ; bi

.2/0 ; : : : ; bi
.Q/0/. The example in [5] included Q D 22 outcomes

with two random effects each, leading to a 44-dimensional vector bi of random
effects with a 44 � 44 covariance matrix D. In such high dimensions, computational
problems can be avoided by fitting the model to each pair of outcomes respectively.
More specifically, the model is fitted to each of the Q.Q � 1/=2 pairs fYi

.1/; Yi
.2/g,

fYi
.1/; Yi

.3/g, . . . , fYi
.1/; Yi

.Q/g, fYi
.2/; Yi

.3/g, . . . , fYi
.Q�1/; Yi

.Q/g. Note that this
way of splitting up the data set leads to overlapping sub-samples, as graphically
illustrated in panel (d) of Fig. 2.6. Denoting the parameters in pair fYi

.p/; Yi
.q/g by

�p;q, fitting the models to all pairs independently is equivalent to maximizing

p`. / D
X

p<q

X

i

`.Yi
. p/; Yi

.q/j�p;q/ (2.12)

with respect to D f�1;2; : : : ;�Q�1;Qg. Since (2.12) is again a special case of (2.9),
inference for  immediately follows from pseudo-likelihood theory. As in the
previous case the parameter vectors �p;q only contain some of the parameters in
� , more specifically only those parameters that appear in the joint model of the pair
fYi

.p/; Yi
.q/g. Fieuws and Verbeke [5] suggested averaging estimators for the same

parameters but other summaries can be explored as well.

5 Concluding Remarks

In this chapter, a general introduction has been given to mixed models. Linear
as well as generalized linear mixed models have been discussed. Mixed models
currently provide the most flexible tool for the analysis of hierarchical data.
Balanced as well as unbalanced data can easily be handled, and associations
between observations from the same cluster are modeled through random effects.
However, while mixed models can be interpreted as natural extensions of standard
linear or generalized linear models to account for clustering, our illustrations
in Sect. 3 have shown that parameter interpretation needs careful reflection, that
inference is not always following classical asymptotic theory, and that model
assessment may be more involved than in models for cross-sectional data. Also,
when large data sets are to be analysed, computational difficulties may arise. In
many applications however, simplifications can be obtained by splitting up the
data such that simpler models can be fitted, the results of which can be combined
afterwards, with inference following from pseudo-likelihood theory. The focus of
this chapter was on model formulation, parameter interpretation, misconceptions
and problems often encountered in practice. Details about various estimation
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methods, inferential procedures, model selection, and model diagnostics have not
been discussed, but can be found in various text books on mixed models and models
for clustered data analysis, see, e.g., [4, 15, 19, 30], amongst many others. Many
other related topics have not been discussed either in this chapter, including missing
data issues [14, 15, 30], Bayesian approaches [10], and nonparametric models for
clustered data [33].
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Chapter 3
The L2 Impact on Learning L3 Dutch:
The L2 Distance Effect

Job Schepens, Frans van der Slik, and Roeland van Hout

Abstract Cross-classified random effect models (CCREMs) are often used for
partitioning variation in both experimental and observational linguistic data. How-
ever, crossed random effects may have more complex interrelationships than is
generally assumed. This becomes clear when comparing first language (L1) and
second language (L2) influences on proficiency in Dutch as a third language (L3).
Using a large database of L3 speaking proficiency scores, we assessed the mutual
dependency between the crossed random effects of the L1 and the L2. The results
suggest independent and robust linguistic distance effects of the L1 and the L2:
the smaller the linguistic distance to the L3, the higher the L3 proficiency, with
the L2 effect being weaker than the L1 effect. Although a model that incorporates
an additional L1-by-L2 random interaction effect fits the data best, this model still
stipulates the relative importance of an independent L2 distance effect. We found
that the L1 distance effect is robust against the L2 distance effect and that the L2
distance effect is robust against interactive effects. We discuss possible explanations
for interactions between the L1 and the L2. Overall, the data support independent
linguistic distance effects of both the L1 and the L2, besides L1–L2 interactions. We
recommend that researchers compare the fit of their crossed random effects models
with the fit of models that also include the respective interaction effects.

1 Introduction

Cross-classified random effect models (CCREMs; [1]) are becoming the standard
for analyzing linguistic data [2]. A 2008 paper that introduced CCREMs for psy-
cholinguistic study under the heading mixed-effects models [3] had, by September

J. Schepens (�)
Biological Psychology and Cognitive Neuroscience, Freie Universität, Berlin, Germany
e-mail: jobschepens@gmail.com

F. van der Slik · R. van Hout
Centre for Language Studies, Radboud University Nijmegen, Nijmegen, The Netherlands

D. Speelman et al. (eds.), Mixed-Effects Regression Models in Linguistics,
Quantitative Methods in the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-319-69830-4_3

29© Springer International Publishing AG 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69830-4_3&domain=pdf
mailto:jobschepens@gmail.com
https://doi.org/10.1007/978-3-319-69830-4_3


30 J. Schepens et al.

2015, been cited 2553 times (according to Google Scholar). CCREMs have been
used, for example, in studies of linguistic variation [4], syntactic variation in
language production [5], and cognate effects in bilingual word recognition [6].
With the exception of some school effectiveness studies, however, few studies
have considered the possible interrelatedness between random effects [1, 7–9].
In the present observational study, we examine the consequences of interrelated
random effects by modeling the effectiveness of different language backgrounds on
proficiency in Dutch as an L3, similar to school effectiveness studies (e.g., [10]).

Being able to use an additional language is widely regarded as helpful for
economic mobility and successful integration and in foreign language environments.
About half the citizens of the European Union (EU) member states are able to
hold a conversation in at least one additional language [11–13]. To what degree
do a first (L1) and second language (L2) affect learning an L3? The roles of the
L1 and the L2 in L3 perception and production have frequently been addressed
in psycholinguistic experiments which are, however, typically characterized by
low participant numbers and low numbers of L1s and L2s [14–18]. In addition,
participants are often asked to self-report their level of proficiency in an additional
language. One way to overcome the limitations of low participant numbers and
subjective language proficiency judgments is to use the language testing scores
available for large numbers of candidates from state examination databases [19].
Until recently, only a few studies have made use of such data, for example, for
automatic error detection [20, 21], but also for assessing the effects of linguistic
distance [22]. Experimental evidence shows that the L3 is jointly influenced by
both a naturally acquired L1 and an educationally learned L2 [14]. However, L1–
L2 interrelatedness has not been investigated on a large scale using CCREMs. The
primary aim of this study is to enhance the understanding of how L1s and L2s affect
proficiency in an L3. Because the structure of this problem is similar to that of other
problems in linguistics and other areas, the approach taken may also be useful for
researchers using CCREMs to model experimental and observational data with a
complex structure of interrelated random effects.

The degree to which language background influences acquisition of an additional
language (cross-linguistic influence) has been “wreathed in controversy” since
the emergence of second language acquisition research [23]. Language testing
institutions are currently making available large databases containing language
testing scores for many learners of an additional language, providing unprecedented
opportunities to study complex interrelationships between L1s, L2s, and an L3. In
a previous study with CCREMs [24], we found that linguistic distance between
the L1 and Dutch as the target language has a substantial and systematic impact
on proficiency in Dutch, even with control for variables related to the individual
learner and characteristics of the country of origin. Linguistic distance was modeled
using measures of the degree of evolutionary change between languages [25, 26],
which restricted our analysis to Indo-European languages. Here, we extend this
model by testing whether the “best additional language” (i.e., the L2 the participant



3 The L2 Impact on Learning L3 Dutch 31

knows best) has an independent effect of its own and whether such an effect
can be explained by linguistic distance, in addition to the patterns previously
observed across L1s. We also extend the analysis to non-Indo-European languages,
although this means that we cannot apply distance measures based on the degree
of evolutionary change. Instead, we gauge linguistic distance in terms of whether
the languages belong to a family other than Indo-European (Sino-Tibetan, Niger-
Congo, Afro-Asiatic, etc.) and to a genus other than Germanic (Romance, Slavic,
Indo-Iranian, etc.).

2 Background

2.1 CCREMs with Interrelated Random Effects

Cross-classified random effect models (CCREMs) are multilevel regression models
with crossed random effects that are not completely contained within one another
[27, 28]. For example, English is a common second language (L2) for native
speakers of languages such as German and Spanish. However, native speakers of
these languages may also speak other second languages beside or instead of English.
When investigating L3 Dutch proficiency scores across a large number of speakers
with many different language backgrounds, one can assume (as we do in this study)
that the L1s and L2s involved are drawn randomly from a larger set of languages,
ideally from the distribution of all the world’s languages. Hence, their effects are
called random effects. These random effects are categorical variables, the levels of
which are not fixed but randomly sampled. Consequently, if we treat both the L1s
and the L2s of the candidates as independently crossed random effects, we assume
that the variations in proficiency across L1s and L2s follow independent normal
distributions. However, as this chapter will show, real world data sets are often more
complicated. One under-investigated issue is that the variation across the levels of a
random effect can depend on the variation across the levels of another random effect.
For example, although L2 English is common for both L1 German and L1 Spanish,
the variation in L3 Dutch proficiency scores due to L2 English is not constant across
L1s. For example, L1 Spanish learners may benefit more from L2 English than L1
German learners do. It is clear that the impact of an L2 on learning an L3 cannot be
studied without taking into account the impact of the learner’s L1.

To fit a CCREM to data, estimation procedures make use of the assumption that
multiple random effects vary independently from each other. A fitted CCREM can
then be used to find out what part of the variance in a dependent variable relates
to each of the random effects (called variance components), and to what extent
each of the levels of each random effect contributes to each variance component
(called best linear unbiased predictors; BLUPS) [29]. In a CCREM, a response score
is predicted by fixed coefficients, random effects, and residuals [7, 30]. Random
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effects in CCREMs can often be safely assumed to be independent, for example
by experimental design [3]. However, the consequences of assuming that random
effects are completely mutually independent, for example in observational studies,
are not well understood [8, 31]. One way of investigating interrelatedness between
random effects is to incorporate an x-by-y random interaction effect, where x and
y are the crossed random effects [1]. However, the amount of data available may
be insufficient to reliably estimate every x-by-y combination in which the random
effects are only “partially balanced” [32] or “partially crossed” [33]. Consequently,
many studies avoid taking x-by-y random interaction effects into account.

2.2 Interrelated L1 and L2 Effects

In this study, we compare the available evidence for an independent L2 effect with
available evidence for an interactive L1–L2 effect, where the L2 depends on the
L1 via an L1-by-L2 random interaction effect. There are various reasons to predict
differences between an L1 effect and an L2 effect. Most importantly, L2 learning
problems are more commonplace than L1 learning problems. Although virtually
all adult L1 learners reach native proficiency levels, many L2 learners struggle to
learn even the basics of a foreign language. Generally, having a command of a
second language is considered beneficial for further successive language learning.
We therefore first hypothesize that the L2 plays a role beyond that of the L1 in
explaining L3 proficiency and that this L2 effect also takes the form of a distance
effect [18, 34], similar to the L1 distance effect [24]. Furthermore, we hypothesize
that L1 and L2 distance effects are generally independent and additive rather than
interactive, which would mean that the combination of acquired languages explains
L3 proficiency better than either the L1 or the L2. Third, because the L1 is learned
earlier, we hypothesize that the L2 effect is less important than the L1 effect in
explaining differences in L3 Dutch proficiency. We thus address four questions
concerning differences in L3 Dutch proficiency scores across L2s:

1. Is there an L2 effect on L3 Dutch proficiency scores?
2. If so,

a. Is the L2 effect an additive, independent effect or does it need to be explained
in combination with the L1s involved?

b. Is the L2 effect more or less important than the L1 effect in explaining
differences in L3 Dutch proficiency?

c. Does the L2 effect follow a pattern that is consistent with linguistic distance?
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3 Methods

We fit CCREMs on speaking proficiency test scores from the State Examination
in Dutch as a Second Language. This examination is developed by the Central
Institute for Test Development (Cito) and the Bureau of Inter-Cultural Evaluation
(Bureau ICE), two large testing and assessment companies in The Netherlands. The
State Examination is a requirement for non-native speakers who want to enroll in a
Dutch university; it is also taken by many people who move to the Netherlands for
work or marriage. A pass in the speaking part of the exam confirms a B2 level of
Dutch on the Common European Framework of Reference for Languages [35, 36]—
equivalent to an International English Testing System (IELTS) score of 5.5.

The speaking exam consists of 14 tasks that have to be completed in 30 min.
Participants have to provide information, give instructions, give their opinion, and
so on. Professional examiners evaluate the content and correctness of the language
produced according to formalized testing criteria. The participants can voluntarily
fill in a brief questionnaire about various background characteristics. We used the
data they provided on the length of their residence in The Netherlands, age at arrival,
gender, years of full-time education, country of birth, mother tongue, and best
additional language. Best additional language represents the answer to the question:
“If you speak another language besides your mother tongue, which other language
do you speak? If you speak more than one other language, name the language that
you know best.”

We drew on a sample of L3 speaking proficiency scores collected from 1995
to 2010. Specifically, we used the first speaking proficiency score recorded for
50,500 unique participants, as some participants attempt the exam multiple times.
We included only L1s, L2s, and countries of birth with at least 15 available scores,
resulting in a sample with enough data to test learning differences across 73 L1s
(median 204.0 speakers per L1), 43 L2s and monolinguals (median 57.5 speakers
per L2, including monolinguals), and 122 countries of birth (median 128 speakers).
Of the 3212 possible L1–L2 combinations, 759 were observed in the data (216
combinations had at least 15 participants); see Table 3.1 for the 10 most common
L1–L2 combinations. 35.7% of all participants had an L2 other than the most
common L2 for a particular L1, illustrating the cross-classified nature of the data
(the most common L2 was not always English and depended on the L1 of the
participants). When English as an L2 was excluded, the data were only slightly more
cross-classified (39.2% had an L2 other than the most common L2). Candidates with
missing answers on the questionnaire were excluded from the analysis. Candidates
with outlying speaking proficiency scores were also excluded. The speaking scores
were normally distributed, as shown in Fig. 3.1.

Our previous study showed that speakers of languages closely related to Dutch
score higher than speakers of less closely related languages and that educational
quality in the country of birth also plays a role [24]. For example, although both
come from Switzerland, Swiss native speakers of German on average performed
better than Swiss native speakers of French. Furthermore, Spanish native speakers



34 J. Schepens et al.

Table 3.1 The 10 most
common L1–L2
combinations and
monolingual L1s (positions 7
and 9) by number of speakers

Rank L1 L2 N

1 German English 4336
2 Arabic French 2933
3 Russian English 2439
4 Arabic English 2036
5 Spanish English 1976
6 Polish English 1733
7 English – 1666
8 Persian English 1646
9 Turkish – 1436
10 Serbian English 1174

Fig. 3.1 Distribution of
speaking proficiency scores
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of Spanish on average performed better than Peruvian native speakers of Spanish.
Further exploratory analyses showed that bilinguals generally outperformed mono-
linguals. For example, US citizens who speak L1 English and L2 German on average
performed better than US citizens who speak English only. Moroccans who speak
L2 French on average performed better than Moroccans who speak Arabic only.
And Russians, Iranians, Afghans, etc., who speak English on average outperformed
their monolingual counterparts.

We conducted CCREM analysis to investigate differences in L3 Dutch profi-
ciency across L1s, L2s, and L1–L2 combinations more generally. We first estimated
a CCREM without incorporating the L2 at all, in which L1s were crossed with
countries of birth (C). In other words, we used the model estimated in Schepens et al.
[24], but without the binary indicator of L2 presence. This model included the fixed
effects of gender, age at arrival, length of residence, years of full-time education,
educational quality in the country of birth based on secondary school enrollment
rates [37], and an interaction between the latter two covariates. Subsequently,
models with more complex random effect structures were fitted to the data and
compared using likelihood ratio tests based on �2 logarithms of the likelihood
(�2LL) under a ¦2 distribution, which can be interpreted as measures of model
fit: the probability of observing the data given the maximum likelihood estimates
for the model.
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The random effect structures were as follows. First, we tested for dependency
between the mother tongue (L1) and any additional language (L2), which together
constitutes the learners’ language background (L1–L2). In this test, we assessed
whether a model with one homogeneous random effect of L1–L2 fitted the data
better or worse than a model with independently crossed random effects of L1 and
L2 (Models 1 and 2). The model with independent effects (Model 2) assumes that
the effect of the additional language is constant and irrespective of the learner’s
mother tongue. The model with homogeneous groups (Model 1) assumes that the
effect of the additional language is variable and fully intertwined with the learner’s
mother tongue. For Model 3, we replaced the crossed effect of the L1 and L2 with
a crossed effect of the L1 and L1–L2, effectively allowing for an intertwined effect
of additional language that is cross-classified with an effect of the L1. For Model 4,
we added the crossed effect of the L2 back into the model.

In summary, four models were tested: a model with a random interaction effect
between the L1 and the L2 (Model 1), a model with crossed random effects for
L1 and L2 (Model 2), a model with crossed random effects for L1 and a random
interaction effect between the L1 and the L2 (Model 3), and a model with crossed
random effects for the L1 and the L2, and a random interaction effect between the
L1 and the L2 (Model 4). To all of these four models, we also added a crossed
random effect of country (C). Moreover, all models included the fixed effects
described above. The fixed effects were added to separate variance due to language
background from any variance due to confounding variables in terms of individual
or country characteristics.

4 Results

Several CCREMs were fitted to the data using different random effect structures as
described above. The parameters were estimated using the lme4 package in R [38]:
lmer(Speaking�1 C Gender C Age at Arrival C Length of
Residence C Years of Full-time Education * Educational
Quality C (1jCountry) C (1jL1), data). Note that the interaction
term includes the separate covariates. We attempted to improve the fit of this model
by comparing different ways of modeling the random effect structure. The model
with the best fit to the data included random effects for the L1 (1jL1), the L2
(1jL2), and L1-by-L2 random interaction (1jL1-L2). In the following, we
present the results of our model comparison and an analysis of the random by-L1,
by-L2, and L1-by-L2 adjustments.

4.1 Model Comparison

Table 3.2 presents the estimates of model fit that were used for model comparison.
Several CCREMs were compared to explore the effects of varying the random
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Table 3.2 Likelihood ratio tests showing significant improvements of fit against the chi-squared
distribution, irrespective of the increasing complexity in random effect structure of the CCREMs

Model no. Random effects df AIC BIC �2LL ¦2

0-0 L1, C 4 495,100 495,136 495,092
0-1 C 9 493,456 493,536 493,438 1654.08
0-2 L1, C 10 492,692 492,781 492,672 765.90
1 L1–L2, C 10 492,214 492,302 492,194 478.33
2 L1, L2, C 11 492,030 492,127 492,008 186.43
3 L1, L1–L2, C 11 492,008 492,105 491,986 21.35
4 L1, L2, L1–L2, C 12 491,914 492,020 491,890 96.21

All comparisons are significant at the 0.0001 level

Table 3.3 Parameter estimates of the variance components for the intercept-only CCREMs,
demonstrating that variation across random effects depends on the total random effect structure
incorporated in the model

No. Residual C L1 L1–L2 L2

0-0 32.37 (0.40) 12.97 (4.21) 12.40 (4.21)
0-1 31.90 (0.40) 12.09 (3.10)
0-2 31.63 (0.39) 8.72 (2.63) 11.71 (3.89)
1 31.35 (0.39) 8.84 (2.72) 10.84 (1.76)
2 31.41 (0.39) 8.44 (2.68) 11.36 (3.86) 3.77 (2.45)
3 31.34 (0.39) 8.23 (2.63) 11.18 (3.99) 5.96 (1.48)
4 31.34 (0.39) 8.30 (2.72) 11.13 (3.98) 3.29 (1.45) 3.82 (2.60)

The standard deviations are restricted maximum likelihood (REML) estimates and the widths of
95% highest posterior density (HPD) intervals (in parentheses) are constructed from model-specific
chains of 20,000 Markov Chain Monte Carlo (MCMC) samples each

effect structure. First, three different null models were fitted to evaluate the effect
of controlling for confounding variables, the hierarchical structure of the data,
and the fit of a model without L2-related parameters, respectively. The overall
null model (model 0-0 in Table 3.2) provides a baseline for the subsequent, more
complex models. It has four parameters: a fixed intercept, two random intercepts,
and a parameter for residual (student level/level 1) variance. The other null models
(models 0-1 and 0-2) are baseline models to demonstrate the hierarchical nature of
the dataset. Null model 0-1 shows model fit before the inclusion of language-related
random effects; null model 0-2 shows how the addition of control variables changes
the model fit.

In null model 0-1, the intra-class correlation is 27.5% (as computed using the
values in Table 3.3). More complex random effect structures show that the hierar-
chical structure of the dataset is more complex due to by-L1 and by-L2 variation,
leading to 45.9% of (cross-classified) level-2 variation as compared to total variation
in model 4. This demonstrates the importance of incorporating distinct classes in
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subsequent models, at the same time producing dramatic improvement in fit to
the data, as indicated by likelihood ratio tests. Null models 0-1 and 0-2 show
highly significant improvements of fit relative to the baseline null model 0-0 due
to the added control variables (see Table 3.2). The Akaike information criterion
(AIC; �2LL plus twice the number of parameters in the model) and the Bayesian
information criterion (BIC; �2LL plus the number of parameters multiplied by the
natural logarithm of the sample size) show these patterns as well. Controlling for the
six control variables explains part of the variation across countries of birth (32.8%)
and mother tongues (5.6%) as compared to the baseline null model 0-0. It is not
surprising that explained variance across mother tongues lags behind, given that the
null models do not include measures of linguistic distance [24]. Table 3.3 further
shows the estimates of the variance components as well as (in parentheses) the
95% highest posterior density (HPD) intervals, which quantify confidence in the
parameter estimates shown. According to commonly used criteria [7, 10, 39], the
widths of the reported HPD intervals offer no reason to remove any of the parameters
from any of the baseline or other models. As an additional check, we inspected all
parameter estimates for bimodal patterns using density plots and for deviations from
normality.

With the remaining four models (models 1–4 in Tables 3.2 and 3.3, we compared
several ways of modeling L1–L2 interrelatedness. The first model assumes that each
language background is unique and interactive, and that it is not possible to identify
by-L1 or by-L2 variance separately. The second model assumes the opposite,
namely that it is not possible to identify an L1-by-L2 random interaction effect.
It assumes that by-L1 and by-L2 variance is additive and contributes independently
to L3 proficiency. The data provide significantly more support for the second model
than for the first (¦2(1) D 186.43, p < 0.0001), see Table 3.2. This result shows that
there is an L2 component in the variance across L3 proficiency scores (question 1),
and that there is more evidence for an additive effect than for an interactive effect
(question 2a). The parameters also show an increase in the proportion of language-
to-country variation, suggesting that the gain in model fit can be attributed to the
allocation of remaining variance to a combination of by-L1 and by-L2 variance. The
third model assumes that a random interaction effect is a better explanation than an
L2 effect. This is confirmed by the data (¦2(1) D 21.35, p < 0.0001). Furthermore,
the by-L2 adjustments depend on by-L1 adjustments. However, an even more
complex model fits the data best: By allowing both random interaction and by-L2
adjustment, the fourth model assumes that an L1-independent L2 effect still plays
a significant role, alongside random interaction effects. The increase in model fit
is again highly significant, showing the importance of the L2, independently of the
L1. The estimated parameters for the by-L1 and by-L2 variance indicate that a larger
proportion of variance can be attributed to L1 factors than to L2 factors (question
2b). Next, after describing the role of control variables, we will assess the role of
linguistic distance in by-L1, by-L2, and L1-by-L2 variance (question 2c).
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Table 3.4 Parameter estimates for the fixed predictors included in model 4

Fixed effects Estimate 2.5% HPD 97.5% HPD

0. Intercept (points) 505.02 498.44 511.36
1. Gender (1 D female) 7.39 6.74 8.05
2. Age at arrival (years) �0.72 �0.77 �0.68
3. Length of residence (years) 0.62 0.55 0.69
4. Full-time education (years) �0.77 �1.83 0.24
5. Educational quality (% gross) 0.18 0.11 0.25
6. Interaction 4 * 5 0.04 0.02 0.057

All estimates were significant at the 0.0001 level apart from years of full-time education. The HPD
intervals were constructed from one 20,000-sample MCMC chain

4.2 Control Variables

Table 3.4 shows the estimated parameters for the fixed part of model 4. Included
in the model are 12 parameters, including six fixed control variables and a fixed
intercept. We incorporated the control variables to control the estimations of the
random effects for individual differences. The control variables were not centered
or otherwise normalized. All the effects were highly significant (apart from that of
years of full-time education, see Table 3.4). The gender effect indicates that, all
other predictors being equal, female participants scored 7.39 points higher on L3
speaking proficiency (see Fig. 3.1 for the scale), see [40]. Also beneficial were an
earlier age at arrival, a longer length of residence, higher educational quality, and
a combination of full-time education and quality. Collinearity between educational
quality and duration (r D �0.50), explains why the sign of the effect of years of
full-time education is not in the expected direction. Models with random slopes for
duration of full-time education were tested but these converged only sporadically.
See [41] for further tests of fixed effects with models that include random slopes.
Explorations into various estimated variance and covariance structures revealed only
small variations in the way the fixed effects estimates as reported in Table 3.4
deviated, and suggested that age at arrival and education-related effects varied and
co-varied across the random effects.

4.3 The L2 Distance Effect

We can now isolate the part of the variance in L3 Dutch proficiency scores that
is due to differences across L2s. Figure 3.2 presents the contribution of the by-L2
adjustments to predicted proficiency scores. It shows how the model distributes the
estimated L2 variance component of model 4 across the unique L2s. The predicted
proficiency scores (dots) represent the by-L2 adjustments of model 4. The lengths
of the black lines represent the relative benefit of speaking each of the 18 depicted
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Fig. 3.2 The by-L2 adjustments shift the predicted proficiency scores towards the observed
proficiency scores. The dots represent predicted proficiency of model 4 for L2 speakers of the
labelled languages. The shading shows the numbers of L2 speakers. The black lines represent the
change in predicted (fitted) proficiency between model 4 (including by-L2 adjustments and control
variables) and fixed predicted proficiency (including control variables only). Only languages
(N D 18) with more than 70 L2 speakers are shown

L2s (only the 18 most frequently spoken L2s are shown). The benefit of speaking
German is highest (C10.15 points, see also Table 3.6), that of being monolingual
is lowest (�5.20 points), and the benefit of Turkish as an L2 is second to lowest
(�4.39 points). Figure 3.3 shows the relationship of by-L2 adjustments with by-
L1 adjustments (r D 0.60, p < 0.0001). The graph makes visible a number of
interactions; in particular, German is highly beneficial as an L2 for learning Dutch
and Italian is only of relatively little benefit. The slope of the plotted regression line
suggests that the L2 distance effect is about 1/6 of the size of the L1 distance effect.

We further examined L1 and L2 distance effects by comparing the by-L1 and by-
L2 adjustments (BLUPs) for different random effect structures. Table 3.5 orders the
top 10 by-L1 adjustments from high to low for the null model with only country and
L1 in the random effect structure (model 0-2). The second and third columns show
what happens to these estimates when L2 is included in the model. It becomes clear
that only slight modifications to the estimated by-L1 adjustments are predicted when
L2 variance is accounted for. Two languages in the top 10 switch positions: The L1
benefit of Estonian decreases, whereas that of English increases (both underlined in
Table 3.5). It may be the case that the L2s of Estonians (e.g., Russian), when spoken
as an L2 by other speakers of other L1s, produce lower L3 proficiency scores. The
L2s of native English speakers (e.g., German), on the other hand, may produce
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Fig. 3.3 Scatter plot showing the relation between by-L1 and by-L2 adjustments (r D 0.60,
p < 0001). Only L1s for which we have an estimate for the L2 are shown (using model 4). L2s with
a by-L2 adjustment higher or lower than 1 point have text labels. The linear regression parameters
are y D 0.15x C �0.11

Table 3.5 The L1 distance
effect is robust against
incorporating L2 variance

Language L1 only L2 added Difference

German 25.93 27.07 1.14
Swedish 24.97 24.24 �0.73
Slovenian 21.67 19.97 �1.70
Afrikaans 19.27 19.09 �0.18
Danish 18.96 17.56 �1.40
Norwegian 18.90 17.20 �1.70
Estonian 16.53 14.69 �1.84
Papiamentu 15.08 15.14 0.06
English 12.90 16.29 3.39

Belarusian 12.84 11.55 �1.29

The numbers are aggregated random effects taken
from null model 0-2 (L1 only) and model 2 (L2
added). The largest positive and negative differ-
ences in the table are underlined

relatively high proficiency scores across other L1s. Table 3.5 shows that the L1
effect is stable across simple and complex models, and particularly for the model
that accounts for L2 effects. Furthermore, the higher ranks are populated primarily
by linguistically less distant languages—there are five Germanic languages in the
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Table 3.6 The L2 distance effect is robust against incorporating L1-by-L2 random interactions

Language L1 and L2 only Interactions added Difference

German 10.11 10.15 0.04
Swedish 4.49 4.39 �0.10
English 3.33 2.32 �1.01
Czech 2.52 2.40 �0.12
Hindi 2.50 2.30 �0.20
Norwegian 2.46 2.30 �0.16
Hebrew 2.23 2.32 0.09
Slovak 1.94 2.00 0.06
Urdu 1.87 1.69 �0.18
Pashto 1.74 1.03 �0.71

The numbers are aggregated random effects taken from model 1 (L1 and L2 only) and model 4
(interactions added)

top six. It may be the case that educational quality in Slovenia was underestimated
by our predictors or that—as Slovenian is not widely spoken outside the country—
most Slovenians on average speak more than two additional languages besides their
mother tongue, which is confirmed in [13].

Column 1 of Table 3.6 shows the top 10 by-L2 adjustments from model 1 (L1
and L2 only). As in Table 3.5, we assess the stability of the L2 distance effect
by comparing by-L2 adjustments for model 1 with by-L2 adjustments for model 4
(after the addition of L1-by-L2 random interactions). The ordering is again robust,
this time against the addition of L1-by-L2 random interaction effects. The estimate
of the adjustment for English changes the most: it decreases by 1.01 points. The
L1-by-L2 random interaction may have taken over some part of the adjustment
for English—in other words, the variation is decomposed differently, suggesting
that the L2 distance effect is not stable for English. One explanation may be that
L2 English proficiency is relatively variable relative to L2 proficiency in other
languages. Overall, Table 3.6 shows that the L2 effect is robust against interactional
effects. There are four Germanic languages in the top six L2s. Although less clear
than the L1 distance effect, there seems to be a non-random ordering in the benefits
of L2s that, to considerable extent, follows the ordering of an L2 distance effect.

Pairwise comparisons further illustrate the L2 distance effect for specific lan-
guage backgrounds. On average, bilinguals who speak a closely related language to
Dutch as an L2 score higher on speaking proficiency in Dutch than bilinguals with
the same mother tongue who speak a less closely related language to Dutch as an
L2. This pattern holds for many L1s, with just a few exceptions.

The pairwise comparisons were performed using aggregated random effects
to compare the total random variance attributed to each L1–L2 combination.
Aggregated random effects were computed by subtracting the fixed predicted
proficiency (based only on the fixed predictors) from the fitted scores. We could
not use either by-L1 or by-L2 adjustments, as these capture independent variation
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only. For a number of L2s given an L1, we computed each time whether a specific L2
provided improvement over another by using t-tests between the aggregated random
effects at the level of the learners (i.e., computing means, standard deviations, and
number of learners for every L1–L2 combination).

The pairwise comparisons showed that bilinguals with L2 English generally
performed better than bilinguals with L2 Russian. Pairwise comparisons revealed
this pattern in native speakers of Bulgarian (T D 57.09, p < 0.001), Polish
(T D 114.26, p < 0.001), Lithuanian (T D 1.62, p D 0.108), Serbian (T D 62.03,
p < 0.001), Pashto (T D 7.32, p D 2.99), and Armenian (T D 30.43, p < 0.001);
the reverse pattern emerged for native speakers of Persian (T D �15.30, p < 0.001).
The beneficial effect of English as compared to Russian may result from the larger
linguistic (and cultural) distance from Russian to Dutch. In addition, bilinguals with
L2 English often performed better than bilinguals with L2 French. This pattern was
found in native speakers of Polish (T D 19.99, p < 0.001), Serbian (T D 15.81,
p < 0.001), Russian (T D 7.03, p D 0.001), and Spanish (T D 4.76, p D 0.001);
the reverse pattern was found for native speakers of Portuguese (T D �2.71,
p < 0.01) and German (T D �8.51, p < 0.001). Likewise, L2 English was more
beneficial than L2 Italian in native speakers of German (T D 4.87, p < 0.001) and
Spanish (T D 16.51, p < 0.001) and more beneficial than L2 Spanish in native
speakers of German (T D 5.86, p < 0.001), French (T D 6.44, p < 0.001), and
Portuguese (T D 7.78, p < 0.001). Bilinguals with L2 German performed even
better than bilinguals with L2 English: Pairwise comparisons were significant for
native speakers of Czech, French, Polish, Slovak, Russian, Serbian, and Spanish.
In addition, bilinguals with L2 German performed better than bilinguals with L2
French, as suggested by the pattern in native speakers of English and Spanish.
Because most pairwise comparisons resulted in p-levels below the level of 0.001, we
assume that they are robust against the increased possibility of finding a significant
effect by chance.

Table 3.7 illustrates the rank ordering of L2s for five L1s; they are mostly in line
with predicted L2 distance effects. For example, for Serbian speakers, L2 German
is significantly more beneficial than L2 English, which is in turn significantly
more beneficial than L2 French, which is significantly more beneficial than L2
Russian, which is significantly more beneficial than no L2 (monolingual). The
means displayed in Table 3.7 are all aggregated random effects that can only be
interpreted relative to the overall average of the random effects (i.e., L1 Serbian L2
German is 10.21 exam points more beneficial than the overall average adjustment
to the fixed predicted score). In all, bilinguals performed better than monolinguals
in 29 of 33 pairwise comparisons. Moreover, in 45 of 50 pairwise comparisons,
with on average 5 comparisons per language, the pattern emerging was consistent
with our hypothesis that distance from Dutch to the additional languages determines
proficiency in Dutch. The finding that the pattern was absent in some L1–L2
combinations is consistent with the finding that a model that includes L1-by-L2
random intercepts (Model 4) still provides additional increase in model fit beyond a
model that does not include this random interaction (Model 2).
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Table 3.7 Pairwise
comparisons (t-tests) of each
estimated group adjustment
with its immediately
preceding estimated group
adjustment (if the L1 is the
same)

L1 L2 Estimation, p value

Kurdish English �1.77
Kurdish Arabic �7.92, p < 0.0001
Kurdish Monolingual �9.28, p < 0.0001
Kurdish Farsi �13.47, p < 0.0001
Kurdish Turkish �19.9, p < 0.0001
Serbian German 10.21
Serbian English 2.89, p < 0.0001
Serbian French �1.14, p < 0.0001
Serbian Russian �4.62, p < 0.0001
Serbian Monolingual �7.89, p < 0.0001
Hungarian German 19.64
Hungarian Romanian 18.79, p < 0.0001
Hungarian English 16.93, p < 0.0001
Hungarian Monolingual 4.73, p < 0.0001
Polish German 9.44
Polish English 5.06, p < 0.0001
Polish French 2.53, p < 0.0001
Polish Russian �0.85, p < 0.0001
Polish Monolingual �1.88, p < 0.0001
Polish Italian �3.59, p D 0.008
German French 36.44
German English 34.12, p < 0.0001
German Italian 31.20, p < 0.0001
German Spanish 31.06, p D 0.90
German Russian 27.67, p < 0.0001
German Monolingual 26.66, p D 0.11

The numbers are aggregated random effects taken
from model 4 (interactions added). The estimates
are statistically controlled for educational differ-
ences. The L1s are displayed in no particular order

5 Discussion and Conclusion

By varying the random effect structure of cross-classified random effect models
fitted on data from a large number of language learners, we investigated the inter-
relatedness between the L1 and the L2 in people learning L3 Dutch. The predicted
proficiency scores indicate that a significant part of the variation is decomposed into
independent L1 and L2 distance effects. A further significant part of the variation
is decomposed into an L1-by-L2 random interaction effect. However, comparing
by-L2 adjustments for different models shows that the L2 distance effect is robust
against interactive models. In addition, pairwise comparisons show that the L2
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distance effect is observed repeatedly for different L1s. In the following, we discuss
these findings in terms of the concept of linguistic distance and additional language
processing.

By-L1 and by-L2 adjustments seem to follow a similar pattern (r D 0.60,
p < 0.0001). As we showed in a previous study [24], linguistic distance between
the L1 and Dutch plays a decisive role in learning Dutch as an additional language
(75.1% of explained variance). The present findings show that L2 distance also
has an effect on learning Dutch as an additional language (answering question 1),
although this effect is about six times less strong (question 2b), as shown in Fig. 3.3.
The part of the variance modeled by random L1-by-L2 interactions suggests that
L1-by-L2 random interactions still play a role. However, a model with independent
L1 and L2 components fitted the data significantly better than an interactive model
(question 2a).

Our findings suggest that linguistic distance can be measured in terms of
proficiency scores in a non-native language. We produced orderings of by-L1
adjustments and by-L2 adjustments that can be used as an empirically vali-
dated measure of linguistic distance. Such linguistic distance measures based on
additional language proficiency are potentially useful in cross-linguistic influence
studies [15, 18] and immigrant studies [9, 42]. Linguists now have the opportunity
to take into account not only language classifications into families and genera
or phylogenetic distances modeling the degree of evolutionary change between
languages [25, 26], but also empirically based measures of linguistic distance.

Linguistically, the finding that the benefit of different L1s and L2s on learning
L3 Dutch is not constant raises novel questions for empirical research that may have
consequences for the way native and additional language processing is understood.
For example, are some languages better suited for non-native language processing
than others? Moreover, as the data are consistent with an additive explanation,
it seems that the individual types of languages determine learning more than the
combination of types.

In sum, we argue that incorporating interactions between random effects into
CCREMs challenges the independence that is generally assumed between the
different components of a random effect structure. Here, an unbalanced cross-
sectional dataset produces considerable support for random interaction effects,
which require explanations that are otherwise not considered. For example, in
the present case, there may have been differences in the stability of proficiency
between L1s and L2s. This possibility is discussed further in [43]. To conclude,
interrelated random effects pose challenges to researchers analyzing data with a
complex hierarchical structure that have consequences for the interpretation of
parameter estimates.
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Chapter 4
Autocorrelated Errors in Experimental
Data in the Language Sciences: Some
Solutions Offered by Generalized
Additive Mixed Models

R. Harald Baayen, Jacolien van Rij, Cecile de Cat, and Simon Wood

Abstract A problem that tends to be ignored in the statistical analysis of exper-
imental data in the language sciences is that responses often constitute time
series, which raises the problem of autocorrelated errors. If the errors indeed show
autocorrelational structure, evaluation of the significance of predictors in the model
becomes problematic due to potential anti-conservatism of p-values.

1 Introduction

A problem that tends to be ignored in the statistical analysis of experimental data in
the language sciences is that responses often constitute time series, which raises the
problem of autocorrelated errors. If the errors indeed show autocorrelational struc-
ture, evaluation of the significance of predictors in the model becomes problematic
due to potential anti-conservatism of p-values.

This paper illustrates two tools offered by Generalized Additive Mixed Models
(GAMMs) [10, 19–22] for dealing with autocorrelated errors, as implemented in
the current version of the fourth author’s MGCV package (1.8.9): the possibility to
specify an AR(1) error model for Gaussian models, and the possibility of using factor
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smooths for random-effect factors such as subject and item. These factor smooths
are set up to have the same smoothing parameters, and are penalized to yield the
non-linear equivalent of random intercepts and random slopes in the classical linear
framework.

Three examples illustrate the possibilities offered by GAMMs. First, a standard
chronometric task, word naming, is examined, using data originally reported in
[13]. In this task, and similar tasks such as lexical decision, a participant is asked
to respond to stimuli presented sequentially. The resulting sequence of responses
constitute a time series in which the response at time t may not be independent
from the response at time t � 1. For some participants, this non-independence may
stretch across 20 or more lags in time. Second, a study investigating the pitch
contour realized on English three-constituent compounds [9] is re-examined. As
pitch changes relatively slowly and relatively continuously, autocorrelation structure
is strongly present. A reanalysis that brings the autocorrelation under statistical
control leads to conclusions that differ substantially from those of the original
analysis. The third case study follows up on a model reported by DeCat et al.
[6, 7] fitted to the amplitude over time of the brain’s electrophysiological response
to visually presented compound words. We begin with a short general introduction
to GAMMs.

2 Generalized Additive Mixed Models

Generalized additive mixed models extend the generalized linear mixed model with
a large array of tools for modeling nonlinear dependencies between a response
variable and one or more numeric predictors. For nonlinear dependencies involving
a single predictor, thin plate regression splines are available. Thin plate regression
splines (TPRS) model the response by means of a weighted sum of smooth regular
basis functions that are chosen such that they optimally approximate the response,
if that response is indeed a smooth function. The basis functions of TPRS have much
better mathematical properties compared to basis functions that are simple powers
of the predictor (quadratic or higher-order polynomials). Importantly, the smoother
is penalized for wiggliness, such that when fitting a GAMM, an optimal balance is
found between undersmoothing and oversmoothing.

When a response depends in a nonlinear way on two or more numeric predictors
that are on the same scale, TPRS can also be used to fit wiggly regression surfaces
or hypersurfaces, approximated by means of weighted sums of regular surfaces
which are again penalized for wiggliness. When predictors are not isometric, tensor
product smooths should be used. Tensor product smooths (TPS) approximate a
wiggly surface or hypersurface using as basis functions restricted cubic splines,
again with penalization for wiggliness.

Interactions of numerical predictors with a factorial predictor can be accommo-
dated in two ways. One option is to fit a different wiggly line or surface for each
level of such a factor. Alternatively, one may want to take one of the factor levels
as reference level, fit a smooth for the reference level, and then fit difference curves
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or difference surfaces for the remaining factor levels. These difference curves have
an interpretation similar to treatment contrasts for dummy coding of factors: The
difference curve for level k, when added to the curve for the reference level, results
in the actual predicted curve for factor level k.

When a factor has many different levels, as is typically the case for random-effect
factors, it may be desirable to require the individual smooths for the different factor
levels to have the same smoothing parameter. Together with a heavier penalty for
moving away from zero, the resulting ‘factor smooths’ are the nonlinear equivalent
of the combination of random intercepts and random slopes in the linear mixed
model.

In what follows, examples are discussed using R, which follows Wilkinson and
Rogers [18] for the specification of statistical models. Extensions to the notation for
model formulae made within the context of the package for linear mixed models
[LME4, 4] and the mgcv package for generalized additive mixed models [19, 20]
are explained where used first.

3 Time Series in a Word Naming Task

Although there is awareness in the field of inter-trial dependencies in chronometric
behavioral experiments [5, 12, 14, 17], efforts to take such dependencies into
account are scarce. De Vaan et al. [8] and Baayen and Milin [2] attempted to take
the autocorrelation out of the residual error by including as a covariate the response
latency elicited at the preceding trial. This solution, however, although effective, is
not optimal from a model-building perspective, as the source of the autocorrelation
is not properly separated out from the other factors that co-determine the response
latency at the preceding timestep.

To illustrate the phenomenon, consider data from a word naming study on Dutch
[13], in which subjects were shown a verb on a computer screen, and were requested
to read out loud the corresponding past (or present) tense form. The upper row
of panels of Fig. 4.1 presents the autocorrelation function for selected, exemplary,
subjects. The autocorrelation function presents, for lags 0, 1, 2, 3, . . . the correlation
coefficient obtained when the vector of responses v1 at trials 1, 2, 3, . . . is correlated
with the vector of responses vl at trials 1+l, 2+l, 3+l, . . . (l >D 0). At lag l D 0, the
correlation is necessarily 1. As the lag increases, the correlation tends to decrease.
For some subjects, there is significant autocorrelation at short lags, as illustrated in
the first two panels. The subject in the third panel shows a “seasonal” effect, with an
initial positive correlation morphing into a negative correlation around lag 10. The
subjects in the next two panels show a very different pattern, with autocorrelations
persisting across more than 20 lags.

The second row of panels in Fig. 4.1 presents the autocorrelation functions for the
residuals of a linear mixed-effects model fitted to the word naming latencies with
random intercepts for item (verb) and by-subject random intercepts as well as by-
subject random slopes for Trial (the order number of the word in the experimental



52 R. H. Baayen et al.

lag

au
to

co
rr

el
at

io
n

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

s36
GAMM, rho=0.3

s37
GAMM, rho=0.3

0 5 10 15 20 25

s29
GAMM, rho=0.3

s17
GAMM, rho=0.3

0 5 10 15 20 25

s10
GAMM, rho=0.3

s8
GAMM, rho=0.3

s36
GAMM

s37
GAMM

s29
GAMM

s17
GAMM

s10
GAMM

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
s8

GAMM
−0.2

0.0

0.2

0.4

0.6

0.8

1.0
s36

LMM
s37

LMM
s29

LMM
s17

LMM
s10

LMM
s8

LMM

s36
RT

0 5 10 15 20 25

s37
RT

s29
RT

0 5 10 15 20 25

s17
RT

s10
RT

0 5 10 15 20 25

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
s8
RT

Fig. 4.1 Autocorrelation functions for the residuals of selected participants in the word naming
task: top: observed response latencies; second row: residuals of a linear mixed-effects model with
random by-participant intercepts and slopes for Trial; third row: residuals of a GAMM with by-
participant wiggly curves; fourth row: residuals of a GAMM with by-participant wiggly curves and
correction for AR(1) with � D 0:3

list, i.e., the variable defining the time series in this data set). Using the lme4
package [4] for R (version 3.0.2), the specification of the random effects ((1 +
Trial|Subject)) requests by-subject random intercepts, by-subject random
slopes for Trial, and a correlation parameter for the random intercepts and slopes.

naming.lmer = lmer(RT ~ Regularity + Number + Voicing + InitialNeighbors +
InflectionalEntropy + poly(Frequency, 2) + Trial +
(1 + Trial|Subject) + (1|Verb),
data = naming)
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Figure 4.1 (second row) indicates that the thick autocorrelational structure for
subjects 17 and 10 has been eliminated by the by-subject random regression lines,
but the less prominent autocorrelational structure for the other subjects has remained
virtually unchanged.

The third row of panels of Fig. 4.1 shows that a GAMM with by-subject factor
smooths for Trial, replacing the by-subject straight lines of the linear mixed model
yields very similar results. Using the bam function from mgcv for R, the model
specification

naming.gam = bam(RT ~ Regularity + Number + Voicing + InitialNeighbors +
InflectionalEntropy + s(Frequency) +
s(Trial, Subject, bs="fs",m=1) + s(Verb, bs="re"),
data=naming)

requests random intercepts for the verbs (s(Verb, bs="re")) and by-subject
wiggly penalized curves for Trial (s(Trial, Subject, bs="fs",
m=1), here, bs="fs" requests factor smooths with the same smoothing
parameters across subjects, and m=1 requests shrinkage to obtain wiggly random
effects).

An improvement is obtained by including an autoregressive AR(1) process for
the errors:

et D �et�1 C �t; �t � N .0; �/: (4.1)

This equation specifies that the current error is similar to the preceding error by
a factor �, with Gaussian noise added. As the current error depends only on the
preceding error, this is a first-order autoregressive process. Second-order or higher
autoregressive process would also take into account the error at t � k; k D 2; 3; : : :.
The bam function in the mgcv package offers the possibility of taking a first-order
autoregressive process into account by specifying the autoregressive proportionality
� (with the rho directive in the function call) and by supplying a variable in the data
frame, here NewTimeSeries (with levels TRUE, FALSE), indicating the beginning
of each new time series with the value TRUE (here, the first trial for each subject),
to be supplied to the directive AR.start in the call to bam:

naming.r.gam = bam(RT ~ Regularity + Number + Voicing + InitialNeighbors +
InflectionalEntropy + s(Frequency) +
s(Trial, Subject, bs="fs",m=1) + s(Verb, bs="re"),
rho=0.3, AR.start=naming$NewTimeSeries,
data=naming)

There is no automatic procedure for the selection of the value of �. The autocor-
relation at lag 1 is a good guide for an initial guesstimate, which may need further
adjusting. When changing �, it is important not to increase � when this does not
lead to a visible reduction in autocorrelation, at the cost of inflated goodness of
fit and warped effects of key predictors. It should be kept in mind that an AR(1)
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Table 4.1 A GAMM fitted to log-transformed picture naming latencies (� D 0:3); s: thin plate
regression spline, fs: factor smooth, re: random effect

A. Parametric coefficients Estimate Std. error t-value p-value

Intercept 6.5531 0.0512 127.9396 <0.0001

Regularity=regular 0.0093 0.0094 0.9986 0.3180

Number=singular �0.1147 0.0513 �2.2377 0.0253

Voicing=present 0.0269 0.0101 2.6734 0.0075

Initial Neighborhood Size 0.0179 0.0055 3.2499 0.0012

Inflectional Entropy �0.0343 0.0159 �2.1616 0.0307

B. Smooth terms edf Ref.df F-value p-value

s(word frequency) 4.2914 4.6233 7.7445 <0.0001

fs(Trial, subject) 99.4223 358.0000 5.6670 <0.0001

re(verb) 190.1753 280.0000 2.1085 <0.0001

autocorrelative process is only the simplest of possible autocorrelative processes
that may be going on in the data, and that hence increasing � beyond where it is
functional can distort results. The final row of Fig. 4.1 shows that for this example,
nearly all autocorrelational structure is eliminated with a small � D 0:3.

The summary of this model, shown in Table 4.1, shows strong support for the
random effects structure for Verb and Subject, with large t-values and small p-
values.1 Typical examples of by-subject random wiggly curves are shown in Fig. 4.2.
These curves capture both changes in intercept, as well as changes over time. For
some subjects, the changes are negligible, but for others, they can be substantial,
and non-linear.

One could consider replacing the factor smooths by by-subject random inter-
cepts, while at the same time increasing �. However, a model such as

bam(RT ~ Regularity + Number + Voicing + InitialNeighbors +
InflectionalEntropy + s(Frequency) +
s(Subject, bs="re") + s(Verb, bs="re"),
rho=0.9, AR.start=naming$NewTimeSeries,
data=naming)

provides an inferior fit with an adjusted R-squared of 0.07 (compare 0.36) and an
fREML score of 2655 (compare 684). This suggests that in this data set, two very
different kinds of processes unfold. One of these processes is autoregressive in

1The parametric coefficients suggest that regularity is irrelevant as predictor of naming times,
that singulars are named faster than plurals, that words with voiced initial segments have longer
naming times, as do words with a large number of words at Hamming distance 1 at the initial
segment. Words with a greater Shannon entropy calculated over the probability distribution of
their inflectional variants elicited shorter response times. A thin plate regression spline for log-
transformed word frequency suggests a roughly U-shaped effect (not shown) for this predictor.



4 Autocorrelated Errors in Experimental Data in the Language Sciences. . . 55

Trial

pa
rti

al
 e

ffe
ct

−0.4

−0.2

0.0

0.2

0 100 200 300 400 500 600

s39 s30

0 100 200 300 400 500 600

s33

s23 s27

−0.4

−0.2

0.0

0.2
s17

−0.4

−0.2

0.0

0.2
s10

0 100 200 300 400 500 600

s11 s14

Fig. 4.2 Selected by-subject random wiggly curves for Trial (penalized factor smooths) in the
GAMM fitted to word naming latencies

nature, with a relatively small �. Possibly, these autoregressive processes reflect
minor fluctuations in attention. The other process may reflect higher-order cognitive
processes relating to practice and fatigue, such as exemplified by the fastest subject
(s11) in Fig. 4.2, who initially improved her speed, but then, as the experiment
progressed, was not able to maintain her rapid rate of responding.

Although these task effects typically are not of interest to an investigator’s
central research question, careful modeling of these task effects is important for
the evaluation of one’s hypotheses. For instance, the linear mixed effects model
mentioned previously does not support an effect of inflectional entropy (Shannon’s
entropy calculated over the probabilities of a verb’s inflectional variants) with
t D �1:87, whereas the GAMM offers more confidence in this covariate (t D
�2:16). However, as we shall see next, predictors may also lose significance as
autocorrelational structure is brought into the model.
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4 Pitch Contours as Time Series

Koesling et al. [9] were interested in the stress patterns of English three-constituent
compounds, and measured the fundamental frequency of such compounds as
realized by a sample of speakers. In what follows, the response variable of this
study, pitch, is measured in semitones.

As can be seen by inspecting the top panels of Fig. 4.3, there are autocorrelations
in the pitch contours that are much stronger than those observed for the naming
latencies discussed above. In this figure, panels represent the autocorrelation
functions for selected events, where an event is defined as an elementary time
series consisting of the pitch measured at 100 moments in normalized time for the
combination of a given compound and a given speaker. Whereas for the naming
experiment, there are as many time series as there are subjects, the number of time
series in the present phonetics study is equal to the number of unique combinations
of subjects and compounds (12 � 40 D 480).

The second row of panels in Fig. 4.3 indicates that a model with by-speaker
random intercepts and slopes for (normalized) time does not succeed in consistently
reducing the autoregressive structure of this data. Some improvement is achieved
when by-subject and by-compound random wiggly curves are added to the model
specification (third row of panels), but the errors are only whitened substan-
tially, albeit not completely, by additionally including an autoregressive parameter
� D 0:98 (bottom row of panels). This fourth model was specified as follows.

pitch.gam = bam(PitchSemiTone ~ Sex + BranchingOrd +
s(NormalizedTime) + s(NormalizedTime, by=BranchingOrd) +
s(NormalizedTime, Speaker, bs="fs", m=1) +
s(NormalizedTime, Compound, bs="fs", m=1) +
s(Compound, Sex, bs="re"),
data=pitch,
rho=0.98, AR.start=pitch$NewTimeSeries)

BranchingOrd is an ordered factor specifying four different compound
types (defined by stress position and branching structure). The first smooth,
s(NormalizedTime), specifies a wiggly curve for the reference level
of this factor. The second smooth term, s(NormalizedTime, by =
BranchingOrd), requests difference curves for the remaining three levels of
BranchingOrd.2 A summary of this model is presented in Table 4.2. Figure 4.4
clarifies that the variability across speakers mainly concerns differences in the
intercept (height of voice) with variation over time that is quite mild compared to
the variability over time present for the compounds.

2For this to work properly, it is necessary to use treatment contrasts for ordinal factors, in R:
options(contrasts = c("contr.treatment", "contr.treatment")).
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Table 4.2 Summary of a GAMM for pitch as realized on English three-constituent compounds
(� D 0:98); s: thin plate regression spline, ds: difference spline, fs: factor smooth,
re(compound, sex): by-compound random effects for sex

A. Parametric coefficients Estimate Std. error t-value p-value

Intercept 91:3134 1:4594 62:5689 <0:0001

Sex = male �13:6336 1:4649 �9:3066 <0:0001

Branching = LN2 0:7739 0:4271 1:8121 0:0700

Branching = RN2 0:2415 0:3657 0:6605 0:5089

Branching = RN3 0:6460 0:4320 1:4955 0:1348

B. Smooth terms edf Ref.df F-value p-value

s(Time) 7:6892 7:9403 2:7398 0:0064

ds(Time, LN2) 6:5392 7:0804 0:6255 0:7418

ds(Time, RN2) 1:4097 1:5555 2:4744 0:1344

ds(Time, RN3) 6:4987 7:1541 1:9566 0:0411

fs(Time, speaker) 85:7092 105:0000 14:2675 <0:0001

fs(Time, compound) 248:5172 348:0000 3:5294 <0:0001

re(compound, sex) 19:0558 75:0000 0:4566 <0:0001

In principle, one could consider fitting a penalized factor smooth to each of
the 480 individual events (time series), although this is currently computationally
prohibitively expensive for the large number of events in the present study. The way
the model has been specified here is optimistic in the sense that it assumes that how
pitch contours are realized can be factored out into orthogonal contributions from
individual subjects and from individual compounds. In a more pessimistic scenario,
each event makes its own, idiosyncratic, contribution to the model’s predictions.
In other words, the present model seeks to capture part of the structure in the
elementary time series by means of crossed wiggly curves ‘by subject’ and ‘by
item’.

Currently, only a single autoregressive parameter � can be specified for all events
jointly. Inspection of the last row of panels of Fig. 4.4 suggests that it is desirable to
relax the assumption that � is exactly the same for each event. Although for some
events the autocorrelation function is properly flat already for a moderate �, see, e.g.,
the second panel on the first row (� D 0:4), events remain for which autocorrelations
persist across several lags.

Increasing � would remove such persistent autocorrelations, but, unfortunately,
at the same time induce artificial autocorrelations for other events. This is illustrated
in Fig. 4.5, which presents, for four events (rows) the autocorrelation function for
increasing values of � (columns). For events with hardly any autocorrelation to begin
with (upper panels), increasing � artificially creates a strong negative autocorrelation
at lag 1. The events in the second and third row show how increasing � can induce
artefactual autocorrelations both at shorter lags (second row) and at longer lags
(third row). The event in the fourth row illustrates how increasing � attenuates
but not removes autocorrelation at shorter lags, while giving rise to new negative
autocorrelation at intermediate lags.



4 Autocorrelated Errors in Experimental Data in the Language Sciences. . . 59

time

pa
rti

al
 e

ffe
ct

0

5

10

0 20 40 60 80100

s 01 s 07

0 20 40 60 80100

s 13 s 22

0 20 40 60 80100

s 28 s 31

s 37

0 20 40 60 80100

s 40 s 43

0 20 40 60 80100

s 47 s 49

0 20 40 60 80100

0

5

10
s 52

time

pa
rti

al
 e

ffe
ct

−2

−1

0

1

2

0 20 40 60 80 100

adult jogging suit baby lemon tea

0 20 40 60 80 100

business credit card celebrity golf tournament

0 20 40 60 80 100

city hall restoration

coffee table designer company internet page conference time sheet cotton candy maker

−2

−1

0

1

2
cream cheese recipe

−2

−1

0

1

2
day care center diamond ring exhibition family christmas dinner family planning clinic field hockey player

gene therapy technology hay fever treatment kidney stone removal lung cancer surgery

−2

−1

0

1

2
maple syrup production

−2

−1

0

1

2
money market fund passenger test flight piano sheet music pilot leather jacket pizza home delivery

prisoner community service restaurant tourist guide science fiction book security guard service

−2

−1

0

1

2
sign language class

−2

−1

0

1

2
silicon chip manufacturer silver jubilee gift student season ticket student string orchestra team locker room

tennis grass court

0 20 40 60 80 100

tennis group practice visitor name tag

0 20 40 60 80 100

weather station data

−2

−1

0

1

2
woman fruit cocktail

Fig. 4.4 By-speaker (upper trellis) and by-compound (lower trellis) random wiggly curves
in normalized time in the GAMM predicting the pitch contour for English three-constituent
compounds (� D 0:98)
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(columns) for selected events (rows) where the largest value of �, although for most events optimal,
induces artificial negative autocorrelations at some lags

Although higher-order autoregressive processes might be more appropriate for
many events, they currently resist incorporation into GAMMs. Thus, the analyst is
left with two strategies. The first is to select a value of � that finds a balance between
removing strong autocorrelations, while at the same time avoiding the introduction
of artefactual autocorrelation for events which show little autocorrelation to begin
with—inappropriate use of � may completely obscure the actual patterns in the data.

The second strategy is to remove from the data set those events that show
persistent autocorrelations for the optimal � obtained with strategy one. When
refitting the model to the remaining data points yields qualitatively similar results,
it is safe to conclude that the remaining autocorrelational structure in the original
model is not an issue.

Two aspects of the present model are of further interest. First, the model includes
a thin plate regression smooth for the reference level of compound type (LN1), with
difference smooths for the remaining three compound types. Inspection of Table 4.2
reveals only limited support for significant differences between the pitch contours
on the four kinds of compounds, and inspection of the difference curves (in panels
2–4 in Fig. 4.6) clarifies that there is little evidence for significant differences with
the reference curve. In fact, a simpler model (not shown) with just a spline for
normalized time and no main effect or interactions involving branching condition
fits the data just as well.
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Fig. 4.6 The pitch contour for the LN1 branching condition, and difference curves for the
remaining three branching conditions. As the confidence regions for the difference curves always
contain the zero line, there is little support for differences in pitch contour as a function of
branching condition

The main reason for the absence of the effect of branching condition reported
originally by Koesling et al. [9] is the inclusion of the random wiggly curves for
compound. When the factor smooth for compound is replaced by random intercepts
and random slopes for compound, enforcing linearity, the main effect of branching
condition and its interaction with normalized time is fully significant, just as in
the original study. This indicates that the variability in the realization of the pitch
contours of the individual compounds is too large to support a main effect of
branching condition.

We therefore remove branching condition from the model specification, and
completing the model with a smooth for the frequency of occurrence of the
compound,

bam(PitchSemiTone ~ Sex + s(LogFrequency) +
s(NormalizedTime) +
s(Compound, Sex, bs="re") +
s(NormalizedTime, Speaker, bs="fs", m=1) +
s(NormalizedTime, Compound, bs="fs", m=1),

data=pitchc,
rho=0.98, AR.start=pitchc$NewTimeSeries)

we zoom in on the interaction of compound (random-effect factor) by sex (fixed-
effect factor), specified above as s(Compound, Sex, bs="re"). Figure 4.7
presents a dotplot for the coefficients for the females on the horizontal axis against
the coefficients for the males on the vertical axis. Words for which the males tend
to raise their pitch are passenger test flight, family Christmas dinner, and kidney
stone removal, whereas males lower their pitch for money market fund. Females, on
the other hand, lower their pitch for tennis grass court, lung cancer surgery, and
passenger test flight, but raise their pitch for maple syrup production, piano sheet
music, and hay fever treatment. The two sets of coefficients may even be correlated
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Fig. 4.7 By-compound random contrasts for sex in the GAMM fitted to the pitch contour of English
tri-constituent compounds. Positive adjustments indicate a higher pitch
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(r D �0:31; t.38/ D 0:049), such that where males substantially raise their pitch,
females lower their pitch, and vice versa, possibly reflecting subtle differences in
what topics the different sexes find exciting and unexciting (for pitch raising as an
index of excitement, see, e.g., [11, 15, 16]).3

This case study illustrates three methodological points. First, including random
effect curves (by means of factor smooths) for subjects and items may lead to
substantially different conclusions about the form of smooth terms in the fixed-
effect part of the model specification. Just as including random slopes for a factor X
may render the main effect of X non-significant in the context of a linear mixed-
effects model, so inclusion of random wiggly curves for a time series t may
render an interaction s(t, by=X) non-significant. Second, the coefficients of
random-effect interactions such as Compound by Sex may yield novel insights,
especially in the presence of correlational structure. Third, when residuals reveal
autocorrelational structure, the AR(1) parameter � should be chosen high enough
to remove substantial autocorrelational structure, but not so high that new, artificial
autocorrelational structure is artefactually forced onto the data.

5 Time Series in EEG Registration

Similar to the pitch data, EEG data comprise many small time series, one for
each event for which a subject’s electrophysiological response to a particular
stimulus is recorded. DeCat et al. [6, 7] used English compounds as stimuli,
presented in their grammatical order (coal dust) and in a manipulated, reversed
and ungrammatical order (dust coal) to native speakers of English as well as
advanced Spanish and German learners of English. The goal of this study was to
clarify whether proficiency and language background would be reflected in different
electrophysiological processing signatures for these compounds. For the purposes of
the present study, the specification of the random-effects structure and the measures
taken to bring autocorrelational structure in the residuals under control, and the
effects of the choice of � on the fixed-effect predictors and covariates in the model
are of particular interest. In what follows, the analysis is restricted to the subset of
native speakers of English, and to the EEG at channel C1.4

3The details of the coefficients in the present model differ from those obtained in the analysis of
Baayen [1]. Thanks to the factor smooths for subject and compound and the inclusion of a thin plate
regression spline for word frequency, the present model provides a better fit (AIC 177077.4 versus
187308), suggesting the present reanalysis may provide a more accurate window on sex-specific
realizations of compounds’ pitch.
4Data points with an absolute amplitude exceeding 15 �V, approximately 2.6% of the data points,
were removed to obtain an approximately Gaussian response variable.
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The model for these data,

eeg.gam = bam(Amplitude ~
s(Time, k=10) + s(Time, by=ConstituentOrder, k=10) +
te(LogFreqC1, LogFreqC2, k=4) +
te(LogFreqC1, LogFreqC2, by=ConstituentOrder, k=4) +
s(LogCompFreq, k=4) + s(LogCompFreq, by=ConstituentOrder, k=4)+
s(Compound, bs="re")+
s(Trial, Subject, bs="fs", m=1)+
s(Time, Subject, bs="fs", m=1),
data=eegC1, family="scat",
AR.start=Start, rho=0.85)

comprises a smooth for time for the compounds presented with their constituents in
the normal order (e.g., goldfish), and a difference curve for the condition in which
constituent order is reversed (fishgold). The model furthermore takes an interaction
of the constituent frequencies into account by means of a tensor product smooth,
as well as the corresponding difference surface for the reversed order condition. In
the light of the very large number of observations (207,600), we slightly lowered the
upper bound of the number of basis functions in a given dimension to k D 4, in order
to avoid fitting overly wiggly surfaces. A thin plate regression spline is introduced
to account for the effect of compound frequency, again allowing for a difference
between the standard and reversed word order. Random intercepts for compound,
and two by-subject factor smooths, one for Time and one for the sequence of trials
in the experiment (Trial, complete the model description. The model summary is
given by Table 4.3.

The contributions of the by-subject factor smooths to the model fit is presented
in Fig. 4.8. The grey dots represent the by-subject average amplitude for each of

Table 4.3 Generalized additive mixed model fitted to the electrophysiological response of the
brain at channel C1 to compound stimuli

A. Parametric coefficients Estimate Std. error t-value p-value

(Intercept) 0.0552 0.4221 0.1308 0.8960

B. Smooth terms edf Ref.df F-value p-value

s(Time) 8.5653 8.6645 14.6953 <0.0001

s(Time):Order=reversed 1.5768 1.9624 0.9999 0.4139

s(CompFreq) 1.7242 1.7703 0.7804 0.3172

s(CompFreq):Order=reversed 2.6384 2.8746 21.1108 <0.0001

te(FreqC1,FreqC2) 6.5652 6.6936 4.4840 0.0032

te(FreqC1,FreqC2):Order=reversed 9.6440 10.5906 10.9593 <0.0001

re(Compound) 99.1995 112.0000 10.1991 <0.0001

fs(Trial,Subject) 49.5668 89.0000 12.6940 <0.0001

fs(Time,Subject) 67.4796 89.0000 8.5343 <0.0001

Rev: reversed constituent order in the compound, Norm: normal order. s: thin plate regression
spline, te: tensor product smooth, re: random intercepts, fs: factor smooth. (� D 0:85)
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Fig. 4.8 The by-subject factor smooths for Time in the GAMM fitted to the EEG data. Dots
represent average response times, the dark gray lines represent the corresponding average for the
model fit, and the light gray lines the individual factor smooths

the points in time t D 4; 8; 12; : : : ms. The dark gray line shows the average of
the model fit for the same points in time. The light gray lines visualize the by-
subject factor smooths for Trial. Comparing the dark gray and light gray lines,
it is clear that a substantial part of the wiggliness of the model fit is contributed by
the factor smooths. This figure also illustrates the limitations of the factor smooths:
When trends are spiky, as for instance for subjects s5 ad s6 early in time, a strongly
penalized smooth will not be able to fit the data points in the spike.

Figure 4.9 illustrates, for four events, that � cannot be extended much beyond
0.85 without introducing artefactual negative autocorrelations. Interestingly, chang-
ing � may have consequences for the predictors of theoretical interest. Figure 4.10
illustrates this point for four smooths in the model. The top panels show that
by increasing �, the effect of word frequency, which at first blush appears to
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Fig. 4.9 Autocorrelation functions for the residuals of GAMMs fitted to the amplitude of the
EEG response to visually presented compounds, for four events (rows), for � D 0; 0:4; 0:6; 0:85

(columns)

be nonlinear, becomes a straightforward linear effect. The second row of panels
clarifies that the difference curve for Time, contrasting the reversed word-order
condition with the normal order, is not trustworthy (see also Table 4.3). The increase
in the 95% confidence interval that is a consequence of increasing � to 0.85, which
is required to remove the thick autocorrelative structure in the residuals (Fig. 4.9,
left columns), is noteworthy.

The third and fourth rows of Fig. 4.10 illustrate that the regression surface for
the frequencies of the compound’s constituents depends on constituent order (a
threeway interaction of the frequency of the first constituent, the frequency of the
second constituent, and constituent order). The contour plots in the third row show
the combined effect of the constituent frequencies for the normal constituent order,
modeled with a tensor product smooth. Amplitudes are greater along most of the
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Fig. 4.10 The consequences of increasing � from 0 to 0.9 (columns) for the effect of frequency
(top), the difference curve for Time contrasting the reversed constituent order with the normal
order, the interaction of the frequencies of the first and second constituents (third row), and the
difference surface for these predictors contrasting the reversed with the normal constituent order
(fourth row)

main diagonal, suggesting qualitative differences in lexical processing for similar
versus dissimilar constituent frequencies. For the normal constituent order, this
surface is hardly affected by increasing �. This does not hold for the corresponding
difference surface, as can be seen in the bottom row of Fig. 4.10. In the presence
of strong autocorrelations, autocorrelative noise is incorporated into the tensor
surface, leading to overaccentuated and uninterpretable patterns in the lower right
corner of the partial effect plots. It is only for � D 0:9 that these irregularities
disappear, to give way to a more interpretable difference surface: Amplitudes in
the reversed order condition are reduced compared to the normal constituent order
when both constituents are of a high frequency, whereas amplitudes increase when
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both frequencies are low. Thus, this difference surface suggests that the effect of the
constituent frequencies in the normal order is largely absent when constituent order
is reversed.

In summary, removal of autocorrelative structure in the residuals by means of the
� parameter for an AR(1) error process may have two important consequences. First
of all, analyses will tend to become more conservative. Second, the functional form
of nonlinear partial effects may change. In the present examples, excess wiggliness
is removed.

6 Concluding Remarks

This study illustrates with three examples the potential of generalized additive
mixed models for the analysis of language data: response latencies for reading
aloud, pitch contours of three-constituent compounds, and the electrophysiological
response of the brain to grammatical and ungrammatical compounds.

GAMMs provide the analyst with two tools for coming to grips with autocorre-
lational structure in the model residuals: factor smooths and the AR(1) � parameter.
In the standard linear mixed effects model, systematic changes in how a subject
performs over the course of an experiment, or during an experimental trial with a
time-series structure, can only be accounted for by means of random intercepts and
random slopes. Factor smooths relax this assumption of linearity, and thereby have
the potential to provide much tighter fits when random-effect factors indeed behave
in a non-linear way.

Autocorrelational structure in the errors may, however, remain even after inclu-
sion of factor smooths. For the reaction times revisited in this study, most of
the autocorrelational structure was accounted for by means of factor smooths for
the time series constituted by a participant’s responses over the time course of
the experiment. A mild value of the AR(1) correlation parameter (� D 0:3) was
sufficient to further whiten the residuals. For the pitch data, and the same holds
for the EEG data, inclusion of by-participant and by-item factor smooths was not
successful at all for removing the autocorrelation. Here, a high value for the AR(1)
correlation parameter was necessary for approximate whitening of the errors.

Whitening the errors is important for two reasons (see also[3], for further
discussion). First, it protects the analyst against anti-conservative p-values. Second,
models with whitened errors are more likely to provide an accurate window on
the quantitative structure of the data. The analysis of pitch contours provided
an example of the inclusion of a factor smooth rendering a time by fixed-factor
interaction non-significant. Furthermore, whitening AR(1) errors may change the
functional form of the effect of predictors of interest. The analysis of the EEG data
illustrated how an effect that initially seemed nonlinear became straightforwardly
linear, as well as a non-linear regression surface that became simplified and better
interpretable thanks to whitening.
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Chapter 5
Border Effects Among Catalan Dialects

Martijn Wieling, Esteve Valls, R. Harald Baayen, and John Nerbonne

Abstract In this study, we investigate which factors influence the linguistic
distance of Catalan dialectal pronunciations from standard Catalan. We use pronun-
ciations from three regions where the northwestern variety of the Catalan language
is spoken (Catalonia, Aragon and Andorra). In contrast to Aragon, Catalan has an
official status in both Catalonia and Andorra, which likely influences standardiza-
tion. Because we are interested in the potentially large range of differences that
standardization might promote, we examine 357 words in Catalan varieties and in
particular their pronunciation distances with respect to the standard. In order to
be sensitive to differences among the words, we fit a generalized additive mixed-
effects regression model to this data. This allows us to examine simultaneously
the general (i.e. aggregate) patterns in pronunciation distance and to detect those
words that diverge substantially from the general pattern. The results reveal higher
pronunciation distances from standard Catalan in Aragon than in the other regions.
Furthermore, speakers in Catalonia and Andorra, but not in Aragon, show a clear
standardization pattern, with younger speakers having dialectal pronunciations
closer to the standard than older speakers. This clearly indicates the presence of a
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border effect within a single country with respect to word pronunciation distances.
Since a great deal of scholarship focuses on single segment changes, we compare
our analysis to the analysis of three segment changes that have been discussed in the
literature on Catalan. This comparison shows that the pattern observed at the word
pronunciation level is supported by two of the three cases examined. As not all
individual cases conform to the general pattern, the aggregate approach is necessary
to detect global standardization patterns.

1 Introduction

In this study we investigate a Catalan dialect data set in order to identify social and
linguistic factors which play an important role in predicting the distance between
dialectal pronunciations and the Catalan standard language (which is a formal
variety of Catalan mainly based on the dialects of the eastern counties of Catalonia,
including those of the Barcelona area). We use Catalan dialect pronunciations of 320
speakers of varying age in 40 places located in three regions where the northwestern
variety of the Catalan language is spoken (the autonomous communities Catalonia
and Aragon in Spain, and the state of Andorra). Our approach allows us to
investigate border effects caused by different policies with respect to the Catalan
language. As the Catalan language has been the native and official language (i.e.
used in school and in public media) of both Andorra and Catalonia, but not in
Aragon,1 we will contrast these two regions in our analysis.

We show that the speakers of Catalan in Catalonia and Andorra use a variety
of Catalan closer to the standard than those in Aragon. Because this tendency is
particularly strong among younger speakers, we argue that it is at least in part due
to the introduction of Catalan as an official language in the 1980s in Catalonia and
Andorra but not in Aragon. Naturally the differences we find may have existed
before the language became official in Catalonia, but this cannot explain the larger
differences among the young.

Since we suspect that the changes associated with standardization will be far-
ranging, we deliberately conduct our analysis in a way that is likely to detect a wide
range of differences, effectively aggregating over all differences with respect to the
standard in each variety we examine. By taking into account many variables, we
deliberately deviate from common sociolinguistic practice which typically focuses
on only a small number of variables. We cast a wider net in an effort to obtain a
more comprehensive (i.e. aggregate) view, and avoid selecting only those variables

1In Andorra, Catalan is the only official language. In Catalonia, where Spanish and Aranese (a
variety of Occitan) are also official, Catalan was the vehicular language of education during the
1920s and the 1930s and achieved this status again after Franco’s dictatorship in the early 1980s
[1]. That means that all subjects except second and third languages are taught in Catalan in the
public schools of Catalonia and Andorra. In Aragon, Catalan has only been a voluntary subject in
schools in the eastern counties (where Catalan is spoken) since 1984 [2]. The standard variety used
at all schools in these areas is the one sanctioned by the Institut d’Estudis Catalans [3].
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that behave as predicted. In a second step, we will investigate whether the aggregate
pattern observed at the word pronunciation level also holds when focusing on the
more commonly investigated sound (phonemic) level.

1.1 Border Effects

Border effects in European dialectology have been studied intensively (see [4] for an
overview). In most of these studies, border effects have been identified on the basis
of a qualitative analysis of a sample of linguistic features. In contrast, Goebl [5]
used a dialectometric approach and calculated aggregate dialect distances based on a
large number of features to show the presence of a clear border effect at the Italian–
French and Swiss–Italian borders, but only a minimal effect at the French–Swiss
border. This approach is arguably less subjective than current practice in social
dialectology (focusing on a pre-selected small set of items), as many features are
taken into account simultaneously and the measurements are very explicit. However,
Woolhiser [4] is very critical of this study, as Goebl does not discuss the features
he used and also does not consider the sociolinguistic dynamics as well as ongoing
dialect changes (i.e. he uses static dialect atlas data).

Border effects have generally been studied with respect to national borders. In
the present paper, we focus on one language border within a single nation state, and
on a second border between two states. The former kind of border has been scarcely
studied at all [4].

Several researchers have offered hypotheses about the presence and evolution
of border effects in Catalan. For example, Pradilla [6, 7] indicates that the border
effect between Catalonia and Valencia might increase, as the two regions recognize
different varieties of Catalan as standard (i.e. the unitary Catalan standard in
Catalonia and the Valencian Catalan substandard in Valencia). In a similar vein,
Bibiloni [8] discusses the increase of the border effect between Catalan dialects
spoken on either side of the Spanish–French border in the Pyrenees during the last
three centuries. More recently, Valls et al. [9] conducted a dialectometric analysis
of Catalan dialects and found, on the basis of aggregate dialect distances (average
distances based on hundreds of words), a clear border effect contrasting Aragon
with Catalonia and Andorra. This dialectometric approach is an improvement
over Goebl’s [5] approach, since Valls et al. measure dialect change by including
pronunciations for four different age groups (measuring dialect evolution by the
apparent-time construct; [10]). However, it ignores other sociolinguistic variables
due to its purely dialectometric nature.

1.2 Combining Dialectometry and Social Dialectology

The methodology used in the present study essentially follows dialectometry,
which has generally focused on determining aggregate pronunciation distances,
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and the geographical pattern of aggregate variation ([11], Chap. 1). In contrast,
many dialectologists have focused on the influence of specific social factors on
the realization of (individual) linguistic variables. Instead of examining a large set
of items simultaneously, however, social dialectologists have generally investigated
smaller sets of pre-selected linguistic variables.

We grant the essential correctness of Woolhiser’s [4] critique that dialectometry
has at times been blind to the potential importance of non-geographic conditioning
factors. Therefore, in this study, we combine perspectives from two approaches,
dialectometry and social dialectology. Following dialectometry, we will measure
distances for a large set of dialectal pronunciation data, preventing in this way
biased choices in the selection of material [12]. (Of course, as we work with a
pre-existing pronunciation data set our analysis will be biased as well towards the
material included in this set.) In line with social dialectology, however, in analyzing
these distances, we will also take several social factors into account. We have not
conducted surveys to determine how the differences we measure are perceived
socially. In this sense, we are not in a position to gauge the social meaning of
the changes we examine, as sociolinguists often expect. We nonetheless explore
the hypothesis that linguistic changes are being brought about by a social change,
namely the change to using standard Catalan in schools and public media in part of
the Catalan-speaking area. In this sense we are conducting a sociolinguistic study.

In addition, we aim to clarify the relationship between aggregate (dialecto-
metric) analyses, which often ignore the linguistic details most responsible for
aggregate relations, and analyses based on selected linguistic features (most non-
dialectometric analyses). While dialectometric analyses have aimed at establishing
the relations among varieties, analyses based on selected linguistic features such
as rhotacization, the raising of front vowels or varying verbal inflections are often
motivated both by the wish to establish the social affinities of variation, but also by
the wish to adduce linguistic structure in the variation.2

1.3 Hypotheses

In our analysis we will contrast the area where Catalan is recognized as an official
language (Catalonia and Andorra) with the area where it is not (Aragon). This
contrast allows us to investigate the influence of an internal border within the same
country (i.e. Aragon versus Catalonia) as opposed to a national border (Andorra–
Spain). Based on the results of Valls et al. [9], we expect to observe larger
pronunciation distances from standard Catalan in Aragon than in the other two

2Wieling and Nerbonne [13, 14] summarize several earlier attempts to ascertain the linguistic
foundations of aggregate dialectometric differences, so we shall not review those here.

http://dx.doi.org/10.1007/978-3-319-69830-4_1
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regions.3 More importantly, however, we expect that the models will differ with
respect to the importance of the sociolinguistic factors. Mainly, we expect to see a
clear effect of speaker age (i.e. with younger speakers having pronunciations closer
to standard Catalan) in the area where Catalan has the status of an official language,
while we do not expect this for Aragon, as there is no official language policy
which might ‘attract’ the dialect pronunciations to the standard. In contrast to the
exploratory visualization-based analysis of Valls et al. [9], our (regression) analysis
allows us to assess the significance of these differences. For example, while Valls
et al. [9] state that urban communities have pronunciations more similar to standard
Catalan than rural communities, this pattern might be non-significant (as they reach
this conclusion on the basis of visualization only).

In addition we shall examine a methodological hypothesis, namely that the
standardization we are interested in will be more insightfully investigated from an
aggregate, dialectometric perspective rather than from the perspective of a small
number of sound changes. In defense of the plausibility of this view we note that
standardization efforts are unlikely to be undertaken if only a small number of
linguistic items is at stake. Standardization normally involves a large number of
changes, certainly when viewed from the perspective of all the different varieties
affected. However, while we do intend to examine this hypothesis, we do not
propose to test it rigorously in this study.

2 Material

2.1 Pronunciation Data

The Catalan dialect data set contains basilectal phonetic transcriptions (using the
International Phonetic Alphabet) of 357 words in 40 dialectal varieties and the
Catalan standard language. The locations are spread out over the state of Andorra
(two locations) and two autonomous communities in Spain (Catalonia with 30
locations and Aragon with 8 locations). In all locations, Catalan has traditionally
been the dominant language. Figure 5.1 shows the geographical distribution of these
locations. The locations were selected from 20 counties, and for each county the
(urban) capital as well as a rural village was chosen as a data collection site. In every
location eight speakers were interviewed, two per age group (F1: born between 1991
and 1996; F2: born between 1974 and 1982; F3: born between 1946 and 1960;
F4: born between 1917 and 1930). All data was transcribed by a single transcriber

3It might be argued that this pattern is due to the fact that the Catalan standard language is mainly
based on the eastern dialects of Catalonia. Although it is true that the northwestern varieties
of Catalonia and Andorra have historically converged towards the (closer and more prestigious)
eastern varieties during the twentieth century, Valls et al. [9] have shown that the standardization
process has been much more effective in the diffusion of the prestigious features westwards.
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Fig. 5.1 Geographical
distribution of the locations.
Two locations are found in
Andorra, eight in Aragon and
the remaining 30 locations
are found in Catalonia

(Esteve Valls), who also did the fieldwork for the youngest (F1) age-group between
2008 and 2011. The fieldwork for the other age groups was conducted by another
fieldworker (Mar Massanell) between 1995 and 1996. The complete data set we use
contains 357 items, consisting of 16 articles, 81 clitic pronouns, eight demonstrative
adjectives, two neuter pronouns, two locative adverbs, 220 inflected forms of five
verbs, 20 possessive adjectives and eight personal pronouns. The complete item list
and a more detailed description of the data set are given by Valls et al. [9]. Note that
the data set did not contain any nouns and only contained a limited number of verbs.
The fact that over 60% of the words studied are forms of only five verbs means that
the sample is biased toward these words. A follow-up study using different material
would be worthwhile. However, these five verbs are representative of the five regular
paradigms in Catalan and allow us to take into account all the regular inflections of
the Catalan verbs.

The standard Catalan pronunciations were transcribed by the second author and
are based on the Gramàtica Catalana [3] and the proposal of the Institut d’Estudis
Catalans for an oral Standard Catalan language [15, 16].

2.2 Sociolinguistic Data

Besides the information about the speakers present in the corpus (i.e. gender, age and
education level of the speaker), we extracted additional demographic information
about each of the 40 locations from the governmental statistics department of
Catalonia [17], Aragon [18] and Andorra [19]. The information we extracted for
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each location was the number of inhabitants (i.e. community size), the average
community age, the average community income, and the relative number of tourist
beds (i.e. per inhabitant; used to estimate the influence of tourism) in the most recent
year available (ranging between 2007 and 2010). There was no location-specific
income information available for Andorra, so for these two locations we used the
average income of the country [20].

As the data for the older speakers (age groups F2, F3 and F4) was collected in
1995, the large time span between the recordings and measurement of demographic
variables might be problematic. We therefore obtained information on the average
community age, average community income and community size for most locations
in 2000 (which was the oldest data available online). Based on the high correlations
between the data from the year 2000 and the most recent data for each of the
separate measures (in all cases r > 0.9, p < 0.001), we decided to use the most
recent demographic information in this study. No historical information about the
number of tourist beds was available for Catalonia and Aragon, but we do not have
reason to believe that this correlation strength should be lower than for the other
variables (and thus we can use the most recent data).

3 Methods

3.1 Obtaining Pronunciation Distances

For all 320 speakers, we calculated the pronunciation distance between the standard
Catalan pronunciations and their dialectal counterparts by using a modified version
of the Levenshtein distance [21]. The Levenshtein distance transforms one string
into the other by minimizing the number of insertions, deletions and substitutions.
For example, the Levenshtein distance between two Catalan variants of the word ‘if
I drank’, [beGésa] and [bejGK©s] is 3:

be Gésa insert j 1
bejGésa subst. K© for é 1
bejGK©sa delete a 1
bejGK©s

3

This sequence corresponds with the following alignment:

b e G é s a
b e j G K© s

1 1 1
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The standard Levenshtein distance does not distinguish vowels from consonants
and therefore could align these together. In order to prevent these (linguistically)
undesirable alignments, a syllabicity constraint is normally added, allowing only
alignments of vowels with vowels, consonants with consonants, and /j/ and /w/ with
both consonants and vowels. It prevents alignments of other sounds, as these are
assigned a very large (arbitrary) distance [22, 23].

It is clear that these Levenshtein pronunciation distances are very crude as the
Levenshtein algorithm does not distinguish (e.g.,) substitutions involving similar
sound segments, such as /e/ and /©/, from more different sound segments, such as /e/
and /u/. Wieling et al. [24] proposed a method to automatically obtain more sensitive
sound segment distances on the basis of how frequent they align according to
the Levenshtein distance algorithm. Sound segments aligning relatively frequently
obtain a low distance, while sound segments aligning relatively infrequently are
assigned a high distance. The sound distances are based on calculating the Pointwise
Mutual Information score (PMI; [25]) for every pair of sound segments. The
automatically obtained sound segment distances were found to be phonetically
sensible (based on six independent dialect data sets; [26]) and also improved
pronunciation alignments when these sound segment distances were integrated
in the Levenshtein distance algorithm [24]. A detailed description of the PMI-
based approach can be found in Wieling et al. [26]. Similar to the study of
Wieling et al. [27] on pronunciation differences between Dutch dialects and standard
Dutch, our pronunciation distances are not based on the Levenshtein distance (with
syllabicity constraint), but rather on the PMI-based Levenshtein distance. Using this
phonetically more sensitive measure, the difference of the example alignment shown
above is 0.107. The calculation is illustrated below:

b e G é s a
b e j G K© s

0.0339 0.0345 0.0388

On average, longer words will have a greater pronunciation distance (i.e.
more sounds may change) than shorter words. Therefore we normalize the PMI-
based word pronunciation distances by dividing by the alignment length. Since
the distribution of the Levenshtein distances was skewed, we log-transformed
these distances (after adding a small value, 0.01, to prevent taking the log of
0). Note that log-transforming the PMI-based Levenshtein distances has been
previously reported to increase the match with perceptual distances (for native-
likeness; [28]). After log-transformation, we centered the Levenshtein distances (i.e.
subtracted the mean value). Consequently, a Levenshtein distance of 0 indicates the
average Levenshtein distance, whereas negative and positive values are indicative of
Levenshtein distances lower or higher than the average, respectively.
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3.2 Mixed-Effects Regression Modeling

The usefulness of a generalized linear mixed-effects regression model (GLMM) in
language variation research has already been argued for extensively by Tagliamonte
and Baayen [29]. In summary, a generalized linear mixed-effects regression model
allows the researcher to determine which variables (i.e. predictors) are important in
language variation, while also taking into account that the interviewed informants
as well as the specific linguistic items included are a source of variation. While
the GLMM is suitable to determine the preference for a certain form over another
(e.g., was versus were in the study of [29]), the dependent variable may also be
numerical instead of binary. In our case, the numerical dependent variable will be
the pronunciation distance from standard Catalan on the basis of the log-transformed
and centered PMI-based Levenshtein distance.

As explained by Tagliamonte and Baayen [29], a mixed-effects regression model
distinguishes fixed-effect factors from random-effect factors. Fixed-effect factors
have a small (fixed) number of levels that exhaust all possible levels (e.g., gender
is either male or female), while random-effect factors have levels sampled from a
large population of possible levels (e.g., we use 357 words, but could have included
other words). A mixed-effects regression analysis allows us to take the systematic
variability linked to our speakers, locations and words (i.e. our random-effect
factors) into account. For example, some words might (generally) be more similar
to standard Catalan than other words. By estimating how much more similar these
words are, the general regression formula can be adapted for every individual word.
These adjustments to the general model’s intercept are called ‘random intercepts’.
For example, Fig. 5.2 shows the effect of the (standardized) year of birth of the
speakers on the (log-transformed and centered) linguistic distance from standard
Catalan for two different words, meves ‘my’ (feminine plural possessive), and ell
‘he’. In these graphs, each circle corresponds to the pronunciation of meves (left
graph) or ell (right graph) of a single speaker. The dashed line (which is the same
in both graphs) indicates the general effect (across all words) of the year of birth of
the speaker on the linguistic distance from standard Catalan (i.e. the fixed effect).
It shows a slightly negative slope, with the intercept (i.e. the height at where the
standardized year of birth of the speaker equals zero; the reason for standardizing
the predictors is explained below) being close to zero. The solid line in each graph
shows the word-specific effect of year of birth of the speaker on the linguistic
distance from standard Catalan (i.e. the fixed effect plus the random intercept and
random slope; see below). Clearly, the solid line belonging to the word meves has
an intercept which is higher than the dashed line (i.e. meves generally has a higher
linguistic distance from standard Catalan than the average word), while the solid
line of ell is positioned much lower (and thus ell is, on average, more similar to
standard Catalan).

Similarly, the effect of a certain predictor may also vary per word. For example,
while in general younger speakers may have pronunciations closer to standard
Catalan than older speakers (shown by the dashed line in Fig. 5.2 whose slope is
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Fig. 5.2 Example of random slopes and intercepts for the standardized year of birth of the speaker
per word. For ease of interpretation, the actual year of birth values have been added below the
standardized values. The dashed line indicates the general model estimate (the intercept and the
coefficient for speaker year of birth) for all words, while the solid lines indicate the estimates of
the intercept and the slope for the two words (i.e. the total effect: fixed-effect intercept and slope
plus random intercept and slope). The circles represent the distances for individual variants of the
words meves (left) and ell (right). The dependent variable was centered, so an LD of 0 indicates
the mean distance from standard Catalan

slightly negative) the precise effect could vary per word. Some words may even
show a completely opposite pattern, with older speakers having pronunciations
closer to standard Catalan. These (by-word) random slopes, in combination with the
random intercepts, allow the regression formula to be adapted for every individual
word (or other random-effect factor). For example, the solid lines in Fig. 5.2 show
that the effect (i.e. slope) of the year of birth of the speaker for the word meves
is slightly more negative than the general pattern (i.e. younger speakers use a
pronunciation closer to standard Catalan), while the effect for the word ell shows
the opposite pattern with a positive slope. For the word ell, younger speakers
have adopted a slightly different pronunciation ([éj]) than the one used in standard
Catalan and by older speakers ([é y]), as the sound [ y] is disappearing from most
young phonetic inventories.

In order to prevent type-I errors, it is important to consider both random
intercepts as well as random slopes [29–33]. A more detailed introduction about
mixed models applied to language data is given by Baayen [34] and Baayen et al.
[30]. While Barr et al. [31] advocate an approach where the random-effects structure
is maximally complex, we do not favor this approach given the large size of our
dataset. Furthermore, Bates et al. [32] show that the approach of Barr et al. [31]
may result in overfitting and convergence errors. Consequently, we will only fit the
random-effects structure supported by the data.
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3.3 Generalized Additive Mixed-Effects Regression Modeling

The difference between a generalized additive model (GAM; [35]) and the gen-
eralized linear regression model explained earlier is that the former allows the
explicit inclusion of non-linear relationships via so-called smooths. While non-
linearities can be included in a generalized linear regression model, in that case
the specific form (e.g., a parabola) needs to be specified in advance. A generalized
additive mixed-effects regression model does not require a predefined form, but
rather determines the shape of the relationship (i.e. modeled by so-called smooths)
itself. Furthermore, a smooth can contain multiple numerical variables and thus
represent a (potential) non-linear surface. Importantly, if a pattern is linear rather
than non-linear, the GAM smooth will reflect this as well. Consequently, it is more
flexible than (generalized) linear mixed-effects regression.

There are several choices to make regarding the smooths. First of all, the
researcher has to choose the basis functions for each smooth. For example, smooths
may consist of a series of cubic polynomials (i.e. a cubic regression spline). Another
type of basis function is the thin plate regression spline, which is a combination
of several simpler functions (such as a linear function, a quadratic function, a
logarithmic function, etc.). Furthermore, a limit needs to be specified for the
complexity of each smooth. For a cubic regression spline, this limit is specified
as the number of knots, which are the points at which the cubic polynomials are
connected. The higher this number, the more cubic polynomials may be used to
model the smooth. For the thin plate regression spline, which is the basis function
we use (as it is the best approximation of the optimal fit; [36]), the complexity is
limited by the number of simpler functions used to model the smooth. The actual
complexity of the smooth is indicated by estimated degrees of freedom (edf). If the
edf value is equal to 1, the smooth models a linear pattern, whereas an edf value
higher than 1 indicates a non-linear pattern. Importantly, visualization is essential to
investigate the specific shape of the smooth.

Crucially, overfitting is prevented internally by using cross-validation. Fur-
thermore, the GAM implementation we use (i.e. the mgcv R package, version
1.8.8; [37, 38]) allows that random intercepts and slopes are included as well. In
this generalized additive modeling framework, random intercepts and slopes are
represented by smooths with an associated p-value, indicating if their inclusion
is necessary or not. Consequently, model comparison is not required to assess if
random intercepts and slopes are necessary to include.

An important focus of dialectometry is the relationship between dialect distance
and geographic location (e.g., see [39]). While it has become standard practice
to analyze the influence of geography on language variation by using geographic
distance as an independent variable [40], this approach necessarily assumes that
locations having the same distance from some reference point are relatively similar
(irrespective of their absolute position). This is obviously not very flexible, and does
not allow for distinct, irregularly shaped dialect areas (as the effect of distance
is assumed to be the same in every direction). Instead of using distance, we fit
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a more flexible two-dimensional non-linear surface to the dialect data, with as
geographical predictors the longitude and latitude of the locations for which dialect
data is available. In this way, geography is modeled by a two-dimensional surface,
rather than a set of distances. Of course, the random-effect factor location (i.e. the
random intercept for location) would also be able to model the effect of geography
(if the geographical smooth were absent). However, such an approach would not
take advantage of the fact that people living in nearby locations generally have a
more similar pronunciation than those living far apart.

Instead of using a generalized linear mixed-effects regression model, we there-
fore use a generalized additive mixed-effects regression model where geography is
modeled by a non-linear interaction (represented by a two-dimensional thin plate
regression spline) of longitude and latitude. (Note that location is included as a
random-effect factor as well, to capture location-based effects not present in the
non-linear interaction of longitude and latitude.) A similar approach was taken by
Wieling et al. [27] to model the effect of geography on Dutch dialect distances
(compared to standard Dutch).

Figure 5.3 shows the resulting surface for the complete area under study using a
contour plot (note that the effects of social and lexical variables are also taken into
account in the model from which this surface is extracted; see Sect. 4). The (red)
contour lines represent distance isoglosses connecting areas which have a similar
pronunciation distance from standard Catalan. Wherever the contour lines are not
regular circles, the treatment of geography is more sophisticated than in models
which examined linguistic variation as a function of geographic distance alone
([40], inter alia). A green color indicates the use of pronunciations closest to the
standard language, while yellow, orange, pink and light gray indicate increasingly
greater pronunciation distances (on average, considering all words) from standard
Catalan, respectively. The measurement points are identified by a single character
corresponding to the region (A: Aragon, C: Catalonia, D: Andorra). We can
clearly identify the separation between the dialects spoken in the east of Catalonia
compared to the Aragonese varieties in the west. The local cohesion in Fig. 5.3 is
sensible, as nearby communities tend to speak dialectal varieties which are relatively
similar.

The complexity of the surface shown in Fig. 5.3 is reflected by the estimated
degrees of freedom of the spline, in this case 12. The thin plate regression spline
was highly significant as the 12.0 estimated degrees of freedom invested in it were
supported by an F-value of 17 (p < 0.0001). This indicates that the non-linear surface
is clearly warranted.

3.3.1 Social and Lexical Variables

In addition to the random-effect factors for word, speaker and location, and the
smooth combining longitude and latitude representing geography, we considered
several other predictors. Based on our initial analyses which showed that the
pronunciations of articles, clitic pronouns and demonstrative adjectives (i.e. words
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Fig. 5.3 Contour plot for the regression surface of pronunciation distance as a function of
longitude and latitude obtained with a generalized additive model using a thin plate regression
spline. The (red) contour lines represent (log-transformed Levenshtein) distance isoglosses, a green
color (lower values, negative in the east) indicate smaller distances from the standard language,
while a yellow, orange, pink and light gray color (i.e. increasingly higher values) represents greater
distances. The color in the online version has been replaced by greytones in print, where darker
tones indicate more standard pronunciations and lighter ones less standard pronunciations. The
characters indicate the region of the measurement points (A: Aragon, C: Catalonia, D: Andorra).
The C characters in boldface indicate eight sites in Catalonia, later compared to the eight sites in
Aragon, discussed in Sect. 4.1
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such as ‘this’ and ‘that’) differed significantly more from the corresponding standard
Catalan pronunciations than the other word categories, we included a factor to
distinguish these two word groups (i.e. articles, clitic pronouns and demonstrative
adjectives versus verbs, neuter and personal pronouns, possessive adjectives and
locative adverbs). Other word-specific variables we included were the length of the
word (i.e. the number of sound segments in the standard Catalan pronunciation) and
the relative frequency of vowels in the standard Catalan pronunciation of each word.
In addition, we included several location-specific social variables: community size,
the average community age, the average community income and the relative number
of tourist beds (as a proxy for the amount of tourism). The speaker-related variables
we took into account were the year of birth, the gender, and the education level of
the speaker. Finally, we used a factor to distinguish speakers from Catalonia and
Andorra as opposed to Aragon.

Collinearity of predictors (i.e. predictors which are highly correlated with each
other) is a general problem in large-scale regression studies. In our data set,
communities with a larger population tend to have a higher average income and
lower average age (all jrj’s > 0.65). Furthermore, the articles, clitic pronouns and
demonstrative adjectives were much shorter than the other words, and thus the word
category factor distinguishing these types from the other words is strongly related
to word length (jrj D 0.77). While the residualization of predictors which are highly
correlated has been a popular approach, Wurm and Fisicaro [41] convincingly
argued that it is not a useful remedy for collinearity. Consequently, we only included
the strongest predictor from each of the two groups of related predictors.

A few numerical predictors (i.e. community size and the relative number of
tourist beds) were log-transformed (i.e. instead of the original value, the logarithm
of that value was used) in order to reduce the potentially harmful effect of outliers.
To facilitate the interpretation of the fitted parameters of our model, we scaled
all numerical predictors by subtracting the mean and dividing by the standard
deviation. As indicated above, we log-transformed and centered our dependent
variable (i.e. the pronunciation distance per word from standard Catalan, averaged
by dividing by the alignment length). Consequently, the value 0 represents the mean
log-distance, negative values a smaller distance, and positive values a larger distance
from the standard Catalan pronunciation. The significance of the fixed-effect factors,
covariates, and smooths was extracted from the GAM model summary.

4 Results4

As not all words in our data set are pronounced by every speaker, the total number
of cases (i.e. word-speaker combinations) in this study is 112,608.

4The paper package associated with this paper and available at the Mind Research Repository
contains all data, methods and results for reproducibility. It can be found at: http://openscience.
uni-leipzig.de/index.php/mr2/article/view/46.

http://openscience.uni-leipzig.de/index.php/mr2/article/view/46
http://openscience.uni-leipzig.de/index.php/mr2/article/view/46
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We fitted a generalized additive mixed-effects regression model, step by step
removing predictors that did not contribute significantly to the model. Predictors
which correlated highly (indicated above) were not included at the same time
(i.e. population average age, population average income and population size; and
word length and word category), but only the strongest predictor was included
for each of the two sets of predictors (if significant). With respect to the random
effects, we assessed the significance of all possible random slopes and intercepts
for the random-effect factors location, speaker and word. We only retained random
intercepts and slopes when they were associated with a significant p-value (<0.05)
in the model summary. We will discuss the specification of the model including
all significant predictors and random effects. The model explained 73.5% of
the variation in pronunciation distances from standard Catalan. This value also
incorporates the variability linked to the random-effect factors. This indicates that
the model is highly capable of predicting the individual distances (for specific
speaker and word combinations), providing support for our approach of integrating
geographical, social and lexical variables. The main contributor (62.8%) for this
good fit was the variability associated with the words (i.e. the random intercepts for
word). Without random-effect factors, the fixed-effect factors explained 16% of the
variation. To compare the relative influence of each of these (fixed-effect) predictors,
we included a measure of effect size by specifying the increase or decrease of the
dependent variable when the predictor increased from its minimum to its maximum
value. The effect size of the geographical smooth was calculated by subtracting the
minimum from the maximum fitted value (see Fig. 5.3). Of course, the estimates of
the standardized predictors may also be used as a measure of effect size, but there
is no such estimate for the effect of geography, and not all numerical predictors are
normally distributed. On the basis of our measure of effect size, we clearly observe
that geography and the word-related predictors have the greatest influence on the
pronunciation distance from standard Catalan.

The coefficients and the associated statistics of the fixed-effect factors and
covariates included in the final model are shown in Table 5.1. The random-effect
factors included are shown in Table 5.2. The fact that a random intercept for location
was necessary indicates that there is variability associated with the locations which
is not captured by the geographical smooth. As an example of the random-effect
structure, Fig. 5.4 shows the by-word random intercepts. In general, the words
cantaríeu, jo and nosaltres are more likely to be similar to the standard Catalan
pronunciations than sentiríeu, canta and el (faran).

4.1 Demographic Predictors

None of the location-based predictors (i.e. the relative number of tourist beds,
community size, average community income and average community age was
significant as a main effect in our general model (see Table 5.1). All location-based
predictors, however, showed significant word-related variation (see Table 5.2).
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Table 5.1 Fixed-effect factors and covariates of the final model

Estimate Std. error p-value Effect size

Intercept �0.033 0.018 0.061
Vowel ratio per word 0.109 0.014 <0.001 0.674
Word category is A/D/C 0.101 0.034 0.003 0.101
Speaker year of birth (Aragon) 0.005 0.004 0.282 0.014
Speaker year of birth (Catalonia and Andorra) �0.012 0.005 0.028 �0.034
s(longitude, latitude) [12.0 edf] <0.001 0.310

Negative estimates indicate more standard-like pronunciations (for increasing values of the
predictors), and positive estimates less standard ones. Effect size indicates the increase or decrease
of the dependent variable when the predictor value increases from its minimum to its maximum
value (i.e. the complete range). The geographical smooth (Fig. 5.3; 12 estimated degrees of
freedom) is represented by the final row. Its effect size equals the minimum value subtracted from
the maximum value of the fitted smooth

Table 5.2 Significant random-effect parameters of the final model

Factors Random effects Std. dev. p-value

Word Intercept 0.258 <0.0001
Relative no. of tourist beds 0.025 <0.0001
Average community age 0.031 <0.0001
Community size (log) 0.020 <0.0001
Average community income 0.032 <0.0001
Speaker education level 0.009 <0.0001
Speaker year of birth (Cat. C And.) 0.029 <0.0001
Speaker year of birth (Aragon) 0.019 <0.0001

Speaker Intercept 0.025 0.0004
Vowel ratio per word 0.009 <0.0001
Word category is A/D/C 0.018 <0.0001
Word length 0.013 <0.0001

Location Intercept 0.026 <0.0001
Speaker year of birth (Cat. C And.) 0.021 <0.0001
Vowel ratio per word 0.015 <0.0001
Word category is A/D/C 0.071 <0.0001
Word length 0.037 <0.0001

For example, while there is no main effect of average community income, the
pronunciation of some words will be closer to the standard in richer communities,
while for some other words this pattern will be reversed.

The non-linear interaction of longitude and latitude (see Fig. 5.3) shows that the
Aragonese varieties have a higher distance from standard Catalan than the other
varieties. In fact, if the non-linear interaction is replaced by a contrast between the
Aragonese varieties versus the other varieties (also including location as a random-
effect factor), the contrast is highly significant, p < 0.0001, and indicates that the
Aragonese speakers have a larger pronunciation distance from standard Catalan than
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Fig. 5.4 By-word random intercepts. The words are sorted by the value of their intercept. Negative
values (bottom-left) are associated with words which are generally (across all varieties) more
similar to the standard, while positive values (top-right) are associated with words which are
generally more different from the standard language. The dashed line shows the population
intercept (see Table 5.1)

the other speakers. The same result is found when the dataset is restricted to the
eight Aragonese sites and a subset of eight Catalan sites located close to the border
(indicated by boldface C’s in Fig. 5.3).

With respect to the speaker-related predictors, only year of birth for Catalonia and
Andorra was a significant predictor, indicating that younger speakers in those two
regions use pronunciations which are more similar to standard Catalan than older
speakers. The effect of year of birth was not significant for Aragon, and significantly
different from the effect in Catalonia and Andorra (p D 0.02). This result confirms
the existence of a clear border effect between Aragon on the one hand, and Catalonia
and Andorra on the other. We interpret this difference as the effect of the Catalan
language becoming official again in the 1980s in Catalonia.

We did not find an effect of gender despite this being reported in the literature
frequently (see [42] for an overview). Similarly, Wieling et al. [27] also did not find a
gender effect with respect to the pronunciation distance from the standard language
(Dutch) in their study. We also did not find gender differences when investigating
individual linguistic variables (see Sect. 4.3, below).

We did not find support for the inclusion of education level as a fixed-effect
predictor in our model. The education measure alone (without any other social status
measures) might have too little power to discover social class effects ([43], Chap. 5;
but see [44] for a new analysis of Labov’s data suggesting that education does have

http://dx.doi.org/10.1007/978-3-319-69830-4_5
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sufficient power). Furthermore, when investigating individual linguistic variables
(see Sect. 4.3), education only appeared once as a significant predictor.

4.2 Predictors Specific to Lexical Identity

Two variables specific to lexical identity we tested appeared to be significant pre-
dictors of the pronunciation distance from standard Catalan. It is not surprising that
the binary predictor distinguishing articles, clitic pronouns and demonstratives from
the other word types was highly significant, since we grouped these word categories
on the basis of their higher distance from the standard language (according to our
initial analyses). Articles and clitic pronouns are relatively short (in many cases
only having a length of one or two sounds), and when they are different from the
standard, their relative distance will be very high. While the demonstratives are not
as short, they tend to be either completely identical to the standard pronunciation, or
almost completely different from the standard pronunciation, which might explain
their larger distances. As word length correlated highly (jrj D 0.77) with the binary
group distinction, we only included the better predictor of the two. Given that word
length was not significant, we included the binary group distinction between articles,
clitic pronouns and demonstratives versus the other word types.

Finally, the number of vowels compared to the total number of sounds in the
reference pronunciation was a highly significant predictor. This is not surprising
(and similar to the result reported by Wieling et al. [27] for Dutch) as vowels are
much more variable than consonants (e.g., [45]). Similarly to word length, including
this predictor allows us to more reliably assess the effect of the more interesting
predictors.

With respect to the random effects, all lexical variables showed significant
variation in their strength for individual speakers and locations. This reflects that,
for example, some speakers will pronounce words with a large number of vowels
closer to the standard Catalan pronunciation than others.

4.3 Comparison to Individual Linguistic Variables

This paper proceeds from an aggregate, dialectometric perspective and applies a
novel statistical technique, generalized additive mixed-effects regression modeling
to a large collection of Catalan dialect variation data with the goal of understanding
the (quite effective) standardization policies now in place in Catalonia and Andorra.
The advantage of the aggregate perspective is its bird’s eye view of language
variation, which, in this case has meant a view encompassing over 100,000
pronunciations, 357 words (though note the lack of nouns, and the limited number
of distinct verbs) as pronounced by eight speakers in each of the 40 different
northwestern Catalan varieties. The aggregate perspective clearly runs the risk of
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losing sight of important details of language variation, but we have shown that
mixed-effects regression modeling, in which words are individually modeled, can
effectively detect very different levels of influence among individual words, thus
protecting us against the risk of missing details, at least to some extent.

Standard sociolinguistic practice is rather different. With the goal of identifying
individual phonemic changes in progress, and in particular, their social motivation,
sociolinguists ignore aggregate tendencies in favor of detailed studies on the
influence of social and structural factors on linguistic variation [46]. This low-level
focus has certainly proven effective in understanding individual sound changes and
in isolating the social dynamics that may underlie them, but it clearly runs the risk
of selectively focusing on non-representative material and myopically losing sight
of global tendencies.

With respect to the present study on the effects of a policy of language
standardization, we might expect there to be global effects, and, in fact, this is
just what we have shown. Age was shown to be significant, where the young,
who have mandatorily been exposed to standard Catalan in school (and via public
media), speak varieties of Catalan that are more standard like. Might we have
reached similar conclusions by examining individual linguistic variables? After all,
individual phoneme effects will also be reflected directly in pronunciation distances.

To answer this question, we have examined three different linguistic variables
reported in the literature, to see if the effect observed at the aggregate level could
also be found when focusing on a lower level. In each case we examine examples of
the variables in our own data, taking care that only examples in the relevant phonetic
contexts are used. Naturally we study each of them on the basis of the pronunciations
of the eight speakers per site at the 40 sites described above.

The first linguistic variable (V1) we investigated was the replacement of [ y]
(standard) by [j] (non-standard). This change has been reported by Recasens [47]
and is caused by the influence of the Spanish language, from which [ y] has almost
completely disappeared. The following 10 words present in our data set were used
to examine this phenomenon: aquell, aquella, aquells, aquelles, ell, ella, ells, elles,
allò, and allí.

The second linguistic variable (V2) is the variation in the final morphemes for
the present subjunctive. The standard uses [i] as its subjunctive theme vowel, while
other vowels indicate a non-standard pronunciation. This difference is described by
Massanell [48]. We examined this variable by focusing on the following 20 items:
canti (1[-PLU]), cantis, canti (3[-PLU]), cantin, perdi (1[-PLU), perdis, perdi (3[-
PLU]), perdin, begui (1[-PLU]), beguis, begui (3[-PLU]), beguin, senti (1[-PLU]),
sentis, senti (3[-PLU]), sentin, serveixi (1[-PLU]), serveixis, serveixi (3[-PLU]), and
serveixin.

The final linguistic variable (V3) is the use of [“] as opposed to another consonant
(mainly [w]) within the feminine possessive adjectives. The progressive substitution
of [w] for the standard [“] in the Tremp area is discussed by Romero [49]. To
investigate this pattern, we investigated the following six items: meva, meves, teva,
teves, seva, and seves.
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Table 5.3 Significance of social predictors (rows) for each of the three models corresponding
each to a single linguistic variable (columns)

V1: [ y] vs. [j] V2: [i] vs. other vowel
V3: [“] vs. other
consonant

Speaker is male 1.1 (p D 0.08) n.s. n.s.
Speaker education level n.s. �0.4* �0.4 (p D 0.1)
Speaker year of birth
(Catalonia and Andorra)

3.1** �1.0** �1.4**

Speaker year of birth
(Aragon)

6.4** n.s. n.s.

Geography [9.4 edf]** [20.5 edf]** [3.8 edf]**

Only if an estimate was significantly different from zero (or close to significance) is its estimate
printed. A positive estimate indicates a greater likelihood of having a non-standard variant for
increasing values of the predictor, while a negative estimate indicates the opposite. In all cases,
geography shows a significant non-linear pattern (visualized in Fig. 5.5) as the edf values are
greater than 1. Note that the estimates for the year of birth do not differ significantly for the two
regions. Significance: *p < 0.05; **p < 0.001

Table 5.3 shows the significance of the social variables (gender, education level
and age—the latter separated for the two areas) in addition to the influence of
geography (visualized in Fig. 5.5). The estimates were obtained by creating three
separate generalized additive mixed-effects logistic regression models (one for each
linguistic variable). This approach is similar to the approach outlined in Sect. 3,
except that we now use logistic regression, since in each of the three models, the
dependent variable has only two values: 1 (the variant of a speaker differs from
the standard language) and 0 (the variant of a speaker is equal to the standard
language). In logistic regression the estimates need to be interpreted with respect
to the logit scale (i.e. the log of the odds of observing a non-standard as opposed
to a standard Catalan form). A positive estimate therefore indicates that an increase
in the predictor results in a higher likelihood of using a non-standard variant, while
a negative estimate indicates the opposite (thus the signs of the estimates can be
compared to those in Table 5.1). This logistic regression approach corresponds with
standard sociolinguistic practice [43].

The geographical pattern (visualized in Fig. 5.5) varies for each variable, but in
general shows that the Aragonese varieties (in the west) are more likely to have a
non-standard variant than the varieties in Catalonia and Andorra. Again, excluding
the geographical smooth and replacing it by a binary predictor distinguishing
Aragon from the other regions reveals that the Aragonese speakers are significantly
more likely to use a non-standard form than the speakers from Catalonia or Andorra.
The same holds when focusing on the eight Aragonese sites compared to the eight
sites in Catalonia close to the border with Aragon.

With respect to the social variables, both V2 and V3 show a pattern consistent
with the result presented in Table 5.1 (i.e. younger speakers are more likely to
conform to the standard in Catalonia and Andorra, but not in Aragon). V1 shows
that younger speakers in Catalonia and Andorra are more likely to differ from the
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Fig. 5.5 Contour plot for the regression surfaces for each of three linguistic variables as a function
of longitude and latitude obtained with a generalized additive model using a thin plate regression
spline. The (red) contour lines represent isoglosses reflecting the probability (in terms of logits)
of using a non-standard Catalan form, a green color (lower values in the east) indicates a smaller
likelihood of using a non-standard variant, while a yellow, orange, pink and light gray color (i.e.
increasingly higher values) represent a greater likelihood of using a non-standard variant. The
color in the online version has been replaced by greytones in print, where darker tones indicate a
smaller likelihood of using a non-standard variant, and lighter tones a greater likelihood of using
a non-standard variant. The characters indicate the region of the measurement points (A: Aragon,
C: Catalonia, D: Andorra). The C characters in boldface indicate eight sites in Catalonia, later
compared to the eight sites in Aragon

standard language than the older speakers (caused by the move towards Spanish,
as mentioned earlier), but that this effect is even stronger in Aragon (where the
influence of standard Spanish is stronger). Only V2 showed a significant influence
of the education level of the speaker (with more highly educated people being more
likely to use the standard variant). In summary, the aggregate result with respect to
year of birth is supported by two of the three individual variables.5

Of course, the aggregate result is not always reflected by the behavior of
individual variables, and there are two reasons for this. First, the aggregate analysis
shows the general pattern when taking into account the complete set of words, and
it is unlikely that all individual linguistic variables exhibit this exact same pattern.

5While the precise effect of speaker’s year of birth is different for both regions (Aragon, and
Catalonia and Andorra) across all three variables, the difference in the effect of this predictor on
Aragon as opposed to Catalonia and Andorra was never significant (all p’s > 0.07) due to the small
number of locations in Aragon (i.e. eight) and the limited number of words. Therefore, strictly
speaking, none of the variables completely adheres to the aggregate pattern (where this difference
was significant).
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Fig. 5.6 By-word random slopes for the speaker’s year of birth in Aragon (x-axis) and Catalonia
and Andorra (y-axis). The dashed lines indicate the model estimates (see Table 5.1)

The second reason is that the aggregate analysis involves pronunciation distances,
which also include pronunciation differences that are outside of the focus of the
specifically selected linguistic variables.

By way of illustration that individual words do not all have to adhere to the
aggregate pattern, Fig. 5.6 shows the by-word random slopes for the speaker’s year
of birth for Aragon (x-axis) and Catalonia and Andorra (y-axis). Consequently,
words (i.e. dots) to the right of the y-axis (the vertical dashed line indicates the
non-significant positive effect of speaker’s year of birth for Aragon; see Table 5.1)
and below the x-axis (the horizontal dashed line indicates the negative effect of
speaker’s year of birth for Catalonia and Andorra; see Table 5.1) roughly adhere to
the general pattern. For words in that area, younger speakers (i.e. having a higher
year of birth) in Catalonia and Andorra have a pronunciation closer to standard
Catalan than older speakers, while the effect is opposite (but non-significant) in
Aragon. Whereas many words follow the aggregate pattern, some words even show
opposite patterns, such as perdi3, ‘waste’ (3[-PLU]). These words differ more from
the standard for younger speakers in Catalonia and Andorra as opposed to older
speakers, and differ less from the standard for younger people as opposed to older
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people in Aragon. Consequently, a linguistic variable consisting of such words
would show a completely different pattern (such as V1, illustrated earlier). The
aggregate approach, however, is necessary to draw more general conclusions.

5 Discussion and Conclusions

In this study we have used a generalized additive mixed-effects regression model
to provide support for the existence of a border effect between Aragon (where the
Catalan language does not have an official status) and Catalonia and Andorra (where
Catalan is an official language). Our analysis clearly indicated a greater distance
from standard Catalan for speakers in Aragon as opposed to those in Catalonia
and Andorra. Furthermore, our analysis identified a significant effect of speaker
age (with younger speakers having pronunciations closer to standard Catalan) for
Catalonia and Andorra, but not for Aragon. This provides strong evidence for the
existence of a border effect in these regions caused by different language policies
and is in line with the results of Valls et al. [9]. Also, our analysis revealed the
importance of several word-related factors in predicting the pronunciation distance
from standard Catalan and confirms the utility of using generalized additive mixed-
effects regression modeling to analyze dialect distances, with respect to traditional
dialectometric analyses.

Methodologically, we have attempted on the one hand to include candidate social
variables as well as geography in a single aggregate (dialectometric) analysis. We
wished to include both sorts of variables in an effort to meet objections such as
Woolhiser’s [4] that dialectometry systematically ignores social variables. However,
note that our analysis retains the aggregate perspective of dialectometry, despite the
limitations caused by the data set (i.e. no nouns and only five distinct verbs). On
the other hand, we have also included structural, linguistic factors in the analysis,
such as the varying degree to which different words are influenced by geographic
and social factors, as well as (e.g.,) the relative number of vowels in a word. Of
course these linguistic techniques may seem insensitive when compared to studies
in other variationist traditions (i.e. where individual sound changes are investigated),
but they enable analyses to be more comprehensive, i.e. based on large amounts of
data including many variables, and it has also been our point here to introduce the
methodology.

With regard to the comparison to single-variable analyses, standard in sociolin-
guistics, we presented additional analyses at the level of three individual linguistic
variables that have been discussed in the literature, and we showed that two of
the three variables supported the general pattern. These analyses also illustrated
that an aggregate approach is needed, as individual linguistic variables may not be
representative of the global pattern.

In contrast to the (exploratory visualization-based) conclusion of Valls et al. [9]
that the older speakers in urban communities use pronunciations closer to standard
Catalan than the older speakers in rural communities, we did not find a significant
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effect of community size (nor a significant interaction between speaker age and
community size). In fact when using the binary distinction Valls and colleagues
based their conclusion on (i.e. distinguishing urban and rural communities in twenty
different counties), the results are not at all significant (p D 0.3). This clearly
illustrates the need for adequate statistical models, to prevent reaching statistically
unsupported conclusions.

We did not find support for the importance of education level of the speaker. This
might seem surprising given that one of the main reasons for the border effect is the
official status of the Catalan language in both Catalonia and Andorra (and therefore
its use in education), but not in Aragon. However, this education effect might be
partly captured by year of birth, as there is a positive correlation between education
level and the year of birth of the speaker (r D 0.3). Furthermore, the influence of
mass media or the speaker’s job might mask the potential standardizing effect of
education on the speaker’s pronunciation.

We also did not find support for the general influence of any of the demographic
variables. This contrasts with the study of Wieling et al. [27] on Dutch dialects,
who found a significant effect of community size (larger communities use pronun-
ciations closer to the standard) and average community age (older communities use
pronunciations closer to the standard language). However, the number of locations
in the present study was small and might have limited our power to detect these
effects—in the study of Wieling et al. [27] more than ten times as many locations
were included.

It should be clear that we think that the standardization policy has led to
pronunciation change. We have asked ourselves whether our reasoning commits the
fallacy known as post hoc, ergo propter hoc—i.e. whether we might be mistaking
a mere correlation between standardization policy and pronunciation change for
a causal relation between the two. The temporal order is indeed as it should be,
i.e. the behavioral change followed the policy change with younger people in
Catalonia (where Catalan was used in schools and public media again after Franco’s
dictatorship) speaking a more standard-like dialect. Nonetheless, the relation might
also be indirect, i.e. the policy change might have influenced attitudes which in
turn influence phonetic behavior. And it is also possible that the policy change was
motivated by linguistic ideology, but it would take us too far afield to explore those
issues here. We admit therefore that we cannot claim to have proven that the policy
change caused the pronunciation change, even if that is our interpretation.

We see three promising extensions of this study. First, replicating this study using
new material (i.e. using a random set of words) would be useful to see if the results
on the basis of our study (with a biased set of items) are valid in general.

Second, it would be interesting to investigate standardization towards Spanish, by
comparing the dialectal pronunciations to the Spanish standard language instead of
the Catalan standard language. In our data set there are clear examples of the usage
of a dialectal form closer to the standard Spanish pronunciation than to the standard
Catalan pronunciation, and it would be rewarding to investigate which word- and
speaker-related factors are related to this.
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The third extension involves focusing on the individual sound correspondences
between Catalan dialect pronunciations and pronunciations in standard Catalan.
These sound correspondences can easily be extracted from the alignments generated
by the Levenshtein distance algorithm. When focusing on a specific set of locations
(e.g., the Aragonese locations), it would be computationally feasible to create a
generalized additive mixed-effects regression model to investigate which factors
determine when a sound in a certain dialectal pronunciation is different from the
corresponding sound in the standard Catalan pronunciation.
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Chapter 6
Evaluating Logistic Mixed-Effects
Models of Corpus-Linguistic Data
in Light of Lexical Diffusion

Danielle Barth and Vsevolod Kapatsinski

Abstract We explore methods for evaluating logistic mixed-effects models of both
corpus and experimental data types through simulations. We suggest that the fit of
the model should be evaluated by examining the variance explained by the fixed
effects alone, rather than both fixed and random effects put together. Nonetheless,
for corpus data, in which frequent items contribute more observations, coefficient
estimates for fixed effects should be derived from a model that includes the random
effects. Including random effects in the model with such datasets allows for better
estimates of the fixed-effects predictor coefficients. Not having random effects in the
model can cause fixed-effects coefficients to be overly influenced by frequent items,
which are often exceptional in linguistic data due to lexical diffusion of ongoing
changes.

1 Mixed-Effects Models in Corpus Linguistics

Linguistics is fundamentally concerned with explaining why people say what they
say when they say it. Given multiple ways of conveying the same message [1, 2],
what makes speakers choose one way over another in a particular situation? The
fact that there are multiple ways of conveying roughly the same intended meaning
is easy to see in the case of a multilingual speaker: she might be able to say “I
am a linguist” in multiple languages and would choose the language appropriate
to the situation. However, it is likewise true for monolinguals. For instance, part
of what causes speakers to choose the wheel of the car over the car’s wheel has
been shown to be the fact that the latter option results in two stressed syllables
being placed next to each other [3]. Of course, this avoidance of stress clash is
not the only predictor influencing the choice between the two genitive constructions
above. Typically, many factors, semantic, syntactic, phonological, social, etc. impact
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the choice. This multiplicity of influences has led linguists interested in predicting
choice of expression in production, starting with Cedergren and Sankoff [4], to turn
to multiple regression models, now the main workforce of the highly related fields
of quantitative corpus linguistics and quantitative/variationist sociolinguistics (e.g.,
[5]), both of which deal with analyses of representative databases of natural speech,
or corpora.

While traditionally these regression models had only fixed-effects predictors
(e.g., [6]), mixed-effects models have now become the new standard [7–10]. One
reason [9, 10], is that a valid replication of a corpus-linguistic study would not
necessarily have to be a study of the same speakers, as long as the speakers
come from the same speech community. Nonetheless, speakers vary around the
community norm, and the effects of such variation should be taken into account,
suggesting that speaker identity should be included in models of linguistic behavior
as a random effect.

Linguistic items are another source of variability. As Sapir [11] pointed out,
“all grammars leak”: no grammar is completely predictive of linguistic behavior,
and part of the divergence between the grammar and the behavior comes down
to the existence of exceptional linguistic items. Even if most words containing a
linguistic structure behave consistently (undergo a rule affecting that structure with
some constant probability), there are usually a few exceptional words that contain
the structure but do not undergo the rule. This situation is typical in all languages
because speakers of all languages have abundant long-term memory, allowing them
to store and retrieve frequent words and phrases like I don’t know as wholes, rather
than deriving them from their parts using the grammar (e.g., [12]). Long-term
memory storage and retrieval allows these frequent phrases to become exceptional
in various ways. For instance, I don’t know, unlike other I don’t Verb phrases, can
be reduced to little more than a pattern of intonation superimposed on a nasal sound
[13].

Clark [14] and Coleman [15] argued persuasively that items should be treated
as a random effect in psycholinguistic experiments, since the researcher samples
the items from a larger population and would like to generalize to the population
rather than just the sampled items. The argument also holds for studies aimed
at investigating grammar on the basis of corpus data, since grammatical general-
izations are usually intended to apply across lexical items. However, corpus data
differs from psycholinguistic data in two ways, which raise additional questions.
First, in psycholinguistic data, every item is usually presented to every subject
the same number of times. In corpus data, the items that are more frequent in the
language will be observed more frequently. Second, lexical diffusion theory claims
that high frequency of use leads to articulatory reduction and semantic bleaching
of the frequently used item, as well as retention of grammatical patterns that are
no longer productively applied to novel items [12, 16–22]. To the extent that this is
true, high-frequency items are not just more likely to deviate from the sample mean
than low-frequency items; they are also likely to deviate from the mean in different
directions than low-frequency items. Thus in a corpus study, the sample is biased to
oversample items that are likely to be exceptional. We describe these challenges in
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more detail in the following section. The rest of the paper is devoted to addressing
the implications of these challenges for the use of mixed-effects models in corpus
linguistics by means of Monte Carlo simulations.

2 The Challenges of Corpus Data Given Lexical Diffusion

As discussed above, one of the main challenges of corpus data is that the data are
not nicely balanced. One source of imbalance is corpus design: unless special care
is taken, more talkative (or popular) speakers will contribute more to the database
than less talkative (or less popular) ones. However, even in a corpus that has been
intentionally balanced by speaker (e.g. [23]), a sample from the corpus designed to
investigate the use of a certain linguistic structure is still usually not balanced by
speaker (e.g. [24]), as some speakers will use the structure more than others, both
because of personal preference [25] and the topics being discussed.

An even more pervasive source of imbalance is the fact that any corpus contains
a small number of extremely frequent words, while most words occur only once
[26, 27]. Lack of balance across linguistic items is unavoidable because linguistic
expressions are subject to a rich-get-richer effect. The more often a word is used,
the more likely it is to be re-used in the future: frequent words come to mind more
readily than infrequent words in language production (as demonstrated by Oldfield
and Wingfield [28], in a picture naming task). As we would expect from a variable
subject to rich-get-richer positive feedback loops [29–32], word frequencies display
a power-law distribution [26, 27, 33].

Lexical diffusion theory suggests that grammatical changes spread through the
lexicon in a word-by-word fashion, starting either from low-frequency or high-
frequency words (see esp. [12, 20]). In particular, reductive changes motivated by
simplifying or streamlining articulation are argued to start in frequently used words.
These include all processes involving reducing the magnitudes of or increasing
the overlap between articulatory gestures, including consonant deletion, vowel
shortening and vowel centralization. For example, Bybee [17] documents that word-
final t/d deletion in English is more likely in frequent words like missed than
in rare ones like maced. In contrast, innovative non-reductive pronunciations and
morphological processes might spread from rare words to frequent words, so that
synchronically the rare words are more likely to contain the innovative variant (e.g.
[20, 34]). A classic example is that the irregular past tense formation patterns in
English are maintained in frequent verbs (drink-drank), while the rarer ones take
the innovative –ed suffix (wink-winked, *wink-wank).

However, word frequency does not account for all differences among words (e.g.,
[35]). Therefore, there is widespread agreement that the identity of a particular word
is an additional important predictor in the study of grammar and language change.
Perhaps, the least controversial example is that verbs differ in their preferences for
various syntactic constructions ([36–38]; see also [39], reviewed below, for a similar
case).
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Fixed-effects only models (e.g. [4, 6]) have difficulty incorporating an effect of
word into the model because such models have to choose between fully pooling
data across words or not pooling data across words at all (as discussed in [40]). If
the data are pooled across words (by not including word identity into the model as
a predictor), then the predictions of the model are overly influenced by the frequent
words, which contribute a large proportion of observations to the dataset. This is
especially problematic in examining the effects of grammatical predictors, since
frequent words are likely to be exceptional in various ways, obeying grammatical
generalizations that are no longer productively applied to novel inputs, and not
obeying ones that are just coming into the language (unless they are reductive
in nature). Thus, fixed-effects only models excluding an effect of word are likely
to overestimate the productivity of reductive patterns like t/d deletion and to
underestimate the productivity of non-reductive innovations like the –ed past tense
suffix.

While pooling data across words is problematic, not pooling across words at all is
also problematic because there are never enough observations to estimate the effects
of individual rare words. To see why, consider the fact that a significant proportion
of observations in every corpus is contributed by hapax legomena, words that
occur only once in the corpus. It is impossible to estimate the effects of individual
hapax legomena, as their effects are indistinguishable from observation-level noise.
Therefore some pooling of data across words is necessary. Baayen [26] shows that
the proportion of hapax legomena in a corpus stays relatively constant as corpus size
increases, suggesting that this problem will not be solved by using larger corpora or
larger samples.

As Bresnan et al. [7], Gerard et al. [41], and Sonderegger [42], among others,
note, mixed-effects models are intended to address this issue by partially pooling
the data across words. We can estimate the effect of a rare word on the observed
behavior based on the effects of more frequent words, which can be estimated more
reliably. On the other hand, the effects of individual frequent words can be estimated
without relying on data from other words.

There is some psycholinguistic motivation for partial pooling, since the problem
of data sparsity that partial pooling is intended to solve is not just a problem
for linguists analyzing a corpus. It is also a problem for language learners. Thus
Stefanowitsch [43] notes that we can be much more confident about the intransitivity
of the frequent verb disappear than about the intransitivity of the infrequent vanish
(*He disappeared it. is judged as being less grammatical than *He vanished it.)
Ambridge et al. [44, 45] show that speakers are in fact more confident about
the ungrammaticality of the former, suggesting that they are more confident in
transitivity of disappear than that of vanish. Frequency influences our ability to learn
about the idiosyncrasies of an item [12, 17, 19, 39, 46, 47], making the between-item
differences more pronounced among high-frequency words. For instance, Erker
and Guy [39] show that some high-frequency verbs in Spanish favor the omission
of subject pronouns while others disfavor it, whereas all low-frequency verbs are
alike in this respect. Raymond and Brown [48] show that fricative reduction is
exceptionally productive in some high-frequency words (ones that tend to occur
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in casual speech) and exceptionally unproductive in others (words that tend to occur
in more formal registers). As noted by Kapatsinski [47], these results are very
much in line with partial pooling: the lowest-frequency words cannot be exceptional
because language learners cannot estimate individual probabilities (of co-occurring
with some construction or undergoing some change) for those words and must
instead rely on the lexicon-wide probabilities, which are based on data pooled across
individual words.

Nonetheless, the fact is that even partial pooling assumes that low-frequency
words should behave like high(er)-frequency words. However, lexical diffusion
theory suggests that low-frequency words should not behave like high-frequency
words, being more likely to undergo reductive processes and less likely to undergo
non-reductive ones [12, 17, 20, 34]. Thus the items for which we have much data
may not behave like the items for which the data are sparse. Given this possibility,
even the simplest model of grammatical behavior should include item frequency,
and not just item identity, as a predictor. This special status of frequency is why we
focus on this predictor in the present paper.

3 Purposes of Model Evaluation

To the extent that a corpus is a representative sample of the recorded speakers’
productions, the within-speaker predictors of a regression model of some behavior
in that corpus, along with the associated coefficients, can be thought of as a
(partial) description of the speakers’ production grammar. Therefore evaluation
and comparison of alternative regression models is fundamental to the linguistic
enterprise [1, 4]. Model evaluation is concerned with two related questions:

1. how much room is there for improvement over the current model, i.e., should we
look for additional predictors or have we described the grammar fully?, and

2. if two models differ in that one includes an additional predictor, which of the two
models is better (and by how much)?

The answer to the first question is important for research planning. Should we try
to incorporate additional influences into the model, which often involves laboriously
coding the data for additional variables? Or is there not enough variance left to try
accounting for? The answer to the second question is important for model selection,
a crucial task if one believes in the existence of a single true model that has generated
the observed behavior. If one does not, and wishes to avoid model selection by
employing model averaging, the answer to the second question remains important
for model weighting [49, 50].

While it is possible to employ different methods to answer the two questions,
we argue that the answer to both questions should be based on how much variance
is accounted for by the fixed effects predictors alone, rather than by the full model
including random effects. Thus, if one employs the R2 measures of fit for mixed-
effects models recently developed by Nakagawa and Schielzeth [51], the appropriate
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measure to use is marginal R2, rather than conditional R2. If one employs resampling
techniques we use here, one has no choice but to evaluate the predictiveness of a
model based only on the predictiveness of its fixed effects because the model is
tested on items it was not trained on.

4 The Problem

In current mixed-effects modeling of linguistic data, it is common to evaluate a
model by measuring how well the full model (including random effects) fits the
training data (e.g. [52], p. 281; [53–56]). This can be done using various measures
of fit like Somers’ Dxy, C (index of concordance), log likelihood and conditional R2.
Here, we use C but the problem would arise with any alternative measure, as long
as random-effects predictors are included in the evaluated model and the model is
tested on data with levels of random-effects predictors the model was fit to/trained
on.

We show that the accuracy of a mixed-effects model is maintained even
when the values of a real fixed-effects predictor are randomly scrambled, due to
the estimated contribution of a random-effects predictor. When the fixed-effects
predictors included in a model do not do a good job, a random-effects predictor
can rise to the occasion and capture the same variance.

We are not the first to make this argument in linguistics. Antić [57, 58] and Yao
[59] have likewise noticed this anecdotally and proposed that the goodness of a
fixed-effects predictor is verified if it can capture some of the variance that would
otherwise be attributed to a random effect. In other words, a more complex model
can be accepted over a less complex model if the more complex model uses fixed
effects to capture some of the variance that the simpler model attributes to random
effects.

For example, Antić [58] found that detecting a prefix was easier, with respect
to reaction time, when the word containing the prefix could be easily decomposed
into morphemes. She compared two mixed-effects models, one containing measures
of compositionality, her theoretically motivated fixed effects, and one that did not
contain them. Adding the measures of compositionality to the model did not make
the model have a better fit to the data but the measures accounted for 88% of the
variance that the model without these measures attributed to the random effect of
item. She concluded that compositionality does have an effect on prefix detection
reaction times, a conclusion that depends on the random effects “stepping in” to
capture residual variance when the fixed effects are not there to account for it.

We show that a random-effects predictor does indeed capture more variance
when the values of a useful fixed-effects predictor are scrambled (randomly
reordered). This can result in a model that achieves a good fit to the training
data but does so by fitting the data using random effects. When a model achieves
good fit to the training data using only random effects, it is essentially useless to
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generalize beyond the observed sample of words and/or speakers. The researcher
should therefore continue searching for additional fixed-effects predictors. However,
under the approach above, the best model from the set of models currently under
consideration may be evaluated as highly predictive, prematurely terminating the
search for additional predictors (due to incorrectly answering Question 1).

Similarly, a model containing additional fixed-effects predictors (the bigger
model) may be rejected in favor of a model with fewer predictors (the smaller
model) based on the two models fitting the training data equally well. We argue
that this is an incorrect answer to Question 2 when the fixed-effects predictors of
the bigger model capture variance that the smaller model captures using random
effects.

This raises the question of whether there is any reason at all to include the random
effects in the model: on the Antić/Yao approach, a fixed-effects predictor is accepted
if it covaries with the dependent variable whether or not random effects can capture
the same variance. We argue that this decision procedure is correct. However, we
also argue that random effects predictors are nonetheless useful with unbalanced
data typical of corpora for deriving predictive values of the coefficients associated
with fixed-effects predictors. In other words, accounting for the idiosyncrasies of
individual words allows one to build a more predictive grammar, one that shows
better generalization to novel words.

Following Pitt and Myung [60], among others, we test our models on unseen
data, a practice attested but uncommon in the corpus literature [61–63]. We fit the
model to data containing a random subset of the levels of a random-effects predictor
and test on the rest of the data. In this case, the model can only do a good job
predicting the values of the dependent variable in the test data by means of fixed
effects: the levels of the random effects in the test data are unfamiliar from training.
On this measure, a real fixed effects predictor performs better than its randomly
scrambled counterpart. The model tested on unseen data has only coefficients
associated with fixed effects. However, we show that for highly unbalanced datasets
typical of corpus data, the coefficient estimates are much better (in that they are
more predictive) when the random effect is included in fitting the model. These
results reaffirm the usefulness of mixed-effects modeling for corpus data [9, 10].

5 Simulations

5.1 Documenting the Problem

We created one thousand replications of a simple corpus study, in which there is one
fixed-effects predictor and one random-effects predictor influencing the probability
of reduction. The random-effects predictor was the identity of the word, while the
fixed-effects predictor was word frequency. In every replication, both predictors had
a real influence. The value of the dependent variable is determined by the value
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Fig. 6.1 Distribution of word effects in terms of probability of choosing the ‘reduced’ value
of the dependent variable (bimodal) and the corresponding logits (normal) for the words in the
simulations

of the fixed-effects predictor (word frequency), plus the idiosyncratic effect of the
individual word (item-level noise) and random observation-level noise. For each
replication, we created a new dataset by taking a new sample of frequencies from the
distribution in Fig. 6.3, as well as new samples from random distributions of item-
level and observation-level noise, which together define the values of the dependent
variable. The script file for this simulation is available at https://www.dropbox.com/
sh/7ablw99cg94vr7r/AAC-oYIMWEfZLYrKm_wrJmd9a?dl=0

The effect of word is shown in Fig. 6.1: some words are associated with one
value of the dependent variable while others favor the other value. The distribution
of probabilities is bimodal, as it should be, given the frequent observation that
speakers may be uncertain about the grammatical behavior of unknown words
and yet be certain about the behavior of the words they know (e.g., [19, 46, 64]).
Nonetheless, the distribution of the corresponding logits (log-odds) is quasi-normal:
if we compare the distribution for every replication to a normal distribution with the
same number of items, mean and standard deviation using the Kolmogorov-Smirnov
test, it comes out significant (p < 0.05) only 2.9% of the time in the sample of 1000
replications. Two normal distributions with the same mean, standard deviation and
number of observations come out as significantly different 3.2% of the time in the
sample. Thus, the distribution of item effects is quasi-normal in logit space, making
logistic regression appropriate for analyzing the data.

For every replication, we ran two mixed-effects models: one model included
the real fixed-effects predictor while the other included its randomly scrambled
version. Scrambling was done between items. In other words, in both models with
original frequency values and models with scrambled frequency values, frequency
was constant across observations of a single linguistic item. Thus the hierarchical
structure of the dataset was preserved. Each replication used a different random
scrambling of the values of the real predictor.

https://www.dropbox.com/sh/7ablw99cg94vr7r/AAC-oYIMWEfZLYrKm_wrJmd9a?dl=0
https://www.dropbox.com/sh/7ablw99cg94vr7r/AAC-oYIMWEfZLYrKm_wrJmd9a?dl=0
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Fig. 6.2 The distribution of the effect of frequency (left) vs. scrambled frequency (right)

Fig. 6.3 The distribution of number of observations across words for a corpus-like sample, in
which number of observations for a word is proportional to its frequency

Models were fit using the lme4 package in R (version 0.999999-0, [65]).
By comparing the two models to each other, we can then attempt to determine
the predictive power of the fixed-effects predictor. Figure 6.2 shows that the
manipulation worked: the fixed effect of frequency was greater than the fixed effect
of scrambled frequency: the coefficients for frequency center around 1.5 while those
for scrambled frequency center on zero.

For every one of the 1000 replications, two versions of the dataset were created.
In one version, the number of observations for each word was directly proportional
to its frequency: frequent words contributed more observations. Frequency (and
hence number of observations) was distributed according to the Pareto distribution
[33], illustrated in Fig. 6.3. This version is more likely to resemble the samples
obtained in a corpus study, where more observations are found of frequent items
(e.g., [7]). In the other version, each word contributed the same number of
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Fig. 6.4 Histograms of differences in C scores between a model that has real frequency values
and a model that contains scrambled frequency values as a predictor. The C scores for the model
containing the real predictor are no greater than the C scores of the control model that contains
scrambled frequency values as a predictor

observations, which was equal to the mean number of observations contributed by
a word in the other condition. (Thus, mean number of observations per word was
equated in the two sampling conditions). The balanced sampling scheme is usual in
experimental studies.

The first way we compared the models was using the Concordance index on the
entire dataset to which the models were fit, leaving the random-effects predictors
in the model (as suggested in [52]). The distributions of concordance indices for
balanced sampling and skewed sampling are shown in Fig. 6.4. As Fig. 6.4 shows,
the distributions are virtually identical: scrambling the frequency predictor did not
decrease the index of concordance of the model despite reducing the coefficient
associated with the fixed-effects predictor to zero. Because the coefficient associated
with the scrambled fixed-effects predictor is zero, the scrambled fixed-effects
predictor is useless for predicting the dependent variable. Nonetheless, the model
containing only the scrambled fixed effect plus random effects appears to be as
good as a model containing the real fixed effect and the same random effects.

This result confirms the hypotheses of Antić [57, 58] and Yao [59] that a real
predictor can nonetheless fail to contribute to how well a mixed-effects model fits
the data. The random-effects predictor steps in to capture the variance that the fixed-
effects predictor is no longer capturing once it is scrambled. The result holds for both
corpus data, where number of observations is correlated with values of the fixed-
effects predictor in question, frequency, and experimental data where the two are
uncorrelated and the number of observations per cell in the design is controlled. We
believe that this result conclusively argues against using fit of the complete model
(including random effects) to evaluate mixed-effects models.
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5.2 The Solution: Using Mixed-Effects Models to Derive
Coefficients of the Evaluated Fixed-Effects Models
When the Sample is Unbalanced

In the remaining simulations we turn to comparing the models on predicting the data
they have not been fit to by means of leave-one-out cross-validation (LOOCV). We
believe this is a good way to determine how predictive the different models are (e.g.
[60]) although other ways of testing predictiveness, including AIC scores [50] and
marginal R2 [51], would achieve the same aim.

On every replication, we again derived a new dataset in the same way as before.
We then cycled through all the items, training the models on all items but one
and testing it on the remaining, withheld, item. As before, we compared models
containing real frequency values to models containing scrambled ones. Since the
test item was withheld from training, the models’ random-effects predictor ‘item’
does not have a level corresponding to the test item. Thus, for every mixed-effects
model, we extracted the intercept and the coefficient associated with the fixed
effect of frequency and generated predicted values for the unseen item using those
coefficients and the observed frequency value of the unseen item.

The model we are testing now on unseen data is a fixed-effects-only model: the
only predictor is frequency, which is a fixed effect. This is the crucial difference
from the problematic method described in the previous section. The difference
is analogous to using marginal R2 rather than conditional R2 in Nakagawa and
Schielzeth [51].

While the evaluated model has only the fixed-effects predictor, the coefficient for
that predictor was estimated using the mixed-effects model. We reasoned that the
resulting estimate may be more accurate than one that would be obtained by fitting a
fixed-effects-only model to the training data because it would partial out variability
due to individual items. To test this idea, we also generated a fixed-effects-only
(near-)equivalent to every mixed-effects model using the glm() function in R. The
fixed-effects-only model had no random-effects predictors.

Figure 6.5 shows how well the resulting models fit the test data (measured by
a difference in prediction accuracy, i.e. accuracy on the test items withheld from
training) compared to models that contained scrambled frequency values. Each
point represents a different replication. If the real predictor allows the model to
achieve better prediction accuracy, we should expect the difference in accuracies to
be positive. The data suggest that having the random effect in the model that is fit to
the training data makes the coefficient associated with the fixed effect more accurate
when the number of observations varies, as in corpus studies.

The GLM and GLMM perform very similarly for the balanced sample: the right
(unscrambled) predictor is preferred by both models; model prediction accuracies
across replications correlate at r D 0.95, and both models achieve better prediction
accuracy with the unscrambled predictor, and therefore prefer the right predictor,
approximately 90–91% of the time (¦2(1) D 0.28, p D 0.6). However, the mixed-
effects GLMM is much more likely to achieve better prediction accuracy with the
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Fig. 6.5 Mixed-effects (GLMM) vs. fixed-effect-only (GLM) models and sampling. Negative
values indicate that the model achieves higher accuracy with the scrambled frequency values while
positive ones indicate that it achieves higher accuracy with real frequency values. With a balanced
(experiment-like) dataset to be trained on, GLM and GLMM perform similarly; with corpus-like
sampling, the GLMM is superior in distinguishing the real predictor from the scrambled predictor

real frequency values when number of observations varies along with frequency:
87% for GLMM vs.62% for GLM (¦2(1) D 154.3, p < 0.00001). We should
note that corpus-like sampling reduced the likelihood of achieving better prediction
accuracy with real frequency compared to scrambled frequency even for the mixed-
effects model (91% vs. 87%; ¦2(1) D 7.59, p D 0.006) but the mixed-effects model
shows a much better ability to cope with corpus-like sampling. These data suggest
that fixed-effects coefficient estimates are best estimated using mixed-effects models
for corpus data.

What is it then about the corpus-like data that causes fixed-effect coefficients
estimated on the basis of mixed-effects models to be so superior to those estimated
by the GLM? In particular, is it crucial that number of observations is correlated
with the values of the fixed-effects predictor in question? Is it crucial that predicted
values are biased in favor of the value of the dependent variable associated with
values of the fixed-effects predictor for which we have more observations? Is it
crucial that distinct observations of an item always have the same value on the fixed-
effects predictor? Or is the fact that different items contribute different numbers of
observations sufficient to make the coefficient estimates based on the mixed-effects
model superior? We argue that unbalanced sampling across levels of the random-
effects predictor is sufficient, hence the superiority of coefficient estimates based on
mixed-effects models should be true for all kinds of predictors in corpus studies.

To address this question, we switched the actual fixed-effects predictor to be
uncorrelated with frequency and item by randomly selecting the level of the
predictor (either “1” or “0”) for every observation. As before, the value of the
dependent variable for an observation was generated from the value of the predictor,
plus item-level and observation-level noise. The dependent variable was then a
function of both item identity and the value of the predictor but the value of the
predictor varied randomly within and across items. In this new simulation, the fixed-
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Fig. 6.6 Mixed-effects (GLMM) vs. fixed-effect-only (GLM) models and sampling. For balanced
samples, both models work very similarly and always prefer the real predictor; for corpus-like
samples, the fixed-effects-only model (GLM) is much more likely to fail to prefer the real predictor
whereas the mixed-effects model (GLMM) continues to almost always prefer the actual predictor

effects predictor differed from the fixed-effects predictor in previous simulations in
all potentially relevant respects: (1) it was binary rather than continuous, (2) the
value of the predictor was not correlated with number of observations of that value,
(3) it was also not predictable based on values of the random-effects predictor, and
(4) because of this, the dependent variable was equally likely to take on either value,
and was predicted to be equally likely to do so. Because the predictor varied within
items, scrambling was done by simply randomly sorting the predictor values.

Nonetheless, similar results were obtained (Fig. 6.6): for a balanced sample,
fixed-effects coefficients derived from both models are very similar (as a result,
prediction accuracies across different scramblings of the fixed-effects predictor are
highly correlated on the left in Fig. 6.6, r D 0.88), while for the corpus-like sample
the mixed-effects model is better at predicting the test data with the real fixed-
effects predictor than with the scrambled version (the mixed-effects model achieves
better prediction accuracy with the real predictor 87% of the time, while the fixed-
effects-only model does it only 21% of the time; the difference between the models
is highly significant: ¦2(1) D 554.5, p < 0.00001). The fixed-effects-only model
frequently achieves equally low predictive accuracy with either predictor (62% of
replications). Corpus-like sampling thus greatly diminishes the predictive power of
the fixed-effects-only model (reducing number of times that the model with the
correct predictor achieves better prediction accuracy from 99.5 to 21%). Corpus-
like sampling does also hurt the mixed-effects model (99.5 vs. 87% correct predictor
advantage, ¦2(1) D 5.2, p D 0.02) but to a much lower extent.

There is a strong correlation in real predictor advantages in prediction accuracy
between the two models when the sampling scheme is balanced but the correlation
breaks down when sampling is corpus-like. We suspect that this is due to the fixed-
effects-only model often basing its coefficient estimates to a large extent on the
large proportion of data that come from the one or two highly frequent items in the
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sample, which sometimes works out (when those items are typical) but often does
not, whereas the mixed-effects model is able to partial out the variance due to items.

In additional simulations, which we cannot report here due to space constraints,
we have also verified that these results hold for a continuous predictor that is
uncorrelated with frequency of an item and can vary within an item, for a binary
predictor that cannot vary within an item and does not correlate with frequency,
and for binary and continuous predictors that have effects whose slope varies
across items. Thus we suggest that the mixed-effects model is highly preferred
for unbalanced corpus-like samples whatever the predictor type. With balanced
sampling, there is no advantage to incorporating a random effect of item even if
there is such an effect when the aim is to generalize to new items. In contrast, with
unbalanced, corpus-like sampling, random effects are essential for obtaining fixed-
effects coefficient estimates that can be used to predict behavior on unseen items.

6 Limitations

A possible limitation of the present work is the exclusive use of leave-one-out cross-
validation. We do not wish to commit to leaving only one of the items out at any
one time. Leaving out, say, a tenth of all the items is a plausible alternative [66]
that could be explored in future work. The bootstrap [67], which differs from cross-
validation in that the data are sampled with replacement in constructing test and
training sets, is another possibility that we have been reluctant to pursue for the
purposes of these simulations as it would mean that the model would occasionally
be tested on data it has been trained on. Finally, it is also possible to evaluate model
predictiveness using AIC [50] and marginal R2 [51] or other measures of fit as long
as the random-effects predictors are left out of the evaluated model.

7 Conclusion

As argued above, corpus data present challenges in model evaluation: the data
are unbalanced (at least across items, but often also across speakers because
some speakers use the patterns of interest more than others). Frequent items often
behave differently from rare items and are more likely to be idiosyncratic. These
characteristics of corpus data require the use of mixed-effects models (particularly,
fitting a random effect of item) and incorporating a fixed effect of frequency. A
random effect of item helps improve estimates of coefficients associated with the
fixed effects, making them more predictive. A fixed effect of frequency allows
for the possibility of frequent words behaving differently from rare words (or,
more generally, for the possibility of lexical diffusion; see Kapatsinski [47], for
reasons why frequency effects can sometimes be non-monotonic as a change spreads
through the lexicon)
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While we argue for inclusion of a random effect of item in the analysis of corpus
data, we argue that evaluating the fit of the model should be done by examining
how much variance is captured by the fixed effects alone. We believe that evaluating
the fit of a model that includes the random effects is likely to overestimate the fit.
As a result, the researcher is in danger of prematurely terminating the search for
additional predictors to code (if a final model is being evaluated), to accept a simpler
model than is warranted by the data (if models are being compared and selected),
or, more generally, to assign too much probability mass to an overly simple model.

In our first simulation, we have shown that evaluating full mixed-effects models
containing random effects on fit to the training data does not allow one to select a
model containing a real fixed-effects predictor over a model that contains a predictor
whose values have been randomly scrambled. The problem is that when the fixed-
effect predictors in the model are not predictive, the random effects can “step in” to
capture the variance, allowing the model to still fit the data well. Nonetheless, this
model would be useless in generalizing to unseen items that it was not trained on.

When we test a model on unseen items, the random effect of item may a
priori appear to be of no use. Our simulations show that this intuition is incorrect.
Even when models are tested on how well they predict behavior on unseen
items, a mixed-effects model containing item identity as a predictor has higher
predictive power than a fixed-effects-only model, under certain conditions. Namely,
this advantage of mixed-effects models is seen for highly unbalanced samples
typical of corpus data but not for balanced experimental designs, confirming that
incorporating a random-effects predictor is particularly important when the number
of observations across the values of that predictor is unbalanced. Without the
random effect of item, the model may base its estimate of how the speaker will
behave largely on high-frequency items. This is a particularly important issue with
linguistic data, since high-frequency linguistic items are precisely the ones that are
likely to be exceptional. Mixed-effects models provide a way to deal with this
issue by partialling out the variance due to individual items, allowing for better
generalization to unseen items.
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Chapter 7
(Non)metonymic Expressions for
GOVERNMENT in Chinese:
A Mixed-Effects Logistic Regression
Analysis

Weiwei Zhang, Dirk Geeraerts, and Dirk Speelman

Abstract This paper focuses on the alternative choice between literal and
metonymic expressions for the concept GOVERNMENT from an onomasiological
point of view. With the help of mixed-effects logistic regression analyses, this
study models the binary designations for GOVERNMENT with the data from a self-
built corpus of texts from newspapers and online forums in Mainland Chinese and
Taiwan Chinese. Mixed-effects models also provide a way of accommodating the
random-effect factors such as the verbs in the data. The statistical results unveil that
the choice of literal vs. metonymic designations is a result of the complex interplay
of a number of conceptual, grammatical/discursive and lectal factors and no single
decisive factor would determine people’s onomasiological choice.

1 Introduction

Agreeing on the cognitive nature of metonymy, researchers in Cognitive Linguistics
are striving for highlighting the crucial role of metonymy behind the semantic
structure of language. Metonymy has been widely recognized to be instrumental in
sense development and meaning structuring both synchronically and diachronically.
In general, metonymy research in Cognitive linguistics is primarily being pursued
from the semasiological perspective, i.e. focusing on how a specific word has
acquired its lexical/grammatical metonymic sense and how a metonymy, as
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a mechanism of lexical innovation, triggers the compositional meaning of a
compound or an idiom [1].

However, a purely semasiological study on metonymy is not sufficient to describe
the function of metonymy. We should combine the semasiological perspective with
an onomasiological one. The latter helps to discover the different conceptual or
lexical “pathways” through which a concept or a group of concepts has developed
by going back to the respective source concepts [1]. In order to reveal the reasons
why a metonymic expression has been used, the onomasiological point of view has
to be taken into account [2]. It is impossible for us to find out the pragmatic effects
of metonymies, such as referring in the most economic and relevant way, causing
euphemistic or humorous effects, and so on, or to identify the reasons why speakers
choose the metonymic expressions, unless we examine a metonymic expression in
contrast with its non-metonymic counterpart from an onomasiological perspective
[2]. Therefore, the onomasiological choice of metonymic vs. literal naming for a
given concept is worth investigating.

If we argue for an onomasiological reorientation of conceptual metonymy
study, two questions which naturally arise are: what is people’s lexical/categorical
selection for a given concept (target), and what factors govern people’s choice
of a preferred designation or the alternative?. Answers to such questions are
fundamentally linked to a contextualized, pragmatic interpretation of onomasiology
[3], which focuses on an investigation of use, i.e. the actual choices made for
a particular name as a designation of a particular concept in real language. If
scholars are interested in the onomasiological choices for a particular referent
in actual language usage, they invariably, and unsurprisingly, need to situate the
issue in multivariate data for the possible variation. As Geeraerts points out, “a
variational analysis is unavoidable to factor out lectal variation from the corpus
data, but it is also a necessary and natural part of Cognitive Linguistics, to the
extent that lectal variation underlies a specific form of linguistic meaning” [4]. In
this paper, our primary interest lies in the lectal variation in the choice of literal vs.
metonymic designation for the referent GOVERNMENT in two of the lectal varieties1

of Chinese, Mainland Chinese (MC) and Taiwan Chinese (TC). Then, in order to
study the combined effects of multiple factors and to model differences among
internal and external factors, it is best to rely on quantitative statistical techniques,
which have come into language variation and change studies in the form of different
methods, such as generalized mixed-effects models (this volume), random forests
[7], multidimensional scaling [8–10], etc.

The primary aim in this paper is to provide a systematic way of disclosing
factors influencing the choice of designating one concept, i.e. GOVERNMENT, by
either a metonymic (e.g. Washington) or a literal expression (e.g. government).
There has been much interest in the past few years on the issue of PLACE

NAME FOR GOVERNMENT metonymies, especially CAPITAL/COUNTRY NAME FOR

GOVERNMENT (to name just a few [11–19]). So far the work that has been done

1A lectal variety refers to all types of language varieties or lects, such as regional dialects,
sociolects, basilects, acrolects, idiolects, registers and styles [5, 6].
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is mainly from a semasiological perspective. It is not immediately clear, however,
whether PLACE NAME FOR GOVERNMENT takes place or not in a certain context
if it does not combine the semasiological approach with the onomasiological one.
This case study attempts to show that it is essential and necessary to extend
studies on metonymy in an onomasiological and variationist Cognitive Linguistics
direction, with an emphasis on the lectal variation in the usage of PLACE NAME FOR

GOVERNMENT metonymy.

2 Methodology

2.1 Data Collection

2.1.1 Corpus Design

The data for this case study were taken from a self-built corpus which includes
texts from newspapers and online forums in two of the lectal varieties of Chinese.2

For Mainland Chinese, the People’s Daily and the Tianya Club were chosen for
the newspaper and the online forum, respectively. For Taiwan Chinese, the United
Daily News was selected for the newspaper and the PTT for the online forum. The
People’s Daily is a daily newspaper published worldwide. For this study, we selected
the Chinese-language edition published in Mainland. As the main official newspaper
of the Communist Party, it generally provides direct information on the policies and
viewpoints of the Party. The United Daily News is a daily newspaper produced by
the United Daily News (UDN) group and published in Taiwan. In terms of political
alignment, it is strongly Pan-Blue, i.e. pro-reunification, and conservative. Both
newspapers are quality newspapers. The Tianya Club is an internet forum, based in
Mainland China, with many sections, e.g. Worldlook, Entertainment, Fashion, and
Travel. The PTT, short for “Professional Technology Temple”, which is currently
located at National Taiwan University, is the largest Bulletin Board System in
Taiwan. It provides multi-topic online discussions including politics, social affairs
and entertainment. Because no special event happened in the time period during
which the texts were retrieved, it is unproblematic to not restrict the data resources
to the exact same time period. What is of particular significance for our concerns
is to design a relatively balanced corpus in terms of numbers of valid observations
among the four resources.

Two points on the corpus design should be pointed out here. First, in practice, we
have restricted ourselves to certain sections of the four data resources to make the
data collection more efficient. We excluded sections like entertainment, sports, and

2Texts from the four resources were captured with the help of several Python scripts. The People’s
Daily and the Tianya Club can be accessed at http://paper.people.com.cn/rmrb and www.tianya.cn/
bbs/. The United Daily News and the PTT can be accessed at http://udn.com/NEWS/mainpage.
shtml and http://www.ptt.cc/index.bbs.html. We thank Tom Ruette for his help on the Python script
for downloading texts from the Tianya Club.

http://paper.people.com.cn/rmrb
http://www.tianya.cn/bbs/
http://udn.com/NEWS/mainpage.shtml
http://udn.com/NEWS/mainpage.shtml
http://www.ptt.cc/index.bbs.html
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Table 7.1 Data resources

Mainland Chinese (MC) Taiwan Chinese (TC)

Newspaper People’s Daily (PD)
(Aug 17–22, 2010)
(376,084 characters)

United Daily News (UDN)
(Aug 17–22, 2010)
(309,313 characters)

Online forum Tianya Club (TYC)
(Aug 17, 2010)
(547,599 characters)

PTT.tw (PTT)
(Aug 17–Sep 10, 2010)
(25,493 characters)

health, in which the concept GOVERNMENT has very low frequency of occurrences.
Second, for the online forum resources, only original posts were downloaded.
Quotes from previous posts were not included. Reproductions from news material
were also removed to keep the online forum language data less infused with news
language.3 Table 7.1 presents information on the data resources.

2.1.2 Potential Expressions for GOVERNMENT and Data Retrieval

The next step was to establish lists of potential expressions for GOVERNMENT and
then to search for all of them in the self-built corpus. Before that, we have to
briefly explain the GOVERNMENT concept in the Chinese context. Government in
contemporary Chinese is conceptualized broadly as an administrative and executive
organ of the state at both central and local levels, and it is composed of legislative,
administrative and judicial institutions; narrowly, it is equal to the administrative
branch [20, 21]. The basic assumption here is that although different states vary
in terms of political systems, when Chinese people talk about the government of
a state, they unconsciously project their basic conceptualization of government
onto it. As long as the conceptualization of governments from different states in
Chinese does not have consequential heterogeneity, it is feasible to conduct an
onomasiological study.

As mentioned before, the main focus of this study is the alternative choices
between literal and metonymic designations for GOVERNMENT. For literal desig-
nations, there are two expressions,政府 zheng-fu “government” and当局 dang-ju
“authorities”. For metonymic designations, in this case study we only looked at
a specific metonymy, PLACE NAME FOR GOVERNMENT. Three main categories
of place names are included here: country names, capital names and official
residences of the state leader or government. We do not claim that we reach a
complete list of expressions for GOVERNMENT. Two lists of potential expressions
for GOVERNMENT were obtained, a literal one and a PLACE FOR GOVERNMENT

3For the Tianya Club, the first post of most thematic discussions is a copied news article which is
then followed by original posts, so we excluded all first posts from the Tianya Club to build the
online forum dataset for Mainland Chinese.
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one extracted from the internet.4 Examples (1) and (2) present portions of these lists.
The numbers in brackets indicate the number of expressions in each category. In this
study we also included the place name 大陆 da-lu “Mainland” as a country name
in the list. This term literally refers to the geographical area under the jurisdiction
of the People’s Republic of China, and it can be used to refer to “the Mainland
side (the PRC government)” in official contexts with reference to Taiwan in order to
avoid cross-strait5 conflict on the One-China policy.

(1) literal expressions (ND2)
政府 zheng-fu “government”,当局 dang-ju “authorities”

(2) place names
a. country names (ND241)
中国 zhong-guo “China”,日本 ri-ben “Japan”,美国 mei-guo “the United States”, etc.
b. capital names (ND209)
北京 bei-jing “Beijing”,华盛顿 hua-sheng-dun “Washington”,巴黎 ba-li “Paris”, etc.
c. official residences (ND25)
中南海 zhong-nan-hai “Zhongnanhai”, 白宫 bai-gong “White House”, 唐宁街 tang-
ning-jie “Downing Street”, etc.

Observations including the expressions in the lists were retrieved by Python scripts
from the corpus. Because the self-built corpus is not segmented or parsed, spurious
hits were manually removed. All valid observations were presented with one
sentence of context. For ambiguous cases, we could always trace back to the original
texts for further context.

2.1.3 Meaning Identification in Contexts

After cleaning up the observations retrieved from the corpus, we come up with
12,652 valid observations. Then, a manual identification procedure was conducted
to select observations in which the expression at hand has a meaning of GOVERN-
MENT. More precisely, in the present study, the concept is restricted to NONLOCAL

GOVERNMENT (or CENTRAL GOVERNMENT), as governments exist at different
levels. Next, we will explain the procedure for each category in turn: literal
expressions, country names, capital names and official residences.

4The country name list was extracted from http://zh.wikipedia.org/wiki/国家列表. The capital
name list was extracted from http://zh.wikipedia.org/wiki/各国首都列表. The official residence
names are cases like中南海 Zhongnanhai “the official residence of Chinese government leaders”,
白宫 bai-gong “White House”,唐宁街 tang-ning-jie “Downing Street”. Note that some countries
or capitals have different linguistic expressions in the two language varieties, for instance,
Washington has the Chinese equivalents 华盛顿 hua sheng dun in MC and 华府 hua fu in TC,
and New Zealand has the Chinese equivalents新西兰 xin-xi-lan in MC and纽西兰 niu-xi-lan in
TC. All possible linguistic variants are included in the list of place names for this study.
5When discussing affairs between Mainland China and Taiwan, the expression cross-strait is often
used as a general term in reference to the Taiwan Strait.

http://zh.wikipedia.org/wiki/
http://zh.wikipedia.org/wiki/
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Table 7.2 The semantic
structure of literal expressions
(政府 zhang-fu and当
局 dang-ju)

Meanings N %

Nonlocal government 557 45.73
Local government 504 41.38
Unspecific government 112 9.20
Other readings 45 3.69
Total 1218 100

Literal Expressions

In total, 1218 observations with literal expressions were extracted from the corpus.
The semantic structure of literal expressions (i.e.政府 zhang-fu “government” and
当局 dang-ju “authorities”) is displayed in Table 7.2. Generally, four main meanings
are identified for the literal expression category. The most common meaning of
the two literal expressions is “nonlocal government” of an explicit political entity;
see (3)a. The literal expressions may also refer to local governments at different
levels, such as local governments on the provincial or municipal levels as in (3)b.
Sometimes the contexts did not provide any clues to identify which specific political
entity the government belonged to; see (3)c. The final case includes observations
in which the two literal expressions have other readings like those of obsolete
governments that no longer exist as in (3)d.

(3) a. “nonlocal government”
日本[政府]可能会再推出新的振兴措施,以刺激疲弱的经济。 (UDN-Aug18)
The Japanese [government] may reintroduce new revitalization measures to stimulate
the ailing economy.
b. “local government”
玉树强震突如其来,灾区各级党委[政府]紧急动员。(PD-Aug20)
The Yushu earthquake struck so suddenly; Party committees and [governments] at all
levels in the stricken region conducted emergency mobilization.
c. “unspecific government”
你是[政府]领导人你不想你的国家好吗? (TYC-Aug17)
If you were the [government] leader, wouldn’t you wish your country well?
d. other readings
明朝李闯王反是不能推翻大明[政府]的。 (TYC-Aug17)
During the Ming Dynasty, Li Zicheng rebelled but he could not topple the Ming
[government].

To make the concept comparable, this onomasiological study only selected the cases
with the meaning of “nonlocal government”. At the same time, we noted down
any acts of government mentioned in the sentence for each “nonlocal government”
observation for the purpose of getting a better idea of what the duty of a nonlocal
government is, how it functions normally, etc. Such information can in turn serve as
a reference for the semantic identification of the place name category. For example,
one may clearly notice that one of the duties of a nonlocal government is to introduce
new economic measures from (3)a.
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Country Names, Capital Names and Official Residences

For the metonymy identification procedure of observations with place names, we
used an adaptation of the MIP [22, 23] and the annotation schema of Markert and
Nissim [15, 16]:

1. Read the entire sentence to establish a general understanding of the meaning.
2. a. For the place name in the text, establish its meaning in context, that is, how it applies
to an entity, relation, or attribute in the situation evoked by the text.
b. For each place name, determine its basic contemporary meaning, i.e. a loca-
tive/geographical meaning for all cases.
c. Decide whether the contextual meaning of the place name contrasts with the basic
meaning but has a contiguous relationship with it. Consult previous research on place
names [14, 15, 24–26] for potential contiguous relationship candidates, such as a contiguous
relationship between place and government/citizens/events, etc.
3. If yes, mark the place name as metonymic (MetoDyes). Then note its metonymic target,
like GOVERNMENT (NONLOCAL GOVERNMENT, MUNICIPAL GOVERNMENT), EVENT

(SUMMIT, SPORTS ACTIVITY, EXHIBITION : : : ), CITIZENS, etc.

In the following, we will introduce the identification procedure for each place name
category and various issues encountered in practice.

Country names have 10,428 observations in the corpus. Table 7.3 presents the
semantic structure of country names identified in this study. The most dominant
meaning is “territory/geographical entity”, which takes up 83.87%; see (4)a. The
semasiological structure of country names is not easy to capture. The complication
lies in the subtle difference between two concepts, i.e. GOVERNMENT and STATE.
The former is a major agent of the state and exists to carry out the day-to-day
business of the state, while the latter is a sovereign body, which is served by
a continuous succession of different governments [27, 28]. In brief, SOVEREIGN

STATE is a broader concept than GOVERNMENT, because the former includes several
basic elements like permanent population, a government and the capacity to enter
into relations with other sovereign states [29]. In many cases, a sovereign body
can also undergo a process of personification, as “an international person”, which
makes it less distinguishable from the case of a “nonlocal government” meaning.
For example, Japan in (4)b. should be interpreted as a sovereign state and by
personification it has an attribution of human characteristics, i.e. having the emotion
of fear. There is no explicit clue in the context for us to interpret the experiencer of
the emotion as the Japanese government. The experiencer might be a mixture of
Japan as an international person and Japanese citizens. The country name United

Table 7.3 The semantic
structure of country names

Meanings N %

Territory/geographical entity 8746 83.87
State as an international person 1283 12.30
Nonlocal government 295 2.83
Other metonymic targets 104 0.10
Total 10,428 100



124 W. Zhang et al.

States in this example is simply a modifier of the noun “aircraft” specifying its
attribute of “belonging to the United States”; therefore it stands for the sovereign
state as a whole instead of the United States government. The country name
Korea in (4)c is of interest for this study. It metonymically refers to “the nonlocal
government of Korea”, as one of the functions of governments is decision-making
on taxes. The sense differentiation between “state as an international person” and
“nonlocal government” sometimes is not straightforward. In those cases, the acts of
government noted down in literal expression observations of “nonlocal government”
(e.g. generally, decision-making on social, economic, political, and bureaucratic
affairs, to make and enforce laws; more specifically, to control or censor the press,
to conclude an agreement, to issue a declaration) could be used as references for
the judgment between the two meanings. We adopted a principle of minimization of
place name metonymy in this study. Therefore, for indeterminate cases of country
names, we do not code them as cases of “nonlocal government” meaning unless the
action/event expressed in the context has been confirmed as an act of government,
as noted from the literal expression category. Without a doubt, country names can
be metonymically used for other meanings (e.g. ORGANIZATION, NATIONAL TEAM,
EVENTS, CITIZENS). For example, Nicaragua, Ukraine, Canada and Mexico in (4)d
all metonymically refer to the national teams of these countries.

(4) a. “territory/geographical entity”
过去10年在[加拿大]也似的海豹死亡案例。 (UDN-Aug18)
Seal deaths occurred in [Canada] in the past ten years as well.
b. “sovereign state as an international person”
奇怪啊, [日本]为什么不怕[美国]航母在日本海演习? (TYC-Aug17)
So strange! Why isn’t [Japan] afraid of that the [United States] aircraft carrier is in the
Sea of Japan for exercises?
c. “nonlocal government”
[韩国]在此背景下提出征收 “统一税”,很容易引起国民的反感。
(PD-Aug18)
[Korea] (The government of Korea) proposed the “Unitary Tax” in this case, which may
create resentment among citizens.
d. other metonymic targets
中华队预赛四连胜, 分别击败[尼加拉瓜]、[乌克兰]、[加拿大]及[墨西
哥]。 (UDN-Aug23)
Chinese Taipei won four times successively in the preliminary competition, and it
defeated [Nicaragua], [Ukraine], [Canada] and [Mexico] (the teams from the four
countries).

Table 7.4 displays the semantic structure of capital names. Among 980 observations
of capital names, 94.98% cases literally indicate a locative sense with a geographical
feature; see (5)a. Around 2.65% cases involve metonymic processes for other targets
instead of NONLOCAL GOVERNMENT, e.g. LOCAL GOVERNMENT, TEAM, EVENT,
CITIZENS, as in (5)b. Only 25 cases of capital names metonymically express the
meaning of “nonlocal government” of a particular state; see (5)c. In terms of
types, only four capital names are found with the metonymic meaning of “nonlocal
government”: Beijing (ND19), Taipei (ND3), Moscow (ND2) and Washington
(ND1).
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Table 7.4 The semantic
structure of capital names

Meanings N %

Geographical range 929 94.98
Other metonymic targets 26 2.65
Nonlocal government 25 2.55
Total 980 100

Table 7.5 The semantic
structure of official residences

Meanings N %

Geographical range 23 88.46
Nonlocal government 3 11.54
Total 26 100

Table 7.6 Frequencies of
observations of NONLOCAL

GOVERNMENT in different
resources

Mainland
Chinese (MC)

Taiwan
Chinese (TC)

Newspaper 190 302
Online forum 208 180

(5) a. “geographical range”
还有一些台商,把库存货拿来[北京]卖。 (UDN-Aug23)
Some Taiwanese businessman sold stock goods in [Beijing].
b. “other metonymic targets”
今年[北京]启动城乡结合部50个重点村城市化建设。 (PD-Aug20)
[Beijing] (the municipal government of Beijing) starts the urbanization of 50 major
villages at the outskirts of the city this year.
c. “nonlocal government”
[北京]如今核准了慈济在大陆成立总会。 (UDN-Aug23)
Now [Beijing] (the Mainland Chinese government) approves the inauguration of the
Tzu Chi Foundation on the Mainland.

The corpus has 26 valid observations of official residences; see Table 7.5. Most
of them have the literal meaning of “a geographical range” as in (6)a. Three of
them, Zhongnanhai (ND2) (6)b and White House (ND1), metonymically refer to
the nonlocal governments of Mainland China and the United States respectively.

(6) a. “geographical range”
国务院总理温家宝17日在[中南海]紫光阁会见日本前首相。 (PD-Aug18)
Premier Wen Jiabao met with the former Japanese Prime Minister in the Ziguang
Pavilion of [Zhongnanhai] on August 17th.
b. “nonlocal government”
[中南海]牵挂着舟曲灾区。 (PD-Aug21)
[Zhongnanhai] (The Mainland Chinese government) is concerned about Zhouqu disaster
area.

After the meaning identification procedure for both literal expressions and place
names, a total of 880 cases with the meaning of “nonlocal government” remained.
The frequencies of observations with “nonlocal government” meaning in different
resources are presented in Table 7.6.
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2.2 The Variables

The 880 observations of NONLOCAL GOVERNMENT were then annotated for the
following variables. First, we will discuss the response variable, and then we will
present the predictors in the statistical model.

2.2.1 The Response Variable Meto

In the analysis of the data, we statistically modeled the designations of the concept
GOVERNMENT. What concerns us here are the binary designations of the concept:
literal expressions or PLACE FOR GOVERNMENT metonymy. The binary designation
of the concept is called the response variable in the statistical model and given the
label Meto. This response variable has two possible values, yes or no (metonymic
expressions or literal expressions). It is encoded automatically according to the
expression in the observation after the meaning identification procedure illustrated
in Sect. 2.1. If the expression is from the literal expression list, the observation
is coded with the value no; and with the value yes otherwise. In the dataset of
880 observations, we have 558 cases of MetoDno and 322 cases of MetoDyes.
Obviously, this is a slightly biased distribution with a percentage of 63.41% (cases
of MetoDno) versus a percentage of 36.59% (cases of MetoDyes).

2.2.2 The Predictors

The following predictors that represent conceptual, grammatical/discursive and
lectal variables were included in the statistical model.

Conceptual Variables

The Variable Con_gp

The variable Con_gp stands for “concept groups”. Although the general concept in
the present study is NONLOCAL GOVERNMENT, governments of different countries
vary greatly in terms of many facets. Therefore, a subdivision of the general
concept is proposed in the study. The basic assumption is that people’s choice of
designations between literal vs. metonymic expressions may be determined to some
extent by which country’s government they are talking about. For the present study,
we would like to test the effect of this conceptual factor on the usage of PLACE FOR

GOVERNMENT metonymy.
In all, 44 political entities are identified and their governments are grouped

into five subgroups: self (ND469), gpb (ND150), counterpart (ND105),
Asia (ND103), and neutral (ND53). This variable was encoded manually. The
Mainland Chinese government was assigned the value of self for observations
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from Mainland Chinese, and the value of counterpart for observations from
Taiwan Chinese. The Taiwan government was accordingly assigned the value of
self for observations from Taiwan Chinese and the value of counterpart
for observations from Mainland Chinese. The value gpb stands for “global power
brokers”, which includes the governments of the permanent members of United
Nations Security Council, including the governments of the US, the UK, France and
Russia. Governments of those countries which Chinese people may have neutral or
indifferent attitude towards were assigned the value neutral, e.g. the governments
of Belgium, Canada, etc. Finally, Asia was assigned to the governments of those
countries which are geographical neighbors of China, like the Japanese government,
the Korean government, etc.

Value assignment for this variable involves a number of complications. For
example, some governments may have multiple values: in principle, the Mainland
Chinese government should belong to self, counterpart and gpb groups. To
make things simpler we excluded it from the gpb group. In addition, we presumed
that people from Mainland China and Taiwan might have similar emotional attitudes
towards certain countries (e.g. Con_gpDneutral), which might bias the data.
In fact, emotional attitudes towards certain countries may diverge to some extent
between people from the two lectal varieties. The coding of this variable is just
a simplification for the purpose of testing the influence of the conceptual factor,
i.e. different governments, on the naming choice. Based on the previous studies of
capital name metonymy [19, 30], we expect one’s own government (with the value
self), to which people may feel closer, to have the lowest frequency of metonymic
designation; while governments of counterparts or of “global power brokers”, which
are further from the self, should favor metonymic designation [12].

The Variable Topic

The variable Topic stands for the topic of the text from which the observation
was extracted. Five values were assigned for this variable: worldwide (ND423),
socialaffairs (ND192), crossstrait (ND124), domesticpolicy
(ND91), and finance (ND50).

Some observations were automatically assigned the value for this variable when
the “section restriction” of the data resources indicated the topic of the text. For
example, we included the “Finance/Business” sections of the newspapers and
online forums. Observations from this section were automatically given the value
finance. Many sections, however, do not specify the topics of the texts in the
section. For instance, three sections from the People’s Daily, i.e. 综合 zong-he
“News Roundup”, 视点 shi-dian “Opinions” and要闻 yao-wen “Daily Selection”
were downloaded. None of the section names indicate their specific topics. A more
refined classification of their topics was conducted semi-automatically: an Instance
Based Learning algorithm, implemented in Python, proposed a topic based on the
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title of the text, and then we verified the propositions that had low certainty.6 If the
observation was in the title (20 cases in total; see the variable Locus), the topic was
manually identified.

The purpose of this variable is to test the influence of topic on the choice of
literal vs. metonymic designations for a concept. The hypothesis is that there might
be more PLACE FOR GOVERNMENT metonymy in the worldwide topic and in the
crossstrait topic, as in bilateral or multilateral international affairs, people tend to use
juxtaposed metonymies [19]: that is, more than one metonymy used in one sentence.

Grammatical/Discursive Variables

The Variable Syn

The variable Syn was coded for the syntactic position of the expression in each
observation. It has two possible values: when the expression is in a non-subject
position, the value of Syn is assigned nonsb; when the expression is in the
subject position, the value sb is assigned. In the dataset, we have 193 cases of
SynDnonsb, and 687 cases of SynDsb, see (7) and (8) respectively.

(7) SynDnonsb
a.美国[政府]的推力被认为是主要原因。 (PD-Aug21)
The thrust force from the [government] of the United States is regarded as the main
reason.
b.你倒是一连串帮[菲律宾]打圆场,说人家有派人来解释了,很罕见了够了。
(PTT-Aug28)
You, opposite to what we should do, are trying so hard to smooth things out for the
[Philippines] (the government of the Philippines) by saying that they have already
done what they need to do, which is rare, so we should be satisfied.

(8) SynDsb
a.[南韩]为了发展英语教育吸引外国投资,在济州岛规划了一座 “济州全球教
育城”。
(UDN-Aug30)
To develop English education and attract foreign investors, [Korea] (the government
of Korea) plans to build a “Jeju Global Education City” in Jeju City.
b.韩国[当局]在叫嚷 “武力统一”之余,干脆把射程1500公里的巡航导弹部署
到了 “三八”线边。
(PTT-Sep28)
After calling for “unifying by force”, the Korean [authorities] have deployed their cruise
missiles with 1500 km range to areas close to the 38th parallel.

6We have segmented the titles of all texts based on the Chinese Lexical Analysis System
from the Institute of Computing Technology (ICTCLAS, http://ictclas.org/index.html). The topic
classification was based on the title of each text. Instance Based Learning classifies unseen texts
into the category of its most similar text in a manually annotated corpus. Similarity between two
texts is measured by representing each text as a vector in a Euclidian space and taking the cosine of
the angle between the two vectors. For the current task, a 3-Nearest Neighbor approach was used.
A formal introduction to Instance Based Learning can be found in Chapter 8 of Mitchell [31]. We
thank Tom Ruette for his help on the topic-identification programming script.

http://ictclas.org/index.html
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The hypothesis is that when the expression is in a subject position of a sentence, it
has a higher possibility of choosing place for government metonymy than when it is
in a non-subject position. Previous semasiological research has already shown that
place name metonymies may occur more often in subject position [14, 19, 25].

The Variable Locus

This variable Locus simply encodes whether an observation is drawn from the
main body or the title of the text. It was encoded automatically with two possible
values, i.e. mainbody (ND860) and title (ND20). As stated in Papafragou [32],
metonymy can be regarded as an economical means to express information during
communication. Hence, due to word limits, titles are expected to have a higher
density of metonymy than the main body of the text.

Lectal Variables

The Variable LangVar

The variable LangVar deals with the lectal effect on the usage of PLACE

NAME FOR GOVERNMENT metonymy in the two lectal varieties. It was encoded
automatically and has two possible values: MC (398 cases) and TC (482 cases). The
purpose of this variable is to test whether MC and TC have any significant difference
in the choice of literal vs. metonymic expressions for NONLOCAL GOVERNMENT; or
in other words, to test whether or not the lectal factor plays a role in people’s usage
of place name metonymy. Based on the findings from an earlier semasiological study
[19], we expect that there might be more PLACE FOR GOVERNMENT in Taiwan
Chinese.

The Variable Style

The variable Style stands for the two stylistic resources, news and online forums.
It has two possible values: 492 cases with the value of news and 388 cases with
the value of forum. One could speculate that the naming choice is influenced
by stylistic effects. We did not have any specific expectations with regard to this
variable.

2.2.3 Summary of the Variables

So far, we have introduced all the variables coded for the statistical model. Table 7.7
provides an overview of predictor conditions and predicted effects of all variables.
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Table 7.7 Overview of the predictions to be tested in the regression analysis

Predictor (fixed effect) Predictor condition Predicted effect

Conceptual variables Con_gpDself disfavors MetoDyes

TopicDworldwide favors MetoDyes

Grammatical/discursive variables SynDsb favors MetoDyes

LocusDtitle favors MetoDyes

Lectal variables LangVarDTC favors MetoDyes

StyleDnews favors or disfavors MetoDyes

2.3 The Mixed-Effects Logistic Regression Model

The statistical model used in the present study is a mixed-effects logistic regression
model, which is a statistical modeling with a binary response variable (such as in
this case study MetoDyes or MetoDno) and with multiple explanatory variables
containing both fixed effects and random effects, i.e. mixed effects [33–36]. The
analyses were carried out based on the lme4 package in R [37]. In this section, we
will explain the mixed model in three parts: the random effect, the model selection
and diagnostics, and the output of the regression model.

2.3.1 The Random Effect: Verb

The predictors introduced in Sect. 2.2 are all fixed effects, which are unknown
constants that we try to estimate from the data [35]. In the present study, we also
included a random variable in the statistical model. When the expression is in the
subject position, we coded the verb or the predicate in the sentence as the random
variable Verb. If the expression is not in the subject position, the variable Verb
was assigned the value irrelevant; otherwise, we noted down the specific verb
as the value, e.g.是 shi “be”,宣布 xuan-bu “claim”,制定 zhi-ding “establish”,采
取 cai-qu “adopt”. In total, the value of Verb has 383 different levels. There might
be strong verb-specific trends in the data: some verbs inherently favor MetoDyes
and some verbs favor MetoDno. We could regard these verbs as sampled randomly
from populations of verbs, and replicating the data collection may involve some
other verbs. At the same time, we are not particularly interested in the individual
probabilities of these specific verbs, which might well vary substantially, but in
the population averages of verbs. To control this verb-specific trend or “noise”,
we treated Verb as the random variable in the mixed-effects logistic regression
model, so that the model algorithm would adjust the intercept estimate for each
verb depending on its influence in the data.
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Table 7.8 Summary statistics of mixed models without and with interactions

Summary statistic Mixed model without interactions Mixed model with interactions

Number of observations 880 (of which 322 “metonymic” and 558 “literal”)
AICa 920.4 903.1
C 0.865 0.871
Somer’s Dxy 0.730 0.739

aAIC of an intercept only model is 1157.9

2.3.2 Model Selection and Diagnostics

A forward selection procedure resulted in a model with the predictors Con_gp,
Section, Syn, Style, and Locus, and with the interaction Con_gp:Style.
The model was confirmed by the procedures of both bootstrapping validation and
cross-validation in order to avoid overfitting the data. The model also contains a
random intercept for Verb. The R code for the model is as follows:

lmer(Meto ~ Con_gp C Section C Syn C Style C Locus C
Con_gp:Style C (1jPredicate), data D mydata, family D binomial)

Before interpreting the detailed results, we would like to show some general
information for two models: the mixed logistic regression model without interac-
tions and the mixed logistic regression model with interactions (see Table 7.8). Two
important indices should be mentioned here: the C index and the Somer’s Dxy.7

For both indices, a value close to 1 indicates that the model has good predictive
ability. Therefore, the overall quality of the mixed model with interactions is
more satisfactory. At the same time, the mixed model with interactions is verified
as a more promising model with substantially higher predictive power than a
fixed-effects only model with interactions, which has a C index of 0.819 and a
Somer’s Dxy of 0.638, or a random effect only model, which has a C index of
0.862 and Somer’s Dxy of 0.725. In the following section we will discuss the
detailed results of the mixed-effects logistic regression model with the interaction
of Con_gp:Style.

2.3.3 The Regression Output

Table 7.9 shows the statistical output of the final model in the present study. Some
important remarks of the logistic regression can be found in Speelman and Geeraerts

7The C index (or concordance index), ranging from 0.5 to 1, is used to measure the predictability
of the logistic regression model. It is the “area under the ROC curve” to quantify the power of
the model’s predicted values to discriminate between positive and negative cases. A C index of 1
indicates perfect prediction; a C index of 0.5 indicates random prediction [38]. The Somer’s Dxy

provides a rank correlation between the predicted probability and the observed responses ranging
from 0 to 1.
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Table 7.9 Statistical output of the mixed effect logistic regression (general model)

Estimate
Std. Error z value Pr(>jzj)

(Intercept) -2.5007 0.4877 -5.128 2.93e-07

Con_gpDcounterpart 3.7240 0.4525 8.231 < 2e-16

Con_gpDgpb 1.9408 0.3875 5.009 5.47e-07

Con_gpDneutral 0.7256 0.4422 1.641 0.100803

Con_gpDAsia 1.0167 0.3925 2.590 0.009600

TopicDfinance -2.3558 0.7043 -3.345 0.000823

TopicDcrossstrait -0.1967 0.2976 -0.661 0.508708

TopicDdomesticpolicy -1.6979 0.3668 -4.629 3.68e-06

TopicDsocialaffair -1.2266 0.2934 -4.180 2.91e-05

SynDsb 1.0821 0.4244 2.550 0.010779

StyleDforum 1.5651 0.2994 5.228 1.72e-07

LocusDtitle 1.4812 0.6357 2.330 0.019799

Con_gpDcounterpart:StyleDforum -2.5740 0.5855 -4.397 1.10e-05

Con_gpDgpb:StyleDforum -1.4238 0.4872 -2.923 0.003470

Con_gpDneutral:StyleDforum 0.3332 1.4168 0.235 0.814067

Con_gpDAsia:StyleDforum -0.2011 0.5583 -0.360 0.718643
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Fig. 7.1 Visualization of the interactions in the general model

[39]. The response of the model in this case is the logit of MetoDyes. The esti-
mates are indeed on the logit scale and we used treatment contrast for the predictors.
The reference levels of the predictors are Con_gpDself, TopicDworldwide,
SynDnonsb, StyleDnews, and LocusDmainbody.

Following the work of Speelman and Geeraerts [39], we graphically represent
the interactions in the model as in Fig. 7.1. The x and y axes in the plots represent
the interacting predictors and the z axis (the height) represents the joint effect of
the two interacting predictors on the logit. On both x and y axes, the arrows run
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from the baseline values to the alternative values (the values in the brackets) of
the predictors.8 The significant interaction of Con_gp:Style indicates that
a change of value in Con_gp systematically changes or reverses the effect
of Style: compared to the baseline of Con_gpDself and StyleDnews
the effect pro MetoDyes is slightly positive (logitD1.5651) in the case of
Con_gpDself and StyleDforum, more positive (logitD2.7151) in the
case of Con_gpDcounterpart and StyleDforum, and most positive
(logitD3.7240) in the case of Con_gpDcounterpart and StyleDnews
(see the left plot). Similarly, compared to the baseline of Con_gpDself and
StyleDnews the effect pro MetoDyes is slightly positive (logitD1.5651) in the
case of Con_gpDself and StyleDforum, more positive (logitD1.9408) in the
case of Con_gpDgpb and StyleDnews, and the most positive (logitD2.0821)
in the case of Con_gpDgpb and StyleDforum (see the right plot).

3 The General Regression Model for GOVERNMENT

In this section, we will interpret the statistical output of the mixed-effects logistic
regression for the concept GOVERNMENT following the order of predictions listed in
Table 7.7. Because a significant interaction was found with the predictors Con_gp
and Style, these two predictors will be interpreted together (Sect. 3.2). First,
however, we will comment on the general impact of the predictors in Sect. 3.1.
Finally, the idiosyncrasy of the random variable will be discussed in Sect. 3.3.

3.1 General Impact of the Predictors

The relative importance of the predictors in this model is displayed in Fig. 7.2. The
predictors are ordered according to their importance for their explained variation in
the data. Apparently, Con_gp stands out as the most important predictor. The lectal
factor Style as well as the conceptual factor Topic appear to have more impact
on the variation than the grammatical factor Syn. The least influential predictor is
the discursive factor Locus. The strong impact of the predictor Con_gp aligns
with the expectation that governments of different sovereign states vary to a large
extent with regards to speakers’ choice of literal vs. metonymic expressions. This

8The 3D-graph visualization of the interaction was implemented in R [40]. Three more remarks
need to be made about the z axis: “First, the plots are artificial in the sense that our predictors can
assume only two possible values and that the only situations that can actually occur are represented
by the four corners of the surfaces in the plot. Second, although in the plots the z axis is represented
on a logit scale, we will describe the effects in terms of increased or decreased predicted probability
of [MetoDyes]. Third, four small dots in the corners of each plot indicate the zero position on
the z axis. This helps us to see whether joint effects are positive or negative” [29].
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Fig. 7.2 Predictor
importance in the model
(fixed-effects only)
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finding is quite intuitive. People do have different degrees of familiarity or emotional
involvement with the governments of different states, and this conceptual difference
may account for the difference in naming strategies. For example, for the states
which people have no acquaintance with, their capital names or official residences
of the governments may not be good candidates for metonymic expressions, as the
hearer may not be able to process the metonymic link between the place name and
the target.

3.2 Specific Influence of Fixed Effects

3.2.1 The Variable Con_gp and the Variable Style

For the interacting terms, the interpretation is less straightforward because the two
predictors are no longer independent. With the help of the 3D graphs in Fig. 7.1,
we find that: (1) (see both plots) when one’s own government (Con_gpDself) is
mentioned, it has the least probability of choosing metonymic expression in news-
paper language; in other words, the probability of choosing metonymic expressions
is much higher in online forums than in newspapers. (2) (see the left plot) whenever
the observation mentions the counterpart government (Con_gpDcounterpart),
the probability of choosing metonymic expressions is lower in texts from online
forums than from newspapers; the increase of probability of metonymic expressions
when the predictor Con_gp runs from the baseline self to counterpart
is less evident in the online forum sources than in the newspaper sources. (3)
(see the right plot) whenever the observation mentions a “global power broker”
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government (Con_gpDgpb), the probability of choosing metonymic expressions
is slightly higher in online forums than in newspapers; the probability of metonymic
expressions increases less dramatically when the predictor Con_gp runs from the
baseline self to gpb in online forums than in newspapers.

These findings confirm the predictions to some extent. Indeed, one is less
likely to choose metonymic expressions for one’s own government. However,
it must be added that the way in which this happens is codetermined by the
joint effect of the concept group and the stylistic status. We may expect more
metonymic expressions even for one’s own government when it is in an online
forum situation. In other words, the probability differences between self and
counterpart or between self and gpb governments diminish in the online
forum language. Because the situation of Con_gpDself and StyleDnews has
the least probability of choosing metonymic designations, we can speculate that
the emotional involvement and the formality of language may jointly play a role
here.9 For different governments, people may have different degrees of emotional
involvement or closeness, which in turn may contribute to the different designations
for self and counterpart/gpb governments. The function of place name
metonymy in creating or reflecting emotional distances has been discussed in the
previous research: one’s own capital, which is closest to the self, may serve as a
metonymic source [12, 14, 19]. A conceptual metaphor might play a role in our
thinking on this issue: CONCEPTUAL/EMOTIONAL DISTANCE (I.E. FAMILIARITY

AND INVOLVEMENT) IS LINGUISTIC DISTANCE. For governments with which we
have a close emotional attachment, we may tend to use the literal expression, which
is more direct. For governments with which we have no emotional proximity, place
name metonymy, as a less direct naming strategy, may provide a tool to reflect the
distance. Newspapers, whose style is relatively formal, may also be influenced by
certain political constraints and correctness, and journalists may have a closer stance
towards their own government. Therefore, to show respect and care to their own
government, when talking about it, it is perhaps no surprise then that journalists

9The interpretation of the relation between place name metonymy and emotional involvement
towards specific governments is, of course, tentative. A careful and refined measurement of
people’s emotional attitudes is a must for a better appreciation of such relation. Apparently, the
emotional involvement has both positive and negative sides. One may suspect that the two sides of
emotional involvement could have quite different impacts on the choice of literal vs. metonymic
expressions for GOVERNMENT. In the present study, we have not distinguished the specific effects
of different kinds of emotional involvement, as it is very difficult to measure people’s emotional
attitudes toward the concept GOVERNMENT with the limited contexts. At the same time, individual
journalists and online forum users may not have homogeneous types or degrees of emotional
involvement towards governments. In addition, as Milić and Vidaković have proved, several
reporter-related factors can influence the usage of CAPITAL FOR GOVERNMENT, for example,
the reporter’s whereabouts (abroad or home) and standpoint on the issue being reported [17].
One possible direction for further study on this issue would be a sentiment analysis of each text
from which an observation is retrieved, which we would measure the positive, negative or neutral
emotional attitudes of the journalist or online forum user toward the government in question, i.e.
he/she is supporting or criticizing the government or stating a government-related affair in a neutral
way.
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tend to use the default, literal expression instead of a PLACE FOR GOVERNMENT

metonymy. In online forums, however, language is less formal and users may feel
less restricted in their language usage. At the same time, users may take a stance
of emotional distance from their own government and they do not have to show
their involvement in the relation with the government. Therefore, online forum users
could also address their own and other governments in similar ways of by using
place name metonymy. It is up to further research to pin down how these two factors
codetermine people’s usage of metonymy more exactly.

3.2.2 The Variable Topic

Compared with the baseline value worldwide (international affairs), the three
topics of domestic policy, finance and social affairs noticeably disfavor metonymic
designations for GOVERNMENT. In other words, in texts about international affairs,
there is a relatively higher density of PLACE FOR GOVERNMENT metonymy. A
possible interpretation for the variation found here is: multilateral affairs in an inter-
national situation involve multiple governments. In terms of number of characters,
place name metonymy is shorter than the literal designation for GOVERNMENT

in Chinese. For an economical purpose, we may refer to different governments
metonymically by their country names or capital names, see (9), instead of the literal
expressions in one sentence.

(9) [俄罗斯]和[伊朗]当天还签署了关于组建合资企业联合管理核电站的文件,
双方将各出一半资金。 (PD-Aug22)
[Russia] (The government of Russia) and [Iran] (the government of Iran) signed
documents on setting up joint ventures for the joint management of nuclear power
plants that day. They will both pay half of the funding.

3.2.3 The Variable Syn

The statistical model shows that the subject/non-subject distinction is also respon-
sible for the naming choice for GOVERNMENT. The prediction that a metonymic
designation is preferred in subject position is confirmed by the model. This pro-
vides supplementary evidence from an onomasiological perspective to the relation
between metonymy and its syntactic position. Previous semasiological research has
already shown that metonymies (esp. country, capital and organization names) seem
more natural as subject [14, 19, 25, 41].

A tentative interpretation is provided for the positive correlation between
metonymy and the subject position. The syntactic characteristic of metonymy
may be attributable to the interaction of metonymy and agency. As we know, the
deployment of metonymy (in this case, using place names) may generate ambiguity
[42]. This ambiguity, however, may camouflage or blur the responsibility and
accountability of the government by using place name metonymy to shift agency
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from the actor, i.e. the government (“a group of people”), to a non-agent locative
entity, i.e. the country or the capital [43, 44]. Yamamoto studies the manipulation
of the expression of agency as political maneuvers in media and points out that the
attribution of agency means an assignment of responsibility [45]. Therefore, the
impersonality of place names could reduce the accusation that the government is
responsible for particular consequences.

A collateral consequence of this interpretation is that the relation between
metonymy and subject position cannot be considered in isolation. The side effect
of predicates has to been taken into account. Intrinsically, some predicates (e.g.宣
称 “claim”, 宣布 “announce”, 决定 “decide”) require an agentive subject, while
others (e.g.是 “be”,需要 “need”,遭受 “suffer”) do not have this requirement. It is
legitimate to ask whether individual predicates in sentences affect the agentivity of
the subject, which in turn affects our choice of literal vs. metonymic designations.
This is one of the reasons why we have included Verb as a random variable in the
mixed-effects model. We will comment on the random variable Verb in Sect. 3.3.

3.2.4 The Variable Locus

The estimate shows that compared to the main body of texts, the title favors
metonymic designation. This finding upholds the effective and economical com-
municative function of metonymy. Many scholars have already pointed out the
linguistic economy of the use of metonymy [46–48]. With word limits, the title
may have a higher density of place name metonymy, which is shorter in number of
characters than the literal expressions, see (10).

(10)政治谈判 [北京]不急 (UDN, Aug-21)
[Beijing] (The Chinese government) shows no anxiety about the political negotiations.

3.2.5 The Variable LangVar

Regrettably, predication that there is significant variation between Mainland Chi-
nese and Taiwan Chinese is not borne out in this general model for GOVERNMENT.

3.3 The Random-Effect Variable of Verbs

The random variable in the model, Verb (in total, 383 levels), has a variance of
0.462 with a standard deviation of 0.680. Each level of the random variable has an
adjustment to the intercept of the model. Table 7.10 presents the top five adjustments
that increase the probability of MetoDyes, and those that encourage MetoDno.
Each adjustment is added to the intercept estimate of the model to get the estimated
value of MetoDyes for the observation with that verb.
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Table 7.10 Top five pro MetoDyes and pro MetoDno adjustments for Verb as random effects

PLACE FOR GOVERNMENT metonymy (MetoDyes) Literal expression (MetoDno)

签署 qian-shu “sign” 1.281 征收 zheng-shou “impose” �0.577
反对 fan-dui “be opposed to” 0.936 表示 biao-shi “express” �0.564
解决 jie-jue “solve” 0.779 管控 guan-kong “control” �0.491
举行 ju-xing “hold” 0.634 维持 wei-chi “maintain” �0.491
炒作 chao-zuo “sensationalize” 0.634 干预 gan-yu “intervene” �0.433

When we discussed the predictor Syn, we mentioned that the inherent properties
of predicates may determine the agentivity of subjects, which in turn plays a role
in the naming choice for GOVERNMENT in the subject position. The adjustments
of random effects in the present model do not show a clear division of predicates
between cases pro MetoDyes and cases pro MetoDno in terms of the require-
ment of agentivity on subjects. All the verbs listed in Table 7.10 require agentive
and animate subjects. However, it is not always easy to measure the agentivity of
the subjects required by a given verb in a quantitative way.

By including the random variable Verb as compensation for the intercept we
assume that there is a random-effect factor of verbs. With a close examination of
the specific activity involved, we may find that these verbs show idiosyncrasies: the
verbs签署 “sign”,反对 “be opposed to”, and解决 “solve” often involve topics of
international affairs, which boost the usage of metonymic expressions, according to
the fixed effect estimates. While, the verbs征收 “impose (tax)”,管控 “control (the
press)”,维持 “maintain”,干预 “intervene” frequently appear in texts with domestic
policy and finance topics, which disfavor PLACE FOR GOVERNMENT metonymy
(see discussion on the predictor Topic). The mixed-effects model keeps these
verb-specific effects apart and precludes the random-effect factor of verbs from
influencing in the estimates of fixed effects.

4 The Separate Regression Model for MAINLAND CHINESE

GOVERNMENT

In Sect. 3, we interpreted the statistical output of the model of all 880 observations
for the concept GOVERNMENT. As shown in the model, no significant lectal varia-
tion is found between the two language varieties of Chinese. Section 4 will discuss
a separate model for a specific concept, MAINLAND CHINESE GOVERNMENT, in
order to find whether hidden lectal variation exist between Mainland Chinese and
Taiwan Chinese.

When we zoom in on the MAINLAND CHINESE GOVERNMENT (MCGOV), we
come up with 308 valid observations. Among these 205 cases are from Mainland
Chinese and 103 are from Taiwan Chinese. Figure 7.3 shows that the predictor
LangVar seems to have an effect on the presence of metonymic designation
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Fig. 7.3 The predictor
LangVar affecting the
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Table 7.11 Statistical output of the mixed effect logistic regression (separate model)

Estimate
Std. Error z value Pr(>jzj)

(Intercept) -1.23352 0.55812 -2.210 0.027097

LangVarDTC 2.48711 0.44462 5.594 2.22e-08

StyleDforum 0.38634 0.58083 0.665 0.505948

SynDsb 0.04543 0.60886 0.075 0.940527

LocusDtitle 1.80832 1.21884 1.484 0.137904

LangVarDTC:StyleDforum -2.18609 0.58391 -3.744 0.000181

StyleDforum:SynDsb 1.28968 0.65553 1.967 0.049139

for this specific concept: Taiwan Chinese favors place name metonymies while
Mainland Chinese favors literal ones. To confirm this hypothesis quantitatively,
we fitted a mixed-effects logistic regression model with the same response variable
and all the predictors except Con_gp from the general model (Con_gp brings the
multicollinearity problem to the model).

4.1 The Separate Mixed-Effects Model

The output of the separate mixed-effects model with Verb as the random effect
(166 levels) is displayed in Table 7.11. The R code for the separate mixed-effects
model is:

lmer(Meto ~ LangVar C Style C Syn C Locus C LangVar:Style C
Style:Syn C (1jPredicate), data D cndata, family D binomial)
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Fig. 7.4 Visualization of the interactions in the separate model

The summary statistics show that the model has better predictive power and
explanatory strength (AICD379.9, CD0.830, Somer’s DxyD0.661) than a fixed-
effects only model, which has a C index of 0.741 and a Somer’s Dxy of 0.483.
The AIC of an intercept only model is 428.86.

In this separate model, the predictor Topic was not significant, and was
eliminated from the model. LangVar has been included and shows a significant
influence on the response variable. However, the interpretation of the predictor
LangVar needs to be done with caution, as there is a strong interaction between
LangVar and Style. In addition, Style also interacts with the predictor Syn. To
provide a better understanding of the interactions in the separate model, we present
them in Fig. 7.4, which gives a 3D graphical visualization of the joint effects. We
will mainly interpret the joint effects of LangVar and Style in the next section.

4.2 The Lectal Variation Between Mainland and Taiwan
Chinese

The significant interaction between LangVar and Style reveals this: compared
to the baseline of LangVarDMC and StyleDnews the effect pro MetoDyes is
slightly positive (logitD0.3863) in the case of LangVarDMC and StyleDforum,
more positive (logitD0.6874) in the case of LangVarDTC and StyleDforum,
and most positive (logitD2.4871) in the case of LangVarDTC and StyleDnews.
In other words, the distinction between Mainland Chinese and Taiwan Chinese in
terms of metonymic usage only has an strong effect in the context of newspaper
texts. In online forum texts, this lectal effect is a minor one (the increase of
probability of MetoDyes is unsubstantial when the value of LangVar runs from
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MC to TC). The effect of online forum texts as a trigger for place name metonymy
is restricted to Mainland Chinese. For Taiwan Chinese, the effect is reversed: the
probability of place name metonymy decreases abruptly when the value of Style
runs from news to forum.

In brief, the effect of the lectal factor, LangVar, is strongly dependent on
the stylistic status of the text. LangVar contributes even more notably to the
increase of metonymic designations in the newspaper language than in the online
forum language. Put differently, we see a great divergence with regard to the
choice between literal and metonymic designations for the MCGOV in the newspaper
language between Mainland Chinese and Taiwan Chinese. For the online forum
language, these two language varieties show less divergence on this issue, although
the Taiwan online forum still has a slightly higher probability of containing
metonymic designations than the Mainland online forum. We may speculate that
the joint effect of LangVar and Style found here might not be arbitrary, but
ideologically determined.

First, the concept MCGOV is the self government in Mainland Chinese, but
the counterpart in Taiwan Chinese. Conceptually, people from the Mainland
and Taiwan have different emotional involvement and conceptual closeness towards
it. As presented in the general model, when it is about one’s own government,
people are more reluctant to choose a metonymic designation. More support for this
explanation comes from the mixed-effects logistic regression model for observations
with the concept ALL OTHER GOVERNMENT EXCEPT MAINLAND AND TAIWAN

GOVERNMENTS (i.e. with the values gpb, neutral and Asia for the predictor
Con_gp, in total 306 observations), where LangVar displayed no significant
variation. Only for MCGOV does the lectal variation between Mainland Chinese and
Taiwan Chinese emerge. One may state that people from the two language varieties
may share certain similarities in their conceptualization of other governments;
however, in respect of each others’ governments, their conceptual closeness differs
to a large extent.

Second, considerable research has explored the relationship between language
and ideology, especially in the press [49–54]. The consensus is that there is a
close relationship between language and ideology in media discourse [51]. The
linguistic choices made in news articles may carry ideological meaning. In Mainland
Chinese, the press (e.g. in this case, newspapers) has to follow more strict language
regulations, which to some extent normalize the language usage in newspapers. To
display language formality and to show their closeness toward MCGOV, journalists
from Mainland may tend to use the literal expression for MCGOV. It is no wonder
that place name metonymy has the least probability in Mainland newspapers.

A final remark on the effect of LangVar in the model is that, rather than
providing clear evidence for lectal variation, the separate model offers a slightly
different perspective on the variation, a perspective according to which one might
speak of a kind of regional variation, but with some caveats. What we see in the
model is not what we would traditionally call regional onomasiological variation.
This is not ‘formal onomasiological regional variation’ where people from different
regions would tend to choose another term for the same concept. Nor is it
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‘conceptual onomasiological regional variation’ where the language users from
different regions would tend to choose to construe the referent differently. In the
present context, it simply is a given that people will construe MCGOV differently
depending on whether live in the Mainland or Taiwan, because the role between
that government and the language user is different by design. Therefore, one might
argue that the lectal variation here is to some extent conceptual variation.

5 Summary

On the basis of a self-built corpus of newspapers and online forums from Mainland
Chinese and Taiwan Chinese, we have performed a statistical analysis of factors
contributing to the choice of literal vs. metonymic designations for the concept
GOVERNMENT from an onomasiological perspective. With the help of multivariate
analysis—in this case, a mixed-effects logistic regression model—this study unveils
that the choice of literal vs. metonymic designations is a result of a complex
interplay of a number of conceptual, grammatical/discursive and lectal factors and
that no single decisive factor would determine people’s onomasiological choice.
Two separate models were built to detect the determining factors.

In the general model of all observations, we have shown that the choice of
place name metonymy for GOVERNMENT is fostered by worldwide topics rather
than topics of finance, domestic policy or social affairs, by expressions in subject
position rather than non-subject position, and by a title context rather than a main
body context. At the same time, the interaction between the concept group (i.e.
different governments) and the stylistic status of the text shows that PLACE FOR

GOVERNMENT metonymy is boosted dramatically when the observations mention
the counterpart government in newspaper language. However, as the lectal effect of
language variety might be absorbed by the predictor Con_gp, the general model
cannot confirm the effect of LangVar, which prompted us to set up a separate
model for observations of MCGOV to explore the lectal variation.

In the separate model of observations for MCGOV, significant variation between
Mainland Chinese and Taiwan Chinese has been found and the language variety
actually has the most impact on the statistical prediction. In addition, an important
interaction between the language variety and the style of texts has to be added to the
interpretation of lectal variation. Generally speaking, the lectal variation between
Mainland Chinese and Taiwan Chinese is more evident in regard to place name
metonymy in newspaper language rather than in online forum language. This lectal
variation may link up with an ideological difference between people from the Main-
land and Taiwan towards the concept under discussion, i.e. MCGOV. Apparently,
Mainland people may have more conceptual closeness to MCGOV than people from
Taiwan. This emotional distance could be reflected in people’s linguistic usage, i.e.
CONCEPTUAL/EMOTIONAL DISTANCE IS LINGUISTIC DISTANCE, which could be
treated as one of the functions of metonymy. On the other hand, the strict language
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regulations in the press adopted in Mainland China may also contribute to the
underused place name metonymy for MCGOV.

Establishing such an ideological interpretation of this lectal variation, of course,
needs more evidence than what we have done in the present study. Although
the People’s Daily is a good representative of standard languages in Mainland
newspapers, as there is no much divergence in political stances in the Mainland
press, the political standpoints vary greatly in Taiwan newspapers, which may in
turn influence people’s usage of language. The data resource for Taiwan newspaper
in the present study is the United Daily News, which has a pro-reunification
standpoint toward Mainland China. To test whether ideological or political attitude
would impact the use of place name metonymy for GOVERNMENT, the pro-
independence newspaper Liberty Times from Taiwan should be included as another
representative of the Taiwan press. If ideology indeed plays a role in the choice
of literal vs. metonymic designations for GOVERNMENT, it is perfectly logical to
assume that there is a significant difference between the United Daily News and the
Liberty Times in their usage of place name metonymy for MCGOV.

But we have to keep in mind that the lectal variation found in the separate model
has to be interpreted with caution. The concept that people are naming, i.e. MCGOV,
is not the same thing to them. Therefore, it is at least debatable to call the observed
variation regional. One might argue that the actual effect is not regional, but rather
conceptual.

In sum, the present study shed some light on the current metonymy research
in Cognitive Linguistics from the following two perspectives. First, theoretically
it shows that the usage of metonymy is not an isolated linguistic or cognitive phe-
nomenon but highly contextualized. In spite of its productivity, the (non-)application
of PLACE NAME FOR GOVERNMENT metonymies is under conspicuous constraints,
which are conceptually, discursively, grammatically and lectally motivated. Second,
methodologically, this study responds to the call of Cognitive Linguistics to adopt
a usage-based empirical methodology [55–57] by employing a corpus-based study
and multivariate statistical analyses.
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